
Neal Goldstein
Author of Objective-C For Dummies

Learn to:
• Design small- or large-scale iPhone

applications for profit or fun

• Create new iPhone apps using Xcode®

• Get your applications into the App Store

• Work with frameworks

iPhone®

Application Development

2nd Edition
Making Everything Easier!™

Visit the book’s companion Web site at www.dummies.com/

go/iphoneappdevfd2e for source code and additional

information on iPhone app development

 Open the book and find:

• What it takes to become a
registered Apple developer

• How to debug your app

• What’s new in iPhone 3.1 and
Xcode 3.2

• What goes into a good interface
for a small device

• How applications work in the
iPhone environment

• Why you must think like a user

• What the App Store expects of you

• What makes a great iPhone app

Neal Goldstein is a recognized expert at making cutting-edge

technologies practical for commercial and enterprise development.

He is currently leading an iPhone startup that is developing an

application that will radically change how people can use iPhones to

manage information, and he holds a patent on an enterprise-wide

SOA-based architecture.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-56843-9

Macintosh/Programming

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Got a good idea? Turn it
into an app, have some fun,
and pick up some cash!
Make the most of the new 3.1 OS and Apple’s Xcode 3.2!
Neal Goldstein shows you how, and even illustrates the
process with one of his own apps that’s currently being
sold. Even if you’re not a programming pro, you can turn
your bright idea into an app you can market, and Neal even
shows you how to get it into the App Store!

• Mobile is different — learn what makes a great app for mobile
devices and how an iPhone app is structured

• What you need — download the free Software Development Kit,
start using Xcode, and become an “official” iPhone developer

• The nitty-gritty — get the hang of frameworks and iPhone
architecture

• Get busy with apps — discover how to make Xcode work for you
to support app development

• Off to the store — get valuable advice on getting your apps into
the App Store

• Want to go further? — explore what goes into industrial-strength
apps

2nd Edition

iPhone
® A

p
p

lication D
evelop

m
ent

Goldstein

spine=.864”

www.allitebooks.com

http://www.allitebooks.org

2nd Edition

spine=.864”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/iphoneapplicationdevelopment

iPhone®
Application Development

FOR

DUMmIES
‰

2ND EDITION

www.allitebooks.com

http://www.allitebooks.org

by Neal Goldstein

iPhone®
Application Development

FOR

DUMmIES
‰

2ND EDITION

www.allitebooks.com

http://www.allitebooks.org

iPhone® Application Development For Dummies®, 2nd Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates in the United States and other countries, and may not be used without written permission.
iPhone is a registered trademark of Apple, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.
iPhone® Application Development For Dummies®, 2nd Edition is an independent publication and has not
been authorized, sponsored, or otherwise approved by Apple, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009937836

ISBN: 978-0-470-56843-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

About the Author
Neal Goldstein is a recognized leader in making state-of-the-art and cutting-
edge technologies practical for commercial and enterprise development.
He was one of the first technologists to work with commercial developers
at firms such as Apple Computer, Lucasfilm, and Microsoft to develop com-
mercial applications using object-based programming technologies. He was a
pioneer in moving that approach into the corporate world for developers at
Liberty Mutual Insurance, USWest (now Verizon), National Car Rental, EDS,
and Continental Airlines, showing them how object-oriented programming
could solve enterprise-wide problems. His book (with Jeff Alger) on object-
oriented development, Developing Object-Oriented Software for the Macintosh
(Addison Wesley, 1992), introduced the idea of scenarios and patterns to
developers. He was an early advocate of the Microsoft .NET framework, and
successfully introduced it into many enterprises, including Charles Schwab.
He was one of the earliest developers of Service Oriented Architecture (SOA),
and as Senior Vice President of Advanced Technology and the Chief Architect
at Charles Schwab, he built an integrated SOA solution that spanned the
enterprise, from desktop PCs to servers to complex network mainframes. (He
holds three patents as a result.) As one of IBM’s largest customers, he intro-
duced them to SOA at the enterprise level and encouraged them to head in
that direction. He is currently leading an iPhone startup that is developing an
application that will radically change how people can use iPhones to manage
information.

www.allitebooks.com

http://www.allitebooks.org

Dedication
To my mother, Anne, who would have loved to see this second edition.

To my brother, Jay, who has continued to be a pillar of support and enabled
me to stay focused.

To my children, Sarah and Evan, who have always inspired me and never
let me get too carried away with my own magnificence (especially after the
success of the first edition).

Most of all, to my wife Linda, who understands my absences, even when I
am in the same room, and has enthusiastically accompanied me on all my
adventures. She deserves an award (a Nobel Prize will do) for living through,
not one, not two, but three books in one year with equanimity and grace.

www.allitebooks.com

http://www.allitebooks.org

Author’s Acknowledgments
Carole Jelen, agent extraordinaire, puts the energizer bunny to shame when it
comes to moving book deals forward.

Senior Acquisitions Editor Katie Feltman was a pleasure to work with yet
again and a great sounding board and originator of ideas. Her in-depth
understanding of our readers really helped focus this book. Project Editors
Nicole Sholly and Colleen Totz helped me solidify my thinking and focus the
explanations. Copy Editor Melba Hopper did a great job in helping me make
things clearer. Technical reviewer Glenda Adams added a great second pair
of eyes.

www.allitebooks.com

http://www.allitebooks.org

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For
other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, out-
side the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media
Development

Project Editors: Nicole Sholly and Colleen Totz
(Previous Edition: Paul Levesque)

Senior Acquisitions Editor: Katie Feltman

Copy Editor: Melba Hopper
(Previous Edition: Barry Childs-Helton)

Technical Editor: Glenda Adams

Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project
Manager: Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel, Douglas
Kuhn, and Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Katherine Crocker

Layout and Graphics: Melanee Habig,
Joyce Haughey

Proofreader: Toni Settle

Indexer: BIM Indexing & Proofreading

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

Contents at a Glance
Introduction... 1

Part I: Getting Started.. 7
Chapter 1: Creating Killer iPhone Applications.. 9
Chapter 2: Looking Behind the Screen... 27
Chapter 3: Enlisting in the Developer Corps... 45

Part II: Using the iPhone Development Tools................. 59
Chapter 4: Getting to Know the SDK.. 61
Chapter 5: Building the User Interface... 81
Chapter 6: While Your Application Is Running... 99

Part III: From “Gee, That’s a Good Idea,”
to the App Store... 115
Chapter 7: Actually Writing Code... 117
Chapter 8: Entering and Managing Data.. 135
Chapter 9: Saving Data and Creating a Secret Button.. 169
Chapter 10: Using the Debugger... 187
Chapter 11: Buttoning It Down and Calling Home.. 203
Chapter 12: Death, Taxes, and the iPhone Provisioning... 231

Part IV: An Industrial-Strength Application................ 253
Chapter 13: Designing Your Application.. 255
Chapter 14: Setting the Table.. 273
Chapter 15: Enhancing the User Experience... 303
Chapter 16: Creating Controllers and Their Models.. 321
Chapter 17: Finding Your Way.. 355

Part V: The Part of Tens.. 377
Chapter 18: Top Ten Apple Sample Applications (with Code!)................................ 379
Chapter 19: Ten Ways to Be a Happy Developer.. 383

Index... 387

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Introduction... 1

About This Book... 2
Conventions Used in This Book.. 3
Foolish Assumptions.. 3
How This Book Is Organized... 4

Part I: Getting Started... 4
Part II: Using the iPhone Development Tools..................................... 4
Part III: From “Gee, That’s a Good Idea,” to the App Store................ 5
Part IV: An Industrial-Strength Application... 5
Part V: The Part of Tens... 5

Icons Used in This Book.. 6
Where to Go from Here.. 6

Part I: Getting Started... 7

Chapter 1: Creating Killer iPhone Applications 9
What Makes a Great iPhone Application... 10
Creating a Compelling User Experience.. 11
Exploiting the Platform.. 12

Device-guided design... 12
Exploiting the features... 12

Accessing the Internet.. 13
Knowing the location of the user.. 13
Tracking orientation and motion.. 14
Tracking the action of the user’s fingers on the screen......... 14
Playing audio and video... 14
Accessing the user’s contacts... 14
Accessing the user’s pictures and camera.............................. 15

Embracing the limitations... 15
Living with the small screen.. 15
Designing for fingers... 15
Limited computer power, memory, and battery life.............. 16

A Compelling User Experience.. 17
Compelling content.. 17

Consistency with the user’s world... 18
The user interface — form following function.................................. 20

Consistency.. 21
Making it obvious.. 21
Engaging the user.. 22

Why Develop iPhone Applications?... 22

www.allitebooks.com

http://www.allitebooks.org

iPhone Application Development For Dummies, 2nd Edition xiv
Examining the Possibilities... 23
The Sample Applications... 24
What’s Next... 25

Chapter 2: Looking Behind the Screen . 27
Using Frameworks.. 27
Using Design Patterns.. 29

The Model-View-Controller (MVC) pattern....................................... 30
The MVC in action.. 31

Working with Windows and Views... 32
Looking out the window.. 32
Admiring the view... 33

What views do... 34
The view hierarchy... 34

The kinds of views you use... 35
Container views... 36
Controls.. 36
Display views... 36
Text and Web views.. 37
Alert views and action sheets.. 37
Navigation views... 37
The window... 37

Controlling View Controllers.. 37
What about the Model?.. 39
Adding Your Own Application’s Behavior.. 40

The Delegation pattern.. 41
The Target-Action pattern... 42

Doing What When?... 43
Whew!... 44

Chapter 3: Enlisting in the Developer Corps . . 45
Becoming a Registered iPhone Developer.. 46
Exploring the iPhone Dev Center... 49

Looking forward to using the SDK.. 50
Resources on the iPhone Dev Center... 51

Downloading the SDK... 52
Joining the iPhone Developer Program... 53
Getting Yourself Ready for the SDK... 58

Part II: Using the iPhone Development Tools.................. 59

Chapter 4: Getting to Know the SDK . 61
Developing Using the SDK... 61
Creating Your Project.. 62
Exploring Your Project.. 65
Building and Running Your Application.. 69

xv Table of Contents

The iPhone Simulator... 71
Hardware interaction... 71
Gestures... 72
Uninstalling applications and resetting your device........................ 73
Limitations... 73

Customizing Xcode to Your Liking... 74
Using Interface Builder.. 76
It’s Time to Get to Work... 80

Chapter 5: Building the User Inter face . 81
Starting Interface Builder.. 81
Adding Graphics and the Rest of the Elements.. 89
Adding an Application Icon... 96
A Lot Accomplished Very Quickly.. 98

Chapter 6: While Your Application Is Running 99
Application Anatomy 101 — The Life Cycle.. 99

It all starts with the main nib file.. 101
Initialization... 106

Event Processing.. 108
Termination... 110
Other Runtime Considerations... 110

Responding to interruptions... 110
Seeing how memory management works on the iPhone............... 111

Observing low-memory warnings... 112
Avoiding the warnings.. 113
Some basic memory-management rules

you shouldn’t forget.. 113
Reread this section!.. 114

Whew!... 114

Part III: From “Gee, That’s a Good Idea,”
to the App Store.. 115

Chapter 7: Actually Writing Code . 117
Buckle Up, It’s Time to Code... 117
The Xcode Code Editor.. 119
Accessing Documentation... 119

Quick Help... 120
The header file for a symbol.. 120
Documentation window... 121
Help menu.. 122
Find... 122

www.allitebooks.com

http://www.allitebooks.org

iPhone Application Development For Dummies, 2nd Edition xvi
Adding Outlets to the View Controller.. 124

Objective-C properties... 128
Memory Management.. 129
Connecting the Pieces in Interface Builder... 131

Chapter 8: Entering and Managing Data . 135
Scrolling the View... 137
Where Does My Code Go?... 138

The Delegate object.. 138
The Controller object... 140

Where Where Where.. 141
Building on a Foundation... 142

Notification.. 143
Registering a notification... 143
Unregistering a notification... 145

Keeping the text field visible... 146
The concept... 146
The mechanics of scrolling the view...................................... 147

Moving the view.. 151
Updating the interface.. 153
Lowering the view when all is said and done.................................. 154

Polishing the Chrome and Adding the Vinyl Pinstriping......................... 156
Adopting a protocol... 157
Connecting things up with Interface Builder.................................. 158
Adding a Clear button.. 160
Saving the phone number for future reference............................... 160
Dismissing the keyboard when the user touches in the view....... 164

Finding Your Way Around the Code.. 166
When You’re Done.. 167

Chapter 9: Saving Data and Creating a Secret Button 169
Saving User-Entry Data.. 170

Preferences.. 170
The NSUserDefaults class.. 171

Saving data using NSUserDefaults.. 172
Setting it up.. 173
Saving the phone number.. 175
Loading the preference entry to get the data........................ 176
Using data.. 179

Disabling Editing... 181
Letting the User Use the Secret Button... 183
What You Have Now — At Long Last... 185

Chapter 10: Using the Debugger . 187
Using the Debugger.. 190

Debugging your project... 191
Using the Debugger window.. 193

xvii Table of Contents

Using Breakpoints.. 196
Using the Static Analyzer... 199
One More Step.. 202

Chapter 11: Buttoning It Down and Calling Home 203
Adding a Button to Your iPhone Interface.. 204

The Target-Action pattern... 204
Working through your button code... 205

Connecting the Button in Interface Builder.. 209
Phoning Home... 212

Tweaking the code.. 213
Implementing the Web view.. 214
Adding and connecting the Web View in Interface Builder........... 218

A Bug.. 220
We Are Finally Done... 223
The Final Code.. 223

Chapter 12: Death, Taxes, and the iPhone Provisioning 231
How the Process Works... 232

The Distribution process... 232
The Development process... 233

Provisioning Your Device for Development.. 235
Development Provisioning Profile and iPhone Development

Certificate... 236
Provisioning Your Application for the App Store.................................... 239
iTunes Connect... 244

What you’ll need to get your application into the App Store....... 246
We’re not done yet... 250
Uploading your information.. 250
Upload your application and its data... 251

Now What?... 252

Part IV: An Industrial-Strength Application................. 253

Chapter 13: Designing Your Application . 255
Defining the Problems.. 257
Designing the User Experience... 258

Understanding the real-world context... 259
Become the champion of relevance....................................... 259
Seconds count... 259
The quality of information has to be better

than the alternative... 260
The app has to be worth the real cost................................... 260
Keep things localized.. 260

www.allitebooks.com

http://www.allitebooks.org

iPhone Application Development For Dummies, 2nd Edition xviii
Paying particular attention to three iPhone features.................... 260

Knowing the location of the user.. 260
Accessing the Internet.. 261
Tracking orientation and motion.. 261

Incorporating the device context... 261
Categorizing the problems and defining the solutions.................. 262

Creating the Program Architecture.. 265
A main view... 266
Content views.. 266
View controllers.. 270
Models.. 270

No use reinventing the wheel.. 271
Putting property lists to good use ... 271

Stored data mode, saving state, and localization........................... 272
The Iterative Nature of the Process... 272

Chapter 14: Setting the Table . 273
Working with Table Views... 273

Creating the table view.. 275
Creating and formatting a grouped table view............................... 276
Making UITableViewController work for you.................................. 279

Adding sections... 279
Adding titles for the sections.. 284
Localization.. 285

Creating the row model... 288
Seeing how cells work.. 292

Using vanilla cell objects.. 293
Adding subviews to a cell’s content view.............................. 293
Creating a custom subclass UITableViewCell....................... 294

Creating the cell.. 294
Responding to a selection... 298
Navigating the navigation controller.. 300
Implementing the selection... 302

And Now 302

Chapter 15: Enhancing the User Experience . 303
Saving and Restoring State.. 303

Saving state information.. 304
Restoring the state... 307

Respecting User Preferences.. 309
Adding a Settings bundle to your project.. 310
Setting up the property list... 311

Reading Settings in the Application... 314
Using Preferences in Your Application.. 317
This App Is Almost Done... 320

xix Table of Contents

Chapter 16: Creating Controllers and Their Models 321
Specifying the Content... 322
Creating the View Controller, Nib, and Model Files................................. 326

Adding the controller and nib file... 326
Adding the model class.. 328
Set up the nib file.. 328

Implementing the View, View Controller, and the Model........................ 333
Make sure the AirportController knows about

the objects it needs... 333
Initialization... 334
Setting up the view... 335
Responding to the user selection... 338

The Destination Model... 341
What’s with the Destination Model and All That Indirection................. 346
The Weather Implementation Model... 348
The Currency Implementation Model.. 350
Notice the Pattern.. 352
What’s Next?.. 352

Chapter 17: Finding Your Way . 355
Using MapKit... 356
MKMapView.. 356
Enhancing the Map... 357

Adding landscape mode and the current location......................... 358
It’s about the region... 359

Annotations... 364
The annotation.. 365
Displaying the annotations.. 367

Going to the Current Location.. 369
Geocoding.. 371
What’s Next?.. 375

Part V: The Part of Tens... 377

Chapter 18: Top Ten Apple Sample Applications (with Code!) 379
AppPrefs.. 379
BubbleLevel... 380
LocateMe... 380
NavBar.. 380
Reachability... 380
iPhoneCoreDataRecipes.. 381
UICatalog.. 381
URLCache.. 381
XML.. 381
Tables... 382

www.allitebooks.com

http://www.allitebooks.org

iPhone Application Development For Dummies, 2nd Edition xx
Chapter 19: Ten Ways to Be a Happy Developer 383

It’s Never Early Enough to Start Speaking a Foreign Language.............. 383
Remember Memory.. 384
Constantly Use Constants... 384
Don’t Fall Off the Cutting Edge.. 384
Start by Initializing the Right Way.. 384
Keep the Order Straight... 385
Avoid Mistakes in Error Handling.. 385
Remember the User.. 386
Keep in Mind that the Software Isn’t Finished Until

the Last User Is Dead.. 386
Keep It Fun... 386

Index.. 387

Introduction

In the first edition of iPhone Application Development For Dummies, I said
that when Apple opened up the iPhone to developers, I got as excited

about developing software as I did when I first discovered the power of the
Mac. And you know what, I still am.

As I continue to explore the iPhone as a new platform, I keep finding more
possibilities for applications that never existed before. It is a mobile com-
puter, but not simply a mobile desktop. Its hardware and software make
it possible to wander the world, or your own neighborhood, and stay con-
nected to whomever and whatever you want to. It enables a new class of
here-and-now applications that allow you to do what you need to, based on
what is going on around you and where you are.

The first edition of iPhone Application Development For Dummies was based
on iPhone OS 2.2.1. When iPhone OS 3.0 was released, and then quickly fol-
lowed by OS 3.1, I knew that I had to do a second edition. There were some
additional features that I wanted to show readers how to use. The new
MapKit, for example, makes it much easier to use the location-based features
of the iPhone in an application. This is a significant step forward since one of
the hallmarks of a great iPhone app is that it leverages the iPhone’s unique
hardware, especially its ability to know where the user is. The new MapKit
makes it possible for even a beginning developer to take full advantage of the
location hardware, and I’ve added a new chapter to show you how. There
are also some other changes to the nuts and bolts of how to develop iPhone
applications that required changes in the examples I showed about how to
use the SDK to create real applications.

But as important as iPhone OS 3.1 is, Snow Leopard and its accompanying
Xcode release 3.2 are (almost) equally as important. OS 2.2.1 and Xcode 3.1
provided a set of mature, easy-to-use, and (the best part) free tools. The
frameworks were amazing! I had used frameworks before, but the ones that
came with the iPhone were especially rich and mature. All I really had to do
was add my application’s user interface and functionality to the framework,
and then “poof” . . . an instant application.

But are you ready for this — from a developer’s standpoint, Xcode 3.2 is a lot,
lot better and easier to use. This became obvious when I first started using
a beta version. In fact, I subsequently moved all of my own and my team’s
development to Xcode 3.2, and when I do have to use Xcode 3.1, I find myself
grumbling the entire time.

Contents

Introduction	 1

About This Book	 2

Conventions Used in This Book	 3

Foolish Assumptions	 3

How This Book Is Organized	 4

Icons Used in This Book	 6

Where to Go from Here	 6

www.allitebooks.com

http://www.allitebooks.org

2 iPhone Application Development For Dummies, 2nd Edition

As a result, this new edition is based on iPhone OS 3.1 and Xcode 3.2. If you
want to learn how to develop applications, this is the set of tools you abso-
lutely need to use to do it the right way.

If this seems too good to be true, well, okay, it is, sort of. All that convenience
comes at a cost. At first, it was really difficult to get my head around the
whole thing, conceptually speaking; sometimes I found it difficult to figure
out exactly where (and how) to add my application’s functionality to that
supplied by the framework.

And while there were lots of resources, the problem was exactly that: There
were lots of resources! As in, thousands of pages of documentation I could
read, and lots of sample code to look at. I could only get through a small frac-
tion of the documentation before I just couldn’t stand the suspense anymore
and started coding. Naturally enough, there were a few false starts and blind
alleys until I found my way, and it has been (pretty much) smooth sailing
ever since.

That’s why, when the For Dummies folks asked me to write a book on devel-
oping software for the iPhone, I jumped at the chance. Here was an opportu-
nity for me to write the book I wish I’d had when I started developing iPhone
software.

About This Book
iPhone Application Development For Dummies is a beginner’s guide to devel-
oping iPhone applications. And not only do you not need any iPhone develop-
ment experience to get started, you don’t need any Macintosh development
experience either. I expect you to come as a blank slate, ready to be filled
with useful information and new ways to do things.

Because of the nature of the iPhone, you can create small, bite-sized applica-
tions that can be really powerful. And since you can start small and create
real applications that do something important for a user, it’s relatively easy
to transform yourself from “I know nothing” into a developer who, though not
(yet) a superstar, can still crank out quite a respectable application.

But the iPhone can be home to some pretty fancy software as well — so I’ll
take you on a journey through building an industrial-strength application and
show you the ropes for developing one on your own.

This book distills the hundreds (or even thousands) of pages of Apple
documentation, not to mention my own development experience, into only
what’s necessary to start you developing real applications. But this is no

3 Introduction

recipe book that leaves it up to you to put it all together; rather, it takes you
through the frameworks and iPhone architecture in a way that gives you a
solid foundation in how applications really work on the iPhone — and acts as
a roadmap to expand your knowledge as you need to.

It’s a multicourse banquet, intended to make you feel satisfied (and really
full) at the end.

Conventions Used in This Book
This book guides you through the process of building iPhone applications.
Throughout, you use the provided iPhone framework classes (and create new
ones, of course) and code them using the Objective-C programming language.

Code examples in this book appear in a monospaced font so they stand out a
bit better. That means the code you’ll see will look like this:

#import <UIKit/ UIKit.h>

Objective-C is based on C, which (I want to remind you) is case-sensitive, so
please enter the code that appears in this book exactly as it appears in the
text. I also use the standard Objective-C naming conventions — for example,
class names always start with a capital letter, and the names of methods and
instance variables always start with a lowercase letter.

Let me throw out that all URLs in this book appear in a monospaced font
as well:

www.nealgoldstein.com

If you’re ever uncertain about anything in the code, you can always look at
the source code on my Web site at www.nealgoldstein.com — from time
to time, I’ll provide updates for the code there, and post other things you
might find useful. (You can grab the same material from the For Dummies
Web site at www.dummies.com/go/iphonedevfd.)

Foolish Assumptions
To begin programming your iPhone applications, you’ll need an Intel-based
Macintosh computer with the latest version of the Mac OS on it. (No, you
can’t program iPhone applications on the iPhone.) You will also need to

www.allitebooks.com

http://www.allitebooks.org

4 iPhone Application Development For Dummies, 2nd Edition

download the iPhone Software Development Kit (SDK) — which is free — but
you do have to become a registered iPhone developer before you can do
that. (Don’t worry; I show you how to do both.) And, oh yeah, you’ll need an
iPhone. You won’t start running your application on it right away — you’ll
use the Simulator that Apple provides with the iPhone SDK during the initial
stages of development — but at some point, you’ll want to test your applica-
tion on a real, live iPhone.

I’m going to assume that you have some programming knowledge and that
you have at least a passing acquaintance with object-oriented program-
ming, using some variant of the C language (such as C++, C#, or maybe even
Objective-C). If not, I’ll point out some resources that can help you get up to
speed. The examples in this book are focused on the frameworks that come
with the SDK; the code is pretty simple (usually) and straightforward. (I won’t
use this book as a platform to dazzle you with fancy coding techniques.)

I’m also going to assume that you’re familiar with the iPhone itself, and that
you’ve at least explored Apple’s included applications to get a good working
sense of the iPhone look and feel. It would also help if you browse the App
Store to see the kinds of applications available there, and maybe even down-
load a few free ones (as if I could stop you).

How This Book Is Organized
iPhone Application Development For Dummies has five main parts.

Part I: Getting Started
Part I introduces you to the iPhone world. You’ll find out what makes a great
iPhone application, and how an iPhone application is structured. You also
find out how to become an “official” iPhone developer and what you need to
do to in order to be able to distribute your applications through Apple’s App
Store.

Part II: Using the iPhone
Development Tools
I start Part II by showing you how to download the Software Development Kit
(SDK) — and then help you unpack all the goodies contained therein, includ-
ing Xcode (Apple’s development environment for the OS X operating system)
and Interface Builder. (You’ll soon discover that the latter is more than your

5 Introduction

run-of-the-mill program for building graphical user interfaces.) I’ll also explain
how everything works together at runtime, which should give you a real feel
for how an iPhone application works. Parts I and II give you the fundamental
background that you need to develop iPhone applications.

Part III: From “Gee, That’s a Good Idea,”
to the App Store
With the basics behind you and a good understanding of the application
architecture under your belt, it’s finally time to have some fun doing some-
thing useful. In this part, I show you how to create a simple application that
people can actually use — it displays a phone number to call if you lose
your iPhone. (My friends thought it was sheer genius.) What’s more, the
Good Samaritan who finds your phone only has to tap that number where
it’s shown on-screen, and the phone dials the number automatically. Putting
this handy little app together will give you some practice at creating a useful,
single-screen program with controls. It’s a great application to learn about
iPhone development — big enough to be useful, but small enough not to
make your head explode.

It is also a “real” application. I go through the process I used to (successfully)
submit it to the App Store, and you can download it and see it for yourself.

Part IV: An Industrial-Strength
Application
Part IV takes you into the world of applications that contains major function-
ality. I show you how to design an application with lots of data, views, and
access to the Web. I won’t go slogging through every detail, but I will demon-
strate almost all the technology you need to master if you’re going to create a
compelling application like this on your own. I also touch on a few advanced
topics — such as creating self-configuring objects so you don’t find your
classes multiplying like rabbits.

Part V: The Part of Tens
Part V consists of some tips to help you avoid having to learn everything the
hard way. It talks about approaching application development in an “adult”
way right from the beginning (without taking the fun out of it, I assure you).
I also take you on a tour of the iPhone sample code, pointing out some sam-
ples I really like and have found to be the most useful.

www.allitebooks.com

http://www.allitebooks.org

6 iPhone Application Development For Dummies, 2nd Edition

Icons Used in This Book
	 This icon indicates a useful pointer that you shouldn’t skip.

	 This icon represents a friendly reminder. It describes a vital point that you
should keep in mind while proceeding through a particular section of the
chapter.

	 This icon signifies that the accompanying explanation may be informative
(dare I say, interesting?), but it isn’t essential to understanding iPhone applica-
tion development. Feel free to skip past these tidbits if you’d like (though skip-
ping while leaning may be tricky).

	 This icon alerts you to potential problems that you may encounter along the
way. Read and obey these blurbs to avoid trouble.

Where to Go from Here
It’s time to explore the iPhone! If you’re nervous, take heart: One of the most
interesting applications I have seen is being developed by a 67-year-old
grandmother who read the first edition of this book, and she’s having a ball.

Let’s go have some fun.

Part I
Getting Started

Contents
Getting Started	 7

www.allitebooks.com

http://www.allitebooks.org

In this part . . .

So you’ve decided you want to develop some software
for the iPhone. You have a good idea for a utility —

one that lets you know your net worth in Zimbabwean
dollars, or a data-driven application (say, one that knows
where to find the best coffee in Seattle). Now what?

This part lays out what you need to know to get started
on the development journey. First of all, what makes a
great iPhone application? Knowing that, you can evaluate
your idea, see how it ranks, and maybe figure out what
you have to do to transform it into something that knocks
your users’ socks off. Next, before you can actually build
that sucker, you look under the hood at how iPhone appli-
cations work — what goes on behind the screen that ends
up with a user seeing something in a window and interact-
ing with controls. You get a look at the user interface
frameworks and how to use them (and how they want to
use you). Finally, to get all that free development software
from Apple, and get your application into the App Store,
you’ll have to become “legal” — it’s time to become an
official iPhone developer.

Chapter 1

Creating Killer iPhone
Applications

In This Chapter
▶	Figuring out what makes an insanely great iPhone application

▶	Listing the features of the iPhone that can inspire you

▶	Facing the limitations you have to live with

▶	Checking out the possibilities that are open to you

▶	Developing iPhone software now rather than later

Imagine that you’ve just landed at Heathrow Airport. It’s early in the morn-
ing, and you’re dead tired as you clear customs. All you want to do now is

find the fastest way to get into London, check into your hotel, and sleep for a
few hours.

You take out your iPhone and touch the MobileTravel411 icon. On the left in
Figure 1-1, you can see it asks whether you want to use Heathrow Airport as
your current location. You touch Yes, and then touch Getting To From (as
you can see in the center of Figure 1-1). Since it already knows that you’re at
Heathrow, it gives you your alternatives. Because of the congestion in and
out of London, it suggests using the Heathrow Express, especially during
rush hour.

You touch the Heathrow Express tab, and it tells you where to get the train and
also tells you that the fare is £14.50 if you buy it from the ticket machine and
£17.50 if you buy it on board the train. (The iPhone on the right in Figure 1-1 is
proof that I’m not making this up.) It turns out that you’re so jetlagged that you
can’t do the math in your head, so you touch the Currency button, and it tells
you that £14.50 is around $21.35 if you take it from the ATM, $21.14 on your no-
exchange-rate-fee credit card, or $22.31 at the bureau de change at the airport.

Another touch gets you the current weather, which prompts you to dig out a
sweater from your luggage before you get on the train.

Contents
Creating Killer iPhone

Applications	 9
What Makes a Great iPhone Application	
10

Creating a Compelling User Experience	
11

Exploiting the Platform	 12

A Compelling User Experience	 17

Why Develop iPhone Applications?	 22

Examining the Possibilities	 23

The Sample Applications	 24

What’s Next	 25

www.allitebooks.com

http://www.allitebooks.org

10 Part I: Getting Started

When you get to Paddington Station, you really don’t have a clue where the
hotel that someone at the office booked for you might be. You touch Getting
Around, and the application allows you to use the hotel address that is in
your iPhone Contacts, and then gives you your options when it comes to
finally finding that big, comfortable, English bed. These include walking,
taking a taxi, and public transit. You touch Tube, and it directs you to the
nearest Tube stop, and then displays fares, schedules, and how to buy a
ticket.

	

Figure 1-1:
The Mobile

Travel411
application

can use
your current

location.
	

How much of a fantasy is this?

Not much. Except for automatically determining your location and giving
you public-transit directions as well as real-time exchange rates (stuff I’ll be
adding in the near future), this application already exists. What’s more, it
took me only a little more than two months to develop that application, start-
ing from where you are now, with no iPhone programming experience.

What Makes a Great iPhone Application
You’ll find a lot of different kinds of applications on the iPhone, ranging
from utilities like the Weather Application, to games, to The New York Times
reader, to the application I just described. Each one of these applications
also falls on another continuum.

11 Chapter 1: Creating Killer iPhone Applications

At one end of this continuum is what I think of as the mobile desktop. These
are applications you might use if you’re using your desktop or laptop —
applications you could port to (rewrite for) the iPhone. For example, I have
a Weather Application on my MacBook Pro on which I can read The New
York Times as well — and it doesn’t take any major imaginative leap to see
how one can do the Weather/New York Times thing on an iPhone. Although I
wouldn’t think about writing this book on my iPhone, I can easily picture the
iPhone as a handy home for note-taking applications, spreadsheet apps, and
even stock-trading apps.

At the other end of this continuum are those applications that you would
never want to do on the desktop (or even a laptop), either because you don’t
have the hardware or because, even if you did, doing it that way would be
way too inconvenient. Imagine being at Heathrow, dead tired, taking out
your laptop in the middle of a crowded terminal, powering it up, launching
the application, and then navigating through it with the touch pad to get the
information I got easily while holding the iPhone in one hand. I want that kind
of information quickly and conveniently; I don’t want to have to dig my way
to it through menus or layers of screens (or even going through the hassle
of finding a wireless Internet connection). Seconds count. By the time any
road warrior tied to a laptop did this at Heathrow, I would already be on the
Heathrow Express.

I like to think of these kinds of applications as here-and-now applications.
You want to do a specific task, with up-to-date information, which the iPhone
can access over the Internet through a cell network or Wi-Fi connection. You
may even want the information or tasks tailored to where you are, which the
iPhone can determine with its location hardware.

With all that in mind, I can think of two things that you need to consider —
besides functionality, of course — when it comes to creating a great iPhone
application:

	 ✓	Create a compelling user experience.

	 ✓	Exploit the platform.

The next few sections dig a little into my Two-Part Rule of Great iPhone
Applications.

Creating a Compelling User Experience
The iPhone allows an immediacy and intimacy as it blends mobility and the
power of the desktop to create a new kind of freedom. I like to use the term
user experience because it implies more than a pretty user interface and nice

www.allitebooks.com

http://www.allitebooks.org

12 Part I: Getting Started

graphics. A compelling user experience enables users to do what they need
to do with a minimum of fuss and bother. But more than that, it forces you to
think past a clean interface and even beyond basic convenience (such as not
having to scroll through menus to do something simple). It includes meet-
ing the expectations of the user based on the context — all the stuff going on
around a user — in which they are using the application.

A guidebook application may have a great user interface, for example, but it
may not give me the most up-to-date information, or let me know a tour of
Parliament is leaving in five minutes from the main entrance. Without those
added touches, I’m just not willing to consider an app compelling.

Exploiting the Platform
The iPhone’s unique software and hardware allow you to create an applica-
tion that enables the user to do something that may not be practical, or even
possible with a laptop computer. Although the iPhone is a smaller, mobile
personal computer, it is not a replacement for one. It is not intended to pro-
duce documents, proposals, or research. The iPhone has the capability to be
an extension of the user, seamlessly integrated into his or her everyday life,
and able to accomplish a singly focused task, or step in a series of tasks, in
real time, based on where he or she is.

Device-guided design
While the enormous capabilities of the iPhone make it possible to deliver the
compelling user experience, you must take into account the limitations of the
device as well. Keeping the two in balance is device-guided design. The next
two sections describe both the features and limitations of the iPhone — and
how to take them into account as you plan and develop an application. But
understanding these constraints can also inspire you to create some really
innovative applications. After a closer look at device-guided design, I come
back to what makes a compelling user experience.

Exploiting the features
One of the keys to creating a great application is to take advantage of what
the device offers. In the case of a new platform with new possibilities, such
as the iPhone, this is especially important. Think about the possibilities that
open up to you when your application can easily do the following:

13 Chapter 1: Creating Killer iPhone Applications

	 ✓	Access the Internet.

	 ✓	Know the location of the user.

	 ✓	Track orientation and motion.

	 ✓	Track the action of the user’s fingers on the screen.

	 ✓	Play audio and video.

	 ✓	Access the user’s contacts.

	 ✓	Access the user’s pictures and camera.

Accessing the Internet
The ability to access Web sites and servers on the Internet allows you to
create applications that can provide real-time information to the user. It can
tell me, for example, that the next tour at the Tate Modern is at 3 p.m.. This
kind of access also allows you, as the developer, to go beyond the limited
memory and processing power of the device and access large amounts of
data stored on servers, or even offload the processing. I don’t need all the
information for every city in the world stored on my iPhone or have to strain
the poor CPU to compute the best way to get someplace on the Tube. I can
send the request to a server and have it do all that work.

	 This is client-server computing — a well-established software architecture
where the client provides a way to make requests to a server on a network
that’s just waiting for the opportunity to do something. A Web browser is an
example of a client accessing information from other Web sites that act as
servers.

Knowing the location of the user
The iPhone Operating System (OS) and hardware allow a developer to deter-
mine the device’s current location, or even be notified when that location
changes. As people move, it may make sense for your application to tailor
itself to where the user is moment by moment.

There are already iPhone applications that use location information to tell
you where the nearest coffee house is, or even where your friends are. The
MobileTravel411 application uses this information to tell you the nearest
Tube stop and give you directions to your hotel.

Once you know the user’s location, you can even put it on a map, along with
other places he or she may be interested in. In Chapter 17, I will show you
how easy that really is.

www.allitebooks.com

http://www.allitebooks.org

14 Part I: Getting Started

Tracking orientation and motion
The iPhone contains three accelerometers — devices that detect changes
in movement. Each device measures change along one of the primary axes
in three-dimensional space. You can, for example, know when the user has
turned the device from vertical to horizontal, and change the view from
portrait to landscape if it makes for a better user experience. You can also
determine other types of motion such as a sudden start or stop in movement
(think of a car accident or fall), or the user shaking the device back and forth.
It makes some way-cool features easy to implement — for example, the Etch-
A-Sketch metaphor of shaking a device to reset it, and controlling a game by
moving the iPhone like a controller.

Tracking the action of the user’s fingers on the screen
People use their fingers, rather than a mouse, to select and manipulate objects
on the iPhone screen. The moves that do the work, called gestures, give the
user a heightened sense of control and intimacy with the device. There is a set
of standard gestures — taps, pinch-close and pinch-open, flicks, and drags —
that are used in the applications supplied with the iPhone.

	 I suggest strongly that you use only the standard gestures in your application.
Even so, the iPhone’s gesture-recognition hardware and software allow you to
go beyond standard gestures when appropriate. Because you can monitor the
movement of each finger to detect gestures, you can create your own, but use
that capability sparingly — only when it’s undoubtedly the right thing to do in
your application.

Playing audio and video
The iPhone OS makes it easy to play and include audio and video in your
application. You can play sound effects, or take advantage of the multichannel
audio and mixing capabilities available to you. You can also play back many
standard movie file formats, configure the aspect ratio, and specify whether
or not controls are displayed. This means your application can not only use
the iPhone as a media player, but also use and control pre-rendered content.
Let the games begin!

Accessing the user’s contacts
Your application can access the user’s contacts on the phone and display
that information in a different way, or use it as information in your applica-
tion. As a user of the MobileTravel411 application, for example, you could
enter the name and address of your hotel, and the application would file
it in your Contacts database. That way you have ready access to the hotel
address — not only from MobileTravel411, but also from your phone and
other applications. Then, when you arrive at Paddington Station, the applica-
tion can retrieve the address from Contacts and display directions for you.

15 Chapter 1: Creating Killer iPhone Applications

Accessing the user’s pictures and camera
As with Contacts, your application can also access the pictures stored on the
user’s phone — and not only display them, but also to use or even modify
them. The Photos application, for example, lets you add a photo to a contact,
and there are several applications that enable you to edit your photos on the
iPhone itself. You can also incorporate the standard system interface to actu-
ally use the camera as well.

Embracing the limitations
Along with all those features, however, the iPhone has some limitations. The
key to successful applications — and to not making yourself too crazy — is to
understand those limitations, live (and program) within them, and even learn
to love them. (It can be done. Honest.) These constraints help you understand
the kinds of applications that are right for this device.

	 Often, it’s likely that if you can’t do something (easily, anyway) because of the
iPhone’s limitations, then maybe you shouldn’t.

So learn to live with and embrace some facts of iPhone life:

	 ✓	The small screen

	 ✓	Users with fat fingers (me included)

	 ✓	Limited computer power, memory, and battery life

The next sections can help get you closer to this state of enlightenment.

Living with the small screen
While the iPhone’s screen size and resolution allow you to deliver some
amazing applications, it is still pretty small. Yet while the small screen limits
what you can display on a single page, I have managed to do some mental
jujutsu on myself to really think of it as a feature.

When your user interface is simple and direct, the user can understand it more
easily. With fewer items in a small display, users can find what they want more
quickly. A small screen forces you to ruthlessly eliminate clutter and keep your
text concise and to the point (the way you like your books, right?).

Designing for fingers
While the Multi-Touch interface is an iPhone feature, it brings with it limita-
tions as well. First of all, fingers aren’t as precise as a mouse pointer, which
makes some operations difficult (text selection, for example). User-interface

www.allitebooks.com

http://www.allitebooks.org

16 Part I: Getting Started

elements need to be large enough (Apple recommends that anything a user
has to select or manipulate with a finger be a minimum of 44x44 pixels in
size), and spaced far enough apart so that users’ fingers can find their way
around the interface comfortably.

You also can do only so much using fingers. There are definitely a lot fewer
possibilities using fingers than the combination of multi-button mouse and
keyboard.

Because it’s so much easier to make a mistake using just fingers, you also
need to ensure that you implement a robust — yet unobtrusive — undo
mechanism. You don’t want to have your users confirm every action (it
makes using the application tedious), but on the other hand, you don’t want
your application to let anybody mistakenly delete a page without asking, “Are
you sure this is what you really want to do?” Lost work is worse than tedious.

Another issue around fingers is that the keyboard is not that finger-friendly.
I admit it, using the iPhone keyboard is not up there on the list of things I
really like about my iPhone. So instead of requiring the user to type some
information, Apple suggests that you have a user select an item from a list.
But on the other hand, the items in the list must be large enough to be easily
selectable, which gets back to the first problem.

But again, like the small screen, this limitation can inspire (okay, may force)
you to create a better application. To create a complete list of choices, for
example, the application developer is forced to completely understand the
context (and be creative about) that the user is trying to accomplish. Having
that depth of understanding then makes it possible to focus the application
on the essential, eliminating what is unnecessary or distracting. It also serves
to focus the user on the task at hand.

Limited computer power, memory, and battery life
As an application designer for the iPhone, you have several balancing acts to
keep in mind:

	 ✓	Although significant by the original Macintosh’s standards, the com-
puter power and amount of memory on the iPhone are limited.

	 ✓	Although access to the Internet can mitigate the power and memory
limitations by storing data and (sometimes) offloading processing to a
server, those operations eat up the battery faster.

	 ✓	Although the power-management system in the iPhone OS conserves
power by shutting down any hardware features that are not currently
being used, a developer must manage the trade-off between all those
busy features and shorter battery life. Any application that takes advan-
tage of Internet access using Wi-Fi or the 3G network, core location, and
a couple of accelerometers is going to eat up the batteries.

17 Chapter 1: Creating Killer iPhone Applications

The iPhone OS is particularly unforgiving when it comes to memory usage. If
you run out of memory, it will simply shut you down.

This just goes to show that not all limitations can be exploited as “features.”

A Compelling User Experience
When you’ve got a handle on the possibilities and limitations of the iPhone,
your imagination is free to soar to create a compelling user experience.
Which reminds me: It’s worth considering what “compelling user experience”
really means.

For openers, a compelling user experience has to result from the interaction
of several factors:

	 ✓	Interesting, useful, plentiful content

	 ✓	Powerful, fast, versatile functionality

	 ✓	An intuitive, well-designed user interface

Compelling content
As I said earlier, there are a lot of different kinds of applications on the
iPhone. What most of the really good ones have in common is focus. They
address a well-defined task that can be done within a time span that is appro-
priate for that task. If I need to look something up, I want it right now! If I
am playing a game while waiting in line, I want it to be of short duration, or
broken up into a series of short and entertaining steps.

The application content itself then, especially for here-and-now applications,
must be streamlined and focused on the fundamental pieces of the task.
Although you can provide a near-infinity of details just to get a single task
done, here’s a word to the wise: Don’t. You need to extract the essence of
each task; focus on the details that really make a difference.

Here’s an example: The other night, my wife and I were standing with some
friends inside the lobby of a movie theater, trying to decide where to go
to grab some dinner. It was cold (at least by California standards), but we
wanted to walk to the restaurant from the theater. We had two iPhones going,
switching from application to application, trying to get enough information to
make a decision. None of the applications gave us what we really needed —
restaurants ranked by distance and type, with reviews and directions.

www.allitebooks.com

http://www.allitebooks.org

18 Part I: Getting Started

One of the applications was a great example of how to frustrate the user. It
allowed you to select a restaurant by distance and cuisine. After you selected
the distance, it gave you a list of cuisines. So far, so good. But the cuisine list
was not context-based; when I tapped Ethiopian, all I got was a blank screen.
Very annoying! I took it off my iPhone then and there — I don’t want an
application that makes me work only to receive nothing in return. Your users
won’t either.

Every piece of a good application is not merely important to the task, but
important to where you are in the task. For example, if I’m trying to decide
how to get to central London from Heathrow, don’t give me detailed informa-
tion about the Tube until I need it.

That doesn’t mean your applications shouldn’t make connections that ought
to be made. One aspect of a compelling user experience is that all the pieces
of an application work together to tell a story. If the tasks in your application
are completely unconnected, perhaps they should be separate applications.

	 An application such as MobileTravel411 is aimed at people who may not know
anything about their destination. If the application informs them that one
reason to take the Heathrow Express is that it offers convenient Tube access
on arrival in London, the users then have a bite-sized bit of valuable informa-
tion about how to get around London once they’re in the city. Save the train
routes for when they’re in the station.

Limiting the focus to a single task also enables you to leave behind some
iPhone constraints, and the limitations of the iPhone can guide you to a
better application design.

Consistency with the user’s world
Great applications are based on the way people — users — think and work.
When you make your application a natural extension of the user’s world, it
makes the application much easier and more pleasant to use — and to learn.

Your users already have a mental model that describes the task your soft-
ware is enabling. The users also have their own mental models of how the
device works. At the levels of both content and user interface, your applica-
tion must be consistent with these models if you want to create a superb
user experience (which in turn creates loyalty — to your application).

The user interface in MobileTravel411 was based on how people divide the
experience of traveling. Here are typical categories:

	 ✓	Foreign currency — how much it really costs and what’s the best way to
convert money and buy things abroad

	 ✓	Getting to and from the airport with maximum efficiency and minimum
hassle

19 Chapter 1: Creating Killer iPhone Applications

	 ✓	Getting around a city, especially an unfamiliar one

	 ✓	Finding any special events happening while you’re in the city

	 ✓	Handling traveler’s tasks — such as making phone calls, tipping, or find-
ing a bank or ATM — with aplomb

	 ✓	Checking the current weather and the forecast

	 ✓	Staying safe in unfamiliar territory — places you shouldn’t go, what to
do if you get in trouble, and so on

This is only a partial list, of course. I get into this aspect of application design
in more detail when I take you through the design of MobileTravel411.

I suppose there are other ways to divide the tasks, but anything much dif-
ferent would be ignoring the user’s mental model — which would mean the
application would not meet some of the user’s expectations. It would be
less pleasant to use because it would impose an unfamiliar way of looking
at things instead of building on the knowledge and experiences those users
already have.

When possible, model your application’s objects and actions on objects and
actions in the real world. For example, the iPhone has a set of iPod-style
playback controls, tapping controls to make things happen, sliding on-off
switches, and flicking through the data shown on Picker wheels. All of these
are based on physical counterparts in the real world.

Your application’s text should be based on the target user. For example, if
your user isn’t steeped in technical jargon, avoid it in the user interface.

This does not mean that you have to “dumb down” the application. Here are
some guidelines:

	 ✓	If your application is targeted for a set of users who already use (and
expect) a certain kind of specialized language, then sure, you can use
the jargon in your application. Just do your homework first and make
sure you use those terms right.

		 For example, if your application is targeted at high-powered foreign-
exchange traders, your application might use pip (“price interest point” —
the smallest amount that a price can move, as when a stock price advances
by one cent). In fact, a foreign-exchange trader expects to see price move-
ment in pips, and not only can you, but you should use that term in your
user interface.

	 ✓	If your application requires that the user have a certain amount of spe-
cialized knowledge about a task in order to use your application, identify
what that knowledge is upfront.

www.allitebooks.com

http://www.allitebooks.org

20 Part I: Getting Started

	 ✓	If the user is an ordinary person with generalized knowledge, use ordi-
nary language.

		 Gear your application to your user’s knowledge base. In effect, meet
your users where they are; don’t expect them to come to you.

The user interface — form
following function
Basing your application on how the user interacts and thinks about the world
makes designing a great user interface easier.

Don’t underestimate the effect of the user interface on the people who are
trying to use it. A bad user interface can make even a great application pain-
ful to use. If users can’t quickly figure out how to use your application, or if
the user interface is cluttered or obscure, they’re likely to move on and prob-
ably complain loudly about the application to anyone who will listen.

Simplicity and ease of use are fundamental principles for all types of soft-
ware, but in iPhone applications, they are critical. Why? One word: multitask-
ing. iPhone OS users are probably doing other things simultaneously while
they use your application.

The iPhone hardware and software is an outstanding example of form follow-
ing function; the user interfaces of great applications follow that principle as
well. In fact, even the iPhone’s limitations (except for battery life) are a result
of form following from the functional requirements of a mobile device user.
Just think how the iPhone fulfills the following mobile device user wish list:

	 ✓	Small footprint

	 ✓	Thin

	 ✓	Light weight

	 ✓	Self-contained — no need for an external keyboard or mouse

	 ✓	Task-oriented

It’s a pretty safe bet that part of the appeal of the iPhone to many people —
especially to non-technical users (like most of my friends) — is aesthetic:
The device is sleek, compact, and fun to use. But the aesthetics of an iPhone
application aren’t just about how “beautiful” your application is on-screen.
Eye candy is all well and good, but how well does your user interface match
its function — that is, do its job?

21 Chapter 1: Creating Killer iPhone Applications

Consistency
As with the Macintosh, users have a general sense of how applications work
on the iPhone. (The Windows OS has always been a bit less user-friendly, if
you ask a typical Mac user.) One of the early appeals of the Macintosh was
how similarly all the applications worked. So Apple (no fools they) carried
over this similarity into the iPhone as well. The resulting success story sug-
gests the following word to the wise. . . .

	 A compelling iPhone user experience usually requires familiar iPhone inter-
face components offering standard functionality, such as searching and navi-
gating hierarchical sets of data. Use the iPhone standard behavior, gestures,
and metaphors in standard ways. For example, users tap a button to make
a selection and flick or drag to scroll a long list. iPhone users understand
these gestures because the built-in applications utilize them consistently.
Fortunately, staying consistent is easy to do on the iPhone; the frameworks at
your disposal have that behavior built in. This is not to say that you should
never extend the interface, especially if you’re blazing new trails or creating
a new game. For example, if you are creating a roulette wheel for the iPhone,
why not use a circular gesture to spin the wheel, even if it isn’t a “standard”
gesture?

Making it obvious
Although simplicity is a definite design principle, great applications are also
easily understandable to the target user. If I’m designing a travel application,
it has to be simple enough for even an inexperienced traveler to use. But if I’m
designing an application for foreign-exchange trading, I don’t have to make it
simple enough for someone with no trading experience to understand.

	 ✓	The main function of a good application is immediately apparent and
accessible to the users it’s intended for.

	 ✓	The standard interface components also give cues to the users. Users
know, for example, to touch buttons and select items from table views
(as in the contact application).

	 ✓	You can’t assume that users are so excited about your application that
they are willing to invest lots of time in figuring it out.

Early Macintosh developers were aware of these principles. They knew that
users expected that they could rip off the shrink-wrap, put a floppy disk in
the machine (these were really early Macintosh developers), and do at least
something productive immediately. The technology has changed since then;
user attitudes, by and large, haven’t.

www.allitebooks.com

http://www.allitebooks.org

22 Part I: Getting Started

Engaging the user
While we’re on the subject of users, here’s another aspect of a compelling
application: direct manipulation and immediate feedback.

	 ✓	Direct manipulation makes people feel more in control. On the desk-
top, that meant a keyboard and mouse; on the iPhone, the Multi-Touch
interface serves the same purpose. In fact, using fingers gives a user a
more immediate sense of control; there’s no intermediary (such as a
mouse) between the user and the object on-screen. To make this effect
happen in your application, keep your on-screen objects visible while
the user manipulates them, for example.

	 ✓	Immediate feedback keeps the users engaged. Great applications
respond to every user action with some visible feedback — such as
highlighting list items briefly when users tap them.

Because of the limitations imposed by using fingers, applications need to be
very forgiving. For example, although the iPhone doesn’t pester the user to
confirm every action, it also won’t let the user perform potentially destruc-
tive, non-recoverable actions (such as deleting all contacts or restarting a
game) without asking, “Are you sure?” Your application should also allow the
user to easily stop a task that’s taking too long to complete.

Notice how the iPhone uses animation to provide feedback. (I especially
like the flipping transitions in the Weather Application when I touch the Info
button.) But keep it simple; excessive or pointless animation interferes with
the application flow, reduces performance, and can really annoy the user.

Why Develop iPhone Applications?
Because you can. Because it’s time. And because it’s fun. Developing my
iPhone applications has been the most fun I’ve had in many years (don’t tell
my wife!). Here’s what makes it so much fun (for me, anyway):

	 ✓	iPhone apps are usually bite-sized — small enough to get your head
around. A single developer — or one with a partner and maybe some
graphics support — can do them. You don’t need a 20-person project
with endless procedures and processes and meetings to create some-
thing valuable.

	 ✓	The applications are crisp and clean, focusing on what the user wants
to do at a particular time and/or place. They’re simple but not simplis-
tic. This makes application design (and subsequent implementation)
much easier — and faster.

	 ✓	The free iPhone Software Development Kit (SDK) makes development
as easy as possible. I reveal its splendors to you throughout this book.

23 Chapter 1: Creating Killer iPhone Applications

		 If you can’t stand waiting, you could go on to Chapter 3, register as an
iPhone developer, and download the SDK . . . but (fair warning) jumping
the gun leads to extra hassle. It’s worth getting a handle on the ins and
outs of iPhone application development beforehand.

The iPhone has three other advantages that are important to you as a
developer:

	 ✓	The App Store. Apple will list your application in the App Store, and
take care of credit-card processing, hosting, downloading, notifying
users of updates, and all those things that most developers hate doing.
Developers name their own prices for their creations; Apple gets 30 per-
cent of the sales price, with the developer getting the rest.

	 ✓	Apple has an iPhone developer program. To get your application into
the store, you have to pay $99 to join the program. But that’s it. There
are none of the infamous “hidden charges” that you often encounter,
especially when dealing with credit-card companies. I explain how to
join the developer program in Chapter 3 and how to work with the App
Store in Chapter 12.

	 ✓	It’s a business tool. The iPhone has become an acceptable busi-
ness tool, in part because it has tight security, as well as support for
Microsoft Exchange and Office. This happy state of affairs expands the
possible audience for your application.

Examining the Possibilities
Just as the iPhone can extend the reach of the user, the device possibilities
and the development environment can extend your reach as a developer.
Apple talks often about three different application styles:

	 ✓	Productivity applications use and manipulate information. The
MobileTravel411 application is an example.

	 ✓	Utility applications perform simple, highly defined tasks. The Weather
Application is an example.

	 ✓	Immersive applications are focused on delivering — and having the
user interact with — content in a visually rich environment. A game is
a typical example of an immersive application.

Although these categories help you understand how Apple thinks about
iPhone applications (at least publicly), don’t let them get in the way of your
creativity. You have probably heard ad nauseam about stepping outside
the box. But hold on to your lunch; the iPhone “box” isn’t even a box yet. So
here’s a more extreme metaphor: Try diving in to the abyss and coming up
with something really new.

www.allitebooks.com

http://www.allitebooks.org

24 Part I: Getting Started

The Sample Applications
When I started writing this book, I decided that there was no way I was going
to do what legions of computer-book authors have done from time immemo-
rial. You know — some kind of insipid “Hello World” application.

With a little more (although not much more) work, you can use the develop-
ment environment to actually create something of value.

In Figure 1-2, you can see the first application that I show you how to develop —
the one I thought about after I lost my iPhone for the first time. I realized that if
anyone found it and wanted to return it, well, returning it wouldn’t be easy. Sure,
whoever found it could root around in my Contacts or Favorites and maybe
call a few of them and ask if any of their friends had lost an iPhone. But to save
them the work, I decided to create an application called ReturnMeTo, whose icon
sat on the upper-left corner of the home screen and looked like something you
would want to select if you had found this phone. It would show a phone number
to call and create a very happy person at the receiving end of the call.

Originally, I thought I would simply create this application and then get
on with the rest of the book. It turned out, however, that as I showed my
friends the application, I got a lot of feedback and made some changes to it.
I’ll include those changes as well — because they’ll give you insight to the
iPhone application-development process. All my friends also told me that
they’d love to have the application (hey, they’re my friends, after all).

To pay them back for using them as a test group, I’ll be uploading it to the App
store — I show you how to do the same with yours, in detail, in Chapter 12.

After I go through developing ReturnMeTo, I take you through the design of
MobileTravel411 in Chapter 13. Then I show you how to implement a subset
of this application, iPhoneTravel411, which shows you how to use much of
the “technology” that implements the functionality of the MobileTravel411
application. You’ll find out how to use table views (like the ones you see
in the Contacts, iPod, Mail, and Settings applications that come with the
iPhone), access data on the Web, go out to and return from Web sites while
staying in your application, store data in files, include data with your applica-
tion, allow users to set preferences, and even how to resume your application
where the user last left off. I’ll even talk about localization and self-configuring
controllers and models. (Don’t worry; by the time you get there, you’ll know
exactly what they mean.) Finally, I’ll show you how easy it is to create custom
maps that are tailored to the needs of the user based on what they are doing
and where they are.

25 Chapter 1: Creating Killer iPhone Applications

	

Figure 1-2:
ReturnMeTo

— please!
	

What’s Next
I’m sure that you are raring to go now and just can’t wait to download the
Software Development Kit (SDK) from the iPhone Developers Web site.
That’s exactly what I did — and later was sorry that I didn’t spend more time
upfront understanding how applications work in the iPhone environment.

So I ask you to be patient. In the next chapter, I explain what goes on behind
the screen, and then, I promise, it’s off to the races.

www.allitebooks.com

http://www.allitebooks.org

26 Part I: Getting Started

Chapter 2

Looking Behind the Screen
In This Chapter
▶	Seeing how applications actually work

▶	Understanding how to use the fundamental design patterns

▶	Doing Windows (even if you say you don’t)

▶	Creating an app with a view

▶	Manipulating view controllers

▶	Listing the frameworks you can use

One of the things that makes iPhone software development so appeal-
ing is the richness of the tools and frameworks provided in the Apple’s

iPhone Software Development Kit for iPhone Applications (SDK). The frame-
works are especially important; each one is a distinct body of code that
actually implements your application’s “generic” functionality — gives the
application its basic way of working, in other words. This is especially true
of one framework in particular — the UIKit framework, the heart of the user
interface.

In this chapter, I’m going to lead you on a journey through most of the
iPhone’s user interface architecture — a mostly static view that explains
what the various pieces are, what each does, and how they interact with each
other. This will lay the groundwork for developing the ReturnMeTo applica-
tion’s user interface, which you get a chance to tackle in Chapter 5. After
that’s done — but before you start major coding — I’ll take you on a similar
tour of the iPhone application runtime environment — the dynamic view of all
the pieces working together when, for example, the user launches your appli-
cation or touches a button on the screen.

Using Frameworks
A framework is designed to easily integrate any of the code that gives your
application its specific functionality — the code that runs your game or
delivers the information that your user wants, for example. Frameworks are
therefore similar to software libraries, but with an added twist. Frameworks

Contents
Looking Behind the Screen	 27
Using Frameworks	 27

Using Design Patterns	 29

Working with Windows and Views	 32

Controlling View Controllers	 37

What about the Model?	 39

Adding Your Own Application’s Behavior	
40

Doing What When?	 43

Whew!	 44

www.allitebooks.com

http://www.allitebooks.org

28 Part I: Getting Started

also implement a program’s flow of control, unlike in a software library where
it’s dictated by the programmer. This means that, instead of the program-
mer deciding in what order things happen — what messages are sent to what
objects and in what order when an application launches, or what messages
are sent to what objects in what order when a user touches a button on the
screen — all of that is already a part of the framework and does not need to
be specified by the programmer.

When you use a framework, you give your application a ready-made set of
basic functions; you’ve told it, “Here’s how to act like an application.” With
the framework in place, all you need to do is add the application’s specific
functionality you want — the content and the controls and views that enable
the user to access and use that content — to the frameworks.

The frameworks and the iPhone OS provide some pretty complex functional-
ity, such as:

	 ✓	Launching the application and displaying a window on the screen

	 ✓	Displaying controls on the screen and responding to a user action —
changing a toggle switch for example, or scrolling a view, like the list of
your contacts

	 ✓	Accessing sites on the Internet, not just through a browser, but from
within your own program

	 ✓	Managing user preferences

	 ✓	Playing sounds and movies

	 ✓	The list goes on — you get the picture

	 Some developers talk in terms of “using a framework”; I think about the matter
differently: You don’t use frameworks so much as they “use” you. You pro-
vide the functions that the framework accesses; it needs your code in order
to become an application that does something other than start up, display a
blank window, and then end. This perspective makes figuring out how to work
with a framework much easier. (For one thing, it lets the programmer know
where he or she is essential.)

If this seems too good to be true, well, okay, it is — all that complexity (and
convenience) comes at a cost. It can be really difficult to get your head
around the whole thing and know exactly where (and how) to add your
application’s functionality to that supplied by the framework. That’s where
design patterns come in. Understanding the design patterns behind the frame-
works gives you a way of thinking about a framework, especially UIKit, that
doesn’t make your head explode.

29 Chapter 2: Looking Behind the Screen

Using Design Patterns
A major theme of this chapter is the fact that, when it comes to iPhone app
development, the UIKit framework does a lot of the heavy lifting for you.
That’s all well and good, but it’s a little more complicated than that: The
framework is designed around certain programming paradigms, also known
as design patterns. The design pattern is a model that your own code must be
consistent with.

To understand how to take best advantage of the power of the framework —
or (better put) how the framework objects want to use you best — you need
to understand design patterns. If you don’t understand them — or if you try
to work around them because you’re sure you have a “better” way of doing
things — it will actually make your job much more difficult. (Developing
software can be hard enough, so making your job more difficult is definitely
something you want to avoid.) Getting a handle on the basic design patterns
used (and expected by) the framework helps you develop applications that
make the best use of the frameworks. This means the least amount of work in
the shortest amount of time.

	 The iPhone design patterns can help you to understand not only how to struc-
ture your code, but also how the framework itself is structured. They describe
relationships and interactions between classes or objects, as well as how
responsibilities should be distributed amongst classes so the iPhone does
what you want it to do.

The common definition of a design pattern is “a solution to a problem in a
context.” (Uh, guys, that’s not too helpful.) At that level of abstraction, the
concept gets fuzzy and ambiguous. So here’s how I’ll use the term throughout
this book:

In programming terms, a design pattern is a commonly used template that
gives you a consistent way to get a particular task done.

There are three basic design patterns you need to be comfortable with:

	 ✓	Model-View-Controller (MVC)

	 ✓	Delegation

	 ✓	Target-Action

Of these, the Model-View-Controller design pattern is the key to understand-
ing how an iPhone application works. I’ll defer the discussion of the last two
until after you get the MVC under your belt.

www.allitebooks.com

http://www.allitebooks.org

30 Part I: Getting Started

The Model-View-Controller (MVC) pattern
The iPhone frameworks are object-oriented. The easiest way to understand
what that really means is to think about a team. The work that needs to
get done is divided up and assigned to individual team members (objects).
Every member of a team has a job and works with other team members to
get things done. What’s more, a “good” team doesn’t butt in on what other
members are doing — just like how objects in object-oriented programming
spend their time taking care of business and not caring what the object in the
virtual cubicle next door is doing.

	 Object-oriented programming was originally developed to make code more
maintainable, reusable, extensible, and understandable (what a concept!) by
tucking all the functionality behind well-defined interfaces — the actual details
of how something works (as well as its data) is hidden. This makes modifying
and extending an application much easier.

Great — so far — but a pesky question still plagues programmers:

Exactly how do you decide on the objects and what each one does?

Sometimes the answer to that question is pretty easy — just use the real
world as a model (Eureka!). In the MobileTravel411 application that serves
as an example later in this book, some of the classes I use are Airport and
Currency. But when it comes to a generic program structure, how do you
decide what the objects should be? That may not be so obvious.

The MVC pattern is a well-established way to group application functions
into objects. Variations of it have been around at least since the early days of
Smalltalk, one of the very first object-oriented languages. The MVC is a high-
level pattern — it addresses the architecture of an application and classifies
objects according to the general roles they play in an application.

The MVC pattern creates, in effect, a miniature universe for the application,
populated with three kinds of objects. It also specifies roles and responsibili-
ties for all three objects and specifies the way they’re supposed to interact
with each other. To make things more concrete (that is, to keep your head
from exploding), imagine a big, beautiful, 60-inch flat screen TV. Here’s the gist:

	 ✓	Model objects: These objects together comprise the content “engine” of
your application. They contain the application’s data and logic — making
your application more than just a pretty face. In the MobileTravel411
application, the model “knows” the various ways to get from Heathrow
Airport to London as well as some logic to decide the best alternative
based on time of day, price, and some other considerations.

		 You can think of the model (which may be one object or several that
interact) as a particular television program. One that, quite frankly, does
not give a hoot about what TV set it is being shown on.

31 Chapter 2: Looking Behind the Screen

		 In fact, the model shouldn’t give a hoot. Even though it owns its data,
it should have no connection at all to the user interface and should be
blissfully ignorant about what is being done with its data.

	 ✓	View objects: These objects display things on the screen and respond to
user actions. Pretty much anything you can see is a kind of view object —
the window and all the controls, for example. Your views know how to dis-
play information that it has gotten from the model object, and how to get
any input from the user the model may need. But the view itself should
know nothing about the model. It may handle a request to tell the user the
fastest way to London, but it doesn’t bother itself with what that request
means. It may display the different ways to get to London, although it
doesn’t care about the content options it displays for you.

		 You can think of the view as a television screen that doesn’t care about
what program it is showing or what channel you just selected.

		 The UIKit framework provides many different kinds of views, as you’ll
find out later on in this chapter.

		 If the view knows nothing about the model, and the model knows noth-
ing about the view, how do you get data and other notifications to pass
from one to the other? To get that conversation started (“Model: I’ve just
updated my data.” View: “Hey, give me something to display,” for exam-
ple), you need the third element in the MVC triumvirate, the controller.

	 ✓	Controller objects: These objects connect the application’s view objects
to its model objects. They supply the view objects with what they need
to display (getting it from the model), and also provide the model with
user input from the view.

		 You can think of the controller as the circuitry that pulls the show off of
the cable, and sends it to the screen, or requests a particular pay-per-
view show.

The MVC in action
Imagine that an iPhone user is at Heathrow Airport, and he or she starts the
handy MobileTravel411 application mentioned so often in these pages. The
view will display his or her location as “Heathrow Airport.” The user may
tap a button that requests the best way to get into London. The controller
“interprets” that request and tells the model what it needs to do by sending
a message to the appropriate method in the model object with the necessary
parameters. The model computes a list of alternatives (taxi, bus, train), and
the controller then delivers that information to the view, which promptly dis-
plays it. If the user selects “train,” for example, that information is then sent
to the model, which then sends back the details of the train.

All this is illustrated in Figure 2-1.

www.allitebooks.com

http://www.allitebooks.org

32 Part I: Getting Started

	

Figure 2-1:
Models,

controllers,
and views.

	 View

Airport
Transportation Controller

User Action

Update

Request

Inform

Controller

Model Object
(Data Access)

	 When you think about your application in terms of Model, View, and
Controller objects, the UIKit framework starts to make sense. It also begins
to lift the fog from where at least part of your application-specific behavior
needs to go. Before I get more into that, however, you need to know a little
more about the classes provided to you by the UIKit that implement the
MVC design pattern — windows, views, and view controllers.

Working with Windows and Views
After an application is launched, it’s going to be the only application running
on the system — aside from the operating system software, of course. iPhone
applications have only a single window, so you won’t find separate docu-
ment windows for displaying content. Instead, everything is displayed in that
single window, and your application interface takes over the entire screen.
When your application is running, it is all the user is doing with the iPhone.

Looking out the window
The single window you see displayed on the iPhone is an instance of the
UIWindow class. This window is created at launch time, either programmati-
cally by you or automatically by UIKit loading it from a nib file — a special
file that contains instant objects that are reconstituted at runtime (You’ll find
out more about nib files starting in Chapter 6). You then add views and con-
trols to the window. In general, after you create the window object (that is, if

33 Chapter 2: Looking Behind the Screen

you create it instead of having it done for you), you never really have to think
about it again.

	 An iPhone window cannot be closed or manipulated directly by the user. It is
your application that programmatically manages the window.

Although your application never creates more than one window at a time, the
iPhone OS does use additional windows on top of your window. The system
status bar is one example. You can also display alerts on top of your window
by using the supplied Alert views.

Figure 2-2 shows the window layout on the iPhone for the MobileTravel411
application.

	

Figure 2-2:
The Mobile

Travel411
application

windows.
	

Status bar

Window

Navigation bar

Tool bar

Content View

Admiring the view
In an iPhone app world, View objects are responsible for the view functional-
ity in the Model-View-Controller architecture.

A view is a rectangular area on the screen (on top of a window). I’ll often
refer to the content view, that portion of data and controls that appear
between the upper and lower bars shown in Figure 2-2.

	 In the UIKit framework, windows are really a special kind of view, but for
purposes of this discussion, I’m going to be talking about views that sit on top
of the window.

www.allitebooks.com

http://www.allitebooks.org

34 Part I: Getting Started

	 As you will see, there are two ways you need to think about views. From the
user perspective, the views sit on top of each other. From a programming per-
spective, however, the views that are on top of the windows visually are really
subviews inside the window view. I’ll explain that more as we continue on.

What views do
Views are the main way for your application to interact with a user. This
interaction happens in two ways:

	 ✓	Views display content. For example, making drawing and animation
happen on-screen.

		 In essence, the View object displays the data from the Model object.

	 ✓	Views handle touch events. They respond when the user touches a
button, for example.

		 Handling touch events is part of a responder chain (a special logical
sequence detailed in Chapter 6).

The view hierarchy
Views and subviews create a view hierarchy. There are two ways of looking
at it (no pun intended this time) — visually (how the user perceives it) and
programmatically (how you create it). You must be clear about the differ-
ences, or you will find yourself in a state of confusion that resembles Times
Square on New Year’s Eve.

Looking at it visually, the window is at the base of this hierarchy with a
content view on top of it (a transparent view that fills the window’s Content
rectangle). The content view displays information and also allows the user to
interact with the application, using (preferably standard) user-interface items
such as text fields, buttons, toolbars, and tables.

In your program, that relationship is different. The content view is added to
the window view as a subview.

	 ✓	Views added to the content view become subviews of it.

	 ✓	Views added to the content view become the superviews of any views
added to them.

	 ✓	A view can have one (and only one) superview and zero or more subviews.

	 It seems counterintuitive, but a subview is displayed on top of its parent view
(that is, on top of its superview). Think about this relationship as contain-
ment: a superview contains its subviews. Figure 2-3 shows an example of a
view hierarchy.

35 Chapter 2: Looking Behind the Screen

	

Figure 2-3:
The view
hierarchy

is both
visual and
structural.

	

A Content View

C

A

The visual hierarchy
... translates to a structural one:

B

A Content View

Subview

Superview

A

C

B

Controls — such as buttons, text fields, and the like — are really view sub-
classes that become subviews. So are any other display areas you may spec-
ify. The view must manage its subviews, as well as resize itself with respect
to its superviews. Fortunately, much of what the view must do is already
coded for you. The UIKit framework supplies the code that defines view
behavior.

The view hierarchy plays a key role in both drawing and event handling.
When a window is sent a message to display itself, the window asks its sub-
view to render itself first. If that view has a subview, it asks its subview to
render itself first, going down the structural hierarchy (or up the visual struc-
ture) until the last subview is reached. It then renders itself and returns to its
caller, which renders itself, and so on.

You create or modify a view hierarchy whenever you add a view to another
view, either programmatically or with the help of the Interface Builder. The
UIKit framework automatically handles all the relationships associated with
the view hierarchy.

	 I pretty much glossed over this visual versus programmatic view hierarchy
stuff when I started developing my applications — making it really difficult to
get a handle on what was going on.

The kinds of views you use
The UIView class defines the basic properties of a view, and you may be able
to use it as is — like I will in the ReturnMeTo application — by simply adding
some controls.

www.allitebooks.com

http://www.allitebooks.org

36 Part I: Getting Started

The framework also provides you with a number of other views that are sub-
classed from UIView. These views implement the kinds of things that you as
a developer need to do on a regular basis.

	 It’s important to use the View objects that are part of the UIKit framework.
When you use an object such as a UISlider or UIButton, your slider or
button behaves just like a slider or button in any other iPhone application.
This enables the consistency in appearance and behavior across applications
that users expect. (For more on how this kind of consistency is one of the
characteristics of a great application, see Chapter 1.)

Container views
Container views are a technical (Apple) term for content views that do more
than just lie there on the screen and display your controls and other content.

The UIScrollView class, for example, adds scrolling without you having to
do any work.

UITableView inherits this scrolling capability from UIScrollView
and adds the ability to display lists and respond to the selections of an
item in that list. Think of the Contacts application (and a host of others).
UITableView is one of the primary navigation views on the iPhone; you’ll
work a lot with table views starting with Chapter 13.

Another container view, the UIToolbar class, contains button-like controls —
and you find those everywhere on the iPhone. In Mail, for example, you touch
an icon in the bottom toolbar to respond to an e-mail.

Controls
Controls are the fingertip-friendly graphics you see extensively used in a
typical application’s user interface. Controls are actually subclasses of the
UIControl superclass, a subclass of the UIView class. They include touch-
able items like buttons, text fields, sliders, and switches, as well as text fields
in which you enter data.

Controls make heavy use of the Target-Action design pattern, which I’ll get to
soon. (I talk more about controls and how they fit in to the Target-Action pat-
tern in Chapter 11.)

Display views
Think of display views as controls that look good, but don’t really do any-
thing except, well, look good. These include UIImageView, UILabel (which
I use in Chapter 5 to display the ReturnMeTo application’s phone number),
UIProgressView, and UIActivityIndicatorView.

