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Introduction

When we wrote our first book of 3D-printable science projects, we knew that students, 
parents, and teachers would get excited about using a 3D printer, might download a 3D 
model, print it, and then wonder what to do next. Or they might get into creating models 
from scratch and become discouraged by the limitations of easier 3D modeling programs 
or the learning curves of the more capable ones.

In our first book, we created a middle path: models that you could just print but 
that would be reasonably easy to alter if you wanted to do more. Further, we designed 
the models so that they would be useful to learn science or math principles by changing 
their features. In particular, we wanted to create some seeds of science fair or extra-credit 
projects—that is, open-ended, meaty explorations that could be explored at a variety 
of levels. In that first book, we were surprised at how hard this turned out to be. Most 
textbooks and online sites endlessly recycle versions of the same 2D projection of models 
of science concepts.

You would think we would have learned better by now and that we would be able to 
just sit back, crack our knuckles, and pound out a model in an afternoon or so. Not even 
close. As with the first book, in each chapter we have a “Learning Like a Maker” section 
where we talk about our adventures in defining and implementing the models.

Some of the deceptively simple models (like the pendulums in Chapter 1 and 
weighted wheel in Chapter 5) actually involve some subtle physics to make them work 
well at a tabletop scale. For the interactive models that can be used for some simple 
demonstrations, we tried to use measuring equipment that pretty much anyone would 
have in their home, supplemented by free smartphone apps. This sometimes made 
accurate-enough measurement challenging, and we talk about how to deal with that in 
each case.

Speaking of accurate measurement, we were excited to create a simplified model of 
one of the biggest scientific observations in recent memory: gravitational waves (Chapter 8).  
We enjoyed the challenge of wringing out approximations that would preserve some 
behavior while not taking users into complicated exercises in downloading output of 
scientific user models (although we encourage you to use our model as inspiration and 
move on to endeavors along those lines!)

This book presumes you know a little bit about 3D printing already. If you don’t, 
Appendix A and the resources linked there should get you up to speed. The models are 
all written using the OpenSCAD free and open source 3D modeling program. If you know 
how to program in a language like C, Java, or Python, that will help but is not strictly 
necessary to alter the models. Appendix A and the OpenSCAD materials linked there will 
help you out with that too.

http://dx.doi.org/10.1007/978-1-4842-2695-7_1
http://dx.doi.org/10.1007/978-1-4842-2695-7_5
http://dx.doi.org/10.1007/978-1-4842-2695-7_8
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We have found that teachers use 3D printers in one of two fundamental ways: either 
they want to create a model to pass around in class to help students visualize a concept, 
or they want students to use a printer either to learn engineering and design per se or to 
do classroom explorations of physical concepts such as moment of inertia. Since most of 
these models lend themselves to being used in many different ways, we have not included 
a grade level or explicit lesson plans.

To show our readers who are teachers (in the United States) what we had in mind, 
though, at the end of most chapters we suggest Next Generation Science Standards that we 
thought might benefit from these models. These science standards, from the group NGSS 
Lead States, are documented in Next Generation Science Standards: For States, By States 
(The National Academies Press, 2013). Links are given at the end of relevant chapters.

We do not pretend to be experts in K-12 education, but we looked through the 
standards as engineers to find the best fit in our opinion from the technical practitioner 
point of view. If you are a teacher, you may want to check with your state or school 
standards as well to see the best fit.

The models span a variety of topics, and we tried to cover as many disciplines as 
possible. We have aimed these at students who know some basic algebra (enough to read 
an equation with an exponent in it). If you know some calculus, you will understand some 
of the models more quickly, but you might teach yourself more if you do not! Briefly, here 
is what you can look forward to:

Chapter 1 discusses pendulums and allows you to create simple and compound ones.
Chapter 2 lets you create models of geological formations that can be hard to 

describe: synclines, anticlines, and a particular type of dune called a barchan dune.
Chapter 3 moves you to cooler climates and allows you to create an iceberg (and 

explore how it floats) and snowflakes.
Chapter 4 lets you explore the world of high-speed motion, with models of Doppler 

shift and shock waves.
Chapter 5 creates a deceptively simple wheel that you can weight with pennies to 

understand moment of inertia.
Chapter 6 is an exploration of topics in probability, from rolling dice in role-playing 

games to how to visualize the probability of two things varying at the same time.
Chapter 7 explores logic gates as puzzles to put together.
Chapter 8 allows you to print the gravitational waves coming from two black holes 

merging and throwing off inconceivable amounts of energy.
Finally, as we noted earlier, Appendix A reviews how to 3D print, and Appendix B 

aggregates all the links in the book.
You may also want to check out the models in our earlier 3D Printed Science Projects 

book. Many of the models here build on those earlier ones. We note it where that is the case.
Finally, we are making the 3D-printable models used in this book (although not the 

book itself!) open source, licensed under a Creative Commons Attribution- ShareAlike 
4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/). That 
means you can use them for any purpose and alter and remix them as long as you credit 
us, and any derivativatives you distribute must carry the same license. In Appendix A we 
have some notes about where to find the repositories if you would like to add to these 
models. We hope these models are just the first iteration of a set of learning tools that 
students everywhere can play with and learn from for a long time to come.

http://dx.doi.org/10.1007/978-1-4842-2695-7_1
http://dx.doi.org/10.1007/978-1-4842-2695-7_2
http://dx.doi.org/10.1007/978-1-4842-2695-7_3
http://dx.doi.org/10.1007/978-1-4842-2695-7_4
http://dx.doi.org/10.1007/978-1-4842-2695-7_5
http://dx.doi.org/10.1007/978-1-4842-2695-7_6
http://dx.doi.org/10.1007/978-1-4842-2695-7_7
http://dx.doi.org/10.1007/978-1-4842-2695-7_8
https://creativecommons.org/licenses/by-sa/4.0/
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CHAPTER 1

Pendulums

This chapter looks at the deceptively simple world of pendulums. First we cover why 
pendulums swing back and forth as they do, and tie this into the general idea of simple 
harmonic motion—a type of oscillatory motion in which a system stores energy  
(in a spring or by working against gravity) and then uses that stored energy to move  
back to its original position.

Some of the experiments in this chapter are classic high school or undergraduate 
physics demonstrations, and in some cases would benefit from non-3D-printed parts. 
However, if you do not have access to typical school lab items, you can still do some 
respectable explorations with the parts we give you in this chapter, plus a pair of chairs 
and some string. We point out possible upgrades as we go.

This chapter (like all the others in this book) first lays out a bit of science background 
and then develops 3D-printable models that explore these concepts. We talk about what 
we learned just by the process of creating the model, and finally give some tips about 
how you might use these models to teach the topics they demonstrate. The models are 
available for download from the link on the copyright page of this book.

Simple Harmonic Motion
What makes a pendulum swing back and forth, or a ball on a spring boing back and 
forth? Simple harmonic motion is a phenomenon that occurs when something moves 
in a way that converts energy from potential energy to kinetic energy and back again. In 
an ideal world, the sum of something’s kinetic energy plus its potential energy is always 
a constant. If you raise something up high, it has potential energy. It is not moving, but 
you had to expend energy to get it where it is. When you let go, it falls—converting this 
potential energy into kinetic energy, the energy of motion. When it hits the ground, it 
dissipates that energy into making a big hole or cloud of dust.

But simple harmonic motion is about conversion of potential into kinetic energy in  
a back and forth way. Suppose you have a table built into the wall. Imagine that you 
have a big spring attached to the wall, with a heavy ball attached in turn to the spring 
and resting on the table. If you stretch the spring by pulling the ball away from the wall, 
and then let go, it will bounce back and forth for a while across the table. It is oscillating 
because you stretched the spring to start things off (storing potential energy in the spring).  
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When you let go, the spring converted that potential energy into kinetic energy (motion). 
It will likely then compress the spring and stop when the spring is compressed by the 
same amount that you stretched it initially, and then shoot back out. This process will 
continue until friction and air resistance bring it to a stop.

■■ Note   The principle that the force needed to compress or extend a spring is proportional 
to the distance the spring is extended or compressed is called Hooke’s Law. British 
physicist Robert Hooke proposed it over three and a half centuries ago, in 1660.

It is pretty easy to think about a mass on a spring oscillating back and forth on a table 
as an example of trading off potential and kinetic energy. But what about a pendulum 
swinging back and forth without any external forces on it (other than being pulled to one 
side to start the motion)? The more you pull the pendulum bob to one side, the more 
potential energy you are giving it because you are also raising it. When you let go, the 
mass will fall (converting some of its potential energy into kinetic energy), constrained 
by its string. It will have enough kinetic energy to carry the mass up to the other side, and 
stop, having converted all the kinetic energy back into potential energy. Air resistance and 
friction at the pivot point will eat away at the total energy over time, but if these can be 
minimized a pendulum can oscillate for a long time.

■■ Note   The basic work on pendulums has its heritage in the work of Galileo Galilei 
(1564–1642), Christiaan Huygens (1629–1695), and Isaac Newton (1643–1726). Early 
practical applications focused on pendulum clocks. Huygens is credited with developing the 
first working pendulum clock.

As it turns out, the period of a simple pendulum (a weight swinging on a light string 
or wire) is given by the equation

Period  = 2 * π * sqrt(l / g)

where l is the length of the string and g is the acceleration due to gravity  
(9.8 meters per second squared on earth). This formula only applies for swings under 
about 15 degrees either side of the centerline. It is an approximation that starts to  
become inaccurate for bigger swings. There are other terms proportional to the square 
(and higher powers) of the sine of this angle to the vertical. These terms are small when 
the sine of this angle is small, but become significant as the angle gets larger.

■■ Note   We use the programming convention of using * to mean multiply, and sqrt(…) 
for square root of, plus the standard abbreviations for meters (m), centimeters (cm), and 
other metric quantities. Thus meters per second squared becomes m/s2.
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The important property, though, is that the period depends only on the length of the 
string supporting the mass and not on the mass (unlike the spring example) or any other 
property of the pendulum. This is why pendulums were of interest first in clocks, and later 
on in other investigations that we talk about a little later in this chapter.

Friction (including air resistance) will eventually stop these oscillatory motions in 
the real world. The existence of friction acts as a damping force which takes energy out of 
the system, eventually bringing it to rest. As you will read in the “Learning Like a Maker” 
section in this chapter, we spent a lot of time battling friction in our designs.

The Models
In this chapter we start out with a simple pendulum (a mass on a string) and then 
move on to physical (sometimes called compound) pendulums, which are stiff parts 
that swings back and forth as a whole. Finally, we combine some of these to show the 
counterintuitive behavior of two or more simple pendulums connected together, or of 
a double pendulum, which connects two physical pendulums. The double pendulum 
displays chaotic behavior—seemingly-random oscilations.

■■ Tip   If you are new to 3D printing, you might want to look at Appendix A first, which 
talks about both 3D printing in general and using OpenSCAD in particular. All the models 
in this book are written in OpenSCAD. Electronic copies of all the models in this can be 
downloaded from the publisher’s page for this book. Go to www.apress.com and search on 
this book’s title to get to the correct page.

Simple Pendulum
The first model is a simple pendulum bob designed to be hung from a string. It has room 
for a few coins to be packed inside to weigh it down a little. It is set up to take up to four 
United States pennies, but there is a parameter, coins_diameter, which is the diameter 
of the desired coin, in mm. For U.S. pennies, it should be 19.5 mm; for quarters, 25 mm. 
If you live in other countries, you can find out the relevant coin dimension by doing an 
online search for the word “diameter” followed by the name of your coin. Add about half 
a millimeter to the actual diameter to allow for imprecision and some tolerance to allow 
the coins to be inserted and removed easily. The simple pendulum model (sized for 
pennies) is shown in Figure 1-1.

http://www.apress.com/
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■■ Caution   Many of the models in this chapter and elsewhere in this book have small 
parts and should not be used around young children. Treat them as science experiments, not 
as toys.

To test it out, put four pennies into the hollow area. Tie a piece of string to the top of 
the pendulum bob, and either tie the other end to someplace where it can swing freely 
(for example, a curtain rod with the curtains pulled back, or held in place with a heavy 
book at the edge of a table, as in Figure 1-2). Next, you will need to know the distance 
from the center of mass of the pendulum, which we will assume is roughly at the center 
of the pennies. Measure from the center of the coins to where the string is free to move at 
the top.

Figure 1-1.  The simple pendulum
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Next, pull the pendulum to one side, say 15 degrees or so from the vertical. Start a 
stopwatch (you probably have one in your phone’s clock application) and see how long 
it takes for the pendulum to return 50 times to one extreme position, for example all the 
way to the right, and then divide by the number of oscillations. (We have the little triangle 
on the bottom to make it easier to see positioning.) That time it takes for the pendulum to 
make a full swing and back again is the period. Note that the longer the string, the easier 
it is to measure the (slower) period.

It is a little tricky to do this measurement. Start the pendulum swinging first.  
Then start the stopwatch when the pendulum reaches an apex of its swing; then count 
the number of times it returns to that apex. We discovered that it is best to measure the 
actual distance of the pivot point of the string to the center of mass when the pendulum is 
actually hanging up—strings stretch a bit, and tying it introduces a lot of errors.

The period should be 2 * π * sqrt(l / g). If we have a one-meter-long string, the 
period is: 2 * 3.14159 * sqrt(1 m / 9.8 m/s2), or 2.0 seconds. We did two trials and got 59.9 
and 59.6 seconds for 30 swings, for a period of 1.99 seconds—accurate within our ability 
to stop the stopwatch, measure the distance, and other parameters.

Listing 1-1 is the OpenSCAD model for this pendulum bob. If you wanted to use 
different coins, you would change the coins_diameter and coins_depth parameters. 
These should both be a little bit (a few mm) bigger than the dimensions of the stack of 
coins you want to have inside the bob. Note that coins_depth is the thickness of the coin 
multiplied by how many of them you want to have in there.

Figure 1-2.  Experimental setup, simple pendulum with a short string
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Listing 1-1.  Simple Pendulum Model

// File simple_pendulum.scad
// A pendulum bob designed to carry coins
// Pendulum is pointed on the bottom for ease of reading
// Rich "Whosawhatsis" Cameron, December 2016

thick = 2; // wall thickness (mm)
// should include tolerance to make coins fit easily (mm)
coins_diameter = 19.5;
// use 19.5 for a US penny; 25 for a US quarter
coins_depth = 8; // total depth of coins (mm); here, 4 pennies

holder = 4; // controls how much the coins are covered by lip on top

$fs = .2;
$fa = 2;

// First section creates the back of the model
// the flat part printed on the platform
linear_extrude(1) difference() {
   offset(thick / 2) {
      hull() for(i = [0, holder]) translate([0, -i, 0])
         circle(coins_diameter / 2);
      rotate(45) square(coins_diameter / 2); // create point on bottom
   }
   translate([0, coins_diameter / sqrt(2), 0])
      circle(coins_diameter / 2);
} //end back

// Next section creates the lip on top that keeps coins in
translate([0, 0, coins_depth + 1]) linear_extrude(1) offset(thick / 2) 
difference() {
   offset(thick / 2) hull() for(i = [0, holder]) translate([0, -i, 0])
      circle(coins_diameter / 2);
   translate([-coins_diameter/2 - thick / 2, -coins_diameter/2, 0])
      square(coins_diameter + thick);
} // end creation of top

// Next section creates outer wall
linear_extrude(coins_depth + 2) difference() {
   offset(thick) {
      hull() for(i = [0, holder]) translate([0, -i, 0])
         circle(coins_diameter / 2);
      rotate(45) square(coins_diameter / 2);
   } // end offset
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   offset(0) {
      hull() for(i = [0, holder]) translate([0, -i, 0])
         circle(coins_diameter / 2);
      rotate(45) square(coins_diameter / 2);
   } // end offset
} // end outer wall creation

// Next section creates the point at the bottom
translate([
   0,
   -coins_diameter / 2 - holder - thick,
   coins_depth / 2 + 1
]) rotate([90, 0, 90]) linear_extrude(thick, center = true) {
   difference() {
      union() {
         rotate(45)
            square((coins_depth + 2) / sqrt(2), center = true);
         translate([0, - coins_depth / 2 - 1, 0]) square(coins_depth + 2);
      } // end union
      translate([thick / 2, - coins_depth / 2 - 1, 0]) square(coins_depth + 2);
   } // end difference
} // end fin at the bottom

Printing Tips
This model is very easy to print. If you want to make a more complex system with several 
pendulums, you can always print as many as you can fit on your platform at the same 
time. You should generally not use support with this model. Unless you make one a lot 
bigger than the penny sized one in Listing 1-1, the print should bridge (print over an 
open space between two areas) just fine. On the other hand, if you do turn on support, it 
will be very difficult to get the support out of there.

Coupled Pendulums
You can play with different lengths of the simple pendulum. What gets interesting is when 
you try out coupling a few of them—hanging several pendulums in such a way that they 
affect each other’s motion. If you hang a string (keeping it fairly taut) between two chairs 
and then tie two or more pendulums to that string, you will get coupled pendulums. 

First try having the two pendulums being as identical as possible (same number of 
pennies, same length of string). Start one moving and watch the second one take over 
the motion (Figure 1-3). This is the phenomenon of resonance—oscillating objects 
increasing the amplitude of their motion when they are pushed at a particular frequency.
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As we have seen, pendulums have a natural frequency at which they will oscillate. 
If two pendulums are able to trade energy back and forth, as they can in the setup in 
Figure 1-3, each pendulum will alternate between being at rest and swinging at its natural 
frequency. The first pendulum gets its start when you pull it back and let go. This first 
pendulum, though, is going to pull on the string that supports both pendulums, and 
that will start to tug on the second pendulum. After a while, this will drive the second 
pendulum to its resonant frequency. (Note that you would pull one pendulum toward 
you in the setup in Figure 1-3, not side to side.)

However, the energy for this has to come from somewhere, and the other pendulum 
will start to oscillate at a lower and lower amplitude and may even briefly stop before it 
begins to speed up again. There are many videos out there of these phenomena. One we 
liked is at www.youtube.com/watch?v=izy4a5erom8 from the group Sixty Symbols.

If you just have two strings of the same length and start one swinging, the two 
pendulums will trade motion back and forth. If, however, you go to three pendulums 
and/or start making them different in length, you will get variable behaviors. The math of 
this becomes quite complex very quickly.

Figure 1-3.  Coupled pendulum setup. Pendulums are free to swing toward and away 
from the camera during the experiment. Cloth was placed behind them to make them more 
visible for photograph.

http://www.youtube.com/watch?v=izy4a5erom8
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Compound (Physical) Pendulum
The equation for the compound pendulum’s period is similar to that of the simple 
pendulum, but requires two new factors: the moment of inertia, commonly denoted 
by a capital I, and the distance between the center of mass and the pivot point, which is 
usually called R. The moment of inertia determines the torque needed to rotate a body 
about a particular axis (for rotation around one axis, like that we are talking about now). 
Figure 1-4 shows our model of a compound pendulum on the printer.

To calculate moment of inertia and the position of the center of gravity in general 
requires calculus (https://en.wikipedia.org/wiki/Moment_of_inertia#Compound_
pendulum), but we can estimate it for a few cases. If we have a series of connected, 
somewhat discrete masses, it is the sum of each mass times the square of its distance 
from the pivot point:

Period = 2 * π * sqrt(I / (Sum of masses) * g * R)

Figure 1-4.  Compound pendulum on the printer bed

https://en.wikipedia.org/wiki/Moment_of_inertia#Compound_pendulum
https://en.wikipedia.org/wiki/Moment_of_inertia#Compound_pendulum
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So if we had two equal masses, m and M, the center of which were distances a and 
b from the pivot on a stiff compound pivot that is otherwise pretty light, we would get a 
moment of inertia of m * a2 + M * b2. Also, m + M is the total mass of the pendulum,  
I is moment of inertia, and R is the distance from the center of mass to the pivot. When 
the two masses m and M are equal, the center of mass is halfway between centers of these 
two masses. The equation in that case becomes:

Period = 2 * π * sqrt((m * a2 + M * b2) / ((m + M) * g * (a + b) / 2))

The first entry in the array length in the OpenSCAD model is a, and b is the second 
entry. The model we are giving you here has a = 50 mm (0.05 m) and b = 100 mm (0.1 m). 
If m and M are each half the total mass, then the value of R (the center of mass relative to 
the pivot point) will be halfway between the two masses, or at 75 mm (0.075 m). 

The actual values of the masses cancel out (only their ratios are important), and g is 
9.8 m/s2. Therefore, the period for this scenario is 0.58 seconds for any masses that are the 
same as each other.

If the mass at M is twice the mass at m (the farther mass is heavier) then the center of 
mass is 2/3 of the way from a to b, closer to the heavier mass. R becomes 50 mm (distance 
of the center of the first mass) plus 2/3 of the 50 mm between them, or 83.3 mm. In this 
case the period becomes 0.60 seconds, as befits a pendulum that is, in effect, slightly 
longer. If it is the other way around (the closer-in mass is twice the mass of the farther 
one), then R becomes 66.7 mm. Note that in these unequal cases the total mass in the 
denominator is three times the mass of the lightest one.

Testing the Compound Pendulum
We designed this model to fit even on small consumer printers. In an ideal world it would 
be bigger to allow for longer, easier-to-measure periods. The model has holes where you 
can insert pennies as weights and a flat, rectangular tab that you can place on the edge 
of a table. To start the pendulum, place the desired number of pennies in the holes, hold 
down the tab on a table or place a book on top of it, and pull the pendulum back to its 
stop (Figure 1-5).
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■■ Caution   U.S. pennies changed weight in 1982, from 3 grams each to 2.5 grams.  
In these experiments where the mass of the pennies matters, be sure you have all one kind 
or the other, because results may vary otherwise.

Let go, and use the stopwatch to see how long it takes for 40 or 50 oscillations. The 
model slows down pretty quickly, and will probably barely be moving after about ten 
oscillations. Even though the motion becomes tiny, if you observe carefully you should be 
able to count 40 or 50 oscillations. Table 1-1 summarizes the cases we calculated earlier in 
detail, plus the last one for completeness.

Figure 1-5.  The experimental setup for the compound pendulum
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Realistically you will probably only be able to get general trends. If you have a bigger 
printer, you might increase the values of the length array to have a longer pendulum. Do 
not just scale it, though, because the pivot at the top might not work, and the coins may 
fall out. Also, the pendulum is not really one or two masses connected by massless plastic. 
Your values may vary a bit depending on your print settings, the type of plastic, and so on.

Listing 1-2 lays out the model, which can be configured to have muliple sets of coins 
spread out along its length.

Listing 1-2.  Compound Pendulum Model

// File compound_pendulum.scad
// A rigid pendulum meant to carry multiple sets of coins
// Rich "Whosawhatsis" Cameron, December 2016

width = 10; // width in mm, parallel to coins
thick = 2; // thickness in mm
length = [50, 100]; // in mm from the pivot.
// array of positions of the center of coin holders,
// to have more holders, add more values to the length array.
coins_diameter = 19.1; // in mm
// 19.1 is US pennies plus a small tolerance
coins_depth = 8; // depth of coin holder; this is for 4 US pennies

pivot_spacing = .4; // tolerance, mm around pivot

base_len = 25;
// length of the base that sticks out to attach to the table

stop_angle = 25; // degrees; maximum extent of swing

$fs = .2;
$fa = 2;

Table 1-1.  Examples for Compound Pendulum

Scenario Period (seconds)

One mass centered at 0.050 mm
(Use simple pendulum formula, length = 0.050 m)

0.44

One mass centered at 0.10 m
(Use simple pendulum formula, length = 0.10 m)

0.63

Two equal masses, one at 0.05 m and one at 0.10 m
(R = 0.075 m)

0.58

One mass at 0.05 m and one twice as heavy at 0.10 m
(R = 0.083 m, and total mass = 3 times mass of lightest one)

0.60

One mass at 0.10 m and one twice as heavy at 0.050 m
(R = 0.067 m and total mass = 3 times mass of lightest one)

0.55
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difference() { //fulcrum for pendulum
   union() {
      // create piece that sticks out to place on table
      translate([0, -width / 2, 0])
         cube([width / 2 + thick + base_len, width, thick]);
      // create body of the fulcrum piece
      rotate([0, -90, 180]) linear_extrude(
         width + thick * 2,
         center = true,
         convexity = 5
      ) union() {
         translate([width / 2, 0, 0]) intersection() {
            circle(width / sqrt(2) + 2 + thick);
            union() {
               translate([-width / 2, 0, 0])
                  square([width, max(length)]);
               rotate(45) translate([0, -width / sqrt(2), 0])
                  square([width * 2, width * sqrt(2)]);
            }
         }
         translate([width / 2, 0, 0]) intersection() {
            circle(width / sqrt(2));
            square([width, width * sqrt(2)], center = true);
         }
      } // end of body
   }

   // create cutout for conical pivot
   rotate([0, -90, 0]) translate([width / 2, 0, 0]) for(i = [0, 1])
      mirror([0, 0, i]) cylinder(
         r = width / 2 + 1,
         r2 = 0,
         h = width / 2 + pivot_spacing
      );
   //create cutout for pendulum swing angle
   rotate([0, -90, 0]) linear_extrude(thick + 2, center = true) {
      translate([width / 2, 0, 0]) circle(width / sqrt(2) + 2);
      hull() for(a = [-stop_angle, 0, stop_angle])
         translate([width / 2, 0, 0]) rotate(a + 90)
            translate([-width / 2, 0, 0])
               square([width, max(length)]);
   } // end of swing cutout
} // end fulcrum

// create conical pivots
rotate([0, -90, 0]) translate([width / 2, 0, 0]) for(i = [0, 1])
  mirror([0, 0, i]) cylinder(r = width / 2, r2 = 0, h = width / 2);

// create the body of the pendulum
rotate([0, -90, 0]) linear_extrude(thick, center = true) {



Chapter 1 ■ Pendulums

14

   square([width, max(length)]);
   translate([width / 2, 0, 0]) intersection() {
      circle(width / sqrt(2));
      square([width, width * sqrt(2)], center = true);
   }
   for(i = length, d = coins_diameter + thick * 2) {
      translate([width / 2, i, 0]) intersection() {
         circle(d / sqrt(2));
         square([width, d * sqrt(2)], center = true);
      }
   }
}

rotate([0, -90, 0]) { // create coin holders
   for(i = length, d = coins_diameter + thick * 2) {
      translate([width / 2, i, 0]) difference() {
         linear_extrude(thick / 2 + coins_depth + 2) intersection() {
            circle(d / 2);
            square([width, d], center = true);
         }
         rotate_extrude() difference() {
            translate([0, 0, 0])
               square([d / 2 - thick, thick / 2 + coins_depth + 5]);
            translate([
               d / 2 - thick + .5,
               thick / 2 + coins_depth + 1,
               0
            ]) circle(1);
         }
      }
   }
} // end coin holders

Printing Tips
This model has some tight tolerances in the pivot. You may need to clean out the space 
around the pivot a bit. Be careful not to warp the pendulum if you do that. You will need 
to work the pendulum back and forth for a while to get rid of any residual plastic that is 
hanging things up or causing friction.

Make sure you have support turned off. You can use a skirt for this, but should avoid 
using a brim since it might clog up the free motion of the pendulum.

Double Pendulum 
Finally, we have created a model for a double pendulum. This is a pair of rigid pendulums, 
connected so that each of the two can rotate freely. These pendulums have the property 
that their motion is chaotic—that is, very dependent on initial conditions in ways that are 
hard to calculate. 
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The motion can be pretty unpredictable. It will not move for very long because of 
friction, but if you can get a clean print it will do some impressive moves for a little while. 
(Expect the lower arm to thrash back and forth, possibly more than 360 degrees.)

There are some great examples on YouTube. For instance, the one at www.youtube.
com/watch?v=AwT0k09w-jw starts off with about a minute-long demonstration of different 
non-chaotic versions of the pendulums and then moves on to the interesting stuff. If you 
search YouTube for “double pendulum” you will find more.

This is a little tricky to pull off with 3D printing (because it is difficult to create a small 
low-friction joint), and our model made a lot of tradeoffs between the desire to fit on 
smaller 3D printers and design of a low-friction joint.

Figure 1-6 shows the pendulum on the printer bed. The small C-shaped items are snap 
rings. You will slide them onto the notches on the pendulum pivots from the side to keep the 
arms from sliding off the end. Figures 1-7 and 1-8 show the double pendulum in use. To start 
it, hold both arms up, as shown in Figure 1-7, and let go. We show the pendulum held down 
with a heavy book; you might just want to hold it down on a tabletop and be sure you are 
standing clear of anywhere it might go. Put the shorter one on the bottom. There is another 
pivot on the bottom in case you want to try it with the bigger piece on the bottom  
(the behavior is less interesting that way, though). The OpenSCAD model is in Listing 1-3.

■■ Note   There is a third snap ring in case you break one getting it off the platform. You 
may have to trim it a bit if your printer “strings” across the opening. It should come out 
shaped like a C, not an O. The clamp should be put on from the side, not over the top, and fit 
into the groove on the pivot. You can see this in the front view of the pivot in Figure 1-7.

Figure 1-6.  Double pendulum as printed. Stringing inside the snap rings needs to be removed.

www.allitebooks.com

http://www.youtube.com/watch?v=AwT0k09w-jw
http://www.youtube.com/watch?v=AwT0k09w-jw
http://www.allitebooks.org
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Figure 1-7.  Double pendulum in starting position

Figure 1-8.  Double pendulum in motion
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Printing Tips
Make sure the first few layers of the snap rings are complete and not peeling off the 
platform (restart and try again if so). Watch your first few layers for “stringing” (threads 
across the holes). If you have excessive stringing, you may need to change your printer’s 
retraction settings. If you are reluctant to do that, you can ream out the holes gently with 
a small metal tool (like a screwdriver) that fits into the holes, or gently snip clip them if 
you have a small enough tool for the job. Wear eye protection when cleaning up prints 
because small bits tend to go flying.

