
www.allitebooks.com

http://www.allitebooks.org

3D Game
S E C O N D E D I T I O N

C R E A T E P R O F E S S I O N A L 3 D G A M E W O R L D S
Environments

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://taylorandfrancis.com
http://www.allitebooks.org

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

3D Game

Luke Ahearn

S E C O N D E D I T I O N

C R E A T E P R O F E S S I O N A L 3 D G A M E W O R L D S

A N A K P E T E R S B O O K

Environments

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161102

International Standard Book Number-13: 978-1-138-92002-6 (Paperback) 978-1-138-92003-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and
information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission
to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact
the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides
licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without
intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Ahearn, Luke, author.
Title: 3D game environments : create professional 3D game worlds / Luke
Ahearn.
Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] |
Includes index.
Identifiers: LCCN 2016025973 | ISBN 9781138920026 (pbk. : acid-free paper)
Subjects: LCSH: Computer games--Programming. | Computer graphics. |
Three-dimensional display systems. | Virtual reality.
Classification: LCC QA76.76.C672 A42143 2017 | DDC 794.8/1526--dc23

LC record available at https://lccn.loc.gov/2016025973

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2016025973
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.allitebooks.org

To Julie, Ellen, and Cooper

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://taylorandfrancis.com
http://www.allitebooks.org

vii

Contents

Preface xv
Acknowledgments xvii
Author xix
Introduction xxi

Section i
the basics

 1 Game world optimizations 3

Introduction 3
Asset-based optimizations 7
MIP mapping 7
Texture pages (or T-pages, atlas textures, or texture packing) 10
Unlit textures 11
Multitexturing or multiple UV channels 12
Lightmaps 13
Masking and transparency 15
Texture size and compression 18
Particle systems 18
Forced perspective 22

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Polygon optimization 22
LoD 23
Collision-based optimizations 24
Collision objects 24
Collision types 27
Occlusion-based optimizations 28

Occlusion and culling 28
Distance fog 31
Cull distance 34
Cells and portals 35

Planning 35
Conclusion 36

 2 three-dimensional concepts 37

Introduction 37
Texture mapping 38
Mapping types 39

Planar 40
Box 40
Spherical 40
Cylindrical 40

UV editing 40
Multitexturing 40

3D 42
3D space 44

Viewports 44
Player perspective 47
Shortcuts and hotkeys 47
Units of measurement 47
Grids and snaps 47
Hide/unhide 48
Freeze 49
Drawing modes 49
Grouping 49
Selecting 49

www.allitebooks.com

http://www.allitebooks.org

ixContents

3D creation 50
Mesh editing 51
Axis 51

Object space or local 54
World space 54
View space 54

Pivot points 54
2D shapes 54

Creating 3D objects from 2D shapes 56
Extrude 56
Lathe 56
Loft 57
Transforms 57
Deforms 58

 3 Shaders and materials 61

Introduction 61
Shader basics 63
Common shader effects 66

Diffuse (color maps or textures) 67
Blend 70

Average 70
Additive 70
Subtractive 70

Detail mapping 70
Depth of field 70
Heat haze 72
Specular highlights and glossiness 72
Bloom (glow or halo) 74
Masking and opacity 74
Illumination (unlit, emissive, or full bright) 75
Reflection 78
Pan/rotate/scale 81
Bump, normal, and parallax occlusion mapping 82

Conclusion 87

www.allitebooks.com

http://www.allitebooks.org

x Contents

Section ii
Low-polygon environments with simple shaders

 4 Planning the low-polygon urban environment 91

Introduction 91
Technological assumptions 92
Point of view 93
Theme 93
Genre 93
World size 94
Game fiction 95

 5 Modeling the large urban environment 97

Introduction 97
Blocking out the level 100

Setting up the grid 101
Basic parts 102

World measurements and scale 104
Modeling the streets 108
UV-mapping the meshes 111

Street UV-mapping 112
Repeating buildings 112
Landmarks 115
Main building 118
Lobby building 118
Solid building 120
Details 121
Decals 123
Traffic signs 124
Newspaper machines 124

Newspaper machine 1 126
Newspaper machine 2 126

Bus stop 127
Phone booth 129
Dumpster, trash can, and mailbox 129
Streetlights and traffic lights 133
Parking meter and fire hydrant 139

Conclusion 139

xiContents

 6 texturing the large urban environment 141

Introduction 141
Texture creation 142

Tiling base materials 142
Asphalt/base streets 142
Base cement/sidewalk 143
Intersection 148
Building windows illumination mapped 148
Solid-pane illumination map 152
Nontiling details 153
Signs 154
Newspaper machines 154
Bus stop/phone booth 157
Garbage can/dumpster/mailbox 157
Light 157
Traffic light 157
Parking meter/fire hydrant 161

Nontiling illumination- mapped details 161
Nontiling full- brightness details 161
Nontiling details requiring alpha channeling 163

Sewer grates, manholes, and access 164
Oil stains/tire marks 164
Cracks, dirt, holes, and tar patches 164

Creating the alpha channel 168
Conclusion 169

Section iii
terrain, foliage, and more advanced asset creation

 7 introduction to natural environments 173

Introduction 173
Technological assumptions 174

Perspective 175
Theme 176
World size 176
Game fiction 177

xii Contents

 8 terrain 179

Introduction 179
Manual terrain creation 179
Terrain-editing basics 183
Free-form terrain painting 187

Push/pull lower/raise 187
Smoothing/erosion 187
Noise/turbulence 187
Flatten/set to height 188
Other features 189

Terrain texturing 189
Trees and foliage: Decoration/prop layers 190
Terrain generation software 193
L3DT 195

 9 Filling the world: trees, plants, rocks, water, and sky 203

Introduction 203
Asset list 205
Terrain textures 205
Trees 206

TreeMagik G3 209
A look at SpeedTree 210

Plants 210
Plant Life 214
Rocks 219
Skyboxes 222

Clouds 224
Single clouds 234

Water 237
Caustics generator 237
Waterfall 240

xiiiContents

 10 Modeling and texturing the jungle base 245

Introduction 245
Mechanical models 246

Electrically charged, double-access gate 246
Guard tower 250
Industrial light towers 252
Heavy-duty jungle gate and concrete wall 253
Old building 256

Organic models 263
Rocks 263
Plants 263
Trees 265
Foliage backdrop, ground, skybox 265

Mechanical textures 266
General rusty metal 266
General tiling of galvanized metal 267
Tiling moldy concrete 267
Tiling wood planks 268
Specific detail textures 269

Massive doors 269
Doors 271
Assorted signs 271
Crossbeams for light towers 272
Windows 272
Window frame 272

Glass 276
Variations 277
Weathering and dirt 278
Rain streaks 279
Window alpha 281

Organic textures 284
Rocks 284
Plants 284
Trees 286
Foliage backdrop 286
Skybox textures 286

Things to try 288
Conclusion 291

xiv Contents

 11 Focus on the futuristic interior—normal maps
and multipass shaders 293

Introduction 293
Vertex versus per-pixel lighting 294
What is a normal map? 297

Creating normal maps in photoshop 297
Painting normal maps 297
Source-based normal maps 297
Use parts of existing normal maps 301

Creating normal maps using a 3D program 302
Assets for the futuristic interior 304

Wall panels 304
Color 304
Illumination 306
Spec 306
Normal map 308
Wall panel variations 310

Floor panels 311
Column 311
Light/ceiling panel 313
Door 314
Monitor 314
Pipes and hoses 314

Index 321

xv

Preface

From a steamy jungle to a modern city, or even a sci-fi space station, 3D
Game Environments is the ultimate resource to help you create AAA-
quality art for a variety of game worlds. Primarily using Photoshop and
3ds Max, students will learn to create realistic textures from a photo
source and a variety of techniques to portray dynamic and believable
game worlds. With detailed tutorials on creating 3D models, and apply-
ing 2D art to 3D models, and clear, concise advice on issues of efficiency
and optimization for a 3D game engine, Luke Ahearn gives you every-
thing students need to make their own realistic game environments.

Features

• The entire game world development process, from planning to 3D
modeling, UV layout, and creating textures.

• Exercises and projects to practice with; each section includes proj-
ects to guide you through creating different world genres.

• The updated companion website—http://www.lukeahearn.com
/ textures/—now includes video tutorials in addition to updated sample
textures, shaders, materials, actions, brushes, program demos, plug-
ins, and all art from the book—all the tools you need in one place.

• Instructor resources, such as a test bank, chapter assignments, and
grading rubrics, are now included!

Art files mentioned in the text are available on the book’s CRC Press web-
site page: https://www.crcpress.com/3D-Game-Environments -Create
-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026,
under the Downloads tab.

http://www.lukeahearn.com/textures/
http://www.lukeahearn.com/textures/
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

http://taylorandfrancis.com

xvii

Acknowledgments

CRY

NVIDIA, for permission to use their images.

The makers of SpeedTree, Oblivion, Age of Conan, Plant Life, Tree
Magik, Bryce, Torque, L3DT, Caustics Generator, Deep Paint, and
PD Particles.

Everyone who makes available all the numerous tools and resources
for the game development community.

All my readers. Ann Sidenblad, Gary Strawn, Sara Vangorden, aka
Cory Edo, and the mystery readers at Focal Press.

All the people at Focal Press for their support and expertise.

http://taylorandfrancis.com

xix

Author

Luke Ahearn has over 20 years of professional game development expe-
rience and has served in lead positions, including as a designer, a pro-
ducer, and an art director on seven published game titles, and worked as
a background artist at EA. He has authored 10 books on game develop-
ment and has operated his own computer game company for 10 years.
Currently, he is a writer and a freelance artist at http://www.lukeahearn
.com.

http://www.lukeahearn.com
http://www.lukeahearn.com

http://taylorandfrancis.com

xxi

Introduction

It is important that you know first off that this is not a book about game
level design; rather, it is about creating art for a game world with a focus
on the tools and technologies to do so.

This is an important distinction. Game level design is the point at
which all the planning, technology, and design converge, and creating
the art for that game level is only one part that feeds into that huge pro-
cess. Yet it is an important part, one that requires you to be not only
creative but also technically aware of the tools and processes being used
to develop the game.

All of the software listed, all the figures from the book, and all of
the files for the projects and exercises in the book are available on the
 website: http://www.lukeahearn.com/textures/. The 3D files are in the
Max format, and the images are both JPEG and Photoshop files.

One of the most important areas for the game artist is optimization,
so the book begins with that topic. A game programmer at EA, Gary
Strawn, laid out the problem this way: “[As I read through your book I
was] constantly reminded how bad communication between artists and
programmers often is. Programmers assume the artists will optimize
everything, while artists assume the programmers are in charge of opti-
mization. The truth is that it takes both. Every game is different, and
technology is always changing, so it’s vital that the artists and program-
mers are in constant communication.”

The creation of the art for the game world happens before, during,
and after the level has been laid out and tested—in other words, during
production, the most intense time of the game’s life for the artist. So you,

http://www.lukeahearn.com/textures/

xxii IntroductIon

as a game or environmental artist, need to be ready to create art that fills
many predetermined design and technical sockets quickly and iterate
quickly through changes, too.

Approach

The purpose of this book is to look at the task before us in universal
terms that will plug into any situation you are developing under. In this
edition, I have incorporated the real-world CRYENGINE and its world
builder to show you what those concepts look like in practice using one
of the top game development platforms available.

At the basic core, you can use almost any commercial two-dimensional
(2D) and three-dimensional (3D) software to create the needed assets for
a large number of the commercial game engines. In practice, there are
large gulfs between the monetary cost of one commercial product and
another, as well as between the results of any two products, but, at the
core, they are all doing the same basic thing. This book gives you the
foundation to learn more rapidly the basics of any set of tools you may
end up using for development.

Since we are working with environments that are not tied to any spe-
cific technology or game, we won’t specify particular world data such as
jump heights, mantle heights (climbing over waist-high objects), or the
numerous other barriers and guidelines of a level—but we will work with
generic values. In other words, one generic unit could be anything from
an inch to a mile—it doesn’t matter. The key is to be consistent with your
units. If one unit equals a mile, then how big would a house be in a rela-
tive sense? If one unit equals a foot, then a human might be six units in a
relative sense. (You may be surprised to know that, in a game, a character
may be 8 feet in relative terms, and the door he is walking through is
15-feet high. The point is, this is all a starting point; you end up doing
what works best for the game and discarding accuracy along the way.)

Artist versus level designer

This book is strictly about environmental art—creating art—and not
level design or designing the world for game play. I want to make the
focus of this book as clear as possible.

But even though this book is focused on creating game art, before
you start creating art for a game, it helps to have a basic understanding
of level design because we can’t make the art for the game without the
game being designed first.

xxiiiIntroductIon

Another reason I want this to be clear is that some development stu-
dios treat this as one job and hire one person to do both of these jobs. In
my opinion, it is better to have two different people do these two differ-
ent jobs. There are some people who can do both jobs well, but I think it
is better to let the game designer focus on designing a level for playabil-
ity and optimization and let the artist focus on making and optimizing
the art. With the extraordinarily detailed and complex game worlds, and
the large amount of assets needed to fill those worlds, I don’t see how
one person can begin to do it all effectively. You need the artist working
full time. And the level designer’s job is so important I would want that
person totally focused on the task full time as well.

Note: If you want to be one of those people who can do both jobs, then
you need to also study level design, and there are lots of great sources
for that information already. Phil Co wrote one of the best books on the
subject, as has Andrew Rollings. But beware! There are a lot of lousy
books, too. Most of the verbose studies on what’s fun are akin to ripping
a flower apart to understand beauty.

Finally, the game artist should have many questions already answered
before creating any art. So you need to know the questions to ask.
Most of these questions can only be answered after the level has been
designed, and you know where the player can go and what he or she can
and can’t do.

Even though I don’t cover it in this book, I can’t stress enough how
important good level design is. It’s one reason I think you need a person
dedicated to the task. Sure, the art can look great and draw the attention
of the player, but, if the game play is poor, users will soon stop playing,
and word will spread rapidly that the game is a dud. If you are playing
a game you really like, I would bet that a good deal of the credit goes to
great level design. The locations, story lines, and the mission flow are all
extremely important, and it is the artist’s job to support and enhance the
goals of the level designer (and all leads as well), as they work to make
these aspects of the game as good as possible.

Takeaway: The jobs of a level designer and an environmental artist are
very different.

Level designers design the areas of the world the player can go into.
They design the layout, the puzzles, the challenging obstacles, and the
like. They are responsible for making the game fun. This is easier said
than done. A lot of tweaking and testing go into this, but, at the end of
the day, the ability to design a great game is really a talent some people
just have. The level designer is often the single person on the team who

Level designer

xxiv IntroductIon

brings all of the separate parts of the game into one place and creates the
entity known as the game.

Level designers must work with lead designers and artists to make sure
they capture the mood and the setting. They will work with the program-
mers to make sure they implement things correctly and will often need to
learn some basic programming or scripting to properly implement the events
of the game. They will work with the artists as they begin to incorporate the
art into the world. The level designer needs to know how assets are stored
and where, what they are named, and so on. He or she will probably be the
one that implements a lot of the optimizations discussed in Chapter 1 and
will either ask, or need to be told, how the artist intended the art to be used
in the game. As the artist, you might want to go see how the art you created
looks in the game and then make any necessary changes. The level design-
ers also inevitably need to work with the producers and project managers, as
their job depends on all of the other team members, more so than any other
job. They use everything created by the team to make the ultimate creation.

Level designers do a lot. They lay out the world map, and the script
behavior, place enemies and triggers, profile the game’s performance,
and so on. The following is a list of some of their many tasks:

• Laying out the world in detail, whether on paper or with a com-
puter application

• Learning the game editor in order to build the world: creating ter-
rain, buildings, and the general world space the player moves in

• Importing and prepping art assets for use in the game

• Placing start points, spawn points, and power-ups such as ammo
and health

• Making map navigation work, with doors, teleporters, and the like

• Placing sound entities for music and effects

• Lighting the level for mood, as well as game play

• Scripting events

• Laying paths for the artificial intelligence (AI) bots

• Utilizing all available optimizations

• Testing the game play continuously

Environmental artists are akin to the set designers on a movie set. And,
like the set designer, we have to know a lot about the world we are creat-
ing and how the audience will view that world. This is made a bit tougher
because, unlike in the movies where the set designer controls exactly
what the viewer sees, in a game, the player can usually move around the
world with some degree of freedom. The environmental artist should have

Environmental
artist

xxvIntroductIon

access to the art bible and the design document. (It wouldn’t hurt to read
them either.) When you begin creating art for a game, you need a lot of
information. At EA, during the production of GoldenEye, we not only had
a team of lead artists, designers, and directors (who all worked together
incredibly harmoniously considering the size of the development); we also
had access to a library of everything Bond—every movie, every book, and
every poster. The walls were covered in the concept art for the game. It
was easy to see what they wanted the game to look and feel like.

In this book, we look at each project from this point. For instance,
we don’t just start creating an environment; we first look at all the ques-
tions that should be asked and answered before anything can be created.
Among the major factors affecting art creation are

• Theme

• Perspective

• Genre

• World size

• Technology

• And, of course, time, money, and other limitations

Any serious development should have these aspects well thought out
before development begins.

Theme

What is the setting of the game? Fantasy? Urban? If urban, is it modern
day, clean and shiny, or dirty and grungy? Is it postapocalyptic? Theme
can be tricky, especially if you are dealing with virtual development
(over the Internet) or if the people involved have different understandings
of what fantasy is. When I hear the word fantasy, I think of The Lord of
the Rings, but, recently, I was speaking with an individual who thought
I was talking about a game idea based on a sexual fantasy. Even experi-
enced gamers might assume that fantasy means World of Warcraft, and
that look is very different from The Lord of the Rings in style.

Perspective

How will the player see this world: up close and personal from the point
of view of a person walking, or from behind the windshield of a speeding
car or an airplane? Player perspective drastically influences the develop-
ment of game assets and the game world in general.

xxvi IntroductIon

Genre

Is this an adventure for exploring, or a fast-action shooter or driving
game? Genre is a complex topic as games get more complicated and
genres are blended and reinvented.

World size

Will the levels be huge like in a massively multiplayer online game, or
small like the hall of a space station in a shooter?

Technology

Are we using a licensed engine or an in-house tool set? What are we
developing for—personal computer or Xbox? Will the levels load or
stream? Are we using Max or Maya to create assets?

By the time you start working on environmental art, many things
should already be known:

• Technical budgets. Frame rates, texture memory, polygon counts,
and the like.

• Technical stats. File formats, acceptable resolution and sizes.

• A naming and storage convention.

• How collision will be handled.

• Characters, monsters, and nonplayer characters.

• A list of the environments you have to build with reference.

• Any special items you might have to build, such as ammo,
power-ups, special doors, and objects mentioned in the design
document.

• How the players can move and what they have access to in the
world. Can the players fly? Can they climb walls? Player move-
ment will have a huge impact on the game world.

• What size should things be in the world? How high are stairs,
doorways, and countertops? How high and far can players jump?

• The mood you are trying to set. Is this a horror game or a comedy?

• Are you using a license to an existing world or character? What
creative standards or norms will you be held to?

xxviiIntroductIon

Whom this book is for

This book is for individuals who are just getting comfortable with the cre-
ation of basic 2D and 3D assets and want to deepen their understanding so
they can effectively create assets for 3D applications like games and Web
applications such as Second Life. Game developers, architects, simulation
developers, Web designers, and anyone who needs to create assets for a
3D computer application and is just starting out will find this book useful.

OVERVIEW

Chapter 1: Game world optimizations Making a game run at its very
best is called optimization. It is a common belief that this is solely the
domain of the programmer—but nothing could be further from the truth.
It is, in fact, everyone’s job to optimize from day one. Because the artists
have a huge impact on how well a game runs, we need to know, and use,
every trick possible to achieve this. Artists need to be familiar with the
most common methods of game world optimization, as much of what can
be done to optimize a game is under the artist’s control and takes place
during asset creation or the implementation of the asset into the world.

Chapter 2: Three-dimensional concepts This chapter introduces the
basic concepts of 3D modeling you will most likely be working with.
Once you understand these concepts, you can more easily use the tools at
your disposal to create the art in this book. We will not discuss how to do
any of the specific functions for any given 3D application; for that, you
need to consult the application’s documentation. The good news is that,
as game artists, while we work in both 2D and 3D, we do so at a pretty
basic level of functionality so that we can easily achieve these results in
virtually any 3D package.

Chapter 3: Shaders and materials Shaders allow for a stunning level
of realism in games. Simply put, a shader is a mini-program that pro-
cesses graphic effects in real time. For example, the reflections on a
surface can move in real time instead of being baked or permanently
painted into a surface. Shader effects are very powerful visually, even if
viewers are unaware of what they are seeing. For example, the average
player would have a hard time defining why the game he or she is playing
looks so good. It may be the real-time reflections, the normal mapping,
or the specular mapping being processed in real time.

Section I:
The basics

xxviii IntroductIon

There are two main types of shaders on modern graphics processing
units (GPUs): (1) vertex and (2) pixel shaders. Vertex shaders manipu-
late geometry (vertices and their attributes) in real time. Pixel shaders
manipulate rendered pixels in real time.

The ability to manipulate an individual pixel or vertex in real time is
what makes the shader so powerful. Shaders can be used for many com-
plex material appearances and image effects: hair, fire, shadows, water,
reflections, and so forth. The list of possible effects is almost endless.
Although consumer-level hardware has only recently become capable of
handling the intense demands that real-time shaders puts on a system,
the knowledge of these processes has been around for decades. In fact,
many of the techniques you will read about are based on algorithms
named for well-known mathematical geniuses; Phong and Blinn are rec-
ognizable names if you are a 3D artist.

Chapter 4: Planning the low-polygon urban environment The large
urban environment is a pretty common setting in games. Driving is a
primary activity, along with stealing cars and running over pedestrians.
Large city areas offer some unique challenges, but, in many ways, they
are the easiest to deal with in terms of creating environmental assets.
From a programmer’s point of view, it is challenging to create the envi-
ronment for driving in a very large area where the player can see distant
buildings and drive for miles—that is, speaking strictly of the textures
and models needed to fill the city. These elements tend to be repetitive by
nature and inorganic. In this chapter, we establish the general informa-
tion needed to start creating the world.

Chapter 5: Modeling the large urban environment In this chapter,
we model and UV map all the parts of the large urban environment,
making reference to the various technical aspects of asset creation dis-
cussed earlier in the book (so be sure you understand the basic concepts
previously presented). Although large and seemingly complex, the large
urban environment is based on a few categories of model, each category
containing a few simple meshes. A few meshes in the following catego-
ries will completely populate our city: base streets, repeating buildings,
landmark structures, and props and decorations.

By the end of this chapter, you will be able to take the information,
suggestions, and guidelines and develop a city scene of your own that
looks unique, the way you want it to, and can operate technically in the
3D environment you are working in.

Chapter 6: Texturing the large urban environment In this chap-
ter, we create textures for all of the buildings, landmarks, props, and

Section II:
Low-polygon
environments with
simple shaders

xxixIntroductIon

details from the previous sections. We create tiling base materials, tiling
illumination- mapped building windows, nontiling details, nontiling
illumination- mapped details, nontiling full-brightness details, and non-
tiling details requiring alpha channeling.

Chapter 7: Introduction to natural environments Building a large,
foliated outdoor environment can be challenging, but, once you break
it down to its basic elements, a game environment can be fairly easy to
create. The distinction here is that we are building a game environment,
not a real environment. A real outdoor environment has many species of
trees and plants with scientifically specific details. All we have to do is
make this space look good and believable. To do this, we need to under-
stand what elements should be in a certain environment; for the game
artist, the focus is mainly on color and shape. Of course, we should try
to have some degree of basic accuracy (which we can obtain by looking
at pictures), but, ultimately, the environment we create will not stand up
to the scrutiny of a botanist.

Chapter 8: Terrain In this chapter, we look at the basics of terrain cre-
ation and editing common to most terrain tools. There are three general
ways to create terrain for games: (1) manually using a 3D application,
(2) using tools in a game editor, and (3) using a terrain generator. Since
in-game terrain tools are usually tailored to that game or game engine and
combine basic terrain editing features with proprietary features, we first
look at the basics of terrain creation and then at some terrain-creation
software. Once you understand the basics of terrain editing, you should
be able to quickly master almost any in-game terrain editor.

Chapter 9: Filling the world: Trees, plants, rocks, water, and
sky While creating trees, plants, and rocks is not a huge challenge, they
can take a bit of time to create. In addition, you have to do a lot of work
with the alpha channel to make the foliage look just right. Inevitably, it
takes a number of steps to separate a tree branch from its background.
I think it is much faster, and you get a better result, when you create
these assets by hand. Even if you can’t paint, there are numerous tools
that allow for the painting, and assembly, of these assets. We look at
several applications in this chapter, including TreeMagik G3, Plant Life,
SpeedTree, Caustics Generator, and Deep Paint 2.0.

Chapter 10: Modeling and texturing the jungle base The jungle has
grown over this once-impressive base deep in the jungle. We create all
the models for the jungle base. Many of the models will be generated for
us; likewise the textures. So we can focus on making this space what we

Section III: Terrain,
foliage, and
more advanced
asset creation

www.allitebooks.com

http://www.allitebooks.org

xxx IntroductIon

want it to be. Simple details, such as which way the bars on a window
are bent (in or out), will tell the player if something broke in or out.
Larger details may involve color choices (slick and corporate or drab and
military), and the quality of the material from which any given object is
created can indicate how substantial the enterprise was that existed here.

We will be creating various models and textures. Among the
mechanical models are an electrically charged double-access gate; an
old building with doors, barred windows, and old vent pipes; a guard
tower; a heavy-duty gate to keep whatever is in the jungle out; a con-
crete bunker-type wall to hold a massive gate; industrial light towers;
and assorted signs that say ominous things. The organic models we cre-
ate include rocks, plants, trees, a foliage backdrop, ground, and a skybox.
The mechanical textures we develop include rusted metal, concrete, and
wood; lenses for the industrial light towers; the assorted signs that say
ominous things; and a specific texture for the massive doors. Finally, we
create organic textures for the rocks, plants, trees, foliage backdrops, and
skybox we modeled.

Chapter 11: Focus on the futuristic interior—normal maps and
multipass shaders This chapter focuses on the creation of normal
maps and how shaders work together. Complementary maps, such as
color (diffuse), specular, illumination, and others, are combined to cre-
ate the stunning in-game scenes we are starting to see. To understand a
normal map, we analyze how lighting in games generally works. Then,
we look at the creation of the normal map.

Section i

The basics

http://taylorandfrancis.com

3

Chapter ONe

Game world optimizations

Introduction

A computer game needs to look the best it can and run as best as it can
on its target hardware. Until you have tried to accomplish this goal, you
have no idea how at odds each of these objectives is with the other. There
are many tools and techniques to accomplish this, and you need to be
familiar with them all.

Although the primary focus of this book is the generation of art
assets for computer game environments, we can’t escape the fact that
creating art for a game is more than just making pretty pictures. When
you create art assets for a computer game, you need to create art that
will accomplish several goals. Other than looking good, your art must
work with the software being used to create the game you are working
on. Your art needs to be as efficient as possible in that environment.
This requires planning and creating your art to very specific guidelines.
Those guidelines may change depending on many variables (we will
examine these later), but they are all essentially the same variables. In
any case, you need to be very well aware of what those variables are and
create accordingly.

Making a game run at its very best is called optimization. This opti-
mization should be on everyone’s mind from the very beginning of
development.

It is a common belief that optimization is solely the domain of the
programmer—but nothing could be further from the truth. It is, in fact,
everyone’s job to optimize from day one. The artists have a huge impact
on how well a game runs, so we need to know every trick possible to
achieve this. It cannot be stressed enough that you have to be familiar
with the most common methods of game world optimization, because

3D Game environments4

much of what can be done to optimize a game is under your control and
takes place during asset creation or the implementation of the asset into
the world builder.

There are many things that can or need to be done during the actual
assembly of the game world—which might fall to you as well. Since the
computer game must not only look good but also run well, throughout
the book, we look at how to apply many of these optimization tech-
niques. You will have to use every trick available to you. If you don’t,
the game world will not run well enough to use or will not look as good
as it can. If you fail to make the game look as good as possible due to a
lack of optimization, you are wasting an opportunity as valuable as gold
in game development. The balance between looking good and running
good is always a tug-of-war. Bad optimization means lower quality art
must be used to achieve the required performance of the game.

Performance is usually expressed as frames per second (FPS) in a
game, and there is a definite limit to what you can do as an artist, a
programmer, or a designer based on this—no matter what system specs
you are working with. If frame rate is inefficiently used in one place
and goes undetected, then it is, by definition, diminishing the available
frame rate in other areas of the game. One of my pet peeves is the last-
minute gutting of a game to make it run. I have seen entire levels that
have taken weeks and months to perfect gutted at the last minute. Trade-
offs are unavoidable, but, if you don’t look at your game in its totality
and track your frame rate (among other resources), you are going to get
caught unaware at the end of development as the game comes together
and doesn’t run as you had hoped.

Let me repeat (because this drives me absolutely nuts): you have to
track your resources. Just because you can run through your level at
120 FPS doesn’t mean performance is assured. You have to consider
several things first before celebrating the blistering frame rate. Are you
using the target machine, or are you using a high-end machine typical
of most development studios? What is left to implement in the game?
Are the collision detection and physics in place? What about running
artificial intelligence (AI) and game logic? Sometimes, the addition of a
heads-up display or interface slows things down. As soon as you fire a
weapon, you are potentially triggering collision detection, creating hun-
dreds of assets (particles) triggering sound events, displaying decals on
walls, and so on. Think about the addition of other players and characters
and their weapons in multiplayer games. Suddenly, you have thousands
more polygons on the screen, a few more large textures loading, and
other assets and events. In short, can you think of every possible thing
the final game will have running and guess what your frame rate target
should actually be? You probably can’t get a dead-on correct answer

5Game worlD optimizations

early in development, but an educated guess and the awareness that your
actual frame rate will be cut in half when the game is up and running in
full will help you hit a more realistic target and prevent the total raping
of a game level at the last minute. Have lunch with the programmers and
question them—they’ll love you for it, or maybe not, but you will learn
a lot.

This chapter looks at some of the most common tools and techniques
(accessible to the artist) used for optimizing a game world. I present
them from the artist’s point of view, meaning how the tool or technique
works and what control the artist generally has over it. Usually, you will
see that most of these tools and techniques are explored or presented
from the programmer’s point of view (they are very involved program-
matically, to put it mildly), but artists really need to understand these
devices, as they are critical to making a level look good and run well. I
break optimization down into three major areas: (1) asset, (2) collision,
and (3) occlusion based. Aside from the things we as artists can do to
optimize the game, there are, of course, many other areas that also need
to be optimized. Most of these optimizations are found in the program
code. Things like memory management, central processing unit and
graphics processing unit code, AI, collision code, networking, sound,
and the game play itself all eat up resources and need to be optimized
by the programmers.

Note: You! Yes, you! You, the artist, are responsible for a great deal of
the optimization in a game. In every phase, from planning to creating the
assets, to producing the assets, to introducing those assets into the game
world, there are opportunities to optimize.

Even after your assets are introduced into the game world, there
are opportunities to optimize. In fact, many of the optimizations pos-
sible in a game are available to the artist in the game itself. Most game
development engines have a tool that will show you a readout on screen
that allows for the viewing and analysis of all the aspects of the game
as it runs. As the artist, you can look at the world in many modes
and see what areas can be optimized. You can look at the number of
polygons on screen, and overlapping textures that may cause an inef-
ficiency, and you can even see what the computer is drawing that we
may not see as a player. In Figure 1.1, you can see that, while the player
can’t see what’s on the other side of the wall, the game engine would
draw it anyway because the radius of visibility can be seen by the
player camera. You can improve performance by going into the editor
and correcting this in a variety of ways: removing the object, setting
a draw distance, and other ways we will look at in this chapter, which
are listed as follows:

3D Game environments6

• Asset-based optimizations

• MIP mapping

• Texture pages

• Unlit textures

• Multiple UV channels

• Lightmaps

• Masking and transparency

• Texture size and compression

• Particle systems

• Forced perspective

• Polygon optimization

• Level of detail (LoD)

• Collision-based optimizations

• Collision objects

• Collision types

• Occlusion-based optimizations

• Occlusion and culling

• View frustum

• Distance fog

• Cull distance

• Cells and portals

FIGUre 1.1 The pirate can be seen by the game engine but not the player.

7Game worlD optimizations

asset-based optimizations

Asset-based optimizations are simply those optimizations you can
implement and affect during asset production. Assets are the art we cre-
ate, and they present the first opportunity we have to apply any opti-
mizations. Technically, there are always opportunities from day one to
keep optimizations in mind and apply them during the design phase, but,
often, the artist is not present during this time. Our first opportunity is
usually when we start to create the assets for the game. Some optimiza-
tions are possible in the design and planning of the assets; for example,
the design of how a texture is laid out affects how the UV maps are laid
out, and that, in turn, can affect performance.

MIp mapping

MIP mapping, sometimes called texture level of detail, is usually a
programmer-controlled function, but sometimes the artist is given
control of this, too. The explanation is pretty simple. A large texture
seen at a far distance in a game world looks the same as a smaller
texture due to the fact that both are being displayed using the same
number of pixels on screen; it is therefore a waste of resources to use a
large texture on an object that is far away in the game world. In addi-
tion, using a larger texture on a small, faraway object usually doesn’t
look as good as the smaller texture would, due to the fact that the larger
texture is being resized on the fly by the game engine. To solve both
these problems, programmers usually implement some form of MIP
mapping. MIP stands for the Latin phrase multum in parvo, which
means “many things in a small place.” MIP mapping is the creation of
multiple sizes of a texture for display at various distances in the game
(Figure 1.2).

Sometimes, you can see the MIP maps pop as they change from
larger to smaller, especially in older games. MIP mapping allows the
texture to be viewed close-up and in detail, as well as render faster (and
look better) from a distance.

Figure 1.3 shows the MIP-mapped texture of some jungle vines.
Notice the alpha channel is MIP-mapped as well. Fortunately, NVIDIA
created several tools to make all this easier for the artist (Figure 1.4).
The DXT Compression Plug-in is one of the most useful, and I discuss
that later in this chapter, in the “Texture Size and Compression” section.
With this tool, you can control many variables that affect the visual qual-
ity of the image.

3D
 G

a
m

e en
v

ir
o

n
m

en
t

s
8

FIGUre 1.2 A texture that has MIP maps associated with it. Sample image from “Glory of the Roman Empire.” Courtesy of Haemimont
Games.

9Game worlD optimizations

FIGUre 1.3 A texture that has MIP maps associated with it and an alpha channel. Notice that the
alpha channel is MIP-mapped as well. Sample image from “Glory of the Roman Empire.” Courtesy
of Haemimont Games.

3D Game environments10

texture pages (or t-pages, atlas textures, or texture packing)

This section comes with a bit of a disclaimer. It seems that the industry is
now moving away from texture atlases. While atlases will continue to be an
effective solution for some hardware, things are shifting over (for technical
reasons beyond me) to individual textures. That’s great news to me—I find
that texture atlases slow things down in the typical artist workflow.

As you build a game world, you create many textures to cover the
many three-dimensional (3D) objects in the world. When the game
world is loaded and run in the game engine, the game engine has to
access (call) each of those textures for each frame it renders. These calls
slow everything down, so it is desirable to reduce the number of calls.
There is a technique you can use called texture packing or creating a
texture atlas that can accomplish this. Basically, it involves taking a
large group of textures that are related in some way (usually geographi-
cally close to one another in the game world) and putting them together
to create one large texture. You can see a texture atlas of foliage created
for a jungle level in Figure 1.5. You can create an atlas by hand or with
a tool. Of course, NVIDIA makes such a tool (Figure 1.6). The primary
benefit of a tool like this for the artist is the speed at which atlases can
be built and altered. This tool creates the one large texture and, with
it, a file that tells the game engine where each image is placed on the
master image.

FIGUre 1.4 This shows the interface and examples of the NVIDIA MIP-
mapping tool.

11Game worlD optimizations

Unlit textures

An unlit texture is a texture that is unaffected by lighting and displays
at 100% brightness—sometimes called a full bright or self-illuminated
texture. Note that this not the same as a texture that uses an illumina-
tion map. When an illumination map is used, it must calculate lighting
for a texture and take into account the grayscale illumination map.
Since calculating the lighting for a texture can be one of the biggest
resource hogs in a game, it can be much more practical to use an unlit
texture, which renders much faster. Using unlit textures is a way to
boost performance. This is easy to do with some materials such as
water or certain signs, and, in some game types or genres, you can
get away with using large numbers of unlit textures. Large forested
outdoor areas can benefit from the use of unlit textures on the foli-
age. Figure 1.7 shows an example of a texture that is lit in one scene

FIGUre 1.5 An example of an atlas texture.

3D Game environments12

and then unlit in the next. Notice how the sign is at full brightness
and remains unchanged by the lighting affecting the walls. Particle
systems typically look better unlit and run faster as well (Figure 1.8).

Multitexturing or multiple UV channels

Increasingly, in today’s game engines, you are not limited to one UV
channel. This allows you to combine textures on a surface in real time.
That, in turn, allows a great degree of variety from a relatively smaller
set of assets. A grayscale image may simply define the dark and light
areas of a surface, another map may define color, and another some

Atlas0002 - 11.dds

Tiger.diff.tga

Atlas0002 - 11.xml

FIGUre 1.6 The texture atlas and accompanying index file.

13Game worlD optimizations

unique detail. You can see an example of this method in Figure 1.9.
The building mesh has a base-colored material applied; on a separate
channel, I applied dirt, and, on another, I added details such as posters
and cracks. Multiple UV channels are also used to apply bump map-
ping and other shader effects.

Lightmaps

Lightmaps are prerendered images that define the light and shadow
on the surfaces of your world. Since lightmaps are created before the
game runs and are saved as separate grayscale images, this means that

FIGUre 1.7 An example of a texture that is lit in one scene and unlit in the next.

3D Game environments14

FIGUre 1.8 Particles lit and unlit.

FIGUre 1.9 Multitexturing allows you to combine a relatively small set of assets in creating a large
variety of surfaces.

15Game worlD optimizations

the total file size of your assets is increased. There are two things you
can do to optimize lightmaps: (1) lower their resolution or (2) compress
them. A smaller lightmap will result in a faster loading and running
level, but lowering the resolution also lowers the quality (Figure 1.10).

Note: For a great article on compressing lightmaps, go to Gamasutra
(http://www.gamasutra.com, one of the largest game development sites
on the Internet) and look up “Making Quality Game Textures” by
Riccard Linde.

Usually, you can opt out of using a lightmap or can determine at what
size the lightmap will be created. This allows you to increase the resolu-
tion of the lightmap in those areas where the player can go and lower the
resolution for less accessible but visible areas.