37 Chapter 2: Looking Behind the Screen

Text and Web views
Text and Web views provide a way to display formatted text in your applica-
tion. The UITextView class supports the display and editing of multiple
lines of text in a scrollable area. The UIWebView class provides a way to dis-
play HTML content. These views can be used as the content view, or can also
be used in the same way as a display view above, as a subview of a content
view. I use a UIWebView in Chapter 11 to allow someone who has found an
iPhone to call the owner’s number by simply tapping it. UIWebViews also is
the primary way to include graphics and formatted text in text display views.
(I use them when I show you how to develop iPhoneTravel411.)

Alert views and action sheets
Alert views and action sheets present a message to the user, along with but-
tons that allow the user to respond to the message. Alert views and action
sheets are similar in function but look and behave differently. For example,
the UIAlertView class displays a blue alert box that pops up on the screen,
and the UIActionSheet class displays a box that slides in from the bottom
of the screen.

Navigation views
Tab bars and navigation bars work in conjunction with View controllers to
provide tools for navigating in your application. Normally, you don’t need
to create a UITabBar or UINavigationBar directly — it’s easier to use
Interface Builder or configure these views through a tab bar or navigation bar
controller.

The window
A window provides a surface for drawing content and is the root container for
all other views.

	 There is typically only one window per application.

Controlling View Controllers
View controllers implement the Controller component of the Model-View-
Controller design pattern. These Controller objects contain the code that
connects the application’s View objects to its Model objects. They provide
the data to the view. Whenever the view needs to display something, the
View controller goes out and gets what the view needs from the model.
Similarly, view controllers respond to controls in your content view and
may do things like tell the model to update its data (when the user adds or

www.allitebooks.com

http://www.allitebooks.org

38 Part I: Getting Started

changes text in a text field, for example), or compute something (the current
value of, say, your U.S. dollars in British pounds), or change the view being
displayed (like when the user hits the detail disclosure button on the iPod
application to learn more about a song).

As I’ll describe in “The Target-Action pattern” section later in this chapter,
a view controller is often the (target) object that responds to the on-screen
controls. The Target-Action mechanism is what enables the view controller
to be aware of any changes in the view, which can then be transmitted to the
model. For example, the user may decide — after looking at the Heathrow
Express option — that he or she has too much luggage (or is too upscale) to
take the train, and opts for a taxi or rental car instead.

Figure 2-4 shows what happens when the user taps the Taxi/Car tab in the
MobileTravel411 application to request information about taking a cab or
renting a car to get to London.

	 1.	 A message is sent to that view’s view controller to handle the request.

	 2.	 The view controller’s method interacts with a Model object.

	 3.	 The Model object processes the request from the user for information
on a taxi/car from Heathrow to London.

	 4.	 The Model object sends the data back to the view controller.

	 5.	 The view controller creates a new view to present the information.

View controllers have other vital iPhone responsibilities as well, such as:

	 ✓	Managing a set of views — including creating them, or flushing them
from memory during low-memory situations.

	 ✓	Responding to a change in the device’s orientation — say, landscape to
portrait — by resizing the managed views to match the new orientation.

	 ✓	Creating modal views that require the user to do something (touch the
Yes button, for example) before returning to the application.

		 You would use a modal view to ensure the user has paid attention to the
implications of an action (for example, “Are you sure you want to delete
all your contacts?”).

View controllers are also typically the objects that serve as delegates and
data sources for table views (more about those in Chapter 14).

In addition to the base UIViewController class, UIKit includes sub-
classes such as UITabBarController, UINavigationController,
UITableViewController, and UIImagePickerController to manage
the tab bar, navigation bar, table views, and to access the camera and photo
library.

39 Chapter 2: Looking Behind the Screen

	

Figure 2-4:
The world

of the view
controller.

	

MobileTravel411
View Controller

Model Object

Content
View

	 Even if your application is a graphics application, you’ll want to use a view
controller just to manage a single view and auto-rotate it when the device’s
orientation changes.

What about the Model?
As you have seen (and will continue to discover), a lot of the functionality
you need is already in the Framework objects.

But when it comes to the Model objects, for the most part, you’re pretty
much on your own. You’re going to need to design and create Model objects
to hold the data and carry out the logic. In my MobileTravel411 application,
for example, you create an Airport object that knows the different ways to
get into the city that it supports.

	 You may find classes in the framework that help you get the nuts and bolts of
the model working. But the actual content and specific functionality is up to
you. As for actually implementing Model objects, I show you how to do that in
Chapter 16.

www.allitebooks.com

http://www.allitebooks.org

40 Part I: Getting Started

Adding Your Own Application’s Behavior
Earlier in this chapter (by now it probably seems like a million years ago),
I mentioned two other design patterns used in addition to the Model-View-
Controller (MVC) pattern. If you have a photographic memory, you won’t
need me telling you that those two patterns are the Delegation pattern and
the Target-Action pattern. These patterns, along with the MVC pattern and
subclassing, provide the mechanisms for you to add your application-specific
behavior to the UIKit (and any other) framework.

	 I have already talked about the first way to add behavior, and that is through
Model objects in the MVC pattern. Model objects contain the data and logic
that make, well, your application.

The second way — the way people traditionally think about adding behavior
to an object-oriented program, if you want to know the truth — is through sub-
classing — where you first create a new (sub) class that inherits behavior and
instance variables from another (super) class and then add additional behav-
ior, instance variables, and properties (I’ll explain properties in Chapter 7) to
the mix until you come up with just what you want. The idea here is to start
with something basic and then add to it — kind of like taking a deuce coupe
(1932 Ford) and turning it into a hot rod. You’d subclass a view controller
class, for example, to respond to controls.

The third way to add behavior involves using the Delegation pattern, which
allows you to customize an object’s behavior without subclassing by basi-
cally forcing another object to do the first object’s work for it. For example,
the Delegation design pattern is used at application startup to invoke a
method applicationDidFinishLaunching: that gives you a place to do
your own application-specific initialization. All you do is add your code to the
method.

Using naming conventions
When creating your own classes, it’s a good
idea to follow a couple of standard framework-
naming conventions.

	✓	 Class names (such as View) should start
with a capital letter.

	✓	 The names of methods (such as view
DidLoad) should start with a lowercase
letter.

	✓	 The names of instance variables (such
as frame) should start with a lowercase
letter.

When you do it this way, it makes it easier to
understand from the name what something
actually is.

41 Chapter 2: Looking Behind the Screen

The final way to add behavior involves the Target-Action design pattern,
which allows your application to respond to an event. When a user touches a
button, for example, you specify what method should be invoked to respond
to the button touch. What is interesting about this pattern is that it also
requires subclassing — usually a view controller (see above) — in order to
add the code to handle the event.

In the next few sections, I’ll go into a little more detail about Delegation pat-
terns and Target-Action patterns.

The Delegation pattern
Delegation is a pattern used extensively in the iPhone framework, so much so
that it’s very important to clearly understand. In fact, I have no problems tell-
ing you that, once you understand it, your life will be much easier. Until the
light bulb went on for me, I sometimes felt like I was trying to make my way
through one of those legendary London pea soup fogs.

As I said in the previous section, delegation is a way of customizing the
behavior of an object without subclassing it. Instead, one object (a frame-
work object) delegates the task of implementing one of its responsibilities
to another object. You are using a behavior-rich object supplied by the
framework as is, and putting the code for program-specific behavior in a
separate (delegate) object. When a request is made of the framework object,
the method of the delegate that implements the program-specific behavior is
automatically called.

For example, the UIApplication object handles most of the actual work
needed to run the application. But, as you will see, it sends your application
delegate the applicationDidFinishLaunching: message to give you an
opportunity to restore the application’s window and view to where it was
when the user previously left off. You can also use this method to create
objects that are unique to your application.

When a framework object has been designed to use delegates to implement
certain behaviors, the behaviors it requires (or gives you the option to imple-
ment) are defined in a protocol.

Protocols define an interface that the delegate object implements. On the
iPhone, protocols can be formal or informal, although I’m going to concen-
trate solely on the former since it includes support for things like type check-
ing and runtime checking to see if an object conforms to the protocol.

www.allitebooks.com

http://www.allitebooks.org

42 Part I: Getting Started

In a formal protocol, you usually don’t have to implement all of the methods;
many are declared optional, meaning you only have to implement the ones
relevant to your application. Before it attempts to send a message to its
delegate, the host object determines whether the delegate implements the
method (via a respondsToSelector: message) to avoid the embarrass-
ment of branching into nowhere if the method is not implemented.

	 You’ll find out much more about delegation and the Delegation pattern when
you develop the ReturnMeTo and especially the iPhoneTravel411 applications
in later chapters.

The Target-Action pattern
The Target-Action pattern is used to let your application know that a user has
done something. He or she may have tapped a button or entered some text,
for example. The control — a button, say — sends a message (the Action
message) that you specify to the target you have selected to handle that par-
ticular action. The receiving object, or the Target, is usually a View Controller
object.

If you wanted to start your car from your iPhone (not a bad idea if you have
ever lived in some place like Minneapolis), you could display two buttons,
Start and Heater. When you tapped Start, you could have used Interface
Builder to specify that the target is the CarController object and that the
method to invoke is ignition. Figure 2-5 shows the Target-Action mecha-
nism in action. (If you’re curious about IBAction and (id) sender, I’ll
explain what they are when I show you how to use the Target-Action pattern
in your application.)

	

Figure 2-5:
The Target-

Action
mechanism.

	

Start Button

Target

Action

CarController

-(IBAction)ignition:(id)sender

-(IBAction)heat:(id)sender

Heater Button

Target

Action

Start

Heater

43 Chapter 2: Looking Behind the Screen

	 The Target-Action mechanism enables you to create a control object and tell
it not only what object you want handling the event, but also the message to
send. For example, if the user touches a “Ring Bell” button on-screen, I want
to send a “Ring Bell” message to the view controller. But if the “Wave Flag”
button on the same screen is touched, I want to be able to send the same view
controller the “Wave Flag” message. If I couldn’t specify the message, all but-
tons would have to send the same message. It would then make the coding
more difficult and more complex, since I would have to identify which button
had sent the message and what to do in response, and make changing the user
interface more work and more error prone.

As you’ll soon discover when creating your application, you can set a con-
trol’s action and target through the Interface Builder application. This allows
you to specify what method in which object should respond to a control
without having to write any code.

	 You can also change the target and action dynamically by sending the control
or its cell setTarget: and setAction: messages.

For more on the Interface Builder application, check out Chapter 5.

Doing What When?
The UIKit framework provides a great deal of ready-made functionality, but
the beauty of UIKit lies in the fact that — as this chapter has made clear —
you can customize its behavior using three distinct mechanisms.

	 ✓	Subclassing

	 ✓	Target-Action

	 ✓	Delegation

One of the challenges facing a new developer is to determine which of these
mechanisms to use when. (That was certainly the case for me.) To ensure
that you have an overall conceptual picture of the iPhone application archi-
tecture, check out the Cheat Sheet for this book, where I give you a summary
of which mechanisms are used when. (I wish I’d had this when I started
developing my application — but at least you do now.) You can find
the Cheat Sheet for this book at www.Dummies.com/cheatsheet/
iPhoneApplicationDevelopment.

www.allitebooks.com

http://www.allitebooks.org

44 Part I: Getting Started

Whew!
Congratulations! You have just gone through the Classic Comics version of
hundreds of pages of Apple documentation, reference manuals, and how-to
guides.

Well, you still have a bit more to explore — for example, how all these pieces
work together at runtime (details, details, . . .). But before that piece of the
puzzle can make sense, you need to touch, feel, and get inside an application.
As part of that process, I’m going to do a little demonstrating:

	 ✓	I show you how to become a registered developer and download the
SDK in Chapter 3.

	 ✓	I show you how to use the tools in the SDK to create an application
framework and build the User Interface in Chapter 4.

	 ✓	I finish the conversation on iPhone architecture in Chapter 6.

When you’ve had a stroll through those adventures, you’ll know everything
you need to know about how to create a user interface and add the function-
ality to make your application do what you promised the user it would do.
(How’s that for a plan?)

Chapter 3

Enlisting in the Developer Corps
In This Chapter
▶	Registering as a developer

▶	Exploring the iPhone Dev Center

▶	Installing the SDK

▶	Looking at why and how to join the Developer Program

Personally, I’m not much of a joiner. I like to keep a low profile and just
get on with having fun doing what I do.

But if you want to develop software for the iPhone, you do have to get involved
with (yet another) major corporation and its policies and procedures. Although
Apple’s iPhone Software Development Kit (SDK) is free, you do have to register
as an iPhone developer first. That will give you access to all the documentation
and other resources found on the iPhone Developer Web site. This whole ritual
transforms you into a Registered iPhone Developer.

Becoming a Registered Developer is free, but there’s a catch: If you actu-
ally want to run your application on your iPhone, as opposed to only on the
Simulator that comes with the SDK, you have to join the developer program.
Fortunately, membership only costs $99, but then again, you have no choice
if you want your application to see the light of day on the iPhone. This is
called joining the iPhone Developer Program.

In this chapter, I lead you through the process of becoming a Registered
Developer, signing on to — and then exploring — the iPhone Dev Center Web
site, downloading the SDK so you can start using it, and then (finally) joining
the developer program.

	 What you see when you go through this process yourself may be slightly
different from what you see here. Don’t panic. It’s because Apple changes
the site from time to time. For example, some of the figures in this chapter
show iPhone SDK 3.0 instead of iPhone SDK 3.1 because these screen shots
were taken right after Apple announced iPhone OS 3.1 (see Figure 3-5 for an
example). By the time you get this book, however (it does take a while to print
them), the Web sites will have been updated, and you will see iPhone SDK 3.1
(or whatever the current SDK is) plastered all over the Web site.

Contents
Enlisting in the Developer Corps	

45
Becoming a Registered iPhone Developer	
46

Exploring the iPhone Dev Center	 49

Downloading the SDK	52

Joining the iPhone Developer Program	
53

Getting Yourself Ready for the SDK	 58

www.allitebooks.com

http://www.allitebooks.org

46 Part I: Getting Started

Becoming a Registered iPhone Developer
Although just having to become a registered developer is annoying to some
people, it doesn’t help that the process itself can be a bit confusing as well.
Fear not! Follow the steps, and I will get you safely to the end of the road. (If
you’ve already registered, skip to the next section where I show what the
iPhone Dev Center has available as well as how to download the SDK.)

	 1.	 Point your browser to http://developer.apple.com/iphone.

		 Doing so brings you to a page similar to the one shown in Figure 3-1.
Apple does change this site occasionally, so when you get there, it may
be a little different. You may be tempted by some of the links, but they
only get you so far until you log in as a Registered Developer.

	 2.	 Click the Register link in the top-right corner of the screen.

		 You’ll see a page explaining why you should become a Registered
iPhone Developer.

	 3.	 Click Continue.

		 A page appears asking whether you want to create or use an existing
Apple ID.

	

Figure 3-1:
The iPhone
Dev Center.

	

47 Chapter 3: Enlisting in the Developer Corps

		 You can use your current Apple ID (the same one you’d use for iTunes
or any other Apple Web site) or create an Apple ID and then log in.

	 •	If you don’t have an Apple ID, select Create an Apple ID and click
Continue. You’ll find yourself at the page shown in Figure 3-2.

	 •	If you already have an Apple ID, select Use an existing Apple ID and
click Continue. You will be taken to a screen where you can log in
with your Apple ID and password. That will take you to Step 4 with
some of your information already filled out.

	 4.	 Fill out the personal profile form and then click Continue.

		 If you have an Apple ID, most of the form will already be filled out.

		 You must fill in the country code in the phone number field. If you’re
living in the United States, the country code is 1.

	 5.	 Complete the next part of the form to finish your professional profile.

		 You’ll be asked some basic business questions. After you’ve filled every-
thing in and clicked the Continue button, you’re taken to a page, which
will ask you to agree to the Registered iPhone Developer Agreement.

	

Figure 3-2:
Creating an

Apple ID.
	

www.allitebooks.com

http://www.allitebooks.org

48 Part I: Getting Started

	 6.	 Click I Agree.

		 Don’t forget to check the confirmation that you have read and agree to
be bound by the Agreement above and that you’re of legal age.

		 If you just created your Apple ID, you will be asked for the verification
code sent to the e-mail address you supplied when you created your
Apple ID.

	 7.	 Open the e-mail from Apple, enter the verification code and click
Continue.

		 Clicking Continue takes you to a thank-you page. If you used your exist-
ing Apple ID, you will be taken to Step 8.

	 8.	 On the thank-you page, click the Visit Phone Development Center
button, and you will be automatically logged in to the iPhone Dev
center, as shown in Figure 3-3.

So, you are now an officially registered iPhone developer. The next section
starts showing you what you can do with your new status.

	

Figure 3-3:
Logged in to

the iPhone
Dev Center.

	

49 Chapter 3: Enlisting in the Developer Corps

Exploring the iPhone Dev Center
I spend some time later in this section talking a little bit about some of the
resources available to you in the iPhone Dev Center, but for the moment, let’s
focus on what you’re really after. I’m talking about the iPhone SDK 3.1 down-
load that you’ll see in Figure 3-4 when you scroll to the bottom of the iPhone
Dev Center page.

The SDK includes a host of tools for you to develop your application. Here’s a
handy list to help you keep them all straight:

	 ✓	Xcode: This refers to Apple’s complete development environment,
which integrates all these features: a code editor, build system, graphi-
cal debugger, and project management. (I introduce you to the code edi-
tor’s features in more detail in Chapter 7.)

	 ✓	Frameworks: The iPhone’s multiple frameworks help make it easy to
develop for. Creating an application can be thought of as simply adding
your application-specific behavior to a framework. The frameworks do
all the rest. For example, the UIKit framework provides fundamental
code for building your application — the required application behavior,
classes for windows, views (including those that display text and Web
content), controls, and view controllers. (All of the things I covered in
Chapter 2, in other words.) The UIKit framework also provides stan-
dard interfaces to core location data, the user’s contacts and photo
library, accelerometer data, and the iPhone’s built-in camera.

	 ✓	Interface Builder: I use Interface Builder in Chapter 5 to build the user
interface for the ReturnMeTo application. But Interface Builder is more
than your run-of-the-mill program that builds graphical user interfaces.
In Chapter 7, I show you how Xcode and Interface Builder work together
to give you ways to build (and automatically create at runtime) the user
interface — as well as to create objects that provide the infrastructure
for your application.

	 ✓	iPhone Simulator: The simulator allows you to debug your application
and do some other testing on your Mac by simulating the iPhone. The
Simulator will run most iPhone programs, but it doesn’t support some
hardware-dependent features. I give you a rundown on the Simulator in
Chapter 4.

	 ✓	Instruments: The Instruments application lets you measure your appli-
cation while it is running on a device. It gives you a number of perfor-
mance metrics, including those for testing memory and network use. It
will also work (in a limited way) on the iPhone Simulator, and you can
test some aspects of your design there.

www.allitebooks.com

http://www.allitebooks.org

50 Part I: Getting Started

	

Figure 3-4:
Download
the iPhone

SDK.
	

		 The iPhone Simulator does not emulate such real-life iPhone character-
istics as CPU speed or memory throughput. If you want to understand
how your application performs on the device from a user’s perspective,
you have to use the actual device, and the Instruments application.

Looking forward to using the SDK
The tools in the SDK support a development process that most people find
comfortable. They allow you to rapidly get a user interface up and running
to see what it actually looks like. You can add code a little at a time, and then
run it after each new addition to see how it works. I take you through this
incremental process as I develop the ReturnMeTo application; for now, here’s
a bird’s-eye view of iPhone application development, one step at a time:

	 1.	 Start with Xcode.

		 Xcode provides several project templates that you can use to get you
off to a fast start. (In Chapter 5, I do just that to get my user interface up
and running quickly.)

	 2.	 Design and create the user interface.

		 Interface Builder has graphic-design tools you can use to create your
application’s user interface. This saves a great deal of time and effort. It

51 Chapter 3: Enlisting in the Developer Corps

also reduces the amount of code you have to write by creating resource
files that your application can then upload automatically.

		 If you don’t want to use Interface Builder, you can always build your
user interface by scratch, creating each individual piece and link-
ing them all together within your program itself. Sometimes Interface
Builder is the best way to create on-screen elements; sometimes the
hands-on approach works better. (In Chapter 16, you get a chance to
create user-interface elements with good old “by-hand” programming.)

	 3.	 Write the code.

		 The Xcode editor provides several features that help you write code. I
run through these features in Chapter 7.

	 4.	 Build and run your application.

		 You build your application on your computer and run it in the iPhone
Simulator application or (provided you’ve joined the Development
Program) on your device.

	 5.	 Test your application.

		 You’ll want to test the functionality of your application as well as
response time.

	 6.	 Measure and tune your application’s performance.

		 After you have a running application, you want to make sure that it
makes optimal use of resources such as memory and CPU cycles.

	 7.	 Do it all again until you’re done.

Resources on the iPhone Dev Center
You’re not left on your own when it comes to the Seven-Step Plan for Creating
Great iPhone Apps in the previous section. After all, you have me to help you
on the way — as well as a heap of information squirreled away in various
corners of the iPhone Dev Center. I’ve found the following resources to be
especially helpful:

	 ✓	Getting Started Videos: These are relatively light on content.

	 ✓	Getting Started Documents: Think of them as an introduction to the
materials in the iPhone Reference Library. These give you an overview of
iPhone development and best practices. Included is Learning Objective-C:
A Primer. It is an overview of Objective-C and also includes links to
Object-Oriented Programming with Objective-C and The Objective-C 2.0
Programming Language (the definitive guide).

www.allitebooks.com

http://www.allitebooks.org

52 Part I: Getting Started

		 If you’ve never programmed in the Objective-C language, as you have
seen, there is some basic information in the iPhone Reference Library.
But if you want to really learn Objective-C as quickly (and painlessly)
as possible, go get yourself a copy of Objective-C For Dummies by yours
truly. I explain everything you need to know to program in Objective-C,
and assume you have little or no knowledge of programming. (It does a
great job, if I say so myself.)

	 ✓	The iPhone Reference Library: This is all of the documentation you
could ever want (except, of course, the answer to that one question you
really need answered at 3 a.m., but that’s the way it goes). To be honest,
most of this stuff only turns out to be really useful after you have a good
handle on what you’re doing. As you go through this book, however,
an easier way to access some of this documentation will be through
Xcode’s Documentation window, which I show you in Chapter 7.

	 ✓	Coding How-To’s: These tend to be a lot more valuable when you
already have something of a knowledge base.

	 ✓	Sample Code: On the one hand, sample code of any kind is always valu-
able. Most good developers look to these kinds of samples to get them-
selves started. They’ll take something that closely approximates what
they want to do, and modify it until it does. When I started iPhone devel-
opment, there were no books like this one; so much of what I learned
came from looking at the samples and then making some changes to see
how things worked. On the other hand, it can give you hours of (mis-
guided) pleasure and can be quite the time waster and task avoider.

	 ✓	Apple Developer Forums Beta: I’d be the first to say that developer
forums can be very helpful, but I’d also be the first to admit that they
are a great way to avoid doing other things, like working. As you scroll
through the questions people have, be careful about some of the
answers you see. No one is validating the information people are giving
out. But take heart: Pretty soon you’ll be able to answer some of those
questions better yourself.

Downloading the SDK
Enough prep work. Time to do some downloading. Make your way to that
bottom part of the iPhone Dev Center — the section that has iPhone SDK 3.1
Downloads prominently displayed. (Refer to Figure 3-4.)

	 By the time you read this book, it may no longer be version 3.1. You should
download the latest (non-beta, non-prelease) SDK. That way you will get the
most stable version to start with.

At this point, there are two downloads available for iPhone SDK — one with
Xcode 3.1 for Leopard, and one with XCode 3.2 for Snow Leopard. This book
will be using Xcode 32.for Snow Leopard.

53 Chapter 3: Enlisting in the Developer Corps

	 Underneath the download link there is another link to a readme file (iPhone
SDK 3.1 with Xcode 3.2 Read Me (Snow Leopard)). It’s there for a reason. It is
a PDF, About Xcode and the iPhone SDK, that tells you everything you need to
know (and more) about this version of the SDK. Peruse it at your leisure, but
don’t get too hung up on it if there are things you have no clue about. I explain
what you need to know.

After perusing About Xcode and the iPhone SDK, click on the iPhone SDK you
want to download. (Remember: It’s on the right-hand side of the Downloads
section, with a few choices, as I write this, but it might not be in exactly the
same place when you try it; a link proclaiming, “Downloads” will be promi-
nently displayed, no matter what.)

After clicking the link, you can watch the download in Safari’s download
window (which is only a little better than watching paint dry).

When it’s done downloading, the iPhone SDK window appears on-screen,
complete with an installer and various packages tied to the install process.
All you then have to do is double-click the iPhone SDK installer and follow
the (really simple) installation instructions. After you do all that, you’ll have
your very own iPhone Software Development Kit on your hard drive.

You’ll become intimately acquainted with the iPhone SDK during the course
of your project, but for now there’s still one more bit of housekeeping to take
care of: joining the official iPhone Developer Program. Read on to see how
that works.

Joining the iPhone Developer Program
Okay, the simulator that comes standard with the iPhone SDK is a great tool
for learning to program, but it does have some limitations. It doesn’t sup-
port some hardware-dependent features, and when it comes to testing, it
can’t really emulate such everyday iPhone realities as CPU speed or memory
throughput.

Minor annoyances, you might say, and you might be right. The real issue,
however, is that just registering as a developer doesn’t get you one very
important thing — the ability to actually run your application on your
iPhone, much less to distribute your application through Apple’s iPhone App
Store. (Remember that the App Store is the only way for commercial develop-
ers to distribute their applications to more than a few people.) To run your
app on a real iPhone or get a chance to profile your app in the iPhone App
store, you have to enroll in either the Standard or Enterprise version of the
iPhone Developer Program. There is much speculation behind the reason for
this, but the bottom line is that that’s simply the way it is. At least (I might
note) it isn’t all that expensive.

www.allitebooks.com

http://www.allitebooks.org

54 Part I: Getting Started

	 It used to be that that the approval process could take a while, and although
the process does seem quicker these days, it’s still true that you can’t run
your applications on your iPhone until you’re approved. You should enroll as
early as possible.

If you go back to the iPhoneDev Center page, you’ll see a section in the right
column that says iPhone Developer Program. (Refer to Figure 3-3.) Here’s
how you deal with that section:

	 1.	 Click the Learn More link.

		 The iPhone Developer Program page appears, as shown in Figure 3-5.

	 2.	 On the right side of the screen, click the Enroll Now button.

		 A new page appears, telling you to choose your program and outlining
the details of each developer program, as shown in Figure 3-6.

		 The Standard program costs $99. The Enterprise program costs $299
and is designed for companies developing proprietary in-house applica-
tions for iPhone and iPod Touch. To be sure you’re selecting the option
that meets your needs, give the program details a once-over.

	

Figure 3-5:
The iPhone
Developer

Program
overview.

	

55 Chapter 3: Enlisting in the Developer Corps

	 3.	 Click the Enroll Now button.

		 You don’t actually get to choose Standard or Enterprise yet. But you do
get an overview of the process and a chance to log in again with your
Apple ID and password. Click Continue.

	 4.	 Do the logging-in stuff.

		 After logging in, you get a chance to go with either a Standard Individual,
Standard Company, or Enterprise program. Figure 3-7 shows you the dif-
ferences between the three options.

	 5.	 Make your choice and then click Select.

	 	 This will take you to a page that gives you more information on the
option you have selected. Click Continue.

		 Depending on the option you selected, you will either be given the
opportunity to pay (if you selected Standard Individual) or you’ll be
asked for some more company or enterprise information and then given
the ability to pay.

	

Figure 3-6:
Checking

out program
details.

	

www.allitebooks.com

http://www.allitebooks.org

56 Part I: Getting Started

	

Figure 3-7:
Choose your

program.
	

		 While joining as an individual is easier than joining as a company, there
are clearly some advantages to enrolling as a company — for example,
you can add team members (which I discuss in connection with the
developer portal in Chapter 12), and your company name will appear in
your listing in the App Store.

		 When you join as an individual, your real name will show up when the
user buys (or downloads for free) your application in the App Store. If
you’re concerned about privacy, or if you want to seem “bigger,” the
extra work invoked in signing up as a company may be worth it for you.

	 6.	 Continue through the process, and eventually you will be accepted in
the Developer Program of your choice.

The next time you log in to the iPhone Dev Center, you’ll notice that the page
has changed somewhat. As a freshly-minted Official iPhone Developer, you’ll
see the page shown in Figure 3-8. There’s a new iPhone Developer Program
Portal link on the right side, under iPhone Developer Program.

If you click on iPhone Developer Program Portal, you see all sorts of things
you can do as a developer, as shown in Figure 3-9.

	 I wouldn’t linger too long at the iPhone Developer Program Portal page, simply
because it can be really confusing unless you understand the process. I explain
this portal — which lets you provision your device, run your application on it,
and prepare your creation for distribution to the App Store — in Chapter 12.

57 Chapter 3: Enlisting in the Developer Corps

	

Figure 3-8:
Now you,

too, are
special —

the
Developer

Program
Portal

becomes
available.

	

	

Figure 3-9:
The iPhone
Developer

Program
Portal.

	

www.allitebooks.com

http://www.allitebooks.org

58 Part I: Getting Started

Getting Yourself Ready for the SDK
Don’t despair. I know the process is tedious, but it’s over now. Going through
this was definitely the second most annoying part of my journey toward
developing software for the iPhone. The most annoying part was figuring out
what Apple calls “provisioning” your iPhone — the hoops you have to jump
through to actually run your application on a real, tangible, existing iPhone. I
take you through the provisioning process in Chapter 12, and frankly, getting
that process explained is worth the price of the book.

In the next chapter, I get you started using the SDK you just downloaded.
I’m going to assume that you have some programming knowledge and that
you also have some acquaintance with object-oriented programming, with
some variant of C, such as C++, C#, and maybe even with Objective-C. If those
assumptions miss the mark, help me out, okay? Take another look at the
“Resources on the iPhone Dev Center” section, earlier in this chapter, for an
overview of some of the resources that could help you get up to speed on
some programming basics. Or, better yet, get yourself a copy of Objective-C
For Dummies.

I’m also going to assume that you’re familiar with the iPhone itself, and that
you’ve explored Apple’s included applications to become familiar with the
iPhone’s look and feel.

Part II
Using the iPhone

Development
Tools

Contents
Using the iPhone

Development Tools	 59

www.allitebooks.com

http://www.allitebooks.org

In this part . . .

When you’ve established yourself as one of the
developer in-crowd, you can download the SDK.

Of course once you do that, you will have to figure out
how to use it, and you will. This part shows you how to
download and use the iPhone Software Development Kit
(SDK) and how to use Interface Builder — much more
than your run-of-the-mill program for building graphical
user interfaces — to start building a real interface. You
can work along with me, and then take all that knowledge
and start working on your own app. Of course, before you
get into the guts of coding your app, you need to know
about what goes on during runtime inside those itty-bitty
chips — and I take you through that as well.

Chapter 4

Getting to Know the SDK
In This Chapter
▶	Getting a handle on the Xcode project

▶	Compiling an application

▶	Peeking inside the Simulator

▶	Checking out the Interface Builder

▶	Demystifying nib files

I’ve said it before and I’ll say it again: One of the things that really got me
excited about the iPhone was how easy it was to develop applications.

The Software Development Kit (SDK) comes with so many tools, you’d think
developing must be really easy. Well, to be truthful, it’s relatively easy.

In this chapter, I introduce you to the SDK. It’s going to be a low-key, get-
acquainted kind of affair. I’ll show you the real nuts-and-bolts stuff in later
chapters, when I actually develop the two sample applications.

Developing Using the SDK
The Software Development Kit (SDK) supports the kind of development pro-
cess that’s after my own heart: You can develop your applications without
tying your brain up in knots. The development environment allows you to
rapidly get a user interface up and running to see what it looks like. The idea
here is to add your code incrementally — step by step — so you can always
step back and see how what you just did affected the Big Picture. Your gen-
eral steps in development would look something like this:

	 1.	 Start with Xcode, Apple’s development environment for the OS X operat-
ing system.

	 2.	 Design the user interface.

Contents
Getting to Know the SDK	 61
Developing Using the SDK	 61

Creating Your Project	62

Exploring Your Project	65

Building and Running Your Application	
69

The iPhone Simulator	71

Customizing Xcode to Your Liking	74

Using Interface Builder	 76

It’s Time to Get to Work	 80

www.allitebooks.com

http://www.allitebooks.org

62 Part II: Using the iPhone Development Tools

	 3.	 Write the code.

	 4.	 Build and run your application.

	 5.	 Test your application.

	 6.	 Measure and tune your application’s performance.

	 7.	 Do it all again until you are done.

In this chapter, I start at the very beginning, with the very first step, with
Xcode. (Starting with Step 1? What a concept!) And the first step of the first
step is to create a project.

Creating Your Project
To develop an iPhone application, you work in what’s called an Xcode project.
So, time to fire one up. Here’s how it’s done:

	 1.	 Launch Xcode.

		 After you’ve downloaded the SDK, it’s a snap to launch Xcode. By
default, it’s downloaded to /Developer/Applications, where you can
track it down to launch it.

		 Here are a couple of hints to make Xcode handier and more efficient:

	 •	If I were you, I’d drag the icon for the Xcode application all the way
down to the Dock, so you can launch it from there. You’ll be using
it a lot, so it wouldn’t hurt to be able to launch it from the Dock.

	 •	When you first launch Xcode, you’ll see the welcome screen
shown in Figure 4-1. It’s chock-full of links to the Apple Developer
Connection and Xcode documentation. You may want to leave this
screen up to make it easier to get to those links, but I usually close
it. If you don’t want to be bothered with the welcome screen in the
future, uncheck the Show at Launch checkbox.

		 Close the welcome screen for now; you won’t be using it.

	 2.	 Choose File➪New Project from the main menu to create a new project.

		 You can also just press Shift+Ô+N.

		 No matter what you do to start a new project, you are greeted by the
New Project Assistant, as shown in Figure 4-2.

		 The New Project window is where you get to choose the template you
want for your new project. Note that the leftmost pane has two sections:
one for the iPhone OS and the other for Mac OS X.

63 Chapter 4: Getting to Know the SDK

	

Figure 4-1:
The Xcode

welcome
screen.

	

	

Figure 4-2:
The New

Project
window.

	

	 3.	 In the New Project window, click Application under the iPhone OS
heading.

		 The main pane of the New Project window refreshes, revealing several
choices, as shown in Figure 4-2. Each of these choices is actually a tem-
plate that, when chosen, generates some code to get you started.

www.allitebooks.com

http://www.allitebooks.org

64 Part II: Using the iPhone Development Tools

	 4.	 Select View-Based Application from the choices displayed and then
click Choose.

		 Doing so brings up a standard save sheet.

		 Note that when you select a template, a brief description of the template
is displayed underneath the main pane. (Again, refer to Figure 4-2 to see
a description of the View-Based Application. In fact, click on some of the
other template choices just to see how they are described as well. Just
be sure to click the View-Based Application template again to get back to
it when you’re done exploring.)

	 5.	 Enter a name for your new project in the Save As field, choose a Save
location (the Desktop works just fine) and then click Save.

		 I’m going to name my project ReturnMeTo. I suggest you do the same if
you’re following along with me.

		 After you click Save, Xcode creates the project and opens the project
window — which should look like what you see in Figure 4-3.

	

Figure 4-3:
The

ReturnMeTo
project

window.

	

Groups & Files list The Toolbar

Overview menu Breakpoints button

Tasks button

Info button Detail view

Build and Run
button

The Status bar Editor view Text editor
navigation bar

65 Chapter 4: Getting to Know the SDK

Exploring Your Project
To develop an iPhone application, you have to work within the context of an
Xcode project. It turns out that you do most of your work on projects using
the project window very much like the one in Figure 4-3. If you have a nice,
large monitor, expand the project window so you can see everything in it
as big as life. This is, in effect, Command Central for developing your appli-
cation; it displays and organizes your source files and the other resources
needed to build your application.

If you take another peek at Figure 4-3, you’ll see the following:

	 ✓	The Groups & Files list: An outline view of everything in your project,
containing all of your project’s files — source code, frameworks, graph-
ics, as well as some settings files. You can move files and folders around
and add new folders. If you select an item in the Groups & Files list, the
contents of the item are displayed in the topmost-pane to the right —
otherwise known as the Detail view.

		 You’ll notice that some of the items in the Groups & Files list are folders,
whereas others are just icons. Most have a little triangle (the disclosure
triangle) next to them. Clicking the little triangle to the left of a folder
expands the folder to show what’s in it. Click the triangle again to hide
what it contains.

	 ✓	The Detail view: Here you get detailed information about the item you
selected in the Groups & Files list.

	 ✓	The Toolbar: Here you can find quick access to the most common Xcode
commands. You can customize the toolbar to your heart’s content by
right-clicking it and selecting Customize Toolbar from the contextual
menu that appears. You can also choose View➪Customize Toolbar.

	 •	Pressing the Build and Run button compiles, links, and launches
your application.

	 •	The Breakpoints button turns breakpoints on and off and toggles
the Build and Run button to Build and Debug. (I’ll explain this in
Chapter 10.)

	 •	The Tasks button allows you to stop the execution of your pro-
gram that you’ve built.

	 •	The Info button opens a window that displays information and set-
tings for your project.

	 ✓	The Status bar: Look here for messages about your project. For exam-
ple, when you’re building your project, Xcode updates the status bar to
show where you are in the process — and if the process completed suc-
cessfully or not.

www.allitebooks.com

http://www.allitebooks.org

66 Part II: Using the iPhone Development Tools

	 ✓	The Favorites bar: Works like other “favorites” bars you’re certainly
familiar with; so you can “bookmark” places in your project. This bar
isn’t displayed by default; to put it on-screen, choose View➪Layout➪
Show Favorites Bar from the main menu.

	 ✓	The Text Editor navigation bar: This navigation bar contains a number
of shortcuts. These are shown in Figure 4-4. I explain more about them
as you use them.

	 •	Bookmarks menu: You create a bookmark by choosing Edit➪
Add to Bookmarks.

	 •	Breakpoints menu: Lists the breakpoints in the current file — I
cover breakpoints in Chapter 10.

	 •	Class Hierarchy menu: The superclass of this class, the superclass
of that superclass (if any), and so on.

	 •	Included Files menu: Lists both the files included by the current
file, as well as the files that include the current file.

	 •	Counterpart button: This allows you to switch between header
and implementation files.

	 ✓	The Editor view: Displays a file you’ve selected, in either the Groups &
Files or Detail view. You can also edit your files here — after all, that’s
what you’d expect from the “Editor view” — although some folks prefer
to double-click a file in Groups & Files or Detail view to open the file in a
separate window.

	 	To see how the Editor view works, check out Figure 4-5, where I’ve
clicked the disclosure triangle next to the Classes folder in the Groups
& Files view, and the ReturnMeToAppDelegate.h class in the Detail
view. You can see the code for the class in the Editor view. (I deleted the
comments you will normally see when the template creates the classes
and files for you.)

		 Clicking the counterpart button will switch you from the header (or
interface) file to the implementation file, and vice versa. The header files
define the class’s interface by specifying the class declaration (and what
it inherits from), instance variables (a variable defined in a class — at
runtime all objects have their own copy), and methods. The implementa-
tion file, on the other hand, contains the code for each method.

		 Right under the Lock icon is another icon that lets you split the editor
view. That enables you to look at the interface and implementation files
at the same time, or even the code for two different methods in the same
or different classes.

		 If you have any questions about what something does, just position the
mouse pointer above the icon, and a tooltip will explain it.

67 Chapter 4: Getting to Know the SDK

	

Figure 4-4:
Text Editor
navigation

bar.
	

Bookmarks menu

Counterpart button

Class Hierarchy menu

Breakpoints menu

Included Files menu

	

Figure 4-5:
The

ReturnMe
ToApp

Delegate.h
file in the

Editor view.
	

The first item in the Groups & Files view, as you can see in Figure 4-6, is
labeled ReturnMeTo. This is the container that contains all the “source”
elements for my project, including source code, resource files, graphics,
and a number of other pieces that will remain unmentioned for now (but I
get into those in due course). You can see your project container has five
distinct groups (folders, if you will) — Classes, Other Sources, Resources,
Frameworks, Products. Here’s what gets tossed into each group:

	 ✓	Classes is where you should place all of your code, although you are not
obliged to. As you can see from Figure 4-6, this project has four distinct
source-code files:

		 ReturnMeToAppDelegate.h

		 ReturnMeToAppDelegate.m

		 ReturnMeToViewController.h

		 ReturnMeToViewController.m

www.allitebooks.com

http://www.allitebooks.org

68 Part II: Using the iPhone Development Tools

	 ✓	Other Sources is where you typically would find the precompiled
headers of the frameworks you will be using — stuff like ReturnMeTo_
Prefix.pch as well as main.m, your application’s main function.

	 ✓	Resources contains, well, resources, such as .xib files, property lists
(which I will explain in Chapters 13 and 15), images and other media
files, and even some data files.

		 Whenever you choose the View-Based Application template (see
Figure 4-2), Xcode creates the following three files for you:

		 ReturnMeToViewController.xib

		 MainWindow.xib

		 ReturnMeTo-Info.plist

		 I explain .xib files in excruciating detail in this and following chapters.
Soon you will learn to love the .xib files as I much as I do.

	 ✓	Frameworks are code libraries that act a lot like prefab building blocks
for your code edifice. (I talked lots about frameworks in Chapter 2 and
will talk even more about them in Chapter 16.) By choosing the View-
Based Application template, you let Xcode know that it should add the
UIKit framework, Foundation.framework, and CoreGraphics.
framework to your project, since it expects that you’ll need them in a
View-Based Application.

		 I’m going to limit myself to just these three frameworks in developing
the ReturnMeTo Application. But I show you how to add a framework in
Chapter 16.

	 ✓	Products is a bit different from the previous three items in this list: It’s
not a source for your application, but rather the compiled application
itself. In it, you’ll find ReturnMeTo.app. At the moment, this file is listed
in red because the file cannot be found (which makes sense, since you
haven’t built the application yet).

		 A file’s name in red lets you know that Xcode can’t find the underlying
physical file.

	 If you happen to open the ReturnMeTo folder on your Mac, you won’t see the
“folders” that appear in the Xcode window. That’s because those folders are
simply “logical” groupings that help organize and find what you’re looking for;
this list of files can grow to be pretty large, even in a moderate-size project.

Once you have a lot files, you’ll have better luck finding things if you create
subgroups within the Classes group and/or Resources group, or even whole
new groups. You create subgroups (or even new groups) in the Groups &

69 Chapter 4: Getting to Know the SDK

Files listing by choosing New Project➪New Group from the main menu. You
then can select a file and drag it to a new group or subgroup.

Building and Running Your Application
It’s really a blast to see what you get when you build and run a project that
you yourself created using a template from the project creation window.
Doing that is relatively simple:

	 1.	 Choose Simulator - 3.1 | Debug from the Overview drop-down menu
in the top-left corner of the project window to set the active SDK and
Active Build Configuration.

		 It may be already chosen, as you can see in Figure 4-6. Here’s what that
means:

	 •	When you download an SDK, you actually download multiple
SDKs — a Simulator SDK and a device SDK for each of the current
iPhone OS releases.

	 •	Fortunately, for this book, I’ll be using the Simulator SDK and
iPhone OS 3.1. Even more fortunately, in Chapter 12, I show you
how to switch to the device SDK and download your application to
a real-world iPhone. But before you do that, there’s just one catch.

	 •	You have to be in the iPhone Developer Program to run your appli-
cation on a device, even on your very own iPhone.

		 A build configuration tells Xcode the purpose of the built product. You
can choose between Debug, which has features to help with debugging
(duh) and Release, which results in smaller and faster binaries. I’ll be
using Debug for most of this book, so I recommend you go with Debug
for now.

	 2.	 Choose Build➪Build and Run from the main menu to build and run
the application.

		 You can also press Ô+Return or select the Build and Run button in
the Project Window toolbar. The status bar in the project window tells
you all about build progress, build errors such as compiler errors, or
warnings — and (oh, yeah) whether the build was successful. Figure 4-6
shows that this was a successful build.

		 Because you selected Debug for the active build configuration, the
Debugger Console may launch for you, as shown in Figure 4-7 (I talk

www.allitebooks.com

http://www.allitebooks.org

70 Part II: Using the iPhone Development Tools

more about debugging in Chapter 10), depending on your Xcode prefer-
ences (I’ll get to them in a second). If you don’t see the console, select
Run➪Console to display it.

After it’s launched in the Simulator, your first application looks a lot like
what you see in Figure 4-8. You should see the status bar and a gray window,
but that’s it. (I know . . . this may look even more insipid than “Hello World,”
but I fix that big-time in Chapter 5.) You can also see the Hardware menu; I’ll
explain that next.

	

Figure 4-6:
A

successful
build.

	

	

Figure 4-7:
The

Debugger
Console.

	

71 Chapter 4: Getting to Know the SDK

	

Figure 4-8:
Your first

application.
	

The iPhone Simulator
When you run your application, Xcode installs it on the iPhone Simulator
(or a real iPhone device if you specified the device as the active SDK) and
launches it. Using the Hardware menu and your keyboard and mouse, the
Simulator mimics most of what a user can do on a real iPhone, albeit with
some limitations that I point out shortly.

Hardware interaction
You use the iPhone Simulator Hardware menu (refer to Figure 4-8) when you
want your device to do the following:

	 ✓	Rotate Left: Choosing Hardware➪Rotate Left rotates the Simulator to
the left. This enables you to see the Simulator in Landscape mode.

	 ✓	Rotate Right: Choosing Hardware➪Rotate Right rotates the Simulator to
the right.

www.allitebooks.com

http://www.allitebooks.org

72 Part II: Using the iPhone Development Tools

	 ✓	Use a Shake Gesture: Choosing Hardware➪Shake Gesture simulates
shaking the iPhone.

	 ✓	Go to the Home screen: Choosing Hardware➪Home does the expected —
you go to the home screen.

	 ✓	Lock the Simulator (device): Choosing Hardware➪Lock locks the
simulator.

	 ✓	Send the running application low-memory warnings: Choosing
Hardware➪Simulate Memory Warning fakes out your simulator by
sending it a (fake) low-memory warning. I won’t be covering this, but
it is a great feature for seeing how your app may function out there in
the real world.

	 ✓	Toggle the status bar between its Normal state and its In Call state:
Choose Hardware➪Toggle In-Call Status Bar to check out how your
application functions when the iPhone is not answering a call (Normal
state) and when it supposedly is answering a call (In Call state).

		 The status bar becomes taller when you’re on a call than when you’re
not. Choosing In Call state here shows you how things look when your
application is launched while the user is on the phone.

Gestures
On the real device, a gesture is something you do with your fingers to make
something happen in the device, like a tap, or a drag, and so on. Table 4-1
shows you how to simulate gestures using your mouse and keyboard.

Table 4-1	 Gestures in the Simulator
Gesture iPhone Action

Tap Click the mouse.

Touch and hold Hold down the mouse button.

Double tap Double-click the mouse.

Swipe 1. �Click where you want to start and hold the mouse
button down.

2. �Move the mouse in the direction of the swipe and then
release the mouse button.

Flick 1. �Click where you want to start and hold the mouse
button down.

2. �Move the mouse quickly in the direction of the flick
and then release the mouse button.

73 Chapter 4: Getting to Know the SDK

Gesture iPhone Action

Drag 1. �Click where you want to start and hold the mouse
button down.

2. Move the mouse in the drag direction.

Pinch 1. �Move the mouse pointer over the place where you
want to start.

2. �Hold down the Option key, which will make two circles
appear that stand in for your fingers.

3. �Hold down the mouse button and move the circles in
or out.

Uninstalling applications
and resetting your device
You uninstall applications on the Simulator the same way you’d do it on the
iPhone, except you use your mouse instead of your finger.

	 1.	 On the Home screen, place the pointer over the icon of the applica-
tion you want to uninstall and hold down the mouse button until the
icon starts to wiggle.

	 2.	 Click the icon’s Close button — the little x that appears in the upper-
left corner of the application’s icon.

	 3.	 Click the Home button — the one with a little square in it, centered
below the screen — to stop the icon’s wiggling.

You can also move an application icon around by clicking-and-dragging with
the mouse.

To reset the Simulator to the “original factory settings” — which
also removes all the applications you’ve installed — choose iPhone
Simulator➪Reset Content and Settings.

Limitations
Keep in mind that running applications in the iPhone Simulator is not the
same thing as running them in the iPhone. Here’s why:

	 ✓	The Simulator uses Mac OS X versions of the low-level system frame-
works, instead of the actual frameworks that run on the device.

www.allitebooks.com

http://www.allitebooks.org

74 Part II: Using the iPhone Development Tools

	 ✓	The Simulator uses the Mac hardware and memory. To really determine
how your application is going to perform on an honest-to-goodness
iPhone device, you’re going to have to run it on a real iPhone device.
(Lucky for you, I show you how to do that in Chapter 12.)

	 ✓	Xcode installs applications in the iPhone Simulator automatically when
you build your application using the iPhone Simulator SDK (you saw that
in Figure 4-8, for example). All fine and dandy, but there is no way to get
Xcode to install applications from the App Store in the iPhone Simulator.

	 ✓	You can’t fake the iPhone Simulator into thinking it’s lying on the beach
at Waikiki. The location reported by the CoreLocation framework in
the Simulator is fixed at

		 Latitude: 37.3317 North

		 Longitude: 122.0307 West

		 Which just so happens to be 1 Infinite Loop, Cupertino, CA 95014, and
guess who “lives” there?

	 ✓	Maximum of two fingers. If your application’s user interface can respond
to touch events involving more than two fingers, you will need to test
that on an actual device.

	 ✓	You can access your computer’s accelerometer (if it has one) through the
UIKit framework. Its reading, however, will differ from the accelerometer
readings on an iPhone (for some technical reasons I won’t get into).

	 ✓	OpenGL ES uses renderers on devices that are slightly different from
those it uses in iPhone Simulator. As a result, a scene on the simulator
and the same scene on a device may not be identical at the pixel level.

Customizing Xcode to Your Liking
There are options galore in Xcode; many won’t make any since until you have
quite a bit of programming experience, but a few are worth thinking about now.

	 1.	 With Xcode open, choose Xcode➪Preferences from the main menu.

	 2.	 Click Debugging in the toolbar, as shown in Figure 4-9.

		 The Xcode Preferences window refreshes to show the various preferences.

	 3.	 Select the On Start drop-down menu and choose Show Console, as I
have done in Figure 4-9. Then click Apply.

		 This automatically opens the Debugger Console after you build your
application. This means you won’t have to open to see your applica-
tion’s output.

75 Chapter 4: Getting to Know the SDK

	

Figure 4-9:
Always

show the
console.

	

	 4.	 Click Building in the toolbar, as shown in Figure 4-10.

	 5.	 Select the Build Results Window: Open during builds: drop-down
menu and choose Always, as I have done in Figure 4-10. Then click
Apply.

		 This opens the Build Results window and keeps it open. You might not
like this, but some people find it is easier to find and fix errors.

	

Figure 4-10:
Show

the Build
Results

window.
	

www.allitebooks.com

http://www.allitebooks.org

76 Part II: Using the iPhone Development Tools

	 6.	 Click Documentation in the toolbar, as shown in Figure 4-11.

	

Figure 4-11:
Accessing
the docu-

mentation.
	

	 7.	 Click the Check for and Install Updates Automatically checkbox, and
then press Check and Install Now.

		 This will make sure the documentation remains up to date (this also
allows you to load and access other documentation).

	 8.	 Click OK to close the Xcode Preferences window.

	 You can also set the tab width and other formatting options in Indentation.
I have set mine to 2 so I can display more on a page. The default is 4.

You can also have the Editor show line numbers. If you select Test Editing
in the Xcode Preferences toolbar, you can check Show line numbers under
Display Options. I won’t do this now, but this will become very useful in the
last part of Chapter 10.

Using Interface Builder
Interface Builder is a great tool for graphically laying out your user interface.
You can use it to design your application’s user interface and then save what
you’ve done as a resource file, which is then loaded into your application

77 Chapter 4: Getting to Know the SDK

at runtime. Then this resource file is used to automatically create the single
window, as well as all your views and controls, and some of your applica-
tion’s other objects — view controllers, for example. (For more on view con-
trollers and other application objects, check out Chapter 2.)

	 If you don’t want to use Interface Builder, you can also create your objects
programmatically — creating views and view controllers and even things like
buttons and labels in your own application code. I show you how to do that as
well. Often Interface Builder makes things easier, but sometimes just coding it
is the best way.

Here’s how Interface Builder works:

	 1.	 In your project window’s Groups & Files list, expand the Resources
group.

	 2.	 Double-click the ReturnMeToViewController.xib file, as shown in
Figure 4-12.

	

Figure 4-12:
Selecting

ReturnMe
ToView

Controller.
xib.

	

		 Don’t make the mistake of opening the mainWindow.xib. You need the
ReturnMeToViewController.xib file.

		 Note that ReturnMeToAppDelegate is still in the Editor window; that’s
okay, because we’re set to edit the ReturnMeToViewController.xib file in
the Interface Builder, not in the Editor window. That’s because double-
clicking always opens a file in a new window — this time, the Interface
Builder window.

www.allitebooks.com

http://www.allitebooks.org

78 Part II: Using the iPhone Development Tools

		 What you see after double-clicking are the windows as they were the
last time you left them. If this is the first time you’ve opened Interface
Builder, you’ll see three windows that look something like those in
Figure 4-13.

		 Not surprisingly, the View window looks exactly as it did in the iPhone
Simulator window — as blank as a whiteboard wiped clean.

	

Figure 4-13:
The

ReturnMe
ToView

Controller
in Interface

Builder.
	

Interface Builder supports two file types: an older format that uses the exten-
sion .nib and a newer format that utilizes the extension .xib. The iPhone proj-
ect templates all use .xib files. While the file extension is .xib, everyone still
calls them nib files. The term “nib” and the corresponding file extension .xib
are acronyms for “NeXT Interface Builder.” The Interface Builder application
was originally developed at NeXT Computer, whose OPENSTEP operating
system was used as the basis for creating Mac OS X.

The window labeled ReturnMeToViewController.xib (the far-left window in
Figure 4-13) is the nib’s main window. It acts as a table of contents for the
nib file. With the exception of the first two icons (File’s Owner and First
Responder), every icon in this window (in this case, there’s only one, but
you’ll find more as you get into nib files) represents a single instance of an

79 Chapter 4: Getting to Know the SDK

Objective-C class that will be created automatically for you when this nib file
is loaded.

	 Interface Builder does not generate any code that you have to modify or even
look at. Instead, it creates “instant” Objective-C objects that the nib loading
code reconstitutes and turns into real objects at runtime.

If you were to take a closer look at the three objects in the
ReturnMeToViewController.xib file window — and if you had a pal who
knew the iPhone backwards and forwards — you’d find out the following
about each object:

	 ✓	The File’s Owner proxy object: This is the controller object that is
responsible for the contents of the nib file. In this case, the File’s Owner
object is actually the ReturnMeToViewController that was created
by Xcode and will be the primary object you’ll use to implement the
application’s functionality. The File’s Owner is not created from the nib
file. It’s created in one of two ways — either from another (previous) nib
file or by a programmer who codes it manually.

		 In Interface Builder, you can create connections between the
File’s Owner and the other interface objects in your nib file.
For example, in Chapter 7, I create a connection between the
ReturnMeToViewController and a text field (for entering a phone
number) and a label (in which to display the phone number).

	 ✓	First Responder proxy object: This object is the first entry in an appli-
cation’s dynamically constructed responder chain (a term I explain in
Chapter 6) and is the object with which the user is currently interacting.
For a view, it’s usually going to start out as the View Controller object.
If, for example, the user taps a text field to enter some data, the first
responder would then become the Text Field object.

		 Although I use the first responder mechanism quite a bit as I build the
ReturnMeTo application, there’s actually nothing I have to do to manage
it. It’s automatically set and maintained by the UIKit framework.

	 ✓	View object: The View icon represents an instance of the UIView class.
A UIView object is an area that a user can see and interact with. In this
application, you’ll only have to deal with the one view.

If you take another look at Figure 4-13, you’ll notice two other windows open
besides the main window. Look at the window that has the word View in the
title bar. That window is the graphical representation of the View icon. If you
close the View window and then double-click the View icon, this window will
open up again. This is your canvas for creating your user interface: It’s where
you drag user-interface elements such as buttons and text fields. These objects
come from the Library window (the third window you see in Figure 4-13).

www.allitebooks.com

http://www.allitebooks.org

80 Part II: Using the iPhone Development Tools

The Library window contains your palette — the stock Cocoa Touch objects
that Interface Builder supports. Dragging an item from the Library to the
View window adds an object of that type to the View (and remember, as
subview).

	 If you happen to close the Library window, whether by accident or by design,
you can get it to reappear by choosing Tools➪Library.

It’s Time to Get to Work
Finally, at what may seem at long last (although it’s really been only a few
pages), you’re ready to do some real work. In the next chapter, I lead you
through creating the user interface for the ReturnMeTo application.

So take a break if you need to, but come back ready to work.

Chapter 5

Building the User Inter face
In This Chapter
▶	Using Interface Builder

▶	Working with a view

▶	Adding controls

▶	Adding graphics

▶	Creating your own application icon

As I’ve mentioned before, and will say many times again (unless the edi-
tors stop me), the user interface, while critical for most applications, is

less forgiving on the iPhone than on the desktop. That’s because on-screen
real estate is limited on the device. (Come on, as cool as the screen is, it’s
still smaller than a desktop monitor.) Given the space limitations, I always
like to get a pretty good idea of what the user interface will be like, because
it could have a definite impact on my software architecture. Before I start
coding, I want to be sure the interface is going to work in its intended space.

When I started the ReturnMeTo application, I thought the user interface
would be a piece of cake — and to some extent, it was. But even the easiest
of applications — apps like ReturnMeTo that have focused functionality and
a single window — can benefit from a little road-testing. As I go through the
process of developing this application over the next few chapters (and take
it for a spin now and then), I document what happens along the way — the
good, the bad, and the ugly. There’s method to this madness: As I try differ-
ent implementations of the application, you get a close look at how easy it is
to make those changes.

Starting Interface Builder
First things first: Start up Interface Builder so you can start laying out the
user interface. Just so you know what you’re aiming for, Figure 5-1 shows
what the final application is going to look like in the Simulator.

Contents
Building the User Inter face	 81
Starting Interface Builder	81

Adding Graphics and the
Rest of the Elements	 89

Adding an Application Icon	 96

A Lot Accomplished Very Quickly	98

www.allitebooks.com

http://www.allitebooks.org

82 Part II: Using the iPhone Development Tools

	

Figure 5-1:
The

ReturnMeTo
user inter-
face, as it

looks in the
Simulator.

	

Isn’t it a beauty? All modesty aside, you, too, can build cool-looking apps in
no time. Here’s what you need to do:

	 1.	 Launch Xcode.

		 You’ll find it located in /Developer/Applications. (If you listened to my
advice in Chapter 4 and added the Xcode icon to the Dock, you can of
course launch it from there.)

	 2.	 With Xcode open, choose File➪Open from the main menu, then use
the Open dialog to navigate to (and open) the ReturnMeTo project cre-
ated in Chapter 4.

		 The ReturnMeTo project window appears on-screen.

		 If you haven’t created the project yet, check out Chapter 4 — or, after
you’ve launched Xcode, follow these steps:

	 a.	Choose File➪New Project.

		 You’re asked to choose a template for your project.

	 b.	Choose a View-Based application.

	 c.	Name the application ReturnMeTo and then save it.

83 Chapter 5: Building the User Interface

	 3.	 In the Groups & Files list (on the left side of the project window), click
the triangle next to the Resources folder to expand it, as shown in
Figure 5-2.

	

Figure 5-2:
The project

window.
	

	 4.	 In the expanded Resources folder, double-click the
ReturnMeToViewController.xib file.

		 Doing so launches Interface Builder — and if you’ve never run this pro-
gram before, you end up with something that looks like Figure 5-3. (If
you’ve already spent some time exploring Interface Builder, you’ll see
the windows as you last left them.)

	 5.	 Check to see whether the Library window (at the right in Figure 5-3) is
open. If it isn’t, open it by choosing Tools➪Library or ➪cmd+Shift+L.
Make sure Objects is selected in the mode selector at the top of the
Library window and Library in the drop-down menu below the mode
selector.

		 The Library has all the components you can use to build a user inter-
face. These include the things you see on the iPhone screen, such as
labels, buttons, and text fields; and those you need to create the “plumb-
ing” to support the views (and your model) such as the View Controller I
explained in Chapter 2.

		 ReturnMeToViewController.xib was created by Xcode when I created
the project from the template. As you can see, the file already contains a
view — all I have to do here is add the static text, images, and text fields.
If you drag one of these objects to the View window, it will create that
object when your application is launched.

www.allitebooks.com

http://www.allitebooks.org

84 Part II: Using the iPhone Development Tools

	

Figure 5-3:
Interface

Builder
windows.

	

	 6.	 Drag the Label element from the Library window over to the View
window, as shown in Figure 5-4.

		 Labels display static text in the view (static text can’t be edited by the user).

		 You may notice a rectangle around the label when you’re done dragging
it over the View window. This rectangle won’t show on-screen when the
app is running. (You can turn this particular feature on or off, as I have,
by choosing Layout➪Show/Hide Bounds Rectangle.)

		 Your View should look something like Figure 5-4 when you’re done.

		 Labels are actually subviews of your main view. Knowing that will make
it a lot easier to understand some things I end up doing in the next few
chapters. I’ll remind you of this whole view/subview thing when it comes
up again.

	 7.	 Click to select the Label text and then choose Tools➪Attributes
Inspector.

		 The Attributes Inspector appears on-screen, as shown in Figure 5-5.

		 Pressing Ô+1 is another way to call up the Attributes Inspector.

		 Note the four icons across the top of the Attributes Inspector window.
They correspond to the Attributes, Connections, Size and Identity
Inspectors, respectively, in the Tools menu. The Attributes icon looks
pushed down in Figure 5-5, which makes sense since the Attributes
Inspector is the active one.

85 Chapter 5: Building the User Interface

	

Figure 5-4:
Adding a

label to
the user

interface.
	

	

Figure 5-5:
Formatting

the label.
	

Attributes

Connections Identity

Size

www.allitebooks.com

http://www.allitebooks.org

86 Part II: Using the iPhone Development Tools

	 8.	 Enter If you find me in the Attributes Inspector’s Text field, enter 34 in
the Font Size field, and then press Return or Enter.

		 The minimum font size business can be confusing. Notice in the
Attribute Inspector that the Adjust to Fit checkbox is checked. That
means entering a font size here is really saying, “I want the text to fit in
the label, but don’t make it any smaller than the size I’ve entered here in
Font Size.” The resulting font size is a side effect of setting the minimum
larger than the label. The problem is, if you uncheck the Adjust to Fit
box and you want to specify the actual font size, using the Font Size field
can increase it but not decrease it. (All you are doing in the Font Size
field is setting the minimum, and it’s already larger than that.) To actu-
ally specify a smaller font size, you have to choose Font➪Show Fonts
and set it from there.

		 Okay, at this point I could double-click the label in the View window and
enter the new text, but I need the Attributes Inspector to change the font
size. So I might as well change the text in the Attributes Inspector (I can
also change other attributes there, such as color, if necessary).

		 What you see in response is something like Figure 5-5. Not very appeal-
ing is it? Where the heck is the text, for example? It turns out that you
have to increase the size of the label to see the larger text.

	 9.	 With the label still selected, choose Layout➪Size to Fit to increase the
size of the label.

		 I could select the label and resize it by dragging the selection points you
see in Figure 5-5, but I’m lazy enough just to choose Layout➪Size To Fit,
which does exactly that: It adjusts the label size to fit the text.

	 10.	 Choose Layout➪Alignment➪Align Horizontal Center in Container to
center the label in the View screen.

		 You have a couple of ways to center things in the View. If you had some
other objects in place that were already centered, for example, you
could use the guides provided by Interface Builder. (You can see them
in Figure 5-10, if you peek ahead a few pages.) But in this case, there are
no other objects to use as a reference; you’re better off just using the
Layout menu.

		 Time now to specify a more appealing color for your View screen’s
background.

	 11.	 With the view itself (rather than just the label) selected, click the
Background field in the Attributes Inspector.

		 The Colors window appears in the form of a box of crayons, as shown in
Figure 5-6.

		 Note that selecting the view rather than the label changes the composi-
tion of the Attributes Inspector.

87 Chapter 5: Building the User Interface

	

Figure 5-6:
Changing

the
background

color.
	

	 12.	 Choose the white crayon in the Colors window to change the View
background from gray to white.

		 (I know they call it “Snow,” but white by any other name is still as
white.) If the crayons remind you too much of kindergarten, you can get
other color-palette views by clicking the icons at the top of the Colors
window.

	 13.	 Choose File➪Save to save what you have done.

		 You can also save your work by pressing Ô+S.

		 Ready to admire your work? For that, you’ll need to build and run your
application in Xcode.

		 Be sure to save your work. Forgetting to save your work has caused many
developers (including yours truly) to waste prodigious amounts of time
trying to figure out why something “doesn’t work.”

	 14.	 Make your Xcode window the active window again.

		 If you can’t find it, or you minimized it, just click the Xcode icon in the
Dock. The ReturnMeTo project should still be the active one. (You can
always tell the active project by looking at the project name at the top of
the Groups & Files pane.)

www.allitebooks.com

http://www.allitebooks.org

88 Part II: Using the iPhone Development Tools

	 15.	 In Xcode, click the Build and Run button in the Project Window tool-
bar. (Refer to Figure 5-2.)

		 You can also choose Build➪Build and Run from the main menu or press
Ô+Return.

 		 The Simulator launches automatically. It shows you something like
Figure 5-7, depending on how creative you’ve been. (Maybe you went
with the Cranberry Red crayon instead of Snow?)

This is the general pattern I use as I build my interface — add stuff, build
and run, and then check the results. Although I don’t run the program in the
Simulator after every change (unless, of course, I’m trying to avoid doing
something else), I do run it periodically to check what the program will look
like on the iPhone.

	 You can also choose File➪Simulate Interface from the Interface Builder menu
to see what the interface will look like.

	

Figure 5-7:
Admiring

your work.
	

89 Chapter 5: Building the User Interface

Adding Graphics and the
Rest of the Elements

All background color and text makes Jack a dull boy, so you’ll definitely want
to add some graphics to keep Jack’s (or Jill’s) interest. Originally, I created
my own little iPhone graphic (I’ll explain why I didn’t use it in Chapter 12),
but instead I am going to use a royalty-free image I found on the Internet),
and I will show you how to get it safely into an application. (I’ll admit that I
didn’t give up a promising career as a graphic artist to become a software
developer, but it’s the thought that counts, right?)

To get an image placed in your application, first you need (well, yeah) an
image.

	 The preferred format for the image is .png. Although most common image
formats will display correctly, Xcode automatically optimizes .png images at
build time to make them the fastest and most efficient image type for use in
iPhone applications.

After you have your image, do the following:

	 1.	 Back in Xcode, drag the graphics file into the Resources folder in the
project window, as shown in Figure 5-8.

		 Xcode asks you whether you want to make a copy of the icon file.
Otherwise, it will simply create a pointer to the file. The advantage of
using a pointer is that if you modify the image later, Xcode will use that
modified version. The disadvantage is that Xcode won’t be able to find
the image file if you move it.

		 I’m all for copying.

	

Figure 5-8:
Dragging a
file into the
Resources

folder.
	

www.allitebooks.com

http://www.allitebooks.org

90 Part II: Using the iPhone Development Tools

	 2.	 Check the Copy Items into Destination Group’s Folder checkbox to
copy the file, as shown in Figure 5-9.

		 An alternative is to click the Resources folder in Xcode, choose
Project➪Add to Project, and then navigate to the file you want to add.

	

Figure 5-9:
Copying the
image to the

Resources
folder.

	

	 3.	 Return to Interface Builder and make sure Objects is selected in the
mode selector at the top of the Library window and Library in the
drop-down menu below the mode selector.

		 You can do that by clicking in an Interface Builder window or by clicking
the Interface Builder icon in the dock.

	 4.	 Drag the Image View element from the Library onto the View window,
as shown in Figure 5-10.

		 Notice the blue lines displayed by Interface Builder. They’re there
to make it easy to center the image. Interface Builder also displays
blue lines at the borders to help you conform to Apple User Interface
Guidelines. If you jump ahead to Figure 5-14, you can see the borderlines
as plain as day.

	 5.	 Select the Image View element in the View window.

		 Doing so changes what you see in the Attribute Inspector. It now dis-
plays the attributes for an Image view.

	 6.	 Using the inspector’s Image drop-down menu, choose the image you
want to use for the image view, as shown in Figure 5-11.

		 That inspector’s a handy little critter, isn’t it?

		 If you don’t see Phone.png in the drop-down menu, select, File➪
Reload All Class Files.

91 Chapter 5: Building the User Interface

	

Figure 5-10:
Centering

the image.
	

	

Figure 5-11:
Selecting

the image.
	

www.allitebooks.com

http://www.allitebooks.org

92 Part II: Using the iPhone Development Tools

	 7.	 Choose Layout➪Size to Fit and Layout➪Alignment➪Align Horizontal
Center in Container to align and center the image.

		 Your image does what it’s told, and your View screen ends up looking
like Figure 5-12.

	 8.	 Using the steps included in the previous section for adding the “If you
find me” text, add the “Please call” text.

		 You know the drill: Drag a label from the Library window, add the
“Please call” text, increase the font size to 34, and then choose
Layout➪Size to Fit and Layout➪Alignment➪Align Horizontal Center in
Container. Click the Color field in the Attributes Inspector to call up the
little crayon box, but this time click the red (not the white) crayon to
make the text red so it stands out more.

		 You can also see a red line across the view that the Please call text sits
on. You can get that by choosing Layout➪Add Horizontal Guide (there’s
a vertical one as well). These guides can help you line things up.

	 9.	 Add yet another label to display the number to call.

		 This next label needs to hold the text of the number the user enters. (As
you’ll see later, I also use it to communicate some information to the
user, so it needs to be able to fit more text than just a phone number.)
Just drag a label object from the Library into the view, but this time,
since you don’t know the size of the text you’re going to display, widen it
to almost the width of the view. To do that, use the selection points you
see in Figure 5-13 to resize the label. (The blue lines shown in Figure 5-14
help you stay within the iPhone Human Interface Guidelines.)

		 You want the text centered in the view, but since this time the text may
be smaller than the view, you should make sure it’s centered by clicking
the Align Center control in the Layout field of the Attributes Inspector,
as shown in Figure 5-13.

		 You could leave the text field blank, or put in some default text for the
user to see before he or she has entered a phone number the first time.
I’ve done it both ways, and found (after some user testing) that people
preferred that they see some text when they first launch the application,
so I added “650 555 1212.” No matter what you do, make sure the Align
Center control is chosen.

		 Label fields are not editable by the user, but you can change the text in
your program.

	 10.	 Drag a Text Field element from the Library (refer to Figure 5-10) into
the View window to add a text-entry field, as shown in Figure 5-15.

		 This is the field a user will use to enter his or her phone number. Go
ahead and put it under the Phone Number label.

93 Chapter 5: Building the User Interface

	

Figure 5-12:
The red
“Please

call” label.
	

	

Figure 5-13:
Dragging

the label’s
selection

points. Add
back

callouts.
	

Align Center

www.allitebooks.com

http://www.allitebooks.org

94 Part II: Using the iPhone Development Tools

	

Figure 5-14:
Formatting

the number
to call label.

	

	 11.	 Using the text field’s selection points, extend both sides of the field so
that it ends up matching the field above.

		 If you click into the text field, you’ll see both a Text and Placeholder
field in the Attributes Inspector. The Text field specifies what the user
will see before he or she touches the text field to enter something. The
Placeholder, on the other hand, is a “default” text that the user will see
after he or she touches the text field to enter text. Personally, I find the
default annoying, so I left it blank. I also prefer text entry to be aligned
left, which is the default for the Text field.

	 12.	 Set the Keyboard Type to Numbers & Punctuation, as shown in
Figure 5-15.

	 13.	 Make your Xcode window the active window again and then click the
Build and Run icon in the Project Window toolbar.

		 You can also choose Build➪Build and Run from the main menu or press
Ô+Return.

		 I bet you’ve been waiting for this moment with bated breath and can
hardly wait to see what the application looks like. Your application
should look like Figure 5-16, depending on which (if any) liberties you
have taken.

95 Chapter 5: Building the User Interface

	

Figure 5-15:
Adding the

text entry
field number

to call.
	

Keyboard Type

	

Figure 5-16:
The

completed
user

interface
in the

Simulator.
	

www.allitebooks.com

http://www.allitebooks.org

96 Part II: Using the iPhone Development Tools

Adding an Application Icon
One of the design goals for the ReturnMeTo application was to make it obvi-
ous to someone who found my iPhone that he or she should touch the appli-
cation icon.

But if you click on the Simulator’s home button — the black button with the
white square at the very bottom of the window — what you see in Figure 5-17
is an application icon that is noticeable only for what it is not. What I need is
an icon that reaches out and says, “touch me!”

An application icon is simply a 57-by-57-pixel .png file, just like the one I used
for our image (albeit smaller) in the “Adding Graphics and the Rest of the
Elements” section, earlier in the chapter. I created an icon matching those
measurements in a graphics program and added it to the ReturnMeTo proj-
ect in the same way I added the image file earlier — by dragging it into the
Resources folder.

	

Figure 5-17:
The stylish

ReturnMeTo
icon.

	

97 Chapter 5: Building the User Interface

After I add the icon, I also need to specify that this icon is what I want used as
the application’s icon. I do that using one of those other mysterious files you
see in the Resources folder. Here’s how:

	 1.	 In the Resources folder, click the info.plist file, as shown in Figure 5-18.

		 The contents of the info.plist file are displayed in the Editor pane. You’re
treated to some information about the application, including an item in
the Key column labeled Icon file.

	

Figure 5-18:
Adding the
icon in the

info.plist.
	

	 2.	 Double-click in the empty space in the Value column next to Icon file.

	 3.	 Type in ReturnMeTo icon.png (or whatever name you chose to give
your image) and then build the project as you normally would.

		 You know, clicking the Build and Run button in the Project Window tool-
bar, choosing Build➪Build and Go (Run) from the main menu or press-
ing Ô+Return.