Listing 1-3.  The Double Pendulum

// File double_pendulum.scad
// A 3D printable double pendulum model
// Rich "Whosawhatsis" Cameron, December 2016

lengths = [100, 70]; // mm, length of each pendulum
width = 10; // mm, width of each piece
pivot = 5; // mm, diameter of the pivot center
gap = .3; // mm, spacing between pivot center and hole
thick = 6; // mm, thickness of each piece
base = 30; // mm, length of the base that rests on the edge of a table

$fs = .2;
$fa = 2;

// create the base piece
translate([len(lengths) * (width + 2), - (thick + 5) / 2, 0]) {
   linear_extrude(thick) square([width, base], center = true);
   // create sideways pivot with flat side for printing
   intersection() {
      translate([0, base / 2 - thick, pivot / 2 / sqrt(2)]) {
         rotate([-90, 0, 0]) rotate_extrude() {
            difference() {
               square([pivot / 2, thick * 2 + 5]);
               translate([
                  pivot / 2 + 1 - sqrt(2) / 2,
                  thick * 2 + 3,
                  0
               ]) circle(1);
            }
         }
      }
      linear_extrude(pivot) difference() { // flat side
         square([width, base + thick * 2 + 10], center = true);
      }
   } // end sideways pivot
} // end base piece
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// create the pendulums
for(j = [0:len(lengths) - 1], l = lengths[j]) {
   translate([j * (width + 2), 0, 0]) {
      linear_extrude(thick) difference() { // create pivot body
         hull() for(i = [.5, -.5])
            translate([0, i * l, 0]) circle(width / 2);
         translate([0, -.5 * l, 0]) circle(pivot / 2 + gap);
      } // end pivot body
      // create pivot
      translate([0, .5 * l, 0]) rotate_extrude() difference() {
         square([pivot / 2, thick * 2 + 5]);
         translate([pivot / 2 + 1 - sqrt(2) / 2, thick * 2 + 3, 0])
         circle(1);
      }
   } // end pivot
} // end pendulums

//create the snap rings to hold the pendulums in place
for(j = [0:len(lengths)]) translate([
   -width / 2 - (pivot / 2 + 1 - sqrt(2) / 2) - 4,
   (j - (len(lengths)) / 2) * ((pivot / 2 + 1 - sqrt(2) / 2) * 2 + 5),
   0
]) {
   difference() { // create bendable partial ring
      rotate_extrude() intersection() {
         hull() for(i = [0, 1]) translate([
            pivot / 2 + 1 - sqrt(2) / 2 + i,
            sqrt(2) / 2,
            0])
         circle(1);
         square([pivot / 2 + 1 - sqrt(2) / 2 + 2, sqrt(2)]);
      }
      for(i = [1, -1]) rotate(-45 + 15 * i) translate([0, 0, -1])
         cube(max(pivot, 4));
      translate([0, 0, -1]) cylinder(r = pivot / 2 + 1, h = 4);
   } // end partial ring
   // create contact points at 120 degree intervals
   for(a = [-180:120:179]) rotate(a) {
      translate([pivot / 2 + 1 - sqrt(2) / 2 + .5, 0, 0]) {
         rotate_extrude() intersection() {
            translate([.5, sqrt(2) / 2, 0]) circle(1);
            square([pivot / 2 + 1 - sqrt(2) / 2 + 2, sqrt(2)]);
         }
      }
   } // end contact points
} // end snap rings and end of model
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THINKING ABOUT THESE MODELS: LEARNING  
LIKE A MAKER

In this book, we always talk a bit about the trial-and-error process that led to the 
models in each chapter. We think that makers may learn more from what did not 
work than from what did, and so we like to report our often-twisted path to each set 
of models.

The models in this chapter proved to be very difficult to develop, largely because 
the demonstrations are easier to work with if the models are bigger. However, we 
were trying to preserve some of the more interesting pendulum behavior in a small 
package so that they would work even on the smaller-end consumer 3D printers. 
If you have access to a bigger printer, you may want print the models from this 
chapter larger. If you do increase the size, do it with the appropriate parameters 
in the models, rather than by scaling up the STL. Not everything scales in a 
straightforward way.

The other issue with the last two models is that a smoothly functioning pivot is very 
important. In the case of the compound pendulum, the pivot is printed captive—that 
is, you will not be able to see it easily. You may need to work it around a little. Our 
first attempts had so much friction that the pendulum creaked once and stopped. 
Tweaking the parameters a bit fixed that for the compound pendulum.

The double pendulum was harder in part because two joints needed to move 
smoothly. For this case, we went with a simpler design—just a peg through a hole 
as the pivot—and added the small snap rings to keep the pieces from coming apart. 
This has the benefit that the arms can be printed separately and then assembled, 
though the conical contacts of the compound pendulum should give higher precision 
and lower friction (after a suitable amount of wear-in, at least). We also needed the 
arms in the double pendulum to be able to swing in a full 360-degree arc, which 
was not possible with the conical contact points.

Where to Learn More
Any good college-level introductory physics textbook will have a long discussion on 
pendulums. We used Joan’s well-worn undergraduate copy of Halliday and Resnick’s 
classic Physics, Part 1, Third Edition (Wiley, 1977), but there are more recent texts 
around that cover the material; the cited text appears to now be in its tenth edition. 
The chapter in any physics text will likely be called “Simple Harmonic Motion” or 
“Oscillations.”

Wikipedia has a page on simple harmonic motion in general  
(https://en.wikipedia.org/wiki/Simple_harmonic_motion) and another on 
pendulums more specifically (https://en.wikipedia.org/wiki/Pendulum).

https://en.wikipedia.org/wiki/Simple_harmonic_motion
https://en.wikipedia.org/wiki/Pendulum
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Applications of pendulums might also be interesting jumping-off points for student 
projects. The equation for the period of a simple pendulum can also be solved for g, 
Earth’s gravitational constant, if you know the period of a pendulum and its length very 
accurately. 

Teaching with These Models
Pendulums are usually first approached in depth at the AP or college level, because 
understanding the forces involved requires at least some fluency with trigonometry and 
(for the compound pendulum) basic calculus concepts. However, these models could 
also be used qualitatively to talk about forces and interactions, perhaps as discussed in 
www.nextgenscience.org/topic-arrangement/msforces-and-interactions or more 
generally to talk about scientific inquiry. The fact that the mass of the pendulum drops 
out of some of the calculations might lead to a discussion of dependencies.

If you are teaching this at the college level or just playing with it on your own, note 
that we designed the simple pendulum model to be easy to use for quickly creating 
pendulum demonstrations without needing to tape coins together. The complex and 
double pendulums work well enough for simple classroom demonstrations and could be 
used to talk about how to make a bigger and better one with more equipment.

Project Ideas 
To get beyond the basic designs in this chapter you might want to think about some 
applications of pendlums. There are some classic ones to explore, notably the use of 
pendulums in clocks from Huygens’s time to the present. There are designs on  
www.thingiverse.com for 3D printed clock mechanisms (search for “mechanical clock”), 
although these are complex prints that we have not been brave enough to try ourselves.

Depending on what resources you have, you might also think about trying to 
measure gravity successively more accurately. The first way to do it, as we described 
earlier, would be to just measure the pendulum length and period and derive an 
approximation from that. A Kater’s pendulum (https://en.wikipedia.org/wiki/
Kater's_pendulum) is a more sophisticated apparatus. Other pendulum gravimeters 
came later, which you might want to explore and perhaps approximate. These days, 
gravity departures from an Earth ideal value are measured by spacecraft, like the NASA 
GRACE mission (http://grace.jpl.nasa.gov/mission/gravity-101/).

If you have the ability to suspend a pendulum from a high place (in an atrium, 
perhaps) you could also try creating a Foucault pendulum (https://en.wikipedia.org/ 
wiki/Foucault_pendulum), which is often seen in museums. Usually Foucault 
pendulums have a very long period (and thus a long string) and some means of marking 
the floor under them. As the earth turns, the swing of the pendulum gradually turns too, 
and it is possible to figure out your latitude from the pattern it makes.

The Foucault pendulum has to have a very long period so that it will move slowly 
enough that air resistance will not stop it before you see the effect. The bob needs to be 
heavy to minimize secondary effects like drafts that might mask the Earth rotation effects. 
In short, building one is pretty tricky, as the Wikipedia article describes.

http://www.nextgenscience.org/topic-arrangement/msforces-and-interactions
http://www.thingiverse.com/
https://en.wikipedia.org/wiki/Kater's_pendulum
https://en.wikipedia.org/wiki/Kater's_pendulum
http://grace.jpl.nasa.gov/mission/gravity-101/
https://en.wikipedia.org/wiki/Foucault_pendulum
https://en.wikipedia.org/wiki/Foucault_pendulum
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Summary
This chapter describes how to 3D print three types of pendulum: a simple one to 
hang from a string; a compound (or physical) pendulum to pivot on a fulcrum; and a 
double pendulum, to demonstrate chaotic behavior. The chapter goes over some of the 
underlying physics and gives the equations for the period of the simple and compound 
pendulums. Finally, it talks about some of the limitations of the models and ways to 
branch out and create more sophisticated takes on these concepts.
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CHAPTER 2

Geology

Geology is the study of how Earth evolves over time including how it was formed, what 
it is made of, and the changes that take place in it and on it. The term can be applied to 
other planets too, although sometimes that is called planetary geology or astrogeology 
to make the distinction. Whatever you elect to call it, geologic phenomena are complex 
and rarely have very simple mathematical models. We have picked a few surface feature 
types that we think are interesting and that can be hard to visualize without some sort of 
physical model.

In the first section, we talk about the process of folding. This process occurs when 
sediments build up over time and create layered rocks. Then compressive forces in the rocks 
may squash the sides of a set of layers and make them accordion up to create synclines 
(U-shaped bends) or anticlines (upward bumps). This is most extreme along tectonic 
plate boundaries, where big parts of the Earth’s surface come together (for example, in 
the western United States). However, more spread-out folds can be found in the middle of 
plates, too, or may have been uplifted in the distant past (as is the case in the southern end 
of England and Wales).

Our model allows you to pick some parameters of the original layered sediment and 
change how and in which direction it bends to help you visualize different interesting 
structures, such as the ones that are often revealed in areas as widely distributed as road 
cuts in the American Southwest and chalk cliffs in the south of Britain.

The second model in this chapter explores sand dunes. Dunes are piles of sand that 
typically migrate along in the direction of the prevaling wind, gradually marching across 
sandy areas in long waves or trains. We particularly look at barchan dunes, crescent-
shaped dunes that march across deserts (on Earth, Mars, and possibly Saturn’s moon 
Titan) in long chains.

The phenomena in this chapter are complicated and impossible to model in full 
with a few pages of OpenSCAD. These models are designed so that if you have the 
dimensions of an actual phenomenon, you can create a 3D print starting there and vary 
the parameters to explore other scenarios for yourself or your students. Or if you just want 
to make a typical model for discussion purposes, you can use the values in the examples 
in this chapter.
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Synclines and Anticlines
Sedimentary rock is built up by gradual deposition of silt or dust by water or wind. 
Sedimentary rocks develop a layered look as the rock being deposited varies over 
time. After the rock layers are laid down, that may not be the end of the story. In many 
parts of the world, particularly near the edges of tectonic plates, layers of rock may 
be squashed on the side, making them flex up or down. Even in the middle of a plate, 
the rocks might be gently squashed just a little. In either case, ripples start to appear 
in these layered rocks. If a ripple pokes up to make a bump, the ripple is called an 
anticline (Figure 2-1). If it loops downward to create an underground U-shape, it is 
called a syncline (Figure 2-2).

Figure 2-1.  Madison limestone in anticline in Sheep Mountain Canyon, Big Horn County, 
Wyoming, 1914. Courtesy of U.S. Geological Survey, Department of the Interior/USGS, 
www.sciencebase.gov/catalog/item/51dd7db8e4b0f72b4471b201

http://www.sciencebase.gov/catalog/item/51dd7db8e4b0f72b4471b201
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When rock layers are bent upward in an anticline, the oldest layers are pushed 
upward the most relative to where they would have been if there were no bending. If 
you imagine the curves on the hillside in Figure 2-1 getting steeper, you can imagine the 
oldest (deepest) layers getting squished upward more and more.

People searching for oil are interested in the existence of anticlines, because 
petroleum or natural gas can be squeezed out of the rock when anticlines are formed and 
fill a pocket at the uppermost part of anticline folds under the surface. Conversely, in a 
syncline, the deepest layers will tend to stay the deepest in the center of the bend, so they 
are less interesting to those hoping to find petrochemicals as near the surface as possible.

Figure 2-2.  Syncline of black and gray banded slate at West Castleton, Rutland County, 
Vermont, 1900. Courtesy of U.S. Geological Survey, Department of the Interior/USGS,  
www.sciencebase.gov/catalog/item/51dc3902e4b0f81004b7a61a

http://www.sciencebase.gov/catalog/item/51dc3902e4b0f81004b7a61a
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■■ Note   A syncline or anticline might not be visible from the surface. The upward bump 
of an anticline might lie under many layers of other rocks and soil, and the surface above 
either formation might be perfectly flat.

Historical Context
One of the earliest mappings of synclines and anticlines was William Smith’s 1815 
geological map of England, later known as “The Map That Changed the World.” It 
allowed analysis of how different types of rock may appear to be jumbled up, but might 
be reconstructed if one assumed that there were original layers built up at various times 
which were then folded and otherwise disrupted.

Smith carefully mapped how different fossils tended to be associated with particular 
layers, which allowed him to unravel a timeline of when various fossilized creatures were 
alive. This was not always obvious when layers were bent and twisted around in ways that 
could result in newer fossils being buried farther under the surface than earlier ones. This 
work laid the foundation for the evolutionists who came later to develop their theories.

■■ Note   Author Simon Winchester has written a book about Smith and his times: The Map 
That Changed the World (Harper Collins, 2001). Smith did not receive recognition until late 
in his life, after episodes of having his work plagiarized and spending time in debtor’s prison. 
You can also see Smith’s map and read about him at https://en.wikipedia.org/wiki/
William_Smith_(geologist).

Printing an Anticline
It is easy to lose track of the three-dimensional geometry in a syncline or anticline 
formation if you are trying to visualize it in your head. As you may have discovered just 
by trying to follow along so far, it can be challenging to explain what it looks like to have 
a formation at an angle under a surface that might itself be at a different angle to the 
vertical. We hope our 3D-printable model will be a good tool for envisioning possible 
underground formations. 

https://en.wikipedia.org/wiki/William_Smith_(geologist)
https://en.wikipedia.org/wiki/William_Smith_(geologist)
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Creating a model of the forces under the Earth’s surface that can bend rocks is more 
than we can do in a few-page OpenSCAD model. Instead, we have created a parameterized 
model that allows you to select values for the following (the model follows in Listing 2-1):

•	 A one-variable equation y = f(x) for the shape of the middle layer 
of the model. In most cases this will be a sinusoid (see examples 
that follow). Note that the layers are created with their cross-
sections in the x-y plane and extruded into the z direction. Layers 
are printed vertically for better resolution and to avoid support.

•	 How many layers the formation has, how thick each layer is, and 
the offset of a layer boundary from a baseline curve (negative 
offsets for below the curve, positive for above).

•	 A set of three numbers, layer_angle, which sets the angle  
(in degrees, x, y, and z) to rotate the layers once they have been 
created. The y-axis is perpendicular to the layers before they are 
rotated.

•	 Another set of three numbers, surface_angle (in degrees, x, y, 
and z) defining how to slice off part of the top surface relative to 
the base of the model, to mimic erosion or other forces that slice 
off some of the top of a formation. Figures 2-3, 2-4, and 2-5,  
respectively, show a single layer “formation” (light-colored object) 
rotated about the x, y, and z axis in turn by surface_angle.  
The model defines a box (the translucent pink box visible in 
Figures 2-3, 2-4, and 2-5), which is tilted at surface_angle and 
then intersected with the set of layers. Anything outside that box is 
cut off. We have kept a few lines of the model above each preview 
to show how these change relative to each other. The full listing 
(of a more complex multi-layer formation) is in Listing 2-1.
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Figure 2-3.  A single layer function rotated only about the x-axis. View is of the y-z plane.

•	 Notice that the layers are first rotated through layer_angle and 
then cut off by the intersection of the box tilted at surface_angle. 
If this is too confusing, you might just experiment with different 
combinations one at a time to see the result in OpenSCAD’s 
preview mode.

•	 A flag, include_layers, which determines whether to print the 
odd-numbered layers, even-numbered ones, all the layers, or an 
arbitrary set of layers. This allows for printing different layers in 
different colors if desired, as we have in this chapter.
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Figure 2-4.  A single layer function rotated only about the y-axis. View is of the x-z plane 
(looking at the side of the layer, so cosine function is not visible).
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■■ Note   Geologists like to think in terms of dip and dip direction. Dip direction is 
represented in our model as the y value of the layer_angle variable if the z value is zero. 
Dip is the angle that the layer dips down relative to a horizontal surface. In our model 
this is the x value of the layer_angle variable, again if the z value is zero. There are good 
illustrations and a detailed description at https://en.wikipedia.org/wiki/Strike_and_
dip. (There is another convention for orientation, strike and dip, which is less convenient 
for this model.) No component of surface_angle or layer_angle should exceed about  
20 degrees to avoid printing issues.

Figure 2-5.  A single layer function rotated only about the z-axis. View is of the x-y plane.

https://en.wikipedia.org/wiki/Strike_and_dip
https://en.wikipedia.org/wiki/Strike_and_dip
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Figure 2-6.  Anticline model—printed in two sets, one odd and one even

Listing 2-1 creates an anticline with the surface layer partially “eroded” away  
(using the surface_angle variable) to make some of the layers visible (Figure 2-6). We 
show how to change the model to create a syncline in the next section of this chapter.

■■ Tip   The models will not stay together very well just by stacking them. We folded blue 
masking tape back on itself to create little tubes, sticky side out, and stuck those between 
the layers. It is also easy to put the layers together incorrectly; be sure to keep track of the 
order of the pieces and which way around they go. If you forget, remember that the top 
and bottom surfaces of a print (in the orientation that they were printed) are usually easy to 
distinguish from one another.

Listing 2-1.  OpenSCAD Anticline Model

// File anticline.scad
// An OpenSCAD model of synclines and anticlines
// The program defines a function for the middle layer and then
// Defines layer thicknesses and offsets from this middle.
// Rich "Whosawhatsis" Cameron, November 2016
// Units: lengths in mm, angles in degrees, per OpenSCAD conventions
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size = 100; //The dimension of the model in x and y, in mm

include_layers = "all"; //options: "all", "odd", "even",
                                        //or an array of specific layer 
numbers (e.g. [2, 5, 8])

// Function that defines shape of center curve
function f(x) = cos(x * 1.5 + 30) * size / 5;

// offset of layer boundaries, relative to center curve
layers = [-20, -10, -6, 2, 10, 14, 22];
// Thickness of each layer = difference between subsequent offsets

layer_angle = [5, 15, 0];
// Vector of angles [x, y, z] rotating the curve relative to axes

surface_angle = [10, 0, 0];
// Vecto of angles about [x, y, z] to create sloping surface (top)
// Use to expose lower layers

// First create list of which layers to render
// (odd, even, all, or specific ones)
for(i = [0:len(layers) - 1]) if(
      ((include_layers == "odd") && (i % 2))
   ||
      ((include_layers == "even") && !(i % 2))
   ||
      (include_layers == "all")
   ||
      len(search(i, include_layers))
) translate([0, i*5, 0]) intersection() {

// Now create the layers and rotate them appropriately
// And intersect them with two bounding boxes defined below
// To cut off a clean flat bottom surface

   translate([-size / 2, 0, -size / 2]) cube([size, size, size]);
   rotate(surface_angle)
      cube([size * 2, size * .5, size * 2], center = true);
   rotate(layer_angle) linear_extrude(
      height = size * 2,
      center = true,
      convexity = 10
   ) {
      difference() {
         offset(layers[i]) layer();
         if(i) offset(layers[i - 1] + .2) layer();
      }
   }
}



Chapter 2 ■ Geology

33

//Function to make polygons out of curves
module layer() polygon(concat([
   for(i = [-size:size]) [i, f(i)]],
   [[size, -size],
   [-size, -size]
]));
//End model

Printing a Syncline
Listing 2-1 creates the anticline shown in Figure 2-6. To create a syncline, we changed 
some of the parameters and also decided to make the models a little smaller (by changing 
the size parameter) because we found the models were taking a long time. Note that 
simply scaling the whole model is tricky because the layers might get too thin. You really 
need to think through the parameters to change. The changes to Listing 2-1 are the 
following: 

size = 80;
function f(x) = -cos(x * 1.8 + 15) * size / 5 + 30;
layers = [-22, -10, -3, 5, 13, 22];
layer_angle = [5, 15, 0];
surface_angle = [12, 0, 0];

The resulting syncline is shown in Figure 2-7. Notice that this is not just the negative 
of the anticline function. The model is created by first creating the layers, rotating them 
if applicable, and then intersecting the model with a cube to cut off a flat bottom surface. 
Given that f(x) would go negative without the +30 term, the result of this operation would 
be that there would be very little left, as you can see in the OpenSCAD screenshot in 
Figure 2-8. (The model gives an exploded view of the layers. You can see that many of the 
layers would just be little unprintable scraps.)
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Figure 2-7.  The syncline model

Figure 2-8.  The syncline model without the offset term, visualized in OpenSCAD
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Printing Tips for Syncline/Anticline Models
This model requires some degree of trial and error. Usually we try to have our prints be 
fairly foolproof, but in this case unless you use our examples as-is, you will need to look 
carefully at the pieces to be printed to be sure that they are not too small to be printed, too 
weirdly shaped, or not attached to the platform. Figures 2-9 and 2-10 show the odd and 
even pieces for the syncline model.

Figure 2-9.  Half of the syncline model in Figure 2-5 on the printer
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We recommend using a brim with these prints. A brim is a few loops on the platform 
around the base of a model, like the brim of a hat, which helps the model stick to the 
platform. You can see one in Figure 2-9. In some software, it may be called a “skirt” that is 
zero distance from the object.

■■ Tip   In some circumstances you may want to use your printer program’s “ungroup” 
capability to turn one or more of the pieces to a more printable direction. In some cases, 
in the output STL from OpenSCAD, pieces may be suspended in mid-air. They will need to 
be brought down to the 3D printer’s platform and likely reoriented (180 degrees around 
the y-axis) in the program that you use to set up a print job (such as MatterControl, Cura, 
Repetier Host, or Makerbot Desktop).

In OpenSCAD, you may also want to add an offset term in the function f(x) to move the center 
layer up or down in the y direction as we do in the syncline model. Or you may use the surface_
angle or layer_angle parameters to get rid of small corner pieces by cutting off some of the 
upper surface. Using OpenSCAD’s preview mode (see Appendix A) may be very helpful here.

Figure 2-10.  The other half of the syncline model

www.allitebooks.com

http://www.allitebooks.org
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The intent of this model is to help you gain insight into what formations look like 
when they have been squeezed, twisted, and then cut off at varying angles. It is important 
to remember that there is no geology knowledge encoded here and that this is purely 
a geometrical model. You may see physically inaccurate results if, for example, you 
make the amplitude of f(x) very much higher than we have it in our sample code or if 
you increase the frequency of the sinusoid represented by f(x) significantly. You will get 
results, but whether they are printable or represent a plausible formation is not possible 
to know in general.

3D PRINTING TERRAIN

The other way to get 3D printed models of interesting geological formations is to 
create them from one of the digital elevation databases that are available. The 
program we are partial to is Terrain2STL, developed by Thatcher Chamberlain. It is 
free and available at http://jthatch.com/Terrain2STL/. The website says it is 
based on a database with a resolution of 90 meters per pixel at the equator.

If you want to get a bit more out there still, Chamberlain’s site also has an equivalent 
program for the Moon at http://jthatch.com/Moon2STL/. The site states that the 
moon data has a bit under 2 km per pixel resolution at the Moon’s equator.

Figure 2-11 shows a print of the Rogue Valley area near Ashland, Oregon, from 
Terrain2STL. The program allows a user to select a region and how much to zoom 
in, and also allows the user to specify the vertical exaggeration. We often print out a 
“you are here” map of an area when we do an event. We are always amazed at how 
excited people get by it, and how much more insight you can gain from one than you 
can from a paper topographic map.

http://jthatch.com/Terrain2STL/
http://jthatch.com/Moon2STL/
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Dunes
The models in the first section of this chapter were about geological formations that 
evolve very slowly, on time scales that make a human lifetime seem less than a blink. We 
will close this chapter with a model of far more ephemeral phenomena: sand dunes. 

Sand dunes are piles of sand that form and re-form driven by the wind. Some types 
of dunes are stationary (forming around an outcropping of rock or some vegetation), but 
the ones we talk about here often migrate across long distances. In particular, barchan 
dunes often form large fields like the one shown in Figure 2-12. These dunes are crescent-
shaped, with the nose of the dune pointed into the wind and long trailing horns on the 
downwind side. Wind would be blowing from the top of the picture towards the bottom 
in Figure 2-12. The darker areas are soil and plants between the dunes. These areas are 
lower than the dunes. Barchans typically form in “sand-starved” areas, where there is not 
enough sand for very deep seas of standing piles of sand to form.

Figure 2-11.  Oregon’s Rogue Valley (around Ashland), vertical scale exaggerated about 
ten times
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Dunes start to form when wind piles up sand a bit, and this pile then has other sand 
blown up against it. The sand piles up steeply on the side facing into the wind (pushed by 
the wind). The side away from the wind slides down at the angle of repose, the maximum 
angle that a pile of loose material can sustain in a stable way. Figure 2-13 shows the 
details of this crest, where the slope pushed up by the wind meets the lee slope where 
material will slide down at the angle of repose, creating a relatively sharp curved edge 
along the top of the dune. The entire dune will march across the desert, progressing like a 
single wave on the sea.

Figure 2-12.  Compound barchan dune in a downwind area of the White Sands National 
Monument, New Mexico. Dunes and interdune spaces are of approximately equal extent 
(rotated 90 degrees from original). Courtesy of U.S. Geological Survey, Department of the 
Interior/USGS, www.sciencebase.gov/catalog/item/51dd88f3e4b0f72b4471c140

http://www.sciencebase.gov/catalog/item/51dd88f3e4b0f72b4471c140
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The Model
There are many mathematical models of the formation of sand dunes. Typically they 
model the statistical behavior of many sand grains to create a simulation of the flow 
of dunes across a space. The classic book in this field (originally published in 1941) is 
R. A. Bagnold’s The Physics of Blown Sand and Desert Dunes (reissued by Courier 
Corporation, 2005). However, this was way beyond the scope of our book. As with the 
folded-rock models, we wanted to “3D surface fit” data to reproduce the basic shape of a 
dune while retaining as much of the physics as possible. Figure 2-14 shows the resulting 
3D print.

Figure 2-13.  White Sands National Monument, New Mexico. Crest of barchan dune 
(wind blowing from left to right). Photo by J.R. Douglass, U.S. National Park Service, 1964. 
Courtesy of U.S. Geological Survey, Department of the Interior/USGS, www.sciencebase.
gov/catalog/item/51dd894ee4b0f72b4471c19a

http://www.sciencebase.gov/catalog/item/51dd894ee4b0f72b4471c19a
http://www.sciencebase.gov/catalog/item/51dd894ee4b0f72b4471c19a
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There are three different parabolic curves used to create the 3D surface fit of this 
model, shown in full in Listing 2-2. The base of the windward side of the dune (the left 
side in Figure 2-12) is modeled by the first parabola which depends on the variables 
height, width, and length of the dune. length is the distance along the centerline from 
nose to tips of the crescent, and width is the distance between the two tips of the crescent.

The second parabola is the symmetrical dune cross-section, the pink structures 
in Figures 2-15 and 2-16. The angle of the windward side to the horizontal (typicallly 
15 degrees, according to Bagnold and other sources) is the variable windward, and the 
angle of repose is the variable repose, typically 30 degrees for sand. These cross-sections 
depend on the angle windward and the variable height. These are offset so that the one 
end of each cross-section falls along the first parabola that forms the windward edge. 
All these cross-sections are the same as each other and are not rotated to follow the 
windward edge parabola, as is clear in Figures 2-15 and 2-16.

Figure 2-14.  Barchan dune model



Chapter 2 ■ Geology

42

Figure 2-15.  Barchan dune model cross-sections (pink) lined up along the parabola that 
forms the windward base of the dune

Figure 2-16.  The cross sections in 2-15 viewed from above
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To create the lee side, a set of rectangles (Figures 2-17 and 2-18) is generated along a 
third, leeward edge parabola. This leeward parabola is specified by all the same variables 
as the first parabola, plus the height and the two specified angles. Figure 2-18 shows 
these rectangles from above.

Figure 2-17.  The rectangles that define the lee face of the dune

Figure 2-18.  The rectangles in 2-17 from above
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Finally, two surfaces are created using OpenSCAD’s hull() function, one that will 
create the windward side and one that will be subtracted from the windward side to 
create the lee slope. Loosely speaking, the hull() function creates the smallest possible 
convex shape that includes all the points you ask the hull() function to combine. The 
first hull across the cross-sections creates the windward side. Then a second surface is 
created by using the hull() fuction on the rectangles forming the lee side. The lee side is 
then subtracted from the windward side to give the final dune shape.

Printing the Dune Model
The barchan dune model is easy to print for just about any reasonable value of angle 
of repose and windward angle. It should not be necessary to use support or a brim—
after all, the shape can be generated by wind blowing around sand, so the dunes are 
“additively manufactured” in real life.

■■ Caution   This model takes a while to render in OpenSCAD—you may need to leave it 
running for a while before your model appears. See Appendix A (or the OpenSCAD manual) 
for how to use “preview” instead of full rendering.

Listing 2-2.  Barchan Dune OpenSCAD Model

// File barchan.scad
// An OpenSCAD model of barchan sand dunes
// The program defines a parabola for the envelope
// Based on the parameters at the top of the file.
// Rich "Whosawhatsis" Cameron, November 2016
// Units: lengths in mm, angles in degrees, per OpenSCAD conventions

height = 10; // max height in z, mm
windward = 15; // angle to the horizontal of the nose of the dune
repose = 30; // angle of repose, degrees
width = 100; // width at widest point (ends of crescent), mm
length = 100; // length from nose to center of crescent ends, mm

// First create cross sections of the dune in the vertical plane
// parallel to the wind direction
// These cross sections are offset by a parabola
// The back of the cross section, defined by angle of repose
// for now, is symmetrical to the front
// Later on we will subtract (difference) a cutoff at the angle of
// repose

difference() {
   for(i = [-width/2:width/2 - 1])
      hull() for(i = [i, i + 1])
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         translate([i, pow(i/width * 2, 2) * length, 0])
            rotate([90, 0, 90])
               linear_extrude(height = .001, scale = .001)
                  polygon([
                     for(i = [-1:.1:1])
                        height * [i / tan(windward), 1 - i * i]
                  ]);

   // The next section creates the surface that we will subtract
   // from the windward side to create the angle of repose
   // on the leeward side
   hull() for(i = [-width:width]) {
      translate([
         i,
         height / tan(repose) + (length - height / tan(repose) -
            height / tan(windward)) / pow(width / 2, 2) * pow(i, 2),
         0
      ]) {
         rotate([
            90,
            0,
            90 + atan(2 * i * (length - height / tan(repose) -
               height / tan(windward)) / pow(width / 2, 2))
// The previous line calculates the normal to the lee face parabola.
         ]) {
            linear_extrude(height = .001, scale = 1) {
               �rotate(90 - repose) translate([0, -1, 0]) square((height + 2) 

/ sin(repose));
            }  // end linear_extrude
         }  // end rotate
      }  // end translate
   }  // end hull
} // end difference
// (subtracting the leeward face cutout from the rest of the model)

Barchan Dunes Beyond Earth
Barchan dunes have been spotted elsewhere in the solar system including on Mars 
and on Saturn’s moon Titan. Figure 2-19 shows these dunes on Mars. On Mars, though, 
the mechanism is a little different than on Earth, and thus the shape is different. Some 
scientists postulate that the dunes are stretched out because they are partially frozen 
some of the year, and the frozen nose of the dune does not move the way one would 
expect a dune on Earth to migrate, so the dune stretches out in one dimension or another. 
V. Schatz, H. Tsoar, K. S. Edgett, E. J. R. Parteli, and H. J. Herrmann postulated this in 
their Journal of Geophysical Research paper, “Evidence for indurated sand dunes in the 
Martian north polar region,” 28 April 2006.
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Not a lot is known about dunes on other worlds yet. There is not yet enough 
data, for example, to know whether barchan dunes on Mars migrate. There are also 
conflicting opinions in the scientific literature about the correct angle of repose to use. 
HiRISE scientist Nathan Bridges wrote a summary of aeolian processes on Mars and 
Titan that is a good snapshot of ongoing research: www.planetary.org/blogs/guest-
blogs/2015/0326-lpsc-2015-aeolian-processes-mars-titan.html.