Masking and transparency

When possible, it is preferable to use masking instead of transparency
because masking renders more quickly. Take a look at Figure 1.11, as
these concepts are much easier to grasp pictorially.

FIGUre 1.10 Lightmaps both large and small on the same area.

http://www.gamasutra.com

3D Game environments16

Masking typically uses a specific color that is designated the clear
color, and this creates hard-jagged edges (although newer hardware can
handle larger-resolution textures and can postprocess the images and
smooth the edges).

Transparency uses a separate, additional channel, a grayscale image
called the alpha channel, to determine the opacity of a pixel. The trade-
off is that transparency looks better, but it requires more file space and
more processing power. This is because, while masking simply either
draws the pixel or not, transparency must look at two pixels (the source

FIGUre 1.11 How the three methods discussed here work with examples.

17Game worlD optimizations

image pixel and the on-screen pixel behind it), consider the grayscale pixel
of the alpha channel, and calculate the color of the final on-screen pixel.
Technically, what you are seeing isn’t real-world transparency but rather a
new image composed of a blending of two images that gives the illusion
of transparency.

Of course, NVIDIA makes a tool that allows for the rapid adjusting
and viewing of textures before outputting them (Figure 1.12).

FIGUre 1.12 The interface and various windows of the NVIDIA tool as
applied to masking and alpha.

3D Game environments18

texture size and compression

You want to consider the size of each texture you create. A texture that cov-
ers most of the walls and/or floors in your world, and has to tile well while
still holding up visually, needs to be larger than a texture that is displayed
infrequently and is not subject to direct examination by the player. The
other factor is compression. A compressed texture file can be significantly
smaller than an uncompressed one yet still maintain visual integrity using
the right combination of compression options. NVIDIA makes a plug-in for
Photoshop that allows for the rapid and easy iteration through many com-
pression schemes before the final output of the file (Figure 1.13).

Remember that there are many factors to consider when determin-
ing texture size and compression. How close will the player get to the
asset? How often will the asset appear in the world, and how many times
is it expected to tile or repeat? Can you achieve the same effect with a
more efficient solution? Can you use three small textures on multiple
UV channels as opposed to one enormous texture? How much can you
compress or reduce the resolution of an image and still maintain visual
integrity? One of the most valuable but underappreciated skills a game
artist can acquire is knowing not only the various ways of implement-
ing game art solutions but also what methods and combination of those
methods comprise the best solution.

particle systems

Since we are not programmers, we can’t optimize the particle code, but
we can control many variables that will allow us to improve the perfor-
mance of the particle system. A particle system displays an asset in great
numbers. (The asset is usually a small polygon—two triangles—with an
applied texture that has alpha transparency on it.) The system tracks the
asset/particle in 3D space using a set of parameters that the artist can
change. These parameters typically alter the rate, size, speed, position,
and life span of the particle, as well as telling the particle to shrink,
fade, or always face the camera (which it usually does). Particles can
even physically interact with the game world, colliding and bouncing
off surfaces.

A particle system can be used to simulate a wide variety of effects,
from smoke to a flock of birds. Traditionally, particle systems, with
their large numbers of particles, have been a big drain on a computer,
so the effects that game developers could achieve have been lim-
ited. But, as software has become more complex and game hardware

19Game worlD optimizations

FIGUre 1.13 The interface and various windows of the NVIDIA tool as applied to the compression
options.

www.allitebooks.com

http://www.allitebooks.org

3D Game environments20

more powerful, smoke and fire and other impressive effects can be
very effectively generated even while using a much larger number of
particles.

The point at which the particles are spawned, or appear, is called
an emitter. An emitter can be of any size. A small emitter with a lot
of particles coming out in a spray may be what you would use for a
garden hose, whereas a very large emitter high in the sky of your
game world with a few particles falling from it might be used for rain
or snow. Often, special particle systems are written for specific uses.
Specific particle systems that handle weather effects, for example,
are commonly created because weather systems have a more limited
function but cover a larger area compared with a typical full-featured
particle system. These special versions of a particle system allow
developers to make them run more efficiently. This is achieved partly
by simply dropping the features of a typical particle system that are
not needed for a more specific-use particle system. Emitters and par-
ticles are typically represented by some sort of icon in the game edi-
tor but are invisible in the game—you only see the assets spawning at
the emitter point and being controlled by the particle entity they are
attached to. Usually, the game artist, when placing an emitter, makes
sure it looks as if the particles are coming out of something and not
just from thin air.

While a simple particle system may only contain an emitter, a poly-
gon, and a texture, more complex particle systems can contain multiple
emitters and multiple textures and use 3D meshes as particles. An explo-
sion is usually composed of a quick ball of fire and a spray of debris, fol-
lowed by smoke that drifts from the blasted area and dissipates into the
air. This is typically created using a blast decal and several systems, one
for each effect: (a) flash, (b) debris, and (c) smoke. Additionally, particle
systems are usually associated with sound events. Sound adds a lot to the
effect a particle system has. What would rain be without the rumble of
thunder? How effective would a silent explosion be? When a fire crack-
les as you approach, it adds another level of realism and immersion to a
game. In Figure 1.14, you can see some of the most common aspects of
a particle system.

As far as optimizing particle systems, try the following:

• Use unlit textures. This should be standard for most particle
effects.

• Use the most efficient asset possible in terms of resolution and file
size.

• Use the necessary masking/alpha scheme.

21Game worlD optimizations

(a) (b)

(c) (d)

FIGUre 1.14 (a) A typical particle with an alpha channel; (b) a steam cloud using particles; (c) an
emitter large and small with the same number of particles spawning from it; (d) a particle system used
to create rain and snow.

3D Game environments22

• Turn off particle collision if possible.

• Have particles die or fade out quickly.

• Use only the necessary number of particles.

• Use the best asset for the particle. (This is related to the previous
point.) A thousand little dots don’t look as cool as a hundred great
particles.

• Tweak! Take your time and you can make ten particles look better
than a hundred. Ten particles that behave and display in an impres-
sive fashion are generally much more pleasing than a hundred par-
ticles dropping in some slipshod default display.

Forced perspective

Forced perspective is a trick used on stage productions and in places
like museum displays to make an area look much larger than it really
is. This involves simply taking what would be the real perspective lines
of a scene and forcing them into a tighter angle. This takes up less
space but looks the same—from the right angle. This technique has
limited but powerful uses. In Figure 1.15, you can see that the player
can only view this scene from a limited angle, so this is a good use of
forced perspective to make the game world look much larger than it
actually is.

polygon optimization

Artists can manually delete any back, or unseen, faces on a mesh. They
can also do a great deal to ensure stability and efficiency when building
assets, by seeing to it that they have none of the following:

• Floating or single vertices

• T junctions

• Stacked or multiple faces

• Bad angles or sizes of polygons

And, depending on the game technology, they can (and should) also
ensure the following:

• Sealed geometry or all unseen faces have been removed.

• There are no polygons of a certain dimension or proportion.

• There are a limited number of smoothing groups or none at all.

23Game worlD optimizations

Since polygon optimization consists mainly of removing polygons, you
cannot see and build your geometry in a way that uses as few polygons as
possible; we will tackle this on a case-by-case basis. Several factors affect
each decision: Can you use normal maps? Does the geometry need to be
sealed? Does the polygon contribute to the visual quality of the mesh? How
close does the player get to this mesh, and how important is it to the level?

LoD

LoD works on the same principle as MIP mapping. Up close, you benefit
from a high-polygon model, but, when the model is far off in the game

FIGUre 1.15 Forced perspective makes this city street look much longer
than it really is.

3D Game environments24

and is displayed using far fewer pixels, you don’t need to draw the high-
polygon model; instead, you can swap it for a much lower polygon model.
As with MIP maps, not only is the swap undetectable, but also, often, the
smaller asset looks better because it was created to be viewed smaller.

There are two basic ways to utilize an LoD system. You can build sev-
eral versions of the model, each getting progressively smaller in polygon
count, and these models will be swapped by the game engine, or you can
auto-generate these models. In my experience, auto generation usually
doesn’t look as good as doing it by hand.

Collision-based optimizations

Collision is another area where programmers have a huge task before
them. (True, I say that about every programming task—AI, sound,
whatever; it’s all complexity that eats resources.) Collision, to an art-
ist, simply means when stuff runs into other stuff. Yet collision is actu-
ally a difficult task to pull off and a resource hog when it happens. So
we need to understand how we can get fewer objects hitting other stuff
so things happen faster. Fortunately, when you collide with an object
in a game, unlike in the real world, you aren’t necessarily hitting what
you see. Collision is usually determined by entities that are invisible to
the player, so, even though you see a model of a highly detailed car in
Figure 1.16, the player is just interacting with an extremely low-polygon
object you can’t see in the game. That unseen object is typically called
a collision hull or collision mesh. Another non-real-world advantage we
have is that we can determine what collides with a particular surface
and how (meaning what computational method is used). In general, the
more accurate and comprehensive the collision, the more expensive it is.

Collision objects

There are several ways you can set up your world, and the objects in it,
for collisions. You can use simple generic collision solutions that detect
collisions in a simple primitive shape such as a cube, a sphere, or a cylin-
der. You can let the actual geometry of the world object be the collision
hull and detect collisions on every polygon, or you can build a low-
polygon collision hull specifically for the asset. Remember that collision
hulls are invisible to the player, but the effect they have on the world is
not. A simple primitive may be a quick solution to implement for colli-
sion detection and may run very efficiently in the game, but may also net
terrible results. Using the actual mesh as the collision hull is not only

25Game worlD optimizations

(a)

(b)

(c)

(d)

FIGUre 1.16 The effect a collision hull has in a game. The hull is too simple (a), and the book’s
mascot looks like she is floating when on top of it (b). The hull is a little more complex but a lot
more effective (c). The figure looks like she is actually standing on the car hood (d). Note that the
collision hull might be even a bit more detailed (depending on the game), so players can crawl
under the vehicle or interact with it in an even more refined manner.

3D Game environments26

(a)

(b)

(c)

FIGUre 1.17 (a) The higher polygon visual scene. (b) The collision hulls for player interaction.
(c) Impact event detection and display hull.

27Game worlD optimizations

highly accurate but also extremely inefficient, especially since polygon
counts have gotten much higher in games. You can use automatic colli-
sion hull generators, but I rarely use them as I find the results are usually
poor. It is always faster for me to build a hull from scratch than mess
with the auto-generated one.

The best solution is usually to build a hull. This is fairly easy, and
you only need to know a few things. How will players interact with the
geometry? Will they be able to jump on it, or are they supposed to be
totally blocked by it? (See Figure 1.16.) What collision events are tied
to the hull you are creating? Is this only for the player to bump against?
Does this hull determine where bullet impacts are drawn? Sometimes,
you create one simple hull for player interaction and a more complex one
for the detection and display of impact events (Figure 1.17).

Collision types

There are many things that can potentially collide in a game world, and
these all produce various results (block player, start or end an event,
display an effect). But we don’t want to check for every possible colli-
sion and result every time an object collides, as this would be a very big
burden on the processor. We must check for different collision events
for different entities and assign different responses. Take, for example,
a game with players and AI bots in the same world space. If you are on
a high, narrow bridge with no rails spanning a lake of deadly molten
lava, it is part of the game play challenge that you stay on the bridge
and not fall in while fighting the enemy. The enemy, however, is usually
a dim-witted bot who would walk into the lava and die if we let him.
The programmers could code a “do not walk in lava” or “detect edge
that leads to danger” routine, or we could throw up a simple collision
wall that only blocks the nonplayer character (or the computer-controlled
character) and not the player.

We are given many options when dealing with collision. In addition
to the collision-detection solution (simple solution or a custom-built
hull), we also have a lot of input into what collides with what and what
happens when a collision is detected. A great example of this is weapon
impact. When a player shoots a wooden door with a shotgun, it would
be reasonable to expect a shower of splinters. If he or she shoots a large-
pane glass window, a crash and a shower of glass shards should result.
When shooting a creature, one would expect a shower of blood and guts.
Players would probably notice (and be disappointed) if, every time they
shot something, the same thing happened. Every surface in a game has a
set of sound effects, decals, particle systems, and so on associated with

3D Game environments28

it for every different impact event. A shotgun hitting dirt is going to look
and sound different from a shotgun hitting metal or glass. A thrown
knife hitting metal will sound different from the shotgun hitting metal. It
is usually someone’s job to track all this and make sure that, as assets are
introduced into the game, the correct properties are assigned to it. Often,
a spreadsheet is developed for every weapon, projectile, and surface type
in the game to ensure that everything is accounted for during production.
You need to know what sound effects, decals, and other assets need to
be produced and what sound effects and other events must be assigned
to each surface in the world.

You can also control the aspects of collision such as distance. If an
object is very far away, you can decide not to detect any collisions on
the object, as this is more efficient. If an object is close but unreachable
by the player, you might want to detect for bullet collisions so the bullet
effect can be displayed, but not detect for player collisions.

Occlusion-based optimizations

The word occlusion means that one object is blocking another from view.
The word cull generally means to remove an unwanted or unproductive
member of a group. So, in the context of a computer game, the simple
explanation for occlusion and culling is that you don’t draw (or cull)
what is not seen (or occluded). The programming involved in fast and
effective occlusion and culling is very complex, and there are numerous
methods and algorithms involved. The reason you as an artist need to
understand this is so you can take optimal advantage of the technology
and design the world or level in the manner that most effectively executes
(and avoids the weaknesses of) the occlusion and culling methods your
game engine utilizes. And you will also have some degree of control
over how the occlusion and culling methods are utilized in the world.

Optimizing the usage of occlusion and culling is where you can get
some of your most significant performance gains. To assist you in this,
most game engines have some sort of tool that allows developers to
examine the level in detail. You can usually view the game world in
various modes and see what is being drawn, and gather data on what
is making things run slowly. Quite often, you will discover that objects
invisible to a player in a normal game mode are being drawn anyway.
But, even when your level is running great, if you can make it run faster,
you can add more stuff to it and make it look better, or you can free up
the frame rate for another area of the game to use. There are various
forms of occlusion, or ways for you or the game application to tell the

Occlusion
and culling

29Game worlD optimizations

game engine what not to draw. The occlusion and culling devices most
commonly used by artists include the following:

• View frustum culling

• Cull distance

• Backface culling (manually)

• Cell and portal occlusion

• LoD

• View frustum

The frustum is the area of the world visible to the player, or the cam-
era view. The frustum is a pyramid that starts at the point of view of the
player and extends off into infinity at a determined angle (Figure 1.18).
Like a camera lens, the wider the angle, the more fish-eyed the view. In
Figure 1.19, you can see two images; both were rendered with a camera in
the exact same spot. The only difference is the camera angle. The camera

To infinity and beyond

FIGUre 1.18 The view frustum.

3D Game environments30

on the right has a wider angle lens than the one on the left. A wider angle
allows us to see more of the world, but the image is greatly distorted.

You can determine where the frustum begins to draw objects and
where it stops drawing objects. These settings are called the near- and
far- clipping planes. The plane closest to the camera is the near-clipping
plane, and the plane farthest from the camera is the far-clipping plane
(Figure 1.20).

All of the six planes of the cube that comprise the viewable world
have names: (1) near plane, (2) far plane, (3) left plane, (4) right plane,

FIGUre 1.19 Like a camera lens angle, the angle of the view frustum affects the distortion of the scene.

31Game worlD optimizations

(5) top plane, and (6) bottom plane. The frustum is used in a process
called frustum culling, which, at its simplest, is the process of determin-
ing which objects are visible to the player so the game engine doesn’t
have to draw them. While the clipping plane can greatly speed up a game
level, a major drawback to its use is that you can see objects pop in and
out of existence. One method to remedy this is distance fog.

As just mentioned, distance fog hides the popping in and out of culled
objects (objects that suddenly disappear as they pass beyond the far-
clipping plane). But distance fog can also be used to increase the sense
of distance, atmosphere, mood, and setting through the use of color and
other adjustable parameters.

Distance fog

Start drawing here and stop here

Near Far

FIGUre 1.20 The view frustum with near- and far-clipping planes in place
(top) and a 3D representation of the view frustum. The bottom right further
clarifies the 3D space drawn in the game world.

3D Game environments32

FIGUre 1.21 No distance fog; distance fog starting away from the camera and ending far away; and
distance fog starting close to the camera and ending far away.

33Game worlD optimizations

The simplest form of distance fog works by tinting the pixels in a scene
a selected color, based on how far they are from the camera (Figure 1.21).
As with near- and far-clipping planes, you can assign a point at which
the fog starts to tint the pixels and a point at which the pixels completely
become the selected color. This is usually called the minimum fog dis-
tance and the maximum fog distance. You use distance fog to prevent
objects from popping out by setting the far-clipping plane just beyond the
maximum fog distance. Some game engines will automatically set a clip-
ping plane if distance fog exists. While distance fog can be used to speed
up a level, you should be cautious because there are many other forms of
fog that are very expensive computationally and will slow things down.

The other types of fog in a game world are volumetric and controllable
in nature. Some types allow for the horizontal layering of fog, and still
others can fill a specified space or volume. More complex forms of fog can
change colors depending on certain circumstances. If you are outside on a

Cull distance

Cull distance

× numbers of world units

× numbers of world units

FIGUre 1.22 Cull distance.

3D Game environments34

bright, snowy day looking into a dark dungeon opening, you would want
the world’s distance fog to be white and the dungeon’s distance fog to fade
to black. If a character ran away from you on the outside of the dungeon,
he or she should be affected by the exterior distance fog and fade to white,
but, if he or she ran into the dungeon, he or she should fade into black.

Cull distance is an optimization that simply tells the game engine not to
draw an object if it is a certain distance away (Figure 1.22). Whereas the
clipping plane determines the point at which no objects are drawn, the cull
distance is a unit of measure assigned to a specific object in the world. This
can be useful when certain visibility schemes draw objects you can’t see,
and you have to tell it to not draw the object. Some game engines allow
for additional functionality, such as the ability for a mesh to fade in and
out and shrink and grow with distance. This helps smooth the transition
between drawing and not drawing the object. Most game engines today
have built-in systems for foliage and decorations that allow for the con-
trolled placement of these objects and manage their fading in and out and
other similar behaviors. Quite simply, cull distance is a defined distance at
which the game engine will not consider rendering (or drawing) an object.

Cull distance

(a)

(b)

(d) (e) (f)

(c)

FIGUre 1.23 Cell and portal setups. (a) a curved hallway; (b) a hall with
two sets of doors that only open one at a time; (c) and (f) doors open into a
wall that occludes a larger room or separate area; (d) and (e) offset doorways.

35Game worlD optimizations

Note: Culling distance also applies to collision objects. You can tell the
game engine to stop tracking various collision types at various distances.
For example, you may want to stop tracking player collisions on an object
across a room from the player, but you will still want to track projectile
collisions in case the player shoots the object from across the room.

Another way to optimize a game world is by using cells and portals.
This is basically the assemblage of rooms (cells) and a door to each room
called a portal. When a player is in a room (cell), the engine looks at
which other cells are visible through the doors (portals) leading out of
that cell. This quickly eliminates a lot of the world that doesn’t need
to be rendered. Some common setups between cells can be seen in
Figure 1.23. There are many other creative setups to prevent the player
from seeing too much of the world all at once.

planning

Of course, the best optimization of all is planning your level to be efficient
using the best combination of the tools you have available. In general, you
will want to occlude the transition between two large areas, if at all pos-
sible. Balance the complex with the simple. You don’t have to have every
inch of the world covered in high detail—in fact, that is confusing and
ugly and actually reduces the impact one nicely detailed area can have.
Use composition and drama over more assets! Take the time to polish and
tweak everything you can. Ten well-orchestrated particles can look bet-
ter than a hundred that were implemented quickly using default settings.
A smaller, well-painted texture can look better and actually have more
detail than a sloppy, large texture. Ask yourself whether there is a better
and more efficient way to achieve any objective you may have. Keep track
of all that you come up with, and develop a checklist of things to do to an
asset before considering it complete. At one studio, we actually designed
and developed a plug-in for Max that ran a series of checks on a mesh
before we considered it final. We also met regularly and compared notes.

The importance of designing, planning, and just plain iterating
through your level cannot be underestimated. So far, almost every level
I have worked on has been a special case to some degree. There are
always numerous opportunities in any game world to achieve greater or
lesser optimizations and visual quality. The sheer number of choices you
are given when building a game world allows for an almost unlimited
combination of approaches to any given situation. Take time to ponder
the best solution, and then experiment and collect data. If you do this

Cells and portals

3D Game environments36

early on, the rest of the game world will come together more quickly and
allow you to devote more time to the actual visual polishing of the world.

Conclusion

That was a quick overview of the most common artist-accessible game
optimizations. As we progress through the book, we will use some of
these optimizations in the projects so you can see how they might be
implemented in an actual game development scenario.

37

Chapter tWO

Three-dimensional concepts

Introduction

This chapter is only an introduction to the concepts of three-dimensional
(3D) modeling you will most likely be working with. Once you under-
stand these concepts, you can more easily use the tools at your disposal
to create the art in this book. For the details on how to do any of the
specific functions for any given 3D application, you need to consult the
documentation for that application. The good news is that, as game art-
ists, we work in both two dimensional (2D) and 3D, but at a pretty basic
level of functionality, so that you can easily achieve these results in vir-
tually any 3D package.

A note on texture and polygon budgets: in environmental (and all
game) art, we still need to control our asset budgets. Even though we are
able to use much larger assets (polygon counts and textures), we don’t
want to use a high-polygon model if it is for a simple background world
prop. By definition, environmental art is still easier and more basic than
modeling characters, vehicles, or weapons. This is true for a few reasons.
Environmental art needs to tile and be efficient. It cannot overshadow
the characters and important features of the world. It’s like formatting
text. If every word in this book was bold and underlined, it wouldn’t
mean anything; it would only be annoying to read. Bold and italics are
reserved for special words, very, very special words. So, too, must assets
be reserved for special places and events in the game. The front of a
castle may require more textures, polygons, and just plain artistic atten-
tion than the empty hut down the road. Likewise, a racing game is going
to focus its assets on the cars and not the buildings blurring past in the
background. This is not to say the buildings are not created to the same

3D Game environments38

standards as the cars, but simply that the car will require more resources
to achieve the required level of detail.

texture mapping

Although creating the texture is a 2D process, texture mapping—the
process of applying 2D art to the 3D objects in the world—is part of the
3D process. Textures add a huge amount of detail and richness to a 3D
model. A texture map is mapped (applied) to the surface of the shape in
various ways, like wrapping a picture around a box to make it look like
a specific object—a crate, for example (Figure 2.1).

In environmental art, we create a lot of 2D and 3D assets. Here, we
will look at the most often-used 3D concepts you need to be familiar with.
We will create the 2D art as well, but, for a deeper education on 2D art
creation, please refer to my book 3D Game Textures (Focal Press 2006).

FIGUre 2.1 A texture map is an image that is applied to the surface of a shape, like wrapping a
picture around a box to make it look like a crate in this figure.

39three-Dimensional concepts

We will address texture creation on a simpler level in this book, and we
will turn our focus to the application of textures to the mesh. In 3D Game
Textures, the emphasis was strictly on 2D art and texture creation, but,
here, we learn how to map the textures to the 3D assets we create and to
use shaders. The creation of textures for the models in this book will be
addressed on a case-by-case basis as we create them for each project. This
includes the creation of the UV template and the application of the texture
to the model (Figure 2.2).

Note that there is a distinction between a texture and a skin. A skin is
the art that goes on a more complex model such as a character, a mon-
ster, or a weapon. Skins are generally not tileable and are created for a
specific mesh. A texture is generally the art that covers the game world
surfaces: grass, floor tiles, walls, and the like, and UV-ing these surfaces
is much simpler than skinning an organic model.

Mapping types

When applying textures to a mesh in a 3D program, there are some tools
that will apply the textures rapidly in a set fashion with the push of a
button. While these tools are useful and quick, they have drawbacks that
make them useless in some applications or, at the very least, produce
results that must be cleaned up. Such push-button tools assume that the
mapping type is applied to the entire mesh. However, mapping types
become more useful when used on a face-by-face basis. We will get to

FIGUre 2.2 The process of UV texture layout and mapping.

3D Game environments40

that level of mapping in the projects when we actually start laying out
UVs. Right now, we will look at the push-button mapping types, since
they are the basis for more complex mapping. They are as follows.

Planar mapping works like a projector. The texture is projected onto the
3D surface from one direction. This can be used on walls and other flat
planar surfaces but is limited and can’t be used on complex objects since
the process of projecting the texture in one direction also creates smear-
ing on the sides of the 3D model that don’t face the planar projection
directly (Figure 2.3).

Box mapping projects the texture onto the model from six sides. This
works great on boxes! Used on a more organic mesh, there will be seams
and smearing on portions of the model (Figure 2.4).

Spherical mapping surrounds the object and projects the map from all
sides in a spherical pattern. The drawback to this mapping type is that
you can see an edge where the textures meet unless you have created a
texture that tiles correctly. Also, the texture gets gathered up, or pinched,
at the top and bottom of the sphere and needs to be dealt with in the tex-
ture. Spherical mapping is obviously great for planets and other spheri-
cal objects (Figure 2.5).

Cylindrical mapping projects the map by wrapping it around in a cylin-
drical shape. Cylindrical mapping can be used on tree trunks, columns,
and other cylindrical objects (Figure 2.6).

UV editing

These mapping types are all limited in their uses. Later on, we will start
the process of editing the UV coordinates for a model. This is the pro-
cess you will use most of the time when mapping a texture to an object.
It is a face-by-face process that can be tedious but is extremely important
for the efficiency and quality of the assets.

Multitexturing is the process of laying multiple textures on one mesh.
This is powerful because you can mix and match many smaller, sim-
pler textures over a surface to get a very wide variety of looks on your
meshes. (See the “Multitexturing or Multiple UV Channels” section in
Chapter 1 for a detailed explanation of multitexturing.) Figure 2.7 shows
a simple example of multitexturing.

planar

Box

Spherical

Cylindrical

Multitexturing

41three-Dimensional concepts

FIGUre 2.3 Planar mapping projects the texture onto the 3D mesh from one direction.

3D Game environments42

3D

The very basics of 3D start with the vertex. The vertex is represented by
a dot on screen, but, in reality, it is a mathematical location in 3D space
defined by three numbers, or the xyz location. Three or more vertices
connected to each other is a polygon. Many polygons together create a
mesh (Figure 2.8).

You can edit 3D objects at many levels, from an individual vertex to
an element. The basic parts of a mesh are as follows (see Figure 2.9):

• Vertex

• Edge

• Face

• Element

FIGUre 2.4 Box mapping.

43three-Dimensional concepts

FIGUre 2.5 Spherical mapping.

3D Game environments44

3D space

When working in 3D on a computer, we are actually looking at 2D
images that update fast enough that we feel as if we are actually looking
at a 3D object when we move about it. That being the case, we need to
utilize many tools and functions to help us overcome these limits. First,
we will look at the little window into our 3D world, which is usually
called a viewport.

Viewports are like the portholes of a ship: tiny, restricted openings look-
ing into to a much larger world. To overcome this restriction, we need to
use any trick or tool we can. First off, buy as many big monitors as you
can afford and your system can support. With the drop in the cost of flat
screen monitors and video cards, it can be feasible to make this upgrade.
You can put all your menus on one screen and work on art on another. I
usually have my 3D application on one screen (say, on my left side) with

Viewports

FIGUre 2.6 Cylindrical mapping projects the map by wrapping it around
in a cylindrical shape.

45three-Dimensional concepts

all the menus on the other (on the right) and Photoshop in the reverse
order so I can quickly switch between the two applications.

Here are some other tips for working efficiently:

• Get used to working in one viewport at a time rather than four at
once, if possible. This gives you a larger view of the world.

• Use hotkeys and shortcuts so you are able to gradually remove
menu bars, your goal being to work in expert mode as often as
possible where there are no menus on screen.

• Create custom menu bars if you need to use menu bars. Applications
often come with bloated menus for many functions you may never
use; these take up a large amount of screen space.

• Get used to switching viewports using hotkeys, so, if you need to
line something up using a specific viewport, you can do so quickly
and in full screen.

FIGUre 2.7 Multitexturing.

3D Game environments46

• Learn and use the zoom functions. This will allow you to quickly
zero in on an object or back completely out for a bird’s-eye view
of the world.

• Learn viewport navigation, that is, the modes of moving around
the viewports in the fastest, most efficient way. Some 3D programs
have accelerator hotkeys that allow for a larger movement across
the world when held down. For example, holding Ctrl when mov-
ing your view across the world may move you × times (× being any
multiplier such as 4× or 10×) farther per mouse movement.

• Don’t forget the right-mouse click, or pop-up, menus. These can
usually be customized as well.

Vertex

Line

Mesh

Face

0,0,0

0,0,0

0,0,0

0,0,0

0,64,0

0,64,0
−64,64,0

0,64,0

–64,64,0–64,0,0

0,0,64

–64,64,64
64,64,64

–64,0,64

FIGUre 2.8 The creation of a 3D object.

Vertex Edge Face Element

FIGUre 2.9 The basic parts of a mesh.

47three-Dimensional concepts

Most 3D applications offer a walk-through mode, or, at the very least,
the ability to set up a camera to look at the world from the position and
at the focal angle the player will see it in the game. After flying around
the world you are modeling, you may be surprised at how much you can
or can’t see at the player’s level. The world will often appear much larger
when you are taken out of the sky and put on the ground at the player’s eye
level. The focal length of the camera alone will have a dramatic effect on
how large the world appears. It is common practice to give the game cam-
era a slightly fish-eyed view to compensate for the limits of the monitor.

Learn to use shortcuts and hotkeys! We all know what they are by now.
Pressing a key or using a set of keystrokes is far faster than navigating
the menus. Do anything you can to speed up your work. Learn to create
macros, actions, and custom menus, and learn a new shortcut or hotkey
combo every so often. An added benefit to this efficiency is reducing
stress on your fingers and wrists. If you work at a computer all day, the
number of clicks and mouse movements adds up. The cumulative wear
and tear is tremendous when you start doing the math.

When setting up to model items for a world space, you need to know the
units of measurements in that world. What unit is used to communicate
the size of an object: feet, units, or meters? And how do these units trans-
late in the game? Later, we look at world scale and measurement in more
detail and examine what we need to know in order to determine what our
units of measurement are and what they mean.

It is common in most games to use generic units as a measurement,
and those units tend to be in powers of two (16, 32, 64, 128). The units
of measurement are important for consistency, accuracy, and technical
efficiency. If you create a model and a texture for a game world using all
the same units of measurement, things will come together much more
smoothly. But what does a generic unit equal? It could be a foot or a
mile—that will be determined as you develop a game.

The grid and the snap settings are related to the unit of measurement.
Grids are just that—a grid of lines spaced evenly apart. You can set the
spacing of the grid. This is handy when used in conjunction with snaps.
A snap is a setting that controls how strongly your cursor will snap to
a specific point. A strong snap setting will grab your cursor when you
are close to a certain object and snap it precisely in place; a weaker snap
allows you to get closer to the snap position before grabbing the cursor
from you. That place can be defined by you, and, usually, you want your
cursor snapping to the intersections of the grid or the nearest vertex.
This is very helpful when creating world art, since you can snap a line or

player perspective

Shortcuts
and hotkeys

Units of
measurement

Grids and snaps

3D Game environments48

a shape to a precise size on the grid, and that precisely sized object will
easily fit a precisely created texture and then into a game world based on
the same settings. This also speeds things up. Imagine trying to drag a
shape out to a precise size or hand entering the sizes for every primitive
you create. Some of the common snap types (Figure 2.10) are as follows:

• Edge—Snaps along an edge

• Edge midpoint—Snaps to the middle of an edge

• Endpoint—Snaps to the end point of edges on a mesh

• Face—Snaps to the surface of a triangular face

• Grid line—Snaps to any point on a grid line

• Grid point—Snaps to the intersections of a grid

• Pivot—Snaps to the pivot point of an object

• Vertex—Snaps to the vertices of a mesh

Note: In 3D applications, snaps can operate in different ways. Some
modes offer a two-dimensional snap that only snaps to a specific grid or
plane, or a three-dimensional snap where the cursor snaps to anything
that is set for snapping on any plane. 3D snapping lets you create and
move objects in all three dimensions.

Snap is also available to transforms as well. You can set the rotation or
scaling to snap at certain angles or percentages.

You can also hide objects if you wish, and that makes working much
easier. Not only is the scene clearer, but there will also be a smaller load

hide/unhide

Edge Edge midpoint Endpoint Face

VertexPivotGrid pointGrid line

FIGUre 2.10 Various ways to precisely snap objects together.

49three-Dimensional concepts

on the computer. If you are experiencing poor performance, you can
hide objects to speed things up. There are usually multiple ways to hide
and unhide objects: (a) using groups, (b) selections, or (c) entity types
(lights, objects, and so on).

Freeze allows you to freeze an object so you can’t interact with it, but
it is there for your reference. This can make life easier, as you won’t be
selecting unwanted objects as you work.

You usually have options as to how the objects are drawn on the screen,
meaning you can look at your world in wire frame, flat shaded, textured,
textured and lit, and lighting only, among others. This is useful for many
reasons; for instance, it allows you to examine the soundness of your
geometry, see how the textured model may look in the game, or see what
face you may have selected at the time (Figure 2.11).

You can group objects together, which is very useful for scene manage-
ment in large scenes. I strongly suggest that you name your groups well.
As a scene becomes more complex, you can hide, select, and deal with a
grouping of objects much faster than you can with a bunch of individual
items. For example, you may have a large factory with control panels,
several different piles of crates, gun racks, and other groupings of items
in a large area.

When you work in 3D, especially in a game world where multiple meshes
or entities can occupy the same exact location as several others (in the
case of collision and detail meshes), you need to learn to find what you
are looking for quickly, isolate it, and leave everything else so others
can find what they need when they work in the same space. For this,
there are many tools that can help you. For almost any 3D application or
world editor, you should have the tools to hide or unhide items quickly;
freeze items (you can see them but not alter them, or they can’t be unhid-
den but must be specifically unfrozen); and select items by name, mesh
color, material, alphabetically, or by many other attributes. When you
are working in a game world, as opposed to working on a 3D scene that
contains only the art, you will have many other items potentially in view.
These can include (but are not limited to) AI paths, event trigger mark-
ers, and many other game-related events such as power-ups, switches,
particle effects, and player spawn points. When looking from any given
view at your world, you will see hundreds or thousands of crisscrossing
colored lines, and that is nothing but confusing. When working on your
own, it is a good idea to get used to naming your meshes and groups
at the very least; and, when working on a development team, it is very

Freeze

Drawing modes

Grouping

Selecting

3D Game environments50

important to learn the naming conventions and other organizational con-
ventions set forth by the developers.

3D creation

Now, we get to the concepts for the actual creation of 3D assets. There
are numerous paths to the completion of a 3D model. As you learn these

FIGUre 2.11 Drawing modes let you look at your 3D world in various ways.

51three-Dimensional concepts

tools, you will get better at knowing what path to take. Some methods
may take longer or create messy geometry while being the perfect solu-
tion in another case. We start with basic shapes, called primitives, in 3D
modeling. These shapes are so basic and common that there are dedi-
cated methods to their creation. These shapes are usually the following
(Figure 2.12):

• Cube or box

• Cone

• Tube

• Torus

• Pyramid

• Cylinder

• Sphere

Some of the most common functions you will use in game modeling
involve working with vertices, edges, and faces. For vertices, we can
weld them together, break them apart, align them, and use a function
called soft select. Soft select has a gradually lessening effect on the ver-
tices surrounding the selected vertex. This is based on the parameters
you set and is very useful for forming or tweaking terrain. Edge func-
tions include chamfer and bridge, among others. And face functions (we
will use them a lot) include extrude, bevel, inset, outline, and hinge from
edge. Figure 2.13 illustrates some examples of various mesh-editing
functions.

The axis shows the direction the coordinates are running in the 3D
window. What this means is easier to understand if you know what the
Cartesian coordinate system is. The Cartesian coordinate system is a
method that determines where a point is in 3D space using three bits
of information—the x, y, and z coordinates. The standard locations for
these are as follows:

Mesh editing

axis

Cube Cone Tube Torus Pyramid Cylinder Sphere

FIGUre 2.12 Basic 3D shapes.

3D Game environments52

(a)
(b)

(d)

(c)

(e)

(h)(g)(f)

FIGUre 2.13 Mesh-editing functions: (a) vertex soft select, (b) add vertex, (c) chamfer edge, (d) bridge,
(e) extrude face, (f) bevel face, (g) inset face, and (h) hinge from edge.

53three-Dimensional concepts

• x = left to right

• y = up and down

• z = front to back

Using the grid makes it easier to navigate 3D space. The starting (origin)
point is 0,0,0. Any movement away from this point will result in a nega-
tive or positive value in one of the x, y, or z values (Figure 2.14).

There are many ways to view a coordinate system (Figure 2.15). A
few of the most common are as follows:

y

x 0,0

x,y = 20,–20

20

10

10 20

–20

–20 –10
–10

z

y
x

64,64,64

FIGUre 2.14 Coordinate system.

x

x

x

z

z

y

y

FIGUre 2.15 Local space, world space, and view space.

3D Game environments54

Object space or local This uses the xyz coordinate system of the
selected object. An object’s coordinate system is held by its pivot point.
You can actually edit the local coordinate system, moving and rotating
how the axis points are orientated.

World space This system is fixed and centered in the world despite
your view or the objects involved. All vertex data are based on the coor-
dinate system of the world, which originates at 0,0,0.

View space The coordinate system dynamically moves as the view or
the camera moves.

An object’s pivot point is the location at which the object rotates. In
Figure 2.16, you can see some examples of how moving the pivot point
affects the movement of an object. The pivot point can also influence
how modifiers and transforms affect a mesh (Figure 2.17). It is easier to
see the effects in the 3D application where you can see the changes in
real time.

You can draw a line in a 3D space and create a 3D object from it. This is
a great way to start odd shapes. There are 2D primitives as well, just like
3D primitives. You can start with a predefined shape or a shape created
from a line. Most splines are controlled at their vertices in four ways
(Figure 2.18).

pivot points

2D shapes

FIGUre 2.16 An object’s pivot point is the location at which the object rotates; you can see how
moving the pivot point affects the movement of an object.

55three-Dimensional concepts

• Bezier corner—Each handle operates independently, resulting in
a peak between curves.

• Bezier curve—Handles will operate together to create a smooth curve.

• Linear—No handles; this is a straight, linear corner.

• Smooth—No handles; this is a smooth curve of predetermined angle.

FIGUre 2.17 The pivot point influences how modifiers and transforms affect a mesh.

3D Game environments56

The great thing about splines is their editability. You can convert
between the corner types, add and delete points, and even perform
Boolean operations on them.

Creating 3D objects from 2D shapes

After you have created your spline path, you can perform several pro-
cedures on them to create a 3D shape. These include extrude, lathe, and
loft.