I’ll be doing more with the info.plist and its various settings when I get
ReturnMeTo ready for the App store in Chapter 12.

Click the Home button, and you should be able to see your application icon.
(For a peek at mine, check out Figure 5-19.)

www.allitebooks.com

http://www.allitebooks.org

98 Part II: Using the iPhone Development Tools

	

Figure 5-19:
The

ReturnMeTo
icon on the

iPhone.
	

A Lot Accomplished Very Quickly
In only a few pages, you’ve accomplished quite a bit. I want to emphasize,
as you will see, that what I have done is not just a design. What you see here
is the specification for “code” that will take what I have laid out in Interface
Builder and create the objects that will implement it at runtime.

I do have to write code, however, if I want the application to actually do
something. But before I get into that subject in detail, it is important that
you understand how the application works at runtime — how the objects
fit together and communicate. I explain what you need to know about that
whole business in the next chapter.

Chapter 6

While Your Application Is Running
In This Chapter
▶	Seeing how applications actually work

▶	Getting a handle on how nib files work

▶	Following what goes on when the user taps your application icon

▶	Managing events

▶	Creating an app with a view

▶	Remembering memory management

▶	Knowing what else you should be aware of at runtime

Taking a peek at the iPhone application architecture (Chapter 2) and work-
ing through the steps of creating the user interface for an application

(Chapter 5) are all fine and dandy, but at some point, you have to add some
code — and to do that, you need an additional frame of reference: You need
to know how all this stuff works at runtime.

Uncovering the mysteries of runtime is the goal of this chapter.

Okay, if you can’t wait to code, then by all means skip to the next chapter.
Honestly, if I were you (or me without benefit of hindsight), I’d be itching to
do the same thing. But you’ll probably run into trouble, just as I did, if you
don’t take some time beforehand to examine how the objects work together
to deliver the user’s experience of the application.

Application Anatomy 101 —
The Life Cycle

The short-but-happy life of an application begins when a user launches it by
tapping its icon on the Home screen. The system launches your application
by calling its main function.

Contents
While Your Application Is Running	

99
Application Anatomy 101 —
The Life Cycle	99

Event Processing	 108

Termination	 110

Other Runtime Considerations	 110

Whew!	 114

www.allitebooks.com

http://www.allitebooks.org

100 Part II: Using the iPhone Development Tools

The main function does only three things:

	 ✓	Sets up an autorelease pool.

	 ✓	Calls the UIApplicationMain function.

	 ✓	At termination, releases the autorelease pool.

To be honest, this whole main function thing is not something you
even need to think about. What is important is what happens after the
UIApplicationMain function is called. The whole ball of wax is shown in
Figure 6-1. Here’s the play-by-play:

	 1.	 The main nib file is loaded.

		 A nib file is a resource file that contains the specifications for one or
more objects. The main nib file usually contains a window object of
some kind, the application delegate object, and any other key objects.
When the file is loaded, the objects are reconstituted (think “instant
application”) in memory.

		 For our ReturnMeTo example, this is the moment of truth when the
ReturnMeToAppDelegate, ReturnMeToViewController, its view,
and the main window are created.

	

Figure 6-1:
A simplified

life-cycle
view of

an iPhone
application.

	

User taps application icon

System asks application to terminate

main()

UIApplicationMain()

applicationWillTerminate:

Handle event

applicationDidFinishLaunching:

UIKit Your code

Event Loop

Application execution terminates

101 Chapter 6: While Your Application Is Running

		 For more on those objects and the roles they play in applications, see
Chapter 2.

	 2.	 The UIApplicationMain sends the application delegate the
applicationDidFinishLaunching: message.

		 This step is where you initialize and set up your application. You may
display your main application window as if the user was starting from
scratch, or the way the window looked when the user last exited the
application. The application delegate object is a custom object that
you code. It is responsible for some of the application-level behavior of
your application. (Delegation is an extensively used design pattern that I
explain in Chapter 2.)

	 3.	 The UIKit framework sets up the event loop.

		 The event loop is the code responsible for polling input sources — the
screen, for example. Events, such as touches on the screen, are sent to
the object — say, a controller — that you have specified to handle that
kind of event. These handling objects contain the code that implements
what you want your application to do in response to that particular event.
A touch in a control may result in a change in what the user sees in a view,
a switch to a new view, or even the playing of “My Melancholy Baby.”

	 4.	 When the user performs an action that would cause your application
to quit, UIKit notifies your application and begins the termination
process.

		 Your application delegate is sent the applicationWillTerminate:
message, and you do what you need to do to terminate your application,
including saving where the user was in the application. Saving is impor-
tant, because then, when the application is launched again (see Step 2
above) and the UIApplicationMain sends the application delegate
the applicationDidFinishLaunching, message you can restore the
application to where the user left off.

It all starts with the main nib file
When you create a new project using a template — quite the normal state
of affairs, as I explain in Chapter 3 — the basic application environment is
included. That means when you launch your application, an application
object is created and connected to the window object, the run loop is estab-
lished, and so on — despite the fact that you haven’t done a lick of coding.
Most of this work is done by the UIApplicationMain function as illustrated
back in Figure 6-1.

www.allitebooks.com

http://www.allitebooks.org

102 Part II: Using the iPhone Development Tools

But what does the UIApplicationMain function actually do? I’m glad you
asked. When it goes through its paces, the process works more or less as fol-
lows, as illustrated in Figure 6-2.

	 1.	 An instance of UIApplication is created.

	 2.	UIApplication looks in the info.plist file, trying to find the main nib
file.

		 It makes its way down the Key column until it finds the Main Nib File Base
Name entry. Eureka! It peeks over at the Value column and sees that the
value for the Main Nib File Base Name entry is MainWindow.nib.

	 3.	UIApplication loads MainWindow.xib.

The file MainWindow.xib is what causes your application’s delegate, main
window, and view controller instances to get created at runtime. Remember,
this file is provided as part of the project template. You don’t need to change
or do anything here. This is just a chance to see what’s going on behind the
scenes.

	

Figure 6-2:
The appli-

cation is
launched.

	

Looks at
UIApplication

<UIApplicationMain>

Main nib files base name =
MainWindow

103 Chapter 6: While Your Application Is Running

To take advantage of this once-in-a-lifetime opportunity, go back to your
project window in Xcode, expand the Resources folder in the Groups & Files
listing on the left and then double-click MainWindow.xib. (You do have a
project, right? If not, check out Chapter 4.) When Interface Builder opens,
take a look at the nib file’s main window — the one labeled MainWindow.
xib, which should look like the MainWindow.xib you see in Figure 6-2.
Double-click the ReturnMeToViewController object as well as the
Window object, if they are not already open. You should end up with three
windows open, as shown in Figure 6-3.

Figure 6-3 shows MainWindow.xib contains five files. The objects you see
are as follows:

	 ✓	A File’s Owner proxy object: The File’s Owner object is actually the
UIApplication instance. This object isn’t created when the file
is loaded as are the window and views. It’s already created by the
UIApplicationMain object before the nib file is loaded.

	 ✓	First Responder proxy object: This object is the first entry in an applica-
tion’s responder chain, which is constantly updated while the applica-
tion is running to (usually) point to the object with which the user is
currently interacting. If, for example, the user were to tap a text field to
enter some data, the first responder would become the text field object.

	 ✓	An instance of ReturnMeToAppDelegate set to be the application’s
delegate.

	 ✓	An instance of the ReturnMeToViewController.

	 ✓	A window: The window has its background set to white and is set to
be visible at launch. This is the window you’ll see when the application
launches.

Okay, so all these disparate parts of the MainWindow.xib are loaded by
UIApplication. What happens next is shown in Figure 6-4. The numbers in
the figure correspond to the following steps:

	 1.	 Create ReturnMeToAppDelegate.

	 2.	 Create Window.

	 3.	 Create ReturnMeToViewController.

	 4.	ReturnMeToViewController:LoadView loads the view from the
ReturnMeToViewController.xib file.

		 Wait a sec — how does the ReturnMeToViewController
know that it’s supposed to do that? If you double-click the

www.allitebooks.com

http://www.allitebooks.org

104 Part II: Using the iPhone Development Tools

ReturnMeToViewController object in the MainWindow.
xib window (refer back to Figure 6-3), you can see the
ReturnMeToViewController window with its view. There, right
in the middle of that view, it tells you that it will be “Loaded from
ReturnMeToViewController.nib.” (As I said in Chapter 4, a
nib file type used to be the term of choice. Here is a vestige of that.
Don’t worry; despite the nib business, it really will be the .xib file.)
If you use the Inspector to look at the View Controller attributes
(see Figure 6-5), you can see the NIB Name drop-down menu speci-
fies said NIB name — the nib file for the view controller. In this case,
you see ReturnMeToViewController specified. This makes
the connection explicit between the MainWindow.xib and the
ReturnMeToViewController.xib. All done without any fuss or
bother, I might add, by Xcode when you created the project from the
template.

	

Figure 6-3:
The applica-

tion’s Main
Window.

xib as it
appears in

Interface
Builder.

	

105 Chapter 6: While Your Application Is Running

	

Figure 6-4:
Creating
the App

Delegate,
window,

view con-
troller, and

the view.
	

ReturnMeTo
App Delegate

ReturnMeTo
View Controller

1

2

3

4

	

Figure 6-5:
Connecting

the Main
Window.

xib and the
ReturnMe

ToView
Controller

xib.
	

www.allitebooks.com

http://www.allitebooks.org

106 Part II: Using the iPhone Development Tools

Initialization
The next step is for the UIApplication to send the ReturnMeToApp
Delegate applicationDidFinishLaunching: message. Step 5 in
Figure 6-6 represents what happens when the applicationDidFinish
Launching: method is invoked.

This figure looks exactly like Figure 6-4, except I added a Step 5: putting the
view into the window and then making the window visible. At this point,
you’d do any other application initialization as well — and return everything
to what it was like when the user last used the application.

Figure 6-6 is more than just a conceptual diagram, as you can see from Listing
6-1, which shows two instance variables, window, and viewController.
These are automatically “filled in” for you when your application is launched.
Then, in the applicationDidFinishLaunching: method, the view con-
troller and its view are added to the window, and the window becomes vis-
ible. Note that this was generated automatically by Xcode. (I’ll get into what
all those strange things like IBOutlet and @property mean in the next
chapter.)

	

Figure 6-6:
The

applic
ation
Did

Finish
Launch
ing:

method
installs the
view in the

window and
makes the

window
visible.	

ReturnMeTo
App Delegate

ReturnMeTo
View Controller

1

5

2

3

4

window addSubview:viewController.view
[window makeKeyAndVisible];

107 Chapter 6: While Your Application Is Running

Listing 6-1: ReturnMeToAppDelegate

// ReturnMeToAppDelegate.h
#import <UIKit/UIKit.h>
@class ReturnMeToViewController;

@interface ReturnMeToAppDelegate : NSObject
 <UIApplicationDelegate> {
 UIWindow *window;
 ReturnMeToViewController *viewController;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet

@end

// ReturnMeToAppDelegate.m

 #import “ReturnMeToAppDelegate.h”
#import “ReturnMeToViewController.h”

@implementation ReturnMeToAppDelegate
@synthesize window;
@synthesize viewController;

- (void)applicationDidFinishLaunching:
 (UIApplication *)application {

 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

What this does is quite a bit; what it doesn’t do is connect objects added to
the user interface with the objects that need to know about them. How does
my application access the phone number that the user enters, for example?
Of course, I could root around in the code, but it would be much easier to
have Interface Builder do it at application launch. I show you how that is
(easily) done in the next chapter.

	 Your goal during startup should be to present your application’s user inter-
face as quickly as possible — quick initialization = happy users. Don’t load
large data structures that your application won’t use right away. If your appli-
cation requires time to load data from the network (or perform other tasks
that take noticeable time), get your interface up and running first — and then
launch the slow task on a background thread. Then you can display a progress
indicator or other feedback to the user to indicate that your application is
loading the necessary data or doing something important.

The application delegate object is usually derived from NSObject, the
root class (the very base class from which all iPhone application objects
are derived), although it can be an instance of any class you like, as long
as it adopts the UIApplicationDelegate protocol. The methods of

www.allitebooks.com

http://www.allitebooks.org

108 Part II: Using the iPhone Development Tools

this protocol correspond to behaviors that are needed during the applica-
tion life cycle and are your way of implementing this custom behavior.
Although you are not required to implement all of the methods of the
UIApplicationDelegate protocol, every application should implement
the following critical application tasks:

	 ✓	Initialization, which I have just covered

	 ✓	Responding to interruptions

	 ✓	Responding to low memory warnings

I show you what has to be done to carry out these tasks in the last two
sections.

Event Processing
After a user launches your application, the functionality provided in the
UIKit framework manages most of the application’s infrastructure. Part of
the initialization process mentioned in the previous section involves setting
up the main run loop and event handling code, which is the responsibility of
the UIApplication object.

When the application is on-screen, it’s driven by external events — say,
stubby fingers touching sleek screens, as shown in Figure 6-7. Here’s a run-
down of how external events drive an application:

	 1.	 You have an event — the user taps a button, for example.

		 The touch of a finger (or lifting it from the screen) adds a touch event to
the application’s event queue, where it’s encapsulated in — placed into —
a UIEvent object. There is a UITouch object for each finger touching the
screen so you can track individual touches. As the user manipulates the
screen with his or her fingers, the system reports the changes for each
finger in the corresponding UITouch object.

		 My advice to you: Don’t let your eyes glaze over here. This UIEvent
and UITouch stuff is important, as you’ll discover when I show you how
to handle touch events while walking you through building the more
advanced parts of the ReturnMeTo application.

	 2.	 The run loop monitor dispatches the event.

		 When there is something to process, the event-handling code of the
UIApplication processes touch events by dispatching them to the
appropriate responder object — the object that has signed up to take
responsibility for doing something when an event happens (when the
user touches the screen, for example). Responder objects can include

109 Chapter 6: While Your Application Is Running

instances of UIApplication, UIWindow, UIView, and its subclasses
(all which inherit from UIResponder).

	 3.	 A responder object decides how to handle the event.

		 For example, a touch event occurring in a button (view) will be delivered
to the button object. The button handles the event by sending an action
message to another object — in this case, the UIViewController
object. Setting it up this way enables you to use standard button objects
without having to muck about in their innards — just tell the button
what method you want invoked in your view controller, and you’re basi-
cally set.

		 Processing the message may result in changes to a view, or a new view
altogether, or some other kind of change in the user interface. When this
happens, the view and graphics infrastructure takes over and processes
the required drawing events.

	 4.	 You’re sent back to the event loop.

		 After an event is handled or discarded, control passes back to the run
loop. The run loop then processes the next event or puts the thread to
sleep if there’s nothing more for it to do.

	

Figure 6-7:
Processing

events in
the main run

loop.
	

UIApplication
Main Event

Loop

Event queue

Operating
system

Application objects

www.allitebooks.com

http://www.allitebooks.org

110 Part II: Using the iPhone Development Tools

Termination
Getting stuff to (safely) shut down is another application delegate responsi-
bility. To handle termination, the application delegate implements the del-
egate method applicationWillTerminate: to save any unsaved data or
key application state (where the user is in the application — the current view
and stuff like that) to disk. (Okay, I know, the disk in the iPhone is not really
a disk; it’s a solid state drive that Apple calls a disk, but if it calls it that, I
probably should, too, just so I don’t confuse too many people.). You can also
use this method to perform additional cleanup operations, such as deleting
temporary files.

Other Runtime Considerations
Launch, initialize, process, terminate, launch, initialize, process, terminate. . .
it has a nice rhythm to it, doesn’t it? And those are the four major stages of the
application’s life cycle. But life isn’t simple — and neither is runtime. To mix
things up a bit, your application will also have to come to terms with interrup-
tions and memory management.

Responding to interruptions
Various events besides termination can interrupt your application to allow
the user to respond — for example, incoming phone calls, SMS messages,
calendar alerts, or the user pressing the Sleep button on an iPhone. Such
interruptions may only be temporary. If the user chooses to ignore an inter-
ruption, your application continues running as before. If the user decides to
answer the phone or reply to an SMS message, however, your application will
be terminated.

Figure 6-8 shows the sequence of events that occurs during the arrival of a
phone call, SMS message, or calendar alert. Here’s what that looks like step
by step:

	 1.	 The system detects an incoming phone call or SMS message, or a cal-
endar event occurs.

	 2.	 The system sends your application delegate the applicationWill
ResignActive: message.

		 Because these interruptions cause a temporary loss of control by your
application — meaning that touch events are no longer sent to your
applications — it is up to you to prevent what is known in the trade as
a “negative user experience.” For example, if your application is a game,
you should pause the game.

111 Chapter 6: While Your Application Is Running

	 3.	 The system displays an alert panel with information about the event.

		 The user can choose to ignore the event or respond to it.

	 4.	 If the user ignores the event, the system sends your application del-
egate the applicationDidBecomeActive: message and resumes the
delivery of touch events to your application.

		 You can use this delegate method to restore the application to the state
it was in before the interruption. What you do depends on your applica-
tion. In some applications, it makes sense to resume normal processing.
In others — if you’ve paused a game, for example — you could leave the
game paused until the user decides to resume play.

	 5.	 If the user responds to the event, instead of ignoring it, the system
sends your application delegate the applicationWillTerminate:
message.

		 Your application should do what it needs to do in order to terminate
gracefully.

The way the Sleep/Wake button is handled is a little different. When the
application enters or resumes from a sleep state, two messages are sent to
the application delegate: applicationWillResignActive: and applica-
tionDidBecomeActive:, respectively. In this case, your application always
resumes, though the user might immediately launch a different application.

Seeing how memory management
works on the iPhone
One of the main responsibilities of all good little applications is to deal with
low memory. So the first line of defense is (obviously) to understand how you
as a programmer can help them avoid getting into that state.

In the iPhone OS, each program uses the virtual-memory mechanism found
in all modern operating systems. But virtual memory is limited to the amount
of physical memory available. This is because the iPhone OS doesn’t store
“changeable” memory (such as object data) on the disk to free up space, and
then read it in later when it’s needed. Instead, the iPhone OS tries to give the
running application the memory it needs — using memory pages that contain
read-only contents (such as code), where all it has to do is load the “origi-
nals” back into memory when they’re needed. Of course, this may be only a
temporary fix if those resources are needed again a short time later.

If memory continues to be limited, the system may also send notifications to
the running application, asking it to free up additional memory. This is one of
the critical events that all applications must respond to.

www.allitebooks.com

http://www.allitebooks.org

112 Part II: Using the iPhone Development Tools

	

Figure 6-8:
Handling an
interruption.

	

App launch

Begin termination sequence

A phone, SMS or Calendar
notification arrives

applicationWillTerminate:

applicationDidBecomeActive:

UIKit Your code

Event Loop

Ignore?
Yes

No

Application terminates

applicationWillResignActive:

Observing low-memory warnings
When the system dispatches a low-memory notification to your application, it
is something you must pay attention to. If you don’t, it is a reliable recipe for
disaster. (Think of your low-fuel light going on as you approach a sign that
says “Next services 100 miles.”) UIKit provides several ways of setting up
your application so that you receive timely low-memory notifications:

	 ✓	Implement the applicationDidReceiveMemoryWarning: method of
your application delegate. Your application delegate could then release
any data structure or objects it owns — or notify the objects to release
memory they own.

	 ✓	Override the didReceiveMemoryWarning: method in your custom
UIViewController subclass. The view controller could then release
views — or even other view controllers — that are off-screen.

	 ✓	Register to receive the UIApplicationDidReceiveMemoryWarning
Notification: notification. A model object could then release data
structures or objects it owns that it doesn’t need immediately and can
re-create later.

113 Chapter 6: While Your Application Is Running

Each of these strategies gives a different part of your application a chance to
free up the memory it no longer needs (or doesn’t need right now). As for how
you actually get these strategies working for you, while I will mention a strat-
egy for implementing the view controller’s didReceiveMemoryWarning: in
Chapter 14, this is something that is dependent on your application’s architec-
ture. That means you’ll need to explore it on your own.

Not freeing up enough memory will result in the iPhone’s OS sending your
application the applicationWillTerminate: message and shutting you
down. For many applications, though, the best defense is a good offense,
and you need to manage your memory effectively and eliminate any memory
leaks in your code.

Avoiding the warnings
When you create an object — a window or button for example — memory is
allocated to hold that object’s data. The more objects you create, the more
memory you use, and the less there is available for additional objects you
might need. Obviously, it’s important to make available (deallocate) the
memory that an object was using when the object is no longer needed. This
is what is meant by memory management.

The Objective-C language — the application-programming language used to
develop iPhone applications — uses reference counting to figure out when to
release the memory allocated to an object. It’s your responsibility (as a pro-
grammer) to keep the memory-management system informed when an object
is no longer needed.

	 Reference counting is a pretty simple concept. When you create the object,
it is given a reference count of 1. As other objects use this object, they use
methods to increase the reference count, and decrease it when they are done.
When the reference count reaches 0, the object is no longer needed, and the
memory is deallocated.

Some basic memory-management rules you shouldn’t forget
For those who love “Do and Don’t” lists, here are the fundamental rules when
it comes to memory management:

	 ✓	Any object you create using alloc or new, any object that contains
copy, and any object you send a retain message to is yours — you own
it. That means you’re responsible for telling the memory-management
system when you no longer need the object and that its memory can now
be used elsewhere.

	 ✓	Within a given block of code, the number of times you use new, copy,
alloc, and retain should equal the number of times you use release
and autorelease. You should think of memory management as con-
sisting of pairs of messages. If you balance every alloc and every
retain with a release, your object will eventually be freed up when
you’re done with it.

www.allitebooks.com

http://www.allitebooks.org

114 Part II: Using the iPhone Development Tools

	 ✓	When you assign an instance variable using an accessor with a prop-
erty attribute of retain, retain is automatically invoked — that is,
you now own the object. Implement a dealloc method to release the
instance variables you own.

	 ✓	Objects created any other way (through convenience constructors or
other accessor methods) are not your problem.

If you have a solid background in Objective-C memory management (all three
of you out there), this should be straightforward or even obvious. If you don’t
have that background, no sweat: I show you how to do this in practice, and
point out the pitfalls as I present the code for the ReturnMeTo application.

Reread this section!
Okay, there are some aspects of programming that you can skate right past
without understanding what’s really going on, and still create a decent
iPhone application. But memory management is not one of them!

	 There is a direct correlation between the amount of free memory available
and your application’s performance. If the memory available to your applica-
tion dwindles far enough, the system will be forced to terminate your applica-
tion. To avoid such a fate, keep a few words of wisdom in mind:

	 ✓	Make minimizing the amount of memory you use a built-in feature of
your implementation design.

	 ✓	Be sure to use the memory-management functions I explain as I develop
the ReturnMeTo application.

	 ✓	In other words, be sure to clean up after yourself, or the system will do
it for you, and it won’t be a pretty picture.

Whew!
Congratulations — you have just gone through the “Classic Comics” version
of another several hundred pages of Apple documentation, reference manu-
als, and how-to guides.

Although there’s a lot left unsaid (though less than you might suspect),
what’s in this chapter is enough to not only to get you started but also to
keep you going as you develop your own iPhone applications. It provides
a frame of reference on which you can hang the concepts I throw around
with abandon in upcoming chapters — as well as the groundwork for a deep
enough understanding of the application life cycle to give you a handle on the
detailed documentation.

Time to move on to the really fun stuff.

Part III
From “Gee, That’s
a Good Idea,” to

the App Store

Contents
From “Gee, That’s a Good Idea,”

to the App Store	 115

www.allitebooks.com

http://www.allitebooks.org

In this part . . .

You’re not the only one who dreams of the riches and
glory an iPhone application can bring — your author

has dreams, too. In this part, I take you through the entire
process of developing the small yet real and sort of func-
tional application that you built the user interface for
in Part II. Not far down the development trail, you get to
see how to add all the features your app needs, and even
what to do when you change your mind (whether because
you found a better way to do something or your users
demanded it). I end up showing you how to get your appli-
cation running on the iPhone and then into the App Store.
All this should keep you out of trouble for a while, but at
the end, you can start thinking about a trip around the
world by private jet, or something equally reasonable.

Chapter 7

Actually Writing Code
In This Chapter
▶	Getting down to coding

▶	Using your friendly Xcode editor

▶	Having Xcode create your accessors

▶	Fixing the plumbing (Part 1)

▶	Dealing (yet again) with memory management

If you’ve jumped right to this chapter, you’re probably really itching to
start writing some code. I understand the urge, and if you’re up for it, this

chapter — and the chapters that follow — will definitely scratch that code-
writing itch for you. (If you start here and then find some of this tough going,
you may want to jump back a chapter or two so I can fill you in on some con-
cepts you’ll need under your belt in order to make your coding experience a
bit more productive — and more fun!)

Buckle Up, It’s Time to Code
Previous chapters talk about design principles in general, as well as about
the specific iPhone developer tools (Xcode, Interface Builder) available to
you. Chapter 5, for example, has you create the skeleton for a fully function-
ing iPhone application (my ReturnMeTo jewel) — and now you get to flesh it
all out with the code necessary for transforming the ReturnMeTo application
from something that just sits there and looks pretty to something that actu-
ally does something.

A quick refresher peek at Chapter 5 will show you that quite a bit of the
ReturnMeTo application is already in place and ready to go. If you click
the text field, for example, you do get the keyboard — though you can’t do

Contents
Actually Writing Code	 117
Buckle Up, It’s Time to Code	 117

The Xcode Code Editor	 119

Accessing Documentation	119

Adding Outlets to the View Controller	
124

Memory Management	129

Connecting the Pieces
in Interface Builder	 131

www.allitebooks.com

http://www.allitebooks.org

118 Part III: From “Gee, That’s a Good Idea,” to the App Store

anything with it just yet. Both the text field and the label are automatically
created from the nib file — which is great — but somehow you have to
accomplish two tasks:

	 ✓	Get what the user enters into the text field.

	 ✓	Display the user input in the label you created.

In effect, you have to connect things up so the left hand knows what the right
hand is doing.

Fortunately, the framework was designed to allow you to do this easily and
gracefully. The view controller can refer to objects created from the nib file
by using a special kind of instance variable (a variable defined as part of a
class, with each object of that class having its own copy) referred to as an
outlet. If I want (for example) to be able to access the text field object in my
ReturnMeTo application, I take two steps:

	 1.	 Declare an outlet in my code.

	 2.	 Use Interface Builder to point the outlet to the text field I created earlier.

Then, when my application is initialized, the text field outlet is automati-
cally initialized with a pointer to the text field. I can then use that outlet from
within my code to get the text the user entered in the text field.

	 The fact that a connection between an object and its outlets exists is actually
stored in a nib file. When the nib file is loaded, each connection is reconsti-
tuted and reestablished — thus enabling you to send messages to the object.
IBOutlet is the keyword that tags an instance-variable declaration so the
Interface Builder application knows that a particular instance variable is an
outlet — and can then enable the connection to it with Xcode.

In my code, it turns out I need to create two outlets — one to point to the text
field and one to point to the label where I will display the number the user
enters. To get this outlet business started, I need to declare it, which I do with
the help of the aforementioned IBOutlet keyword.

Okay, I’m guessing you realize that declaring something in programming
doesn’t involve standing on a soapbox in Hyde Park and saying something at
the top of your lungs. Declaring something code-wise involves . . . writing code.
(You knew that.) More specifically, in iPhone application development, declar-
ing something code-wise involves writing code using the Xcode editor — which
leads us right to the next section.

119 Chapter 7: Actually Writing Code

The Xcode Code Editor
The main tool you use to write code for an iPhone application is the Xcode
text editor. Apple has gone out of its way to make the text editor as user-
friendly as possible, as evidenced by the following list of (quite convenient)
features:

	 ✓	Code Sense: As you type code, you can have the Editor help by inserting
text that completes the name of whatever Xcode thinks you’re going to
enter.

		 Using Code Sense can be really useful, especially if you’re like me and
forget exactly what the arguments are for a function. When Code Sense
is active (it is by default), Xcode uses the text you typed, as well as the
context within which you typed it, to provide suggestions for completing
what it thinks you’re going to type. You can accept suggestions by press-
ing Tab or Return. You may also display a list of completions by press-
ing Escape.

	 ✓	Code Folding: With code folding, you can collapse code that you’re not
working on and display only the code that requires your attention. You
do this by clicking in the column to the left of the code you want to hide.

	 ✓	Switching between header and implementation windows: On the
toolbar above the code editor, you click the last icon before the lock to
switch from .h to .m (header and implementation), and vice versa. While
the header lets you see the class’s instance variables and method decla-
rations, you find your actual code in the implementation file. If you look
in the Groups & Files pane of the project window, you can see the sepa-
rate .h and .m files for the four classes we have started with.

	 ✓	Launching a file in a separate window: Double-click the filename to
launch the file in a new window. This enables you folks with big moni-
tors, or multiple monitors, to look at more than one file at a time. You
could, for example, look at the method of one class and the method it
invokes in the same, or even a different class.

Accessing Documentation
Like many developers, you may find yourself wanting to dig deeper when it
comes to a particular bit of code. That’s when you really appreciate Xcode’s
Quick Help, header file access, Documentation window, Help menu, and Find
tools. With these tools, you can quickly access the documentation for a par-
ticular class, method, or property.

www.allitebooks.com

http://www.allitebooks.org

120 Part III: From “Gee, That’s a Good Idea,” to the App Store

To see how this works, let’s say I have the project window open with
the code displayed in Figure 7-1. What if I wanted to find out more about
UIApplicationDelegate?

Quick Help
Quick Help is an unobtrusive window that provides the documentation for a
single symbol. It pops up inline, although you can use Quick Help as a symbol
inspector (which stays open) by moving the window after it opens. You can
also customize the display in Documentation preferences in Xcode preferences.

To get Quick Help for a symbol, double-click the symbol in the Text Editor (in
this case UIApplicationDelegate; see Figure 7-1).

	

Figure 7-1:
Getting

Quick Help.
	

The header file for a symbol
Headers are a big deal in code because they’re the place where you find the
class declaration, which includes all of its instance variables and method
declarations. To get the header file for a symbol, press Ô+double-click the
symbol in the Text Editor. For example, see Figure 7-2, where I pressed Ô and
then double-clicked UIApplicationDelegate.

121 Chapter 7: Actually Writing Code

	 This works for the classes you create as well.

	

Figure 7-2:
The header

file for UI
Application

Delegate.
	

Documentation window
The documentation window lets you browse and search items that are part
of the ADC Reference Library as well as any third-party documentation you
have installed.

You access the documentation by pressing Ô+Option+double-clicking a
symbol to get access to an API reference (among other things) that provides
information about the symbol. This enables you to get the documentation
about a method to find out more about it or the methods and properties
in a framework class. In Figure 7-3, I pressed Ô+Option+double-clicked
UIApplicationDelegate.

Using the documentation window, you can browse and search the developer
documentation — the API references, guides, and article collections about
particular tools or technologies — installed on your computer.

It is the go-to place for getting documentation about a method or more info
about the methods and properties in a framework class. (Using the API refer-
ence is how I discovered that a view has a frame, which I’ll use to determine
how much to scroll the view to keep the text field visible in Chapter 8.)

www.allitebooks.com

http://www.allitebooks.org

122 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 7-3:
The docu-
mentation

window.
	

Help menu
The Help menu search field also lets you search Xcode documentation as
well as open the documentation window and Quick Help.

You can also right-click on a symbol and get a pop-up menu that gives you
similar options to what you see in the Help menu (and other related func-
tions). This is shown in Figure 7-4.

Find
Xcode can also help you find things in your own project. The submenu
accessed by choosing Edit➪Find provides several options for finding text in
your own project.

You will find that, as your classes get bigger, sometimes you’ll want to find a
single symbol or all occurrences of a symbol in a file or class. You can easily
do that by choosing Edit➪Find➪Find or pressing Ô+F, which opens a Find
toolbar to help you search the file in the Editor window. In Figure 7-5, for
example, I typed viewDidLoad in the Find toolbar, and Xcode found all the
instances of viewDidLoad in that file and highlighted them for me.

123 Chapter 7: Actually Writing Code

	

Figure 7-4:
Right-click

UI
Application

Delegate.
	

	

Figure 7-5:
Finding
view

DidLoad
in a file.

	

You can also use Find to go through your whole project by choos-
ing Edit➪Find➪Find in Project or by pressing Ô+Shift+F. I pressed
Ô+Shift+F, which opened the window shown in Figure 7-6. I typed

www.allitebooks.com

http://www.allitebooks.org

124 Part III: From “Gee, That’s a Good Idea,” to the App Store

ReturnMeToViewController, and then in the drop-down menu, I selected
In Project. You can specify in what sets of files (open project files, and so
on) you want to search. (A great feature for tracking down something in your
code — you’re sure to use it often.)

If you select a line in the top pane, as you can see in Figure 7-6, the file in
which that instance occurs is opened in the bottom pane and the reference
highlighted.

	

Figure 7-6:
Project Find.

	

Adding Outlets to the View Controller
Now that you have some idea of how to use the Xcode editor, it’s time
to write some code. Before taking you on our editor tour, I mentioned
that one of the things I needed to do was add outlets to my ReturnMeTo
application. That’s what you’re going to do now — add outlets to the
ReturnMeToViewController. Here’s how:

	 1.	 Go to the Xcode project window and, in the Groups & Files pane, click
the triangle next to Classes to expand the folder.

	 2.	 From the Classes folder, select ReturnMeToViewController.h — the
header file for ReturnMeToViewController.

		 The contents of the file appear in the main display pane of the Xcode
editor, as shown in Figure 7-7 (Of course yours won’t have all of that
code in it yet — you’ll be entering it in Step 4.)

125 Chapter 7: Actually Writing Code

	

Figure 7-7:
ReturnMe

ToView
Controller.h.

	

	 3.	 Look for the following lines of code in the header:

#import <UIKit/UIKit.h>

@interface ReturnMeToViewController: UIViewController{

}
@end

		 Got it? Great.

	 4.	 Type the following four lines of code between UIViewController{
and @end (the curly brace you see below the last IBOutlet and first
@property statements will already be there).

IBOutlet UITextField *textField;
IBOutlet UILabel *label;

}
@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UILabel *label;

		 When you’re done typing, your code should look exactly like Figure 7-7.

		 The first two lines of code here declare the outlets, which will automati-
cally be initialized with a pointer to the text field (textField) and label
objects (label) when the application is launched. But while this will
happen automatically, it won’t automatically happen automatically. I
have to help it out a bit.

		 In procedural programming, variables are generally fair game for all. But
in object-oriented programming, a class’s instance variables are tucked
away inside an object and shouldn’t be accessed directly. The only way

www.allitebooks.com

http://www.allitebooks.org

126 Part III: From “Gee, That’s a Good Idea,” to the App Store

for them to be initialized is for you to create what are called accessor
methods, which allow the specific instance variable of an object to be
read and (if you want) updated. Creating accessor methods is a two-step
process that begins with a @property declaration, which tells the com-
piler that there are accessor methods.

		 And that is what I did above; I coded corresponding @property declara-
tions for each IBOutlet declaration. You’ll notice there are some argu-
ments to the @property declaration. These specify how the accessor
methods are to behave — I explain exactly what that means in the next
section. For now, just know that you need to add them.

	 5.	 Go back to the Classes folder in the Groups & Files listing and select
ReturnMeToViewController.m — the implementation file for
ReturnMeToViewController.

	 6.	 Look for the following lines of code in the implementation file:

#import “ReturnMeToViewController.h”

@implementation ReturnMeToViewController

		 They’re pretty much right at the top.

	 7.	 Type the following two lines of code after @implementation
ReturnMeToViewController and before anything else.

@synthesize textField;
@synthesize label;

		 When you’re done, your code should like what you see in Figure 7-8.

		 While the @property declaration tells the compiler that there are
accessor methods, they still have to be created. In the good-old days,
you had to code these accessor methods yourself and, in a large pro-
gram, it got to be very tedious. Fortunately, Objective-C will create these
accessor methods for you whenever you include an @synthesize state-
ment for a property.

		 That is what you did above. The two @synthesize statements tell the
compiler to create two accessor methods for you — one for each
@property declaration.

	 8.	 Scroll down the code for ReturnMeToViewController.m until you
reach the following lines:

- (void)dealloc {

 [super dealloc];
}

		 You can use Ô+F to find something in a single file, as opposed to
Shift+Ô+F, which finds it in all project files.

127 Chapter 7: Actually Writing Code

	

Figure 7-8:
Completing

the addi-
tion of the

accessors.
	

	 9.	 Enter the following two lines of code between the - (void)dealloc
{ and [super dealloc]; lines:

[textField release];
[label release];

		 The new code should look like what you see in Figure 7-9.

		 Those of you who remember my obsession with memory management
from previous chapters will recognize release as a tool for freeing up
no-longer-needed memory commitments. (Those of you who have not
yet heard my memory-management stump speech will get a chance to
hear it later in this chapter.)

That’s it. You’ve added outlets to your view controller. Step back and admire
your handiwork. Then move on to the next section and see how the little
snippets of code you added above to your ReturnMeToViewController.m and
ReturnMeToViewController.h files tie in with the basic principles of program-
ming using the Objective-C language.

	

Figure 7-9:
Doing a little

memory
manage-

ment.
	

www.allitebooks.com

http://www.allitebooks.org

128 Part III: From “Gee, That’s a Good Idea,” to the App Store

Objective-C properties
As you’ll soon discover, you’re going to use properties a lot. In the previ-
ous section, I had you blindly follow me and add the properties. But by now
you’ve probably figured out that I don’t believe you should be doing things
blindly, so in this section, I get to explain what you need to know about
properties.

Now, you may remember that, in object-oriented programming, a class’s
instance variables are tucked away inside an object and shouldn’t be accessed
directly. If you need to have an instance variable accessible by other objects
in your program, you need to create accessor methods for that particular
instance variable. (This will sound familiar from the previous section.)

For example, in Chapter 9, you’re going to add an instance variable saved
Number, to the ReturnMeToAppDelegate. You’ll do that because you need
something to hold the telephone number someone’s supposed to use to call
you when he or she finds your lost iPhone. The ReturnMeToAppDelegate
saves that number when the application terminates, and loads it when it
launches. But the ReturnMeToViewController needs access to that
number to display it in the view, and needs to update it when the user enters
a new number.

The methods that provide access to the instance variables of an object are
called accessor methods, and they effectively get (using a getter method) and
set (using a setter method) the values for an instance variable. Although you
could code those methods yourself, it can be rather tedious. This is where
properties come in. The Objective-C Declared Properties feature provides
a simple way to declare and implement an object’s accessor methods. The
compiler can synthesize accessor methods for you, according to the way you
told it to in the property declaration.

Objective-C creates the getter and setter methods for you by using an
@property declaration in the interface file, combined with the @synthesize
declaration in the implementation file. The default names for the getter and
setter methods associated with a property are whateverTheProperty
NameIs: for the getter and setWhateverThePropertyNameIs: for the setter.
(You replace what is in italics with the actual property name.) For example,
the accessors generated in our ReturnMeTo application are textField as the
getter and setTextField: as the setter. Similarly, the names for the label
accessors are label and setLabel: for the getter and setter, respectively.

All that being said, at the end of the day, you need to do three things in your
code to have the compiler create accessors for you:

	 1.	 Declare an instance variable in the interface file.

	 2.	 Add an @property declaration of that instance variable in the same
interface file (usually with attributes nonatomic and retain).

129 Chapter 7: Actually Writing Code

		 This is what you did in Step 4 in the previous section. The declaration
specifies the name and type of the property and some attributes that
provide the compiler with information about how exactly you want the
accessor methods to be implemented.

		 For example, the declaration

@property (nonatomic, retain) UITextField *textField;

		 declares a property named textField, which is a pointer to a
UITextField object. As for the two attributes — nonatomic and
retain — nonatomic tells the compiler to create an accessor to return
the value directly, which is another way of saying that the accessors can be
interrupted while in use. (This works fine for applications like this one.)

		 The second value, retain, tells the compiler to create an access
method that sends a retain message to any object that is assigned
to this property. This will keep it from being deallocated — having its
memory taken back by the iPhone OS to use elsewhere — while you’re
still using it. (I go into that a bit more when I explain the dealloc
method that Xcode created for us.)

	 3.	 Use @synthesize in the implementation file so that Objective-C gen-
erates the accessors for you.

		 The @property declaration (like the two you placed in the interface file
in Step 4 in the previous section) only declares that there are accessors.
It is the @synthesize statement (like the two you placed in the imple-
mentation file in Step 7 in the previous section) that tells the compiler to
create them for you. Using @synthesize results in four new methods.

textField
setTextField:
label
setLabel:

		 If I didn’t use @synthesize, it would be up to me to implement the
methods myself, using the attributes in the @property statement. So if
I were to write my own accessors, I would be responsible for sending a
retain message to the textField or label when it is assigned to the
instance variables. While there are circumstances when you do want to
do that, I’ll not get into them in this book.

Memory Management
In Chapter 6, I spend a lot of time berating you about memory management —
and I promised there that I would make sure to show you how to do this memory-
management thing, using a real-world example. I’ll start to keep that promise by
explaining the dealloc method created for me by the Xcode template when I

www.allitebooks.com

http://www.allitebooks.org

130 Part III: From “Gee, That’s a Good Idea,” to the App Store

created the ReturnMeTo application. Now, recall that in Step 9 in the earlier sec-
tion “Adding Outlets to the View Controller,” I asked you to add

 [textField release];
[label release];

to the dealloc method, so the end product looks like the following:

- (void)dealloc {

 [textField release];
 [label release];

 [super dealloc];
}

Well, here’s why: Adding these bits of code releases textField and label.

Chapter 6 gave you some handy memory-management rules. Here’s one of
them:

You own an object you create with alloc or new or if it contains copy or
if you send it a retain message. That means you’re responsible for tell-
ing the memory-management system you’re done with it.

In other words, you have to release it when you’re done.

So why, then, you might ask, do I have to release textField and label? If
I had created the textField and label using alloc or new, obviously it
would be my job to release them. But I didn’t do that — or did I?

No, I didn’t, but what I did do was send a retain message to both text-
Field and label.

“Oh, yeah?” “Where?” you might ask.

Check out the @property declarations you made earlier:

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UILabel *label;

You see, lo and behold, retain.

The impact of adding that simple two-syllable word retain is that any time
I assign to that instance variable — assigning a phone number to a label, for
example — a retain message will be sent to it — and that is precisely what
happens at runtime for the outlets.

131 Chapter 7: Actually Writing Code

	 Notice that while the dealloc method generated by Xcode for the
ReturnMeToViewController only invoked [super dealloc], the one
generated for me in ReturnMeToAppDelegate did more than that.

- (void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}

This is because while Xcode didn’t know about the label and textField
I was going to create (it can’t read my mind after all), it did know about the
window and view controller it created for me, and it created the code to
release them in the dealloc method.

Connecting the Pieces
in Interface Builder

Earlier in this chapter, I told you if you want to be able to access the label
and text field objects in my ReturnMeTo application, you had to take two
steps:

	 1.	 Declare an outlet in your code.

	 2.	 Use Interface Builder to point the outlet to the label and text fields you
created earlier in Interface Builder.

You’ve created the outlets and their accessor methods in your code — I saw
you do it in the previous section. Now I’m going to show you how to create
the connection in Interface Builder so that when the nib file is loaded, the nib
loading code will create these connections automatically, using the accessors
you had the compiler create for the label and textField. (aha!) With these
connections established, you’ll be able to send messages to your interface
objects. (I’ll show you how to receive messages from interface objects a bit
later.)

So, it’s connection time.

	 1.	 For your ReturnMeTo project, be sure to add the instance variables,
@property declaration and @synthesize statement to your code
as spelled out in Steps 4 and 7 in the “Adding Outlets to the View
Controller” section, earlier in this chapter; then choose File➪Save or
press Ô+S to save what you have done for each file.

www.allitebooks.com

http://www.allitebooks.org

132 Part III: From “Gee, That’s a Good Idea,” to the App Store

		 You have to save your code; otherwise, Interface Builder won’t be able
to find it.

	 2.	 In the project window, double-click ReturnMeToViewController.
xib to launch Interface Builder.

		 Interface Builder duly makes an appearance on-screen, with the main
nib window and the View window open for inspection. (For more on the
mechanics of Interface Builder, see Chapter 5.)

	 3.	 Holding down the control key, click the File’s Owner icon in the main
nib window and drag it to the label field in the View window, as
shown in Figure 7-10.

		 You need to use the control key here, or you will just end up dragging
the File’s Owner icon, rather than initiating a connection.

		 You should see the label value (650 555 1212) appear when you’re
over the label field. (If you remember, that was the value you set when
you created the label in Chapter 5.)

	

Figure 7-10:
Dragging
from the

File’s Owner
to the label.

	

	 4.	 With the cursor still over the label field, let go of the mouse button.

		 A pop-up menu appears, looking like the one in Figure 7-11.

	 5.	 Choose label from the pop-up menu.

		 Interface Builder now knows that one of the File Owner’s outlets (in this
case, the label value I selected in the pop-up menu, which is one of
the ReturnMeToViewController outlets) should point to the label at
runtime.

		 There’s another way to do this, however, one that’s a little more obvi-
ous. To see how that method works, check out how I connect the other
outlet — the textField outlet — to its text field.

133 Chapter 7: Actually Writing Code

	

Figure 7-11:
The label

option.
	

	 6.	 Right-click the File’s Owner icon in the main nib window to call up a
dialog displaying a list of connections.

		 This particular dialog can also be accessed by choosing the Connections
tab in the Interface Builder Inspector.

	 7.	 Drag from the textField outlet item in the dialog onto the text field
in the View window, as shown in Figure 7-12.

		 Interface Builder now knows that the textField outlet should point to
the text field at runtime. All is right with the world.

	

Figure 7-12:
Connecting

the text field
in another

way.
	

www.allitebooks.com

http://www.allitebooks.org

134 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 8.	 Go back to the Xcode project window and click the Build and Run
button to compile and build the application.

		 Figure 7-13 shows what happens if you click in the text field. Neat, huh?

The only problem, of course, is that after the keyboard comes up, you can’t
dismiss it and therefore can’t see anything behind it. A bit of a problem, I
admit, but it’s easily fixable — as the next chapter makes clear.

	

Figure 7-13:
So you get a

keyboard.
	

Chapter 8

Entering and Managing Data
In This Chapter
▶	Going with the flow in an iPhone application

▶	Working with notifications

▶	Using dictionaries

▶	Understanding view geometry

▶	Scrolling views

▶	Dismissing the keyboard

▶	Becoming a delegate

▶	Adopting protocols

▶	Navigating your code

Things aren’t perfect with our ReturnMeTo application yet. The iPhone on
the left in Figure 8-1 shows what happens when you select the text field

to enter a phone number.

Not very useful, is it? Reminds me of the time I sat behind Yao Ming in the
movie theater. (Can you say, “Down in front!”?)

The iPhone on the right in Figure 8-1 does it the way it should be — as in, the
view moves down so you can see what you’re typing.

Okay, maybe the movie-theater metaphor isn’t that appropriate (I was
kidding about famous basketball players anyway). It’s not that the keyboard
ducks down so you can better see the content view; rather, the idea is to
scroll the content view up when the keyboard appears so you can see the
phone number you’re entering as you continue to develop the application.

Incidentally, implementing this little scrolling business is probably the most
complicated thing you’ll be doing with this application. It involves a number
of different objects and methods that are invoked over the life of the
application.

Contents
Entering and Managing Data	

135
Scrolling the View	137

Where Does My Code Go?	138

Where Where Where	 141

Building on a Foundation	142

Polishing the Chrome and Adding
the Vinyl Pinstriping	 156

Finding Your Way Around the Code	
166

When You’re Done	167

www.allitebooks.com

http://www.allitebooks.org

136 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 8-1:
Well, you do

get a
keyboard,

but not
much else.

	

I have an ulterior motive here: As I take you through implementing the
scrolling of the content view, I also show you the dynamic flow of the
application. Keeping a close eye on this flow will give you a good working
sense of how and where to insert your own code to handle such tasks as
these:

	 ✓	Initialization and termination of your application

	 ✓	Initialization and termination of views

	 ✓	Processing user touches on the screen

Developing this knack is vital for your own applications. Fortunately, even
the simple example in this chapter provides a structure that you’ll be sure to
use in much more sophisticated applications.

137 Chapter 8: Entering and Managing Data

Scrolling the View
On iPhone applications, when a user touches a text field used for data entry,
the keyboard scrolls up from the bottom of the screen. That’s all fine and
dandy. The problem is that, by default, if the text field you’ve specified as
the User Entry field is toward the bottom of the content view, that magically-
appearing keyboard is going to scroll up and cover every inch of the text field
so the user can’t see what he or she is entering. The solution (as mentioned
in the previous section and displayed on the right in Figure 8-1) is to scroll
the content view — which includes the text field — up so the text field will
still be visible.

Simple enough concept. Getting to it requires a number of steps:

	 1.	 Registering to be notified when the keyboard appears.

		 This involves asking the iPhone OS to invoke a method I specify
whenever the keyboard is about to scroll into view.

	 2.	 Deciding whether the text field will in fact end up being covered by the
keyboard.

	 3.	 Moving the content view up so the text field will not be covered by the
keyboard.

	 4.	 After the user is done editing, dismissing the keyboard and restoring the
content view back to where it was.

	 5.	 Unregistering for keyboard notifications when the view is dismissed or
not visible.

This is illustrated in Figure 8-2.

	 This is the scenario at runtime — although, as you’ll see, this is not the order
in which I necessarily want to implement the code. I’ll deal with the registering
and unregistering for keyboard notifications first, since they are mirror images
of each other, and then get on with the code that does all of the work.

But before I get into any of that, you have to know where to put your code so
it’s invoked at the right time.

www.allitebooks.com

http://www.allitebooks.org

138 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 8-2:
The control

flow in an
iPhone

application.
	

Application starts

User touches in text field

User touches return, or touches
anywhere in the content view

User switches to another view

1. Register to be notified when the
 keyboard appears

2. Decide if the text field will be covered by
 the keyboard

3. Move the content view up so that the text
 field will not be covered by the keyboard

4. Dismiss the keyboard and restore the
 content view back to where it was

5. Unregister for keyboard notifications

Where Does My Code Go?
One of the biggest challenges facing a developer working with a new framework
is understanding where in the control flow — the sequence in which messages
are sent during execution — he or she needs to add the code to get something
done. I discuss some of these more traffic-cop-ish aspects of application
development in Chapter 6 (“okay, your turn — now you over there, yield —
now you in the right lane, go”), but I want to expand upon that discussion
here, using the scrolling of a view in response to user action as a concrete
example.

Figure 8-3 illustrates the higher-level control flow within our ReturnMeTo
application. Look closely and you’ll see two objects — ReturnMeToApp
Delegate and ReturnMeToViewController — that you’d find at runtime
if you went behind the screen and sifted through memory. (I bolded the two
objects in the figure to make them stand out.) The next two sections look at
what these two objects do for you as part of the ReturnMeTo application.

The Delegate object
The first, ReturnMeToAppDelegate, has two methods I want to call your
attention to:

139 Chapter 8: Entering and Managing Data

	 ✓	applicationDidFinishLaunching:

	 ✓	applicationWillTerminate:

	

Figure 8-3:
Scrolling

the content
view.

	

ReturnMeToAppDelegate

applicationDidFinishLaunching

applicationWillTerminate

UIApplicationDelegateProtocol

applicationDidFinishLaunching

applicationWillTerminate

ReturnMeToViewController

viewDidLoad
viewWillAppear

viewWillDisappear

The applicationDidFinishLaunching: message is sent at the very
beginning of the application, before the user can even see anything on the
screen. Here’s where you’d insert your code to initialize your application —
where you’d load data, for example, or restore the state of the application to
where it was the last time the user exited.

	 In the case of the ReturnMeTo application, there really is only one state we
need to concern ourselves with, so you don’t have to worry about saving any
state. (I wouldn’t count the keyboard scrolled up in full view as a state I’d want
to leave the application in.) In more complex applications, you would have to
work a bit in the applicationDidFinishLaunching: method to set things
up correctly. I do show you how to both save and restore the state in Chapter
15, but even for a simple application like this, saving and restoring data is
important.

The applicationWillTerminate: message is sent right before your
application terminates. It’s the mirror image of applicationDidFinish
Launching: — and it’s also the place where you store any unsaved data and
save the current state of the application. If you check out Chapter 9, you can
see how I use applicationWillTerminate: to save the phone number the
user has entered.

www.allitebooks.com

http://www.allitebooks.org

140 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 The applicationDidFinishLaunching: method and the application
WillTerminate: method are in the UIApplicationDelegate protocol. As
I explain in Chapter 2, protocols are simply rules that spell out methods that
can be implemented by any class. My ReturnMeToAppDelegate (for example)
has adopted the UIApplicationDelegate protocol, so if I implement
applicationDidFinishLaunching: and applicationWillTerminate:
in the ReturnMeToAppDelegate implementation, they will be automatically
invoked.

The Controller object
ReturnMeToViewController is the controller responsible for managing
the application’s view — what the user sees and interacts with, including text
editing. There are three methods here I want to call your attention to:

	 ✓	viewDidLoad

	 ✓	viewWillAppear:

	 ✓	viewWillDisappear:

The viewDidLoad message is sent right after the view has been loaded from
the nib file — check out Chapter 6 for a complete explanation of that loading
process. This is the place where you insert your code for view initialization,
which in this case means updating the text in the label to show the phone
number.

The viewWillAppear: message is sent right before the view will appear.
This is the place to insert your code to do anything needed before the view
becomes visible.

Finally, the viewWillDisappear: message is sent right before a view is
dismissed or covered up. This is the place to insert your code to do anything
you need to do before a view may be released or freed.

These three methods are declared in the UIViewController class and
are invoked at the appropriate times by the framework. In this case, since
ReturnMeToViewController is derived from the UIViewController
class, I will override those methods. To do that, I simply implement a new
method with the same name as one defined in the UIViewController class
in the ReturnMeToViewController implementation.

141 Chapter 8: Entering and Managing Data

	 Most of the time, you do your initialization at the application level using the
applicationDidFinishLaunching: method in your application delegate.
As for your initialization of the view level, you’d normally take care of that
using the viewDidLoad and viewWillAppear: methods in your
UIViewController derived class — ReturnMeToViewController, in
our example. When it comes to shutting down your app, you’d use the
applicationWillTerminate: method in your application delegate to
handle all the chores of terminating your application — and the viewWill
Disappear: method in your UIViewController to take care of dismissing
the view.

Knowing the control flow I outline above — how and where to insert your
code in order to add your specific application functionality — will make
developing your own application much easier. Trust me on that one.

Where Where Where
Time to get your hands dirty again. Listings 8-1 and 8-2 show the code pulled
together in Chapter 7 as the foundation for our ReturnMeTo application.
(The bolded code is the code you actually had to type in, whereas the
unbolded code was already put in place for you by the UIKit framework.)

Listing 8-1: ReturnMeToViewController.h

#import <UIKit/UIKit.h>

@interface ReturnMeToViewController: UIViewController {

 IBOutlet UITextField *textField;
 IBOutlet UILabel *label;

}

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UILabel *label;

@end

www.allitebooks.com

http://www.allitebooks.org

142 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 8-2: ReturnMeToViewController.m

#import “ReturnMeToViewController.h”

@implementation ReturnMeToViewController

@synthesize textField;
@synthesize label;

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];
}

- (void)dealloc {

 [textField release];
 [label release];
 [super dealloc];
}

@end

In order to enable scrolling of the content so that all content will be
accessible at all times, you’ll need to make a few changes to both the
ReturnMeToViewController.h file — the file containing interface stuff, as
spelled out in Listing 8-1 — and the ReturnMeToViewController.m — the file
containing implementation stuff as well as a few other things whose purpose
will become abundantly clear over the course of this chapter. (Listing 8-2
shows the ReturnMeToViewController.m file as it stands right now.)

Building on a Foundation
The code put together in Chapter 7 for the ReturnMeTo application is a great
start, but you’ll still have to address the My Keyboard Is Hiding Crucial Parts
of My View problem I mention at the beginning of this chapter. Now, the solu-
tion clearly is to move things around so that the iPhone keyboard no longer
hogs the view, but getting to that point is a bit tricky. For example, if I’m
going to scroll the content view when the keyboard appears, I need to know
when the keyboard is going to appear. Luckily for me, the iPhone OS has
something in place that fits my needs exactly. It is a Notification system.

143 Chapter 8: Entering and Managing Data

Notification
Notification is a system that allows objects within an application to learn
about changes that occur elsewhere in that application. Usually, objects get
information by messages that come to them. But that means the object that
sends the message must know what objects it needs to update whenever it does
something that those objects care about. And let’s face it, the UIWindow
object, being as it is in the keyboard displaying business, has no clue about
my ReturnMeToViewController object.

That’s where notification comes in. Notification is a broadcast model where
I can register my objects to be notified of a particular event. I can even post
a notification, although I am not interested in doing that here. Notifications
are managed by a single object, NSNotificationCenter, which is accessed
using the class method defaultCenter:.

For our ReturnMeTo application, we want to be notified when a
UIKeyboardWillShowNotification is posted. That notification is posted
by the UIWindow class.

Registering a notification
If I want to be notified of an event that occurs in response to a user’s action
in a view — the user touching the text field and the keyboard appearing, to
take the most obvious example — that notification has to reach me before
the user has a chance to do anything else.

At this point, take a look at Figure 8-4; it shows (among other things) that the
best place to put your request for notification — that is, the best place to
register to be notified — is after view initialization but before the view
becomes visible.

The iPhone icons on the left side of Figure 8-4 show that the view will appear
after the viewWillAppear: method is invoked. That is the ideal place to
insert the code that registers the fact that you want to be notified before the
keyboard appears. All I need to do to override viewWillAppear: is add this
method to my implementation, as spelled out in Listing 8-3. (For all the dirty
details about adding your own code to that handy bunch of code provided by
the frameworks, check out Chapter 7.)

Now, if you were to look in the ReturnMeToViewController code, guess
what? You’re not going to find viewWillAppear:, not as a stub, or even
commented out. You’re going to have to add it yourself. Rather than adding

www.allitebooks.com

http://www.allitebooks.org

144 Part III: From “Gee, That’s a Good Idea,” to the App Store

things at random, though, you may want to group similar code together, and
I’ll talk about how to do that later in this chapter. For right now, I’d put it
right after the commented out viewDidLoad, which we will use shortly. You
can find that bit of code in the ReturnMeToViewController.m file by pressing
Ô+F, which opens up a Find toolbar that you can then use to find whatever
you want in a particular file. Handy tool that one is.

	

Figure 8-4:
Where to

register
for a

notification.
	

ReturnMeToAppDelegate

applicationDidFinishLaunching

applicationWillTerminate

UIApplicationDelegateProtocol

applicationDidFinishLaunching

applicationWillTerminate

ReturnMeToViewController
moveViewUp

viewDidLoad
viewWillAppear

keyboardWillShow

scrollTheView

viewWillDisappear

Listing 8-3: Override viewWillAppear:

- (void)viewWillAppear:(BOOL)animated {

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardWillShow:)
 name:UIKeyboardWillShowNotification
 object:self.view.window];

 [super viewWillAppear:animated];
}

Listing 8-3 shows the code necessary to receive the UIKeyboard
WillShowNotification. Here’s the blow-by-blow account:

145 Chapter 8: Entering and Managing Data

	 1.	 I send the NSNotificationCenter the defaultCenter: message,
passing it the following items:

	 •	addObserver: The object you want to send the message to. It’s
going to be either self or the object making the request; in this
case, it’s ReturnMeToViewController.

	 •	selector: The method within the object you want to invoke. For
our example, the method I want to code is keyboardWillShow:.
The selector must have one, and only one, argument.

	 •	name: This specifies the notification you’re registering for — in this
case, UIKeyboardWillShowNotification.

	 •	object: The particular object whose notification I am registering
for — in this case, window.

	 2.	 I then invoke the superclass’s (UIViewController) method [super
viewWillAppear:animated];.

		 This is important because there may be some things
UIViewController needs to do on its own before the view appears.

Unregistering a notification
While I’m at it, I should also write the code for unregistering for the notification.
That’s because I don’t want the notification center to send a notification to an
object that has been freed (that is, deallocated). Again, a quick peek back at
Figure 8-3 shows that the framework supplies a convenient place to put
that — viewWillDisappear: — when the user decides to switch to
another view or terminate the application. (Listing 8-4 shows the code you
need for unregistering the application.)

	 If you skip this unregistering step, you’ll generate a runtime error if the center
sends a message to a freed object.

	 At the beginning of this chapter, I laid out the five-step plan for how we want
to deal with scrolling up the view. That plan had “unregister the notification”
as Step 5 — so why am I talking about unregistering now? Well, I did say that
the five-step plan was meant to describe what happens at runtime, and that
sequence of events isn’t necessarily the best order to follow in implementing
the code. Here’s proof of that fact — my advice to you is to take care of regis-
tering and unregistering notifications as part of the same step in your coding.

	 Although the ReturnMeTo application has only one view, other applications
you create could very well have other views — or you may even come back
later and enhance this application with another view. So it’s always good form
to do this kind of unregistering cleanup before a view is either freed or is no
longer visible. Here (again) you use a defaultCenter message, passing the
following items to it:

www.allitebooks.com

http://www.allitebooks.org

146 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 ✓	removeObserver: The object you want to send the message to. It’s
either going to be self or the object making the request, in this case
the ReturnMeToViewController.

	 ✓	name: This specifies the notification you’re unregistering for — in this
case, the UIKeyboardWillShowNotification.

	 ✓	object: Since I am unregistering, I use a nil for object here because
that will remove all UIKeyboardWillShowNotification notifications
(if there were more than one).

Here’s another method you need to add. I suggest you add it right after
viewWillAppear:.

Listing 8-4: Override viewWillDisappear:

- (void)viewWillDisappear:(BOOL)animated {

 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:UIKeyboardWillShowNotification object:nil];

 [super viewWillDisappear:animated];
}

Keeping the text field visible
It’s often a challenge to implement the scrolling of your content in a view
because sometimes it’s difficult to determine how much scrolling you need
to do — or whether you should do any scrolling at all. For example, when the
keyboard appears, it may not even cover the text field you’ve added to the
view — which means you shouldn’t scroll the content view. In fact, if the text
field won’t be covered by the keyboard, scrolling the content might be a bad
thing to do; you may end up scrolling the content out of sight.

Things are starting to get a little complicated, so I’m going to pull out the
good-old, illustrative line drawing (Figure 8-5) on the theory that a picture is
worth a thousand words.

The concept
Because you thought ahead and signed up to receive a notification when the
keyboard in my ReturnMeTo application is about to scroll up — you did that
in the previous section — the keyboardWillShow: message will be sent
right after the user touches in the text field, but before the keyboard appears.
(All this is beautifully illustrated in Figure 8-4, a few pages back.)

147 Chapter 8: Entering and Managing Data

Using that method, first you determine whether the keyboard is going to
cover the text field; if you see that it will, then you set the method’s instance
variable moveViewUp to YES. This variable will be used after the user is done
editing, to see whether the content view has been scrolled and needs to be
restored.

As part of this process, you have to compute the actual amount you need to
scroll. You only want to scroll the content view enough for the text field —
plus a little margin — to be visible above the top of the keyboard. After
computing that value, you’ll save it in an instance variable so the method
that actually scrolls the content view knows how much “scroll” to use.

That’s the concept. The actual mechanics of coding this scroll business get
ironed out in the next section.

The mechanics of scrolling the view
When keyboardWillShow: is invoked, it is passed an NSDictionary that
contains, among other things, the height of the keyboard.

	 Dictionaries manage pairs of keys and values. Each of these key-and-value
pairs is an entry. Each entry has two objects; one object represents the key,
and a second object is that key’s value. An NSDictionary object manages a
static array — an array whose keys and values cannot be added to or deleted
(although individual elements can be modified).

The dictionary has the three entries, as shown in Figure 8-5:

	 ✓	The key UIKeyboardCenterBeginUserInfoKey has as its value the
center of the keyboard in screen coordinates before animation, that is,
before it is scrolled in.

	 ✓	The key UIKeyboardCenterEndUserInfoKey has as its value the
center of the keyboard in screen coordinates after animation, that is,
after it is scrolled in.

	 ✓	The key UIKeyboardBoundsUserInfoKey has as its value the bounds
rectangle of the keyboard — in other words, the size of the keyboard.

You want to scroll the content view only enough so that the text field,
plus a small margin, is sitting just above the top of the keyboard. Now,
Figure 8-5 shows you that you can get the size of the keyboard from the
NSDictionary. Basically, you can calculate the size of the view as well as
the origin of the text field and its size. With this figure in hand, you can
compute the bottomPoint, which you can see on the right side of the figure.
You can then determine the number of pixels between the bottom of the view
itself and the calculated bottomPoint. And if you use that pixel value (you
will in the computation), you can then determine the amount to scroll the
content view.

www.allitebooks.com

http://www.allitebooks.org

148 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 8-5:
The diction-

ary with
keyboard

information.
	

UIKeyboardCenterEndUserInfoKey NSValue*

UIKeyboardCenterBeginUserInfoKey NSValue*

UIKeyboardBoundsUserInfoKey NSValue”

userInfo NSDictionary

bottomPoint

scrollAmountkeyboardSize.height

Origin

CGRectsize.height

view.frame.size.height

textField.frame.origin.y

Origin (0,0)

Listing 8-5 shows the implementation of keyboardWillShow:. The handy
steps that follow Listing 8-5 give the color commentary on what all this code
is actually doing. (Again, if you need a refresher on how one actually modifies
a given method by messing with its code, check out Chapter 7.)

This is another method you will be adding. I suggest you add it right after
viewWillDisappear:.

Listing 8-5: Add keyboardWillShow:

- (void)keyboardWillShow:(NSNotification *)notif {

 NSDictionary* info = [notif userInfo];

 NSValue* aValue = [info objectForKey:
 UIKeyboardBoundsUserInfoKey];
 CGSize keyboardSize = [aValue CGRectValue].size;
 float bottomPoint = (textField.frame.origin.y+
 textField.frame.size.height+10);
 scrollAmount = keyboardSize.height -
 (self.view.frame.size.height- bottomPoint);

 if (scrollAmount > 0) {
 moveViewUp = YES;
 [self scrollTheView:YES];
 }
 else
 moveViewUp = NO;
}

149 Chapter 8: Entering and Managing Data

	 1.	 Send a message to the notification center to return a reference to the
dictionary that has the information.

NSDictionary* info = [notif userInfo];

	 2.	 Use the key to have the method extract the keyboard size for you.

NSValue* aValue = [info objectForKey:
 UIKeyboardBoundsUserInfoKey];
CGSize keyboardSize = [aValue CGRectValue].size;

		 The NSValue object is a simple container for a single C or Objective-C
data item. It can hold any of the scalar types (variables that hold values)
such as int, float, and char, as well as pointers, structures, and
object IDs. In this case, as you can see in this code snippet — as well as
in Figure 8-6 — it points to a CGRect.

		 A CGRect is a structure that contains the location (origin) and dimen-
sions (size) of a rectangle. [aValue CGRectValue] invokes a method
that extracts the size of the rectangle at which aValue is pointing.
CGSize is a structure that contains width and height values.

	 3.	 Compute the bottomPoint.

float bottomPoint = (textField.frame.origin.y+
 textField.frame.size.height+10);

		 textField.frame.origin.y in Figure 8-6 tells me the top-left point of
the text field. To find the bottom point, I’m adding both the height of the
text field and a 10-pixel margin to make it look nice. That’s because the
coordinate system on the iPhone starts at (0,0) in the top-left corner of
the screen and increases as you go down the screen. (Forget what
you learned in Algebra I, because it won’t help you deal with iPhone
coordinates.)

	 4.	 Compute the amount to scroll.

scrollAmount = keyboardSize.height -
 (self.view.frame.size.height - bottomPoint);

		 As you can see in Figure 8-6, subtracting the bottomPoint from the
height of the content view gives you the amount of the content view that
I want covered by the keyboard. I get the height of the content view by
using the view controller’s pointer to the view — the aptly named view
pointer. The view has an instance variable, frame, which is a CGRect
that has a size, just as the CGRect for the keyboard did. Subtracting
that result from the keyboard height gives me the amount to scroll.

	 5.	 Check to see whether the view should be moved up.

 if (scrollAmount > 0) {

www.allitebooks.com

http://www.allitebooks.org

150 Part III: From “Gee, That’s a Good Idea,” to the App Store

		 If the scroll amount is greater than zero, I set moveViewUp to YES. This
will be used by the methods invoked when the user is done editing the
text field to see whether the content view has been scrolled and needs
to be restored. If not, I set it to NO. Finally, I send the scrollTheView
:YES message to move the view up.

		 Of course, if the scroll amount is not greater than zero, I set
moveViewUp to NO and forget about the whole thing.

You may think this whole computing-and-calculating business is overkill.
After all, I only have the one text field, and I know it’s going to be covered.
But there’s method in the madness: I did this to introduce you to some view
geometry so you can see how to compute where things are in the view and
where to find the values. I could have also hard-coded the size of the
keyboard, but sizes, depending on the type of the keyboard you have chosen,
may be different, and keyboard sizes may also change between different
releases of the iPhone OS. In addition, the keyboard size can change
according to whether the device is in portrait or landscape mode (if your
iPhone supports that).

It wouldn’t be the first time that a “quick and dirty” method came back to
haunt you, or the last for that matter.

Remember what your parents said after they made you do something that
was difficult? “I’m doing it for your own good.”

Fortunately, this is as hard as it gets.

A CGGeometry reference
A CGRect is a structure that contains the loca-
tion and dimensions of a rectangle.

struct CGRect {
 CGPoint origin;
 CGSize size;
};
typedef struct CGRect CGRect;

A CGPoint is a structure that contains a point
in a two-dimensional coordinate system.

struct CGPoint {
 CGFloat x;

 CGFloat y;
};
typedef struct CGPoint

CGPoint;

And finally, a CGSize is a structure that con-
tains width and height values.

struct CGSize {
 CGFloat width;
 CGFloat height;
};
typedef struct CGSize CGSize;

151 Chapter 8: Entering and Managing Data

Moving the view
After you determine how much to scroll the content view for your ReturnMeTo
application (see the previous section), you can then put the code in place for
actually moving the view. Listing 8-6 shows the scrollTheView: method,
yet another one that must be added to the ReturnMeToViewController.m file.
Place this one right after keyBoardWillShow:. The steps that follow
highlight the major points along the way. (As always, if you need a refresher
on code writing, check out Chapter 7.)

Listing 8-6: Add scrollTheView:

- (void)scrollTheView:(BOOL)movedUp {

 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:0.3];
 CGRect rect = self.view.frame;
 if (movedUp){
 rect.origin.y -= scrollAmount;
 }
 else {
 rect.origin.y += scrollAmount;
 }
 self.view.frame = rect;
 [UIView commitAnimations];
}

	 The first step has to do with animating the move — programming-speak for
that nice smooth sliding up and down of views you see on the iPhone. I could
just simply move it, but instead I want to move it in synch with the keyboard
moving up. This is called animating the transition. The UIView framework that
we have been working with has several class methods I can use to deal with
the whole animation ball of wax:

	 ✓	Methods to indicate that the transition should be animated in the first
place

	 ✓	Methods to indicate the type of transition that should be used

	 ✓	Methods to specify how long the transition should take

Okay, here goes, one step at a time:

	 1.	 Create an animation block.

		 To invoke a view’s built-in animation behavior, you create an animation
block and set the duration of the move.

www.allitebooks.com

http://www.allitebooks.org

152 Part III: From “Gee, That’s a Good Idea,” to the App Store

		 beginAnimations:: has arguments to pass information to animation
delegates. Since you’re not going to be using any such delegates in the
ReturnMeTo application, you should set the arguments to nil and
NULL.

 [UIView beginAnimations:nil context:NULL];

			 nil is used when there is a null pointer to an object — begin
Animations::, for example.

		 NULL is used when there is a null pointer to anything else.

		 As for animation duration, I set that to .3 seconds, which matches the
keyboard’s animation.

[UIView setAnimationDuration:0.3];

	 2.	 Get (access) the view’s frame.

		 I did the very same thing in the keyboardWillShow: method back in
Listing 8-5.

CGRect rect = self.view.frame;

	 3.	 If the view should be moved up, subtract the keyboard height from
the frame.

		 The CGRect also contains the view’s origin in x, y coordinates, with
the upper-left part of the screen being 0,0.

if (movedUp){
 rect.origin.y -= scrollAmount;

	 4.	 If the view shouldn’t be moved up, restore it by adding the keyboard
height back to the origin.

else {
 rect.origin.y += scrollAmount;

		 If I move the content view up when the keyboard appears, then I must
also restore the view to its original position when the keyboard disappears.
This code allows me to send the scrollTheView: message with NO,
which will scroll the view down.

	 5.	 Assign the new frame to the view.

self.view.frame = rect;

	 6.	 Tell the view that you’re all done with setting the animation
parameters, and it should start the animation.

[UIView commitAnimations];

153 Chapter 8: Entering and Managing Data

Changing the frame rectangle automatically redisplays the view! You don’t
have to lift a finger! Remember, though, that since you set the new frame
inside an animation block, the view doesn’t instantly move to the new
position, but is instead animated over time (.3 seconds in this case) to the
new frame position.

Updating the interface
Time for a bit of cleanup. So far in this chapter, you’ve made quite a few
changes to the original code, so it’s probably time to bring the interface up
to speed on what you’ve been mucking about with. Listing 8-7 shows what
you need to add to the interface to let it know what’s been happening on
its watch. (Note that the changes are in bold.) You’ll see right off the bat
that you need to declare the two new instance variables, moveViewUp and
scrollAmount — as well as the new method scrollTheView: — in the
interface.

As to where to put them, the two instance variables go in the ReturnMeTo
ViewController.h file, right after the two outlets we added in the last chapter.
The new method declaration should follow the property declarations we
added in the last chapter.

Listing 8-7: Add changes to the interface

@interface ReturnMeToViewController : UIViewController {

 IBOutlet UITextField *textField;
 IBOutlet UILabel *label;
 BOOL moveViewUp;
 CGFloat scrollAmount;
}

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UILabel *label;

- (void)scrollTheView:(BOOL)movedUp;
@end

To inform the interface of what you’ve been up to, follow these steps:

	 1.	 Add the moveViewUp and scrollAmount instance variables.

		 moveViewUp will be used to determine whether the content view needs
to be — or has been — scrolled. scrollAmount is the amount the
content view needs to be scrolled.