■■ Note   Because the shape of a barchan dune on Mars and Titan is so much different 
from that of one on Earth, the model we have created for Earth dunes does not readily 
change to support the extraterrestrial versions.

Figure 2-19.  Image of barchan dunes on Mars from the High Resolution Imaging  
Science Experiment (HiRISE) on the Mars Reconnaisance Orbiter. Distance between the 
two horns of the merging dune is a bit over 500 meters. NASA/JPL/University of Arizona,  
www.uahirise.org/ESP_014404_1765

http://www.planetary.org/blogs/guest-blogs/2015/0326-lpsc-2015-aeolian-processes-mars-titan.html
http://www.planetary.org/blogs/guest-blogs/2015/0326-lpsc-2015-aeolian-processes-mars-titan.html
http://www.uahirise.org/ESP_014404_1765
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THINKING ABOUT THESE MODELS: LEARNING  
LIKE A MAKER

It always seems to be true that our models wind up being far more complex than 
we expect them to be, and this chapter was no exception. We thought the syncline/
anticline model would be relatively easy—just define a basic curve and offset layers 
on either side. As with the real geology, the geometry quickly gets complex and can 
create layers that are difficult if not impossible to print because they are very thin, 
are curved on the default bottom side, or perhaps are in mid-air. It also turned out to 
be harder to explain what the model was doing than to write it in the first place!

We try to make all our models easy to print on consumer printers, and the examples 
we give in the chapter should print reasonably reliably. However, if you start to 
change the layers and angling to mimic a real formation, you may create a layer 
that is too thin. Preview your model carefully (in OpenSCAD or your printer’s slicing 
software) before committing to a print.

In the case of the sand dunes, we were surprised at how difficult it was to find  
an empirical, simple model in terms of a few equations. Most of the models we  
found were complex physics simulations modeling the movement of sand grains  
(a process called saltation). Rich started off modeling the base shape as an ellipse  
and then tried creating and scaling cross-sections along a parabola, before realizing 
that the nose and lee face needed to be generated with separate functions because 
they are governed by different forces.

In the end Rich created a three-dimensional surface fit to Earth barchan dunes. 
Unfortunately, because it is a carefully tuned set of curve fits, it cannot generate the 
shapes of barchan dunes on other planets based on changes to embedded physics 
models. However, we suggest this extension of the model as a project to consider 
doing yourself!

Where to Learn More
The topics in this chapter would commonly be taught in an undergraduate class in 
physical geology. Our go-to reference was the textbook by W. K. Hamblin and E. H. 
Christiansen, Earth’s Dynamic Systems, 9th Edition (Prentice-Hall, 2001). If you want 
more easy-to-interpret sketches about geological formations, you may like David Lambert 
and the Diagram Group’s book The Field Guide to Geology (Facts on File, 1998).

The U.S. Geological Survey’s education site (http://education.usgs.gov) has fact 
sheets and links to resources at a variety of different levels. The U.S. National Park Service 
also has resources online about the geology of national parks; we enjoyed the writeup on 
types of dunes at www.nps.gov/grsa/learn/nature/dune-types.htm.

http://education.usgs.gov/
http://www.nps.gov/grsa/learn/nature/dune-types.htm
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The geology of southern England is complex, and many fine examples can be found 
there of folded and uplifted rock. The Geological Society’s website (www.geolsoc.org.uk) 
is another treasure trove of imagery and descriptions of interesting formations.

Barchan and other dune formations on other planets are mostly described in the 
peer-reviewed scientific literature at this point, which can be heavy reading and may 
not be easily accessible. For example, possible barchans on Saturn’s moon Titan are 
described in a Nature Geoscience paper by R. C. Ewing, A. G. Hayes, and A. Lucas, “Sand 
dune patterns on Titan controlled by long-term climate cycles,” 8 December 2014. But if 
you search on the phrase “barchan dune,” you can find examples and photos of dunes on 
Earth and beyond and descriptions of the various models for their dynamics. You can also 
search on “aeolian processes” to learn about related phenomena.

Teaching with These Models
The initial trigger for this chapter was Joan’s husband (a British expat) musing about how 
nice it would have been to have had 3D printed models when he was studying geology 
of the south of England. It is complex to infer from the eroded surface what might lie 
beneath. The most straightforward way to use these models in education is to print a few 
that demonstrate the structure you are trying to study. One option might be to create 
a layered model of an underground or partially exposed formation and also print the 
terrain above it, as described in the sidebar “3D Printing Terrain.”

If you are a K-12 teacher, 3D printed models might be appropriate companions to 
having students create syncline and anticline clay models, as shown on paleontologist Jim 
Lehane’s site (http://jazinator.blogspot.com/2010/05/teaching-folds-using-play-
doh.html). This site also has a lot of other links for K-12 teachers, including worksheets 
tied to movies that have incorrect depictions of geology. Teaching about Earth science 
standards, such as “Earth’s Systems” (www.nextgenscience.org/pe/ms-ess2-2-earths-
systems), might benefit from these models.

Project Ideas
The most obvious way to use the layered-rock models is to create one that mimics a real 
formation or create a hypothetical one for discussions. If you want to make an elaborate 
model, you can make it in sections, but you will have to think hard about how to change 
the function for the middle layer and any rotations.

The barchan model is a little bit more of a one-off curiousity, but you might play 
with some of the variables like the angle of repose and see how this model changes. 
Angle of repose is dependent on the properties of the sand or other granular materials, 
and the shape of the lee side of the dune will change because of this. Results should be 
taken with a grain of salt (or maybe sand?) because this model does not really capture the 
interactions between the windward and lee sides of the dune, other than making some 
simple geometrical assumptions.

You can also think of the barchan as a case study of how to “surface fit” something 
based loosely on its physics plus its geometry, a situation that might come up more often 
than just in models of ephemeral sand phenomena.

http://www.geolsoc.org.uk/
http://jazinator.blogspot.com/2010/05/teaching-folds-using-play-doh.html
http://jazinator.blogspot.com/2010/05/teaching-folds-using-play-doh.html
http://www.nextgenscience.org/pe/ms-ess2-2-earths-systems
http://www.nextgenscience.org/pe/ms-ess2-2-earths-systems
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Summary
This chapter shows how to create models of two types of geological formations. The first 
model allows you to create visualizations of layered rock formations similar to those 
found in many parts of the world where sedimentary rock is compressed and squeezed 
or uplifted. The second model is a 3D surface fit of a barchan dune, a particular type of 
dune that occurs in areas without a lot of sand. The model is tuned for barchan dunes on 
Earth, but these dunes are also found on Mars and possibly on Saturn’s moon Titan. The 
chapter also notes other available software for printing terrain and some ways to use the 
models.
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CHAPTER 3

Snow and Ice

Water has some pretty weird properties. For example, it expands as it freezes; most other 
substances contract as they freeze. In this chapter we talk about ice and snow and create 
models of some of the more intriguing geometries that frozen water can create.

Water Ice
Figure 3-1 shows a familiar sight: an ice cube floating in water. The density of ice is 
0.9167 grams per cubic centimeter at the freezing point; water at the same temperature 
is 0.9998 grams per cubic centimeter. If you add salt to the water (as we did in the cup 
of water in Figure 3-1), the saltwater becomes even denser. To make it roughly the same 
as seawater, add about a teaspoon and a half of table salt (8 grams) to 1 cup of water 
(https://en.wikipedia.org/wiki/Salt).

Figure 3-1.  Fresh water ice in salt water

https://en.wikipedia.org/wiki/Salt
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In the little experiment shown in Figure 3-1, a few drops of juice were added to 
the ice to make it more visible. Saltwater has a density of about 1.025 grams per cubic 
centimeter. We would expect about 10% of the volume of the ice to be above water in this 
case, because of the relative densities of ice and the liquid water it is floating in. Water 
expands as it freezes because it creates a crystal lattice of hexagons (Figure 3-2). Water 
molecules consist of two hydrogen atoms and an oxygen atom. When water freezes, each 
water molecule connects to four others in a roughly tetrahedral structure. In this chapter 
we explore the visible effects of that structure.

Figure 3-2.  Molecular structure of an ice crystal

■■ Note   We developed the 3D-printable, molecular-level model of ice crystals in  
Figure 3-2 in our previous 3D Printed Science Projects book (Apress, 2016, Chapter 7,  
“Molecules”). The larger spheres represent oxygen atoms; the smaller half-spheres 
between these spheres, hydrogen atoms. Each molecule in the lattice is connected to four 
others. Each oxygen has two hydrogens and two holes for connecting other oxygen atoms’ 
hydrogens. There are different ways the atoms can be connected to each other in hexagons. 
This one is called ice 1c.

http://dx.doi.org/10.1007/978-1-4842-2695-7_7
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Icebergs
Among the more intriguing results of the properties of freezing water are icebergs, giant 
floating mountains of ice. Typically they calve (split off ) from glaciers to be carried 
around by currents until eventually they melt and erode away. Because they come 
from glaciers on land, fed by snow, icebergs are made of freshwater, not frozen ocean 
water. This fact has led some to suggest towing them to parched regions, like Southern 
California or Saudi Arabia, but as of this writing no one has pulled that off.

The fact that ice is 10% lighter than an equal volume of liquid water means that 
icebergs are about 90% submerged. As noted earlier in the chapter, seawater is a little 
denser still than freshwater, and makes a small additional difference (about 3.5% for the 
saltwater we created at the beginning of the chapter).

Icebergs represent famous hazards to navigation; the best-known example is the 
sinking of the Titanic when it struck an iceberg on its maiden voyage in 1912. Icebergs 
can pitch over, roll, or oscillate as they melt or as pieces break off and become unstable, 
which can be an even more serious hazard to any nearby ships. You can see this for 
yourself in a spectacular YouTube video from the Weather Channel at https://youtu.
be/mvQ4eDKf9UY, or search YouTube for “rolling iceberg.”

Tabular icebergs split off from glaciers as thick slabs of ice, often with some  
less-compacted snow on top. Some of these icebergs can be huge. Iceberg B-15 calved 
from the Ross Ice Shelf in Antarctica in March 2000. It was 295 kilometers by 37 kilometres 
wide; recognizable pieces of it were detected for five years. By the time you read this, the 
Larsen C Ice Shelf in Antartica may have split along a deep rift that formed in 2016 and 
created an iceberg that, temporarily at least, will be about half the size of B-15.

The Model
We have developed a model of a tabular iceberg to visualize the above-water and  
below-water sections of an iceberg. Because icebergs come in all sorts of shapes and 
sizes, we decided to create two different sample models: one that is fundamentally a 
cylinder (with a variable radius) and another that is a frustrum of a cone (a cone with  
the top cut off).

Cylindrical Iceberg
Our first iceberg model is a cylinder, modified to have a variable radius. It is shown in 
Figure 3-3. The fine line near the top is the waterline (90% of the volume). In the open 
ocean, the part above that line would be the only part visible. The model allows you to 
set the height and the radius and to change the parameters featuresize, noise, and 
smoothness to respectively change how big the departures from a circle are, how many of 
them there are, and how much they have been smoothed out. Then the model extrudes 
this wavy-circle base straight up into a wavy cylinder. The model is given in Listing 3-1.

https://youtu.be/mvQ4eDKf9UY
https://youtu.be/mvQ4eDKf9UY
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Listing 3-1.  The Cylindrical Iceberg

// File CylindricalIceberg.scad
// An OpenSCAD model of an iceberg
// Rich "Whosawhatsis" Cameron, January 2017
height = 30; // height overall, in mm
radius = 40; // maximum radius
featuresize = 20; // maximum variation from of radius
noise = 10; // frequency of variations in radius
smoothness = 2; // how much to smooth the variations
seed = 0; // seed for random number generator
linedepth = .2; // should be about half of your nozzle diameter

percentDistance = .9; // location of the water line

$fs = .5;
$fa = 2;

// extrude the wavy outline and subtract the water line
difference() {
   union() {
      linear_extrude(height, convexity = 5) outline();
      if(linedepth < 0)
         translate([0, 0, height * percentDistance])

Figure 3-3.  Cylindrical iceberg, with 10% volume line near top
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            linear_extrude(.5, center = true, convexity = 5)
               offset(-linedepth) outline();
   }
   if(linedepth > 0)
      translate([0, 0, height * percentDistance])
         linear_extrude(.5, center = true, convexity = 5)
            difference() {
               offset (2) outline();
               offset(-linedepth) outline();
            }
}

module outline() offset(-smoothness) offset(smoothness * 2)
   offset(-smoothness) polygon([for(
      theta = [0:noise:359],
      r = rands(radius, radius - featuresize, 1, seed + theta)
   ) rect(r, theta)]);

function rect(r, theta) = r * [sin(theta), cos(theta)];

// End of model

Frustrum Iceberg
For our second model, we based our shape on the frustrum of a cone (a cone with the 
top cut off). As with the cylinder, we made the radius of the cone vary randomly. To solve 
this in general is very complicated. As is often the case for engineering problems, you 
can often vastly simplify things by changing just one of many parameters. In this case, we 
fixed the ratio of the size of the top of the iceberg to the bottom.

Even with this simplification, though, it takes a bit of geometry to figure out where 
the line of 10% volume falls. Figure 3-4 shows how we set up the problem. The blue 
(bottom) frustrum of the cone is in two parts: one that is 10% of the volume (on top) and 
one that is 90% (which will be below water in the real thing).

To make the math relatively tidy, we made a simplifying assumption that the 
frustrum was half the volume of a cone that includes the red (top) cone and the blue 
(bottom) frustrum, or a cone of height c in Figure 3-4. In other words, the red (top) cone is 
a cone that has the same volume as the blue frustrum.
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It turns out that by thinking of the cones of height a, b, and c as all being similar 
(having the same angle at the top), you can show yourself that the volume of the cone of 
heights a, b, and c vary by the cube root of the height, because the radius will vary linearly 
with the height, and the area of the base goes as the square of the radius.

We know that the volume of a cone is one-third the area of the base times the height. 
So if we want to have the volume of the cone of height c be twice that of the red (top) 
cone, c will have to equal the cube root of 2 (which is about 1.2599) times the height a.

For the frustrum section between a and b to be 10% of the volume between lines a 
and c, b has to be the cube root of 1.1 (which is 1.0322) times a. The red (top) cone is just 
a convenience to help think about the geometry. All we want is the percentage difference 
between b and c so we know where the waterline is. Because we “throw away” the upper 
cone, we can have arbitrary values for the height and width of the frustrum, and the 
relationship will still hold. We will want the 10% line, then, to be at (c – b ) / ( c – a), or 
(1.2599 – 1.0322) / (1.2599 – 1) = 87.6% of the way from the bottom to the top.

Finally, based on Cavalieri’s Principle (https://en.wikipedia.org/wiki/
Cavalieri's_principle), we can argue that as long as the curve we use for the base is 
extruded consistently from bottom to top, this holds for our wavy frustrum too. The result 
of all that math is shown in Figure 3-5 and the OpenSCAD model in Listing 3-2. The 
indented line would be the water line (at height b in Figure 3-4).

Figure 3-4.  The geometry of the frustrum iceberg model

https://en.wikipedia.org/wiki/Cavalieri's_principle
https://en.wikipedia.org/wiki/Cavalieri's_principle
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Listing 3-2.  The Frustrum Iceberg Model

// File FrustrumIceberg.scad
// An OpenSCAD model of an iceberg
// Rich "Whosawhatsis" Cameron, January 2017
height = 30; // height overall, in mm
radius = 40; // maximum radius
featuresize = 20; // maximum variation from of radius
noise = 10; // frequency of variations in radius
smoothness = 2; // how much to smooth the variations
seed = 0; // seed for random number generator
linedepth = .2; // should be about half of your nozzle diameter

CRRadius = pow(1.1, 1/3); //cube root of 1.1
CR2 = pow (2, 1/3); // cube root of 2
// calculate the location of the water line
percentDistance = (CR2 - CRRadius) / (CR2 -1);
topScale = 1/CR2; // scale of top of frustrum relative to base

$fs = .5;
$fa = 2;

Figure 3-5.  The frustrum iceberg model on a 3D printer
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// extrude the wavy outline with the top scalled and
// subtract the water line at the height calculated above
difference() {
   union() {
      linear_extrude(height, scale = topScale, convexity = 5)
         outline();
      if(linedepth < 0) intersection() {
         translate([0, 0, height * percentDistance])
            cube(
               [radius * 10, radius * 10, .5],
               center = true
            );
         linear_extrude(height, scale = topScale, convexity = 5)
            offset(-linedepth) outline();
      }
   }
   if(linedepth > 0) intersection() {
      translate([0, 0, height * percentDistance])
         cube([radius * 10, radius * 10, .5], center = true);
      linear_extrude(height, scale = topScale, convexity = 5)
         difference() {
            offset(2) outline();
            offset(-linedepth) outline();
         }
   }
}

module outline() offset(-smoothness) offset(smoothness * 2)
   offset(-smoothness) polygon([for(
      theta = [0:noise:359],
      r = rands(radius, radius - featuresize, 1, seed + theta)
   ) rect(r, theta)]);

function rect(r, theta) = r * [sin(theta), cos(theta)];

// End of model

Printing and Changing the Model
The model allows you to set the height and the radius and to change the parameters 
featuresize, noise, and smoothness to respectively change how big the departures 
from a right circular cone are, how many of them there are, and whether they have been 
smoothed out.

Because the indentation is a delicate feature, you may need to play with different 
slicing settings or even programs for best results.



Chapter 3 ■ Snow and Ice

59

Floating the Iceberg
It is tempting to try to float the iceberg model. However, because your prints will not be 
solid, we cannot give you a guaranteed reproducable way to have the iceberg float at a 
particular percentage of its volume. However, here are some useful numbers in case you 
want to try to make it work: PLA (the commonest plastic used in consumer 3D printers) is 
around 1.25 grams per cubic centimeter.

A 3D print will require you to set a value for infill (what percentage of the print is 
filled in with plastic, versus the volume being left full of air). We printed ours at 20% infill. 
In addition, the boundary of the object is solid plastic—let’s call that another 5%. Thus the 
average density of our print (air plus plastic) will be around 25% of 1.25, or 0.313. Water is 
just below 1 gram per cubic centimeter, as we noted earlier, so our print should be around 
31% submerged. As you can see in Figure 3-6, it looks pretty close to that.

We can see that to get to 90% submerged we would have to go to 65% or so infill, plus 
the 5% perimeter, or 70% times the 1.25 density. That would eat a lot of time and filament, 
so you probably don’t want to create an accurately floating iceberg this way. If your 
printer uses ABS, that material has a density of only 1.05 grams per cubic centimeter, so 
you would need to use about 85% or so infill to be 90% submerged.

Figure 3-6.  The PLA iceberg afloat in tap water
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Vase Printing
You can also vase print your model. This means that you print a base and sides, but no 
top. Many slicers have a “spiral vase” option, and most others can be explicitly configured 
to print 0% infill and 0 solid layers on top, which has a similar effect. In MatterControl 
(see Appendix A), this setting is under Settings ➤ General ➤ Single Print ➤ Spiral Vase 
(with a box to select).

If you have vase prints, you can experiment with filling them 90% full of water 
(Figure 3-7). They should ride just a bit below the surface because of the heavier PLA 
displacing a bit more water. If you fill them 90% full of water, that is equivalent to filling 
them full of ice. Don’t try to freeze water in them, though, because the ice will likely break 
the PLA as it freezes and expands.

Snow
Water’s peculiar structure has many other implications, too. Snow has many of the 
properties it does because of the way snowflakes build up as they move though clouds. 
Snowflakes are crystals, too, always with six sides because of ice’s fundamental hexagonal 
structure. Creating an accurate model of snowflake formation is way beyond what we can 
sensibly do in this book. But we can come up with a simple model that you can then play 
with and see what structures result in the landscapes like the one in Figure 3-8.

Figure 3-7.  The two vase-printed icebergs in water
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Physics of Snowflakes
Snowflakes are additively manufactured in clouds, but unlike 3D prints, they are not 
built up one layer at a time. Instead they accrete material in ways that depend on the 
conditions the flake encounters as it forms. Material is added mostly around the flake’s 
perimeter, rather than making the flake thicker. The temperature in the cloud and the 
excess water around at the time (called supersaturation) are the major determiners of 
what type of snowflake you will get.

The Snow Crystal Morphology diagram—sometimes called the Nakaya diagram, 
for 1930s physicist Ukichiro Nakaya—lays out what kinds of snowflakes form at various 
combinations of supersaturation and temperature. The Tip that follows lists some 
resources to find the details.

■■ Tip   California Institute of Technology researcher Kenneth Libbrecht’s book Field 
Guide to Snowflakes (Voyageur Press preprint, 2016) was a valuable resource that helped 
us think about the snowflake models, along with his website www.snowcrystals.com. 
It features pictures of and discussions about the physics of 21 different structures. The 
snowflake entry in Wikipedia is good too: https://en.wikipedia.org/wiki/Snowflake.

Figure 3-8.  A snowy late winter afternoon in Boston

http://www.snowcrystals.com/
https://en.wikipedia.org/wiki/Snowflake
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Our model here focuses on dendrites, the typical star-shaped snowflake form that 
you cut out of paper in third grade. These tend to form when the air is supersaturated and 
the temperatue is just below freezing (down to about –3.5 degrees Centigrade) or when 
the temperature is between –10 and –22 degrees Centigrade. Other than in those regimes, 
snowflakes can be solid plates or prisms, thick or thin, columns, and more, but always 
with the six-fold symmetry of the underlying crystal structure (except when two partially 
formed flakes merge).

■■ Note   There are many 3D-printable snowflake models. One of the most ambitious is 
the Snowflake Machine (www.thingiverse.com/thing:1159436) by Laura Taalman (a.k.a. 
Mathgrrl). This model (also in OpenSCAD) allows for many different variations of snowflakes 
with the Thingiverse Customizer.

The Model
The snowflakes we create here (like the one in Figure 3-9) will always be perfectly six-fold 
symmetrical (all six arms the same). Snowflakes in the wild are not always perfect, but we 
assume that here.

Figure 3-9.  Snowflake model

The model (in Listing 3-3) works by creating randomly sized hexagonal pieces and 
accreting the smaller ones onto larger ones. The probability of the size and position of a 
given hexagonal addition is driven by OpenSCAD’s random number generator modified 
by a power law. You can change the parameter distribution in Listing 3-3 so that the 
size distribution of the hexagons being added follows the functions for cube, fifth power, 
and so on. The flake in Figure 3-9 was created with the default values of all the parameters 
in Listing 3-3.

http://www.thingiverse.com/thing:1159436


Chapter 3 ■ Snow and Ice

63

Listing 3-3.  Snowflake Model

// File snowflake.scad
// An OpenSCAD model of an iceberg
// Rich "Whosawhatsis" Cameron, January 2017
// Units: lengths in mm, angles in degrees
// per OpenSCAD conventions

min = 2; // minimum size of a hexagon
// should be large enough to print without breaking
max = 12; // maximum size of a hexagon
distribution = 5; //exponent in power law
smooth = .5; // smooth off edges
// simulates snowflake, melting/sublimating a bit
seed = 10; // seed for random number generator
// same seed gives same result
iterations = 20; // how many times to add more hexagons
layer = 1; // how much smaller to make each layer than the last
minwidth = 0.5; // stops iterating branches if they get too
// thin to print, which would result in disconnected sections

$fs = .5;
$fa = 2;

// First create an array of random numbers skewed by power law
// Random number is raised to the power "distribution"
// and scaled by max-min
array = [
   for(v = rands(0, max - min, iterations, seed))
      min + pow(v, distribution) /
         pow(max - min, distribution - 1)
];

// Create six arms
for(i = [0:3]) linear_extrude(1 + i * .5)
   offset(smooth) offset(-smooth * 2) offset(smooth)
      for(a = [0:60:359]) rotate(a) grow(shrink = i * layer);

// recursive function that grows each arm or branch
module grow(n = 1, branch = true, shrink = 0) {
   // create one hexagon
   circle(array[n] - shrink, $fn = 6);
   // then decide whether to continue with recursion
   if(n < len(array) && (array[n] - shrink) > minwidth) {
      translate([
         abs(array[n] - array[n + 1]) + 1 - shrink,
         0,
         0
      ])
         grow(n + 1, branch, shrink);
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      // branch if size has decreased sufficiently
      if((array[n] - 2) > array[n + 1] && n > 5 && branch)
         for(a = [60, -60]) rotate(a)
            translate([abs(array[n] - array[n + 1]) + 1, 0, 0])
               grow(n + 1, false, shrink + 1);
   }
}
// End model

Printing and Changing the Model
The best way to explore the model is to play with the various parameters. The model 
creates hexagons with a random distribution of size, so the biggest effect can be changing 
the seed.This model can create dendrites and basic hexagonal shapes. Figure 3-10 shows 
some example flakes with a few parameters changed from the values in Listing 3-3. The 
one on the left has iterations = 10, making it stubbier and closer to a stellar plate type 
flake; the one in the middle has distribution = 10, seed = 3, and layer = 0.5; and the one 
on the right has layer = 0.5, seed = 3, and distribution = 15.

Figure 3-10.  Snowflakes with different parameters, as described in the text

If you would like to make the more basic geometrical shapes (six-sided columns or 
prisms), Rich has posted a set of open source constant-geometry shapes on Youmagine 
that could get you started. You can find them at www.youmagine.com/designs/fixed-
volume-objects.

http://www.youmagine.com/designs/fixed-volume-objects
http://www.youmagine.com/designs/fixed-volume-objects
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THINKING ABOUT THESE MODELS: LEARNING  
LIKE A MAKER

As seems to be the case with many of these models, the most difficult part was 
justifying the correctness of our mathematics after an intuitive leap to an answer. 
We spent quite a bit of time finding a mathematical model for the iceberg that would 
actually hold water, so to speak, for different values of height and radius. We found 
that just hand drawing the problem a lot of different ways was invaluable. We initially 
were trying to solve an even more general version of the problem and realized that 
the simplification we use in the chapter would make it feasible to create a model 
that was not overly complicated.

For the snowflake, we wanted to keep the physics as accurate as possible. However, 
to really model what is going on with water accreting is very complex, so we 
compromised and created a simple but flexible model that allows the user to change 
the probability distribution (sort of) that the accreting snowflake uses. As we discuss 
in the section, we knew there were already good snowflake models out there. We 
wanted to create one that was very simple, had a reasonable physical basis, and 
could be a good platform for further explorations.

Where to Learn More
The study of Arctic snow and ice has taken on a particular urgency in the light of climate 
change, which might cause large ice sheets to collapse into icebergs. You can look up the 
history of Antarctic ice sheets Larsen A, B, and C. Larsen A and B collapsed in 1995 and 
2002, respectively. As we write in early 2017, Larsen C seems to be headed for the same 
fate. There is a summary at https://en.wikipedia.org/wiki/Larsen_Ice_Shelf. This 
is relevant to people far from Antarctica, because if these large ice sheets float away from 
Antarctica and melt, sea levels may begin to rise significantly. Understanding how and 
why ice sheets calve into icebergs and how long it takes for them to melt will be a key 
scientific endeavor in the coming years.

For more about snowflakes, as noted earlier, the work of Caltech’s Kenneth Libbrecht 
is a good and accessible source at the level of his general-public books and website 
already mentioned. He also has professional papers in this sphere, if you have access to 
scientific journals. Unfortunately, a lot of the math to fully simulate snowflake calculation 
is better suited to supercomputers—one has to bear in mind complicated interactions 
between the air, the forming snowflake, water vapor in the air, and so on. A good survey 
of current research can be found in Ron Cowan’s brief 2012 Scientific American article 
“Snowflake Growth Successfully Modeled from Physical Laws,” available online at www.
scientificamerican.com/article/how-do-snowflakes-form.

https://en.wikipedia.org/wiki/Larsen_Ice_Shelf
http://www.scientificamerican.com/article/how-do-snowflakes-form
http://www.scientificamerican.com/article/how-do-snowflakes-form
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Teaching with These Models
These models can be used to talk about ice and snow. But the approaches we use here 
in all the models of the chapter (of simplifying and using curve fits when the complexity 
is too high) can be used as a lesson as well. This aligns with the U.S. Next Generation 
Science Standards (NGSS) Engineering Technology and Application of Science (ETS2) 
Core Disciplinary Ideas about learning to break down a problem into solvable parts  
(www.nextgenscience.org/dci-arrangement/hs-ps2-motion-and-stability-forces-
and-interactions). For example, we simplified the cone frustrum iceberg model 
significantly by fixing the ratio between the top and the bottom of the frustrum. Although 
this did not allow us to do every conceivable shape, it did allow the radius and height to 
be variable parameters.

Ice sheets collapsing into icebergs and how the freshwater in the icebergs 
is absorbed by the ocean may apply to earth science standards such as www.
nextgenscience.org/pe/5-ess2-2-earths-systems, which looks at how freshwater and 
ocean water cycles interact.

Another concept we did not allude to directly in this chapter is the concept of finding 
volumes by displacement. Our calculation of how low any of the iceberg models should 
ride in the water could be used at several levels to talk about volumes of different solids, 
or Archimedes’ Principle (https://en.wikipedia.org/wiki/Archimedes'_principle), 
which says that a body floating on water will displace a volume of water equal to its mass. 
These discussions can fit into the motion and stability forces and interactions standards 
at various grade levels.

Project Ideas
These models can be used to think about the role of melting ice in sea level change, or 
perhaps to motivate and help think about studying the ocean currents that carry icebergs 
for long distances. Projects about displacement, volume, and other basics might be more 
interesting in the context of water ice sailing the seas than it might be in the abstract. 
There are also new ecosystems being discovered under ice shelves, and the effects of 
huge sheets of ice being ripped from above these areas would be an interesting project to 
explore as well. The Larsen ice sheet disintegrations resulted in some discoveries along 
these lines.

Because the models in this chapter do have significant simplifications of the physics 
they represent, good student projects (at a variety of levels) could look at improving and 
expanding the models, or perhaps creating simulation or experimental data that then 
could inform these models. For example, given how our simple snowflake accretion 
model works, could you add a parameter or a second level of detail that could give more 
physical and more interesting results? What might be good next steps from this model? 
In the more experimental sphere, one could create a version of the snowflake microscope 
suggested at the end of Libbrecht’s Field Guide to Snowflakes to take empirical data.

http://www.nextgenscience.org/dci-arrangement/hs-ps2-motion-and-stability-forces-and-interactions
http://www.nextgenscience.org/dci-arrangement/hs-ps2-motion-and-stability-forces-and-interactions
http://www.nextgenscience.org/pe/5-ess2-2-earths-systems
http://www.nextgenscience.org/pe/5-ess2-2-earths-systems
https://en.wikipedia.org/wiki/Archimedes'_principle
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Summary
In this chapter we create models of icebergs and snowflakes. We also explore how 
icebergs calve from glaciers and then ride the seas 90% submerged as they erode and 
melt away. We discuss issues that arise when we want to model processes (like snowflake 
creation) that are too complex to model in detail with the tools available to us, and how 
to make reasonable engineering approximations. We also use Archimedes’ Principle to 
think about how substances with different densities will displace water proportionate to 
their mass, and not their volume.
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CHAPTER 4

Doppler and Mach

We have all had the experience of trying to figure out whether police and fire sirens are 
headed toward us or away. A siren coming closer will seem have a higher pitch than one 
going away.