Extrude adds depth to the 2D shape (Figure 2.19).

The concept of lathing is from woodworking. A lathe is a tool that rotates
a block of wood very fast while a sharp tool is placed against the wood.

extrude

Lathe

Bezier corner Bezier curve Linear Smooth

FIGUre 2.18 Spline control.

FIGUre 2.19 Extruding 2D shapes.

57three-Dimensional concepts

The carving action creates radial cuts in the wood. You can use a lathe
in 3D to create goblets, vases, and other symmetrical geometry. We will
use the lathe to create the body of a fire hydrant in the coming exercises
(Figure 2.20).

Lofting is like extruding a shape, except that it follows a spline path. In
games, this is great for pipes and hoses (Figure 2.21).

As you would expect, transforms transform an object. You can alter the
size and position of an object by moving, scaling, or rotating it. See
Figure 2.22 for some visual examples of transforms.

Finally, there are numerous ways to copy and align objects. In addi-
tion to the basic transforms, you will probably use mirror and align

Loft

transforms

FIGUre 2.20 Lathing.

Shape

Path

Loft object

FIGUre 2.21 Lofting.

3D Game environments58

functions a good bit. Mirror flips an object on a set axis. If you model a
car, you don’t model the entire model; you model half of it and mirror it
and attach the two halves together (Figure 2.23). Alignments combined
with copy functions can create a perfectly spaced row of columns or a
rubble of stones across a ground surface.

Deforms alter or deform a mesh. You can bend, twist, taper, ripple, and
even free-form deform a mesh. There are many deforms for meshes. See
Figure 2.24 for examples of deforms and their effects on a mesh.

If you understand these basic concepts, you can quickly learn how to
accomplish them in your 3D application of choice. Once you know that,
you will be able to create most simple game art and will have a solid base

Deforms

Z

Z

Z

Y

YX

Y X

X

FIGUre 2.22 Transforms.

59three-Dimensional concepts

from which to further learn on your own. In the next chapter, we will
look at shaders. Shaders are an exciting topic, as they add so much visual
depth and immersion to a scene. Although shaders can get complex, the
basics are easy to learn and implement and have a huge impact on the
visuals of a game world.

FIGUre 2.23 Mirroring.

Bend Twist Taper Ripple
Free-form deformation

Noise Melt Skew Spherify

FIGUre 2.24 Deforms.

http://taylorandfrancis.com

61

Chapter three

Shaders and materials

Introduction

Shaders allow for a level of realism in games that is stunning and
getting better all the time. Some screenshots provided by NVIDIA
are shown in Figure 3.1. As I write this, the latest crop of DirectX 10
cards is out, and the quality of the graphics is amazing. Simply put,
a shader is a mini-program that processes graphic effects in real
time. For example, the reflections on a surface can move in real time
instead of being baked or permanently painted into a surface. Shader
effects are very powerful visually, even if viewers are unaware of
what they are seeing. That is, the average player would have a hard
time defining why the game he or she is playing looks so good. It may
be the real-time reflections, normal mapping, or the specular map-
ping being processed in real time.

Ever since these technologies started rapidly advancing, there has
been talk that procedural textures and advanced technologies would one
day replace artists. This will never happen. As awesome as the technol-
ogy is, it still takes an artist to make these technologies produce the
best visual results. In fact, artists have become more important than ever
as technology has become more complex. While programmers give us
awesome new technologies, the artist still needs to create and control the
input and output of those systems.

There are two main types of shader on modern graphics processing
units: (1) vertex shader and (2) pixel shader.

• Vertex shaders manipulate geometry (vertices and their attributes)
in real time.

• Pixel shaders manipulate rendered pixels in real time.

3D Game environments62

The ability to manipulate an individual pixel or vertex in real time
is what makes shaders so powerful and what makes them so proces-
sor intensive. On the one hand, we can simulate virtually any condition
using shaders, but, on the other, they devour resources. For each frame
displayed, all the shader effects for that frame must be processed (or
rendered), and this takes time. Although the time is miniscule, it adds
up, since millions of individual pixels and vertices are being processed.
Shaders can be used for many complex material appearances and image
effects: hair, fire, shadows, water, reflections, and so forth. Shaders are
so flexible that the list of possible effects is almost endless—a shader
programmer can write almost any imaginable effect. Interestingly, while

FIGUre 3.1 A few of the awesome images rendered on an NVIDIA
 graphics card.

63shaDers anD materials

it has been only very recently that consumer-level hardware could handle
the intense demand that real-time shaders put on a system, the knowl-
edge of these processes has been around for decades. In fact, many of the
techniques you will read about here are based on algorithms named for
well-known mathematical geniuses; Phong and Blinn are recognizable
names if you are a three-dimensional (3D) artist.

Remember that the ability to manipulate an individual pixel or ver-
tex in real time is what makes shaders so powerful. Very recently, real-
time lighting began to be calculated per vertex and not per pixel—that
is, lighting is now often calculated for an entire face of a polygon as
opposed to for every pixel. This is significant because it not only adds a
great degree of detail and smoothness but also allows for shaders such
as normal maps to function. But how does all this work? That brings
me to the large, fuzzy overlap between programming and art. Granted,
these are two very different activities, and there is a line between how
much art a programmer needs to understand and how much technology
an artist needs to understand. Exactly where that line is, no one can
say precisely, but, when it comes to shaders, you should understand the
basics of how the technology works. Wait! Don’t fling the book across
the room just yet. You don’t need to know the math behind it all, just a
simple explanation of how it works.

Shader basics

Shaders, from the artist’s point of view, are often a bit of a black box.
Our involvement usually requires that we generate input for a preexist-
ing shader—set parameters and/or assign textures, and then look at the
end result. Since the artist’s role is mostly confined to creating input and
judging the output of the shader, we often have nothing to do with the
code. In some cases, a shader code is written or edited by an artist, but
most newer shader-creation tools are more like the material systems in
Max and Maya, requiring no programming knowledge. Figure 3.2 shows
a diagram of how a material shader works from the artist’s point of view.

Shaders often require the use of two-dimensional (2D) assets as input,
and the artist is usually the one tasked with not only creating those assets
but also understanding, creating, and implementing the shader to some
degree. So, while shaders can replace much of the work an artist would
do on an asset, they may also increase our workload. There are effects in
games already where the artist is no longer painting a texture as an iso-
lated entity but is creating a series of textures that must all work together
for a desired effect. Using shaders requires more planning, a different
way of thinking about creating the art, and more organization. The artist

3D Game environments64

needs to learn the shader tool, organize more assets (assets that may be
linked to one another and are therefore more rigid in their mobility after
a shader is in place), and learn the mental discipline of creating assets
that are not the end result but the component parts of a final result.

Texture maps

Diffuse (color) map

Specular map

Normal map

Final

FIGUre 3.2 Here is a simple flow of how one shader works for the artist.
The coin, a simple cylinder, is mapped with a diffuse or color map, a specu-
lar map, and a normal bump map. You can see the final result at the bottom
where the effects of all three maps are combined.

65shaDers anD materials

We have to get accustomed to painting textures devoid of certain
properties that will later be processed in real time. One reason we need
to understand the fundamentals of light and shadow, or to develop the
skill to see the base material of a scene behind all the dirt, reflections,
and other surface properties, is that we may soon be building textures
starting with a very plain surface (even a pattern) and building a complex
organizational tree of maps and effects to create a final surface (much
like we already do in 3D programs and how some texture generators
work). For example, the highlights on the armor in Figure 3.3 are con-
trolled by a shader. With no specular highlight, a surface can look flat
and dull. With a generic specular highlight applied evenly to the surface,
things will often look plastic and fake. Using a map to control the specu-
lar highlight, we can make a surface look much more realistic. While
shaders can make our lives easier in some respects, and definitely can
make our games look better, they can also be a bit complex to understand
at first and require a greater degree of organization.

Some of the most common shaders today require images easily cre-
ated and manipulated in Photoshop. The most common of these are
the color map (or diffuse channel), the bump and normal maps, specu-
larity maps, illumination maps, and opacity maps. In general, a game
artist creates textures meant to be tiled over an area or mapped to an
object. When the texture is to be mapped to an object, the artist starts

No specularity Specularity

FIGUre 3.3 Instead of painting a highlight onto a surface in Photoshop,
you can now leave it out and assign a shader.

3D Game environments66

the creation of the texture with a template. Whether a complex character
skin or a simple prop, this template is generated from the UV coordi-
nates that have been mapped out onto the 3D model. After the basic color
information has been put into place, the other shader maps are often cre-
ated from the initial color map, the 3D model itself, and even some hand
painting. The UV map represents the exact way in which the 2D art will
be mapped, or wrapped around, the 3D model. In Figure 3.4, you can see
how the template was created from the actual face model and the simple
prop and then used as a guide to paint the textures. We will be working
with these templates later in the book.

Common shader effects

Like most things dealing with computer game technology, shaders are a
vast and complex topic riddled with new vocabulary, concepts, and tech-
nological requirements. In addition, each game engine and each game
project will have its own vocabulary, process, and subtle nuances in deal-
ing with shaders. But you will always deal with some basic shader effects,
and here are some samples of them. You may notice that these shader
effects are very similar to filter effects in Photoshop, materials in Max or
Maya, and many postvideo effects. Postvideo effects are effects inserted
into a film or video after the footage is shot, during the editing process.

In this chapter, we look at not only what these shaders can do in a
cursory sense but also some of the ways you can get various effects with

FIGUre 3.4 From right to left: The UV template, the diffuse map created from the template, and
the model wrapped with the texture. The left side of the face was left unmapped so that you can see
the original mesh.

67shaDers anD materials

these shaders. Throughout the book, we examine each of these shaders
in detail as they pertain to game development both creatively and techni-
cally. The following is a list of the basic shaders and material types you
will most likely work with in game development:

• Diffuse (color maps or textures)

• Blend

• Detail mapping

• Depth of field

• Heat haze

• Specularity

• Bloom (glow or halo)

• Masking and opacity

• Illumination (emissive)

• Reflection/cube mapping

• Pan/rotate/scale

• Normal, bump, and parallax mapping

The term diffuse map has many meanings, depending on what soft-
ware you use and what your educational background might be. I will
spare you the technical and scientific definition and simply tell you
that the diffuse map in the game industry generally means the color
map or texture, an image containing only the color information of a
surface. This is not to say it is devoid of all detail. Since game engines
don’t reproduce the visual world 100% accurately, we still need to fill
in the gaps. We can do this with subtle detail in the color map that is
supported by the other maps. Areas in the texture where light would
be noticeably brighter or darker can be defined to some degree. The
spaces between metal panels and wood planks are examples of where
some darkness could be painted in with good effect. In Figure 3.5,
you can see the diffuse map for an old pirate. There is probably a bit
too much light and shadow information in the texture. The promi-
nent highlights and shadows on the veins and wrinkles are especially
noticeable, and I would take them down and replace them with a nor-
mal map if this were to be used in real time. There is a normal map
on this mesh, but I relied on the color map a bit more since I created
this mesh for a specific use at a fixed angle, and the normal map didn’t
need to behave perfectly.

Cracks and seams are places where dirt is most likely to collect,
which would further add to the darkness of such parts of the texture.

Diffuse (color
maps or textures)

3D Game environments68

Technically, you can handle these cracks with the normal map and other
effects, but I find that relying too heavily on one map type often results
in plastic-looking materials.

Originally, game artists had only the diffuse channel to work with,
and, essentially, what you created in Photoshop was what you saw in
the game—all shadows, highlights, and details were contained on the
color map and were static. This image was typically of low resolu-
tion and color depth and was wrapped around a low-polygon model—
presto, you had a game model. This process has changed quite a bit in
the last few years. With the advent of new technologies that require
a slightly complex separation of visual components into a series of
separate assets that are processed together to create the final effect,
the color map has become much more simple and subtle. That is, it’s
simple and subtle in terms of other information aside from the color

FIGUre 3.5 The diffuse color map can contain much information, but,
currently, the use of per-pixel lighting makes this unnecessary and often
undesirable.

69shaDers anD materials

itself, but richer in color detail since we can now use images that have
much larger resolutions. In some ways, this method of asset creation
is harder to grasp and execute, but, in other ways, it is actually easier,
especially for a trained artist who already understands how the visual
world works.

The color map in Figure 3.6 contains the base color of a character’s
skin. In addition to the skin tone, however, the color map must convey
subtle details that either can’t be depicted by the technology or are sim-
ply so subtle it may be quicker to paint them into the color map than try
to reproduce them technically. Human skin is so subtle yet complex that,
often, the qualities of skin (such as age and condition) and the details of
skin (such as small veins, creases, spots, freckles, and pores) are best
portrayed on the color map. Human skin is not one smooth color but is
rather composed of many colors and interacts with light in a most unique
way. Such a map can take a long time to produce, as it requires a balance
between subtle but clear detail. Too much contrast, saturation, or other
attribute, and the character starts to look diseased; not enough and he
looks like a mannequin.

FIGUre 3.6 The diffuse color map of human facial skin. Even with com-
plex shaders, the skin on a human face is so full of subtlety and detail that
we still need to have some detail in the color map.

www.allitebooks.com

http://www.allitebooks.org

3D Game environments70

The blend shader blends two textures together; depending on what soft-
ware or game engine you use, it may blend in a default fashion or offer
various modes very similar to the blending modes in Photoshop. The
blending usually occurs between a base texture and one or more textures
on top of this. Each layer has its own set of UV coordinates, so you can
have one small, tileable texture that repeats as your base and blend other
textures on top, such as stains, cracks, and other details. This method
not only takes up less texture memory; it also allows for a great deal of
variety since there are so many options when blending numerous tex-
tures together. The basic blending modes are listed as follows and are
displayed in Figure 3.7:

• Average

• Additive

• Subtractive

Average Average blends the colors of the base map and the new map
evenly. If you don’t want either texture overpowering the other in any
way, use average. This is appropriate for creating an entirely new texture
from two separate textures or, in conjunction with grayscale base maps,
for coloring the base map.

Additive The additive color model brightens the base map. Black
becomes completely transparent.

Subtractive The subtractive color model darkens the base map with
the new image. White becomes completely transparent.

A detail texture is a layer laid on top of a low-detail color texture. Players
can see the detail texture from their point of view, but the detail texture is
fading in as they move. This allows the texture (the ground, for instance)
to look very detailed. Detail textures are usually grayscale images that
add detail to the color map below it, using one of the blending modes dis-
cussed in the “Blend” section. Detail textures can be used to add detail
to stone, metal, wood—any surface in the world (Figure 3.8).

The depth of field in photography is the distance in front of and beyond
the subject being focused on and photographed. A shader can create the
illusion that objects in the background are far off by blurring them, thus
causing a depth-of-field effect. You can adjust the depth of field, just
as you can in photography, so that the area in focus can range from
infinite to very narrow or shallow. A shallow depth of field means that
objects are only in focus in a very small area. The depth of field can be

Blend

Detail mapping

Depth of field

71shaDers anD materials

Base image Image 2

Average

Result

Additive

Image 2 Result

ResultResult Image 2

Subtractive

Result

Subtractive

Additive

Image 2

Image 2

FIGUre 3.7 Various blending effects using the blend shader.

3D Game environments72

so shallow that a very close-up picture of a coin can have one side of the
coin in focus and the other totally blurry. Figure 3.9 shows an example
of the depth of field.

Heat haze creates the shimmering effect you can see emanating from
very hot objects, or the ground, on hot days. Figure 3.10 shows the effect
applied to the exhaust pipe of a vehicle.

A specular highlight is that bright spot that appears on most surfaces
when light hits it. That spot can be small and bright or large and barely
noticeable, depending on the quality of the material the light is hitting. A

heat haze

Specular highlights
and glossiness

FIGUre 3.8 Players can see the detail texture from their point of view, but
the detail texture is fading in as they move.

FIGUre 3.9 This shader creates the illusion that objects in the background
are far off by blurring them, thus causing a depth-of-field effect.

73shaDers anD materials

specularity map allows you to control this effect, and you can even use a
mask to control how various parts of the same surface display the specu-
lar light differently. A good example is beat-up metal armor. You may
have a layer of old paint and dirt that will not be highly reflective and
areas where this has been worn away to reveal reflective metal, which
is metal that has been polished by constant wear and tear (Figure 3.11).
Sometimes, glossiness is separated from the specular highlight; the dis-
tinction is that glossiness determines the size of the specular highlight,
and specularity controls the intensity of the highlight.

A specularity map controls what parts of the surface are shiny or dull
based on the grayscale value of the specularity map. You can see that the

FIGUre 3.10 The bottom muzzle blast has the heat effect present.

3D Game environments74

armor has no specular control on the left, and the middle and the right
have two different specularity maps. Specularity maps are generally cre-
ated from the color map. In Photoshop, you simply desaturate a copy of
the color map and adjust from there. You can see the exact spot where the
grayscale image is affecting the specularity on the model (Figure 3.12).

Blooming makes a light source appear brighter than it really is by taking
the light source and spreading it out over the edges of the object it is on.
A bright light will appear to bleed over onto objects around it, both in
front of and behind the object. Usually, this effect is achieved by creat-
ing a glow around the light source that is blended with its surroundings,
but, sometimes, the engine actually processes the entire screen. Using
several render passes, it will multiply the frame (like the Photoshop
blending mode, this lightens the lighter areas and darkens the darker
areas), blurs the image, and then draws it on top of the original screen.
Blooming helps create the illusion that a light source is brighter than it
can actually be displayed by the monitor. See Figure 3.13.

As discussed in Chapter 1, masking typically uses a specific color that
is designated the clear color and is more efficient than transparency.
Transparency uses a separate channel or a grayscale image to determine
the opacity of a pixel. The trade-off is that transparency looks better,
but it requires more file space and more processing power. Masking can
significantly speed up a huge scene with many overlapping elements
with transparency on them, such as a forest or a jungle. In Figure 3.14, you

Bloom (glow
or halo)

Masking
and opacity

FIGUre 3.11 Specularity map and examples of specular basics.

75shaDers anD materials

can see the examples of masking and transparency. In Figure 3.15, you
can see the interface of the NVIDIA tool that allows for the rapid adjust-
ing and viewing of textures before outputting them.

Opacity maps determine if an image is solid or transparent, or some-
where in between. Opacity is generally best used when there is a need
for transparency, as on windows, and/or subtle ranges in opacity such as
what we see in smoke and fire. While masking can do the job for tree
leaves, fences, and grates, opacity is better for in-game effects such as
explosions, fire, bullet holes, smoke, and particles like rain and magic
sparks. In Figure 3.16, you can see various examples of such effects.

An unlit texture is a texture that is unaffected by lighting and displays
at 100% brightness, sometimes called full bright or self-illuminated tex-
tures (Figure 3.17). In Figure 3.18, you can see an example of an unlit

Illumination
(unlit, emissive,
or full bright)

No specularity Specularity Specularity with mask

Specularity mask

FIGUre 3.12 Specularity map.

3D Game environments76

FIGUre 3.13 Bloom shots. Light glow, with full-frame processing.

77shaDers anD materials

FIGUre 3.14 The upper portion of this figure shows an image of some
grass with an alpha channel and the lower a color mask. Notice that the
images look virtually identical from afar; it isn’t until we are very close that
we can see the jagged edge.

3D Game environments78

texture on a particle that looks better unlit, as well as runs faster. Be
aware that, when you add an illumination map (grayscale), you can con-
trol what portions of the texture are lit and to what degree, but now
additional calculations must be done and additional resources used for
controlling the lighting on a texture this way.

The reflective nature of a surface can be like a mirror (100% reflective)
or completely matte—a rough wood may have no reflection at all. Real-
time reflections can be very draining on the computer, so there are ways
to fake reflections using environment or cube mapping.

There are many ways to generate reflections in a game, but the most
common and easiest to implement is the cube map. A cube map is a
series of images that the environment map uses to fake the reflection on
the surface of an object. Cube maps are so named because the reflections
you see are actually six images arranged in a cube and projected back
onto the reflective object. These images are rendered from the location
of the reflective object so the cube map reflects the objects’ surroundings

reflection

FIGUre 3.15 The interface of the NVIDIA tool. The three most common masking and alpha formats
have been highlighted.

79shaDers anD materials

FIGUre 3.16 Particle examples.

3D Game environments80

(a)

(b)

(c)

(d)

FIGUre 3.17 Part (a) shows the control panel texture, and to the right its illumination map; (b) is a
version of the control panel where the lit parts are slightly blurred and the corresponding bright parts
on the illumination map are as well. In (c), you can see the control panel in a darkened setting and the
control panel unlit (or full bright), and (d) in the illumination-mapped versions. By blurring the portion
to be lit in the color map and the illumination map, a glow effect is simulated.

81shaDers anD materials

accurately. These six images cover all directions: up, down, front, back,
left, and right. Ideally, they all line up, meaning the images meet at the
edges so the reflection is seamless. The images of the cube map are most
commonly static, meaning they are always the same. If you are looking
into a reflection created by a static cube map, you won’t see yourself (or
the in-game character). This is the most efficient way to handle cube
mapping, but there are also other techniques for generating real-time
reflections. One of those techniques is called dynamic cube mapping.
This method redraws the six images in the cube map every frame. If the
object mapped with the environment map moves, or something in the
environment around it moves, the cube maps are updated to render an
accurate reflection in real time.

Figure 3.19 shows how the (static) cube map was created for the
pitcher. Notice the maps arranged as if the cube was folded open like
a box. The six images that form the cube map were rendered from the
location of the pitcher, so the metal looks as if it is reflecting its sur-
roundings from the proper position. You can even use a simple cloud
image as a cube map and get some great results (Figure 3.20). I did noth-
ing more than use cloud images for each face of the cube map, and the
armor looks like it is made of silver. The neat thing is that, in a game,
those reflections would move with the armor and look so much more
convincing than a static image of a reflection.

Often, shader systems give the artist the ability to pan, rotate, scale, and
otherwise move a texture in real time. This can be useful to convey the
movement of elements on a computer screen, fluid through pipes, or to

pan/rotate/scale

FIGUre 3.18 Magic particle unlit and lit.

3D Game environments82

create a moving walkway. It has been used to animate waterfalls and
rotating fans. In Figure 3.21, you can see the simple concepts of pan-
ning (moving vertically or horizontally), rotating (turning), and scaling
(larger or smaller). You can also see that, to make a wheel look like it is
turning, we must pan and rotate the texture.

You should be aware that, although this illustrates the concept,
chances are that, in a 3D game, the mesh the texture is on would turn
and move, and not the texture itself. I have used a scrolling and panning
smoke texture over a simple laser-light texture with a great dust-in-the-
laser-beams effect (Figure 3.22).

These shaders add 3D depth to an otherwise flat surface. While bump
maps are grayscale and display the most limited 3D effect, the others
add depth using a color map with lighting information encoded in it.

Bump, normal,
and parallax
occlusion mapping

FIGUre 3.19 This cube map was created for the pitcher. The metal looks
as if it is reflecting its surroundings from the proper position.

83shaDers anD materials

These shaders are all similar in what they accomplish, but, depending on
the exact code of the shader and the supporting hardware, the effect can
range from really cool to absolutely awesome. A basic normal map adds
a level of depth deeper than the bump map, but more advanced forms of
these shaders add details and behaviors such as self-occlusion, silhouett-
ing, and self-shadowing. Figure 3.23 is a simple visual demonstration of
how the shader operates. Because we can calculate the light of the sur-
face for every pixel, we don’t need to include geometry to create shadows
and highlights as we did when we lit per polygon. We can now tell the
3D application to treat each and every pixel as if it was reacting to light,
as it did when it was on the high-polygon model.

Have you ever seen a mural or painting that looked real, but, when
you changed your viewing angle, you could suddenly see that it was fake,
a flat 2D image? The light and shadow didn’t move. The artist painted
it to be viewed from that one angle, so it only looks good from that one
angle. Imagine if you could create a painting that quickly repainted itself
every time you moved, so it looked as if you were seeing a real 3D scene.
That is essentially what a normal map is doing as it calculates light and
shadow in real time.

In short, a normal map is an RGB image that records all of the light
and shadow detail from a high-polygon model. When this map is applied
to a low-resolution model, the light and shadows are calculated as if the
light was hitting the high-resolution version of the model. The idea is
actually simple to understand (of course, my standard disclaimer of how
tricky this is for a programmer goes here, but, seriously, we have the fun
part of all of this).

FIGUre 3.20 With a simple cloud image as a cube map, this armor looks as if it is made of silver.

3D Game environments84

We still need to maintain the silhouette of the model as best as
we can. Using a present-day vanilla normal map allows us to focus
more polygons on the silhouette of the model, which is a benefit.
But there is also a drawback to this: it means that the normal map
cannot change the silhouette. Back to the painting analogy: even if a
painting can be repainted so quickly it looks real, there is a limit to
the effect. When you move too far off on an angle, you will see that
it is just a flat 2D painting that is updating in real time. That is how
a basic normal map works. But there are versions of normal maps
under development now that can actually move the pixels in real time
and change the silhouette when viewed from the side; this would be

or

FIGUre 3.21 Pan (moving vertically or horizontally), rotating (turning), and scaling (larger or smaller).

85shaDers anD materials

like the canvas of the painting actually pushing out to form the detail
painted on it.

Although the best normal maps are typically generated from very
highly detailed 3D models, you can get a free Photoshop plug-in from

Diffuse Additive

Alpha

Pan
rotate

FIGUre 3.22 Scrolling and panning smoke texture over a simple laser-light texture for a dust-in-the-
laser-beams effect.

3D Game environments86

Polygon normal

Low-polygon surface

Low-polygon surface

High-polygon surfaces

Normal map
Low-polygon surface

FIGUre 3.23 A simple visual demonstration of how the shader operates.

87shaDers anD materials

NVIDIA that will generate a normal map for you from a 2D image. There
are many other tricks for creating normal maps entirely in Photoshop,
and we will use them later in the book. This method is especially easy
when creating environmental art, since the surfaces we work with tend
to be much simpler than the surface of a character. In Figure 3.24, the
surface was built up using images created in Photoshop; even the normal
map was created as a black-and-white map and exported as a normal
map. You can see the grayscale image used to create the normal map and
the surface with nothing applied to it. Then, you see the color map only,
and the normal map only, and finally the surface with all the maps
applied. We look at normal mapping in much greater depth later in the
book and actually create normal maps using a few different methods.

Conclusion

That was a quick look at what shaders can do. We will implement all of
them in the coming exercises to create various effects. Our implementa-
tion will be generic, meaning that we will create the assets for the shader
based on the most basic parameters. If you are using Max, Maya, Unreal
3, or any other shader system, these basics will translate easily into those
systems.

Grayscale
Blank

Color

Normal map

Normal
map

implemented

FIGUre 3.24 A surface built up using images built up in Photoshop.

http://taylorandfrancis.com

Section ii

Low-polygon
environments with

simple shaders

http://taylorandfrancis.com

91

Chapter FOUr

Planning the low-polygon
urban environment

Introduction

The large urban environment is a pretty common setting in games.
Driving is a primary activity, along with stealing cars and running
over pedestrians. Large city areas offer some unique challenges, but,
for the most part, they can be the easiest to deal with in terms of creat-
ing environmental assets. From a programmer’s point of view, it can
be demanding to code the environment for driving in a very large area
where the player can see distant buildings and drive for miles—that is,
in terms of the textures and models needed to fill the city. These ele-
ments tend to be repetitive by nature and inorganic. In this chapter, we
will establish general information so we can start creating the world.
Then, we will follow with chapters on three-dimensional (3D) modeling
and texture creation.

If you are able to drive a vehicle in a game, chances are you are play-
ing in a large, open environment. We will discuss large forested areas
that use hilly terrain later in the book; in this chapter, we will cover large
urban areas. Large urban areas are also used in large-scale massively
multiplayer online (MMO) games, as well as in driving games and team
shooters. Sticking with the focus of this book, we will create a pretty
generic (technically speaking) set of assets for a large urban environ-
ment, but one that can be expanded on (or reduced) depending on the

3D Game environments92

situation you find yourself in. Before you begin building assets for any
space, you need to answer a lot of questions. We will explore these basics
before moving on to asset creation:

• Development technology

• Platform technology

• Game perspective

• Game theme

• Game genre

• Game fiction

• World maps

• Concept art and/or reference

• Asset list

technological assumptions

The first thing we have to know is what we need to develop the game:
two-dimensional (2D) and 3D programs, game tools, and what plat-
form or machine configuration we are shooting for. As discussed in
the Introduction, for the scope of this book, we don’t need to look at
budgets or specific brand names for our development tools and user
platform. The purpose of this book is to examine the task before us
in universal terms that will plug into any situation in which you are
working. At the basic core, you can use almost any commercial 2D
and 3D software to create the needed assets for any one of a large
number of the commercial game engines. In practice, there are large
gulfs between the cost of one commercial product and another, as well
as between the results of various products, but, essentially, they are
all doing the same basic thing. This book gives you the foundation to
more rapidly learn the basics of any set of tools you may end up devel-
oping with. This book is also limited to the creation of world assets
and not the specific implementation. Over the course of my career, I
have developed on at least 10 different 2D and 3D engines and never
had much difficulty moving between them. A polygon, a pixel, dis-
tance fog, occlusion—these things are the same in every engine. So our
assumption here is that we can produce the needed 2D and 3D assets
with tools easily obtainable.

Note: Remember that, although specific game tools are not the focus of
this book, to obtain a job, you will want to know at least one commer-
cially successful game development tool really well.

93PlanninG the low-PolyGon urban environment

point of view

It is assumed that this large urban space is being set up for a driving
game. The perspective will be a third-person view. The camera will have
movement and will move closer to the vehicle the slower it goes and will
pull back at higher speeds. Like most games that have high-speed driv-
ing as the main activity, the environment is not meant to be explored
close up. The assets tend to be lower quality in relation to the cars. Most
driving games, even today (and rightly so), put the greatest focus and
resources into the cars. Notice that, in most games, the car will have
opacity on the glass, reflections on the paint, and high detail in terms
of polygons and textures, but the buildings are lower in polygon count
and texture resolution and have virtually no shaders on them. It only
makes sense that a building you are blazing past at 150 miles per hour
(240 kilometers per hour) will have less detail than the car you are con-
stantly looking at (and trying not to wreck)—because the building needs
less. So, we will not detail the world too much and not burden the game
engine with an abundance of shaders, effects, and large assets.

theme

This is a basic New York-type setting that can be dressed to look like
almost any city in almost any recent or near-future time period. In our
special projects, we will look at three common variations of the urban
setting: (1) a different or foreign city, (2) a grungy city, and (3) a bombed-
out city. For the generic New York urban look, I went online and searched
for images of the props and the city streets I wanted to create. From this,
I was able to break down an overall look and feel I wanted and a list of
the assets I needed to create.

Genre

This is a high-speed driving game. Whether you are racing professionally
through the streets or running from the cops, you are expected to be driv-
ing really fast. There are many more questions that need to be asked and
answered in an actual development scenario, but, for this exercise, we focus
only on the environment and ask those questions pertaining to the creation of
the environment. Some of the questions you need answers to are as follows:

• How close does the player get to the buildings, and how much is he
expected to examine them?

3D Game environments94

• Does the player get to leave the vehicle and explore the world?
Can he jump high, fly, climb walls, or fly a chopper? It is very
important at the outset to know where the player can go and how
he can travel.

• Are there alternate routes or choices the player can make, or are
they limited to one path?

Usually, these questions will have been asked and answered, and you
will work from sketches, concept art, and other materials. But there is
always the chance you will be in the situation where you have to ask
these questions. For this exercise, we will restrict the player path to the
street. That being the case, we know now that the upper parts of the
buildings do not need high detail.

World size

The technology (game engine) that runs the game and the game design
will determine most of what you can and can’t do in your game world
and what compromises will be made in order to make the game look
good and run well. In games like Grand Theft Auto (GTA) and True
Crime, you can go through all the streets and into many buildings. It’s
possible to jump rails and end up in water or on a rooftop. You can get
out of the car, and your character can run around the city. This type of
massive world will probably have lower-polygon-count models than a
racing game where your primary objective is to outrun the other cars on
a closed track. No matter how many buildings there are and how big the
city looks, you can’t get out of your car and interact with the world. You
are limited to driving on a track. In a GTA-type game, the designers and
the artist have to make sure there are no holes the player can fall through,
whereas the driving/racing games can have buildings floating in space,
as long as you can’t see the base of the buildings.

Although we aren’t designing and building for a specific technology,
we need to make some assumptions. In general, these types of games use
texture atlases, sheets, or T-pages, and contain either tileable textures or
a texture packed with details that are used to make a more detailed struc-
ture. Since we are working with power-of-two textures, you can create
the atlas textures easily if you need to. For this exercise, we will create
all of our textures as separate entities.

The 3D assets must contain as few polygons as possible, so unseen
polygons should be removed. Note that some of the next-generation tech-
nology uses lighting models that require sealed geometry, and more poly-
gons are required to create sealed geometry, but polygon optimization

95PlanninG the low-PolyGon urban environment

techniques are important, even if you can render a gazillion of them. It
is also often more efficient to leave the backs of buildings on and, if you
can, to model each side to look like a different building. This way, you
can use one model in various positions and make it look like several dif-
ferent buildings.

Note: Keep in mind that, in the final game, there will be more going on
than the rendering of your world assets. Another target assigned early on
is a frame rate goal. A fully operational game will be processing charac-
ters, user interface, physics, sound, and more, and all of this eats frame
rate. If you are running at the predetermined frame rate before the entire
game is up and running, then expect the frame rate to drop dramatically
when the rest of the game systems are integrated.

We can’t set meaningful asset budgets, but we should have some
guidelines. Although I do not mention frame rate (we are not going to
integrate these assets into a game engine to see a frame rate), frame rate
is actually the most important target to reach. In general, a world this
large, with all considerations made, will have low-polygon world models
that use small textures and no shaders, if at all possible.

Game fiction

Game fiction is very important. The back story of the game world will
determine a great deal of what the game will look like. A utopian future
will look very different from a postapocalyptic world. Think of the
future world as portrayed in I, Robot versus The Terminator movies.
Although the look of the game will be determined by the designers,
the producers, and the art director, it is wise to know as much about the
world you are building as possible. Not only will that help you be a more
effective artist, you may be given leeway to create the props or settings
as you see fit. If and when that happens, that is your chance to shine as
an artist.

http://taylorandfrancis.com

97

Chapter FIVe

Modeling the large
urban environment

Introduction

In this chapter, we will model and UV-map all the parts of the large
urban environment. I will try to give you various approaches to each
aspect of the scene and discuss the integration of these assets into typical
gaming and three-dimensional (3D) environments. I might make refer-
ence to the various technical aspects of asset creation discussed earlier
in the book, so it would serve you best to have read the first several chap-
ters of this book, or at least to have skimmed them, and to make sure you
understand the basic concepts presented in each chapter. For example, if
any of the modeling concepts in the instructions are confusing or unclear
to you, go back and look at the chapter earlier in the book that introduces
the relevant concepts. By the end of this chapter, you will be able to take
the information, suggestions, and guidelines to develop a city scene of
your own that looks unique and the way you want it to, and that can oper-
ate technically in the 3D environment you are working in.

Although large and seemingly complex, the large urban environment
is based on a few categories of model, each containing a few simple
meshes. A few meshes in the following categories will completely popu-
late our city:

• Base streets

• Repeating buildings

• Landmark structures

• Props and decorations

3D Game environments98

There are as many approaches to constructing a large urban environ-
ment as there are games that take place in a large urban environment.
And, although each game development project is different from the last,
there is a core set of methods used to construct this type of environment:
(a) modular, (b) free-form, or (c) a hybrid of the two. Even the most com-
plex and advanced city-building system is based in one of these three
methods, and, for the environmental artist, there will be much similarity
among them all. Regardless of the actual specifics of the implementa-
tion and development on any given project, the assets you create will be
fundamentally two-dimensional (2D) and 3D assets that need to fit into
a world that is constructed in a certain way and has certain technologi-
cal guidelines and requirements. For example, a 3D mesh of a building
will be the same in almost any game, and the differences will fall into
a list of can- and can’t-dos that are fairly easy to address. Most of these
are listed in Chapter 1, and others will be unique to the project you are
working on and will be introduced to you when you start working on
that development team. Knowing the basics of these methods will make
learning any new aspect of game world construction much easier.

So, when you work with a proprietary system, you may learn new
tools that do various tasks—such as auto-populate the world with foliage
or auto-generate roads and streets. Often, there will be special tools to
specifically address the particular major tasks the developers are facing
and that represent an important focus in the game. For a large outdoor
game, for instance, there may be a system dedicated to dealing with a
large and varied amount of foliage in a large outdoor world; but, in a
driving game, foliage will most likely be treated as a prop that can be
placed where needed and therefore does not require a special system.

In short, you will mostly be using basic skills to create 2D and 3D
assets for use with one of the following methods to construct the world:

• Modular—Building modular pieces (Figure 5.1) that allow the
construction of city blocks and the placement of buildings and
objects by essentially snapping the pieces together on a grid.

• Free-form—This is usually how driving and racing games with
a smaller scope and a more complex track are built. The player is
confined to the vehicle and a set track; therefore, objects can be
placed free-form about the world to make everything look its best
from the player’s point of view. There is no need to snap to a grid
(see Figure 5.2). Note that just because you don’t need to snap to
a grid doesn’t mean you shouldn’t take advantage of the grid. You
should still design and build your assets to the grid for the ease of
use and accuracy. There is always a use for the grid, no matter how
free-form you are allowed to be.

99moDelinG the larGe urban environment

• Hybrid—This is obviously a combination of the two. Often, devel-
opers are given more than one tool to accomplish a goal. You might
be able to build free-form roads and bridges that can be lined up
with modular streets on a grid—for example, a freeway off-ramp
that takes the player into a city. There are also systems that involve
a large terrain-type entity that has a grid visible on it (in the game
editor). Roads can be painted onto the terrain, as well as placed as
free-form meshes, or snapped onto a grid. See Figure 5.3.

FIGUre 5.1 Modular method.

FIGUre 5.2 Free-form method.

3D Game environments100

Blocking out the level

Blocking out a game level is the process of laying out a level as quickly
as possible while still being playable in the game. Objects are created
and placed for functional and not visual reasons. Usually, texturing,
lighting, and detailed geometry are not part of level blocking, but, since
these aspects can be a part of, or affect, game play, they will sometimes
be included in this phase.

You may be called upon to help block out the level. I actually love to
be involved in this stage of development, as it gives me a very intimate
knowledge of how the level will be played. If you are very familiar with
where the players will be going, what challenges they may face, and
what is visible from any given location in the level, the task of creat-
ing the most efficient and visually pleasing assets will be made much
easier. In addition, working through this phase will help you develop
much clearer communication with the designers. Blocking can take
months or skipped altogether, depending on the complexity of the game,
the genre, the scope, the team’s experience, and other factors. Unless
you are very experienced in game development, I would suggest block-
ing to some degree. Think about creating a level that looks awesome
(while still considering the limits of game development and building so
the work is as optimized as possible) and then having to change things
every few hours as the game play becomes more refined. These changes
will almost always involve more than just swapping assets if the level is
too far along.