	 2.	 Declare the scrollTheView: method.

www.allitebooks.com

http://www.allitebooks.org

154 Part III: From “Gee, That’s a Good Idea,” to the App Store

Lowering the view when
all is said and done
The way we’ve set up the ReturnMeTo application is that, after the user
is done entering the necessary text into the text field — in this case, a
telephone number — the keyboard is supposed to disappear, and the view is
meant to move back down to its original position. (If you remember, you added
the capability to do this in Listing 8-6, and more specifically in Step 4 in the
section “Moving the view.”) As it happens, the UITextViewDelegate’s
textFieldShouldReturn: message is sent when the user taps the Return
key on the keyboard, giving me the opportunity to add any functionality
needed when the user is done entering text. As you can see in Figure 8-6,
this is the perfect place to add code that restores the view to its original
position. The user is done editing, so all you have to do is dismiss the
keyboard and restore the view to its original position. You do that by adding
the code shown in Listing 8-8 to the ReturnMeToViewController.m file, right
after the dealloc method, but before the @end statement.

	

Figure 8-6:
Add text
Field
Should
Return:
to the flow.

	

ReturnMeToAppDelegate

applicationDidFinishLaunching

applicationWillTerminate

UITextFieldDelegate Protocol
textFieldShouldReturn

UIApplicationDelegateProtocol

applicationDidFinishLaunching

applicationWillTerminate

ReturnMeToViewController
moveViewUp

viewDidLoad
viewWillAppear

keyboardWillShow

scrollTheView

textFieldShouldReturn

viewWillDisappear

155 Chapter 8: Entering and Managing Data

Listing 8-8: Implement textFieldShouldReturn:

-(BOOL)textFieldShouldReturn:(UITextField *)
 theTextField {

 [theTextField resignFirstResponder];
 if (moveViewUp) [self scrollTheView:NO];

 return YES;
}

The method textFieldShouldReturn: is passed the current text field that
is being edited — namely, theTextField.

	 1.	 Send [theTextField resignFirstResponder] message.

		 If you were wondering how to dismiss the keyboard, this does the trick:

[theTextField resignFirstResponder];

	 2.	 At times when the view has been scrolled up (yes, this is one of those
situations), send the scrollTheView, message with the argument of
NO, to restore the view to its original position:

if (moveViewUp) [self scrollTheView:NO];

		 moveViewUp lets the textFieldShouldReturn: method know that
the view has been scrolled and it needs to be restored.

	 3.	 Return YES.

		 This tells the text field to implement its default behavior for the
Return key.

Now the keyboard has been dismissed and the view restored to its original
position. All’s right with the world. And because you already took care of
the code for unregistering the notification earlier in the chapter, you’ve
completed the five-step plan that puts in place a system for efficiently
scrolling your content view up and down as needed. Now all you have to do
is tie up a few loose (code) strings and you’re set — except for the compiling
and testing, of course.

www.allitebooks.com

http://www.allitebooks.org

156 Part III: From “Gee, That’s a Good Idea,” to the App Store

Polishing the Chrome and Adding
the Vinyl Pinstriping

It should come as no surprise to you that the star of the last section — the
aptly named textFieldShouldReturn: method — is a method within a
particular protocol, just like the applicationDidFinishLaunching:
and applicationWillTerminate: methods were also methods within a
protocol. In this case, the textFieldShouldReturn: method is a member
of the UITextFieldDelegate protocol — the protocol that sets the rules
for messages sent to a text field delegate as part of the editing sequence.

Now, protocols simply declare methods that can be implemented by any
class. In response to certain events, the framework checks to see whether
there’s a delegate that implements a certain method — and if there is, it will
invoke that method. That means if I have my ReturnMeToViewController
class adopt the UITextFieldDelegate protocol and then implement the
textFieldShouldReturn: method, the UITextFieldDelegate protocol
kicks into action and the textFieldShouldReturn: method is invoked
automatically.

Sounds great! But you do have to jump through a few hoops to have your
ReturnMeToViewController class adopt the UITextFieldDelegate
protocol. Here’s the bird’s-eye view in two easy steps:

Managing the keyboard
When the user taps a view, that view becomes
the first responder — the first object in the
responder chain given the opportunity to
respond to an event. (For more on first respond-
ers and responder chains and events, see
Chapter 6.) If the view is a text field (or any other
object that has editable text), then an editing
session starts, and the keyboard is displayed
automatically — you don’t have to lift a finger
to make the keyboard appear.

But just because the keyboard is displayed
automatically doesn’t mean that the keyboard
will be dismissed automatically. In fact, it is
your responsibility to dismiss the keyboard at
the appropriate time, when the user taps the

Return or Done button on the keyboard or, in
this case, when the user touches in the view.

To dismiss the keyboard, you send the
resignFirstResponder message to the
text field — the initial first responder. When
the text field resigns, it is no longer the first
responder — just like Nixon was no longer
president of the United States after he resigned.

This may sound a bit convoluted, but it’s the
only way to dismiss the keyboard. You can’t
send a message to the keyboard directly — as
in, “Hey, you’re fired. Pack your things and go!”
You can only make the keyboard disappear by
having it resign its first-responder status of the
text field.

157 Chapter 8: Entering and Managing Data

	 1.	 Signal to the complier that the TextFieldDelegate protocol has been
adopted by the delegate — in this case, ReturnMeToViewController.

	 2.	 Connect the ReturnMeToViewController to the textField to let
textField know in no uncertain terms that ReturnMeToView
Controller is its delegate.

That’s the bird’s-eye view. The next few sections show what the process
looks like down on the ground.

Adopting a protocol
Adopting a protocol is a pretty straightforward process. You’ll be working
with the header file for your class — ReturnMeToViewController.h, in this
case. The idea here is to update the @interface declaration so the left hand
knows what the right hand is doing.

The change is in bold in Listing 8-9.

Listing 8-9: Add a protocol declaration to the interface

@interface ReturnMeToViewController : UIViewController
 <UITextFieldDelegate>

{

 IBOutlet UITextField *textField;
 IBOutlet UILabel *label;
 BOOL moveViewUp;
 CGFloat scrollAmount;
}

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UILabel *label;

- (void)scrollTheView:BOOL) movedUp;
@end

Here’s the blow-by-blow account:

	 1.	 Add <UITextFieldDelegate>.

		 Listing a protocol within angle brackets after the superclass name —
UIViewController, in this case, the Big Papa class of your
ReturnMeToViewController class — specifies that your class has
adopted the UITextFieldDelegate protocol.

		 Classes can adopt several protocols. To add more than one protocol,
you just put them all in the angle brackets, separated by commas.

www.allitebooks.com

http://www.allitebooks.org

158 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 2.	 Save the file. You’re done.

Not too many blows there, as you can see. On to the next section.

Connecting things up with
Interface Builder
Back in Chapter 7, you worked a bit with Interface Builder to connect
outlet values to their corresponding view elements. You’re now going
to have to trundle out Interface Builder again in order to connect
ReturnMeToViewController with the appropriate text field so that the
connections are set up for you at runtime. Here’s how the process works:

	 1.	 Back in Xcode, open the Resources folder for your ReturnMeTo
project in the Groups & Files listing on the left and then double-click
the ReturnMeToViewController.xib file.

		 Interface Builder opens on-screen, displaying the main nib window and
the View window open for inspection.

	 2.	 Right-click the File’s Owner icon in the main nib window.

		 A dialog appears, listing the various connections for File’s Owner.

	 3.	 Select the text field and right-click on it.

		 A pop-up menu appears, listing the text field’s connections. Under
the first section, Outlets (expand it if it is not expanded), you will see
Delegate.

	 4.	 Drag from the little circle next to the text field’s Delegate item listed
under Outlets in the pop-up menu to the File’s Owner icon in the main
nib window, as shown in Figure 8-7.

	 	 The File’s Owner (ReturnMeToViewController) is now the delegate
for the text field. (Want proof? Check out the pop-up menu for the
text field in Figure 8-8, which lists File’s Owner as the delegate under
Outlets.)

This completes what you need to do to implement scrolling, but there are
still a couple more things I recommend that you do to make everything shiny
and bright. My detailing list includes the following:

	 ✓	Adding a Clear button to make it more convenient for the user.

	 ✓	Adding a feature for the user so that touching anywhere in the view does
the same thing as tapping Return on the keyboard.

	 ✓	Saving the phone number the user enters for future reference and then
displaying it in the label.

159 Chapter 8: Entering and Managing Data

	

Figure 8-7:
Connecting

the text
field to the
ReturnMe

ToView
Controller

as its
delegate.

	

	

Figure 8-8:
The File’s
Owner is

now a
delegate.

	

www.allitebooks.com

http://www.allitebooks.org

160 Part III: From “Gee, That’s a Good Idea,” to the App Store

Because adding these extras will enable you to delve even deeper into the
mechanics of Objective-C, I strongly recommend you finish up with these
details.

Adding a Clear button
I mention earlier in the chapter (and even give visual proof in Figure 8-3)
that the viewDidLoad method — one of the methods generated (albeit
commented out) by Xcode when you chose the View-Based Application
template in Chapter 4 — is the place to do your view initialization tasks,
including adding functionality not specified in the nib file. As you might have
guessed, this is the perfect place to add a Clear button to the text field, which
I do in Listing 8-10.

Find viewDidLoad in the ReturnMeToViewController.m file by pressing Ô+F
and entering viewDidLoad in the Find field. Uncomment it out and add the
code in Listing 8-10.

Listing 8-10: Override viewDidLoad

- (void)viewDidLoad {

 textField.clearButtonMode =
 UITextFieldViewModeWhileEditing;
 [super viewDidLoad];
}

clearButtonMode controls when the standard Clear button appears in the
text field. This particular mode indicates only while editing, although there
are other choices including never and always.

That was easy!

Saving the phone number
for future reference
To save the phone number the user entered, you have to add a new method —
the updateCallNumber method — to ReturnMeToViewController.m. Place
it after textFieldShouldReturn:. This method — shown in Listing 8-11 —
simply saves the text and assigns the text to the label. We use it here to keep
track of the number the user has entered.

161 Chapter 8: Entering and Managing Data

Listing 8-11: Add updateCallNumber

- (void)updateCallNumber {
 self.callNumber = textField.text;
 label.text = self.callNumber;
}

Here’s what’s up with Listing 8-11:

	 1.	 Store the text of the text field in the callNumber instance variable.

self.callNumber = textField.text;

		 That’s why you added an IBOutlet for the text field back in Chapter 7.
It enables you to get the text the user enters.

	 2.	 Set the text of the label to the value of the callNumber instance
variable.

label.text = self.callNumber;

		 And that’s why you needed an IBOutlet for the label — to be able to
update it with the new number.

	 updateCallNumber saves the number data. But even though it’s implemented
in the view controller, updateCallNumber is really, in part, a model function.
In this sample program, though, there is no separate model. In reality, there
isn’t that much for the model to do, except save and return the saved phone
number. Rather than adding complexity to the ReturnMeTo application, I
decided that it was far easier and less complex to simply put the code in the
view controller. (Of course, I do use a model when I develop the iPhone
Travel411 application; I discuss model design and use when I talk about the
MobileTravel411 and iPhoneTravel411 designs in Chapter 13 and implement a
model in Chapter 16.)

At this point you also will need to add the callNumber instance variable and
the corresponding @property and @synthesize statements. Read on to
find out how.

	 1.	 In the ReturnMeToViewController.h file, add the following instance
variable:

NSString *callNumber;

	 2.	 Then add the property declaration (see Listing 8-12):

@property (nonatomic, retain) NSString *callNumber;

www.allitebooks.com

http://www.allitebooks.org

162 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 3.	 In the ReturnMeToViewController.m file add the @synthesize
statement after the @synthesize label statement you added in
Chapter 7, as you can see in Listing 8-13.

Listing 8-12: Add callNumber to the interface

@interface ReturnMeToViewController : UIViewController
 <UITextFieldDelegate> {

 IBOutlet UITextField *textField;
 IBOutlet UILabel *label;
 BOOL moveViewUp;
 CGFloat scrollAmount;
 NSString *callNumber;

}

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) NSString *callNumber;

Listing 8-13: Add the property declaration

#import “ReturnMeToViewController.h”
#import “ReturnMeToAppDelegate.h”

@implementation ReturnMeToViewController

@synthesize textField;
@synthesize label;
@synthesize callNumber;

You’ve added the updateCallNumber method. That’s great — but to
actually save the number and display it in the label, someone is going to
have to send the updateCallNumber message when the user is actually
done entering the number. (Duh.) One of the places you need to do that is
in the textFieldShouldReturn: method. At that point in the process,
the user has finished entering the phone number and has tapped Return
on the keyboard. In Figure 8-9, I have added the updateCallNumber
method and shown textFieldShouldReturn: invoking it. Note that I’ve
placed the method off to the side in the diagram, in an area labeled Model.
This is to let you know that while the method is being implemented in the
ReturnMeToViewController class, it is — conceptually, at least — a
model method. Listing 8-14 shows the modifications I made to textField
ShouldReturn: in bold.

163 Chapter 8: Entering and Managing Data

	

Figure 8-9:
Here’s
text
Field
Should
Return:

invoking
updateCall

Number.
	

ReturnMeToAppDelegate

applicationDidFinishLaunching

applicationWillTerminate

UITextFieldDelegate Protocol
textFieldShouldReturn

UIApplicationDelegateProtocol

applicationDidFinishLaunching

applicationWillTerminate

“Model”
updateCallNumber

ReturnMeToViewController
moveViewUp

viewDidLoad
viewWillAppear

keyboardWillShow

scrollTheView

textFieldShouldReturn

viewWillDisappear

Listing 8-14: Modify textFieldShouldReturn:

-(BOOL)textFieldShouldReturn:(UITextField *)theTextField {

 [theTextField resignFirstResponder];
 if (moveViewUp) [self scrollTheView:NO];
 [self updateCallNumber];

 return YES;
}

Adding a method here means I need to add the method declaration to the
interface as well. Listing 8-15 shows how to code that addition.

Listing 8-15: Add changes to the interface

@interface ReturnMeToViewController : UIViewController
<UITextFieldDelegate> {

 IBOutlet UITextField *textField;
 IBOutlet UILabel *label;

(continued)

www.allitebooks.com

http://www.allitebooks.org

164 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 8‑15 (continued)

 BOOL moveViewUp;
 CGFloat scrollAmount;
 NSString *callNumber;
}

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) NSString *callNumber;

- (void)scrollTheView:(BOOL)movedUp;
- (void)updateCallNumber;

@end

Dismissing the keyboard when
the user touches in the view
I want the keyboard to disappear when one of two things happens:

	 ✓	The user taps the Return button on the keyboard.

	 ✓	The user touches anywhere else in the view.

This lets you know the user is done entering text and doesn’t need the
keyboard any longer.

I have already implemented the first requirement in textFieldShould
Return:. Figure 8-10 shows the method touchesBegan::. I am overriding
a method of the ReturnMeToViewController’s superclass, UIResponder
from which the view controller is derived. The touchesBegan:: message
is sent when one or more fingers touches down in a view. The implementation
of that is shown in Listing 8-16. Notice touchesBegan:: also references
moveViewUp to determine whether it should send the scrollTheView:
message to restore the content view.

Listing 8-16: Override touchesBegan::

- (void)touchesBegan:(NSSet *)touches withEvent:
 (UIEvent *)event {
 if(textField.editing) {
 [textField resignFirstResponder];
 [self updateCallNumber];
 if (moveViewUp) [self scrollTheView:NO];
 }
 [super touchesBegan:touches withEvent:event];
}

165 Chapter 8: Entering and Managing Data

	

Figure 8-10:
Using

touches
Began::
as a place

to intercept
touches.

	

ReturnMeToAppDelegate

applicationDidFinishLaunching

applicationWillTerminate

UITextFieldDelegate Protocol
textFieldShouldReturn

UIApplicationDelegateProtocol

applicationDidFinishLaunching

applicationWillTerminate

“Model”
updateCallNumber

ReturnMeToViewController
moveViewUp

viewDidLoad
viewWillAppear

keyboardWillShow

scrollTheView

textFieldShouldReturn

touchesBegan

viewWillDisappear

The following steps break down Listing 8-14 into its constituent parts:

	 1.	 See whether the text field is currently being edited.

if(textField.editing) {

		 The user may touch the view any time, not just when he or she is done
entering a phone number. Every time the user touches in the view, the
touchesBegan:: message is sent, and I shouldn’t go through the code
to resign as first responder and update the call number if the user hasn’t
really finished the editing job yet.

		 textField.editing is a Boolean value that indicates whether the text
field is currently in edit mode. I only process the touch then — when I’m
in editing mode.

	 2.	 Send the resignFirstResponder: message.

		 That will cause the keyboard to disappear.

	 3.	 Send the updateCallNumber message.

		 This method updates the text in the label with the text that the user
typed, and then saves the text in an instance variable.

 	 4.	 Send the [super touchesBegan:touches withEvent:event];
message.

		 This passes the event to the superclass if it needs to do anything more.

www.allitebooks.com

http://www.allitebooks.org

166 Part III: From “Gee, That’s a Good Idea,” to the App Store

Because you used an accessor method to assign a value to callNumber —
remember the @property and @synthesize statements you added? — it
was sent a retain message. That makes you responsible for releasing it
(freeing up the memory), just as you were for the outlets in Chapter 7. Listing
8-17 shows you how.

Listing 8-17: Releasing the callNumber

- (void)dealloc {

 [textField release];
 [label release];
 [callNumber release];

 [super dealloc];
}

Finding Your Way Around the Code
When you look in Listing 8-18 (it’s on my Web site), you’ll see several
#pragma statements. For example, this one:

#pragma mark - UIViewController methods

Any statement that begins with #pragma is actually a compiler directive —
meaning that it has nothing to do with code; it just passes information to the
compiler or, in this case, code editor. It tells Xcode’s editor to put a “heading”
in the pop-up menu at the top of the Editor Pane that stores a running list of
methods and functions used in the project. You get this pop-up list by
selecting the up and down arrows highlighted in Figure 8-11. The field to
the right displays the last method you were in, in this case viewDidLoad.
Choose a method or function from the pop-up menu, and you’re brought to
the implementation of that method in the code.

	 Some of your classes, especially some of your controller classes, are likely
to have a lot of code. If you make it a habit to use this gem of a pop-up menu,
you’ll find it much easier to find things.

	

167 Chapter 8: Entering and Managing Data

Figure 8-11:
Finding the
pop-up list.

	

Up and Down Arrows

When You’re Done
If you head over to my Web site at www.nealgoldstein.com, you’ll find
Listings 8-18 and 8-19, which show the changes I’ve made to the original code
in Listing 8-1 — the whole kit and caboodle. Changes are in bold.

When you compile and run this code in Xcode, using the handy Build and
Run button on the toolbar, you end up with the obediently-scrolling iPhone
view highlighted back in Figure 8-1 on the right. You still have some work to
do, though. (No rest for the weary.) For starters, you need to set up a way to
save the data entered by your user — and when you’re done with that, I have
a few surprises for you.

More on that in the next chapter.

www.allitebooks.com

http://www.allitebooks.org

168 Part III: From “Gee, That’s a Good Idea,” to the App Store

Chapter 9

Saving Data and Creating
a Secret Button

In This Chapter
▶	Setting and accessing user preferences

▶	Saving data in user preferences

▶	Disabling and enabling text fields

▶	Responding to user touches

In putting together a great iPhone application, a big part of the whole
process involves getting your application to work well from the user

interface perspective. Your potential user should be able to scroll the
keyboard, work with text fields, enter stuff, delete stuff, admire your fashion
sense when it comes to images and background color, and generally have a
grand-old time exploring the corners of your app.

Interfaces are important — so important, in fact, that most of the chapters so
far in this part deal explicitly with how to set up a user-friendly interface — but
interfaces are not the only things in the iPhone app universe. For your appli-
cation to function as an application, it has to do application-like stuff. For
example, it has to be able to save data entered by a user for the next time he
or she fires up that app. In this chapter, I tackle how to get your app to save
data entered by the user. Again, I’m going to trot out my ReturnMeTo applica-
tion as a means of imparting this little lesson in data saving.

Wait! That’s not all! It occurred to me while I was showing people my handy
ReturnMeTo application that whoever found my iPhone could accidently
enter a number in the text field — corrupting the crime scene, as it were —
and then wouldn’t know where to call me. So I decided that after the user
saved a number for the first time, I would make it a little more of a challenge
to write over that data. If there’s a saved number, I’m going to disable the
text field — and require the user to know where to tap in the content view to
enable it.

Contents
Saving Data and Creating

a Secret Button	 169
Saving User-Entry Data	 170

Disabling Editing	181

Letting the User Use the Secret Button	
183

What You Have Now — At Long Last	
185

www.allitebooks.com

http://www.allitebooks.org

170 Part III: From “Gee, That’s a Good Idea,” to the App Store

Saving user entry and then controlling the editing process are two good skills
to master when you’re developing iPhone applications. By the end of this
chapter, you should be an old hand at both skills.

Saving User-Entry Data
The iPhone is, first and foremost, a phone; as such you would expect it to
be able to deal with numbers — phone numbers, especially. So it’s quite
reasonable for the user to expect the ReturnMeTo application to save phone
numbers entered into the user-entry text field. (And quite frankly, what
would the point of the application be if it didn’t?)

The iPhone gives you three ways to save a phone number:

	 ✓	Save the number in a file: A perfectly respectable option, which I
discuss in greater detail in Chapter 15.

	 ✓	Save the number in a database: iPhone has a built-in SQL database
that’s efficient at storing and retrieving large amounts of (structured)
data.

	 ✓	Save the number as an application preference: The iPhone provides
support for user preferences — allowing users to customize applications
or keep track of configuration settings from launch to launch. (Hmm, the
phone number to call if you lose your iPhone comes to mind here.)

So many choices. But we’re definitely going with Door #3. Let me explain why.

Preferences
Most people these days have spent enough time around computers that they
know what we mean when we throw the term “preferences” around. On your
desktop, for example, you can set preferences at the system level for things
like security, screen savers, printing, and file sharing . . . just to name a few.
But keep in mind that preferences aren’t just a system-level thing; you can
just as easily set preferences at the application level. You could, for example,
set all sorts of preferences in Xcode — not to mention all those preferences
in your browser and word-processing programs.

The latter are application-specific settings used to configure the behavior or
appearance of an application. On the iPhone, application preferences are
supported as well, but instead of having to (re-) create a user interface for
each separate application, the iPhone displays all application-level preferences
through the system-supplied Settings application (its icon looks like a bunch
of gears on your iPhone’s home screen). Okay, you don’t have to forego

171 Chapter 9: Saving Data and Creating a Secret Button

creating a separate settings feature in your application — but keep this in
mind: Whatever separate settings feature you come up with has to function
within the framework of iPhone’s Settings application; in effect, the Settings
application makes you color within the lines.

What (guide)lines does the iPhone impose? Here’s a short summary:

	 ✓	If you have preference values that are typically configured once and
then rarely changed: Leave the task of setting preferences to the system
Settings application. On an iPhone, this would apply to things like
enabling/disabling Wi-Fi access, setting wallpaper displays, setting up
mail accounts, and any other preference you would set and then leave in
place for a while.

	 ✓	If you have preference values that the user might want to change
regularly: In this situation, you should consider having users set the
options themselves in your application.

		 The iPhone’s weather app is a good example: Let’s say I have this thing
for Dubrovnik — where it happens to be 48° F as I am writing this — and
I’d like to add it to my list of preferred cities that I want the weather app
to keep tabs on. To load Dubrovnik into the weather app, all I have to
do is tap the info button at the bottom of the screen; the view will flip
around, and I can add it to my list of cities. That’s a lot easier than going
back to the home screen, launching the Settings application, adding the
new city, and then launching the Weather application again.

The reason I’m leading you down this path is not because I’m about to show
you how to use the Settings application to set user preferences — that
actually comes in Chapter 15, in due time — but because the iPhone has
a built-in, easy-to-use class that lets you read and set user preferences —
NSUserDefaults. It’s even used by the Settings application itself, which has
graciously consented to let us peons use it as well — and I’m going to show
you how to put that power to work so that your application can both read
and set user preferences.

The NSUserDefaults class
You use NSUserDefaults to read and store preference data to a defaults
data base, using a key value, just as you’d access keyed data from an
NSDictionary. (For more on key-value pairs in general and NSDictionary
in particular, see Chapter 8.) The difference here is that NSUserDefaults
data is stored in the file system rather than in an object in memory —
objects, after all, go away when the application terminates.

	 By the way, don’t ask me why they stick Defaults in the name rather than
something to do with preferences — fewer letters, maybe — but that’s the
way it is. Just don’t let their naming idiosyncrasies confuse you.

www.allitebooks.com

http://www.allitebooks.org

172 Part III: From “Gee, That’s a Good Idea,” to the App Store

Storing the data in the file system rather than in memory gives me an
easy way to store application-specific information. With the help of
NSUserDefaults, you can easily store the state the user was in when he or
she quit the application — or store something simple like a phone number —
which just so happens to be precisely what we need for our ReturnMeTo
application.

Saving data using NSUserDefaults
Enough background information; it’s time to actually save some data to
NSUserDefaults.

The first thing you need to decide is where in your application you plan on
loading and then saving your data. As Figure 9-1 makes clear, the obvious
places to do that are in applicationDidFinishLaunching: and
applicationWillTerminate: — the very same methods I use in
Chapter 8 to perform initialization and termination at the application level.

	

Figure 9-1:
The

application
structure.

	

ReturnMeToAppDelegate

applicationDidFinishLaunching

applicationWillTerminate

UITextFieldDelegate Protocol
textFieldShouldReturn

UIApplicationDelegateProtocol

applicationDidFinishLaunching

applicationWillTerminate

“Model”
updateCallNumber

ReturnMeToViewController
moveViewUp

viewDidLoad
viewWillAppear

keyboardWillShow

scrollTheView

textFieldShouldReturn

touchesBegan

viewWillDisappear

I’m going to start by showing you how to save the phone number. After all,
being able to read the phone number from the defaults database is not all
that useful if there’s nothing there to read.

173 Chapter 9: Saving Data and Creating a Secret Button

(It turns out the first time we start the application there’s nothing to load, but
I’ll show you how to deal with it shortly.)

Setting it up
Since I’m going to be doing all the work in the ReturnMeToAppDelegate,
I’m going to first declare an instance variable that will hold the number that
needs to be saved.

	 1.	 Add a new instance variable called savedNumber and declare
@property in the ReturnMeToAppDelegate.h file.

		 Property declarations tell the compiler that there are going to be
accessors for an instance variable, making it available to other objects.
Since the ReturnMeToViewController object is going to have to be
able to read and write the savedNumber value, the accessors have to be
there.

		 This is shown in Listing 9-1. (Again, the new stuff is bold.)

	 2.	 Add the @synthesize statement to the ReturnMeToAppDelegate.m.
file to let the compiler know that you want it to do all the work and
create the accessors for you.

		 This is shown in Listing 9-2. (You guessed it — new is bold.)

Listing 9-1: Add the instance variable to the interface

@class ReturnMeToViewController;

@interface ReturnMeToAppDelegate : NSObject
 <UIApplicationDelegate> {

UIWindow *window;
ReturnMeToViewController *viewController;
NSString *savedNumber ;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet

ReturnMeToViewController *viewController;
@property (nonatomic, retain) NSString *savedNumber;

@end

Listing 9-2: Add the synthesize to the implementation

@implementation ReturnMeToAppDelegate

@synthesize window;
@synthesize viewController;
@synthesize savedNumber;

www.allitebooks.com

http://www.allitebooks.org

174 Part III: From “Gee, That’s a Good Idea,” to the App Store

Once the instance variable is there, to make it feel useful, I’m going to have
to update it with the phone number. If you recall back in Chapter 8, you
added the updateCallNumber method to keep track of the number the user
entered. Well, there was method to the madness because I now have a handy
place to update the ReturnMeToAppDelegate’s savedNumber whenever
it’s changed by the user.

When the user enters a new phone number, you need to update the
savedNumber instance variable (which in turn will be saved in the
applicationWillTerminate: method). You do this by adding some
code to the updateCallNumber method, which you had earlier placed in
the ReturnMeToViewController.m file. This is done in Listing 9-3.

Listing 9-3: Update updateCallNumber

- (void)updateCallNumber {

 self.callNumber = textField.text;
 label.text = self.callNumber;

 ReturnMeToAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 appDelegate.savedNumber = self.callNumber;
}

Now, here’s the big question: If the savedNumber is in the
ReturnMeToAppDelegate object, how do you get to it? Here’s how:

	 1.	 Get a reference to the ReturnMeToAppDelegate.

		 It turns out that this is done so often that there’s a really easy way to do
it. All you do is send a message to the UIApplication and ask for the
delegate

[[UIApplication sharedApplication] delegate]

		 This returns back the delegate object — in this case,
ReturnMeToAppDelegate — which I assign to local variable
appDelegate.

Now you can access the application delegate and assign the number the user
entered (callNumber) to the ReturnMeToAppDelegate’s instance variable
(savedNumber) (which will then be saved in applicationWillTerminate:).
The changes the user made are kept safe and sound, ready to appear again
the next time the application is launched.

175 Chapter 9: Saving Data and Creating a Secret Button

Saving the phone number
It’s downhill from here. When the application terminates, you’ll save the
number in the standardUserDefaults database. As you identified for
Figure 9-1, the place to do that is the applicationWillTerminate:
method. You’ll need to add this method to the ReturnMeToAppDelegate.m
file, right after the applicationDidFinishLaunching: method. The code
to use is shown in Listing 9-4.

Listing 9-4: Override applicationWillTerminate:

- (void)applicationWillTerminate:
 (UIApplication *)application {

 [[NSUserDefaults standardUserDefaults]
 setObject:savedNumber forKey:kNumberLocationKey];
}

While it’s true that it’s just a single statement, it’s pretty complex, so let me
take you through it.

It’s really easy to both access and update a preference — as long as
you have NSUserDefaults by your side. The trick here is to use the
NSUserDefaults class to read and update whatever the user enters as the
phone number. NSUserDefaults is implemented as a singleton, meaning
there’s only one instance of NSUserDefaults running in your application.
To get access to that one instance, I invoke the class method standardUser
Defaults:

 [NSUserDefaults standardUserDefaults]

standardUserDefaults returns back the NSUserDefaults object. As
soon as I have access to the standard user defaults, I can store data there,
and then get it back when I need it. To store data, I simply give it a key and
tell it to save the data using that key.

The way I tell it to save something is by using the setObject;forKey:
method. In case your knowledge of Objective-C is a little rusty (or not there
at all), that’s the way any message that has two arguments is referred to.

The first argument, setObject:, is the object I want NSUSerDefaults to
save. This object must be NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary. In our case, savedData is an NSString, so we’re in good
shape.

www.allitebooks.com

http://www.allitebooks.org

176 Part III: From “Gee, That’s a Good Idea,” to the App Store

The second argument is forKey:. In order to get the data back, and in order
for NSUserDefaults to know where to save it, I have to be able to identify it
to NSUserDefaults. I can, after all, have a number of preferences stored in
the NSUserDefaults data base, and the key tells NSUserDefaults which
one I am interested in. The particular key I am using is kNumberLocation-
Key, which I am going to add to the ReturnMeToAppDelegate.m file, right
after the last #import statement, as you can see in Listing 9-5.

Listing 9-5: Add the key to ReturnMeToAppDelegate.m

#import “ReturnMeToAppDelegate.h”
#import “ReturnMeToViewController.h”

NSString *kNumberLocationKey = @”NumberLocation”;

When I save the phone number, as I did in Listing 9-4 I tell NSUserDefaults
to save it with a key of kNumberLocationKey. The key needs to be a string
(NSString) (and so do keys in NSDictionary, by the way, which this is
very similar to). Then when I want the data back (which I’ll show you in a
second), I just ask for it with that key.

Loading the preference entry to get the data
To get the phone number back, now that it’s out there when the application
is launched, all I need to do is ask for it with the key.

Whoops, what about the very first time the application is launched, when
there is no data out there yet? Let me show you how to take care of that. In
the applicationDidFinishLaunching: method, you’re going to need to
do two things:

	 ✓	First check to see whether the preference entry exists. If one doesn’t
exist, you have to create one.

	 ✓	If the preference does exist, you’re home free and you can read it.

Listing 9-6 shows the code necessary for accomplishing these two tasks.
applicationDidFinishLaunching: is in the ReturnMeToAppDelegate.m
file — you’ll have to add the code in bold.

	 I am working now with the ReturnMeToAppDelegate interface and
implementation.

177 Chapter 9: Saving Data and Creating a Secret Button

Listing 9-6: Update applicationDidFinishLaunching:

- (void)applicationDidFinishLaunching:
 (UIApplication *) application {

 self.savedNumber =
 [[NSUserDefaults standardUserDefaults]
 objectForKey:kNumberLocationKey];
 if (savedNumber == nil) {
 savedNumber = @”650 555 1212”;
 NSDictionary *savedNumberDict = [NSDictionary

dictionaryWithObject:savedNumber
forKey:kNumberLocationKey];

 [[NSUserDefaults standardUserDefaults]
 registerDefaults:savedNumberDict];
 }

 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

Here’s the blow-by-blow:

	 1.	 Access the preference entry and save it in an instance variable.

self.savedNumber =
 [[NSUserDefaults standardUserDefaults]
 objectForKey:kNumberLocationKey];

		 We did something similar when we saved the number. Here, we’re
using a NSUserDefaults object as well, but this time we send the
setObject;forKey: message. Reading is a little easier than saving,
because you only have to give it one argument — the key that you
used to save the data in the first place. objectForKey: will return an
Objective-C object like an NSString, NSDate, NSNumber, or any of the
other types I mentioned above (again, savedNumber is an NSString so
we’re okay). I’m going to assign what I get back to savedNumber, which
is the instance variable I originally saved.

	 2.	 Check to see whether the entry exists:

 if (savedNumber == nil)

		 objectForKey: either returns the object associated with the specified
key, or, if the NSUserDefaults can’t find data for the key or doesn’t
find the key at all, it returns nil. That’s precisely what’s going to
happen the first time I run the program — there is nothing stored
because I didn’t store anything yet.

www.allitebooks.com

http://www.allitebooks.org

178 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 3.	 If there is no data there, create a new entry in the NSUserDefaults
database.

		 I know that’s easy for me to say. Let me show you how.

	 a.	Create a new dictionary.

 savedNumber = @”650 555 1212”;
 NSDictionary *savedNumberDict =
 [NSDictionary dictionaryWithObject:savedNumber
 forKey:kNumberLocationKey];

		 In order to use objectForKey (to read preference data) or
setObject (to update preference data), you have to create an
entry for the item you want to read or update in standardUser
Defaults. (For NSUserDefaults to know anything about my
preferences, you have to tell it about them first, right?) To let
NSUserDefaults know what’s going on, you have to create a
dictionary listing of all the key-value pairs you plan on using
here — all one of them, since all you need is the savedNumber
forKey/kNumberLocationKey value pair.

		 dictionaryWithObject:forKey: creates and returns a
dictionary containing the key and value you give it. You pass it
savedNumber, which you initialized with 650 555 1212 (the
value), and kNumberLocationKey (the key). Notice I had you use
the same value — 650 555 1212 — to initialize the preference
that you used for the text field in Interface Builder back in
Chapter 7, so as not to confuse the user.

	 b.	Register the defaults using registerDefaults:.

[[NSUserDefaults standardUserDefaults]
 registerDefaults:savedNumberDict];

		 RegisterDefaults: simply tells the NSUserDefaults object to
add this key and this value to its database for this application. You
have to do that only once, and then you can simply access it (using
objectForKey) or update it (using setObject).

	 4.	 If there is a saved number, I’m fine, and I can go along my merry way.

	 Dictionaries manage pairs of keys and values. A key-value pair within a
dictionary is called an entry. Each entry consists of one object that represents
the key and a second object that is that key’s value.

	 If you had more than one preference, you could have used dictionaryWith
ObjectsAndKeys:. That method creates and returns a dictionary containing
entries constructed from the specified set of values and keys:

179 Chapter 9: Saving Data and Creating a Secret Button

NSDictionary *dict =
 [NSDictionary dictionaryWithObjectsAndKeys:
 savedNumber, kNumberLocationKey, @”another value”,
 @” another key”, nil];

	 As you implement and experiment with this code, you need to be aware of the
fact that you should delete the application from the simulator if you change
anything of significance — the key, for example. The consequences of not
doing so will become obvious when things don’t work like you would expect
them to. Deleting the application will delete any preferences for the app saved
in NSUserDefaults.

Using data
There’s only one thing left to do. The object that really cares about the
number is the view, and it’s the view controller’s job to get it to the view. To
put that saved data to use in an application’s view, you have to link it up with
a view controller — in our case, ReturnMeToViewController. If you look
back at Figure 9-1, you’ll see that the best place to do that is viewDidLoad,
which is invoked right after the view has been loaded from the nib file.
viewDidLoad is found in the ReturnMeToViewController.m file, so that’s
where you’d go to insert your code to do view initialization.

	 If you’re ever lost in the file and need to find your next destination fast, use
Ô+F to open a Find dialog to find it, or use the drop-down menu I showed you
at the end of the Chapter 8.

Listing 9-7 shows the stuff you need to add to the viewDidLoad method in
the ReturnMeToViewController.m file.

Listing 9-7: Update viewDidLoad

(void)viewDidLoad {

 textField.clearButtonMode =
 UITextFieldViewModeWhileEditing;
 ReturnMeToAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 label.text = appDelegate.savedNumber;
 textField.text = appDelegate.savedNumber;

 [super viewDidLoad];
}

Here’s what all the boldfaced stuff does:

www.allitebooks.com

http://www.allitebooks.org

180 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 1.	 Gets the pointer to the application delegate object:

ReturnMeToAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];

		 sharedApplication is a class method of UIApplication and returns
the application delegate.

	 2.	 Assigns the saved number to the label and text field:

label.text = appDelegate.savedNumber;
textField.text = appDelegate.savedNumber;

		 appDelegate allows me to access the ReturnMeToAppDelegate’s
instance variable, savedNumber. As you know (because I’ve mentioned
it several times), one of the fundamental principles of object-oriented
programming is encapsulation — tucking an object’s instance variable
behind a wall so you can’t access it directly.

		 But earlier you did make it a property and you told the compiler to
generate the necessary accessors in Listings 9-1 and 9-2, so accessors
are available for you to use. Now, I could access savedNumber by using
the getter:

[appDelegate savedNumber]

		 But as I mentioned in Chapter 7, I could also invoke an accessor method
using dot notation (which refugees from other object-oriented languages
will recognize):

appDelegate.savedNumber

		 Being one of those refugees myself, I’ll use the dot notation.

	 In order for a method in ReturnMeToViewController to access the
savedNumber instance variable, it needs to know where that variable is.
That information is in the class declaration, in the ReturnMeToAppDelegate.h
(header) file. So I’ll need to #import the ReturnMeToAppDelegate.h file in
the ReturnMeToViewController.m (implementation) file. This is shown in
Listing 9-8.

Listing 9-8: Include the ReturnMeToAppDelegate header file

#import “ReturnMeToViewController.h”
#import “ReturnMeToAppDelegate.h”

Finally, I need to clean up and deallocate the memory. This is shown in
Listing 9-9.

181 Chapter 9: Saving Data and Creating a Secret Button

Listing 9-9: release the new variable

- (void)dealloc {
 [viewController release];
 [window release];
 [savedNumber release];

 [super dealloc];
}

Disabling Editing
I started this chapter by mentioning that I wanted to create a way that kept
someone other than the main user from entering a new phone number after it
had been initially entered. I can easily do that by changing an instance
variable in the text field. In Figure 9-2, you can see that the UIControl class,
from which the UITextField class is derived, has a property instance
variable enabled. If I set the enabled property of the UITextField to NO,
the user can’t enter any text; if the user taps the text field, nothing happens.

	

Figure 9-2:
How to

disable text
entry.

	

“But aren’t you forgetting something?” you might ask. “Don’t you have to
allow the app’s owner to be able change the number?”

www.allitebooks.com

http://www.allitebooks.org

182 Part III: From “Gee, That’s a Good Idea,” to the App Store

I’m two steps ahead of you. To allow for just such a situation, I’ve decided to
create a hidden “button.” I thought it would be clever to make the label that
displays the current number the hidden button, and to show you how flexible
the framework is.

So how can I do that? To start with, labels are disabled for editing by default;
they ignore touches. My first thought was simply to set the enabled property
for the label (the same one I used for the text field) to YES. And lo and
behold — it didn’t work. So when all else fails, read the documentation, and
Figure 9-3 shows what I found.

As you can see, the UILabel class changes the default for the property
it inherits from UIView, userInteractionEnabled, to NO. Before I can
receive touches in the label, I need to change it to YES. As you might
surmise, the enabled property, which I tried setting earlier, has to do with
temporarily enabling or disabling a control, while the overall ability to handle
events is determined by userInteractionEnabled.

	

Figure 9-3:
How to

enable user
interaction
in the label

view.
	

Again, the place to disable editing in the text field — and enable user
interaction in the label — is in viewDidLoad (notice a pattern here?) in
the ReturnMeToViewController.m file. The code for doing all this is shown in
Listing 9-10, with the updates in bold.

Listing 9-10: Update viewDidLoad

- (void)viewDidLoad {

 textField.clearButtonMode =
 UITextFieldViewModeWhileEditing;

183 Chapter 9: Saving Data and Creating a Secret Button

 ReturnMeToAppDelegate *appDelegate =
(ReturnMeToAppDelegate *)[[UIApplication
sharedApplication] delegate];

 label.text = appDelegate.savedNumber;
 textField.text = appDelegate.savedNumber;

 if (![appDelegate.savedNumber isEqualToString:
 @”650 555 1212”]) {
 textField.enabled = NO;
 label.enabled = YES;
 label.userInteractionEnabled = YES;
 }
 [super viewDidLoad];
}

Here the code checks to see whether the user has ever entered a phone
number — by determining whether the number is equal to the default value
that you set in Interface Builder.

	 What you’re doing in the code is checking to see if the savedNumber is not
equal to the default number — which is why you see the negation operator !
used here. If it’s not equal, then the user has entered a number, and you need
to disable the text field and enable the label.

Notice the message:

[appDelegate.savedNumber isEqualToString:@”650 555 1212”])

savedNumber is an NSString object, and one of NSString’s handy
methods is isEqualToString:. This will return YES if the text values of
two string objects are equal. Now, I can see where you might be tempted to
do the compare as savedNumber == :@”650 555 1212”. Unfortunately,
what you would be doing here is comparing the string pointers, not the
actual text values of the objects.

Letting the User Use the Secret Button
I mentioned in the previous section that we want to put a mechanism in
place for the owner of our ReturnMeTo application that allows him or her to
unlock a text entry field for editing. That mechanism is going to rely on the
Old Secret Button trick, where the label field gets transformed into a trigger
mechanism for changing the text-entry field from read-only to read/write. As
you might expect, this is going to require some coding. The place to do this
coding turns out to be the same method I used to process touches on the
screen so the user could dismiss the keyboard — namely, the touches
Began:: method.

www.allitebooks.com

http://www.allitebooks.org

184 Part III: From “Gee, That’s a Good Idea,” to the App Store

touchesBegan:: is a message sent when one or more fingers touches down
in a view. The touch of a finger (or lifting it from the screen) adds a touch
event to the application’s event queue, where it’s encapsulated — placed
into — a UIEvent object. There’s a UITouch object for each finger touching
the screen, which enables you to track individual touches. As the user
manipulates the screen with his or her fingers, the system reports the
changes for each finger in the corresponding UITouch object.

Listing 9-11 shows how to determine whether the user has touched the label;
if so, the text field is enabled so the user can enter a new number. (Don’t
forget the new closing brace after the existing if block.)

Listing 9-11: Is the touch in the label?

- (void)touchesBegan:(NSSet *)touches withEvent:
 (UIEvent *) event {

 if (!textField.enabled) {
 UITouch *touch = [touches anyObject];
 if (CGRectContainsPoint([label frame],
 [touch locationInView:self.view])) {
 textField.enabled = YES;
 label.text = @”You found it, touch below”;
 textField.placeholder =
 @”You may now enter the number”;
 }
 }
 else {

 if (textField.editing) {
 [textField resignFirstResponder];
 [self updateCallNumber];
 if (moveViewUp) [self scrollTheView:NO];
 }
 }
 [super touchesBegan:touches withEvent:event];
}

Here’s how the code builds its magic button, step by step:

	 1.	 If the text field is not enabled, get the touch object.

if (!textField.enabled) {
 UITouch *touch = [touches anyObject];

		 Touches are passed in an NSSet object — an “unordered collection of
distinct elements,” for those of you not up on the intricacies of NSSet
objects. To access an object in the NSSet, you use the anyObject

185 Chapter 9: Saving Data and Creating a Secret Button

method. This returns one of the objects in the set, or nil if the receiver
contains no objects. Bear in mind that the object returned is chosen
by some magic formula developed in secret by a cabal of Apple
developers — the only thing I know about it is that the selection is not
guaranteed to be random.

	 2.	 Check to see whether the touch was in the label.

if (CGRectContainsPoint([label frame],
 [touch locationInView:self.view])) {

		 CGRectContainsPoint is a function that returns YES when a rectangle
contains a specified point. You use the label frame here, which is a
rectangle in the coordinates of the view. — that thing on the screen that
you, I, and the user see.

		 Well, if I know where the view label is in the view’s coordinate system,
then I better know where the fingers are in the view’s coordinate system
as well. The problem is that if the user touches in a label, the OS could
report back the touch’s location in terms of the view, or in terms of the
label. Fortunately, I can specify the terms — the coordinate system, to
be precise — I want.

 [touch locationInView:self.view]

		 This method returns the current location of the touch in the coordinate
system of a given view — in this case, self.view specifies that you
want the location of the touch in the content view’s coordinate system.
That means I am comparing apples to apples. (Do you believe I actually
said that?)

	 3.	 If the touch is in the label frame, display a clever message, enable the
text field, and set the placeholder to give the user more guidance.

		 The placeholder is what the user sees when he or she touches the text
field to start editing.

textField.enabled = YES;
label.text = @”You found it, touch below”;
textField.placeholder =
 @”You may now enter the number”;

What You Have Now — At Long Last
So it looks like you have all the pieces in place for your ReturnMeTo
application. You can now enter and save numbers, and keep someone from
changing the number if he or she doesn’t know how.

www.allitebooks.com

http://www.allitebooks.org

186 Part III: From “Gee, That’s a Good Idea,” to the App Store

Appearances can be deceiving, though.

Reality check: Some how-to books on software development should really
be housed in the Fiction section of your local bookstore — because all their
examples work flawlessly. In the real world — the non-fictional world —
everything does not always go as planned; occasionally your software program
blows up on you. That’s why an essential part of software development is
the debugging phase — teasing as many flaws out of your app as possible so
you can squash ’em. In the next chapter, I show you how to work through the
debugging phase of your project and introduce you to the SDK’s very own
debugging tool, something that’s sure to make your software-development
life a lot easier.

	 For a nice retrospective of the work you’ve done so far for the ReturnMeTo
application, move on over to my Web site (www.nealgoldstein.com) and
check out Listings 9-12 through 9-15. There, in all their glory, you’ll find your
app’s completed code listings, from soup to nuts.

Chapter 10

Using the Debugger
In This Chapter
▶	Seeing the kinds of errors that may come up

▶	Using Xcode’s Debugger

▶	Zeroing in on the kinds of errors the Debugger can help you find

▶	Stamping out logic errors with the Debugger

Let’s face it: When you’re developing an application, sometimes things
don’t work out quite the way you planned — especially when you knock

over a can of Jolt Cola on the keyboard and fry it out of existence.

“Stuff happens,” in the immortal words of a famous ex-U.S. Secretary of
Defense. When it comes to developing your own programs, that “stuff” comes
in three categories:

	 ✓	Syntax errors: Compilers — the Objective-C compiler in Xcode is a case
in point — expect you to use a certain set of instructions in your code;
those instructions make up the language it understands. When you type
If instead of if, or the subtler [view release} instead of [view
release], the compiler suddenly has no idea what you’re talking about
and generates a syntax error.

		 Syntax errors are the most obvious of errors out there, simply because
your program won’t compile (be able to run) until all of these are fixed.
Generally, syntax errors spring from typographical errors like those
mentioned here. (And yes, the errors can be pretty penny-ante stuff —
an I for an i, for goodness sake — but it doesn’t take much to stump a
compiler.)

		 In Figure 10-1, you can see an example of a syntax error. This one
was kindly pointed out to me by Xcode’s friendly little Debugger
feature (more on him later). I’d forgotten to put a “;” after
UITextFieldViewModeWhileEditing in this line. It looked like this:

textField.clearButtonMode =
 UITextFieldViewModeWhileEditing

Contents
Using the Debugger	 187
Using the Debugger	 190

Using Breakpoints	 196

Using the Static Analyzer	199

One More Step	 202

www.allitebooks.com

http://www.allitebooks.org

188 Part III: From “Gee, That’s a Good Idea,” to the App Store

		 As a result, I got a number of errors because the compiler couldn’t quite
figure out what I was doing.

		 It’s generally better to ignore the subsequent errors after the first syntax
error because they may be the result of that first error. In this case,
because of the first error, that line and the next one were treated as a
single instruction, and the line that declared appDelegate wasn’t
processed by the compiler as a separate instruction.

	

Figure 10-1:
A syntax

error. Oops.
	

	 ✓	Runtime errors: Runtime errors cause your program to stop executing —
it “crashes,” in other words, as in “crash and burn to much wailing and
gnashing of teeth.” Something might have come up in the data that you
hadn’t expected (a division-by-zero error, for example), or the result of
a method dealt a nasty surprise to your logic, or you sent a message to
an object that doesn’t have that message implemented. Sometimes you
even get some build warnings for these errors; often the application
simply stops working or “hangs” (stops and does nothing). Or it shuts
down, and you get the (not particularly helpful) message in Figure 10-2.

	

Figure 10-2:
Unexpected

quit.
	

189 Chapter 10: Using the Debugger

	 ✓	Logic errors: Your literal-minded application does exactly what you tell
it to, but sometimes you unintentionally tell it the wrong thing, and it
coughs up a logic error. In Figure 10-3, everything looks fine — not an
error sign in sight — except when I try to enter a number into the text
field, I discover that the field is disabled. Ironically, if I fool around and
touch the label, I find that then I can enter text — which is the opposite
of what I want.

	

Figure 10-3:
Oh,

great — it
works

backwards.
	

		 Look a bit more closely at this chunk of code, though:

if ([appDelegate.savedNumber
 isEqualToString:@”650 555 1212”]) {
 textField.enabled = NO;
 label.enabled = YES;
 label.userInteractionEnabled = YES;
}

		 See how I tell it to disable the text field if the saved number is “650 555
1212” but not to disable if the saved number is not equal to that value? I
had mistakenly left out the ! before the compare to the appDelegate’s
savedNumber. Here’s how it should have looked (note how it begins):

![appDelegate.savedNumber
 isEqualToString:@”650 555 1212”]

		 Not being able to guess what it was that I really wanted, it did what I told
it to; the program worked, but not the way I intended it to.

Syntax errors, runtime errors, and logic errors can all be pains in the behind,
but there’s no need to think of them as insurmountable roadblocks. You’re
still on your way to a cool iPhone app. In this chapter, I’m going to show you

www.allitebooks.com

http://www.allitebooks.org

190 Part III: From “Gee, That’s a Good Idea,” to the App Store

how to use the Debugger to remove at least some of these obstacles. The
Debugger works best for Case 2 (the runtime errors), but as I point out later
on, it can also help you track down the logic errors in Case 3.

Using the Debugger
In Figure 10-4, I have deliberately created a situation that will give me a
runtime error: I am going to divide by zero — a mathematical no-no that any
able-bodied fifth-grader would berate me for — which will enable me to show
you how to approach runtime errors in general.

Here’s the drill: After introducing my boneheaded error while writing my
code in Xcode, I chose Build➪Build and Run from Xcode’s Build menu.

The application started up and then immediately shut down, but the
compiler was kind enough to tell me what I was doing wrong.

You can see in the top of Figure 10-4 that I got a warning message Division
by zero followed by a 2, which means another warning is there. In the
bottom half of Figure 10-4, I clicked on the 2, and it revealed a second
warning, Unused variable I. Pay attention to those numbers since
sometimes the subsequent message can help you more precisely
understand what the compiler is complaining about.

Before you scoff and say that I should have caught such a basic error, okay,
you’re right to scoff — but I want to point out some things:

	 ✓	First, in the middle of development, I may have been pelted with
compiler warnings that I didn’t really need to take care of because they
had no impact on the execution of the program. As a result, I might not
have noticed one more compiler warning that actually did have an
impact — a big one.

	 ✓	Second, if my app was a bit more complicated, I could conceivably end
up dividing by zero without realizing it. (Remember, stuff happens.)

	 ✓	Finally, if you happen to save this code and then build it again, you
won’t see the compiler warning in the status bar because there were no
changes to that file — so it wouldn’t be recompiled. (This is definitely
something to remember.) This is one reason to set the Xcode Building
preference Build Results Window: Open during builds: to Always — it
will continually remind you about those warnings.

How can the Debugger help me determine the source of a runtime error like
this one? The next section gives you the details.

191 Chapter 10: Using the Debugger

	

Figure 10-4:
Results of

division by
zero.

	

Debugging your project
To use the Debugger, I need to start by building the application in another
way. With my project open in Xcode, I click on the Breakpoints button in
the Project window toolbar. The Build and Run button changes to Build and
Debug (you can see that in Figure 10-5). This time, after I build and run the
program, I see a few different things.

	 1.	 I get a message in the Debugger Console as well as in the status bar of
the project window in Figure 10-5.

Program received signal: “EXC_ARITHMETIC”.

	 2.	 The Debugger strip is visible in the project window, just above the
Editor view, as you can see in Figure 10-5. There are also a number of
buttons for your pushing pleasure. I get to each of them shortly.

	 3.	 In Xcode’s Editor view in Figure 10-5, notice the red arrow that shows
you the instruction that caused the program to crash. That’s the
Debugger pointing out the problem to you.

www.allitebooks.com

http://www.allitebooks.org

192 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 10-5:
The Editor
highlights

the bad
instruction

and displays
the debugger

strip.

	

Activate/Deactivate Breakpoints

Step over method
or function call

Step out of current
method or function call

Show Debugger

Show Console

Debugger datatip

Debugger strip

Continue execution

Step into method
or function call

	 4.	 There’s even more information though. As you can see in Figure 10-5,
I have my mouse pointer positioned above the i on the offending line.
You can see the Debugger datatip displaying the value of i. What’s
even more interesting is that if I position my mouse pointer above
appDelegate, as you can see in Figure 10-6, and then move it over
the disclosure triangle, I get a Debugger datatip that shows me the
appDelegate’s instance variables — including savedNumber, which
is 650 555 1212, which is what you would expect.

	 5.	 Finally, if you select the up and down arrows next to
[ReturnMeToViewController viewDidLoad] in the Debugger strip
in Figure 10-6, you can see in Figure 10-7 the stack — a trace of the
objects and methods that got you to where you are now.

		 For example, main called UIApplicationMain — which sent the
UIApplicastio_run message, and so on, which eventually ended up
in ReturnMeToAppDelegate: DidFinishLaunching and then finally
to ReturnMeToViewController viewDidLoad. And that’s where our
little problem reared its ugly head.

193 Chapter 10: Using the Debugger

	

Figure 10-6:
A Debugger

datatip.
	

		 Okay, the stack isn’t really all that useful in this particular context of
dealing with my boneheaded attempt to divide by 0. But it can be very
useful in other contexts. In a more complex application, the stack can
help you understand the path that you took to get where you are. Seeing
how one object sent a message to another object — which sent a message
to a third object — can be really helpful, especially if you didn’t expect
the program flow to work that way.

		 Getting a look at the stack can also be useful if you’re trying to
understand how the framework does its job, and in what order messages
are sent. As you’ll see later in this chapter, using something called a
breakpoint can stop the execution of my program at any point and trace
the messages sent up to that point. So don’t despair; you have options.

		 There is even more information available, though — it comes to you in
the Debugger window. Figure 10-8 shows what happens when I click on
Show Debugger in the Debugger strip in the project window, or choose
Run➪Debugger from Xcode’s main menu (or press Shift+Ô+Y).

Using the Debugger window
Even though the Debugger is officially running, you have to open the
Debugger window explicitly the first time you choose Run➪Debugger.

www.allitebooks.com

http://www.allitebooks.org

194 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 10-7:
Looking at

the stack in
the Editor

view.
	

Figure 10-8 shows the Debugger window. It has everything that is in the
Editor window, but you can see your stack and the variables in scope at a
glance. It also has some extra functionality I’ll show you in the upcoming
section “Using Breakpoints.”

In the upper-left pane, you can see the same stack you can see in the Editor.

	

Figure 10-8:
The

Debugger
window.

	

195 Chapter 10: Using the Debugger

Okay, your window may not look exactly like mine. That’s because Xcode
gives you lots of different ways to customize the look of the Debugger
window. You could, for example, have chosen Run➪Debugger Display from
the main menu and tweaked the way you want your Debugger window to
look. The option I chose was Source Only — so that only the source code
appears in the bottom pane. You could, of course, have checked the Source
and Disassembly option if you had a hankering for checking both the source
code and the assembly language (if you really care about assembly language);
in that case, the bottom pane would divide down the center into two panes,
with the source code on the left and the assembly code in the right.

	 It’s not that I would actually expect you to use the Source and Disassembly
option — at this point, I don’t. But sometimes, as you explore interfaces,
things end up not looking the way they used to. In my experience, this usually
occurs because a different display option has been chosen — either by
accident or on purpose.

Examine the top-right pane in the Debugger window. There you’ll see a
display of the program object’s variables. I’ve clicked the disclosure triangles
next to self and appDelegate, and you can see the appDelegate’s
instance variables that you saw in the datatip in the Editor window — For
example, savedNumber, which is (still) 650 555 1212, which is what
you would expect. You can also see as well the instance variables for the
ReturnMeToViewController under self, which is under Arguments.

This is useful for a couple of reasons:

	 ✓	Checking variables: If the view is not displaying the correct number, I
can look in the Variable pane to see what the value of the variable
actually is. If the value is correct here, then I can conclude that either it
gets changed by mistake later, or I’m displaying something other than
what I intended to display.

	 ✓	Checking messages sent: Some logic errors you may encounter are the
result of what some people call a “feature” and others call a “design
flaw” in Objective-C: For reasons, which are not particularly important
here, Objective-C, unlike some other languages, allows you to send a
message to a nil object without generating a runtime error. If you do
that, you should expect to subsequently see some sort of logic error,
since a message to a nil object simply does nothing.

		 So, when things don’t happen the way you expect, you might have a real
logic error in your code. But there’s one other possibility: Maybe an object
reference has not been set, and you’re sending the message into the ether.

		 Now, how can I use the variable pane to help me with that? Simple. If
you look at an object reference instance variable and its value is 0x0,
any messages to that object are simply ignored. So when I get a logic
error, the first thing I’m going to check is whether any of the object
references I am using have 0x0 as their values, informing me that
the reference was never initialized.

www.allitebooks.com

http://www.allitebooks.org

196 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 ✓	Checking for initialization: Finally, notice the value of i in Figure 10-8.
That long, seemingly random number is the way it is because it hasn’t
been initialized yet. The instruction that was going to initialize it was the
one that generated a runtime error — because I tried to initialize i with
the result of a divide-by-zero operation.

As you can see, the debugger can be really useful when your program isn’t
doing what you expect. For the blatant errors, the debugger can show you
exactly what is going on when the error occurred. It provides you with a trail
of how you got to where you are, highlights the problem instruction, and
shows you your application’s variables and their values at that point. Had the
cause of the error in this case been more subtle, looking at the value of the
variable would have given me a good hint about what was going on.

What’s just as valuable is how the debugger can help you with logic errors.
Sending a message to nil is not uncommon, especially when you’re making
changes to the user interface and forget to set up an outlet, for example. In
such situations, the ability to look at the object references can really help.
And what can really help you with that is the ability to set breakpoints, which
is the subject of the next section.

Using Breakpoints
Xcode’s Debugger feature is a great tool for tracking down runtime errors, as
earlier sections in this chapter make clear. I want to highlight another useful
feature of the Debugger — its capability of setting breakpoints. If you’re stymied
by a logic error, setting breakpoints is a great way to break that logjam.

A breakpoint is an instruction to the Debugger to stop execution at that
instruction and wait for further instructions (no pun intended). By setting
breakpoints at various methods in my program, I can step through its
execution, at the instruction level, to see exactly what it’s doing. I can also
examine the variables the program is setting and using, which will allow me
to determine if that’s where the problem lies.

In Figure 10-9, I’ve set a breakpoint simply by clicking in the far-left column
of the Editor window (I also deleted the statement that did the division
by zero). When I build and run the program again (as you can see in the
Debugger Editor window in Figure 10-10), the program has stopped executing
right at the breakpoint I set. (You would’ve also seen that same thing in the
Editor window.)

197 Chapter 10: Using the Debugger

In Figure 10-9, I’ve also clicked the triangle next to the appDelegate. That
shows the appDelegate’s variables, one of which is the viewController.
If you notice the value under appDelegate for the viewController, it’s
0x380f3d0. If you notice the value at the very top for self, you see it’s also
0x380f3d0. This makes sense because the viewController variable is
pointing to the viewController, which is in the object we are now in, and
which is the value for self.

	

Figure 10-9:
Setting a

breakpoint.
	

I’ve also clicked the triangle next to self, which shows me the view
controller’s variables. If I had clicked viewController under
appDelegate, I would have obviously seen the same thing, or I could
have stayed in the Editor and used the datatip.

Looking under the appDelegate variables, you can see the callNumber
and its value, which is nil. If I’d been trying to do something using
callNumber at this point, that click would have shown me that I was trying
to do something with a variable that hadn’t been initialized with the value I
needed. In other words, this would not have been a good time in the program
flow to display the callNumber variable.

www.allitebooks.com

http://www.allitebooks.org

198 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 10-10:
What the

Debugger
window

shows
at the

breakpoint.
	

Let’s say I wanted to see precisely when that variable was set. I could
execute the program instruction by instruction, simply by clicking the Step
Into button on the debugger toolbar. I would have executed textField.
text =appDelegate.savedNumber; (after a brief stop at @synthesize
savedNumber) and then gone on to the next instruction, as you can see in
Figure 10-11. I’d keep on clicking that Step Into button at every instruction
until I got to where I wanted to be (which, by the way, can be a long and
winding road).

The Debugger window gives you a number of other options for making your
way through your program in addition to Step Into. For example, you could
use one of the following:

	 ✓	Step Over gives you the opportunity to skip over an instruction.

	 ✓	Step Out takes you out of the current method.

	 ✓	Continue tells the program to keep on with its execution.

	 ✓	Restart restarts the program. (You were hoping maybe if you tried it
again it would work?)

To get rid of the breakpoint, simply drag it off to the side. You can also
right-click the breakpoint and choose Remove Breakpoint from the pop-up
menu that appears.

199 Chapter 10: Using the Debugger

	

Figure 10-11:
The next

step.
	

Using the Static Analyzer
Xcode has a new Build and Analyze feature (the Static Analyzer) that
analyzes your code.

The results show up like warnings and errors, with explanations of where
and what the issue is. You can also see the flow of control of the (potential)
problem. I say potential because the Static Analyzer can give you false
positives.

In Figure 10-12, I deliberately created a memory leak. As you can see, I
allocated a new ReturnMeToViewController and then did nothing with it.

ReturnMeToViewController* anObject =
 [ReturnMeToViewController alloc];

I then chose Build and Analyze from the Build menu (Build➪Build and
Analyze). In Figure 10-13, you can see the results in the Project window. I get
a warning (ignore the unused variable warning) with a little blue icon that
tells me

Potential leak of n object allocated on line 16 and stored
into ‘anObject’

www.allitebooks.com

http://www.allitebooks.org

200 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 10-12:
A

deliberate
memory

leak.
	

	

Figure 10-13:
Running

the Static
Analyzer.

	

If I click on the little blue icon, I get a “trace” of what happened in Figure 10-14.

First I get the warning

Method returns and Objective-C object with a +1 retain
count (owning reference)

Then in the next line, it tells me

Object allocated on line 16 and stored into ‘anObject’ is
no longer referenced after this point after this point and
has a retain count of +1 (object leaked)

201 Chapter 10: Using the Debugger

	

Figure 10-14:
The

expanded
Static

Analyzer
warning.

	

	 Notice that the results refer to line numbers. That’s why I made a point of
explaining about how to turn on line numbers in Xcode in Chapter 4.

As I’ve mentioned before, memory management is a big deal on the iPhone.

Before you attempt to get your application into the App Store, or even run it
on anyone’s iPhone, you need to make sure it’s behaving properly. By that
I mean not only delivering the promised functionality, but also avoiding the
unintentional misuse of iPhone resources. Keep in mind that the iPhone, as
cool as it may very well be, is nevertheless somewhat resource-constrained
when it comes to memory usage and battery life. Such restraints can have a
direct effect on what you can (and can’t) do in your application.

While the Static Analyzer can help you detect memory leaks, the real champ
at doing that is Xcode’s Instruments application, which also lets you know
how your application uses iPhone resources such as the CPU, memory,
network, and so on.

The Instruments application allows you to observe the performance of your
application while running it on the IPhone, and to a lesser extent, while
running it on the Simulator. Here instrument means a specialized feature of
the Instruments application that zeroes in on a particular aspect of your
app’s performance (such as memory usage, system load, disk usage, and the
like) and measures it. What’s really neat, however, is the fact that you can
look at these different aspects simultaneously along a timeline — and then
store data from multiple runs, so you get a picture of how your application’s
performance changes when you tune it.

www.allitebooks.com

http://www.allitebooks.org

202 Part III: From “Gee, That’s a Good Idea,” to the App Store

While the Instruments application is a very powerful piece of software, it has
so many features that an in-depth discussion would be beyond the scope of
this book. I’ll leave that for you to explore on your own.

One More Step
Obviously, the Debugger is a very valuable tool — even more so because it’s
so easy to use. You can use the Debugger to figure out how your code and
the framework are interacting at breakpoint, examine the stack, and figure
out where the bug is hiding.

So where am I?

At this point, you can enter and save the number — and after the first time
you do that, you can enter a new number only if you touch the number
displayed in the label, which enables editing. (The code for doing that is in
Chapter 9, Listing 9-11.)

Originally I was planning to stop here in the development of the ReturnMeTo
application. But as I showed it on my iPhone to prospective users (okay, my
friends with iPhones), they had a couple of suggestions that made me realize
(after first arguing that it was okay the way it was) that I wasn’t done:

	 ✓	One suggestion was that you should be able to touch the phone number
and have it dial automatically for you.

	 ✓	The second was that touching the label display was kind of hokey, and
a better way to do what I wanted to do was to change the iPhone image
into a button.

I show you how to do both in the next chapter.

Chapter 11

Buttoning It Down and
Calling Home

In This Chapter
▶	Adding a button in Interface Builder

▶	Using the Target-Action design pattern to implement a button touch in your code

▶	Finding out what Web views do

▶	Using the phone-number-detect feature of Web views to initiate a call

▶	Admiring the final ReturnMeTo listing

Developers tend to be optimistic when they put what they hope will be
the finishing touches to their latest application. You’ve expended a

certain amount of time and effort making your dream app a reality — okay,
maybe not blood, sweat, and tears, but a lot of work nevertheless — and you
tend to think that your efforts will be greeted with great praise.

The reality, more often than not, is that when you take your spanking new
application around to a few friends and colleagues it isn’t always instantly
welcomed as the newest, most advanced thing since sliced bread! Sure, it
gets some praise, but there are some criticisms as well — “helpful suggestions”
is how your friends put it.

To take a concrete example, when I started showing around the ReturnMeTo
application the way it worked at the end of Chapter 9, I got the good-news-
bad-news routine.

The good news was that everyone liked it. The bad news was, they almost all
made the same two comments:

	 ✓	Disabling editing was a good idea, but they also all thought that having
to touch the label to enable it was pretty hokey. “Make the iPhone image
a button” was suggested by more than one person.

	 ✓	The second comment was, “Why can’t I just touch the phone number
to make a call?” (“It is a phone, right?” was usually the capstone to that
comment.)

Contents
Buttoning It Down and

Calling Home	 203
Adding a Button to Your
iPhone Interface	 204

Connecting the Button
in Interface Builder	 209

Phoning Home	 212

A Bug	220

We Are Finally Done	 223

The Final Code	 223

www.allitebooks.com

http://www.allitebooks.org

204 Part III: From “Gee, That’s a Good Idea,” to the App Store

So be prepared for comments from the peanut gallery about how “this and
this” and “such and such” is what your app needs to make it better/faster/
stronger. And be confident enough in your own skills as a developer to
actually take such suggestions seriously, dispassionately evaluate each one,
and incorporate the better ones into your work. I thought both comments
about the ReturnMeTo application made a lot of sense, so I put my coder’s
cap back on and retooled the ReturnMeTo application so that the iPhone
image acted as the enabling trigger for updating the phone number (as
requested) and the iPhone “phoned home” when somebody touched the
displayed phone number (as requested). This chapter shows the steps I had
to go through in order to incorporate these suggestions.

Adding a Button to Your
iPhone Interface

If you’ve made your way through enough of the coding in this book to get
to this point (Chapter 11), more than likely you won’t have trouble adding
a measly button to the interface. If you just remember that buttons use the
Target-Action design pattern I talk about in Chapter 2, you’ll get your head
around the whole button concept pretty quickly.

Ready? Let’s get started.

The Target-Action pattern
You use the Target-Action pattern (see Chapter 2) to let your application
know that a user has done something. When he or she taps a button for
example, your application is supposed to respond — which usually happens
in due course because the button invokes some method that you specified
in your code. The method that gets invoked is (usually) in the view controller
that manages the view in which the particular button resides. In the
case of our ReturnMeTo application, that view controller would be
ReturnMeToViewController.

In Figure 11-1 I have added a UIControl (a button). As you can see,
whenever the user taps that button, it sends the buttonPressed: message
to the ReturnMeToViewController.

End of story — well, at least for what happens when the button is tapped.
Here, I’m only replacing one control (the label) with another control (the
button). It really comes down to a plumbing issue, and makes the point that
when you use the Model-View-Controller design pattern, making a user interface
change is almost trivial — it just requires a little replumbing in the controller.
And, oh yes, a little bit of replumbing in Interface Builder as well.

205 Chapter 11: Buttoning It Down and Calling Home

	

Figure 11-1:
The

complete
architecture.

	

ReturnMeToAppDelegate

applicationDidFinishLaunching

applicationWillTerminate

UITextFieldDelegate Protocol
textFieldShouldReturn

UIControl
Target;
 ReturnMeToViewController
Action:
 buttonPress

UIApplicationDelegateProtocol

applicationDidFinishLaunching

applicationWillTerminate

“Model”
updateCallNumber

ReturnMeToViewController
moveViewUp

viewDidLoad
viewWillAppear

buttonPressed

keyboardWillShow

scrollTheView

textFieldShouldReturn

touchesBegan

viewWillDisappear

Working through your button code
If you add a button to your interface, you need to add a method to your code
to handle those times when somebody decides to actually tap the button —
the button action, in other words.

Okay, it’s time to start. First, you’ll need to add the action method
to the interface (as shown in Listing 11-1). You’ll do this in the
ReturnMeToViewController.h file.

Listing 11-1: Add the action

@interface ReturnMeToViewController : UIViewController
 <UITextFieldDelegate> {

 IBOutlet UITextField *textField;
 IBOutlet UILabel *label;
 BOOL moveViewUp;
 CGFloat scrollAmount;
 NSString *callNumber;

}

@property (nonatomic, retain) UITextField *textField;

(continued)

www.allitebooks.com

http://www.allitebooks.org

206 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 11‑1 (continued)

@property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) NSString *callNumber;

- (void)scrollTheView:(BOOL)movedUp;
- (void)updateCallNumber;
- (IBAction)buttonPressed:(id)sender;

@end

Here I’ve declared a new method — buttonPressed — with a new keyword
right smack in front of it — IBAction.

IBAction is one of those cool little techniques, like IBOutlet, that does
nothing in the code but provide a way to inform Interface Builder (hence,
the IB in both of them) that this method can be used as an action for
Target-Action connections. All IBAction “does” is act as a tag for Interface
Builder — identifying this method (action) as one you can connect to an
object (namely, the button) in a nib file. In this respect, this whole IBAction
trick is similar to the IBOutlet mechanism I discuss in Chapter 7. In that
case, however, you were tagging instance variables, in this case, methods.
Same difference.

You will use IBAction later when you launch Interface Builder and connect
the new button with the ReturnMeToViewController method. IBAction
is actually defined as a void, so if you think about it, all you’ve done is
declare a new method with a return type of void.

(IBAction)buttonPressed:(id)sender; =

(void)buttonPressed:(id)sender;

This simply means that you’ve declared a method that doesn’t return
anything to whoever invoked it.

The actual name you give the method can be anything you want, but it
must have a return type of IBAction. Usually the action method takes one
argument — typically defined as id, a pointer to the instance variables of
an object — which is given the name sender. The control that triggers your
action will use the sender argument to pass a reference to itself. So, for
example, if your action method was invoked as the result of a button tap, the
argument sender would contain a reference to the specific button that was
tapped.

	 A word to the wise — having the sender argument contain a reference to the
specific button that was tapped is a very handy mechanism, even if you’re not
going to take advantage of that in the ReturnMeTo application. With that
reference in hand, you can access the variables of the control that was tapped.

207 Chapter 11: Buttoning It Down and Calling Home

Okay, you’ve declared the method; the next thing on your To-Do list is
to actually add the buttonPressed method to the implementation file,
ReturnMeToViewController.m. You can see the code that does this deed in
Listing 11-2. I added a new #pragma here, and I added the method after that.

#pragma mark - Target Action methods

Just to keep things in the order I like, I added it right before

#pragma mark - “Model” methods

- (void)updateCallNumber {

I do that because I like to keep my “model” methods separated from overrid-
den and delegate methods.