The change in pitch is called the Doppler effect, and the actual change in frequency 
is called the Doppler shift. It is named for Austrian mathematician and physicist 
Christian Doppler (1803–1853), who is credited for proposing it. It turns out that the 
Doppler effect applies to light waves as well as sound. Light from a source that is moving 
toward you has its frequency shifted higher, and light from something moving away 
shifts lower. One of the more exotic uses of this phenomenon is to track the movement of 
distant galaxies that are moving away from us.

Another Austrian who built on Doppler’s work was Ernst Mach (1838–1916), a 
physicist and philosopher. His early work was focused on the Doppler effect in both 
optics and acoustics, not to mention philosophy (https://plato.stanford.edu/
entries/ernst-mach). He is credited with taking the first photographs of bullets in flight 
and managing to capture an image of a shock wave—a jump in pressure—that builds 
up ahead of something moving faster than the speed of sound. The way that shock wave 
builds up is closely related to the Doppler effect. We explore both of these phenomena in 
this chapter.

Doppler Effect
Imagine that a police car is driving away from you, siren blaring, pursuing a bad guy at  
77 miles an hour. The speed of sound in air at sea level is about 340 meters per second, or 
767 miles an hour. Thus the police car is driving away from you at about 10% of the speed 
of sound. 

Now think about the sound waves from the siren spreading out as it moves. Because 
the car is moving at 10% of the speed of those waves, you can imagine the waves starting 
to pile up in front of the car because the siren keeps wailing while the car catches up 
to the sound it made before. Behind the car, on the other hand, the waves the siren has 
made are stretched out. The pitch of a sound is higher when the sound waves are closer 
together, and lower when they are more spread out.

https://plato.stanford.edu/entries/ernst-mach
https://plato.stanford.edu/entries/ernst-mach
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Figure 4-1 shows a model of the waves generated by something putting out sound at 
a particular pitch while moving at 30% the speed of sound. Figure 4-2 shows a snapshot of 
the waves from a source at 80% the speed of sound. We have not included a model for the 
10% speed of sound example because of the resolution of our model—it is pretty hard to 
see the effects of changes that small.

Frequency Shift
The shifted frequency an observer hears from something moving toward them at a 
velocity v is determined by the equation

Shifted frequency = (1 + v / a) * ( frequency at rest)

where a is the speed of sound. If the source of the sound is moving away, the frequency 
changes like this:

Shifted frequency = (1 – v / a) * ( frequency at rest)

Figure 4-1.  Waves from a source moving to the right at 30% of the speed of sound
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Think about the waves bunching up and getting closer together as the source moves 
toward you. The frequency rises as the distance between subsequent waves gets smaller.

The ratio of a moving object’s velocity to the speed of sound (the v / a term in the 
shifted frequency equation) is called the Mach number, commonly denoted by M. It is 
named in honor of Mach, but was not defined by him.

The speed of sound depends on the temperature of the air (or other gas) that is 
carrying the sound waves, and ambient density and pressure, all of which are interrelated. 
Warmer air will transmit the small physical disturbance of a sound wave from molecule 
to molecule faster. The molecules in hot, dense air are flying around faster and will 
more efficiently propagate a sound wave. For example, in the cold, thin air up where 
commercial airliners fly, at 10 kilometers (32,800 feet) above mean sea level, the speed of 
sound slows to 667 miles per hour from the 767 at sea level—a 13% decrease.

The Model
This model is based on the wave model in our earlier book 3D Printed Science Projects 
(Apress, 2016; Chapter 2, “Light and Other Waves”). That model ultimately needs to get a 
set of points to plot out a 3D surface. In this case, because the source is moving, we need 
to work backwards from a point in x and y and figure out what wave would be passing 
over that point at a particular time.

We think about this by imagining that we are taking a snapshot at one particular time 
of all the waves that have been generated by our moving point source since it came into 
our field of view. Imagine that as the point source was flying along it puffed out a smoke 
ring on a regular basis. The oldest smoke rings would be the biggest, and the new ones 
the smallest. Instead of single smoke rings, though, we imagine our source is putting out a 
cosine wave at a particular frequency.

Figure 4-2.  Waves from a source moving to the right at 80% of the speed of sound

http://dx.doi.org/10.1007/978-1-4842-2695-7_2
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The waves from the moving source are traveling at the speed of sound. So we know 
that a wave that arrives at a particular point was generated by a source that was at the 
center of that circle at a time in the past. We can calculate that time by dividing the radius 
of the circle by the speed of sound. Figure 4-3 shows this situation, and we will work 
through the math to show you how we got our equations. We want to find A, the radius 
from where the wave (now at point (x,y)) started back when the disturbance was at P1. 
We show the point where the source is now as (0,0).

We think of the object flying from P1 to the current origin of its coordinate system 
in space, (0,0). We want to find the distance A in Figure 4-3 that is the distance of the 
posiition of the source when the wave was generated to the point (x,y).

We know the following to start with (based on the diagram in Figure 4-3):

•	 Our object creating the disturbance went from P1 to (0,0) moving 
at Mach number M.

•	 The radius from the current position to the point (x,y)—we call 
this R.

•	 The angle theta, which is the angle with tangent y / x.

•	 That the angles in a triangle sum to 180 degrees.

•	 That B / A equals the Mach number M since the object moved M 
times the speed of sound times the time while the disturbance 
(moving at the speed of sound) moved from P1 to (x,y).

direction of motion

P1

A

r B

(x,y)

R

b

(0,0)

Figure 4-3.  Geometry to figure out which wave contributes to the amplitude at a 
particular point (x,y) at a particular snapshot in time
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To work out the math, we will use the law of sines, which says that for all the angles 
in a triangle, the ratios of the sine of all their angles to their opposite sides is equal. In this 
case, that would be:

sin(theta) / A = sin(b) / B = sin(r) / R

Since we know that B/A = M, use the relationships between the first two sides to get:

sin(theta) / A = sin(b) / MA (substituting MA for B)

Therefore, b = asin(M * sin(theta))
Next we need to get the third angle, r. Since the angles in a triangle add up to 180 

degrees,

180 = theta + asin(M * sin(theta)) + r

or

r = 180 – theta – asin(M * sin(theta))

Going back to the original law of sines, we know that the angles theta and r are 
related like this:

sin(theta) / A = sin(r) / R

or

A = sin (theta) * R / sin (r)

Finally, to get A (which is what we wanted all along) we plug in the values we have 
found to get:

A = sin (theta) * R /

sin (180 – theta – asin(M * sin(theta)))

This is a peak of the cosine wave that was generated at P1 in the past. The speed 
of the disturbance is Mach number times speed of sound. We are creating this whole 
snapshot at one (arbitrary) time, and so you can see that the actual values of time drop 
out in the algebra we just worked out.

Finally, we use that value of amplitude * cos(A*frequency) as the height of our wave 
at position (x,y) at our arbitrary time. Whew!

■■ Caution   This model only applies below Mach 1. Beyond that, the source will outrun 
the waves, and the part of a new wave that is emitted behind the source will interfere 
(constructively and destructively) with the part of an old wave that was emitted forward.  
This form of the equation does not include that interference. It will have other problems, 
including one that results in what is called a non-manifold model for Mach numbers 
greater than or equal to 1. These models can cause problems for 3D printer software.
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Listing 4-1.  The Doppler Model

// File doppler.scad
// An OpenSCAD model of a snapshot of the waves
// around a moving object

// The model is based on the waves models in
// Volume 1 of 3D Printed Science Projects
// Rich "Whosawhatsis" Cameron, December 2016
// Units: lengths in mm, angles in degrees
// per OpenSCAD conventions
// This program creates a res*xmax mm by res*ymax rectangle
// As shown here will be 100 mm square.

// Model only valid for subsonic objects(mach < 1)

mach = .5; // mach number – must be less than 1.0
frequency = 20; // frequency - increase to show more waves
// setting frequency to high for the mach number will
// result in sampling artifacts
amplitude = .5; // Height of wave peaks on either side of the base plane, mm
thick = 2; // thickness of the slab, mm
xmax = 199; // max dimension in x (before scaling by res)
ymax = 199; //max dimension in x (before scaling by res)
res = .5; // scaling factor

// This function calculates a cosine wave with doppler shift:
function f(x, y) = amplitude * cos(r(x, y) / sin(theta(x, y)  
+ asin(sin(theta(x, y)) * mach)) * sin(theta(x, y)) * frequency);

// These two functions convert x/y values to polar coordinates:
function r(x, y, center = [xmax/2, ymax/2]) = sqrt(pow(center[0] - x, 2)  
+ pow(center[1] - y, 2));
function theta(x, y, center = [xmax/2, ymax/2]) = atan2((center[1] - y), 
(center[0] - x));

// The rest of the model is the same as the
// wave model in Volume 1.
// It creates and interpolates a surface z = f(x,y)
// 3D printer conventions are that z is vertical –
// The model is rotated at the end
// so that the (x, y) surface is vertical, not horizontal
// This gives better print quality and allows for a wave
// surface on both sides of a print
// without support

toppoints = (xmax + 1) * (ymax + 1);
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center = [xmax/2, ymax / 2];

points = concat(
   // top face
   [for(y = [0:ymax], x = [0:xmax]) [x, y, f(x, y)]],
   (thick ? //bottom face
      [for(y = [0:ymax], x = [0:xmax]) [x, y, f(x, y) - thick]]
   :
      [for(y = [0:ymax], x = [0:xmax]) [x, y, 0]]
   )
);

zbounds = [
   min([for(i = points) i[2]]),
   max([for(i = points) i[2]])
];

function quad(a, b, c, d, r = false) = r ?
   [[a, b, c], [c, d, a]]:
   [[c, b, a], [a, d, c]]; //create triangles from quad

faces = concat(
   //build top and bottom
   [for(
      bottom = [0, toppoints],
      i = [for(x = [0:xmax - 1],
      y = [0:ymax - 1]
   )
      quad(
         x + (xmax + 1) * (y + 1) + bottom,
         x + (xmax + 1) * y + bottom,
         x + 1 + (xmax + 1) * y + bottom,
         x + 1 + (xmax + 1) * (y + 1) + bottom,
         bottom
      )], v = i) v],
   //build left and right
   [for(i = [for(x = [0, xmax], y = [0:ymax - 1])
      quad(
         x + (xmax + 1) * y + toppoints,
         x + (xmax + 1) * y,
         x + (xmax + 1) * (y + 1),
         x + (xmax + 1) * (y + 1) + toppoints,
         x
      )], v = i) v],
   //build front and back
   [for(i = [for(x = [0:xmax - 1], y = [0, ymax])
      quad(
         x + (xmax + 1) * y + toppoints,
         x + 1 + (xmax + 1) * y + toppoints,
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         x + 1 + (xmax + 1) * y,
         x + (xmax + 1) * y,
         y
      )], v = i) v]
);

// prevent an incorrect model from being generated
if(1 > mach && mach > -1) {
   // Scale and rotate the print
   rotate([90, 0, 0]) scale([res, res, 1]) {
      polyhedron(points, faces);
   }
} else echo("mach number must be less than 1");
// end model

Printing and Changing the Model
As you saw in Figure 4-2, this model prints vertically—otherwise you would need to pick a 
lot of support off the model, and the waves would not print as cleanly. Because the model 
is very thin, we recommend against scaling it in your slicing software. Instead, change 
anything you want to in OpenSCAD. You can scale the model by changing the variable 
res, which multiplies the default size of 200 mm on a side (res = 0.5 gives you 100 mm 
square pieces).

You can change the variable frequency to change the frequency of the wave the 
moving object is creating. The variable mach is the Mach number, which should be less 
than 1 for this model.

FOURIER TRANSFORMS

The problem of wanting to figure out what waves created a particular snapshot 
in time of a wave field (or the waves passing through a particular point) is not a 
new one. We generated a one-off geometrical answer for our problem here, but 
the general way of solving such problems is to use a technique called Fourier 
Transforms (https://en.wikipedia.org/wiki/Fourier_transform).

It requires some fairly solid knowledge of calculus to be able use these transforms. 
In a nutshell, though, you can either start out in “frequency space” with some known 
frequency distributions and use these techniques to see what the resulting patterns 
in space or time are, or you can go the other way around (as we did here) and 
deduce what waves contributed to a pattern at a particular position or time. Because 
they are very handy for many types of problems in signal processing and other 
fields, many different software packages exist to do “Digital Fourier Transforms” or 
“Fast Fourier Transforms.” Search online on either term to find both open source and 
commercial software packages.

https://en.wikipedia.org/wiki/Fourier_transform
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Mach Cone
Scientists associate Ernst Mach with several fundamental ideas, including Mach’s 
principle, which laid out some ideas about how to think about motion that you can see 
relative to motions of far away objects, like the stars. Einstein depended on those ideas 
for his theory of general relativity later on. The biography Einstein: A Hundred Years of 
Relativity by Andrew Robinson (Princeton University Press: 2015) has some wonderful 
stories about how the young Einstein spent a lot of time studying Mach’s work, and about 
how the two even met at one point.

More directly applicable to our discussion here is that Mach became interested in 
Doppler’s work (a fellow Austrian) and started studying the implications of it. He became 
interested in the cases when something was moving faster than the speed of sound. He 
and a colleague pulled off the impressive feat (particularly for 1887) of photographing the 
waves generated by a bullet moving faster than the speed of sound.

He observed that the bullet creates a conical shock wave that moves with the bullet. 
In our era of supersonic aircraft, we call these shock waves sonic booms when they cross 
our path on the ground, and they are the extreme example of the bunching up of waves 
we saw in the previous section. Here, the object is moving so fast that it is catching up to 
and passing through the disturbances it is generating.

Shock Waves
Imagine that a plane is flying supersonically and making noise. The noise it made a 
second ago will be spreading out in a sphere, but the plane will have punched through 
that outer spreading sphere and moved on before the sphere gets there. This creates a 
shock wave angled away from the nose of plane at the Mach angle, which is an angle with 
a sine that is the reciprocal of the Mach number. At Mach 3, this is asin(1 / 3), or about  
19 degrees. The Mach cone’s front will be twice the Mach angle, which you can verify from 
our models.

The Model
Our 3D printed model is shown in Figure 4-4 for a subsonic (Mach 0.5), transonic  
(Mach 1), and supersonic (Mach 3) case in which the vehicle is flying to the right of the 
picture at a 30-degree angle from the vertical. 
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■■ Note   Transonic is the term for situations right around Mach 1, when we are 
transitioning from subsonic (below Mach 1) to supersonic (above it).

The model (Listing 4-2) is created by first making two spheres: one centered at the 
first modeled time with a radius that is the distance sound travels between that first 
modeled time and the current time, and a second sphere that is centered where the 
disturbance was just before its current position. OpenSCAD’s hull() function is used to 
create a surface that contains these spheres and all the intermediate ones. This creates 
a smooth surface away from the stair steps that shows what the outer boundary of the 
sound traveling away would look like. The stair steps are cuts through the diameter of 
spheres at regular intervals along the direction of travel.

■■ Note   For Mach 1 and below, the traveling source has not outrun the oldest propagating 
sound wave, and so the outside is a sphere.

Figure 4-5 shows a different view of this envelope of the edge of the propagating 
waves for a supersonic point source moving to the right of the picture. We have shown 
both the 2D propagation of the edge of the disturbance from the moving point source  
(the circles) and the surface that defines the edge of all the disturbances if we made the 
steps between circles smaller and smaller.

Figure 4-4.  Mach cone models for Mach 0.5, 1, and 3
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■■ Caution   The bottom (largest) circle of the models should not be thought of as the 
ground cutting through a shock wave of something flying above it. The largest circle is just 
the radius of the disturbance from where we started keeping track of it.

Listing 4-2.  The Mach Cone Model

// File machCone.scad
// An OpenSCAD model of a snapshot
// of the propagating disturbance
// From a point source moving at mach number, "mach"

// The model prints a disk that is a cross-section of
// the sphere representing a propagating disturbance
// from the traveling point source
// and a surface that is the envelope of
// the boundary of these propagating spheres
// Assumes point source at constant velocity

// Rich "Whosawhatsis" Cameron, December 2016
// Units: lengths in mm, angles in degrees,
// per OpenSCAD conventions

mach = 0.5; // mach number

size = 50; // diameter of the oldest propagation circle, in mm
a = 30; // angle from the vertical at which
// the point source is traveling
step = 3; // size of the circular cross-section steps

Figure 4-5.  2D projection of the Mach cone
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$fs = 2; // decrease this for smoother curves.
// This will slow down rendering.
$fa = 2;

// First section creates the outer boundary created by
// smoothing spheres of propagating
// disturbance as the point source moves
difference() {
   intersection() {
      hull() for(i = [1, size / 2]) {
        translate([sin(a), 0, cos(a)] * (size / 2 - i) * mach)
          sphere(r = i);
      }
      translate([-size, 0, 0]) cube(size * 10);
   }
   if(mach < = 1) for(i = [5:step:size / 2]) {
      translate([sin(a), 0, cos(a)] * (size / 2 - i) * mach) {
         rotate([90, 0, 0]) {
            linear_extrude(2, center = true) difference() {
               circle(i);
               circle(i - .2);
            }
         }
      }
   }
} // end difference

// Next create the stair steps representing the diameter of
// propagation circles
intersection() {
   for(i = [0:step:size / 2 + step]) {
      translate([sin(a), 0, cos(a)] * (size / 2 - i) * mach) {
         cylinder(
            r = i,
            h = step * mach * cos(a) + .01,
            center = true
         );
      }
   }
   translate([-size, -size * 10, 0]) cube(size * 10);
}

// end model



Chapter 4 ■ Doppler and Mach

81

Printing and Changing the Model
As with the Doppler model, we suggest you do not scale this model down with your 
printer’s scaling; change anything you want to in the model itself by changing the 
variable size, which is the diameter of the largest (bottom) circle in mm. The variable 
mach is the Mach number. Scaling it up should work, although you may see some of the 
facets of the approximations making up the model if you scale it too much outside of 
OpenSCAD.

THINKING ABOUT THESE MODELS: LEARNING  
LIKE A MAKER

The most difficult thing about these models was getting the geometry right, 
particularly for the Doppler effect model. Although the basic idea is simple, figuring 
out the height of the model in a snapshot in time was tricky (as you can see in the 
section describing the logic). We felt better when we realized that we had more or 
less reinvented Fourier transforms.

The very hardest part of all, though, was making sure the models were right. Rich 
reads geometry problems like most people read romance novels, considering them 
lightweight and obvious. Joan is more algebraically inclined, and we took about ten 
times as long validating the Doppler model as initially conceiving it. The Mach cone 
model was developed first and provided the mental model for the Doppler one.

Where to Learn More
The topics in this chapter are typically covered at the undergraduate college level, 
although they are certainly good fodder for more advanced K-12 physics students and 
their science fair projects. As such, we relied heavily on Joan’s college textbooks for key 
numbers and equations.

For standard atmosphere values of the speed of sound and background on Mach 
numbers, we relied on the textbook Foundations of Aerodynamics, 3rd edition (Wiley, 
1976) by Kuethe and Chow. It looks like a 5th edition was published in 1997. For more 
details on the physics of the Doppler effect, we used Morse and Ingard’s Theoretical 
Acoustics (McGraw-Hill, 1968).

We did not explictly go into light waves here, but you can read about the Doppler 
shift applied to light if you look up “redshift” (https://en.wikipedia.org/wiki/
Redshift) or “expansion of the universe.” The universe is expanding, and so all galaxies 
are flying away from each other in a way that makes light from them seem shifted toward 
the red end of the spectrum (that is, waves from them get stretched farther apart, sort 
of like the descending pitch when a sound is moving away). However, light is not as 
straightforward to model as sound because of relativistic effects—how a situation “looks” 
for moving light sources depends on where and when you are observing.

https://en.wikipedia.org/wiki/Redshift
https://en.wikipedia.org/wiki/Redshift
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Teaching with These Models
As we noted in the last section, these topics are most commonly covered in 
undergraduate or graduate physics courses. However, these models might be interesting 
to include as talking points when teaching the concept of waves in general, for instance 
under the Next Generation Science Standards (NGSS) HS-PS4-1, “Use mathematical 
representations to support a claim regarding relationships among the frequency, 
wavelength, and speed of waves traveling in various media” (www.nextgenscience.org/
pe/hs-ps4-1-waves-and-their-applications-technologies-information-transfer). 
More general discussions of sound waves and perhaps of other periodic functions could 
also be supported using these models as visualizations of interesting test cases.

Project Ideas
These models are visualizations (models meant to give you intuition). However, you can 
change the Mach number and frequency. In the case of the Doppler plots, raising the 
frequency in essence raises the resolution of the plot, to a point. If you raise it too far, you 
will start to create artifacts, since the models are (by default) just 199 points across in each 
dimension. If you lower it too much, you may be zoomed in too far to see more than a 
wave or two, and you will not see the Doppler effect then either. The same is true for the 
step size in the Mach cone models.

For the same reason, be careful about scaling these models down in your printer 
software. They may get too thin to print vertically, or develop artifacts in the prints of the 
waves.

With all that said, you might find it interesting to print each of the models in this 
chapter for a few Mach numbers and several frequencies to build your intution about 
how these effects look in 2D snapshots (the first model) and in 3D. Remember, though, 
that the Doppler model (Listing 4-1) must be used only below Mach 1.

You also might look at what the equivalent models would look like for light. We did 
not embark on them because of the complications that ensue when you think about 
relativisitic effects.

Summary
This chapter discusses sound waves created by moving objects. The first model visualizes 
the Doppler-shifted waves created by something moving through air or another medium 
at speeds below the speed of sound. The second model is a little more general. It looks 
at 3D snapshots of the outer boundary of disturbances caused by objects moving either 
above or below the speed of sound. Above the speed of sound, these disturbances create 
a Mach cone around themselves, which separates where the disturbance from the moving 
object has propagated from where it has not. We conclude with some ideas about how to 
use these models to build intuition.

http://www.nextgenscience.org/pe/hs-ps4-1-waves-and-their-applications-technologies-information-transfer
http://www.nextgenscience.org/pe/hs-ps4-1-waves-and-their-applications-technologies-information-transfer
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CHAPTER 5

Moment of Inertia

Designing spinning or rotating machines can be complex and generally requires a bit of 
calculus. However, we can look at some simplified cases and design a few pieces that can 
help you analyze the motion of spinning—or in the case of this chapter, rolling—objects. 
Here we will develop a simple, basic rolling cylinder with internal structures that you can 
adapt to look into the physics of this deceptively simple-appearing motion.

Rolling Motion
If a wheel is perched at the top of a hill, before it starts moving it has potential energy, 
and that energy has the potential to be turned into motion. Once it starts rolling downhill 
(not slipping or sliding), the wheel is using energy to do two things: rotate about its center 
of mass and move (a physicist would say translate) down the slope. The rotational part 
depends on how the mass inside the wheel is distributed, and that mass distribution 
is what we will vary in our experiments in this chapter. If we decide that for now we 
will not worry about friction and other things that dissipate energy, we can write the 
conservation of energy like this:

Potential energy = Translational energy + Rotational energy

Potential energy for a wheel at the top of a hill is equal to the mass of the wheel 
times the height above some reference baseline (say, the bottom of the hill) times the 
acceleration caused by gravity, usually referred to as g. The value of g on Earth is about 
980 cm/s2. If the height of the slope is h and the total mass of the wheel is M, then the 
potential energy is equal to M * g * h.

The translational energy is how fast the wheel is moving down the slope. It is 
proportional to the mass times the square of its velocity down the slope. If we call that 
velocity v, the translational energy is (1 / 2) * M * v2.

The rotational energy is a little trickier. How much does the wheel turn in some set 
amount of time? The wheel is speeding up as it goes down the slope, because gravity 
is accelerating it. We can think about the point of contact where the wheel touches the 
ground as moving at angular velocity v / R. The total rotational energy is equal to  
(1 / 2) * I * v2 / R2, where R is the radius of the wheel and I is the moment of rotational 
inertia, typically just called the moment of inertia.
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■■ Note   Angular velocity has units of radians per second divided by time and is the 
inverse of the time it takes for the wheel to rotate one radian. There are 2π radians in one 
turn of the wheel, or 360 degrees equals 2π radians. If you imagine a piece of string the 
length of the radius of a circle and you take that string and lay it along that circle, the angle 
inside that arc is one radian.

Moment of Inertia
The moment of inertia has units of mass times the square of distance and is a measure 
of how hard it is to get something to start (or stop) rolling. In that way, it acts sort of like a 
mass in that if the energy input is equal, if the moment of rotational inertia goes up, the 
wheel will turn more slowly.

■■ Tip   You can think about it like this: mass measures how much something resists 
acceleration in a straight line, and moment of inertia measures resistance to angular 
acceleration.

The moment of inertia is equal to the sum of all the masses that make up an object 
times the square of their distance from the center of mass. So, the more mass is moved 
out away from the center of mass, the more energy it takes to turn the wheel once because 
the radius of the mass is getting bigger.

The model for the chapter, shown in Figure 5-1, looks like a hockey puck with 
holes punched in it. We call it the weighted wheel. The one we used in this chapter, 
printed in PLA with 10% infill, has a mass without any pennies in it of 46 grams.  
There are penny-sized holes into which we can place coins to add mass at different 
radii from the center.
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■■ Note   We use centimeters and grams or, more generally, the cgs (centimeter-gram-second) 
unit system in this chapter. First, the natural units of what we are measuring are centimeters 
and grams, because we are working at the scale of everyday objects. Secondly, because of that, 
school physics labs (where we expect many of our readers reside) often work in these units 
for the same reason. However, 3D printers typically measure in millimeters, so you will need to 
convert centimeters to millimeters if you want to change anything in the model (1 cm = 10 mm).

Use a bit of tape (blue tape of the type used on 3D printer platforms works 
nicely—see Figure 5-2) to hold pennies in place by wrapping a set of pennies in blue 
tape. We found that the pennies fell out if we just put blue tape over the holes, and if 
they rattled a bit it affected the results. We used slugs of 13 pennies per hole for the 
experiments in this chapter.

Figure 5-1.  The weighted wheel model
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Predicted Moments of Inertia for This Model
For the model in Figures 5-1 and 5-2, we will figure out the moment of rotational inertia 
as follows:

Moment of rotational inertia = Rotational inertia of the  
wheel + Sum of the rotational inertias of the pennies

Wikipedia (https://en.wikipedia.org/wiki/Moment_of_inertia) and other 
physics references tell us that the moment of inertia of a solid cylinder is (1/2) * M * R2. 
Our model is not a solid cylinder—it is a 3D print with an outer shell, some holes in it, 
and 10% infill—but for getting general trends, it should be close enough. In this case, the 
radius R is 50 mm, or 5 cm. With a mass of 46 grams, we get the moment of inertia of the 
empty wheel without coins as 575 g-cm2.

Simplest Approximation: Pennies as Point Masses
For a first cut at figuring out the center of mass, we will treat the pennies as point masses 
at their centers. A point mass contributes its mass times the square of its radius from 
the center of mass of the overall object to the moment of rotational inertia. Later we give 
suggestions for doing this more accurately, but for now we want to give a rough idea 
about how to get started.

Figure 5-2.  The weighted wheel model with pennies in the “outer ring” held with blue tape

https://en.wikipedia.org/wiki/Moment_of_inertia
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We used 39 pennies for our experiments, 13 in each of the sets of 3 holes. We 
measured the mass as 100 grams total. As noted in Chapter 1, some pennies are 3 g and 
some are 2.5, depending on when they were minted (they were heavier before 1982). We 
felt that just weighing them was a simple measurement and would allow for wear. All the 
holes are 20 mm in diameter, just a bit bigger than the 19.5 mm diameter of a penny.

The centers of the outer penny holders are 0.1 cm plus 10 cm in from the outside of 
the wheel’s 5 cm radius; that works out to 5 – 0.1 – 1 = 3.9 cm. The additional rotational 
moment of inertia for pennies in the outer ring is thus 100 g * (3.9 cm)2, or 1521 g-cm2. 
The overall moment of inertia for the empty wheel plus pennies in the outer circle of 
holes is 575 + 1521 = 2096 g-cm2.

The center of the inner ring of three pennies are halfway between the outer penny 
holders and the hole at the center of the wheel; that is, 1.95 cm. So, the additional 
rotational moment of inertia added by pennies in the inner ring is 100 g * (1.95 cm)2, or 
380 g-cm2, making the overall moment of inertia for the empty wheel plus pennies on the 
inner circle of holes 575 + 380 = 955 g-cm2.

Finally, we placed 13 pennies in the central hole; we used 100 / 3 grams as the mass 
for this. If we are treating the pennies as a point mass at the center, the moment of inertia 
does not change and is the same as the empty wheel, or 575 g-cm2. The mass, though, is 
different. Table 5-1 sums up these results.

Improving the Estimate: Parallel Axis Theorem
The moment of inertia can be calculated about any axis that is fixed with respect to the 
body itself. So far we have talked about the case of a circular object rotating around its 
center, but the more general case requires a few more tools.

The point-mass approximation will give a somewhat low value for moment of inertia. 
The next best approximation would be to treat each stack of pennies as a cylinder of mass 33 
grams and radius 0.975 cm. Then we would use the parallel axis theorem which says that 
the moment of inertia of a distinct part of a bigger object (like our pennies in the cylinder) 
is equal to its moment of inertia about its own center, added to its mass times the square of 
the distance from its center of mass to the overall object’s center of mass. In the case here, 
we would compute this for the inner ring pennies as follows: moment of inertia of a stack of 
pennies (a cylinder) about its center is equal to (1 / 2) * M * R2, where M is the mass of our 
average stack of pennies or 33 grams, and R is 0.975 cm. Multiplying this out, we get 15.7 g-cm2.

Now to get the moment of inertia of these pennies about the overall body’s center  
of mass, we use the distance between the two centers of mass times the mass of the  
stack of pennies to see what the moment of inertia is about the center of the wheel.  
This distance, as we established earlier, is 3.9 cm.

Table 5-1.  Moment of Inertia for Three Cases

Case Mass (g) Moment of Inertia (g-cm2) Moment/mass (cm2)

No pennies 46 575 12.5

Pennies inner ring 146 955 6.54

Pennies outer ring 146 2096 14.3

Pennies concentric 80 575 7.19

http://dx.doi.org/10.1007/978-1-4842-2695-7_1
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So, this term adds 33 grams times 3.9 cm squared, or 502 g-cm2 for a total of 
15.7 + 502 = 518 g-cm2 per stack. For the three outer pennies plus the wheel itself, we get  
3 * 518 + 575 (empty moment of inertia) or a total of 2128 g-cm2, versus the 2096 we got 
with the point-mass assumption.

Predicting Velocity of the Rolling Wheel
Once we have these numbers, we can predict how fast the wheel should roll downhill. 
First, we need to compute a formula for the velocity the wheel will have after it rolls 
down the slope of our experiment, when it will have converted all its potential energy 
(at the top of the slope) to kinetic and rotational energy. As mentioned in the last 
section, we know:

Potential energy = Translational energy + Rotational energy

Combining the formulas for each term from the last section gives us:

M * g * h = (1 / 2) * M * v2 + (1 / 2) * I * v2/ R2

Which we can clean up a bit to this:

2 * g * h = v2 * (1 + I / (M * R2))

Or solving for velocity,

v2 = 2 * g * h / (1 + I / (M * R2))

where g = 980 cm/s2, R = 5 cm, h = distance * sin(incline angle), and I = moment of inertia. 
If we want to get the ratio of the velocities for our current weighted wheel cases, we get 
the following equation, after dividing out some of the things that we can hold constant 
from one test to another (like the geometry of the slope, the distance travelled, and so on, 
assuming here the radius R of the overall body is the same):

v
1
 / v

2
 = sqrt ((1 + I

2
 / ( M

2
* R2 )) / (1 + I

1
 / (M

1
 * R2 )))

The results of plugging in some pairs of values for comparisons are shown in  
Table 5-2. The moments of inertia vary, but the masses do too. Because this is a dynamic 
system, the results can be a little surprising. The higher the moment of inertia, the 
slower the wheel will accelerate, and longer it will take to reach the bottom of the slope. 
However, the higher moment of inertia in some cases was offset by differences in mass.

