Quick answers to common problérhs

ARM® Cortex® M4
Cookbook

Over 50 hands-on recipes that will help you develop amazing
real-time applications using GPI1O, RS232, ADC, DAC, timers,
audio codecs, graphics LCD, and a touch screen

Dr. Mark Fisher

PUBLISHING

.alitebooks.col

http://www.allitebooks.org

ARM® Cortex® M4
Cookbook

Over 50 hands-on recipes that will help you develop amazing
real-time applications using GPIO, RS232, ADC, DAC, timers,
audio codecs, graphics LCD, and a touch screen

Dr. Mark Fisher

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

ARM® Cortex® M4 Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1020316

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-650-3

www . packtpub.com

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface

Chapter 1: A Practical Introduction to ARM® CORTEX®

Introduction

Installing uVision5

Linking an evaluation board

Running an example program

Writing a simple program
Understanding the simple use of GPIO
Estimating microcontroller performance

Chapter 2: C Language Programming
Introduction
Configuring the hardware abstraction layer
Writing a C program to blink each LED in turn
Writing a function
Writing to the console window
Writing to the GLCD
Creating a game application - Stage 1
Creating a game application - Stage 2
Debugging your code using print statements
Using the debugger

Chapter 3: Programming 1/0
Introduction
Performing arithmetic operations
lllustrating machine storage classes
Configuring GPIO ports
Configuring UART ports
Handling interrupts
Using timers to create a digital clock

[ﬂ SEEeERRr FEEEEREEREE Rl emmmER

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 4: Assembly Language Programming

Introduction

Writing Cortex-M4 assembly language

Passing parameters between C and the assembly language
Handling interrupts in assembly language

Implementing a jump table

Debugging assembly language

Chapter 5: Data Conversion

Introduction

Setting up the ADC

Configuring general-purpose timers
Using timers to trigger conversions
Setting up the DAC

Generating a sine wave

Chapter 6: Multimedia Support

B n
0ol l6ol (o] ol]l bllo
~| (o jor] =[N = | |©

=
=y
F-3

Introduction

Setting the RTE for the 12C Peripheral Bus
How to use the LCD touchscreen

Writing a driver for the audio codec

How to use the audio codec

How to use the camera

Designing bitmapped graphics

Ideas for games using sound and graphics

Chapter 7: Real-Time Signal Processing

Introduction

Configuring the audio codec

How to play prerecorded audio
Designing a low-pass digital filter
How to make an audio tone control

Chapter 8: Real-Time Embedded Systems

Introduction

Multithreaded programs using event flags

Multithreaded programs using mailboxes

Why ensuring mutual exclusion is important when accessing shared
resources

Why we must use a mutex to access the GLCD

How to write a multithreaded Pong game

Debugging programs that use CMSIS-RTOS

NEER BNEE EEREEE BEEEHEREE 28E

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 9: Embedded Toolchain [249]
Introduction
Installing GNU ARM Eclipse [250]
Programming the MCBSTM32F400 evaluation board [255]
How to use the STM32CubeMX Framework (API)
How to port uVision projects to GNU ARM Eclipse

Index 273

[vww allitebooks.cond

http://www.allitebooks.org

Preface

This book begins with an introduction to the ARM Cortex family and covers its basic concepts.
We cover the installation of the ARM uVision Integrated Development Environment and topics,
such as target devices, evaluation boards, code configuration, and GPIO. You will learn about
the core programming topics that deal with structures, functions, pointers, and debugging

in this book. You will also learn about various advanced aspects, such as data conversion,
multimedia support, real-time signal processing, and real-time embedded systems. You will
also get accustomed with creating game applications, programming |/0, and configuring GPIO
and UART ports. By the end of this book, you will be able to successfully create robust and
scalable ARM Cortex-based applications.

What this book covers

Chapter 1, A Practical Introduction to ARM® Cortex®, shows you how to compile, download,
and run simple programs on an evaluation board.

Chapter 2, C Language Programming, introduces you to writing programs in C, a high-level
language that was developed in the 1970s and is popular among embedded-system
developers.

Chapter 3, Programming 1/0, investigates some of the functions that configure 1/0 devices, and
you will gain an understanding of what is involved in writing I/0 interfaces for other targets.

Chapter 4, Assembly Language Programming, explains how to write functions in assembly
language. Assembly language is a low-level programming language that is specific to particular
computer architecture. Therefore, unlike programs written high-level languages, programs
written in assembly language cannot be easily ported to other hardware architectures.

Chapter 5, Data Conversion, introduces approaches to data conversion, namely analog to
digital conversion and vice versa. This chapter also covers the principal features used by
microcontrollers for data conversion.

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Chapter 6, Multimedia Support, discusses support for various multimedia peripherals,
which are discrete components connected to the microcontroller by a bus. Support for
an LCD touchscreen, audio codec, and camera peripherals is a very attractive feature of
the STM32F4xxx microcontroller, and selecting an evaluation board that includes these
peripherals, although more expensive, will be covered in this chapter.

Chapter 7, Real-Time Signal Processing, introduces you to Digjtal Signal Processing (DSP) and
reviews the ARM Cortex M4 instruction set support for DSP applications. This chapter will walk
through a DMA application using the codec, followed by designing a low-pass filter.

Chapter 8, Real-Time Embedded Systems, shows you how to write a multithreaded program
using flags for communication and ensuring mutual exclusion when accessing shared resources.

Chapter 9, Embedded Toolchain, teaches you how to install the GNU ARM Eclipse toolchain
for the Windows Operating System and to build and run a simple Blinky program on

the MCBSTM32F400 evaluation board. This chapter will also show you how to use the
STM32CubeMX Framework (API) and how to port projects to GNU ARM Eclipse.

What you need for this book

You require the Keil Development Board MCBSTM32F400 (v1.1) and ARM ULINK-ME for
this book.

Who this book is for

This book is aimed at those with an interest in designing and programming embedded
systems. These could include electrical engineers or computer programmers who want to
get started with microcontroller applications using the ARM Cortex M4 architecture in a short
time frame. This book's recipes can also be used to support students learning embedded
programming for the first time. Basic knowledge of programming using a high-level language
is essential but those familiar with other high-level languages such as Python or Java should
not have too much difficulty picking up the basics of embedded C programming.

In this book, you will find several headings that appear frequently (Getting ready, How to do it...,
How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

.

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Copy the
function named SystemClock_Config() from the example."

A block of code is set as follows:

#ifdef _ RTX
extern uint32 t os_time;

uint32 t HAL GetTick(void) ({
return os_time;

}

#endif

vww allitebooks.conl

http://www.allitebooks.org

Preface

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Run the program by pressing
RESET on the evaluation board."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http: //www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/ARMCortexM4Cookbook ColorImages.pdf.

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http: //www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub. com, and we will do our best to address the problem.

A Practical Introduction
to ARM® CORTEX®

In this chapter, we will cover the following topics:

» Installing uVision5

» Linking an evaluation board

» Running an example program

» Writing a simple program

» Understanding the simple use of GPIO

» Estimating microcontroller performance

Introduction

This chapter will show you how to compile, download, and run simple programs on an
evaluation board. A software tool called a Microcontroller Development Kit (MDK), including
an Integrated Development Environment (IDE), is the simplest way of achieving this. Keil (a
company owned by ARM) markets an extensive range of software tools to support embedded
system development. Amongst these, the MDK-ARM development kit represents an integrated
software development environment, supporting devices based on the Cortex-M (and
associated) cores (see http://www.keil.com/arm/mdk.asp).

A Practical Introduction to ARM® CORTEX®

Installing uVision5

A free evaluation version of the IDE known as the MDK-ARM Lite edition, running (albeit
with limited functionality) under the Windows operating system, is available for download.
The main limitation of the environment is that programs that generate more than 32 KB of
code cannot be compiled and linked (see http://www.keil.com/demo/limits.asp).
However, since most programs written by novices tend be quite small, this limitation is not a
serious problem. For those who expect their executable image to exceed 32 KB, other open
source compiler and IDE options are considered in Chapter 9, Embedded Toolchain.

uVision5, the latest version of the IDE is distributed as two components. An MDK core
contains all the development tools, and software packs, together with Cortex Microcontroller
Software Interface standard (CMSIS) and middleware libraries, which add support for

target devices.

Installation involves downloading and running an executable (. exe) file. Users can download
and install the latest version after first registering their contact details at http: //www2.
keil.com/mdk5/install/.

How to do it...

1. Download the latest version of the software by following the instructions provided by
Keil. Device-specific libraries are not included in installations from version 5 onwards,
so at the end of the installation, we must configure the IDE using the Pack Installer to
choose the resources (that is target devices, boards, and examples) that we need.

(G Pock insalle: - CacclusARM AT l . - . ! i

Eile Packs MWindew Help
o | Board: MCBSTMIZFAD0 (Ver13)

Derice: | Boands b| 4] Packs | Examples b
searcr: =X Pack Action Description
Ecard S Summary =1 Device Specific 2 Packs
- B MCEI343 (Ver 20) LPC143FBO4E - - Claniggeiia . | Clarinox Bluetooth Classic, Blugtooth Low Energy and Wi-Fi for Embedded

B MCBISO0 il 1) PSR eil: STWB2F41:_DFP t croelectronics STM32F4 Series Device Support, Drivers and Eamples
o B MCELTO0 (Ver 13) LPCL7E, LPCITEE 26 (2015-09-16) g Rarnove | STMioelectrorics STHE2F4 Seres Dvice Suppart Drivrs and Examples
B MCELS00 (ver 1.3) LPC1&50, LPCIBST, 1516 ME NOR Flash, 1 x 4 ME Quad-391 Flach, 1516 MBS, 1 s icroelectronics STMIZF4 Series “""U Support, Drivers and Bamples
=B RCBAS00 (Ver 13) 116 8B HOR Flash 124 18 Quad: S Flash, 116 KR FE. e (i Keil: STM3IR40, DFP - Previous Pack Version:

1 x8 MByte 5P] Flagh 1
1 ¢ E MByze NOR Flash 1 Flash 1 «8 kBte 1, —)

7 B MSP-EXP432P40IR MEP4PAI R SRR
5 B MSP-TS4I2PZ100 keil.com/boards? ftesasinstruments/msp ts432pr100 - nlPibalP & Intell InfP = a bight-weight implementation of the TCP/IP protecal suite

5 B NS starter Kt b Micrum:RTOS i Instal | Micrum software compenents
4 Orys-EmbeddeckMidd.. 4 Install | Middleware Package (CycloneT CP, CyclaneSSL and CyclaneCrypte)
+ wrolfSSL-CyaSSL g Install__| Light wesght S5L/TLS and Crypt Library for Embedded Systems
YOGITECH=MRSTLAR.. 4 Install | YOGITECH IRSTL Functional Safety EVAL Software Pack far ARM Certex-M
vl + VOGITECH-RSTL 5T o Install | YOGITECH IRSTL Functional Safety EVAL Software Pack for STMEZFx Macro:

+ B nRF52 PCALONO (V09.0)

[NUCLEQ-FI30RE (ReviC)

-0 MUCLEO-FOTZRE (Rew.C)

- NUCLEO-FOSIRC (Rev.C) il « 5
Qutput 8 x
Pifiesh Pack descriptions
heck fer undabes
Fiefresh Pack descnptions
Feiste available for Eeik-MDE-Middlewsre instailect 6.5.0, available: 7.0.0-beta)

Fuetresh Pack descnptions -
vl N Rt = o] w0 o [e 0 2 | oy | N —-, - _—" |

Chapter 1

2. Select the Boards tab, choose the MCBSTM32F400 Keil evaluation board featuring
the STM32F4071GHx STMicroelectronics part, as this is the target for all the practical
examples described in this cookbook.

With the Packs tab, in addition to the default installation options: CMSIS and Keil
ARM Processional Middleware for ARM Cortex-M-based devices, board support for
MCBSTM32F400 is also needed. Select the latest version Keil::32F4xx_DFP (2.6.0).

Select the Examples tab, and copy the board-specific example programs to a
convenient local folder. Note: the example programs illustrate many useful features of
the evaluation board, and are an invaluable resource.

Pack Installer - C:AKeil_vSUARMAPACI

Ele Packs Window Help
2 | Board: MCESTMIZFA00 (ver1 2
4| - Devices ' Boards | 4] o patks | Examples | O]
Search: - X [Show examples from installed Packs anly
Board /| Summany Example Action Description
= B MCBa8sHa (21 MBIBFSOGR]| | BSD Client (MCBSTM32F400} & Co Example using BSD sockels Lo send commands to rer |
= B MCBILCHA (Ver 26) [T TETTETY BSD Server (MCESTMZ2FA00) |4 Co Example using BSD sackets to accept commands froi
=B mcs12m ol LPCIZ2TERNGI30L CAN Dats (MCBSTNVE2F00) @ Copy AN example that sends and recenves dats messages
= B MCB1313 (Ver 20) LPCI31 2FEINE CAN RTR (MCBSTM32FA00) @ Copy | CAM Remate Transmissic
o B MCB1343 (Var 20) LPCI4FENME CMSIS: D Yslidotion MCESTMIZFO0) |5 Install || CMSIS.Driver Validation AP Exzmple
@ B MCBIS0 (L1} LPCIS8IBD100 CMSIS-RT0S Blinky (MCESTMIZRAN) & Copy | CMSIS.ATOS Blinky mample
w B MCBI700 (Ver1.3) LFCITSE LPCIT6R FISTS~ 5 By wishSFRETCTREN (MC..| @ Copy | CMSIS-ATOS Blinky example configured with STMIZ:
& B MCBIEDD (Ver13) 11y HOR Flash 134 M -5P1 Flash 1 %16 ME 5., CycloneSSL 551 Client Demo (MCBSTM32FA00) | G Install | SSL client demo (CycloneS5L, CMSIS-RTOS and Keil 1
5 B MCBI00 (Ver1.3) LPC4350 LPCA35T, 1 x 16 ME NOR Flash, 1 x4 MB Quad-SPi Flash 116 kB EE_. CycloneSsL S5l Server Demo (MCBSTMIZF400] € Install || SSL server demo (CyeloncSSL, CMSIS-RTOS and Keil
=B mcanUCIo) NUCLaVESAN CyclonsTCP HTTP Sarver Dema (MCESTMEZ... | o natall | HTTP server deme (CycloneTCF and CMSS-RTOS)
= B MCBSTMIIC (Ver 20) VC 1y PROM CycloneTCP HTTPS Server Dema (MCBSTMS... [Install | HTTPS server dema (CycloneTCP, CycloneSSLand C
=B MCBSTMIZE Ver 30) STMIZFIOI76, 1 x 8 Byte SPLFlash, 1 1 MByte SRAM CiclonaTEREMER Chopt Demo (MCBSTMIZ... [Inatall | SMTP client with S50 support (CycloneTCP, Cyclonet
=8 Mo (Ver1d) 128 MByte NOR Flash. 1 2512 Myte NAND Flash, 116 kByteL, % Copy | Demo eample
= B MCBSTMIIF00 (Ver 12) M32FA015, 1 5 & MExte NOR Flash, 12512 MExte NAND Flash, 1 x 8 ki PSerreniMEBSHISTFTC) |4 Capy ||l Serves using FTP peotocal with SD/AMMC Memer,_|
= B MCBTMPMEE0 (1) TMPMINFOFG File Systern Dema (MCBSTM32F400) | Copy | File manipulstion example: crests, read, copy, delete
=B MSP-EXPA3ZRMOIR. MSPEIPIIR HTTP Server (MCBSTME2FA00) & Copy Compact Web Server with CGl interface
= B MSP-TSA32P7I00 kel 1543202100 HTTP Server [Pud 1P (MCBSTMB2F00) |5 Install__|| Compact Web Server with CGl interface
= B NS Starter kit aRES1A2) wihh SMTP Client (MCBSTMI2FA00) @ Copy | Example showing haw to compose and send emails
% B3 RFSLPCAIONZE (V100) |aBES142) waC SNIVIP Agent (WMCBSTNB2FI00) @ Copy | Exampie shawing haw to use a Simple Network Man:
i B nRFSLPCALOOI (VI00) [aBFS1422 waC Telnet Server (MCBSTVB2F00) 4§ Copy | Command-fine Host service example using Telnet pr
5 B nRFSLPCAZO06 (VIOQ) |nRFS1S2] wa Telnet Serves Pt/ PvG (MCBSTMAZFON) | Install | Command-fine Host service example using Telnet pr
B rRFS2PCAIO0S (VI00) [nRFSIED wan | - - = Z Ll—vl
Output oox
idate veilable for Keil:MOK-Middleware finslalled: 5.5, svailable 7.0.0-betsl 4
piate veilable for Keil:STMI2Fdx DFF fnstalled: 104, available: 260
Riefiesh Pack deserigtions
piste avaiable for Kl MOK-Midcleware st 6.0, swaiable;700-eta) @l
Retrosh Pack descngtions 3
Ready |onuNE)

5. Once we have downloaded and installed MDK-ARM uVision5, the IDE can be invoked
from the Windows Taskbar. If we wish to update the installation, the pack installer
can be invoked by selecting the pack installer icon on uVision5 toolbar.

AR X

CEAE RN

A Practical Introduction to ARM® CORTEX®

6. We demonstrate the basic features of uVision in this chapter, but later on, we'll
probably need to access the uVision user guide via the Help menu (also available
athttp://www2.keil.com/mdk5) to learn about the more advanced features of
the IDE. A useful guide to getting started with uVision5 can be found at https://
armkeil .blob.core.windows.net/product/mdk5-getting-started.pdf.
An overview of uVision5 is available at http://www2.keil.com/mdk5, and this
includes some video clips that describe the design philosophy, and explain how to
use the Pack Installer and create a new project.

Computer programming involves specifying a sequence of binary codes that are interpreted by
the machine as instructions that together enable it to undertake some task. The instruction
sets of early computers were small and easily memorized by programmers, so programs were
written directly in machine code, and each instruction code word was set up on switches

and written to memory. Finally, once all the instructions had been entered, the program was
executed. With the development of more powerful machines and larger instruction sets, this
approach became unworkable. This motivated the need to program in higher level (human
understandable) languages that are translated into machine code by a special program called
a compiler. Modern day programmers rarely need to interpret individual binary codes; instead,
they use a text editor to enter a sequence of high-level language statements, a compiler

to convert them into machine code, a linker to allow programs to reuse previously written
(library) code, and a loader to write the binary codes to memory. The steps comprising edit,
compile, link, load can be undertaken by running each program (editor, compiler, linker, loader)
separately. However, nowadays they are usually packaged together within a wrapper called

an IDE. Some IDEs are language-specific and some are customizable, allowing developers to
create bespoke programming environments for any target language and/or machine.

The pack installer framework allows MDK-ARM uVision5 to be customized and extended to
target a large number of devices and evaluation boards using ARM cores. But while, IDEs
represent the most popular and efficient route to programming, uVision represents just
one of a number of IDEs that are widely available. Other manufacturers and open source
communities offer alternatives, some of which we investigate later in the book.

Linking an evaluation board

This book focuses on the Keil STM32F400 evaluation board that features a STM32F4071GHx
STMicroelectronics part to illustrate practical work. A wide range of other evaluation boards
are available, and many of these are supported by the uVision5 IDE (that is, using the pack
installer to download appropriate software components).

Chapter 1

How to do it...

1. Once we have installed uVision, linking the evaluation board is simply a matter
of connecting the two USB cables shown in the following image to your PC. The
small daughter board shown in the image is Keil's ULINK-ME debug adaptor
(http://www.keil.com/ulinkme/) that provides the data connection.

1
~ The Windows plug-and-play feature will automatically find and
install the driver (downloaded with uVisiond).

2. The second USB cable provides power. Evaluation boards can usually be powered by
a laptop or PC host connected via the USB port, but some laptop PSUs may be unable
to supply sufficient current, and a USB hub might be required. Alternatively,
an external supply can be connected via a separate power plug.

The first time the ULINK device is used, its firmware needs to be
configured. The configuration depends on the MDK version, and
¢ if we wish to use different versions of the MDK (that is, perhaps
because we have legacy code developed using uVision4) then
the ULINK configuration may need to be erased. http: //www.
keil.com/support/docs/3632.htm provides some further
information and a download utility for this purpose.

A Practical Introduction to ARM® CORTEX®

A USB-Link adaptor is needed to enable the executable code produced by the IDE to be
uploaded to the evaluation board. The adaptor supports a Joint Test Action Group (JTAG)
interface on the evaluation board, and offers a number of debugging possibilities (depending
on the type of adaptor used). There are several debug adaptor connection options. Firstly, the
Keil ULINK-ME debug adaptor (http://www.keil.com/ulinkme/), packaged together
with the board as a starter kit, connects to the 20-pin JTAG connector and supports serial
wire programming and on-chip debugging. Keil's ULINK-2 adaptor (http://www.keil.
com/ulink2/) represents a more robust solution with similar functionality, and ULINK-Pro
(http://www.keil.com/ulinkpro/) offers extended debug facilities employing high-
speed streaming trace technology.

The MCBSTM32F400 (http://www.keil.com/mcbstm32£400/) evaluation board shown
in the preceding image features the STMicroelectronics STM32F407IGHx microcontroller part.
The board specification includes the following:

» STM32F4071G Microcontroller

» On-chip and external memory

» 2.4 inch QVGA TFT LCD and touchscreen

» USB 2.0 Ports

» CAN interface

» Serial/UART Port

» Micro SD Card Interface

» b-position Joystick

» 3-axis accelerometer

» 3-axis Gyroscope

» ADC Potentiometer input

» Audio Codec with Speaker and Microphone

» Digital Microphone

» Digital VGA Camera

» Push Buttons and LEDs directly connected to /0 ports

» Debug Interface
MCU manufacturers like Texas Instruments (Tl), STMicroelectronics, Freescale, Atmel, Analog
Devices, Silicon Labs, MikroElektronika, NXP, and Nordic Semiconductor all market evaluation

boards featuring the Cortex-M4. Some of these offer cheaper, entry-level board options costing
just a few dollars with functionality that can be enhanced by adding additional modules.

—e]

Chapter 1

An insight into the range of microcontroller devices supported by MDK-ARM can be gained

by scrolling through the list of packs listed by the Pack Installer. Keil markets a range of
Cortex-M evaluation boards designed by themselves and other manufacturers (http://
www.keil.com/boards/cortexm.asp) that feature a number of microcontrollers. Keil's
range of boards features NXP, STMicroelectronics, and Freescale microcontrollers. The
MCBSTM32 (Cortex-M3) and MCBSTM32F400 (Cortex-M4) evaluation boards offer one of the
more expensive evaluation routes, but they are populated with a comprehensive set of 1/0
peripherals, including a QVGA TFT LCD touchscreen. STM (http://www. st .com) markets

a similar evaluation board called the STM3241G-EVAL, offering almost identical features to
Keil's but employing a slightly different PCB layout and using the STM32F417IG part.

Netduino (http://netduino.com/) offers a series of open source evaluation boards based
on the STM32F405RG microcontroller featuring a Cortex-M4 core with open source software
development support. Netduino is supported by an enthusiastic community of developers—a
selection of projects which demonstrate the potential of the device are available.

Documentation for target devices and evaluation boards is available from the manufacturer.
For example, those using the MCBSTM32F400 board will need to refer to the reference
manual RM0O090 (http://www. st .com), the MCBSTM32F200/400 User's Guide
(http://www.keil.com), the ARM Cortex-M4 Processor Technical Reference Manual,
and the Cortex-M4 Devices Generic User Guide (http://infocenter.arm.com).

You will also find that the schematic diagram of the evaluation board, at http://www.
keil.com/mcbstm32£400/mcbstm32f400-schematics.pdf, is also useful for resolving
ambiguities in the libraries. If you use MDK-ARM, then once a new project has been created
and the target microcontroller identified, most of the relevant documentation can be accessed
via the Books tab within the project window.

EACME_D_HSWL24h\book v2\Chapterf\programs\RTXSem2\RTXsem.uswproj - pWision | E=E

e Edit View froject Flah Debug Periphersls Jool SUCS Wndow Help

5dd| == 5 ac|@ 5 a|@ &

e $% | mcesmezrao SR BT eYd

ULINK2/ME Carlex Debugger B NUM SCRL OVR R

I = oocks [0 o,

i E L i

A Practical Introduction to ARM® CORTEX®

Running an example program

Manufacturers usually make a small number of example programs available that provide a
tutorial introduction and demonstrate the potential of their evaluation boards. A simple program
that flashes (that is, blinks) a Light-emitting diode (LED) on the board is usually provided. ANSI
C is by far the most popular language amongst embedded system programmers, but other

high level languages such as C++ and C# may also be supported. A brief introduction to the C
programming language is provided in Chapter 2, C Language Programming.

The Examples tab in the pack installer for the STM32F4 series MCUs provides a linktoa C
program called CMSIS-RTOS Blinky (MCBSTM32F400) that flashes an LED connected to a
GPIO port. The program is integrated within an MDK-ARM Project. Integrated development
environments such as MDK-ARM usually manage software development tasks as projects, as
in addition to the program source code itself, there are other target-specific details that are
needed when the code is compiled. A project provides a good container for such things. We
review the steps required to create a project from scratch in the next section.

How to do it...

1. Invoke uVision5. Open the Pack Installer, and copy the example program to a new
folder (name the folder CMSIS-RTOS Blinky).

2. Connect the evaluation board as described in the previous section. In addition
to the ULINK cable, remember to connect a USB cable to supply power to your
evaluation board.

3. Invoke uVision5 from the taskbar, select Project — Open Project; navigate to the
folder named CMSIS-RTOS Blinky, and open the file named blinky.uvprojx.

4. Build the project by selecting Project — Rebuild all target files, and then download
the executable code to the board using Flash — Download. Take a moment to locate
the Build, Rebuild, and Download shortcut icons on the toolbar as these save time.

5. Finally, press the RESET button on the evaluation board, and confirm that Blinky is
running. You may notice that the Blinky example program does a little more than just
flash one LED.

6. Once you have confirmed that your evaluation board is working, close the project
(Project — Close Project), and quit uVisionb.

The program uses some advanced concepts such as CMSIS-RTOS (discussed in Chapter 8,
Real-Time Embedded Systems.) to produce a visually interesting flashing LED pattern. We will
not attempt to explain the code here, but the next section will develop a much simpler Blinky
project called hello blinky.uvprojx.

—&]

Chapter 1

Writing a simple program

This section explains how to write, build, and execute a simple program. We also describe the
various files that, together, make up a uVision project.

How to do it...

1. Use Windows Explorer to create a new (empty) folder called helloBlinky c1vo0.
Invoke uVision5, and create a new project (Project — New uVision Project...).
Navigate to the folder, and create a project file called hello blinky.uvprojx.
When prompted, choose the STM32F407IGHx device. Click OK.

kA Options for Target 'Target 1'

.

===

Device]Targei | Output] Listing | User | C/C++| Asm | Linker | Debug | Uhiities |

I-- Facxs

5]

= ‘i STM32F4 Series
@ ‘1§ STM32F401
m 1§ STM32F405
1§ STM32F407
¥ “%5 STM32F407IE

Vendor: STMicroelectronics Software Pack
Device: STM22F4071GHx Pack: |Keil.STM32F4oc_DFP.2.6.0
Toolset: ARM URL: http-//www keil.com/pack
Search:
-l ¥ STMicroelectronics :J The STM32F4 family incorporates high-speed embedded memories

and an extensive range of enhanced 1/Os and perpherals connected
to two APB buses, three AHB buses and a 32-bit multi-AHB bus
matrix.

- 64-Kbyte of CCM (core coupled memory) data RAM
- LCD parallel interface, 8080/6800 modes

- Timer with quadrature (incremental) encoder input

- 5 V4olerant |/0s

- Parallel camera interface

- True random number generator

- RTC: subsecond accuracy. hardware calendar

- 96-bit unigue ID

-

Cancel Defaults

A Practical Introduction to ARM® CORTEX®

2. In Manage — Run Time Environment, choose the MCB32F400 board support using
the drop-down list, and tick the LED API (since our application will flash an LED).
Expand the Device option list, and tick Startup and Classic.

L Manage Run-Tima Enviros

Seftware Component Yart Version Description
= 4 Board Support MCBSTM3ZF400 E A0.0 Eeil Development Board MCBSTMIZF400 ol
51 4 A/D Converter (AP) 1.00 Al v 1f:

3 @ Accelerometer (AP]) 1.00 Accelerometer Intedface
5 4 Buttons (APD) 100 Buttons Interface

D . Camera (APT) 1.00 Camera Interface

(s 4 Graphic LCD (AP]) 1.00 Graphic LCD Interface

oR 2 Gyroscope (AP 1.00 Gyroscope Interface
54 Joystick (AP]) 1.00 Joystick Interface

= LED (APD 1.00 LED Interface
200 LED Interface for Keil MCBSTM32F400 Development Board
P 1.00 Touchscreen Interface
i 4 emWin LCD (AP]) 11 emWin LCD Interface
£ ‘ CMSIS Cortex Microcontroller Software Interface Components]
o 4 CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
oR Compiler | ARM Compiler Software Extensions
atartup, System Setup
240 Systern Startup for STMicroelectronics STM32F4 Series

STM32C ube Framework
140 Configuration via RTE Device.h

100 Configuration via STM32CubeMX _.'J
Validation Cutput Description
=4 Keil:DeviceStartup Additional software companents required -
= require CMSIS:CORE Select component from list
¥ ARM:CMSIS:CORE CMSIS-CORE for Cortex-M, 50000, and SC300
L Keil:DeviceSTM32Cube Framework: Classic Additional software components required
=l require CMSIS:CORE Select component from list
¥ ARM:CMSIS:CORE CMBSIS-CORE for Cortex-M, 50000, and SC300
require Device:STM32Cube HAL:Common Select component from list
¥ Keil:Deviee:STMI2Cube HAL:Common Common HAL driver
/_.__-::w‘.‘:m N ireCTAAII siba HALCarkbaw Calart ramannant fraem lick j
| Pesolve[)ScectPacks] [Detais | [[ox | cod Hep
¥-

3. Notice that the Validation Output pane display warns us that, to drive LEDs, we also
need CMSIS core, GPIO driver, and system start-up components. Press the Resolve
button to automatically include any libraries needed by the board features selected,
then click OK. The project window in uVision5 should show that the files have been
successfully loaded. The names of the folders can be changed using a right-click
menu, and fields can be expanded to show individual components, thereby allowing
the file components to be edited. Note: Some library files are read-only.

]

Chapter 1

"l Echn.o, e B
e
Dl [of yew Emjec Fih Oeboy Fespnerst ool YOS Mondow Heip
SdHa &) Lol = 00| @ e raneneenn [J] o | @ S al@ s
S e 1| e Pl B ol |
et T8 () tan —
| = % Preject pancliog S|

5 T LD MCOSTMIZMO0.c 1LLE)
& ok
o Device

OEI

[T e e— Lt L

4. Right-click Source Group 1, and select Add New Item to Group 'Source Group 1'...;
then select a C File (. c) template. Name the file hello Blinky.c, and enter the
following program:

YA R T IR
* Recipe: helloBlinky clv0

* Name: hello blinky.c

* Purpose: Very Simple MCBSTM32F400 LED Flasher

K o e mm o
*

* Modification History

* 16.01.14 Created

* 27.11.15 Updated

* (uVision5 v5.17STM32F4xx DFP2.6.0)

* Dr Mark Fisher, CMP, UEA, Norwich, UK

#include "stm32f4xx hal.h"
#include "Board LED.h"

int main (void) {
const unsigned int num = 0;
unsigned int i;

LED Initialize(); /* LED Initialization */

for (;;) { /* Loop forever */

A Practical Introduction to ARM® CORTEX®

LED On (num) ; /* Turn specified LED on */
for (i = 0; i < 10000000; i++)
/* empty statement */ ; /* Wait */
LED Off (num); /* Turn specified LED off */
for (i = 0; i < 10000000; i+4+)
/* empty statement */ ;
} /* end for */

}

5. The RTE manager of uVision5 will have configured the device options with values
from the device database, but the debug options should be reviewed by selecting
Project — Options for Target 'MCBSTMF400'... to ensure that they specify the
ULINK2/ME Cortex Debugger.