Listing 11-2: Add buttonPressed:

- (IBAction)buttonPressed:(id)sender {

 textField.enabled = YES;
 label.text = @”You found it, touch below”;

 textField.placeholder =
 @”You may now enter the number”;
}

If this code looks familiar to you, you get extra points for paying attention.
None of this code is new; I just moved it from the touchesBegan:: method I
put together back in Chapter 9, where I tied this code to the label. Remember,
I said that user interface changes were mostly going to be a matter of plumb-
ing? Which reminds me — as long as you’re going the button route rather
than the label route, you’d best remove the code from the touchesBegan::
method. To see what code needs to be excised, check out Listing 11-3, where
I’ve commented out (and used double strikethrough) to show the code
to be removed.

Listing 11-3: Remove code from touchesBegan::

- (void)touchesBegan::(NSSet *) touches
 withEvent:(UIEvent *) event {

// if (!textField.enabled) {
// UITouch *touch = [touches anyObject];
// if (CGRectContainsPoint([label frame], [touch
// locationInView:self.view])) {
// textField.enabled = YES;
// label.text = @”You found it, touch below”;

(continued)

www.allitebooks.com

http://www.allitebooks.org

208 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 11‑3 (continued)

// textField.placeholder = @”You may now enter the
// number”;
// }
// }
// else {

 if(textField.editing) {
 [textField resignFirstResponder];
 [self updateCallNumber];
 if (moveViewUp) [self scrollTheView:NO];
 }
//}

 [super touchesBegan:touches withEvent:event];
}

One last bit of cleanup and you’re through with this chore. Because we
no longer want the label to act as a trigger for enabling editing in the
ReturnMeTo application, we have to remove the code for enabling the label
that you added to viewDidLoad back in Chapter 9. Listing 11-4 shows what
needs to go. (Again, look for the lines that have been commented out and
have double strikethrough.)

Listing 11-4: Remove the label enabling code from viewDidLoad

- (void)viewDidLoad {

 textField.clearButtonMode =
 UITextFieldViewModeWhileEditing;

 ReturnMeToAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 label.text = appDelegate.savedNumber;
 textField.text =appDelegate.savedNumber;
 if (![appDelegate.savedNumber isEqualToString:@”650 555

1212”]) {
 textField.enabled=NO;
// label.enabled = YES;
// label.userInteractionEnabled = YES;
 }

 [super viewDidLoad];
}

Adding a button to your interface really takes no more code than that.
Getting the button to actually do something for you takes a bit more work,
but (fortunately) Interface Builder makes that task pretty much a snap. But
before you go there, be sure to save your work. You know the drill Ô+S.

209 Chapter 11: Buttoning It Down and Calling Home

Connecting the Button
in Interface Builder

So far, you’ve implemented the method you want to have invoked when the
user taps the iPhone image button. Now, you need to do two things to make
that work:

	 1.	 Create the button.

	 2.	 Give the button a method to invoke and tell it the object that method is in.

Doing this is really easy thanks to our (now) old buddy Interface Builder. If
you think about it, you’re doing the same thing you did when you connected
the outlets in Chapter 7. Now you’ll connect the action.

Launch Xcode and open the ReturnMeTo project:

	 1.	 In the Groups & Files listing on the left, double-click the
ReturnMeToViewController.xib file.

		 You’ll find the file in the Resources folder of the ReturnMeTo project’s
main folder.

		 Double-clicking the file launches Interface Builder, which should display
the three windows you see in Figure 11-2.

	 	 Note: If the Library window isn’t open for some reason, open it by
choosing Tools➪Library from the main menu. And (weirder still) if the
View window isn’t visible, open it by double-clicking the View icon in the
ReturnMeToViewController.xib window. (Where there’s a will, there’s a
way. . . .)

	 2.	 Drag the Round Rect Button item from the Library window to the View
window, placing the item right next to your iPhone image.

		 If you use the blue guide lines that Interface Builder provides, you can
resize and position the button so it’s the same size as your iPhone
image, as I do in Figure 11-2.

	 3.	 Delete the Image View by selecting it and pressing the Delete key and
then drag the Round Rect Button item to where the Image View used
to be.

	 4.	 Click to select your Round Rect Button and then choose Tools➪
Attribute Inspector to bring up the Attribute Inspector.

		 Make sure you have the button selected.

		 You’re going to use the Attribute Inspector to add an image to the
button.

www.allitebooks.com

http://www.allitebooks.org

210 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 11-2:
Dragging a

button.
	

	 5.	 Choose Phone.png from the Image drop-down menu in the Attribute
Inspector, as shown in Figure 11-3 and under Type choose Custom.
Also, choose Layout➪Size to Fit.

		 That’s it — that’s all it takes to create a button using an image! Now to
connect things up.

	 6.	 Right-click the button to display a list of connections.

	 7.	 Drag from the little circle to the right of the Touch Up Inside item and
drop it on the File’s Owner icon in the ReturnMeToViewController.
xib window, as shown in Figure 11-4.

		 The Touch Up Inside connection is a good choice in this situation
because Touch Up Inside is the event that is generated when the last
place the user touched before lifting his or her finger was inside the
button. This allows a user to change his or her mind about touching the
button by moving his or her finger off the button before lifting it up.

		 The blue guideline you see here when dragging is the same blue line you
see when connecting Outlets, as you did in Chapter 7.

	 8.	 With the cursor still over the File’s Owner icon, let go of the mouse
button and then choose buttonPressed from the pop-up menu that
appears, as shown in Figure 11-5.

		 Doing so makes your connection.

211 Chapter 11: Buttoning It Down and Calling Home

	

Figure 11-3:
Adding an

image to the
button.

	

	

Figure 11-4:
Connecting

the button
with the

view
controller.

	

www.allitebooks.com

http://www.allitebooks.org

212 Part III: From “Gee, That’s a Good Idea,” to the App Store

		 As you can see, Interface Builder found the IBAction tag you declared
in the previous section and displays it for you as a choice. You can now
rest easy.

If you save your work and then compile and run the application in the Simulator,
you’ll discover that the iPhone image is now a fully functioning button that
works the same as touching the label had previously. And it’s so much prettier.

	

Figure 11-5:
Finishing the
connection.

	

Phoning Home
Why push ten buttons when you can push just one? I had originally designed
my ReturnMeTo application so that any Good Samaritan who found my lost
iPhone could see the right contact phone number and give me a call so we
could arrange a handover. When I showed this application to my friends, one
in particular looked at me a bit incredulously when I told him he couldn’t just
press the displayed phone number to make the call. “Why not?” he asked.
“Lots of applications do that.”

I realized he was right, and it’s pretty easy to do that using a Web view
(UIWebView), a view class that is part of the UIKit. It already has the ability
to automatically recognize a phone number and initiate a call.

You use the UIWebView class to not only embed Web content in your
application, but to display anything coded with HTML — making it the
number-one choice for displaying formatted text in your app. To do so, you
simply create a UIWebView object. You can have the view take up the whole
window (as I will in the iPhoneTravel411 application in Chapter 16), or you
can also treat it like a control and make it a subview of your content view
(which is functionally equivalent to how you used the label), as I will do here.
In either case, all you need to do is tell it to display some HTML content,
and presto chango, you’re done. That HTML content can be virtually (no
pun intended) anywhere — on the Internet, stored locally, or in a string you
create in your program. I show you how to deal with HTML content from the
Internet and stored locally when I walk you through the iPhoneTravel411

213 Chapter 11: Buttoning It Down and Calling Home

application later on (in Chapters 13 through 17), but for now, I’m just
interested in a loading an HTML string — our beloved phone number.

The thing for you to remember is that, by default, a Web view recognizes a
phone number and converts that number to a Phone Link. When the user
taps a Phone Link, the Phone application launches and dials the number —
which is precisely what you want.

Tweaking the code
Our ReturnMeTo application has managed so far with just a label view,
simply because you only wanted the label to display a telephone number.
Now that you want the number dialed when it’s touched, you’re going to
replace the label view you’re currently using with a Web view. To do that
successfully, you need to tackle the following three tasks:

	 1.	 Identify and modify all the places that assign the telephone number to
the label. Right now, to display the number in the label, all you have to
do is assign it to label.text, and it gets displayed. It will now take a
little more work to display it (but its’ worth it) because you’ll have to
replace each assignment with a message to the UIWebView to load the
HTML string into webView.

	 2.	 Create the HTML string you want displayed.

	 3.	 Replace the UILabel with a UIWebView in Interface Builder and then
connect everything.

Listing 11-5 shows the code you’ll need. I started by making the necessary
changes to the interface in the ReturnMeToViewController.h file. I replaced
the label outlet with a webView outlet, and I also added an instance variable
htmlString to compose the text I load into the Web view. The changes are
in bold; I have commented out (and marked with double strikethrough)
the deletions.

Listing 11-5: Update the interface

@interface ReturnMeToViewController : UIViewController
<UITextFieldDelegate> {

 IBOutlet UITextField *textField;
// IBOutlet UILabel *label;
 IBOutlet UIWebView *webView;
 BOOL moveViewUp;
 CGFloat scrollAmount;
 NSString *callNumber;
 NSString *htmlString;

(continued)

www.allitebooks.com

http://www.allitebooks.org

214 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 11‑5 (continued)

}

@property (nonatomic, retain) UITextField *textField;
// @property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) UIWebView *webView;
@property (nonatomic, retain) NSString *callNumber;

- (void)scrollTheView:(BOOL)movedUp;
- (void)updateCallNumber;
- (IBAction)buttonPressed:(id)sender;
@end

You’ll also have to add

@synthesize webView;

You should do that right after @synthesize textField; in the
ReturnMeToViewController.m file. And since you have deleted the label,
you’re also going to have to delete

@synthesize label;

Dealing with this @synthesize business is shown in Listing 11-6.

Listing 11-6: Synthesizing the webView instance variable

#import “ReturnMeToViewController.h”
#import “ReturnMeToAppDelegate.h”

@implementation ReturnMeToViewController

@synthesize textField;
// @synthesize label;
@synthesize webView;
@synthesize callNumber;

Implementing the Web view
Implementing the Web view itself is fairly simple.

In our first version of the ReturnMeTo application, you simply assigned the
savedNumber instance variable (the instance variable you added in Chapter
9 to hold the phone number you wanted to save) to the label.text field.

label.text = appDelegate.savedNumber;

215 Chapter 11: Buttoning It Down and Calling Home

As promised, moving to a Web view means you’re going to have to do a little
more work. In fact, you’ll need to replace the label.text assignment with
comparable code to create an HTML string and then have the Web view
load and display it. The changes are in bold, and I have commented out (and
marked with double strikethrough) the deletions.

	 There are two lines in Listing 11-7 below

// label.enabled = YES;

// label.userInteractionEnabled = YES;

that you previously deleted in Listing 11-4. I have left them in here so you
wouldn’t wonder where they disappeared to.

	 All of this involves existing methods in the ReturnMeToViewController.m file.

Listing 11-7: Change viewDidLoad

- (void)viewDidLoad {

 textField.clearButtonMode =
 UITextFieldViewModeWhileEditing;

 ReturnMeToAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
// label.text = appDelegate.savedNumber;
 textField.text =appDelegate.savedNumber;
 htmlString = @”<div style=\”font-family:Helvetica,
 Arial, sans-serif; font-size:14pt;\”
 align=\”center\”>”;
 htmlString = [htmlString stringByAppendingString:
 appDelegate.savedNumber];
 htmlString = [htmlString stringByAppendingString:
 @””];

 [webView loadHTMLString:htmlString baseURL:nil];

 if (![appDelegate.savedNumber isEqualToString:@”650 555
1212”]) {

 textField.enabled = NO;
// label.enabled = YES;
// label.userInteractionEnabled = YES;
 }
 [super viewDidLoad];
}

All we’re doing here is getting rid of the label assignment, the one that
assigns the savedNumber “vanilla” string:

www.allitebooks.com

http://www.allitebooks.org

216 Part III: From “Gee, That’s a Good Idea,” to the App Store

label.text = appDelegate.savedNumber;

And replacing it with code that creates an HTML-formatted string.

To start, you need to create a formatted HTML string, which surrounds the
same appDelegate.savedNumber with the formatting information. Notice
the appDelegate.savedNumber buried in there:

 htmlString = @”<div style=\”font-family:Helvetica,
 Arial, sans-serif; font-size:14pt;\”
 align=\”center\”>”;
 htmlString = [htmlString stringByAppendingString:
 appDelegate.savedNumber];
 htmlString = [htmlString stringByAppendingString:
 @””];

To create the HTML string with the saved number in it, I use the stringBy-
AppendingString: method — which creates a string by adding one string
after another. The only tricky thing here is that I had to use the backslash
character before the embedded quotes in the HTML string.

	 I won’t go into the HTML here. If you want to delve further into HTML, feel free
to check out HTML, XHTML & CSS For Dummies by Ed Tittel and Jeff Noble.

Then I simply tell the Web view to load the HTML string:

[webView loadHTMLString:htmlString baseURL:nil];

Here the loadHTMLString:: method does exactly what I need it to do — it
takes a string (with HTML formatting information embedded) and loads it
into the Web view. Here’s a closer look at the method’s arguments:

	 ✓	The first argument, htmlString, is the string I just formatted. Nothing
surprising there.

	 ✓	The second argument, BaseURL is an NSURL object. An NSURL object,
to no one’s surprise, is an object that contains a URL. It can reference
either a Web site or a local file. (It’s not necessary here since you’re not
telling the Web view to access a URL.)

In effect, Listings 11-6, 11-7, and 11-8 all show you doing the same thing — in
three different places.

	 Even though the HTML strings in the listings in this book span multiple lines,
you can’t do that in Xcode. You’ll get errors such as

error: syntax error before’@’ token

and

217 Chapter 11: Buttoning It Down and Calling Home

error: syntax error at ‘OTHER’ token

unless, of course, you use the escape character (\) as the last character on
the line, right before the carriage return.

Listing 11-8: Change buttonPressed:

#pragma mark - Target Action methods

-(IBAction)buttonPressed:(id)sender{

 textField.enabled = YES;

 // label.text = @”You found it, touch below”;

 htmlString = @”<div style=\”font-family:Helvetica,

Arial, sans-serif; font-size:14pt;\”
align=\”center\”>”;

 htmlString = [htmlString stringByAppendingString:
@”You found it, touch below”];

 htmlString = [htmlString stringByAppendingString: @”</
span>”];

 [webView loadHTMLString:htmlString baseURL:nil];

 textField.placeholder = @”You may now enter the number”;
}

Listing 11-9: Change updateCallNumber

 - (void)updateCallNumber {

 self.callNumber = textField.text;
// label.text = self.callNumber;
 htmlString = @”<div style=\”font-family:Helvetica,

Arial, sans-serif; font-size:14pt;\”
align=\”center\”>”;

 htmlString = [htmlString stringByAppendingString:
callNumber];

 htmlString = [htmlString stringByAppendingString: @”</
span>”];

 [webView loadHTMLString:htmlString baseURL:nil];

 ReturnMeToAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 appDelegate.savedNumber = self.callNumber;
}

www.allitebooks.com

http://www.allitebooks.org

218 Part III: From “Gee, That’s a Good Idea,” to the App Store

And don’t forget that wonderful sentiment, “If you love somebody, set them
free.” In programming terms, that means you always have to release all the
objects you own. (If this “release” stuff doesn’t ring a bell, check out Chapters
6 and 7, where I cover the idea in greater detail.)

Listing 11-10: Last but not least — dellaoc

- (void)dealloc {

 [textField release];
 // [label release];
 [webView release];
 [callNumber release];
 [htmlString release];

 [super dealloc];
}

Adding and connecting the Web
View in Interface Builder
As was the case when we replaced the Image View with the Round Rect Button
(earlier in the chapter), we have to tell Interface Builder about our decision to
replace the Label with a Web View. To get that ball rolling, do the following:

	 1.	 Launch Xcode and open the ReturnMeTo project.

	 2.	 In the Groups & Files listing on the left, double-click the
ReturnMeToViewController.xib file.

		 Interface Builder launches, and you end up with the windows you see in
Figure 11-6.

		 Note: Again, if the Library window is not open for some reason, go
ahead and open it by choosing Tools➪Library from the main menu. And
(weirder still) if the View window isn’t visible, open it by double-clicking
the View icon in the ReturnMeToViewController.xib window.

	 3.	 Drag a Web View item from the Library window to the View window.

		 Use the blue lines to resize and position the Web View so it’s the same
size (and in the same place) as the label, as shown in Figure 11-6.

	 4.	 Delete the (old) label by selecting it and pressing delete.

219 Chapter 11: Buttoning It Down and Calling Home

	 5.	 Right click the File’s Owner icon in the
ReturnMeToViewController.xib window to display a list of
connections.

		 Notice that this method of making a connection is different from the
one I showed you earlier in the chapter, when you had to deal with the
Round Rect Button. I felt it would be a good idea to show you both ways
of making the connection.

	 6.	 Click webView in the list of connections — it’s there under the Outlets
heading — and drag the little circle over to the View window and onto
the Web view itself, as shown in Figure 11-7.

	 7.	 Make sure that the Detects Phone Numbers check box is checked in
the Attributes Inspector.

Here you’ve replaced the label with a Web view and connected the new
webView outlet to the Web view in the same way that the label outlet was
previously connected to the label. (Not bad for a day’s work.)

	

Figure 11-6:
Dragging a
Web view.

	

www.allitebooks.com

http://www.allitebooks.org

220 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 11-7:
Connecting

the Web
view to its
controller.

	

A Bug
In the spirit of making this a real-world exercise and not some piece of
theory, I have to confess that when I was testing this application for the final
time, three days before the final, final chapters were due, I found a bug. It
doesn’t get much more real-world than that, does it?

When I replaced the label with the Web view, there was an unintended
consequence (the polite way of saying I introduced a logic error in my code).

The way that I handled dismissing the keyboard and restoring the view when
the user touched the screen (see Chapter 8) was by capturing the touches
that were passed to the view controller in touchesBegan::.

That even worked if the user touched the label, because the label passed the
touches on. But while the label didn’t care about touches, the Web view does.
(It captures touches so it can detect when you touch a Web or Phone Link
and load the URL or initiate the dialing of the number.) That meant that if the
user happened to touch the screen in the Web view I just added — say, to
indicate that he or she was done entering the number — touchesBegan::
in the controller would never be invoked.

221 Chapter 11: Buttoning It Down and Calling Home

	 Ironically, the keyboard was dismissed because the Web view becomes the
first responder when the user touches in it. (You can find out more about that
in Chapter 8.) But since touchesBegan:: was never invoked, the view was
never restored to its pre-scrolled state.

Incidentally, I figured all this out using a breakpoint in the handy dandy
debugger — like I show you in Chapter 10. Talk about eating your own dog
food.

Fixing it was simple. All I had to do was keep the Web view from handling
touches during the period from when the user started using the keyboard
until after the user dismissed it. I did that by setting the Web view’s user
InteractionEnabled property to NO as soon as the keyboard appeared.
The place to do that was in keyboardWillShow:, which is invoked right
before the keyboard appears (as you recall from Figure 11-1). All I had to do
was add one line of code (in bold in Listing 11-11) to keyboardWillShow:.

webView.userInteractionEnabled = NO;

Of course, once I disabled the Web view, I had to enable it again if I wanted
the Web view to be able to initiate the call when the Phone Link was tapped.
As you recall, textFieldShouldReturn: is invoked after the user has
finished entering the phone number and taps return, and touchesBegan::
is invoked after the user has finished entering the phone number and taps
the screen. So I added the following code (in bold in Listing 11-11) to both of
those methods after the keyboard is dismissed.

 webView.userInteractionEnabled = YES;

Piece of cake.

Listing 11-11: Disabling and re-enabling the Web view

- (void)keyboardWillShow:(NSNotification *)notif {

 NSDictionary* info = [notif userInfo];

 NSValue* aValue = [info
 objectForKey:UIKeyboardBoundsUserInfoKey];
 CGSize keyboardSize = [aValue CGRectValue].size;
 float bottomPoint = (textField.frame.origin.y+
 textField.frame.size.height+10);
 scrollAmount = keyboardSize.height -
 (self.view.frame.size.height - bottomPoint);

(continued)

www.allitebooks.com

http://www.allitebooks.org

222 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 11‑11 (continued)

 if (scrollAmount >0) {
 moveViewUp = YES;
 [self scrollTheView:YES];
 }
 else
 moveViewUp = NO;
 webView.userInteractionEnabled =NO;
}

- (void)touchesBegan:(NSSet *)touches withEvent:
 (UIEvent *) event {

// if (!textField.enabled) {
// UITouch *touch = [touches anyObject];
// if (CGRectContainsPoint([label frame], [touch
// locationInView:self.view])) {
// textField.enabled = YES;
// label.text = @”You found it, touch below”;
// textField.placeholder = @”You may now enter the
// number”;
// }
// }
// else {

 if(textField.editing) {
 [textField resignFirstResponder];
 [self updateCallNumber];
 if (moveViewUp) [self scrollTheView:NO];
 webView.userInteractionEnabled =YES;
 }
// }

 [super touchesBegan:touches withEvent:event];
}

-(BOOL)textFieldShouldReturn:(UITextField *)
 theTextField {

 [textField resignFirstResponder];
 webView.userInteractionEnabled=YES;
 if (moveViewUp) [self scrollTheView:NO];
 [self updateCallNumber];
 webView.userInteractionEnabled = YES;

 return YES;
}

223 Chapter 11: Buttoning It Down and Calling Home

We Are Finally Done
With this last change, I am putting the ReturnMeTo application to bed.

Chapter 12 — my All-Things-Having-to-Do-with-Provisioning-And-App-Store —
will be the capstone to Part III. After that, we still have Part IV to deal with,
where you get to look at some of the more advanced application-development
techniques. There, I concentrate on explaining the ins and outs of designing
my MobileTravel411 and iPhoneTravel411 applications. Drilling down a bit, I go
through how to develop the iPhoneTravel411 app. Now, that’s a more complex
application — incorporating some techniques and tools you’ll likely end up
using in your own applications — stuff like saving files, using table views (to
navigate, among other things), forming an alliance with the Settings applica-
tion, figuring out internationalization, and accessing data on the Internet.

The Final Code
Behold: Listings 11-12 through 11-15 are the final code for the ReturnMeTo
application. I’ve bolded any changes from the listing posted at the end of
the last chapter and have commented out (and marked with double
strikethrough) all deletions.

	 Even though the HTML strings in the listings span multiple lines, you can’t
do that in Xcode unless you use the escape character (\) right before the
carriage return.

Listing 11-12: ReturnMeToAppDelegate.h

#import <UIKit/UIKit.h>

@class ReturnMeToViewController;

@interface ReturnMeToAppDelegate :
 NSObject <UIApplicationDelegate> {

 UIWindow *window;
 ReturnMeToViewController *viewController;
 NSString *savedNumber ;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet
 ReturnMeToViewController *viewController;
@property (nonatomic, retain) NSString *savedNumber;

@end

www.allitebooks.com

http://www.allitebooks.org

224 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 11-13: ReturnMeToAppDelegate.m

#import “ReturnMeToAppDelegate.h”
#import “ReturnMeToViewController.h”
NSString *kNumberLocationKey = @”NumberLocation”;

@implementation ReturnMeToAppDelegate

@synthesize window;
@synthesize viewController;
@synthesize savedNumber;

#pragma mark - UIApplicationDelegate methods

- (void)applicationDidFinishLaunching:
 (UIApplication*) application {

 self.savedNumber = [[NSUserDefaults
 standardUserDefaults] objectForKey:kNumberLocationKey];
 if (savedNumber == nil) {
 savedNumber = @”650 555 1212”;
 NSDictionary *savedNumberDict = [NSDictionary

dictionaryWithObject:savedNumber
forKey:kNumberLocationKey];

 [[NSUserDefaults standardUserDefaults]
 registerDefaults:savedNumberDict];
 }

 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

- (void)applicationWillTerminate:
 (UIApplication *)application {

 [[NSUserDefaults standardUserDefaults]
setObject:savedNumber
forKey:kNumberLocationKey];

}

- (void)dealloc {
 [viewController release];
 [window release];
 [savedNumber release];
 [super dealloc];
}

@end

225 Chapter 11: Buttoning It Down and Calling Home

Listing 11-14: ReturnMeToViewController.h

@interface ReturnMeToViewController : UIViewController
 <UITextFieldDelegate> {

 IBOutlet UITextField *textField;
//IBOutlet UILabel *label;
 IBOutlet UIWebView *webView;
 BOOL moveViewUp;
 CGFloat scrollAmount;
 NSString *callNumber;
 NSString *htmlString;
}

@property (nonatomic, retain) UITextField *textField;
// @property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) UIWebView *webView;
@property (nonatomic, retain) NSString *callNumber;

- (void)scrollTheView:(BOOL)movedUp;
- (void)updateCallNumber;
- (IBAction)buttonPressed:(id)sender;

@end

Listing 11-15: ReturnMeToViewController.m

#import “ReturnMeToViewController.h”
#import “ReturnMeToAppDelegate.h”

@implementation ReturnMeToViewController

@synthesize textField;
// @synthesize label;
@synthesize webView;
@synthesize callNumber;

#pragma mark - UIViewController methods

- (void)viewDidLoad {

 textField.clearButtonMode =
 UITextFieldViewModeWhileEditing;

 ReturnMeToAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
//label.text = appDelegate.savedNumber;
 textField.text =appDelegate.savedNumber;

(continued)

www.allitebooks.com

http://www.allitebooks.org

226 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 11‑15 (continued)

 htmlString = @”<div style=\”font-family:Helvetica,
 Arial, sans-serif; font-size:14pt;\”
 align=\”center\”>”;
 htmlString = [htmlString stringByAppendingString:
 appDelegate.savedNumber];
 htmlString = [htmlString stringByAppendingString:
 @””];

 [webView loadHTMLString:htmlString baseURL:nil];

 if (![appDelegate.savedNumber
 isEqualToString:@”650 555 1212”]) {
 textField.enabled=NO;
//label.enabled=YES;
//label.userInteractionEnabled = YES;
 }
 [super viewDidLoad];
}

- (void)viewWillAppear:(BOOL)animated {

 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(keyboardWillShow:) name:UI
KeyboardWillShowNotification object:self.view.
window];

 [super viewWillAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated {

 [[NSNotificationCenter defaultCenter]
removeObserver:self name:UIKeyboardWillShowNoti
fication object:nil];

 [super viewWillDisappear:animated];
}

#pragma mark - ReturnMeTo methods

- (void)keyboardWillShow:(NSNotification *) notif {

 NSDictionary* info = [notif userInfo];

 NSValue* aValue = [info objectForKey:UIKeyboardBoundsUse
rInfoKey];

 CGSize keyboardSize = [aValue CGRectValue].size;

227 Chapter 11: Buttoning It Down and Calling Home

 float bottomPoint = (textField.frame.origin.y+
textField.frame.size.height+10);

 scrollAmount = keyboardSize.height - (self.view.frame.
size.height - bottomPoint) ;

 if (scrollAmount >0) {
 moveViewUp = YES;
 [self scrollTheView:YES];
 }
 else
 moveViewUp = NO;
 webView.userInteractionEnabled = NO;
}

- (void)scrollTheView:(BOOL)movedUp {

 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:0.3];
 CGRect rect = self.view.frame;
 if (movedUp){
 rect.origin.y -= scrollAmount;
 }
 else {
 rect.origin.y += scrollAmount;
 }
 self.view.frame = rect;

 [UIView commitAnimations];
}

#pragma mark - UIResponder methods

- (void)touchesBegan:(NSSet *)touches withEvent:
 (UIEvent *)event {

// if (!textField.enabled) {
// UITouch *touch = [touches anyObject];
// if (CGRectContainsPoint([label frame], [touch
// locationInView:self.view])) {
// textField.enabled = YES;
// label.text = @”You found it, touch below”;
// textField.placeholder = @”You may now enter the
// number”;
// }
// }
// else {

 if(textField.editing) {

(continued)

www.allitebooks.com

http://www.allitebooks.org

228 Part III: From “Gee, That’s a Good Idea,” to the App Store

Listing 11‑15 (continued)

 [textField resignFirstResponder];
 [self updateCallNumber];
 if (moveViewUp) [self scrollTheView:NO];
 webView.userInteractionEnabled=YES;
 }
// }

 [super touchesBegan:touches withEvent:event];
}

#pragma mark - NSObject methods

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)dealloc {

 [textField release];
//[label release];
 [webView release];
 [callNumber release];
 [htmlString release];

 [super dealloc];
}

#pragma mark - UITextField delegate methods

- (BOOL)textFieldShouldBeginEditing:
 (UITextField *)currentTextField {

 if(currentTextField == self.textField)
 moveViewUp = YES;
 else
 moveViewUp = NO;
 return YES;
}

-(BOOL)textFieldShouldReturn:
 (UITextField *) theTextField {

 [textField resignFirstResponder];
 webView.userInteractionEnabled=YES;
 if (moveViewUp) [self scrollTheView:NO];
 [self updateCallNumber];
 webView.userInteractionEnabled = YES;

229 Chapter 11: Buttoning It Down and Calling Home

 return YES;
}

#pragma mark - Target Action methods

-(IBAction)buttonPressed:(id)sender{

 textField.enabled = YES;

//label.text = @”You found it, touch below”;

 htmlString = @”<div style=\”font-family:Helvetica,

Arial, sans-serif; font-size:14pt;\”
align=\”center\”>”;

 htmlString = [htmlString stringByAppendingString: @”You
found it, touch below”];

 htmlString = [htmlString stringByAppendingString: @”</
span>”];

 [webView loadHTMLString:htmlString baseURL:nil];

 textField.placeholder = @”You may now enter the number”;
}

#pragma mark - “Model” methods

- (void)updateCallNumber {

 self.callNumber = textField.text;
//label.text = self.callNumber;
 htmlString = @”<div style=\”font-family:Helvetica,

Arial, sans-serif; font-size:14pt;\”
align=\”center\”>”;

 htmlString = [htmlString stringByAppendingString:
callNumber];

 htmlString = [htmlString stringByAppendingString: @”</
span>”];

 [webView loadHTMLString:htmlString baseURL:nil];

 ReturnMeToAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 appDelegate.savedNumber = self.callNumber;
}

@end

www.allitebooks.com

http://www.allitebooks.org

230 Part III: From “Gee, That’s a Good Idea,” to the App Store

Chapter 12

Death, Taxes, and the
iPhone Provisioning

In This Chapter
▶	Running your application on the iPhone

▶	Getting the app ready for distribution

▶	Taking the app to market — that is, the App Store

Benjamin Franklin once said, “In this world nothing can be said to be
certain, except death and taxes.” I’ve discovered one other certainty in

this earthly vale of tears: Everybody has the same hoops to jump through to
get an application onto an iPhone and then into the App Store — and nobody
much likes them, but there they are.

So you’re working on your application, running it in the Simulator, as happy
as a virtual clam, and all of a sudden you get this urge to see what your
creation will look like on the iPhone itself. Assuming that you have joined the
requisite developer program (see Chapter 3), what do you have to do to get it
to run on the iPhone?

For most developers, getting their applications to run on the iPhone during
development can be one of the most frustrating things about developing
software for the iPhone. The sticking point has to do with a rather technical
concept called code signing, a rather complicated process designed to ensure
the integrity of the code and positively identify the code’s originator. Apple
requires all iPhone applications to be digitally signed with a signing certificate —
one issued by Apple to a registered iPhone developer — before the application
can be run on a development system and before they’re submitted to Apple
for distribution. As I mention earlier, this signature authenticates the identity
of the developer of the application and ensures that there have been no
changes to the application after it was signed. As to why this is a big deal,
here’s the short and sweet (and, to my ears, convincing) answer: Code
signing is your way of guaranteeing that no bad guys have done anything to
your code that can harm the innocent user.

Contents
Death, Taxes, and the

iPhone Provisioning	 231
How the Process Works	 232

Provisioning Your Device
for Development	 235

Provisioning Your Application
for the App Store	 239

iTunes Connect	 244

Now What?	 252

www.allitebooks.com

http://www.allitebooks.org

232 Part III: From “Gee, That’s a Good Idea,” to the App Store

Now, as I said, nobody really likes the process, but it’s doable. In this
chapter, I’m going to start by giving you an overview of how it all works by
jumping right to that point where you’re getting your application ready to be
uploaded to the App Store and then distributed to end users. I realize I’m
starting at the end of the process, which for all practical purposes begins
with getting your application to run on a device during development. I’m
doing the overview in this order because the hoops you have to jump
through to get an application to run on a single iPhone during development
are a direct consequence of code signing, and of how Apple manages it
through the App Store and on the device.

After the overview, which will give you some context for the whole process,
I’ll revert back to the natural order of things and start with getting your
application to run on your iPhone during development.

How the Process Works
It’s very important to keep clear that there are two different processes that
you’ll have to go through. One for development, and one for distribution.
Both these processes produce different, but similarly named certificates and
profiles, and you’ll need to pay attention to keep them straight. As I said
earlier, I’ll start with the distribution process — how you get your app to run
on other people’s iPhones. Then I’ll go back and talk about the development
process — how to get your app running on your iPhone during development.

The Distribution process
Before you can build a version of your application that will actually run on
your users’ iPhones, Apple insists that you have the following:

	 ✓	A Distribution Certificate: An electronic document that associates a
digital identity (which it creates) with other information that identifies
you, including a name, e-mail address, or business that you have
provided. The Distribution Certificate is placed on your keychain — that
place on your Mac that securely stores passwords, keys, certificates,
and notes for users.

	 ✓	A Distribution Provisioning Profile: These profiles are code elements
that Xcode builds into your application, creating a kind of “code
fingerprint” that acts as a unique digital signature.

233 Chapter 12: Death, Taxes, and the iPhone Provisioning

After you’ve built your application for distribution, you then send it to Apple
for approval and distribution. Apple verifies the signature to be sure that the
code came from a registered developer (you) and has not been corrupted.
Apple then adds its own digital signature to your signed application. The
iPhone OS will only run applications that have that digital signature. Doing
it this way ensures iPhone owners that the applications they download from
iTunes have been written by registered developers and have not been altered
since they were created.

	 To install your distribution-ready application on a device, you can also
create an Ad Hoc Provisioning Profile, which allows you to actually have your
application used on up to 100 devices.

While the system for getting apps on other people’s iPhones works pretty
well, leaving aside the fact that Apple essentially has veto rights on every
application that comes its way, there are some significant consequences
for developers. In this system, there really is no mechanism for testing your
application on the device it’s going to run on:

	 ✓	You can’t run your app on an actual device until it’s been code-signed by
Apple, but Apple is hardly going to code-sign something that may not be
working correctly.

	 ✓	Even if Apple did sign an app that hadn’t yet run on an iPhone, that
would mean an additional hassle: Every time you recompiled, you’d
have to upload the app to the App Store again — and have it code-signed
again because you had changed it, and then download it to your device.

Bit of a Catch-22 here.

The Development process
To deal with this problem, Apple has developed a process in which you can
create a Development Certificate (as opposed to a Distribution Certificate that
I explained at the start of this section) and a Development Provisioning Profile
(as opposed to a Distribution Provisioning Profile that I also explained at
the start of this section). It’s easy to get these confused — the key words are
Distribution and Development. With these items in hand, you can run your
application on a specific device.

	 Remember, this process is only required because of the code-signing
requirements of the distribution process.

www.allitebooks.com

http://www.allitebooks.org

234 Part III: From “Gee, That’s a Good Idea,” to the App Store

The Development Provisioning Profile is a collection of your App ID, Apple
device UDID (a unique identifier for each iPhone), and iPhone Development
Certificate (belonging to a specific developer). This Profile must be installed
on each device on which you want to run your application code (you’ll
see how that is done later). Devices specified within the Development
Provisioning Profile can be used for testing only by developers whose iPhone
Development Certificates are included in the Provisioning Profile. A single
device can also contain multiple provisioning profiles.

It’s import to realize that a development provisioning profile (as opposed to
a distribution one) is tied to a device and a developer.

Even with your provisioning profile(s) in place, when you compile your
program, Xcode will only build and sign (create the required signature for)
your application if it finds one of those Development Certificates in your
Keychain. Then, when you install a signed application on your provisioned
device, the iPhone OS verifies the signature to make sure that (a) the
application was signed and (b) the application has not been altered since
it was signed. If the signature is not valid or if you didn’t sign the code, the
iPhone OS will not let the application run.

This means that each Development Provisioning Profile is also tied to a
particular Development Certificate.

	 And to make sure the message has really gotten across:

A Development Provisioning Profile is tied to a specific device and a
specific Development Certificate.

Your application, during development, must be tied to a specific
Development Provisioning Profile (which is easily changeable).

	 The process you’re about to go through is akin to filling out taxes: You have to
follow the rules, or there can be some dire consequences. But if you do follow
the rules, everything works out, and you don’t have to worry about it again.
(Until it’s time to develop the next app, of course.)

While this is definitely not my favorite part of iPhone software development,
I’ve made peace with it, and so should you. Now I’ll go back to the natural
order of things and start by explaining the process of getting your device
ready for development. I’m happy to give you an overview of the process, but
it will be up to you to go through it step by step on your own. Although Apple
documents the steps very well, do keep in mind that you really have to carry
them out in exactly the way Apple tells you. There are no shortcuts! But if
you do it the way it prescribes, you’ll be up and running on a real device very
quickly.

235 Chapter 12: Death, Taxes, and the iPhone Provisioning

With your app up and running, it’s time for the next step: getting your
creation ready for distribution. (I find that process to be somewhat easier.)
Finally, you’ll definitely want to find out how to get your application into the
App Store. I aim to please, so I spell out those steps as well. After that, all you
have to do is sit back and wait for fame and fortune to come your way.

	 This is the way things looked when I was writing this book. What you see
when you go through this process yourself may be slightly different from what
you see here. Don’t panic. It’s because Apple changes things from time to
time.

Provisioning Your Device
for Development

Until just recently, getting your application to run on the iPhone during
development was a really painful process. In fact, I had written a 30-page
chapter on it, detailing step after painful step. Then, lo and behold, right
when I had put the finishing touches on my magnum opus, Apple changed the
process and actually made it much easier. In fact, the process is now so easy
that there’s no real need for me to linger over the details. (Okay, I have some
mixed feelings about that — but they’re mostly relief.)

Here’s the drill:

	 1.	 Go to the iPhone Dev Center Web site at

http://developer.apple.com/iphone/

		 The Program Portal Button in the iPhone Developer Program section on
the right side of the Web page (shown in Figure 12-1) appears. (Well, it
does if you’re a registered developer. You did take care of that, right? If
not, look back at Chapter 3 for more on how to register.)

	 2.	 Click the Program Portal Button.

		 The Program Portal screen appears, as shown in Figure 12-2.

	 3.	 Assuming you’re either a Team Admin or Team Agent, or are enrolled
in the Developer Program as an individual, use the Development
Provisioning Assistant to create and install a Provisioning Profile and
iPhone Development Certificate, as shown in the next section.

		 You need these to build and install applications on the iPhone. But you
knew that.

www.allitebooks.com

http://www.allitebooks.org

236 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 12-1:
The

gateway to
the Program

Portal.
	

	 You have already identified yourself to Apple as one of two types of developers:

	 ✓	If you’re enrolled in the Developer Program as an individual, you’re
considered a Team Agent with all the rights and responsibilities.

	 ✓	If you’re part of a company, you have set up a team already. If not, click
the Setting Up a Team link on the right side of the iPhone Developer
Program Portal page — right there under the Portal Resources heading —
to get more info about setting up a team and who needs to do what when.

Development Provisioning Profile and
iPhone Development Certificate
When you’ve settled the matter of which kind of developer you are (for
Apple’s purposes), click the Launch Assistant button, and you should see
what I see in Figure 12-3.

As I mention earlier in the chapter, to run an application you’re developing
for iPhone, you must have a Provisioning Profile installed on the device on
which you’re running your app, as well as a Development Certificate on your
Mac. The whole point of the Development Provisioning Assistant is to guide
you through the steps to create and install your Development Provisioning
Profile and iPhone Development Certificate.

237 Chapter 12: Death, Taxes, and the iPhone Provisioning

	

Figure 12-2:
Behold

the iPhone
Developer

Program
Portal.

	

	

Figure 12-3:
The

Development
Provisioning

Assistant.
	

www.allitebooks.com

http://www.allitebooks.org

238 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 Development and Distribution stay off each other’s turf. The Development
Provisioning Assistant creates a Development Provisioning Profile, not
Distribution Provisioning Profile. You have to use the Provisioning section of
the Program Portal to create a Distribution Provisioning Profile required for
distribution to customers on the App Store. I’ll get to that later in the chapter.

Here’s what the Development Provisioning Assistant has you do:

	 1.	 Choose an App ID.

		 An App ID is a unique identifier that is one part of your Development
Provisioning Profile.

		 Using the Assistant will create an App ID that cannot be used with the
Apple Push Notification service or for In App Purchase. If you have
previously created an App ID already that can be used with the Apple
Push Notification service or for In App Purchase, you can’t use the
Assistant to create a Development Provisioning Profile. This is not a big
deal; you’ll just have to follow the steps the Assistant follows on your own.

	 2.	 Choose an Apple Device.

		 Development provisioning is also about the device, so you have to
specify which particular device you’re going to use. You do that by
providing the Assistant with the device’s Unique Device Identifier
(UDID), which the Assistant shows you how to locate using Xcode.

	 3.	 Provide your Development Certificate.

		 Since all applications must be signed by a valid certificate before they
can run an Apple device, you’ll have to create one at this point. The
Development Provisioning Assistant will guide you through that process.

		 For an Individual developer, the assistant will guide you through the
process, step-by-step. For a Company (that is, a team), each developer
will first have to create a Certificate Signing Request, which will then
have to be approved by your Program Admin or Team Agent. The
Development Provisioning Assistant will take you through that as well.

	 4.	 Name your Provisioning Profile.

		 A Provisioning Profile pulls together your App ID (Step 1), Apple device
UDID (Step 2), and iPhone Development Certificate (Step 3). The assistant
will step you though downloading it and handing it over to Xcode, which
will install it on your device.

		 At that point, you’ll be able to choose iPhone Device 3.1 (see Figure 12-4)
as the active SDK in the project window. You can then build your
application and have it installed on the provisioned device. You’ll
notice that in Figure 12-4, I also have Distribution as one of my active
configurations. Not to worry; you’ll be there soon.

239 Chapter 12: Death, Taxes, and the iPhone Provisioning

	

Figure 12-4:
Ready to run
your app on
the iPhone.

	

Provisioning Your Application
for the App Store

Although there’s no dedicated Assistant to help you provision your
application for the App Store, that process is actually a little easier —
which may be why it didn’t bother coming up with an Assistant for it. You
start at the Developer Portal (refer to Figure 12-2), but this time you select
Distribution from the menu on the left side of the page. Doing so takes you
to the screen shown in Figure 12-5 — an overview of the process, as well as
links that take you where you need to go when you click them.

	 You actually jump through some of the very same hoops you did when you
provisioned your device for development — except this time you’re going
after a distribution certificate.

Here’s the step-by-step account:

	 1.	 Obtain your iPhone Distribution Certificate.

		 In order to distribute your iPhone OS application, a Team Agent has
to create an iPhone Distribution Certificate. This works much like the
Development Certificate, except only the Team Agent (or whoever is
enrolled as an Individual developer) can get one. Clicking the Obtaining
Your iPhone Distribution Certificate link (shown in Figure 12-5) leads
you through the process.

www.allitebooks.com

http://www.allitebooks.org

240 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 12-5:
Getting

your app
ready for

distribution:
You are

here.
	

	 2.	 Create your iPhone Distribution Provisioning Profile for App Store
Distribution.

		 To build your application successfully with Xcode for distribution via
the App Store, first you have to create and download an App Store
Distribution Provisioning Profile — which is (lest we forget) different
from the Development Provisioning Profiles I talk about in the previous
section.

		 Apple will only accept an application when it’s built with an App Store
Distribution Provisioning Profile.

	 3.	 Click the Create and Download Your iPhone Distribution Provisioning
Profile for App Store Distribution link.

		 The link (refer to Figure 12-5) leads you through this process.

	 4.	 When you’re done creating the Distribution Provisioning Profile,
download it and drag it into Xcode in the dock.

		 That loads your Distribution Profile into Xcode, and you’re ready to
build an app you can distribute for use on actual iPhones.

	 5.	 (Optional) You can also create and download a Distribution
Provisioning Profile for Ad Hoc Distribution.

241 Chapter 12: Death, Taxes, and the iPhone Provisioning

		 Going the Ad Hoc Distribution route enables you to distribute your
application to up to 100 users without going through the App Store.
Clicking the Creating and Downloading a Distribution Provisioning
Profile for Ad Hoc Distribution link (refer to Figure 12-5 again) leads you
through the process. (Ad Hoc Distribution is beyond the scope of this
book, but the iPhone Developer Program Portal has more info about this
option.)

	 6.	 Build your application with Xcode for distribution.

		 After you download the distribution profile, you can build your
application for distribution — rather than just building it for testing
purposes, which is what you’ve been doing so far. It’s a well-documented
process that you start by clicking the Building Your Application with
Xcode for Distribution link (shown in Figure 12-5).

	 7.	 Verify that it worked.

		 Click the Verifying a Successful Distribution Build link (refer to Figure
12-5) to get the verification process started. In this case, I find there are
some things missing in the heretofore well-explained step-by-step
documentation, so I’ll help you along.

		 If you check the handy documentation that is part of the Verifying a
Successful Distribution Build link, it tells you to open the Build Log
detail view and confirm the presence of the embedded.mobile
provision file. In Chapter 4, I showed you how to keep the Build
Results window open, but if you haven’t been doing that, choose
Build➪Build Results.

		 Depending on the way the way the Build Results window is configured,
you may see a window only showing the end result of your build. In
Figure 12-6, I see it was a successful build.

	

Figure 12-6:
And

where’s the
transcript?

	

www.allitebooks.com

http://www.allitebooks.org

242 Part III: From “Gee, That’s a Good Idea,” to the App Store

		 To get the actual log of the process, you will have to change Errors &
Warnings Only in the drop-down menu in the scope bar to All Messages
as I have in Figure 12-7.

	

Figure 12-7:
The build log

revealed.
	

	 8.	 At this point, do a couple of prudent checks:

	 •	Verify that your application was signed by your iPhone Certificate.
To do that, select the last line in the build log — the one that starts
with “CodeSign.” Then click on the icon at the end of the line, as I
have in Figure 12-8.

		 In Figure 12-9, you’ll see that it was signed by my iPhone Certificate
(okay, you may need a magnifying glass, but trust me it’s there,
and make sure yours is, too).

	 •	Verify that the embedded.mobileprovision is there and is
located in the “Distribution” build directory and is not located in a
“Debug” or “Release” build directory.

		 To do that, search for embedded.mobileprovision in the
search field in the upper-right corner of the Build Results window,
as I did in Figure 12-10. You’ll see two matches. I chose the second
one, and again clicked on the icon at the end of the line to see
more. I can see that it’s there, and the directory it’s building to is
Distribution-iphoneos.

243 Chapter 12: Death, Taxes, and the iPhone Provisioning

	

Figure 12-8:
Getting

more
information

from the
Build log.

	

	

Figure 12-9:
It has been

signed by
my iPhone
Certificate.

	

When you’ve done this elaborate (but necessary) song and dance, you’re
ready to rock ‘n roll. You can go to iTunes Connect — your entry way to the
App store. This is where the real fun starts.

www.allitebooks.com

http://www.allitebooks.org

244 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 12-10:
embedded.

mobileprovi-
sion is there
and building

to the right
directory.

	

iTunes Connect
iTunes Connect is a group of Web-based tools that enables developers to
submit and manage their applications for sale via the App Store. It’s actually
the very same set of tools that the other content providers — the music and
video types — use to get their content into iTunes. In iTunes Connect, you
can check on your contracts, manage users, and submit your application
with all its supporting documentation — the metadata, as Apple calls it — to
the App Store. This is also where you get financial reports and daily/weekly
sales trend data (yea!).

Your first stopping point is the App Store, Logo Licensing, and Affiliate
Program page (shown in Figure 12-11). Here’s how you get there:

	 ✓	Select the App Store tab in the Distribution section of the Developer
Portal.

		 (Select Learn More right under the App Store heading if you don’t see
what I have in Figure 12-11.)

245 Chapter 12: Death, Taxes, and the iPhone Provisioning

	

Figure 12-11:
The App

Store, Logo
Licensing,

and Affiliate
Program

page.
	

At this point, get your bearings and proceed:

	 ✓	A Team Agent or Individual developer will see the Go to iTunes Connect
button. Click this button to call up the login page of iTunes Connect.

	 ✓	You need to use your AppleID and password to log in to the iPhone
Developer Program Portal.

	 ✓	Before you can do anything, you’re asked to review and accept the
iTunes Distribution Terms & Conditions. After taking care of that chore,
you land on the iTunes Connect page shown in Figure 12-12.

		 At some point, you should also select To Become an Authorized
Licensee, which is a little farther down the App Store, Logo Licensing,
and Affiliate Program page you see back in Figure 12-11. This will allow
you to use the iPhone App Store artwork and iPhone images in your
advertising, Web sites, and other marketing materials.

www.allitebooks.com

http://www.allitebooks.org

246 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 12-12:
The iTunes

Connect
main page.

	

When you want to add an application to the App Store, or manage what you
already have there, the iTunes Connect main page is your control panel for
getting that done.

What you’ll need to get your
application into the App Store
To start with, there’s a link on the iPhone Dev Center page, under News and
Information labeled: Tips on Submitting Your App to the App Store.

This page has information on Keywords, Assigning a Rating For Your App,
and some other tips. Read it!

Apple is very strict about some things, and I speak from firsthand experience.

The first time I submitted ReturnMeTo to the App store, I received a polite,
but firm e-mail rejecting my application because my program icon used an
iPhone (you can see that icon and the rejection letters in the first edition
of this book). When I resubmitted my app, it was rejected a second time
because I used an iPhone image as the image in the view you created in
Chapter 5 (you can also see that image and the rejection letter in the first
edition of this book).

247 Chapter 12: Death, Taxes, and the iPhone Provisioning

At the time I did that, I really didn’t think it was a big deal (this was early on
in the process), but it is now.

After fixing both of those issues, you can now find ReturnMeTo in the App Store.

So how do you get your app into the App Store? Actually, the Uploading Your
Application to the App Store part is pretty easy. The hard part is collecting
all the little bits of information you’ll need to enter into all the text fields in
the upload page.

Here’s an overview of the kind of information you’ll need (for more
information, download the Developer Guide — see Figure 12-14):

	 ✓	Metadata: The ever-present data about data. Here’s what Apple wants
from you:

	 •	Application Name: It must conform to guidelines for using Apple
trademarks and copyrights. They take this very seriously, as
evidenced by Apple sending a cease-and-desist order to my ISP
when I tried (innocently) to use iPhoneDev411 as my domain
name. (A word to the wise: Don’t mess with Apple.)

	 •	Application Description: When you go through the process of
uploading your data, the field you have to paste this into will say
you’re limited to 4,000 characters. Apple does suggest no more
than 700.

		 This is what users will see when they click on your app in the App
Store, so it’s important that this description be well written and
point out all your app’s key features.

		 Don’t include HTML tags; they will be stripped out when the data
is uploaded. Only line breaks are respected.

	 •	Device: Basically, we’re talking iPhone and/or iPod touch.

	 •	Primary Category: There will be a drop-down menu from which
to choose the primary category for your app. There are about 20
choices, ranging from Business to Games to Social Networking to
Travel to Utility.

	 •	Secondary Category: (Optional) Same categories as above.

	 •	Rating Information: Later, you’ll be asked to provide additional
information describing the content. You’ll see things like Cartoon or
Fantasy Violence, Simulated Gambling, Mature/Suggestive Themes,
and so on. For each type of content, you’ll need to describe the level
of frequency for that content — None, Infrequent/Mild, Frequent/
Intense. This allows you to set your rating for your application for
the purpose of parental controls on the iPhone App Store. Apple has
strict rules stating that an app must not contain any obscene,
pornographic, or offensive content. Oh and by the way, it’s entirely
up to Apple what is to be considered offensive or inappropriate.

www.allitebooks.com

http://www.allitebooks.org

248 Part III: From “Gee, That’s a Good Idea,” to the App Store

	 •	Copyright: I use this line:

		 © Copyright Neal Goldstein 2009. All rights reserved.

		 You can get the copyright symbol, in Word at least, by choosing
Insert➪Symbol and then selecting the copyright symbol. If you
have any questions about copyright registration, talk to your
lawyer or check out www.copyright.gov.

	 •	Version Number: People usually start with 1.0. Then, as you get
more and more suggestions and “constructive criticism,” you can
move on to 1.1, and someday even version 2.0.

	 •	SKU Number: A Stock Keeping Unit (SKU), any alphanumeric
sequence of letters and numbers that is used to uniquely identify
your application in the system. (Be warned — this is not editable
after you submit it.)

	 •	Keywords: Keywords that describe your app. These are matched to
App Store searches. Spend some time on this one. Keywords can
only be changed when you submit a new binary, or if the application
status is Rejected, or Developer Rejected.

	 •	Support URL for the Company: You need a support URL, which
basically means you need a Web site, which isn’t that hard. If you
don’t have a Web site yet and don’t know how to build one, just go
to your friendly ISP, find a domain name, get a package designed
for folks who don’t know HTML, and build yourself a Web site.
Later on, you can get a hold of David Crowder’s Building a Web
Site For Dummies, 3rd Edition, which can help you build a “more
professional” site. There will be a link to your support URL on
the application product page at the App store, and this is the link
users will click on if they need technical support from you or have
a question about your app.

	 •	Support E-mail Address: (For use by Apple only) Likely, this address
will be the one you used when you registered for the developer
program.

	 •	Demo Account - Full Access: Test accounts that the App Store
reviewers can use to test your application. Include usernames,
passwords, access codes, demo data, and so on. Make sure the
demo account works correctly. You’d hate to have your app
rejected because you didn’t pay attention to setting up a demo
account correctly.

	 •	End User License Agreement: (Optional) If you don’t know what
this is, don’t worry. It’s the legal document that spells out to the
end users what they’re agreeing to do in order to use your app.
Fortunately, the iTunes Store has a standard one. By this time, I
think it probably knows what it’s doing — but you should read it
anyway before you use it.

249 Chapter 12: Death, Taxes, and the iPhone Provisioning

	 •	Availability Date: When your application will be available for
purchase.

	 •	Application Price: Free is easier, but later on I show you what you
have to do if you want to get paid (what a concept) for all the work
you did getting your application to the public.

	 •	Localization: Additional languages (besides English) for your
metadata. You can have your text and images in Italian in all
Italian-speaking stores, for example.

	 •	App Store Availability: The territories in which you would like to
make your application available (the default is all countries iTunes
supports).

	 ✓	Artwork: A picture is worth a thousand words, so the App store gives
you the opportunity to dazzle your app’s potential users with some nice
imagery:

	 •	iPhone/iPod touch Home Screen Icon: Your built application must
have a 57×57-pixel icon included for it, following the procedure I
showed you back in Chapter 7. This icon is what will be displayed
on the iPod touch or iPhone home screen.

	 •	Large Application Icon: This icon will be used to display your
application on the App Storefront. It needs to meet the following
requirements:

	 512×512 pixels (flattened, square image)

	 72 dpi

	 jpeg, or tiff format

	 •	Primary Screenshot: This shot will be used on your application
product page in the App Store.

		 Apple doesn’t want you to include the iPhone status bar in your
screenshot. The shot itself needs to meet these requirements:

	 320×460 portrait (without status bar) minimum

	 480×300 landscape (without status bar) minimum

	 320×480 portrait (full screen)

		 Up to four additional optional screenshots can be on the
application product page. These may be resized to fit the space
provided. Follow the same requirements as above.

	 •	Additional Artwork: (Optional) If you’re really lucky — I mean really
lucky (or that good) — you may be featured on the App Store.
Apple will want “high-quality layered artwork with a title treatment
for your application,” which will then be used in small posters to
feature your application on the App Store.

www.allitebooks.com

http://www.allitebooks.org

250 Part III: From “Gee, That’s a Good Idea,” to the App Store

We’re not done yet
If you’re going to charge for your application, you have to provide even
more information. Most of it is pretty straightforward, except for some of the
banking information, which you do need to have available. To change this
information after you have entered it, you’ll have to e-mail iTunes technical
support. It behooves you to get it right the first time.

Here’s what I’m talking about:

	 ✓	Bank name

	 ✓	Bank address

	 ✓	Account number

	 ✓	Branch/Branch ID

	 ✓	ABA/Routing Transit Number: Generally, this number is the first nine
digits of that long number at the bottom of your checks that also
contains the account number. If you aren’t sure what the routing
number is, contact your bank.

	 ✓	Your Bank Swift Code: You will have to get that from your bank.

	 Take it from me; it’s far easier if you have all bits and pieces together before
you start the actual upload process, rather than having to scramble at 3 a.m. to
find some obscure piece of information it wants. (The Bank Swift Code was the
one that got me.)

Uploading your information
At this point, you can start the application-upload process by clicking the
Manage Your Applications link on the iTunes Connect main page. (Refer to
Figure 12-12.) But hold it. Better to look before leaping: Check out the requisite
Contracts, Tax & Banking Information.

Here’s why: If you plan on selling your application, you’ll need to have your
paid commercial agreement in place and signed before your application can
be posted to the App Store.

	 If your application is free, you’ve already entered into the freeware distribution
agreement by being accepted into the iPhone Developer Program. I’m not
going to charge for the ReturnMeTo application, but just like with anything
else at Apple, contract approval can take a while, so you should probably fill
out the contract information just to get it out of the way. That’s my style, and
if it’s not yours, feel free to skip to the next section.

251 Chapter 12: Death, Taxes, and the iPhone Provisioning

Start by clicking the Contracts, Tax & Banking Information link on the iTunes
Connect main page. The Manage Your Contracts page appears, as shown in
Figure 12-13. You use this page to create a contract for your paid application.

	

Figure 12-13:
Create a

contract for
a paid

application.
	

You can also see that you already have, by default, a contract in effect for
free applications. To create a new contract, select the box under Request
Contract in the Request New Contracts section, and you’re taken though
a series of pages that ask you to provide the information Apple needs,
including the bank information I called your attention to earlier.

Upload your application and its data
After you’ve set the wheels in motion, you can then go back to the
iTunes Connect main page and upload your data. Click the Manage
Your Applications link (refer to Figure 12-12) to call up the Manage Your
Applications page shown in Figure 12-14. In that page, click the Add New
Application button and go to town. Fill in all the blanks, using all that info I
asked you to collect in the “What you’ll need to get your application into the
App Store” section, earlier in the chapter. Along the way, you’ll upload your
metadata and the application itself to Apple.

www.allitebooks.com

http://www.allitebooks.org

252 Part III: From “Gee, That’s a Good Idea,” to the App Store

	

Figure 12-14:
Add your

application.
	

Now What?
You wait. When I wrote this in August 2009 (as quoted in “Tips on
Submitting Your App to the App Store” I talked about earlier), 96 percent
of the applications are being approved within 14 days.

Part IV
An Industrial-

Strength
Application

Contents
An Industrial-

Strength
Application	 253

www.allitebooks.com

http://www.allitebooks.org

In this part . . .

After the realization dawns that you have to sell a lot
of 99-cent applications to afford a meal in London,

you can start thinking about raising the bar. Maybe what
you need to do is develop an industrial-strength applica-
tion that you can charge real money for — something so
good that people will actually pay the big bucks for it. In
this part, I explain the design of an application that has
big muscles: a context-driven user interface, lots of func-
tionality, Web access, an annotated custom map, and an
application architecture that you can use to build your
own version of The Next Great Thing.

Chapter 13

Designing Your Application
In This Chapter
▶	Asking “Where’s the beef?” in your application

▶	Making sure your users don’t hate you

▶	Avoiding painting yourself into corners

▶	Providing lots of functionality with a small footprint

ReturnMeTo, the star of Part III, is a useful little application and a great
way to learn about iPhone software development. Apple considers it a

utility application — like the Weather application, but with a single view.

Utility applications can provide real value to the user and are also fun and
easy to write — not a bad combination. The good news is that by now, if you
have been following along with me in the book, you understand enough about
the framework, its architecture, components, and control flow to figure out
how to build a nice little utility application on your own.

Not that you’re all set right now to do everything you’d like — far from it. The
way the Weather application flips the view, for example, may seem a total
mystery. But Apple goes out of its way to provide samples for many of the
neater tricks and features out there, all in hopes of demystifying how they
work. In Chapter 18, I’ll give you an annotated tour of the samples. With the
ReturnMeTo application under your belt, it’ll be a lot easier to understand
and use all the resources Apple provides to help you develop iPhone
applications.

What Apple doesn’t show you (and where there’s a real opportunity to
develop a killer app) is how to design and develop more complex applications.
Now, “more complex” doesn’t necessarily — and shouldn’t — mean “more
complex to the user.” The real challenge and opportunity are in creating
complex applications that are as easy to use as simple ones.

Contents
Designing Your Application	 255
Defining the Problems	 257

Designing the User Experience	 258

Creating the Program Architecture	
265

The Iterative Nature of the Process	
272

www.allitebooks.com

http://www.allitebooks.org

256 Part IV: An Industrial-Strength Application

Because of its ease of use and convenience, its awareness of your location,
and its ability to connect seamlessly to the Internet from most places, the
iPhone lets you develop a totally new kind of application — one that inte-
grates seamlessly with what the user is doing when he or she is living in the
real world (what a concept). It frees the user to take advantage of technology
away from the tether of the desk or coffee shop, and skips the hunt for a
place to spread out the hardware. I refer to such applications as here-and-
now — apps that take advantage of technology to help you do a specific task
with up-to-date information, wherever you are and whenever you’d like.

All these features inherent in iPhone applications enable you to add a depth
to the user’s experience that you usually don’t find in laptop- or desktop-
based applications — in effect, a third dimension. Not only does the use of
the application on the iPhone become embedded in where the user is and
what the user is doing, the reverse is also happening: Where the user is and
what the user is doing can be embedded in the application itself. This mutual
embedding further blurs the boundaries between technology and user, as
well as between user and task. Finally, developers can achieve a goal that’s
been elusive for years — the seamless integration of technology into everyday
life.

The why-bother-since-I-have-my-laptop crowd still has to wrestle with this
level of technology, especially those who haven’t grown up with it. They still
look at an iPhone as a poor substitute for a laptop or desktop — well, okay,
for certain tasks, that’s true. But an iPhone application trumps the laptop or
desktop big-time in two ways:

	 ✓	The iPhone’s compact portability lets you do stuff not easily done
on a laptop or desktop — on site and right now — as with the
MobileTravel411 application you are about to learn about.

	 ✓	The iPhone is integrated into the activity itself, creating a transparency
that makes it as unobtrusive and undistracting as possible. This
advantage — even more important than portability — is the result of
context-driven design.

The key to designing a killer iPhone application is understanding that the
iPhone is not a small, more portable version of a laptop computer. It’s
another animal altogether, and is therefore used entirely differently. So don’t
go out and design (say) the ultimate word-processing program for an iPhone.
(Given the device’s limitations, I’d rather use a laptop.) But for point-in-time,
30-second tasks that may provide valuable information — and in doing so
make someone’s life much easier — the iPhone can’t be beat.

In this chapter, I take you through an overview of the design cycle of a more
complex application (MobileTravel411) and the resulting user interface and
program architecture. While there are at least half a dozen models for the
process (I’m a recovering software development methodologist myself), the
one I’ll go through here is pretty simple and is well suited for the iPhone to
boot. Here goes:

257 Chapter 13: Designing Your Application

	 1.	 Defining the problems

	 2.	 Designing the user experience

	 a.	Understanding the real-world context

	 b.	Understanding the device context

	 c.	Categorizing the problems and defining the solutions

	 3.	 Creating the program architecture

	 a.	A main view

	 b.	Content views

	 c.	View controllers

	 d.	Models

	 4.	 Writing the code

	 5.	 Doing it until you get it right

After taking you through all that, I show you how to develop a subset
(iPhoneTravel411) of the application.

Of course, the actual analysis, design, and programming (not to mention
testing) process has a bit more to it than this — and the specification and
design definitely involve more than what you see in these few pages. But
from a process perspective, it’s pretty close to the real thing. It does give you
an idea of the questions you need to ask — and have answered — to develop
an iPhone application.

A word of caution, though. Even though iPhone apps are smaller and much
easier to get your head around than, say, a full-blown enterprise service-
oriented architecture, they come equipped with a unique set of challenges.
Between the iPhone platform limitations I talk about in Chapter 1 and the
high expectation of iPhone users, you will have your hands full.

Defining the Problems
Innovation is usually born of frustration, and the MobileTravel411 project
was no exception. It just turns out that my frustration was linked to a trip to
beautiful Venice rather than, say, the vacuum cleaner doing a terrible job of
picking up cat hair.

My wife and I were going to arrive late at night, and rather than trying to get
into Venice at that hour, we decided we’d stay at a hotel near the airport and
then go into Venice the next day. We were going to meet some friends who
were leaving the day after that, and we wanted to get a relatively early start
so we could spend the day with them.

www.allitebooks.com

http://www.allitebooks.org

258 Part IV: An Industrial-Strength Application

I was a little concerned about the logistics. I thought we would have to go
back to the airport terminal and then get on a water bus or water taxi. Both
the water taxi stand and the water bus stop are a distance from the terminal,
and that meant more time and more trudging about. The water taxi was
the fastest way, but very pricey (around $140 USD at the time). The water
bus was much cheaper but more confusing — and only ran once an hour. It
seemed like a major excursion.

My friends said, “Why not take a taxi or a bus?”

I said, “A bus to Venice — it’s an island, for crying out loud.”

Okay, it is an island, but there’s a causeway running from the mainland to
Piazzale Roma, where you can then get a water bus or water taxi — or meet
your friends.

Although it’s more romantic to arrive by sea, it’s a lot easier by land. Having
been to Venice a couple times before, and considering our time constraints,
we opted for the land route.

Now, I’m sure that information was in a guidebook someplace, but it would
have taken a lot of work to dig it out; most guidebooks focus on attractions.
Also, guidebooks go out of date quickly; the one I had for Venice was already
two years old. Of course, I could have used the Internet before I left home to
find the information, but that can also be a real chore.

What I wanted was something that made it easier to travel — reducing all
those hassles — getting to and from a strange airport, getting around the
city, getting the best exchange rate, knowing how much I should tip in a
restaurant — that sort of thing. (Not too much to ask, right?)

Don’t get me wrong — I actually do a lot of research before I go someplace,
and often I have that information handy already. But I end up with lots of
paper because I usually don’t take a laptop with me on vacation; even when
I do, it’s terribly inconvenient to have to take it out on a bus or in an airline
terminal to find some information. And then there’s the challenge of finding a
Wi-Fi connection when you really need it.

The iPhone is the perfect device to solve all those problems, so I decided to
develop an iPhone application. It became MobileTravel411.

Designing the User Experience
To meet my Venetian (and other travel) needs, I didn’t need a lot of information
at any one time. In fact, what I wanted was as little as possible — just the
facts ma’am — but I wanted it to be as current as possible. It doesn’t help to
have last year’s train schedule.

259 Chapter 13: Designing Your Application

To get the design ball of my application rolling, I started by thinking about
what I wanted from the application, not necessarily the features, but what the
experience of using the application should be like.

Understanding the real-world context
You can reach the goal of seamlessness and transparency that I describe
in the previous section by following some very simple principles when you
design the user experience — especially with respect to the user interface.

Become the champion of relevance
There are two aspects to this directive:

	 ✓	Search and destroy anything that is not relevant to what the user is
doing while he or she is using a particular part of your application.

	 ✓	Include — and make easily accessible — everything a user needs when
doing something supported by a particular part of your application.

You want to avoid distracting the user from what he or she is doing. The
application should be integrated into the task, a natural part of the flow, and
not something that causes a detour. Your goal is to supply the user with only
the information that’s applicable to the task at hand. If your users just want
to get from an airport into a city, they couldn’t care less that the city has a
world-renowned underground or subway system if it doesn’t come out to the
airport.

Seconds count
At first, the “seconds count” admonition may appear to fall into the “blinding
flash of the obvious” category — of course a user wants to accomplish a task
as quickly as possible. If the user has to scroll through lots of menus, or
figure out how the application works, then the app’s value drops off
exponentially with the amount of time it takes to get to where the user
needs to be.

But there are also some subtleties to this issue. If the user can do things as
quickly as possible, then he or she is a lot less distracted from the task at
hand — and both results are desirable. As with relevance, this goal requires a
seamless and transparent application.

Combine these ideas and you get the principle of Simply Connect: You want to
be able to connect easily — to a network, to the information you need, or to
the task you want to do. For example, a friend of mine was telling me he uses
his iPhone when watching TV so he can look up things in an online dictionary
or Wikipedia. (He must watch a lot of Public TV.)

www.allitebooks.com

http://www.allitebooks.org

260 Part IV: An Industrial-Strength Application

The quality of information has to be better than the alternative
What you get by using the application has to have more value than alternative
ways of doing the same thing. I can find airport transportation in a guidebook,
but it’s not up to date. I can get foreign exchange information from a bureau
de change, but unless I know the bank rate, I don’t know whether I’m being
ripped off. I can get restaurant information from a newspaper, but I don’t
know whether the restaurant has subsequently changed hours or is closed
for vacation. If the application can consistently provide me with better, more
up-to-date information, then it’s the kind of application that’s tailor-made for
a context-driven design.

The app has to be worth the real cost
By real cost, I don’t mean just the time and effort of using the application —
you need to include the amount you actually pay out. The real cost
includes both the cost of the application and any costs you might incur by
using the application. This can be a real issue for an application such as
MobileTravel411, because international roaming charges can be exorbitant.
That’s why the app must have the designed-in capability to download the
information it provides and then to update the info when you find a wireless
connection.

Keep things localized
With the world growing even flatter (from a communications perspective,
anyway) and the iPhone available in more than 80 countries, the potential
market for an app is considerably larger than just the folks who happen to
speak English). But having to use an app in a language you may not be
comfortable with doesn’t make for transparency. This means that applications
have to be localized — that is, all the information, the content, and even the
text in dialogs need to be in the user’s language of choice.

Paying particular attention
to three iPhone features
Key to creating applications that go beyond the desktop and that take
advantage of context-based design are three hardware features of the iPhone.
There are, of course others, but you can expect to find one or more of the
following features in a context-based application.

Knowing the location of the user
This enables you to further refine the context by including the actual
physical location and adding that to the relevance filter. If you are in London,
the application can “ask” the user if he or she wants to use London as a
“filter” for relevant information.

261 Chapter 13: Designing Your Application

Accessing the Internet
Accessing the Internet allows you to provide real-time, up-to-date information.
In addition, it enables you to transcend the CPU and memory limitations of
the iPhone by offloading processing and data storage out to a server in the
clouds.

Tracking orientation and motion
While used extensively in games, or to enable a user to erase a picture or
make a random song selection by shaking the device, the accelerometers
have potential in other kinds of applications. I recently saw one that alerts a
company if its employees have a major change in acceleration. The change
could mean any number of things — maybe they were driving too fast and
they stopped suddenly, or maybe someone just fell off a ladder and hit the
ground.

I leave it to you to debate the ethics and morality of these kinds of applications.
But they do provide some food for thought on other application possibilities,
and they certainly do get you some interesting context information about the
user at a point in time.

Incorporating the device context
Not only do you have to take into account the user context, but also you
need to take into account the device context.

After all, the device is also a context for the user. He or she, based on
individual experience, expects applications to behave in a certain way. As I
explain in Chapter 1, this expectation provides another perspective on why
staying consistent with the user interface guidelines is so important.

In addition to the device being a context from a user perspective, it’s also
one from the developer’s perspective. If you want to maximize the user
experience, you have to take the following into account (I know I went
through these in Chapter 1, but remembering them is critical):

	 ✓	Limited screen real estate: Although scrolling is built in to an iPhone
and is relatively easy to do, you should require as little scrolling as
possible, especially on navigation pages, and especially on the main
page.

	 ✓	Limitations of a touch-based interface: While the Multi-Touch interface
is an iPhone feature, it brings with it limitations as well. Fingers aren’t
as precise as a mouse pointer, and user interface elements need to be
large enough and spaced far enough apart so that the user’s fingers can
find their way around the interface comfortably. You also can do only so
much with fingers. There are definitely fewer possibilities using fingers
than when using the combination of multi-button mouse and keyboard.

www.allitebooks.com

http://www.allitebooks.org

262 Part IV: An Industrial-Strength Application

	 ✓	Limited computer power, memory, and battery life: As an application
designer for the iPhone, you have to keep these issues in mind. The
iPhone OS is particularly unforgiving when it comes to memory usage. If
you run out of memory, the iPhone OS will simply shut your app down.

	 ✓	Connection limitations: There’s always a possibility that the user may
be out of range, or on a plane, or has decided not to pay exorbitant
roaming fees, or is using an iPod Touch, which doesn’t have Internet
access except via WiFi. You need to account for that possibility in your
application and preserve as much functionality as possible. This usually
means allowing the user to download and use the current real-time
information, where applicable.

Again, all of this is covered in the detail you need in Chapter 1 and
throughout the book.

Some of these goals overlap, of course, and that’s where the real
challenges are.

Categorizing the problems
and defining the solutions
Because the app’s requirements — and common sense — precluded
scrolling through lots of information to get to what I needed, I had to create
a hierarchy — a way of ordering the information or functionality into groups
that makes sense to the user. On desktop or laptop machines, features are
often categorized by function, but given the way the iPhone is used (as I
describe in Chapter 1), categorizing by context makes more sense. (If you’re
interested in the function versus context discussion, check out my Web site
at www.nealgoldstein.com for more information.) So once I settled on the
information and functionality I needed when I was traveling, I grouped things
into the following contexts.

	 ✓	Getting and using money: What is the country’s currency (including
denominations and coins), and what’s the best way to exchange my
currency for it? I want to understand the costs of using credit cards
versus an ATM card, or exchanging at a bureau de change. I also want
to be able to understand how the dreaded VAT (value-added tax) really
works.

	 ✓	Getting to and from the airport: What choices do I really have when
it comes to things terminal? What are the costs, advantages, and
disadvantages — and logistics — of each? Do I have to buy a ticket in
advance? How do I find said ticket? What is the schedule?

263 Chapter 13: Designing Your Application

	 ✓	Getting around the city: Same kind of pickle as getting to and from the
airport — what’s available and best for a traveler’s purposes? I once spent
several days in Barcelona before I realized there was a subway system.