Primarily, the blocked-out level allows designers to play the level and
make sure their ideas work as planned without investing a significant
amount of development time. But it also allows the environmental artist
time to become familiar with the layout of the level, as well to become
intimate with what the designers are trying to accomplish. Obviously,

FIGUre 5.3 Hybrid method.

101moDelinG the larGe urban environment

the environment is critical in creating the experience the designers are
trying to give the player, so this is an area where the environmental artist
can potentially have great influence. When the time comes to actually
construct the level, if you’ve been given time to mull things over, you
may have a list of things you want to try in order to accomplish the vari-
ous goals of the level.

When blocking a level, simple textures and/or colors usually do the
job of communicating the needed information about the level. Where
the player is able to go may be one color or texture, a climbable wall
another, an event trigger another, and so on (Figure 5.4). For this exam-
ple, the geometry we use to block the level can also be utilized as the
basic geometry of the level. We can add detail as opposed to recreating
the geometry.

The first thing we do is to set up the grid to match across our tools so
we can work consistently and more easily. The grid you use in your 3D
app should match the grid in the 2D app and the game editor. So, a
512 × 512 cube should snap onto a power-of-two grid in your 3D app,
the texture you map to it should fit perfectly on it, and both should snap
into place in the game editor (see Figure 5.5). A primary benefit of this

Setting up the grid

Climbable

Vehicle charge

Player access

Impassable

High detail

FIGUre 5.4 Blocking example.

3D Game environments102

is the ease and speed at which you can work. It also allows for accuracy
and consistency. An accurately created world can use smaller assets and
actually look better than a sloppy, larger one. Using the power-of-two
texture still is advantageous in most game engines, as they can process
these sizes faster.

To make this happen, you simply need to set the grid in each applica-
tion to a power of two. This is usually expressed in generic units in a 3D
application and pixels in Photoshop, and then again as generic units in
the game editor.

Fortunately for us, a large city is usually laid out on a grid and with
standards applied to the size, shape, and color of things, among other
attributes. This makes it easy to create a street model that we can lay out
on the grid and fill in with buildings. Using a system of various building
meshes and textures that are mixed and matched with a few landmarks
(large and unique buildings or structures) and details, we can make a
rather large and convincing cityscape.

A city is fundamentally created with very basic shapes; in fact, most
of these objects are cubes. You can see in Figure 5.6 that the intersection
of this city street is nothing more than a handful of cubes with a texture
laid over them. In Figure 5.7, you can see that even the simplest addition
begins to create a city feel. If you look at almost any city street, you will
also further notice that it is the ground floor that contains most of the

Basic parts

3D application

2D application

Game editor512

512 512

512

FIGUre 5.5 Working with the same units across applications makes it
easy to build a world. The 3D object, the 2D asset, and both together in the
game as they come together exactly.

103moDelinG the larGe urban environment

1024

10241024

1024

1024
1024

1024

FIGUre 5.6 The base texture of our world.

FIGUre 5.7 A building and then a lower floor added for interest and believability.

3D Game environments104

detail and decoration. This only makes sense. Both in a game and in real
life, it is where the people/players will be. Even if there are flying cars,
there is still a notion of the ground floor. The movie The Fifth Element
has a huge cityscape with incredibly tall buildings, but the people tend
to congregate at certain levels, and the traffic is routed to certain eleva-
tions and directions. This allows high-density details to be concentrated
in a few areas, whereas the vast majority of the city can be of low detail.
Therefore, the detail level of the streets is based on the extent of access
the player has to them. In this scenario, the player can drive on the streets
but not walk on them, so we will make them look good from a close
distance, but we’ll forgo high detail.

Note: We are building the street in sections here, but they need to be
built according to what’s best for the game technology you are work-
ing with. Some game levels are built as one large entity, and the engine
decides what to draw (or not). In that case, you need to have smaller
chunks so the game engine isn’t always drawing one huge model.

World measurements and scale

Early on, the designers of the game should know the measurements of
all the players’ available moves. The measurements of every dynamic
aspect of the game should be known. If the player can run, how fast can
he or she run? How far can he or she run? If he or she can jump, how high
and how far? Does he or she jump farther if running? You get the idea.
You may be involved in figuring out these measurements, but you can’t
effectively start building the game without them. If you get too far along
without this information, you will undoubtedly have a lot of reworking
to do. It happens in development that these numbers may change, but
a lot of thought must be put into such a decision. What if a jetpack is
suddenly introduced into the game late in development? Suddenly, the
player can fly in a million places he or she couldn’t get to before! This
blows all your work out of the water, especially if you did any optimi-
zation as you worked. Suddenly, the player can fly over buildings from
which you already eliminated all the (previously) nonvisible faces. They
can possibly fly out of the level, so what do you do then? Maybe they can
fly over jumping puzzles and avoid traps and encounters that have been
scripted. It may sound crazy, but this actually happened on a game once.
The development essentially started over from the drawing board just to
accommodate the jetpack, negating months of work.

The longer that development has been going on, the more serious
any change becomes. Limiting the player can also potentially be as

105moDelinG the larGe urban environment

damaging as allowing greater freedom. What if the players’ ability to
jump 30 feet is suddenly considered silly so the distance is cut to 10 feet?
Cutting this down to 29 feet is equally problematic: in a game, either
you can jump the distance or you can’t, so any measurement lower than
the jump height is unobtainable by the player. Suddenly, the player can’t
get around the world as easily as before. There may be many places the
player suddenly can’t get to or can’t get out of.

There are many measurements to know, but some of the more com-
mon ones are as follows:

• Character height

• Step height

• Walk speed

• Run speed

• Jump height (running or standing still)

• Grab-able ledge height

• Crouching height

• Prone (or laying down) height

• Trigger height

• Weapons ranges, blast radius, weapons distance

• Even radius measurements for audio

And, of course, we need to know about the world. Usually, a game
world constructed faithfully to real-world measurements doesn’t look or
function correctly. Ceilings look too low; doors are too narrow to pass
through. And real-world distances—miles and multiple yards—usually
have no room in a game world. From a game-play perspective, walk-
ing the actual distance across Los Angeles is incredibly boring. This
is mostly due to the fact that our view of the world is limited to a small
screen and lacks our real-world binocular vision. Developers also open
up the camera angle to accommodate for this, causing a fish-eye effect.
Try cutting a small square hole in a box and putting it over your head.
Run around a busy intersection near your house. You will see how lim-
ited a view of a game world you really have. (If you do this, have a friend
nearby with a camera and please send me the video.)

Although the units of measurement in most games are generic units,
and the real-world scale doesn’t translate well into games, you do need
to develop a set of standard measurements to build by that work in the
game. You usually start with the player avatar as a baseline for scale.
If the player is primarily human sized, you will develop all your mea-
surements based on this fact and work outward from this, considering

3D Game environments106

the design and artistic aspects of the game world. For example, we may
start with the base scale of 16 generic units equals a foot; therefore, an
average human would be 96 units high. Based on real-world measure-
ments, a door would be roughly 128 units high and 48 units wide. But,
considering the limits of vision in the game world and how the door
will look in game, chances are you will end up making the door larger,
and, as a result, the ceilings will be pushed higher and the buildings
themselves made larger.

If you know how high a doorway is and how high a step has to
be, you won’t be figuring this out every time you build something. It
is easy to develop a visual reference for these measurements: a visual
conversion between feet (or meters) and generic game units. Usually,
these charts contain standard measurements, such as door height, win-
dow height, height from the ground, step height, and so on (see Figure
5.8). These measurements are usually derived from the player and the
player’s allowed movement. For example, a first-person shooter and a
driving game will allow the player different modes of movement in the
game, as well as different speeds and access to different-sized openings.
If the player is controlling a man-sized avatar in the game world, he or
she could enter a standard doorway, whereas a vehicle-sized avatar could
not.

These measurements are all developed as a reference and need to
be developed based on what works in the game. You cannot be held to
real-world standards and measurements when creating a game. In fact, it
is pretty rare that a real-world unit looks good and works perfectly in a
game. Going back to the differences between a first-person shooter and
a driving game: in a game where you are a running human, the distances
are often compressed so you don’t get bored running forever. In a driv-
ing game, distances are often expanded, especially in the width of the
street or track, as the cars are numerous and moving very fast. We must
be careful to take into account the many variables in game develop-
ment, which can include the goals of design and the limits of technology.
There are always choices to be made: do we create a large environment
and sacrifice detail for a setting where many players can congregate and
wage battle? The size is needed for the number of players to battle, and
the detail must be conserved for the numerous events spawned by the
players. (See the introduction to Chapter 1 for a little more information.)
On the other hand, if we were to create the same size of environment for
a game limited to a few players, we could probably add more detail—
larger textures, more polygons, and so on.

After you determine what sizes work in your game for doors, ceil-
ing heights, and the like, write them down. Then, for work ease and
consistency, list some of the common objects and track their sizes and

107moDelinG the larGe urban environment

measurements on a simple, rough foot-to-unit conversion chart. You may
want to establish sizes for the average human, doors, windows, streets,
and sidewalks, and, in our case, we may want to know the height of a
light pole, a traffic sign, and other elements common to our environment.
For this example, an average 6-foot human would be 96 units, a door that

Human Door Stairs Windows

6 feet

Sidewalk/street Climb height

Jump height

Crawl height

FIGUre 5.8 Standard measurements, such as door height, window height,
height from the ground, and step height, should be determined before asset
creation.

3D Game environments108

looks good might be 128 units high, and so forth. The following simple
table presents a baseline conversion.

Units-to-feet baseline

16 = 1 foot
32 = 2 feet
64 = 4 feet
128 = 8 feet
256 = 16 feet
512 = 32 feet
1,024 = 64 feet
2,048 = 128 feet

Modeling the streets

Do we start with a box? Do we extrude a line? It really doesn’t matter.
After practice, you will know the best way to get to your end goal. In
the case of such a simple mesh, it really doesn’t matter how you start but
how you end. As long as the mesh is solid and accurate, you are okay.
However, one factor to consider in choosing one way to start your mesh
versus another is the speed in which you will finish it. In this case, I
started with a spline because starting with a box would have required
more steps to complete the mesh.

But, you may ask, “How large do I make this object?”
The size of the streets depends on how they will be used, and these

measurements will most likely be dictated to you. In this example, I
decided to make these streets wide, since this is a driving game. We
want them wide enough to accommodate several cars racing around
(Figure 5.9). This is a great time to look at world measurements and how
we determine what they are. In this case, the streets are 128-feet wide,
 256-feet long, and 2-feet thick, or 2,048 units wide, 4,096 units long, and
32 units thick. This gives us room for sidewalks and six lanes of traffic.
The sidewalk is 16-feet wide (256 units), and the street drops one foot
from the curb (16 units). A foot-high curb in real life would be far too
high, but, since this is a driving game, it looks good. A curb that was
lower and based on real-life measurements (3–6 inches) would look too
low in the game. After the street was created, I added a chamfer to the
edge of the sidewalk to round it off a bit.

While the depth doesn’t matter for this example, in some instances,
depth might be a consideration. There may be a reason to make the street
thin—for example, in the case of an overpass or a street that must pass

109moDelinG the larGe urban environment

over the portions of the level that has underground components. Or you
may need to make a thick mesh—say, in the case of a street that may
have pits cut into it, or the thickness may be needed for the way the level
is constructed. Alternatively, you may want a few different street meshes
for variety and game play (Figure 5.10).

To create the intersection, I used a copy of the connector face and
extruded the polygons using the hinge from edge (see Figure 5.11). First,
you extrude this at a 90° angle with eight sections. You will have to go
into vertex mode in the top viewport and snap the middle vertices to
the grid to bring them out to where they need to be to make the line
straight. To make a more rounded corner, you can add sections when
extruding, but this will add faces to the mesh and increase the number
of vertices you have to line up. However, that should not be a deterrent
if you really can use that many polygons, as it is not much more work to
drag the additional vertices to one of the three corners and weld them

16 units/ foot 96 units/6 feet 128 units/8 feet

Units

Feet 16

256

48

768

FIGUre 5.9 In this example, I decided to make these streets wide, since this is a driving game.

3D Game environments110

FIGUre 5.10 In some instances, while building a game world, depth might
be a consideration. Streets may need to be thin, in the case of an overpass
or sections that need to pass over portions of the level that are underground,
or thick, if the mesh needs detail carved into it.

FIGUre 5.11 To create the intersection, I used a copy of the connector face and extruded the poly-
gons using hinge from edge.

111moDelinG the larGe urban environment

all together. I hinged the faces using eight segments for a nicely rounded
corner. Notice that the mesh of the street is cut in half and the intersec-
tion is cut in fourths. These are complete meshes, but I cut them for
efficient texturing. You will see why in Chapter 6.

A curve in the street can be created from the copied connector face.
Extrude it to 2,048 with 16 sections and bend it 90° (Figure 5.12).

UV-mapping the meshes

I am introducing UV-mapping here and now. While UV-mapping is often
treated as a separate step, I usually UV-map as I work. I do this to avail
myself of opportunities to save time and effort, and two ways to do that
are by UV-mapping repetitive objects and UV-mapping objects before
they are manipulated. Most people hate UV-mapping meshes, and I am
no exception. The only thing that pushes me to take my time and do the
best I can is the fact that good UV-mapping makes a huge difference in
how good the final mesh looks in the game and how efficiently it func-
tions. UV-mapping is easy to understand (go back to Chapter 2 if you are
 having any trouble) and fairly easy to do. It is simply the number of choices
you have when working on this task and the tedium of it that makes it so
hard. So, with no further delay (because writing about UV-mapping is far
more tedious than doing it), I present to you UV-mapping.

Texturing and UV-mapping the urban environment are pretty straight-
forward. Even so, before we can create and apply textures, we need first
to set up the UV maps on the mesh. For this, we use a special texture
called a UV template or UV map (Figure 5.13). This is simply an image
usually covered with colors, numbers, and a grid, to help when assign-
ing UV maps to polygons. This type of image makes it really easy to
see where a part of a mesh is mapped on the UV template. You can see
where the UVs for a polygon(s) are assigned, whether they are flipped,

FIGUre 5.12 A curve in the street can be created from the copied connector face.

3D Game environments112

upside down, or otherwise altered. But its greatest use is in avoiding
stretching and maintaining consistency. While the textures in this envi-
ronment are simple to UV-map, they are either inorganic tiling textures
or singular instances such as signs, and they could be mapped using the
default mapping tools described in Chapter 2 (planar, box, and so on).
But we will use the UV-mapping tool so we can begin to understand
UV-mapping. Since we made the model on the grid, creating and apply-
ing textures will be much easier. Let’s start with the streets.

This mesh is literally planar mapped (Figure 5.14) so you can see that,
in the initial mapping, in which the texture is square, the UV map is
stretched in one direction. Using your 3D application, you can correct
this in any number of ways. In Max, I could type in a number telling it
to tile twice on that axis, but we can also edit the UVs in the UV editor.
On the mesh, the sides will be stretched from the planar projection but
will never be seen.

We can build each building as one mesh or break it into two parts:
(1) street level and (2) upper floors. The two-mesh approach allows for
the swapping of the street-level base and the upper floors. This, in turn,

Street UV-mapping

repeating
buildings

FIGUre 5.13 UV map guide.

113moDelinG the larGe urban environment

allows for more variety. If you build the building as one mesh, you need
to keep the buildings and the base floors more generic, whereas, with
the two-mesh approach, you can build a variety of bases and only a few
upper floors, or vice versa. For this example, we will create our buildings
as one mesh. But, by slicing the mesh in certain places, we can map vari-
ous textures to the various parts of the buildings to get different looks.
Starting with the base of the building, we can create a simple box that
represents the footprint of the building. For this example, I am calling
a block 4,096 units. This is pretty big, since 16 units equal a foot. That
makes the base of this structure 256 × 256 feet. Since the streets are
built to the same grid sizing, they will line up perfectly with the bases
of the buildings. This block size holds about four average-sized build-
ings. Each building may have multiple storefronts on the ground floor.
Of course, this is completely changeable. And which method you use
depends on the game and the technology you are working with.

Look at the photos of several of the most common types of building
in a city. At its simplest, a building is a large cube. For most low-polygon
buildings, you can simply create a cube on the grid and snap it to a power
of two. See Figure 5.15 for an example of the most basic building blocks
of a city: the streets and a building. Next is the textured models (Figure
5.16) and, finally, the first simple iteration of a building adding a differ-
ent ground floor (Figure 5.17).

We will create a few meshes now that can be rotated and retextured
using the textures we will create in Chapter 6. As we discussed earlier in
this section, the upper floors of these buildings will be simple in geom-
etry and texture. Initially, we will develop this as a daytime level, but,
later, we will explore the process of making this a nighttime level, and

FIGUre 5.14 UV-mapping the streets.

3D Game environments114

1024

10241024

1024

1024
1024

1024

FIGUre 5.15 The most basic building blocks of a city.

FIGUre 5.16 Textured models.

115moDelinG the larGe urban environment

then the upper portions of the buildings become even less important, as
they will be extremely dark, essentially becoming silhouettes. As part of
the detailing of the level, we will also be creating numerous signs that
will further obscure the buildings. The meshes are of very simple design
and have a footprint of 2,048 × 2,048. The average height should be
around 2,048 as well—this is roughly 10 stories high.

Since the lower floors of the city are where the detail needs to be, we
will build a series of lower floors that can be dressed differently. These
lower-floor meshes don’t necessarily need to be numerous and overly
distinctive. They will be constructed so that, later, we can map them
with various base textures and window textures. In Figure 5.18, there
are several storefronts that are more distinctive. Most will be simple
boxes. The average height of a floor of a building from the outside is
10–15 feet, and the bottom floors can possibly be taller since some may
contain lobbies. Figure 5.19 shows the various upper floors.

The buildings are UV-mapped using box mapping. You may have to
rotate the UVs on one side of the mesh, depending on how it maps by
default. Some of the buildings have more than one texture, but the UV
maps are the same for each texture.

Landmarks help the player navigate the world. A landmark may be an
object of a different color, a unique object, or almost anything that is
a unique and distinguishable aspect of a specific part of a level. In our

Landmarks

FIGUre 5.17 The first simple iteration of a building, adding a different
ground floor.

3D Game environments116

case, we could choose many ways to create a landmark. A simple solu-
tion would be to make one street or building stand out from the rest using
varied lighting. Or we could create a special mesh that stands out, such
as a tower, a bridge, or a special area, like a park or a plaza. The approach
we will take is to make all our buildings look unique but uniform. By
rotating them, scaling them, and, of course, swapping textures on them,
we can get a wide variety of buildings that visually meld together—no

FIGUre 5.18 Several storefronts that are more distinctive.

FIGUre 5.19 Various upper floors.

117moDelinG the larGe urban environment

one will stand out overly much. By every once in a while placing a struc-
ture, building, or area in our level (or more than one, depending on the
size of the level) that is so different it really stands out, we add a level of
realism to the level and make it easier for the player to navigate. This is
true to real life. Look at the skyline of any city, and you will immediately
recognize major landmarks such as the Arch, the Golden Gate Bridge,
and the Space Needle—the rest of the buildings are visual filler.

Landmarks can also help establish place and time. If you see the
Eiffel Tower in a game, you can safely assume you are in Paris. If you
see the same tower under construction, you might assume that you are
in the Paris of the past. If you see the tower broken but sticking above
the rubble of a city, you can assume you are in a future where some cata-
clysmic event happened in Paris. Or maybe the tower is standing in the
enormous lobby of a pristine and futuristic building.

In our level, we will make a parking garage for our landmark, similar to
the one in Figure 5.20. We will also detail this intersection so it is very dis-
tinctive. By adding many signs and lights, this will be an obvious landmark.

The parking garage geometry is basic, just as in real life. It is the com-
position of the simple elements that make or break a mesh. The simplest
mesh can look beautiful if the scale, proportion, and placement—the

FIGUre 5.20 We will make a parking garage for our landmark.

3D Game environments118

composition—of the mesh is well done. As a side note on this, even
though we try to stay on the grid, sometimes, it is necessary to eyeball
something and tweak the vertices or placement of a mesh to create the
proper composition of elements. Even though this is a simple mesh, after
it is textured and decorated, it will look pretty cool. Let’s start with the
base of the garage. Since the garage will take up an entire city block,
I started with a base that is 4,096 × 4,096. Remember that 16 units equal
a foot, and that makes the base of this structure 256 × 256 feet. The park-
ing garage is mostly large, flat shapes for the floors and several columns
throughout the structure. To add interest, we can add the lobby/stair /
entrance structure and the large, solid, building-like structure. Later, we
will add some details that will make the structure more impressive. We
can build this in three parts: (1) the main part of the structure, (2) the
lobby, and (3) the building portion. The columns are a perfect example of
an item you should UV-map before you duplicate it across the building.

The main building is actually the simplest part of the structure. This is where
the cars park, and it is nothing more than concrete slabs held up by concrete
pillars. Of course, there could be more detail if you wanted to include it—
lights, pipes, and other structural details. But, since this is not designed to be
entered, we can limit the detail to what is visible. Start with the base, which
is 4,096 × 4,096 × 32, and then add the columns. The columns are 64 × 64 ×
1,024 units, and you can see in Figure 5.21 that I started with one column
and copied it, but I didn’t lay them all out in a perfectly uniform pattern. I
kept two close together and copied them twice and moved them upward and
then selected the six newly created columns and copied them across the base
to form four rows. I stayed on the grid but created a pattern of interest in an
otherwise drab structure. You will end up deleting some of the columns later
as the other parts of the building are added and the columns are obscured.

Next, I created the floors of the parking garage (Figure 5.22) by sim-
ply creating a box that is 3,584 × 3,840 × 128. I ended up making the box
a bit smaller using vertex editing and eyeballing the size so the concrete
pillars stuck out a bit from the structure. You could leave it flush if you
like that look. The floors were also inset and extruded for a richer look.

The lobby building is the large, glass-enclosed portion of the structure.
This serves a few purposes: it marks the entrance to the building and helps
make the purely functional structure a little more pleasing to the eye.
For this, I started with a box that is 512 × 512 × 1,792. I inset the side
faces by 64 and extruded them inward by 64. Then, I deleted the bottom
faces shown in the figure and aligned all the bottom vertices to the floor
of the scene. You can use a few boxes to create the crossbars to help
keep the polygon count down, or you can create the crossbars so they

Main building

Lobby building

119moDelinG the larGe urban environment

split the mesh and add polygons. This is actually better for texturing and
is the way I chose to do it. To do this, simply delete the side faces of the
lobby, create a box that fits in that space (512 × 512 footprint, to fit right
between the pillars of the lobby structure), and create the box with five
sections (or split the mesh). Chamfer the lines and extrude the newly cre-
ated faces (Figure 5.23).

Base and columns

FIGUre 5.21 Starting with one column and copying it on the grid.

3D Game environments120

The solid portion of a parking garage is often where a stairwell, or even
storage rooms and security offices, may be located. Aesthetically, this
helps balance out the structure. Copy the lobby (Figure 5.24) and non-
uniformly scale or squish it down. This will thin the horizontal crossbars
a bit, but that is not a problem. When we make the building wider and
deeper, we need to use vertex editing and snap to the grid. Horizontally
widening the building using a scale makes the vertical columns thicker,
and that looks bad to me.

Solid building

Floors

FIGUre 5.22 The floors of the parking garage.

121moDelinG the larGe urban environment

For a final touch, I took the edge of the bottom-most floor section
and pulled it down to the base of the garage. This made the first floor
solid and made the entire building look more substantial. Don’t forget to
delete all the faces under the floor section that are now unseen.

Props and decorations often take the most time in planning and creation,
but these details convey the most information about an environment.
They can suggest a country (or a planet), time, condition, technological

Details

Lobby

Lobby alternative

FIGUre 5.23 The lobby building is the large glass-enclosed portion of the
structure.

3D Game environments122

Building

Filling in lower floor

FIGUre 5.24 The solid portion of a parking garage, where there may be a
stairwell or even storage rooms and security offices.

123moDelinG the larGe urban environment

advancement, and so forth. Fortunately, the present-day urban setting is
easy to create using simple, low-polygon meshes. We can quickly create
a variety of meshes for the most common items seen on a city street.
These items are mostly mapped using a planar map. (See Chapter 2 for
an explanation of the mapping types.)

When we create the textures, for the sake of efficiency, we will be plac-
ing them on one image to form a sheet of textures, as discussed in Chapter
1. You can map the objects now or wait. In a real scenario, I would wait
until the texture sheet was complete before mapping the objects. Since we
are creating a defined set of models and textures and know the layout of
the sheet ahead of time, you have the option of mapping the items now.

For the alpha-channeled decals, the mesh is nothing more than one poly-
gon (Figure 5.25). The challenge of these alpha details is in the textur-
ing phase, not the modeling or UV-mapping phase. The decals are the
simplest of the meshes to UV-map. You just have to keep the UVs from
overlapping the other decals on the sheet.

Even the meshes for most of the other props are very simple and, in
fact, are composed of a few cubes or simple shapes. What’s most impor-
tant in the modeling phase is the scale and proportions of the mesh.
The building signs are an exception, as they will be built on a case-by-
case basis, depending on where they are and what image they have on
them. But still, they are just cubes. For props that the player interacts
with, or gets anywhere near, the proper scale and proportion will be what
looks best in the game and what works in the game in terms of game play
and technological parameters.

Decals

FIGUre 5.25 Manholes, damaged asphalt, tire marks, and oil stains.

3D Game environments124

Traffic signs are simple: a post and the sign itself (see Figure 5.26). Keep
in mind that signs can also be attached to other surfaces, like walls and
light posts. To create the post, make a cube that is 2 × 4 × 190; for the
sign, a cube 2 × 33 × 50. Chamfer the corner edges of the sign slightly so
it doesn’t look so square.

These can be built using a simple visual reference (Figure 5.27). In
Figure 5.28, the steps are laid out for one style of newspaper machine.

traffic signs

Newspaper
machines

FIGUre 5.26 Traffic signs simply comprise a post and the sign itself.

FIGUre 5.27 Reference for the newspaper machine.

125moDelinG the larGe urban environment

1 2 3

4 5 6

7

FIGUre 5.28 Creating paper machine 1.

3D Game environments126

Newspaper machine 1

 1. Start with a box (22 × 22 × 4).

 2. Extrude the top face 3 units and scale it inward to create the base.

 3. Extrude again (24 units) to form the pedestal of the base.

 4. Extrude this face a tiny bit, and then scale it outward to the width
you want the body of the machine to be. I extruded outward to cre-
ate a 32 × 32 base for the body of the machine.

 5. Extrude this face upward (32 in this case) for the body of the machine.

 6. Select the front face of the machine and inset this face.

 7. Extrude inward slightly, and you have the complete mesh.

Newspaper machine 2 To create the common boxy newspaper
machine we are used to seeing on the corner (Figure 5.29), the following
steps are used:

 1. Start with a larger box, 32 × 32 × 64, divided into two horizontally.
We divide the box in half this way for texturing. I actually made
my box 60 high because the proportions look better, and I didn’t
need it to be an exact power-of-two measurement.

1 2

3

4

FIGUre 5.29 Creating paper machine 2.

127moDelinG the larGe urban environment

 2. The top of the machine is another cube (14 × 14 × 21).

 3. The latch can be an extruded line or two boxes attached.

 4. To create the machine with the open door, you simply create a
box for the door and attach the latch to it. Inset the face where the
opening will be and extrude inward (Figure 5.30).

The phone booth and the bus stop are just a little bit more involved. The
bus stop is very simple (Figure 5.31) and the phone booth equally so. To
start off, we will create the bus stop.

 1. The roof is a 128 × 64 × 8 cube.

 2. The legs are 3 × 3 × 128 cubes.

 3. The panels are cubes that fit the spaces between the posts. I inset
two of these and deleted the faces and bridged the gaps to create a
simple frame. On the third one, I left the faces and mapped them
with a movie poster.

 4. Finally, there is the cold, uncomfortable metal bench that collects
water and is covered in some sticky substance. This is 96 × 18 × 4;
the legs are 4 × 10 × 26.

Bus stop

FIGUre 5.30 Creating paper machine 2 with open door.

3D Game environments128

3.

2.

4.

1.

120 units

96 units

128 units

FIGUre 5.31 The bus stop parts.

129moDelinG the larGe urban environment

Next, let’s create the phone booth.

 1. Start with the roof: 52 × 52 × 12. Use the legs from the bus stop
(Figure 5.32).

 2. To create the panels, use a box with six divisions, and cut it once
horizontally and twice vertically. Inset these faces and select and
delete the middle panels. I chose to delete the middle panels for
looks, but you can leave them or delete them all.

 3. In addition to removing hidden faces, to optimize this mesh as
much as possible, I deleted the inner faces of the frame and welded
the vertices together.

 4. The phone itself is a box (9 × 10 × 28) and a handset. The handset
is an extruded line (Figure 5.33).

 5. The phone book (6 × 16 × 14) is hanging from a small triangular
shelf in the corner opposite the phone.

The dumpster, the trash can, and the mailbox are again cubes but with
rounded tops that take a few more steps to create (Figure 5.34). I find that
simply chamfering the edges a couple of times is quick and produces nice
results. The mailbox has the letter shoot on it, and the trash can has an
opening we need to tackle. First, we will look at the dumpster (Figure 5.35).

 1. Start with a cube (96 × 64 × 55).

 2. Extrude the top by 3 units.

 3. Extrude again 6 units.

 4. Nonuniformly scale the topmost face inward, not from the sides.
This is not a bevel, which would bring all four edges in.

 5. Extrude the top 3 units.

 6. Collapse the vertices as shown.

 7. Add the two boxes on the edge, and you have the dumpster mesh.

Now, we have the trash can (Figure 5.36). Not every item we model will
fit neatly onto the grid. Items like the trash can will look too tall or too
short if an exact power of two is used. In this case, I made the can 36 × 36
at the base and 56 units high.

 1. Start with the cube 36 × 36 × 56.

 2. Extrude the top face 14 units.

 3. Chamfer the two top edges as shown.

 4. Chamfer again.

 5. Inset the face where the trash can’s opening will be.

 6. Delete this face and bridge the two openings together.

phone booth

Dumpster, trash
can, and mailbox

3D Game environments130

48 units
120 units

96 units

1.

2.

3.

FIGUre 5.32 The phone booth uses some of the bus-stop parts.

131moDelinG the larGe urban environment

4.

5.

FIGUre 5.33 The phone details.

3D Game environments132

FIGUre 5.34 The trash can, mailbox, and dumpster.

1 2 3

54

6
7

FIGUre 5.35 Creating the dumpster.

133moDelinG the larGe urban environment

Next, we’ll make the mailbox (Figure 5.37).

 1. Create a box that is 32 × 32 × 42 units and remove the top face.

 2. Create a cylinder with a radius of 16, height of 32, with 16 sides.
You can cut this in half or use the Slice option to model half a cyl-
inder. This creates much cleaner geometry. Slice from −180 to 0.
Remove the unneeded face of the cylinder.

 3. Attach the cylinder to the box. Depending on how you modeled the
cylinder, you may have to snap and weld any extra vertices together.

 4. Lay out a line for the chute shape.

 5. Extrude the line about 26 units, and create the legs: four 3 × 3 × 10
boxes.

 6. Put all the pieces together and be sure to remove the back faces
from the legs and the chute.

To create the streetlights (Figure 5.38), we start with the base.

 1. Create a box that is 56 × 56 × 42, scale the top polygon inward, and
chamfer the top eight edges.

 2. To create the lamp at the top, create a sphere with 10 segments and
delete the bottom two rows of faces and close the opening. Scale

Streetlights and
traffic lights

1 2 3

4 5 6

FIGUre 5.36 Creating the trash can.

3D Game environments134

this inward and downward. Grab the back face and pull it out. If
you need a smoother, higher polygon shape, you can start with a
sphere with more segments or apply a mesh smoother to the shape.

 3. The three poles are obviously cylinders. The main post is a cylin-
der that is 12 units in radius and tapers at the top. The height is a
little over 512 units. I have 10 sides on my cylinder, but you can
have more or less, depending on your needs. For the horizontal
poles supporting the light fixture, you can eyeball the length and
number of divisions. You can leave the support pole off if you are
going really low polygon or add more detail faces for a smoother
bend.

The traffic lights start with the streetlight as a base. You add to this
some of the traffic signs created earlier, the traffic lights, and the do-not-
walk sign (Figure 5.39).

 1. The body of the traffic light fixture is a box, 40 × 20 × 128.
Chamfer all the edges slightly. Create tubes to fit. Here, you have
many options, depending on the polygon budget; you can leave
these covers off, or add faces to create a smooth tub around the

2

3

4

5

6

1

FIGUre 5.37 Creating the mailbox.

135moDelinG the larGe urban environment

1

3

2

FIGUre 5.38 Creating the streetlight.

3D Game environments136

1

2

3

FIGUre 5.39 Creating the traffic lights.

137moDelinG the larGe urban environment

lights. You can have fully enclosed tubes or half tubes. Two small
slender boxes form the braces that hold the lights together.

 2. The do-not-walk sign starts with a box, 30 × 45 × 45. Chamfer the
four outer edges and select the front face. Inset and extrude this
inward. Select the bottom vertices and pull them back to create the
angle on the front of the sign.

 3. The brackets are boxes rotated on their sides so they aren’t so
boxy.

These traffic lights are pretty generic and are based on standard
American traffic lights. Looking on the Internet for a few minutes will
net you a large sampling of traffic lights from various times and loca-
tions (Figure 5.40). This applies to all other props as well.

California

ChinaEastern Canada

Nova Scotia
MexicoUnited Kingdom

FIGUre 5.40 Various traffic lights from around the world.

3D Game environments138

FIGUre 5.41 Creating the parking meter and fire hydrant.

139moDelinG the larGe urban environment

The parking meter and the fire hydrant are created as follows (Figure 5.41):

 1. The parking meter starts with a cylinder with 16 sides, radius 8,
and a thickness of 4. Pull the bottom vertices down and move them
until they are the shape of the parking meter. Select the front and
rear faces and bevel them.

 2. The fire hydrant starts with a cylinder that is 12-sided. Bevel the
outer faces and inset and extrude the faces to create the cap. The
hydrant itself is a lathed line. The hydrant is roughly 46 units high.

Conclusion

Now that we have all of our meshes ready, we will create textures for
them in the next chapter.

parking meter
and fire hydrant

http://taylorandfrancis.com

141

Chapter SIX

Texturing the large
urban environment

Introduction

In this chapter, we will create textures for all of the buildings, landmarks,
props, and details from the previous chapters. I usually start with a 1,024 ×
1,024 texture, but, when the time comes to place it in a game, texture
resolution is usually reduced. I will not address the final resolution here
because it depends on many factors that I can’t address without a lot more
information. Keep in mind that, if you are able to use a 1,024 texture as a
tiling base, you can add more detail and richness to the texture, but also
keep in mind that, even if you can use a large texture, don’t choose this
option just because you can. If you can get the same results with a smaller
texture, you are freeing up resources, and, if you are able to reduce even
a small portion of the textures in your game, the effects are cumulative,
and you will be freeing up a lot of resources in the grand scheme of things.

If possible, when creating textures for an environment, I like to sepa-
rate them by the type of texturing they will receive: tiling or nontiling,
alpha channeling or not, illuminated or fully bright. For this environ-
ment, I want to keep the number of render passes to a minimum, so I
will choose a set of texture effects that accomplishes what I need with a
limited number of effect passes. Since this is a low-resource background
for a driving game, there is no need to eat up resources with numerous
render passes. Keep in mind that, if this was a real-life development
process, there could be a reason for more elaborate effects at a starting
line or finish line, or that you could have the budget to add more to the
entire environment, but, even then, multiple render passes would be a
waste on an item that possibly may be obscured anyway. Most recently,

3D Game environments142

racing games have been postprocessing entire frames with blur effects
and environmental effects that tend to further obscure the background;
therefore, elaborate shaders and high-detail environments might make
no visual difference to the scene.

texture creation

All textures for this exercise are of the following types:

• Tiling base materials

• Tiling building window illumination mapped

• Nontiling details

• Nontiling illumination-mapped details

• Nontiling full-brightness details

• Nontiling details requiring alpha channeling

All of the textures and their corresponding UV maps, along with the
meshes, are on the book’s CRC Press website page: https://www.crcpress
.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds
/ Ahearn/p/book/9781138920026, under the Downloads tab, so that you
can further examine the meshes, the textures, and the way in which they
are mapped.

Base materials are the simplest of the textures (cement, bricks, metal,
streets), consisting of all things that tile and make use of no extra maps.
These textures cover large areas of the world and are called base tex-
tures because they compose the base materials of the world—they are
what the world is made of (Figure 6.1). In this case, there are cement
and asphalt textures that can tile repeatedly and a couple of textures
dedicated to the streets and ground surfaces. Since the first thing to do
is block out the level in its most basic form, the following are the first
textures you will need for the first set of geometry you will build:

• Asphalt/base streets

• Base cement/sidewalk

• Intersection

Asphalt/base streets To create the asphalt, start by opening the image,
dirt_001.jpg, on the book’s webpage on the CRC Press website. This is
a pretty subtle image of dirt. I spent some time cloning and cleaning this
image because it has to tile over a fairly large area. Because I plan to
add detail using alpha-channeled images on polygons, I can make this a
pretty subtle texture. Refer to Figure 6.2 as you perform the next steps.

tiling base
materials

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

143texturinG the larGe urban environment

Next, I added the lines—I wanted them under all the overlays. Create
a new layer and set the opacity to 25%. Create the lines by filling a selec-
tion with white and erasing parts of the lines.

Open the image cracks_DVD.jpg, and paste it on top of the lines. Set
the blending mode to Soft Light and the opacity to 25% to 30%.

Create a new layer, set your colors to black and white (D key), and
render some clouds. I also rendered various clouds a few times. Set the
opacity to 25%. This helps the street look less perfect and a little more
stained and weathered.

Base cement/sidewalk

Cement

 1. Start with a new 1,024 × 1,024 image.

 2. Create a new layer named base.

 3. Set the foreground color RGB at 91, 87, 85. Fill the layer.

 4. Filter · Noise · Add Noise: 3%.

FIGUre 6.1 Raw images from which textures are made.

3D Game environments144

Dirt

Cracks

Stains

Final

Lines

FIGUre 6.2 Steps for creating the base asphalt.

145texturinG the larGe urban environment

 5. Filter · Blur · Gaussian Blur: 0.5 pixels.

 6. Filter · Brush Strokes · Spatter: Spray Radius 15, Smoothness
8. Now, we have a very basic and clean cement. The next step
is to add subtle and varied stains.