Table 5-2.  Velocity Ratios Predicted for Some Combinations

Case Predicted velocity ratio

No pennies: 39 pennies inner ring 1 : 1.09

No pennies: 39 pennies outer ring 1 : 0.98

39 pennies inner ring : 39 outer ring 1.12 : 1

www.allitebooks.com

http://www.allitebooks.org
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Results
We tried rolling the wheel on a smooth table with one end raised up a bit, and also 
outdoors on some sloping concrete. We took our weighted wheel out, rolled it in the 
configurations in Table 5-1, and measured the distance rolled and the time. 

■■ Tip   To get the starting height for our outdoor trial, we used a cell phone bubble-
level app (iHandy Level on an iPhone, Multi Clinometer on an Android phone) to measure 
the angle of the incline. That plus how far the wheel rolled gives us the height difference 
between the start and end of the test run. Distance rolled times the sine of the slope of the 
inclined table will give the height difference between the start and stop times.

Rolling it outdoors encountered a variety of problems. The concrete was not very 
smooth, and had decorative inlaid bricks. The empty wheel stopped very soon after 
starting and in some cases even rolled backward (in the nominally uphill direction) a bit! 
However, qualitatively it was interesting to see how much faster the wheel rolled with the 
pennies on the inside versus the outside.

We would expect the velocity calculated by v2 = 2 * g * h / (1 + I / (M * R2)) to be twice 
the average velocity over the whole time rolling down the table, because gravity is making 
it accelerate. We got the average velocity by just dividing the distance the wheel rolled by 
the time it took to travel it.

The first setup we used was a smooth table 150 cm long, raised 3.14 cm at one end. 
We let the wheel go on one end and recorded at least three times how long it took each 
configuration to cross the far end (Figure 5-3). A strategic pillow on a chair and another 
on the floor at the end is good for catching it so it does not break or dump pennies 
everywhere when it goes off the edge.

Figure 5-3.  The empty wheel heading downhill (to the upper right in the photo) to its pillows
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The second setup was outdoors on some gently sloping concrete. We tried to note 
when the wheel got to 12 feet (366 cm) centered where we were releasing it, trying to 
repeat the initial release angle as much as possible. We marked our starting spot with a bit 
of blue tape (Figure 5-4) and you can take advantage, as we did, of decorative markings as 
start or stop points. It is not a perfect solution because the slope will vary, but the wheels 
did not roll all that repeatably and other things we tried (see the “Learning Like a Maker” 
section of this chapter) had other issues. We found an average slope of 3 degrees on the 
concrete and used that to calculate a height difference of 19.1 cm in 366 cm.

Figure 5-4.  Marking the start of a test run on concrete for the wheel with the pennies on the 
outer ring. Downhill is to the right.

Table 5-3 summarizes these results. We predicted the velocity based on the moment 
of inertia calculated and the measured heights of the ramps, and then divided by 2 to 
compare it to the average velocity (just the distance over the time). The empty ring and 
pennies in center models were only tested indoors. The empty wheel was too easily 
perturbed by random bumps in the concrete to get any repeatability.
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As the physics predicts, higher moment of inertia wheels go more slowly.  
The measured ratio of the speeds of the wheel with pennies on the inner ring to the outer 
is 1.14 : 1 outdoors and 1.09 : 1 indoors, bracketing our theoretical ratio of 1.12 : 1 in  
Table 5-2. There is, of course, a spread in the results because of the many uncertainties, 
which we note in the following Caution.

■■ Caution   Measuring the angle of a ramp is challenging, and if you choose to try an 
outdoor patio or playground you will find that slopes vary, even if to the eye they do not. We 
had many interactions with curious bugs. Concrete is also rough, and friction and breezes 
are a factor, and sometimes a teeny push was needed to get the wheel rolling. Of course, 
you need to do this someplace where you can set up safely and without interruption, such 
as a backyard patio or long sloping walkway. We tried outdoors since our runs on the tilted 
table were just 5 seconds or so, and timing with a stopwatch app on a phone for sub-
second accuracy is possible but challenging. Finally, our assumptions for calculating the 
moment of inertia of this asymmetrical body (because of the solid bottom) are simplified. In 
this chapter’s “Project Ideas” section we make some suggestions on how you might improve 
it. Nonetheless, the trends are correct, and we enjoyed building our intuition as we went.

The Model
The 3D-printable model for the wheel, shown in Listing 5-1, is very simple. It starts with 
a cylinder and subtracts other cylinders from it. The parameter coin is the diameter of 
the coins you want to use (plus a bit of margin—we used 20 mm for 19.5 mm diameter 
pennies, which left room for tape around them).

You can vary the diameter, d, to make a bigger or smaller wheel too. If you change 
the diameter, holes will remain near the edge, but the ring nearer the center will move 
outward to be halfway between the center hole and the outer ones. Obviously, you cannot 
make this a lot smaller than it is now. The radius R we use in previous sections is one-half 
the diameter d.

Table 5-3.  Measurements

Case ½ Final v, Predicted Average Velocity, Measured

Inner ring, outdoors 86 75

Outer ring, outdoors 77 66

Inner ring, indoors 35 33

Outer ring, indoors 32 30

13 pennies in center, indoors 35 29

Empty ring, indoors 32 28



Chapter 5 ■ Moment of Inertia

92

The model is pretty straightforward to print. This one is 20 mm high (2 cm), which 
accommodates 13 pennies. We tried making one with quarter-sized holes and making it 
thinner, but it was too unstable.

■■ Note   Listing 5-1 uses millimeters (as is conventional in 3D printing), but our 
calculations elsewhere in this chapter are in centimeters to make the numbers a little easier 
to handle. Be careful to keep track of that if you change anything.

Listing 5-1.  The Weighted Wheel

// A model of a weighted wheel
// To demonstrate conservation of angular momentum
// file weightedWheel.scad
// Rich Cameron, March 2017

d = 100; // diameter of disk, in mm
h = 20; //height of disk, in mm
t = 1; // minimum wall thicknesses
coin = 20; // diameter of coin in use, mm

$fs = .2;
$fa = 2;

difference() {
   cylinder(r = d / 2, h = h);
   for(i = [0:6]) rotate(120 * i + 60 * ceil(i / 3))
      translate([ceil(i / 3) * (d - coin - t * 2) / 4, 0, t])
         cylinder(r = coin / 2, h = h);
} // end model

3D printed “cylinders” are made up of small flat surfaces. If you want the wheel to 
be made up of smaller increments (and thus be rounder and smoother) change the $fs 
and $fa parameters. In OpenSCAD, the number of faces in the regular polygons used to 
approximate circles are specified using the special $fs, $fa, and $fn special variables. 
$fs specifies the minimum size of the facets in mm, with a default of 2 mm. $fa is the 
minimum angle between facets in degrees, defaulted to 12 degrees. Depending on the 
size of the object you are printing, one or the other will be important, as follows:

•	 For small, circular 3D printed objects, $fs will keep the number 
of facets high enough to make the circle look round. A small-
enough value for $fs will prevent holes from ending up too much 
smaller than the specified diameter. This is because the radius of 
a regular polygon is measured from the center to the vertices, and 
the apothem (the distance from the center of the polygon to the 
center of a side) is smaller.
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•	 For larger circular objects, a larger $fa value will prevent the 
number of facets from becoming unnecessarily high, which 
increases rendering time. $fa needs to be a number that 
divides evenly into 360 (if it is not, OpenSCAD will round to a 
number that is).

•	 $fn overrides both of the other special variables and allows the 
user to specify a specific number of facets. It is usually a bad idea 
to set $fn globally. Any of these variables can also be specified 
for each individual object, which provides an easy way to create a 
regular polygon of $fn sides.

Other Models
Fidget spinner toys are currently popular of late, and there are many on Thingiverse—
Rich made one starting from a toy he found at www.thingiverse.com/thing:1802260. 
These use radial ball bearings (typically size 608, which are used in skateboards and are 
thus easy to find) to spin while you play with them (Figure 5-5). This design will even 
spin on a table (Figure 5-6). If you want to play with something of constant mass and the 
ability to spin about different arms, you may want to join the fidget spinner craze (though 
it is a fad that may already be over by the time you read this).

Figure 5-5.  Fidget spinner: 3D printed parts plus roller skate bearings

http://www.thingiverse.com/thing:1802260
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THINKING ABOUT THESE MODELS: LEARNING  
LIKE A MAKER

Our weighted wheel, like many we have created, seemed simple. We wanted to 
create something that would give some intuition on rotational inertia, which can 
be very counterintuitive. We thought about propellers and other things that spin on 
an axis, but it is challenging to get a 3D printed part that spins freely without also 
asking people to go out and buy bearings. There are 3D-printable bearings (see 
the first volume of our 3D Printed Science Projects books) but anything more than 
printing a bearing on its own gets challenging.

After lengthy brainstorming, we hit on this model. The first one was designed for 
quarters, was thinner than this one, and fell over continually. We made this one 
thicker and at least it would stand up. We also considered making a skeletal model, 
a hoop with spokes, for instance, to reduce the mass and print time of the wheel, but 
determined that it would likely end up using more material than printing a “solid” 
wheel with minimal infill.

However, when we tried rolling the model on a table for the first time, we were 
surprised at how fast it went and how hard it was to use a stopwatch on a phone to 
sub-second accuracy. Initially we allowed the wheel to roll variable distances and 

Figure 5-6.  Fidget spinner in motion, spinning on a table
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measured time and distance, but that was too confusing, and it was likely the slopes 
were varying, too, in the outdoor case. The empty wheel just turned around and 
sometimes started rolling uphill if it hit a bump or a bug—we gave up and just took 
that data on the smooth table as best we could with our limited timing equipment.

We finally came up with a two-person timing process. One person would hold 
the wheel, the other would start a counter and start counting, and the wheel was 
released three seconds in. The person with the stopwatch would stand at the 
downhill side and record when the wheel went off the table or crossed the concrete 
markings. Then we subtracted three seconds from all data. Then we found out how 
uneven even a very smooth-looking swath of concrete can be (and how many small 
bugs go out for a stroll on a sunny California spring day).

This model (and the experiment design) can be adapted and improved in many 
ways, as we talk about in the “Projects” section. But even just rolling it down a table 
propped up on a couple of books at one end can give you some surprises.

Where to Learn More
Moment of inertia is typically covered in a freshman physics class that requires or is 
taught concurrently with a calculus class. We used Joan’s college textbook, the 1977 
edition of Resnick and Halliday’s Physics (Wiley), the most recent version of which seems 
to be a fifth edition (Wiley, 2001). If you do not want to splash out for and cannot borrow 
an expensive text, Wikipedia’s article on moment of inertia (https://en.wikipedia.
org/wiki/Moment_of_inertia) is quite good, as are various related articles (particularly 
“Rotational Dynamics: Rolling Spheres/Cylinders”) on http://physicslab.org. You 
might search on “rolling without slipping” to find the types of problems that this model 
might help you think about. Physics book chapters that discuss topics like this probably 
have something like rotational dynamics in their titles.

Teaching with These Models
In the United States, material relevant to this chapter is typically taught in a freshman 
college or AP physics course, where it can benefit from the application of calculus 
concepts. If you are teaching at the K-12 level, though, we can imagine that some of 
the experiments we describe in “Project Ideas” could build some intuition under the 
standards for Forces and Actions (www.nextgenscience.org/topic-arrangement/
hsforces-and-interactions) even if you did not want to wade into calculating moment 
of inertia.

If you do have students that are comfortable with the algebra you might have them 
calculate moment of inertia for various objects they design and predict how fast they will 
roll, based on the equations in this chapter. You can also talk about experimental error 
and how much accuracy to expect.

https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Moment_of_inertia
http://physicslab.org/
http://www.nextgenscience.org/topic-arrangement/hsforces-and-interactions
http://www.nextgenscience.org/topic-arrangement/hsforces-and-interactions
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We think it would also be fun to use this model as a starting point for a high 
school physics or undergrad challenge to have a contest to make the slowest, fastest or 
longest roll on a nice smooth sloping school pathway, or to most closely hit a particular 
average or final velocity. To do that you would have to take friction and other forces into 
account, too.

Projects
If you are trying to build your own intuition or come up with a project to teach others, you 
could start with the challenge just mentioned. To have that degree of precision, you would 
need to improve the accuracy of the moment of inertia calculation. Some options are to 
treat the pennies as cylinders and not point masses, as described in the earlier section 
that calculates the moment of inertia. You could consider changes to the geometry of the 
empty cylinder. The references listed under “Where to Learn More” have formulas for 
moments of inertia of other shapes such as hoops, spheres, and so on.

In addition to improving the calculations, you can improve how you measure time 
and the inclination of your slope. Using a longer, presumably outdoor slope means you do 
not have to be quite as good at measuring time, but it is unlikely that you have access to a 
perfectly sloped and smoothed ramp. You could consider ways to keep the wheel rolling 
straight without dissipating too much energy in friction.

You can explore ways of measuring the time more accurately. We like the 
Mythbusters TV show episode setup to measure the speed of a sneeze, which you could 
adapt if you have the ability to step through video frame by frame (www.discovery.com/
tv-shows/mythbusters/videos/slow-motion-sneezes/). The model was designed to 
fit on a relatively small 3D printer. If you have a bigger printer, you could make a bigger 
wheel and compare predicted and measured moments of inertia, or try more complex 
arrangements of coins or other weights.

Summary
This chapter creates a 3D-printable model that allows exploration of the concept 
of moment of inertia of a rolling cylinder. First we define moment of inertia, as the 
resistance of a body to rolling motion, analogous the resistance to motion in a straight 
line caused by the body’s mass. We review how to calculate moment of inertia starting 
with a simplistic approximation and moving on to slightly better ones. We do some 
simple experiments using the model and show ways to make both the calculation and 
the experiment better, at the cost of more complexity. Finally, we end with ways to 
improve the calculations, as well as projects that could use this chapter’s model as a 
jumping-off point.

http://www.discovery.com/tv-shows/mythbusters/videos/slow-motion-sneezes/).The
http://www.discovery.com/tv-shows/mythbusters/videos/slow-motion-sneezes/).The
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CHAPTER 6

Probability

We all toss around words like likely and impossible, but we rarely try to quantify what 
they mean. That job is left to experts in probability and statistics. Often our perception of 
how likely something is has very little to do with how likely it really is, which is good news 
for people who run state lotteries. 

How likely something is can be expressed in terms of a probability distribution.  
For example, if you have a six-sided die and it is weighted fairly, you would expect it to be 
equally probable that the die would land on any side. This is called a uniform distribution. 
However, things get interesting when you see what happens when you roll several dice at 
once. Fans of role-playing games that involve throwing several dice (perhaps to see how 
much your fighter’s greatsword damages the dragon) will enjoy getting some insight in 
this chapter’s sidebar.

The values of many natural phenomena more or less follow a normal distribution, 
which means that the likelihood of, say, how tall a woman in the United States is follows a 
bell-shaped curve (Figure 6-1) of the values spread out symmetrically around an average 
value, called the mean (in this case, 64 inches, or 1.6 meters).

Figure 6-1.  Normal distribution model (with a base)

In this chapter we create models of several different probability distributions, 
including some that visualize more than one random variable at a time. These 
multivariate distributions are hard to visualize on paper, making them great 
opportunities for 3D printing.
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Normal Distribution
A graph of a normal distribution is a 2D thing that you can draw on a piece of paper. 
But what happens when you want to explore the probability distribution of two random 
variables that may or may not be related with each other? This is called a multivariate 
(or, in the case of two variables, bivariate) probability function. First we need to 
understand what a single-variable normal distribution looks like.

The Math
A normal distribution curve, as you saw in Figure 6-1, always has a shape sort of like a 
bell and thus is sometimes called a bell curve. The shape is always roughly similar, but 
whether it is a low, wide bell or a tall, skinny one and where it is centered are defined by 
two numbers. The first of those numbers is the mean, the average value of the variable 
we are studying (and also the most likely value, at the peak of the distribution). The mean 
determines the position of the center of the curve. Another number called the standard 
deviation (typically represented by σ, the Greek letter sigma) determines how much the 
distribution spreads out around the mean.

A very useful property of the normal distribution is that 68% of the values are within 
one σ either side of the mean, 95% are within 2σ, and 99.7% are within 3σ. The mean and 
standard deviation have the same units as each other. If we assume that the diameters 
of peaches picked on a farm could be represented by a bell curve, both the mean and 
standard deviations would be in inches or millimeters or however the farmer described 
his peaches.

We would know that if the mean diameter of the farmer’s peaches is 2.5 inches with a 
standard deviation of 0.1 inch that 68% of the peaches would have diameters between 2.4 
and 2.6 inches (plus and minus one sigma). The standard deviation gives us the height at 
the center of the distribution (at the mean) of 1 / (s p2 ).

The edges of the curve (far from the center of the bell) are called the tails. They never 
quite reach zero, theoretically, but it is unlikely that any randomly selected value will fall 
there, just as it is unlikely that our farmer will discover a 4-inch-diameter peach.

■■ Note  We use both mathematical notation and pseudocode in this chapter. For the most 
part, in our equations we will not use * for multiply because it would get too unwieldy; 
math expressions like 2σx will become 2 * SDx in the OpenSCAD model. We also use 
several different types of parentheses in our math equations for typographical clarity. These 
parentheses mean specific things in OpenSCAD and do not translate directly to it.

The equation for the bell-shaped probability curve for one variable, x, is:

P(x) = [1 / ( 2 2ps )] exp[ – ( x – mean of x)2 / (2σ 2) ]
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Where exp is the exponential function, exp(x) = e x, and e is Euler’s number, roughly 
2.71. If instead of just one normally-distributed variable, though, we have two, x and y, 
their joint probability function is the following: 

P(x,y) = [1 / ( 2π σ
x
 σ

y
 1 2- r )] *exp( [-1/(2(1 – ρ2))] * [X + Y + C]), where

X = (x – mean of x)2 / σ
x

2, Y = (y – mean of y)2/ σ
y

2,

C = 2ρ (x – mean of x)(y – mean of y) / (σ
x
 σ

y
), and

σ
x,

 σ
y
 = standard deviations of the x and y variables.

The Greek letter ρ (rho) requires a bit of explanation. It is the correlation coefficient 
(as we use it here, technically, the Pearson correlation coefficient) between x and y. Here 
is how to interpret ρ:

•	 If ρ = 0, the two variables are not linearly correlated—they might 
be correlated in some other way, though.

•	 If ρ = 1, the variables are perfectly linearly correlated with each 
other, and if you graphed x versus y the points (x,y) would form a 
straight line.

•	 If ρ = –1, they are perfectly linearly anticorrelated (one goes up 
while the other goes down), and again you would get a straight 
line which sloped downward.

•	 For other values of ρ the points (x,y) would form a scatter plot, 
clustering more as the value of ρ got closer to 1 or –1.

We are going to explore a few cases to get some intuition. In what follows in this 
chapter we will just pick a value of ρ. If you started with (x,y) data, you would calculate 
ρ (along with the means and standard deviations) from your data. For more on this, see 
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient, https://
en.wikipedia.org/wiki/Multivariate_normal_distribution or search on “correlation 
coefficient” at the Khan Academy, www.khanacademy.org.

The Models
Now, let’s see what it looks like if we create a 3D model of the P(x,y) normal distribution. 
Figure 6-1 is a side view of the case in which the means and standard deviations of the 
two distributions are the same. In Figure 6-2, the means are the same but one standard 
deviation is three times that of the other. That means that lines of equal probability (the 
same height) are circles in Figure 6-1 and ellipses in Figure 6-2. In both cases, ρ = 0. It is 
worth noting that the flat areas on Figure 6-2 are not zero probability, but just so low that 
they are below the resolution the print can show.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://www.khanacademy.org/
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■■ Note T his model builds on the math surface plotting function in Chapter 1 of Volume 1 
of our previous book 3D Printed Science Projects (2016, Apress).

Listing 6-1.  Two-Variable Normal Distribution Model

// Probability distribution function of two variables
// File normal.scad
// Based on OpenSCAD model to print out an arbitrary surface
// defined as z = f(x,y)
// First used in "3D Printed Science Projects"
//(2016, first volume)
// Either prints the surface as two sided and variable
// thick = thickness
// Or if thick = 0, prints a top surface with a flat bottom

overall_scale = 100;
SDx = 36.0; //Standard deviation, x variable
SDy = 36.0; // Standard deviation, y variable
meanX= 100.0; //Mean of the x variable
meanY = 100.0; // Mean of the y variable

Figure 6-2.  Normal distribution: standard deviation in side-to-side direction is three times 
that in front-to-back direction.

http://dx.doi.org/10.1007/978-1-4842-2695-7_1
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corrCoeff = 0; // -1 < corrCoeff < 1
scale = 10*200*200; //scaling factor
add_base = 4; // additional base thickness, mm
denom = 1 - pow (corrCoeff, 2);

// Constant in front of exponential part of equation
const = scale/ (2. * PI * SDx * SDy * sqrt (denom) );

// probability density function
function f(x, y) =
   add_base * 199 / overall_scale + const *
   exp ( -(1 / (2 * denom) ) *
  ( pow( (x - meanX) / SDx, 2) +
    pow( (y-meanY) / SDy, 2) -
    2 * corrCoeff * (x - meanX) * (y - meanY) / (SDx * SDy) )
   );

thick = 0; //set to 0 for flat bottom
           //else is thickness of print
xmax = 199;
ymax = 199;

toppoints = (xmax + 1) * (ymax + 1);

center = [xmax / 2, ymax / 2];

points = concat(
    [for(y = [0:ymax], x = [0:xmax]) [x, y, f(x, y)]],
// top face
   (thick ? //bottom face
      [for(y = [0:ymax], x = [0:xmax])
      [x, y, f(x, y) - thick * 199 / overall_scale]]
   :
      [for(y = [0:ymax], x = [0:xmax]) [x, y, 0]]
   )
);

zbounds = [min([for(i = points) i[2]]),
           max([for(i = points) i[2]])];

function quad(a, b, c, d, r = false) = r ?
   [[a, b, c], [c, d, a]]
:
   [[c, b, a], [a, d, c]]
; //create triangles from quad
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faces = concat(
   [for(bottom = [0, toppoints], i = [for(x = [0:xmax - 1],
   y = [0:ymax - 1]) //build top and bottom
      quad(
         x + (xmax + 1) * (y + 1) + bottom,
         x + (xmax + 1) * y + bottom,
         x + 1 + (xmax + 1) * y + bottom,
         x + 1 + (xmax + 1) * (y + 1) + bottom,
         bottom
      )], v = i) v],
   [for(i = [for(x = [0, xmax], y = [0:ymax - 1])
   //build left and right
      quad(
         x + (xmax + 1) * y + toppoints,
         x + (xmax + 1) * y,
         x + (xmax + 1) * (y + 1),
         x + (xmax + 1) * (y + 1) + toppoints,
         x
      )], v = i) v],
   [for(i = [for(x = [0:xmax - 1], y = [0, ymax])
      //build front and back
      quad(
         x + (xmax + 1) * y + toppoints,
         x + 1 + (xmax + 1) * y+ toppoints,
         x + 1 + (xmax + 1) * y,
         x + (xmax + 1) * y,
         y
      )], v = i) v]
);

scale(overall_scale / 199) rotate([90, 0, 0]) polyhedron(points, faces);
// End model

What happens if ρ is not zero? Then the variables x and y are correlated and 
clustering around a line. That means that the probability distribution will start to develop 
a spike or fin, since since the total probability has to be constant, and thus the volume will 
stay constant. Figure 6-3 and 6-4 show two views of the same case as Figure 6-2, but with 
ρ = 0.7. Notice the angling of the “fin” when ρ is not zero.
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Figure 6-3.  Normal distribution: standard deviation in front to back direction is three 
times that from side to side, ρ = 0.7

Figure 6-4.  Same as in Figure 6-3, but viewed from the side
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Finally, in Figure 6-5, we have these three cases side by side. Notice that the “fin” 
starts climbing up as the distribution begins to cluster around a linear relationship 
between the two variables.

Figure 6-5.  x and y with equal means and standard deviations and ρ = 0 (left); same but 
with one standard deviation three times that of the other (center); and same as the center, 
but with ρ = 0.7 (right).

Printing the Model
This model can be scaled in various ways to make it easier to print, or to make it fit on your 
printer. By default, it creates a model that is 100 × 100 mm in the x-y plane. The variable 
overall_scale controls this. You can also add a base under the distribution to avoid 
having the tails of the distribution get too thin. The variable add_base (defaulted to 4 mm) 
controls this thickness. You can see this added base at the bottom of the distribution in 
Figure 6-1. The parameter scale controls the height of the peak of the distribution.

If you want to have your distribution roughly in the center of the model, then make 
the xmean and ymean variables each equal to 100. The models shown in Figures 6-1 
through 6-5 have means of 100 and standard deviations of either 36 or 12.

The models are created so that one edge touches the platform. This produces a 
smoother curve with less of a stair-step effect caused by the layers of the print in areas 
where the surface is nearly horizontal. The symmetrical model (Figure 6-1) was printed 
this way. However, if the “fin” starts to get bigger, you may want to rotate the model about 
its x or y axis so that it prints fin-up to reduce overhangs that might make the print likely 
to break loose from the platform or require support structures.

If you want to have a hollow model, change the parameter thick to something other 
than zero. The program will then create a hollow model with a surface thick mm deep. In 
this case, you probably want to print the model on edge because otherwise not enough of 
the model may be touching the platform. Be careful doing this, though, because in order 
to keep the shape of the surface correct on both sides, the thick variable only increases 
thickness along the z axis, and steep sides of a function may result in areas that will look 
fine in the preview and the STL, but will result in holes in the print because they are too 
thin to reproduce.
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Combinations and Pascal’s Triangle
If I have three things and I want to figure out how many combinations of two of them 
there are, I could just figure it out. However, it gets a little more complicated to know 
how many combinations there are if we have 100 things and want to choose 22 of them. 
Fortunately there is a formula for that; it is often referred to as n choose k, or in our case, 
3 choose 2 or 100 choose 22. It is written like this:

n

k
n k n k

æ

è
ç

ö

ø
÷ = -( )( )!/ ! !

where n! is n factorial. The factorial of a whole number is the product of the number 
and all the positive whole numbers less than it. Or you can write this:

n! = n * (n – 1)!

You will notice this is recursive—we define factorial in terms of a factorial. 0! is 
defined as being equal to 1, and we stop counting down at 0.

So, 3 choose 2 is 3! / (2! * (3 – 2)!), which works out to (3 * 2 * 1 * 1) / ((2 * 1 * 1) *  
(1 * 1)) = 3, giving us three ways to pick two things out of three options. To check this, 
imagine we have three blocks labeled A, B, and C. The options are AB, AC, and BC 
(assuming the order does not matter, and that you cannot choose a block twice). On the 
other hand, 100 choose 22 would be 100! / (22! * 78!), which is roughly a 7 with 21 zeroes 
after it.

Our new friend n choose k has another name, too: the binomial coefficient. It pops 
up in many situations in math besides probability, and you can read about many of them 
by searching in Wikipedia for “binomial coefficient.” One way of visualizing the binomial 
coefficients is called Pascal’s triangle, after Blaise Pascal (1623–1662); search for “Pascal’s 
triangle” in Wikipedia for a good overview. The rows of the triangle are values of n, and 
the columns are k.

The Model
We have created a 3D printed model of Pascal’s triangle (Figure 6-6 and Listing 6-2). In 
Figure 6-6, n = 0 and k = 0 are the single square at the far left (0 choose 0 works out to have 
a value of 1). Then the next row is 1 choose 0 (also 1) and 1 choose 1 (also 1). Things get 
more interesting in subsequent rows, as shown in Figure 6-6.
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As you can infer from the example in Figure 6-6, the values get very big very fast 
after 7 or 8 rows. Figure 6-7 shows a 3D printed model of n = 0 to 7. As you can see from 
Figure 6-6, the values of each row entry are the sum of the two entries in the previous row 
(with zeroes where there is no entry.)

The number of rows is set with the parameter numRows. Because the count starts at 
zero, numRows = 7 prints out a model with 8 rows. Figure 6-7 shows the 3D printed model 
for eight rows (the same as Figure 6-6). It blows up pretty fast after that.

1

1

1

1

1

1 5 10 10 5 1

1

1 7 21 35 35 21 7 1

6 15 20 15 6 1

4 6 4 1

3 3 1

2 1

1

Figure 6-6.  Pascal’s triangle, for n = 0 (top) to 8 (bottom)
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■■ Note T here is a sort of “3D Pascal’s triangle” (called Pascal’s pyramid or Pascal’s 
tetrahedron), but that is not what we created here. We would have needed a fourth 
dimension (or some other way to independently show position and numerical value) for that! 
You might consider how to represent Pascal’s pyramid in pieces or as a series of models. 
Wikipedia has a good write-up under “Pascal’s pyramid.”

Printing the Model
The relative size of the squares along the rows and columns are scalable with the 
parameter boxsize, which is the length of the size of the box along the row and column 
dimensions. These two dimensions need to be the same to avoid distorting the pyramid. 
The vertical dimension can be scaled independently though with the parameter zsize. If 
you scale the model in your slicing software, be careful to scale consistently at least in the 
x- and y-axes.

The peaks in the z direction (the n choose k values) can get big quickly. If you have 
a large and skinny tower on this print, you may want to print two at the same time or 
print a cooling tower when you print it. A cooling tower is just a cylinder that you print 
at the same time as something tall and skinny. It moves the print head off your print long 
enough for the previous layer to cool and avoids having the tall, skinny piece come out 
blobby (instead of the clean point you want).

Figure 6-7.  Pascal’s triangle model (n = 0, k = 0 at lower left corner)
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Listing 6-2.  Pascal’s Triangle Model

// Pascal's triangle
// File pascal.scad
// This make one triangle
// Because of minimum cooling time issues, we recommend
// also printing a cooling tower or a second set of this print

numRows = 7; //number of rows minus 1
   // value of 7 gives 8 rows
function oddOffset(row) = row;
boxsize = 6; //multiplier in x and y directions, mm
zsize = 2; //multiplier in z direction,mm

//recursive factorial function
//from OpenSCAD documentation example
function factorial(n) = n == 0 ? 1 : factorial(n - 1) * n;

// n choose k function
function nchoosek(n, k) = factorial (n) /
   (factorial(k) * factorial (n-k) );

for(y = [0:numRows], x = [0:y]) {
   union()
   translate([boxsize*(x-y/2), boxsize*y,0])
   cube([boxsize,boxsize,zsize*nchoosek(y,x)]);
}
// end model

Rolling Dice
The earliest exposure most of us have to random numbers is flipping a coin or playing a 
game where we roll dice. One of the things we assume when we do either of those things 
is that any outcome is equally likely, be it heads or tails for the coin, and one through six 
for a die. This is called a uniform distribution. If we plotted the probability of rolling any 
given number on a die, we would just get a flat line from one to six.