/* Wait */

kK Cptrons for Target 'MCBSTMFS0O"

Device | Target | Outpt | Listng | User | C/Cee | Aom | Linker

™ Use Serudstor mlﬁ

™ Limt Speadta Resl-Time

¢ |ULINKEME Contex Debugger = | | [J5etings |

| Load Boplentiion o Stadup W Funia mand) R Land Booleslion o Sadus ¥ Fusi o mand
| Indinkrptaon Fle ot B A P
1]
| o o I o |
Restom Debug Session Selfings Restorn Debug Seesion Seltings
W Breslponts M Toobox ¥ Brespoants W Tookox
[Wisich Widews 1 Padomancs Snalyser W \Weich Windows
[Marmary Disniey ¥ Mamory Desplay
CPUDLL Parmmeter Devwer DLL Parameter
|5F.F|HCH:I DLL |-HEm.= T |5-.'==H.':H3 DEL | MFU
Disag DLL Farnmeter: Dusiag OiLL Farmete

pCMDLL =

[TCMOLL [ochs

Chapter 1

6. Build the project by selecting Project — Rebuild all Target Files. Again, there is a
toolbar icon that provides a helpful shortcut.

7. Write the executable code to the microcontroller's flash memory using Flash —
Download. Press the RESET button on the evaluation board to run the program.

Downloading the example code

You can download the example code files for all Packt

~ books you have purchased from your account at
Q http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the
L files e-mailed directly to you. -

Those familiar with uVision4 will notice that the most obvious feature for of this program is
that a call to SystemInit () is missing, as this code is executed before main () is called. The
function called main () is the entry point for our program, and each project should declare
only one file that defines a main function. Conventionally, this might be called main.c, or
adopt a file name that is shared by the project such as helloBlinky.c.

Most of the file helloBlinky.c comprises comments,
\ which are highlighted in green. Comments do not produce any
~ executable code, but they are essential for understanding the
Q program. You may be tempted to omit comments, but you will
appreciate their value if, at some later date, you need to reuse
code written by others, or even yourself.

The source code file begins with a large comment statement that extends over several lines
and contains information about the program. Then there are C pre-processor directives;

we discuss these in Chapter 2, C Language Programming. The program comprises a main
function that declares two variables named i and num. There follows a function call to

LED Initialize () (written by developers) that sets up the GPIO peripheral which drives
the LEDs. The program contains three so called for loops. The outer loop, is known as a
superloop and never terminates. These statements within this loop are executed again and
again, forever (well for as long as power is supplied to the evaluation board). The statements
within the loop turn the specified LED ON and OFF by calling yet another function written by
Keil developers. The other two for loops, nested within the superloop, simply waste time by
incrementing the loop variable i. Implementing a delay in this way represents a very naive
approach, and we'll explore much more efficient techniques later. If you have not programmed
in C before, then although you'll probably appreciate that this program is very compact, you
may find it confusing. Don't worry, we'll revisit this program again when we introduce the C
programming language in Chapter 2, C Language Programming.

[A5]-

A Practical Introduction to ARM® CORTEX®

The structure of the uVision MDK projects has evolved considerably over the past few years and
uVisionb represents a significant revision in this respect. Developers of uVision5 have attempted
to make microcontroller software development much simpler by providing library functions that
can be used to control peripherals such as LEDs, accelerometers, touchscreen, and so on. Many
application developers migrating from uVision4 find this burdensome, and favor more classic
approaches that do not rely on intrinsic interface functions. Application programmers who wish
to use their own middleware functions are advised to download the ARMs MDK legacy support
pack (http://www2.keil.com/mdk5/legacy). The source files that, together with the
project options, define the helloBlinky project are summarized in the following table:

File Type File extension | Description
C File .c Source code written in ANSI C.
Header File .h File containing additional information to be

included in the source code

Assembly Language File | .s Source code written in ARMs Thumb?2
assembly language (Cortex-M cores)

Text File Axt Text file, usually containing description of the
project or instructions for running the code.

A configuration wizard is provided to customize some files (for example, startup
stm32F40xx. s). However, we will deal with these more advanced aspects in subsequent
chapters. Further, library and header file components, declared within the source files
themselves, are also listed in the project window, and can be opened in the editor window.
The file types you will encounter are described briefly in the following table, but will be
discussed in more detail in Chapter 2, C Language Programming.

File Type File extension | Description
C File .c Source code written in ANSI C.
Header File .h File containing additional information to be

included in the source code

Assembly Language File .S Source code written in ARMs Thumb?2
assembly language (Cortex-M cores)

Text File Axt Text file, usually containing description of the
project or instructions for running the code.

Chapter 1

The project options are functionally grouped together. They are accessed through the tabs
within the Project Options menu, and summarized in the following table. Further details are
available in the uVision User Guide.

Tab Description

Device Select the microcontroller device from the database

Target Specify hardware parameters

Output Define output files of the tool chain

Listing Specify all listing files generated by the tool chain

User Specify user programs executed before compilation / build
C/C++ Set C / C++ compiler-specific tool options

Asm Set assembler-specific tool options such as macro processing
Linker Set linker-related options, and define physical memory parameters.
Debug Specify settings for the uVision debugger

Utilities Configure utilities for flash programming

The options allow the developer to control quite small details of the build—for example, you might
find it more convenient to execute code as soon as it is downloaded to the target by configuring

the flash programming settings using the utilities tab as shown in the following image:

Caortex-M Target Driver Setup

[SEX)

Debug] Trace Fash Download

Download Functio

RAM for Algarithm

Lopn © E i ¥ Program
‘Fi {+ Erase Sectors [V Verfy Start: | 20000000 Size: | 1000
" Donot Erase [Reset and Run
Programming Algorithm
Description | Device Size Device Type Address Range
STM32F4xc Flash ™ On-chip Fash 05000000H - DBOFFFFFH

Size:

Cancel |

The STM32F400IGHx microcontroller implements 1MB On-chip Flash memory. RAM for
Algorithm defines the address space used by the programming algorithm for the device.

[i5]-

A Practical Introduction to ARM® CORTEX®

Understanding the simple use of GPIO

Making an LED blink involves connecting it to a signal that alternately switches ON and

OFF. General purpose input/output (GPIO) is the name of a microcontroller peripheral that
provides functionality to source many signals at once (that is, in parallel). GPIO peripherals are
designed to be very flexible, so configuring them can be rather confusing but using the RTE
manager makes this process much simpler. We will modify our hel1loBlinky c1v0 recipe
to simultaneously make all the LEDs blink rather than just one. Each LED on the evaluation
board is connected to a pin on the microcontroller, so to illuminate an LED the microcontroller
needs to provide a voltage and current similar to the that of a torch battery. To source this
current, the corresponding GPIO port bit connected to the pin must be configured as an
output that is switched ON and OFF by statements in our program that write to the port output
data register.

How to do it...

To configure the GPIO follow the steps outlined:

1. Make a copy of the helloBlinky c1vo0 folder from the previous recipe (and its
contents) and rename this copy as helloBlinky c1vl. Open the folder and open
the helloBlinky project (double-click on the file). Then edit the main function
defined in the helloBlinky. c file search for the following statement:

LED On (num);

2. Replace this statement with the following one:
LED_SetOut (On_Code) ;

3. Also, search for the following statement:
LED Off (num);

4. Replace this statement with the following one:
LED_SetOut (Off Code) ;

5. The variables, On_code and Of£_Code, are declared, as follows:

const unsigned intOff Code = 0x0000;
const unsigned intOn Code = OxO0OFF;

Chapter 1

6. A complete listing of the main function is as follows:

/* __
* Recipe: helloBlinky clvl
* Name: helloBlinky.c

* Purpose: Simultaneous MCBSTM32F400 LED Flasher

* Modification History

* 16.01.14 Created

* 03.12.15 Updated

* (uVision5v5.17+STM32F4xx DFP2.6.0)

* Dr Mark Fisher, CMP, UEA, Norwich, UK

#include "stm32F4xx hal.h"
#include "Board LED.h"

int main (void)

const unsigned intOff Code = 0x0000;

const unsigned intOn Code = O0xO0O0FF;
unsigned inti;

LED Initialize(); /* LED Init */
for (;;) { /* Loop forever =*/

LED_SetOut (On_Code) ; /* Turn LEDs on */

for (i = 0; 1< 1000000; i++)
/* empty statement */ ; /* Wait */
LED SetOut (Off Code) ; /* Turn LEDs off */

for (i = 0; 1< 1000000; i++)

/* empty statement */ ; /* Wait */

} /* end for */

}

7. Build, download, and run the application in exactly the same way as we did in the
previous version.

vww allitebooks.conl

http://www.allitebooks.org

A Practical Introduction to ARM® CORTEX®

The GPIO interface is a particularly important feature in microcontrollers because it is
designed to be easily integrated within user systems to drive light emitting diodes, read

the state of switches, or connect to other peripheral interface circuits. Early /0 ports

were prewired to provide either output or input interfaces, but soon they evolved into

general purpose interfaces that could be programmed to provide either output or input
connections. Later devices included more programmable features. As GPIO is so important for
microcontroller applications, designers are keen to specify as many I/0 pins as possible on
their devices. However, increasing the device pin-out adds cost because the device becomes
physically larger to accommodate the pins. This motivates manufacturers to develop devices
that have pins that are configured by software. As you can imagine, configuring such a device
is quite a challenge, so we're lucky that Keil's developers have provided library functions that
make this task more manageable. As GPIO represents the interface between hardware and
software, the evaluation board's schematic (http://www.keil.com/mcbstm32£400/
mcbstm32f400-schematics.pdf) is essential to understanding the I/0.

The STM microcontroller used by the evaluation board provides eight GPIO ports, named

A-l. Port pins PG6,7,8; PH2,3,6,7; PI10 are connected to LEDs. Those who have never
encountered an LED may imagine it as a filament lamp, but an LED is a semiconductor device
and behaves slightly differently. However, sticking with our initial lamp analogy (for the time
being), we'll first consider a battery-operated torch comprising a battery, switch, and lamp.
These components are connected by a copper wire that is often hidden within the body of the
torch. We'll assume that the torch uses two AA batteries providing a voltage of about 3 Volts.
We can depict the circuit as a diagram with symbols representing each of the components, as
shown in the following diagram:

— O © o

BV —_ 3V —__—

When we close the switch, the battery voltage (denoted V) is applied directly to the lamp, a
current flows (denoted 1), heating the lamp filament, and this in turn, gives out light.

]

Chapter 1

The electrical resistance (denoted R) of the filament determines the amount of current that
flows according to Ohm's Law that is as follows:

] =

IR

Lamp filaments used in torches usually have a resistance of about 10 Ohms (10 Q), so the
amount of current flowing is about 0.3 A or 300 mA.

Imagine that a fault develops, which produces a short across the lamp. The current flowing

is now only limited by the resistance of the copper wire and the internal resistance of the
battery; these are both very small (a fraction of an Ohm). A high current will circulate which
might, if the battery stored enough energy, cause the copper wire to heat up and melt the
plastic case of the torch. However, AA batteries are unable to store sufficient energy for this to
be a serious problem and in most cases the battery will discharge within a few seconds.

In modern torches, the lamp is replaced by an LED, which is a semiconductor device (its
electrical properties lie between those of conductors, such as copper, and insulators, such as
glass). An LED is a two terminal device with special properties. One of the terminals is known
as the anode and the other as the cathode. If we replace the lamp in our torch with an LED,
then current will only flow and the LED will illuminate when the anode is connected to the
positive-battery terminal and the cathode to the negative-battery terminal, as depicted in the
following diagram:

|

Y + A
V| Cathode |\ v

]
I

If we connect the device the other way round as depicted in the right side of the preceding
diagram, then no current will flow; so, make sure that the batteries in your LED torch are
fitted the right way round! When the anode is connected to the positive-battery terminal, the
diode resistance is very low and the diode is said to be forward biased. When the cathode

is connected to the positive-battery terminal the diode exhibits an extremely high resistance
(negligible current flow) and the diode is said to be reversed biased. When forward biased,
the LED exhibits an extremely low resistance, so an additional resistor must be placed in the
circuit to limit the current flowing.

(7]

A Practical Introduction to ARM® CORTEX®

[

I
m Anode

VT __— T Cathode

N\
N\

GPIO can also be used to read the state of switches that are connected to microcontroller
pins. For this operation, each port bit must be configured as an input. When configured

for input (that is, output is disabled), each bit of the parallel port's input data register is
connected to a pin on the integrated circuit (on which the embedded processor is fabricated).
Let's assume that we wish to connect a simple push-button switch to an input bit such that
when the switch is operated, a voltage is applied to the port (pin), otherwise, no voltage

is applied. The circuit a) shown as follows will achieve this. A complementary circuit that
produces a voltage when the switch is open, and no voltage when the switch is operated
(closed) is shown in b):

R Pull-up
T oLt

Mecrocontioler | 2 St T

Poill-Dicram
Rt tor

Chapter 1

To eliminate the need for an additional resistor, the GPIO port input circuit includes one that
can be configured by software as pull-up, pull-down, or disconnected. Obviously, when the port
is configured as an output, both resistors are disconnected.

There's more...

Section 7 of STMicroelectronics Reference manual RM0O090 (www . st . com) for
microcontrollers featuring the Cortex-M4 provides comprehensive programming details

for the GPIO port. As well as producing logic signals (for example, making LEDs blink) and
reading logic levels (for example, from switches), GPIO ports also provide an /0 path for other
peripheral functions, such as Times and Digital-to-Analogue converters. We'll take a closer
look at GPIO later on in this cookbook when we write programs that include more functionality.

Estimating microcontroller performance

The millions of instructions that can be executed per second (MIPS) is one measure of
processor performance. This figure depends on the processor architecture, the clock speed,
the memory performance, and so on. The microcontroller can be clocked from one of three
oscillator sources. A high speed external (HSE) clock is derived from a 25 MHz crystal
oscillator connected between two pins of the microcontroller. A high speed internal (HSI)
clock is sourced from an internal 16 MHz resistor-capacitor (RC) controlled oscillator, and a
Phase Locked Loop (PLL) can be configured to provide multiples of either HSE or HSI.

A peripheral called reset and clock control (RCC) allows the clock source to be selected and
configured using a circuit known as a clock tree. The RCC peripheral also sources clocks for
other microcontroller peripherals, and these also need to be configured. Following a hard reset,
the RCC configuration is determined by the RCC register default values given in the RMO090
Reference Manual (www . st . com). Selecting Startup from the Device submenu of the RTE
manager copies an assembly language file named startup stm32£407xx.s (the . s file
extension is conventionally used to identify assembly language files) to our project. This file holds
the exception table. The reset exception generated by a hard reset (that is, activating the reset
button on the evaluation board) causes the microcontroller's program counter to be loaded with
the address of the reset handler (identified by symbol Reset Handler), and this in turn calls
a function named SystemInit () defined in the file, system stm32f4xx.c . This function
configures the RCC to use the 16 MHz HSI clock before calling the function main ().

A Practical Introduction to ARM® CORTEX®

How to do it...

1. Run helloBlinky, and measure the frequency of the 'blinks'. We should see about
4 blinks/second or 4 Hz. It may be easier to count the blinks in a 10-second period.

2. When we examine the program code shown earlier, we see that the program spends
most of its time executing the two nested for loops. The statements inside these
loops are executed thousands of times. Some readers may have spotted that there
are no statements called inside the loop; but even so, the loop counter must be
updated on each iteration. This operation requires a addition (ADD) instruction
followed by a compare (CMP) instruction to be executed.

3. We need to do some elementary math to work out how long it will take to execute
these two instructions. Checking Table 3.1 of the ARM Cortex-M4 Processor
Technical Reference Manual, we see that these each take 1 cycle to execute. Since
SystemInit () configures the RCC to use the HSI (16 MHz)clock, the time needed to
switch the LED ON/OFF once will be 2 X (1000000) x 1/(16 x 106) x 2 (instructions)
=250 ms (that is, about 4 times per second).

To understand how the processor achieves this level of performance, we need to look at the
processor architecture. The processor implements the ARMv7-M architecture profile described
athttp://infocenter.arm.com. ARMv7-M is a 32-bit architecture and the internal
registers and data path are all 32-bit wide. ARMv7-M supports the Thumb Instruction Set
Architecture (ISA) with Thumb-2 technology that includes both 16 and 32-bit instructions.
ARM processors were originally inspired by Reduced Instruction Set Computing (RISC)
architectures developed in the 1980s. RISC architecture attempted to improve on the
performance of traditional computer architectures of the era that employed the so-called
Complex Instruction Set Computing (CISC) architectures, by defining an ISA that supported
a small number of instructions, each of which could be executed in one processor clock cycle,
and so achieve a performance advantage. In the three decades since RISC was proposed, the
size and complexity of RISC ISA's has increased, but the goal is still to minimize the number
of clock cycles needed to execute each instruction. With this in mind, ARM Cortex-M3 and M4
processors have a three-stage instruction pipeline and Harvard bus architecture. Computers
that use Harvard architecture have separate memories and busses for instructions and data
rather than the shared memory systems used by von Neumann architectures, and the higher
memory bandwidth this affords can achieve better performance.

=

Chapter 1

The Cortex-M4 processor also provides signal processing support including a Single
Instruction Multiple Data (SIMD) array processor and a fast Multiply Accumulator (MAC).
Together with an optional Floating Point Unit (FPU), these features allow the Cortex-M4 to
achieve much higher performance in Digital Signal Processing (DSP) applications than the
earlier Cortex-M3.

Besides manufacturers' data sheets, there are a few books that address the Cortex-M4.
Joseph Yiu's books (http://store.elsevier.com/Newnes/IMP_73/) on the Cortex-M3
and M4 processors are aimed at programmers, embedded product designers, and System-on-
Chip (SoC) engineers. Books for undergraduate courses include a series of books by Jonathan
Valvano (http://users.ece.utexas.edu/~valvano)and a text written by Daniel Lewis
(http://catalogue.pearsoned. co.uk). Trevor Martin has also written an excellent
guide to STM32 microcontrollers. This document is one of a number of insider guides that can
be downloaded from http://www.hitex.com.

C Language
Programming

In this chapter, we will cover the following topics:

» Configuring the hardware abstraction layer

» Writing a C program to blink each LED in turn
» Writing a function

» Writing to the console window

» Writing to the GLCD

» Creating a game application - Stage 1

» Creating a game application - Stage 2

» Debugging your code using print statements
» Using the debugger

Introduction

This chapter will introduce you to writing programs in C, a high-level language developed in
the 1970s and popular amongst embedded system developers. It is not the only high-level
language that can be used to target embedded system applications, but it is the most widely
used, because it produces executable code that is compact and very efficiently executed.
Standards for C are published by the American National Standards Institute (ANSI) and

the International Organization for Standardization (ISO). The current standard for the C
Programming Language (C11) is ISO/IEC 9899:2011 (http://www.open-std.org/jtcl/
sc22/wgl4d /www/standards).

=}

C Language Programming

Becoming a competent C programmer will take time, and although this chapter provides
a starting point, you will undoubtedly need to consult other texts that provide a more
thorough treatment of the topic. There are also a number of online resources such

as http://crasseux.com/books/ctutorial/ and http://www.csd.uwo.
ca/~jamie/C/index.html.

Configuring the hardware abstraction layer

The method we deployed in Chapter 1, A Practical Introduction to ARM® CORTEX® used
Startup.c to provide a very basic Run Time Environment (RTE), and although this is
sufficient to get started blinking LEDs, we need to define a more advanced RTE to take
advantage of the other peripherals we'll meet in future recipes. The Application Programmers
Interface (API) that STMicroelectronics (STMicro) provide for their microcontrollers is called

a hardware abstraction layer (HAL), and CMSIS v2.0 compliant programs must configure
this before initializing their peripherals. The RTE manager offers two routes named Classic
and STM32CubeMX to configure the HAL. Selecting STM32CubeMX invokes a graphical

tool developed by STMicro (freely available at www . st . com) that creates the RTE (that is,
generates RTE. h and imports the associated libraries). We describe this process in Chapter
9, Embedded Toolchain. Since we're already familiar with the Classic API, we'll continue to use
this, and simply add a few lines of code to configure the HAL.

How to do it...

For configuring the HAL follow the steps outlined:

1. Make a copy of the folder helloBlinky c1vl which we created in Chapter 1, A
Practical Introduction to ARM® CORTEX®, Understanding the simple use of GPIO and
name it helloBlinky c2vO.

M Copying a folder and renaming it is a quick way to extend an
Q existing project. Future recipes refer to this process as cloning
the project.

Chapter 2

2. Open the project, and using the RTE manager, expand the CMSIS—RTOS (API)
software component. Check the KeilRTX option. Click on Resolve, and exit using OK.

"L Manage Run-Time Environment I |] |

s
e e c——

Software Component Sel. Vanant Version Description
£ 4 Board Support MCBSTM32F400 EIL0.0 Keil Development Board MCBSTM32F400 i |
& 4 A/D Converter (APT) 100 A/D Converter Interface
& @ Accelerometer (AP]) | 100 Accelerometer Interface
@ € Buttens (APD) | 1100 Buttons Interface
® € Camera (APT) | 1100 Camera Interface
® 4 Graphic LCD (AP]) | 1100 Graphic LCD Interface
= @ Gyroscope (API) | 1100 Gyroscope Interface
® @ Joystick (4PT) 100 Joystick Interface
=R 315D (APD) 100 LED Interface
¢ LED o 200 LED Interface for Keil MCBSTM32F400 Development Board
@ Touchscreen (APT) 100 Touchscreen Interface
& € emWin LCD (APD | |11 emWin LCD Interface
o ¥ ovsis Migrocontroller Softwar
¥ CORE @ 430 MSIS-CORE for Cortex-M
@ Dsp 1456
= 4 RTOS (AP]) 10
[@ Keil RTX ® |4800
| | @ & cMSIS Driver | —
[| =@ compiter [ARM Compiler Software Extensions
4 Device Startup, System Setup
¥ Startup ® 240 System Startup for STMicroelectronics STM32F4 Series
= 4 STM32Cube Framework (APD) | | STM32Cube Framework
@ Classic @ 140 onfiguration via RT| Y
¥ STM32CubeMx LI 1.00 Configuration via STM32CubeMX Ll
o g i e 5 |
Validation Output Description
 ——
([Feie Yot pac] [oo | C=D o | |

3. Add #include "cmsis_os.h"

4. Add a function prototype declaration, that is, void SystemClock Config(void)

in the file helloBlinky.c.

5. Add the following lines of code (copy and paste from the example project CMSIS-

RTOS Blinky):

#ifdef _ RTX
extern uint32 t os_time;

uint32 t HAL GetTick (void)
return os_time;

}

#endif

{

C Language Programming

6. Copy the function named SystemClock Config () from the example project
CMSIS-RTOS Blinky, and paste this into the file helloBlinky.c.

7. Addcallsto HAL Init () and SystemClock Config () atthe beginning of
main (). Our source code file helloBlinky.c should now appear as follows:

#include "stm32f4xx hal.h"

#include "Board LED.h"
#include "cmsis os.h"

/* Function Prototype */
void SystemClock Config(void) ;

#ifdef _ RTX
extern uint32 t os time;

uint32 t HAL GetTick(void) ({
return os_time;

}

#endif

/**
* System Clock Configuration
*/

void SystemClock_ Config(void) ({
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;

/* Enable Power Control clock */
__HAL RCC_PWR_CLK ENABLE() ;

* The voltage scaling allows optimizing the power

/ h 1 1i 11 imizi h
consumption when the device is clocked below the
maximum system frequency (see datasheet). */

HAL PWR VOLTAGESCALING_ CONFIG
(PWR_REGULATOR_VOLTAGE_ SCALEl) ;

/* Enable HSE Oscillator and activate PLL
with HSE as source */

RCC OscInitStruct.OscillatorType =
RCC_OSCILLATORTYPE HSE;

RCC_OscInitStruct.HSEState = RCC HSE ON;

RCC OscInitStruct.PLL.PLLState = RCC_PLL ON;
RCC_OscInitStruct.PLL.PLLSource = RCC PLLSOURCE HSE;
RCC OscInitStruct.PLL.PLLM = 25;

RCC_OscInitStruct.PLL.PLLN 336;
RCC_OscInitStruct.PLL.PLLP = RCC PLLP DIV2;
RCC_OscInitStruct.PLL.PLLQ 7;

HAL RCC_OscConfig (&RCC_OscInitStruct) ;

/* Select PLL as system clock source and configure
the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE SYSCLK |
RCC_CLOCKTYPE_ PCLK1 |
RCC_CLOCKTYPE PCLK2;
RCC_ClkInitStruct.SYSCLKSource =
RCC_SYSCLKSOURCE PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK DIV2;
HAL RCC_ClockConfig (&RCC_ClkInitStruct,
FLASH LATENCY 5);

/**

* Main function

*/

int main (void) {

const unsigned int Off Code = 0x0000;
const unsigned int On_Code = 0x00FF;
unsigned int 1i;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config (); /* Config Clocks */
LED Initialize (); /* LED Init */
// etc...

}

8. Build and run the program.

!

Q

Notice that the code executes about 10 times faster than the
recipe of Chapter 1, A Practical Introduction to ARM® CORTEX®.
Try commenting out the call SystemClock Config () in
main () byplacing // immediately before the statement.
Rebuild and run. Compare the execution speed of the two versions.

Chapter 2

e

C Language Programming

The function SystemClock_Config () comprehensively configures the clock tree shown
in Figure 16 of STMicro's reference manual RMO090 (www . st . com). It selects the Phase
Locked Loop (PLL) clock derived from the 25 MHz crystal controlled HSE clock as the System
Clock, and configures the multiplier N = 336 and dividers P =2 and M = 25. The system clock
frequency is given by:

Tx/Rx baud= fon

8 (2><OVERS) xUSARTDIV

The configuration values are held in two data structures (structs) called
RCC_OscInitStruct and RCC_ClkInitStruct.

As we will see later in the chapter, functions may be declared implicitly by the function
definition or explicitly by a function prototype. Function prototypes are considered to be
preferable, and these are often declared in header files (for example, see Board LED.h).
So, in case we've given a prototype declaration first,

Structs just identify the arrangements of data in memory. We will discuss structs later once
we've dealt with more basic data types such as integers.

Finally, the following section of code:

#include "cmsis os.h"

#ifdef _ RTX
extern uint32 t os_time;

uint32 t HAL GetTick(void) ({
return os_time;

}

#endif

It isn't strictly necessary for a program that only uses GPIO, but subsequent recipes using
other peripherals need it. So, to avoid illustrating the configuration each time, we'll assume
this boilerplate is included in all future recipes.

Lastly, we've called our source code file hel1loBlinky.c. This is the same name we gave the
project. By convention, this indicates that this source code file contains the main () function.

Chapter 2

Writing a C program to blink each LED

in turn

This recipe extends the helloBlinky c2v0 recipe introduced in the previous section, and
includes a few more C programming statements. We'll call our new recipe helloBlinky
c2v1l. uVision5's IDE features a so-called folding editor that allows blocks of code and
comments to be hidden or expanded. This is quite useful for hiding complexity, allowing us to
focus on the important details.

Getting ready...

First, we'll draw a flowchart describing what our program will do. Don't worry about the details
at this stage, we just need to describe the behavior. A flowchart describing helloBlinky
c2v1l is shown as follows:

= <
START J Begin/End
I - \ |
| ()
Initialise LEDs
* - Degisien
Turn Specified LED | False P |
e | 4 Condition? ™
— |
-
| ¢ True |
— M /”. TH\.H‘\ Process
i=i+l *_‘(‘x i=10°F e
P

~, -
e - |
o

g | -
|

Turn Specified LED
off

Increment num | f

[maodulo 8)

C Language Programming

Our program will need to change the value of a number stored in memory that determines
the LED that is illuminated. Numbers coded in this way are called variables. The name of the
variable is chosen by the programmer (usually programmers try to pick meaningful names);
in this case, it's referred to by the identifier num. Since there are only eight LEDs, the values
we assign to num are 0,1,2,3,4,5,6, and 7. The subroutines LED On and LED_Off use the
variable to determine which LED is switched.

The flowchart illustrates several different types of operation, identified by the geometrical
shapes shown in the preceding diagram as follows:

» Diamond: A decision operation with two outcomes Yes (True) or No (False)

» Rectangle: A process operation

» Parallelogram: A data operation

» Rounded rectangle: Start/End
Within the flowchart, we can identify processes that are executed within a loop, and so are
repeated until a certain condition is fulfilled. Structures such as this are a common feature in

algorithms, and high-level programming languages have evolved to enable such operations to
be efficiently coded.

How to do it...

1. Clone helloBlinky c2v0 to create helloBlinky c2vl.

Modify main () as follows (keep the boilerplate unchanged):
int main (void)

unsigned int i;

unsigned int num;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config (); /* Config Clocks */
LED Initialize (); /* LED Init */
for (;;) { /* Loop forever */
LED On (num) ; /* Turn LEDs on */
for (i = 0; 1 < 1000000; i++)
/* empty statement */ ; /* Wait */
LED Off (num); /* Turn LEDs off */
for (i = 0; 1 < 1000000; i++)
/* empty statement */ ; /* Wait */
num = (num+1)%8; /* increment num (modulo-8) */

} /* end for */

}

=

Chapter 2

3. Once we have entered the code, we build it and download it to the evaluation board
in exactly manner as we did for the helloBlinky c2vO0 recipe.

4. Run the program by pressing RESET on the evaluation board.

The program starts with two statements beginning with a # character. These are not program
statements but directives for the C preprocessor. The preprocessor resolves all these
directives before the C compiler parses the rest of the code. It is considered good practice

to group these together at the start of the program. Preprocessor directives can only extend
over one line, and they are not terminated by a semicolon. However, to aid readability, longer
directives can be split over several lines by using a \ character to terminate each block of text.
There are six types of directives:

» Macro definition: #define and #undef

» Conditional inclusion: #ifdef, #ifndef, #if, #endif, #else, and #elsif

» Line control directive: #1ine

» Error directive: #error

» File inclusion: #include

» Pragma directive: #pragma
We'll briefly explain these directives as they are introduced in the recipes we consider.
However, there are plenty of online resources available for those who feel they need more

detail (for example, http://gcc.gnu.org/onlinedocs/cpp/). The preprocessor parses
the headers:

#include "stm32f4xx hal.h"
#include "Board LED.h"
#include "cmsis os.h"

replacing each #include directive with the contents of the files stm32f4xx hal.h,
Board LED.h.and cmsis_os.h. By convention, include files adopt . h file extensions, while
those not included in other files are given a . c file extension. Later on, we'll meet another
style of #include directive:

#include <stdio.h>

In this case, the filename is enclosed in angled brackets. This syntax is used to indicate

that the compiler's standard include path is to be searched. When the filename is enclosed
in double quotes, the search path includes the current directory. We can add folders in the
include path, and select compiler options using the C/C++ tab in the project options window.