 7. Create a new layer, and name it grime.

 8. Filter · Render · Clouds.

 9. Brightness/Contrast: Brightness +10, Contrast +60.

 10. Change the layer blending mode to Multiply, and take the opac-
ity down to 15% to 20%.

 11. Add the Cracks layer from the asphalt, and take that down to
13% opacity.

 12. Add the image cement_001.jpg as a layer, and set the blending
mode to Overlay and the opacity to about 70%.

Your image should look like Figure 6.3. Save this image as base
cement, since you will reuse it. We will make the sidewalk, as well as
build textures, from this image.

Sidewalk

 1. Open a copy of the base cement we just created.

 2. Turn on your grid and set it to 128 with 2 subdivisions.

 3. Marquee a 256 × 1,024 section of this image and copy it. You
don’t have to flatten the image. Use Ctrl + C on an active layer,

FIGUre 6.3 Creating a base cement.

3D Game environments146

and you can copy the image as you see it. Optionally, if you are
working in a situation where the sidewalk and street textures are
to be applied as separate textures, you can create two images.

 4. Paste this into the street image we created earlier, and snap it
to the left of the image using the grid. Remember, because we
created our street mesh to these dimensions, the sidewalk will
fit perfectly on it, and we UV-mapped it to tile twice length-
wise since the mesh is twice as long as the texture but the same
width.

 5. Copy this layer (Ctrl + J) and erase the seams along the grid. I
divided the sidewalk into fourths and used a rough eraser.

 6. To add more detail and richness, use the dirt_002 image
and lasso in a few sections. Give the lasso tool a few pixels
(5–10) of feather, and place these on the street image. Set the
blending mode to Overlay, and take the opacity down to about
75%. This image is brighter and has a higher contrast so that

FIGUre 6.4 Sidewalk and street created for the street mesh.

147texturinG the larGe urban environment

the dirt will pop more. Because dirt tends to collect off the
beaten path, place the dirt next to the curb and erase it along
the curb so it looks like it stops right there (like it does in the
real world). Do the same for the sidewalk if you like, but you
should probably make the dirt smaller and more subtle on the
sidewalk (Figure 6.4).

We need to make the intersection and the street textures tile together.
Since the street is made using two halves that are rotated and placed
together, this creates a situation where the texture will show a hard seam
down the middle of the street—or that’s how most people leave it. The
street mesh is not flipped but rather rotated in most cases. This is actu-
ally good because flipping the mesh would create a butterfly effect in
which the mirroring of the two matching sides was obvious. By rotating
the mesh and making sure that the edge pixels tile, we can create a situ-
ation where the center lines don’t mirror each other. See Figure 6.5 for
this part of the exercise.

Flipped

Rotated

FIGUre 6.5 By rotating the mesh and making sure that the edge pixels
tile, we can create a situation where the center lines don’t mirror each other.

3D Game environments148

 1. Cut a narrow strip of pixels from the upper-half edge where the
streets meet.

 2. Vertically flip this piece and move it into position on the bottom
half. Zoom in and clean out all but a few pixels on the edge of the
strip. The two halves now tile with each other.

 3. If the process is still unclear, see Figure 6.6 for a more straightfor-
ward visual. You also need to repeat this process on the ends of the
street texture.

Intersection

 1. Open a copy of the street texture (Figure 6.7).

 2. Save this file as street_intersection.

 3. Turn off the sidewalk, dirt, and line layers. You should be left with
a plain asphalt texture matching our street.

 4. Turn on the grid. If you created a rounded corner, then you can
simply make a circular selection from the corner with the sidewalk
and invert the selection to remove portions of the sidewalk that are
no longer needed. Do the same for the upper layer of concrete to
create the seam; use the eraser to erase the line, and let the line be
a bit messed up.

 5. You will not use the line layers, but you do need to create the
crosswalks using the same method you used to create the lines.
Remember to work on the grid.

 6. Finally, add some dirt, if you wish, and the tire marks. The tire
marks are fuzzy, curved lines with a low opacity (25% to 30%).

 7. Make the two edges tile with each other in the same manner that
the streets are tiled. This intersection will need to meet up with
the street mesh on the sidewalk edges and each other on the inner
edges. Whether you use one split mesh or four meshes, they tile the
same.

Building windows illumination mapped The textures that cover the
upper stories of the buildings are actually simpler and easier to create
than the base textures, but we will be adding the illumination map and
that will take a little more effort. We will use the illumination map to
make some windows look as if there are lights on inside the building.
Generally, the windows in a modern city on the upper floors of skyscrap-
ers are a solid pane of glass that is reflective on the outside.

149texturinG the larGe urban environment

Flipped Rotated

Copying edges Tiling while rotated

FIGUre 6.6 Illustration of how to make edges tile to various edges.

3D Game environments150

 1. Open a new document that is 1,024 square, and name it windows
_001_DIFF.

 2. Fill the background with RGB 63, 152, 160 (Figure 6.8).

 3. Create a new layer named lights.

 4. Turn on the grid and set it to 128 with gridlines every 2 subdivisions.

 5. Marquee off a 256 × 256 area to create the first set of lights. Use a
soft brush of about 45 pixels and paint some random black about
the edges of the area, and, using white, paint some dots about the
area.

 6. Put a 12- to 15-pixel Gaussian blur on this, and use the brush again
to put some of the hot back into the white lights.

FIGUre 6.7 Creating the corner texture.

151texturinG the larGe urban environment

 7. Create a new layer called stuff, and set the opacity to 63%.

 8. Make some random square and rectangular shapes in the windows.
You don’t even need the grid, as these shapes represent desks and
file cabinets and such in front of the windows.

 9. Gaussian blur this layer at about 6 to 7 pixels.

 10. While the lighted portion of the texture can be tiled across the tex-
ture since it is assumed the building has the same lighting installed
throughout, the stuff should be placed randomly but evenly dis-
tributed across the various windows. This is an opportunity to add
some richness in a very subtle way.

 11. Add another layer and name it frame. Set your foreground color
to a light gray. Even though this is a solid pane window, there is a

FIGUre 6.8 Windows.

3D Game environments152

small seam that holds the panes in place. Make a selection on the
grid (256 × 256), and stroke this inside at 2 pixels. Apply the layer
style Bevel and Emboss, and change the size to 2.

 12. You need to flatten this layer, so you might want to create a copy
of it in case you want to change something about it later, after you
flatten the layer (right mouse on the layer, select Create Layers, and
then merge all of them).

 13. Copy the frame across the texture using the grid to snap it in place.

Solid-pane illumination map There are two ways you can handle this
lightmap (Figure 6.9). I actually prefer the results of the easy way, which
is an on–off situation, meaning that the lightmap is either black or white.

FIGUre 6.9 Window illumination map.

153texturinG the larGe urban environment

You can set up a lightmap to control all the subtleties, if you wish, as
follows:

 1. The illumination map starts with the color map we just created.
Use a copy that is not flattened. Just duplicate the document and
name it windows_001_ILL.

 2. Use Ctrl + U to access the Hue Saturation dialog box, and take
the lightness all the way down so that the frame is now black. The
frame will not emit light since it is solid black.

 3. The light layer is already black and white so you need to desaturate
the background layer (Ctrl + Shift + U).

This might appear to be a bit bright in the game, so we will darken
the windows. You can darken the layer itself or use an adjustment
layer to do this. You might want to use a separate layer of darkness so
you can make selections using the grid to darken and lighten selected
windows.

The other things to try are as follows:

• You can alter the color in various windows so that there is some
subtle shade shifting among the windows.

• If possible, you can use multiple illumination maps to make vari-
ous windows lit and unlit to help break up tiling if you need to.

• If you can afford the large texture, consider shrinking the size of
the windows. This will allow more variety among the windows.

• Add a concrete strip vertically or horizontally (or both).

• Try variations on the strips, maybe a concrete outer strip run-
ning vertically and a darker smaller strip running horizontally
(Figure 6.10).

Google “skyscrapers,” and you will see that there are many variations
on the shape of the buildings and the windows, but they are all simple to
recreate using the base materials you just created.

Nontiling details

• Signs

• Newspaper machines

• Bus stop

• Phone booth

• Garbage can

• Dumpster

3D Game environments154

• Mailbox

• Light

• Traffic light

• Parking

• Fire hydrant

We can also add nontiling details for other meshes such as doors,
garage doors, and other such objects.

Signs Signs can be made easily in a few easy steps, but I have provided
a sheet of many common traffic signs. Use them, or alter them; they’re
yours. You do need to consider saturation, brightness, and conditions
when putting a sign in a scene (Figure 6.11). The signpost is a strip of color
in Photoshop with holes along it; the bevel and emboss filter was applied.

Newspaper machines I started with a photo reference and cropped it
(Figure 6.12), and then used Photoshop to strengthen the lines and create
variations in the texture. By changing color, the paper in the front of the
machine, and a few other details, you can create a nice variety of tex-
tures. You can see in the figure that the panels are all mapped from the
same part of the texture. The only difference is that, on the side, back,
and top panels, I moved the UVs inward so that the metal frame on the
lower front panel doesn’t show.

FIGUre 6.10 Two rendered buildings.

155texturinG the larGe urban environment

Shape

Rounded rectangle

Symbol/icon

Weathering/dirt

FIGUre 6.11 Signs? Easy.

3D Game environments156

FIGUre 6.12 Newspaper machine textures.

157texturinG the larGe urban environment

Bus stop/phone booth This mesh and the phone booth are examples
of where you may want to UV-map one part before replicating it many
times (Figure 6.13). The mesh for these objects is composed mostly
of those thin square posts. The texture is very simple. There are three
parts—(1) the thin posts, (2) the thicker bus-stop roof edge, and (3) the
seat. The panels can be removed, mapped with glass, or (as I will do
later) mapped with a full-brightness image from the billboards. The tex-
ture was created using bevel and emboss and touch-up with some dodg-
ing and burning.

You can see in Figure 6.13 that I used a photo reference for the front
of the phone and the sign on top. The rest I created in Photoshop in the
same way that I created the bus stop parts: color, bevel and emboss,
maybe a small bit of noise, and finally some dodging to get that nice
metal highlight along the metal parts.

Garbage can/dumpster/mailbox The can was created using a trash
image from Google, a pebbled rock surface from my hard drive, and
Photoshop (Figure 6.14). The dumpster was created using a photo refer-
ence. I used Photoshop to clean and crop this image, as well as create
the end textures for the arm slots on the side of the dumpster. I used
Photoshop to create the lid as well, that is, dark gray, some noise, and
the dodge and burn tools. I worked on the grid to make the lines straight
and easy to create. The mailbox was created from a photo reference, and
I was able to trim down the needed texture to the side, the chute, the chute
opening, and the legs. The rest of the mailbox is mapped in plain blue,
just like the blue newspaper machine. I simply matched the shades of blue
and used the paper machine panels to cover the plain parts of the box.

Light The light (Figure 6.15) has a base and a metal texture, both cre-
ated in Photoshop. The actual lamp of the light can be created and placed
in the nontiling full-brightness textures so that the light appears to be on.

Traffic light The traffic light starts with the lamp as its base (Figure
6.16). The base, the post, and the arms all use the previously created
texture. The signs can be added as you wish. All that’s left is the walk
signs and the traffic lights themselves. The walk signs are created from a
photo reference for the walk/don’t walk faces, and the yellow was created
in Photoshop using the UV template from the model. The streetlights
were created entirely in Photoshop. After creating the green base, I
added the light frames by making a circular selection on the grid, strok-
ing it, and applying the bevel and emboss filter. The lenses were painted
using the brush for the color, burn for the shadow across the top of the
lens, and dodge to create the small highlight.

3D Game environments158

FIGUre 6.13 This mesh and the phone booth are examples of where you may want to UV map one
part before replicating it many times.

159texturinG the larGe urban environment

FIGUre 6.14 Garbage can/dumpster/mailbox.

3D Game environments160

FIGUre 6.15 Light.

FIGUre 6.16 The traffic light starts with the lamp as its base.

161texturinG the larGe urban environment

Parking meter/fire hydrant The parking meter is actually made from
about four different parking meters found on Google (Figure 6.17). I
placed these over the UV template and painted in the silver face of the
meter so that it matched the mesh. The fire hydrant was made entirely in
Photoshop using bevel and emboss and overlaying a little dirt.

For some details of the world, such as the storefronts in this case, we
don’t want the entire texture to be full brightness. For this, we add an
illumination map to control what part of the texture is lit or dark, just as
we did for the windows. These textures are separated from the windows
because these details are not tiling, and the process of creating these
maps is slightly more involved. To make the base storefront texture, you
can use almost any image; the ones that work best are not necessarily
storefronts but rather the photos of a large room from eye level. Gaussian
blur that and add a row of people or objects in the foreground that are
dark and more in focus. Then, create your window and door frames.
From this separate layer of frames comes the pure black ones that you
need to block light in the illumination map (Figure 6.18).

Some textures can be displayed at full brightness, which makes render-
ing them faster, and they look great. Large electric signs and billboards
at night appear fully illuminated if they are backlit, or otherwise illumi-
nated. I made over 30 billboards. You can make as few or as many as you
need. The process I used was to look at recent pictures of Times Square
to survey billboards in terms of color, size, composition, and so on, and

Nontiling
illumination-
mapped details

Nontiling full-
brightness details

FIGUre 6.17 The parking meter is made from about four different parking meters found on Google.

3D Game environments162

started making my own mock billboards based on these. The billboards
don’t have to be large, even though they are as such in the game. They
work like real billboards do: kind of low resolution and designed to be
viewed from afar (Figure 6.19).

The effective use of a fully illuminated texture is rare, but, when you
can, optimization may get a boost. In this case, the large signs on the

FIGUre 6.18 For some details of the world, such as the storefronts in this case, we don’t want the
entire texture to be full brightness.

163texturinG the larGe urban environment

buildings are, in real life, backlit and appear fully bright. All of these
textures will require no special consideration at this stage. When they are
implemented in the game engine, they will be flagged as full-bright tex-
tures. Since they will be displayed at full brightness, I made the textures
a bit dark and brightened up the centers of a few so they have that uneven
backlit look that many real-world signs have. The one sign I made sure that
I had was for the parking garage. I made this a rather large vertical sign.

Some details require an alpha channel, such as decal-type details, plants,
and glass. We will include a few of these in our scene. Since alpha chan-
neling can be expensive, you want to use it sparingly and where it will

Nontiling details
requiring alpha
channeling

FIGUre 6.19 Large electric signs and billboards at night appear fully illuminated if they are backlit
or otherwise illuminated.

3D Game environments164

have the most impact. An example of this would be a manhole cover or
crack in the street. Since tiling textures need to be rather simple, and
contain no outstanding feature in order to tile effectively, alpha details
can be used to help break things up. I tend to concentrate on the corners
of the city block since that’s where most of the traffic occurs and where
people in real life and games alike tend to pay more attention to their
surroundings. The things that I decided to create were chosen because
they are common at a street corner and can be reused, they are simple
enough that reusing them won’t look too repetitive, and some of these
images hold up well under resizing. The ability to resize an image adds a
lot to the world. The tire skid marks are a good example. You can stretch
and squish these a long distance for a variety of tire marks. Manholes
can be slightly resized and rotated as well.

I like to create all of my alpha details over the surface that they will
be placed on in the game. In some cases, that’s not always possible, but,
here, all of these details will be displayed over the base street texture, so
start with a copy of the base street.

Sewer grates, manholes, and access All of these are derived from
 personal digital photos. I used three manhole covers and a metal plate.
I copied the metal plate four times and created the four different sewer
access and drain plates that you might see in a city street. The nonflat-
tened PSD file is on the book’s webpage on the CRC Press website:
https://www .crcpress.com/3D-Game-Environments-Create-Professional
-3D-Game -Worlds/Ahearn/p/book/9781138920026, under the Downloads
tab, so that you can see the settings I used. Basically, they are small bevel
and emboss layer styles combined with blending modes to blend the metal
into the streets. As I was putting the ring frames around the manhole
 covers, I thought an open manhole would look good as well. Later, we will
add more detail around these objects such as dirt and cracks (Figure 6.20).

Oil stains/tire marks For the oil stains, I created several layers of
various dot patterns, and each layer has a different opacity setting. The
larger and farther apart the oil stains, the lower the opacity setting. Add
some rust brown to the stains as well. The tire marks are fuzzy black
lines with a low opacity setting (Figure 6.21).

Cracks, dirt, holes, and tar patches The cracks were created using
the image cracks_02.jpg on the book’s webpage on the CRC Press
website. I used the cutout filter to get the cracks cleanly away from the
noisy background. This breaks the cracks and the background down
to their most basic colors so that you can select and delete the col-
ors around the cracks. This is important because, if you apply a slight

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

165texturinG the larGe urban environment

FIGUre 6.20 Examples of sewer grates, manholes, and access.

FIGUre 6.21 Oil stains/tire marks.

3D Game environments166

downward bevel and emboss to these cracks, they look great on the
asphalt. Use the cracks around the objects that are on the street such as
the manhole covers and access panels (Figure 6.22). Do this by plac-
ing a copy of the layer under the object and erasing all but a few of the
cracks around the object.

For the dirt, I used a couple of layers and various brushes and set the
opacity to low to create dirt and stains around the objects (Figure 6.23).

The tar patch and the worn-away asphalt are both simply textures
(asphalt and concrete, of course); the tar has an upward bevel, and the
worn-away spots have a downward one. I did a slight inner glow for
the worn-away asphalt so that it looks a little deeper (Figure 6.24; and
I threw in a dead rat in the street and some puke).

Cracks

Cutout

Cracks with bevel and emboss

FIGUre 6.22 The cracks were created using the image cracks_02.jpg
on the book’s webpage on the CRC Press website: https://www.crcpress
.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds
/ Ahearn/p/book/9781138920026, under the Downloads tab.

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

167texturinG the larGe urban environment

FIGUre 6.23 Dirt.

FIGUre 6.24 Looks like a city street to me!

3D Game environments168

Creating the alpha channel

No layer effects can be active when creating the alpha channel. If you
want to, copy the layer so that you can change things later. Create lay-
ers from the Layers palette menu and merge all the layers together. We
do this because Photoshop doesn’t see the pixels extending from a layer
effect since they are being created in real time by the program. We need
Photoshop to recognize these pixels so that it can calculate the proper
alpha channel for us.

Copy the image and merge all the layers, except for the background,
together. You need to make the objects layer white and the background
black. I find that the fastest way to do this is to jack the brightness all the
way up or down, depending on whether you want all black or all white
(Ctrl + U) (Figure 6.25).

FIGUre 6.25 The quickest and most accurate way to create an alpha
channel for a Photoshop file is to merge all the layers, except for the back-
ground, together and make the objects white and the background black.

169texturinG the larGe urban environment

Remember, if you are going to have an alpha channel, use it. Add all
the cool you can with it. Don’t just add a manhole cover—put dirt and
cracks around it, too.

Conclusion

Figure 6.26 presents all the meshes and textures in the scene.

FIGUre 6.26 All meshes and textures in scene.

http://taylorandfrancis.com

Section iii

Terrain, foliage, and more
advanced asset creation

http://taylorandfrancis.com

173

Chapter SeVeN

Introduction to natural
environments

Introduction

Building a large foliated outdoor environment can be challenging, but,
once you break it down to its basic elements, a game environment can be
fairly easy to create. The distinction here is that we are building a game
environment, not a real environment. A real outdoor environment has
many species of trees and plants, all with specific details. All we have to
do is make this space look good and look believable. In order to do this,
we need to understand what should be in a certain environment, and,
for the game artist, the focus is mainly on color and shape. We do need
to have some degree of accuracy, which we can obtain from pictures,
but, ultimately, the environment we will create will not stand up to the
scrutiny of a botanist.

The Island of Dr. Moreau, Treasure Island, Jurassic Park, LOST,
King Kong, Battle Royale.... I love these adventures that take place on
a remote island. In this section, we will look at terrain creation; cre-
ate some trees, plants, and rocks; build a sky dome; and then model
and texture a jungle base. The jungle base incorporates several envi-
ronmental features that can be used to our advantage. A dense jungle
demands optimization and visual trickery due to the scope of the assets
being rendered, but this density can also be used to our advantage.
The density of the jungle and the height of the terrain allow for some
occlusion tricks.

The jungle base is a large open environment, but the player cannot go
everywhere he or she wants to. The player is usually limited in move-
ment by the method of movement and the environment. In some games,

3D Game environments174

you can fly, and the terrain is vast; in others, you are limited to small
places, to on-foot speeds, and to certain terrain altitudes/heights.

technological assumptions

Polygons, pixels, distance fog, occlusion—these things are the same
in every engine. The platform we are shooting for is a bit behind the
cutting edge but still able to pump polygons and recent enough to
handle lots of render passes and to support terrain. While that is our
assumed technological baseline, this topic (the outdoors) in particu-
lar is not only more lengthy but also more vague and varied than the
others covered in the book. This is because there are so many more
options available technologically than in any other area. There is the
terrain to handle, which is a different animal from a hallway or a
closed room. An entire chapter is dedicated to the basic editing of
terrain in games. The other aspects of the outdoors include weather
and sky; water; and, of course, trees, plants, and other natural objects
such as rocks. So a chapter is dedicated to the creation of those
assets. I personally love creating outdoor environments, but I include
this chapter because many consider creating assets for the outdoors
a major challenge. I think the challenge lies in creating assets that
look consistent but not the same. For example, one or two trees, if
arranged properly, can fill a forest and, all look individual. This is
far more efficient than creating a hundred trees. Creating the actual
tree can be a modeling/texture challenge, but there are tools that can
be of great help. This chapter will introduce you to the asset-creation
aspect of the outdoors, as well as several tools that can assist you
greatly in the creation of the outdoors.

While an interior setting can get away with a more general set of
assets, the outdoors may require a more diverse set of assets from the
artist. This is not to say a larger set, just a more diverse set. An indoor
setting may require several panels for various parts of the world, but
these are most likely similar to each other and based on common materi-
als. In the outdoors, you may be required to create rocks, trees, plants,
water, and other assets that are used in different manners. From the
small, simple particle that is used to create an impressive rainstorm to
the complex set of textures that work together in the form of a shader to
make a wet palm frond look convincing, these assets all require different
disciplines and knowledge to create, as well as an understanding of the
diverse technologies that will utilize them.

Finally, there is a chapter on creating the actual assets for an outdoor
setting, including the man-made assets of the world.

175introDuction to natur al environments

Note: Remember that, although specific game tools are not the focus
of this book, in the job hunt, you will want to know at least one set of
commercially useful game development tools—and at the expert level
if possible. In this section, I am using screenshots from a commercial
engine CRYENGINE, and it handles terrain beautifully.

While this is a large open area, the jungle actually limits players for the
most part so they will be allowed a tighter third person than a driving
game or a massively multiplayer online (MMO) game. The terrain can
be open, but we can also close it down using hills and fog. Distance fog,
in this case, is expected in a hot jungle with a high degree of moisture.
We can have dense vegetation, which looks more realistic. There can
be large rocks and trees (Figure 7.1). Flight simulators and first-person
shooters that take place outdoors represent the opposite end of the per-
spective scale, so, naturally, they have some elements in common and
some that are very different. While both may allow for the manipulation
of the terrain, one may require up-close work with multiple layers of
texture and a fine-tuning of the terrain mesh for player movement, as
well as the fine-tuning of many more systems for foliage, decoration,
impact sounds, collision detection, etc. The other may use a height map
and a single large texture (or a MegaTexture) that was generated from

perspective

FIGUre 7.1 A jungle limits players for the most part, so, by using hills, fog, dense vegetation, and
large rocks and trees, we can limit their visibility.

3D Game environments176

algorithms or actual geological data. For our purposes, we will work
up close, but, if this was being built for a flight simulator, we would
simply ask the same questions; only the answers would be different. For
example, in a first-person game, we may have a full library of plants and
trees (meshes and textures), and we may have shaders assigned to these
assets for specular highlights, normal mapping, and even vertex shaders
for leaf movement if a player brushes past. We may also have to create
special collision hulls and assign sound events for moving through and
colliding with trees and bushes. But, if we were in a plane flying thou-
sands of feet in the air, our concerns would be very different. Would we
even need models of trees if we were that high up? In the coming chap-
ters, we will look at an application that will generate MegaTextures, and
we will look at the up-close-and-personal method of creating terrain.

Note: “MegaTexture refers to a texture allocation technique facilitating
the use of an extremely large terrain texture instead of repeating multiple
smaller textures. It is featured in Splash Damage’s game, Enemy Territory:
Quake Wars, and was developed by id Software technical director John
Carmack. MegaTexturing employs a single large texture for static terrain.
The texture is stored on the hard disk and streamed as needed, allowing
large amounts of detail and variation over a large area with comparatively
little RAM usage. The upcoming game Rage powered by the id Tech
5 engine uses textures that measure up to 128,000 × 128,000 pixels.”
Source: http://en.wikipedia.org/wiki/MegaTexture.

This island base, while still operational, is showing the wear and tear
of being in a jungle environment. There are cracks in the concrete, and
rust on the metal, and mold and vegetation grow wild. In brief, it appears
much like Jurassic Park in the later movies. Theme is important in an
outdoor setting, as well as an indoor setting. Think about the difference
of the outdoor setting in games like World of Warcraft as opposed to Far
Cry. Plants and trees are bound by the same creative forces that mechan-
ical assets are in a game. If your world is a happy, cartoony place, then
your trees should be as well. A bad place can have dark, spidery trees
with branches like skeletal fingers.

This is a rather large world, but you can’t see it all at once due to the hills
and valleys of the island, the twists and turns through the jungle, and the
fog. This will allow us to investigate a wide variety of outdoor-building
tools and techniques.

theme

World size

http://en.wikipedia.org/wiki/MegaTexture

177introDuction to natur al environments

The game fiction needs to answer the following questions:

• Who owns or runs this island: a mad scientist, a corporation, or a
government?

• Was this island taken over by another group? Could the aging mili-
tary base support more recent additions that alert the player to a
new inhabitant and where they might be from?

• What happens on this island? Are there large animal pens and
cages? Weird storage containers? Hatches all over the place?
(Yes, a LOST reference!) Bloody bodies gutted and tossed about
randomly?

• Is the island flat or mountainous?

• Where is this island? Is it in a tropical or arctic zone? This answers
many questions about the sky and the foliage.

• What was done to it in order for it to be inhabited? Was it stripped
down, or was it consciously left intact to disguise the presence of
the inhabitants?

• When was this island base built, and is it abandoned? Are the
structures from the recent past, the distant past, or are they brand
new?

Again, these questions are usually already asked and answered, and
you will work from sketches, concept art, and other materials, but there
is always the chance you will be in the situation where you have to ask
these questions.

Game fiction

http://taylorandfrancis.com

179

Chapter eIGht

Terrain

Introduction

In this chapter, we will look at the basics of terrain creation and editing
common to most terrain tools. There are three general ways to create ter-
rain for games: (1) manually using a three-dimensional (3D) application,
(2) using tools in a game editor, and (3) using a terrain generator. You usually
end up relying on one way and using the others in the course of your work.
Since in-game terrain tools are usually tailored to that game/game engine
and combine basic terrain-editing features with proprietary features, we will
first look at the basics of terrain creation, followed by a brief discussion of
terrain-creation software. After you understand the basics of terrain editing,
you should be able to quickly pick up almost any terrain in-game editor.

Manual terrain creation

Creating terrain manually can be tedious; it’s great if you are on a budget
or simply don’t need an overly large or elaborate piece of terrain. Manual
creation involves a few basic operations that can be used alone or in
conjunction with each other: forming the terrain mesh using a displace-
ment map, sculpting the mesh by hand, and using application-specific
tools to manipulate the mesh. You can also hand-paint the displacement
map, but that takes a great deal of time and skill. I believe you are better
off working on the mesh directly. Importing a rough displacement map
is useful if you need to build terrain that fits a certain map (Figure 8.1)
and work from there.

3D Game environments180

First, let’s look at using a displacement map to distort a mesh. This
is a pretty simple concept. Basically, a grayscale map is used to deter-
mine the height of any given point on a mesh. This is best understood
in illustration —Figure 8.2 shows samples of displacement maps and the
effect they would have on a mesh.

You can see that the finer the transition from black to white, the
smoother the physical transition on the mesh. What makes hand -
painting terrain so challenging is that each shift in grayscale is a change

FIGUre 8.1 Importing a rough height map.

181terr ain

in elevation. You can see how the slightest shade difference can cause
an ugly artifact in your mesh (Figure 8.3). In this case, the artifacts were
caused by extreme image compression.

When you need to hand-manipulate terrain in a traditional 3D
application such as Max or Maya, there are many tools to help you,
and each program has different tool sets. Maya has a set of mesh-
sculpting tools, while Max has features such as soft selection and
paint deformation. So you can import a height map (Figure 8.4),
manipulate it by hand (Figure 8.5), and apply various modifiers to it
as well (Figure 8.6).

Modifiers can include noise, ripples, waves, meting, relaxing, and
much more. Modifiers tend to affect an entire mesh, but, in Max, you

FIGUre 8.2 Height map.

3D Game environments182

FIGUre 8.3 Mesh artifact.

FIGUre 8.4 Importing a height map.

183terr ain

can use soft select to apply the modifier to a portion of the mesh and have
the effects fade out with the soft selection (Figure 8.7).

terrain-editing basics

Like any mesh, terrain is composed of polygons and pixels and has
resolution (Figure 8.8). The big difference in this mesh is how the
game engine handles it due to its size and intended use. And, because
it is a mesh, you can manipulate the vertices and polygons in much

FIGUre 8.5 Hand manipulation.

FIGUre 8.6 Modifiers applied to mesh.

3D Game environments184

625 Polygons

40,000 Polygons

FIGUre 8.8 Same height map with terrain of varied resolution.

FIGUre 8.7 Modifiers fading out using soft selection.

185terr ain

the same way. Note that there is a difference between the resolution
of the mesh and the resolution of the height map; both affect the end
result of the terrain (Figure 8.9). The mesh is composed of polygons,
and the more polygons, the smoother the mesh. The height map is
composed of pixels, and the more pixels, the finer the control it has
over the mesh. Thus, if one of these is low quality, it will reflect in
the other.

FIGUre 8.9 Same terrain mesh with height maps of varied resolution.

3D Game environments186

The basic tool for terrain editing is a brush, much like the brush in
Photoshop. You can determine the overall size of the brush and the hard-
ness of the brush. The softer the brush, the more gradual the slope of the
terrain. In Figure 8.10, you can see the effect of various brush settings. It
is important to understand this because so much of terrain manipulation
and painting is based on this concept.

FIGUre 8.10 Brush and various settings.

187terr ain

Free-form terrain painting

With the brush, you can physically manipulate the terrain to achieve
various effects. Most simply, you can raise or lower your terrain, as in
the example of the brush in the “Terrain-Editing Basics” section. But
there is a lot more you can do. Keep in mind that we are not talking
about textures or any other aspect other than the physical shape of the
terrain mesh.

You can set the size and softness of the brush, as well as the strength.
This allows for the subtle manipulation of the surface, or a radical change
in the surface (Figure 8.11).

Another useful effect is smoothing or erosion. This differs from a simple
lowering of the brush because it smoothes the angles between polygons,
not just lowers them from the center of the brush (Figure 8.12). A good
terrain editor will mimic actual erosion, which will look better than a
simple smoothing of polygons. The distinction is that the smooth effect
occurs mathematically, opening up the angles on the polygons affected,
whereas actual erosion pulls material down and piles it up below the
brush (Figure 8.13).

Another simple but useful tool is the ability to add random noise or tur-
bulence to your terrain (Figure 8.14). After shaping and smoothing, your
terrain may look too smooth and need some random movement along
the surface. Of course, there are settings that will determine the area and
strength of the effect, and, often, there is even a choice of which math-
ematical algorithm is used in calculating the turbulence.

push/pull
lower/raise

Smoothing/erosion

Noise/turbulence

FIGUre 8.11 The same brush with different strength settings.

3D Game environments188

Sometimes, you may want to establish a part of your terrain as a flat,
inorganic space where a building may be located, for example. Terrain
editors allow for the flattening of polygons, and you can usually choose
to flatten the terrain to a certain height that you enter numerically, or to
the height of the first polygon you select before you start flattening the
terrain (Figure 8.15). For the jungle river in the illustration, I flattened

Flatten/set
to height

Cliff face Erosion Smoothing

FIGUre 8.13 Smoothing versus erosion.

FIGUre 8.12 Most terrain editors allow for a smoothing or eroding function to help you shape your
terrain.

189terr ain

the terrain along the river path so that the water table would be clearly
visible to me and then eroded the banks of the riverbed.

Good terrain editors also allow for the creation of terrain features such
as cliffs and steppes. Most are starting to support tools that aid in the
creation of roads (Figure 8.16).

terrain texturing

At its most basic, terrain texturing is done using several tiling textures
of the surfaces most common to the environment you are creating. The
textures are stacked like layers in Photoshop, and either alpha-channeled
or combined to make a single large texture. Many large terrains in
a game are using several maps just for the base level of texture: one
large low-resolution color map, a smaller set of higher-detailed color
maps that are chopped into tiles and loaded and displayed only when
the player is on the section of the terrain that needs it, and a smaller,
highly detailed map that is often a bump or normal map for the area
immediately around the player where such fine detail would be appre-
ciated (Figure 8.17).

The terrain texture can be painted by hand in the terrain editor or
generated by the terrain editor. Hand-painting terrain is much like work-
ing with Photoshop layers.

Other features

FIGUre 8.14 Adding random movement along surface.

3D Game environments190

trees and foliage: Decoration/prop layers

This section is focused on the placement of the trees, foliage, and deco-
rations on the terrain. The creation of the assets used is discussed in the
“Terrain generation software” section.

Trees and smaller vegetation, such as grass and plants, are usually
handled separately for various reasons. Because trees are larger, they
usually require separate collision detection, lighting solutions, display
parameters, and so on. Foliage, being smaller and more nondescript, can
have no lighting and no collision detection and can be faded out and
not displayed at a relatively short distance. While some trees and larger

FIGUre 8.15 Flattening terrain.

191terr ain

FIGUre 8.16 Road created in L3DT.

FIGUre 8.17 Terrain texture MIP-map tiles.

3D Game environments192

props are hand-placed, grass and smaller vegetation and props are usu-
ally generated and placed on the fly. One rock may be randomly scaled,
rotated, and placed within certain set parameters to create a scattering
of rocks that appears as if it is composed of hundreds of individual rocks
that all look different but seem to be part of the same scene (Figure 8.18).

The technique for the placement of foliage can be taken from the
ground texture itself or painted on by an artist. If the ground texture is
used, the program looks at what textures are covering the surface and at
what percentage and puts down an appropriate type, size, and amount
of foliage (Figure 8.19). Hand-painting the foliage is based on the size
and softness of a brush (Figure 8.20). It is also typically possible to use
multiple layers of decoration or to assign multiple decorations to a layer.

FIGUre 8.18 Rocks scattered uniformly and reasonably.

193terr ain

There are differences in how this will behave. The first will allow for the
specific placement of the decoration on that layer, and the latter will put
down all the objects in that layer.

Some of the common parameters for foliage and prop layers are not
only brush settings but also the assignment of meshes to the layer, the
density of the decorations put down, the random rotation and scaling of
the mesh, and a radius at which the decoration will shrink and/or fade out.

terrain generation software

There are many programs that can generate terrain for you, and they range
in price, from very costly to free, and differ according to intended use. Some
like Bryce and VUE are designed for high-detail renders and not real-time

Grass = light foliage

Water = no foliage

FIGUre 8.19 Foliage placement by program. Many programs can look at the type of texture and
density and place the appropriate amount of foliage.

3D Game environments194

gaming, and use some very complex code that simulates various real-life
behaviors. Still others are barely more than mesh manipulators that allow for
layered painting on terrain. The reason that game developers are ill-served
by both of these tools is that the high-end tools do not produce assets easily
used in games, and the latter generate vast terrains programmatically and
generally lack the degree of close-up control the game developer needs. The
simplified terrain editors require that every inch of the terrain be handcrafted,
or that information from other sources be imported to aid the developer and
save them from creating the entire terrain by hand. So, on the one hand, there
is not enough fine detail control, and, on the other, we have all the control and
lack tools that can speed up and enhance our work.

Foliage map

FIGUre 8.20 Foliage painted on.

195terr ain

L3Dt

I have found that the L3DT serves the game developer best. This appli-
cation can generate a terrain and all associated maps (height, normal,
lightmap) and output the mesh and textures in various formats. And it
allows for the up-close editing and control needed by the developer. Even
the auto-generation can be controlled to a great degree by the developer,
as you will see. The most impressive aspect of this terrain generator is
the wizard that walks you through all the steps of terrain generation.

L3DT is a Windows application for generating artificial terrain maps
and textures developed by Aaron Torpy, the proprietor of Bundysoft.
There is a free standard version and a very reasonably priced professional
version. The standard version can do a lot, and it is free to use commer-
cially. L3DT was developed primarily for game developers making large
worlds typical of massively multiplayer online (MMO) games, but the
artist can use this as well to generate terrain for other uses.

The best thing about L3DT is that it supports several modes of opera-
tion. You can set a few general parameters and let the program do all the
work, and you can also manually edit your map and use a design map. The
design map is the middle ground between vast, uncontrolled terrain gen-
eration and tediously pushing every vertex where you want it and painting
every pixel. The design map lets you paint the attributes of your terrain
in broad strokes. You can determine the shape of the terrain, as well as
specify where things like mountains, plateaus, and volcanoes go. You can
add or subtract height, place cliffs, increase or decrease erosion, and more.
When L3DT generates the terrain, it looks at your design map and gener-
ates the fine details from there. There is even a terrain wizard that walks
you through the steps of creating your terrain, from the design map to the
finished texture and everything in between. Quick steps to create a small
simple map by just clicking a few buttons are shown in Figure 8.21.

Figure 8.22 shows a map created using the same parameters as in
Figure 8.21, but the design map has been changed to include one place
where the terrain is higher and more jagged. A larger, more radically
altered map is shown in Figure 8.23. Using the design map, I painted
in a lower valley with the temperate climate in the middle of this arctic
wasteland.

L3DT also supports the common editing tools discussed previously
in this chapter. You can shape and sculpt your terrain and use tools like
the road builder and erode brush. Figure 8.24 illustrates the tools in
action. And, when you are finished, you can recalculate the associated
maps, including the light, normal, and texture map. Here, you can see
(Figure 8.25) how altering the terrain in various fashions produces a

3D
 G

a
m

e en
v

ir
o

n
m

en
t

s
196

Design Map EditorDesign Map Wizard

Water table modeling Height map—can be edited in 3D

Light mapping

Final scene

Texture map

Normal mapAttribute map

FIGUre 8.21 Basic L3DT steps.

197terr ain

different texture. A flat surface is grassy; a smooth hill is slightly eroded;
and, at a steeper angle, you get exposed rock. Note that I lowered the ter-
rain below the water table; the area is filled with water, and the textures
reflect it. The shores are sandy, and the terrain under the water is dark-
ened and tinted based on the depth of the water.