Rolling Multiple Identical Dice
It gets a little more interesting if we throw two dice, or throw one die twice and take the output 
as the sum of the two throws. Now the outcome 1 becomes impossible, and we have new 
outcomes (7 through 12) that now are possible. It turns out that if you figure out all the ways to 
get a sum of 2, 3, 4, and so on, the probability distribution is triangular in shape. If you figure it 
out for three, four, five, and six dice, gradually the outcome starts to trend toward the normal 
distribution that we discuss earlier in this chapter. We thought it would be fun to use the third 
dimension to show this progression, so we created a model for it, shown in Listing 6-3.



Chapter 6 ■ Probability

109

Listing 6-3.  Dice Probability

//A model of the probability distributions of throwing
//different combinations of dice
//File diceProbability.scad

base = .6; //added base piece for stability
size = [3, 10, 100]; //dimensions of the model
// if the following line is uncommented, shows
// one 12 sided die vs 2, 6 sided ones, etc
//dice = [[1, 12], [2, 6], [3, 4], [4, 3], [6, 2]];

// if the following line is uncommented, shows results for
// six-sided dice- first one (uniform), then two (triangle),
dice = [[1, 6], [2, 6], [3, 6], [4, 6], [5, 6]];

//accumulation function
function sum(a, i = 0) = (i >= len(a)) ? 0 :
   a[i] + sum(a, i + 1);

function count(a, n, i = 0) = (i >= len(a)) ? 0 :
   ((a[i] == n) ? 1 : 0) + count(a, n, i + 1);

module distribution(n = 2, d = 6) {
   combinations = [for(i = [0:pow(d, n) - 1])
      [for(j= [0:n - 1]) (floor(i / pow(d, j)) % d) + 1]];
   totals = [for(i = combinations) sum(i)];
   distribution = [for(i = [0:d * n]) count(totals, i)];
   echo(distribution);
   for(i = [0:d * n]) translate([i, 0, 0])
      cube([1.0001, 1.0001,
      distribution[i] / (pow(d, n)) + base / size[2]]);
}

// scale the output
scale(size) for(i = [0: len(dice)]) translate([0, i, 0]) 
distribution(dice[i][0], dice[i][1]);
// end model

Figures 6-8 and 6-9 show two views of what happens for one through five six-sided 
dice. You can see the uniform distribution for one die for outcomes from 1 through 6, with 
zero probability of rolling a 0.
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Figure 6-8.  From farthest to closest, probability distributions of the sums of the outcome of 
rolling one through five dice. Outcomes go from 0 at the right to 30 at the left. (There is no 
way to roll a 0, of course, but the program starts computing there.)

Figure 6-9.  A different view of the same probability as Figure 6-8. Outcomes go from 0 at 
the top to 30 at the bottom, one die at the left and five at the right.

By the time we get to five dice (closest to you in Figure 6-8) we are approaching a 
normal distribution. In Figure 6-8, we wanted to show the more interesting distribution 
in front. This works out to looking at the progression of probability of rolling a 0 at the far 
right and of a 30 at the far left.
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Rolling Combinations of Different Dice
We also wanted to ask a different question: if you have one 12-sided die, how is the 
probability of any given number coming up any different than if you had, say, three four-
sided dice? The answer to that is in Figure 6-10 (yes, it is). In retrospect, of course, it’s 
obvious that in this case as well some numbers are not possible when you are adding the 
results of multiple dice rolls. The distribution here, too, is moving away from a uniform 
one to as close as it can get (given the limitations of the stated problem) to a normal one.

Figure 6-10.  Probability of rolling 0 through 12 (again, 0 is at the right and 12 at the left) 
with one 12-sided die (farthest back, at the top, uniform) through the sum of six two-sided 
dice (coin flips), nearest you.

■■ Note P robability theory’s central limit theorem says if you add random numbers (with 
some constraints), the probability of their sums will approach a normal distribution. A closely 
related distribution for continuous variables (unlike dice rolls, which are discrete variables, 
because you only get outcomes 1, 2, 3 … and not 1.1, 1.2, and so on) is called the Irwin-
Hall distribution. If you have some calculus background, you might explore that as well.
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DICE IN ROLE-PLAYING GAMES

If you have never played a role-playing game like Dungeons and Dragons, you might 
wonder who would use anything other than six-sided dice. However, there are many 
strategy games in which part of the game play involves an element of luck. In this 
type of game, players take on the role of a character (often some sort of medieval 
or fantasy warrior) and “fight” using rolls of dice to see who comes out alive and/or 
unscathed.

In these games dice are referred to using the letter d followed by the number of 
sides, so a 6-sided die would be referred to as a d6, and a 20-sided die would be 
a d20. If you are rolling multiple dice and adding the results (as is often the case 
when calculating how much damage a weapon or spell does, or how much damage 
is healed by a healing spell), you put that number before the d, so 3d6 means 
roll three six-sided dice and total up the values. A common set of dice used for 
such a game includes a d4, a d6, a d8, a d10, a d12, a d20, and usually a d100 or 
"decader," which is also 10-sided, but has multiples of 10 on the faces, and is used 
in conjunction with a d10 to simulate a 100-sided die. There are even some obscure 
cases where the rules call for a d3, a d2, or even a d1. You would not actually roll a 
d1 of course—the outcome is just a certainty.

In "d20" systems like Dungeons and Dragons or Pathfinder Roleplaying Game, a 
d20 is used for attacks in combat, when attempting to use a skill like Stealth or 
Diplomacy, or to try to avoid the effects of some magical spells. If a weapon or 
spell does damage to a monster, the player then rolls a number of smaller dice 
to determine how much damage is done. These probability distributions become 
interesting when deciding whether your character should use, for instance, a 
greatsword that does 2d6 points of damage or a greataxe that does 1d12 points of 
damage.

A fighter choosing a weapon has some math to do when deciding which weapon 
to use. While the maximums are the same, the sword does 7 points of damage on 
average while the axe’s average is only 6.5, and the sword’s minimum damage is 
one point higher. The interesting thing, though, is that the axe has a 1/12 probability 
of doing the maximum damage (and an equal probability of doing the minimum 
damage, or any other possible value), whereas the sword’s probability distribution 
is weighted much more heavily toward the center, making it six times as likely to do 
the average damage (7) as to do the maximum damage. A fighter who chooses the 
greatsword is taking more chances and will do damage on the high and low ends of 
the scale more often than the one with the greatsword, who will do roughly average 
damage most of the time. The prints in this section explore how some of these 
possible combinations of dice compare.
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Rich is a big fan of these games, and we embarked on these models in part because 
of his curiosity about how the probability distributions differed. Figure 6-11 shows 
his set of dice, from a 4-sided die through a 20-sided one. Rich ordered these, 3D 
printed in metal, from the 3D printing service bureau Shapeways.com. The four-
sided die in the lower left is Rich’s design, and the others are from the Pinwheel Dice 
Set with Decader set by Chuck Stover, aka “ceramicwombat” (www.shapeways.com/
product/DKP3VVFL8/pinwheel-dice-set-with-decader?optionId=43314776).

Figure 6-11.  Different-sided dice

The Multiple-Dice Model
This model solves the problem of computing the probability distributions created by 
rolling various dice combinations by what engineers call a brute force method. That is, 
it calculates all the possible combinations and adds up how many combinations give a 
particular result. The model starts with an array, dice, like this:

dice = [[1, 12], [2, 6], [3, 4], [4, 3], [6, 2]];

Each entry in the array is [number of dice, number of sides]—so, the preceding 
example would compute the probability distribution created by rolling a single 12-sided 
die, the next of two 6-sided dice, and so on. You can graph as many situations as you like 
(and as will fit on your printer). 

http://www.shapeways.com/product/DKP3VVFL8/pinwheel-dice-set-with-decader?optionId=43314776
http://www.shapeways.com/product/DKP3VVFL8/pinwheel-dice-set-with-decader?optionId=43314776
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The other parameters you have to work with are base and the size arrays. The value 
of base (in mm) is how thick a layer will be drawn under all the distributions. It is 0.6 mm  
in this version. This prevents low probabilities that would be less than one layer tall 
from disappearing in the print and makes the zero-probability values visible (which also 
prevents the model from being broken into disconnected islands). The size array gives 
the dimensions of the width of each “basket” in the graph, the width of each graph, and a 
multiplier for the probability numbers—in other words, scaling factors in x, y, and z.

THINKING ABOUT THESE MODELS: LEARNING LIKE A 
MAKER

This chapter came about partly as the result of a discussion about the outcomes of 
various dice rolls—more or less the questions that are answered with our multiple-
dice models. Rich was interested in optimizing his role-playing adventures, and Joan 
had always found probability rather counterintuitive. Creating these 3D models really 
built our insights as we went.

As we have noticed frequently, textbooks on probability treat multivariate cases as 
advanced topics, but in many ways the manipulations of the data are more intuitive 
and physical than the single-variable cases.

We looked up various ways of deriving some of the models in this chapter and 
were struck by how much complicated algebra or use of calculus was used to 
explain concepts that are not actually all that complex. We approached the dice 
probability models as brute-force calculations to avoid needing to delve too much 
into mathematics that some readers have not seen before. The brute force method 
is also more useful for showing how the probability distributions arise naturally from 
the physical act of rolling dice.

Where to Learn More
The ideas in this chapter underlie many different concepts in probability and statistics. 
The most obvious thing to try would be to create a model based on actual data. Formulas 
for calculating the mean, standard deviation and correlation coefficient are available in 
links we have given as we have gone along. You might need to offset and/or scale your 
data so that the mean is about 100 in order that you fit within the model.

■■ Caution A nalyzing data that has more complex correlations than the simple linear 
relationships presumed by our models is a big topic all of its own, beyond the scope of 
both our models and what we can cover here. If you are creating 3D prints to visualize the 
probability distributions of real data, be sure that your data fits the assumptions here and be 
sure you understand how the scaling algorithms work.
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We have given Wikipedia references as we went along, or at least the right word(s) 
to search in Wikipedia. Other good resources for learning more about probability are 
available at the Khan Academy (www.khanacademy.org), which has many videos and 
practice exercises. Its interactive exercises for building intuition about the correlation 
coefficient would be a very good complement to creating the first models in this chapter. 
Similarly, the Math Is Fun site has a good discussion of correlation and very lucid 
directions about computing some of the parameters we have used in this chapter. You can 
find that site’s take on this at www.mathsisfun.com/data/correlation.html.

If you want more sophisticated discussions with detailed equations for general 
problems, Wolfram Mathworld comes at the correlation coefficient differently than we 
did here. It is worth a read particularly if you are going to derive these parameters from 
data or if you are looking at teaching a college-level course. The relevant information can 
be found at http://mathworld.wolfram.com/CorrelationCoefficient.html.

Teaching with These Models
Teachers may find themselves bringing probability into data analysis at various junctures 
in math and science. If you are teaching in high school in the United States, the NGSS 
science teaching standards discuss probability as a tool, for example under HS-LS3-3 
“Inheritance and variation of traits” (www.nextgenscience.org/dci-arrangement/hs-
ls3-heredity-inheritance-and-variation-traits.). Using statistics and probability 
to make sense of data applies with varying degrees of sophistication as students analyze 
data and try to make sense of anomalies.

When we looked through the (U.S.) Common Core math teaching standards, we 
found that probability is nominally covered at the high school level (www.corestandards.
org/Math/Content/HSS/introduction/) and correlation (www.corestandards.org/
Math/Content/8/SP/A/1/) and related topics in the eighth grade.

At the college level or for the general public, we think these models may be very 
helpful as classroom discussion pieces or perhaps as pieces for exhibits or outreach 
presentations. Perhaps there are some fun museum exhibits in here somewhere!

Project Ideas
These models might be useful ways of displaying hypothetical or actual data to visualize 
outcomes if two variables have particular means, standard deviations, and correlation 
coefficients. Very often statistical data is difficult for people to understand in the abstract. 
In other words, the models in this chapter might provide a way of displaying the results 
of other experiments in a way that encourages participation and discussion, or of doing 
some what-if displays to think about what particular outcomes might imply. (As we noted 
in an earlier caution, though, be sure you understand how you are scaling each of your 
variables.)

If you are a role-playing game fan, perhaps you can systematically build on Rich’s 
sidebar to figure out the optimal probability for various strategies in your favorite game. 
Or maybe there are ways to take these hypothetical gaming strategies and see if you can 
create and test a hypothesis about how similar strategies might be playing out in small, 
contained ecosystems.

http://www.khanacademy.org/
http://www.mathsisfun.com/data/correlation.html
http://mathworld.wolfram.com/CorrelationCoefficient.html
http://www.nextgenscience.org/dci-arrangement/hs-ls3-heredity-inheritance-and-variation-traits
http://www.nextgenscience.org/dci-arrangement/hs-ls3-heredity-inheritance-and-variation-traits
http://www.corestandards.org/Math/Content/HSS/introduction/)a
http://www.corestandards.org/Math/Content/HSS/introduction/)a
http://www.corestandards.org/Math/Content/8/SP/A/1/)a
http://www.corestandards.org/Math/Content/8/SP/A/1/)a
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To go beyond the models here, you might want to think of other ways to use the 
visualization of the binomial coefficients (Pascal’s triangle) by considering other places  
the binomial coefficients come up both in discussing possible combinations of objects  
(as we talked about with n choose k earlier in the chapter) and also in some formulas that 
can make complex algebra simpler. Searching on “binomial coefficient” will let you see some 
of the algebraic applications, which are elegant but a little complex and off-topic here.

Summary
In this chapter we create models of various probability distributions. First we create the 
normal (bell curve) distribution for two variables and explored how the models changed 
when we altered the standard deviations of the variables and the correlation coefficient 
relating them. Next we look at combination problems and create a model of Pascal’s 
triangle, with a short excursion to talk about binomial coefficients. Finally, we make 
models of what happens if we roll progressively more dice and visualize the transition 
from a uniform distribution (with one die) to a nearly normal one.
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CHAPTER 7

Digital Logic

Computers are made up of what can be thought of as tiny switches that are either 
on or off, and therefore can only process ones and zeros. If you represent on as the 
number 1 and off as the number 0, you are left with the problem of figuring out a way to 
calculate using one ones and zeros. Computer scientists solved this problem by doing 
calculations in binary (base 2) arithmetic, which uses only the digits 0 and 1 to represent 
any number, just as our familiar base 10 arithmetic uses the digits 0 through 9. Search 
online for tutorials on “binary arithmetic” to learn more about this—we like one at the 
Khan Academy (www.khanacademy.org/math/algebra-home/alg-intro-to-algebra/
algebra-alternate-number-bases/v/number-systems-introduction) and also this one: 
http://ryanstutorials.net/binary-tutorial/binary-arithmetic.php.

The second problem computer designers needed to solve was how to create a mix 
of hardware and software to control how data flows through the computer. They did that 
with logic gates—components that take binary inputs and perform Boolean operations on 
them. Boolean operations take one or more binary inputs and create one binary output, 
and logic gates are the physical devices that do these operations (the “tiny switches” we 
mentioned in the previous paragraph)..In this chapter, we create simple models of logic 
gates that you can use to learn about the basic components of computer logic.

Logic Gates
A computer chip may be composed of millions of logic gates packaged together. You can 
represent a circuit of any complexity by just few types of gates, one of which have just one 
input, the rest of which have two. Some logic gates are combinations of other gates.

Types of Logic Gates
The one-input gate is the NOT gate, which flips its input (a 1 becomes a 0, and a 0 
becomes a 1). As you will see, the NOT prefix in general does this flipping function when 
applied to other gates that follow (such as AND and NAND). 

http://www.khanacademy.org/math/algebra-home/alg-intro-to-algebra/algebra-alternate-number-bases/v/number-systems-introduction
http://www.khanacademy.org/math/algebra-home/alg-intro-to-algebra/algebra-alternate-number-bases/v/number-systems-introduction
http://ryanstutorials.net/binary-tutorial/binary-arithmetic.php
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All the other gates have two inputs:

•	 The AND gate outputs a 1 if both of its inputs are 1. Otherwise, it 
outputs a 0.

•	 The NAND (short for “NOT AND”) gate negates the output of an 
AND gate.

•	 The OR gate outputs a 1 if either (or both) of its inputs are 1.

•	 The NOR (“NOT OR”) gate outputs a 1 only if both inputs are 0 
(negates an OR gate).

•	 The XOR gate (“exclusive OR,” pronounced “ex-or”) outputs a 1 if 
exactly one of its inputs is 1.

•	 The XNOR (“exclusive NOT OR”) outputs a 1 if both inputs are 0 
or both inputs are 1 (negates XOR).

If we collect these inputs and outputs in tabular form, the result is called a truth table 
(shown in Table 7-1).

Table 7-1.  Truth Table for Two-Input Gates

Inputs Gate Outputs
AND NAND OR NOR XOR XNOR

0 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 0 1 0 0 1

■■ Note I t is possible to create all the other gates out of a combination of all NOR gates 
or all NAND gates. This was discovered by Charles Sanders Peirce in the 1880s but was not 
published until 1933, years after he died. For that reason, the NOR gate is sometimes called 
Peirce’s arrow. There are also other equivalencies that involve using the “NOT” of the gate’s 
inputs, called De Morgan equivalents. For example, the AND gate is the same as an OR gate 
with its outputs and inputs all negated. We experiment with a few of these when we build 
some logic circuits later in the chapter.

Physical Gate Components
Electrically switched logic components have been around for about 80 years. Claude 
Shannon worked on an early computing machine using electrical switches for gates 
at MIT in the late 1930s, and later worked at Bell Labs. The invention of the vacuum 
tube and then the transistor allowed for gates to be made smaller and smaller as those 
components shrank. 
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Currently you can buy computer chips with many logic gates. Field-programmable 
gated arrays (FPGAs) allow different types of gates to be enabled on a chip by software, for 
maximum flexibility.

It is difficult to purchase individual gates as a consumer. We found one particular 
chip that has 8 gates and sells for about 39 cents if you buy one at a time. Creating a 
demonstrator with a physical chip that correctly handles an input and output for one 
component is tricky, as we discuss in the next section.

Abstract Representations
The gates have standard representations in logic diagrams. Figure 7-1 shows our 
representation in the model. In a diagram, they are not normally labeled “AND” and 
“NOR” and so on—just the outline shape is shown. 

By convention, inverting gates (NOT, NAND, NOR, and XNOR) have a circle on their 
output side (the top, as arranged in Figure 7-1). The exclusive OR gates (XOR, XNOR) 
have a double bar on their input side.

The colors in Figure 7-1 are not significant and were just chosen to make finding 
pieces easier when you have created a lot of them, without having excessive numbers of 
spools of filament on the go.

Figure 7-1.  The individual gate symbols, as we represent them in our models
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■■ Note I n a real electronic gate, the input would have either a high or low voltage, which 
would be interpreted as 1 or on, or 0 or off, respectively. Here we have static models with a 
bar-shaped end to show a 1 and a circle on the end to show a 0. The NOT gate in Figure 7-1, 
for example, has an input (on the bottom) of 0 and an output (top) of 1.

The Model
Real electronic gates change the state of their inputs and outputs based on electrical 
signals flowing through them. This means that a realistic model somehow has to mimic 
electrical energy flowing through wires. We wanted a purely mechanical—and preferably 
very simple—model instead that would capture the behaviors of gates (and circuits 
made up of them) while not requiring any actual flowing of electricity or electronic 
components.

■■ Caution I f you print them at the default size used for this chapter, some of these parts 
are very small. They should be kept away from young children and not used as toys.

Gates
We wanted to create a very simple model for each gate. The way we did that was to create 
all the possible combinations of input and output for each gate and then use them like 
pieces of a jigsaw puzzle to create circuits. Figure 7-2 shows all the possible combinations 
of input and output for NOR and NAND gates. The other gates (except NOT) have similar 
sets of four options per gate. NOT just has two—one for each input. 
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To put it another way, we made the truth tables visible in plastic parts. As noted 
earlier, a round input or output should be interpreted as 0 or off, and a bar-shaped one as 
1 or on. Although this creates a lot of pieces, it has the virtue of being extremely simple to 
print and very tactile and visual.

Wires
The next challenge was to figure out how to connect these pieces to each other. We 
created several different types of connectors, or wires, as we will refer to them from 
here on. The model creates both the types of wire that have connections for zeros and 
connections for ones.

Side Connection Wires
The first type of wire is shown in Figure 7-3. The model allows just one input, which can 
be branched into many outputs. In Figure 7-3, the outputs are on the bottom of the pieces 
as pictured, and the inputs on the top. Since each wire is connecting outputs that are a 1 
only to inputs of another gate that are also 1, and similarly only 0 to 0, the connectors only 
need to connect circles (zeros) to circles and bars (ones) to bars. 

Figure 7-2.  The full set of NAND and NOR gates
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The wires can have an arbitrary number of outputs, and the outputs can be on both 
sides of the input. To simplify specifying the number of outputs desired, the number 
passed to the wires module only specifies the number of connectors on one side of the 
input.

The sign of the number is used to specify whether there should be a connector on the 
other side as well, so to include a (single) connector on the other side, a negative number 
is used. The absolute value of the number of connections is how many connectors are to 
the left of the input connection in Figure 7-3. So, from top to bottom, these are a –1 wire, a 
3 wire, and a 5 wire.

Back Wires and Risers
We realized we needed feedback wires—connections that go from the output of one gate 
back to the input of another. These are shown in Figure 7-4.

Figure 7-3.  The simple connectors (different for 0 and 1 terminations). The model refers to 
these as side wires.
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We also created risers, spacers that can be used to elevate one wire above another in 
case our wires need to cross each other. Figure 7-4 shows one feedback wire with risers 
and one without. The risers can be stacked if necessary.

Connecting Wires
Finally, we need to represent just a wire carrying a signal, as well as a way to show an input 
or an output signal coming into our little systems. We created the pieces in Figure 7-5 for a 
wire carrying a 0 or 1.

Figure 7-4.  The feedback wires, different ones for 0 and 1 terminations, shown here with 
(top) and without (bottom) risers that allow crossing. The model refers to these as back 
wires and the risers as risers. For scale, an AND gate is shown with an attached riser.

Figure 7-5.  Input/output pieces for 0 (top) and 1 (bottom) input or output signals. The 
model refers to these as forward wires.
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Just Drawing on Paper
The other way to connect up a circuit is to use the gates and just draw the connections 
between them on a piece of paper, using a different color marker for 1 and 0. You can, 
for example, use blue for 1 and red for 0. We show an example of this when we create an 
adder circuit later in the chapter.

Printing the Pieces
Listing 7-3 shows the model for all the pieces, both gates and wires. The model is 
designed so that you can export an STL with a complete set of one gate (all the possible 
combinations of inputs and outputs) or a specified set of wires.

To print a particular gate, you remove the ! from the piece you do not want to print 
(gates or wires). OpenSCAD has a convention that something with a ! in front of it is the 
only routine that should be called. Thus, we remove a ! to disable printing whichever we 
do not want to create (gates or wires). The changes are detailed in the following list:

•	 To print a particular gate:

•	 Disable the printing of wires by removing the ! from 
!wires(side,5).

•	 Change !gates(none) to !gates(name of the gate), for 
example !gates(or).

•	 To print a particular type of wire (see captions for Figures 7-3 
through 7-5 for options):

•	 Disable the printing of gates by removing the ! from 
!gates(none).

•	 Change the !wires(side, 5) to !wires(name of the type 
of wire, parameter), for example !wires(side, -5).

If you are printing forward or back wires, the parameter does not do anything. It is 
only used for the side wires.

■■ Note I f your wires and gates have trouble fitting into each other, you can adjust the 
clearance variable up a little or increase the size variable (which will make everything 
bigger).

Listing 7-1.  Circuit Model

// Model of logic gates and connectors
// File gates.scad
// Rich "Whosawhatsis" Cameron, March 2017
// Create logic gates with all permutations of inputs and outputs



Chapter 7 ■ Digital Logic

125

// A "1" or "TRUE" is a crossbar
// A "0" or "FALSE" is circle
// And connectors, input, and output pieces

size = 30; //Scaling in mm - roughly bounding box of gate symbols

thick = 1; //Line thickness; connector lines are twice this
height = 3; //Max height above platform of gates, mm
fontsize = size / 5;
fontweight = thick;

clearance = .4; // Parameter governing clearance of parts
                // that fit into each other

// Remove the "!" from the piece you do NOT want to print
// (gates or wires)

// To make a set of gates,
// Replace "none" with one of the names of gates
// listed later in the model.
// All possible permutations of inputs and outputs
// for that gate are printed. The optional second parameter
// "rows" determines how many rows these will be split
// into on the printer platform.

!gates(none);

// Or, for wires, replace the first parameter of "wires"
// with one of the types of wires named later in the model
// to print a set of those wires.
// The second parameter is the number of connection points.
// Negative numbers have connections on two sides
!wires(side, -5);

//gates
none = 0;
or = 1;
xor = 2;
and = 3;
not = 4;
nor = 5;
xnor = 6;
nand = 7;

//wires
side = 0; //connectors branching sideways
forward = 1; // data input, with a 1 or 0
back = 2; //feedback wires
riser = 3; //offsets two layers
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$fs = .2;
$fa = 2;

// gates makes multiple instances of objects define by gate
// second parameter is how many are in a row
module gates(type, row = 2) {
   if(type == not) for(i = [0:1]) translate([
      (size + 2) * (i % row),
      (size + 15) * floor(i / row),
      0
   ]) gate(type, [i]);
   else if(type == none) wire(forward);
   else for(i = [0:3]) translate([
      (size + 2) * (i % row),
      (size + 14) * floor(i / row),
      0
   ]) gate(type, [floor(i / 2), i % 2]);
}

// Module gate makes the gates
module gate(type, in = [0, 0]) for(h = [0, height - 1]) {
   linear_extrude(height = h + 1, convexity = 5) {
      if(type % 4 == or) {
         _or(in, h ? thick : 0);
         _out(
            xor(in[0] || in[1],
            type >= not),
            h ? thick : 0,
            (type >= not) ? true : false
         );
         translate([0, -size * .15, 0])
            offset(fontweight/2 - fontsize * .075) text(
               (type >= not) ? "NOR" : "OR", size = fontsize,
               halign = "center",
               valign = "center",
               font = ":style=Bold"
             );
      }
      else if(type % 4 == xor) {
         _xor(in, h ? thick : 0);
         _out(
            xor(xor(in[0], in[1]), type >= not),
            h ? thick : 0,
            (type >= not) ? true : false
         );
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         translate([0, -size * .08, 0])
             offset(fontweight/2 - fontsize * .075) text(
                (type >= not) ? "XNOR" : "XOR",
                size = fontsize,
                halign = "center",
                valign = "center",
                font = ":style=Bold"
             );
      }
      else if(type % 4 == and) {
         _and(in, h ? thick : 0);
         _out(
            xor(in[0] && in[1], type >= not),
            h ? thick : 0,
            (type >= not) ? true : false
         );
         translate([0, -size * .15, 0])
            offset(fontweight/2 - fontsize * .075) text(
               (type >= not) ? "NAND" : "AND",
               size = fontsize,
               halign = "center",
               valign = "center",
               font = ":style=Bold"
            );
      }
      else if(type % 4 == none) {
         if(type == not) {
            _none(in, h ? thick : 0);
            _out(
               xor(in[0], type >= not),
               h ? thick : 0,
               (type >= not) ? true : false
            );
            translate([0, -size * .25, 0])
               offset(fontweight/2 - fontsize * .075) text(
                  (type >= not) ? "NOT" : "",
                  size = fontsize,
                  halign = "center",
                  valign = "center",
                  font = ":style=Bold"
               );
         } else _forwardwire([in[0]], h ? thick : 0);
      }
   }
}
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module wires(type, value = 1) {
   if(type == side) wire(type, [(value < 1) ? 1 : 0, abs(value)]);
   else wire(type);
}

module wire(type, w = [0, 1]) {
   if(type == side) {
      linear_extrude(height = height, convexity = 5) for(i = [0, 1])
         translate(
            i * [-size * 2 / 3 * (w[1]) - thick,
            -thick * 4,
            0
         ]) rotate(i * 180) _crosswire([i], thick, w = w);
   } else if(type == forward) {
      linear_extrude(height = height, convexity = 5) for(i = [0, 1])
         translate(i * [-size / 3 - thick * 7, 0, 0]) rotate(i * 180)
            _forwardwire([i], thick);
   } else if(type == back) {
      linear_extrude(height = height, convexity = 5) for(i = [0, 1])
         translate(i * [-thick * 4, 10 + thick + 5, 0])
            _backwire([i], thick);
   } else if(type == riser) {
      for(i = [0, 1]) translate(i * [0, 0, 0]) rotate(i * 180)
         _wireriser([i], thick, height);
   }
}

// OpenSCAD doesn't have a built-in xor operator, so we need a
// function.
function xor(a, b) = (a || b) && !(a && b);

module _or(in = [0, 0], width = 0, l = 10) difference() {
   union() {
      if(l) _in(in, width, l = l);
      difference() {
         intersection_for(i = [-1, 1])
            translate([i * size / 2, -size * .366, 0]) circle(size);
         translate([0, -size - size * .366, 0]) circle(size);
      }
   }
   if(width) offset(-width) _or(l = 0);
}

module _xor(in = [0, 0], width = 0, l = 10) difference() {
   union() {
      if(l) _in(in, width, l = l);
      _or(l = 0);
   }
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   if(width) union() {
      offset(-width) difference() {
         _or(l = 0);
         translate([0, -size - size * .366, 0])
            circle(size + width * 3);
      }
      translate([0, -size - size * .366, 0]) difference() {
         circle(size + width * 3);
         circle(size + width);
      }
   }
}

module _and(in = [0, 0], width = 0, l = 10) difference() {
   union() {
      if(l) _in(in, width, l = l);
      hull() {
         circle(size / 2);
         translate([-size / 2, -size / 2, 0])
            square([size, size / 4]);
      }
   }
   if(width) offset(-width) _and(l = 0);
}

// generic gate symbol (used for NOT)
module _none(in = [0], width = 0, l = 10) difference() {
   union() {
      if(l) _in(in, width, l = l);
      hull() {
         translate([0, size * .45, 0]) circle(size * .05);
         translate([-size * .45, -size * .45, 0]) circle(size * .05);
         translate([size * .45, -size * .45, 0]) circle(size * .05);
      }
   }
   if(width) offset(-width) _none(l = 0);
}

// Create connectors

module _forwardwire(in = [0], width = 0, l = 10) {
   for(i = [0:len(in) - 1]) translate([
      (len(in) > 1) ? size * 2 / 6 / (len(in) - 1) * i - size / 6 : 0,
      0,
      0
   ]) {
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      _in(in, width, l = l);
      _out(in[0], width, l = l);
      square([width * 2, size], center = true);
   }
}

module _backwire(in = [0], width = 0, l = 10) {
   for(i = [0:len(in) - 1]) translate([
      (len(in) > 1) ? size * 2 / 6 / (len(in) - 1) * i - size / 6 : 0,
      0,
      0
   ]) {
      for(i = [0, 1]) rotate(180 * i) {
         translate([
            -size / 2,
            -size - l * 3,
            0
         ]) _out(in[0], width, l = l);
         translate([-width, size / 2 + l * 3, 0])
            square([size / 2 + width * 2, width * 2]);
      }
      square([width * 2, size + l * 6], center = true);
   }
}

module _forwardwire(in = [0], width = 0, l = 10) {
   for(i = [0:len(in) - 1]) translate([
      (len(in) > 1) ? size * 2 / 6 / (len(in) - 1) * i - size / 6 : 0,
      0,
      0
   ]) {
      _in(in, width, l = l);
      _out(in[0], width, l = l);
      square([width * 2, size], center = true);
   }
}

module _crosswire(in = [0], width = 0, l = 10, w = [0, 0]) {
   for(side = [0, 1]) mirror([side, 0, 0]) if(w[side]) difference() {
      union() {
         translate([-width, -width, 0])
            square([
               size * 2 / 3 * (w[side] - .5) + width * 2,
               width * 2
            ]);
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         for(i = [1:w[side]]) translate([
            size * 2 / 3 * (i - .5),
            0,
            0
         ]) {
            translate([0, l / 4, 0])
               square([width * 2, l / 2], center = true);
            translate([0, l / 2, 0]) offset(width * 2 + clearance)
               _end(in[0], width);
         }
         translate([0, -l / 4, 0])
            square([width * 2, l / 2], center = true);
         translate([0, -l / 2, 0]) offset(width * 2 + clearance)
            _end(in[0], width);
      }
      offset(clearance) {
         for(i = [1:w[side]]) translate([
            size * 2 / 3 * (i - .5),
            0,
            0
         ]) {
            translate([0, l / 2 + width * 2, 0])
               square([width * 2, width * 4], center = true);
            translate([0, l / 2, 0]) _end(in[0], width);
         }
         translate([0, -l / 2 - width * 2, 0])
            square([width * 2, width * 4], center = true);
         translate([0, -l / 2, 0]) _end(in[0], width);
      }
   }
}

module _wireriser(in = [0], width = 0, h = height) {
   translate([0, -10, 0]) difference() {
      union() {
         linear_extrude(h + 2) offset(width * 2)
            _out(in[0], width, l = 0);
         linear_extrude(h * 2 + 2, convexity = 5) intersection() {
            offset(width * 2) _out(in[0], width, l = 0);
            translate([0, -width * 5, 0])
               _out(in[0], width, l = width * 5);
         }
      }
      translate([0, -width * 5, 0])
         linear_extrude(h * 2 + 2, center = true, convexity = 5)
            offset(clearance) _out(in[0], width, l = width * 5);
   }
}
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module _in(in = [0], width = 0, l = 10) for(i = [0:len(in) - 1]) {
   translate([size * 2 / 3 * i - size / 3, 0, 0]) {
      if(len(in) > 1) translate([0, -size * .4 - l / 2, 0])
         square([width * 2, l + size * .2], center = true);
      else {
         translate([-width, -size / 2 - l / 2 - width, 0])
            square([size / 3 + width * 2, width * 2]);
         translate([size / 3, -size * .4, 0])
            square([width * 2, l + size * .2], center = true);
         translate([
            0,
            -size * .4 - l / 2 - (l / 2 + size * .2) / 2,
            0
         ]) square([width * 2, l / 2], center = true);
      }
      translate([0, -size / 2 - l, 0]) {
         _end(in[i], width);
      }
   }
}

module _out(out = 0, width = 0, inverting = false, l = 10) {
   difference() {
      union() {
         translate([0, size / 2 + l / 2 - .5, 0])
            square([width * 2, l + .5], center = true);
         translate([0, size / 2 + l, 0]) _end(out, width);
         if(inverting) translate([
            0,
            size * .5 - thick + thick * 2.5,
            0
         ]) circle(thick * 2.5);
      }
      if(width) offset(-width) _out(inverting = inverting, l = 0);
   }
}

module _end(on = true, width = 0) {
   if(on) square([width * 6, width * 2], center = true);
   else circle(width * 2);
} // end model

Making Model Circuits
Now that we have all the pieces, we can make some model circuits. Just to start, you may 
find it useful to use the full set of each type of gate (like the ones in Figure 7-2) as sort of 
plastic flash cards to remind yourself of the truth table of that gate. Then you can begin 
exploring combinations of the gates.
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Gates as Combinations of Others
Gates, as mentioned earlier, can be constructed as combinations of other gates. This 
is a good way to get more fluency and intuition about the logical relationships among 
the gates. Some of these are called De Morgan equivalents after the 19th century British 
mathematician who first wrote them down.