C Language Programming

The next statement declares a function called main (). Every C program must include one
(but only one) function named main (). The structure of the main () function of all the
embedded C programs that we'll meet is as follows:

int main (void)

}

We identify the input arguments (args) of main () inside the brackets; in this case, there

are none, and so we use the reserved word void to indicate none are to be expected.

Before main () we see (primitive data type) int, indicating that main () returns an integer.
Conventionally, main () returns a value O to indicate to the program that called main () (thatis,
the operating system) that the program terminated successfully. But since our program doesn't
run under an operating system and typically declares an infinite loop (called a superloop), there
is no need to include a return statement at the end of main () (if we do, the compiler will warn
us that it's not reachable). The other feature of main () are the braces, { and }, that are used
to identify the beginning and end of the block of statements that comprise main (). Note that
the curly bracket (opening brace) immediately following main () is paired with the closing brace
that terminates the statements within main (). These braces mark the beginning and end of
the main () function; the statements inside the braces belong to main (). We indent these
statements to make this clearer. The first two statements in main () are variable declarations.
Because C is a strongly-typed language, we must declare all our variables before we use them.
In so doing, we're telling the compiler how many bits to use to represent the number so that it
can determine the size of the memory space needed to store them.

The values that a computer manipulates are stored in binary. In the binary system, number
values are represented by a sequence of digits, just like the decimal system. However,
whereas the decimal system uses digits 0,1,2,3,4,5,6,7,8, and 9, the binary system uses only
0 and 1. Digits O and 1 in the binary number system are called bits.

The decimal system is a positional number system, where the value of the number is
determined by the position of the digits relative to the decimal point. Conventionally, when
we write whole numbers, we assume the decimal point is immediately to the right of the
least significant digit. Hence, if there are three digits, each represents (from left to right) the
number of hundreds (102), tens (10%), and units (10°), for example:

365,,=(3x 10%) + (6 x 10%) + (5 x 10°)

Consider a similar 3-bit binary number. Here, each bit represents (from left to right) multiples
of 22, 2%, and 2°, for example:

101,=(1x22) +(0x 2" +(1x29 =5

In the preceding examples, we are using a subscript to represent the base (or radix) of the
number system just to avoid any confusion.

=

Chapter 2

Inside a computer, each bit is represented as an electrical signal; typically a +ve signal voltage
represents a '1' and no voltage (0 v) represents '0'. To manipulate a 3-bit binary number, a
computer must provide three signal transmission paths, and the registers within the Central
Processing Unit (CPU) must be capable of storing 3 bits. You have probably already spotted
that three bits isn't going to be of much use, as a 3-bit computer can only manipulate
guantities between O, and 7. Historically, some simple 3-bit computers have been used for
elementary control tasks, but many more have been designed to manipulate 8, 16, 32, and
64 bits. The number of bits that a computer has been designed to manipulate is called its
word length. As we've seen, the ARM Cortex has been designed with 32-bit registers (that is,
a 32-bit word length). A typical ARM Cortex register can be visualized as 32 cells, each able to
store 1 bit of data:

23 20
1[1]ofof1]ofJofo]o]Jof1]ofJofol1]ofo]o]Jofo]oJofo]oJoJo]oJof1]0 Jo J1
MSB LSB

The preceding register is shown storing a binary representation of the decimal number:
(Ix2%)+(1x2%)+(1x27)+(1x2%)+(1x2"7)+(1x2%)+(1x2°)=3357671363,,

A 32-bit register can store positive numbers between 0 and (2°*1), that is, (O - 4294967199).
Most of us (me included!) need a pocket calculator to convert between binary and decimal (and
vice versa), so we need a more human-friendly way of efficiently representing binary quantities.
Hexadecimal (radix 16) representations provides this by allowing groups of 4 bits (representing
0-15,) to be mapped to digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F, that is:

1]1]ofJo]1]o]JoJoJoJo]1]oJoJo]1]o]o]o]o]o]o]o]o]o]ofo]o]o]1]o]o]1
c 8 2 2 0 0 0 9

Hence, 110010000010001000000000000010012 = 3357671363, , = C8220009, .. We
identify hexadecimal (hex) numbers in C programs using the syntax OxC8220009. In this
case, since there are 8 hex digits, we have an 8 x 4 = 32-bit binary word.

The number of bits used to represent a number is determined by its data type. Some of the
more common basic (also called primitive) C data types are:

» char (8-bit)

» short int (16 bits)

» unsigned short int (16 bits)

» int (32 bits)

» unsigned int (32 bits)

» long int (64 bits)

» unsigned long int (64 bits)

C Language Programming

A full list of basic types is available at https://en.wikipedia.org/wiki/C_data_
types. Data types qualified by the identifier unsigned indicate that the value should be
interpreted as representing only positive quantities. Sometimes, embedded developers define
aliases for the basic data types, such as int32 t,uint32_ t, and so on. We'll explain the
purpose of this in Chapter 3, Assembly Language Programming but for the time being, don't
be concerned if you see these identifiers used in library functions.

The helloBlinky clv1l recipe of Chapter 1, A Practical Introduction to ARM® CORTEX®
declares two variables, both 32 bits in length:

const unsigned int num = 0;
unsigned int i;

The first variable declaration is preceded by the qualifier const and assigned a value O. The
const qualifier tells the compiler to treat the variable as a constant, and so, if we attempt to
change its value in a subsequent assignment statement, then the compiler will issue an error.
When a variable is declared, the compiler just reserves somewhere to store it; this might be in
a register (registers are places that data can be stored in the processor) or in memory. Values
are assigned to variables by assignment statements; for example,

p = 0;
places O in the memory location or register referenced by the identifier p.

To generate a more interesting LED lightshow, we'll need to write to a different LED each
time we execute the superloop. We use the functions LED On () and LED Off () to switch
the LEDs (as we did in helloBlinky c1v1), but this time, we increment that value of the
variable (num) that controls the LED that we switch each time we iterate the superloop. Since
there are 8 LEDs (num = 0 represents the Least Significant LED and num = 7 the Most
Significant), we need num to behave as a modulo-8 counter (that is, 7+1 = 0). The statement

num = (num+1)%8;

achieves this. The % operator performs modulo division. Of course, we don't need the const
qualifier in the declaration for num, as its value is changed within main (). Variable 1 is used
by the for loop to implement a delay in exactly the same way as it was in our helloBlinky
clvl recipe.

High-level languages such as C typically provide mechanisms that allow the programmer

to express decisions and iterations within the algorithm by means of IF, FOR, and WHILE
structures shown in the following diagram (a). uVision5 provides common templates shown in
(b) to help the programmer include these structures in their code.

Chapter 2

IF-ELSE FOR/WHILE LOOP
r 1 ¢ - 1 Templates =]
e | g | Hinclude
| False _.-”/ True | ,.)E/ T j\ True 1 . gonlmue
| 1':E0nditi0n:.{:>— | | \hgn I‘EIDE/./}—D oop Process | Cgum
~. . far
| ~ | | | foniriter_tuoe
| False | function
| = | | | Header
if
| Process B Process A | | | g::r\::t
| | st
| | woid
| l l | | | while
l_ ____________ il l_ ____________ 1 Eel€ge| OF 0,1
a) b)

The helloBlinky c1v1l folder we developed in Chapter 1, A Practical Introduction to ARM®
CORTEX® was quite small and could easily be described by a flowchart (try to sketch it), but as
programs become larger, their flowcharts become large and unwieldy. Handling complexity is
a common problem in all engineering disciplines and one that is solved by a technique called
hierarchical decomposition. This is a long name for something quite simple. It just means we
keep on subdividing complex designs into smaller and smaller parts until they become simple
enough to handle.

Writing a function

Functions (sometimes called subroutines) are used to hide the complexity of underlying
program statements, thereby presenting a more abstract view of the program. Abstraction is
commonplace in engineering; for example, we can think of a car as comprising subassemblies
that include body, engine, gearbox, suspension, and so on. The complexity within these
subassemblies is only important to those specialists such as designers, test engineers, and
technicians who need to interact with them. For example, the designers of the gearbox don't
need to concern themselves with the intricacies of the engine, they just need to know a few
important parameters. Functions provide a similar abstraction mechanism. We already met
the functions LED Initialize (); LED_On(),and LED_ Off () used to initialize and switch
the LEDs. We don't need to know exactly how these functions do their job but only how to

use them. C provides functions as a mechanism of achieving hierarchical decomposition. For
example, our main () function of helloBinky c2v1 is becoming a bit cluttered and difficult
to follow. To simplify the structure, the two for loops that simply introduce a delay could be
repackaged as a function called delay () that accepts one input arg (that determines the
length of the delay) and returns no output args (that is, void).

[vww allitebooks.cond

http://www.allitebooks.org

C Language Programming

How to do it

Clone the helloBlinky c2v1 projectto give helloBlinky c2v2.
Edit Bl1inky.c, and define the function delay () by adding the following;:

void delay (unsigned integer d)
unsigned integer i;

for (i=0; 1 < d; i++)
/* empty statement */ ;

}

3. It doesn't matter if the definition is placed before or aftermain (), but it shouldn't
be nested inside main () (Note: functions defined inside other functions are called
nested functions). Declare the function by including a function prototype declaration
at the start of the program (that is, before the function is defined).

void delay (unsigned int) ;

4. Replace the statements:
for (i = 0; i < 1000000; i++)
/* empty statement */ ; /* Wait */
5. Call the following function:

delay (num_ ticks);

6. Declare a new variable in main () and initialize it.

const unsigned int num ticks = 500000;

7. The relevant changes are shown as follows (omitting boilerplate code):

void delay (unsigned int); /* Func Prototype */

int main (void) {
const unsigned int max LEDs = 8;
const unsigned int num ticks = 500000;
unsigned int num = 0;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config (); /* Config Clocks */
LED Initialize (); /* LED Init */
for (;;) { /* Loop forever */
LED On (num) ; /* Turn LEDs on */
delay (num_ ticks);
LED Off (num); /* Turn LEDs off */

Chapter 2

delay (num ticks);
num = (num+1l)%max LEDs; /* increment num (mod-8) */
} /* end for */
} /* end main () */

void delay (unsigned int d){ /* Function Def */
unsigned int i;

for (i1 = 0; 1 < d; i++)
/* empty statement */ ; /* Wait */
} /* end delay () */

Essentially, we've moved the for loop which implements the delay to within the function. The
for loop itself is very similar to that used by helloBlinky c2v1, except that the compare
instruction used to terminate the loop now references the input argument d rather than a
literal value (that is, 2000000).

for (i=0; 1 < d; i++) {

I

}

This is advantageous because it parameterizes the delay function, thereby allowing it to

be used to implement different length delays, determined by the value of input argument

d. An important feature of all programming languages is the mechanism they use to pass
arguments to a function when it is called. There are two general models, called pass-by-value
and pass-by-reference. The delay function call we've used here:

delay (num ticks);

adopts a pass-by-value model. In this case, a copy of the variable num_ticks is passed to
the delay function, and this copy can be referenced through the variable d. The statements
inside the function can only access the variables declared within the function (that is, local
to the function) and the input arguments. The function may change the value of the copy,
but when the function terminates the copy (and the so-called automatic variables declared
inside the function cease to exist). This model works fine in this case, because the function
doesn't need to change the value of the variable num_ticks declared inmain () (thatis,
the calling function).

C Language Programming

All identifiers in C need to be declared before they are used. This is true of functions as well
as variables (you may be catching onto the idea that C compilers don't tolerate surprises!), so
functions should be declared before they are defined or called. A function declaration (also
called a function prototype) includes the type of variable returned by the function, and the
types of all the input args. C compilers accept the function definition as an implicit declaration
and lazy programmers sometimes take advantage of this and omit the function prototype. But
in this case, it must occur before the function is called. Nevertheless, it is considered good
practice to include prototypes for all functions used. Function prototypes are usually placed

at the beginning of the program or in a separate #include file. The prototype for our delay
function looks like this:

void delay (unsigned integer) ;

include them to make our code more readable.

There's more...

If the delay function did need access to main functions variable, num_ticks, then it would
need to access the memory location where num_ticks was stored. In this case, rather than
passing a copy, we need to pass a reference (or so-called pointer) to the variable. C includes
two special operators (* and &) for handling memory references. The ability to manipulate
pointers as well as variables makes C a very powerful language, and it is a feature that is
particularly useful for embedded systems programming. Consider the declaration:

1
[‘Q White space characters are ignored by the compiler; we only]

unsigned int *ptr;

Here, ptr is the name of our variable, but in this case, it is preceded by the dereferencing
operator * which tells the compiler it's a pointer variable, and so, the compiler must reserve
enough memory to store an address. It also says the address will reference (that is, point

to) an unsigned integer. When the pointer is declared and hasn't been assigned, we say the
pointer is NULL (that is, its value cannot be guaranteed). To assign the pointer, we need to find
the address of the variable num_ticks; the & operator achieves this. For example:

ptr = &num ticks;

Let's consider another version of the delay function that doesn't declare the local variable i,
but instead, employs a while loop that decrements the variable num ticks declared in main.
To do this, the function call to delay (within main) will need to pass a reference (or pointer) to
num_ticks, and the delay () function will need to be told to expect a pointer to an unsigned
integer as an input arg. Therefore, the function prototype will need to be changed to

void delay (unsigned int *);

£

and the function declaration itself becomes:
void delay (unsigned int *ptr)
while (*ptr > 0)

*ptr = (*ptr)-1;

}

{

/* Wait =/

Chapter 2

The delay function uses the dereferencing operator * whenever it needs to access the
value pointed to by ptr. The following recipe (helloBlinky c2v3)represents a version

of helloBlinky that uses pointers:

void delay (unsigned int ¥*);

int main (void) ({
const unsigned int max LEDs =

const unsigned int wait period

unsigned int *ptr;
unsigned int num ticks;
unsigned int num = 0;

HAL Init ();
SystemClock Config ();
LED Initialize();

for (;;) {
LED_On (num) ;
num_ticks = wait period;
ptr = &num ticks;
delay (ptr);
LED Off (num);
num_ticks = wait period;
delay (ptr);

num = (num+l)%max_ LEDs;
} /* end for */
} /* end main () */

void delay (unsigned int *p){

while (*p > 0)
*p = *p-1;

} /* end delay () */

/* Func Prototype */

500000;

/* Init Hardware Abstraction Layer */

/* Config Clocks */
/* LED Init */

/* Loop forever */
/* LED on */

/* (re)set delay */
/* assign pointer */

/* call delay function */

/* LED off */
/* (re)set delay */

/* call delay function */
/* increment num (mod-8)

/* Function Def */

/* Wait */

@

C Language Programming

The preceding version of helloBlinky is just a vehicle for illustrating pointers, and the
earlier recipe is preferable and easier to understand. So why are pointers used? Well, if our
delay function needed access to many values, making the copies needed for pass-by-value
would be time-consuming and impractical. This is particularly true when we come to consider
passing arrays of data, strings (arrays of characters), and so on.

Writing to the console window

While a variant of the hel1oB1inky recipe is usually the first program introduced in most
embedded tutorials, the first program found most C textbooks usually outputs the string "Hello
World" to the screen. To run such a program on our evaluation board, we'll need to install a
terminal emulation program on our PC host. PuTTY® http://www.chiark.greenend.
org.uk/~sgtatham/putty/, an open source terminal emulation program is a good choice.
We also need to connect the evaluation board to the PC's (COM) serial port. Most PCs and
laptops are no longer fitted with 9-pin D-type (COM) ports, so you may need to purchase a USB
to Serial Adaptor cable.

Getting ready

Follow these steps to install PuTTY, and connect the evaluation board to the PC's COM port:
1. Ifyou're using a USB Serial Adaptor, then plug it into the laptop, and wait for the
driver to be installed.

2. Open the Control Panel, and make a note of the COM port that has been allocated
(you will need this later to configure PuTTY).

[o[s
] e . - ~ - - — 1
@uv o v Control Panel » Hardware and 5ound » Devices and Printers » - | +3 | | Search Devices and Printers 2

Add a device Add a printer = - 9
- Devices (4)

> Printers and Faxes (7)

4 Unspecified (2)

Keil ULINKZ Prolific
USB-to-Serial
Comm Port

(COM3)

13 items

'
= 'a_.' |1

=

Chapter 2

Connect the 9-Pin D-type UART1/3/4 connector on the evaluation board to the PC
USB port, and ensure that the jumpers J13 and J14 are set to short pins 1 and 2
thereby selecting USART4. Pin 1 can be easily be identified by its square solder pad,
easily visible on the underside of the board. Install PuTTY, and configure the serial
connection to use the COM port you previously identified in Control Panel, configured
to 115200 Baud, 8 data bits, 1 stop-bit, no parity or flow control.

ﬁ PuTTY Reconfiguration

)

Categony:

- Keyboard
- Eell

- Features
= Window

- Appearance
- Behaviour
- Translation
- Selection

- Colours

=} Connection

Options controling local senal lines

Configure the serial line
Speed (baud)

Data bits

Stop bits

Parity

Flow control

115200

]
1

Apply

] [Cancel

C Language Programming

How to do it...

1.

Create a new folder named helloWor1d; invoke uVision5, and create a new project.
Using the RTE manager, select the MCBSTM32F400 board, but don't check any of the
board support tick boxes. Check CMSIS — CORE, RTOS (API) — KeilRTX, Device —
Startup, and Device — STM32Cube Framework (API) — Classic. Click Resolve to
automatically load any additional software components needed. Then exit by

clicking on OK.

Manage Run Time mﬁ"";"_-.—@
Software Component Sel. Variant Version Description
@ 9 Board Support MCBSTM32F400 EE.U.O Keil Development Board MCESTM32F400
= & CcMss Cortex Microcontroller Software Interface Components
¥ CORE @ 420 MSIS-CORE for -, n
¥ DsP 1456 -DSP Library for -| N
= € RTOS (AP 10 CMSIS-RTOS AP for Cortex-M, SCO00, and SC300
¥ Keil RTX @ 4800 -RTQSRT Iementation for -M,
® 4 CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
w € Compiler ARM Compiler Software Extensions
B ’ Device Startup, System Setup
¥ Startup @ 240 System Startup for STMicroelectronics STM32F4 Series
= ‘ STM32Cube Framework {(APD) STM32Cube Framework
¥ Classic e 140 Configuration via RTE Device.n
¥ STM32CubeMX r 100 Configuration via STM32CubeMX
H ‘ STM32Cube HAL STM32Fdwc Hardware Abstraction Layer (HAL) Drivers
@ File System MDK-Pro 6.5.0 File Access on various storage devices
" 0 "' Graphics MDK-Pro 5300 User Interface on graphical LCD displays
| | @ @ Graphics Display Display Interface including configuration for emWIN
W € Network MDK-Pro 7.00 IPvd/IPvE MNetworking using Ethemet or Serial protocols
w4 use MDK-Pro 650 | mmunication with vari jige cl
Validation Output Description
(Resove) Seec Facka| [Detas =Dl == | |
= ——— %

2. The source code for this project is divided between three source code files. Create a

£z

new file (File —New...), and enter the source code shown. Save the file (File —SaveAs)
as helloWorld.c. The source file named helloWorld. c contains the main function
in the project, illustrated using the folding editor feature to hide the boilerplate.
/***

helloWorld c2v0

* File: helloWorld.c

* Purpose: Serial I/O Example

R SRR RS EEEE SR SRS SRR E SRR EEEEEEEEEEEEEEEEEEEESE]

* Recipe:

*

Chapter 2

Modification History
2014 Created
03.12.15 Updated for uVision 5.17 & DFP_2.6.0

Dr Mark Fisher, CMP, UEA, Norwich, UK.
**/

#include "stm32F4xx hal.h"
#include "cmsis_os.h"
#include <stdio.h>
#include "Serial.h"

/* Function prototypes */

void wait (unsigned long delay) ;
extern void init serial (void) ;
extern int sendchar (int c¢);
extern int getkey(void) ;

#ifdef RTX

/* Function prototypes */

void wait (unsigned long delay) ;
extern void init serial (void) ;
extern int sendchar (int c);
extern int getkey(void) ;

#ifdef RTX

void SystemClock Config(void)

void wait (unsigned long delay)
unsigned long i;

for (i = 0; 1 < delay; 1i++)

| ;

int main (void) {

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */
SER Init();

C Language Programming

for (;;) { /* Loop forever */
wait (1000000) ;

printf ("Hello World!\n") ;

3. Inthe project window, right-click on the Source Group 1 folder, and add the source
file helloWorld. c to the project.

Eile Edit ¥iew Project Flash Debug Peripherals Jools 35VCS Window Help

== - NIRRT S B I R \ = 5 G| B _snuc_ HE# ale 0 @&
g Lot
2 E @ | W et EFEIN. K
Project LA _] Serialh] Serialc |] Retargetc |] helloworld.c v X
= Project: helloWorld - 10/ e
=45 Targetl 2 T * Name: Serial.c T
=55 Source Greow=1 3 * Purpose: Low level serial routines L
) he”w,{{- Options for Group 'Source Group 1'... Alt+F7 1
1 Retarg Add New Item to Group ‘Source Group 1',. Lle is part of the uVision/ARM development
j Serial.i Add Existing Files to Group ‘Source Group 1'.. This sthware may only be 'Jsed_.mder the
1 Seriald f a valid, current, end user licence from
& vl Remoye Group 'Source Group 1' and its Files r a compatikble version of KEIL software
K pment tools. HNothing else gives you the
=% Device B o use this software.
5 stm32 Rebuild all target files
i i . i "y, "o
ﬁ stm32: Build Target =)?t:;are is EJFpl:LEd AS IS"™ without
ﬁ stm3? ies of any kind.

ﬁ Manage Project ltems...
5 stm3z Bht (c) 2004-2011 Keil - En ARM Company.
B stm32 [V showInclude File Dependencies ghts reserved.

& stmI2fECRalrece [STVEIZCE: T -/
=3 —— e e 19
d ‘ | Blls2 20 i 1de "stm32f4ux.n" /* STM32F4xx= Defs =/ 2
] Project | € Baoks | {¥ Functions | Oy Templates 4 m | +
Build Output 1 B
##% Using Compiler 'V5.06 update 1 (build &1)', folder: 'C:\Keil_ vS\ARM\ARMCC\Bin' -
Build target 'Target 1'
compiling Retarget.c...
compiling Serial.c...
compiling helloWorld.c...
linking...
Program Size: Code=1014 RO-data=442 RW-data=12 ZI-data=1636
™. \Objects\helloBlinky.axf" - 0 Error(s), 0 Warning(s).
Build Time Elapsed: 00:00:00
« ’
=1 Build Output ‘ CRFind In Files
Add Existing Files to current Project Group ULINK2/ME Cortex Debugger L87 C53 CAP NUM SCRL OVR R/W
- — ™I
= - - — . . g
| 5 o el I
— ifk & ¢ by .l
Bl E 9o 59 = s B

4. Create a new file, enter the following code, name the new file Retarget . c, and add
it in the project. This source file redefines some functions used by C's standard input
output library, <stdio.hs>.

* Name: Retarget.c

* Purpose: 'Retarget' layer for target-
* dependent low level functions
* Note (s)

*

This file is part of the uVision/ARM
development tools.

SEa

Chapter 2

#include <stdio.h>
#include <rt misc.h>
#include "Serial.h"

#pragma import(use no semihosting swi)

struct _ FILE ({

int handle;

/* Add whatever you need here */
FILE _ stdout;
FILE __ stdin;

int fputc(int c, FILE *f) {
return (SER_PutChar(c));

int fgetc(FILE *f)
return (SER_GetChar()) ;

int ferror (FILE *f) {
/* Your implementation of ferror */
return EOF;

void _ttywrch(int c) {
SER_PutChar (c) ;

}

void _sys exit(int return code) {
label: goto label; /* endless loop */

}

Create a new file, enter the SER_Init () function, name the new file Serial.c, and
add it in the project.

* Name: Serial.c
* Purpose: Low level serial routines
* Note(s) :

* This file is part of the uVision/ARM

[T

C Language Programming

6.

* development tools.

#include "stm32f4xx.h" /* STM32F4xx Defs */
#include "Serial.h"

#ifdef _ DBG ITM
volatile int32 t ITM RxBuffer;
#endif

* SER Init: 1Initialize Serial Interface
void SER_Init (void) ({

#ifdef _ DBG ITM
ITM RxBuffer = ITM_RXBUFFER_EMPTY;

#else
RCC->APB1ENR |: (1UL << 19); /* Enable
USART4 clock */
RCC->APB2ENR |: (1UL << 0); /* Enable
AFIO clock */
RCC->AHB1ENR |: (1UL << 2); /* Enable

GPIOC clock */
GPIOC->MODER &= OxFFOFFFFF;
GPIOC->MODER = 0x00A00000;
GPIOC->AFR[1] = 0x00008800; /* PC10 UART4 Tx,
PC1ll UART4 Rx (AFS8) */

/* Configure UART4: 115200 baud @ 42MHz, 8 bits,
1 stop bit, no parity */
UART4 - >BRR (22 << 4) | 12;
UART4->CR2 = 0x0000;
UART4->CR1 = 0x200C;

#endif

}

Add the functions SER_getc () and SER_putc () to Serial.c

A e e
* SER PutChar: Write a char to Serial Port
g */

int32 t SER PutChar (int32 t ch) {
#ifdef _ DBG ITM

int 1i;

ITM SendChar (ch & OxFF) ;

for (i = 10000; i; 1i--)

Chapter 2

7

#else
while (! (UART4->SR & 0x0080)) ;
UART4->DR = (ch & OxFF);
#endif

return (ch) ;

* SER GetChar: Read a char from Serial Port

int32 t SER GetChar (void) ({
#ifdef _ DBG_ITM
if (ITM_CheckChar())
return ITM ReceiveChar () ;
#else
if (UART4->SR & 0x0020)
return (UART4->DR) ;
#endif
return (-1);

}

Create a new file, enter the following code, name the file Serial .h, and add it to the
project. This is the header file that declares the function prototypes for Serial.c

* Name: Serial.h
* Purpose: Low level serial definitions
* Note(s) :

#ifndef _ SERIAL H
#define _ SERIAL H

extern void SER Init (void) ;
extern int SER GetChar (void) ;
extern int SER_PutChar (int <) ;
#endif

@]

C Language Programming

8. Configure PUTTY as shown in part a) of the following image. Build, download, and run
the program to achieve the output shown in b)

| [coms - purry [E=EER -

Options controlling the terminal emulation
Set various terminal options
V| Auto wrap mode initizlly on
DEC Origin Mode initially on
| Implicit CR in every LF
V| Implicit LF in every CR

i Appearance Use background colour to erase screen
ehaviour Enable blinking text

ranslation Angwerback to “E:

PUTTY

Line discipline options

Local echo:

Auto @ Force on Force off
Local line editing:
@ Auto Force on Force off

Remotecontrolled printing
Printer to send ANSI printer output to:

[mooty [Cancel

The evaluation board and PC communicate by exchanging data using an RS232 serial Input/
Output (I/0) connection (http://en.wikipedia.org/wiki/RS-232). RS232 is a 2-wire
full-duplex communications standard. PuTTY manages the protocol at the PC, but we are
responsible for the evaluation board. To use serial I/0, we need to configure the microcontroller's
Universal Synchronous/Asynchronous Receiver/Transmitter (USART). We can do this by
including a peripheral driver applications interface (API) in our project. uVision5's RTE manager
includes a suitable API, but this provides many more features than we need for our simple
helloWorld recipe. So, for the time being, we'll use the simpler driver named Serial.c shown
in step 4 and step 5 that ARM shipped with uVision4. File Serial . c comprises three functions
SER Init (), SER PutChar (), and SER_GetChar (). The function SER Init () is the first
function called by main (). It initializes the USART peripheral by writing values to its registers
so that it is configured to mirror the channel setup in PUTTY (that is, 115200 baud, 8 data-bits,
1 stop-bit). These parameters are critical. The baud rate is derived from the Peripheral Clock,
and in turn the System Clock, so any change in the clock configuration will affect the baud rate.
The baud rate is set by the value we write to the Baud Rate Register (BRR). Reference manual
RMO0090 (www . st . com) describes this as calculated by

Tx/Rx baud= o

8(2xOVERS)xUSARTDIV

Chapter 2

Rearranging the preceding formula, with OVER8 = 1 (since we're using 8 x oversampling) and
fclk = 42 MHz we get:

2 : 2
USARTDIV = 127107 55005512
16115200 16

The other two functions read and write characters from/to the USART (these perform the low-
level I/0). We'll discuss this in more detail in Chapter 3, Assembly Language Programming.

Any program that wishes to use the services that Serial . c provides must include its
function prototype. To facilitate this, the prototypes are declared in a so-called header

file called Serial.h shown in step 6, and included in the program using a #include
preprocessor directive (for example, see line 15 of main. c). If we look closely at Serial .h,
we see the prototypes are preceded by the qualifier extern. This is a message to the compiler
that the functions are defined in another file (that is, not main. c), and the function call
reference must be resolved later by the linker. We can also see that the prototype declarations
are enclosed within a conditional preprocessor statement, that is:

#ifndef _ SERIAL H
#define _ SERIAL H

/* function prototypes */

#endif

This ensures that the code enclosed within the conditional preprocessor statement is included
in the project only once, even though both, main.c and Serial.c, include the statement:

#include "serial.h"

The main () function calls printf () to output the string "Hello World\n". The string
"Hello World\n" is stored as a sequence of characters terminated by a NULL character. C
interprets '\n' as a newline character, but the actual ASCIl code (http://en.wikipedia.
org/wiki/ASCII) used to represent newline varies between operating systems; so to cover
all eventualities, we can configure PuTTY as shown in step 7.

The function printf () is defined in C's standard input output library <stdio.h>. This
function calls £putc (), which is also defined in <stdio.h>, but redefined in Retarget.c.
So it calls SER_PutChar () to send the characters to the USART. Most microcontrollers use
this technique to allow them to make use of the C library functions printf () and, as we'll
see later, scanf () too.

C Language Programming

File Retarget . c also uses the preprocessor directive #pragma, which is used to specify
machine- or operating system-specific compiler features. In this case, the directive is used to
disable semihosting. Semihosting is a mechanism that allows ARM targets to communicate
with a host computer using the JTAG interface. Semihosting can be used with the function
trace printf (), to enable debug statements to write to the output window of the IDE.
Obviously, we can achieve similar functionality using the COM port and PuTTY.

Writing to the GLCD

Although the LED flashing programs we've written so far have served to provide a tutorial
introduction to C, you are probably ready for something a little more exciting. The Graphic LCD
(GLCD) touchscreen provides an interactive interface based on a 320 x 240 pixel color display.
Keil provides a library of functions to write characters and bit-mapped graphics to the screen.

Getting ready

1. Create a new folder and rename it hel1oLCD c2v0. Invoke uVisionb, and create a
new project.

2. After selecting the target device (STM32F407IGHx), use the RTE manager to select
the MCBSTM32F400 target board, and check the following software components:
Board Support — Graphic LCD, CMSIS — CORE, CMSIS — RTOS (APIl) — KeilRTX,
Device — Startup, Device — STM32Cube Framework (API) — Classic. Finally, left-
click on Resolve and OK.

How to do it...