The ability to control the climate is extensive. You can auto -
generate the climate, alter it on the design map, and even create your
own climates and save them as presets (like you can with most other
aspects of the terrain). The climate modeler distributes textures in a
realistic fashion, and this includes freshwater and saltwater effects.
In Figure 8.26, you can see that the same terrain has had its climate

FIGUre 8.22 One design map parameter changed.

3D Game environments198

changed and rerendered. The water can be automatically and man-
ually designed using the water-flooding aspects of the program or
tweaking it all by hand. And this is not a simple water plane that fills
the entire world at one level. It is possible to have an island on the sea
with a mountain lake on a higher elevation (Figure 8.27).

L3DT was designed to generate vary large maps. The free standard
version has a cap on this, but the professional version allows for maps
up to 131,072 × 131,072 pixels in size for the height map and 2M × 2M
for the texture. You don’t need gigs of RAM for these maps—L3DT
includes an automatic paging system that swaps map tiles from RAM to
the hard disk drive as required. It’s called a mosaic map, and it usually
caps RAM usage in the 100- to 200-MB range (even for gigabyte- or
terabyte-sized maps).

These are the basics of terrain creation. For this section of the book, I
used L3DT to generate a simple terrain that I will load into my 3D applica-
tion. I will displace a mesh with the height map and apply the terrain map
texture. Then, we can start to add trees and plants to make it look like a
jungle.

FIGUre 8.23 More radically altered map using the design map.

199terr ain

Road builder

Erode

Flatten Set to

FIGUre 8.24 Road builder, erode, and other common functions in L3DT. Note that the erosion
looks like real-world erosion—the material has slid down to fill the area below. This is not just a
smoothing algorithm.

3D Game environments200

FIGUre 8.25 Texture calculated by angle, depth, climate, and other factors.

201terr ain

FIGUre 8.26 Same terrain in different parts of the world: temperate, desert, and arctic.

3D Game environments202

Lake

Sea level

FIGUre 8.27 Water at multiple elevations.

203

Chapter NINe

Filling the world
Trees, plants, rocks,
water, and sky

Introduction

While creating trees, plants, and rocks is not a huge challenge, they are
organic (i.e., characterized by unique and somewhat random details/
features) and can take a bit of time to create. In addition, you have to do
a lot of work with the alpha channel to make the foliage look realistic.
Inevitably, you end up going through a complex number of steps to sepa-
rate a tree branch from its background. I think it is much faster, and you
get a better result, creating these assets by hand. Even if you can’t paint,
there are numerous tools that allow for the painting, and assembly, of
these assets. We will examine the following applications in this chapter:

• TreeMagik G3

• Plant Life

• SpeedTree

• Caustics Generator

• Deep Paint 2.0

Now that we have our terrain in place, we need to add trees, plants,
and rocks. Then, we need to fill it in with water and cover it with a sky.
Because the environment is a jungle, we have to develop some really lush
and green vegetation. When time comes to develop the plants and trees for
an environment, many like to be 100% botanically correct, and others do

3D Game environments204

what looks good to them. This is a game, so I tend to do what looks good,
but there is nonetheless a minimum level of accuracy you want to have.
For instance, jungle plants tend to be green and broad leafed, not brown
and spiky. No matter how you try and color-correct it, a cactus is going to
look out of place in a jungle. You don’t have to have a degree in botany;
just gather some good reference pictures of jungles from the Internet.

Don’t be intimated by the great outdoors. I have always had fun creat-
ing assets for the outdoor setting because it can actually be simpler in
some ways and get more impressive results than nonorganic subjects.
Many games available now have truly impressive outdoor environments
due to technological advancements. We are no longer confined to hall-
ways. As computers become more powerful, creative possibilities will
still expand further, and we will continue to see more of the outdoors.
Already, we are seeing impressive outdoor spaces being built for games,
with expansive terrain and high-polygon-count models. This trend will
continue and will get even better.

Large, impressive, and elaborate environments can be challenging to
create in many ways, but they are also easier to create compared to just
a few years ago. Partly, this is due to the fact that most outdoor environ-
ments consist of similar elements (grass, dirt, leaves, bark, and stone), and
a good set of assets can go a long way if they are used correctly with the
newer technology. A relatively small set of textures can be mapped to an
equally small set of meshes, and then the models can be placed, rotated,
scaled, and arranged to produce an enormous amount of variety. This
alone gives us the ability to create a more convincing forest or jungle. But
the major reason that creating outdoor environments is now easier is that
the tools are more powerful, more refined, and more user-friendly.

Most game engines now handle terrain texturing by combining mul-
tiple layers of textures in a manner similar to how Photoshop handles
layers. This allows the terrain textures to be composed predominantly
of a single material and therefore be easier to tile. Add to this the fact
that we are also able to use much larger textures, and you can get some
really great-looking outdoor environments. The days of tiling one texture
repeatedly over a large terrain are gone, as is the need to create numerous
versions of the same texture to place a specific object such as a road or
a dirt patch. We are no longer limited to roads running in straight lines
and at right angles. Now, we can create a few large textures of a specific
terrain material (packed dirt, grassy dirt, dried dirt, grass, dead grass)
and paint them onto the terrain. You can lay down a base layer of grass
on your terrain and paint on darker grass patches, and add an organic
winding dirt road—you can create any kind of terrain you can imag-
ine. Painting and erasing layers on terrain are easy, and the results are
superior than any previous technique. As seen in Chapter 8, simply using

205FillinG the worlD

large textures (megatextures) is also an option. Simply creating one large
texture that covers the world is a technique being used in some games.

asset list

We will create assets (meshes and textures, in most cases) for the
 following:

• Terrain

• Trees

• Plants

• Rocks

• Waterfall

• Sky

terrain textures

In a dense jungle, the ground tends to be covered with a dark, moist,
matted blanket of rotting vegetation. For the jungle floor, you can create
a texture with several images of moist ground and leaves. Even some
dead grass on top and blended properly can work because of the contrast.
When overlaid, it looks as if the grass occasionally grew, and then died
and became matted down with the rest of the jungle floor. Even if you
use L3DT to create the terrain texture, you can create your own climates
and use your own textures (Figure 9.1). The textures I used are seen

FIGUre 9.1 A jungle climate created in L3DT by simply using various
textures.

3D Game environments206

in Figure 9.2. You can see the complete texture at the top left and an
enlarged portion of the texture at the bottom.

trees

For the trees, I start with the bark. I usually create a base texture in
Photoshop and then create the mesh. Creating a texture designed to be
cylindrically wrapped around the tree is a common technique, but, with
hardware advances (larger textures, faster graphics processing units, and
multipass rendering), I decided to create a tree skin: a texture that doesn’t
tile but wraps like a skin around the mesh. I used the pelt puller in Max to
stretch the entire tree skin out so that I could paint the entire tree, without

FIGUre 9.2 Assets for the jungle climate.

207FillinG the worlD

seams where the branches meet the trunk (Figure 9.3). Using this method,
I can add vines that wrap around the tree and vary the bark appropriate to
specific parts of the tree. This method is great when you have a few big,
complex trees as opposed to a huge forest of individual trees.

Tree bark is actually a bit hard to digitally photograph. It is usually in
less-than-ideal lighting conditions, and it is wrapped around a cylindrical
shape. This means that, even though you can see about half of the trunk
facing you, only a small portion of the bark is actually positioned facing

FIGUre 9.3 Creating a tree skin as opposed to tiling bark texture.

3D Game environments208

you straight on. For a venerable old jungle tree, I used the Fiber Filter in
Photoshop and stretched the image vertically, and then utilized the tree
bark as an overlay. I also used Liquefy to add some organic details to the
rendered fibers. I added a layer of vines using the layer styles in Photoshop,
and this layer can be used to create normal maps for the bark later on. See
Figure 9.4 for the progression of the tree bark. For the tree mesh, you can
use TreeMagik G3 to create the mesh, or do it by hand.

Deep Paint 2.0 is freeware and can be downloaded from various
file sites. It is very useful, just for the texture brushes alone, and
is a great complement to Photoshop. You can assign a color image
to brush, and not only to the diffuse channel—you can also assign
separate images to the bump, specular, and alpha channels. This is

FIGUre 9.4 Progression of the tree bark.

209FillinG the worlD

extremely useful for painting branches and other foliage. In addition,
there is a plug-in that allows for a back-and-forth workflow between
Deep Paint 2.0 and Photoshop. (It works with PS CS3.) This is in
addition to Deep Paint’s primary function, which is to mimic a realis-
tic painting experience for artists and produce realistic visual results.
Deep Paint has fully editable brush and canvas settings and paint
functionality for realistic paint effects. Thickly textured oils, bold
acrylics, and dramatic watercolors are part of what can be produced
(Figure 9.5).

There are a few high-end professional solutions for trees and foliage in
games, and they are well worth the money if you can afford it, but if you
can’t, TreeMagik G3 is a great tool. It is much easier to use and is more
affordable. Even if you are not a hobbyist or a very small studio, you may

treeMagik G3

FIGUre 9.5 The various brushes of Deep Paint 2.0, now a free download.

3D Game environments210

simply not need a large fully forested environment, only a tree or two.
TreeMagik creates low- and high-polygon three-dimensional (3D) trees. You
can design and shape tree trunks and even manipulate individual vertices.
You can import branches and limbs and cover them in leaves. There is even
a Leaf Painter system with a large number of leaf materials to choose from.
Best of all, you can create your own textures directly inside TreeMagik and
apply them immediately and export them. I mentioned Deep Paint 2.0 in the
“Trees” section, and I prefer to use this tool to paint my branches. Exporting
is what makes TreeMagik useful. You can export level-of-detail (LoD) mod-
els and billboards (see Chapter 1 for more info on LoD). Billboards com-
prise one or two polygons of the tree so that, when viewed from afar, you
can display this small, efficient billboard rather than the entire tree. You can
preview all of your work within the application. And part of optimization is
masking versus alpha channeling, and TreeMagik supports masking, alpha,
and MIP-mapping, as well as UV scaling. Figures 9.6 through 9.9 show the
interface and steps in tree creation.

Released in 2002, SpeedTree is a set of tools for the creation and render-
ing of real-time forests. The number of games using it has increased,
and the SpeedTree site maintains an updated gallery of screenshots from
those games. Shots from the SpeedTree Website and their demos are
shown in Figures 9.10 and 9.11, including Elder Scrolls IV (Figure 9.12)
and Conan (Figure 9.13).

SpeedTree actually comprises several tools that work together;
SpeedTreeCAD is a stand-alone Windows application that is used to cre-
ate and edit trees. There is also a tree model library that contains hundreds
of premade trees that can be used as is or as a starting point for creating
custom trees. SpeedTreeRT is the real-time software that game developers
integrate into their engines to use the SpeedTree files. SpeedTreeRT can do
wind effects, the LoD, and billboarding. You can also get SpeedTreeMAX
and SpeedTreeMaya, which are plug-ins for both 3D applications that can
be used to import trees created in SpeedTree. SpeedTree also generates
bushes, flowers, and grass, among other plants.

plants

Plants are simpler models than trees but can be more complex in their
creation and texturing. Unlike trees, where you can generally get away
with one or a few types of tree, a wide variety of plants is necessary to
look convincing. Flowers, weeds, grass, mushrooms, and so on can be
covering the ground at the same time in any given setting. Of course, a
jungle has a lot of plants, so we really need the variety here.

a look at
Speedtree

211FillinG the worlD

FIGUre 9.6 Import a trunk, shape it manually or automatically, and add branches.

3D Game environments212

FIGUre 9.7 Add or import trunk and leaf textures.

213FillinG the worlD

FIGUre 9.8 Paint your own leaf textures and export them—create billboards of your trees.

3D Game environments214

This is where Plant Life comes in handy. Plant Life can generate a very large
variety of plant meshes quickly. This application also has a large library of
textures to apply to the plants, but I find that their resolution is too low, and
they usually don’t work in terms of color and contrast. But they are numer-
ous and make the job of plant creation a lot easier. I like to create my own
larger textures for these meshes after exporting them. There are many ways
to do this, including using photo sources or other applications to paint the
foliage, or simply working with Plant Life textures.

Plant Life is perfect for low-polygon environments. With this appli-
cation, you can create foliage from very-low-polygon to high-polygon
scale. There is a large library of textures to make the plants you cre-
ate truly unique. Considering the types of plants and the parameters

plant Life

FIGUre 9.9 Preview everything in preview mode.

215FillinG the worlD

FIGUre 9.10 Screenshots from the SpeedTree site and demos.

3D Game environments216

associated with each, you can create an almost unlimited variety of
foliage (Figure 9.14). There are 10 modules that come with Plant Life:
(1) flowers, (2) twigs, (3) ferns, (4) mushrooms, (5) bushes, (6) tropical,
(7) lily pads, (8) weeds, (9) grasses, and (10) rocks. And these mod-
ules are adequate for most requirements (Figure 9.15). For a little extra
variety, you can get other modules that create sage, sunflowers, clovers,
and so on. One thing I find useful is that you can export the meshes and
textures from the program. When you export the texture choices you
made for your plant (flower, leaves, stems, etc.), all are combined into a

FIGUre 9.11 Screenshot of a highly detailed tree from SpeedTree.

217FillinG the worlD

FIGUre 9.12 Screenshots from Elder Scrolls IV: Oblivion.

3D Game environments218

FIGUre 9.13 Screenshots from Conan.

219FillinG the worlD

single texture. The export options are pretty comprehensive: DirectX,
OBJ, Half-Life, Milkshape, VRML 1.0/2.0, and many more.

There are many types of rocks, formed by erosion, cracking, and other
processes. In the jungle, you would expect to see rocks (if you saw any at
all) deeply buried in the dirt and covered with moss and foliage. These
rocks would tend to be rounded with no hard edges. To model this rock,
I used a geosphere, as these tend to deform into rocks better than other

rocks

FIGUre 9.14 Samples of a few plants that you can create using Plant Life.

3D Game environments220

FIGUre 9.15 The quick and easy process for plant creation using Plant Life.

221FillinG the worlD

primitives. Starting with a very-low-polygon-count sphere, you can
deform it, as seen in Figure 9.16, and then apply a basic rock texture
to it. The deformations I used were to first square it up a bit using the
free-form deformation in Max and then pulling in the middle handles.
Next, I applied a little noise and further deformed it to get a more organic
look. Finally, you can add a mesh-smoothing modifier to the mesh if you
want the rock smoother and you can afford the polygons. I also used the
shrink-wrap UV setting as opposed to the spherical, as it produces fewer
stretches and seams.

The rock texture was simply a colorized image of rock (Figure 9.17).
I lowered the contrast and saturation, and I made it into tile. In fact, I
made it seamless. Technically, it doesn’t tile because I left the bottom of
the texture darker to simulate shadow and moisture, as if the boulders
were sitting in the ground for a long time. If this texture were tiled across
a large surface, you would see the repeating pattern. This texture was
made specifically to be wrapped around the boulders. I also added some
moss by simply copying the layer and colorizing it greenish and then
erasing portions of the layer.

Squared up

Noise

Smoothed

FIGUre 9.16 Creating a rock.

3D Game environments222

A good sky can add a lot to the feeling of depth and atmosphere in a vir-
tual world. Typically, in a game, the sky is handled in the following ways:

• Single image

• Sky dome

• Skybox

The single-image technique is used in only a few, generally older, games
that have a limited view of the world. Most older 3D games and many driv-
ing games kept players on a certain path. You were in some form of a 3D
world, but your view was restricted to a two-dimensional plane; you could
only look left and right but not up and down. (You could often walk up and
down the stairs, just not tilt the camera to look up at the sky.) These games
used an equally limited technique for the sky—a single image that only
moved left to right and up and down as the player moved about the world.

The sky-dome technique is simply a fixed model that is part of the
game map and is large enough to encase the entire world. This approach
is referred to as a sky dome because, typically, when using this approach,

Skyboxes

FIGUre 9.17 The rock texture.

223FillinG the worlD

a dome shape looks best, but you can also use a simple cube (assuming
an acceptable look) and save a lot of polygons. Mapping a texture to a
dome is easier, whereas a cube requires more tweaking to get things to
look right. See Figure 9.18 for an illustration of the sky dome and Figure
9.19 for an example of a skybox with a seam showing.

Personally, I don’t like the fixed dome for several reasons. First, it’s
harder to work inside the map with the sky dome in the way (if your edi-
tor doesn’t take this into account). Second, if I hide the sky dome, the level
doesn’t look like it will in the game, and it’s harder to accurately judge the
work that I am producing. In the game, the dome is also a physical limit, and
the player has to be kept away from it. This isn’t conducive at all to the larger
worlds we can create, or are required to create, today, especially worlds on
the scale of a present-day/near-future massively multiplayer online game.

The skybox technique is actually a separate area in a map (like a
little room) with only the sky elements in it. There is a camera centered
in the area that doesn’t move but rather swivels in the same direction as
the player’s camera. What this camera sees in the skybox is composited
with what the player sees, and the result is impressive. I like this method
because it is easier to work with, you get better results, and the player can
walk forever and never reach it. Moreover, the player can never view it
from an angle where it doesn’t look its best. Since the sky moves with the

FIGUre 9.18 The sky dome is simply a fixed model that is part of the game map and large enough
to encase the entire world. This approach is called sky dome because, typically, a dome shape looks
best with this approach, but you can also use a simple cube (if it works) and save a lot of polygons.

3D Game environments224

player, you can control precisely how it looks to him or her. It is easier
to get a skybox looking perfect from one angle than every conceivable
angle. See Figure 9.20 for an illustration of how the skybox works.

Clouds

It has always bothered me that I couldn’t render clouds or a lens flare on a
transparent layer. In Photoshop, when you create clouds or a lens flare, you
must have a background color. In other words, clouds must be rendered with
two colors and can’t fade into transparency like a gradient can (Figure 9.21).

For most Photoshop users, the Blending Mode function is the answer
for a realistic cloud or a lens flare overlay. You can render clouds on a
layer above your image and play with Blending Mode until the clouds
look the way you want them to (Figure 9.22).

In game development and interactivity, the images created often need
to be used in applications that don’t have the sophistication and power
of Photoshop. We don’t have access to blending modes, and the image
must come into the application with transparency already in place. As a

FIGUre 9.19 The sky dome using a cube (skybox). The seam often shows.

225FillinG the worlD

(a)

(c)

(b)

(d)

FIGUre 9.20 (a) The camera is in its own location and swivels to look where the player looks,
but does not move. (b) The view of what the skybox camera sees. (c) The player’s view with no sky.
(d) The sky and player’s view composited together.

3D Game environments226

result, I have developed a quick way of creating a lens flare or clouds on
a transparent layer. I will guide you through the process using clouds, but
this can be applied to lens flares as well.

 1. Open Photoshop and create a canvas of any size. Keep in mind
that, because of the way that the Clouds Filter works, the larger the
canvas, the finer the clouds will be. I used a 512 × 512 image size.

FIGUre 9.21 Gradient fade.

Source image Clouds—normal mode Clouds—darken mode

FIGUre 9.22 Blending clouds into a still image.

227FillinG the worlD

For standard clouds, select white as the foreground color and black
as the background (Figure 9.23).

 You might think that a sky blue would be the better choice for
a background color, but that will leave a bluish cast in the image.
You can see in Figure 9.24 that on the left, I used an image created
using this tutorial using blue as the background color, and, on the
right, I used black. The blue tint is not desirable, as it limits the
flexibility of the image and makes accurate color work harder.

 2. Create a new layer by clicking on the Create a New Layer icon, and
name this new layer Clouds (Figure 9.25). Filter · Render · Clouds
on this new layer.

Note: You can hold down the Alt key while running this filter to
make your clouds pop more. The default clouds are on the left, and
the clouds with more contrast are on the right. These images were
originally 512 × 512. For this exercise, I used the softer clouds on
the left (Figure 9.26).

 3. To create the alpha, or transparency, image for the clouds, sim-
ply duplicate the Clouds layer by dragging it onto the Create New
Layer icon and rename it Alpha. Using a separate image to dictate
transparency is how many applications function (Figure 9.27).

FIGUre 9.23 Foreground and background color in black and white.

3D Game environments228

FIGUre 9.25 Create a new layer.

FIGUre 9.24 Don’t use blue as your background color for clouds.

229FillinG the worlD

FIGUre 9.26 Clouds with contrast.

FIGUre 9.27 Creating the cloud alpha.

3D Game environments230

 4. Apply Auto Levels to the image: Image · Adjustments · Auto
Levels. This alters the pixels in the image so that they function
better as an alpha map for games. You can also skip this step. The
results are still good, just different (Figure 9.28).

 You can see how an alpha map works in Figure 9.29. The
source image is to the left, and the alpha mask is in the middle.
The resulting image has a delicate transparency that makes the
clouds look real and soft. The second example uses a figure with
a more distinct outline. This makes it easier to see how the alpha
mask works.

FIGUre 9.28 Adjusting levels.

231FillinG the worlD

Source image Alpha mask Result

Source image Alpha mask Result

FIGUre 9.29 How an alpha mask works.

3D Game environments232

 5. To actually remove the pixels from the layer in Photoshop—creating
a layer with transparency and not just a separate alpha image—
follow these steps. Select the entire Alpha layer and copy it; Ctrl +
A selects all, and Ctrl + C copies it. Go to your Channels tab and
create a new alpha channel (Figure 9.30).

 6. Paste the copied Alpha layer (Ctrl + V) into the new alpha channel
(Figure 9.31).

 7. From the menu, Select · Load Selection and check the Invert
box. Make sure that you have the Alpha Channel selected
(Figure 9.32).

 8. Go back to your original Clouds layer and press Delete. You can
play with brightness a little if you like, but it shouldn’t need much.
Here, I changed my background color to sky blue so that you can
see the clouds (Figure 9.33).

 9. To thin out your clouds, press Delete once or twice before deselect-
ing (Figure 9.34).

FIGUre 9.30 Removing pixels.

233FillinG the worlD

FIGUre 9.31 Creating an alpha channel.

FIGUre 9.32 Selecting the transparency.

3D Game environments234

Figure 9.35 shows the cloud image in a 3D application using the
alpha mask that we created. Note that the clouds tile automatically using
this method. Also, note that I used two layers of clouds (using the same
image), making one layer display the clouds larger and move slower to
add more depth.

If you want a single cloud rather than a tiling sky full of clouds, use the
Lasso Tool with a very large feather. I used a 512 × 512 image and a
45-pixel feather. Simply draw an organic, curvy shape and render clouds.

Single clouds

FIGUre 9.33 Deleting the pixels.

FIGUre 9.34 Thinner clouds.

235FillinG the worlD

FIGUre 9.35 Same cloud, multiple layers.

3D Game environments236

FIGUre 9.36 Creating a single cloud.

FIGUre 9.37 Single cloud in scene.

237FillinG the worlD

You can use a large, very soft eraser to gently sculpt the clouds a bit if
you need to (Figure 9.36). Figure 9.37 shows a giant single cloud I cre-
ated for this 3D scene.

Water

In games, water can be made using a simple, flat water plane or shaders
that deform the geometry, followed by adding any number of effects
with maps such as normal maps, specular maps, and alpha maps, among
others. Particle systems even play a part in some water effects for things
such as mist. Usually, a good-looking water source in a game uses sev-
eral of these combined. A water plane is a large, flat polygon with a water
texture. Sometimes, an alpha channel is on this texture. If it is supported,
the texture can be multilayered and animated (Figure 9.38). The plane
can consist of a large number of polygons and be animated so the waves
have physical depth like the real ocean. Add to this the use of shaders
to control the reflection, the light effects, and the normal mapping for
smaller waves, and the water starts to look really good. Top it all off with
a mist of spray using particle effects, and you get some really convincing
water (Figure 9.39).

One effect that water causes is called caustics. An extremely simple
explanation for caustics is the pattern you see when the sun shines
through water into a shallow pool or a clear ocean (Figure 9.40). If
you find yourself without access to a high-end 3D program, you can
download this free caustics generator at http://www.lysator.liu.se/~kand
/caustics/.

The subject of caustics is quite complex and involves the process of
light converging with light. Caustics are caused by light that is reflected
or refracted several times before actually hitting a surface, such as
through waves. The more light that is refracted to the same area on a
surface, the brighter the area will be lit, hence the bright pattern we see.
To calculate the effect of light refracting through water requires complex
math, but, thankfully, because of the Caustics Generator (Figure 9.41),
all we have to do is to push buttons and look at pictures. The Caustics
Generator produces rendered frames that are tileable. You can also gen-
erate multiframed animations. There is no alpha channel support, but
that is a simple thing to create. The Caustics Generator is available in
two versions—(1) freeware for everyone and (2) a commercial version
aimed at professional users.

Caustics generator

http://www.lysator.liu.se/~kand/caustics/
http://www.lysator.liu.se/~kand/caustics/

3D Game environments238

FIGUre 9.38 Water can be a simple plane or use many complex shaders: top, flat plane; second,
opaque; third, two layers animated; and bottom, bump mapping and specular highlights added.

239FillinG the worlD

FIGUre 9.39 Water in games is already achieving results close to this due to pixel and vertex
shaders.

3D Game environments240

A waterfall can be made using some unlit scrolling textures. The
assets for the waterfall were created by Rick Ruiz. The texture assets
are shown in Figure 9.42 and the mesh assets in Figure 9.43. You can
see that these are fairly simple assets, but, when they are all moving
in unison down the cliff face, the effect is impressive. The key to
the effect is to get the scrolling speed just right. If the speed is too
fast or slow, it looks odd. Figures 9.44 and 9.45 show the complete
waterfall and the waterfall incorporated into a piece of concept art,
respectively.

Waterfall

FIGUre 9.40 Caustics comprise the pattern you see when the sun shines
through water into a shallow pool or clear ocean.

241FillinG the worlD

FIGUre 9.41 Interface of the Caustics Generator.

3D Game environments242

FIGUre 9.42 Waterfall assets.

243FillinG the worlD

Main falls

Rocks

Spray

Background water

Streams

Mist

FIGUre 9.43 Waterfall meshes.

3D Game environments244

FIGUre 9.44 Finished waterfall.

FIGUre 9.45 Finished waterfall incorporated into concept art.

245

Chapter teN

Modeling and texturing
the jungle base

Introduction

Dense tropical vegetation has overgrown this once-impressive base deep
in the jungle. What was this place? Adding detail can tell us a great deal.
The first question to answer would be the text on the signs. Will they
read, “Beware of the bloodthirsty, genetically engineered schnauzers,” or
will they say something more cryptic and confusing like, “Threat Level
Alpha: Caution.” And, if this place is so decrepit and nonfunctional, what
happened, and where is the once-contained threat now? Let’s start creat-
ing the models for the jungle base so that we can answer these questions.
Many of the models will be generated for us, and this goes for the textures
as well, so that we can focus on making this space be what we want it to
be. Simple details like which way bars on a window are bent (in or out)
will tell the player if something broke in or out. Larger details may be
color choices (slick and corporate or drab and military), and the quality of
the material that any given object is made of can indicate something about
the resources invested in the enterprise that existed here.

We will be creating the following models and textures:

Mechanical models

• Electrically charged, double-access gate

• Old building with doors, barred windows, and old vent pipes

• Guard tower

3D Game environments246

• Heavy-duty gate to keep whatever is in the jungle out

• Concrete bunker-type wall to hold the massive gate

• Industrial light towers

• Assorted ominous signs

Organic models

• Rocks

• Plants

• Trees

• Foliage backdrop, ground, skybox

Mechanical textures

• General textures: rusted metal, concrete, wood

• Lenses for industrial light towers

• Assorted ominous signs

• Specific texture for massive doors

Organic textures

• Rocks

• Plants

• Trees

• Foliage backdrop

• Skybox textures

Mechanical models

First, we will tackle the models of the manufactured objects in the scene.
These objects are pretty easy because they are made by people and thus
incorporate right angles and diverse, repetitive patterns and measurements.
In the case of the gate, as in most other items, you need to create only one
fence post, regardless of the number of posts comprising the fence.

The electrically charged, double-access gate (Figure 10.1) is the first object
we will create. This gate not only was designed to carry a lethal amount
of electricity but also has a double-gate feature so the gated area is never
exposed to the wide-open jungle; one gate at a time can be opened, while
the other remains closed. This gate looks impressive but is composed of
only a few parts. As seen in Figure 10.2, there are only five simple parts
to the gate itself: the base is a box with chamfered edges; the post is an
extruded I-beam shape; the cables are cylinders with five sides and one

electrically
charged, double-
access gate

247moDelinG anD texturinG the junGle base

FIGUre 10.1 Electrically charged, double-access gate.

FIGUre 10.2 Five simple parts of the gate.

3D Game environments248

division (so the cable can bow slightly down in the middle); the insula-
tors holding the cables across the vertical bars are cylinders as well; and,
finally, the object on top of the electric fence is a capsule. The capsule is a
light that will flash when the gate is armed. You can also make it a simple
cap object or remove it altogether.

If you start by creating the parts and assembling them, as seen in
Figure 10.3, you will be most of the way there. Every other part of the fence
is built up from these parts. For the actual gate cage, you will need to create
the angle caps, as seen in Figure 10.4, and you need to build the gate itself
(Figure 10.5). The gate is a box with one horizontal division. Inset the indi-
vidual faces, and the crossbars will be automatically created. Extrude these
inward and delete the faces. If you can afford the polygons, you can inset and
extrude the frame faces for an I-beam structure. The vertical bars are simply
cylinders. (These are electrically charged as well, so be careful.)

Interesting additions to the gate would be signs (we will add these
later), a latching mechanism, debris such as palm fronds hanging on
the fence to indicate neglect, and a few broken cables. Delete a few
of the cables and add some with more polygons so that you can bend
them (Figure 10.6). This is not only visually interesting but can also

FIGUre 10.3 Parts assembled to form the base structure of the gate.

249moDelinG anD texturinG the junGle base

FIGUre 10.4 End caps.

FIGUre 10.5 Gates.

3D Game environments250

communicate many things to the player—the place is not kept up; the
place is no longer safe because of the breach in the gate; the gate is not
functioning; and, perhaps, the gate is the way in. You can even take a
gate off and lay it on the ground, or bend it in half and place it farther
away if you really want to convey a serious brute-force threat.

The guard tower stands next to the gate. This is a functional and unim-
pressive wooden structure that is composed of several boxes. The only
challenging boxes to deal with are the roof and the body of the tower.
The roof is a box sliced from corner to corner, and the center vertex is
pulled up (Figure 10.7) to form the peak. You may have to turn some
edges to get the faces at the correct angle. You could also use a pyramid
primitive to do this, but you would still have to extrude the bottom face
to create the trim. The body of the guard tower was created in the same
manner as the gate in the “Electrically Charged, Double-Access Gate”
section. Start with a box with the number of divisions you need, and
inset and extrude them to form the window panes (Figure 10.8). Leave

Guard tower

FIGUre 10.6 Bent cables.

251moDelinG anD texturinG the junGle base

FIGUre 10.7 Parts of the guard tower.

FIGUre 10.8 Guard tower detail.

3D Game environments252

the polygons, if you are going to create a glass material for the windows,
or delete them.

The light towers are built from the base up. The base is a box with the top
face scaled inward to form a beveled surface (Figure 10.9). The extended
support feet are actually the same box scaled down and edited at the
vertex level. The back faces were removed. If you had a need to keep
your geometry sealed, you could build the support feet by insetting the
original face and extruding the feet from it. This is true in most cases
when modeling. It creates more faces, but, in some instances, more faces
are more efficient if it means keeping the geometry sealed. The inner
faces of the main tower will be mapped with an alpha channel later to
create the crossbars (Figure 10.10).

Industrial
light towers

FIGUre 10.9 Light tower construction.

253moDelinG anD texturinG the junGle base

There are three main parts to the heavy concrete wall that keep the island’s
threats at bay: (1) the wall itself, (2) the door, and (3) the details on the wall
such as the signs and the catwalk (Figure 10.11). The wall (Figure 10.12) is
an extruded line with slightly beveled edges for the top and a box for the wall
below this. A few angular arches dress things up. The door (Figure 10.13) is
slightly more complex. Start with a box. The front is inset and extruded and
then sliced across the front polygon to form the two faces we will bevel. The
backside is simply inset and extruded, and three smaller boxes were added
as braces. The door frame is a thicker version of the I-beam from the fence.
Finally, the details include the catwalk, the ladder, and signs (Figure 10.14).

heavy-duty
jungle gate and
concrete wall

FIGUre 10.10 These faces will have alpha on them.

3D Game environments254

FIGUre 10.11 Parts of the main gate.

FIGUre 10.12 Wall.

255moDelinG anD texturinG the junGle base

FIGUre 10.13 Door.

FIGUre 10.14 Catwalk.

3D Game environments256

The ladder and signs are simple enough, and the catwalk railings are one
extruded shape copied several times along the box that forms the platform.

Finally, we get to the building. The building has several parts, including
the building itself, the doorway, bars, and the vent shaft and fuse box on
the side of the building (Figure 10.15). The template of the front of the
building is displayed in Figure 10.16. The steps to create the front of the
building are shown in Figure 10.17. You only need to detail the front, so
I removed the rear of the building to make the illustration clearer.

You start with the eight faces and pull the center vertex up to form the
peak of the roof. Inset the three sections and extrude them back. Inset and
extrude these again to form the windows. For the door, you are going to
want to pull the back face deeper into the building and make the opening
both wider and taller. Finally, we have the trim, as seen in Figure 10.18.
You can see the front and top profile of the trim, as well as how it fits on
the building. The bars on the windows are small cylinders with bent edges.

Old building

FIGUre 10.15 Old building.

257moDelinG anD texturinG the junGle base

FIGUre 10.16 Front of building template.

FIGUre 10.17 Front construction.

3D Game environments258

In Figure 10.19, you can see the side and front of the bars. Note that the
bars can be bent in the same fashion as the fence cables. These bars can be
made from lower-polygon models if the ends are left straight. You can also
experiment with various bar types for a different look.

As displayed in Figure 10.20, the types of security bar range from the
purely functional to the fancy and historical.

The doorway (Figure 10.21) has three parts: (1) door, (2) heavy secu-
rity door, and (3) door frame. The heavy security door is just a copy of
the gate from the last exercise, so that’s done. The door frame is created
in the same manner as the front of the building (Figure 10.22). Start

FIGUre 10.18 Detail trim.

259moDelinG anD texturinG the junGle base

FIGUre 10.19 Bars.

FIGUre 10.20 Bar types.

3D Game environments260

with a plane with eight polygons across; drag the middle vertices out
to make the opening large enough for the doors; and be sure to keep an
even amount of room around the frame to create the side and top pan-
els. Delete the face where the doors will go, and inset and extrude the
remaining faces. The doors themselves start with a box divided into half
and the top face divided again in half (Figure 10.23).

FIGUre 10.21 Front door with security bars.

FIGUre 10.22 Door frame.

261moDelinG anD texturinG the junGle base

The proportions of a door are not actually very linear, so look at the door
template and note that the windows are not perfectly square and that they
are not centered vertically on the door as if they were perfectly inset and
extruded. Adjust the vertices to match the template or to the proportions of
the door you are making. The door also has hardware both inside and out
(Figure 10.24). Inside, there is the push bar, and, outside, there is the handle.
I deleted the window panes for the illustration, but you should keep them in.
Later, we will texture them so they look like broken, dirty glass.

Finally, let’s focus on the vent pipes and the fuse box. The vent pipe starts
life as a box. Create the base by insetting the face, and then extrude this to
form the first vertical vent shaft (Figure 10.25). Use Hinge from Edge on the
top faces to get the turns in the pipe (a 90° angle with as many sections as

FIGUre 10.23 Door.

3D Game environments262

FIGUre 10.24 Door hardware.

FIGUre 10.25 Vents.

263moDelinG anD texturinG the junGle base

you want). The brackets holding the vent to the building are boxes. The fuse
box comprises a beveled box and two cylinders (Figure 10.26).

Organic models

You can create a convincing rock quickly by deforming a geosphere. The
consistent face pattern of the geosphere makes it deform evenly, so you
can create a rock mesh that doesn’t have that weird sphere peak at the
top (Figure 10.27). Roundish rocks are the only object that I ever came
across that the shrink-wrap UV modifier works on.

Plant Life is great for quickly laying out the meshes for all types of plants.
I used it to create the ferns, lily pads, smaller tropical trees, flowers, and
weeds (Figure 10.28). If you intend to export models and textures from

rocks

plants

FIGUre 10.26 Electrical box.

3D Game environments264

Square it up

Noise

Mesh smoothed

Sphere versus Geosphere

FIGUre 10.27 Modeling a rock.

FIGUre 10.28 Creating plants.

265moDelinG anD texturinG the junGle base

Plant Life and import them into another program, the single-sided poly-
gon option is usually preferable. Be aware of the fact that generating a
plant with double-sided leaves means that there are two polygons facing
out from each other.

The trunk of the palm tree is a slightly tapered and bent cylinder. The
leaves are six-faced polygons that are bent as well. You can, of course,
add or subtract the number of polygons according to your needs. You can
also add or remove fronds from the tree. The fronds are laid out in the
manner illustrated in Figure 10.29. They are generally rotated around the
tree three and four at a time. The top fronds tend to stick up straighter
and are shorter than the lower fronds, which tend to be larger and to
droop as they grow older.

The foliage backdrop and skybox are very basic shapes and can be cre-
ated easily. Depending on how you ultimately handle the sky, the shape
could be a cube or sphere. We can create these assets as they are needed
when we start creating textures for clouds, and so on. The foliage back-
drop is nothing more than a single rectangular polygon mapped with
a texture we will create later. This plane can be placed in the distance
(on hills and places away from player access) to add a large degree of
depth and realism to a scene. The ground was exported from L3DT. The
height and texture maps were exported and used to create this scene.
Chapter 8 addresses the use of a displacement map to create this mesh
(Figure 10.30).

trees

Foliage backdrop,
ground, skybox

FIGUre 10.29 Creating some trees.

3D Game environments266

Mechanical textures

To start our set of textures for this scene, we want to develop a set of
tiling textures of the most basic materials. Metal, rusty metal, concrete,
and wooden plank tiling should be all we need until it is time to create
specific-use textures.

This is simply a photo source that was cleaned up with some cloning and
erasing, and then it was tiled (Figure 10.31).

General rusty
metal

FIGUre 10.30 Gate scene.

FIGUre 10.31 Rust.

267moDelinG anD texturinG the junGle base

This is simply a galvanized metal pattern that is made in Photoshop (Figure
10.32). We can use this as is and tile it on many of the simpler objects such
as the light towers and the gate ladder. Since this metal is located outdoors,
I would put a slight overlay of rust using the tiling rust texture.