As noted earlier, Peirce showed that NOR gates alone or NAND gates alone can be 
used to create any of the others (https://en.wikipedia.org/wiki/Logic_gate).

We create two equivalents here: AND, made up of NANDs (Figure 7-6 and Table 7-2), 
and OR, made up of NANDs (Figure 7-7 and Table 7-2). We can check that these work for 
all possible combinations with our models, or with a truth table. We show a combination 
here of one case with the models and the full truth table.

Figure 7-6.  AND gate made up of NANDs (inputs on bottom, output on top)

https://en.wikipedia.org/wiki/Logic_gate
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Table 7-2.  Truth Table for Figure 7-6 (AND Made Up of NANDs)

Input 1 Input 2 Output Equivalent AND Output

0 0 0 0

1 0 0 0

0 1 0 0

1 1 1 1

Figure 7-7.  OR gate made up of NANDs (inputs on bottom, output on top)
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Flip-flop
One of the most basic logical components of a computer is the flip-flop, sometimes called 
an S-R latch (for set-reset) or a bistable multivibrator. Whatever we choose to call it, it is 
a way to store a single 1 or 0 (single bit) of information. You can read more about it at 
https://en.wikipedia.org/wiki/Flip-flop_(electronics).

The flip-flop shown in Figure 7-8 takes two inputs and, by feeding the outputs back 
into the opposite gate input, keeps its two outputs in opposite states from each other. 
Figure 7-8 is called an SR NOR latch, because it is made up of two NOR gates with crossed 
feedback.

Table 7-3.  Truth Table for Figure 7-7 (OR Made Up of NANDs)

Input 1 Input 2 Output Equivalent OR Output

0 0 0 0

1 0 1 1

0 1 1 1

1 1 1 1

https://en.wikipedia.org/wiki/Flip-flop_(electronics
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Figure 7-9 is a closeup of the crossed feedback paths, using a riser on each end of one 
of the feedback paths to keep the crossed paths separated with one passing over the other. 
Try building this circuit with several combinations of inputs. Note that having a pair of 
inputs that are both 1 is impossible to build in a static consistent way. In the flip-flop’s stable 
states, the two inputs cannot both be 1. The outputs are always the opposite of each other.

Figure 7-8.  Flip-flop with NOR gates (inputs on bottom, outputs on top)
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There are other variations of the flip-flop. Figure 7-10 uses NAND gates to 
accomplish the same thing, called an SR-bar NAND latch. In this latch, the state with 
both inputs equal to 0 is not allowed.

Figure 7-9.  Flip-flop showing crossover of feedback
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Try building these gates with the various possible outputs and see what happens to the 
two outputs (and when you start to “race” unstably back and forth on the feedback paths).

Figure 7-10.  Flip-flop with NAND gates (SR-bar NAND)
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Adder
Another fundamental circuit in a computer is an adder. An adder is used to add two 
binary numbers—either two zeros, two ones, or one of each. When we add in binary, 
anything over 1 has to “carry” to the next digit, so adding requires keeping track of 
inbound carried values and outbound ones. Adders are typically cascaded (used in long 
sets with one feeding the next) to allow addition of many-bit numbers. Read more at 
https://en.wikipedia.org/wiki/Adder_(electronics).

We have built a one-bit adder out of AND, OR, and XOR gates in Figure 7-11 and we 
have drawn the connections (with red lines being 0 and blue lines, 1) in Figure 7-12.  
It might be easier to see the connections in Figure 7-12 because some of the inputs have 
to cross others in Figure 7-11. Here is what is going on in both figures:

•	 We are adding the two values shown by the orangey-red and blue 
dots (at the bottom of the figure). Both of those are a 1, so the 
output should be 10 in binary (otherwise known as 2 in our base-
10 system).

•	 The output value is noted by the yellow dot at the upper left. It is 
a zero, which is correct—when you add 1 + 1 in binary, you get a 0 
plus a 1 to carry to the next place.

•	 The carry values are shown by green dots. The lower one is the 
value carried in (0 in this case), and the one at the top right is the 
value carried out to the next stage (1 in this case, because we are 
adding 1 and 1, which gives us a 1 to carry).

•	 For the physical system in Figure 7-11, we put white dots under 
the two places where the lines cross, because it is difficult to see in 
a 2D picture.

•	 We used a feedback connector to link the upper AND to the XOR 
in the upper right because the geometry worked out better that 
way, even though strictly speaking this is not a feedback loop.

https://en.wikipedia.org/wiki/Adder_(electronics
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Figure 7-11.  Adder circuit with connectors
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Figure 7-12.  Adder circuit, hand drawn

In short, we have succeeded in showing that, in binary, 1 + 1 equals 0 plus carry a 1 to 
the next digit, or 1 + 1 = 10. Try tracing through this case to see how the logic plays out for 
different inputs.

The hand-drawn circuit is probably the way to go for anything this complex or 
beyond. We find the plastic pieces add value in keeping track of what you want the values 
at various points to be, but just drawing the circuits reduces the time required to make 
something. We found it helped to create a dot of the correct color where an input was 
going to connect and then draw the lines to those dots.
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■■ Caution  We have found that as we build these logical structures it is easy to get 
engrossed with the physical part of the modeling. You may want to “look ahead” a little on 
paper so you do not get surprised by logical impossibilities (for instance, an output equal to 
1 trying to connect to an input expecting a 0).

Logic diagrams lend themselves to a somewhat different topology than the 
convention of all inputs lined up on one side and all outputs on the right. Rather, you 
might want to think about what gates are in parallel with each other.

THINKING ABOUT THESE MODELS: LEARNING LIKE A 
MAKER

When we started working on these models, we thought we would be able to come 
up with cute mechanical equivalents of each gate, which might operate switches 
or rubber bands or some other simple part to “flow” a signal through a simulated 
circuit. We noted with amazement the complex mechanical logic gates we found 
online, which were difficult to understand and to validate. Then we discovered that 
the issue was that in some cases one had to store energy or a previous state in the 
circuit, in addition to the gates. For example, if a NOT gate gets a 0 as input, it has 
a 1 coming out. Thus, flow of whatever the analog of electricity is has to come from 
some reservoir somewhere. Mechanical gates might have been hard to print, too, 
and we try to make all our models as easy to print as possible.

We decided we would sacrifice complex inner workings for more somewhat 
duplicative parts and use a different part for different pairs of inputs for each gate. 
The next issue was the connectors—there needed to be connectors that could be 
used to lay out circuits with a variety of geometries, including the issue that each 
gate has an output in the middle that feeds into an input in the next gate that is 
offset from the center. In the end, we came up with the current connector set as a 
compromise that was not too complex but that would allow for some limited but 
interesting explorations, besides being flash cards of a sort.

Where to Learn More
A next step might be to try to create circuits with actual electronic components. 
Sparkfun has developed LogicBlocks Kits with individual gate components, described 
at https://learn.sparkfun.com/tutorials/logicblocks--digital-logic-
introduction. These actually show the ones and zeros, with LEDs on each “gate” that 
are lit or not as appropriate.

https://learn.sparkfun.com/tutorials/logicblocks--digital-logic-introduction
https://learn.sparkfun.com/tutorials/logicblocks--digital-logic-introduction
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You can also buy computer chips with several gates per chip, which expect to get an 
input signal on defined pins and will output the result on another defined pin. You may 
need to do some soldering for this option.

It is quite possible to simulate gates with fairly simple code, too. There are versions 
programmed in the Scratch visual programming environment, like this one:  
https://scratch.mit.edu/projects/66610/.

Teaching with These Models
Teaching circuit logic with actual components is always the ideal. However, these 
components might not be available if you are teaching Boolean logic in a software or 
math class, or if your budget is limited. You can use the models in this chapter as the basis 
of a very simple simulation of circuits with logic gates.

If you search the NGSS standards for a reference to circuits, the system responds 
with a note that the focus of the standards is on the idea of energy transfer, not types of 
circuits (www.nextgenscience.org/search-standards?keys=circuits), so we were 
not able to find any explicit guidance there. They note that circuits could be used in 
conjunction with teaching the Energy standards. These might be more appropriate to a 
math class or a coding class.

Project Ideas
The most obvious thing to do with this is to play with simulating circuits or, for that 
matter, the logic in various coding algorithms. You might try to lay out some classic 
simple computing algorithms. Most immediately, you can print out enough components 
to make two or three cascading steps for a multi-bit adder.

You might also consider how to use these pieces to teach simple logical constructs, 
and perhaps how to model and connect more-complex parts with multiple inputs and 
outputs. Perhaps there could be a group “Rube Goldberg Logic” exercise that starts with 
given inputs and branches out through gates (consistently!) to some planned end.

Summary
This chapter discusses what logic gates are and explores their role in binary computing. 
We create a set of simplified printable models of logic gates and “wires” of various sorts 
to connect them together. Then we use these components to create one gate in the form 
of combinations of other gates, along the way dealing with the problem of modeling 
wires that are crossing each other. Finally, we develop models of flip-flops and adders to 
create physical intuition of some of the foundational logical constructs of modern digital 
computing.

https://scratch.mit.edu/projects/66610/
http://www.nextgenscience.org/search-standards?keys=circuits
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CHAPTER 8

Gravitational Waves

One of the biggest science stories of 2016 was the observation of gravitational waves. 
These waves were predicted by Einstein when he developed his theory of general 
relativity. We usually think about Isaac Newton when we think about gravity, with the 
(perhaps apocryphal) apple falling from a nearby tree as inspiration. In Newton’s day and 
for a long time afterward, gravity was seen as a force that acted instantaneously no matter 
what the distance. If, say, the distance between two bodies changed, the entire universe 
would be affected by that change simultaneously.

However, when Einstein developed his theory of general relativity, things became 
a little more complicated. If the gravitational field around an object changes, those 
changes can only be felt by other bodies after the information travels at the speed of 
light. The information about those changes travels as gravitational waves, sometimes 
evocatively called “ripples in space-time.”

LIGO
This all sounds like conventional astronomy so far—why not just look for gravity waves 
with a gravity telescope, just as you look for infrared light with an infrared telescope? 
Gravity does not really work that way. A better way to think about it would be using 
something very like an antenna to detect a gravity wave. Radio astronomy, which detects 
radio waves from objects in space, is the closest metaphor.

The “antenna” is called LIGO, for Laser Interferometer Gravitational-Wave 
Observatory. The LIGO project involves thousands of scientists all over the world, and 
two main instruments: very complex facilities in Hanford, Washington and Livingston, 
Louisiana (Figure 8-1).
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How Ligo Works
An interferometer compares two beams of light against each other, typically created 
by putting a laser beam through a beam splitter. One beam is turned 90 degrees by the 
beam splitter, and the other goes straight. Then the two beams are reflected back after 
they have traveled a distance (carefully designed to be almost identical) down arms 
at right angles to each other. The arms are at right angles because gravitational waves 
require what is called a quadrupole antenna for detection.

Depending on the phase shift between these two beams, the two beams interfere in a 
way that scientists can analyze and interpret. In the case of LIGO, the arms are 4 km long, 
and additional equipment is used to bounce the light back and forth about 280 times 
before it is combined with the other beam. (For a very detailed description with diagrams, 
see www.ligo.caltech.edu/page/ligos-ifo).

Figure 8-1.  LIGO Livingston (courtesy Caltech/MIT/LIGO Laboratory)

http://www.ligo.caltech.edu/page/ligos-ifo
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■■ Tip T here is a 3D-printable model of interference between light passing through 
two slits in Chapter 2 of our 3D Printed Science Projects (Apress, 2016), and Chapter 3 
explores gravity, although on a solar-system scale, not an intergalactic one.

In the case of gravitational waves, though, the disturbances are so tiny that the 
instrument has to detect changes of about 10–19 meters, or 10,000 times smaller than the 
diameter of a proton. This involves elaborate means to both actively and passively damp 
out ambient vibrations (www.ligo.caltech.edu/page/look-deeper). The mirrors are 
hung on glass fibers to have minimum thermal disturbances, and the long arms of the 
interferometer are kept in vacuum. Elaborate mechanisms and optics tricks increase the 
apparent power of the laser and length of the arms of the interferometers.

LIGO is made up of two observatories across the United States from each other. 
The fact that they are 3002 km apart means that they will not detect the same ambient 
noises from traffic, seismic grumblings, and the like. The signal will appear at a very 
slightly different time at the two facilities, but it should vary with time the same way at 
the two places.

The Signal
Given all this, a gravitational wave has to come from a pretty major disturbance to be 
detectable at all. On September 14, 2015, both LIGO detectors observed the signal in 
Figure 8-2. Strain is a measure of how big the ripple that went by was, and the graphs 
show how this ripple varied over a fraction of a second.

http://dx.doi.org/10.1007/978-1-4842-2695-7_2
http://dx.doi.org/10.1007/978-1-4842-2695-7_3
http://www.ligo.caltech.edu/page/look-deeper
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This is the entire event—LIGO has to take a lot of data to catch these tiny, ephemeral 
signals. The top two graphs show the signal at each station, and the bottom one the 
overlay allowing for the time difference of the signal’s appearance. When a gravity wave 
goes by, space itself scrunches up and then expands. Even a giant event like this, though, 
only caused a space-time ripple less than a thousandth the radius of an atomic nucleus.

You can think of strain as the amount that space itself stretches (sort of like pulling a 
piece of fabric in one direction and seeing the fabric contract in the opposite direction.) 
Strain is a dimensionless, relative quantity—the amount something stretches divided 
by how big it was before you stretched it. Here the vertical axis is labeled in multiples of 
10–21—that means that if something was a meter long before the wave went by, the change 
in length would be only 10–21 m.

Figure 8-2.  The first detected gravitational wave signal, September 14, 2015 (courtesy 
Caltech/MIT/LIGO Laboratory)
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This signal (called GW150914) was caused by two black holes 1.3 billion light years 
away orbiting around each other faster and faster, and finally colliding. This is called 
an inspiral. LIGO caught the last fraction of a second during which these two black 
holes finally rotated faster and faster and fell into each other. The scientists call this type 
of signal a chirp (http://ligo.org/science/GW-Inspiral.php), and if made into an 
audio signal, it does indeed sound like a single tweet or boop. The power released by this 
is mind-boggling—about three times the mass of the sun was turned into energy in a 
fraction of a second. This is more power than the rest of the known universe put together 
emits. (See the “Where to Learn More” section in this chapter for references.)

We thought it would be exciting to create a 3D printed model of this inspiral system 
and the gravity waves it is creating. As you might imagine it was rather complicated. 
We were fortunate to meet some LIGO team members who were exhibiting their work 
at the American Association for Advancement of Science (AAAS) meeting in Boston in 
February 2016. They and, later, Alan Weinstein at Caltech were very helpful in pointing us 
to resources. We deeply appreciate that and the enormous amount of publicly available 
material the LIGO team has curated about their discoveries.

The Model
Many scientists are spending years creating models of gravitational waves. These are very 
complex models involving advanced math and physics. We looked at some “simple” papers. 
After wading through a few of them, we decided that we could only realistically develop 
a model that would look like an inspiral and exhibit some modest behaviorial similarities 
rather than trying to actually do a full model ourselves. What follows is our simple model, 
which will reflect broad-brush behavior of the system, if not the physics in detail.

Modeling the Amplitude and Frequency
Gravitational waves from a pair of black holes inspiraling will create a “chirp” signal, in 
which both the amplitude and frequency of the wave change over time. First we wanted 
to model this chirp. The signals in Figure 8-2 are how one would receive the signal at a 
fixed, distant point.

The graph in Figure 8-3 is what the signal would look like if you took an intergalactic 
instantaneous snapshot of the wave propagating at a particular time. (There is no way to 
do that, of course, because the speed of light is finite and different parts of the wave would 
get to an observer somewhere at different times, depending on the distance.) The model 
in Listing 8-1 generated Figure 8-1 in OpenSCAD (edited a bit in graphics programs 
afterward to add annotations). 

http://ligo.org/science/GW-Inspiral.php
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Listing 8-1.  Model to Explore Waveforms

// Graphing version of gravitational wave model.
// Rich Cameron, March 2017
// File gravityGraph.scad

a = 1/100; // Amplitude modifier
f = 2000; // Frequency modifier
offset = 0; // Time offset
trd = 150; // Ringdown time- time from peak amplitude to zero
res = .2; // Data point spacing

for(i = [0:res:1000]) hull() for(i = [i, i + res]) {
   translate([i, a * (
      (i < offset) ?
         0
      : (i < (offset + trd)) ?
         pow(i - offset, 2)
      :
         pow(trd, 2) * trd / (i - offset)
   ) * cos(f * (
      (i < (offset + trd)) ?
         (i - offset) / trd - 1
      :
         ln((i - offset) / trd)
   )), 0]) circle(1, $fn = 4);
}

Figure 8-3.  Our model of the chirp propagating (time is reversed from Figure 8-2)
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for(i = [0:res:1000]) hull() for(i = [i, i + res]) {
   translate([i, 100 * ((
      (i < (offset + trd)) ?
         (i - offset) / trd - 1
      :
         ln((i - offset) / trd)
   ) + 1), 0]) circle(1, $fn = 4);
} // End graphing model.

■■ Tip T he OpenSCAD model in Listing 8-1 generated the curve in Figure 8-3 by using 
OpenSCAD as a glorified graphing calculator. If you use OpenSCAD to create complex 
models, this is a good way to debug your math in the form OpenSCAD wants it before 
incorporating it in a model. Rich created the model in Listing 8-1 first to tweak the math 
before moving to the full model we see later on in the chapter.

Figure 8-3 shows the signal according to our model as the two black holes finish 
merging. The time from zero to the peak amplitude (the length of the red line in Figure 8-3, 
and the parameter trd in our models) is the ringdown time and is the time it takes for the 
black holes to merge completely and the disturbance to more or less disappear. Region 1 
(the red bar) is the time after the black holes have merged; Region 2 (the green bar) is the 
runup to the collision as the black holes orbit around each other faster and faster (leading 
to the increasing amplitude and frequency of the gravitational waves generated). Thus, 
time as seen by a distant observer runs backwards in Figure 8-3—compare Figure 8-2, 
which shows the signal received on Earth.

Adding the Spiral
Next, we used this frequency and amplitude model and added a dependence on 
angle around the center, creating a curve that starts out as an Archimedean spiral and 
transitions to a logarithmic one (https://en.wikipedia.org/wiki/Logarithmic_
spiral). This creates the spatial model of a snapshot in time of the waves emanating 
from the inspiral. Figure 8-4 shows the conventions used in this part of the model, in 
particular the radius r(x,y) and azimuth angle theta(x,y), both measured around the 
original center of mass of the two orbiting black holes. The radius will have units of time 
(represented in the physical model by a distance).

https://en.wikipedia.org/wiki/Logarithmic_spiral
https://en.wikipedia.org/wiki/Logarithmic_spiral
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■■ Caution T he model in this chapter is a very simplified attempt to qualitatively replicate 
results that have been published based on sophisticated models. We did not attempt to 
actually obtain raw data and do any sophisticated curve fitting, but rather created functions 
by looking at the published chirp waveforms and measuring some key parameters manually 
from that. The math behind the actual models far exceeds what we could do in OpenSCAD 
as a practical matter. That said, the model is adequate to develop some simple intuition. See 
the “Where to Learn More” section for starting points in the popular and scientific literature 
based on LIGO results, and the “Projects” section for a discussion of the next steps one 
would take to improve upon this model.

There are several different aspects of the model that contribute to the height of the 
model’s surface, z, at any point:

z = scaling factor * envelope function * wave of varying 
frequency and phase

Envelope function is a fancy way of saying that we selected simple curves that would 
give us the shape of the curves that outline the top (or bottom) of the wave in Figure 8-3.  
For the curve in Region 1 (under the red bar) in Figure 8-3, we use a parabola for the 
envelope function, and a constant frequency. For Region 2 (under the green bar), the 
envelope function is a hyperbola and the frequency varies logarithmically.

Figure 8-4.  The spiral component of the model
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CHIRP MASS

Astrophysicists talk about a fundamental parameter of a binary black hole system called 
the chirp mass, defined relatively simply in Wikipedia at https://en.wikipedia.org/ 
wiki/Chirp_mass. It relates the mass of the two bodies to the frequency of their 
rotation about each other and the rate of change of that frequency over time.

We did not tie the model in this chapter explicitly to chirp mass, other than to take 
some inspiration from the definition about the form of our approximations.

However, that might be a good next iteration, as we describe in the “Projects” 
section at the end of this chapter.

To make things easier to read in equation form, we will define T here (T is not used 
in the model). T is dimensionless, the difference between the time a signal will have 
propagated to a given radius minus the time represented by the offset (the time since 
the two black holes merged) divided by the time trd, the ringdown time:

T = (r(x,y) – offset ) / trd

We will also define a dimensionless constant C, which combines the model 
parameters a (scaling factor) and the square of trd:

C = a * trd2

Now we will use all this to try to model the gravitational waves.

■■ Note T o generate the behavior of the gravity waves generated by an inspiral, we 
wanted to show the double spiral of the two black holes drawing closer to each other. To do 
that we added a phase term of 2 * θ (the factor of 2 gives two spiral arms in 360 degrees) to 
the model of the waveform in Figure 8-3. In our equations in this chapter, we use the symbol 
θ for theta(x,y).

Model of Ringdown
In Region 1 (marked by the red bar) of Figure 8-3, the black holes have collided and are 
“ringing” at what we model as a constant frequency:

z = C * T 2 * cos( f * (T – 1) + 2 * θ)

The parameter f is a constant frequency multiplier that for purposes of the model 
we can manipulate to compress or expand the spiral in the 3D print. (If you make f 
larger, more turns of the spiral will fit on your model. However, you may run into trouble 
because a high frequency will introduce sampling errors and may also produce features 
that are too small to print. You may also find that you want to lower your frequency and/
or amplitude to reduce overhangs in the print.

https://en.wikipedia.org/wiki/Chirp_mass
https://en.wikipedia.org/wiki/Chirp_mass
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■■ Note T he value of z is set equal to 0 to the left of the curve modeled in Region 1. In 
other words, we assume the gravity wave dies out to an undetectable level one ringdown 
time after the black holes merge and form their new supermassive single black hole.

Model of Inspiral
The waves generated while the black holes are approaching each other faster and faster 
is modeled in Region 2 (under the green bar) in Figure 8-3. If you were an observer on 
Earth, you would see the right side end of the wave in Figure 8-3 coming at first. We used 
an envelope function of 1/T in this region, and a logarithmic dropoff of frequency with 
radius. That gave us this equation:

z = C * (1/ T) * cos ( f * ln(T) + 2 * θ)

Matching the Two Regions
Even though this is something of a “toy model” in that it does not use the complicated 
models from the real LIGO data, we wanted to be sure our two functions behaved well 
for reasonable values of the parameters. At the peak of the chirp, T = 1 (since at that 
point r(x,y) – offset = trd. If we put T = 1 into both these models, we get the same 
answer. We also checked that the frequency is the same across the break between 
regions. For those who know a little calculus, the derivative of the frequency is also 
constant, but the derivative of z with respect to T is not—because the functions change 
drastically at that point.

■■ Note L isting 8-2 is the model incorporating these equations. This model uses some 
fairly complex OpenSCAD constructs to allow for the variety of different modeling regimes. 
See Appendix A for a discussion of OpenSCAD and links to its documentation.

Listing 8-2.  The Inspiral Model

// Model of a gravitational wave caused by inspiraling black holes
// Rich Cameron, March 2017
// File gravityWave.scad
// Parts based on math function generator from
// 3D Printed Science Projects (Apress, 2016)

a = 1/200; // amplitude scaling factor (for printing practicalities)
f = 800;   // frequency scaling factor
offset = 0;// Time offset (t = 0 is when the black holes merge)
         //   offset and trd should be positive numbers
trd = 30; //  ringdown time



Chapter 8 ■ Gravitational Waves

155

// r(x,y) is the radius of the model in units of time

// The next section is function modeling
// the waveform in each regime. Change this
// if you want a different curve fit.

function f(x, y) = a * (
   (r(x, y) < offset) ?
      0
   : (r(x, y) < (offset + trd)) ?
      pow(r(x, y) - offset, 2)
   :
      pow(trd, 2) * trd / (r(x, y) - offset)
) * cos(theta(x, y) * 2 + f * (
   (r(x, y) < (offset + trd)) ?
      (r(x, y) - offset) / trd - 1
   :
      ln((r(x, y) - offset) / trd)
));

// The rest of the code takes the points f(x,y) and plots them
// for x and y from 0 to xmax-1 and 0 to ymax -1. Each increment
// is 1 mm. The plot is double-sided by default.
// If you change the model, you should not have to change
// anything below. You will need to scale your model appropriately
// to keep the wave amplitude manageable for a printed-sideways
// 3D print.

thick = 4; // set to 0 for flat bottom
xmax = 199;
ymax = 199;
blocky = false; // if true, xmax and ymax must be less than 100.

toppoints = (xmax + 1) * (ymax + 1);
center = [xmax/2, ymax / 2];

function r(x, y, center = [xmax/2, ymax/2]) =
   sqrt(pow(center[0] - x, 2) + pow(center[1] - y, 2));
function theta(x, y, center = [xmax/2, ymax/2]) =
   atan2((center[1] - y), (center[0] - x));

// Now generate the surface points.
points = concat(
   [for(y = [0:ymax], x = [0:xmax]) [x, y, f(x, y)]], // top face
   (thick ? //bottom face
      [for(y = [0:ymax], x = [0:xmax]) [x, y, f(x, y) - thick]] :
      [for(y = [0:ymax], x = [0:xmax]) [x, y, 0]]
   )
);
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zbounds = [min([for(i = points) i[2]]), max([for(i = points) i[2]])];

function quad(a, b, c, d, r = false) = r ?
   [[a, b, c], [c, d, a]]
:
   [[c, b, a], [a, d, c]]; //create triangles from quad

faces = concat(
   [for(
      bottom = [0, toppoints],
      i = [for(x = [0:xmax - 1],
      y = [0:ymax - 1]
   ) //build top and bottom
      quad(
         x + (xmax + 1) * (y + 1) + bottom,
         x + (xmax + 1) * y + bottom,
         x + 1 + (xmax + 1) * y + bottom,
         x + 1 + (xmax + 1) * (y + 1) + bottom,
         bottom
      )], v = i) v],
   // build left and right
   [for(i = [for(x = [0, xmax], y = [0:ymax - 1])
      quad(
         x + (xmax + 1) * y + toppoints,
         x + (xmax + 1) * y,
         x + (xmax + 1) * (y + 1),
         x + (xmax + 1) * (y + 1) + toppoints,
         x
      )], v = i) v],
   // build front and back
   [for(i = [for(x = [0:xmax - 1], y = [0, ymax])
      quad(
         x + (xmax + 1) * y + toppoints,
         x + 1 + (xmax + 1) * y + toppoints,
         x + 1 + (xmax + 1) * y,
         x + (xmax + 1) * y,
         y
      )], v = i) v]
);

if(blocky) for(i = [0:toppoints - 1]) translate(points[toppoints + i])
   cube([1.001, 1.001, points[i][2] - points[toppoints + i][2]]);
else rotate([90, 0, 0]) difference() {
   polyhedron(points, faces, convexity = 5);
   //cube(200, center = true);
}

// echo(zbounds);
// echo(points);
// end model
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The Time Offset
We have a parameter offset in the model. This parameter gives you the option of looking 
at the waves just as the ringdown time is ending (offset = 0) or later than that. Figure 8-5 
is the result of the model in Listing 8-2 with offset = 0. Figure 8-6 is a snapshot at a later 
time, offset = 30. Because trd in this model is also set to 30, that means we are looking 
at the model after additional time equal to the ringdown time has gone by. The flat spot in 
the center reflects this. 