1. Create a new C source file called hel1oLCD. ¢, and enter the following statements.
Although hidden by a fold, don't forget to add the boilerplate code we described in the
recipe helloBlinky c2vO0.

e
* Recipe: helloLCD c2v0
* Name: helloLCD.c

* Purpose: LCD Touchscreen Demo

* Modification History
* 06.02.14 Created
* 08.12.15 Updated (uVision5.17 & DFP2.6.0)

* Dr Mark Fisher, CMP, UEA, Norwich, UK

Chapter 2

#include "stm32f4xx hal.h"
#include "GLCD_ Config.h"
#include "Board GLCD.h"

#define wait delay HAL Delay

extern GLCD_FONT GLCD_Font_6x8;
extern GLCD_FONT GLCD_Font_16x24;

#ifdef _ RTX

/* Function Prototypes */
void SystemClock Config(void) ;

/**
* System Clock Configuration
*/

void SystemClock Config(void)

/**
* Main function
*/

int main () {

unsigned int count;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

GLCD Initialize();

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE) ;

GLCD_ ClearScreen () ;

GLCD_SetBackgroundColor (GLCD_COLOR_BLUE) ;
GLCD_SetForegroundColor (GLCD_COLOR _WHITE) ;
GLCD_SetFont (&GLCD Font 16x24) ;

GLCD DrawString (0, 0*24, " CORTEX-M4 COOKBOOK ") ;
GLCD DrawString (0, 1*24, " PACKT Publishing ");
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE) ;
GLCD_SetForegroundColor (GLCD_COLOR_ BLUE) ;

for (;;) {
if (count==0)
GLCD_DrawString (0, 2*24, " Hello LCD! "y

C Language Programming

else
GLCD DrawString (0, 2*24, " ny

wait delay(100);
count = (count+1l)%2;
} /* end for */

}

2. Build, download, and run the program.

The functions beginning GLCD_ are defined in the file GLCD_MCBSTM32F400.c. We need to
open this, and read the comments in the function headers to understand how to use them.
The header file Boadd_LCD.h that is included by the pre-processor contains the function
prototype declarations. The header file GLCD_Config.h provides macros that define named
colors (like, GLCD_COLOR_BLACK) and constants such as GLCD_WIDTH / HEIGHT. GLCD
MCBSTM32F400.c is the latest in a series of GLCD drivers provided by Keil, and it represents
a CMSIS v2.0-compliant revision of earlier versions.

The function GLCD_DrawString (uint32 t x, uint32 t y, const char *str)
declared in file Board GLCD.h takes three input arguments (args). The first two position the
text on the screen, and the last arg is a pointer to an array of characters to be written (usually
a literal value defined using quotes " " in the function call). Before calling GLCD DrawString
(), we must first set the character font to be used by the calling function, GLCD_SetFont
(GLCD_FONT *font), and pass a pointer to the font used. There are two font sizes defined
in file GLCD_Fonts. c. An array of characters terminated by a NULL character is called a
string. You may wonder why we didn't need to use the & operator to recover an address

and assign a pointer as we illustrated earlier. The short answer is that arrays are always
referenced using pointers, so there is no need, but we'll discuss the matter further in Chapter
3, Assembly Language Programming.

The macro definition #define wait delay HAL Delay provides a pseudonym for the
function HAL_ Delay () declared inthe file st32f4xx_ HAL.h. This is a more accurate
delay based on a timer rather than an instruction loop.

Chapter 2

Creating a game application - Stage 1

Now that we can write characters to the GLCD screen, some interesting possibilities present
themselves. The first one to consider is a simple character-based game application known

as PONG. Pong was one of the first arcade video games featuring 2D graphics, originally
marketed by ATARI Inc. (http://en.wikipedia.org/wiki/Pong). We'll develop the game
in stages, as this is a good development strategy. We'll start by describing a simple recipe
named Bounce with limited functionality. The idea of this recipe is just to animate a ball so
that it appears to bounce around the screen. Provided we can redraw the ball more than 25
times a second (25 Hz), it will appear to move. The ball is represented by a character bitmap.

How to do it...

1. As usual, we'll start our development by making a new folder named
helloBounce c2v0. Create a project, and configure the RTE to include software
support for the Graphic LCD board feature (that is, clone the folder helloLCD_c2vo0,
from the previous recipe).

2. Create a new file, enter the following code, name the file hel1loBounce. ¢, and
include it in the project.

Y e
* Recipe: helloBounce c2v0
* Name: helloBounce.c

* Purpose: Pong Game Prototype

*

*

* Modification History

* 06.02.14 Created

* 08.12.15 Updated uVision5.17 + DFP2.6.0

*

* Dr Mark Fisher, CMP, UEA, Norwich, UK

K e e e e e e = */

#include "stm32f4xx hal.h"
#include "GLCD Config.h"
#include "Board GLCD.h"
#define wait delay HAL Delay

/* Globals */
extern GLCD_ FONT GLCD_ Font 16x24;

#ifdef RTX

C Language Programming

/* Function Prototypes */
void SystemClock Config(void) ;

/**
* System Clock Configuration
*/

void SystemClock Config(void) ({

/**
* Main function
*/
int main (void) {
unsigned int dirn = 1;
/* initial ball position */

unsigned int x = (GLCD_WIDTH-GLCD_ Font 16x24.width)/2;
unsigned int y = (GLCD _HEIGHT-

GLCD Font 16x24.height)
unsigned long num ticks = 5;
HAL Init ();

SystemClock Config ();

GLCD_ Initialize();

GLCD_SetBackgroundColor (GLCD_COLOR WHITE) ;
GLCD ClearScreen () ;
GLCD_SetForegroundColor (GLCD_COLOR BLUE) ;
GLCD SetFont (&GLCD Font 16x24) ;

GLCD_ DrawChar (x, y, 0x81); /* Draw Ball */
for (;;) { /* superloop */
wait delay(num_ticks) ; /* update ball pstn */

/* add code to update ball position
and check for collisions here */
GLCD_ DrawChar (x, y, 0x81); /* Redraw Ball */
} /* end for */

}

3. Build the project (just to check that there are no syntax errors).

Include the following code fragment in the superloop of bounce. c . This code
updates the position of the ball on each iteration.
/* update ball position */
switch (dirn) {
case 0: X++;
break;

[

Chapter 2

case 1l: X++;

case 2: y--;

case 3: X--;

case 4: X--;

case 5: x--;

case 6: y++;

case 7: X++;

}

Extend the superloop of bounce . ¢ by including the code fragment that is designed
to detect collisions between the ball and the edges of the screen. The ball direction is
changed accordingly when a collision occurs.
/* check collision with vertical screen edge */
if ((x==0) ||
(x==GLCD_WIDTH-GLCD Font 16x24.width)) ({
switch (dirn)

{

case 0: dirn = (dirn+4)%8;
break;

case 1: dirn = (dirn+2)%8;
break;

case 3: dirn = (dirn+6)%8;
break;

case 4: dirn = (dirn+4)%8;
break;

case 5: dirn = (dirn+2)%8;
break;

case 7: dirn = (dirn+6)%8;
break;

}

/* check collision with horizontal screen edge */
if ((y==0) ||
(y==GLCD_HEIGHT-GLCD Font_16x24.height)) {

57}

C Language Programming

switch (dirn) {

case 1: dirn = (dirn+6)%8;
break;

case 2: dirn = (dirn+4)%8;
break;

case 3: dirn = (dirn+2)%8;
break;

case 5: dirn = (dirn+6)%8;
break;

case 6: dirn = (dirn+4)%8;
break;

case 7: dirn = (dirn+2)%8;
break;

}
}

4. Build the project; download and run the program. Observe the ball bouncing around
the screen. Note that the argument passed to the function delay() controls the ball's
speed. Experiment by changing the value.

The direction of the ball is encoded by a number, O-7, as shown in the following diagram. The
ball's behavior when it strikes the edge of the screen depends on the angle of collision (in a
similar manner to those on a pool table). Adding a value to the direction code (modulo-8) will
change the ball's direction.

2
PR
/ N
/ Ay
/ 4
| |
4 - > 0
|I‘I IIII
\ /
\ /
5\\ /
6

Characters we write to the GLCD are represented by bitmaps. Each character bitmap is

Chapter 2

represented as a 16 x 24 grid of cells. Each row of cells in the grid is encoded as two bytes,
represented in hexadecimal. For example, the bitmap representation of the '&' character is

illustrated in the following image:

10

11

12

13

14

15

0x0000

Ox01EQ

O0x03F0

0x0738

0x0618

Ox0618

0x0330

0x01F0

0x00F0

Ox00F8

0x315C

0x330E

Ox1E06

0x1C06

0x1C06

Ox3F06

0x730C

0x21F0

Ox0000

0x0000

Ox0000

Ox0000

0x0000

Ox0000

10

11

12

13

14

15

16

17

18

19

20

21

22

23

C Language Programming

A good bitmap representation for the ball is a 'Circle - Full' character (0x81 = 129,). We

can display this character in any position on the GLCD screen using the function GLCD _
DrawChar (). This function takes three args: screen coordinates (x, y), and the ASCII code for
the character. The code fragment

GLCD_SetFont (&GLCD Font 16x24);
GLCD DrawChar (0, 0, 0x81);

will draw the ball in the top-left corner of the screen. GLCD_DrawChar () interprets the ASCII
character code as an index into GLCD_Font_16x24. The 'Circle - Full' character is the 97th
character (of a total of 112) stored in the array named GLCD_ Font 24x16. Parameters for
the font are stored in the file GLCD_Fonts.c.

GLCD_FONT GLCD_Font 16x24 = {

16, ///< Character width
24, ///< Character height
32, ///< Character offset
112, ///< Character count
Font 16x24 h ///< Characters bitmaps

}i

If we add the Character offset (32,) to the character's position in the character bitmap (97,,),
we get its code (129,).

Finally, since the character bitmap is not declared in bounce . ¢, we need to tell the compiler
what type Font 16x24 h s, and that it is declared elsewhere. The statement

extern GLCD_FONT GLCD_Font_ 16x24;

in file bounce . h achieves this. This file also uses the #define preprocessor directive to declare
global constants (such as CHAR W and CHAR_H). Conventionally, these are capitalized.

The superloop comprises statements that animate the ball by updating its position (x,y) and
redrawing the bitmap. Position updates depend on direction (encoded as, 0,1,2,3,4,5,6, or
7). These eight cases are identified by the switch statement in step 7 of the recipe. Our trusty
delay function provides some control over the speed of the ball. Further code in the superloop
checks for collisions between the ball and the vertical and horizontal edges of the screen,
and updates the balls direction appropriately. The last statement in the superloop is a further
call to the function GLCD_Draw_Char () to redraw the ball in its new location. Because the
bitmap represents a solid circle shape surrounded by a border of background pixels, and
since the ball position is only incremented by a single pixel each time there, is no need to
erase the ball before it is redrawn.

Chapter 2

Creating a game application - Stage 2

This prototype extends the one described in the previous section to make a single player game
that includes a 'paddie' drawn on left-hand edge of the screen. The position of the paddle is
determined by a potentiometer (ADC1) fitted to the evaluation board that provides a voltage
input to the Analog-Digital (A-D) Converter.

1. Begin by creating a new folder named helloPong_c2v0, and within this, a
new project. Configure the RTE to include board support software components
for the Graphic LCD (API) and A/D Converter (API). Alternatively, clone the folder
helloBounce_ c2v0, from the previous recipe and modify the RTE. Use Resolve to
automatically load any missing libraries.

2. Copy helloBounce.c and helloBounce.h from the previous recipe, rename them
helloPong.c and helloPong.h, and include these in your project. Change the
#include in helloPong. ¢, and replace helloBounce.h with helloPong.h.
Build the program and test it as before.

3. Add #include "Board ADC.h" andcallADC Initialize() inmain().

4. Add a function named update ball (), and move the code concerned with
updating the ball's position and collision detection into the body of the function. This
tidies up the superloop and makes the main function much easier to read.

5. Define constants and declare global data structures in helloPong. c to hold the
position of the ball, paddle, and information about the Game.

#define wait delay HAL Delay

#define WIDTH GLCD_WIDTH

#define HEIGHT GLCD_ HEIGHT

#define CHAR H GLCD_Font_ 16x24.height
/* Character Height (in pixels) */
#define CHAR W GLCD Font 16x24.width
/* Character Width (in pixels) */

#define BAR W 6 /* Bar Width (in pixels) */
#define BAR H 24 /* Bar Height (in pixels) */
#define T LONG 1000 /* Long delay */
#define T SHORT 5 /* Short delay */

typedef struct {
int dirn;
int x;
int y;

} BallInfo;

typedef struct {
int x;

int y;

C Language Programming

} pPaddleInfo;

typedef struct ({
unsigned int num ticks;
BallInfo ball;
PaddleInfo pl;

} GameInfo;

/* Function Prototypes */
void game Initialize(void) ;
void update ball (void) ;
void update player (void);
void check collision (void);

Declare a global variable in file pong. c:

GameInfo thisGame;

Q The ball's position is now accessed as thisGame.ball.x.

Declare the function game_Initialize (). This function initializes the values
of the global variables.

* game Init ()
* TInitialize some game parameters.

void game Initialize(void)
init pstn.dirn = 1;
init pstn.x = WIDTH-CHAR W) /2;
init_pstn.y = (HEIGHT-CHAR H)/2;
thisGame.ball = init pstn;
thisGame.pl.x = 0;
thisGame.pl.y = 0;
thisGame.num ticks = T SHORT;

}

Create a new function named check collision (), and copy the code concerned
with collision detection into this function. Modify the function check collision ()
to check for collisions between the ball and the paddle as well as collisions between
the ball and screen edge.

* check collision(void)
* check for contact between ball and screen

[z

* edges/bat and change direction accordingly
void check collision(void) {
/* check collision with RH vertical screen
edge OR Pl paddle
if ((thisGame.ball.x == BAR W) ||
thisGame.ball.x == (WIDTH-CHAR W)) ({

switch (thisGame.ball.dirn) {
case 0: thisGame.ball.dirn =
(thisGame.ball.dirn+4) %8;
break;
case 1: thisGame.ball.dirn =
(thisGame.ball.dirn+2) %8;
break;
case 3: if ((thisGame.ball.y >=
thisGame.pl.y-CHAR H) &&
(thisGame.ball.y <=
(thisGame.pl.y+BAR H)))
thisGame.ball.dirn =
(thisGame.ball.dirn+6) %8;
else
/* empty statement */
break;
case 4: if ((thisGame.ball.y >=
thisGame.pl.y-CHAR H) &&
(thisGame.ball.y <=
(thisGame.pl.y+BAR H)))
thisGame.ball.dirn =
(thisGame.ball.dirn+4) %8;
else
/* empty statement */;
break;
case 5: if ((thisGame.ball.y >=
thisGame.pl.y-CHAR H) &&
(thisGame.ball.y <=
(thisGame.pl.y+BAR H)))
thisGame.ball.dirn =
(thisGame.ball.dirn+2) %8;
else
/* empty statement */;
break;
case 7: thisGame.ball.dirn =
(thisGame.ball.dirn+6) %8;

Chapter 2

(&5}

C Language Programming

break;

}

/* check collision with horizontal screen edge */
if ((thisGame.ball.y < 0) ||
thisGame.ball.y > (HEIGHT-CHAR H)) {
switch (thisGame.ball.dirn) {
case 1: thisGame.ball.dirn =
(thisGame.ball.dirn+6) %8;
thisGame.ball.y++;
break;
case 2: thisGame.ball.dirn =
(thisGame.ball.dirn+4) %8;
thisGame.ball.y++;
break;
case 3: thisGame.ball.dirn =
(thisGame.ball.dirn+2) %8;
thisGame.ball.y++;
break;
case 5: thisGame.ball.dirn =
(thisGame.ball.dirn+6) %8;
thisGame.ball.y--;
break;
case 6: thisGame.ball.dirn =
(thisGame.ball.dirn+4) %8;
thisGame.ball.y--;
break;
case 7: thisGame.ball.dirn =
(thisGame.ball.dirn+2) %8;
thisGame.ball.y--;
break;

}

9. Add the following code fragment to the function update ball():
/* reset position */
if (thisGame.ball.x<BAR W) {
wait delay (T LONG) ;
/* Erase Ball */
GLCD DrawChar(thisGame.ball.x, thisGame.ball.y, '
thisGame.ball = init pstn;

&)

Chapter 2

10. Define GLCD_customFont 16x24 in the file GLCD_customFont. ¢, and add this to

the project.
#include "Board GLCD.h"

static const uint8 t customFont 16x24 h[] =

/* PONG PADDLE */
0x00, O0x3F, 0x00, Ox3F, 0x00
0x00, O0x3F, 0x00, Ox3F, 0x00
0x00, Ox3F, 0x00, Ox3F, 0x00
0x00, O0x3F, 0x00, Ox3F, 0x00
0x00, O0x3F, 0x00, Ox3F, 0x00
0x00, O0x3F, 0x00, Ox3F, 0x00

bi

GLCD_FONT GLCD_ customFont_ 16x2
16,
24,
0,
1,
customFont 16x24 h

bi

, O0x3F, 0x00,
, O0x3F, 0x00,
, O0x3F, 0x00,
, O0x3F, 0x00,
, O0x3F, 0x00,
, O0x3F, 0x00,

4 =
/1/<
/1/<
/1/<
/1<
/1/<

Character
Character
Character
Character
Character

{

0x3F,
0x3F,
0x3F,
0x3F,
0x3F,
0x3F,

width
height
offset
count
s bitmaps

11. Define the function update player () by adding the following code fragment:

* update player (unsigned int *

)

* Read the ADC and draw the player 1's paddle

void update player (void)

int adcValue;
static int lastValue = 0;

ADC StartConversion() ;
adcValue = ADC GetValue ();
adcValue = (adcValue >> 4) *
/* Erase Paddle */

GLCD DrawChar (0, lastValue,
/* Draw Paddle */

(HEIGHT-BAR H) /256;

)

GLCD_SetFont (&GLCD_customFont 16x24) ;

GLCD DrawChar (0, adcValue,

0x00

GLCD_SetFont (&GLCD_Font_16x24) ;

lastValue = adcValue;
thisGame.pl.y = adcValue;

}

12. Build the project, download, and run.

)i

C Language Programming

1. We can tidy the code by moving the function prototype and data structure
declarations to a header file called helloPong.h, and include this in pong. c
with a #include preprocessor directive.

/* __
* Recipe: helloPong clvO
* Name: helloPong.h

* Purpose: pong function prototypes and defs

* Modification History
* 06.02.14 Created
* 09.12.15 Updated (uVision5.17 + DFP2.6.0)

* Dr Mark Fisher, CMP, UEA, Norwich, UK

#ifndef PONG_H
#define PONG H

#define wait delay HAL Delay

#define WIDTHGLCD WIDTH

#define HEIGHT GLCD_HEIGHT
#define CHAR_H GLCD_Font_16x24.height
/* Character Height (in pixels) */
#define CHAR W GLCD Font 16x24.width
/* Character Width (in pixels) */

#define BAR W 6 /* Bar Width (in pixels) */
#define BAR H 24 /* Bar Height (in pixels) */
#define T LONG 1000 /* Long delay */
#define T SHORT 5 /* Short delay */

typedef struct ({
int dirn;
int x;
int y;
} BalllInfo;

typedef struct {
int x;
int y;

} pPaddleInfo;

typedef struct ({

55

Chapter 2

unsigned int num ticks;
BallInfo ball;
PaddleInfo pl;

} GamelInfo;

/* Function Prototypes */
void game Initialize (void) ;
void update ball (void) ;
void update player (void);
void check collision (void);

#endif /* PONG H */

2. The function declarations game Initialize (), update ball (), update
player (), and check collision () can be moved to a file called pong utils.c,
which shares the header pong . h.

The data structures defined within pong . h define three new compound data types which
build on the primitive types such as char, integer, and so on, which are part of the language.
A global variable thisGame stores all the data used in the application. The main file
helloPong.c is shown in step 6. New functions game Initialize (), update ball(),
update player (), and check collision () have been defined within the file pong
utils.c (and delay has also been moved) to declutter main and improve the readability of
the code. The function prototypes are shown in step 9.

The function game_Initialize () writes the initial values to the global structs, gameInfo
and init pstn (). The function update player () (step 10) reads the A-D converter,

and draws the paddle. Since the paddle may move in large increments, we must explicitly
erase the paddle, and redraw it in a new position. The static qualifier is used to ensure
that the variable 1astvalue persists after the function has terminated (that is, it behaves
rather like a global variable, although its scope is local to the function). It is important to
understand the scoping rules for variables. Variables declared within a function (so-called
automatic variables) can only be changed by assignments within the function. But variables
declared outside a function have global scope, and can be accessed by any function declared
within the same file. The variable gameInfo is a global variable and can be accessed by any
function declared in helloPong. c, and because of the extern declaration, by any function
declared in pong utils.c.

C Language Programming

The functions named check_collision () and update_ball () are similar to those
described in the previous section but with some important additions. When the ball moves in
directions 3, 4, or 5, we need to check for a collision with the paddle; modifications necessary
to achieve this are shown in step 8. If the ball fails to make contact with the paddle, then a
clause in update ball () holds the ball in its current position for a few seconds, and then
restarts the game (see step 9).

The paddle itself can be drawn by declaring our own 'paddle’ character bitmap in file GLCD_
customFont . c, and by using GLCD DrawChar () to render it to the screen. The code for
checking collisions needs to be extended to include collisions between the ball and the

inner vertical edge of the paddle. These can only occur when the ball direction is from right
to left (that is, direction codes 3, 4 and 5). We'll need variables to represent the position of
the paddle (as we do in case of the ball). As we now have quite a few variables, it's a good
opportunity to introduce a data structure that can be used to group them together. The

C struct provides us with a mechanism for achieving this. Information about the ball are
declared in a struct called ballInfo. The information associated with the paddle is declared
in paddleInfo and that about the game in gameInfo, within helloPong.h

Debugging your code using print statements

This section deals with debugging. Errors fall into two classes, compilation errors and run-time
errors. Compilation errors arise when we compile our programs, and the compiler parses each
of the statements to produce executable code. Syntactic errors such as a missing semi-colon
or forgetting to declare a variable before assigning it will produce a compilation error. Luckily,
uVision5 highlights and checks the syntax of our programs as we type. So, many problems
that would have gone undetected in the past are now brought to our attention before
compilation. When errors do occur, they are printed in the output window together with details
of the file and the line number where the error occurred. In addition to errors, the compiler
will also issue warnings relating to unusual conditions in the code that might be indicative of
a problem. It's a good plan to treat warnings as errors, and track down their source. Further
information about compiler diagnostic messages is in the Compiler User Guide that can be
found in the Tool's Users Guide accessed by the Books tab of the IDE.

Runtime errors are generally harder to fix than those that occur during compilation. Adopting
a good development strategy can minimize problems, or at least enable the problem to be
quickly isolated. Larger programs are never written all at once, they always build on previously
tested functions. The most straightforward way to debug a program is by inserting statements
that print to the Graphic LCD screen, using GLCD_DisplayString().

Chapter 2

How to do it...

To output the values of variables that are used by the program, we need to convert integer,
unsigned integer, and such values into their equivalent string representations.

1. Create a new folder named debugADC, and within it, a new project. Set the RTE as
we did for the previous recipe.

2. Create a new file, enter the following code, hame the file debugADC. ¢, and add it to
the project:

/* __
* Recipe: debugADC c2v0
* Name: debugADC.c

* Purpose: Illustrates writing variables to GLCD

* Modification History
* 06.02.14 Created
* 09.12.15 Updated (uvVision5.17 + DFP2.6.0)

* Dr Mark Fisher, CMP, UEA, Norwich, UK
#include "stm32f4xx hal.h"
#include "GLCD_ Config.h"
#include "Board GLCD.h"
#include "Board ADC.h"
#include <stdio.h>

#define wait delay HAL Delay

/* Globals */
extern GLCD_FONT GLCD_Font_16x24;

#ifdef RTX

/* Function Prototypes */
void SystemClock Config(void) ;

/**
* System Clock Configuration
*/

void SystemClock Config(void)

/**

(&5}

C Language Programming

* Main function
*/
int main (void) {
char buffer[128];
unsigned int ADCvalue;

HAL Init ();
SystemClock Config ();

ADC Initialize (); /* Initialse ADC */
GLCD_Initialize (); /* Initialise GLCD */
GLCD_SetBackgroundColor (GLCD_ COLOR WHITE) ;

GLCD ClearScreen () ;

GLCD_SetBackgroundColor (GLCD_COLOR BLUE) ;
GLCD_SetForegroundColor (GLCD_ COLOR WHITE) ;

GLCD SetFont (&GLCD Font 16x24) ;

GLCD DrawString (0, 0*24, " CORTEX-M4 COOKBOOK ") ;
GLCD DrawString (0, 1*24, " ADC Demo ") ;
GLCD_SetBackgroundColor (GLCD_COLOR WHITE) ;
GLCD_SetForegroundColor (GLCD_COLOR BLUE) ;

GLCD DrawString (0, 3*24, "ADC =");

for (;;) { /* loop forever */
ADC StartConversion ();
ADCvalue = ADC GetValue () ; /* Read ADC */
sprintf (buffer, "%i ", ADCvalue) ; /* mk str */

GLCD_DrawString (7*16, 3*24, buffer);/* Disp it */
wait delay(100);
} /* end for */

}

3. Build, download, and run the program.

The array named buffer just contains a collection of data elements, each the same type (in
this case char). We need to specify the number of elements when the array is declared (so
that the compiler can allocate the necessary storage space). This provides enough space for
128 characters.

1
‘\Q Strings are always terminated by a NULL character, so there is only

space for 127 usable characters, but still plenty for our purpose.

Chapter 2

The function sprint (), defined in the standard input/output C library that we've imported
by using #include <stdio.h>, is used to convert the integer variable ADCvalue () toa
string, placing the result in the buffer before being printed by GLCD DisplayString().The
source code for the program is presented in step 2.

Running the program prints the 12-bit ADC value (generated by converting a voltage produced
by the thumbwheel potentiometer) to the Graphic LCD display. Notice the values returned

are quite noisy (that is, there is quite a bit of variation even when the thumbwheel position

is apparently unchanged). If we shift the ADCvalue right by four places, using the bit
manipulation operator >> so effectively discarding the least significant 4 bits (that is, dividing
by 24), then the result is smaller and more stable.

Using the debugger

uVision5 provides a debugger that allows us to suspend execution (by inserting a breakpoint),
and examine/change values of variables used in our program.

How to do it...

1. Download and run the previous project, debug ADC.

2. Use the debug menu to insert a breakpoint on line 96 of our program (that is, at the
statement ADC_StartConversion () ;.

@ Start/Stop Debug Session Ctrl=F5
2 Reset CPU
Run F5
] Stop
{"t Step F11
Step Ower F10
Step Out Ctrl+F11
{} Runto Cursor Line Ctrl+F10
Show Next Statement
Breakpoints... Ctri+B
@ Insert/Remove Breakpoint Fa
Enable/Disable Breakpoint Ctrl=F2
¢ Disable All Breakpoints
&% Kill All Breakpoints Ctrl=5hift-Fa
Q5 Support 3
Execution Profiling 3
Memary Map...
Inline Assembly...
Function Editor [Open Ini File]...

C Language Programming

3. Select debug — Start/Stop Debug session to start a debug session.

4. Observe that execution stops at main. This is because the default project debug
options are set to "Run to main".

EACMP_D_HSWI124MArchive'\2015-16\Teaching\CMP-6024E'Bock\6503EN_02_FarRewrites\progs\debugADC_c2vl\debugADC.uvpraji - uVisio

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Eda| 2| | & | m | 3 systice Hae([@e o a7 a
RO v e o e DEEEER- =0 R
Registers 1 [@ Disassembly 1 B3
Register - 75: int main (voi -
= Core

RD 0. -

R 0. - -

R2 1]

R3 0. _] debugADC.c || startup_stm32f407wcs - X

R4 0. 73 L * Main function -

R5 0. 74 ;

RE b P> 75 Dint main (void) {

R7 L. 76 char buffer[128];

Rg 0. 77 unsigned int ADCvalue;

RS o 78

R10 0. 78 HAL Init [};

R11 0. 80 SystemClock_Config [):

R1Z 0. a1 -

R13(SP) 0... 82 ADC_Initialize (}: /* Initialse ADC =/

SR u 83 GLCD_Initialize();

i R15{PC) 84 GLCD_SerBackgroundColor (GLCD COLOR_WHITE);
H PSR 0. 85 GLCD_ClearScresn (};
i Barked 8 GLCD_SetBackgroundColor (GLCD_COLOR_BLUE) ; E
= System 8 GLCD_SetForegroundColor (GLCD COLOR_WHITE);

Intemal 88 GLCD_SetFont (sGLCD Font_16x24):

Mode T 89 GLCD_DrawString (0, 0%24, " CORTEX-M4 CCOXBCOK ");

Prvilege P. 30 GLCD_DrawString (0, 1%24, " ADC Demo "y

91 GLCD_SetBackgroundColor (GLCD COLOR WHITE):

tates - 92 GLCD_SetForegroundColor (GLCD COLOR_BLUE) ;

Sec .. - 53 GLCD DrawString (0, 3%24, "ADC =");: -
=] Froject | = Registers 1 n -
Command B [B@ Ccallstack = Locals 1=
#%# Currently used: 20660 Bytes (63%) Name Location/... Type
] T : - ¥ 05 | 0508002660 Task -

g @
> I eo022n Task =l
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakRccess COVERAGE ‘ @ Call Stack + Loals | E Memory 1
ULINKZ/ME Cortex Debugger t1: 0.00050600 sec L75 C1 CAP NUM SCRL OVR R/W

5. Selecting Run (F5) will execute the statements up until the breakpoint.

Use Step (F11) to execute the statements in the program one after the other, and
observe the values of variables. For example, when we reach line 39 (after stepping),
the local variable ADCvalue is assigned to 10 (OxOOO0O000A). This value is shown in
the Call Stack + Locals window.

Call Stack =+ Locals @
Mame Location/Value Type
= % main 0:0800023C int f{]
+- % buffer (20000600 " auto - char[128]

ADCvalue _ auto - unsigned int

i#1Call Stack = Locals |

Chapter 2

See also

This chapter has introduced many more programming concepts than would normally be
covered in the first few chapters of a programming textbook, and the text is really aimed at
those readers with experience of other languages. Those who are new to programming will
need to fill some of the gaps by reading an introductory programming text. Because C has
been around for more than 30 years, there are plenty to choose from! However, most novices
will find recently published or revised editions of standard texts, more accessible than books
written in the 1980s and 90s. You may find it easier to learn C by writing programs for your
PC rather than the evaluation board. In fact, some of my students develop and test their
embedded algorithms using a PC before porting them to uVision5. This is perfectly feasible
for programs (or parts of programs) that do not need to access peripherals such as the ADC,
and the like. You will need to install a C compiler to enable you to do this; free options include
Visual Studio Express, Open Watcom, and GCC. The graphical user environments available
with most of these compilers provide a user interface very similar to that of uVision5.

Programming /O

In this chapter, we will cover the following topics:

» Performing arithmetic operations

» lllustrating machine storage classes
» Configuring GPIO ports

» Configuring UART ports

» Handling interrupts

» Using timers to create a digital clock

Introduction

The release of uVision5 heralded the integration of software packs to support a range of
microcontroller devices and simplify the task of programming I/0 by allowing the user to

select from a menu of 1/0 options to provide the necessary source code in our project. This is
extremely helpful and represents a huge leap forwards as compared to previous versions of
the IDE that provided the user with comparatively little help with configuring 1/0 libraries. But,
it does raise a dilemma; what do we do if our target hardware isn't supported? In this chapter,
we'll investigate some of the functions that configure 1/0 devices and gain an understanding of
what is involved in writing /0 interfaces for other targets. We'll need to refer to STM Reference
manual RM0090 (www . st . com) throughout this chapter as it provides complete information
on how to use the STM32F405xx/07xx, STM32F415xx/17xx, STM32F42xxx, and STM32F43xxx
microcontroller memory and peripherals. We start by writing a program that adds numbers and
then use this apparently trivial code to motivate a deeper discussion of data types.