 1. Create a new 512 × 512 image and name it galvanized_metal.

 2. Create a new layer and name it base.

 3. Fill this layer with a medium gray.

 4. Add Noise: 5%.

 5. Gaussian Blur: 2 pixels.

 6. Filter · Pixelate · Crystallize: Cell Size 33.

 7. Add Noise: 1%.

 8. Duplicate and offset the layer to erase and/or clone stamp the hard
edges out of the texture.

All the images you need to create the concrete texture are on the book’s
webpage on the CRC Press website: https://www.crcpress.com/3D -Game
-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p /book
/9781138920026, under the Downloads tab. The PSD file is there, too, if you
don’t want to set it up yourself. The cement is created using several images
in layers, as seen in Figure 10.33. Most of the overlays can be used again as
you stain and weather the rest of the world.

General tiling of
galvanized metal

tiling moldy
concrete

FIGUre 10.32 Galvanized metal.

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

3D Game environments268

Open the image on the book’s webpage on the CRC Press website:
https://www.crcpress.com/3D-Game-Environments-Create-Professional
-3D-Game-Worlds/Ahearn/p/book/9781138920026, under the Downloads
tab titled wood_moldy.psd, and examine the various layers. The source files
are also included for you to use and examine (Figure 10.34). The source is
nothing more than an image of some wooden planks that were cleaned up
(remove hot spots and make the image tiling), and the overlays from the

tiling wood planks

FIGUre 10.33 Moldy concrete.

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

269moDelinG anD texturinG the junGle base

concrete were used. Keeping some planks without seams is recommended
for long objects that you want to texture, such as the legs of the guard
tower.

Remember that the mold overlays can be used from the concrete. This is
not only easier but also makes the weathering in the world more realisti-
cally consistent.

Massive doors To create the texture for these massive metal doors that
have been rusting and getting moldy in the humid jungle for a very long
time, we can use many overlays. Some of these overlays we have stored,
while we will create others for the specific material that we are making
now. Let’s start with the UV template from the book’s webpage on the CRC
Press website: https://www.crcpress.com/3D-Game -Environments -Create
-Professional-3D-Game-Worlds/Ahearn/p /book/9781138920026, under
the Downloads tab, main_gate_UV.jpg (Figure 10.35). Start by opening
and copying our rusty base into this image, and blend it with the galva-
nized metal tiling to form the base material of the gate. Create separate
layers for the door, the door edge, and the panels on the door (Figure
10.36). I apply a slight outer glow of darkness to set the panels off from
each other. The panels are also used later to quickly select and mask off
portions of the gate.

Specific detail
textures

FIGUre 10.34 Wood planks.

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

3D Game environments270

FIGUre 10.35 UV template.

FIGUre 10.36 Beginning texture for the door.

271moDelinG anD texturinG the junGle base

Open and use the following images from the book’s webpage on the
CRC Press website:

scratched_paint: vivid light 17%

pitted_paint: overlay 17%

cement_smooth_blotchy: multiply 71%

rusty_chipped_paint: soft light 73%

scratches: screen 7%

Now for a layer of peeling paint. This is a common trick that nets
impressive results. An online posting by Stefan Morrell offers some
variation on this process (http://forums.cgsociety.org/showthread.php?t
+373024). Create a new layer on the top of the file named paint and select
the paint bucket. Check the All Layers box, select a nice desaturated
color, fill an area, and watch what happens. To get different results, try
playing with the tolerance of the tool and masking off the panels so the
paint only fills the panels, as if they were painted a different color. You
can also use a pattern fill, which is how the caution stripes were done.
That image is on the book’s webpage on the CRC Press website: https://
www.crcpress .com/3D-Game-Environments-Create -Professional-3D
-Game-Worlds /Ahearn/p/book/9781138920026, under the Downloads
tab as well, and you can use it to create a pattern in Photoshop. I create
the paint layer last, so it needs to be on top so that you can see what you
are doing, but you need to move it under all the overlays for it to look
right. For the text, I simply rasterized a text layer so I could erase some
chips from it. The rivets are an overlay. Finally, add the mold overlays
from the concrete wall on top of all of this. Sometimes, a 1-pixel, very
slight bevel will give the paint some perceived thickness, as well as an
equally subtle dark outer glow (Figure 10.37). Note that the fuse box and
vent pipe textures can be created in the same manner as the metal for
the massive doors.

Doors Open the UV template for the doors from the book’s webpage
on the CRC Press website, and open a copy of the massive doors texture.
Use the same techniques to create the door texture that you used to cre-
ate the massive doors texture. You can use most of the already-created
layers in the massive door texture (Figure 10.38). One thing that I added
was a brassy-colored texture for the fixtures on the door, including the
push bar, handles, and other hardware.

Assorted signs The signs are similar in their weathering due to the fact
that they are in the same environment as everything else. You can make
these look like thin, rusty metal or as if they were created from wood.

http://forums.cgsociety.org/showthread.php?t+373024
http://forums.cgsociety.org/showthread.php?t+373024
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

3D Game environments272

I used a wood plank base and built up the mold and cracked paint lay-
ers. Add some text layers and create an evil logo if you need to (Figure
10.39). I thought the three signs over the gate should scream out dire
warnings, whereas the signs on the gate and the building could be more
informational.

Crossbeams for light towers The crossbeams for the light towers are
our rusty/galvanized metal tiling with an alpha channel to mask off the
crossbeams. The beams themselves have a layer effect on them applied in
Photoshop to make the crossbeams look thicker and more substantial. This
effect would not be needed if you were using normal mapping or some
other method of creating geometric depth in the object (Figure 10.40).

Windows Examine the reference photo for the warehouse windows
(Figure 10.41). You can see how they are built from this photo, which
shows a fairly simple construction, but we can do a lot to add detail
and interest to even such a simple item with variations to the panes and
frames. We can also use the alpha channel to make the windows look
broken and dirty.

Window frame The window frame consists of a metal frame and panes
of glass. We start with the metal frame and work down to the panes. This

FIGUre 10.37 Final door.

273moDelinG anD texturinG the junGle base

way, we can control the amount of weathering on the windows to our
liking.

 1. Open a new 1,024 × 1,024 file and name it windows_base.

 2. Set your grid to 256 with 1 subdivision.

 3. Create a new layer set and name it frame.

 4. Create a new layer in the set and name it outer_ frame.

 5. Set your foreground color to a very dark brown. I used RGB: 69,
59, 54.

 6. Select the entire empty layer using Ctrl + A and right-mouse click and
select Stroke. Set the width to 18 pixels and the location to Inside.

FIGUre 10.38 The double-doors in the building are based on the material
used on the massive doors.

3D Game environments274

FIGUre 10.40 Crossbeams for light towers.

FIGUre 10.39 Signs.

275moDelinG anD texturinG the junGle base

 7. I like to create the outer frame separate from the inner frame
that holds the panes of glass, as it adds more depth to the texture.
Create a new layer and name it inner_ frame. Make sure this layer
is under the outer_ frame layer.

 8. Use the same color to draw lines along the grid. Use a hard 13-pixel
brush.

 9. Add the Layer Style Drop Shadow to the outer_ frame layer and
change the following settings:

Blend Mode: Normal

Distance: 8 pixels

Size: 16 pixels

 10. Add noise. Filter · Noise · Add Noise:

Amount: 0.75.

FIGUre 10.41 Warehouse window reference photo.

3D Game environments276

 11. Copy and paste the layer style from the outer frame to the inner
frame layer and change the size to 6.

 12. Apply the noise filter again. Ctrl + F will reapply the last filter you
ran using the same settings. Your frame should resemble the one
shown in Figure 10.42.

We will make the glass and then delete the portions of the glass
where the frame covers it. This gives us additional flexibility when
using layer styles because many of them operate on the edge of an image.

 1. Create a new layer set and name it glass. You can turn the Frame
layer set off for this part of the exercise. It will be easier to see the
canvas and speed up the computer’s response time.

 2. Select a muddy yellowish amber (I used RGB 127,106,48), and fill
this layer using the paint bucket. Or Ctrl + A to select all, right-
mouse click, Fill · foreground color.

 3. Add noise. Filter · Noise · Add Noise: 7%.

 4. Filter · Artistic · Dry Brush: Brush Size 10, Brush Detail 4, Texture 1.

 5. Filter · Distort · Glass: Distortion 8, Smoothness 3, Texture Frosted,
Scaling 166%.

 6. Hit the D key so your foreground and background colors are black
and white. Filter · Render · Clouds—Fade this filter to 25% (Ctrl +
Shift + F).

 7. Filter · Blur · Gaussian Blur: 1.5 pixels.

 8. Filter · Artistic · Fresco: Set all settings to respective maximums.

Glass

FIGUre 10.42 Base window frame.

277moDelinG anD texturinG the junGle base

 9. Fade the filter to 15% and set Blending Mode to Multiply.

 10. Cutting out the panes. Turn the inner_ frame layer on and select an
empty pane. Right-mouse click and select Similar. Right-mouse
click again and select Invert. Go to the glass layer and press the
Delete key to remove the portion of the glass behind the frame.

 11. Do the same for the outer_ frame layer. Turn both frame layers off,
and your image should resemble the one in Figure 10.43.

Creating multiple variations of the panes is easy and makes this texture
very flexible (Figure 10.44). Remember to create copies of the pane layer
as you alter them. You might want to try some of the layer effects that I
applied to the panes, as follows:

Variations

FIGUre 10.43 Glass panes without the frame.

FIGUre 10.44 Window pane variations from left to right are subtle dirt, subtle dust, and subtle high-
lights/inner light source. They have also been colorized and the saturation and brightness adjusted.

3D Game environments278

Subtle dirt: Inner Glow, Black; play with the size, opacity, noise, and
blending modes.

Subtle dust: Change the Inner Glow color to a very light gray; Blending
Mode: Color Dodge, Opacity 65%, Noise 16%, Size 40 pixels.

Subtle highlight: Bevel and Emboss; try changing the settings to a
large, low depth, and highlight and soften. This can give nice, even
highlights to the panes. Just be careful to avoid a bulged-out look
to the panes.

Inside light source: For a large tiling texture, you want to keep things
even, but, in the case where this window might be used in a single
instance with no tiling, you can add a subtle gradient using a layer
style and experiment with the blending modes and gradient types
to obtain the look of a stationary light source in the room beyond
the window.

Various types of weathering and dirt can be applied to a surface depend-
ing on the location and the material the surface is made of. In this case,
the windows have been exposed to jungle conditions for many years. It
would be assumed that dirt or weathering will be prevalent; the metal
frames are rusted, and the glass is streaked with rain and dirt and cov-
ered in mold. Let’s rust the frame.

 1. Duplicate the layer set frame and name it frame_overlay.

 2. Make sure that the new frame_overlay set is on top of the frame
set in the layer stack.

 3. Open the new layers set and turn off the layer effects. Link the two
layers, and merge them (Ctrl + E). You now have a solid copy of
the entire frame.

 4. Lock the Transparency on this layer.

 5. Filter · Noise · Add Noise: 10%.

 6. Filter · Artistic · Dry Brush: Brush Size 2, Brush Detail 8, Texture 1.

 7. Colorize. Ctrl + U, Hue 14, Saturation 30.

 8. Change Blending Mode to Darken and experiment with the opac-
ity. Around 30% to 45% is light rust, and 50% to 75% is heavy.

 9. Changing Blending Mode to Lighten will give you a brighter,
drier-looking rust. Figure 10.45 shows a few variations of the
rusted pane.

The panes can also be weathered using the mold overlays from the
previous textures. You can also add some dirt as follows:

Weathering and dirt

279moDelinG anD texturinG the junGle base

 1. Start by duplicating the glass layer set and naming it outside_glass.

 2. Desaturate the glass layer (Ctrl + Shift + U).

 3. Fade this by about 50% (Ctrl + Shift + F). Now the panes look
faded as if they have been outside a long time.

 4. To generate a general dirt layer, create a new layer on top of the
stack and name it smog.

 5. Filter · Render · Clouds.

 6. Change Blending Mode to Multiply and set Opacity to 50%.

 7. Filter · Noise · Add Noise: 50%.

 8. Filter · Blur · Motion Blur: 90° and about 30 pixels of blur.

 1. To create rain streaks, turn off the smog layer (you can turn it on
later if you like), and create a new layer named rain_streaks.

 2. Select a medium gray as your foreground color (RGB: 157, 157, 157).

 3. Zoom way out so that your image is pretty small and the canvas
fills most of the workspace (Figure 10.46). This makes it easier to
create various streak lengths.

 4. Select a brush of medium size and softness. Go to the Brushes
Palette and under Shape Dynamic change the control to Fade. Set
the pixel fade to 128. This is the window to the right of the fade
selection.

 5. Now, drag a few lines down your window. Hold Shift to keep the
lines straight. Vary the length by starting to draw higher above the

rain streaks

FIGUre 10.45 Variations of the rusted pane, easily created because of the power of layers and
blending modes.

3D Game environments280

canvas and vary the width using the left and right square bracket
keys ([,]). Be subtle.

 6. Filter · Blur · Motion Blur: 90 degrees and about 30 pixels of blur.

 7. Set the Blending Mode of this layer to Overlay and set Opacity
between 50% and 75%. I ended up at 63% in Figure 10.47. You can, of
course, experiment with the color of the streaks, the blending modes,
and opacity. You can even add some noise and run the Motion Blur
filter again with a lower pixel blur for streaks with a little more body.

Note: If you want the lights on the towers to have a special glass texture,
you can use the window texture along with the UV template of the light
to create a dirty, never-used glass texture.

FIGUre 10.46 Small image and large canvas. This makes it easier to vary the length of brush
strokes on the canvas without having to change brushes because you can start drawing anywhere
you want outside the canvas.

281moDelinG anD texturinG the junGle base

You should know by now that an alpha channel is a grayscale image used
to dictate opacity in an image. We can make an alpha image for these
windows and use it in several ways for various effects.

 1. Duplicate your window image. We will be merging layers, and it is
safer to work from a copy.

 2. Duplicate the frame layer set and name it alpha. Make sure that
this new layer is on top of the layer stack.

 3. Open the new set and turn off the layer effects. Link the two lay-
ers, and merge them together (Ctrl + E). You now have a solid copy
of the entire frame.

 4. Use the D key to reset your colors.

 5. Select an empty pane, right-mouse click, and select Similar, and
then Invert the selection and switch to the rectangular marquee.
Right-mouse click and fill the selection with white. We want this
frame solid white because, in the alpha channel, white is solid, and
no light will pass through the frame or reflect off of it.

 6. Hide the new frame alpha layer set.

 7. The windows should already be the way you want them in terms of
texture. If not, go back and change them before making the alpha
so that they match. When you are ready, Merge Visible. The white
frame should be a separate layer on top of your merged panes.

 8. Desaturate the panes (Ctrl + Shift + U).

Window alpha

FIGUre 10.47 Rain streaks on the window.

3D Game environments282

 9. Using Levels, drag the middle arrow a little to the right to darken
this image.

 10. Using Brightness/Contrast, take the brightness down 20 and the
contrast up 20.

 11. Your image should look like Figure 10.48. If you keep the frame
separate from the panes, you can adjust and alter the panes while
keeping the frame solid white. With the panes this dark, they are
almost completely transparent, so you will want to experiment
with light/dark and contrast settings.

This alpha image can go into an alpha channel in Photoshop, or
into an image format that supports alpha, or it can be used as a sepa-
rate image. Some game engines use a separate grayscale image as the
alpha, whereas others will recognize the alpha channel of an image.
Some do both, so you can use one grayscale image to define the opac-
ity and illumination of the window and another to define the bump.
In the case of a bump map for a window, you would want the panes
smooth, unless there were mud splatters that would stand off the
glass, and the frame would protrude. In Figure 10.49, you can see the
window texture with various effects on it that use the alpha channel.
Note that, in the image with opacity, there are broken panes. This was
easily done by making the broken and missing portions solid black
with hard edges.

FIGUre 10.48 In most applications, the white in an alpha channel is solid,
so the frame is white and kept as a separate layer. Make sure that it always
stays solid white if you adjust the panes.

283moDelinG anD texturinG the junGle base

The size of the texture and the number of panes will fluctuate depend-
ing on your parameters. One approach is to make more panes in the
same texture space; another is to make one pane if the panes are all the
same. This would allow a smaller image size but more detail per pane.
You can even have a polygon for every pane in the window and make an
image with pane variations, including normal and several broken in dif-
ferent ways. Then, the environmental artists can cover most of the panes
with the normal pane and randomly place the broken ones.

FIGUre 10.49 The top image shows the texture as is. The middle image
has an illumination shader on it. It is difficult to see in this image, but, if you
were on a dark street, these windows would be bright as if there was a light
inside. The bottom image has an alpha channel used for opacity. White is
solid, so black is clear. The broken panes are just solid black shapes on the
alpha channel.

3D Game environments284

Note: Some game engines and three-dimensional (3D) applications use
black as solid and white as transparent, while some may use the oppo-
site. If this is the case, you can simply invert your image using the Invert
command (Ctrl + I).

Organic textures

Organic textures are derived from a photo source. Some can be gener-
ated using applications such as Bryce and L3DT, among others.

I started with the photo source from the book’s webpage on the CRC
Press website: https://www.crcpress.com/3D-Game-Environments-Create
-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026, under
the Downloads tab and added the mold overlay from the concrete (Figure
10.50).

For the plants, I used the images generated by Plant Life: flowers, ferns,
weeds, tropical lilies, and so on, and worked on them a bit (Figure 10.51).
They come out very saturated and of high contrast. They are also
designed to be used with masking rather than alpha, so their edges are
jagged. I take the generated images into Photoshop and smooth the
edges and adjust the brightness, color, and contrast. I even replace the
image sometimes with a higher resolution or a more appropriate image.
In Photoshop, I usually Gaussian blur the image just a little and then use
Enhance Edges to help smooth out and strengthen the image. You often
have to swap the image quadrants about; the UVs are flipped when I get

rocks

plants

FIGUre 10.50 Rock texture.

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

285moDelinG anD texturinG the junGle base

FIGUre 10.51 Progression of plant from Plant Life through stages.

3D Game environments286

the Plant Life mesh into Max, and I find it easier to change the texture
than the mesh.

I end up using photo sources for trees, and, sometimes, I render tree
branches in an application like Bryce (Figure 10.52). The textures for
the palms are based on photo sources for the bark, and the fronds are
rendered in Bryce. The smaller broad-leafed plants were created in
Photoshop. I used a base leaf that I found on the Internet, cut and shaped
it, and finally adjusted the color (Figure 10.53). I used Liquefy to push
the triangular slits in the leaf edge into the leaf.

Use the renders of all your tree and plant assets, from various angles if
possible, and layer them in Photoshop until you have the backdrop you
like. Make it tile and create an alpha channel (Figure 10.54). You can
even use other sources of foliage if they blend in with the foliage of your
world.

In addition to clouds (see Chapter 9), I create my sky assets largely
in Bryce. This is a very reasonably priced application from DAZ 3D
(http://www.daz3d.com), valued at about US$60. The ease of creating
photorealistic—and seamlessly tiling—sky images makes the price
well worth it for that feature alone (Figure 10.55). There are, of course,
many other features for terrain, water, vegetation, skies, and other ele-
ments in the natural environment.

Even though the easiest way to get a sky out of Bryce is to output the tra-
ditional six images for a skybox, I have a method for creating a sky dome.
I really prefer the dome over the box, and here is what I do. After render-
ing the six images for sky out of Bryce at a high resolution, I map them
to a cube in Max and then spherify or mesh-smooth the cube. Spherify
will take a cube with fewer faces and make it a perfect sphere, whereas
a mesh-smooth function often takes more faces to create a round object
(Figure 10.56). I find this is a very easy way to make such an object, and
I also have an easier time working with six separate square images than a
single large distorted thing. The beauty of this process is that it relies on
the multi/sub-object function (in Max), so the images are still six flat ones
and therefore still easily editable as separate flat images. The fact that they
are six flat images mapped to a sphere makes the top of the dome mapped
with a full image you can work with and not some tightly gathered image
that was squished to a spheroid object.

trees

Foliage backdrop

Skybox textures

http://www.daz3d.com

287moDelinG anD texturinG the junGle base

FIGUre 10.52 Trees from Bryce.

3D Game environments288

things to try

Multitexturing is the process of laying more than one texture on a surface.
This can involve using various sets of UV coordinates for each set of tex-
tures. This is traditionally how lightmaps and other maps, such as bump
and specular, and so on, function. Due to its flexibility, the method can be
very effective in game development in terms of efficiency and visual quality.
You can set up a faux multitexturing scenario in Max or any other applica-
tion that supports multiple UV sets. In Max, you would use the Composite
material function. Game Art: Creation, Direction, and Careers by Riccard
Linde (Charles River Media, 2005) contains a great section on multitextur-
ing, and it is broken down for setup in Maya. The four basic stages of multi-
texturing, as laid out by Riccard Linde, are as follows:

 1. Base map—color

 2. Multiply blend one—detail with specular map

FIGUre 10.53 Broadleaf plants.

289moDelinG anD texturinG the junGle base

 3. Multiply blend two—dirt map

 4. Alpha texture—decal map with transparency

You can use the textures that you have already created to do this, as
long as you saved them in layers. The moldy concrete we created can be
used to create all these maps: color, detail, dirt, and decal. The alpha
decal is the only map that requires proper pixel ratio and resolution for
the world; the others can be of virtually any size. Figure 10.57 shows the
multitextured front of our old building.

I used the Composite material function in Max, which composites up
to 10 materials together and uses additive, subtractive, or multiply blend-
ing. Keep in mind that the first material slot is the one on the bottom of
the other materials below it in the numbered slots. These are composited
as ordered from top to bottom. The tiny buttons next to each of the mate-
rials (A, S, M) are the additive, subtractive, and multiply toggles.

FIGUre 10.54 Progression of the foliage backdrop creation.

3D Game environments290

FIGUre 10.55 This is an extreme fish-eyed view of a sky box with a Bryce texture. You can see five
of the six faces in this shot.

FIGUre 10.56 Bryce box images can still be used on a sky dome.

291moDelinG anD texturinG the junGle base

Conclusion

In Figure 10.58, you can see some renders of the jungle base scene. In
Chapter 11, we will discuss more advanced shaders, and we will work in
the sci-fi setting.

FIGUre 10.57 Multitextured old building.

3D Game environments292

FIGUre 10.58 Jungle base scene.

293

Chapter eLeVeN

Focus on the futuristic
interior—normal maps
and multipass shaders

Introduction

Assume that the colonists on planet LV-426 have been out of touch, and
you need to check on them. Incredibly, they are mesmerized by a reality
show: five colonists and five aliens try to live in the same space station
while losing weight, participating in meaningless competitions, and vot-
ing each other off the planet.

This chapter focuses on normal mapping—specifically creating maps
in Photoshop with a look at creating them using a three-dimensional (3D)
program—and creating the supporting maps for a typical environment.
In the 3D program, we will create them using a more simplified method
that is perfect for the environmental artist. By creating several smaller
parts of geometry, you can place them where you want them to create a
larger object and shoot the normal map from that. There is no need to cre-
ate the same vent over and over and no need to try and create one large,
complex piece of geometry that encompasses only a few details.

First, we will look at what a normal is and how lighting in games
generally works. In short, a normal map creates an illusion of depth by
recalculating the highlights and shadows on a low-polygon surface using
the information from a high-polygon model and does it all in real time.
In Chapter 3, I briefly discussed bump and normal map shaders; in short,
they add 3D depth to an otherwise flat surface. While bump maps are

3D Game environments294

grayscale and display the most limited 3D effect, the normal map adds
more depth using a color map with lighting information stored in it.

A painting can be created that looks like a real scene, but it will only
look good from a single-fixed angle. When you change your viewing angle,
you suddenly see that it is a flat two-dimensional (2D) image. Imagine cre-
ating a painting that repainted itself so fast that every time you moved it,
it seemed as if you were viewing a real 3D scene. That is essentially what
a normal map is doing as it calculates light and shadow in real time on an
otherwise flat surface. We still need to maintain the silhouette of the model
as best we can, meaning that the overall shape of the model will still look
the same even if the flat surface is highly detailed. The good news is that
using a present-day, vanilla-normal map allows us to focus more polygons
on the silhouette of the model. Currently, a normal map cannot change the
silhouette of the model, but there is an even better type of mapping called
parallax mapping, which can actually take into account the fact that items
protruding from the surface of an object should occlude objects behind it.

In this section, a few simple models and texture sets are used to dem-
onstrate the normal map. All of the following assets can be found on
the book’s webpage on the CRC Press website: https://www.crcpress
.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds
/ Ahearn/p/book/9781138920026, under the Downloads tab.

• Wall panels

• Floor panels

• Column

• Light/ceiling panel

• Door

• Monitor

• Pipes and hoses

Vertex versus per-pixel lighting

The science of light is complex, to say the least. Due to hardware limita-
tions, programmers have had to grossly oversimplify light calculations
in order to calculate light in real time. Programming decent lighting in-
game has become possible only very recently due to hardware technology
advances. There are several ways lighting can be handled in games, but, if
it is calculated in real time, it is probably either vertex lighting or per-pixel
lighting. Vertex lighting (generally called Gouraud shading) uses a broad
brush to determine the lighting of a surface, whereas per-pixel lighting
uses a very fine brush to do so. Vertex lighting takes the brightness value

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026

295Focus on the Futuristic interior

of each vertex of a polygon and creates a gradient across the polygon face
(Figure 11.1). This is not nearly as accurate a lighting model as per-pixel
lighting where the lighting is calculated for every pixel.

So what is a normal, and how does it figure into all of this? The normal
is simply the way the face of a polygon is facing. Unlike the real world,
where a sheet of paper or the sides of a cardboard box have a back and
a front (and, technically, sides), a polygon is generally only visible when
you are facing it. In a 3D world, from the inside of a cube, you will be
able to see out of it because you are on the backside of all the polygons,
and the normals are all facing away from you. In some 3D games, you
can get your character in a position where you can see inside and through
objects. In fact, in some games, players can get themselves inside objects
where they can see and shoot other players, but those players can’t see
them or shoot back. Some programs will show you an outline when you
are behind the polygon to help you keep track of your objects or give you
other tools to work with in 3D, but games generally look at the normal as
is unless specifically instructed not to. Normals are usually represented
as an arrow pointing away from the visible face in a straight perpendicu-
lar line. It is important to understand this simple concept because how a
normal map functions is based on this bit of information (Figure 11.2).

Black

White

White

FIGUre 11.1 Vertex lighting.

3D Game environments296

In vertex lighting, for every normal on the mesh, the angle of the
normal and the angle of the lights in the scene are calculated (often with
their distances included as well) to determine the brightness of the ver-
tex and the gradient between these points (Figure 11.3), as follows:

 Brightness = N (the normal) dot L (the light vector, or the line
from the light to the surface)

FIGUre 11.2 The normal.

Brightness = N (the normal) dot L (the light vector)

Surface normal

Light vector

Surface normal

Light vector

Lighter Darker

FIGUre 11.3 The normal and N dot L calculations.

297Focus on the Futuristic interior

What is a normal map?

A normal map is an RGB texture, and the various color channels of the
texture (red, green, and blue) store the X, Y, and Z values of the normal
vectors from a high-resolution model. Figure 11.4 shows what a normal
map generally looks like.

Normal maps are easily generated by creating a grayscale map in
Photoshop and using the NVIDIA plug-in to convert it to a normal map.
There are several techniques for building these maps: (a) painting them,
(b) creating them from photos, and (c) using parts of existing normal maps.

An easy way to create a normal map is to begin with grayscale height
maps and use a filter (freely available from NVIDIA) to convert them into
normal maps. In Figure 11.5, you can see the height map, the NVIDIA
interface with 3D preview, and the resulting normal map. You can see
that, by using various shades of gray and creating soft or hard edges, you
can create almost any object you need in a normal map.

A source-based normal map is created from an image, usually a photo.
While this is not always desirable, you can get some good results from
a photo. In most cases, when creating environments for a game, the
textures you create will be used for rounded, injection-molded plastic
spaceship interiors, as well as stones, concrete, tree bark, wood, and
hard-edged objects—and a lot of other surfaces that are almost impos-
sible to model and shoot normals for. You will often find yourself in
a situation where you have to use a photograph or a finished texture
to create a normal map. The simple steps to accomplish this are as
follows:

 1. Start with a copy of your image and desaturate it. I often con-
vert the image to 16 bits, since any banding in the image will
show in the normal map. It will look like a topographical map
(Figure 11.6).

 2. Run the Photocopy Filter. You will have to adjust the settings
based on the source image, but the goal is to get the lower parts of
the image to be black and the higher ones to be white with little
distortion. Figure 11.7 shows this and the subsequent steps.

 3. Now, you can darken the areas that are supposed to be deeper than
the overall surface. In this example, I darkened the area where the
bricks are exposed since the plaster is on top of the layer of bricks
and should be set back in relation to it.

Creating normal
maps in photoshop

painting
 normal maps

Source-based
normal maps

3D Game environments298

Polygon normal

Low-polygon surface

High-polygon surfaces
Low-polygon surface

Low-polygon surface
Normal map

FIGUre 11.4 Normal map.

299Focus on the Futuristic interior

 4. I cleaned out a lot of the noise from the overall image since normal
maps are very sensitive, and, typically, an excess of detail on a
normal map translates into a noisy and/or puffy result.

 5. Finally, I took a very small brush and darkened the major cracks in
the wall and put a 2-pixel Gaussian Blur to the entire image. This
entire process only takes minutes and adds a great sense of depth
to the image.

 6. You can build up more depth in your normal map by taking it into
Photoshop and creating a layer via copying and setting the blend-
ing mode to Overlay. This alone will enhance the detail of the
normal map.

Grayscale map Resulting normal map

Normal-mapped polygonPolygon

FIGUre 11.5 Normal map creation using varying grayscale values and
softer or harder edges.

3D Game environments300

 7. To add more depth, blur this layer a few pixels. You can repeat
this process several times—duplicate the layer and blur it (mak-
ing sure the blending mode is still set on Overlay) and check the
results every so often until you like what you see. This extra step
is great for more organic textures, as it builds depth in a way that
makes the details more rounded. If you are working in Photoshop,
painting in hard details is recommended.

FIGUre 11.6 Banding in the normal map.

301Focus on the Futuristic interior

 8. The last thing to do is to Renormalize the map by running it through
the NVIDIA filter and checking the Normalize Only option. This
step corrects any vector information encoded into the normal map
that might have been corrupted during these steps (Figure 11.8).

This can be done in 2D, as well as 3D. In 2D, you are simply cutting and
pasting parts of existing normal maps and putting them together; in 3D,
you are putting various parts or geometry together to create the normal
map. The 2D parts can only be moved about to be effective as parts of a
normal map, but the 3D parts can be moved, scaled, rotated, and reused
in many more ways.

Use parts of
 existing normal
maps

FIGUre 11.7 Creating a normal map from a photo.

3D Game environments302

Creating normal maps using a 3D program

The process for creating normal maps using a 3D application starts with
the two models: (1) a high-polygon model (the sky’s the limit on detail)
and (2) a low-polygon model (needs to run in the game engine you are
creating it for). It doesn’t matter which one you create first, but there are
some pros and cons to both approaches. After the two models are created,
the process generally involves arranging the two models so that they are
on top of each other and generate the normal map correctly. This step

FIGUre 11.8 Various strengths of the normal map created from a photo.

303Focus on the Futuristic interior

can be the most time consuming and frustrating. When the application
that generates the normal map is run, it is doing the following:

• Mapping an empty texture to the low-polygon model.

• Calculating, for each pixel of the empty texture on the low-polygon
model, the corresponding normal from the high-polygon model.

• Recording that information in the texture map as an RGB value.

This method is what is required for very highly detailed characters and
some organic props, but the time and effort spent on this method for envi-
ronmental art (walls, floors, control panels, etc.) is overkill and often pro-
duces inferior results. If you can’t achieve your result quickly in 2D, then
here is a method for the quick creation of normal maps in 3D. Essentially,
you model all of your high-polygon details as separate parts so that you
can arrange them and shoot the normal map once (Figure 11.9). In fact,

High-polygon mesh

Polygon Polygon mapped

FIGUre 11.9 Creating normal maps in a 3D application the quick way.

3D Game environments304

a simple prop with a few sides can more easily be modeled and normal
maps can be shot by building all the separate faces of the model flat (sim-
ilar to laying out UVs, but in 3D) and shooting the normal maps and
assembling them in Photoshop. I have seen inordinate amounts of time
go into normal map creation for things as simple as vents on a wall (I am
talking days) when it should have taken under an hour the first time and
only moments thereafter since the asset can be reused.

assets for the futuristic interior

The assets for the futuristic interior involve mostly the creation of tex-
tures for the shaders. The models themselves are purposely very simple
for this exercise so that you can clearly see the power of the normal maps
and other shaders when applied to even the simplest geometry.

Since we know that we are creating a shader that will involve multiple
maps—diffuse (color), specularity, illumination, opacity, and a normal
map—we need to set up the Photoshop file so that each map corresponds
exactly to each of the other maps. If you have the frame of a light col-
ored in the diffuse map, and it’s supposed to protrude on the normal
map and you want the lens to be bright on the illumination map, all of
these need to line up. Of course, Photoshop layers make this easy. This
approach also allows for the rapid iteration of changes in each of the
maps. Correctly setting up the file will greatly speed up your work, as all
the maps created can be produced based on the first few layers you cre-
ate. I usually start with a simple layout of the texture. For the wall panel,
this is a black-and-white layout of the shapes of the panels and parts of
the wall panel. Figure 11.10 shows the layers that compose the group for
the shapes in the panel. From this, I usually create the normal map right
off to see if the concept can be achieved in 2D (Figure 11.11).

Color This texture is created in the same way that the texture for the
massive doors of the jungle base was created. Start with the group we
just created for the layout of the panel and copy it. Name it diffuse or
color. For the diffuse map, the stark black-and-white color of the layout
is taken way down. (Use Fill, not Opacity, to do this so that the layer
styles are not affected.) Having the shapes on separate layers will make
texture creation easier on each map for various reasons. On the color
map, you can use the various layers to apply subtle layer styles—a slight
dark outer glow, for instance, to create the look of dirt in the cracks.
You can use a color overlay to experiment with various colors quickly,
and, when you like what you have, you can sample the color to create

Wall panels

305Focus on the Futuristic interior

Normal/layout layers

Normal/layout

Diffuse

Layers setup

Specular

Diffuse layers Illumination

FIGUre 11.10 Black-and-white layout of the shapes of the panels.

3D Game environments306

the paint layer (as we did in the jungle base). If you keep all parts of the
texture that will later be displayed fully illuminated (such as the lights
on a control panel) on their own layers, it will be much easier to create
an illumination map later on. This applies to all the maps—even the
specular map is easier when you can quickly isolate a panel using Ctrl-
click on a layer.

This is also where I introduce overlays for dirt and scratches and
other elements of color such as stenciled writing or stickers. These over-
lays can be used on each texture you create so that all the surfaces of the
space you are creating will have consistency in the wear and tear and the
overall look (Figure 11.12).

Illumination The illumination map is made by creating a new layer
filled with black and Ctrl-clicking on the layers with the light colors
on them and simply using Ctrl + I to invert the black to white on the
new illumination layer. In this case, the only lights present are the two
fluorescent-type tubes on the bottom of the panel. In Figure 11.13, you
can see the difference between the texture with and without the illumi-
nation map present.

Spec The specularity map is a copy of the entire texture that is dark-
ened, and then, because the various parts of the texture are on layers, we
can Ctrl-click the layers to have precise control over the specularity of
various elements of the surface such as the paint. The paint is chipped and
peeling, and, by selecting this layer’s transparency, we can take the bright-
ness up or down to make the paint uniformly shiny or dull. We can also
dodge in scratches and scrapes. Remember that the white will be shiny

FIGUre 11.11 Normal map to see if the concept can be achieved.

307Focus on the Futuristic interior

Layout

Layout darkened

Overlays and paint layer

Details

FIGUre 11.12 Overlays for dirt and scratches and other elements such as
stenciled writing or stickers.

FIGUre 11.13 Texture with and without the illumination map present.

3D Game environments308

and the black will be dull so that the edges of panels and the area around
handles will be scratched and shiny. You can also paint with a white brush
on a separate layer if you want to have more control over the effect and the
ability to more easily redo and fix things later. In Figure 11.14, you can see
the texture with the normal map and with the specularity map, and then
all three together in the foreground. Another thing to keep in mind is that
deep cracks and spaces shouldn’t have specular reflection; this is one of
the reasons many normal maps often look like molded plastic.

Normal map The normal map starts out as a grayscale image, and I do
several iterations with the NVIDIA normal mapping filter in Photoshop
until I get the desired result. There are a few things to keep in mind when
creating normal maps in this fashion:

• Watch for banding in the normal map. If this is a problem, work at
a higher resolution, take the image mode up to 16 bits, and make
sure not only that the brush you are using is soft but also that the
spacing is set as low as possible under the brush tip shape of the
Brushes Palette.

• If you want to create multiple layers of depth, do this by working
at multiple grayscale levels. Two objects crossing each other will
appear as if they are on the same level and mashing together rather
than on separate levels, if they are using the same values. Make
one darker so that it seems to be farther back (Figure 11.15). Figure
11.16 illustrates the effect of changing the grayscale values.

FIGUre 11.14 Texture with normal map and with the specularity map,
and then all three together in the foreground.

309Focus on the Futuristic interior

Darker
Further back

FIGUre 11.15 Multiple layers of depth.

FIGUre 11.16 Grayscale value changes.

3D Game environments310

• Remember that normal maps are very sensitive to value changes.
If you want to include dirt on your normal map, the difference in
value for the surface it is placed on should be very subtle. Brighten
the surface slightly and the dirt will protrude; darken it and the
dirt will look like pits and dents. You may want to consider adding
dirt last, after you have tweaked the major height appearances of
the normal map. If you need to increase the values of the overall
normal map at any stage, this also means that the effect of the dirt
protruding from the surface will increase and will end up looking
like huge lumps (Figure 11.17).

Save interesting objects for which you build normal maps, and create
a library of vents, panels, and controls, among many others.

Wall panel variations By creating a copy of the file that we just cre-
ated, you can make variations of the wall panel—without lights, half-
sized, or with different panel designs. By using the existing file, you can
keep the texture visually consistent (Figure 11.18).

Figure 11.19 shows more details for the open wall panel. This was
constructed in the same manner as the other panels but with added
detail, that is, more panels and lights. Since there is so much detail in the
normal map, I found that, as I worked, some parts looked good, whereas
others needed more work. I wanted to continue to make some parts more
prominent, so I simply saved a copy of the normal map at that stage and
kept working. Later, I combined the versions of each normal map and
kept the parts I liked best to create the final normal map. In this case,
I wanted to make the panels more prominent, but that made the hose
connectors too puffy, so I put the final normal map on top of the version

FIGUre 11.17 Dirt caution.

311Focus on the Futuristic interior

with the good hose connectors and erased the connectors from the top
layer. Remember to merge and renormalize. This is as complex as the
geometry gets for the walls and floors at present (Figure 11.20).