Figure 8-5.  The inspiral model just at the collapse (end of the chirp, as seen from Earth)

■■ Note  Figures 8-5 and 8-6 were both scaled down by a factor of 2 and rotated 45 
degrees in the printer slicing software. The model defaults to 200 mm square prints.
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Printing and Changing the Model
These models are pretty straightforward to print. They print on their sides to get 
maximum resolution (Figure 8-7) and we recommend a brim so that the print does not 
fall over. Because they produce a 200 mm square print by default, you will probably need 
to scale them to fit on your printer. The models are double-sided—you can see both sides 
of the wave.

Figure 8-6.  Printed at two ringdown times after the black holes start to merge
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We suggest you use the parameter values we have in Listing 8-2 to start, and not 
vary them too much. If you increase f you may start to have too small feature sizes. If you 
increase a you may get overhangs. You can play with the time offset and the ringdown 
time within small limits to see how those make the model vary.

■■ Note T he basic program is derived from our wave model in our first 3D Printed Science 
Projects (Apress, 2016), Chapter 2, “Waves.” The size of the model was increased to 200 mm 
square here, however, from 100 mm there. This was to allow better resolution for this wave.

If you would prefer to use different equations to fit the curves, you can change the 
section at the top of Listing 8-2. (If you are new to OpenSCAD and its conventions, see 
Appendix A.) The function in Listing 8-2 makes use of the ternary operator (a question 
mark and two values set off by a colon) to set values conditionally. You can think of this 

Figure 8-7.  The model printed vertically, with a brim

http://dx.doi.org/10.1007/978-1-4842-2695-7_2
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as an inline if...else statement, where the test is followed by a question mark, and the 
colon means “else.” Here is an example:

x = ((test) ? a : b)

This means: if test evaluates to true, then x is set to a. If test evaluates to false, x is 
set to b. You can nest these, so that b could contain another conditional branch, and so 
on. The algorithm in Listing 8-2 is simpler than it looks; you just need to parse it carefully. 
This is the only way to do this type of conditional branching in OpenSCAD.

The frequency multiplier parameter f is not tied to the physical model, but again 
is a fit to make the model’s geometry look right. You should think in terms of the plastic 
model you are making, and not necessarily an exact carryover of the numbers you would 
be manipulating in a computer model of the physics.

■■ Caution O penSCAD has some differences from the Java/C/Python code it resembles, 
notably a lack of traditional variables. See Appendix A and the OpenSCAD manual at  
www.openscad.org.

THINKING ABOUT THESE MODELS: LEARNING  
LIKE A MAKER

We saw the LIGO discovery and simulated images of the black hole and thought it 
would be a lot of fun to create this model. We thought that surely someone would 
have created some quick and dirty mathematical models that we could use to create 
this. However, when we chatted with some LIGO team members, we discovered that 
a theoretical physicist’s idea of a “simple model” and ours were not the same thing. 
We found ourselves being referred to “quantum cosmology” papers, which are pretty 
much what you would expect.

The LIGO folks did, however, point us to the LIGO project’s extensive resources and 
background materials. We did not find any closed-form wave equations, but we 
could stare at the signals and the existing inspiral simulations and figure out some 
simple curves that would give us some of the basic behavior. Rich even resorted to 
counting pixels in the images of the idealized waveforms to confirm that they were 
being modeled as a constant frequency in the ringdown phase.

We also drew on our experience with NACA airfoils in our first 3D Printed Science 
Projects book. NACA airfoils are also modeled with a series of equations, and 
this model built on both that experience and our wave model, as we have noted 
elsewhere in the chapter.

And we learned a lot about black holes, gravity, and the challenges of measuring tiny 
signals. We hope you will do the same as you play with the model and some of the 
activities we point you to in the next section.

http://www.openscad.org/
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Where to Learn More
As befits a fundamental discovery, the LIGO project has curated many resources both 
for scientists and for the general public. There is a very good summary of the science at 
www.ligo.org/science/Publication-GW150914/index.php, which is based on the 2016 
scientific paper by Abbott and many other authors, “Observation of Gravitational Waves 
from a Binary Black Hole Merger,” which you can read for yourself at https://doi.org/ 
10.1103/PhysRevLett.116.061102.

For a wide range of information, the LIGO project maintains several websites:  
www.ligo.org, http://ligo.caltech.edu, and http://space.mit.edu/LIGO.

Figure 8-8 might also help give you a sense of the scope of this discovery. For 
obvious reasons, black holes cannot be seen by conventional telescopes. Until now, 
their existence had been inferred from X-ray observations, or by light from other sources 
bending in a way that was suggestive of a black hole bending space and time. However, 
these black holes were smaller in size.

The two LIGO-confirmed discoveries, and a third possible one, are shown on the 
right side of Figure 8-8. X-ray studies had found smaller pairs, but the massive ones that 
formed a new (even bigger) black hole were unprecedented in the data. There may be a 
lot of data and new discoveries to explore in the coming years.

Figure 8-8.  Black hole mass chart (courtesy Caltech/MIT/LIGO Laboratory)

http://www.ligo.org/science/Publication-GW150914/index.php
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
http://www.ligo.org/
http://ligo.caltech.edu/
http://space.mit.edu/LIGO
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Teaching with These Models
The LIGO project has developed an Educator’s Guide, which you can download 
from www.ligo.caltech.edu/system/media_files/binaries/303/original/ligo-
educators-guide.pdf. They include a page of NGSS references for their materials, 
particularly ESS1.A—The Universe and Its Stars (www.nextgenscience.org/dci-
arrangement/1-ess1-earths-place-universe).

The Guide has classroom activities to play with the concept of space-time, which 
they list as being appropriate for grades 5–12. One involves using checkerboard-patterned 
fabric to represent spacetime and putting some balls on it to show the distortions. We 
saw this at a conference, and it was surprisingly effective. If you want to try it on a grander 
scale, watch this video to see how it is done: www.youtube.com/watch?v=MTY1Kje0yLg.

If you teach near one of the LIGO sites (Hanford, Washington, and Livingston, 
Louisiana), as of this writing they have tours for school groups.

Project Ideas
The models themselves can be varied within a limited range of parameters. A sensible 
next step (if you have some calculus background) might be to wade into some of the 
research to see whether you can come up with a more sophisticated model. We note the 
concept of chirp mass in a sidebar earlier in the chapter.

Tying the model explicitly back to chirp mass in an accurate way and then being able 
to vary it to see what happens would be pretty amazing, but might be beyond what can be 
done practically with simple algebra equations (and thus, in OpenSCAD). Trying to make 
better and better models of these systems is of course the province of lots of graduate 
students worldwide, but we find you can always learn a lot through the attempt anyway.

It is possible to use OpenSCAD to plot a 3D surface from a set of data points; we do 
that in Chapter 1 of our first 3D Printed Science Projects book. If you wanted to use data 
from a more sophisticated model, that would be an option too.

If you want to get involved in the actual science, you can participate in Einstein at 
Home (https://einsteinathome.org). This project uses spare time on your computer 
to process actual LIGO data. Or if you want to be more involved, you can classify data 
as a member of the Gravity Spy project at www.zooniverse.org/projects/zooniverse/
gravity-spy.

Summary
Gravitational waves have recently been directly observed for the first time, as predicted by 
Einstein about a century earlier. The observations were made by the Laser Interferometer 
Gravitational-Wave Observatory (LIGO) Project. This chapter reviews the science and 
this discovery and develops a 3D-printable model of gravitational waves, specifically 
those from the first detection of the LIGO observatory. Gravitational waves are very 
mathematically complex. Here, we develop some simple curve-fits to the output of these 
complex models and create a model that can model some ranges of behavior of merging 
black holes. We also point to many resources and note projects that could be done 
starting with this model.

http://www.ligo.caltech.edu/system/media_files/binaries/303/original/ligo-educators-guide.pdf
http://www.ligo.caltech.edu/system/media_files/binaries/303/original/ligo-educators-guide.pdf
http://www.nextgenscience.org/dci-arrangement/1-ess1-earths-place-universe
http://www.nextgenscience.org/dci-arrangement/1-ess1-earths-place-universe
http://www.youtube.com/watch?v=MTY1Kje0yLg
http://dx.doi.org/10.1007/978-1-4842-2695-7_1
https://einsteinathome.org/
http://www.zooniverse.org/projects/zooniverse/gravity-spy
http://www.zooniverse.org/projects/zooniverse/gravity-spy
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APPENDIX A

3D Printing and OpenSCAD

This book assumes that you know a little about 3D printing already. However, if you do not, 
this Appendix will get you started and give you resources to figure things out from here.

The 3D-Printing Process
First, we should say that you do not just “hit print.” The amount of expertise and 
knowledge required is probably more analogous to cooking, or perhaps to using a sewing 
machine. 3D printing is rapidly evolving, too, so the details of what we say here may 
change, although we expect the basic ideas to stay the same for a while.

Having said all that, 3D printing requires three steps. Figure A-1 shows you the 
overall workflow for creating something with a 3D printer. This appendix concentrates on 
two free progams that together cover the three parts of creating a 3D print: making a 3D 
model (in this case, with OpenSCAD), “slicing” that model into layers, and then loading 
the sliced model onto a printer (with MatterControl for those latter two steps). 

Figure A-1.  3D-printing workflow with OpenSCAD and MatterControl

Filament-based 3D Printing
3D prints are created by melting plastic filament and then laying up that melted filament 
a layer at a time. Layers are very thin—typically 0.2 mm or so. Some types of printers 
use powder or liquid resins instead of filament. However, the models in this book are 
intended to be as easy as possible to print on 3D printers that use filament, like the one in 
Figure A-2 (a Deezmaker Bukito). 
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The spool of white material next to the printer is PLA (polylactic acid) filament, like 
that used for the prints in this book. PLA is a corn-based, biodegradable plastic that is one 
of the commonest materials for 3D-printing filament. Other common filament plastics, 
like ABS or PETG, should work fine as well, but we only tested the prints in PLA. Filament 
is typically sold on spools of 1 kg or 1 lb of material. The one in Figure A-2 is a 1 kg spool.

Figure A-2.  A filament spool and 3D printer

File Types
The three steps required to create a 3D print correspond to three different types of file 
on your computer. In the case of the OpenSCAD 3D models in this book, the models are 
stored in files that end in .scad. When you are done working on the model in OpenSCAD, 
you save the final version in a .scad file and also export the file to one in the .stl format. 
The .stl format is a defacto standard for consumer 3D-printable models. Some vintages of 
Windows do not like the .stl suffix and think it is some sort of security file, but just ignore 
that and load the file into your slicing program.

For the next steps, MatterControl (or your printer’s equivalent software) takes in an 
.stl file and outputs a .gcode file. The .gcode format (or an equivalent format, such as a 
.x3g file) is what actually runs on your printer. If your printer uses proprietary software, 
that software may or may not reveal this file to the user.

Next we will walk through OpenSCAD and MatterControl in turn, and give you 
pointers on getting started with each one.
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■■ Tip  If you want more detail about 3D printing (including some discussion of  
post-processing your print or using 3D prints in the sand-casting process), you might 
consider Joan’s book Mastering 3D Printing (Apress, 2014). If you want to focus on using 
the MatterControl software in particular and want more of a detailed user guide, you can 
instead get Joan and Rich’s 3D Printing with MatterControl (Apress, 2015). Both books 
review how to get started in 3D printing. See the MatterControl section of this Appendix 
to see how to tell whether MatterControl supports your 3D printer. If not, your 3D printer 
probably came with an equivalent proprietary program.

OpenSCAD
The OpenSCAD program allows you to develop models in a style that sort of looks like the 
C/Java/Python family of programming languages. It is free and open source, and we want to 
acknowledge and thank Marius Kintel and the many other contributors and maintainers of 
the program. You can look at any of the models in this book to see the syntax.

Downloading OpenSCAD
You can download OpenSCAD from www.openscad.org, and an excellent user manual is 
available at www.openscad.org/documentation.html. Download OpenSCAD and install 
it per the instructions on the download site. OpenSCAD is available in versions for Linux/
UNIX, Windows, and macOS. The models in this book were tested with version 2015.03-3 
for macOS. If you are a longtime OpenSCAD user and have an older version than that, 
you may need to update to the current version to be able to run the models in this book, 
which take advantage of some recently added features. 

Editing the Models
Briefly, to edit one of the models in this book, you would proceed as follows. First, 
you would obtain the relevant .scad file for the model you are interested in. (See the 
Repositories note at the end of this appendix.)

Once you have the file and OpenSCAD is open, go to File ➤ Open and open the .scad 
file. If you do not see the model listing, go to View and uncheck Hide Editor so that you 
can see it. Now make any changes you feel you need to make and go to Design ➤ Preview 
to see if you have created what you had intended. Repeat until you think you are done.

■■ Tip   In OpenSCAD, Design ➤ Preview creates an object that you can view but cannot 
export. It is a lot faster than a full render, which can take a long time for some of the models 
in this book. Use this to preview models as you are making changes.

http://www.openscad.org
http://www.openscad.org/documentation.html
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When you have your final model, go to Design ➤ Render to create a model that can 
be exported for 3D printing. Once you have compiled a file, you can export an .stl file. 
Go to File ➤ Export ➤ Export as STL. Figure A-3 is a screen shot of OpenSCAD with the 
flower from Chapter 6.

Figure A-3.  Screenshot of OpenSCAD

Idiosyncrasies of OpenSCAD
If you are a programmer, OpenSCAD can be a little disconcerting because its syntax looks 
like that of the C/Java/Python family of languages. However, it is not a full programming 
language and has a few idiosyncracies.

The biggest one is that OpenSCAD does not have true variables, as one would define 
them in other programming languages. The variables in our models are best thought of 
as constants. You can assign another value to a variable, but (as would be true in algebra) 
y = y + 1 is not a valid statement in OpenSCAD. See the manual section on variables for 
details and examples at https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/
General#Variables.

Functions in OpenSCAD are also functions in the mathematical sense. They return 
a value, but cannot perform other tasks beyond a single mathematical formula along the 
way. OpenSCAD has modules that are closer to what an experienced programmer will 
expect from a function.

In Chapter 8 we introduced the ternary operator (a question mark and two values 
set off by a colon) to set values conditionally. You can think of this as an inline if...else 
statement, where the test is followed by a question mark and the colon means “else.” Here 
is an example:

x = ((test)? a : b)

http://dx.doi.org/10.1007/978-1-4842-2695-7_6
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/General#Variables
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/General#Variables
http://dx.doi.org/10.1007/978-1-4842-2695-7_8
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This means: if test evaluates to true, then x is set to a. If test evaluates to false, x is  
set to b. You can nest these, so that b could contain another conditional branch, and so 
on. OpenSCAD does not support if...then...else statements for branching based on a 
variable.

MatterControl
Once you have exported your .stl file from OpenSCAD, you need to run a program that 
can convert the model into commands to drive your 3D printer. We will describe the 
MatterControl program here, which is a free and open source program supported by our 
friends at MatterHackers. MatterControl is compatible with many types of 3D printer. 
There are, however, some proprietary ones that do not use the same standard as others.

Printers MatterControl Supports
The list of printer models that are officially supported by MatterControl can be found 
at www.mattercontrol.com/#jumpSupportedModels. (If your printer is not listed there, 
MatterControl does not include settings for it, but you should be able to configure 
it to work with any printer that uses .gcode files). If your printer is not supported by 
MatterControl, your manufacturer likely has created a proprietary program that will 
also take an .stl file as its input. Check your manufacturer’s documentation, or contact 
MatterHackers to see if an existing 3D printer profile can be used for your machine. 

Downloading and Installing MatterControl
Assuming that your printer is supported, you can download MatterControl at  
www.mattercontrol.com, in versions for Mac OS X, Windows, and Linux. There is some 
documentation linked to the download page (as of this writing, through a link entitled 
Learn More). 

Using MatterControl
MatterControl is a very capable and complex program. To take full advantage, you can 
use their online documentation, or get a copy of our book on MatterControl that we noted 
earlier. This section will give you a very quick guide to getting started.

First, you will need to tell MatterControl what type of 3D printer you have. On the 
home screen, you can use the File ➤ Add A Printer item and its subsequent dialogs to set 
up your printer. Some printers need to be actively connected to a computer, and some 
can run off an SD card or wireless connection. See MatterHackers’ documentation and 
your manufacturer’s suggestions for this step. 

Once you have your printer squared away, you will need to load in an .stl file. You can 
either use the +Add button on the lower left of Figure A-4 or the menu item File ➤ Add 
File to Queue (that is, import an .stl file to be printed), as shown in Figure A-4.

www.mattercontrol.com/#jumpSupportedModels
www.mattercontrol.com
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If you mouse over an item in the queue (the weighted wheel from Chapter 5, in this 
case), you will see two options: View and Remove. Remove removes the file from the 
queue (deletes it from MatterControl’s queue, in other words). View starts the process of 
preparing the file to print.

After you click View, you will see a screen like that in Figure A-5. The screen that 
comes up (3D VIEW) shows your print as it will lie on your 3D printer’s print bed. If it is 
hanging off the ends or otherwise problematic, there are tools you can use (after clicking 
Edit) to rectify the problems. When you are done, be sure to click Save to save your 
changes before the final creation of your printable file.

Figure A-4.  The MatterControl home screen

Figure A-5.  The View screen, with 3D VIEW selected

http://dx.doi.org/10.1007/978-1-4842-2695-7_5
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Once you are done editing and are satisfied that the file is ready to 3D print, select 
LAYER VIEW. The program will ask you to click Generate if you have not generated your 
printable file yet. This step breaks the model into layers that can be printed and creates 
the commands that will move around the print head and push filament where it needs to 
be. You can see the LAYER VIEW screen in Figure A-6. The LAYER VIEW screen also tells 
you how long the print will take, more or less, and how much filament (3D-printing raw 
material) it will use up.

Figure A-6.  The View screen, with LAYER VIEW selected

If this looks good, go back to the home screen (Figure A-4) and click Export (in the 
middle of the screen). Then select Export as Gcode. If your printer needs to be actively 
connected to a computer, at this point you could send the file to the printer.

Settings
Hypothetically, the discussion thus far should just work as stated, and you will have gone 
from a model in this book to a physical one in your hand. Real life with a 3D printer is not 
always that simple, though. 3D printers have a lot of different settings, because tweaking 
is needed sometimes. If you click the Settings & Controls button on the home screen 
(Figure A-4), you will find yourself at a page like the one in Figure A-7. 
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In Figure A-7 you see SETTINGS, CONTROLS, and OPTIONS. Probably as a beginner 
you will not touch anything in OPTIONS except for perhaps selecting MatterSlice as your 
Slice Engine, if it has not already defaulted there. CONTROLS are functions you will use 
to interact with your printer to solve a problem or set up your printer, which we will not 
explore here.

That leaves SETTINGS. The models in this book were, for the most part, designed 
to be as simple to print as possible. That means that you should be able to get away with 
pretty generic settings. We will talk now about some that you might need to change, 
particularly General ➤ Support Material and General ➤ Skirt and Raft.

Figure A-7.  The Settings & Controls screen
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Support
Because a filament-based 3D printer builds up prints from a platform, if a piece sticks out 
sideways higher up on a print, that part will just fall down if support material is not built 
ahead of time to support it. The models in this book should not need support to print. 
You can look in the LAYER VIEW to see if it looks like the overhangs will be too large to 
manage without support. 

The rule of thumb is that a slope can overhang by about 45 degrees before support 
is necessary. However, sometimes you can push your luck. If you do need to add 
support, check the Generate Support Material box under General ➤ Support Material. In 
general, the less support you have to generate (and then pick off), the better. If you have 
something really complex, you may have to check the Support Everywhere box. That 
creates support as needed, including in nooks and crannies of the model where it may be 
hard to remove. Be sure to preview your model in LAYER VIEW first to see how it looks.

■■ Note  MatterControl will not show support in the 3D VIEW. It does not generate the 
support until layers are generated for the LAYER VIEW.

Raft
The models in this book were designed not to depend on your printer’s bed being smooth 
and flat. However, should you encounter that situation in the future, if your printer’s bed 
is not very flat you can print these parts on a raft. A raft is a thin layer that prints first on 
the platform, and then the model prints on top of it. If things are not fitting together well, 
adding a raft (General ➤ Skirt and Raft) is an option. You will need to remove the raft, 
though, which may be difficult to do cleanly if your raft settings have not been tuned to 
allow it to release from the print. You may want to test it with a smaller piece to make sure 
the raft will peel away in one piece before printing a larger model on a raft. 

You will notice in the same grouping of settings some choices referring to a skirt.  
A skirt is a line drawn around the model’s first layer to prime the nozzle. If you make a 
skirt attached (or 0 mm away from the model) it is usually called a brim (as in hat brim).  
A brim can help hold prints onto the print bed, though it will not help flatten the bottom 
of a print the way a raft will.

■■ Caution  If you change a setting, be sure to click SAVE in the SETTINGS window before 
going back to the LAYER VIEW window and generating a new printable file. Otherwise, it is 
easy to accidentally revert any unsaved settings.
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Other Considerations and Alternatives for These Models
For the most part, these models were printed in PLA with a layer height of 0.2 mm 
(General ➤ Layers/Surface) or in some cases 0.1 mm. Your printer defaults may be 
different than this, and you may want to do a few tests with one of our simpler prints to 
establish your favorite basic settings.

We also have used the Cura open source slicing program (https://ultimaker.com/
en/products/cura-software) for some of the models in this book. Even though it is on a 
3D-printer manufacturer’s site, it too works for many printers.

Archives and Repositories
There is a link for the source for the OpenSCAD models on this book’s copyright page, and  
also linked to the book’s page at our publisher, www.apress.com/us/book/9781484226940. 
The files archived there are the ones shown in the book. In addition, we have a repository 
that may have more current versions at https://github.com/whosawhatsis/3DP-
Science-Projects-V2.

If you develop any new models around these, we hope you will add them to the open 
source repositories and help build out a community of scientific learners.

https://ultimaker.com/en/products/cura-software
https://ultimaker.com/en/products/cura-software
www.apress.com/us/book/9781484226940
https://github.com/whosawhatsis/3DP-Science-Projects-V2
https://github.com/whosawhatsis/3DP-Science-Projects-V2
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About the Authors
Nonscriptum LLC: www.nonscriptum.com

Chapter 1. Pendulums
Apress: www.apress.com

Coupled Pendulum video: www.youtube.com/watch?v=izy4a5erom8

Double Pendulum video: www.youtube.com/watch?v=AwT0k09w-jw

Forces and Interactions science standards: www.nextgenscience.org/topic-
arrangement/msforces-and-interactions

Thingiverse: www.thingiverse.com

Moment of Inertia on Wikipedia: https://en.wikipedia.org/wiki/Moment_of_
inertia#Compound_pendulum

Simple Harmonic Motion on Wikipedia: https://en.wikipedia.org/wiki/Simple_
harmonic_motion

Pendulums on Wikipedia: https://en.wikipedia.org/wiki/Pendulum

Kater’s Pendulum on Wikipedia: https://en.wikipedia.org/wiki/Kater's_pendulum

NASA GRACE mission: http://grace.jpl.nasa.gov/mission/gravity-101/

Foucault Pendulum on Wikipedia: https://en.wikipedia.org/wiki/Foucault_pendulum

Chapter 2. Geology
Anticline photo: www.sciencebase.gov/catalog/item/51dd7db8e4b0f72b4471b201

Syncline photo: www.sciencebase.gov/catalog/item/51dc3902e4b0f81004b7a61a

Barchan dune photo: www.sciencebase.gov/catalog/item/51dd88f3e4b0f72b4471c140
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http://grace.jpl.nasa.gov/mission/gravity-101/
https://en.wikipedia.org/wiki/Foucault_pendulum
http://dx.doi.org/10.1007/978-1-4842-2695-7_2
http://www.sciencebase.gov/catalog/item/51dd7db8e4b0f72b4471b201
http://www.sciencebase.gov/catalog/item/51dc3902e4b0f81004b7a61a
http://www.sciencebase.gov/catalog/item/51dd88f3e4b0f72b4471c140
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Barchan dune crest photo: www.sciencebase.gov/catalog/item/51dd894ee4b0f72b447
1c19a

Summary of aeolian processes on Mars and Titan: www.planetary.org/blogs/guest-
blogs/2015/0326-lpsc-2015-aeolian-processes-mars-titan.html

Photo of barchan dunes on Mars: www.uahirise.org/ESP_014404_1765

Types of dunes: www.nps.gov/grsa/learn/nature/dune-types.htm

Geological Society: www.geolsoc.org.uk

Earth’s Systems science standards: www.nextgenscience.org/pe/ms-ess2-2-earths-
systems

Geologist William Smith on Wikipedia: https://en.wikipedia.org/wiki/William_
Smith_(geologist)

Strike and dip on Wikipedia: https://en.wikipedia.org/wiki/Strike_and_dip

Terrain2STL: http://jthatch.com/Terrain2STL/

Moon2STL: http://jthatch.com/Moon2STL/.

The U.S. Geological Survey’s education site: http://education.usgs.gov

Syncline and anticline clay models: http://jazinator.blogspot.com/2010/05/
teaching-folds-using-play-doh.html

Chapter 3. Snow and Ice
Gallery of snow crystals: www.snowcrystals.com

Snowflake machine: www.thingiverse.com/thing:1159436

Fixed-volume objects: www.youmagine.com/designs/fixed-volume-objects

“Snowflake Growth Successfully Modeled from Physical Laws”:  
www.scientificamerican.com/article/how-do-snowflakes-form

Motion and Stability: Forces and Interactions science standards: www.nextgenscience.
org/dci-arrangement/hs-ps2-motion-and-stability-forces-and-interactions

Earth’s systems science standards: www.nextgenscience.org/pe/5-ess2-2-earths-
systems

Salt on Wikipedia: https://en.wikipedia.org/wiki/Salt

Video of an iceberg rolling: https://youtu.be/mvQ4eDKf9UY

Cavalieri’s Principle: https://en.wikipedia.org/wiki/Cavalieri's_principle

Snowflakes on Wikipedia: https://en.wikipedia.org/wiki/Snowflake

Larsen Ice Shelf on Wikipedia: https://en.wikipedia.org/wiki/Larsen_Ice_Shelf

Archimedes’ Principle: https://en.wikipedia.org/wiki/Archimedes'_principle
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Chapter 4. Doppler and Mach
Waves and Their Applications science standards: www.nextgenscience.org/pe/hs-ps4-
1-waves-and-their-applications-technologies-information-transfer

Ernst Mach’s contribution to science and philosophy: https://plato.stanford.edu/
entries/ernst-mach/

Fourier Transforms on Wikipedia: https://en.wikipedia.org/wiki/Fourier_
transform

Redshift on Wikipedia: https://en.wikipedia.org/wiki/Redshift

Chapter 5. Moment of Inertia
Fidget Spinner: www.thingiverse.com/thing:1802260

Forces and Interactions science standards: www.nextgenscience.org/topic-
arrangement/hsforces-and-interactions

Mythbusters slow-motion sneeze video: www.discovery.com/tv-shows/mythbusters/
videos/slow-motion-sneezes/

Moment of Inertia on Wikipedia: https://en.wikipedia.org/wiki/Moment_of_inertia

PhysicsLAB: http://physicslab.org

Chapter 6. Probability
The Khan Academy: www.khanacademy.org

Pinwheel Dice Set with Decader set by Chuck Stover: www.shapeways.com/product/
DKP3VVFL8/pinwheel-dice-set-with-decader?optionId=43314776

Correlation: www.mathsisfun.com/data/correlation.html

Heredity and Variation of Traits science standards: www.nextgenscience.org/dci-
arrangement/hs-ls3-heredity-inheritance-and-variation-traits

Statistics and Probability Common Core standards: www.corestandards.org/Math/
Content/HSS/introduction/

Bivariate data Common Core standards: www.corestandards.org/Math/Content/8/
SP/A/1/

Pearson Correlation Coefficient on Wikipedia: https://en.wikipedia.org/wiki/
Pearson_correlation_coefficient

Multivariate Normal Distributions on Wikipedia: https://en.wikipedia.org/wiki/
Multivariate_normal_distribution

Correlation Coefficient on Wolfram Mathworld: http://mathworld.wolfram.com/
CorrelationCoefficient.html
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Chapter 7. Digital Logic
Binary Arithmetic on Khan Academy: www.khanacademy.org/math/algebra-home/
alg-intro-to-algebra/algebra-alternate-number-bases/v/number-systems-
introduction

Binary Arithmetic on Ryan’s Tutorials: http://ryanstutorials.net/binary-tutorial/
binary-arithmetic.php

Science standards relating to circuits: www.nextgenscience.org/search-
standards?keys=circuits

Logic Gates on Wikipedia: https://en.wikipedia.org/wiki/Logic_gate

Flip-Flops on Wikipedia: https://en.wikipedia.org/wiki/Flip-flop_(electronics)

Adders on Wikipedia: https://en.wikipedia.org/wiki/Adder_(electronics)

LogicBlocks kits: https://learn.sparkfun.com/tutorials/logicblocks--digital-
logic-introduction

Scratch Logic Kit: https://scratch.mit.edu/projects/66610/

Chapter 8. Gravitational Waves
Laser Interferometer Gravitational-Wave Observatory: www.ligo.caltech.edu/page/
ligos-ifo

LIGO vibration damping: www.ligo.caltech.edu/page/look-deeper

OpenSCAD: www.openscad.org

Summary of LIGO science: www.ligo.org/science/Publication-GW150914/index.php

“Observation of Gravitational Waves from a Binary Black Hole Merger”: https://doi.
org/10.1103/PhysRevLett.116.061102

Ligo Scientific Colaboration: www.ligo.org

Caltech LIGO project site: http://ligo.caltech.edu

MIT LIGO project site: http://space.mit.edu/LIGO

LIGO Educator’s Guide: www.ligo.caltech.edu/system/media_files/binaries/303/
original/ligo-educators-guide.pdf

Earth’s Place in the Universe science standards: www.nextgenscience.org/dci-
arrangement/1-ess1-earths-place-universe

Fabric and hoop gravity visualization video: www.youtube.com/watch?v=MTY1Kje0yLg

Gravity Spy project: www.zooniverse.org/projects/zooniverse/gravity-spy
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Gravitational wave inspiral description: http://ligo.org/science/GW-Inspiral.php

Logarithmic Spirals on Wikipedia: https://en.wikipedia.org/wiki/Logarithmic_
spiral

Chirp Mass on Wikipedia: https://en.wikipedia.org/wiki/Chirp_mass

Einstein@Home: https://einsteinathome.org

Appendix A. 3D Printing and OpenSCAD
OpenSCAD manual: www.openscad.org/documentation.html

List of printer models that MatterControl supports: www.mattercontrol.
com/#jumpSupportedModels

Apress page for this book: www.apress.com/us/book/9781484226940

OpenSCAD variables: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/
General#Variables

Cura software: https://ultimaker.com/en/products/cura-software

Models from this book on Github: https://github.com/whosawhatsis/3DP-Science-
Projects-V2
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