Programming |/0

Performing arithmetic operations

Writing a program that adds two numbers together may seem like a trivial task. We obviously
need to declare three variables, two to hold values of the numbers to be added, known as
addends, and another to hold the sum. The following recipe illustrates some problems that
arise due to word length.

How to do it...

The following steps demonstrate how to perform arithmetic operations:

1.

Create a new folder and name it addTwoNums_c3vO0. Invoke uVision5 and create a
new project named addTwoNums within this folder.

Use the RTE manager to select the MCBSTM32F400 evaluation board and configure
it as we did for helloWorld_ c2vo0, from the Writing to console Window recipe in
Chapter 2, C Language Programming.

Copy the files, Serial.c, Serial.h, and Retarget.c, from the helloWorld
c2v0 recipe into the folder.

Create a new source file named addTwoNums . ¢ and enter the following program.
Please note that we're using the folding editor feature to omit boilerplate code:
/***

* Recipe: addTwoNums_c3v0

* File: addTwoNums . c

* Purpose: Adds numbers using terminal I/0
kkhkkhkkhkkhkkhkkhkkhkhkkhkkkkkkkkkkk*x*

*

* Modification History
* 26.02.14 Created
* 15.12.15 Updated uVision5.17 & DFP2.6.0

*

* Dr. Mark Fisher, CMP, UEA, Norwich, UK.
**/

#include "stm32F4xx hal.h"
#include <stdio.h>
#include "Serial.h"
#include "cmsis os.h"

#ifdef RTX

System Clock Configuration

[

Chapter 3

void SystemClock Config(void)

/*

* main
*******/

int main (void) {

}

int input;

int numl, num2, res;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */
SER_Init () ;

for (;;) | /* Loop forever */

printf ("Enter First Number: ");
scanf ("$4d", &input) ;

numl = (int) input;

printf ("Enter Second Number: ") ;
scanf ("$4d", &input) ;

num2 = (int) input;

res = numl + num2;

printf ("Result = %d \n", res);

}

Add the Serial.c, Retarget.c, and addTwoNums . c files to the project.

Connect the evaluation board's UART 1/2/3 9-pin D-type connector to the PC's COM
port.

Invoke PUTTY and configure the port as we did in Chapter 2, C Language
Programming.

Check the Use MicroLIB project option.

Build the project; download and run the program (please note that you may need to
reset the evaluation board).

Programming |/0

10. Try adding a range of different values and make a note of the results (are they all
correct?). Some examples are shown in the following screenshot:

11. Edit the main function and change the variable declaration for num1, num2, and res
to the following:

char numl, num2, res;

12. Rebuild, download, and run the code.

13. Try adding both positive and negative quantities and make a note of the results
(are they all correct?). Try the examples that are shown in the following screenshot:

Chapter 3

£P COMS - PuTTY — [E=EE

Programming languages classify the types of data they manipulate into categories called data
types. Examples of data types are integer and floating point (numbers), character, string, and
pointer. Simple (so-called primitive) data types are part of the language, while compound data
types (such as array, struct, and so on) are abstractions built by the programmer. Programmers
coding in strongly-typed languages (such as C) must declare the type of variables before they
are referenced in the code. This enables the compiler to allocate a suitable amount of memory
in which to store the variable. Typical primitive data types for the C language are shown in

the following table. These types can be preceded by the signed or unsigned qualifier, which
guarantees that the number is stored as a signed or unsigned quantity:

Type Definition

char This is the smallest addressable unit that can contain encoding of a
character. It is, typically, 8-bits in size.

short This is a short-signed integer type. It is at least 16-bits in size.

short int

int This is the basic signed integer type. This is at least 16-bits in size.

long This is a long-signed integer type. It is at least 32-bits in size.

long int

Programming |/0

Type Definition

long long This is a long-long signed integer type. It is at least 64-bits in size.
long long int

float This is a single precision floating point type. Specific encoding is not

specified, but IEEE 754 is a popular standard.

double This is a double precision floating point type. Specific encoding is not
specified, but IEEE 754 is a popular standard.

long double This is an extended precision floating point type. Specific encoding is not
specified, but IEEE 754 is a popular standard.

We've seen that unsigned numbers are stored in binary, but how are sighed numbers
represented? To answer this question, we'll consider the type char used to represent an

8-bit quantity. The type unsigned char encodes numbers between 0 and 28-1 that is illustrated
as follows:

unsigned char base,,
21 |28 |25 2% |28 |22 |2t |2
0 |0 |O 0 0O |0 |O |O |O
0O |0 |O 0 0O |0 |0 |1

10

10

1 1 1 1 1 1 1 1 255

10

The type definition also determines a set of valid operations on the type and how these are
performed. For example, consider the arithmetic operation of addition. When we add two
variables of type unsigned char, the result might be greater than 255, . The rules of binary
addition are illustrated in the following table:

SUM CARRY
0 + 0] = 0 0
0 + 1 = 1 0
1 + 0] = 1 0
1 + 1 = 0 1

Chapter 3

Each row in the table can be realized by digital hardware components (logic gates). When the
sum is greater than 255, the result of the addition spills over into the eighth bit and gives
the wrong answer. If we force the compiler to produce executable code for this operation,
then the resulting operation would set the CARRY and OVERFLOW bits of the Program Status
Register (PSR). The PSR forms a fundamental part of any central processing unit. Arithmetic
instructions (and some others) that are executed by the CPU change the value stored in the
five most significant bits of the STM32f4xx PSR register, setting or clearing them to reflect the
outcome of the last arithmetic instruction that was executed:

31 (30|29 (28|27 | 28 0
N Z C \ Q Reserved

» N=NEGATIVE

» Z=ZERO

» C=CARRY

» V=0OVERFLOW

» Q=SATURATE
An operating system may read these bits and trap a run-time error. However, as our programs
run without an operating system, and we've not included code to specifically trap errors, such
operations may simply give the wrong answer when the data type that we're using is too small

to represent the result. The following table illustrates adding 8-bit binary representations of
110,,and 198, :

2 |20 |25 |20 |22 |22 |22 |20 102 | 10t | 10°
AUGEND o |1 |1 1 |12 Jo [+ |2 |1 [o [+
0
1
ADDEND 1 [1 [o [o Jo |1 |1 Jo 1 |9 |8
SUM o o1 |1 |o o |o |o 3 |o |8
CARRY |1 [1 |o |o |1 [1 [1 [o [cin 1 |o Jcin

In this case, the 8-bit result overflows and is interpreted as 48, .
Now consider the following assignment statement:

numl = input;

Programming |/0

Here the data types for num1 and input are declared as follows:

long int input;
unsigned char numl;

Remember that variable names are just pseudonyms for memory locations. The assignment
statement copies the quantity stored in the memory location that is represented by the
variable name on the right to the memory location that is represented by the variable on

the left. But in this case, the problem is that these two are physically different sizes (that

is, 8-bit and 32-bit, respectively). Typically, the compiler will report this as an error. To solve
this problem, we must convert the 32-bit integer into 8-bit. The formal term for this is type
conversion (also called type casting), and it is achieved using the following syntax:

numl = (unsigned char) input;

If we wish to add both positive and negative quantities, we must change the data type of num1
and num2. Again, the range of numbers is limited by the size (number of bits) of memory
used. If we use 8-bits to represent both positive and negative numbers, we must allocate half
of the 256 binary codes to negative numbers and half to positive. Several systems have been
proposed to achieve this (for example, signed magnitude, offset-binary, and 2's complement).
The 2's complement system has four features that make its use in binary arithmetic very
attractive. Firstly, the 8-bit code representing 0O, is 00000000,. Secondly, negative values
can be easily identified by examining the most significant bit (MSB). Thirdly, both positive

and negative quantities can be added using the same simple logical operation that we
identified, and finally, the algorithm to convert between positive and negative values is simply
‘complement and add one'.

The char type is used to declare 8-bit numbers coded in 2's complement. Please note that
using 8-bit 2's complement the largest positive number that can be represented is 27-1 (127,
and the largest negative number -27 (-128,).

Now consider the <stdio> library functions, scanf () andprintf(), thatare used
inside the superloop to establish a dialog with the user allowing them to enter values using
the PC keyboard. Both functions use a so-called format control string to control the output
and input format. A $d format string, is one of a number of integer conversion specifiers that
are available to C programmers. The printf () function uses %d to display signed decimal
integers, and scanf () uses it to read (optionally signed) decimal integers. Our program
passes a pointer to the scanf () function, so the 1long int variable named input is
passed by reference and the function can change its value.

While working through the previous recipes you may have noticed that the type identifiers
used in the Serial.h header file (supplied by Keil) are named differently from the primitive
types that we encountered so far. The type identifiers, such as int32 t,and uint8_t, are
called machine storage classes and represent pseudonyms for primitive types, such as int,
and unsigned char. The next section discusses why we need them.

[

Chapter 3

lllustrating machine storage classes

This recipe illustrates a version of addTwoNums that uses the machine storage classes,
int32 tanduint8_ t.We explain why it is advantageous for embedded applications to
define and use these as opposed to the primitive types that are provided by the C language.

How to do it...

To define and use machine storage classes, please follow the outlined steps:

1.
2.

Create a new folder named addTwoNums_v2 by cloning the previous project.

Copy the addTwoNums . c file from the previous recipe to the folder and modify it as
follows:

int main (void) {

int32 t input;

uint8 t numl, num2, res;

HAL Init (); /* Init Hardware Abstraction Layer */

SystemClock Config () ; /* Config Clocks */

SER_Init () ;

}
}

for (;;) { /* Loop forever */

printf ("Enter First Number: ");
scanf ("%d", &input) ;

numl = (uint8 t) input;

printf ("Enter Second Number: ");
scanf ("%d", &input) ;

num2 = (uint8 t) input;

res = numl + num2;

printf ("Result = %4 \n", res);

Add the Serial.c, Serial.h, Retarget.c and addTwoNums . c files to the
project.
Connect the evaluation board's UART 1/2/3 9-pin D-type connector to the PC's
COM port.

Programming |/0

Invoke PuTTY and configure the port as we did in Chapter 2, C Language Programming.

1. Remember to check the Use MicroLIB project option.

2. Build the project; download and run the program (please note that you may need to
reset the evaluation board).

3. Check that the program behaves as before.

The size of signed and unsigned integers that a microprocessor can manipulate is determined
by its low-level architecture. The Cortex-M3 and -M4 microcontrollers are based on the
ARMv7-M architecture (refer to ARMv7-M Architecture Application Level Reference Manual).
Part A of the manual details the application-level architecture and programmers' model, and
it begins by summarizing the core data types and arithmetic operations. ARMv7-M processors
support the following data types in memory:

Byte 8-bit
Halfword 16-bit
Word 32-bit

The manual explains that processor registers are 32 bits in size, and the instruction set
supports the following data types:

» 32-bit pointers

» Unsigned or signed 32-bit integers

» Unsigned 16-bit or 8-bit integers (held in zero-extended form)
» Signed 16-bit or 8-bit integers (held in sign-extended form)

» Unsigned or signed 64-bit integers held in two registers

It also describes the binary format that is used to store these quantities and provides a
pseudo-code description of how addition and subtraction are performed. This description is
consistent with the results that we got with the recipe, addTwoNums_c3_vo0. The pseudo-
code uses the terms zero-extended and sign-extended to describe how 8- and 16-bit numbers
are stored in the 32-bit registers of the Cortex-M architecture. This is important as the
processor status-register bits reflect the result of 32-bit arithmetic, and so, 8- and 16-bit
values must be appropriately extended to fill the whole 32-bit register so that the sign and
overflow bits correctly reflect the result of operations on shorter word lengths.

Chapter 3

Implementations of C standard data types, such as char, short int, int, long int, and so on,
depend on the (machine-specific) compiler implementation. You may recall that the C standard
only specifies they must be at least a certain size. Apply italics to (at least). This can be a
problem for embedded system programs that need to be ported between architectures with
particular sizes of storage. Luckily, C provides a mechanism called typedef to create new types
that are aliases of existing types. The C Standard Library includes stdint . h, containing C type
definitions that can be customized for the different target architectures. The stdint . h header
is included in stm32F4xx_hal.h, so there is no need to include it again in our program. A
typedef keyword in the stdint . h header defines the following machine storage classes:

/* exact-width signed integer types */

typedef signed char int8 t;
typedef signed short int intleé_t;
typedef signed int int32 t;
typedef signed __inte64 inte4 t;

/* exact-width unsigned integer types */

typedef unsigned char uint8 t;
typedef unsigned short int uintleée t;
typedef unsigned int uint32 t;
typedef unsigned int64 uint64 t;

If we require that an integer be represented in exactly N bits, then we use one of the
following types:

signed: int8 t intleée_t int32 t int64 t
unsigned: uint8_t uintlé_t uint32 t uinte4 t

Configuring GPIO ports

The recipe, helloBlinky c1v0, that we metin Chapter 1, A Practical Introduction to
ARM Cortex, uses the LED On () and LED Off () functions to switch the LEDs. These
functions are defined in a file named LED_MCBSTM32F400 . ¢, which is automatically
included in our project if we select LED (API) Board Support when configuring our project
using the RTE manager. Let's write another LED program and then take a closer look at
LED MCBSTM32F400.c.

How to do it...

To configure the GPIO ports follow the outlined steps:

1. Create a folder named countBlinky c3v0 and a project named countBlinky;
use the RTE manager to select Board Support for the LED (API).

]

Programming |/0

2. Enter the following source code in file named countBlinky.c and add this to
the project:

/* ___
* Recipe: countBlinky c3v0
* Name : countBlinky.c

* Purpose: LED Counter

*

*

* Modification History

* 03.05.15 Created

* 16.12.15 Updated (uVision5.17 + DFP2.6.0)

*

* Dr Mark Fisher, CMP, UEA, Norwich, UK

K o e e e e e e e */

#include "stm32f4xx hal.h"
#include "cmsis_os.h"
#include "Board GLCD.h"
#include "Board LED.h"

#define wait_delay HAL Delay

$ifdef RTX

void SystemClock_Config(void) {

/*

* main

********/

int main (void)
uint8 t val = 0;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */
LED_Initialize(); /* LED Initialization */
for (;;) { /* Loop forever */
LED_SetOut (val++); /* increment LEDs */
wait delay (100) ; /* Wait */
} /* end for */

}

3. Compile, download, and run the program.

(55

Chapter 3

Computers access their /0 devices either by special /0 instructions that read and write to
peripherals located in a separate 1/0 address space or using the instructions that are provided
to access memory. ARM processors use the latter method, known as memory-mapped I/0.

As such, peripheral registers are mapped into the memory address space of the machine, so
turning LEDs ON and OFF is achieved simply by writing binary values to locations in memory.

As we explained in Chapter 1, A Practical Introduction to ARM Cortex each LED is connected
to a GPIO port pin that in turn is mapped as a GPIO port bit. The GPIO interface is described in
Reference manual RM0O0090 (www . st . com), and it is impossible to understand the functions
in LED_MCBSTM32F400 . c without referring to this. The STM32F407IG has nine GPIO ports
(named A-l), and each port can control up to 16 1/0 bits. The port bits are configured as
outputs or inputs by writing to so-called port control registers, and then data is either input

or output by reading/writing to the data register that is associated with the port. Some port
control bits configure programmable switches in the port that connect resistors to the pins.
You may recall that LEDs need to be connected to resistors, so this feature is particularly
useful. The switching speed of the port can also be configured by software (lower switching
speeds save power). As ARM uses memory-mapped 1/0, all GPIO registers are mapped to
specific memory addresses.

Some evaluation boards connect all eight LEDs to one port, which makes configuring

them easy, but the eight LEDs on the MCBSTM32F400 evaluation board are connected to
different ports, and each port is dealt with separately. The LED On (),LED Off (), and
LED SetOut () functions call HAL _GPIO WritePin (), which, inturn, is defined in the
stm32f4xx _hal gpio.c file. The GPIO registers themselves are declared as a C struct in
the stm32£407xx . hfile:

/**
* @brief General Purpose I/0

*/

typedef struct

{

IO uint32 t MODER; /*!< GPIO port mode register,
Address offset: 0x00 */
IO uint32 t OTYPER; /*!< GPIO port output type register,
Address offset: 0x04 */
IO uint32_ t OSPEEDR; /*!< GPIO port output speed register,
Address offset: 0x08 */
IO uint32_t PUPDR; /*!< GPIO port pull-up/pull-down
register, Address offset: 0x0C */
IO uint32 t IDR; /*!< GPIO port input data register,
Address offset: 0x10 */
IO uint32 t ODR; /*!< GPIO port output data register,

&7}

vww allitebooks.conl

http://www.allitebooks.org

Programming |/0

Address offset: 0x14 */

IO uintlé_t BSRRL; /*!< GPIO port bit set/reset low
register, Address offset: 0x18 */

IO uintlé_t BSRRH; /*!< GPIO port bit set/reset high
register, Address offset: 0x1A */

IO uint32 t LCKR; /*1< GPIO port configuration lock
register, Address offset: 0x1C */

IO uint32 t AFR[2]; /*!< GPIO alternate function registers,

Address offset: 0x20-0x24 */
} GPIO TypeDef;

In the C language, arrays and structures are compound data types used to store collections
of data. All the data elements stored in an array must be the same size, (that is, all the same
type), but in a struct (structure), the data values can be different sizes (types). As such, a
struct provides an ideal abstraction for the data registers that are used by a peripheral. Each
variable in the struct is accessed by a named identifier, which the compiler translates into an
offset from a base address. In the previous example, the base address is represented by the
GPIO_TypeDef identifier, and MODER, OTYPER, OSPEEDR, and so on represent offsets of O,
4, 8, and so on bytes from the base (that is, 32 bits = 4 bytes).

The typedef keyword enables the GPIO registers to be accessed using the GPIOx -> ODR
syntax; for example, where GPIOx is a pointer to the base address of a particular GPIO port.
Consider the HAL. GPIO WritePin () function declared in Board LED.h, which switches
LEDs by writing to the bit-set-reset register (BSRR):

void HAL GPIO WritePin (GPIO TypeDef* GPIOx, uintlé t GPIO Pin,

GPIO PinState PinState)
/* Check the parameters */
assert param (IS _GPIO PIN(GPIO_Pin)) ;
assert param (IS _GPIO PIN ACTION (PinState));

if (PinState != GPIO_PIN RESET)

{

GPIOx->BSRR = GPIO Pinj;

}

else

{

GPIOx->BSRR = (uint32 t)GPIO_Pin << 16;

]

Chapter 3

Here, GPIOx is a pointer to the struct named GPIO_ TypeDef that we described earlier.
GPIOx->BSRRL writes '1' to a specific bit of the lower Bit Set Reset Register (BSRR) to set
the port bit. BSRR controls bits 0-15 of the parallel port, as described in STM's RM0090
Reference manual (Chapter 8) as follows:

31 30 |29 |28 |27 |26 | 25 24 23 22 21 20 19 18 17 16
BR BR | BR | BR | BR | BR
15 14 13 | 12 | 11 | 10

BRO | BR8 | BR7 | BR6 | BR5 | BR4 | BR3 | BR2 | BR1 | BRO

w w w w W w w w w
15 14 13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
BS BS | BS | BS | BS | BS
15 14 13 | 12 | 11 | 10

BS9 | BS8 | BS7 | BS6 | BS5 | BS4 | BS3 | BS2 | BS1 | BSO

w w w w W W W W W W w w w w w w

Before we can use the GPIO to write to LEDs, the peripheral must first be configured. This is
achieved by the LED Initialize () function thatis declared in Board LED.h and defined
in LED MCBSTM32F400.c.

For example, within LED Initialize (), the following code fragment configures GPIO Port G
pins 6,7, and 8 to drive LEDs:

/* Configure GPIO pins: PG6 PG7 PG8 */

GPIO InitStruct.Pin GPIO PIN 6 | GPIO PIN 7 | GPIO PIN 8;
GPIO InitStruct.Mode = GPIO_MODE OUTPUT_ PP;

GPIO InitStruct.Pull = GPIO_ PULLDOWN;

GPIO InitStruct.Speed = GPIO_SPEED LOW;

HAL GPIO Init (GPIOG, &GPIO_InitStruct) ;

For each port, LED Initialize () writes appropriate values to a GPIO InitStruct and
then invokes HAL_GPIO Init ().We need to consult STM's RMO090 Reference manual yet
again to fully understand HAL_GPIO_Init () (definedin stm32f4xx hal gpio.c), but
some C language statements that are used by the functions read and write specific register
bits are commonly used by embedded-system programmers and deserve further explanation.
Consider this code fragment (in stm32f4xx _hal gpio.c)that configures the GPIO Lock
register (the function header provides a detailed description):

/**
* @brief Locks GPIO Pins configuration registers.
* @note The locked registers are GPIOx MODER, GPIOx_ OTYPER,
* GPIOx OSPEEDR,GPIOx PUPDR, GPIOx AFRL and GPIOx AFRH.
* @note The configuration of the locked GPIO pins can no

* longer be modified until the next reset.
* @param GPIOx: where x can be (A..F) to select the GPIO
* peripheral for STM32F4 family

* @param GPIO Pin: specifies the port bit to be locked.

&)

Programming |/0

* This parameter can be any combination of GPIO PIN x
* where x can be (0..15).
* @retval None

*/

HAL StatusTypeDef HAL GPIO LockPin (GPIO TypeDef* GPIOx,
uintlé_t GPIO Pin)

{

__I0 uint32 t tmp = GPIO LCKR LCKK;

etc..
/* Apply lock key write sequence */

tmp |= GPIO Pin;

/* Set LCKx bit(s): LCKK='l' + LCK[15-0] */

GPIOx->LCKR = tmp;

The tmp |= GPIO_Pin statement assigns a value to tmp, which is a bitwise logical OR of
the current value and a 32-bit mask named GPIO_Pin. The term mask is used to describe a
binary variable that is used to identify particular bit patterns in a target variable. By carefully
choosing the value of the mask, we are able to set particular bits of the Lock Register (LCKR
) while maintaining the other bits unchanged. Please note that the tmp |= GPIO Pin
statement is written using a shorthand C assignment notation. To explain the notation, first
consider a more familiar assignment such as the following;:

myVar = myVar + 10;
This statement adds 10 to the variable myVar. This can be written in C shorthand as follows:
myVar += 10;

Another commonly used technique employs a bitwise logical AND operation with a mask to
clear particular register bits. For example, SER_Init () (recipe addTwoNums c3v0) uses
the following statement:

GPIOC->MODER &= OXFFOFFFFF;

This is used to clear bits 20-23 of the GPIOC's MODE Register (MODER). Similarly, all operators
can be combined in this way, so we could rewrite this as follows:

GPIOC->MODER &= ~(15UL << 20);

The ~ symbol represents the bitwise logical NOT operator, 15UL is defined as an unsigned
long of value 15, and << is the logical shift-left operator.

Chapter 3

Before explaining how the GPIO port's base address is defined, we'll deal with the type
qualifier, 10 (refer to the typedef keyword that was illustrated earlier). The IO macro
is resolved by a #define directive in the core cm4 . h header file and replaced by the
volatile qualifier. This qualifier indicates (to the compiler) that the variable is held in a
register and may be changed by some external process. Typically, compilers optimize code by
eliminating redundant loops that repeatedly read variables that are stored in memory. But,
as we'll see in the next section, such busy-while loops are the key to many I/0 operations,

so the type volatile qualifier is essential when declaring /0 registers. Another commonly
used qualifieris _ FORCE_INLINE. This is used before a function definition to request the
compiler to optimize the code by eliminating the function call.

The base addresses of GPIO ports are defined in the stm32£407xx.h file, as follows:

/*!< AHB1l peripherals */

#define GPIOA BASE (AHB1PERIPH BASE + 0x0000)
#define GPIOB_BASE (AHB1PERIPH BASE + 0x0400)
#define GPIOC_ BASE (AHB1PERIPH BASE + 0x0800)
#define GPIOD BASE (AHB1PERIPH BASE + 0x0C00)
#define GPIOE BASE (AHB1PERIPH BASE + 0x1000)
#define GPIOF_ BASE (AHB1PERIPH BASE + 0x1400)
#define GPIOG_ BASE (AHB1PERIPH BASE + 0x1800)
#define GPIOH BASE (AHB1PERIPH BASE + 0x1C00)
#define GPIOI_ BASE (AHB1PERIPH BASE + 0x2000)

Here, AHB1PERIPH BASE is resolved by other #define statements and resolves to
(uint32_t)0x40020000. This address is consistent with that identified in the RM0090
Reference manual.

Peripherals are controlled by reading and writing to specific bits of the register bank and these
are identified by so-called masks shown as follows (also defined in stm32fxx.h):

[**xxk*kkx%x Bitg definition for GPIO_MODER register xx*kikxx*/

#define GPIO MODER_MODERO ((uint32 t)0x00000003)

#define GPIO MODER_MODERO_ 0 ((uint32 t)0x00000001)

#define GPIO MODER MODERO 1 ((uint32 t)0x00000002)

#define GPIO MODER_MODER1 ((uint32 t)0x0000000C)

#define GPIO MODER MODER1 0 ((uint32 t)0x00000004)

#define GPIO MODER MODER1 1 ((uint32 t)0x00000008)
etc.

The previous discussion illustrates the importance of the stm32£407xx . h header file. Take a
moment to look through the source code. The comment at the beginning describes the content
as "CMSIS STM32F407xx Device Peripheral Access Layer Header File.".Don't
worry too much about the identifiers (such as @file, @author, @version, @brief, and so
on). They are used by a tool to generate documentation from C (or C++) source code.

51}

Programming |/0

Finally, consider the following statement:

assert param (IS _GPIO PIN(GPIO_Pin)) ;

This deserves some explanation. The assert_param () macro is defined in the
stm32f4xx_hal conf.c file. A macro is defined as an instruction that expands to a set
of instructions to perform a particular task. So, we would expect the following statement to
appear somewhere in our project:

#define assert_param ... etc.

The macro definitions that we've met so far have been used to perform simple parameter
substitutions, but assert _param () introduces macro arguments, which makes macro
behavior very similar to that of a function. If we take a look at the assert param macro
definition, we find the following:

/* Exported MaCro ---------------------————— - */
#ifdef USE FULL ASSERT
[**

* @brief The assert param macro is used for function's
* parameters check.

* @param expr: If expr is false, it calls assert failed
* function which reports the name of the source file and
* the source line number of the call that failed.

* If expr is true, it returns no value.

* @retval None

*/
#define assert param(expr) ((expr) ? (void)O
assert failed((uint8 t *) FILE , LINE))
/* Exported functions --------------------~-~-~-~-~-~-~—-—- */

void assert failed(uint8 t* file, uint32 t line);
#else

#define assert param(expr) ((void)O0)
#endif /* USE_FULL ASSERT */

As the description explains, the macro checks that the expr input argument is TRUE, and if
this is not the case, it calls assert _failed (). It does this using a conditional statement
that is written using C's only ?: ternary operator. Consider the following statement:

((expr) ? (void)0 : assert failed((uint8 t *) FILE , LINE))
This statement is equivalent to the following:

If (expr)
(void) 0
else
assert failed((uint8 t *) FILE , LINE)

]

Chapter 3

Defining this as a macro is more efficient as although it behaves as a function, the code is
expanded by the preprocessor, and this avoids the overhead of an associated function call.

Although memory mapped 1/0 is very efficient the memory address map is device and
implementation is dependent, and this makes managing portability a problem. ARM solves this
issue through the Cortex Microcontroller Software Interface Standard (CMSIS). CMSIS provides
developers using the Cortex-M family with a common approach to interfacing peripherals, real-
time operating systems, and middleware components. An overview of the standard http://
www.keil.com/support/man/docs explains that it provides the following:

» A Hardware Abstraction Layer (HAL) for Cortex-M processor registers

» Standardized system exception names

» Standardized methods to organize header files

» Common methods for system initialization

» Standardized intrinsic functions

» Standardized ways to determine the system clock frequency
The following diagram shows CMSIS providing an interface between the user application
(which may be based on a Real Time Operating System) and the hardware. CMSIS provides
the following:

» A Core Peripheral Access Layer

» A Device Peripheral Access Layer (MCU-specific)

» Helper functions for peripheral management

User Application Code
RTOS [Real Time Kernal
= S~ ~~
‘ Care Peripheral Functions ‘ Device Peripheral Functions
CMsIS -~

‘ Peripheral Registers and Interrupt/Exception Definitions

b - b~ =
Processor SysTick NVIC Debug/Trace
0 Nested Vectar Other
MCU Core RTOS Kemel Timer Interrupt Contraller Interface Peripherals
Cortex-M Processaor

Programming |/0

In practice, CMSIS is a framework within which MCU and peripheral vendors provide device
driver libraries. Each vendor provides a device-specific {device} . h header file for users to
include in their projects, and this may, in turn, include further files to provide additional
functionality. MCU vendors also provide startup code written in assembly language that
contains the vector table and initialization code for stacks, and so on. In the typical CMSIS
file structure that is illustrated as follows, we see a number of file names that we are already
familiar with through our previous projects:

» {devicel.h: This is the header file defining the device
» core_cm4.h:This is the header file defining the device core

» core_cmd.c: This contains intrinsic functions

» system_{device}l.h: This contains device-specific interrupt and peripheral register
definitions

» system_{device}.c: This contains system functions and initialization code
» startup_{device}.s: This contains the startup code

<device.h> > Startup code files
Y \ J \)
core_cmd.h system_<device>.h other header files
Core Peripheral Access Layer Interrupt number and peripheral Device Peripheral Access Layer and
| register definitions additional access functions
core_cmé.c system_<device>.c
Core intrinsic functions Sys?cm.fgr?l:hon.s including
initialization

CMSIS continues to evolve as vendors develop new peripherals and revise how functionality
is exposed by their device handlers. The version of CMSIS shipped with ARM's uVision4 IDE
is quite different to the version that is shipped with uVision5, and judging by some of the
comments posted on user forums, some users have found migrating to the new Run Time
Environment manager quite a challenge. The main problem, especially for this text, is that
some functionality has been packaged within the RTOS framework perhaps because this
improves its robustness. More of a concern is that some of the functionality is only supported
by the professional version of the MDK.

Chapter 3

Configuring UART ports

Programs such as addTwoNums call the SER_GetChar () and SER_PutChar () functions
to output ASCII characters to a terminal. The Retarget . c file redefines the fgetc () and
fputc () functions, which, in turn, call SER_GetChar () and SER_PutChar (). These
low-level functions illustrate some important I/0 models that we'll explore using a program
that checks if a string entered is a palindrome (for example, radar, civic, and level are

palindromes). We'l

| call this recipe palindrome c3vO0.

How to do it...

Follow the steps outlined to configure UART ports:

1. Create a project named palindrome; use the RTE manager to configure the board as we
did for addTwoNums_ c¢3vO0 folder, in the Performing arithemetic operations recipe.