The floor panels are created starting with the wall panels, but these tex-
tures can be simpler (Figure 11.21), featuring diamond plate and caution
stripes. I created a half-sized version with the caution stripe on it to be
used around the edges of the hall (Figure 11.22).

With the column, we introduce a slightly more complex mesh than the
flat polygons of the floor and walls. This is still a simple mesh but involves
a little UV layout (Figure 11.23).

Floor panels

Column

FIGUre 11.18 Wall panel variations.

3D Game environments312

FIGUre 11.19 Wall panel open.

FIGUre 11.20 Wall panel open.

313Focus on the Futuristic interior

The light panel (Figure 11.24) has only one unique texture, which is
used for the grate. The others are wall panels, and the lights themselves
are from the wall panel with a light. There is also the introduction of
the opacity map. While the illumination map can be a little fuzzy (so it
appears that the area around the light is being lit), the opacity map needs
to be exact if you want the grill to look clean. If it’s fuzzy, the texture
fades.

Light/ceiling panel

FIGUre 11.21 Large floor panel.

3D Game environments314

On the door texture, I included the frame parts as well (Figure 11.25).
The surface behind the door is a wall, so I textured it accordingly.

The monitor (Figure 11.26) has a few overlays for the screen, and, in
addition to the illumination map, there is an actual light source in the
scene that helps make it glow. The mesh is simply a line extruded and
the front face beveled.

With the ability to add more polygons to our scenes, now, we are able
to include traditionally high-polygon (relatively speaking) objects such
as hoses (Figure 11.27). Hoses are round and can be curvy—round and
curvy means polygon intensive. Start with a horizontal tiling texture for
a few hoses and a pipe or two. The addition of the specular and normal
map creates a really cool texture on the hoses (Figure 11.28). Creating
hoses is easy in Max if you don’t bother with Lofting; create a spline
running along the path you want your hose or pipe to run (can be bent in

Door

Monitor

pipes and hoses

FIGUre 11.22 Half-sized floor panel.

315Focus on the Futuristic interior

FIGUre 11.23 Column.

3D Game environments316

any direction in 3D space). In Max, enable rendering in the renderer and
the view port, increase the radius to the thickness you desire, and fillet
the vertices. You may also want to check the “Optimize” and “generate
mapping cords” boxes on the control panel. Also, make sure that the
number of sides generated and the level of interpolation on the spline are
not too high, or you will generate needless polygons. Collapse to a mesh
when needed. Figure 11.29 shows a rendering of the final scene with and
without the shaders in place.

Layout

Normal

Opacity

Illumination

Diffuse

FIGUre 11.24 Light panel.

317Focus on the Futuristic interior

Layout

Normal

Illumination

Specular

Diffuse

FIGUre 11.25 Door.

3D Game environments318

FIGUre 11.26 Monitor.

319Focus on the Futuristic interior

FIGUre 11.27 Pipes and hoses.

FIGUre 11.28 Hose detail.

3D Game environments320

FIGUre 11.29 Final scene.

321

Index

Page numbers with f refer to figures.

A

Access, 164, 165f; see also Blocking
gate, double-, 246–248, 250,

246f–250f
Additive blend effect, 70, 71f
Alpha channels

creation; see also specific assets
for clouds, 227, 229f
masking, 230, 231f
overview, 168f, 168–169

decals, 123, 123f
definition, 16–17
grass with, 77f
MIP-mapped texture and,

9f
nontiling details requiring

access, 164, 165f
cracks, 164, 166, 166f
dirt, 166, 167f
manholes, 164, 165f
oil stains, 164, 165f
overview, 163–164
sewer grates, 164, 165f
tar patches, 166, 167f

smoke texture and, 85f
tool for, see NVIDIA
typical particle with, 21f

Asphalt streets, 142–143, 144f
Asset-based optimizations, 7
Atlas textures, see Texture

pages
Average blend effect, 70, 71f
Axis, 3D creation, 51, 53f,

53–54

B

Base materials, tiling
asphalt/base streets, 142–143, 144f
building windows illumination

mapped, 148, 150–152, 151f
cement, 143, 145, 145f
intersection, 148, 150f
nontiling materials

bus stops, 157, 158f
dumpsters, 157, 159f
fire hydrants, 161, 161f
garbage cans, 157, 159f
mailboxes, 157, 159f
newspaper machines, 154, 156
parking meters, 161, 161f
phone booths, 157, 158f
signs, 154, 155f
traffic lights, 157, 160f

overview, 142, 143f
sidewalks, 145–148
solid-pane illumination map, 152f,

152–153, 154f
Base streets, 142–143, 144f
Bend deformation, 59f
Bezier corner, 55, 56f
Bezier curve, 55, 56f
Blend shader effect, 70, 71f
Blinn, Jim, xxviii, 63
Blocking, 100–104; see also Access

basic parts, 102, 103f, 104
overview, 100–101, 101f
setting up the grid, 101–102, 102f

Bloom shader effect, 74, 76f
Bold typeface, 37

Index322

Box, 51, 51f
Box mapping, 40, 42f, 115
Brightness, 296, 296f
Bryce software, 193–194, 284, 287f, 290f
Buildings

lobby, 118–119, 121f
main, 118, 119f, 120f
old, 256, 258, 260, 263, 256–263f
repeating, 112–113, 114f, 115f, 115,

116f
solid, 120–121, 122f
windows, see Windows

Bump shader effect, 82–85, 86f, 87, 87f
Bundysoft, 195
Bushes, 210, 216
Bus stops

modeling, 127, 128f
texturing, 157, 158f

C

California, traffic lights, 137f
Canada, Eastern, traffic lights, 137f
Carmack, John, 176
Caustics Generator, 237, 240f, 241f
Cells, 34f, 35
Cement, 143, 145, 145f
China, traffic lights, 137f
Climb height, 107f
Clouds

overview, 224, 226–227, 230, 232,
234, 226f–235f

single, 234, 236f, 237
Collision-based optimizations, 24
Collision hulls, 24, 26f
Collision mesh, 24
Collision objects, 24, 26f, 27
Collision types, 27–28
Colors

shader basics, 63–66, 64f, 65f, 66f
wall panels, 304, 306, 307f

Columns
futuristic interior, 311, 315f
main buildings, 118, 119f, 120f
solid buildings, 120–121, 122f

Communication, bad, xxi
Conan, 210, 218f
Concrete textures

tiling moldy, 267, 268f
concrete wall and heavy-duty jungle

gate, 253, 254f, 255f, 256
Cone, 51, 51f
Compression, 18, 19f

Co, Phil, xxiii
Cracks, 67–68, 144f, 164, 166, 166f
Crawl height, 107f
Crossbeams, light towers, 272, 274f
Cubes

dynamic mapping, 81
maps, 78, 81, 82f, 83f
primitive, 51f

Culls
definition, 28
distances, 33f, 34–35

Cylinders, 51, 51f
Cylindrical mapping, 40, 44f

D

Decals, 123f, 123
Deep Paint 2.0, 208–209, 209f
Deformations, 58–59, 59f
Depth of field shader effect, 70, 72, 72f
Detail mapping shader effect, 70, 72f
Diffuse shader effect, 67–69, 68f, 69f
DirectX, 219
Dirt

large urban environments, 166, 167f
subtle, 277f, 278
weathering and, 278–279, 279f

Distance fog, 31, 32f, 33–34
Doors

double, 246–248, 250, 246f–250f,
272, 273f

height, 106, 107f
futuristic interior, 314, 317f
massive, 269, 270f, 271, 272f

Doorways, 258, 260, 259f–260f
Drawing modes, 49, 50f
Driving games, 91, 93, 98
Dumpsters

modeling, 129, 132f
texturing, 157, 159f

Dust, subtle, 277f, 278
Dust-in-the-laser-beams effect, 82, 85f
Dynamic cube mapping, 81

E

Edge midpoint, 48f, 48
Edges, 42, 46f, 48f, 48
Elder Scrolls IV, 210, 217f
Elements, 42, 46f
Emitters, 20, 21f
Endpoints, 48f, 48
Enemy Territory: Quake Wars, 176

323Index

Environmental artists
game level designers versus,

xxii–xxiii
genre, xxvi
perspective, xxv
roles, xxiv–xxv
technology, xxvi–xxvii
theme, xxv
world size, xxvi

Erosion/smoothing feature, 187, 188f
Extrude, 56, 56f

F

Faces, 42, 46f, 48f, 48
Ferns, 216, 263
Fire hydrants

modeling, 138f, 139
texturing, 161, 161f

Floor panels, futuristic interior, 311, 313f,
314f

Flowers, 210, 216
Fog distances

maximum, 33
minimum, 33

Foliage
backdrop

organic models, 265, 266f
organic textures, 286

trees and, 190, 192–193, 192f–194f
Forced perspective, 22, 23f
FPS, see Frames per second (FPS)
Frames per second (FPS), 4
Free-form method, 98, 99f
Free-form terrain painting, 187
Freeze feature, 49
Frustum, 29, 29f, 30f
Frustum culling, 31
Full brightness

example, 11, 14f
shaders, 75, 80f
texturing, 161–163, 163f

Futuristic interior, 293–320
columns, 311, 315f
complete scene, 320f
doors, 314, 317f
floor panels, 311, 313f, 314f
introduction, 293–294
light/ceiling panel, 313, 316f
monitor, 314, 318f
normal maps

creation from 3D program,
302–304, 303f

creation in photoshops, 297
definition, 297, 298f
painting, 297, 299f
source-based, 297, 299–301, 300f,

301f
using existing parts, 301

pipes and hoses, 314, 316, 319f, 320
vertex lightning versus per-pixel

lightning, 294–296, 295f, 296f
wall panels

color, 304, 306, 307f
illumination, 306, 307f
normal map, 308, 309f, 310, 310f
overview, 304, 305f, 306f
spec, 306, 308, 308f
variations, 310, 311, 312f

G

Galvanized metal, 267f, 267
Gamasutra (website), 15
Game Art: Creation, Direction, and

Careers, 288
Game fiction, 95, 177
Game level design, xxi
Game level designers

artists versus, xxii–xxiii
environmental artists versus,

xxii–xxiii
role, xxiii–xxiv

Garbage cans; see also Dumpsters
modeling, 129, 132f, 133f
texturing, 157, 159f

Gates
double-access, 246–248, 250f
jungle, heavy-duty, 253, 254f, 255f,

256
General rusty metal, 266, 261f
Genre, xxvi, 93–94
Glass, 276–277, 277f; see also Windows

variations, 277–278, 277f
Glory of the Roman Empire, 8–9
Glossiness shader effect, 72–74, 74f, 75f
Glow shader effect, 74, 76f
Gouraud shading, see Vertex lightning
Grand Theft Auto (GTA), 94
Grass, 77f, 192, 210, 216f
Grids

definition, 47
line, 48, 48f
point, 48, 48f
setting up, 101–102, 102f
snaps and, 47–48, 48f

Index324

Grouping feature, 49
GTA (Grand Theft Auto), 94
Guard towers, 250, 251f, 252

H

Half-Life, 219
Halo shader effect, 74, 76f
Heat haze shader effect, 72, 73f
Height

climb, 107f
crawl, 107f
jump, 107f
map, 182f
setting, 188–189, 190f

Hide/unhide, 48–49
Hinge from edge, 109, 110f
Hoses

futuristic interior, 314, 316, 319f,
320

lofting and, 57, 57f
Hybrid method, 99, 100f

I

id Software, 176
id Tech 5 engine, 176
Illumination

maps
building windows, 148, 150–152,

151f
solid-pane illumination 152f,

152–153, 154f
shader effect, 75, 78, 80f, 81f
texturing nontiling details, 161, 162f
wall panels, 306, 307f

Intersections, 148, 150f
Italic typeface, 37

J

Jump height, 107f
Jungle base

complete scene, 291, 292f
introduction, 245–246
mechanical models, 246–263

electrically charged double door
and double-access gate,
246–248, 250, 246f–250f

guard tower, 250, 251f, 252
heavy-duty jungle gate and

concrete wall, 253, 254f, 255f,
256

industrial light towers, 252, 252f,
253f

old buildings, 256, 258, 260, 263,
256–263f

mechanical textures
assorted signs, 271–272, 274f
crossbeams for light towers, 272,

274f
double doors, 271, 273f
galvanized metal, 267f, 267
general rusty metal, 266, 266f
glass, 276–277, 277f
glass variations, 277f, 277–278
massive doors, 269, 270f, 271,

272f
rain streaks, 279–280, 280f, 281f
tiling moldy concrete, 267, 268f
tiling wood planks, 268–269,

269f
warehouse windows, 272, 275f
weathering and dirt, 278–279,

279f
window alpha, 281–284, 282f,

283f
window frame, 272–273, 275–276,

276f
organic models, 263–265

foliage backdrop, ground, skybox,
265, 266f

plants, 263, 264f, 265
rocks, 263, 264f
trees, 265, 265f

organic textures, 284–292
foliage backdrop, 286, 289f
plants, 284, 285f, 286
rocks, 284f, 284
skybox textures, 286, 290f
things to try, 288–289, 291f
trees, 286, 287f, 288f

Jungle climate, 205f, 206f
Jungle gate, heavy-duty, 253, 254f, 255f,

256

L

L3DT, 191f, 195, 197–198, 196f–200f,
205f

Landmarks, 115–118, 117f
Large urban environments

modeling, 97–139
approaches, 98–99, 99f, 100f
blocking out the level, 100–104
introduction, 97–100, 99f, 100f

325Index

streets, 108–109, 109f, 110f, 111f,
111

UV-mapping the meshes,
111–139

world measurements and scale,
104–108

planning, 91–95
game fiction, 95
genre, 93–94
introduction, 91–92
point of view, 93
technological assumptions, 92
theme, 93
world size, 94–95

texturing, 141–169
completed example, 169, 169f
creating the alpha channel, 168f,

168–169
introduction, 141–142
texture creation, 142–167

Lathe, 56–57, 57f
Level of detail (LoD), 23–24
Light/ceiling panel, futuristic interior,

313, 316f
Lightmaps, 13, 15, 15f
Lights

street, 133–134, 135f, 157, 160f
traffic, 134, 136f, 137, 137f, 157,

160f
Light source

bloom and, 74
inside, 277f, 278

Light towers
crossbeams, 272, 274f
industrial, 252, 252f, 253f

Lily pads, 216
Linde, Riccard, 15, 288
Linear method, spline control, 55, 56f
Local space, 53f, 54
LoD (Level of detail), see Level of detail

(LoD)
Lofting, 57, 57f
Lower/raise feature, 187, 187f
Low polygon environments, see Large

urban environments; Natural
environments

M

Mailboxes
modeling, 132f, 133, 134f
texturing, 157, 159f

Making Quality Game Textures, 15

Manholes, 123f, 164, 165f
Masking

opacity and, 77f, 78f, 79f
transparency and, 15–17, 16f, 17f

Max, 35, 63, 66, 112, 181, 206, 221,
289

Maya, 66, 181
Measurements

units, 47
world, scale and, 104–108

Megatextures, 175, 176
Melt deformation, 59f
Meshes

artifact, 182f
basic parts, 42, 46f
collision, 24
editing, 51, 52f
large urban environments, see Large

urban environments
modifiers application, 183f
pivot points and, 55f
UV-mapping, 111–139

bus stop, 127, 128f
decals, 123f, 123
details, 121, 123
dumpsters, 129, 132f
fire hydrant, 138f, 139
landmarks, 115–118, 117f
lobby buildings, 118–119, 121f
mailbox, 132f, 133, 134f
main buildings, 118, 119f, 120f
newspaper machine 1, 124, 125f,

126
newspaper machine 2, 126f,

126–127, 127f
overview, 111–112, 112f
parking meter, 138f, 139

phone booth, 129, 130f, 131f
repeating buildings, 112–113, 114f,

115f, 115, 116f
solid buildings, 120–121, 122f
traffic lights, 134, 136f, 137,

137f
traffic signs, 124, 124f
trash cans, 129, 132f, 133f

waterfall, 243f
Mesh editing, 51, 52f
Metal, galvanized, 267, 267f
Mexico, traffic lights, 137f
Milkshape, 219
MIP mapping, see Multum in parvo

(MIP) mapping
Mirroring, 58, 59f

Index326

Modeling
jungle base, 245–292

complete scene, 291, 292f
introduction, 245–246
mechanical models, 246–263
mechanical textures
organic models, 263–265
organic textures, 284–292

large urban environments, 97–139
approaches, 98–99, 99f, 100f
blocking out the level, 100–104
introduction, 97–100, 99f, 100f
streets, 108–109, 109f, 110f, 111f,

111
UV-mapping meshes, 111–139
world measurements and scale,

104–108
Modular method, 98, 99f
Monitors, futuristic interior, 314, 318f
Morrell, Stefan, 271
Multiplayer online (MMO) games, 91,

175, 195
Multitexturing, 12–13, 14f, 40, 45f, 288
Multum in parvo (MIP) mapping, 7,

8f–10f
Mushrooms, 210, 216

N

Natural environments
clouds

overview, 224, 226–227, 230, 232,
234, 226f–235f

single, 234, 236f, 237
introduction, 173–174, 203–205
plants

overview, 210
Plant Life, 214, 216, 219f, 219,

220f
skyboxes

single-image technique, 222
skybox technique, 223–224, 224f,

225f
sky-dome technique, 222–223, 223f

technological assumptions, 174–177
game fiction, 177
overview, 174–175
perspective, 175f, 175–176
theme, 176
world size, 176

trees
bark, 207–208, 207f, 208f
Deep Paint 2.0, 208–209, 209f

SpeedTree, 210, 215f–218f
TreeMagik G3, 209–10, 211f–214f

Newspaper machines
modeling

newspaper machine 1, 124, 125f,
126

newspaper machine 2, 126f,
126–127, 127f

simple visual reference, 124, 124f
texturing, 154, 156

Noise, 59f, 187, 189f
Nontiling details

full-brightness, 161–163, 163f
illumination-mapped, 161, 162f
requiring alpha channeling

access, 164, 165f
cracks, 164, 166, 166f
dirt, 166, 167f
manholes, 164, 165f
oil stains, 164, 165f
overview, 163–164
sewer grates, 164, 165f
tar patches, 166, 167f
tire marks, 164, 165f

Normal maps
creation from 3D program, 302–304,

303f
creation in photoshops, 297
definition, 297, 298f
painting, 297, 299f
source-based, 297, 299–301, 300f,

301f
using existing parts, 301
wall panels, 308, 309f, 310, 310f

Normal shader effect, 82–85, 86f, 87, 87f
Nova Scotia, traffic lights, 137f
NVIDIA

compression tool, 18, 19f
graphics card, 62f
interface, 78f
masking tool, 17, 17f
MIP-mapping tool, 7, 10f

O

OBJ, 219
Object space, 53f, 54
Occlusion

definition, 28
culling and, 28–31

Occlusion-based optimizations
cells and portals, 34f, 35
cull distances, 33f, 34–35

327Index

distance fog, 31, 32f, 33–34
occlusion and culling, 28–31, 29f, 30f

Oil stains, 123f, 164, 165f
Opacity, 77f, 78f, 79f
Optimizations

asset-based, 7
collision-based, 24, 25f
collision objects, 24, 26f, 27
collision types, 27–28
definition, xxvii, 3
forced perspective, 22, 23f
introduction, 3–5, 6f
lightmaps, 13, 15f, 15
LoD (Level of detail), 23–24
masking and transparency, 15–17,

16f, 17f
MIP mapping, 7, 8f–10f
multitexturing, 12–13, 14f
occlusion-based, 28–35

cells and portals, 34f, 35
cull distances, 33f, 34–35
distance fog, 31, 32f, 33–34
occlusion and culling, 28–31, 29f,

30f
particle systems, 18, 20, 21f, 22
planning, 35–36
polygon optimization, 22–23
texture pages, 10, 11f, 12f
texture size and compression, 18, 19f
unlit textures, 11–12, 13f, 14f

P

Pan shader effect, 81–82, 84f, 85f
Parallax occlusion mapping shader effect,

82–85, 86f, 87, 87f
Parking meters,

modeling, 138f, 139
texturing, 161, 161f

Particle systems, 12, 18, 20, 21f, 22
Pelt puller, 206
Per-pixel lightning, vertex lightning

versus, 294–296, 295f, 296f
Perspectives

environmental artists, xxv
forced, 22, 23f
natural environments, 175f, 175–176
player, 47

Phone booth
modeling, 129, 130f, 131f
texturing, 157, 158f

Phong (3D artist), xxviii, 63
Portals, 34f, 35

Pipes
futuristic interior, 314, 316, 319f, 320
lofting and, 57, 57f

Pivots, 48f, 48
Pivot points, 54, 54f, 54, 55f, 55
Pixel shaders, xxviii, 61, 239f
Planar mapping, 40, 41f
Planning

low-polygon urban environments,
91–95

game fiction, 95
genre, 93–94
introduction, 91–92
point of view, 93
technological assumptions, 92
theme, 93
world size, 94–95

optimizations, 35–36
with shaders, 63

Plant Life, 214, 216, 219f, 219, 220f,
285f

Plants
jungle base, 263, 264f, 265, 284, 285f,

286
overview, 210
Plant Life, 214, 216, 219f, 219, 220f
tropical, 216

Player perspective, 47
Point of view, large urban environments,

93
Polygon optimization, 22–23
Primitives, 51, 51f, 54
Pull/push feature, 187, 187f
Pyramid shape, 51f

R

Racing games, see Driving games
Rage, 176
Rain streaks, 279–280, 280f, 281f
Raise/lower feature, 187, 187f
Reflection shader effect, 78, 81, 82f, 83f
Repeating buildings, 112–113, 114f, 115f,

115, 116f
Ripple deformation, 58, 59f
Roads, creation of, 189, 191f
Rocks

jungle base, 263, 264f, 284, 284f
overview, 219, 221, 221f, 222f
placement, 192, 192f
Plant Life, 216

Rotate shader effect, 81–82, 84f, 85f
Ruiz, Rick, 240

Index328

S

Scale shader effect, 81–82, 84f, 85f
Select feature, 49–50
Sewer grates, 164, 165f
Shaders

basics, 63–66, 64f, 65f, 66f
definition, xxvii
effects, xxvii, 66–87

blend, 70, 71f
bloom, 74, 76f
bump, normal, and parallax

occlusion mapping, 82–85,
86f, 87, 87f

depth of field, 70, 72f, 72
detail mapping, 70, 72f
diffuse, 67–69, 68f, 69f
heat haze, 72, 73f
illumination, 75, 78, 80f, 81f
masking and opacity, 77f, 78f, 79f
overview, 66–67
pan/rotate/scale, 81–82, 84f, 85f
specular highlights and glossiness,

72–74, 74f, 75f
pixel, xxviii, 61
vertex, xxviii, 61

Shortcuts and hotkeys, 47
Sidewalk, 107f, 145–148, 146f, 147f, 149f
Signs

jungle base, 271–272, 274f
traffic, 124, 124f, 154, 155f

Single clouds, 234, 236f, 237
Single-image technique, 222
Skew, 59f
Skins, definition, 39
Sky

jungle base textures, 286, 290f
single-image technique, 222
skybox technique, 223–224, 224f,

225f
skybox textures, 286, 290f
sky-dome technique, 222–223, 223f

Skybox technique, 223–224, 224f, 225f
Sky-dome technique, 222–223, 223f
Smooth method, spline control, 55, 56f
Smoothing/erosion feature, 187, 188f
Snaps

definition, 47
significance, 48
types, 48

edge midpoint, 48f, 48
edges, 48f, 48
endpoint, 48f, 48

face, 48f, 48
grid line, 48f, 48
grid point, 48f, 48
pivot, 48f, 48

Solid building, 120–121, 122f
Solid-pane illumination maps, 152f,

152–153, 154f
Spec, 306
Specular highlights shader effect, 72–74,

74f, 75f
SpeedTree, 210, 215f–218f
SpeedTreeMAX, 210
SpeedTreeMaya, 210
SpeedTreeRT, 210
Sphere, 51, 51f
Spherical mapping, 40, 43f
Spherify, 59f
Splash Damage, 176
Splines, 54–56, 56f
Stains, oil, 123f, 164, 165f
Stair height, 107f
Strawn, Gary, xxi
Streetlights

modeling, 133–134, 135f
texturing, 157, 160f

Streets
base, 142–143, 144f
buildings, see Buildings
creation of roads, 189, 191f
intersections, 148, 150f
lights

modeling, 133–134, 135f
texturing, 157, 160f

modeling, 108–109, 109f, 110f, 111f,
111

sidewalk, 107f, 145–148, 146f, 147f,
149f

traffic lights
modeling, 134, 136f, 137, 137f
texturing, 157, 160f

traffic signs, 124, 124f
UV-mapping, 112, 113f

Subtractive blend effect, 70, 71f

T

2D shapes
deforms, 58–59, 59f
extrude, 56, 56f
lathe, 56–57, 57f
loft, 57, 57f
transforms, 57–58, 58f, 59f
3D creation and, 54–56, 56f

329Index

3D creation
from 2D shapes, 56–59
2D shapes and, 54–56, 56f
axis, 51, 53f, 53–54
basics, 50–51, 51f
mesh editing, 51, 52f
pivot points, 54f, 54, 55f
primitives, 51, 51f
of normal maps, 302–304, 303f

3D Game Textures (2006), 38, 39
3D space, 44–50

drawing modes, 49, 50f
freeze, 49
grids and snaps, 47–48, 48f
grouping, 49
hide/unhide, 48–49
player perspective, 47
selecting, 49–50
shortcuts and hotkeys, 47
units of measurement, 47
viewports, 44–46

Taper, 59f
Tar patches, 166, 167f
Team shooters, 91
Technological assumptions

large urban environments, 92
natural environments, 174–177

Technology, xxvi–xxvii
Terrain

basics of editing, 183, 185–186,
184f–186f

free-form painting, 187–189
creation of roads, 189, 191f
flatten/set to height, 188–189,

190f
noise/turbulence, 187, 189f
push/pull or lower/raise, 187f,

187
smoothing/erosion, 187, 188f

generation software, 193–202
Bryce, 193–194
L3DT, 195, 197–198, 196f–200f
VUE, 193–194

introduction, 179
manual creation, 179–183,

180f–183f
methods for creating, xxix
texturing, 189, 191f
trees and foliage, 190, 192–193,

192f–194f
Terrain generation software, 193
Terrain textures, natural environments,

205f, 205–206, 206f

Texture creation, 142–167
asphalt/base streets, 142–143, 144f
building windows illumination

mapped, 148, 150–152, 151f
bus stop, 157, 158f
cement, 143, 145, 145f
dumpsters, 157, 159f
fire hydrant, 161, 161f
full-brightness, 161–163, 163f
garbage cans, 157, 159f
illumination-mapped, 161, 162f
intersection, 148, 150f
mailbox, 157, 159f
newspaper machines, 154, 156
overview, 142, 143f
parking meter, 161, 161f
phone booth, 157, 158f
requiring alpha channeling

access, 164, 165f
cracks, 164, 166, 166f
dirt, 166, 167f
manholes, 164, 165f
oil stains, 164, 165f
overview, 163–164
sewer grates, 164, 165f
tar patches, 166, 167f
tire marks, 164, 165f

sidewalk, 145–148, 146f, 147f, 149f
signs, 154, 155f
solid-pane illumination map, 152f,

152–153, 154f
traffic lights, 157, 160f

Texture level of detail, see Multum in
parvo (MIP) mapping

Texture mapping, 38f, 38–39, 39f
Texture maps, definition, 38f
Texture pages, 10, 11f, 12f
Textures

definition, 39
mapping

box, 40, 42f
cylindrical, 40, 44f
overview, 38f, 38–39, 39f
planar, 40, 41f
spherical, 40, 43f

mechanical textures
assorted signs, 271–272, 274f
crossbeams for light towers, 272,

274f
double doors, 271, 273f
galvanized metal, 267f, 267
general rusty metal, 266, 266f
glass, 276–277, 277f

Index330

glass variations, 277f, 277–278
massive doors, 269, 270f, 271,

272f
rain streaks, 279–280, 280f, 281f
tiling moldy concrete, 267, 268f
tiling wood planks, 268–269, 269f
warehouse windows, 272, 275f
weathering and dirt, 278–279,

279f
window alpha, 281–284, 282f,

283f
window frame, 272–273, 275–276,

276f
mega, 175, 176
organic textures, 284–292

foliage backdrop, 286, 289f
plants, 284, 285f, 286
rocks, 284f, 284
skybox textures, 286, 290f
things to try, 288–289, 291f
trees, 286, 287f, 288f

self-illuminated, 11, 75, 80f
significance, 38
skybox, 286

Texture size and compression, 18, 19f
Texturing

jungle base, 245–292
complete scene, 291, 292f
introduction, 245–246
mechanical models, 246–263
mechanical textures
organic models, 263–265
organic textures, 284–292

large urban environments, 141–169
completed example, 169, 169f
creating the alpha channel, 168f,

168–169
introduction, 141–142
texture creation, 142–167
downloadable, 142
nontiling details requiring alpha

channeling, 163–167
nontiling full-brightness details,

161–163, 163f
nontiling illumination-mapped

details, 161, 162f
tiling base materials, 142–161

terrain, 189, 191f
Themes

environmental artists, xxv
low-polygon urban environments,

93
natural environments, 176

Three-dimensional (3D) concepts
2D shapes, 56–59

deforms, 58–59, 59f
extrude, 56, 56f
lathe, 56–57, 57f
loft, 57, 57f
transforms, 57–58, 58f, 59f

3D creation
2D shapes, 54–56, 56f
from 2D shapes, 56–59
axis, 51, 53f, 53–54
basics, 50–51, 51f
mesh editing, 51, 52f
pivot points, 54f, 54, 55f
primitives, 51f, 51

3D space, 44–50
drawing modes, 49, 50f
freeze, 49
grids and snaps, 47–48, 48f
grouping, 49
hide/unhide, 48–49
player perspective, 47
selecting, 49–50
shortcuts and hotkeys, 47
units of measurement, 47
viewports, 44–46

basics, 42, 46f
introduction, 37–38
mapping types, 39–40

box mapping, 40, 42f
cylindrical mapping, 40, 44f
overview, 39–40
planar mapping, 40, 41f
spherical mapping, 40, 43f

multitexturing, 40, 45f
texture mapping, 38f, 38–39, 39f
UV editing, 40

Tire marks, 123f, 164, 165f
Torpy, Aaron, 195
Torus, 51, 51f
T-pages, see Texture pages
Traffic lights

modeling, 134, 136f, 137, 137f
texturing, 157, 160f
Traffic signs, 124, 124f

Transforms, 57–58, 58f, 59f
Transparency, 15–17, 16f, 17f
Trash cans; see also Dumpsters

modeling, 129, 132f, 133f
texturing, 157, 159f

Tree barks, 207–208, 207f, 208f
TreeMagik G3, 209–210,

211f–214f

331Index

Trees, 206, 265, 286
bark, 207–208, 207f, 208f
Deep Paint 2.0, 208–209, 209f
method of creating, 206–207
SpeedTree, 210
TreeMagik G3, 209–210, 211f–214f
jungle base, 286, 287f, 288f

Trees and foliage, 190, 192–193,
192f–194f

Tropical plants, 216
True Crime, 94
Tube, 51, 51f
Turbulence/noise feature, 187, 189f
Twigs, 216
Twist deformation, 58, 59f
Two dimensional (2D) shapes

deforms, 58–59, 59f
extrude, 56, 56f
lathe, 56–57, 57f
loft, 57, 57f
transforms, 57–58, 58f, 59f
3D creation and, 54–56, 56f

U

Unhide/hide, 48–49
United Kingdom, traffic lights, 137f
Unlit textures, 11–12, 13f, 14f, 75, 81f
UV editing, 40
UV-mapping, meshes, 111–139

bus stop, 127, 128f
decals, 123f, 123
details, 121, 123
dumpsters, 129, 132f
fire hydrant, 138f, 139
landmarks, 115–118, 117f
lobby buildings, 118–119, 121f
mailbox, 132f, 133, 134f
main buildings, 118, 119f, 120f
newspaper machine 1, 124, 125f, 126
newspaper machine 2, 126f, 126–127,

127f
overview, 111–112, 112f
parking meter, 138f, 139
phone booth, 129, 130f, 131f
repeating buildings, 112–113, 114f,

115f, 115, 116f

solid buildings, 120–121, 122f
traffic lights, 134, 136f, 137, 137f
traffic signs, 124, 124f
trash cans, 129, 132f, 133f

V

Vertex, 42, 46f, 48f, 48
Vertex lightning versus per-pixel

lightning, 294–296, 295f, 296f
Vertex shaders, xxviii, 61, 239f
Viewports, 44–46
View space, 53f, 54
VRML 1.0/2.0, 219
VUE, 193–194

W

Wall panels
color, 304, 306, 307f
illumination, 306, 307f
normal map, 308, 309f, 310, 310f
overview, 304, 305f, 306f
spec, 306, 308, 308f
variations, 310, 311, 312f

Water
Caustics Generator, 237, 240f, 241f
overview, 237, 238f, 239f
waterfall, 240, 241f–244f

Waterfalls, 240, 241f–244f
Water plane, 237, 239
Weathering, 278–279, 279f
Weeds, 216, 263, 284
Window alpha, 281–284, 282f, 283f
Windows

frame, 272–273, 275–276, 276f
warehouse, 272, 275f
building, 148, 150–152, 151f

Window frame, 272–273, 275–276, 276f
Wood planks, tiling, 268–269, 269f
World measurements and scale,

104–108
World size

environmental artists, xxvi
large urban environments, 94–95
natural environments, 176

World space, 53f, 54

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Acknowledgments
	Author
	Introduction
	SECTION I: The basics
	1 Game world optimizations
	Introduction
	Asset-based optimizations
	MIP mapping
	Texture pages (or T-pages, atlas textures, or texture packing)
	Unlit textures
	Multitexturing or multiple UV channels
	Lightmaps
	Masking and transparency
	Texture size and compression
	Particle systems
	Forced perspective
	Polygon optimization
	LoD
	Collision-based optimizations
	Collision objects
	Collision types
	Occlusion-based optimizations
	Occlusion and culling
	Distance fog
	Cull distance
	Cells and portals

	Planning
	Conclusion

	2 Three-dimensional concepts
	Introduction
	Texture mapping
	Mapping types
	Planar
	Box
	Spherical
	Cylindrical

	UV editing
	Multitexturing

	3D
	3D space
	Viewports
	Player perspective
	Shortcuts and hotkeys
	Units of measurement
	Grids and snaps
	Hide/unhide
	Freeze
	Drawing modes
	Grouping
	Selecting

	3D creation
	Mesh editing
	Axis
	Object space or local
	World space
	View space

	Pivot points
	2D shapes

	Creating 3D objects from 2D shapes
	Extrude
	Lathe
	Loft
	Transforms
	Deforms

	3 Shaders and materials
	Introduction
	Shader basics
	Common shader effects
	Diffuse (color maps or textures)
	Blend
	Average
	Additive
	Subtractive

	Detail mapping
	Depth of field
	Heat haze
	Specular highlights and glossiness
	Bloom (glow or halo)
	Masking and opacity
	Illumination (unlit, emissive, or full bright)
	Reflection
	Pan/rotate/scale
	Bump, normal, and parallax occlusion mapping

	Conclusion

	SECTION II: Low-polygon environments with simple shaders
	4 Planning the low-polygon urban environment
	Introduction
	Technological assumptions
	Point of view
	Theme
	Genre
	World size
	Game fiction

	5 Modeling the large urban environment
	Introduction
	Blocking out the level
	Setting up the grid
	Basic parts

	World measurements and scale
	Modeling the streets
	UV-mapping the meshes
	Street UV-mapping
	Repeating buildings
	Landmarks
	Main building
	Lobby building
	Solid building
	Details
	Decals
	Traffic signs
	Newspaper machines
	Newspaper machine 1
	Newspaper machine 2

	Bus stop
	Phone booth
	Dumpster, trash can, and mailbox
	Streetlights and traffic lights
	Parking meter and fire hydrant

	Conclusion

	6 Texturing the large urban environment
	Introduction
	Texture creation
	Tiling base materials
	Asphalt/base streets
	Base cement/sidewalk
	Intersection
	Building windows illumination mapped
	Solid-pane illumination map
	Nontiling details
	Signs
	Newspaper machines
	Bus stop/phone booth
	Garbage can/dumpster/mailbox
	Light
	Traffic light
	Parking meter/fire hydrant

	Nontiling illumination-mapped details
	Nontiling full-brightness details
	Nontiling details requiring alpha channeling
	Sewer grates, manholes, and access
	Oil stains/tire marks
	Cracks, dirt, holes, and tar patches

	Creating the alpha channel
	Conclusion

	SECTION III: Terrain, foliage, and more advanced asset creation
	7 Introduction to natural environments
	Introduction
	Technological assumptions
	Perspective
	Theme
	World size
	Game fiction

	8 Terrain
	Introduction
	Manual terrain creation
	Terrain-editing basics
	Free-form terrain painting
	Push/pull lower/raise
	Smoothing/erosion
	Noise/turbulence
	Flatten/set to height
	Other features

	Terrain texturing
	Trees and foliage: Decoration/prop layers
	Terrain generation software
	L3DT

	9 Filling the world: Trees, plants, rocks, water, and sky
	Introduction
	Asset list
	Terrain textures
	Trees
	TreeMagik G3
	A look at SpeedTree

	Plants
	Plant Life
	Rocks
	Skyboxes

	Clouds
	Single clouds

	Water
	Caustics generator
	Waterfall

	10 Modeling and texturing the jungle base
	Introduction
	Mechanical models
	Electrically charged, double-access gate
	Guard tower
	Industrial light towers
	Heavy-duty jungle gate and concrete wall
	Old building

	Organic models
	Rocks
	Plants
	Trees
	Foliage backdrop, ground, skybox

	Mechanical textures
	General rusty metal
	General tiling of galvanized metal
	Tiling moldy concrete
	Tiling wood planks
	Specific detail textures
	Massive doors
	Doors
	Assorted signs
	Crossbeams for light towers
	Windows
	Window frame

	Glass
	Variations
	Weathering and dirt
	Rain streaks
	Window alpha

	Organic textures
	Rocks
	Plants
	Trees
	Foliage backdrop
	Skybox textures

	Things to try
	Conclusion

	11 Focus on the futuristic interior—normal maps and multipass shaders
	Introduction
	Vertex versus per-pixel lighting
	What is a normal map?
	Creating normal maps in photoshop
	Painting normal maps
	Source-based normal maps
	Use parts of existing normal maps

	Creating normal maps using a 3D program
	Assets for the futuristic interior
	Wall panels
	Color
	Illumination
	Spec
	Normal map
	Wall panel variations

	Floor panels
	Column
	Light/ceiling panel
	Door
	Monitor
	Pipes and hoses

	Index

		2017-03-03T16:51:31+0000
	Preflight Ticket Signature