	 ✓	Seeing what’s happening right now in the city: Guidebooks are fine for
visiting the sights, and I had no need to re-create one on the iPhone. But
I would like to know if there’s anything special happening when I’m in
some particular place at some particular time. Bastille Day in Paris can
be fun if you know about the Bastille Day parade, and less of a hassle if
you know you can’t cross the Champs-Élysées for a few hours.

	 ✓	Knowing the practical day-to-day stuff: How do you make calls into,
out of, and within a given city? How much and when should I tip? What
is acceptable and unacceptable behavior? For example, that it might
be impolite to eat or drink something while walking down the street in
Japan might not occur to someone from New York City.

	 ✓	Staying safe: Being immediately informed of breaking news that could
make things unsafe — large demonstrations or terrorist attacks, for
example — would be high on my wish list. But even the more mundane
things like the “dangerous” neighborhoods are important. What should
you do in an emergency? A friend of ours had her passport stolen in
Prague — at times like that, it would be nice to have the locations and
phone numbers of embassies or consulates. This is stuff you hardly ever
need, but when you need it, you need it right away.

	 ✓	What to do before I go: In the past, I have forgotten to call my cell
phone company before I leave home to get a roaming package and notify
my credit card company that I’ll be out of the country or far from home,
so please, please don’t decline my hotel charge in Vladivostok. I also
want to be able to download all the information before I leave so I can
look at it on the plane, or as part of my strategy for avoiding roaming
charges or handling an unexpected lack of connections.

I also wanted to make the app easy to use for someone who isn’t intimately
involved with the design — and perhaps doesn’t immediately share my take
on the best way to organize the information. So, for each choice in the main
window, I wanted to be able to add a few words of explanation about what
each category contained.

The final user interface I came up with looks like the left side of Figure 13-1.
On the right side of Figure 13-1 is the iPhoneTravel411 version — a subset of
the MobileTravel411 application. Although it’s a subset, there’s enough there
for me to introduce you to almost all the technology I used to create the real
application.

The rest of the views follow the same general format — some general
information with specific information about each category.

www.allitebooks.com

http://www.allitebooks.org

264 Part IV: An Industrial-Strength Application

	

Figure 13-1:
Mobile

Travel411
and iPhone-

Travel411.
	

	 Part of making the app easy to use involves giving users a way to set their
preferences for how the app should work. On the left side of Figure 13-2, you
can see the MobileTravel411 Settings view, on the right the iPhoneTravel411
subset. The most important of these settings involves being able to work in
a stored data mode — using previously stored data, rather than the current
real-time version that would require Internet access. The idea is to download
the information I need before I leave — and then only update it occasionally
while I’m gone, so I can avoid data roaming charges and afford food other than
ramen noodles on my trip.

265 Chapter 13: Designing Your Application

	

Figure 13-2:
Use offline

data.
	

Creating the Program Architecture
Given the user interface I just described, how did I get from there to here?

Keeping things at a basic level — a level that will be familiar to those of you
who worked through the ReturnMeTo application — the MobilTravel411 is
made up of the following:

	 ✓	Models: Model objects encapsulate the logic and (data) content of the
application. There was no model object in ReturnMeTo per se (although
I opine on model functionally in Chapter 8). For iPhoneTravel411, I show
you how to design, implement, and use model objects.

	 ✓	Views: Views present the user experience; you have to decide what
information to display and how to display it. In the ReturnMeTo
application, there was a single content view with controls as subviews.
Now, with the iPhoneTravel411 app, there will be a main view and
several content views.

	 ✓	Controllers: Controllers manage the user experience. They connect the
views that present the user experience with the models that provide the
necessary content. In addition (as you’ll see), controllers also manage
the way the user navigates the application.

www.allitebooks.com

http://www.allitebooks.org

266 Part IV: An Industrial-Strength Application

No big surprises here — especially because the MVC model (Model-View-
Controller) is pretty much the basis for all iPhone application development
projects. The trick here is coming up with just the right views, controllers,
and model objects to get your project off the ground. Within the requirements
I spelled out in the “Designing the User Experience” section earlier in the
chapter, I came up with the elements highlighted in the next few sections.

I’m going to start with the views, since they determine the functionality and
information available in a given context — being at an airport and needing to
get into the city for example.

A main view
This one was a no-brainer. The main view for MobileTravel411 (and for
iPhoneTravel411) is a UITableView, no question about it. Table views are
used a lot in iPhone applications to do two things:

	 ✓	Display hierarchal data: Think of the iPod application, which gives you
a list of albums, and if you select one, a list of songs.

	 ✓	Act as a table of contents (or for my purposes, contexts): Now think of
the Settings application, which gives you a list of applications that you
can set preferences for. When you select one of those applications from
the list, it takes you to a view that lists what preferences you are able to
set, and a way to set them.

Content views
Content views are views that display the information the user wants — stuff
like how many Zimbabwean dollars I can get for $2.75 or the weather in
Aruba next week.

The views you create are based on the information and functionality that a
user needs in that context. At the risk of oversimplification, I had to think
about two types of views:

	 ✓	The How Many Zimbabwean Dollars Can I Get For $2.75 (US) View:
These kinds of views are characterized by the fact that user input is
required to be able to deliver the goods. The user would have to enter
$2.75 US and then request to see the equivalent amount in Zimbabwean
Dollars. (According to MobileTravel411, the answer by the way, in mid
July 2009, is a little less than 103 million.)

267 Chapter 13: Designing Your Application

		 Examples of this kind of view in the MobileTravel411 application are
shown in Figures 13-4, 13-5 (left), and 13-6 (right). These are all UIView’s
with controls, constructed the same way as you constructed the view in
the ReturnMeTo app. You won’t be creating any of them in the next few
chapters, but once you create the application structure, you can easily
add them on your own.

	 ✓	The Weather In Aruba Next Week View: This view, and others like it,
simply displays information that it gets for the view controller. These
are views like Figures 13-3, 13-5 (right), and 13-6 (left).

	

Figure 13-3:
Getting to

and from the
airport.

	

www.allitebooks.com

http://www.allitebooks.org

268 Part IV: An Industrial-Strength Application

	

Figure 13-4:
Currency
selector.

	

	

Figure 13-5:
Displaying

value in
dollars and
exchange-

rate
information.

	

269 Chapter 13: Designing Your Application

	

Figure 13-6:
Weather

views.
	

These second types of view (and all the views in the iPhoneTravel411
application) are Web views for some good practical reasons. First and
foremost, some of the views must be updated regularly. If I want the current
price and schedule of the Heathrow Express, for example, data from last year
(or even last week) may not help me. I also want the most current information
about what’s happening in the city I plan to visit.

Web views, in that context, are the perfect solution; they make it easy to
access data from a central repository on the Internet. (Client-server is alive
and well!)

As for other benefits of Web views, keep in mind that real-time access is not
always necessary — sometimes it’s perfectly fine to store some data on the
iPhone. It turns out that Web views can easily display formatted data that’s
locally stored — very handy. (You took advantage of that fact when building
the ReturnMeTo application.)

Finally, I use Web views because they can access Web sites. If users want
more information on the Heathrow Express, they can get to the Heathrow
Express Web site by simply touching a link.

www.allitebooks.com

http://www.allitebooks.org

270 Part IV: An Industrial-Strength Application

View controllers
View controllers are responsible for not only providing the data for a view to
display, but also responding to user input and navigation.

For each How Many Zimbabwean Dollars Can I Get For $2.75 (US) View, like
the ones in Figure 13-4, on the left of 13-5, and on the right in Figure 13-6,
I created a custom subclass of UIViewController to connect a control
selected in the view (a button tapped, for example) with the model that has
the logic and data to respond to the tap.

But for the views like those in Figure 13-3, the one on the right in Figure 13-5
and even the one on the left in Figure 13-6, for MobileTravel411, I actually
designed a single subclass of UIViewController that connects the view to
a model and can navigate from view to view for any context. That allows
me to use the same view controller class to send to its Web view different
content, from Getting To And From The Airport Data to Getting Around The
City Data to Practical Day-To-Day Stuff Data. I did this by designing a view
controller that can be initialized with the context information it needs when
it’s created (its model, the number of tabs, other things). While (fortunately
for you) I won’t be getting into the details of this, as I explain the view
controllers you’ll use in iPhoneTravel411, you’ll notice the pattern.

Models
While you could write a book on model design (in fact, I’ve written a
couple, not to mention an Apple video — but that’s another story), I want
to concentrate on a couple things now to keep you focused. I’ll elaborate
more in Chapter 16.

When you begin to think about the models that you need for the application,
you may think you’ve opened up a very large can of worms.

If you want to cover 160 cities or so — not unreasonable if you want your
app to appeal to a broad, international audience — are you going to need a
separate model object to deal with every city, airport, airport transportation
option (trains, busses, taxis, and so on) and with every city transportation
option (busses cars, subways, trains); and to deal with how to tip in every
country, the way to make a phone call into, out of, and within every city, and
so on? If so, you will end up with thousands of classes (models, nib files, and
so on). Definitely an unmanageable (not to mention resource-intensive)
situation, and because there would also be a lot of redundancy in the code,
maintenance would be a nightmare.

Fortunately, with some careful thought, you’ll come to the same conclusion I
did: No, not today, not tomorrow, not on your life.

271 Chapter 13: Designing Your Application

No use reinventing the wheel
To show you the proper (and far less work-intensive) way to think about it, I
want to review what the model objects need to do.

The models own the data and the application logic. In the MobileTravel411
application, for example, one model converts U.S. dollars to pounds (or any
other currency) and vice versa. This kind of model is closely tied to the
functionality of the view it supports. The How Many Zimbabwean Dollars Can
I Get For $2.75 (US) View requires a model that can compute exchange rates,
and here’s where the real-world objects associated with object-oriented
programming come into play. In the MobileTravel411 app, I have a Currency
(model) object that knows how to compute exchange rates, and a VAT (Value
Added Tax) object that does something similar. So for each view like those
two, I create a model object.

When it comes to the Weather In Aruba Next Week View, though, the same
approach holds, but not in an obvious way. You don’t need a weather object
here. The model object doesn’t have to really care about the weather; all it
really needs to do is have the logic to go out and get the data from a file,
database, or server. For my purposes, a model object that gets weather
information and a model object that gets information on the Heathrow
schedule are pretty much the same. The logic for this object revolves around
what the data is, how to access the data, and how this data may be connected
to other data — the logic isn’t about the content of the data. This means that,
like the single view controller I mention above, I only need a single model
class to support views like those in Figure 13-3, the one on the right in Figure
13-5 and even the one on the left in Figure 13-6.

So my path is clear: in MobileTravel411, I designed model objects in the same
way I designed the view controllers — essentially creating a class that knows
what data to include and where that data is to be found. (Programmers call
such model objects parameterized models.) All you need to do is initialize the
model with the context information it needs when the model is created.

All the model objects are of a subclass NSObject, because NSObject
provides the basic interface to the runtime system. It already has methods
for allocation, initialization, memory management, introspection (what class
am I?), encoding and decoding (which makes it quite easy to save objects as
“objects”), message dispatch, and a host of other equally obscure methods
that I won’t get into but are required for objects to be able to behave like
they’re expected to in an iPhone OS/Objective-C world.

Putting property lists to good use
To implement parameterized models and view controllers, you need
something to provide the parameters. I used property lists — XML files, in
other words — to take care of that because they’re well suited for the job
task and (more importantly) support for them is built in to the iPhone
frameworks.

www.allitebooks.com

http://www.allitebooks.org

272 Part IV: An Industrial-Strength Application

Setting up property lists is a bit beyond the scope of this book, but in
Chapter 16, the application structure I show you is conducive to using
property lists to implement parameterized view controllers and model
objects on your own.

Just as with the single view controller class, I won’t be getting into the details
of the single model class, but I’ll explain its architecture in enough detail in
Chapter 16 so that you’ll see the pattern there as well.

But what I am going to do in the iPhoneTravel411 application is actually
have you create a model interface object and several model objects and view
controllers to illustrate what you need to know about the model, view and
controller relationship, how to access and display data stored locally or on
a server, as well as how to simply display a Web site. That will be enough to
keep you busy for a while.

Stored data mode, saving state,
and localization
Using the application design I’ve described, adding these particular features
is easy; I explain them as I work through the implementation in Chapters 14
and 15. Although I don’t dig too deeply into localization in this book, I show
you how to build your application so that you can easily include that handy
feature in your app.

The Iterative Nature of the Process
If there’s one thing I can guarantee about development, it’s that nobody gets
it right the first time. Although object-oriented design and development are in
themselves fun intellectual exercises (at least for some of us), they also are
very valuable. An object-oriented program is relatively easier to modify and
extend, not just during initial development, but also over time from version
to version. (Actually, “initial development” and “version updating” are both
the same; they differ only by a period of rest and vacation between them.)

The design of my MobileTravel411 application evolved over time, as I learned
the capabilities and intricacies of the platform and the impact of my design
decisions. What I’ve tried to do in this chapter, and the ones following, is
to help you avoid (at least most of) the blind alleys I stumbled down while
developing my first application. So get ready for a stumble-free experience.
On to Chapters 14, 15, 16, and 17.

Chapter 14

Setting the Table
In This Chapter
▶	Checking out the versatile table view

▶	Making the table look good

▶	Ensuring that your application is usable worldwide

▶	Peeking behind the Table view screen

▶	Making sure something happens after a user makes a selection

Views are the user’s window into your application; they present the user
experience on a silver platter, as it were. Their associated view control-

lers manage the user experience by providing the data displayed in the view,
as well as by enabling user interaction.

In this chapter, you get a closer look at the iPhoneTravel411 main view — the
view you see when you launch the application — as well as the view controller
that enables it. As part of your tour of the main view, I show you how to use one
of the most powerful features of the framework — table views. In the chapters
that follow, I show you how to implement the views that you set up to deliver the
content of your application — how to get from Point A to Point B, convert yen to
yuan, or check on the weather in Anaheim, Azusa, or Cucamonga.

My running example here will be the iPhoneTravel411 application described in
Chapter 13. Space prohibits dotting every i and crossing every t in implement-
ing the application, but I can show you how to use the technology you need to
do the detailed work on your own. And while I also won’t have the complete
listings in this book, I’ll make a copy available on my Web site. You’ll work with
the project in the folder named “iPhoneTravel411 Chapter 16,” which will have
the code for the finished application through Chapter 16. The folder “iPhone-
Travel411 Chapter 17” will have the code for the complete application.

Working with Table Views
Table views are front and center in several applications that come with the
iPhone out of the box; they play a major role in many of the more complex

Contents
Setting the Table	 273
Working with Table Views	 273

And Now . . .	 302

www.allitebooks.com

http://www.allitebooks.org

274 Part IV: An Industrial-Strength Application

applications you can download from the App Store. (Obvious examples: Almost
all the views in the Mail, iPod, and Contacts applications are table views.) Table
views not only display data, but also serve as a way to navigate a hierarchy.

If you take a look at an application such as Mail or iPod, you’ll find that
table views present a scrollable list of items (or rows or entries — I use all
three terms interchangeably) that may be divided into sections. A row can
display text or images. So, when you select a row, you may be presented
with another table view — or with some other view that may display a Web
page or even some controls such as buttons and text fields. You can see an
illustration of this diversity in Figure 14-1. Selecting Map on the left leads to
a content view displaying a map of Heathrow and its environs — very handy
after a long flight.

But while a table view is an instance of the class UITableView, each visible
row of the table uses an UITableViewCell to draw its contents. Think of a
table view as the object that creates and manages the table structure, and the
table view cell as being responsible for displaying the content of a single row
of the table.

	

Figure 14-1:
A table and
Web view.

	

275 Chapter 14: Setting the Table

Creating the table view
Although powerful, table views are surprisingly easy to work with. To create
a table, you need only to do four — count ’em, four — things, in the following
order:

	 1.	 Create and format the view itself.

		 This includes specifying the table style and a few other parameters —
most of which is done in Interface Builder.

	 2.	 Specify the table view configuration.

		 Not too complicated, actually. You let UITableView know how many
sections you want, how many rows you want in each section, and what
you want to call your section headers. You do that with the help of the
numberOfSectionsInTableView: method, the tableView:number
OfRowsInSection: method, and the tableView:titleForHeader
InSection: method, respectively.

	 3.	 Supply the text (or graphic) for each row.

		 You return that from the implementation of the tableView:cellForRo
wAtIndexPath: method. This message is sent for each visible row in the
table view, and you return a table view cell to display the text or graphic.

	 4.	 Respond to a user selection of the row.

		 You use the tableView:didSelectRowAtIndexPath: method to take
care of this task. In this method, you create a view controller and a new
view. For example, when the user selects Map in Figure 14-1, this method is
called, and then a Map controller and a Map view are created and displayed.

	 A UITableView object must have a data source and a delegate. The data
source supplies the content for the table view, and the delegate manages
the appearance and behavior of the table view. The data source adopts
the UITableViewDataSource protocol, and the delegate adopts the
UITableViewDelegate protocol — no surprises there. Of the preceding
methods, only the tableView:didSelectRowAtIndexPath: is included
in the UITableViewDelegate protocol. All the others I listed earlier are
included in the UITableViewDataSource protocol.

The data source and the delegate are often (but not necessarily) implemented
in the same object — which is often a subclass of UITableViewController. I
plan to use the RootViewController for my iPhone411Travel app.

Implementing these five (count ’em, five) methods — and taking Interface
Builder for a spin or two, along with the same kind of initialization methods and
the standard memory-management methods you used in the ReturnMeTo appli-
cation, creates a table view that can respond to a selection made in the table.

Not bad.

www.allitebooks.com

http://www.allitebooks.org

276 Part IV: An Industrial-Strength Application

Creating and formatting
a grouped table view
Table views come in two basic styles. The default style is called plain and
looks really unadorned — plain vanilla. It’s a list: just one darn thing after
another. You can index it, though, just as the table view in the Contacts appli-
cation is indexed, so it can be a pretty powerful tool.

The other style is the grouped table view; unsurprisingly, it allows you to
clump entries into various categories. In Figure 14-2, you can see a grouped
table view on the left; the one on the right is a plain table view.

	 Grouped tables cannot have an index.

When you configure a grouped table view, you can also have header, footer,
and section titles (a plain view can also have section headers and footers). I
show you how to do section titles shortly.

	

Figure 14-2:
Grouped
and plain

tables.
	

277 Chapter 14: Setting the Table

To see how table views work, you of course need a project you can use to
show them off. With that in mind, fire up Xcode and officially launch the
iPhoneTravel411 project. (If you need a refresher on how to set up a proj-
ect in Xcode, take another look at Chapter 4.) As you can see in Figure 14-3,
You’ll need to go with a Navigation-Based Application template.

	

Figure 14-3:
Navigation-

based
Application

template.
	

I then save the project as iPhoneTravel411 in a folder on my desktop, as you
can see in Figure 14-4.

	

Figure 14-4:
Naming and

saving the
project.

	

www.allitebooks.com

http://www.allitebooks.org

278 Part IV: An Industrial-Strength Application

Your new project gets added to the Groups & Files listing on the left side of
the Xcode project window. Next, take a look at what happens when you drill
down in your project folder in the Groups & Files listing until you end up
selecting RootViewController (as shown in Figure 14-5). The main pane
of the Xcode project window reveals that RootViewController is derived
from a UITableViewController.

	

Figure 14-5:
The

RootView
Controller.

	

Inquisitive type that you are, you look up UITableViewController in
the Documentation reference by right-clicking its entry and choosing Find
Selected Text in Documentation from the pop-up menu that appears. The
Class reference tells you that UITableViewController conforms to the
UITableViewDelegate and UITableViewDataSource protocols (and a
few others) — the two protocols I said were necessary to implement table
views. What luck. (Kidding. It’s all intentional.)

Always on the lookout for more information, you continue down the Groups
& Files listing to open your project’s Resources folder, where you double-
click the RootViewController.xib file to launch Interface Builder. You are
reassured to see a table view set up in front of you — admittedly, a plain
table view rather than the grouped table view we want, but a table view none-
theless. To get the final duck in a row, choose Grouped from the Style drop-
down menu in the Attributes Inspector, as shown in Figure 14-6, to make the
switch from plain to grouped. Be sure to save the file after you do this.

At this point, you can build and run this project; go for it. What you see in
the Simulator is a table view — and if you try to scroll it, you get a “bounce
scroll,” where the view just bounces back up when you scroll it, but not much

279 Chapter 14: Setting the Table

else. In fact, you won’t even see it as a grouped view. What you do have is the
basic framework, however, and now you can format it the way you’d like.

	

Figure 14-6:
RootView
Controller

nib file.
	

Making UITableViewController
work for you
The data source and the delegate for table views are often (but not nec-
essarily) the same object — and that object is frequently a custom sub-
class of UITableViewController. For the iPhoneTravel411 project,
the RootViewController created by the Navigation-Based Application
template is a subclass of UITableViewController — and the
UITableViewController has adopted the UITableViewDelegate
and UITableViewDataSource protocols. So you’re free to implement
those handy methods I mention in the “Creating the table view” section,
earlier in the chapter. (Just remember that you need to implement them in
RootViewController to make your table usable.) Start with the methods
that format the table the way you’d like.

Adding sections
In a grouped table view, each group is referred to as a section.

	 In an indexed table, each indexed grouping of data is also called a section. For
example, in the iPod application, all the albums beginning with “A” would be
one section, those beginning with “B” another section, and so on. While having
the same name, this is not the same thing as sections in a grouped table
(which doesn’t have an index).

www.allitebooks.com

http://www.allitebooks.org

280 Part IV: An Industrial-Strength Application

The two methods you need to start things off are as follows:

numberOfSectionsInTableView:(UITableView *)tableView
tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

Each of these methods returns an integer and that tells the table view
something — the number of sections and the number of rows in a given
section, respectively.

In Listing 14-1, you can see the code that results in two sections with three
rows in each section. These methods are already implemented for you by
the Navigation-Based Application template in the RootViewController.m file.
You’ll just need to remove the existing code and replace it with what you see
in Listing 14-1.

Listing 14-1: Modify numberOfSectionsInTableView: and
tableView:numberOfRowsInSection:

- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView {

 return 2;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 NSInteger rows;
 switch (section) {
 case 0:
 rows = 4;
 break;
 case 1:
 rows = 3;
 break;
 default:
 break;
 }
 return rows;
}

You implement tableView:numberOfRowsInSection: using a simple
switch statement:

switch (section) {

	 Keep in mind that the first section is zero, as is the first row.

Although that’s as easy as it gets, it’s not really the best way to do it. Read on.

281 Chapter 14: Setting the Table

In the interests of showing you how to implement a robust application, I’m
going to use constants to represent the number of sections and the number
of rows in each section. I’ll put those constants in a file, Constants.h, which
will eventually contain other constants. I do this for purely defensive rea-
sons: Both of these values will be used often in this application (I know that
because hindsight is 20-20), and declaring them as constants makes changing
the number of rows and sections easy, and it also helps avoid hard-to-detect
typing mistakes.

	 I’ll show you some techniques here that make life much, much easier later. It
means paying attention to some of the less glamorous application nuts and
bolts functionality — can you say, “memory management” — that may be
annoying to implement along the way but that are really difficult to retrofit
later. I want to head you away from the boulder-strewn paths that so many
developers have gone down (me included), much to their later sorrow.

To implement the Constants.h file, you do the following:

	 1.	 Choose File➪New File from the Xcode main menu.

		 I recommend having the Classes folder selected in the Groups & Files
listing so the file will be placed in there.

	 2.	 In the New File dialog that appears, choose Other from the listing on
the left (under the Mac OS X heading) and then choose Empty File in
the main pane, as shown in Figure 14-7.

	

Figure 14-7:
Creating an

empty file.
	

www.allitebooks.com

http://www.allitebooks.org

282 Part IV: An Industrial-Strength Application

	 3.	 In the new dialog that appears, name the file Constants.h (as shown in
Figure 14-8), and then click Finish.

		 The new empty file is saved in the Classes folder, as shown in Figure 14-9.

With a new home for your constants all set up and waiting, all you have to do
is add the constants you need so far. (Listing 14-2 shows you the constants
you need to add to the Constants.h file.)

	

Figure 14-8:
Naming the

new file.
	

	

Figure 14-9:
The

Constants.h
file.

	

283 Chapter 14: Setting the Table

Listing 14-2: Adding to the Constants.h file

#define kSections 2
#define kSection1Rows 4
#define kSection2Rows 3

Having a Constants.h file in hand is great, but you have to let RootView
Controller.m know that you plan to use it. To include Constants.h in
RootViewController.m, open RootViewController.m in Xcode and
add the following statement:

#import “Constants.h”

You can then use these constants in all the various methods used to create
your table view, as shown in Listing 14-3.

Listing 14-3: Sections and rows done better

- (NSInteger)numberOfSectionsInTableView:(UITableView *)
 tableView {

 return kSections;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 NSInteger rows;
 switch (section) {
 case 0:
 rows = kSection1Rows;
 break;
 case 1:
 rows = kSection2Rows;
 break;
 default:
 break;
 }
 return rows;
}

When you build and run this (provisional) app, you get what you see in
Figure 14-10 — two sections, the first with four rows and the second with
three.

	 Although using constants and a switch statement does make your program
more extensible, it does require you to change the switch statement if you
want to add or change the layout. An even better solution is to create an array
in awakeFromNib that looks like this.

www.allitebooks.com

http://www.allitebooks.org

284 Part IV: An Industrial-Strength Application

sectionsArray = [[NSMutableArray alloc]
 initWithCapacity:2];
[sectionsArray addObject:[[NSNumber alloc]
 initWithInt:4]];
[sectionsArray addObject:[[NSNumber alloc]
 initWithInt:3]];

Then you could use the array count [sectionsArray count] to return the
number of sections, and index into the array for the number of rows in a sec-
tion [sectionsArray objectAtIndex:section].

Adding titles for the sections
With sections in place, you now need to title them so users know what the
sections are for. Luckily for you, the UITableViewdataSource protocol has
a handy method — titled, appropriately enough, the tableView:titleFor
HeaderInSection: method — that enables you to add a title for each sec-
tion. Listing 14-4 shows how to implement the method.

	

Figure 14-10:
Now I have

sections.
	

285 Chapter 14: Setting the Table

Listing 14-4: Add section titles

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {

 NSString *title = nil;
 switch (section) {
 case 0:
 title = @”Welcome to London”;
 break;
 case 1:
 title = @”Getting there”;
 break;
 default:
 break;
 }
 return title;
}

This (again) is a simple switch statement. For case 0, or the first section,
you’ll want the title to be “Welcome to London”, and for case 1, or the
second section, you’ll want the title to be “Getting there”.

	 Okay, this, too, was really easy — so you probably won’t be surprised to learn
that it’s not the best way to tackle the whole titling business. Another path not
to take — in fact, a really important one not to take. Really Serious Application
Developers insist on catering to the needs of an increasingly global audience,
which means — paradoxically — that they have to localize their applications.
In other words, an app must be created in such a way that it presents a dif-
ferent view to different, local audiences. The next section explains how this is
done.

Localization
Localizing an application isn’t difficult, just tedious. To localize your applica-
tion, you create a folder in your application bundle (I’ll get to that) for each
language you want to support. Each folder has the application’s translated
resources.

In the Settings application for the iPhoneTravel411 app, we’re going to set
things up so the user can set the language — Spanish or Italian, for example —
and the region format.

For example, if the user’s language is Spanish, available regions range from
Spain to Argentina to the United States and lots of places in between. When
a localized application needs to load a resource (such as an image, property
list, or nib), the application checks the user’s language and region and looks
for a localization folder that corresponds to the selected language and region.

www.allitebooks.com

http://www.allitebooks.org

286 Part IV: An Industrial-Strength Application

If it finds one, it loads the localized version of the resource instead of the
base version — the one you’re working in.

Showing you all the ins and outs of localizing your application is a bit too
Byzantine for this book. But I will show you what you must do to make your
app localizable when you’re ready to tackle the chore on your own.

	 What you have to get right — right from the start — are the strings you use
in your application that get presented to the user. (If the user has chosen
Spanish as his or her language of choice, what’s expected in the main view
is now Moneda, not Currency.) You ensure that the users see what they’re
expecting by storing the strings you use in your application in a strings text
file; this file contains a list of string pairs, each identified by a comment. You
would create one of these files for each language you support.

Here’s an example of what an entry in a strings file might look like for this
application:

/*Airport choices */
“Getting there” = “Getting there”;

The values between the /* and the */ characters are just comments for the
(human) translator you task with creating the right translation for the phrase —
assuming, of course, that you’re not fluent in the ten-or-so languages you’ll prob-
ably want to include in your app, and therefore will need some translating help.
You write such comments to provide some context — how that string is being
used in the application.

Okay, this example has two strings — the one to the left of the equals sign is
used as a key; the one to the right of the equals sign is the one displayed. In
the example, both strings are the same — but in the strings file used for a
Spanish speaker, here’s what you’d see:

/*Airport choices */
“Getting there” = “Cómo llegar”;

Looking up such values in the table is handled by the NSLocalizedString
macro in your code.

To show you how to use the macro, I take one of the section headings as an
example. Instead of

title = Getting there;

I code it as follows:

title = NSLocalizedString(@”Getting there”,
 @”Airport choices”);

287 Chapter 14: Setting the Table

As you can see, the macro has two inputs. The first is the string in your
language, the second the general comment for the translator. At runtime,
NSLocalizedString looks for a strings file named localizable.
strings in the language that has been set: Spanish, for example. (A user
would have done that by going to Settings, selecting General➪International➪
Language➪Español). If NSLocalizedString finds the strings file, it
searches the file for a line that matches the first parameter. In this case, it
would return “Cómo llegar,” and that is what would be displayed as the sec-
tion header. If the macro doesn’t find the file or a specified string, it returns
its first parameter — and the string will appear in the base language.

To create the localizable.strings file, you run a command-line program named
genstrings, which searches your code files for the macro and places them all
in a localizable.strings file (which it creates), ready for the (human) translator.
genstrings is beyond the scope of this book, but it’s well documented. When
you’re ready, I leave you to explore it on your own.

Okay, sure, it’s really annoying to have to do this sort of thing as you write
your code (yes, I know, really, really annoying). But that’s not nearly as
annoying as having to go back and find and replace all the strings you want
to localize after the application is almost done. Take my word for it!

Listing 14-5 shows how to use the NSLocalizedString macros to create
localizable section titles.

Listing 14-5: Add localizable section titles

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {

 NSString *title = nil;
 switch (section) {
 case 0:
 title = NSLocalizedString(@”Welcome to London”,
 @”City name”);
 break;
 case 1:
 title = NSLocalizedString(@”Getting there”,
 @”Airport choices”);
 break;
 default:
 break;
 }
 return title;
}

www.allitebooks.com

http://www.allitebooks.org

288 Part IV: An Industrial-Strength Application

Creating the row model
As all good iPhone app developers know, the model-view-controller (MVC)
design pattern is the basis for the design of the framework you use to
develop your applications. In this design pattern, each element (model, view,
or controller) concentrates on the task at hand; it doesn’t much care what
the other elements are doing. For table views, that means the method that
draws the content doesn’t know what the content is — and the method that
decides what to do when a selection is made in a particular row is equally
ignorant of what the selection is. The important thing is to have a model
object — one for each row — to hold and provide that information.

In this kind of situation, you usually want to deal with the model-object busi-
ness by creating an array of models, one for each row. In our case, the model
object will be a dictionary that holds the following three items:

	 ✓	The selection text: Heathrow, for example.

	 ✓	The description text: International airport, for example.

	 ✓	The view controller to be created when the user selects that row:
AirportController, for example.

You can see all three items illustrated in Figure 14-11.

	 In more complex applications, you could provide a dictionary within the dic-
tionary and use it to provide the same kind of information for the next level in
the hierarchy. The iPod application is an example: It presents you with a list
of albums, and then when you select an album, it shows you a list of songs on
that album.

Below is the code that shows you how to create a single dictionary for a row.
Later I’ll show you how to create all of the dictionaries and where all this
code needs to go.

menuList = [[NSMutableArray alloc] init];

[menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Heathrow”,
 @”Heathrow Section”), kSelectKey,
 NSLocalizedString(@”International airport”,
 @”Heathrow Explain”), kDescriptKey,
 nil, kControllerKey, nil]];

289 Chapter 14: Setting the Table

	

Figure 14-11:
The model
for a row.

	

“Heathrow”
“International airport”
AirportController*

Dictionary

Here’s the blow-by-blow account:

	 1.	 Create an array to hold the model for each row.

		 An NSMutableArray is a good choice here, because it allows you to
easily insert and delete objects.

		 In such an array, the position of the dictionary corresponds to the row it
implements, that is, relative to row zero in the table and not taking into
account the section.

	 2.	 Create an NSMutableDictionary with three entries and the follow-
ing keys:

	 •	kSelectKey: The entry that corresponds to the main entry in the
table view (“Heathrow,” for example).

	 •	kDescriptKey: The entry that corresponds to the description in
the table view (“International Airport,” for example).

	 •	kControllerKey: This entry contains a pointer to a view control-
ler that will display the Heathrow information. I’ll create an entry
for the controller, but not just yet; I just use nil for now. The first
time the user selects a row, I’ll create the view controller and save
that value in here. That way, if the user selects that row again, the
controller will simply be reused.

www.allitebooks.com

http://www.allitebooks.org

290 Part IV: An Industrial-Strength Application

	 3.	 Add the keys to the Constants.h file.

#define kSelectKey @”selection”
#define kDescriptKey @”description”
#define kControllerKey @”viewController”

		 The @ before each of the preceding strings tells the compiler that this is
an NSString.

	 You’d use the same mechanism to get rid of these controllers if you were to
ever get a low-memory warning. You’d simply go through each dictionary in
the array and release every controller except the one that’s currently active.

You’ll want to create this array and all of the dictionaries in an initialization
method awakeFromNib, which you’ll need to add to the RootViewController.m
file, and can see in Listing 14-6. When the RootViewController’s nib file is
loaded, the awakeFromNib message is sent to the RootViewController after
all the objects in the nib file have been loaded and the RootViewController’s
outlet instance variables have been set. Typically, the object that owns the nib
file (File’s Owner, in this case the RootViewController) implements awake
FromNib to do initialization that requires that outlet and target-action connec-
tions be set.

	 You could argue that you really should create a model class that creates this
data-model array and get its data from a file or property list. For simplicity’s
sake, I do it in the awakeFromNib method for the iPhoneTravel411 app.

Listing 14-6: awakeFromNib

- (void)awakeFromNib {

 self.title = [[[NSBundle mainBundle] infoDictionary]
 objectForKey:@”CFBundleName”];
 menuList = [[NSMutableArray alloc] init];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”London”, @”City Section”),
 kSelectKey,
 NSLocalizedString(@”What’s happening”,
 @”City Explain”), kDescriptKey,
 nil, kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Map”, @”Map Section”),
 kSelectKey,
 NSLocalizedString(@”Where you are”,
 @”Map Explain”), kDescriptKey,

291 Chapter 14: Setting the Table

 nil, kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Currency”, @”Currency Section”),
 kSelectKey,
 NSLocalizedString(@”About foreign exchange”,
 @”Currency Explain”), kDescriptKey,
 nil, kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Weather”, @”Weather Section”),
 kSelectKey,
 NSLocalizedString(@”Current conditions”,
 @”Weather Explain”), kDescriptKey,
 nil, kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Heathrow”, @”Heathrow Section”),
 kSelectKey,
 NSLocalizedString(@”International airport”,
 @”Heathrow Explain”), kDescriptKey,
 nil, kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Gatwick”, @”Gatwick Section”),
 kSelectKey,
 NSLocalizedString(@”European flights”,
 @”Gatwick Explain”), kDescriptKey,
 nil, kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Stansted”,
 @”Stansted Section”), kSelectKey,
 NSLocalizedString(@”UK flights”,
 @”Stansted Explain”), kDescriptKey,
 nil, kControllerKey, nil]];
 destination = [[Destination alloc]
 initWithName:@”England”];

}

Going through the code, you can see that the first thing you do is get the
application name from the bundle so you can use it as the main view title.

self.title = [[[NSBundle mainBundle] infoDictionary]
 objectForKey:@”CFBundleName”];

www.allitebooks.com

http://www.allitebooks.org

292 Part IV: An Industrial-Strength Application

“What bundle,” you ask. Well, when you build your iPhone application, Xcode
packages it as a bundle — containing

	 ✓	The application’s executable code

	 ✓	Any resources that the app has to use (for instance, the application
icon, other images, and localized content)

	 ✓	The info.plist, also known as the information property list, which defines
key values for the application, such as bundle ID, version number, and
display name

infoDictionary returns a dictionary that’s constructed from the bundle’s
info.plist. CFBundleName is the key to the entry that contains the (local-
izable) application name on the home page. The title is what will be displayed
in the Navigation bar at the top of the screen.

Going through the rest of the code, you can see that for each entry in the
main view, you have to create a dictionary and put it in the menuList array.
You’ll put the dictionary in the menuList array so you can use it later when
you need to provide the row’s content or create a view controller when the
user selects the row.

The last thing you do is create the Destination object:

destination = [[Destination alloc]
 initWithName:@”England”];

The Destination is the model used by the view controllers to get the con-
tent needed by the view that is created when the user selects a row (you
will also have to add an #import “Destination.h” statement to the
RootViewController.m file). I explain the model in detail in Chapter 16.

Seeing how cells work
We’ve been going steadily from macro to micro, so it makes sense that after
setting up a model for each row, we get to talk about cells, the individual con-
stituents of each row.

Cell objects are what draw the contents of a row in a table view. The method
tableView:cellForRowAtIndexPath: is called for each visible row in
the table view. It’s expected that the method will configure and return a
UITableViewCell object for each row. The UITableView object uses this
cell to draw the row.

When providing cells for the table view, you have three general approaches
you can take:

293 Chapter 14: Setting the Table

	 ✓	Use vanilla (not subclassed) UITableViewCell cell objects.

	 ✓	Add subviews to a UITableViewCell cell object’s content view.

	 ✓	Use cell objects created from a custom subclass of UITableViewCell.

The next few sections take a look at these options, one by one.

Using vanilla cell objects
Using the UITableViewCell class directly, you can create cell objects with
text and an optional image. (If a cell has no image, the text starts near the left
edge of the cell.) You also have an area on the right of the cell for accessory
views, such as disclosure indicators (the one shaped like a regular chevron),
detail disclosure controls (the one that looks like a white chevron in a blue
button), and even control objects such as sliders, switches, or custom views.
(The layout of a cell is shown in Figure 14-12.) If you like, you can format the
font, alignment, and color of the text (as well as have a different format when
the row is selected).

	

Figure 14-12:
The cell

architecture.
	

Cell Content

Text

Editing Mode

Display Mode

Accessory
View

(Optional)
Image

Reordering
Control

Editing
Control

Adding subviews to a cell’s content view
Although you can specify the font, color, size, alignment, and other charac-
teristics of the text in a cell using the UITableViewCell class directly, the
formatting is applied to all of the text in the cell. To get the variation that I
suspect you want between the selection and description text (and, it turns
out, the alignment as well), you have to create subviews within the cell.

A cell that a table view uses for displaying a row is, in reality, a view in its
own right. UITableViewCell inherits from UIView, and it has a content

www.allitebooks.com

http://www.allitebooks.org

294 Part IV: An Industrial-Strength Application

view. With content views, you can add one subview (containing, say, the
selection text “Weather”) formatted the way you want — and a second
subview (holding, say, the description text, “Current conditions”) format-
ted an entirely different way. You may remember that you already experi-
enced adding subviews (the button, text field, and labels) in creating the
ReturnMeTo application’s main view, although you may not have known you
were doing that at the time. Well, now it can be told.

Creating a custom subclass UITableViewCell
Finally, you can create a custom cell subclass when your content requires it —
usually when you need to change the default behavior of the cell.

Creating the cell
As I mentioned in the previous section, you’re going to use the UITableView
Cell class to create the cells for your table views and then add the subviews
you need in order to do the formatting you want. The place to create the cell
is tableView:cellForRowAtIndexPath:. This method is called for each
visible row in the table view, as shown in Listing 14-7. You’ll find that a code
stub is already included in the RootViewController.m file, courtesy of the
template.

Listing 14-7: Drawing the text

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:kCellIdentifier];

 if (cell == nil) {
cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:kCellIdentifier] autorelease];

 cell.accessoryType =
UITableViewCellAccessoryDisclosureIndicator;

 CGRect subViewFrame = cell.contentView.frame;
 subViewFrame.origin.x += kInset;
 subViewFrame.size.width = kInset+kSelectLabelWidth;

 UILabel *selectLabel = [[UILabel alloc]
 initWithFrame:subViewFrame];	
 selectLabel.textColor = [UIColor blackColor];
 selectLabel.highlightedTextColor = [UIColor
 whiteColor];

295 Chapter 14: Setting the Table

 selectLabel.font = [UIFont boldSystemFontOfSize:18];
 selectLabel.backgroundColor = [UIColor clearColor];
 [cell.contentView addSubview:selectLabel];

 subViewFrame.origin.x += kInset+kSelectLabelWidth;
 subViewFrame.size.width = kDescriptLabelWidth;

 UILabel *descriptLabel = [[UILabel alloc]
 initWithFrame:subViewFrame];
 descriptLabel.textColor = [UIColor grayColor];
 descriptLabel.highlightedTextColor = [UIColor
 whiteColor];
 descriptLabel.font = [UIFont systemFontOfSize:14];
 descriptLabel.backgroundColor = [UIColor clearColor];
 [cell.contentView addSubview:descriptLabel];

 int menuOffset = (indexPath.section*kSection1Rows)+
 indexPath.row;
 NSDictionary *cellText = [menuList
 objectAtIndex:menuOffset];

 selectLabel.text = [cellText objectForKey:kSelectKey];
 descriptLabel.text = [cellText
 objectForKey:kDescriptKey];
 [selectLabel release];
 [descriptLabel release];
 }
return cell;
}

Here’s the logic behind all that code:

	 1.	 Determine if there are any cells lying around that you can use.

		 Although a table view can display only a few rows at a time on iPhone’s
small screen, the table itself can conceivably hold a lot more. A large
table would chew up a lot of memory if you were to create cells for every
row. Fortunately, table views are designed to reuse cells. As a table
view’s cells scroll off the screen, they’re placed in a queue of cells avail-
able to be reused.

	 2.	 Create a cell identifier that indicates what cell type you’re using. Add
this to the Constants.h file:

#define kCellIdentifier @”Cell”

		 Table views support multiple cell types, which makes the identifier nec-
essary. In this case, you need only one cell type, but sometimes you may
want more than one.

www.allitebooks.com

http://www.allitebooks.org

296 Part IV: An Industrial-Strength Application

		 If the system runs low on memory, the table view gets rid of the cells in
the queue, but as long as it has some available memory for them, it will
hold on to them in case you want to use them again.

		 You can ask the table view for a specific reusable cell object by sending
it a dequeueReusableCellWithIdentifier: message:

UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:kCellIdentifier];

		 This asks whether any cells of the type you want are available.

	 3.	 If there aren’t any cells lying around, you’ll have to create a cell,
using the cell identifier you just created.

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:kCellIdentifier] autorelease];

		 You now have a table view cell that you can return to the table view.

		 UITableViewCellStyleDefault gives you a simple cell with a text
label (black and left-aligned) and an optional image view. There are also
several other styles:

		 UITableViewCellStyleValue1 gives you a cell with a left-
aligned black text label on the left side of the cell and smaller blue
text and right-aligned label on the right side. (The Settings applica-
tion uses this style cell.)

		 UITableViewCellStyleValue2 gives you a cell with a right-
aligned blue text label on the left side of the cell and a left-aligned
black label on the right side of the cell.

		 UITableViewCellStyleSubtitle gives you a cell with a left-
aligned label across the top and a left-aligned label below it in
smaller gray text. (The iPod application uses cells in this style.)

	 4.	 Define the accessory type for the cell.

 cell.accessoryType =
 UITableViewCellAccessoryDisclosureIndicator;

		 As I mentioned earlier in our brief tour of a cell, its layout includes a
place for an accessory — usually something like a disclosure indicator.

		 In this case, use UITableViewCellAccessoryDisclosureIndicator
(the one shaped like a regular chevron). It lets the user know that
tapping this entry will result in something (hopefully wonderful)
happening — the display of the current weather conditions, for example.

		 If you’re using a table view, and you want to display more detailed infor-
mation about the entry itself, you might use a Detail Disclosure button.
This allows you to then use a tap on the row for something else. In the
Favorites view in the iPhone application, for example, selecting the
Detail Disclosure button gives you a view of the contact information; if
you just tap the row, it places the call for you.

297 Chapter 14: Setting the Table

		 You’re not limited to these kinds of indicators; you also have the option
of creating your own view — you can put in any kind of control. (That’s
what you see in the Settings application, for example.)

	 5.	 Create the subviews.

		 Here I show you just one example (the other is the same except for the
font size and text color). I get the contentView frame and base the sub-
view on it. The inset from the left (kInset) and the width of the subview
(kLabelWidth) are defined in the Constants.h file. It looks like this:

#define kInset 10
#define kSelectLabelWidth 100
#define kDescriptLabelWidth 160

		 To hold the text, the subview I am creating is a UILabelView, which
meets my needs exactly:

CGRect subViewFrame = cell.contentView.frame;
subViewFrame.origin.x += kInset;
subViewFrame.size.width = kInset+kSelectLabelWidth;
UILabel *selectLabel = [[UILabel alloc]

initWithFrame:subViewFrame];

		 You then set the label properties that you are interested in, just as when
you created the labels in the ReturnMeTo application. This time, how-
ever, you’ll do it by manually writing code rather than using Interface
Builder. Just set the font color and size — the highlighted font color
when an item is selected, and the background color of the label (as indi-
cated in the code that follows). Setting the background color to trans-
parent allows me to see the bottom line of the last cell in the group.

selectLabel.textColor = [UIColor blackColor];
selectLabel.highlightedTextColor = [UIColor
 whiteColor];
selectLabel.font = [UIFont boldSystemFontOfSize:18];
selectLabel.backgroundColor = [UIColor clearColor];
[cell.contentView addSubview:selectLabel];

		 I could have inset the view one pixel up from the bottom, made the label
opaque, and given it a white (not clear) background — which would be
more efficient to draw. But with such a small number of rows, making
that effort really has no appreciable performance impact — and the way
I’ve set it up here requires less code for you to go through. Feel free to
do it the “right way” on your own.

		 After you have your label, you just set its text to one of the values you
get from the dictionary created in awakeFromNib representing this row.

		 The trouble is, you won’t get the absolute row passed to you. You get
only the row within a particular section — and you need the absolute
row to get the right dictionary from the array. Fortunately, one of the
arguments used when this method is called is the indexPath, which
contains the section and row information in a single object. To get the

www.allitebooks.com

http://www.allitebooks.org

298 Part IV: An Industrial-Strength Application

row or the section out of an NSIndexPath, you just have to invoke its
section method (indexPath.section) or its row method (index
Path.row), each of which returns an int. This neat trick enables you to
compute the offset for the row in the array you created in awakeFrom
Nib. This is also why it’s so handy to have the number of rows in a sec-
tion as a constant.

		 So the first thing you do in the following code is compute that. And then
you can use that dictionary to assign the text to the label.

int menuOffset = (indexPath.section*kSection1Rows)+
 indexPath.row;
NSDictionary *cellText = [menuList
 objectAtIndex:menuOffset];
selectLabel.text = [cellText objectForKey:kSelectKey];
descriptLabel.text = [cellText
 objectForKey:kDescriptKey];

		 If you think about it, the menuOffset algorithm will work only if you
have two sections. That’s why earlier I suggested you create a sec-
tionsArray. If you do, the algorithm becomes:

int menuOffset = 0;
for (int i =0 ; i < indexPath.section; i++) {
 menuOffset += [[sectionsArray objectAtIndex:i]
 intValue];
}
menuOffset += indexPath.row;

		 Finally, since I no longer need the labels I created, I release them

[selectLabel release];
[descriptLabel release];

		 and return the cell formatted and with the text it needs to display in
that row.

return cell;

Responding to a selection
When the user taps on a table-view entry, what happens next depends on
what you want your table view to do for you.

If this application were using the table view to display data (as the Albums
view in the iPod application does, for example), you’d show the next level in
the hierarchy — such as the list of songs, to stick with the iPod application —
or a detail view of an item, such as information about a song.

In our case, we’re using the table view as a table of contents, so tapping a
table-view entry transfers the user to the view that presents the desired
information — the Heathrow Express, for example.

299 Chapter 14: Setting the Table

	 For the iPhoneTravel411 application, I’m going to show you the table-of-contents
approach; in Chapter 18, I direct you to some Apple-supplied sample code that
deals with data hierarchies.

To move from one content view to a new (content) view, first you need to
create a new view controller for that view; then you launch it so it creates
and installs the view on the screen. But you also have to give the user a way
to get back to the main view!

Brass-tacks time: What kind of code-writing gymnastics do you have to do to
get all this stuff to happen?

Actually, not much. Table views are usually paired with navigation bars,
whose job it is to implement the back stuff. And to get a navigation bar, all
you have to do is include a navigation controller in your application. What’s
more, if you wisely chose the Navigation-Based Application template at the
outset of your iPhoneTravel411 project, a navigation controller was already
put in place for you in the appDelegate created by the template. Here’s the
code that the template quite generously provided you with (the navigation
controller is bolded so you can find it easier):

@interface iPhoneTravel411AppDelegate : NSObject
 <UIApplicationDelegate> {

 UIWindow *window;
 UINavigationController *navigationController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet

UINavigationController *navigationController;
@end

This navigation controller is created for you in the MainWindow.xib file (see
Figure 14-13), which you can access by double-clicking the MainWindow.
xib file in the Groups & Files pane in your project. If you take a closer look
at Figure 14-13, you can see that, when the navigation controller is selected,
it points to the RootViewController.nib in the View window — which is to
say, it’s pointing to the RootViewController and its table view. This links
together the navigation controller, the root view controller, and the view.

But not only did the Navigation-Based Application template deliver the goods
in the iPhoneTravel411AppDelegate.h file and nib file, it also created the code
I need in the iPhoneTravel411AppDelegate.m file.

To get the navigation controller view to load in the window, you don’t have
to do anything. When you chose Navigation-Based Application template, the
code below was automatically generated for you.

www.allitebooks.com

http://www.allitebooks.org

300 Part IV: An Industrial-Strength Application

-void)applicationDidFinishLaunching:
 (UIApplication *)application {
 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
}

When all is said and done, you have a table view with a Navigation bar ready
to go to work.

	

Figure 14-13:
The

navigation
controller.

	

Navigating the navigation controller
As the previous section made clear, to give users the option of returning to
a view higher up in the hierarchy (in our case, the main view), table views
are paired with navigation bars that enable a user to navigate the hierarchy.
Here’s what you need to know to make that work:

	 ✓	The view below the Navigation bar presents the current level of data.

	 ✓	A navigation bar includes a title for the current view.

	 ✓	If the current view is lower in the hierarchy than the top level, a Back
button appears on the left side of the bar; the user can tap it to return to the
previous level, as shown in Figure 14-14. The text in the Back button tells
the user what the previous level was. In this case, it’s the application’s main
view, so you will see the application’s name — iPhoneTravel411.

	 ✓	A navigation bar may also have an Edit button (on the right side) — used
to enter editing mode for the current view — or even custom buttons.

In the case of our iPhoneTravel411 application, you’ll create a custom
button — an additional back button. I explain why that is needed shortly.

301 Chapter 14: Setting the Table

The navigation bar for each level is managed by a navigation controller —
again as mentioned in the previous section. The navigation controller main-
tains a stack of view controllers, one for each of the views displayed, starting
with the root view controller (hence the name RootViewController given
to the table view controller by the template). The root view controller is the
very first view controller that the navigation controller pushes onto its stack
when a user launches the application; it remains active until the user selects
the next view to look at.

Time for a concrete example. When the user taps a row of the table view to
get the Heathrow Express information, the root view controller pushes the
next view controller onto the stack. The new controller’s view (the Heathrow
Express information) slides into place, and the navigation bar items are
updated appropriately. When the user taps the Back button in the navigation
bar, the current view controller pops off the stack, the Heathrow View slides
off the screen, and the user lands (so to speak) back in the main (table) view.

A stack is a commonly used data structure that works on the principle of last
in, first out. Imagine an “ideal” boarding scenario for an airplane: You would
start with the last seat in the last row, and board the plane in back-to-front
order until you got to the first seat in the first row — that would be the seat
for the last person to board. When you got to your destination you’d deplane
(is that really a word?) in the reverse order. That last person on — the
person in row one seat one — would be the first person off.

A computer stack is pretty much the same. Adding an object is called a push —
in this case, when you select Heathrow, the view controller for the Heathrow
view is pushed onto the stack. Removing an object is called a pop — touching
the Back button pops the view controller for the Heathrow view. When you
pop an object off the stack, it’s always the last one you pushed onto it. The
controller that was there before the push is still there, and now becomes the
active one — in this case, it’s the root view controller.

I mentioned earlier that I wanted two Back buttons in place. Now you get to find
out why. In my design, I wanted to be able to tap a link in the content views to
access a Web site. (You can see such a link on the left in Figure 14-14.) When I
do that, the iPhoneTravel411 application replaces the content of the view, rather
than creating a new view controller. Tapping the link doesn’t change the control-
ler in any way, so the left button won’t change; you won’t be able to use it to get
back to a previous view — you’ll only go back to the main view, as the control
text tells you. To solve this quandary, I created another button and labeled it
“Back,” so the user knows he or she can use it to get back to the previous view. I
show you how to create such a Back button in Chapter 17.

	 That being said, Apple’s Human Interface Guidelines say, “In addition to dis-
playing web content, a web view provides elements that support navigation
through open webpages. Although you can choose to provide webpage navi-
gation functionality, it’s best to avoid creating an application that looks and
behaves like a mini web browser.” If you want to follow Apple’s suggestion
here, I’ll show you how to disable links in Chapter 17.

www.allitebooks.com

http://www.allitebooks.org

302 Part IV: An Industrial-Strength Application

	

Figure 14-14:
Getting

back.
	

Implementing the selection
At some point, you have to make sure that something actually happens
when a user makes a selection. To do that, all you really need to do is imple-
ment the tableview:didSelectRowAtIndexPath: method to set up a
response to a user tap in the main view. This method, too, is already in the
RootViewController.m file, courtesy of the template. Before I show you that,
however, there are some other things you’ll need to put in place that I’ll
cover in Chapter 15. Then in section “Using Preferences in Your Application,”
in Chapter 15, I’ll explain tableview:didSelectRowAtIndexPath: in
detail.

And Now . . .
We’re off to a good start — and we only had to use five methods to create the
table and handle user selections. We still have to create the content views
and models, but before we do that, I want to show you how to improve the
user experience by saving state and allowing the user to set preferences.

Chapter 15

Enhancing the User Experience
In This Chapter
▶	Getting back to where you once belonged

▶	Avoiding bankruptcy because of exorbitant roaming charges

“Keep the customer satisfied” is my mantra. If that means constantly
refining an application design, so be it. In thinking about my iPhone

Travel411 design, two things struck me as essential if I really wanted to make
this an application that really focuses on the user. The first is part of the
Human Interface Guidelines, so it’s not really something I can claim credit for;
the second is something that flowed straight out of the nature of my design.

In this chapter, I show how I incorporated elements into my design that
directly addressed issues relating to an enhanced user experience.

Saving and Restoring State
When the user taps the Home button, the iPhone OS terminates your applica-
tion and returns to the Home screen. The applicationWillTerminate:
method is called, and your application is terminated — no ifs, ands, or buts.
That means you have to save any unsaved data — as well as the current state
of your application — if you want to restore the application to its previous
state the next time the user launches it. Now, in situations like this one, you
have to use common sense to decide what state really means. Generally, you
wouldn’t need to restore the application to where the user last stopped in a
scrollable list, for example. For purposes of explanation, I chose to save the
last category view that the user selected in the main table view, which cor-
responds to a row in a section in the table view. You, the reader, might also
consider saving that last view that was selected in that category.

Contents
Enhancing the User Experience	

303
Saving and Restoring State	 303

Respecting User Preferences	 309

Reading Settings in the Application	
314

Using Preferences in Your Application	
317

This App Is Almost Done	 320

www.allitebooks.com

http://www.allitebooks.org

304 Part IV: An Industrial-Strength Application

Saving state information
Here’s the sequence of events that go into saving the state:

	 1.	 Add new instance variable lastView and declare the @property in
the iPhoneTravel411AppDelegate.h file.

		 I explain properties in Chapter 8.

		 This is shown in Listing 15-1. (Again, the new stuff is bold.)

		 As you can see, lastView is a mutable array. You’ll save the section
as the first element in the array and the row as the second element. As
I mentioned in Chapter 14, since it’s mutable, it’ll be easier to update
when the user selects a new row in a section.

	 2.	 Add the @synthesize statement to the iPhoneTravel411AppDelegate.m
file, to tell the compiler to create the accessors for you.

		 This is shown in Listing 15-2. (You guessed it — new stuff is bold.)

	 3.	 Define the filename you’ll use when saving the state information in
the Constants.h file.

#define kState @”LastState”

	 4.	 Save the section and row that the user last tapped, in the iPhone
Travel411AppDelegate’s lastView instance variable, by adding
the following code to the beginning of the tableview:didSelect
RowAtIndexPath: method in the RootViewController.m file, as shown
in Listing 15-3 (and in context in Listing 15-9).

		 The tableview:didSelectRowAtIndexPath: method is called when
the user taps a row in a section. As you recall from Chapter 14, the sec-
tion and row information are in the indexPath argument of the table
view:didSelectRowAtIndexPath: method. All you have to do to save
that information is to save the indexPath.section as the first array
entry, and the indexPath.row as the second. (The reason I do it this
way will become obvious when I show you how to write this to a file.)

	 5.	 When the user goes back to the main view, save that main view loca-
tion in the viewWillAppear: method. You’ll need to add this method
to the RootViewController.m file as shown in Listing 15-4. (It’s already
there; all you have to do is uncomment it out.)

		 The last step is to deal with the case when the user moves back to the
main view and then quits the application. To indicate that the user is at
the main view, I use –1 to represent the section and –1 to represent the
row. I use minus ones in this case because, as you recall, the first sec-
tion and row in a table are both 0, which requires me to represent the
table (main) view itself in this (clever) way.

305 Chapter 15: Enhancing the User Experience

	 6.	 Save the section and row in the applicationWillTerminate: method.
The method stub is already in the iPhoneTravel411AppDelegate.m file;
you just have to add the code in Listing 15-5.

		 In applicationWillTerminate:, I am saving the lastView instance
variable (which contains the last section and row the user tapped) to
the file kState, which is the constant I defined in Step 3 to represent
the filename LastState.

		 As you can see, reading or writing to the file system on the iPhone is
pretty simple: You tell the system which directory to put the file in,
specify the file’s name — and then pass that information to the write-
ToFile method. Let me take you through what I just did in Step 6:

	 •	Got the path to the Documents directory.

NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsDirectory =[paths objectAtIndex:0];

		 On the iPhone, you really don’t have much choice about where
the file goes. Although there’s a /tmp directory, I’m going to place
this file in the Documents directory — because (as I explain in
Chapter 2), this is part of my application’s sandbox, so it’s the
natural home for all the app’s files.

		 NSSearchPathForDirectoriesInDomains: returns an array
of directories; because I’m only interested in the Documents direc-
tory, I use the constant NSDocumentDirectory — and because
I’m restricted to my home directory, /sandbox, the constant
NSUserDomainMask limits the search to that domain. There will
be only one directory in the domain, so the one I want will be the
first one returned.

	 •	Created the complete path by appending the path filename to the
directory.

NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];

		 stringByAppendingPathComponent; precedes the filename
with a path separator (/) if necessary.

		 Unfortunately, this does not work if you are trying to create a
string representation of a URL.

	 •	Wrote the data to the file.

[lastView writeToFile:filePath atomically:YES];

		 writeToFile: is an NSData method and does what it implies.
I am actually telling the array here to write itself to a file, which
is why I decided to save the location in this way in the first

www.allitebooks.com

http://www.allitebooks.org

306 Part IV: An Industrial-Strength Application

place. There are a number of other classes that implement that
method, including NSData, NSDate, NSNumber, NSString, and
NSDictionary. You can also add this behavior to your own
objects, and they could save themselves — but I won’t get into
that here. The atomically parameter first writes the data to an
auxiliary file, and once that is successful, it’s renamed to the path
you’ve specified. This guarantees that the file won’t be corrupted
even if the system crashed during the write operation.

Listing 15-1: Add the instance variable to the interface
@interface iPhoneTravel411AppDelegate : NSObject
 <UIApplicationDelegate> {

 UIWindow *window;
 UINavigationController *navigationController;
 NSMutableArray *lastView;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet
 UINavigationController *navigationController;
@property (nonatomic, retain) NSMutableArray *lastView;

@end

Listing 15-2: Add the synthesize to the implementation
#import “iPhoneTravel411AppDelegate.h”
#import “RootViewController.h”
#import “Constants.h”

@implementation iPhoneTravel411AppDelegate

@synthesize window;
@synthesize navigationController;
@synthesize lastView;

Listing 15-3: Saving indexPath
iPhoneTravel411AppDelegate *appDelegate =

(iPhoneTravel411AppDelegate *)[[UIApplication
sharedApplication] delegate];

[appDelegate.lastView replaceObjectAtIndex:0
withObject:[NSNumber
numberWithInteger:indexPath.section]];

[appDelegate.lastView replaceObjectAtIndex:1
withObject:[NSNumber
numberWithInteger:indexPath.row]];

307 Chapter 15: Enhancing the User Experience

Listing 15-4: Adding viewWillAppear:
- (void)viewWillAppear:(BOOL)animated {

 iPhoneTravel411AppDelegate *appDelegate =
 (iPhoneTravel411AppDelegate *)
 [[UIApplication sharedApplication] delegate];

 [appDelegate.lastView replaceObjectAtIndex:0
 withObject:[NSNumber numberWithInteger:-1]];
 [appDelegate.lastView replaceObjectAtIndex:1
 withObject:[NSNumber numberWithInteger:-1]];
}

Listing 15-5: Adding applicationWillTerminate:
- (void)applicationWillTerminate:
 (UIApplication *)application {

 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:kState];
 [lastView writeToFile:filePath atomically:YES];
}

Restoring the state
Now that I’ve saved the state, I need to restore it when the application is
launched. I use our old friend applicationDidFinishLaunching: to
carry out that task (as shown in Listing 15-6). applicationDidFinish-
Launching: is a method you’ll find in the iPhoneTravel411AppDelegate.m
file. The code you need to add is in bold.

Listing 15-6: Add to applicationDidFinishLaunching:
- (void)applicationDidFinishLaunching:(UIApplication *)
 application {

 NSArray *paths = NSSearchPathForDirectoriesInDomains

(NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:kState];
 lastView =[[NSMutableArray alloc] initWithContentsOfFil

e:filePath];
 if (lastView == nil) {

(continued)

www.allitebooks.com

http://www.allitebooks.org

308 Part IV: An Industrial-Strength Application

Listing 15-6 (continued)
 lastView = [[NSMutableArray arrayWithObjects:
 [NSNumber numberWithInteger:-1],
 [NSNumber numberWithInteger:-1],
 nil] retain];
 }
 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
}

Reading is the mirror image of writing. I create the complete path, including
the filename, just as I did when I saved the file. This time I send the init
WithContentsOfFile: message instead of writeToFile:, which allocates
the lastView array and initializes it with the file. If the result is nil, there’s
no file, meaning that this is the first time the application is being used. In that
case, I create the array with the value of section and row set to –1 and –1.
(As I said earlier, in Step 5, I use –1 –1 to indicate the main view because 0 0
is actually the first row in the first section.)

	 initWithContentsOfFile: is an NSData method similar to writeTo
File:. The classes that implement writeToFile: and those that implement
initWithContentsOfFile: are the same.

Fortunately, restoring the current state is actually straightforward, given the
program architecture. The RootViewController’s viewDidLoad method
is called at application launch — after the first view is in place but not yet
visible. At that point, you’re getting ready to display the (table) view. But
instead of just doing that, you see if the saved view was something other than
the table view, and if it was, you take advantage of the same mechanisms that
are used when the user taps a row in the table view. You invoke the did-
SelectRowAtIndexPath: method, which already knows how to display
a particular view represented by the indexPath, that is, section and row.
This is shown in Listing 15-7.

viewDidLoad is already in the RootViewController.m file. All you have
to do is uncomment it out.

Listing 15-7: Specify the view to be displayed at launch
- (void)viewDidLoad {

 iPhoneTravel411AppDelegate *appDelegate =
 (iPhoneTravel411AppDelegate *)
 [[UIApplication sharedApplication] delegate];

 if ([((NSNumber*) [appDelegate.lastView
 objectAtIndex:0]) intValue] != -1) {

309 Chapter 15: Enhancing the User Experience

 NSIndexPath* indexPath = [NSIndexPath indexPathForRow:
 [[appDelegate.lastView objectAtIndex:1]intValue]
 inSection:
 [[appDelegate.lastView objectAtIndex:0] intValue]];
 [self tableView:((UITableView*) self.tableView)
 didSelectRowAtIndexPath:indexPath];
 }
}

Here’s what you’re up to in Listing 15-7:

	 1.	 Check to see if the last view was the table view.

if ([((NSNumber*) [appDelegate.lastView
 objectAtIndex:0]) intValue] != -1) {

	 2.	 If the last view wasn’t the table view, create the index path using the
last section and row information that was loaded into the lastView
instance variable by applicationDidFinishLaunching:.

NSIndexPath* indexPath = [NSIndexPath indexPathForRow:
[[appDelegate.lastView objectAtIndex:1]
intValue] inSection:

 [[appDelegate.lastView objectAtIndex:0] intValue]];

	 3.	 Send the tableview:didSelectRowAtIndexPath: message to dis-
play the right view.

 [self tableView:((UITableView*) self.tableView)
 didSelectRowAtIndexPath:indexPath];

		 The reason I created an index path was to be able to take advantage of
the didSelectRowAtIndexPath: method to replay the last user tap in
the main view.

Respecting User Preferences
Figure 15-1 shows you the Settings screen for my MobileTravel411 applica-
tion. There you can see that I’ve provisioned my app with three preferences.
In this chapter, I show you how to implement the most critical of these
preferences — the Use Stored Data option.

Use Stored Data tells the application to use the last version of the data that
it accessed, rather than going out on the Internet for the latest information.
While this does violate my I Want The Most Up To Date Information, it can
save the user from excessive roaming charges, depending on his or her cell
provider’s data plan.

www.allitebooks.com

http://www.allitebooks.org

310 Part IV: An Industrial-Strength Application

	

Figure 15-1:
The

required
prefer-
ences.

	

	 No doubt it’s way cool to put user preferences in Settings. Some programmers
abuse this trick, though; they make you go into Settings, when it’s just as easy
to give the user a preference-setting capability within the program itself. You
should only put something in Settings if the user changes it infrequently. In
this case, stored data doesn’t change often; Use Stored Data mode definitely
belongs in Settings.

In this part of the chapter, I’m going to show you how to put a toggle switch
in Settings that lets you specify whether to use only stored data — and then
show you how to retrieve the setting. In this and in the next chapter, I show
you how to actually use the toggle switch setting in your code.

The Settings application uses a property list, called Root.plist, found in the
Settings bundle inside your application. The Settings application takes what
you put in the property list and builds a Settings section for your application
in its list of application settings as well as the views that display and enable
the user to change those settings. The next sections spell out how to put that
Settings section to work for you.

Adding a Settings bundle to your project
For openers, you’ll have to add a Settings bundle to your application. Here
are the moves:

311 Chapter 15: Enhancing the User Experience

	 1.	 In the Groups & Files listing (at left in the Xcode project window),
select the iPhoneTravel411 folder and then chose File➪New File from
the main menu, or press ➪cmd+N.

		 The New File dialog appears.

	 2.	 Choose Settings under the iPhone OS heading in the left pane, and
then select the Settings Bundle icon, as shown in Figure 15-2.

	

Figure 15-2:
Creating the
application

bundle.
	

	 3.	 Click the Next button.

	 4.	 Choose the default name of Settings.bundle, then press Return (Enter)
or click Finish.

		 You should now see a new item called Settings.bundle in the iPhone-
Travel411 folder, in the Groups & Files listing.

	 5.	 Click the triangle to expand the Settings.bundle subfolder.

		 You’ll see the Root.plist file as well as an en.lproj folder — the latter is
used for dealing with localization issues, as discussed in Chapter 14.

Setting up the property list
Property lists are widely used in iPhone applications because they provide
an easy way to create structured data using named values for a number of
object types.

www.allitebooks.com

http://www.allitebooks.org

312 Part IV: An Industrial-Strength Application

	 In the MobileTravel411 application, I use property lists extensively as a way to
“parameterize” view controllers and models. (I de-buzz this word and provide
details in the next chapter.)

Property lists all have a single root node — a Dictionary, which means it stores
items using a key-value pair, just as an NSDictionary does: All dictionary
entries must have both a key and a value. In this dictionary, there are two keys:

	 ✓	StringsTable

	 ✓	PreferenceSpecifiers

The value for the first entries is a string — the name of a strings table used
for localization, which I won’t get into here. The second entry is an array
of dictionaries — one dictionary for each preference. You’ll probably need
some time to wrap your head around that one. It’ll become clearer as I take
you through it.

PreferenceSpecifiers is where you put a toggle switch so the user can
choose to use (or not use, since it’s a toggle) only stored data — I’ll refer to
that choice later as stored data mode. Here’s how it’s done:

	 1.	 In the Groups & Files pane of the project window, select the triangle
next to the Settings.bundle file to reveal the Root.plist file, and then
double-click the Root.plist file to open it in a separate window, as
shown in Figure 15-3.

		 Okay, you don’t really have to do this, but I find it easier to work with
this file when it’s sitting in its own window.

	 2.	 In the Root.plist window you just opened, expand the triangles next to
all the nodes by clicking all those triangles, as shown in Figure 15-3.

	 3.	 Under the PreferenceSpecifiers heading in the Root.plist window,
move to Item 1.

		 PreferenceSpecifiers is an array designed to hold a set of diction-
ary nodes, each of which represents a single preference. For each item
listed in the array, the first row under it has a key of Type; every prop-
erty list node in the PreferenceSpecifiers array must have an entry
with this key, which identifies what kind of entry this is. The Type value
for the current Item 1 — PSGroupSpecifier — is used to indicate that
a new group should be started. The value for this key actually acts like a
section heading for a table view (like you created in Chapter 14). Double-
click the value next to Title and delete the default Group, as I have in
Figure 15-4 (or you can put in IPhoneTravel411 Preferences, or be
creative if you like).

313 Chapter 15: Enhancing the User Experience

	 4.	 Seeing that Item 2 is already defined as a toggle switch, you can just
modify it by changing the Title value from Enabled to Use stored
data and the key from enabled_preference to useStoredData-
Preference. This is the key you will use in your application to access
the preference.

	

Figure 15-3:
Default

Root.plist
file prefer-

ences.
	

	 5.	 Continue your modifications by unchecking the Boolean checkbox
next to DefaultValue.

		 I want the Use Stored Data preference initially to be set to Off because I
expect most people will still want to go out on the Internet for the latest
information, despite the high roaming charges involved.

		 When you’re done, the Root.plist window should look like Figure 15-4.

	 6.	 Collapse the little triangles next to items 2 and 4 (as shown in Fig-
ure 15-5), and then select those items one by one and delete them.

		 The item numbers do change as you delete them, so be careful. That’s
why you need to leave the preference item you care about open, so you
can see not to delete it. Fortunately, Undo is supported here; if you make
a mistake, press Ô+Z to undo the delete.

	 7.	 Save the property file by pressing Ô+S.

www.allitebooks.com

http://www.allitebooks.org

314 Part IV: An Industrial-Strength Application

	

Figure 15-4:
Preferences

for IPhone
Travel411.

	

	

Figure 15-5:
Delete these

items.
	

Reading Settings in the Application
After you’ve set it up so your users can let their preferences be known in
Settings, you’ll need to read those preferences back into the application. You
do that in the iPhoneTravel411AppDelegate’s applicationDidFinish
Launching: method. But first, a little housekeeping.

	 1.	 Add the new instance variable useStoredData and declare the @
property in the iPhoneTravel411AppDelegate.h file.

		 This is shown in Listing 15-8. (Again, the new stuff is bold.)

315 Chapter 15: Enhancing the User Experience

		 Notice that the @property declaration is a little different than what you
have been using so far. Up to now, all your properties have been declared
(nonatomic, retain) — as was explained back in Chapter 7. What’s
this readonly stuff? Since useStoredData: is not an object (it’s a
Boolean value), retain is not applicable. In addition, you’ll enable it to be
read only. If you wanted it to be updatable, you could make it readwrite.

	 2.	 Add the @synthesize statement to the iPhoneTravel411AppDelegate.m
file, to tell the compiler to create the accessors for you.

		 This is shown in Listing 15-9. (You guessed it — new is bold.)

Listing 15-8: Add the instance variable to the interface
@interface iPhoneTravel411AppDelegate : NSObject
 <UIApplicationDelegate> {

 UIWindow *window;
 UINavigationController *navigationController;
 NSMutableArray *lastView;
 BOOL	 useStoredData;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet

UINavigationController *navigationController;
@property (nonatomic, retain) NSMutableArray *lastView;
@property (nonatomic, readonly) BOOL useStoredData;

@end

Listing 15-9: Add the synthesize to the implementation
#import “iPhoneTravel411AppDelegate.h”
#import “RootViewController.h”
#import “Constants.h”

@implementation iPhoneTravel411AppDelegate

@synthesize window;
@synthesize navigationController;
@synthesize lastView;
@synthesize useStoredData;

With your housekeeping done, it’s time to add the necessary code to the
applicationDidFinishLaunching: method. Listing 15-10 shows the code
you need:

www.allitebooks.com

http://www.allitebooks.org

316 Part IV: An Industrial-Strength Application

Listing 15-10: Add to applicationDidFinishLaunching
- (void)applicationDidFinishLaunching:(UIApplication *)
 application {
 if (![[NSUserDefaults standardUserDefaults]
 objectForKey:kUseStoredDataPreference]) {
 [[NSUserDefaults standardUserDefaults]setBool:NO
 forKey:kUseStoredDataPreference];
 useStoredData = NO;
 }
 else
 useStoredData = [[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference];

 NSArray *paths = NSSearchPathForDirectoriesInDomains

(NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:kState];
 lastView =[[NSMutableArray alloc]
 initWithContentsOfFile:filePath];
 if (lastView == nil) {
 lastView = [[NSMutableArray arrayWithObjects:
 [NSNumber numberWithInteger:-1],
 [NSNumber numberWithInteger:-1],
 nil] retain];
 }
 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
}

Here’s what you want all that code to do for you:

	 1.	 Check to see whether the settings have been moved into
NSUserDefaults.

if (![[NSUserDefaults standardUserDefaults]
 objectForKey:kUseStoredDataPreference]){

		 I explain NSUserDefaults back in Chapter 9. The Settings applica-
tion moves the user’s preferences from Settings into NSUserDefaults
only after the application runs for the first time; Settings will, however,
update them in NSUserDefaults if the user makes any changes.