2. Create a file named palindrome.c and copy the SystemClock Config(void)
function and associated boilerplate from a previous recipe. Add the following
#include statements:

#include
#include
#include
#include
#include

"stm32F4xx hal.h"
<stdio.h>
<string.h>
"Serial.h"

"cmsis os.h"

3. Add a function named strRev () tothe palindrome

v - returns reversed a string

/

trRev (char *str)

i = strlen(str)-1,j=0;
ch;

e(i > j)

ch = str[i];
str[il= str([j]l;
str([j] = ch;
i--;

J++i

return str;

/*
* strRe
*kkkkk*k
char * s
{
int
char
whil
{
!
!

.c file:

Programming |/0

4. Addamain () function to the palindrome. c file and add this file to the project:
/*
* main
*******/
int main (void)
char a[100], b[100];

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */
SER_Init () ;
for (;;) {
printf ("Enter the string to check for palindrome\n") ;
scanf ("%s", a);
strcpy (b, a);
strRev (b) ;
if (strcmp(a,b) == 0)

printf ("Entered string IS a palindrome.\n") ;
else
printf ("Entered string IS NOT a palindrome.\n") ;

}
}

5. Remember to add Retarget.c, Serial.c and Serial.h to the project.
Open the project options dialog, click the Target tab, and check Use MicrLIB.
7. Build, download, and run the program.

The a array stores the string that is entered. The string is copied to the b array and the
strrev () function is called to reverse it. The strcmp () function (defined in the string.h
library) is used to check whether the two strings match. The strrev () function copies

and reverses the string character by character (remember that strings are terminated with a
NULL character).

The SER_PutChar () function declared in Serial . c outputs characters by writing to the
USART Data Register (DR), as follows:

* SER_PutChar: Write a character to Serial Port

Chapter 3

int32 t SER PutChar (int32 t ch) {
#ifdef _ DBG ITM
int i;
ITM SendChar (ch & O0xFF) ;
for (i = 10000; 1i; i--);
#else
while (! (UART4->SR & 0x0080)) ;
UART4->DR = (ch & OxFF);
#endif

return (ch) ;

}
The UART data register is referenced by a pointer:

UART4->DR;

Please note that the STM32F4xx integrates both Universal
Synchronous/Asynchronous Receiver Transmitter (USART) and
7 Universal Asynchronous Receiver Transmitter (UART) hardware.
% USARTSs can be configured to operate both synchronously and
’ asynchronously. We configure a UART that is connected to the
9-pin D-type connector; hence, output is achieved by writing to
UART4 rather than USARTX.

Once we have written to the data register, the digital value is output serially, one bit at a time,
by the hardware. As this takes considerably longer than it takes to load data in parallel (the
exact time taken will depend on the baud rate chosen), we must be careful not to load the DR
with a new value until the previous one has been successfully transmitted. The previous line
of code is as follows:

while (! (UART4->SR & 0x0080))
/* empty statement */ ;

This line of code achieves this by checking bit 7 of the UART's Status Register (SR). Repeatedly
reading the Status Register in a loop is called polling the Status Register (or spinning on

the Status Register). A similar situation occurs in SER_GetChar (), but here we poll the
Status Register to check whether a character has been received (that is, a bit-7 set),

as follows:.

while (! (UART4->SR & 0x0020))

7

Programming |/0

Polling or programmed 1/0 is the simplest I/0 model that we can conceive and the
corresponding empty while statements are known as busy-while loops. Programmed 1/0
operations are performed in the main thread of execution, so the busy-while loops prevent the
CPU from doing any useful work. If the program is simple, then this is not too inconvenient,
but in most cases, we must look to other more efficient I/0 programming models, such as
interrupt-driven 1/0, and Direct Memory Access.

A flexible device driver really needs to support all three I/0 models, that is, programmed I/0,
interrupt-driven 1/0, and DMA 1/0. The USART device driver that is shipped with uVision 5 does
exactly this. However, configuring this code is challenging, especially for novice programmers,
so for the time being we'll develop our own simple drivers to gain some understanding of the
mechanisms before migrating to ARM's library.

Embedded processors use serial ports to communicate with Data Terminal Equipment (DTE)
and Data Communications Equipment (DCE) using the RS232 standard. Previous recipes,
such as addTwoNums_c3v0, use RS232 to communicate with a PC running PuTTY to emulate
a DTE. The RS232 signals are represented by voltage levels with respect to a system common
(power / logic ground). The idle state (MARK) has the signal-level negative with respect to
common, and the active state (SPACE) has the signal-level positive with respect to common.
RS232 transmits data serially, as shown in the following figure:

+15v -]
L&B MEE
c 1 0 0 O O O 1 O 1 1
Space |
=0
T s et ——p—]——————— -
o } Inciete i nade
Regon
17 [— S —— S U S .
Ielzrk
=1 |] [==
=1 | Seven Dam Bils |
By ; x b
S@n Pariry Twor £10p
bit bit itz

| - |

Diata Fﬁ.ﬂ'lﬂ&[ﬂﬂl‘l‘&&Fﬂl‘lﬁl‘lgw the A0 characer &

Chapter 3

Serial data is transmitted and received in normal USART mode as frames comprising
the following:

» Anldle Line prior to transmission or reception

» Astart bit

» Adata word (7, 8, or 9 bhits), the least significant bit first

» 0.5,1, 1.5, or 2 stop bits, indicating that the frame is complete
The STM400Fxxx USART that is described in STM's Reference manual RMO0O090 uses a
fractional baud rate generator with a 12-bit mantissa and 4-bit fraction. The USART employs
the following:

» Astatus register (USART_SR)

» Data Register (USART_DR)

» A baud rate register (USART_BRR)—12-bit mantissa and 4-bit fraction

» A Guardtime Register (USART_GTPR) in case of Smartcard mode
When data is transmitted asynchronously (without a shared common clock), the receiver
and transmitter are synchronized by embedding timing information in the data signal by
appending a "start" bit. The seven, eight, or nine data bits are appended after the start bit, a

parity bit is added to detect errors, and the packet is terminated by one (or two) stop bits. The
transmission rate (time allocated for each bit) is determined by the baud rate.

Configuring the USART involves writing appropriate values to the USART registers #ifdef and
#else are preprocessor directives that facilitate conditional compilation):

* SER Init: Initialize Serial Interface

void SER_Init (void) ({
#ifdef DBG ITM ITM RxBuffer = ITM RXBUFFER EMPTY;
#telse

RCC->APB1ENR |= (1UL << 19); /* Enable USART4 clock */
RCC->APB2ENR |= (1UL << 0); /* Enable AFIO clock */
RCC->AHB1ENR |= (1UL << 2); /* Enable GPIOC clock */

GPIOC->MODER &= OXFFOFFFFF;
GPIOC->MODER |= 0x00A00000;
GPIOC->AFR[1] |= 0x00008800; /* PC10 UART4 Tx,

PC1ll UART4 Rx (AF8) */

/* Configure UART4: 115200 baud @ 42MHz,
8 bits, 1 stop bit, no parity */
UART4->BRR = (22 << 4) | 12;

Programming |/0

UART4->CR3 = 0x0000;

UART4->CR2 = 0x0000;

UART4->CR1 = 0x200C;
#endif

}

Writing to the UART4 - >BRR baud rate register sets the baud rate. STM's Reference manual
RMOO0090 describes how to configure the Serial Ports. The baud rate is given

I.\Z'».
by Tx/Rx baud m)
Where f_clk is the clock frequency of the USART clock, and USART DIV is a 16-bit unsigned
fixed-point number with a 12-bit mantissa and 4-bit fraction. In our case, we need a baud of
115200 and the APB1 domain clock is 48 MHz. Hence, missing f_clk again defined as eqn.
object. = 22. 78610 = 0000000000010110.11002, so DIV_Mantissa = 2210, and DIV_Fraction =
12/16. Hence, referring to the description of the Baud Rate Register, we have the following:

UART4->BRR = (22 << 4) | 12;
31 [30 |29 [28 |27 |26 |25 |24 [23 |22 [21 |20 [19 |18 |17 |16
Reserved
15 |14 [13 |12 [11 |10 [9 |8 |7 |6 |5 [4 [3 [2 |1 |o
DIV_Mantissa(11:0) DIV_Fraction(3:0)
rw|rw|rw|rw|rw|rw|rw|rw|rw|rw|rw|rw rw|rw|rw|rw
USART Control Register 1 provides some USART control functions:
31 |30 |29|28|27 |26|25|24|23 |22|21 |2O |19|18|17|16
RESERVED
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OVERS8 SESER UE M WAKE PCE PS PEIE TXEIE TCIE RXNEIE IDLEIE TE RE RWU SBK
rw res w rw w rw rw w w w rw rw rw rw w rw

Bits 2, 3, and 12 are set when 0x200C is written to Control Register 1 (CR1); this enables
the USART (bit-12) and also enables the USART transmitter (bit-3) receiver (bit-2) functions.
Bits 15, 12, and 9 are clear. This selects oversampling by 16 (bit-15), 8 data bits (bit-12), and
even parity (bit-9). Bits 12:13 of CR2 are clear; hence, we have 1 stop-bit. Control register 3
functions are unused.

Other statements in SER_Init () connect appropriate clocks that are sourced from the Real
Time Clock Control (RCC) peripheral and configure the GPIO to provide input and output for
the USART by means of the Alternate Function logic. Please note that pins are an expensive
microcontroller commaodity, so GPIO pins are programmed to connect to a range of peripherals.
We discuss GPIO Alternate Function in more detail in Chapter 4, Programming /0.

100

Chapter 3

Handling interrupts

This section illustrates an approach that improves on polling. We replace the busy-wait loop
and instead configure the USART peripheral to generate an interrupt signal when a new
character is received by the input data register (IDR). The interrupt signal causes a special
function, known as an interrupt service routine (ISR), to be called, and this, in turn, reads
the IDR and clears the interrupt signal. We illustrate this approach by a simple recipe called
helloISR c3vO0.

Getting ready

Two small changes to SER_Init () are needed to configure UART4 so that interrupts are
generated when a character is received. The value written to CR1 is changed from 0x200C to
0x202C, thereby setting bit-5 (RXNEIE), and the Nested Vectored Interrupt Controller (the NVIC
is an ARM interrupt-dedicated peripheral close to the Cortex-M4 processor) is configured for
UART4 as follows:

/* __

* SER_Init: Initialize Serial Interface for interrupts

K o o e m el m o */
void SER_Init (void) {

/* as before ... */

/* Configure UART4: 115200 baud @ 42MHz,
8 bits,
1 stop bit, no parity */

UART4->BRR = (22 << 4) | 12;
UART4->CR3 = 0x0000;
UART4->CR2 = 0x0000;
UART4->CR1 = 0x202C;

/* Enable Interrrupts */
NVI C_EnableIRQ (UART4_IRQr1) ;
#endif

}

How to do it...

Follow these steps to handle interrupts.

1. Create a new folder (helloISR_c3v0) and within it a new project named helloISR;
use the RTE manager to configure the project as we did for all the previous projects
that use the serial port.

101

Programming |/0

2. Create a file named helloISR.c and add the boilerplate code to configure clocks,
and so on. Add this file to the project.

3. Add a function to handle interrupts from UART4, as follows:

/**

* UART4 IRQHandler

*
**/
void UART4 IRQHandler (void) ({

volatile unsigned int IIR;

volatile unsigned char c;

ITIR = UART4->SR;
if (IIR & USART FLAG RXNE) { // read interrupt
c = UART4->DR;
printf ("Interrupt! You pressed: %c \r\n", c);
UART4->SR &= ~USART FLAG RXNE; // clear interrupt
}
else
printf ("Interrupt Error!\n");

}

4. Addamain () function:
/*

* main function
********/

int main (void)

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */
SER_Init () ;

printf ("Hello ISR I/O Example\r\n");
printf ("Pressing a key generates an interupt\r\n");

for (;;) { /* Loop forever */
/* Nothing to do here */

}

5. Remember to modify the SER_init () function, as described previously.

Build, download, and run the program. Observe the response to keyboard strokes
(illustrated in the next screenshot). Please note that when we test the code, it is best
to configure PUTTY so that characters are not echoed to the terminal (as the ISR
echoes the characters).

102

Chapter 3

COMS3 - PuTTY [ESREEE)

m

Interrupts allow us to eliminate busy-while loops by providing a mechanism for the peripheral
to initiate reads and writes to its I/0 registers. It does this by sending a signal directly to

the central processing unit (CPU) via the Nested Vectored Interrupt Controller (NVIC). This
signal, called an interrupt, is automatically checked after each instruction is executed by

the CPU, and, if active, the processor responds by executing a special function, known as an
Interrupt Service Routine (ISR), that includes the read or write statement. Early processors
were designed with only one interrupt signal, and several devices would be connected to this
line using wired OR logic. In this case, when the interrupt occurred, the processor first needed
to establish which device generated it before it could be serviced. The ARM Cortex employs a
NVIC to manage up to 256 interrupts, each having a unique priority. This enables each device
to call a unique ISR that is tailored to provide it with the service it needs. System events (for
example, reset) and errors use exactly the same mechanism as interrupts but are called
exceptions (to emphasize that they arise due to unusual system events). Both the interrupt
and exception priorities are processor-specific and defined in stm32F407xx . h. The names
of the ISRs are defined in the vector interrupt table, given in the startup stm32f407xx.s
file (the file extension, . s, indicates that this is an assembly language source file). Although
interrupts solve the busy-while problem, they rely on the processor to read and write data to
peripherals. While this is fine for a small number of data bytes, however, some peripherals
(for example, Memory systems) handle blocks of data. So, we may find that a large chunk of
the CPU time is consumed moving data rather than performing useful work. Direct Memory
Access (DMA) solves this problem by enabling data to be moved directly between peripherals
and memory. In this case, the data transfers are managed by a DMA controller, thereby
leaving the CPU free to execute other more useful instructions.

103

Programming |/0

Inspecting the interrupt vector table that is defined in startup stm32f4xx.s allows us to
identify the UART4 interrupt vector (that is UART4 IRQHandler). We must define a function
named UART IRQHandler to handle the interrupts. This ISR must read the USART status
register (SR) and test the receive register not empty (RXNE) bit to confirm that the interrupt was
generated by the port (if not, an error is indicated). Then the data register is read, echoed to the
console terminal (PuTTY), and the interrupt is cleared (by writing zero to the RXNE).

The SER_GetChar () function in the retarget . c source file will need to be modified if we
wish to use stdio library functions, such as scanf (), and so on. The best strategy would be
to arrange for the ISR to write received characters to a buffer that could subsequently be read
by SER _GetChar ().

There's more...

Interrupts provide a mechanism that allows the processor to multitask. Multitasking is a
technique where a single processor divides its time between several instruction streams.
This creates an illusion of parallelism as, to the user, it appears that different programs

are executed concurrently when, in fact, they are not. Our programs that use ISR's have

two threads of execution, but later we will write programs employing a real-time operating
system kernel, and these may involve several threads. The differences between how normal
threads and ISR threads are used have motivated processor designers to include features
that enable multithreaded applications to be robust and recover from errors. Exceptions
that are generated automatically when an error occurs are handled using exactly the same
mechanism as interrupts and the term exception is generally used to describe either. When
an error occurs, the strategy to recover from the exception may well involve reading/writing to
processor registers that normal threads cannot access.

The Cortex-M4 processor operates in one of two modes. During the execution of the main
program, the processor is in thread mode, and during execution of an exception handler
or ISR, the processor is in handler mode. The two modes are distinguished by bits 0:8 of
the PSR. In thread mode, bits 0:8 are zero, and in handler mode they are set to a number
that identifies the exception type. As there are 8 bits, then 256 types of exceptions can be
identified. When an exception is recognized the processor responds as follows:

1. The contents of processor registers RO:R3, R12, the return address, PSR, and link
register (LR) are pushed to the active stack.

2. The processor identifies the exception number and uses this (offset) to access the
interrupt vector table and locate the address of the exception handler, which is
loaded into the program counter (PC).

3. The LR is loaded with a value that represents the execution mode of the processor
(that is, thread or handler) prior to the exception having occurred.

4. The processor switches to handler mode and begins execution.

104

Chapter 3

When the handler finishes, the return sequence pops the eight words from the stack
and restores them to registers RO:R3, R12, LR, and PSR. It also loads the PC with the
return address.

Access to special registers and system resources is determined by the privilege level of the
processor. There are two levels, user and privileged. When in handler mode the processor

is always in a privileged access level and can access all registers and memory resources.

In thread mode, the processor is normally in user access privilege level and access to

the System Control Space, an area of memory used to configure registers and debugging
components, and access to some special registers is blocked. However, it is possible to switch
from handler mode to user mode and maintain privileged access level, but the scenarios
where this would be necessary are few. For most applications, the simple model of thread and
handler modes that is shown as follows will suffice. After a reset, the processor is working in
privilege mode in order to access all necessary resources.

Exception

User Access

Privileged Access

Level Level
Thread Handler
Mode Mode
Return

Using timers to create a digital clock

A digital clock application provides a good platform to illustrate the components that we
discussed in this chapter. We'll use PuUTTY to allow the user to set the time and then call HAL
GetTick () to provide atime-base for our digital clock that is displayed on the GLCD. We'll
call this recipe ticToc c3vO0.

How to do it...

Follow the following steps to create a digital clock:
1. Create a new folder for the ticToc_c3vO0 recipe and, within it, a new project
(ticToc) and use the RTE manager to select board support for Graphic LCD.

2. Copythe retarget.c, serial.c and serial.h files to the project folder and add
them to the project.

105

Programming |/0

3. Define a new type (time_t)inthe ticToc.h header file. Please note that we could
declare each variable (hours, minutes, seconds, and so on) as separate unsigned
integers, but it is better practice to group them together as a structured type named
time t:

#ifndef _ TICTOC H
#define _ TICTOC H

typedef struct ({ /* structure of the clock record */
unsigned char hour; /* hour */
unsigned char min; /* minute */
unsigned char sec; /* second */
} time t;

#endif /* TICTOC_H */

4. Create a new file named ticToc. c, add the necessary boilerplate and #include
statements, and enter the following main () function:
/*
* main
*******/

int main (void)

time t time;
int32 t input;
char buffer[128];

uint32 t tic, toc = 0;
uint32 t elapsed t;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */
SER_Init () ;

GLCD Initialize();

GLCD_SetBackgroundColor (GLCD COLOR_WHITE) ;

GLCD ClearScreen () ; /* clear the GLCD */
GLCD_SetBackgroundColor (GLCD COLOR BLUE) ;
GLCD_SetForegroundColor (GLCD COLOR_WHITE) ;
GLCD_SetFont (&GLCD Font 16x24);

GLCD DrawString (0, 0*24, " CORTEX-M4 COOKBOOK ") ;
GLCD DrawString (0, 1*24, " PACKT Publishing ");
GLCD_SetBackgroundColor (GLCD COLOR_WHITE) ;

106

Chapter 3

GLCD_SetForegroundColor (GLCD COLOR_BLACK) ;

for (;;) { /* Loop forever */

}

5. Add ticToc.c to the project. Build, download, and test this. Please note that the
compiler may issue some warnings as we have declared some unused variables.

6. Add the following code fragment immediately before the for statement:

/* Set the current time using PuTTY */
printf ("Clock Example\n") ;

printf ("Set Hours: ");

scanf ("%d", &input); time.hour = input;
printf ("Set Minutes: ");

scanf ("%d", &input); time.min = input;
printf ("Set Seconds: ");

scanf ("%d", &input); time.sec = input;

/* elapsed t is elapsed (10 * msec) since midnight */
elapsed t =
time.sec*100+time.min*60*100+time.hour*60*60*100;

7. Build, download, and test this.
8. Add the following code fragment within the for loop:

for (;;) { /* Loop forever */
tic = HAL GetTick()/10;
if (tic != toc) { /* 10 ms update */
toc = tic;
time.sec = (elapsed t/100)%60; /* update time */
time.min = (elapsed t/6000)%60;
time.hour = (elapsed t/360000)%24;

/* Update Display */
sprintf (buffer, "%d : %d : %d", time.hour,
time.min, time.sec);
GLCD DrawString (4*16, 3*24, " ") ;
GLCD DrawString (4*16, 3*24, buffer);

elapsed t = (elapsed t+1)%DAY;

}

107

Programming |/0

9. Remember to define the constant DAY as follows:
#define DAY 8640000; /* 10 msg ticks in a day */

10. Compile, download, and run the program. The following below shows the
GLCD screen:

Once we have declared a variable of type time_t, the fields (hours, min, sec) of the struct
can be accessed using the dot operator (.) or the arrow operator (->). The dot operator
accesses the structure field via the structure variable name, and the arrow operator accesses
it via a pointer to the structure. We already used the arrow operator to access fields of
structs that were used to represent peripheral registers. In this case, the arrow operator
was used because the variable that was used to represent the struct (GPIOC, RCC, UART4
etc.) defines a pointer. As our main () function declares a variable (time) as time t time;,
we access the fields as time . hours, and so on.

The function named HAL GetTick () returns a value thatis incremented every millisecond.
We use this timebase to increment a counter variable named elapsed_t, which is initialized by
the user's console (PuTTY). The tic and toc variables are updated to ensure that the display
only needs to be updated every 100 ms. We call the function sprint () (declared in stdio.h)
to format a string (stored in buffer [128]) representing the current time and write this to the
Graphic LCD in a similar way to what was illustrated in this recipe, debugaADC c2v0.

108

Assembly Language
Programming

In this chapter, we will cover the following;:

» Writing Cortex-M4 assembly language

» Passing parameters between C and the assembly language
» Handling interrupts in assembly language

» Implementing a jump table

» Debugging assembly language

Introduction

This chapter explains how to write functions in assembly language. Assembly language is a
low-level programming language that is specific to a particular computer architecture. So,
unlike programs written in high-level languages, programs written in assembly language
cannot be easily ported to other hardware architectures. Assembly language programs are
converted into object code by a program called an assembler. In practice, assembly language
is used only rarely and most embedded software is written in a high-level language, such

as C. Assembly language is only used when the programmer needs precise control over the
machine architecture and needs to access specific registers or when execution time is an
important consideration. Such occasions typically occur during the following:

» Initializing the system
» Servicing I/0 devices

» Handling interrupts

Assembly Language Programming

Assembly language programmers need a model of the computer architecture to enable them
to write programs. This so called programmers' model identifies the registers, memory model,
and instruction set for a particular machine architecture. The Cortex-M4 programmers' model
is described in the ARMv7-M Architecture Reference Manual (please note that ARM restricts
access to this document, but copies are available via third parties). Chapter A2 identifies 13
general-purpose 32-bit registers (R0-R12) and three additional special registers (R13-R15)
comprising Stack Pointer (SP), Link Register (LR), and Program Counter (PC). Chapter A3
describes a flat address space that is 232 bytes (4 GB) in size, and it identifies specific regions
that are reserved for code, data, and memory-mapped |/0O devices. The large number of
instructions that are supported by the ARMv7-M architecture makes the prospect of writing an
assembly language program quite daunting. A good strategy is to index instructions according
to functionality (for example, branch, data processing, and data movement (load/store, and so
on) as presented in Chapter A4 of the reference manual.

The architecture supports a combination of 16-bit (Thumb) and 32-bit (ARM) instruction
formats in an instruction set that is known as Thumb-2 technology. ARM's Unified Assembler
Language (UAL) was developed to support both 16-bit and 32-bit instructions. We can specify
a 32-bit instruction format using the .w (wide) suffix or the 16-bit format using the .N (narrow)
suffix. If we omit the suffix, then the assembler chooses for us based on other constraints. For
example, if the instruction references a high register (R8-R13), then a 32-bit variant must be
used as most 16-bit instructions can only reference R0-R7. Instructions may also include other
optional suffixes that identify the following:

» Status register flags in the Program Status Register (PSR) {cond} that determine
execution (such as for branch instructions)

» If the condition flags are updated {S}

» The element size specified either as unsigned byte {B}, signed byte {SB}, unsigned
half-word {H}, signed half-word {SH} or word (default)

The startup_stm32£407xx. s file that we include in all our projects is written in assembly
language (conventionally, ARM file extensions, . s and . a, identify assembly language source
code files). This is because one of its tasks is to set the Stack Pointer (SP) and writing to a
specific register is impossible in C. Assembly language uses a mnemonic to represent each
machine instruction. Other instructions called pseudo-instructions or assembler directives
give commands to the assembler itself. Each line of the program combines instruction and
pseudo-instruction mnemonics with operands and labels to carry out each program step.
Labels may be included to act as symbolic references that are used to refer to memory
locations, and so they save the programmer the tedious job of keeping track of addresses. An
assembly language program is written so that labels, mnemonics, operands, and comments
are arranged neatly in tabulated columns, that is,

[labell] [mnemonic] [operand(s)] ; [comment]

110

Chapter 4

Each column must be separated by at least one whitespace character, and comments are
preceded by a semicolon. Most assemblers are known as two pass because they parse the
source code twice, first to build a table of symbolic references and associated addresses
(called the symbol table) and again to produce the object code.

Writing Cortex-M4 assembly language

Before we start to write an assembly language subroutine, we need an idea of what the
function has to achieve. The best way to specify this is to first write the function in a high-level
language, such as C, and then translate the C code into assembly language line by line. Some
experienced assembly language programmers argue that this is inefficient, but the technique
produces well-documented code that can be optimized in further iterations of the design.

Getting ready

To translate the C code, we need to be familiar with both the instruction set and the addressing
modes that are used by the Cortex-M4. Details of the instruction set can be found in ARM's
Architecture Reference Manual and also in the ARM Cortex-M4 Generic User Guide (http://
infocenter.arm.com/). Addressing modes are fundamental to a general understanding of
computer architecture, but they are of practical interest to compiler writers and those writing
assembly language. The following paragraph provides a very brief introduction.

The addressing mode describes the mechanism that an instruction uses to access its
operands. In RISC architectures, such as the ARM Cortex, most instructions reference
operands stored in registers directly (that is, register direct addressing). However, load and
store instructions may reference a register value that is interpreted as an address in memory
that contains the operand (that is, a pointer to the operand), so-called register indirect
addressing. Additionally, if the value is interpreted as a pointer, then the effective address
may be formed by adding an additional value (called the offset). The offset value may be
specified as a constant and stored as part of the instruction, a technique known as immediate
addressing, or stored in another register called an index register. The latter case, known as
indexed addressing, is particularly efficient to access values stored in data structures, such as
arrays, and structures. These addressing modes are summarized in the following table, and
further information on additional addressing modes that are supported by the ARM Cortex-M4
can be found in Chapter A6 of the ARMv7-M Architecture Reference Manual.

Syntax Addressing Mode Description
<Rn> Direct This is the operand that is stored in the register
[<Rn>] Indirect This register holds a pointer to the operand

111

Assembly Language Programming

Syntax Addressing Mode Description
[<Rn><offset>] | Offset/Indexed This is the effective address formed by adding the
Addressing contents of base register <Rn> + <offset>. Offset

may be the following:

» An immediate constant, for example, <imm8>
or <imm12>

» An index register <Rm>

Consider translating the C code const declaration into assembly language, as follows:
const uint32 t delay = 10000;

ARM's Unified Assembler Language (described in the ARM compiler toolchain assembler
reference http://infocenter.arm.com/) makes translating simple constant variable
declarations very simple by providing a pseudo-instruction LDR that automatically produces
appropriate ARM instructions to complete this task. In this case, assuming that we choose to
store variable num_ticks in RO, then we can write the following:

;; Translating a const declaration
LDR RO, =10000 ; const uint32 t num ticks = 10000;

The ARM assembler will convert this into an appropriate load instruction to move the required
data value to the register. Let's suppose that we need to translate a variable declaration that
doesn't include an assignment, as follows:

uint32 t cnt;

This doesn't require writing any code; we simply need to make a note of the register used to
store the data:

;7 Translating a variable declaration
;R1 <- cnt ; uint32 t count;

We can then use LDR when a value is assigned:

;; Translating an assignment statement
ILDR R1, =0 ; count = 0;

We will now illustrate the translation of a whole function by considering the simple delay
used in the helloBlinky c2v2 recipe that was introduced in Chapter 2, C Language
Programming. We'll call this recipe asmBlinky c4voO.

112

Chapter 4

How to do it...

1.

Create a new project (in a new folder) called asmB1linky. Use the same RTE as
helloBlinky c2v2 from the Writing a function recipe in Chapter 2, C Language
Programming).

Make a copy of helloBlinky.c (the helloBlinky c2v2 folder from the Writing a
function recipe in Chapter 2, C Language Programming.) and rename it asmBlinky . c.

Replace the comment at the start of the file with something more appropriate, let's
take the following example:

/* __
* Recipe: asmBlinky c4vO

* Name : asmBlinky.c

* Purpose: Very Simple LED Flasher using

* Assembly Language delay function

K o e e e e e e e e e e
*

* Modification History

* 17.03.14 Created

* 02.12.15 Updated

* (uVision5 v5.17+STM32F4xx DFP2.6.0)

*

* Dr Mark Fisher, CMP, UEA, Norwich, UK

Declare an external function called delay ():

/* Function Prototype */
extern void delay (void) ; /* asm subroutine */

Delete the C function named delay () defined aftermain () (a legacy of
helloBlinky.c).

Add asmBlinky.c to the project.

Create a new file, enter the following assembly language code, and save the file as
delay.s. Please note that the . s file extension is reserved for assembly language
source code files:

;**;

;* delay: Very simple assembly language delay routine *;

.k * .
;* Dr. Mark Fisher, CMP, UEA, Norwich, UK. *;
;* Last updated 19.03.14 *;
;**;
AREA example, CODE, READONLY
EXPORT delay ;
delay ; void delay (void) {

113

Assembly Language Programming

;RO <- num ticks ; uint32_t num_ticks

LDR RO, =10000000 ;

;R1 <- cnt ; uint32 t cnt;
LDR R1, =0 ; for (cnt=0;
cnt!=<num ticks; cnt++)
for CMP RO, R1 ;
BEQ forEnd ; /* empty statement */ ;
ADD R1, #1 ;
BAL for ;
forEnd i}
BX 1r ;
END ;

8. Add delay.s to the project.
9. Build, download, and run the program.

The name of the function translates to a label that acts as a pseudonym for the address

of the start of the function. The variables are stored in R0 and R1 and assigned using LDR
pseudo-instruction. R1 is incremented by adding an immediate constant (the immediate
addressing mode is identified using #) to R1, the result is stored in R1. Its value is then
compared to R0. The compare instruction subtracts R1 and R0 and sets the PSR flags but
does not store the result of the operation. The conditional branch not equal (BNE) tests the
zero flag and loads the program counter (PC) with the address of the label for if the flag is not
set; otherwise, the program continues.

Programs often combine both C and assembly language functions, also known as subroutines.
The assembly language code is written in a separate file that is read by the assembiler.

The main output produced by assembling an input assembly language source file is the
translation of that file into an object file in Executable and Linking Format (ELF). ELF

files produced by the assembler are relocatable files that hold code and/or data. The term
relocatable means that all variables and branch targets are PC-relative, and so the code

can be loaded anywhere in memory and executed. Relocatable ELF files produced by the
assembler comprise of the following;:

» An ELF header
» A Section header table
» Sections

Chapter 4

Sections are the smallest independent, named, and indivisible units of code or data that are
manipulated by the linker. The AREA assembler directive is used to subdivide our assembly
language source file into ELF sections. Normally, we need at least two sections: one for program
code, and another for data. There are two reasons for this. Firstly, some applications may store
executable code in read-only memory (ROM), but variables need to be stored in read-write
memory (RAM). Secondly, as the ARM Cortex-M4 uses a Harvard architecture model (that is,
separate program and data memories) there is a considerable performance advantage in
storing variables as data rather than code (even though both memories are implemented as
nonvolatile RAM). As the examples we will investigate are not optimized for performance, our
code and data can share the same section. Every program that includes assembly language
must have at least one AREA directive (startup_stm32f407xx. s includes several).

As the delay assembly language subroutine is defined in another source file, then in order
to call it from the main C function, we need to declare delay () as an external function. The
name of the function resolves to the entry point in our assembly language subroutine (that
is, an address), which is identified by adding the delay label in our code. We also need to
include the EXPORT directive to enable the linker to resolve the symbol references.

When a function (written in C or assembiler) is called, the program counter (PC) that holds
the return address must first be saved and then overwritten with the address of the first
instruction in the function. The ARM Cortex instruction set contains a primitive subroutine
call instruction named branch-with-link (BL) that performs this function. When the function
completes, a branch indirect (BX) instruction is used to load the PC register with the (saved)
return address.

Every assembly language source file must end with an END assembler directive.

The ARM Architecture Procedure Call Standard (details in the next section) permits
subroutines to overwrite R0O-R3, so we can safely use R0 and R1 to store our local variables.

The AREA directive declares a CODE section called example that is READONLY and the delay
label identifies the ENTRY to the subroutine. This symbol is exported to the linker. The R0 and
R1 registers are used to hold the 32-bit const num_ticks and the cnt variable. Normally,
one would need to save the contents of registers used by an assembly language subroutine;
however, the ARM Architecture Procedure Call Standard (http://infocenter.arm.com/)
permits subroutines to use R0-R3 without regard to their original contents (that is, their
contents have been saved and restored by the calling function).

Values are loaded using the LDR pseudo-instruction and the register values are compared. If
equal, the subroutine exits; otherwise, cnt is incremented. When the subroutine exits the register
indirect branch, BX 1r loads the PC register with the value given by the link register (R14).

115

Assembly Language Programming

There's more...

In addition to the object file identified by its file extension (. o), the assembler also creates

a listing file (. 1st) in the subdirectories named Objects and Listings. The listing file is very
useful because it includes the instruction codes and the address labels used. A fragment of
the listing for the delay subroutine is shown. This file can be a useful debugging aid. Please
note that the comment field has been deleted for clarity:

8 00000000 AREA example, CODE, READONLY

9 00000000 ;
10 00000000 EXPORT delay ;
11 00000000 delay ;
12 00000000 ;RO <- num ticks ;
13 00000000 4804 LDR RO, =10000000;
14 00000002 ;jR1 <- cnt ;
15 00000002 FO4F 0100 LDR R1, =0 ;
16 00000006 4288 for CMP RO, R1 ;
17 00000008 DO0OO3 BEQ forEnd ;
18 0000000A F101 O101 ADD R1, #1 ;
19 0000000E BFE8 E7F9 BAL for ;
20 00000012 forEnd ;
21 00000012 4770 BX 1r ;
22 00000014 END ;

See also

Documentation for the ARM Compiler Toolchain (including assembler directives) and ARM
Instruction Set can be found in the Tools Users' Guide (accessed via uVision5's Books Tab).

Passing parameters between C and the

assembly language

When a function or subroutine is called, its address must be loaded into the PC so that it
can be executed and, when it terminates, execution of the calling routine must continue. In
addition, there must be a convention that defines the following:

» How parameters are passed to the function

» How parameters are returned

» Which (if any) registers can be modified by the function

The ARM Architecture Procedure Call Standard deals with these issues (refer to Procedure Call
Standard for the ARM Architecture, http://infocenter.arm.com/).

116

Chapter 4

Getting ready

In this section, we will learn more about the ARM Architecture Procedure Call Standard
(AAPCS) by writing an assembly language subroutine that receives a parameter from the

C function that calls it. Moreover, in this example, the assembly language subroutine itself
calls another C function. Functions or subroutines that call other functions or subroutines are
called nested functions/subroutines.

How to do it...

We'll write another version of helloWorld c2vo0 (introduced in the Writing to the GLCD
recipe in Chapter 2, C Language Programming), but this time we'll use our own simple
assembly language subroutine called asmPrintf (), instead of printf (), to output the
string. We'll call this recipe asmPrintf c4vo:

1. Create a new project (in a new folder) called asmPrint£ by cloning helloWorld
c2vO0 (that is, use the same RTE as helloWorld).

2. Copy helloWorld.c; rename it asmPrintf.c

3. Change the description to something more appropriate, as follows:

* Recipe: asmPrintf c4vo0

* Name: asmPrintf.c

* Purpose: Outputs string using assembly language
* (illustrates parameter passing)

* Modification History
* 23.03.14 Created
* 17.12.15 Updated (uVision5 v5.17+DFP2.6.0)

* Dr Mark Fisher, CMP, UEA, Norwich, UK

4. Declare an external function named asmPrintf ():

/* function prototypes */
extern void asmPrintf (char *);

5. Defineamain () function:
/**

* Main function
*/

int main (void) {

117

Assembly Language Programming

HAL Init();
SystemClock Config() ;

SER Init () ;

for (;;) { /* Loop forever */
asmPrintf ("Hello World!\n") ;
wait delay(1000); }

}

Add asmPrintf . c to the project.

Create a new file, enter the following assembly language code, and save the file
as asmPrintf . s. Please note that the . s file extension is reserved for assembly
language source code files:
;**;

;* A simple subroutine to print a string to the console *;

;**;

.k * .
;* Dr Mark Fisher, CMP, UEA, Norwich, UK *
;* Last updated 23.03.14 * .

;**;

AREA helloW, CODE, READONLY
EXTERN SER_ PutChar
EXPORT asmPrintf

NULL EQU 0 ; #define NULL O
asmPrintf ; void printf (char *ptr) ({
PUSH {R5, LR} ;
; R5 <- ptr ;
; RO <- ¢ ;
MOV R5, RO ;
LDRB RO, [R5], #1 ; char ¢ = *(ptr++);
while CMP RO, #NULL ; while (c != NULL) {
BEQ endwhl ;
BL SER_PutChar ; SER_PutChar (c) ;
LDRB RO, [R5], #1 ; char ¢ = *(ptr++);
B while ; }
endwhl POP {R5, LR} ;
BX 1r ;
END i)

Add asmPrintf. s to the project.

Include Retarget.c and Serial.c in the project.

Chapter 4

10. Connect the 9-Pin D-type UART1/3/4 connector on the evaluation board to the PC
USB port (as we did in Chapter 2, C Language Programming).

11. Run the terminal emulator (PuTTy) configuring it as we did in Chapter 2, C Language
Programming.

12. Build, download, and run the program.

Our assembly language function needs a pointer to the first character of the string (exactly as
printf () declared in stdio.h does), so our function prototype is as follows:

// Function prototype for assembly language subroutine
extern void asmPrintf (char *ptr);

As AAPCS uses R0-R3 to hold the first four words of parameters passed to a function, we only
need to pass one parameter (a pointer), so this is passed in RO.

As many novices find it difficult to write assembly language, we adopted the strategy of writing
in C and then translating this code, line by line, into assembly language. The asmPrintf () C
function is defined as follows:

// Function asmPrintf ()
void asmPrintf (char *ptr)
char c = *(ptr++);

while (c != NULL) ({
SER_PutChar (c) ;
c = *(ptr++);
}
}

We include this in the comment field of our assembly language program to document the
code. A key statement in the function is as follows:

c = *(ptr++);

This statement assigns a value to the ¢ variable. The value is identified by a pointer variable,
which is (later) incremented after the assignment is performed (so, ptr always points to the
next character to be assigned to c). The while loop exits if ¢ is a NULL character (strings are
terminated by NULL characters).

The following is the assembly language instruction:

LDR{type} Rt, [Rn], #offset

119

Assembly Language Programming

This variant of LDR uses postindexed addressing; type determines the element size (that is, B,
SB, H, and SH) and is omitted for word size memory access. Rt is the (target) register that we
have to load. The address obtained from Rn is used as the address for the memory access.
The offset value is added or subtracted from the address and written back to Rn.

To call the SER_PutChar () C function, the PC register must be loaded with its address. But
as the function is defined in another file, we must leave it to the linker to sort out the detail.
The EXTERN assembler directive identifies the SER_PutChar symbol as external. Working
within the AAPCS, we must save any registers (other than R0-R3) that we use. When functions
are nested then the link register (LR) must also be saved.

The ptr variable is passed in R0, but as RO is needed to pass the input parameter to
SER_PutChar (), we copy ptr to R5. The first instruction pushes the contents of R5 and LR
onto the stack, and the last restores them, so the subroutine preserves state. Translating the
while loop involves branching conditionally on the result of a comparison undertaken at the
start of the loop.

There's more...

We can optimize the asmPrintf subroutine further using a Compare and Branch on Zero
(CBZ) instruction. The instruction is as follows:

CBZ Rn, label
This is equivalent to the following sequence:

CMP Rn, label
BEQ label

However, Rn must be in the R0-R7 range, and the branch destination must be within 4-130
bytes of the instruction. Both of these restrictions are met in our case. A new version of our
asmPrintf subroutine (asmPrintf v2.s)is shown as follows:

;***,-

;* A subroutine to print a string to the console *;
,-***,-
;* Optimized using CBZ instruction (Cortex M3/M4) *;
P* *;
;* Mark Fisher, CMP, UEA, Norwich, UK *;
;* Last Updated 26.03.14 *;

,-***,-
AREA helloW, CODE, READONLY
EXTERN SER_PutChar
EXPORT asmPrintf

120

asmPrintf

PUSH {R5, LR}
; R5 <- ptr
; RO <- ¢

while

endWhl

MOV R5, RO
LDRB RO, [R5], #1
CBZ RO, endWhl
BL SER PutChar
LDRB RO, [R5], #1
B while
POP {R5, LR}
BX 1r
END

In addition to the instruction set, an assembly language programmer also needs knowledge
of the assembler directives, such as EQU, and so on. For further information, refer to the ARM
Assembler Directives Reference (http://infocenter.arm.com/).

Handling interrupts in assembly language

ARM Cortex interrupt handlers can be programmed completely in C, but programmers
coding time-critical applications prefer to use assembler (some programmers claim, rather
ambitiously, that their hand-crafted assembler programs run up to 30-times faster than

compiler generated code, but | suspect that the actual figure is 2-3 times).

; void asmPrintf (char *ptr)

7

char ¢ = *(ptr++);

while (c != NULL) ({

SER_PutChar (c) ;
char ¢ = *(ptr++);

{

Chapter 4

When an interrupt (also known as an exception) occurs, the processor responds by performing
the following actions:

» Pushing Registers R0-R3, R12, link register (LR), program counter (PC), and program
status (PSR) onto the stack

» Reading the address of the exception handler from the interrupt vector table

» Updating the stack pointer, program status, link register, and program counter

The eight words pushed onto the stack are collectively known as the Stack Frame (illustrated
later). These are referred to as caller-saved registers by the (AAPCS), and so the exception
executes exactly as a C function. If the processor is in privileged mode, then the main stack
will be used; otherwise the process stack is used.

121

Assembly Language Programming

The NVIC identifies the exception vector, and this is read from the vector table. On entry

to the exception handler, either MSP or PSP is updated, the lower 8-bits of PSR (that is, ISR)
are updated to show the exception number, the PC is loaded with the exception handler's
address, and LR is loaded with a special value known as EXEC_RETURN, which is defined in
the following table:

Bits 31:4 Bit 3 Bit 2 Bit1 Bit 0
OXFFFFFFF | Return Mode Return Stack | Reserved Process State
(thread/handler) Must be O Thumb/ARM
32-bits

Stack Pointer
Before Exception

XxPSR
PC
LR

R12 Stack
R3 Frame

R2
R1
RO

Stack Pointer After
Exception

| |

Getting ready

To illustrate an assembly language interrupt handler, we'll translate the hel1oISR c3v0
interrupt request handler recipe that we first introduced in the Handling Interrupts recipe in
Chapter 3, Programming /0. We call this recipe asmHelloISR c4vO0. An interrupt/exception
handler must perform three steps:

» Process the interrupt request

» Deassert the request in the peripheral

» Return

122

Chapter 4

How to do it...

1. Create a new project (in a new folder) called asmHe110ISR by cloning helloISR
(that is, use the same RTE as hel1loISR c¢3v0 introduced in Chapter 3,
Programming |/0).

2. Copythe hellolISR.c file and rename it asmHelloISR.c. Delete the C function
named UART4_ IRQHandler () and add a new descriptive comment:

/* __
* Recipe: asmHelloISR c4v0
* Name: asmHelloISR.c

* Purpose: Gets user key input using ISR
* (handler written in assembler)

* Modification History

* 05.03.14 Created

* 17.12.15 Updated

* (uVision5 v5.17+STM32F4xx DFP2.6.0)

* Dr Mark Fisher, CMP, UEA, Norwich, UK

3. Add this main function to the asmHelloISR. c file:
/**

* Main function
*/

int main (void) {

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

SER_Tnit () ;

printf ("Hello ISR I/0 Example\r\n") ;
printf ("Pressing a key generates an interupt\r\n");

for (;;) { /* Loop forever */
/* Nothing to do here */

}

4. Add asmHellISR.c to the project.

123

Assembly Language Programming

5. Create a new file, enter the following code, and save it as asmHel1loISR. s:

;***;

;* Assembly language UART4 IRQHandler *;
;***;
;* Dr Mark Fisher, UEA, Norwich, UK *
;* Last Updated 26.03.14 *;

;***;

AREA example, CODE, READONLY
EXPORT UART4 IRQHandler
EXTERN printf ;

UART4 EQU 0x40004CO00 ;

SR EQU 0x00 ;

DR EQU 0x04 ;

RXNE EQU 0x0020 ;

msgl = "Interrupt! You Pressed: %c \r\n",O0

msg2 = "Interrupt Error! \r\n",O

UART4_IRQHandler ; void UART4_ IRQHandler (void)

i

PUSH {R4, LR} ;

;RO <- ptr ; char *ptr;

;R2 <- IIR ; unsigned int IIR;
;R1 <- ¢ ; unsigned char c;
;R4 <- UART4 ; uint32 t *UART4;

LDR R4, =UART4 ;
LDR R2, [R4, #SR] ; IIR = UART4->SR;
if AND R2, #RXNE ; if (IIR &
; USART_FLAG RXNE) ({
CBZ R2, else_ ;

LDR R1, [R4, #DR] ; c = UART4->DR;
ADR RO, msgl H ptr = msgl
BL printf ; printf (msgl, c);
LDR R2, [R4, #SR] ; IIR = UART4->SR;
AND R2, #~RXNE ; UART4->SR &=
STR R2, [R4, #SR] ; ~USART FLAG RXNE;
BAL ifend ; }
else i else
ADR RO, msg2 ; printf ("Interrupt
BL printf ; Error!\n") ;
ifend POP {R4, LR} ;
BX 1r ;)
ALIGN
END

Chapter 4

Add asmHelloISR. s to the project.
Remember to add Serial.c and Retarget. c to the project.
Check Use MicroLIB in the project options dialog.

Connect the 9-Pin D-type UART1/3/4 connector on the evaluation board to the PC
USB port (as we did in Chapter 2, C Programming Language).

© ® N O

10. Run the terminal emulator (PuTTY), configuring it as we did in Chapter 2, C
Programming Language.

11. Build, download, and run the program.

We need to write an assembly language subroutine called UART4 IRQHandler because this is
the label referenced in the interrupt vector table that is defined in startup stm32£407xx.s.
As the handler must read and write to the registers of UART4, we also need its base address
and the address offsets needed for the Status Register (SR) and Data Register (DR). This
information can be found in the stm32£407xx . h header as follows:

;; UART4 addresses

UART4_ BASE EQU 0x40004C00 ; UART base address
SR EQU 0x00 ; Status Register offset
DR EQU 0x04 ; Data Register offset

We load R4 with the UART4 base address and use a base + offset addressing mode to load R1,
the UART register. For example, the following sequence of instructions reads the Data Register:

LDR R4, =UART4_ BASE ;
LDR R1, [R4, #DR] ;¢ = UART4->DR;

We also need to define masks to identify important flags, such as SR bit-5, and read data
register not empty (RXNE):

RXNE EQU 0x0020
We can define message strings to be output using the = pseudo instruction:

msgl "Interrupt! You Pressed: %c \r\n", &0

msg2 "Interrupt Error! \r\n", &0

You will notice that C strings are automatically terminated by a NULL character, but in
assembly language we need to explicitly tack 0 to the end. We'll use the stdio library's
printf () function to output the string. This function takes two input arguments. The first is a
pointer to the first character, and the second is the character argument referenced by the %c
format specifier. We use the load PC-relative address assembly language instruction to load
the location labelled as msgl into RO:

ADR RO, msgl

125

Assembly Language Programming

There's more...

Again, the ARM instruction set includes assembly language instructions that we can use to
optimize things a little. The if-then condition instruction (IT) makes up to the four following
instructions conditional. The conditions can be all the same or some can be the logical inverse
of the others. The conditional instructions following the IT instruction are called the IT block.
As there can be only four conditional instructions, we'll need to rewrite our C function so that it

can be coded using an IT instruction:

Void UART4 IRQHandler (void) ({
uint8 t *ptr;
uint32 t IIR;
char c;
uint32 t *USART ptr;

IIR = UART4->SR;
¢ = (char) UART4->DR;
if (IIR & USART Flag RXNE)
printf ("Interrupt! You pressed %c \r\n",
else
print ("Interrupt Error!");
USART4->SR &= ~USART Flag RXNE;

}

The changes that we made to UART4 IRQHandler () do not change its run time operation,
but a compiler wouldn't be able to reorder the statements and ,thus take advantage of the

if-then optimization. The complete subroutine is as follows:

;**;

;* Assembly language UART4 IRQHandler

* .
7

;**;

;* Optimised using if-Then instruction

. %
7

;* Dr Mark Fisher, UEA, Norwich, UK
;* Last Updated 26.03.14

;**;

AREA example, CODE, READONLY
EXPORT UART4 IRQHandler ;
EXTERN printf ;

UART4 EQU 0x40004C00 ;

SR EQU 0x00 ;

DR EQU 0x04 ;

RXNE EQU 0x0020 ;

msgl = "Interrupt! You Pressed: %c \r\n",O0
msg2 = "Interrupt Error! \r\n",O

126

UART4 IRQHandler

ALIGN

PUSH {R4, LR}

;RO <- ptr H
;R2 <- IIR ;
;R1 <- ¢
;R4 <- UART4
LDR R4, =UART4
LDR R2, [R4, #SR]
LDR R1, [R4, #DR]
if AND R2, #RXNE
CMP R2, #0
ITE NE
ADRNE RO, msgl
ADREQ RO, msg2
BL printf
LDR R2, [R4, #SR]
AND R2, #~RXNE
STR R2, [R4, #SR]
POP {R4, LR}
BX 1r H
END

void UART4 IRQHandler (void) ({

char *ptr;

unsigned int IIR;
unsigned char c;
uint32 t *UART4;

; IIR = UART4->SR;
UART4->DR;
(ITR & USART FLAG RXNE)

; c =
; if

; printf ("Interrupt! You

; Pressed: %c \r\n"), c);

H else

{

Chapter 4

H printf ("Interrupt Error!\n");

; UART4->SR &= ~USART FLAG RXNE;

}

Implementing a jump table

Under certain circumstances, a jump table provides a very efficient way of implementing a

C language switch statement block. We can define a jump table as a list of unconditional
branch instructions—each referencing a different procedure or subroutine. We branch to one of
the subroutines by loading the program counter with the address of the unconditional branch
that is stored in the jump table. The effective addresses of items in the jump table are formed
using a base + offset addressing mode. Base + offset addressing is commonly used to access
data items stored in arrays, and a jump table is effectively just an array of address items.

Getting ready

To illustrate a jump table, we'll develop a recipe called asmJumpTable c4v0. Assume that we
have a function named jumpT () that accepts a val integer input argument. The function calls

either proc1

void jumpT (

switch
case

(),proc2 (),orproc3 (), depending on the value of the input argument:
int val) {
(val) {
1

127

Assembly Language Programming

procl ();
break;
case 2
proc2 ();
break;
case 3
proc3 ();
break;
default
printf ("Unrecognized!
Enter value between 1-3\n");
break;

}

We'll implement jumpT () in assembly language using a jump table.

How to do it...

1. Create a new project (in a new folder) called asmJumpTable c4v0 by cloning
asmHelloWorld (thatis, use the same RTE as asmHelloWorld).

2. Create a new file, enter the usual boilerplate, include the following, and save it as
asmJumpTable.c

#include "stm32F4xx hal.h"
#include <stdio.h>
#include "Serial.h"

#include "cmsis os.h"

/* Function Prototype */
extern void asmJumpT(int);

3. Add a main function, as follows:
/*

* main
*******/

int main (void) ({

int input, value;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config () ; /* Config Clocks */
SER Init();

128

}

Add asmJumpTable. c to the project.

for (;;) {

/* Loop forever */

printf ("\nJump Table Demo\n") ;

printf ("Enter Number from 1-3: ");

scanf ("%d",

&input) ;

value = (int) input;

asmJumpT (value) ;

Chapter 4

Create a new file, enter the following assembly language code, and save the file as
asmJumpTable. s. Please note that the . s file extension is reserved for assembly
language source code files:

,-**;

;* A simple subroutine to illustrate a Jump Table

,-**;

. %

7

;* Dr Mark Fisher,

;* Last updated 19.12.15

,-**;

I

AREA example,

EXPORT asmJumpT
EXTERN printf

msgl = "Case 1\n",O0
msg2 = "Case 2\n",0
msg3 = "Case 3\n",O0
msgDef

ALIGN
asmJumpT

PUSH (R4, LR}

ADR r3, jumpTable
; val->RO0

SUB RO, #1

CMP RO, #2

BGT default

LDR pc,

[r3,r0,LSL#2]

I
I
I
I
I

7

I

I

I

CMP, UEA, Norwich, UK

CODE, READONLY

void JumpT (int val)

switch (val)

case '1l'
procl (
break;

case '2'
proc2 (
break;

case '3'!

)i

)i

{

* .

{

7

= "Unrecognized! Value between 1-3 needed\n", 0

129

Assembly Language Programming

; proc3();
H break;
default H default
ADR RO, msgDef ; printf (msgDef) ;
BL printf ; break;
endSwW pOP {R4, LR} ; }
BX 1r i}

6. Add the jump table and associated subroutines to asmJumpTable. s:

jumpTable ;

DCD procl ;

DCD proc2 ;

DCD proc3 ;
;**;
;* Procedure 1 *;
;**;

ALIGN ; void procl() {
procl ADR RO, msgl ;

BL printf ; printf (msgl);

BAL endSW ;)
;**;
;* Procedure 2 *;
;**;

ALIGN ; void proc2() {
proc2 ADR RO, msg2 ;

BL printf ; printf (msg2);

BAL endSW ;)
;**;
;* Procedure 3 *;
;**;

ALIGN ; void proc3 () {
proc3 ADR RO, msg3 ;

BL printf ; printf (msg3);

BAL endSW ;)

i

END ;

7. Add asmJumpTable. s to the project.
8. Remember to add Serial.c and Retarget.c to the project.

9. Connect the 9-Pin D-type UART1/3/4 connector on the evaluation board to the PC
USB port (as we did in Chapter 2, C Programming Language.).

10. Run the terminal emulator (PuTTY), configuring it as we did in Chapter 2, C
Programming Language.

11. Compile, download, and run the program.

130

Chapter 4

The jump table is defined as follows:

jumpTable ;
DCD procl H
DCD proc2 H
DCD proc3 H

Here, procl, proc2, and proc3 are address labels that are used to identify the start of the
subroutines. The jumpTable base address is loaded into R3 by the ADR pseudo-instruction:

ADR r3, jumpTable ;

The assembler attempts to replace ADR to produce a single ADD or SUB instruction to load the
address using a PC-relative addressing mode. This ensures that ADR always assembles to one
instruction. The assembler will produce an error if it can't load the effective address in one
instruction. The most likely reason for this will be that the target base address is too far away,
and we will need to replace ADR with ADRL.

The value passed in RO will be an integer between 1-3, so subtracting 1 will give the address
offset directly:

SUB RO, #1 i

Finally, we use the following to load the program counter with the appropriate jump table
address (that is, entry 1, 2, or 3):

ILDR pc, [r3,r0,LSL#2];

Each jump table entry is a 32-bit (4-byte) address, so the value in R0 needs to be multiplied
by 4 (that is, LSL #2). This is achieved by LDR, and the Register Offset instruction. Finally, a
Branch and Link instruction BL is needed to execute the function.

We've used the ALIGN pseudo-operation quite liberally in all our assembly language programs.
ARM compilers normally access data in memory aligned on word boundaries and pad data
structures so that items can be accessed efficiently. Consequently, address labels need to

be placed on word boundaries. The ALIGN pseudo-operation ensures this. Leaving it out will
produce a message from the assembler warning that some padding has been inserted.

Debugging assembly language

We can gain a useful insight into how assembly language instructions execute, and also why
the compiler is rather poor at translating C using the debugger.

First, we'll compare a fragment of assembly language code produced by the compiler with
our translation.

131

Assembly Language Programming

How to do it...

1. Openthe helloISR c3vO0 recipe that we introduced in the Handling interrupts

recipe Chapter 3, C Language Programming.

2. Insert a breakpoint adjacent to the first statement of the UART4 IRQHandler

(thatis, IIR = UART4->SR;).

3. Select Debug — Start/Stop Debug Session from the uVision5 pull-down menu.

4. Run (F5) to the breakpoint (you will need to select the console window (PuTTY) and

enter a character).
5. uVision5 will now open a Disassembly window (illustrated in the following

screenshot), which shows the assembly and machine code generated by the

compiler for each C language statement.

Disassembly a @
27: wold UART4_IRQHandler (wvoid)
28: volatile unsigned int IIR;
29: volatile unsigned char c:
30:
0x08000230 B5S1C PUSH {r2-r4,1r}
31: IIR = UART4->5R;
=>0x03000232 4813 LDR r0, [pc, #76] : @0x0B000280
0x08000234 82800 LDRH rd, [0, #0x00]
0x08000236 9001 STR rd, [sp, #0x04]
32: if (ITIR & USART FLAG BXNE) { // read interrupt
0x08000238 9801 LDR rd, [sp, #0x04]
0x08000234 FO100F20 TST rd, #0x20
0x0800023E D010 BEQ 0x08000262
33: c = TART4->DR:
0x08000240 480F LDR r0, [pc, #60] ; @0x0B8000280
0x08000242 1D0O ADDS ro,r0, #4
0x08000244 8B0O LDRH rd, [x0, #0x00]
0x08000246 B2CO UXTE rQ,r0
0x08000248 9000 STR rd, [sp, #0x00]
4 3

-~

Some interesting observations from the disassembly are evident. First, by default, the
compiler stores its variables in memory (rather than registers), so assighment statements
resolve to a sequence of load (LDR) and store (STR) instructions. Overall, the compiler

produces slightly more assembly language instructions than an assembly language
programmer coding by hand.

132

Chapter 4

There's more...

Now, open asmHelloISR_c4vO0, which was introduced in the Handling interrupts in
assembly language recipe:

1. Place a breakpoint at the first instruction of the assembly language subroutine
UART4 IRQHandler (make sure you identify an ARM instruction and not a label or
pseudo instruction).

2. Use the debugger to run to the breakpoint, as illustrated in the following screenshot.
Now, use the step (F11) command and observe the register contents changing as
each instruction is executed:

Registers o Disassembly o
Register Value I; 25: LDR R4, =UART4 H s
=Y 0x08001F36 4COA LDR r4, [pc, $#40] : @o0x0[
FFFFFFFF 26: LDR R2, [R4, #5R] ; I1! Il
0x08001F38 &822 LDR r2, [r4,%0x00]
| b
hellolSR.c startup_stm32f405x.5 asmHelloISR.s 7 x
19 TUART4 IRQHandler ; void UART4 IRQH: «
20 PUSH {R4, LE}
21 sRO <- ptr B char *ptr;
22 sR2 <- IIR H unsigned int 1
23 JR1 - ¢ H unsigned char
24 ;R4 <- UART4 ; uint32_t *UARI
& 2s LDR R4, =UART4 E
26 LDR R2, [R4, #5R] : IIR = UART4->E
27 LDR R1, [R4, #DR] : © = UART4->DR;
20000610 ! y
<FFFEFFES 28 if AND R2Z, #ERXNE H if (IIR & USLAF__
23 CMP R2, #0 ;
30 ITE HE H printf ("Inte
31 ADRME RD, m=gl H Pres:
32 ADREQ EJ, msg2 H else
2 BL printf H printf ("Intels
34 LDR R2, [R4, #5R] ;
33 BND RZ, #~RXNE H URRT4->5R &= -
36 STR R2, [R4, #5R] B
ST POP {E4, LR} ;
38 BX 1r H B
.. o) Yl 39 END il
EPr-Jject = Registers A i k

You will notice that observing how register values change as we single step through assembly
language code provides a useful insight into the operation of the Cortex-M4 machine
architecture.

133

Data Conversion

In this chapter, we will cover the following topics:

» Setting up the ADC

» Configuring general-purpose timers
» Using timers to trigger conversions
» Setting up the DAC

» Generating a sine wave

Introduction

Most signals that we encounter in the natural world are continuous; for example, we perceive
sound produced by an orchestra as a continuum of intensities ranging from pianissimo

(very soft) to fortissimo (very loud). Computers, on the other hand, work with binary quantities
that are inherently discrete. The number of discrete values that can be represented depends on
the number of bits that are used to represent the quantity (for example, 8 bits can represent 28
discrete values). Computers that are designed to interact with real-world phenomena (for
example, sound, light, heat, and so on) need to overcome two problems. Firstly, they need to
convert between its physical manifestation and a (continuous) electrical signal, and secondly,
they need to convert between the signal's continuous and discrete representation. Returning to
our sound example, solving the first problem requires a transducer to convert sound (pressure)
waves to electrical signals and vice versa (that is, a microphone and loud speaker). Solving the
second requires converting the analog (continuous) signal to a discrete form and vice versa.
The device that is used to achieve this is called an Analog-to-Digital converter (ADC)—and
conversely a Digital-to-Analog converter (DAC).

Data Conversion

Analog-to-Digital conversion requires measuring (sampling) the signal at regular time intervals
and converting each sample into a digital value. This raises the question, how often should
we take the measurement? This fundamental question is addressed by signal processing
theory. The short answer is that samples must be taken at least twice as frequently as the
period of the highest-frequency component in the signal. However, the maximum number of
samples that can be taken every second (that is, the maximum sampling frequency) is limited
by the speed of conversion, and this, in turn, depends on the type of ADC. The STM32F4071G
microcontroller includes a successive approximation ADC, which is fast enough for most audio
applications (that is, signals having frequency components up to about 20 KHz). A block
diagram of a successive approximation ADC is shown as follows:

Conversion
i
Clock — Successive Approx, Register Complete
-~
oi1 iD{I
h 4

Ve —— DAC

Wi e Comparitor

Wi, — Sample/Haold +

Successive approximation ADC

A single comparator is at the heart of the successive approximation ADC. This is simply a device
that outputs a binary signal that depends on a comparison of V. and V, , where V, . represents
the analog voltage corresponding to the output of the Successive Approximation Register
(SAR). By testing the output of the comparator, an algorithm aims to update the SAR so as to
find the value Voo that is closest to V, . The successive approximation DAC achieves this by
undertaking a search that aims to find V. (< V) in the fewest number of guesses. The time
needed for the search depends on the value of the voltage, but the worst-case conversion time
ultimately determines the maximum sampling frequency. The DAC is a much simpler analog
circuit that uses a summing amplifier to add together the (weighted) digital outputs DO-D11.
Hence, the DAC operates much faster than the ADC.