	 2.	 If the settings have not been moved into NSUserDefaults yet, then
use the default of NO (which corresponds to the default you used for
the initial preference value).

[[NSUserDefaults standardUserDefaults]setBool:NO
 forKey:kUseStoredDataPreference];
 useStoredData = NO;

	 3.	 If the settings have been moved into NSUserDefaults, read them in,
and then set the useStoredData instance variable to whatever the
user’s preference is.

317 Chapter 15: Enhancing the User Experience

else
 useStoredData =
 [[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference];

Using Preferences in Your Application
I said in Chapter 14 that before I could explain the tableview:didSelectR
owAtIndexPath: method that makes something happen when a user selects
a row in the table view, you need to have some other things in place. And
while there are other places to use stored data in your application, the tab
leview:didSelectRowAtIndexPath: method really needs to use it. Now
that you have implemented that, take a look at the entire method in Listing
15-11.

Listing 15-11: tableview:didSelectRowAtIndexPath:
- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 [tableView deselectRowAtIndexPath:indexPath

animated:YES];

 int menuOffset = (indexPath.section*kSection1Rows)+

indexPath.row;
 iPhoneTravel411AppDelegate *appDelegate =

(iPhoneTravel411AppDelegate *)[[UIApplication
sharedApplication] delegate];

 [appDelegate.lastView replaceObjectAtIndex:0
withObject:[NSNumber
numberWithInteger:indexPath.section]];

 [appDelegate.lastView replaceObjectAtIndex:1
withObject:[NSNumber
numberWithInteger:indexPath.row]];

 NSLog (@” %@”, [[menuList objectAtIndex:menuOffset]

objectForKey:kSelectKey]);

 UIViewController *targetController =

[[menuList objectAtIndex:menuOffset]
objectForKey:kControllerKey];

 if (targetController == nil) {
 iPhoneTravel411AppDelegate *appDelegate =

(iPhoneTravel411AppDelegate *) [[UIApplication
sharedApplication] delegate];

 BOOL realtime = !appDelegate.useStoredData;

(continued)

www.allitebooks.com

http://www.allitebooks.org

318 Part IV: An Industrial-Strength Application

Listing 15-11 (continued)
 switch (menuOffset) {
 case 0:
 targetController = [[CityController alloc] initWit

hDestination:destination];
 break;
 case 1:
 if (realtime) targetController = [[MapController

alloc] initWithDestination:destination];
 else [self displayOfflineAlert:[[menuList

objectAtIndex:menuOffset]
objectForKey:kSelectKey]];

 break;
 case 2:
 targetController = [[CurrencyController alloc] ini

tWithDestination:destination];
 break;
 case 3:
 if (realtime) targetController =
 [[WeatherController alloc]
 initWithDestination:destination];
 else [self displayOfflineAlert:[[menuList

objectAtIndex:menuOffset]
objectForKey:kSelectKey]];

 break;
 case 4:
 targetController = [[AirportController alloc]

initWithDestination:destination airportID:1];
 break;
 case 5:
 targetController = [[AirportController alloc]

initWithDestination:destination airportID:2];
 break;
 case 6:
 targetController = [[AirportController alloc]

initWithDestination:destination airportID:2];
 break;
 }
 if (targetController) {
 [[menuList objectAtIndex:(indexPath.row +

(indexPath.section*kSection1Rows))]
 setObject:targetController forKey:kControllerKey];
 [targetController release];
 }
 }
 if (targetController) [[self navigationController]
 pushViewController:targetController animated:YES];
}

319 Chapter 15: Enhancing the User Experience

Here’s what happens when a user makes a selection in the main view:

	 1.	 Deselect the row the user selected.

[tableView deselectRowAtIndexPath:indexPath
 animated:YES];

		 It stands to reason that if you want your app to move on to a new view,
you have to deselect the row where you currently are.

	 2.	 Compute the offset (based on section and row) into the menu array.

int menuOffset =
 (indexPath.section*kSection1Rows)+ indexPath.row;

		 You need to figure out where you want your app to land, right?

	 3.	 Save the section and row that the user last tapped. I covered that in
Step 4 in the section, “Saving state information.”

	 4.	 Check to see whether the controller for that particular view has
already been created.

UIViewController *targetController =
 [menuList objectAtIndex:menuOffset]
 objectForKey:kControllerKey];
if (targetController == nil) {

	 5.	 If no controller exists, create and initialize a new controller if you
should.

		 I explain the mechanics of creating and initializing a new controller in
Chapter 16. As you can see, you’re going to use another switch state-
ment to get to the right controller:

switch (menuOffset) {

		 For many of the selections, you’ll always create a new controller. For
example:

case 4:
 targetController = [[AirportController alloc]
 initWithDestination:destination airportID:1];
 break;

		 But for some selections, like Weather, you have decided that if you’re
not online, you can’t deliver the quality of the information a user needs
(saved current weather conditions is an oxymoron). For other selec-
tions, Map for example, a network connection is required (right now
no caching is available). In that case, you send an alert to the user (see
Listing 15-12) informing him or her the selection that is unavailable.

www.allitebooks.com

http://www.allitebooks.org

320 Part IV: An Industrial-Strength Application

if (realtime) targetController =
 [[MapController alloc]
 initWithDestination:destination];
else [self displayOfflineAlert:
 [[menuList objectAtIndex:menuOffset]
 objectForKey:kSelectKey]];

 	 6.	 If you created a new view controller, save a reference to the newly
created controller in the dictionary for that row.

if (targetController) {
 [[menuList objectAtIndex
 (indexPath.row + (indexPath.section*kSection1Rows))]
 setObject:targetController forKey:kControllerKey];
 [targetController release];

}

	 7.	 If you created a new view controller, push the controller onto the
stack, and let the navigation controller do the rest.

if (targetController) [[self navigationController]
 pushViewController:targetController animated:YES];

Listing 15-12: Displaying an alert
- (void) displayOfflineAlert: (NSString*) selection {

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:selection
 message:@”is not available offline”
 delegate:self cancelButtonTitle: @”Thanks”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

This App Is Almost Done
In the next two chapters, I show you how to implement the content view
controllers, views, and models. Then you’ll be ready to march off and create
your own applications.

Chapter 16

Creating Controllers
and Their Models

In This Chapter
▶	Taking another look at model objects

▶	Taking advantage of reusable view controllers and models

▶	Accessing data on the Internet

▶	Saving and reading files

Getting the infrastructure in place for a new iPhone application is cer-
tainly a crucial part of the development process, but in the grand

scheme of things, it’s only the spadework that prepares the way for the really
cool stuff. After all is said and done, you still need to add the content that the
users will see or interact with. Content is, after all, the reason they bought
this application.

Chapter 14 was all about infrastructure — and a very interesting chapter it
was — but this chapter moves on from there to content views and how to
implement them.

This is actually less difficult than it sounds. The real key to creating an
extensible application — one where you can easily add new views — is the
program architecture. Once you have a table view in place, you have the
structure necessary for navigation in your application. With that navigation
architecture — along with the MVC pattern I’ve been touting all along —
creating the views, view controllers, and the model turns out to be somewhat
pedestrian. You do more or less the same thing over again for each new con-
tent view. (Oh well, boring is sometimes good.)

If you’ve been dutifully following along in this book chapter by chapter, you
probably already know the basics of creating a view and its view controller. If
so, no big surprise that what I do here is almost identical to creating the view
controller for my other sample application (the ReturnMeTo app) in Chapters
5, 7, 8, 9 and 11 — although this time I get to do it in a single chapter!

Contents
Creating Controllers

and Their Models	 321
Specifying the Content	 322

Creating the View Controller,
Nib, and Model Files	 326

Implementing the View, View
Controller, and the Model	333

The Destination Model	 341

What’s with the Destination Model
and All That Indirection	 346

The Weather Implementation Model	 348

The Currency Implementation Model	 350

Notice the Pattern	 352

What’s Next?	 352

www.allitebooks.com

http://www.allitebooks.org

322 Part IV: An Industrial-Strength Application

To kick off the process, you’ll first need to decide what you want to see in
each view whenever the user selects a particular row in the main view. You’ll
also need to decide where that information is going to be located. You have
a number of options here. It can be a program resource (kind of like a local
file, which I’ll get to later), a Web page, or data located on a server on the
Internet. To ease your mind, I’ll show you how to work with all three. And, oh
yes, as you started to do in Chapter 15, you’ll also have to make some deci-
sions about what you want to do if the user is offline.

My running examples in this chapter are going to involve implementing the
Currency, Weather, and Heathrow selections for the iPhoneTravel411 appli-
cation, along with an introduction to the Map selection that may surprise
you. I cover the Map selection in detail in Chapter 17. To see the full listings
of each of those, you’ll have to go to my Web site — www.nealgoldstein.
com. At this stage of the game, the listings have gotten so big that it would
be a bear for you to flip back and forth between them in printed-text form.
Having them in electronic form also means that, if you download them, you
can create an Xcode project and work along and experiment with changing
parameters or even logic just to see what happens — both are very helpful in
learning what’s going on.

You’ll work with the project in the folder named iPhoneTravel411 Chapter
16, which will have the code for the finished application through Chapter 16.
The folder iPhoneTravel411 Chapter 17 will have the code for the complete
application.

Let’s go to work.

Specifying the Content
If the user selects Currency from the main view in the iPhoneTravel411 applica-
tion, he or she will see some very basic information about exchange rates, as
illustrated in Figure 16-1. Since this information changes rarely (if ever), I’m going
to include this information in the application. The way to do this is to include it
as a resource, which I will explain in a later section. The view the user sees will
be the same regardless if the user is online or in stored data mode.

If the user selects Weather from the main view, what the user sees does
depend on whether the device is online or in stored data mode. If the device
is online, the user sees a Web page from a Web site with the weather informa-
tion, as illustrated in Figure 16-2 (left). When in stored data mode, the user
gets a message stating that weather data is unavailable when offline, as you
can see in Figure 16-2 (right).

323 Chapter 16: Creating Controllers and Their Models

If the user selects Heathrow from the main view, he or she sees what’s
illustrated in Figure 16-3: a view of one particular means of transportation
(Heathrow Express, for example) with tabs that will enable her or him to
look at the others. When the user is online, the application gets this data off
a server on the Internet where I (personally) keep the (up-to-date) informa-
tion. The only difference between being online and being in stored data mode
(offline) is the freshness of the data. In stored data mode, what the user sees
is a copy of the information that the application saved the last time the user
was online.

If the user selects Map from the main view, he or she sees what’s illustrated
in Figure 16-3: a map of the destination and some other features I cover in
Chapter 17. To see a map, the user must be online (at least in this implemen-
tation). When in stored data mode, the user gets a message stating that map
data is unavailable when offline.

	

Figure 16-1:
Currency

view.
	

www.allitebooks.com

http://www.allitebooks.org

324 Part IV: An Industrial-Strength Application

	

Figure 16-2:
Weather

views.
	

In this chapter, I show you how to code the view controllers (Weather
Controller, for example) views, and the model for each of the examples
shown in Figures 16-1, 16-2, and 16-3. The view controllers are the key ele-
ments here. They’re the ones that get the content from the Destination
model object (which you created in the awakeFromNib method of the
RootViewController in Chapter 15) and send it back to the view to
display. With the exception of the MapController (which I explain in
detail in Chapter 17), the views will all be UIWebViews (see Chapter 13
for more on why), and I’ll have you creating a unique view controller
(WeatherController, for example) for each and the Destination model
(that interfaces with other model objects) that supports all of them.

325 Chapter 16: Creating Controllers and Their Models

	

Figure 16-3:
Heathrow
and Map

views.
	

If you’ve had a chance to make your way through Chapter 13, you’ll remem-
ber that I said you could use a generic view controller and generic model
objects to display any of the views you are about to create. Well, you can,
but I’m not going to recommend doing that in this example for two reasons.
It’ll be a lot easier to follow the logic in each of these view controllers and
models if I keep them separate, because then I can use more context-specific
data names and logic. But more importantly, while not rocket science, what
you’d have to do to generalize the behavior of model objects and view con-
trollers involves some work with property lists or databases, and that’s not
in the cards for this book.

What I will do, though, is explain things in such a way that the pattern that
underlies it all becomes apparent.

Fair enough?

www.allitebooks.com

http://www.allitebooks.org

326 Part IV: An Industrial-Strength Application

Creating the View Controller,
Nib, and Model Files

Standard operating procedure for iPhone applications is to have a user tap
an entry in a main view to get to a subsequent view. For this to work, you
need to create a new controller and push it onto the stack. (For more on
controllers and stacks as they apply to the iPhoneTravel411 application, see
Chapter 14.) To make it happen, you need to code your view controller inter-
face and implementation files, your nib files, and then your model interface
and implementation files. (Yes, we’re talking a lot of files here — it’s all good,
so deal with it as best you can.)

Going from abstract to concrete, read on as I spell out what you need to have
in place before your users can jump from one view to another in iPhone-
Travel411 — say, when a user selects the “Heathrow” row in the main view
of the app and fully expects to find a new view full of information about (yep)
Heathrow airport (although in this example, I’ll illustrate only transportation
from and to the airport). This will be the general pattern you can follow for
the rest of the rows in this application, or in any application that uses a table
view. (For more on table views, check out Chapter 14.)

Adding the controller and nib file
So many files, so little time. Actually, after you get a rhythm going, cranking
out the various view controller, nib, and model files necessary to fill your
application architecture with content isn’t that much work. And while I want
to start with what happens when the user taps Heathrow, because it allows
me to also explain a bit about navigating between views in your program,
now is as good a time as any to create all those files you’ll need to create.

Okay, check out how easy it is to come up with the view controller and nib
files:

	 1.	 In the iPhoneTravel411 project window, select the Classes folder, and
then select File➪New from the main menu (or press Ô+N) to get the
New File window you see in Figure 16-4.

	 2.	 In the left column of the dialog, select Cocoa Touch Classes under the
iPhone OS heading, select the UIViewController subclass template in
the top-right pane and then click Next (see Figure 16-4).

		 Be sure the With XIB for User Interface is also checked.

		 You’ll see a new dialog asking for some more information.

327 Chapter 16: Creating Controllers and Their Models

	 3.	 Enter AirportController.m in the File Name field, as I did in Figure
16-5, and then click Finish.

	

Figure 16-4:
Select

UIView
Controller
subclass.

	

		 I’m using Airport here instead of Heathrow to get you started thinking
more in terms of generic controllers — an airport is an airport after all.
What would you have to do to reuse this controller for the other two air-
ports in the main view?

	

Figure 16-5:
Save as
Airport

Controller.
m.

	

www.allitebooks.com

http://www.allitebooks.org

328 Part IV: An Industrial-Strength Application

	 4.	 Do the same thing to create a CityController, CurrencyController,
MapController, and WeatherController.

		 When you are done, in your Groups & Files list, you should
see AirportController.h, AirportController.m, CityController.h,
CityController.m, CurrencyController.h, CurrencyController.m,
MapController.h, MapController.m, WeatherController.h, and
WeatherController.m.

	 I’m having you set up the CityController and nib file and the City model
object, even though I won’t be explaining them in this chapter; however, the
code is implemented in the listing on my Web site.

Now let’s do it all over again (and get it out of the way) for the model classes
your controllers will use.

Adding the model class
	 It would be a good idea to add a new folder in the Groups & Files pane to hold

all your new model classes. To do so, select the iPhoneTravel411 project icon
and then choose Project➪New Group. You’ll get a brand spanking new folder,
named New Group, already selected and waiting for you to type in the name
you want. To change what folder a file is in, select and then drag the file to the
folder you want it to occupy. The same goes for folders as well (after all, they
can go into other folders).

	 1.	 Select File➪New from the main menu (or press Ô+N) to get the New
File dialog.

	 2.	 In the left-most column of the dialog, first select Cocoa Touch Classes
under the iPhone OS heading, this time select the Objective-C class
template in the topmost pane, make sure the drop-down menu
Subclass of has NSObject selected and then click Next.

		 You’ll see a new dialog asking for some more information.

	 3.	 Enter Destination in the File Name field and then click Finish.

	 4.	 Do this same thing to create Airport, City, Currency and Weather .m
and .h files.

		 Notice that you haven’t created a Map class — actually, you don’t have
to, and I’ll explain why in Chapter 17.

Set up the nib file
For the iPhoneTravel411 application, you’ll want to use a UIWebView to
display the airport information you think your users will need. (For the rea-
soning behind that choice, check out Chapter 13.) You’ll set the UIWebView

329 Chapter 16: Creating Controllers and Their Models

up using Interface Builder, but you’ll also need a reference to it from the
AirportController so it can pass the content from the model to the view.
To do that, you need to create an outlet (a special kind of instance that can
refer to objects in the nib) in the view controller, just as you did back in
Chapter 7 when you were working on the ReturnMeTo application. The outlet
reference will be “filled in” automatically when your application is initialized.

Here’s how you should deal with this outlet business (it’s the same thing you
did in Chapter 7 to set up the ReturnMeToViewController, so if you’re a little
hazy, you might want to go back and review what you did there):

	 1.	 Within Xcode, add an airportView (UIWebView) outlet to the
AirportController.h interface file.

		 You declare an outlet by using the keyword IBOutlet in the
AirportController interface file.

IBOutlet UIWebView *airportView;

	 2.	 While you’re at it, make the AirportController a UIWebView del-
egate as well (you’ll need that later).

		 Here’s what it should look like when you are done; changes are in bold.

@interface AirportController : UIViewController
 <UIWebViewDelegate> {
IBOutlet UIWebView *airportView;

	 3.	 Do the File➪Save thing to save the file.

		 After it’s saved — and only then — Interface Builder can find the new
outlet.

	 4.	 Use the Groups & Files listing on the left in the project window to drill
down to the AirportController.xib file; then double-click the file to
launch it in Interface Builder.

		 If the Attributes Inspector window is not open, choose Tools➪Inspector
or press shift+Ô+1. If the View window is not visible, double-click the
View icon in the AirportController.xib window.

		 If you can’t find the AirportController.xib window (you may have mini-
mized it — accidentally, on purpose, whatever) you can get it back by
choosing Window➪AirportController.xib or whichever nib file you’re
working on.

	 5.	 Select File’s Owner in the AirportController.xib window.

	 6.	 Select AirportController from the Class drop-down menu in the
Identity Inspector.

		 Doing so (surprise, surprise) tells Interface Builder that the File’s Owner
is AirportController.

www.allitebooks.com

http://www.allitebooks.org

330 Part IV: An Industrial-Strength Application

	 7.	 Click in the View window and then choose UIWebView from the Class
drop-down menu in the Identity Inspector.

	 	 This will change the title of the View window to Web View.

	 8.	 Back in the AirportController.xib window, right-click File’s Owner to
call up a contextual menu with a list of connections.

		 You can get the same list using the Connections tab in the Attributes
Inspector.

	 9.	 Drag from the little circle next to the airportView outlet in the list
onto the Web View window.

		 Doing so connects the AirportController’s airportView outlet to
the Web view.

	 10.	 Go back to that list of connections, and this time drag from the little
circle next to the New Referencing Outlet list onto the Web View
window.

	 11.	 With the cursor still in the Web View window, let go of the mouse
button.

		 A pop-up menu appears, looking like the one in Figure 16-6.

	 12.	 Choose delegate from the pop-up menu.

		 Doing so connects the AirportController’s view outlet to the
Web view.

	

Figure 16-6:
Making the

Airport
Controller a

delegate.
	

331 Chapter 16: Creating Controllers and Their Models

		 When you’re done, the contextual menu should look like Figure 16-7.

	

Figure 16-7:
Airport

Controller
connections
all in place.

	

	 If you think about it though, why do you need the airportView? There’s
already a pointer to the view object safely nestled in the view controller.
There’re two reasons.

	 ✓	I’m lazy. If I create a second outlet of type UIWebView, then every time I
access it, I don’t have to cast the vanilla Web view into a UIWebView, as
you can see below.

 (UIWebView*) [self view] or (UIWebView*) self.view

	 ✓	I’m doing it for you. It makes the code easier to follow.

At this point, you have the view controller class set up and you’ve arranged
for the nib loader to create a UIWebView object and set all the outlets for
you when the user selects Heathrow for the main view.

Not wanting to be the bearer of bad tidings, although I seem to have
developed a skill for that, now do the same thing for CityController,
CurrencyController, and WeatherController with one exception. Of
the three, you’ll only need to make CityController a UIWebView del-
egate. The rest don’t need to adopt the protocol. (Don’t forget to create their
respective outlets though!)

You’ll also need to do the same thing for the MapController, although
this time make the View in Step 7 an MKMapView (it won’t need to be a
UIWebView delegate either).

One thing left to do; you’ll have to add a new framework.

Up until now, all you’ve needed is the framework that more or less came sup-
plied when you created a project. But now you’ll need a new framework to
enable the map view.

	 1.	 Click on the disclosure triangle next to Targets in the Groups & Files
list and then right-click on iPhoneTravel411.

		 Be sure to do this using the Targets folder, or Step 3 won’t work!

	 2.	 From the submenu, select Add and then select Existing Frameworks as
I have in Figure 16-8.

www.allitebooks.com

http://www.allitebooks.org

332 Part IV: An Industrial-Strength Application

	

Figure 16-8:
Adding a

new frame-
work.

	

	 3.	 Select MapKit Framework on the window that appears in Figure 16-9
and then click add. And then drag it into the Frameworks folder.

	

Figure 16-9:
Adding the

MapKit
Framework.

	

333 Chapter 16: Creating Controllers and Their Models

Yea! You’re done with all the tedium! Now let’s get on to the more interesting
stuff.

At this point, you have the classes defined for all of the view controller and
model objects. All that’s left for you to do is to enter the code to make it do
something — well, maybe not just something. How about exactly what you
want it to do?

Implementing the View, View
Controller, and the Model

You now have all the classes/objects you need to actually implement a map
view similar to what you saw earlier on the left side of Figure 16-3.

Check out all the little things you need to do next.

Make sure the AirportController knows
about the objects it needs
Add the following statements to the AirporController.h (and all the other con-
trollers you created) file.

@class Destination;

The compiler needed to know certain things about classes that you were
using, such as what methods you defined and so on, and the #import state-
ment in the implementation (.m) file generally solves that problem. But when
you get into objects that point at other objects, you also need to provide
that information in the interface file, which can cause a problem if there are
circular dependencies (sounds cool, but I’m not going to get into that here;
it’s beyond the scope of this book). To solve that problem, Objective-C intro-
duces the @class keyword. This informs the compiler that Destination is
a class name. At this point, in the interface file, that is enough for the com-
piler, but when you actually do use the class (you create an instance of that
class or send it a message for example), you’ll still have to do the #import.

Add the following import statements to the AirportController.m file. (You’ll
need to add at least #import “Destination.h” to all the other controller
.m files and any other headers files they need as well.)

www.allitebooks.com

http://www.allitebooks.org

334 Part IV: An Industrial-Strength Application

#import “AirportController.h”
#import “Constants.h”
#import “iPhoneTravel411AppDelegate.h”
#import “Destination.h”

Initialization
Initialization is one of those nuts and bolts things that’s a good idea to pay
attention to. It’s the way you connect your controller and models (as well
as one of the key places to pass the information you’ll need if you do create
a generic view controller and model). To see how it works, follow along as I
walk you through it using the Airport controller and model as an example.

It all starts in RootViewController.m.

	 1.	 In the RootViewController’s didSelectRowAtIndexPath: method,
create and initialize the view controller that implements the row
selected by the user.

		 The code below allocates an Airport Controller (a view controller) and
then sends it the initWithDestination:airportID: message. (I
explain this at the very end of Chapter 15; you might want to review that
if it has been a while since you looked at it.)

targetController = [[AirportController alloc]
initWithDestination: destination airportID:1];

		 Now on to AirportController.m.

	 2.	 Start by declaring a new instance variable in AirportController.h (by
now you should know you can put it anywhere between the braces).

Destination *destination;

	 3.	 Add the initWithDestination:: method, shown in Listing 16-1, to
AirportController.m.

		 First invoke the superclass’s initWithNibName: bundle: method:

- (id)initWithDestination:(Destination*) aDestination
 airportID:(int) theAirport {

		 The first thing this method does is invoke its superclass’s initialization
method. I pass it the nib filename (the one I just created in a previous
section) and nil as the bundle, telling it to look in the main bundle.

		 Note that the message to super precedes the initialization code
added in the method. This sequencing ensures that initializa-
tion proceeds in the order of inheritance. Calling the superclass’s
initWithNibName:bundle: method initializes the controller, loads

335 Chapter 16: Creating Controllers and Their Models

and initializes the objects in the nib file (views and controls, for exam-
ple), and then sets all its outlet instance variables and Target-Action
connections for good measure.

		 The init…: methods all return back a pointer to the object created.
While not the case here, the reason you assign whatever comes back
from an init…: method to self is that some classes actually return
back a different class than what you created. The assignment to self
becomes important if your class is derived from one of those kinds of
classes. Keep in mind as well that an init…: method can also return
nil if there’s a problem initializing an object. If you’re creating an object
where that is a possibility, you have to take that into account. (Both of
those situations are beyond the scope of this book.)

		 After the superclass initialization is completed, the AirportController
is ready to do its own initialization, including saving the aDestination
argument to the destination instance variable.

		 In Chapter 14, I explain that Destination is the model object that
the airport controller will get the necessary content from, and here in
initWithDestination::, AirportControllersaves a reference
to it and then sends a message to the Destination to get the airport
name, which it’ll use as a title for the window.

Listing 16-1: Adding the initWithDestination:airportID: method

- (id)initWithDestination:(Destination*)aDestination
 airportID:(int) theAirport {

 if (self = [super initWithNibName:@”AirportController”
 bundle:nil]) {
 destination = aDestination;
 [destination retain];
 self.title = [destination
 returnAirportName:theAirport];
 }
 return self;
}

You’ll have to add a version of this initialization method and the destina-
tion instance variable to each of your view controllers.

Setting up the view
Your AirportController is going to be getting the content for any view
you’ve set up from the Destination object — content which it then passes
on to the view itself. But before you get a crack at doing that, you need to
know how to set up the view. If you refer back to Figure 16-3, what you see is

www.allitebooks.com

http://www.allitebooks.org

336 Part IV: An Industrial-Strength Application

UIWebView, with a segmented control at the bottom (Train— Taxi —
Other, in this example). You use the ViewDidLoad method to get your
view nice and prepped for its big day. This method was included for you in
AirportController.m by the UIViewController subclass template (albeit,
commented out) you chose in the “Adding the controller and nib file” sec-
tion, earlier in the chapter. Here’s the code that was automatically added:

/*
// Implement viewDidLoad to do additional setup after

loading the view, typically from a nib.
- void)viewDidLoad {
 [super viewDidLoad];
}
*/

Simply uncomment out this method and follow these steps to add the needed
code after [super viewDidLoad]:.

	 While I’m not going to be showing you every detail here, such as adding every
instance variable, you’ll find all of that and more in the full listing on my Web
site.

	 1.	 Create and add the Back button. (If you’ve decided to follow Apple’s
suggestion and not act as a mini browser, you’ll omit this step.)

UIBarButtonItem *backButton =
 [[UIBarButtonItem alloc]
 initWithTitle:@”Back”
 style:UIBarButtonItemStylePlain
 target:self
 action:@selector(goBack:)];
self.navigationItem.rightBarButtonItem = backButton;
[backButton release];

		 In this method, you allocate the button and then assign it to an instance
variable that the UINavigationController will later use to set up
the Navigation bar. The action:@selector(goBack:) argument is
the standard way to specify Target-Action — and is exactly what you
did when you created the button that enabled text entry in Chapter 12.
It says when the button is tapped, send the goBack: message to the
target: self, which is the AirportController. I’ll show you how
to implement this shortly.

	 2.	 Create the choice bar to be used for the segmented control at the
bottom of the screen.

choiceBar = [UIToolbar new];
choiceBar.barStyle = UIBarStyleBlackOpaque;
CGRect viewBounds = self.view.frame;
viewBounds.origin.y = viewBounds.size.height -
 self.navigationController.navigationBar.frame.
 size.height-kToolbarHeight -

337 Chapter 16: Creating Controllers and Their Models

 [UIApplication sharedApplication].
 statusBarFrame.size.height;
viewBounds.size.height = kToolbarHeight;
[choiceBar setFrame:viewBounds];

		 Here, you’re computing a subview’s frame using viewBounds and taking
into account the height of the Navigation and Status bars. You’re also
setting the style to BlackOpaque, my personal favorite — I hope you
don’t mind. (You’ll find the values for the constants in the Constants.h
file in the project on my Web site.)

	 3.	 Create the segmented control.

choiceBarSegmentedControl = [[UISegmentedControl
alloc] initWithItems: [NSArray
arrayWithObjects: @”Train”, @”Taxi”, @”Other”,
nil]];

[choiceBarSegmentedControl addTarget:self action:@
selector(selectTransportation:) forControlEven
ts:UIControlEventValueChanged];

choiceBarSegmentedControl.segmentedControlStyle =
 UISegmentedControlStyleBar;
choiceBarSegmentedControl.tintColor = [UIColor
 darkGrayColor];
CGRect segmentedControlFrame = choiceBar.frame;
segmentedControlFrame.size.width =
 choiceBar.frame.size.width - kLeftMargin;
segmentedControlFrame.size.height =
 kSegControlHeight;
choiceBarSegmentedControl.frame =
 segmentedControlFrame;
choiceBarSegmentedControl.selectedSegmentIndex = 0;

		 In the first line of code, you’re creating a segmented control and an
array that specifies the text for each segment. You then set the Target-
Action parameters saying that if a segment is tapped by the user
(UIControlEventValueChanged), then the selectTransportation::
message is sent to self, that’s to say the AirportController. You then
compute the size of the segmented control as you would for any other sub-
view. The last line specifies the initial segment (0) selected when the view
is created; before the view is displayed, the selectTransportation::
message is sent to display the content associated with segment 0. (You can
see the code for selectTransportation:: in all its glory in Listing 16-2.)

	 4.	 Add the segmented control to the control bar.

UIBarButtonItem *choiceItem = [[UIBarButtonItem alloc]
 initWithCustomView:choiceBarSegmentedControl];
choiceBar.items =
 [NSArray arrayWithObject:choiceItem];
[choiceItem release];
[choiceBarSegmentedControl release];

www.allitebooks.com

http://www.allitebooks.org

338 Part IV: An Industrial-Strength Application

		 You get the choiceBar (UIToolbar) to display controls by creating
an array of instances of UIBarButtonItems and assigning the array
to the items property of the UIToolbar object (our choiceBar). In
this case, you create a UIBarButtonItem and initialize it with the seg-
mented control you just created. You then create the array and assign it
to items.

		 You then can release choiceItem since the NSArray has a reference it.

	 5.	 Add the choice bar to the view.

[self.view addSubview:choiceBar];
[choiceBar release];

At this point, you have the view set up, waiting for data, and the segmented
control across the bottom that will allow the user to select @”Train”, @”Taxi”,
@”Other”.

Responding to the user selection
You’ve set things up so that when the view is first created — or when the
user taps a control — the AirportController’s selectTransporta-
tion: method is called, allowing the AirportController to hook up
what the view needs to display with what the model has to offer. Listing 16-2
shows the necessary code in all its elegance.

Listing 16-2: selectTransportation
- (void)selectTransportation:(id) sender {
 [airportView loadRequest:[NSURLRequest requestWithURL:
 [destination returnTransportation:
 (((UISegmentedControl*) sender).
 selectedSegmentIndex)]]];
}

This is the code that gets executed when the user selects one of the
segmented controls (Train, Taxi, Other) that you added to the view —
(((UISegmentedControl*) sender).selectedSegmentIndex) gives
you the segment number. If you’ll notice, the controller itself has no idea —
nor should it care — what was selected. It just passes what was selected on
to the model. That kind of logic should be (and, as you will soon see, is) in
the model.

All this does is send a message to the model to find out where the data the
Web view needs is located, [destination returnTransportation:
(((UISegmentedControl*) sender).selectedSegmentIndex)], and
then send a message to the Web view to load it. This is more or less what you
did in Chapter 11, but I’ll explain more about the mechanics of this shortly.

339 Chapter 16: Creating Controllers and Their Models

Before I show you the code in the model that implements return
Transportation:, I want to show you one other thing, and that is the
implementation of goBack:, which I specified as the selector when I created
the Back button in viewDidLoad. Listing 16-3 has the details.

Listing 16-3: goBack to where you once belonged
- (IBAction)goBack:(id) sender {
 if ([airportView canGoBack] == NO)
 [[self navigationController]
 popViewControllerAnimated:YES];
 else
 [airportView goBack];
}

In Chapter 14, I explain how you really need two ways to go back from a view.
The first way is the left button on the Navigation bar, which sends the user
back to the previous view controller and its view — the main (table) view.

The second way — a second Back button — is needed in order to return back to
a “parallel” view — when the user touches a link in a view that sent him or her
to an external Web page, for example. In the viewDidLoad method, I show you
how to create that button and I specify there that when the user touches the
button, the goBack: message should be sent to AirportViewController.

The UIWebView actually implements much of the behavior you need here.
When the user touches the Back button and this message is sent, you first
check with the Web view to see whether there’s someplace to go back to (it
keeps a backward and forward list). If there’s an appropriate retreat, you
send the UIWebView message (goBack:) that will reload the previous page.
If not, it means that you’re at the Heathrow content page, and you simply
“pop” (remove from the stack) the AirportViewController to return
to the main window — the same thing the button on the left side of the
Navigation bar would do.

Finally, you need to disable links when you’re in stored data mode — if the
user isn’t online, there’s no way to get to the link. shouldStartLoadWith
Request: is a UIWebView delegate method (remember, I had you make the
AirportController a UIWebView delegate earlier when you added the
airportView outlet). It’s called before a Web view begins loading content to
see whether you want the load to proceed. I’m only interested in doing some-
thing if the user touched a link when he or she is in stored data mode. Listing
16-4 shows the code you’d need to disable links in such a situation. (If you
look at the complete listing on my Web site, you’ll see you have to do this in
the City view controller as well.)

www.allitebooks.com

http://www.allitebooks.org

340 Part IV: An Industrial-Strength Application

Listing 16-4: Disabling links in stored data mode
- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *) request
 navigationType:(UIWebViewNavigationType) navigationType{
 if ((navigationType ==

UIWebViewNavigationTypeLinkClicked) &&
 ([[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference])) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@””
 message: NSLocalizedString(@”Link not
 available offline”, @”stored data mode”)
 delegate:self
 cancelButtonTitle:NSLocalizedString
 (@”Thanks”, @”Thanks”) otherButtonTitles: nil];
 [alert show];
 [alert release];

 return NO;
 }
 else return YES;
}

Here’s the process the code uses to get the job done for you:

	 1.	 First, check to see whether the user has touched an embedded link
while in stored data mode.

if ((navigationType ==
UIWebViewNavigationTypeLinkClicked) &&

 ([[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference])) {

	 2.	 If the user is in stored data mode, alert him or her to the fact that the
link is unavailable, and return NO from the method.

		 This informs the Web view not to load the link.

UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@””
 message: NSLocalizedString (@”Link not available
 offline”, @”stored data mode”)
 delegate:self
 cancelButtonTitle:NSLocalizedString
 (@”Thanks”, @”Thanks”) otherButtonTitles: nil];
[alert show];
[alert release];
return NO;

		 You create an alert here with a message telling the user that the link is not
available in stored data mode. The Cancel button’s text will be @”Thanks”.

	 3.	 If you’re not in stored data mode, return YES to tell the Web view to
load from the Internet.

341 Chapter 16: Creating Controllers and Their Models

If you’ve decided to follow Apple’s suggestion and aren’t acting as a mini
browser, you’ll have to disable the links that are available in the content. You
can do that in the shouldStartLoadWithRequest: method by coding it in
the following way:

- (BOOL)webView:(UIWebView *) webView
 shouldStartLoadWithRequest:(NSURLRequest *) request
 navigationType:
 (UIWebViewNavigationType)navigationType {

 if (navigationType ==
 UIWebViewNavigationTypeLinkClicked)
 return NO;

 else return YES;
}

If you do decide that, you’ll add this method to CityController and
WeatherController and make WeatherController a UIWebView del-
egate as well.

The Destination Model
You’re starting to get all your pieces lined up. Now it’s time to take a look at
what happens when the controller sends messages to the model.

The Destination interface, seen in Listing 16-5, shows us what methods are
available.

Listing 16-5: Destination.h
@class Airport;
@class Currency;
@class Weather;
@class City;

@interface Destination : NSObject {

 Airport *airport;
 City *city;
 Currency *currency;
 Weather *weather;
 NSString *destinationName;

}
- (NSString*) returnAirportName: (int) theAirportID;
- (NSURL*) returnTransportation: (int) aType;

(continued)

www.allitebooks.com

http://www.allitebooks.org

342 Part IV: An Industrial-Strength Application

Listing 16-5 (continued)
- (NSURL*) returnCityHappenings;
- (NSURL*) returnCurrencyBasics;
- (NSURL*) weatherRealtime;
- (id) initWithName: (NSString*) theDestination;

@end

The first method here should look familiar to you, since you used it when you
initialized the AirportController object in the “Initialization” section, ear-
lier in the chapter. The next method is invoked from the selectTranspor-
tation: method in AirportController.

Let’s take a look at returnTransportation:.

- (NSURL*) returnTransportation: (int) aType{
 return [airport returnTransportation: aType];
}

Hmm. All this does is turn around and send a message to another model
object, Airport. I’ll explain all this indirection in the next section, but for
now, let’s look at what goes on in the Airport object. This is shown in
Listing 16-6.

Listing 16-6: Airport.h
@interface Airport : NSObject {

 NSString *airportName;
}

@property (nonatomic, retain) NSString *airportName;

- (id) initWithName: (NSString*) name airportID: (int)
theAirport;

- (NSURL*) returnTransportation: (int) transportationType;
- (NSURL*) getAirportData: (NSString*) fileName;
- (void) saveAirportData: (NSString*) fileName

withDataURL: (NSURL*) url;

@end

The second method here should look familiar to you, since it was just used
in the Destination method returnTransportation:. The last two are
internal methods that are used only by the model itself.

	 If you’re coming from C++, you probably want these last two methods to be
private, but there’s no private construct in Objective-C. To hide them, you
could have moved their declarations to the implementation file and created an
Objective-C category. Here’s what that would look like:

343 Chapter 16: Creating Controllers and Their Models

@interface Airport ()
- (NSURL*) getAirportData: (NSString*) fileName;
- (void) saveAirportData: (NSString*) fileName
 withDataURL: (NSURL*) url;
@end

In Listing 16-7, you can see the messages sent from returnTransporta-
tion: as a group.

Listing 16-7: Airport model method used by Destination
- (NSURL*)returnTransportation:(int) transportationType {

 NSURL *url = [[NSURL alloc] autorelease];

 iPhoneTravel411AppDelegate *appDelegate =

(iPhoneTravel411AppDelegate *) [[UIApplication
sharedApplication] delegate];

 BOOL realtime = !appDelegate.useStoredData;
 if (realtime) {
 switch (transportationType) {
 case 0: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromT100.html”];
 [self saveAirportData:
 @”ToFromT100” withDataURL:url];
 break;
 }
 case 1: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromT101.html”];
 [self saveAirportData:
 @”ToFromT101” withDataURL:url];
 break;
 }
 case 2: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromT102.html”];
 [self saveAirportData:
 @”ToFromT102” withDataURL:url];
 break;
 }
 }
 }
 else {
 switch (transportationType) {
 case 0: {
 url = [self getAirportData:@”ToFromT100”];
 break;
 }
 case 1: {

(continued)

www.allitebooks.com

http://www.allitebooks.org

344 Part IV: An Industrial-Strength Application

Listing 16-7 (continued)
 url = [self getAirportData:@”ToFromT101”];
 break;
 }
 case 2: {
 url = [self getAirportData:@”ToFromT102”];
 break;
 }
 }
 }
 return url;
}

When a message is sent to the model to return the data the view needs to
display, it’s passed the number of the segmented control that was touched
(Train, Taxi, Other). It’s the model’s responsibility to decide what data is
required here.

To concretize all these abstract coding principles a bit, check out how
you should deal with the returnTransportation: method. The data for
each of the choices in the segmented control is on a Web site — www.neal
goldstein.com, to be precise. First, the method checks to see if the user is
online, or wants to use stored data.

If the user is online, the method constructs the NSURL object that the Web
view uses to load the data. (The NSURL object is nothing fancy. To refresh
your memory, it’s simply an object that includes the utilities necessary for
downloading files or other resources from Web and FTP servers or accessing
local files.)

NSURL *url = [NSURL URLWithString: @”http://nealgoldstein.
com/ToFromT100.html”];

Then the saveAirportData: message is sent:

 [self saveAirportData:@”ToFromT100” withDataURL: url];
 return url;

The saveAirportData method in Listing 16-8 downloads and saves the file
containing the latest data for whatever transportation (Taxi, for example) the
user selected. It’s what will be displayed in the current view, and it’ll be used
later if the user specifies stored data mode.

345 Chapter 16: Creating Controllers and Their Models

Listing 16-8: Saving airport data
- (void)saveAirportData:(NSString*) fileName withDataURL:
 (NSURL*) url {

 NSData *dataLoaded = [NSData
 dataWithContentsOfURL:url];
 if (dataLoaded == NULL)
 NSLog(@”Data not found %@”, url);
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];
 [dataLoaded writeToFile:filePath atomically:YES];
}

You did the exact same thing in Chapter 15 when you saved the current state
of the application. If you need a refresher here, go back and work through
that part of Chapter 15 again.

I’ve added an NSLog message if the data can’t be found. This is a placeholder
for error-handling that I’ve left as an exercise for the reader.

	 This is definitely not the most efficient way to implement saving files for later
use, but given the relatively small amount of data involved, the impact is not
noticeable. In the MobileTravel411 application, the user has a specific option
to download all the data for any city, eliminating going to the Internet twice —
once to download and save the data and then again to display the page.

	 If the user wants stored data to be used, the method returns the stored data
as opposed to loading the data for its URL on the Internet. It gets the data by
calling the getAirportData: method, which reads the data that was stored
in saveAirportData:.

return [self getAirportData:@”ToFromT100”];

getAirportData: also constructs a NSURL object that the Web view uses
to load the data. The NSURL is more than an object that includes the utilities
necessary for downloading files from Web and FTP servers. It also works for
local files, and in fact, NSURL objects are the preferred way to load the files
you’ll be interested in.

So you find the path and construct the NSURL object using that path. This is
shown in Listing 16-9.

www.allitebooks.com

http://www.allitebooks.org

346 Part IV: An Industrial-Strength Application

Listing 16-9: Getting the saved airport data
- (NSURL*)getAirportData:(NSString*) fileName{

 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];
 NSURL* theNSURL= [NSURL fileURLWithPath: filePath];
 if (theNSURL == NULL) NSLog (@”Data not there”);
 return theNSURL;
}

What’s with the Destination Model
and All That Indirection

You have a couple options to create the model objects needed by the view
controllers. One way is to have the view controllers create the ones they’ll
use. For example, the AirportController would create the Airport
object, and so on. That would eliminate the indirection you saw in the previ-
ous section, you know, having to go through the Destination object to the
Airport object that does the real work.

While this does work, and I’ve actually done that in past versions, I’d like you
to consider a different approach that results in a more extensible program.
I explain this in detail in Objective-C For Dummies, so if you’re curious, you
might want to pick up a copy of that book.

One of the advantages of the MVC design pattern I explained in Chapter 2
is that it allows you to separate these three groups in your application and
work on them separately. If each group has a well-defined interface, it encap-
sulates many of the kinds of changes that are often made so that they don’t
affect the other groups. This is especially true of the model and view control-
ler relationship.

If the view controllers have minimal knowledge about the model, you can
change the model objects with minor impact on the view controllers.

As I said, what makes this possible is a well-defined interface, which I’ll show
you how to develop in this section. You’ll create an interface between the
model and the controllers by using a technique called composition, which is a
useful way to create interfaces.

I’m a big fan of composition, because it’s another way to hide what’s really
going on behind the curtain. It keeps the objects that use the composite

347 Chapter 16: Creating Controllers and Their Models

object ignorant of the objects the composite object uses and actually makes
the components ignorant of each other, allowing you to switch components
in and out at will.

The Destination class provides the basis for such an architecture, and
while I won’t fully implement it here, you’ll understand the structure and
have no trouble extending it on your own.

@class Airport;
@class Currency;
@class Weather;
@class City;

@interface Destination : NSObject {

 Airport *airport;
 City *city;
 Currency *currency;
 Weather *weather;
 NSString *destinationName;
}
- (NSString*) returnAirportName: (int) theAirportID;
- (NSURL*) returnTransportation: (int) aType;
- (NSURL*) returnCityHappenings;
- (NSURL*) returnCurrencyBasics;
- (NSURL*) weatherRealtime- (id) initWithName: (NSString*)

theDestination;

@end

Let’s start with what happens when the Destination object is created:

@implementation Destination

- (id) initWithName: (NSString*) theDestination {
 if ((self = [super init])) {
 destinationName = theDestination;
 airport = [[Airport alloc] initWithName:

NSLocalizedString(@”Heathrow”, @”Heathrow”)
 airportID:1];
 currency = [[Currency alloc] initWithCurrency:

NSLocalizedString(@”pound”, @”pound currency”)
 currencyID: @”GBP”];
 city = [[City alloc] initWithCity:
 NSLocalizedString(@”London”, @”London”)];
 weather = [[Weather alloc] initWithCity:
 NSLocalizedString(@”London”, @”London”)];
 }
 return self;
}

www.allitebooks.com

http://www.allitebooks.org

348 Part IV: An Industrial-Strength Application

Destination creates the model objects, encapsulating the knowledge of
what objects make up the model from the object that creates it (in this case,
Destination is created by the RootViewController). This would hide
all implementation knowledge from the view controller — all it would know
about is the Destination object.

So far so good. Now, how will the various view controllers that need the
model information get it?

- (NSURL*)returnTransportation:(int) aType {

 return [airport returnTransportation: aType];
}

- (NSString*)returnAirportName:(int) theAirportID {

 return airport.airportName;
}

- (NSURL*)returnCityHappenings {

 return [city cityHappenings];
}

- (NSURL*)returnCurrencyBasics {

 return [currency currencyBasics];
}

- (NSURL*)weatherRealtime {

 return [weather weatherRealtime];
}

These are the methods that are visible to the view controllers. They also
have no idea about the objects that make up the model.

While trivial here, and may even appear a bit gratuitous — Destination just
turns around and essentially resends the message; this architecture becomes
important in the more complex applications you’ll develop. It’ll save you much
grief and work as you refactor your code to enhance and extend your app.

The Weather Implementation Model
The Weather view controller, view, and model follow the same pattern put
down by the Airport implementation. The controller sends a message to
the Destination for some content, which then turns around and sends

349 Chapter 16: Creating Controllers and Their Models

a message to one of its objects. You can find the code for the Airport,
Weather, and Currency (and City) views controllers and models on my
Web site, www.nealgoldstein.com.

I want to point out some differences between Weather and the other views
that you should be aware of. In the Weather view, there’s no segmented
control — and no corresponding selectTransportation: message
that tells the model what data is needed — so you’ll need to do that in the
WeatherController’s viewDidLoad method. Listing 16-10 shows how that
code looks.

Listing 16-10: viewDidLoad
- (void)viewDidLoad {

 [super viewDidLoad];

 UIBarButtonItem *backButton = [[UIBarButtonItem alloc]
 initWithTitle: @”Back”
 style:UIBarButtonItemStylePlain
 target:self
 action:@selector(goBack:)] ;
 self.navigationItem.rightBarButtonItem = backButton;
 [backButton release];
 [weatherView loadRequest:[NSURLRequest requestWithURL:
 [destination weatherRealtime]]];

}weatherRealtime corresponds to the returnTransportation: method
in Airport and constructs and returns the NSURL for the Web view to load.
The only other real difference, as you can see in Listing 16-11, between how
Weather and Airport work is that there’s no data stored for the weather (it
seems rather pointless doesn’t it), and you saw that you created an alert for
the user if he or she selected weather in stored data mode. So the Weather
object always constructs the NSURL and returns it to Destination.

Listing 16-11: The weatherRealtime implementation
- (NSURL*)weatherRealtime {

 NSURL *url = [NSURL URLWithString:@”http://www.weather.

com/outlook/travel/businesstraveler/local/
UKXX0085?lswe=London,%20UNITED%20KINGDOM&l
wsa=WeatherLocalUndeclared&from=searchbox_
typeahead”];

 if (url == NULL) NSLog(@”Data not found %@”, url);
 return url;
}

www.allitebooks.com

http://www.allitebooks.org

350 Part IV: An Industrial-Strength Application

That big long URL you see is one I use for weather for London from weather.
com. Of course, these things change for time to time, and it may or may not
work when you try it. If not, check my Web site for what I’m currently using.

	 If you don’t want the user to be able to click on a link, please refer back to dis-
cussion following Step 3 in the section, “Responding to the user selection.”

The Currency Implementation Model
The Currency view controller, view, and model follow the same pattern laid
down by the Airport and Weather implementations. Again, the complete
code is on my Web site at www.nealgoldstein.com. There are only a few
differences I need to point out.

	 Currency is always offline, which means it’s a great way to show you how to
implement static data. It hardly ever changes, so it works to include it in the
application itself.

The content for the Currency view is in a file I created called Currencies.
html. To make it available to the application, I need to include it in the
application bundle itself, although I could have downloaded it the first time
the application ran. (But there’s method in my madness. Including it in the
bundle does give me the opportunity to show you how to handle this kind
of data.)

Now, you can add it to your bundle one of two ways:

	 ✓	Open the project window and drag an .html file into the project folder,
like you did the icon in Chapter 5.

		 It’s a good idea to create a new folder within your project folder as a
snug little home for the file. (I named my new folder “Static Data.”)

	 	Or

	 ✓	Select Project➪Add to Project and then use the dialog that appears to
navigate to and select the file you want. You can see that in Figure 16-10.

The only thing interesting here is that you are going to use some data that
you have included with your application as a resource (which you can think
about as an included file, although it does not “live” in the file system but
rather is embedded in the application itself).

In Listing 16-12, you can see that, in the viewDidLoad method in
CurrencyController.m, the currencyBasics method sends the message
to the view to load the content it gets from Destination.

351 Chapter 16: Creating Controllers and Their Models

	

Figure 16-10:
Add

Currencies.
html to the

project.
	

Listing 16-12: viewDidLoad
- (void)viewDidLoad {

 [super viewDidLoad];
 [currencyView loadRequest:[NSURLRequest requestWithURL:
 [destination returnCurrencyBasics]]];

}

In Listing 16-13, you can see how the currencyBasics method in the
Currency.m file constructs the NSURL.

Listing 16-13: currencyBasics method
- (NSURL*)currencyBasics {

 NSString *filePath = [[NSBundle mainBundle]

pathForResource:@”Currencies” ofType:@”html”];
 NSURL* currencyData= [NSURL fileURLWithPath: filePath];
 return currencyData;
}

www.allitebooks.com

http://www.allitebooks.org

352 Part IV: An Industrial-Strength Application

In this case, you’re using pathForResource::, which is an NSBundle
method to construct the NSURL (You used an NSBundle method when you
got the application name in the RootViewController to set the title on the
main window back in Chapter 14). Just give pathForResource:: the name
and the file type.

	 Be sure you provide the right file type; otherwise, this technique won’t work.

Notice the Pattern
In Chapter 13, I claimed there was a pattern that you could recognize that
would enable you to create generic view controllers and some of the model
objects. Since by this time your head may be ready to explode, let me give
you some direction.

If this is beginning to look the same, that’s because it is — to load content
into Web views, you create an NSURL with the right Web URL, file path, or
resource path, and you’re off to the races. All of the view controllers get an
NSURL from the model, and then send a message to the Web view to load
the data (the loadRequest: message). The model objects all construct the
NSURL. Of course, here the request is hard-coded, but in your application, it
can be constructed using a plist or database.

As I said, it becomes somewhat pedestrian, but then again, think about how
this architecture enables you to easily add new content views.

What’s Next?
If you compile the code thus far on my Web site, you’ll see what’s on the left
side of Figure 16-11. If you click or touch one of the rows, you’ll get the kinds
of content I specified (courtesy of some files I have on my Web site). What’s
interesting, though, is that if you select Map, you get what you see on the
right side of Figure 16-11. No, it’s not that this was a long road and you forgot
what you did to get that. In fact, you did nothing but set up the nib file, and
that’s the beauty of the map framework. (In the interest of full disclosure, I
also added an initialization method consistent with all the other view con-
troller initialization methods, but that made no difference.) In Chapter 17, I
expand on the map framework and explain a little about user location as well.
As I have mentioned, this is one of the key features of the iPhone and enables
applications to provide not only context-based information (information
about what is going on in the context) and functionality, but also information
about the context itself.

353 Chapter 16: Creating Controllers and Their Models

	

Figure 16-11:
You get

a map
for free.

	

www.allitebooks.com

http://www.allitebooks.org

354 Part IV: An Industrial-Strength Application

Chapter 17

Finding Your Way
In This Chapter
▶	Using the map framework

▶	Specifying the location and zoom level of a map

▶	Annotating significant locations on the map

▶	Identifying the iPhone’s current location

Up until now, the functionality I have been focusing on is the kind that
enables you to do what you need to in a context, like get from the air-

port to your hotel, change money, tip appropriately, and so on. But there’s
also another side to context, and that is the iPhone can provide information
about the context. Weather is one example, and a map is another.

Including the ability to display a map in MobileTravel411 became important as
people began to realize the kinds of solutions that could be delivered on the
iPhone. To many travelers, nothing brands you more as a tourist than unfold-
ing a large map (except of course looking through a thick guidebook). In this
chapter, I’ll show you how to take advantage of the iPhone’s built-in capability
to display a map of virtually anywhere in the world, as well as determine your
location and then indicate it in the map. As I said earlier, its awareness of your
location is one of the things that enables you to develop a totally new kind of
application and really differentiate an iPhone application from a desktop one.

	 For that reason, in this chapter, I return to the (more or less) step-by-step format
I used in showing you how to build the ReturnMeTo application. Being able to
build maps into your application is an important new feature in the iPhone 3.0
SDK and beyond, and I want to be sure you really understand how to use it. So
if you want to follow along with me, you can start with the project in the folder
named iPhoneTravel411 Chapter 16 on my Web site. The final version of what
you have done can then be found in the folder iPhoneTravel411 Chapter 17.

Oh, and by the way, it turns out working with maps is one of the most fun
things you can do on the iPhone because Apple makes it so easy. In fact, you
saw this in Chapter 16 where you displayed a map that supported the stan-
dard panning and zooming gestures by simply creating a view controller and
a nib file.

Contents
Finding Your Way	 355
Using MapKit	356

MKMapView	 356

Enhancing the Map	 357

Annotations	 364

Going to the Current Location	369

Geocoding	371

What’s Next?	 375

www.allitebooks.com

http://www.allitebooks.org

356 Part IV: An Industrial-Strength Application

In this chapter, you add a lot to that map. I show you how to center your map
on an area you want to display (Heathrow airport or London, for example),
add annotations (those cute pins in the map that display a callout to describe
that location when you touch them), and even show the user’s current loca-
tion. (Although I won’t cover it here, you can also turn the iPhone’s current
address into an Address Book contact.)

Figure 17-1 shows a better way than the standard map view to find your way
from the airport.

	

Figure 17-1:
Heathrow
to London

map.
	

Using MapKit
One of the great features of iPhone 3.0 SDK and beyond is a new framework —
MapKit. As you saw in Chapter 16, MapKit enables you to bring up a simple map,
and also do things with your map without having to do much work at all.

The map looks like the maps in the built-in applications and creates a seam-
less mapping experience across multiple applications.

MKMapView
The essence of mapping on the iPhone is the MKMapView. It is UIView sub-
class, and you can use it out of the box to create a world map. You use this
class as-is to display map information and to manipulate the map contents
from your application. It enables you to center the map on a given coordi-
nate, specify the size of the area you want to display, and annotate the map
with custom information.

	 You added the MapKit framework to the project in Chapter 16.

357 Chapter 17: Finding Your Way

When you initialize a map view, you can specify the initial region for that map
to display. You do this by setting the region property of the map. A region is
defined by a center point and a horizontal and vertical distance, referred to
as the span. The span defines how much of the map will be visible and results
in a zoom level. The smaller the span, the greater the zoom.

The map view supports the standard map gestures.

	 ✓	Scroll

	 ✓	Pinch zoom

	 ✓	Double-tap zoom in

	 ✓	Two-finger–tap zoom out (you might not even know about that one)

You can also specify the map type — regular, satellite, or hybrid — by chang-
ing a single property.

Since MapKit was written from scratch, it was developed with the limitations
of the iPhone in mind. As a result, it optimizes performance on the iPhone by
caching data as well as managing memory and seamlessly handling connec-
tivity changes (like moving form 3g to Wi-Fi, for example).

The map data itself is Google-hosted map data, and network connectivity is
required. And since the MapKit framework uses Google services to provide
map data, using it binds you to the Google Maps/Google Earth API terms of
service.

Although you should not subclass the MKMapView class itself, you can
tailor a map view’s behavior by providing a delegate object. The delegate
object can be any object in your application as long as it conforms to the
MKMapViewDelegate protocol, and as you’ll see, you can easily use the
model you developed in Chapter 16 to do that. (I wasn’t kidding when I said
you were done with the tedious creation of files!)

Enhancing the Map
Having this nice global map centered on the United States is kind of interest-
ing, but not very useful if you are planning to go to London. Let’s look at what
you would have to do to make the map more useful as well as center the map
on Heathrow and London.

In Chapter 16, you created a view controller class (MapController) with the
right outlets and a nib file that creates a MKMapViewView object and sets all
the outlets for you when the user selects Map from the main view. You can
also have an initialization method set up.

www.allitebooks.com

http://www.allitebooks.org

358 Part IV: An Industrial-Strength Application

Adding landscape mode and
the current location
To start with, it would be very useful to be able to see any map in landscape
mode.

Go back to Xcode and add the following method to MapController.m:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)toInterfaceOrientation {

 return YES;
}

That’s all you have to do to view the map in landscape mode — and MapKit
will take care of it for you! (This is starting to be real fun.)

What about showing your location on the map. That’s just as easy!

While you added the MapKit framework in Chapter 16, you still have to tell
MapContoller to use it. Add the following to MapController.h:

#import <MapKit/MapKit.h>

In the MapController.m file, uncomment out viewDidLoad and add the code
in bold.

- (void)viewDidLoad {
 [super viewDidLoad];

 mapView.showsUserLocation = YES;
}

showsUserLocation is a UKMapView property that tells the map view
whether to show the user location. If YES, you get that same blue pulsing dot
displayed in the built-in Map application.

If you were to compile and run the application as it stands, you’d get what
you see in Figure 17-2 — a map of the USA in landscape mode with a blue dot
that represents the phone’s current location (there may be a lag until the
iPhone is able to determine that location, but you should see it eventually).
Of course, to see it in landscape mode, you’ll have to turn the iPhone, or
select Hardware➪Rotate Right (or Rotate Left) from the simulator menu, or
press Ô+right (or left) arrow.

	 If you don’t see the current location, you might want to check and make sure
you have connected the mapView outlet to the Map View in the nib file. This
was done in Chapter 16, section “Set up the nib file.”

359 Chapter 17: Finding Your Way

	 That is the current location if you are running on the iPhone. If you’re running
on the simulator, that location is Apple. Touching on the blue dot also dis-
plays what is called an annotation, and you’ll find out how to customize the
text to display whatever you cleverly come up with, including as you’ll see, the
address of the current location in section “Annotations.”

	

Figure 17-2:
Displaying

a map in
landscape
mode with

a user
location.

	

It’s about the region
Cute, but still not that useful for our purposes.

As I said at the beginning of this chapter, ideally when you land at Heathrow
(or wherever), you should see a map that centers on Heathrow as opposed to
the United States. To get there from here, however, is also pretty easy.

Let’s first look at how you center the map.

Add the following code to MapController.m:

- (void)updateRegionLatitude:(float) latitude
 longitude:(float) longitude
 latitudeDelta:(float) latitudeDelta

longitudeDelta:(float) longitudeDelta {
 MKCoordinateRegion region;
 region.center.latitude = latitude;
 region.center.longitude = longitude;
 region.span.latitudeDelta = latitudeDelta;
 region.span.longitudeDelta = longitudeDelta;
 [mapView setRegion:region animated:NO];
}

Setting the region is how you center the map and set the zoom level. All of
this accomplished by the statement

[mapView setRegion:region animated:NO];

www.allitebooks.com

http://www.allitebooks.org

360 Part IV: An Industrial-Strength Application

A region is a map view property that specifies four things (as illustrated in
Figure 17-3).

	 1.	region.center.latitude specifies the latitude of the center of the
map.

	 2.	region.center.latitude specifies the longitude of the center of the
map.

		 For example, if I were to set those values as

region.center.latitude = 51.471184;
region.center.longitude = -0.452542;

		 the center of the map would be at Heathrow airport.

	 3.	region.span.latitudeDelta specifies the north-to-south distance
(in degrees) to display on the map. One degree of latitude is always
approximately 111 kilometers (69 miles). A region.span.latitud-
eDelta of 0.0036 would specify a north-to-south distance on the map of
about a quarter of a mile. Latitudes north of the equator have positive
values, and latitudes south of the equator have negative values.

	 4.	region.span.longitudeDelta specifies the east-to-west distance (in
degrees) to display on the map. Unfortunately, the number of miles in
one degree of longitude varies based on the latitude. For example, one
degree of longitude is approximately 69 miles at the equator but shrinks
to 0 miles at the poles. Longitudes east of the zero meridian (by interna-
tional convention, the zero or Prime Meridian passes through the Royal
Observatory, Greenwich, in east London) have positive values, and lon-
gitudes east of the zero meridian have negative values.

While the span values provide an implicit zoom value for the map, the actual
region you see displayed may not equal the span you specify because the
map will go to the zoom level that best fits the region that is set. This also
means that even if you just change the center coordinate in the map, the
zoom level may change because distances represented by a span change at
different latitudes and longitudes. To account for that, those smart develop-
ers at Apple included a property you can set that will change the center coor-
dinate without changing the zoom level.

@property (nonatomic) CLLocationCoordinate2D
centerCoordinate

When you change this property, the map is centered on the new coordinate
and updates span values to maintain the current zoom level.

That CLLocationCoordinate2D type is something you’ll be using a lot, so
I’d like to explain that before I take you any further.

361 Chapter 17: Finding Your Way

CLLocationCoordinate2D type is a structure that contains a geographi-
cal coordinate using the WGS 84 reference frame (the reference coordinate
system used by the Global Positioning System).

typedef struct {
CLLocationDegrees latitude;
CLLocationDegrees longitude;
} CLLocationCoordinate2D;

latitude is the latitude in degrees. This is the value you set in the code
you just entered (region.center.latitude = latitude;).

longitude is the longitude in degrees. This is the value you set in the
code you just entered (region.center.longitude = longitude;).

	

Figure 17-3:
How regions

work.
	

MKCoordinateRegion region;

latitudeDelta

longitudeDelta

region.center.latitude= 51.471184;
region.center.longitude= -0.452542;
region.span.latitudeDelta= .2;
region.span.longitudeDelta= .2;

[mapView setRegion:region animated:YES];

www.allitebooks.com

http://www.allitebooks.org

362 Part IV: An Industrial-Strength Application

To center the map display on Heathrow, you send the updateRegionLatitude
:longitude: latitudeDelta:longitudeDelta message (the code you
just entered) when the view is loaded, that is, in the viewDidLoad: method.
You already added some code there to display the current location, so add the
additional code in bold.

- (void)viewDidLoad {

 [super viewDidLoad];
 mapView.showsUserLocation = YES;
 CLLocationCoordinate2D initialCoordinate =
 [destination

initialCoordinate];
 [self updateRegionLatitude: initialCoordinate.latitude
 longitude: initialCoordinate.

longitude
 latitudeDelta:.2

longitudeDelta:.2];
 self.title = [destination mapTitle];
}

Let’s look at what this does:

	 1.	 The initialCoordinate message is sent to the Destination object
(remember your model from Chapter 16) to get the initial coordinates
you want displayed. You’re adding some additional functionality to the
model, whose responsibly now includes specifying that location. The user
may have requested that location when he or she set up the trip (I don’t
cover that topic in this book, leaving it as an exercise for the reader), or it
may have been a default location that you decided on when you wrote the
code (an airport specified in the destination, for example).

	 2.	 Sets the map title by sending the mapTitle message to the
Destination object — adding another model responsibility.

For all of this to work of course, you’ll have to add the following code to
Destination.m. This will return the latitude and longitude for Heathrow.

- (CLLocationCoordinate2D)initialCoordinate {

 CLLocationCoordinate2D startCoordinate;
 startCoordinate.latitude=51.471184;
 startCoordinate.longitude=-0.452542;
 return startCoordinate;
}

- (NSString*) mapTitle{

 return @” map”;
}

363 Chapter 17: Finding Your Way

Tracking location changes
You can also track changes in user location
using key-value observing. This will enable
you to move the map as the user changes
location. I won’t go into detail on key-value
observing other than to show you the code.
It’s very similar to when you registered for the
UIKeyboardWillShowNotification
in the ReturnMeTo application in Chapter 8.

First, you add the code in bold to viewDid-
Load: in MapController.m to add an observer
that’s to be called when a certain value is
changed — in this case userLocation.

- (void)viewDidLoad {
 [super viewDidLoad];
 mapView.showsUserLocation =

YES;
 CLLocationCoordinate2D

initialCoordinate =

[map initialCoordinate];
 [self updateRegionLatitude:

initialCoordinate.latitude
longitude:

initialCoordinate.
longitude

latitudeDelta:.2
longitudeDelta:.2];

 self.title = [destination
mapTitle];

 [mapView.userLocation
addObserver:self
forKeyPath:@”location”

options:0 context:NULL];

}

Adding that code will cause the
observeValueForKeyPath:: mes-
sage to be sent to the observer (self or the
RootViewController). To implement the
method in Destination.m enter:

- (void)observeValueForKeyPat
h:(NSString *) keyPath

 ofObject:(id)
object
change:(NSDictionary *)
change

 context:(void
*) context {

 NSLog (@”Location

changed”);
}

In this method, the keyPath field returns
mapView.userLocation.location,
which you can use to get the current location.
In this example, I am simply displaying a mes-
sage on the Debugger Console, but as I said,
once the user moves a certain amount, you may
want to re-center the map.

Technical Stuff: This is not exactly
the same location you’d get from
CLLocationManager — it’s optimized for
the map, while CLLocationManager pro-
vides the raw user location.

Of course, you’ll have to run this on the iPhone
for the location to change.

www.allitebooks.com

http://www.allitebooks.org

364 Part IV: An Industrial-Strength Application

You’ll have to include the MapKit in Destination, so add the following to
Destination.h:

#import <MapKit/MapKit.h>

You’ll also have to add the following to Destination.h (after the braces):

- (CLLocationCoordinate2D)initialCoordinate;
- (NSString*)mapTitle;

If you compile and build your project, you should see what’s shown in
Figure 17-4.

	

Figure 17-4:
Regions

determine
what you

see on the
map.

	

At this point, when the user touches Map in the main view, iPhoneTravel411
displays a map centered on Heathrow, and if you pan (a tedious task you’ll fix
soon) over to Cupertino (or wherever you are), you’ll see the blue dot.

If you tap the dot, as shown in Figure 17-2, you’ll see a callout known as an
annotation displaying “Current Location.” You can also add annotations on
your own, which is what you’ll do in the next section.

Annotations
The MKMapView class supports the ability to annotate the map with custom
information. There are two parts to the annotation, the annotation itself, which
contains the data for the annotation, and the annotation view that displays the
data.

365 Chapter 17: Finding Your Way

The annotation
An annotation plays a similar role to the dictionary you created in Chapter 16
to hold the text to be displayed in the cell of a table view. Both of them act as
a model for their corresponding view, with a view controller connecting the
two.

Annotation objects are any object that conforms to the MKAnnotation proto-
col and are typically existing classes in your application’s model. The job of an
annotation object is to know its location (coordinate) on the map along with
the text to be displayed in the callout. The MKAnnotation protocol requires
a class that adopts that protocol to implement the coordinate property.
In our case, it makes sense for the Airport and City model objects to add
the responsibilities of an annotation object to their bag of tricks. After all, the
Airport and City model objects already know what airport or city they rep-
resent, respectively. It makes sense for these objects to have the coordinate
and callout data as well.

Here’s what you need to do to make that happen:

	 1.	 Add the MapKit include to the Airport and City .h files.

#import <MapKit/MapKit.h>

	 2.	 Have the City and Airport classes adopt the MKAnnotation protocol.

@interface City : NSObject <MKAnnotation> {
@interface Airport : NSObject <MKAnnotation> {

	 3.	 Add the following instance variables to both the Airport and City .h
files.

CLLocationCoordinate2D coordinate;

	 4.	 Add the following property and method to both the Airport and
City .h files.

@property (nonatomic) CLLocationCoordinate2D
coordinate;

- (NSString*) title;

		 The MKAnnotation protocol requires a coordinate property — the
title method is optional.

	 5.	 Add a synthesize statement to both the Airport and City .m files.

@synthesize coordinate;

www.allitebooks.com

http://www.allitebooks.org

366 Part IV: An Industrial-Strength Application

	 6.	 Implement the Airport’s title method by adding the following to
the Airport.m file.

- (NSString*)title{

 return airportName;
}

		 Airport will provide the airport name for the callout text.

	 7.	 Implement the City’s title method by adding the following to the
City.m file.

- (NSString*)title{

 return cityName;
}

		 City will provide the city name for the callout text.

	 8.	 Add the code in bold to the initWithName:: method in Airport.m to
provide the coordinate data for Heathrow.

- (id)initWithName:(NSString*) name airportID:(int)
 theAirport{

 if ((self = [super init])) {
 airportName = name;
 coordinate.latitude = 51.471184;
 coordinate.longitude= -0.452542;
 }
 return self;
}

		 Airport is assigning the latitude and longitude of Heathrow to the
coordinate property, which will be used by the map view to position
the annotation.

	 9.	 Add the code in bold to the initWithCity: method in City.m to pro-
vide the coordinate data for London.

- (id)initWithCity:(NSString*) name {
 if ((self = [super init])) {
 self.cityName = name;
 coordinate.latitude = 51.500153;
 coordinate.longitude= -0.126236;
 }
 return self;
}

		 City is assigning the latitude and longitude of London to the coordinate
property, which will be used by the map view to position the annotation.

367 Chapter 17: Finding Your Way

	 10.	 Add the code in bold to Destination.m.

@synthesize annotations;	

- (id)initWithName:(NSString*) theDestination {
 if ((self = [super init])) {
 destinationName = theDestination;
 airport = [[Airport alloc] initWithName:
 NSLocalizedString(@”Heathrow”, @”Heathrow”)
 airportID:1];
 [airport retain];
 currency = [[Currency alloc] initWithCurrency:
 NSLocalizedString(@”pound”, @”pound currency”)
 currencyID: @”GBP”];
 [currency retain];
 city = [[City alloc] initWithCity:
 NSLocalizedString(@”London”, @”London”)];
 [city retain];
 weather = [[Weather alloc] initWithCity:
 NSLocalizedString(@”London”, @”London”)];
 [weather retain];
 annotations = [[NSMutableArray alloc]
 initWithCapacity:4];
 [annotations addObject:airport];
 [annotations addObject:city];
 }
 return self;
}

		 The Destination object creates an array of annotation objects (I’ll
show you how it’s used next).

	 11.	 Add the annotations array instance variable and make the annota-
tions array a property by adding the following to Destination.h.

NSMutableArray *annotations;
…
@property (nonatomic, retain)
 NSMutableArray * annotations;

So far so good. You have two objects, City and Airport that have adopted
the MKAnnotation protocol, declared a coordinate property, and imple-
mented a title method. The Destination object then created an array of
these annotations. The only thing left to do is send the array to the map view
to get the annotations displayed. As you recall, in Chapter 16 this was how
you have buttons displayed in the toolbar at the bottom of the airport view.

Displaying the annotations
Displaying the annotations is easy. All you have to do is add the line of code
in bold to MapController.m.

www.allitebooks.com

http://www.allitebooks.org

368 Part IV: An Industrial-Strength Application

- (void)viewDidLoad {
 [super viewDidLoad];
 mapView.showsUserLocation = YES;
 CLLocationCoordinate2D initialCoordinate = [destination

initialCoordinate];
 [self updateRegionLatitude: initialCoordinate.latitude

longitude:initialCoordinate.longitude
 latitudeDelta:.2 longitudeDelta:.2];
 self.title = [destination mapTitle];

 [mapView.userLocation addObserver:self
 forKeyPath:@”location” options:0
 context:NULL];
 [mapView addAnnotations: destination.annotations];
}

The MapController sends the addAnnotations: message to the map
view, passing it an array of objects that conform to the MKAnnotation pro-
tocol; that is, each one has a coordinate property and an optional title
(and subtitle) method if you want to display something in the annotation
callout.

The map view places annotations on the screen by sending its delegate the
mapView:viewForAnnotation: message. This message is sent for each
annotation object in the array. Here you can create a custom view, or return
nil to use the default view (if you don’t implement this delegate method,
which you won’t, the default view is also used).

Creating annotation views is beyond the scope of this book (although I will
tell you that the most efficient way to provide the content for an annotation
view is to set its image property). Fortunately, the default annotation view is
fine for your purposes. It displays a pin in the location specified in the coor-
dinate property of the annotation delegate (City and Airport, in this case),
and when the user touches the pin, the optional title and subtitle text will dis-
play if the title and subtitle methods are implemented in the annotation
delegate.

	 You can also add callouts to the annotation callout, such as a detail disclo-
sure button (the one that looks like a white chevron in a blue button in a table
view cell), or the info button (like the one you see in many of the utility apps)
without creating your own annotation view. Again, another exercise for you, if
you’d like.

If you compile and build your project, you can check out one of the annota-
tions you just added in Figure 17-5.

369 Chapter 17: Finding Your Way

	

Figure 17-5:
An

annotation.
	

Going to the Current Location
While you can pan to the user location on the map, in our case, it’s kind
of annoying, unless you’re actually coding this at or around London or
Heathrow. To remove at least that annoyance from your life, I want to show
you how easy it is to add a button to the Navigation bar to zoom you in to the
current location and then back to the map region and span you’re currently
displaying.

	 1.	 Add the following code to add the button in the MapController
method viewDidLoad (you have quite a bit of code there, so this is
just what to add).

UIBarButtonItem *locateButton =
 [[UIBarButtonItem alloc] initWithTitle: @”Locate”
 style:UIBarButtonItemStylePlain target:self
 action:@selector(goToLocation:)];
self.navigationItem.rightBarButtonItem = locateButton;
[locateButton release];

		 This is what you did to add the Back button in Chapter 16. When the
user taps the button, you’ve specified that the goToLocation: mes-
sage is to be sent (action:@selector(goToLocation:)) to the
MapController (target:self).

	 2.	 Next add the goToLocation: method to MapController.m.

- (IBAction)goToLocation:(id)sender{
 MKUserLocation *annotation = mapView.userLocation;
 CLLocation *location = annotation.location;
 if (nil == location)
 return;
 CLLocationDistance distance =
 MAX(4*location.horizontalAccuracy,500);

www.allitebooks.com

http://www.allitebooks.org

370 Part IV: An Industrial-Strength Application

 MKCoordinateRegion region =
 MKCoordinateRegionMakeWithDistance
 (location.coordinate, distance, distance);
 [mapView setRegion:region animated:NO];

 self.navigationItem.rightBarButtonItem.action =
 @selector(goToTrip:);
 self.navigationItem.rightBarButtonItem.title =
 @”Map”;
}

		 When the user presses the locate button, you first check to see if the
location is available (it may take a few seconds after you start the appli-
cation for the location to become available). If not, you simply return.
(You could, of course, show an alert informing the user what is going on
and to try again in 10 seconds or so — I’ll leave that up to you.)

		 If it’s available, you compute the span for the region you’ll be moving to.
In this case, the code

CLLocationDistance distance =
 MAX(4*location.horizontalAccuracy,1000);

		 computes the span to be four times the horizontalAccuracy of the
device (but no less than 1000 meters). horizontalAccuracy is a
radius of uncertainty given the accuracy of the device; that is, the user is
somewhere within that circle.

		 You then call the MKCoordinateRegionMakeWithDistance function
that creates a new MKCoordinateRegion from the specified coor-
dinate and distance values. distance and distance correspond to
latitudinalMeters and longitudinalMeters, respectively.

		 If you didn’t want to change the span, you could have simply set the
map views centerCoordinate property to userLocation, and, as I
said earlier in the “It’s about the region” section, that would have cen-
tered the region at the userLocation coordinate without changing the
span.

	 3.	 Finally, you change the title on the button to “Map,” and the @selector
to (goToTrip:), which means that the next time the user touches the
button, the goToTrip: message will be sent, so you had better add
the following code:

- (IBAction) goToTrip:(id)sender{

 CLLocationCoordinate2D initialCoordinate =
 [destination initialCoordinate];
 [self updateRegionLatitude:
 initialCoordinate.latitude longitude:

371 Chapter 17: Finding Your Way

 initialCoordinate.longitude
 latitudeDelta:.2 longitudeDelta:.2];
 self.navigationItem.rightBarButtonItem.title =
 @”Locate”;
 self.navigationItem.rightBarButtonItem.action =
 @selector(goToLocation:);
}

You can see the result of touching the locate button in Figure 17-6.

	

Figure 17-6:
 Go to

current
location.

	

Geocoding
But not being satisfied with seeing where I am on the map, I’d also like to
know the address. (If I have the address, I could also write some code to turn
the iPhone’s current address into an Address Book contact, but I’ll allow you
the pleasure of figuring that out.)

Being able to go from a coordinate on a map is called reverse geocoding, and
thankfully the ability to do that is supplied by the MapKit. Forward gecoding,
(also called just geocoding), which converts an address to a coordinate, does
not come with the MapKit, although many free and commercial services are
available.

	 Keep in mind that the location may not be completely accurate — remember
horizontalAccuracy in the earlier “Going to the Current Location” section.
For example, since my office is very close to my property line, my location
sometimes shows up with my next-door neighbor’s address.

Adding reverse geocoding to iPhoneTravel411 will enable you to display the
address of the current location. Just follow these steps:

www.allitebooks.com

http://www.allitebooks.org

372 Part IV: An Industrial-Strength Application

	 1.	 Import the reverse geocoder framework into MapController.h, and have
MapController adopt the MKReverseGeocoderDelegate protocol.

#import <MapKit/MKReverseGeocoder.h>

@interface MapController : UIViewController

<MKReverseGeocoderDelegate> {

	 2.	 Add an instance variable to hold a reference to the geocoder object.

MKReverseGeocoder *reverseGeocoder;

		 You’ll use this later to release the MKReverseGeocoder once you get
the current address.

	 3.	 Add the methods reverseGeocoder:didFindPlacemark: and reve
rseGeocoder:didFailWithError: to MapController.m.

- (void)reverseGeocoder:(MKReverseGeocoder *) geocoder
 didFindPlacemark:(MKPlacemark *) placemark {

 NSMutableString* addressString =
 [[NSMutableString alloc]
 initWithString: placemark.subThoroughfare];
 [addressString appendString: @” “];
 [addressString appendString:placemark.thoroughfare];
 mapView.userLocation.subtitle = placemark.locality;
 mapView.userLocation.title = addressString;
 [addressString release];
}

- (void)reverseGeocoder:(MKReverseGeocoder *) geocoder
didFailWithError:(NSError *) error{

	 NSLog(@”Reverse Geocoder Errored”);
}

		 The reverseGeocoder:didFindPlacemark: message to the delegate
is sent when the MKReverseGeocoder object successfully obtains
placemark information for its coordinate. An MKPlacemark object
stores placemark data for a given latitude and longitude. Placemark data
includes the properties that hold the country, state, city, and street
address (and other information) associated with the specified coordi-
nate, for example (several other pieces of data are available that you
might also want to examine):

		 country: Name of country

		 administrativeArea: State

		 locality: City

		 thoroughfare: Street address

373 Chapter 17: Finding Your Way

		 subThoroughfare: Additional street-level information, such as
the street number

		 postalCode: Postal code

		 In this implementation, you are setting the user location annotation
(userLocation) title (supplied by MapKit) to a string you create
made up of the subThoroughfare and thoroughfare (the street
address). You assign the subtitle the locality (city) property.

		 A placemark is also an annotation and conforms to the MKAnnotation
protocol, whose properties and methods include the placemark coordi-
nate and other information. Because they are annotations, you can add
them directly to the map view.

		 The reverseGeocoder:didFailWithError: message is sent to
the delegate if the MKReverseGeocoder couldn’t get the placemark
information for the coordinate you supplied to it. (This is a required
MKReverseGeocoderDelegate method.)

Of course, in order to get the reverse geocoder information, you’ll need to
create an MKReverseGeocoder object. Make the MapController a del-
egate, send it a start message, and then release it when you’re done with it.

	 1.	 Make the MapController an MKReverseGeocoder delegate by
adding the code in bold to MapController.h.

@interface MapController : UIViewController

<MKReverseGeocoderDelegate> {

	 2.	 Allocate and start the reverse geocoder and add the MapController
as its delegate in the MapContoller’s goToLocation: method by
adding the code in bold.

- (IBAction)goToLocation:(id) sender{

 MKUserLocation *annotation = mapView.userLocation;
 CLLocation *location = annotation.location;
 if (nil == location)
 return;
 CLLocationDistance distance =
 MAX(4*location.horizontalAccuracy, 500);
 MKCoordinateRegion region =
 MKCoordinateRegionMakeWithDistance
 (location.coordinate, distance, distance);
 [mapView setRegion:region animated:NO];
 self.navigationItem.rightBarButtonItem.action =
 @selector(goToTrip:);
 self.navigationItem.rightBarButtonItem.title =
 @”Map”;

www.allitebooks.com

http://www.allitebooks.org

374 Part IV: An Industrial-Strength Application

 reverseGeocoder = [[MKReverseGeocoder alloc]
 initWithCoordinate:location.coordinate];
 reverseGeocoder.delegate = self;
 [reverseGeocoder start];
}

		 Notice you initialize the MKReverseGeocoder with the coordinate of
the current location.

	 3.	 Release the MKReverseGeocoder by adding the code in bold in
goToTrip:.

- (IBAction)goToTrip:(id) sender{

 [reverseGeocoder release];
 CLLocationCoordinate2D initialCoordinate =
 [destination initialCoordinate];
 [self updateRegionLatitude:
 initialCoordinate.latitude longitude:
 initialCoordinate.longitude
 latitudeDelta:.2 longitudeDelta:.2];
 self.navigationItem.rightBarButtonItem.title =
 @”Locate”;
 self.navigationItem.rightBarButtonItem.action =
 @selector(goToLocation:);
}

		 You release the MKReverseGeocoder in this method because while you
start the MKReverseGeocoder in the goToLocation: method, it actu-
ally does not return the information in that method. It operates asyn-
chronously; and when it either constructs the placemark or gives up, it
sends the message reverseGeocoder:didFindPlacemark: or rev
erseGeocoder:didFailWithError:, respectively. If you’re return-
ing to the original map view, however, you no longer care if it succeeds
or fails, since you no longer need the placemark, and you release the
MKReverseGeocoder.

Figure 17-7 shows the result of your adventures in reverse geocoding.

	

Figure 17-7:
Reverse

geocoding.
	

375 Chapter 17: Finding Your Way

What’s Next?
Although this point marks the end of your guided tour of iPhone Software
development, it should also be the start, if you haven’t started already, of
your own development work.

Developing for the iPhone is one of the most exciting opportunities I’ve come
across in a long time. I’m hoping it ends up being as exciting — and perhaps
less stressful — an opportunity for you. Keep in touch, check out my Web
site www.nealgoldstein.com for updates and what’s new, and keep having
fun. I hope I have the opportunity to download one of your applications from
the App Store someday.

www.allitebooks.com

http://www.allitebooks.org

376 Part IV: An Industrial-Strength Application

Part V
The Part of Tens

Contents
The Part of Tens	

377

www.allitebooks.com

http://www.allitebooks.org

In this part . . .

I once had a boss who liked to hire smart-but-lazy
people. He figured if he gave them a hard job they’d

find an easy way to do it.

In this part, I show you some ways to (first) avoid doing
more work than you have to, and (second) avoid redo-
ing things because you outsmarted yourself. I take you
on a tour of Apple’s sample applications and point out
where to look if you want to “borrow” some code to
implement some piece of functionality (don’t worry —
it’s strictly legit to do that). Then I show you where
spending some up-front time doing app development
the right way is definitely worth it.

Chapter 18

Top Ten Apple Sample
Applications (with Code!)

Good artists copy. Great artists steal.
— Pablo Picasso

One way to really learn how to do things on the iPhone is to look at (cor-
rect) sample code. Apple provides a lot of it. The only problem with

learning from samples is that, while it can show you how to do a specific
thing (like flip a view), it doesn’t give you the overall architectural under-
standing you need to create an application.

After going through this book, you know enough to take real advantage of all
this sample code. By all means, take what you can from the samples and use
it where you can to jumpstart your own application development.

Here are the ten samples I like the best. You can find them at the iPhone Dev
Center Web site at http://developer.apple.com/iphone/ under the
Sample Code section on the left side of the page.

They all come as Xcode projects, so you can check out the code, compile the
project, and then load it into the simulator or even onto your development
iPhone.

AppPrefs
If you want to get a good handle on preferences and how to set, access, and
use them in your application, this is the place to get that grip. This app even
has a table view with flip animation that explains the application on the flip-
side.

Contents

Top Ten Apple Sample
Applications (with Code!)	 379
AppPrefs	 379

BubbleLevel	 380

LocateMe	380

NavBar	 380

Reachability	 380

iPhoneCoreDataRecipes	 381

UICatalog	381

URLCache	381

XML	 381

Tables	382
www.allitebooks.com

http://www.allitebooks.org

380 Part V: The Part of Tens

BubbleLevel
I can’t help it. I love this application. It includes a lot of things any iPhone app
developer would want to know how to do, including graphics and audio, and
how to develop an application with a landscape view. It also allows you to
calibrate the level with directions on the flipside of the level view. I actually
keep this app on my iPhone. You never know when you might need a level to
straighten a picture or build a deck.

LocateMe
If you want to extend the iPhoneTravel411 application and base the user’s
available options on his or her current location, you can start here. This app
shows you how to use core location, but remember that the simulator shows
you a world with only one location — Apple’s headquarters in Cupertino,
California.

NavBar
Navigation bars crop up in the book from time to time (in particular, in
Chapter 16), and I show you how to add a Back button in Chapter 16. If you
want to customize an existing navigation bar even more, this app has the
code that shows you how to do it. You can add custom left and right buttons
and even change the style of the Navigation Bar. It also illustrates how to use
multiple nib files — each page has its own.

Reachability
If you’re a network geek, this one is great — otherwise, you can use this code
to get your app to determine network state and check whether a particular
site is available. This app also shows you, if you uncomment a line of code,
how to run in asynchronous mode and notify the application of a change in
device status.

381 Chapter 18: Top Ten Apple Sample Applications (with Code!)

iPhoneCoreDataRecipes
This sample shows you how to do a lot of things, among them using view
controllers, table views, and Core Data in an iPhone application. It uses the
view controller to manage information, and table views to display and edit
data. What is more important, though, is its use of Core Data. Core Data is
the way you should think about saving objects and then retrieving them from
a persistent store (such as a file on disk), and the sample shows you how to
implement a Core Data persistent store.

UICatalog
This sample illustrates all the elements you’d want to use in your app’s user
interface. (You know — all those buttons, icons, and bangles that the user sees
on-screen.) This one application shows you how to implement all of them.

URLCache
URLCache demonstrates how to download a resource, store it in the data direc-
tory, and use the local copy. Very useful for anything you want your app to do on
the Web. It also includes a framework for asynchronous processing. If you need
to download a lot o’ data when the application starts, this sample shows you
how to tell your app to start a download and then go off and do other things until
the download completes. It also includes an activity-indicator view that tells the
user your application is actually at work, and not on a lunch break.

XML
There are actually two XML samples I can recommend. The first one,
SeismicXML, shows you how to work with XML documents. When you
launch it, it gets and parses an RSS feed. This particular feed is from the
U.S. Geological Survey that provides data on recent earthquakes around the
world. (I live in Northern California, so you can bet I keep this one on my
iPhone as well.)

www.allitebooks.com

http://www.allitebooks.org

382 Part V: The Part of Tens

The second sample, XMLPerformance, parses XML by using the two APIs
provided in the SDK. This sample allows the user to choose between the two
APIs, tracks the statistics of each parse, and stores that data in an SQLite
database. There’s a good discussion of performance in the ReadMe file. In
addition, the app’s RSS feed uses the “Top 300” songs from iTunes, so you
can keep up to date on those tunes.

Tables
There are a number of samples that show you how to implement the func-
tionality inherent in the table view. I’ll just list them here, and you can exam-
ine them at your leisure:

	 ✓	Accessory implements a checkmark button in a custom accessory view.

	 ✓	DateCell shows you how to format date objects in a table view cell and
then use a date picker to edit the dates.

	 ✓	DrillDownSave saves the current location in a hierarchy and then
restores the current location when the user relaunches the application.
(Hmm. I wonder where I’ve seen that before?)

	 ✓	EditableDetailView shows how to insert, delete, and move rows.

	 ✓	HeaderFooter shows customized header and footer views.

	 ✓	SimpleDrillDown is a simple drill-down application using a UITableView.

	 ✓	TableSearch implements searching using UISearchBar and
UISearchDisplayController and then filtering content. This is similar to
what the Mail application does when you start to type an e-mail address
in the To field when you are composing an e-mail.

	 ✓	TableViewSuite shows a lot of table views.

	 ✓	TheElements is a very robust application. It allows you to sort data and
present it in multiple formats. It uses a tab bar, displays in plain and
grouped table views, uses navigation controllers to navigate deeper into
a data structure, creates custom table view cells with multiple subviews,
accesses a Web site using Safari, reacts to taps in a view, flips view content
from front to back, and reflects a view. Makes me tired just to think about it.

	 ✓	TouchCells implements controls in a table view.

Chapter 19

Ten Ways to Be a Happy
Developer

In This Chapter
▶	How not to paint yourself into a corner

▶	Avoiding “There’s no way to get there from here.”

There are lots of things you know you’re supposed to do, but you don’t
because you think they’ll never catch up with you. (After all, not flossing

won’t cause you problems until your teeth fall out years from now, right?)

But in iPhone application development, those things catch up with you early
and often, so I want to tell you about what I’ve learned to pay attention to
from the very start in app development, as well as a few tips and tricks that
lead to happy and healthy users.

It’s Never Early Enough to Start
Speaking a Foreign Language

With the world growing even flatter, and the iPhone available in more than
80 countries, the potential market for your app is considerably larger than
just people who speak English. Localizing an application isn’t difficult, just
tedious. Some of it you can get away with doing late in the project, but
when it comes to the strings you use in your application, you’d better build
them right — and build them in from the start. The painless way: Use the
NSLocalizedString macro (refer to Chapter 14) from the very start, and
you’ll still be a happy camper at the end.

www.allitebooks.com

http://www.allitebooks.org

384 Part V: The Part of Tens

Remember Memory
The iPhone OS does not store “changeable” memory (such as object data)
on the disk to free up space and then read it back in later when needed. It
also doesn’t have garbage collection — which means there is a real potential
for memory leaks unless you tidy up after your app. Review and follow the
memory rules in Chapter 6 — in particular, these:

	 ✓	Memory management is really creating pairs of messages. Balance every
alloc, new, and retain with a release.

	 ✓	When you assign an instance variable using an accessor with a property
attribute of retain, you now own the object. When you’re done with it,
release it in a dealloc method.

Constantly Use Constants
In the iPhoneTravel411 application, I put all my constants in one file. When I
was developing the MobileTravel411 projects, I did the same. The why of it
is simple: As I changed things during the development process, having one
place to find my constants made life much easier.

Don’t Fall Off the Cutting Edge
The iPhone is cutting-edge enough that there are still plenty of opportunities to
expand its capabilities — and many of them are (relatively) easy to implement.
You are also working with a very mature framework. So if you think something
you want your app to do is going to be really difficult, check the framework;
somewhere in there you may find an easy way to do what you have in mind. If
there isn’t a ready-made fix, consider the iPhone’s limited resources — and at
least question whether that nifty task you had in mind is something your app
should be doing at all. Then again, if you really need to track orbital debris with an
iPhone app, go for it — someone needs to lead the way. Why shouldn’t it be you?

Start by Initializing the Right Way
A lot of my really messy code that I found myself re-doing ended up that
way because I didn’t think through initialization. (For example, adding on
initialization-like methods after objects are already initialized is a little late in
the game, and so on.) Reread and heed Chapter 16; the initialization process
is important in implementing reusable view controllers and models.

Contents
Ten Ways to Be a Happy Developer	 383
It’s Never Early Enough to Start Speaking a
Foreign Language	383

Remember Memory	 384

Constantly Use Constants	384

Don’t Fall Off the Cutting Edge	 384

Start by Initializing the Right Way	 384

Keep the Order Straight	 385

Avoid Mistakes in Error Handling	385

Remember the User	 386

Keep in Mind that the Software Isn’t Finished
Until the Last User Is Dead	 386

Keep It Fun	 386

385 Chapter 19: Ten Ways to Be a Happy Developer

Keep the Order Straight
One of the things that can really foul up your day as a developer is the order
in which objects are called. If you expect an object to be there (and it isn’t)
or to have been initialized (and it wasn’t), you may be in the wrong method.
Copy Table 19-1 and paste it into a file — and/or print it out and tack it up
where you can easily find it.

Table 19-1	 The Natural Order of Things
Object Method

View Controller awakeFromNib

Application Delegate applicationDidFinishLaunching:

View Controller viewDidLoad

View Controller viewWillAppear:

View Controller viewWillDisappear:

Delegate applicationWillTerminate:

	 What trips up many developers is that the awakeFromNib message for the ini-
tial view controller (the one you see when the application starts) is sent before
the applicationDidFinishLaunching: message. If you have a problem
with that, do what you need to do in ViewDidLoad.

Avoid Mistakes in Error Handling
A lot of opportunities for errors are out there; use common sense in figuring
out which ones you should spend work time on. For example, don’t panic
over handling a missing directory in your code. On the iPhone, it’s supposed
to be there; if it’s not, then look for a bug in your program. If it’s really not
there, then the user has big problems, and you probably won’t be able to do
anything to avert the oncoming hassle.

There are, however, some potential pitfalls you do have to pay attention to,
such as these two big ones:

	 ✓	Your app goes out to load something off the Internet, and (for a variety
of reasons) the item isn’t there or the app can’t get to it.

	 ✓	An object can’t initialize itself (for a similar range of perverse reasons).

www.allitebooks.com

http://www.allitebooks.org

386 Part V: The Part of Tens

	 When, not if, those things happen, your code and your user interface must be
able to deal with the error.

Remember the User
I’ve been singing this song since Chapter 1, and I’m still singing it now: Keep
your app simple and easy to use. Don’t build long pages that take lots of
scrolling to get through, and don’t create really deep hierarchies. Focus on
what the user wants to accomplish, and be mindful of the device limitations,
especially battery life. And don’t forget international roaming charges.

In other words, try to follow the Apple’s iPhone Human Interface Guidelines,
found with all the other documentation in the iPhone Dev Center Web site
at http://developer.apple.com/iphone/ under the iPhone Reference
Library section — Required Reading. Don’t even think about bending those
rules until you really, really understand them.

Keep in Mind that the Software Isn’t
Finished Until the Last User Is Dead

If there is one thing I can guarantee about app development, it’s that Nobody
Gets It Right the First Time. The design for MobileTravel411 evolved over
time, as I learned the capabilities and intricacies of the platform and the
impact of my design changes. Object-orientation makes extending your appli-
cation (not to mention fixing bugs) easier, so pay attention to the principles.

Keep It Fun
When I started programming the iPhone, it was the most fun I’d had in years.
Keep things in perspective: Except for a few tedious tasks (such as provi-
sioning and getting your application into the Apple Store), lo, I prophesy:
Developing iPhone apps will be fun for you, too. So don’t take it too seriously.

	 Especially remember the fun part at 4 a.m., when you’ve spent the last five
hours looking for a bug. Here’s a handy way to do that: My editor here at Wiley
told me he knows of someone who downloaded an iPhone app with little but-
tons placed on-screen like the holes on an ocarina; the idea is to blow into the
iPhone and play it that way. She’s organizing an iPhone virtual-ocarina quartet.
Imagine them playing “Wild Thing” — that’ll keep things in perspective.

Index
• Symbols •
@class Destination statement, 333
@interface declaration, 157
@property statement

getters and setters, creating, 128
saving state information, 304, 306
user preferences, 314–315
ViewController, adding outlets

to, 126
@synthesize statement

getters and setters, creating, 128
NSUserDefaults, saving data

using, 173
saving state information, 304, 306
user preferences, 315
ViewController, adding outlets

to, 126
\ (escape character), 217, 223

• A •
ABA/Routing Transit Number, 250
absolute row, 297
accelerometer, 14, 261
accessibility of user interface, 21
accessor methods, 126, 128
Accessory sample application, 382
accessory view area, 293, 296
action sheets, 37
action:@selector(goBack:)

argument, 336
Ad Hoc Distribution Provisioning Profile,

233, 240–241
ADC Reference Library, 121
addAnnotations: message, 368

Additional Artwork field, iTunes
Connect, 249

addObserver: object, 145
Adjust to Fit checkbox, Attributes

Inspector, 86
Airport object, 39, 365–367
AirportController.h file, 329, 333–334
AirportController.m file, 327, 333–334
AirportController.xib file, 329–330
Airport.h file, 342
airportView outlet, 330–331
Alert views, 33, 37
alerts, sending to user, 319–320
Align Center control, Attributes

Inspector, 92–93
alloc message, 113
animation

overview, 22
transitions, 151

annotations
displaying, 367–369
map, 356
overview, 364–367

anyObject method, 184–185
App ID, 238
App Store

overview, 23
provisioning application, 239–241

App Store Availability field, iTunes
Connect, 249

App Store, Logo Licensing, and Affiliate
Program page, iPhone Dev Center,
244–245

Apple Developer Forums Beta, 52
Application Description field, iTunes

Connect, 247

www.allitebooks.com

http://www.allitebooks.org

388 iPhone Application Development For Dummies, 2nd Edition

application icons
creating, 96–98
iTunes Connect, 249

Application Name field, iTunes Connect,
247

Application Price field, iTunes Connect,
249

application product page, 249
applicationDidBecomeActive:

message, 111
applicationDidFinishLaunching:

method
application lifecycle, 101
behavior, adding, 40–41
initialization, 106, 141
overview, 139
saving and restoring state information,

307–309
saving data, 176–177
user preferences, 315–316

applicationDidReceiveMemory
Warning: method, 112

applications. See designing applications;
iPhone applications

applicationWillResignActive:
message, 110

applicationWillTerminate: method
application lifecycle, 101
low-memory warnings, 113
overview, 110, 139
saving data, 175
saving state information, 303, 305, 307

AppPrefs application, 379
artwork, App Store, 249
assembly language, 195
atomically parameter, 306
Attributes icon, Attributes Inspector

window, 85

Attributes Inspector, 84–85, 209–210,
278–279

audio, playing, 14
autorelease message, 113
Availability Date field, iTunes Connect,

249
awakeFromNib method, 283–284,

290, 385

• B •
Back button

creating, 336
navigation bar, 300–302
UIWebView, 339

Background field, Attributes
Inspector, 86

bank information, iTunes Connect, 250
Bank Swift Code, 250
battery life, 16–17, 262
behavior patterns

Delegation, 41–42
overview, 40–43
Target-Action, 42–43

Bookmarks menu, Xcode, 66–67
Boolean checkbox, Xcode, 313
bounce scroll, 278
breakpoints, 193, 196–199
Breakpoints button, Xcode, 64–65, 191
Breakpoints menu, Xcode, 66–67
BubbleLevel application, 380
bug example, 220–222
Build and Run button, Xcode, 64–65,

88, 94, 134
build configuration, 69
Build log, Xcode, 241–244
Build menu, Xcode, 190

389389 Index

Build Results window, Xcode,
75, 241–244

Building Your Application with Xcode
for Distribution link, iPhone Dev
Center, 241

button action, 205
buttonPressed: method, 204, 207
buttons. See also names of specific

buttons
Clear, 160
coding, 205–208
connecting in Interface Builder, 209–212
overview, 203–204
secret, 183–185
Target-Action pattern, 204–205

• C •
calendar alert, arriving during

application use, 110–111
callNumber instance variable, 161–162
camera, accessing, 15
case-sensitivity, 3
cell identifier, 295
cells

adding subviews to content view,
293–294

creating, 294–298
custom subclass UITableViewCell,

294
overview, 292–293
table view, 274
vanilla cell objects, 293

centerCoordinate property, 370
centering maps, 359–364
Certificate Signing Request, 238
certificates

development, 233–234, 236–239
distribution, 232, 239
signing, 231, 239

CGGeometry reference, 150
CGPoint structure, 150
CGRect structure, 149, 150
CGRectContainsPoint function, 185
CGSize structure, 149, 150
“changeable” memory, 111
choice bar, 336–338
City model object, 365–367
@class Destination statement, 333
Class drop-down menu, Identity

Inspector, 329–330
Class Hierarchy menu, Xcode, 66–67
class naming conventions, 40
Classes folder, Xcode, 67, 126
Clear button, 160
client-server computing, 13
CLLocationCoordinate2D type,

360–361
CLLocationManager class, 363
Cocoa Touch Classes option, Xcode, 326,

328
code, writing, 117–118. See also Interface

Builder; Xcode
code folding, Xcode, 119
Code Sense feature, Xcode, 119
code signing, 231
CodeSign line, Xcode Build log, 242–243
Colors window, Xcode, 87
compiler warnings, 190
complex applications, 255–256
composition, 346–348
computer power, 16–17
Connections icon, Attributes

Inspector, 85
consistency of user interface, 18–21
constants, 384
Constants.h file, 281–283, 290, 295, 297
contacts, accessing, 14
container views, 36
content views

adding subviews to, 293–294
overview, 33, 266–269

www.allitebooks.com

http://www.allitebooks.org

390 iPhone Application Development For Dummies, 2nd Edition

context
categorizing by, 262–263
design driven by, 256
device, 261–262
real-world

localized applications, 260
quality of information, 260
relevance, 259
speed, 259
value, 260

user experience, 12
Continue option, Debugger, 198
Contracts, Tax & Banking Information,

iTunes Connect, 250–251
control flow

controller object, 140–141
delegate object, 138–140

controllers, 31–32, 265, 288–290
controls, 35, 36
conventions used in book, 3
coordinate property, 366
Copy Items into Destination Group’s

Folder checkbox, Xcode, 90
copy message, 113
Copyright field, iTunes Connect, 248
Core Data, 381
Counterpart button, Xcode, 66–67
Create an Apple ID option, iPhone Dev

Center, 47
Create and Download Your iPhone

Distribution Provisioning Profile for
App Store Distribution link, iPhone
Dev Center, 240

Creating and Downloading a Distribution
Provisioning Profile for Ad Hoc
Distribution link, iPhone Dev
Center, 241

Currency button, MobileTravel411, 9

Currency implementation model,
350–352

Currency selection, iPhoneTravel,
411, 322–323

currencyBasics method, 350–351

• D •
data source, 275
DateCell sample application, 382
dealloc method, 129–131, 384
deallocating, 129, 145
Debugger

breakpoints, 196–199
Debugger window, 193–196
overview, 69–70, 187–191
Static Analyzer, 199–202
using, 191–193

Debugger Console, 70
Debugger window, 193–196, 198
debugging phase, 186
declaring, 118
defaultCenter: class method, 143
Delegation pattern, 40–42
Demo Account - Full Access field, iTunes

Connect, 248
dequeueReusableCellWith

Identifier: message, 296
design patterns

MVC pattern, 30–32
overview, 28–29

designing applications
defining problems, 257–258
iterative process, 272
MVC architecture

content views, 266–269
localization, 272
main view, 266
models, 270–272

391391 Index

overview, 265–266
saving state, 272
stored data mode, 272
view controllers, 270

overview, 255–257
user experience

categorizing problems and defining
solutions, 262–265

device context, 261–262
features, 260–261
overview, 258–259
real-world context, 259–260

desktop, mobile, 11
Destination model

indirection, 346–348
overview, 292, 341–346

Destination.h file, 341–342, 364, 367
Destination.m file, 362–363, 367
Detail Disclosure button, 296
Detail view, Xcode, 64–65
Detects Phone Numbers check box,

Attributes Inspector, 219
developers, registered

becoming, 46–48
iPhone Dev Center

overview, 49–50
resources, 51–52
Software Development Kit, 50–51

iPhone Developer program, joining,
53–57

overview, 45
Software Development Kit

downloading, 52–53
preparing to use, 58

tips for
constants, 384
cutting edge applications, 384
error handling, 385–386
extending applications, 386

fun, 386
initializing, 384
localization, 383
memory, 384
order, 385
remembering users, 386

Development Certificate, 233–234,
236–239

Development process
overview, 233–235
provisioning devices, 235–239

Development Provisioning Assistant,
iPhone Dev Center, 235–239

Development Provisioning Profile,
233–234, 236–239

device context, 261–262
Device field, iTunes Connect, 247
device-guided design, 12
dictionaries

entries, 147, 178, 312
with keyboard information, 148
overview, 288–289

dictionaryWithObjectsAndKeys:
method, 178

didReceiveMemoryWarning: method,
112

didSelectRowAtIndexPath: method,
308–309, 334

digital identity, 232
digital signature, 231–233
direct manipulation, 22
disabling

editing, 181–183
links, in stored data mode, 339–341

disclosure indicator, 296
display views, 36
Distribution Certificate, 232, 239
Distribution process, 232–233, 239–244

www.allitebooks.com

http://www.allitebooks.org

392 iPhone Application Development For Dummies, 2nd Edition

Distribution Provisioning Profile,
232, 240–241

documentation window, Xcode,
76, 121–122

Documents directory, 305
double tap gesture, 72
drag gesture, 73
DrillDownSave sample application, 382

• E •
ease of use, user interface, 20
Edit button, 300
EditableDetailView sample application,

382
editing, disabling, 181–183
Editor view, Xcode, 64, 67, 192
e-mail address, support, 248
embedded.mobileprovision file, 242
enabled property, 182
encapsulating, 108, 180, 184
End User License Agreement field,

iTunes Connect, 248
Enterprise version, iPhone Developer

Program, 53–54
entries, dictionary, 147, 178, 312
error handling, 385–386
escape character (\), 217, 223
Etch-A-Sketch metaphor, 14
event loop, 101, 109
event processing, 108–109
events, displaying with views, 34
Exchange support, 23
extending applications, 321, 386

• F •
Favorites bar, Xcode, 66
feedback, immediate, 22
File’s Owner proxy object, 79, 103, 132,

329–330

Find feature, Xcode, 122–124
Find Selected Text in Documentation

option, Xcode, 278
Find toolbar, 144
First Responder proxy object, 79, 103
first responder view, 156
flick gesture, 72
foreign currency, 18
forKey: argument, 176
formal protocol, 42
forward geocoding, 371
frameworks

adding new, 331–332
defined, 49
overview, 27–28

Frameworks folder, Xcode, 68

• G •
generic model objects, 325
generic view controller, 325
genstrings command-line program, 287
geocoding, 371–374
gesture recognition

designing for, 15–16
overview, 14
simulator, 72–73

getAirportData: method, 345
getter method, 128
Getting Started Documents, iPhone Dev

Center, 51
Getting Started Videos, iPhone Dev

Center, 51
Getting To From button,

MobileTravel411, 9
Go to iTunes Connect button, iPhone

Dev Center, 245
Go to the Home screen, Simulator, 72
goBack: method, 339
goToLocation: method, 369–370,

373–374

393393 Index

goToTrip: message, 370–371, 374
graphic-design tools, Interface Builder, 50
grouped table views

overview, 276–279
sections

adding, 279–284
titles for, 284–285

Groups & Files list, Xcode, 64–65, 83,
126, 278

• H •
hardware interaction, Simulator, 71–72
Hardware menu, Simulator, 71
header files, 120–121
header window, switching between

implementation window and, 119
HeaderFooter sample application, 382
Heathrow Express tab,

MobileTravel411, 9
Heathrow option, iPhoneTravel411,

 323, 325
Help menu, Xcode, 122
here-and-now applications, 1, 11, 256
hierarchy

defined, 262
displaying hierarchal data, 266
of views, 34–35

Home button, iPhone, 303
horizontalAccuracy value, 370
HTML content, 212–213, 216
.html files, 350
Human Interface Guidelines, 301, 386

• I •
IBAction method, 206
IBOutlet keyword, 118, 126, 329
icons

application, 96–98, 249
used in book, 6

identity, digital, 232
Identity icon, Attributes Inspector, 85
Identity Inspector, 329–330
Image View element, Interface Builder, 90
images

centering, 91
creating buttons with, 209–210
selecting, 91

immersive applications, 23
implementation window, switching

between header window and, 119
#import statement, 176, 333
Included Files menu, Xcode, 66–67
indexed tables, 279
indexPath argument, 297, 304
Info button, Xcode, 64–65
information property list (info.plist),

97, 292
initialCoordinate message, 362
initialization of applications, 106–108,

196, 384
initWithCity: method, 366
initWithContentsOfFile: message,

308
initWithDestination: method, 334
initWithDestination:airportID:

method, 334–335
initWithName:: method, 366
initWithNibName:bundle: method,

334–335
instance variables

adding to interface, 173
defined, 118
naming conventions, 40

Instruments application, 49, 201
interactivity of user interface, 22
Interface Builder

buttons, connecting, 209–212
coding in, 131–134
connecting with, 158–160
elements, adding, 89–95
graphics, 89–95
nib file, 329–330

www.allitebooks.com

http://www.allitebooks.org

394 iPhone Application Development For Dummies, 2nd Edition

Interface Builder (continued)

overview, 49, 76–88
Target-Action pattern, 42–43
view hierarchy, 35
Web view, 218–220

@interface declaration, 157
Internet access, 13, 261–262
interruptions, responding to, 110–111
iPhone applications. See also designing

applications
building, 69–71
device-guided design, 12
features of platform

audio playback, 14
camera access, 15
contacts access, 14
gesture recognition, 14
Internet access, 13
location of user, 13
motion tracking, 14
orientation tracking, 14
picture access, 15
video playback, 14

life cycle of
event processing, 108–109
initialization, 106–108
nib file, 101–105
overview, 99–101
termination, 110

limitations of
battery life, 16–17
computer power, 16–17
gesture recognition, designing for,

15–16
memory, 16–17
screen size, 15

overview, 9–10
possibilities of, 23
reasons to develop, 22–23

running, 69–71
samples of, 24–25
uninstalling, 73
user experience

compelling content, 17–20
overview, 11–12
user interface, 18–22

iPhone Dev Center
iTunes Connect, getting to, 244–245
overview, 49–50
provisioning, 235, 239–241
resources, 51–52
sample code, 379
Software Development Kit, 50–51
Tips on Submitting Your App to the

App Store link, 246
iPhone Developer Program. See also

Registered iPhone Developers
joining, 53–57
overview, 23, 45

iPhone Development Certificate,
233–234, 236–239

iPhone Development Provisioning
Profile, 233–234, 236–239

iPhone Distribution Certificate, 232, 239
iPhone Distribution Provisioning

Profile, 232
iPhone Human Interface Guidelines,

301, 386
iPhone Reference Library, 52
iPhone Simulator

gestures, 72–73
hardware interaction, 71–72
limitations, 73–74
overview, 4, 49–50
resetting, 73
uninstalling applications, 73

iPhoneCoreDataRecipes application, 381

395395 Index

iPhone/iPod touch Home Screen Icon
field, iTunes Connect, 249

iPhoneTravel411 application. See also
MobileTravel411 application

AirportController, 333–334
controller, adding, 326–328
Currency implementation model,

350–352
Destination model

composition, 346–348
overview, 341–346

initialization, 334–335
Map selection, 352–353
model class, adding, 328
nib file

adding, 326–328
setting up, 328–333

overview, 263–264
pattern behind controllers and

models, 352
specifying content, 322–325
user selection, responding to, 338–341
view, setting up, 335–338
Weather implementation model,

348–350
iPhoneTravel411AppDelegate.h file,

304, 306
iPhoneTravel411AppDelegate.m file

annotations, 364–369
current location, 358–364, 369–371
geocoding, 371–374
landscape mode, 358
state information, saving, 304, 306
@synthesize statement, 315

isEqualToString: method, 183
iterative process, 272
iTunes Connect, 244–252

• K •
kControllerKey entry, 289
kDescriptKey entry, 289
keyboard

disadvantages of, 16
dismissing, 164–166, 220–221
managing, 156
using to simulate iPhone gestures, 72

keyboardWillShow: method,
146, 148, 221

keychain, 232
keys, dictionary, 147
key-value pair, 178, 312, 363
Keywords field, iTunes Connect, 248
kNumberLocation-Key entry, 176
kSelectKey entry, 289

• L •
Label element, Interface Builder, 84
labels, 182, 297
landscape mode, 358–359
languages

choosing with user in mind, 19–20
localization, 285–287

Large Application Icon field, iTunes
Connect, 249

lastView instance variable, 304–306
latitude, map, 360–361
Library window, Interface Builder, 79–80,

83–84, 218
links, disabling in stored data mode,

339–341
loadHTMLString:: method, 216
localizable.strings file, 287
localization, 260, 272, 383
Localization field, iTunes Connect, 249

www.allitebooks.com

http://www.allitebooks.org

396 iPhone Application Development For Dummies, 2nd Edition

LocateMe application, 380
location

current, 13, 358–359, 369–371
tracking changes, 363

Lock the Simulator (device) option,
Simulator, 72

logic errors, 189, 195–196, 223
longitude, map, 360–361
low-memory warnings

avoiding, 113
observing, 112–113

• M •
main function, application, 99–100
main view, 266, 272, 304
MainWindow.xib file, 102–103, 105,

299–300
Manage Your Applications link, iTunes

Connect, 250
Manage Your Applications page, iTunes

Connect, 251–252
Manage Your Contracts page, iTunes

Connect, 251
Map selection, iPhoneTravel411, 323,

325, 352–353
MapController.h file, 358, 372–373
MapController.m file, 358–359, 367–368,

369–370, 372
MapKit framework

annotations
displaying, 367–369
overview, 364–367

centering map, 359–364
current location, 358–359, 369–371
geocoding, 371–374
landscape mode, 358–359
MKMapView class, 356–357
overview, 355–356

mapTitle message, 362
mapView.userLocation.location

method, 363
mapView:viewForAnnotation:

message, 368
memory

coding, 129–131
limitations of, 16–17
low-memory warnings

avoiding, 113
observing, 112–113

overview, 111–112, 384
rules of, 113–114
usage, 262

mental models, 18
menuList array, 292
menuOffset algorithm, 298
metadata, 244, 247–249
method naming conventions, 40
Microsoft Exchange support, 23
Microsoft Office support, 23
MKAnnotation protocol, 365
MKCoordinateRegionMakeWith

Distance function, 370
MKMapView class, 356–357
MKReverseGeocoder object, 373–374
MKReverseGeocoderDelegate

protocol, 372
mobile desktop, 11
MobileTravel411 application. See also

iPhoneTravel411 application
contacts, 14
defining problems, 257–258
overview, 9–10
preferences, using, 317–320
program architecture

content views, 266–269
localization, 272
main view, 266
models, 270–272

397397 Index

overview, 265–266
saving state, 272
stored data mode, 272
view controllers, 270

reading settings in, 314–317
restoring state, 307–309
saving state, 303–307
table views

cells, 292–298
creating, 275
grouped, 276–279
implementing selection, 302
navigation controller, 300–302
overview, 273–274
responding to selection, 298–300
row model, creating, 288–292
UITableViewController, 279–287

user experience, designing
categorizing problems and defining

solutions, 262–265
overview, 258–259
real-world context, 259–260

user preferences, 309–314
window layout, 33

modal views, 38
models

adding model class, 328
Currency implementation, 350–352
Destination model

indirection, 346–348
overview, 341–346

overview, 30–32, 39–40, 265, 270–272
row, 288–292
Weather implementation, 348–350

Model-View-Controller (MVC)
architecture

content views, 266–269
localization, 272
main view, 266
models, 270–272

overview, 30–32, 265–266
saving state, 272
stored data mode, 272
user interface changes, 204
view controllers, 270

motion tracking feature, 14, 261
mouse, using to simulate iPhone

gestures, 72
moveViewUp

instance variable, 147, 153
thetextFieldShouldReturn:

method, 155
moving views, 151–153
Multi-Touch interface

designing for, 15
limitations of, 261

MVC (Model-View-Controller)
architecture

content views, 266–269
localization, 272
main view, 266
models, 270–272
overview, 30–32, 265–266
saving state, 272
stored data mode, 272
user interface changes, 204
view controllers, 270

• N •
name: object, 145, 146
naming conventions, 40
NavBar application, 380
navigation bars

MobileTravel411 application, 33
NavBar application, 380
overview, 299–302
Xcode, 64, 66–67

navigation controller, 299–302

www.allitebooks.com

http://www.allitebooks.org

398 iPhone Application Development For Dummies, 2nd Edition

navigation views, 37
Navigation-Based Application template,

299–300
New File dialog box, Xcode, 281–282,

311, 326–328
New Group folder, Xcode, 328
new message, 113
New Project Assistant, Xcode, 62
New Project window, Xcode, 62–63
New Referencing Outlet list, Xcode, 330
NeXT Interface Builder (nib) files

adding, 326–328
connections in Interface Builder, 131
defined, 32, 78, 100
main, 101–105
setting up, 328–333

nonatomic attribute, 129
Notification system

overview, 142
registering notification, 143–145
unregistering notification, 145–146

NSDictionary object, 147
NSIndexPath object, 298
NSLocalizedString macro,

286–287, 383
NSLog message, 345
NSMutableArray object, 289
NSMutableDictionary object, 289
NSNotificationCenter object, 143
NSObject object, 271
NSSearchPathForDirectoriesIn

Domains: method, 305
NSSet object, 184
NSURL object, 216, 344–346, 352
NSUserDefaults class

overview, 172–173
phone numbers, saving, 175–176
preference entry, loading, 176–179, 316
setting up, 173–174
using data, 179–181

NSValue object, 149
numberOfSectionsInTableView:

method, 275, 280

• O •
object: object, 145, 146
Objective-C class template, 328
Objective-C language

checking messages sent, 195
learning, 52
memory and, 113
private construct, 342–343
properties, 128–129

object-oriented programming,
30, 125–126, 272

observeValueForKeyPath::
message, 363

Obtaining Your iPhone Distribution
Certificate link, iPhone Dev Center,
239–240

Office suite support, 23
offline data, 264–265
orientation tracking feature, 14, 261
Other Sources folder, Xcode, 68
outlets

adding to view controllers
Objective-C language, 128–129
overview, 124–127

defined, 118
nib file, 329–331

Overview menu, Xcode, 64

• P •
parameterized models, 271–272
pathForResource:: method, 352
phone calls, arriving during application

use, 110–111
phone numbers

calling
coding, 212–214
Web view, 214–220

saving, 160–164, 170, 175–176
pictures, accessing, 15
pinch gesture, 73

399399 Index

pip (price interest point), 19
placeholder, 185
placemark information, 372–373
plain table views, 276
.png format, 89
pops, 301
Portal page, iPhone Developer Program,

56–57
porting to, 11
power usage, 262
#pragma statement, 166–167
preference entry, loading, 176–179
Preferences window, Xcode, 75
PreferenceSpecifiers key, 312
price interest point (pip), 19
Primary Category drop-down menu,

iTunes Connect, 247
Primary Screenshot field, iTunes

Connect, 249
procedural programming, 125–126
productivity applications, 23
Products folder, Xcode, 68
Program Portal button, iPhone Dev

Center, 235
Program Portal screen, iPhone Dev

Center, 235–237, 239–240
program-specific behavior, 41
Project Find window, Xcode, 124
projects, Xcode, 65–69
property declaration, 162, 173
property lists

overview, 271–272
setting up, 311–314

@property statement
getters and setters, creating, 128
saving state information, 304, 306
user preferences, 314–315
ViewController, adding outlets

to, 126

protocols
adopting, 157–158
defined, 41–42

provisioning
Development process, 233–239
Distribution process, 232–233, 239–244
iTunes Connect, 244–252
overview, 231–232

pushes, 301

• Q •
quality of information, 260
Quick Help, Xcode, 120
quit message, 188

• R •
Rating Information field, iTunes Connect,

247
Reachability application, 380
real-time information, 13
real-world context

localized applications, 260
quality of information, 260
relevance, 259
speed, 259
value, 260

reference counting, 113
region.center.latitude value, 360
region.center.longitude value, 360
regions, 285–287, 357
region.span.latitudeDelta

value, 360
region.span.longitudeDelta

value, 360
Register link, iPhone Dev Center, 46

www.allitebooks.com

http://www.allitebooks.org

400 iPhone Application Development For Dummies, 2nd Edition

RegisterDefaults: method, 178
Registered iPhone Developers

becoming, 46–48
iPhone Dev Center

overview, 49–50
resources, 51–52
Software Development Kit, 50–51

iPhone Developer program, joining,
53–57

overview, 45
Software Development Kit

downloading, 52–53
preparing to use, 58

tips for
constants, 384
cutting edge applications, 384
error handling, 385–386
extending applications, 386
fun, 386
initializing, 384
localization, 383
memory, 384
order, 385
remembering users, 386

registering notifications, 143–145
release message, 113, 127, 384
relevance of applications, 259
removeObserver: object, 146
Request New Contracts section, iTunes

Connect, 251
resetting iPhone Simulator, 73
resignFirstResponder: message,

156, 165
resource file, 76–77, 350
Resources folder, Xcode, 68, 83, 89, 278
responder chain, 34
responder object, 108–109
Restart option, Debugger, 198
restoring state, 303, 307–309

retain attribute, 129
retain message, 113–114, 129–130, 384
ReturnMeTo application, overview,

24–25
ReturnMeToAppDelegate

applicationDidFinishLaunching:
message, 106

ReturnMeToAppDelegate object,
103, 138

ReturnMeToAppDelegate.h file, 223
ReturnMeToAppDelegate.m file, 224
ReturnMeToViewController object,

103, 124, 138, 206
ReturnMeToViewController.h file,

141, 225
ReturnMeToViewController.m file,

142, 207, 225–229
ReturnMeToViewController.xib file,

77, 105, 210
returnTransportation: method,

342–344
reusing cells, 295
reverse geocoding, 371–374
reverseGeocoder:didFailWith

Error: method, 372–373
reverseGeocoder:didFindPlace

mark: method, 372–373
root view controller, 301
Root.plist file, 310, 312–314
RootViewController object, 278–279,

290–291, 299
RootViewController.m file,

283, 294, 306, 334
Rotate Left option, Simulator, 71
Rotate Right option, Simulator, 71
Round Rect Button item, Interface

Builder, 209
routing number, 250
row model, creating, 288–292
rows, table view, 274–275

401401 Index

run loop, 109
runtime environment, 27
runtime errors, 188

• S •
sample code, 52
saveAirportData: method, 344–345
savedlNumber instance variable, 128
saving

phone numbers, 160–164, 175–176
state, 272, 303–307
user-entry data
NSUserDefaults class, 172–181
overview, 169–170
preferences, 170–172

screen size, 15
screenshots, 249
scrollAmount instance variable, 153
scrolling views

concept, 146–147
content view, 135–136, 139
implementing, 158
limiting, 261
mechanics of, 147–150
to original position, 154–156
overview, 137–138

scrollTheView: method, 151
SDK (Software Development Kit)

applications
building, 69–71
running, 69–71

developing with, 61–64
downloading, 52–53
Interface Builder, 76–80
overview, 4, 22–23, 25, 50–51, 61
preparing to use, 58
projects, 65–69

Simulator
gestures, 72–73
hardware interaction, 71–72
limitations of, 73–74
resetting, 73
uninstalling applications, 73

Xcode, customizing, 74–76
Secondary Category drop-down menu,

iTunes Connect, 247
secret buttons, 183–185
sections

adding, 279–284
overview, 274
titles for, 284–285

sectionsArray array, 284, 298
segmented control, 337–338
SeismicXML application, 381
selections

implementing, 302
overview, 319–320
responding to, 298–300, 338–341

selector: method, 145
selectTransportation: method, 338
self, assignment to, 335
Send the running application low-

memory warnings option,
Simulator, 72

sender argument, 206
setObject: argument, 175
setter method, 128
Setting Up a Team link, iPhone Dev

Center, 236
Settings application, 170–171,

266, 309–310, 316
Settings bundle, 310–311
Settings Bundle icon, Xcode, 311
Settings.bundle subfolder, 311
shake gesture, 14, 72
sharedApplication class method, 180

www.allitebooks.com

http://www.allitebooks.org

402 iPhone Application Development For Dummies, 2nd Edition

shouldStartLoadWithRequest:
method, 339–341

showsUserLocation property, 358
signature, digital, 231–233
signing certificate, 231
SimpleDrillDown sample application, 382
simplicity, 20–21
Simply Connect principle, 259
Simulator

gestures, 72–73
hardware interaction, 71–72
limitations, 73–74
overview, 4, 49–50
resetting, 73
uninstalling applications, 73

singleton, defined, 175
Size icon, Attributes Inspector, 85
SKU Number field, iTunes Connect, 248
SMS messages, arriving during

application use, 110–111
SObject root class, 107
Software Development Kit (SDK)

applications
building, 69–71
running, 69–71

developing with, 61–64
downloading, 52–53
Interface Builder, 76–80
overview, 4, 22–23, 25, 50–51, 61
preparing to use, 58
projects, 65–69
Simulator

gestures, 72–73
hardware interaction, 71–72
limitations of, 73–74
resetting, 73
uninstalling applications, 73

Xcode, customizing, 74–76
Source and Disassembly option,

Debugger, 195
Source Only option, Debugger, 195
span, map, 357, 360, 370

speed of applications, 259
stack, defined, 301
Standard version, iPhone Developer

Program, 53–54
standardUserDefaults: method, 175
Static Analyzer, 199–202
static array, 147
static text, 84
Status bar

MobileTravel411, 33
Simulator, 72
Xcode, 64–65

Step Out option, Debugger, 198
Step Over option, Debugger, 198
Stock Keeping Unit (SKU), 248
stored data mode, 264–265,

272, 312, 339–341
stringByAppendingPathComponent:

method, 305
stringBy-AppendingString: method,

216
strings file, 286–287
StringsTable key, 312
Style dropdown menu, Attributes

Inspector, 278–279
subclassing, 40
subgroups, 68–69
subviews, 34, 293–294, 297–298
super touchesBegan:touches

withEvent:event] message, 165
superview, 34
Support E-mail Address field, iTunes

Connect, 248
Support URL for the Company field,

iTunes Connect, 248
Swift Code, bank, 250
swipe gesture, 72
switch statement, 280, 283, 319
syntax errors, 187
@synthesize statement

getters and setters, creating, 128

403403 Index

NSUserDefaults, saving data
using, 173

saving state information, 304, 306
user preferences, 315
ViewController, adding outlets

to, 126

• T •
tab bars, 37
table of contents, 266, 298–300
table views

cells
adding subviews to content view,

293–294
creating, 294–298
creating custom subclass
UITableViewCell, 294

overview, 292–293
vanilla cell objects, 293

creating, 275
grouped, 276–279
navigation controller, 300–302
overview, 273–274
row model, creating, 288–292
selections

implementing, 302
responding to, 298–300

UITableViewController class
adding sections, 279–284
adding titles for sections, 284–285
localization, 285–287

tables applications, 382
TableSearch sample application, 382
tableView:cellForRowAtIndexPath:

method, 275, 292, 294
tableView:didSelectRowAtIndex

Path: method, 275, 302, 304, 306,
317–318

tableView:numberOfRowsInSection:
method, 275, 280

TableViewSuite sample application, 382
tableView:titleForHeaderIn

Section: method, 275, 284–285
tap gesture, 72
Target-Action pattern, 38, 40, 42–43,

204–205
Targets folder, Interface Builder, 331
Tasks button, Xcode, 64–65
Taxi/Car tab, MobileTravel411, 38
Team Agent, 236
termination of applications, 110
text entry, disabling, 181
Text field, Attributes Inspector, 94
text field outlet, 118, 133
text messages, arriving during

application use, 110–111
Text views, 37
textField property, 129
textFieldShouldReturn: method,

154–156, 160, 162–163
TheElements sample application, 382
theTextField resignFirstResponder

message, 155
Tips on Submitting Your App to the App

Store link, iPhone Dev Center, 246
title method, 366
Title value, 312–313
To Become an Authorized Licensee

button, iPhone Dev Center, 245
Toolbar

MobileTravel411, 33
Xcode, 64–65

touch and hold gesture, 72
Touch Up Inside connection, Xcode, 210
touch-based interface

designing for, 164–166
limitations of, 261

TouchCells sample application, 382
touchesBegan:: method, 165, 183–184
tracking

location changes, 363
orientation and motion, 261

www.allitebooks.com

http://www.allitebooks.org

404 iPhone Application Development For Dummies, 2nd Edition

travel applications
iPhoneTravel411

AirportController, 333–334
controller, adding, 326–328
Currency implementation model,

350–352
Destination model, 341–348
initialization, 334–335
Map selection, 352–353
model class, adding, 328
nib file, 326–333
overview, 263–264
pattern behind controllers and

models, 352
specifying content, 322–325
user selection, responding to, 338–341
view, setting up, 335–338
Weather implementation model,

348–350
MobileTravel411

contacts, 14
defining problems, 257–258
overview, 9–10
preferences, using, 317–320
program architecture, 265–272
reading settings in, 314–317
restoring state, 307–309
saving state, 303–307
table views, 273–302
user experience, designing, 258–265
user preferences, 309–314
window layout, 33

Type key, 312

• U •
UDID (Unique Device Identifier), 238
UIActionSheet class, 37
UIAlertView class, 37
UIApplication object, 41

UIApplicationDelegate protocol,
107–108, 140

UIApplicationDidReceiveMemory
WarningNotification
notification, 112

UIApplicationMain function, 100–102
UIBarButtonItem object, 338
UIButton object, 36
UICatalog application, 381
UIControl superclass, 36
UIEvent object, 108
UIImagePickerController

subclass, 38
UIKeyboardBoundsUserInfoKey

key, 147
UIKeyboardCenterBeginUserInfoKey

key, 147
UIKeyboardCenterEndUserInfoKey

key, 147
UIKeyboardWillShowNotification

notification, 144
UIKit framework

design patterns, 29
event loop, 101
overview, 49
view hierarchy, 35

UILabel class, 182
UILabelView class, 297
UINavigationController subclass, 38
UIScrollView class, 36
UISlider object, 36
UITabBarController subclass, 38
UITableView class, 36, 266, 274–275. See

also table views
UITableViewCell class

custom cell subclass, 294
overview, 274
subviews, adding to cell content view,

293–294
vanilla cell objects, 293

405405 Index

UITableViewCellAccessory
Disclosure
Indicator object, 296

UITableViewCellStyleDefault
object, 296

UITableViewCellStyleSubtitle
object, 296

UITableViewCellStyleValue1
object, 296

UITableViewCellStyleValue2
object, 296

UITableViewController class
adding sections, 279–284
adding titles for sections, 284–285
localization, 285–287
overview, 38, 278

UITableViewDataSource protocol, 275
UITableViewDelegate protocol, 275
UITextView class, 37
UIToolbar class, 36
UITouch object, 108
UIView class, 35–36, 79, 267
UIViewController class, 270
UIWebView class, 37, 212, 328–331, 339.

See also Web views
UIWindow class, 32
Undo feature, Xcode, 313
undo mechanism, 16
uninstalling applications, Simulator, 73
Unique Device Identifier (UDID), 238
unregistering notifications, 145–146
Unused variable I warning, 190
updateCallNumber method, 160–162,

165, 174
updateRegionLatitude:longitude:

latitudeDelta:longitudeDelta
message, 362

updating interface, 153
uploading applications, 250–252

URLCache application, 381
Use an existing Apple ID option, iPhone

Dev Center, 47
Use Stored Data option, Settings

application, 309–310
user experience

categorizing problems and defining
solutions, 262–265

compelling content, 17–20
device context, 261–262
features

Internet access, 261
orientation and motion tracking, 261
user location, 260

overview, 11–12, 258–259
reading settings in application, 314–317
real-world context

localized, 260
quality of information, 260
relevance, 259
speed, 259
value, 260

restoring state, 303, 307–309
saving state, 303–307
user interface

accessibility, 21
consistency, 18–21
interactivity, 22
overview, 20

user preferences
adding Settings bundle, 310–311
overview, 309–310
setting up property list, 311–314
using in application, 317–320

user input views, 266–267
user interface

accessibility, 21
advantages of small screen, 15
application icons, 96–98

www.allitebooks.com

http://www.allitebooks.org

406 iPhone Application Development For Dummies, 2nd Edition

user interface (continued)

consistency, 21
interactivity, 22
Interface Builder

elements, adding, 89–95
graphics, 89–95
overview, 81–88

overview, 20, 81
user preferences

adding Settings bundle, 310–311
overview, 309–310
setting up property list, 311–314
using in application, 317–320

userInteractionEnabled
property, 221

userLocation variable, 370
useStoredData instance variable,

314–316
useStoredDataPreference key, 313
utility applications, 23, 255

• V •
value of applications, 260
values, dictionary, 147
vanilla cell objects, 293
variables, checking, 195
Verifying a Successful Distribution Build

link, iPhone Dev Center, 241
Version Number field, iTunes

Connect, 248
video, playing, 14
view controllers

adding, 326–328
model object, 288–290
outlets

Objective-C language, 128–129
overview, 124–127

overview, 37–39, 270, 319–320
View-Based Application template, Xcode,

64, 68

viewDidLoad method
Clear button, 160
finding, 122–123
overview, 140–141
removing label-enabling code, 208
setting up view, 336
Weather implementation, 349–351

views
action sheets, 37
Alert, 37
calculating size of, 147
centering objects in, 86
container, 36
content, 266–269, 293–294
controls, 36
display, 36
hierarchy, 34–35
initialization, 140
main, 266
moving, 151–153
navigation, 37
overview, 31–34, 265
purpose of, 34
scrolling

concept, 146–147
mechanics of, 147–150
to original position, 154–156
overview, 137–138

setting up, 335–338
table

cells, 292–298
creating, 275
grouped, 276–279
navigation controller, 300–302
overview, 273–274
row model, creating, 288–292
selections, 298–300, 302
UITableViewController class,

279–287
Text, 37
touching to dismiss keyboard, 164–166
UIView class, 79

407407 Index

Web, 37
window, 37

viewWillAppear: method, 140–141,
143, 304, 307

viewWillDisappear: method,
140, 145–146

Visit Phone Development Center button,
iPhone Dev Center, 48

• W •
Weather implementation model, 348–350
Weather selection, iPhoneTravel411,

322, 324
weatherRealtime method, 349
Web browser, 13
Web sites, support, 248
Web View window, Xcode, 330
Web views

benefits of, 269
implementing, 214–218
Interface Builder

adding in, 218–220
connecting in, 218–220

overview, 37, 212
welcome screen, Xcode, 62–63
WGS 84 reference frame, 361
windows, overview, 32–33, 37
writeToFile: method, 305–306

• X •
Xcode

customizing, 74–76
Debugger

breakpoints, 196–199
Debugger window, 193–196

overview, 187–191
Static Analyzer, 199–202
using, 191–193

defined, 4, 49
documentation, accessing

documentation window, 121–122
Find feature, 122–124
header files for symbols, 120–121
Help menu, 122
overview, 119–120
Quick Help, 120

launching, 62
provisioning application for App Store,

240–244
Text Editor, 119

.xib files
adding, 326–328
connections in Interface Builder, 131
defined, 32, 78, 100
main, 101–105
setting up, 328–333

XML applications, 381–382
XMLPerformance application, 382

• Z •
zoom level, map, 360

www.allitebooks.com

http://www.allitebooks.org

408 iPhone Application Development For Dummies, 2nd Edition

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Business/Accounting
& Bookkeeping
Bookkeeping For Dummies
978-0-7645-9848-7

eBay Business
All-in-One For Dummies,
2nd Edition
978-0-470-38536-4

Job Interviews
For Dummies,
3rd Edition
978-0-470-17748-8

Resumes For Dummies,
5th Edition
978-0-470-08037-5

Stock Investing
For Dummies,
3rd Edition
978-0-470-40114-9

Successful Time
Management
For Dummies
978-0-470-29034-7

Computer Hardware
BlackBerry For Dummies,
3rd Edition
978-0-470-45762-7

Computers For Seniors
For Dummies
978-0-470-24055-7

iPhone For Dummies,
2nd Edition
978-0-470-42342-4

Laptops For Dummies,
3rd Edition
978-0-470-27759-1

Macs For Dummies,
10th Edition
978-0-470-27817-8

Cooking & Entertaining
Cooking Basics
For Dummies,
3rd Edition
978-0-7645-7206-7

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition
Dieting For Dummies,
2nd Edition
978-0-7645-4149-0

Nutrition For Dummies,
4th Edition
978-0-471-79868-2

Weight Training
For Dummies,
3rd Edition
978-0-471-76845-6

Digital Photography
Digital Photography
For Dummies,
6th Edition
978-0-470-25074-7

Photoshop Elements 7
For Dummies
978-0-470-39700-8

Gardening
Gardening Basics
For Dummies
978-0-470-03749-2

Organic Gardening
For Dummies,
2nd Edition
978-0-470-43067-5

Green/Sustainable
Green Building
& Remodeling
For Dummies
978-0-470-17559-0

Green Cleaning
For Dummies
978-0-470-39106-8

Green IT For Dummies
978-0-470-38688-0

Health
Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies
978-0-471-77383-2

Hobbies/General
Chess For Dummies,
2nd Edition
978-0-7645-8404-6

Drawing For Dummies
978-0-7645-5476-6

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Organizing For Dummies
978-0-7645-5300-4

SuDoku For Dummies
978-0-470-01892-7

Home Improvement
Energy Efficient Homes
For Dummies
978-0-470-37602-7

Home Theater
For Dummies,
3rd Edition
978-0-470-41189-6

Living the Country Lifestyle
All-in-One For Dummies
978-0-470-43061-3

Solar Power Your Home
For Dummies
978-0-470-17569-9

www.allitebooks.com

http://www.allitebooks.org

Internet
Blogging For Dummies,
2nd Edition
978-0-470-23017-6

eBay For Dummies,
6th Edition
978-0-470-49741-8

Facebook For Dummies
978-0-470-26273-3

Google Blogger
For Dummies
978-0-470-40742-4

Web Marketing
For Dummies,
2nd Edition
978-0-470-37181-7

WordPress For Dummies,
2nd Edition
978-0-470-40296-2

Language & Foreign
Language
French For Dummies
978-0-7645-5193-2

Italian Phrases
For Dummies
978-0-7645-7203-6

Spanish For Dummies
978-0-7645-5194-9

Spanish For Dummies,
Audio Set
978-0-470-09585-0

Macintosh
Mac OS X Snow Leopard
For Dummies
978-0-470-43543-4

Math & Science
Algebra I For Dummies
978-0-7645-5325-7

Biology For Dummies
978-0-7645-5326-4

Calculus For Dummies
978-0-7645-2498-1

Chemistry For Dummies
978-0-7645-5430-8

Microsoft Office
Excel 2007 For Dummies
978-0-470-03737-9

Office 2007 All-in-One
Desk Reference
For Dummies
978-0-471-78279-7

Music
Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

iPod & iTunes
For Dummies,
6th Edition
978-0-470-39062-7

Piano Exercises
For Dummies
978-0-470-38765-8

Parenting & Education
Parenting For Dummies,
2nd Edition
978-0-7645-5418-6

Type 1 Diabetes
For Dummies
978-0-470-17811-9

Pets
Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dog Training For Dummies,
2nd Edition
978-0-7645-8418-3

Puppies For Dummies,
2nd Edition
978-0-470-03717-1

Religion & Inspiration
The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

Women in the Bible
For Dummies
978-0-7645-8475-6

Self-Help & Relationship
Anger Management
For Dummies
978-0-470-03715-7

Overcoming Anxiety
For Dummies
978-0-7645-5447-6

Sports
Baseball For Dummies,
3rd Edition
978-0-7645-7537-2

Basketball For Dummies,
2nd Edition
978-0-7645-5248-9

Golf For Dummies,
3rd Edition
978-0-471-76871-5

Web Development
Web Design All-in-One
For Dummies
978-0-470-41796-6

Windows Vista
Windows Vista
For Dummies
978-0-471-75421-3

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Visit us at Dummies.com

From hooking up a modem to cooking up a
casserole, knitting a scarf to navigating an iPod,

you can trust Dummies.com to show you how
to get things done the easy way.

How-to?
How Easy.

Go to www.Dummies.com

www.allitebooks.com

http://www.allitebooks.org

DVDs • Music • Games •
DIY • Consumer Electronics •
Software • Crafts • Hobbies •
Cookware • and more!

For more information, go to
Dummies.com® and search
the store by category.

 Dummies products
 make life easier!

Making everything easier!™

Notes

www.allitebooks.com

http://www.allitebooks.org

Notes

Sample For Dummies • 0000-0 Index.1 • Index • Proof 1 • PLT • 12/20/99 • P414

Neal Goldstein
Author of Objective-C For Dummies

Learn to:
• Design small- or large-scale iPhone

applications for profit or fun

• Create new iPhone apps using Xcode®

• Get your applications into the App Store

• Work with frameworks

iPhone®

Application Development

2nd Edition
Making Everything Easier!™

Visit the book’s companion Web site at www.dummies.com/

go/iphoneappdevfd2e for source code and additional

information on iPhone app development

 Open the book and find:

• What it takes to become a
registered Apple developer

• How to debug your app

• What’s new in iPhone 3.1 and
Xcode 3.2

• What goes into a good interface
for a small device

• How applications work in the
iPhone environment

• Why you must think like a user

• What the App Store expects of you

• What makes a great iPhone app

Neal Goldstein is a recognized expert at making cutting-edge

technologies practical for commercial and enterprise development.

He is currently leading an iPhone startup that is developing an

application that will radically change how people can use iPhones to

manage information, and he holds a patent on an enterprise-wide

SOA-based architecture.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-56843-9

Macintosh/Programming

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Got a good idea? Turn it
into an app, have some fun,
and pick up some cash!
Make the most of the new 3.1 OS and Apple’s Xcode 3.2!
Neal Goldstein shows you how, and even illustrates the
process with one of his own apps that’s currently being
sold. Even if you’re not a programming pro, you can turn
your bright idea into an app you can market, and Neal even
shows you how to get it into the App Store!

• Mobile is different — learn what makes a great app for mobile
devices and how an iPhone app is structured

• What you need — download the free Software Development Kit,
start using Xcode, and become an “official” iPhone developer

• The nitty-gritty — get the hang of frameworks and iPhone
architecture

• Get busy with apps — discover how to make Xcode work for you
to support app development

• Off to the store — get valuable advice on getting your apps into
the App Store

• Want to go further? — explore what goes into industrial-strength
apps

2nd Edition

iPhone
® A

p
p

lication D
evelop

m
ent

Goldstein

spine=.864”

www.allitebooks.com

http://www.allitebooks.org

	IPhone® Application Development FOR Dummies®, 2nd Edition
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting Started
	Chapter 1: Creating Killer iPhone Applications
	What Makes a Great iPhone Application
	Creating a Compelling User Experience
	Exploiting the Platform
	A Compelling User Experience
	Why Develop iPhone Applications?
	Examining the Possibilities
	The Sample Applications
	What's Next

	Chapter 2: Looking Behind the Screen
	Using Frameworks
	Using Design Patterns
	Working with Windows and Views
	Controlling View Controllers
	What about the Model?
	Adding Your Own Application's Behavior
	Doing What When?
	Whew!

	Chapter 3: Enlisting in the Developer Corps
	Becoming a Registered iPhone Developer
	Exploring the iPhone Dev Center
	Downloading the SDK
	Joining the iPhone Developer Program
	Getting Yourself Ready for the SDK

	Part II: Using the iPhone Development Tools
	Chapter 4: Getting to Know the SDK
	Developing Using the SDK
	Creating Your Project
	Exploring Your Project
	Building and Running Your Application
	The iPhone Simulator
	Customizing Xcode to Your Liking
	Using Interface Builder
	It's Time to Get to Work

	Chapter 5: Building the User Inter face
	Starting Interface Builder
	Adding Graphics and the Rest of the Elements
	Adding an Application Icon
	A Lot Accomplished Very Quickly

	Chapter 6: While Your Application Is Running
	Application Anatomy 101 — The Life Cycle
	Event Processing
	Termination
	Other Runtime Considerations
	Whew!

	Part III: From “Gee, That’s a Good Idea,” to the App Store
	Chapter 7: Actually Writing Code
	Buckle Up, It's Time to Code
	The Xcode Code Editor
	Accessing Documentation
	Adding Outlets to the View Controller
	Memory Management
	Connecting the Pieces in Interface Builder

	Chapter 8: Entering and Managing Data
	Scrolling the View
	Where Does My Code Go?
	Where Where Where
	Building on a Foundation
	Polishing the Chrome and Adding
the Vinyl Pinstriping
	Finding Your Way Around the Code
	When You're Done

	Chapter 9: Saving Data and Creating a Secret Button
	Saving User-Entry Data
	Disabling Editing
	Letting the User Use the Secret Button
	What You Have Now — At Long Last

	Chapter 10: Using the Debugger
	Using the Debugger
	Using Breakpoints
	Using the Static Analyzer
	One More Step

	Chapter 11: Buttoning It Down and Calling Home
	Adding a Button to Your iPhone Interface
	Connecting the Button in Interface Builder
	Phoning Home
	A Bug
	We Are Finally Done
	The Final Code

	Chapter 12: Death, Taxes, and the iPhone Provisioning
	How the Process Works
	Provisioning Your Device for Development
	Provisioning Your Application for the App Store
	iTunes Connect
	Now What?

	Part IV: An Industrial-Strength Application
	Chapter 13: Designing Your Application
	Defining the Problems
	Designing the User Experience
	Creating the Program Architecture
	The Iterative Nature of the Process

	Chapter 14: Setting the Table
	Working with Table Views
	And Now . . .

	Chapter 15: Enhancing the User Experience
	Saving and Restoring State
	Respecting User Preferences
	Reading Settings in the Application
	Using Preferences in Your Application
	This App Is Almost Done

	Chapter 16: Creating Controllers and Their Models
	Specifying the Content
	Creating the View Controller, Nib, and Model Files
	Implementing the View, View Controller, and the Model
	The Destination Model
	What’s with the Destination Model and All That Indirection
	The Weather Implementation Model
	The Currency Implementation Model
	Notice the Pattern
	What's Next?

	Chapter 17: Finding Your Way
	Using MapKit
	MKMapView
	Enhancing the Map
	Annotations
	Going to the Current Location
	Geocoding
	What's Next?

	Part V: The Part of Tens
	Chapter 18: Top Ten Apple Sample Applications (with Code!)
	AppPrefs
	BubbleLevel
	LocateMe
	NavBar
	Reachability
	iPhoneCoreDataRecipes
	UICatalog
	URLCache
	XML
	Tables

	Chapter 19: Ten Ways to Be a Happy Developer
	It's Never Early Enough to Start Speaking a Foreign Language
	Remember Memory
	Constantly Use Constants
	Don't Fall Off the Cutting Edge
	Start by Initializing the Right Way
	Keep the Order Straight
	Avoid Mistakes in Error Handling
	Remember the User
	Keep in Mind that the Software Isn't Finished Until the Last User Is Dead
	Keep It Fun

	Index