136

Chapter 5

The purpose of the Sample/Hold block is to take a snapshot of the input voltage, and so,
provide a stable signal for the ADC. The Sample/Hold block is not ideal and it takes some
time (called the aperture time) to capture the input signal. The signal voltage stored by the
Sample/Hold block also decays with time, but the Sample/Hold time can be adjusted to
address these problems. A range of values can be specified in terms of a number of ADC clock
cycles by writing to the two ADC sample time registers (SMPR1 and SMPR2). The time can be
set for each channel using the following codes:

SMPx[2:0] Chan.x Sample SMPx[2:0] Chan.x Sample
Time (cycles) Time (cycles)

000 3 100 84

001 15 101 112

010 28 110 144

011 56 111 480

The maximum conversion time, T_ , for a successive approximation converter is equal to the
Sample/Hold time + (clock period x number of bits). As a rule of thumb, it's best to make the
Sample/Hold time short relative to the sample period.

Setting up the ADC

The aim of this recipe is to configure the ADC in single-conversion mode and then convert the
voltage set by the thumbwheel into a 12-bit digital value. We'll configure the ADC to generate
an interrupt at the end of each conversion and write an interrupt handler to read the ADC and
initiate a new conversion. The only task for our main function to perform is to output the ADC
value to the LEDs, but as there are only 8 LEDs we can only display the most-significant 8-bits
of the ADC value. We'll call this recipe adcISR_c5vO0.

How to do it...

To set up the ADC follow the steps outlined:

1. Open a new folder named adcISR_c5v0 and create a new project named adcISR.
uvprojx.

2. Select LED (API) from RTE Board Support but do not select A/D converter (we will
write our own code for this). Set the CMSIS and Device software components as for

previous projects. Be sure to select resolve so that the correct runtime environment
(RTE) is included.

137

Data Conversion

3. Create an adcISR.c file (the main function) and enter the source code that is shown
next. Remember to include the boilerplate code (hidden by the editor folds):

/* __
* Recipe: adcISR_c5v0

* Name: adcISR.c

* Purpose: A/D Conversion Demo for MCBSTM32F400

* using IRQ

* Modification History
* 16.04.14 created
* 22.12.15 updated uVision5.17 + DFP2.6.0
* Dr Mark Fisher, UEA, Norwich
#include ""stm32f4xx hal.h""
#include ""Board LED.h""
#include ""Custom ADC.h""

#define wait delay HAL Delay

/* Globals */
uint32 t adcValue;

#ifdef RTX

/* Function Prototypes */
void SystemClock Config(void) ;

/**
* System Clock Configuration
*/

void SystemClock_ Config(void) ({

4. Include code to handle the interrupt generated by the ADC:
void ADC_IRQHandler (void) {

ADC3->SR &= ~2; /* Clear EOC interrupt flag */
adcValue = (ADC3->DR) ; /* Get converted value */
ADC3->CR2 |= (1 << 30); /* Start next conversion */

138

5. Include amain () function:

int main (void)

HAL Init ();
SystemClock Config ();

LED Initialize (); /* LED Initialization
ADC Initialize and Set IRQ ();/* ADC Special Init

while (1) { /* output 8-bit adcValue
LED_SetOut (adcValue >> 4); /* to LEDs
wait delay (100); /* wait
}
}

6. Create a Custom ADC.c file and enter code to set up the ADC:

#include ""stm32f4xx hal.h"" /* STM32F4xx Definitions */

#include ""Custom ADC.h""

/* __
* ADC Initialize and Set IRQ: Initialize Analog to
* Digital Converter and Enable IRQ
K e e e e e e e e e o ———— — — —

void ADC Initialize and Set IRQ (void) {

/* Setup potentiometer pin PF9 (ADC3_7) and ADC3
RCC->APB2ENR |= (1UL << 10); /* En. ADC3 clk
RCC->AHB1ENR |= (1UL << 5); /* En. GPIOF clk
GPIOF->MODER |= (3UL << 2%*9);/* PF9 is Analog mde
ADC3->SQR1 = 0;

ADC3->SQR2 = 0;

ADC3->SQR3 = (70L << 0); /* SQ1 = channel 7
ADC3->SMPR1 = 0; /* Channel 7 smple
ADC3->SMPR2 = (7UL << 18); /* time = 480 cyc.
ADC3->CR1 = (1UL << 8); /* Scan mode on
ADC3->CR2 &= ~2; /* single conv. mode
ADC3->CR1 |= (1UL << 5); /* En. EOC IRQ
ADC3->CR2 |= (1UL << 0); /* ADC enable
NVIC EnableIRQ(ADC IRQn); /* En. IRQ
ADC3->CR2 |= (1 << 30); /* Start 1lst conversion

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

Chapter 5

139

Data Conversion

7. Addthe adcISR.c and Custom ADC. c files to the project.

Declare a function prototype for ADC Initialize_and_sSet IRQ () inthe
Custom_ADC.h file.

9. Build, download, and run the program.

The STM32F407xx features 3 x 12-bit successive approximation ADCs, each sharing up to
16 external channels and performing conversions in single-shot or scan mode. A simplified
schematic showing the architecture of each converter is presented next (please note that a
more detailed diagram is included in STM's RM0090 Reference manual at http://www.
st .com).

To MVIC >

- 2N\
—NE

—l/ Regist ’—l/
ers

Injec-

Conversion

Complete @
F 4‘\ ted —'\ i
Data- !
ADCx_|INO =
- G \\ ’—l/ Regist ——. ?;'
P Reg. Chan. ers d
| > 5
o| |3 X Abc)
WOCE_[IN1S > = L
Injected
Temp Senzar ————| Chan. Start Trigger | Start Trigger oy
Viar S / iReg, Chan) [{Injected Chan.) \/
EXT
TIM_ 1 ——» - TIM_1
M5 —» —— TIM_S
TIM_8 — —— TIM_E

Simplified STM32F4xxxx microcontroller ADC schematic

140

Chapter 5

The 16 multiplexed input channels are organized in two groups comprising regular and
injected channels. A subset of GPIO port pins can be connected to the ADC multiplexer by
configuring the pin as a high-impedance analog input. The pin/input channel mapping is
device-dependent. Details for the STM32F4071G device used by the ARM MCBSTM32F400
evaluation board can be found in the STM32F405xx and STM32F407xx Datasheet (http://
www . st . com), and a simplified form is given in the following table. The ADC can be configured
to carry out a sequence of up to 16 conversions on each group, each triggered separately by
either an external-or-timed start signal.

ADC1 Input GPIO Port | ADC2 Input GPIO | ADC3 Input GPIO
Channel Channel Port Channel Port
IN_O PAO IN_O PAO IN_O PAO
IN_1 PA1 IN_1 PA1 IN_1 PA1
IN_2 PA2 IN_2 PA2 IN_2 PA2
IN_3 PA3 IN_3 PA3 IN_3 PA3
IN_4 PA4 IN_4 PA4 IN_4 PF6
IN_5 PAS IN_5 PAS IN_5 PF7
IN_6 PAG IN_6 PAG IN_6 PF8
IN_7 PA7 IN_7 PA7 IN_7 PF9
IN_8 PBO IN_8 PBO IN_8 PF10
IN_9 PB1 IN_9 PB1 IN_9 PF3
IN_10 PCO IN_10 PCO IN_10 PCO
IN_11 PC1 IN_11 PC1 IN_11 PC1
IN_12 PC2 IN_12 PC2 IN_12 PC2
IN_13 PC3 IN_13 PC3 IN_13 PC3
IN_14 PC4 IN_14 PC4 IN_14 PF4
IN_15 PC5 IN_15 PC5 IN_15 PF5

The GPIO ports used by the ADC must be configured as analog inputs by writing appropriate
values to MODERY[1:0] bits of the Mode Register that is shown as follows:

38 |30 |29 28 |27 26 |25 24
MODER15[1:0] | MODER14[1:0] | MODER13[1:0] | MODER12[1:0]
rw r'w r'w r'w r'w rw rw rw
23 22 |21 20 |19 18 |17 16
MODER11[1:0] | MODER10[1:0] | MODERO9[1:0] | MODEROS[1:0]
rw r'w rw r'w r'w r'w rw rw
15 14 |13 R EE 10 |09 08
MODERO7[1:0] | MODERO6[1:0] | MODERO5[1:0] | MODEROA4[1:0]

141

Data Conversion

rw rw rw rw rw rw rw rw
07 06 05 04 03 02 01 00
MODERO3[1:0] | MODEO02[1:0] MODERO1[1:0] MODEROO[1:0]
rw | rw rw | rw rw | rw rw | rw

The Mode Register bits are defined as follows:

MODERYy[1:0] | I/0 Mode

00: Input

01: General Purpose output
10: Alternate Function

11: Analog Input

The ADC is configured by an initialization function named ADC_Initialize and Set
IRQ () that has been written specially for this recipe. The following description should be read
with reference to STM"s RM0090 Reference manual (http://www.st.com).

The thumbwheel labelled ADC1 on the evaluation board provides a variable voltage input
connected to GPIO port F pin 9 (ADC3 channel 7). To sample this voltage, we first configure
GPIOF pin 9 as an analog input by writing to the port mode register (GPIOF MODER).
Statements in ADC_Initialize and Set IRQ() are explained as follows:

1.

142

The bit map for the port mode register shown in the MODER register bit table
indicates that we must write logic-1 to bit 18 and 19. ARM writes the code like this to
emphasize that we're configuring port F bit-9 (PF9):

GPIOF->MODER |= (3UL << 2*9);

We also need to select the clock for ADC3 and GPIOF:

RCC->APB2ENR |= (1UL << 10);
RCC->AHBLENR |= (1UL << 5);

Our aim is to set up a single conversion in the regular sequence. The first conversion is
identified by the bits 4:0 of ADC regular sequence register 3 (ADC_SQR3). As PFO maps
to ADC3 channel 7, we write 7 to this register and 0 to ADC_SQR1 and ADC_SQR2:

0;

0;
(70L << 0);

ADC3->SQR1
ADC3->SQR2
ADC3->SQR3

Chapter 5

4. The Sample/Hold time can be set (for each channel) by writing to the two ADC
Sample Time Registers (SMPR1 and SMPR2). In this case, as the input voltage is
derived from a potentiometer, the sample frequency can be quite low, and so, a long
Sample/Hold time of 480 cycles can be set:

ADC3->SMPR1 = 0;
ADC3->SMPR2 = (70L << 18);

5. We carry out a single conversion on each group of channels identified by the regular
sequence register, so we enable scan mode by writing to bit-8 of Control Register 1:

ADC3->CR1 = (1UL << 8);

6. To set up single conversion mode, enable an end of conversion interrupt (EOCIE),
and enable the ADC (ADON), we write the following code:

ADC3->CR2 &
ADC3->CR1
ADC3->CR2

~2;

|= (1UL << 5);

|= (1UL << 0);

7. Finally, we must configure the Nested Vectored Interrupt Controller (NVIC) to respond
to interrupts from the ADC and initiate the first conversion by writing SWSTART (bit-
30), as follows:

NVIC EnableIRQ(ADC IRQn) ;
ADC3->CR2 |= (1 << 30);

The ADC_IRQHandler () interrupt handler needs to clear the interrupt, read the ADC
data, and start another conversion cycle. The super-loop in the main function calls the LED
Setout () function to display the most significant 8-bits of the ADC output on the LEDs.

In continuous conversion mode, the ADC starts a new conversion as soon as the previous one
has been completed. In practice, the new conversion starts after a delay of 15 cycles to allow

the ADC to stabilize. Only the regular group of channels can be converted in continuous mode,
as follows:

1. We can enable continuous mode by changing the last line of the function,
ADC_Initialize (), to the following:

ADC3->CR2 = 2;
2. As our interrupt handler no longer needs to trigger a new conversion, we only need
the following two statements:

ADC3->SR &= ~2;
adcValue = (ADC3->DR) ;

143

Data Conversion

Configuring general-purpose timers

The idea of this recipe, which we'll call timerISR _c5v0, is to use a general purpose timer
(TIM2) to generate an interrupt every 100 ms (that is, 10 Hz). The interrupt handler maintains
a counter that, in turn, sets the global variables, LEDOn, LEDOf £, which are used within main
() to flash the LEDs.

How to do it...

Follow the steps to configure general purpose timers:

1.

144

Create a new recipe (folder) named timerISR_c5vO0. Invoke uVision5 and create a
new project named timerISR.uvprojx.

Select the LED (API) driver from the RTE Board Support drop-down menu and
configure CMSIS and Device options as in previous projects.

Create a new file, name it timerISR. c, and enter the following statements.
Remember to include the boilerplate:

#include ""stm32f4xx hal.h""
#include ""Board LED.h""
#include <stdbool.h>
#include ""timer.h""

/* Globals */
uint32 t tic = 0;

#ifdef RTX

/* Function Prototypes */
void SystemClock Config(void) ;

/**
* System Clock Configuration
*/

void SystemClock Config(void)

Define a handler for the timer interrupt by adding these statements to the
timerISR.c file:

void TIM2 IRQHandler (void) ({

/* check IRQ source */
if ((TIM2->SR & 0x0001) != 0) {
tic++;

}

5. Define amain

int main

}

TIM2->SR &= ~(1<<O0);

(void) {
int32 t num = 0;
uint32 t toc;
uint32 t count = 0;

HAL Init ();
SystemClock Config ();

TIM2 Initialize (
LED Initialize();

while (1) {
1=

if (toc tic) {
toc = tic;
LED Off (num);
if (count < 7)
num = (num+1) ;
else
num = (num-1) ;
LED On (num) ;
count = (count+1)%14;

}

);/* Gen.

/* clear UIF flag */

() function in the timerISR. c file:

interrupt each 100 ms */
/* LED Initialization */

Chapter 5

6. Open a new file, add the following source code, save the file, and name it t imer. c:

Recipe: timerISR c5v0
Name: timer.c
Purpose: Low level timer functions

Modification History
16.04.14 created
22.12.15 updated

Mark Fisher,

(uvision5.17+DFP2.6.0)

CMP, UEA, Norwich

145

Data Conversion

#include ""stm32f4xx hal.h"" /* STM32F4xx Defs */
#include ""timer.h""

/**

* TIM2 Initialize ()
EEES]
* Initializes TIM2 generates interrupts every 100ms (0.1s)
* SystemCoreClock = 168 MHz - set by SystemInit ()
* Refer to Figure 134 of STM Reference Manual RM0090
* TIMxCLK = SystemCoreClock/2
* Hence ticks = 0.1 * 168,000,000 / 2 = 8,400,000
* Prescaler = 8400-1; ARR = 1000-1;
***/
void TIM2 Initialize (void) {
const uintlé t PSC val = 8400;
const uintlé t ARR val = 1000;

RCC->APB1ENR |: RCC_APB1ENR TIM2EN; /* En TIM2 clk */
TIM2->PSC = PSC val - 1; /* set prescaler */
TIM2->ARR = ARR val - 1; /* set auto-reload */
TIM2->CR1 = (1UL << 0); /* set command reg. */
TIM2->DIER = (1UL << 0); /* Enable TIM2 IRQ */
NVIC EnableIRQ(TIM2 IRQn) ; /* En. NVIC TIM2 IRQ */

}

7. Add timer.cand timerISR.c to the project.

Create a suitable header file named timer . h containing function prototypes for
timer.c.

9. Build, download, and run the program.

As microcontrollers were conceived to target real-time applications, counter-timers have
always been a prominent feature of their architecture. Timers can be used for a variety of
purposes, including measuring pulse lengths of input signals, generating output signals,
triggering interrupts, or other events. The STM32F407xx microcontroller family that is used by
the evaluation board provides 14 timers (TIM1-TIM14).

Type Size Identifier
Advanced Control Timers 16-bit TIM1, TIM8
General Purpose Timers 16/32-bit TIM2-TIM5

146

Chapter 5

Type Size Identifier
Basic Timers 16-bit TIMG, TIM7
General Purpose Timers 16-bit TIMO-TIM14

A simplified schematic for general purpose timers is shown in the following diagram
(a more detailed schematic can be found in STM's RM0O090 Reference manual at
http://www.st.com).

Internal Clock fram RIL(‘
(CH_INT)
= TRGO
TN _ETR —p-l Prescaler }—pl I/P Filter+EdgeDet. Trigger
Contral
TRO ~ TRGI Feset, enable, up/down,
ITR1 I ITR count
ITR2

ITR3 #

| Autareload Register

J L Stop, clear, up/down

¥

- Prescaler Counter

'

TiMx_CH1 /P Filter+EdgeDet. || [l7

L ! dg J—bl Prescaler |—>| Capture/Compare Register 1 }—b— oc p TIN_CH1
TIkdx CHZ |/P Filter+EdgeDet. — i7 | | | |

! i dg J—pl Prescaler |—I-| Capture/Compane Register 2 '—P OC g TIMx_CHZ
Mtx_CH3 |/P Filter+EdgeDet. —] <7 | |
TIMx_CH4 |/P Filker+Edgelet. —

Prescaler |—b| Capture/Compare Register 3 }—b OC | TIMK_CH3|
TRC —

=

J—pl Prescaler |—b-| Capture/Compare Register 4 l—b OC [g TiW_CHA

YYVYY VY Y

Advanced timers, TIM1 and TIM8, provide similar functionality and include some additional
features, such as a repetition counter, break inputs, and complementary outputs with
programmable dead time. These are useful when implementing complex pulse width
modulation (PWM) schemes. The main component is the time-base unit comprising a 16/32-
bit counter and its related auto-reload register and prescaler. The prescaler clock (CK_PSC)
can be selected from one of the following:

» Internal clock (CK_INT): This is derived from the reset and clock control (RCC) peripheral.
» External clock mode 1: This is the External input pin (Tlx)

» External clock mode 2: The External trigger input (ETR) is available on TIM2, TIM3,
and TIM4, only

» Internal trigger inputs (ITRx): This allows one timer to act as a prescaler for another

147

Data Conversion

Following RESET, the CK_INT internal clock is selected. CK_INT is derived from the APBx timer
output of the Reset and Clock Control (RCC) unit; refer to STM's RM0O090 Reference manual,
Figure 21, (http://www.st .com). The timer clock frequencies are set automatically by
hardware. The frequency depends on the setup used for the APB domain prescaler. There are
two cases, as follows:

» If the APB prescaler is 1, the timer clock frequencies are set to the same frequency
as that of the APB domain to which the timers are connected

» Otherwise, they are set to twice (x2) the frequency of the APB domain to which the
timers are connected

The RCC unit manages all the clocks used by the microcontroller. The system clock (SYSCLK)
can be derived from one of three sources:

» HSlclock
» HSE clock
» PLL clock

The SystemInit () function defined in the system stm32f4xx.c file is called by the
startup stm32f4xx.s file to configure the system clock before branching to the main
program. The SystemCoreClock global variable is assigned a value representing the
SYSCLK frequency and is available to user applications (for example, to set the SysTick timer).
SystemInit () also configures the AHB and APB domain prescalers.

The internal (HIS) clock and external crystal-controlled oscillator (HSE) clock are connected to
the main phase locked loop (PLL) within the microcontroller and this provides two outputs:

» The first output is used to generate the high-speed system clock (upto 168 MHz)

» The second output is used to generate the clock for the USB OTG FS (48 MHz), the
random analog generator (<48 MHz), and the SDIO (<48 MHz)

The MCBSTM32F400 evaluation board uses a 25 MHz external oscillator, which gives a PLL
frequency of 168 MHz, and SystemInit () selects this as SYSCLK.

The main component of the time-base unit is a 16-bit or 32-bit counter (CNT) and its
associated auto-reload register (ARR). The counter clock can be divided by a prescaler (PSC).
Both the counter, prescaler, and auto-reload register can be written or read by software.
The prescaler can divide the counter clock frequency by any factor between 1 and 65,536
(2%%). The operation of the counter and auto-reload register depends on the how the counter
is configured. Three configuration modes are available, named upcounter, downcounter,
and center-aligned. The timing diagram shown next illustrates the upcounter mode with the
prescaler set to divide by 2 (other modes are described in the RMO090 Reference manual,
http://www.st.com). In upcounting mode, the counter counts from O to the auto-reload
value (the content of the TIMx_ARR register), then restarts from O and generates a counter
overflow event.

148

Chapter 5

CK_PSC (CK_INT)
CNT_EN
oK onT [] [] [] [] [] [1 [1

\ \ \ \ \ \ \
Counter Register w018 f(w0019)< Ow0LA j(Ow0a00 X(0001 ,-{ 0002)< k0003)

(Counter Overflow
Update Event {UEV)

Update Interrupt Flag [LIF] |

The steps required to configure TIM2 are as follows:
1. First enable the TIM2 clock by writing to the RCC APB1 Enable Register:

RCC->APB1ENR |= RCC_APB1ENR TIM2EN;

The number of SYSCLK ticks in 0.1 s can be found by:

» SYSCLK
2

0.1

when SYSCLK = 168 MHz this gives a value of 8,400,000, which is achieved by a
prescaler value of 8,400 and auto-reload register value of 1,000, that is, as follows:

const uintlé_t PSC_val = 8400;
const uintlé_t ARR val = 1000;

The prescaler divides the input clock by a factor PSC[15:0] +1.:

CK_CNT = fex pec/PSC[15:0] + 1

So we write the following
TIM2->PSC = PSC val - 1;

2. Similarly, as the counter is reset to zero, we write the following:

TIM2->ARR = ARR val -1;

3. Then, enable the counter and enable interrupts:

TIM2->CR1 = (1UL << 0);
TIM2->DIER = (1UL << 0);

149

Data Conversion

4. Finally, configure the Nested Vectored Interrupt Controller to respond to TIM2
interrupts:

NVIC EnableIRQ(TIM2 IRQn) ;

Once configured, Timer 2 generates interrupts every 100 ms, and the interrupt handler
increments a counter (tic). The code within the superloop generates a visually interesting pattern.

Using timers to trigger conversions

As sampling frequency plays such a critical role in determining the quality of the digital
representation of the analog signal input, and to avoid aliasing artifacts, it is preferable to use
a timer to trigger the conversion rather than to enable continuous conversions as we did in
the previous recipe. This recipe, adcTimerISR_c5vO0, illustrates this technique. The aim of
this recipe is to configure TIM2 _CH2 in output compare mode so that it toggles every 100
ms and then use this timing signal to trigger the ADC.

How to do it...

1. First create a new project called adcTimerISR.uvprojx and use the RTE manager
to configure it as we did for the folder adcISR_c5vo0 for the Setting up the ADC recipe.

2. Copy timer.c and Custom ADC.c from the previous recipes and add these to the
project. Copy adcISR.c and rename it adcTimerISR.c. Add this to the project.

3. Add #include timer.hto adcTimerISR.c andcall TIM2 Initialize() in
main (). Check whether the project successfully builds.

4. Modify the TIM2 Initialize () function so that it no longer produces an update
interrupt flag (UIF) by deleting the following statements:

TIM2->DIER = (1UL << 0);
NVIC EnableIRQ(TIM2 IRQn) ;

5. Configure TIM2 CH2 to toggle channel 2 capture/compare output by writing to
the appropriate fields of Capture/Compare Mode Register 1 (CCMR1) and Capture/
Compare Enable Register (CCER):

TIM2->CCMR1 |= (3UL << 12);
TIM2->CCER |= (1UL << 4);

\ There is no need to write to the Capture/Compare Register.
~ If we leave it set to zero (that is, Reset), then the Capture/
Q Compare output will toggle each time TIM2_CNT is zero (that
is, every 100 ms):

150

Chapter 5

/***

* TIM2 Initialize ()

IR EEEEEEEEEESEEEEEE RS R R R ERE R R EREREREREEEEEEEEEREES]

* Initializes TIM2

* Capture Compare 2 Interrupt Flag (CC2IF)

* generates interrupts every 100ms (0.1s)

* SystemCoreClock = 168 MHz - set by SystemInit ()

* Refer to Figure 134 of STM Reference Manual

* TIMXCLK = SystemCoreClock/2

* Hence ticks = 0.1 * 168,000,000 / 2 = 8,400,000

* Prescaler = 8400-1; ARR = 1000-1;

* Note: Capture Compare Register is left in Reset

***/
void TIM2 Initialize (void) ({

const uintlé t PSC val 8400;

const uintl6é_t ARR val = 1000;

/* En. clk for TIM2 */
RCC->APB1ENR |: RCC_APB1ENR_TIM2EN;

TIM2->PSC = PSC val - 1; /* set prescaler */
TIM2->ARR = ARR val - 1; /* set auto-reload */
TIM2->CR1 = (1UL << 0); /* set Ctr. En. (CEN) */
TIM2->CCMR1 |: (3UL << 12); /* OCLlREF toggles
when TIMx

CNT=TIMx CCR1*/
TIM2->CCER |= (1UL << 4); /* CC2E set */

}
Modify the adc_Initialize and Set IRQ () function to trigger conversions
on both the rising and falling edge of TIM2 CH2 by writing to Control Register 2:

ADC3->CR2 |= (3UL << 28);
ADC3->CR2 |= (3UL << 24);

Remember to run the ADC in single conversion mode:

void ADC Initialize and Set IRQ (void) {
/* Setup potentiometer pin PF9 (ADC3_7) and ADC3 */

RCC->APB2ENR |= (1UL << 10); /* En. ADC3 clk */
RCC->AHB1ENR |= (1UL << 5); /* En. GPIOF clk */
GPIOF->MODER |= (3UL << 2%*9);/* PF9 = Analog mode */
ADC3->SQR1 = 0;
ADC3->SQR2 = 0;

151

Data Conversion

ADC3->SQR3 = (70L << 0); /* SQ1 = chan. 7 */
ADC3->SMPR1 = 0; /* Chan. 7 sample */
ADC3->SMPR2 = (7U0L << 18); /* time = 480 cyc. */
ADC3->CR1 = (1UL << 8); /* Scan mode on */
ADC3->CR1 |: (1UL << 5); /* En. EOC IRQ */
ADC3->CR2 |= (3UL << 28); /* Trig on both edg */
ADC3->CR2 |: (3UL << 24); /* of TIM2 CC2 */
ADC3->CR2 |: (1UL << 0); /* ADC enable */
NVIC EnableIRQ(ADC IRQn); /* Enable IRQ */
ADC3->CR2 |= (1 << 30); /* Start 1lst conversion */

}

8. Build, download, and run the program. You will notice that, when we execute this
program, the output appears much more stable than it did using a continuous mode.
This is just a consequence of performing fewer conversions, but it does serve to
emphasize the need to avoid oversampling unless there is good reason.

In addition to the update event interrupt, each timer also allows interrupts to be generated
by up to four capture compare channels (TIMx_CHZ1-TIMx_CH4). Each Capture/Compare
channel comprises a Capture/Compare register, an input stage for capture (with digital filter,
multiplexing, and prescaler), and an output stage (with comparator and output control). Each
can be configured as the input capture, PWM input, forced output, output compare, PWM, or
one-pulse modes. The output compare mode can be used to provide timing signals that can
be used to start A-D conversions.

One of 16 possible start conversion triggers can be selected for the regular group of channels
by writing to the ADC control register 2 (ADC_CR2) bit field, EXTSEL[3:0]. The following table
shows how the trigger sources are encoded

CH1-CH4 and TRGO refer to timer channels. For further information,
refer to STM's RMO090 Reference manual (http://www. st .com),
" Chapters 17 and 18.

EXTSEL[3:0] Start Trigger EXTSEL[3:0] Start Trigger
0000 TIM1_CH1 1000 TIM3_TRGO
0001 TIM1_CH2 1001 TIM4_CH4
0010 TIM1_CH3 1010 TIM5_CH1
0011 TIM2_CH2 1011 TIM5_CH2

152

Chapter 5

EXTSEL[3:0] Start Trigger EXTSEL[3:0] Start Trigger
0100 TIM2_CH3 1100 TIM5_CH3
0101 TIM2_CH4 1101 TIM8_CH1
0110 TIM2_TRGO 1110 TIM8_TRGO
0111 TIM3_CH1 1111 EXT11

The polarity of the trigger is determined by EXTEN, as shown in the following table:

EXTEN Trigger Polarity

00 Trigger detection disabled

01 Trigger detection on the rising edge

10 Trigger detection on the falling edge

11 Trigger detection on both the rising and falling edges

If we wish to confirm that the ADC is sampled every 100 ms, then simply add a global tick
variable and increment this in the IRQ handler. Change the code within the super-loop to blink
the LEDs every 10 ticks.

Setting up the DAC

The aim of this recipe is to echo the analog voltage input to the ADC to the DAC. The DAC
operation is relatively simple as compared to the ADC. The MCBSTM400 evaluation board
doesn't provide any means of directly monitoring either of the DAC channels. As DAC channel
2 (output to PAD) drives the clock for the USB 2.0 transceiver (IC6), the only option that we
have is to use DAC channel 1 (output PA4). To see an output, we'll need to probe the output
PA4 with a test meter. This recipe is called echo_adc_dac_c5vo0.

How to do it...

To set up the DAC follow the steps outlined:

1. Clone adcTimerISR c5vO0 from the Using timers to trigger conversions recipe
and extend it by adding the dac.c and dac . h files. These will be used to define a
function called DAC_Initialize () (shown next) that will be used to set up the
DAC; the DAC registers and mask definitions are defined as a data structure in the
stm32f4xx hal.hfile:

#include ""stm32f4xx hal.h"" /* STM32F4xx Defs */

153

Data Conversion

#include ""DAC.h""

/* __
* DAC Initialize: Initialize DAC
*
* Parameters: (none)
* Return: (none)
K o e e e e e e e e e e e — = */
void DAC Initialize (void) {
RCC->APB1ENR |: RCC_APB1ENR DACEN; /* En. DAC clk */
/* En. GPIOA clk */
RCC->AHB1ENR |: RCC_AHB1ENR GPIOAEN;
GPIOA->MODER |: (3UL << 2%4);/* PA4 = Analog mode */
DAC->CR |= DAC CR EN1; /* Enable DAC 1 */

DAC->CR |= DAC_CR BOFFl; /* Enable DAC 1 OP Buff */
}
Add dac. c to the project.
Add a function prototype to dac.h.

Modify the main () function to call the DAC_Initialize () function and add a
statement in the main loop to write the ADC value to the DAC:

int main (void) {

HAL Init();
SystemClock Config() ;

LED Initialize (); /* LED Init. */
ADC Initialize and Set IRQ ();/* ADC Special Init. */
DAC Initialize (); /* DAC Init. */
TIM2 Initialize (); /* TIM2 Init. */
while (1) { /* output 8-bit adcValue */

DAC->DHR12R1 = adcValue; /* Echo ADC to DAC */

LED SetOut (DAC->DOR1 >> 4); /* Echo DOR to LEDs */

}
}

5. Build, download, and run the program.

154

Chapter 5

The STM32F407xx features 2 x 12-bit buffered DAC converter channels, DAC1 and DAC2.
Eight DAC trigger inputs are provided for each device. The STM32F405xx and STM32F407 xx
Datasheet Table 7 (http://www. st .com) shows that the DAC1 and 2 outputs are featured
as an additional function of GPIO PA4 and PA5, respectively. The GPIO 1/0 port bit must

be configured as analog to disable the GPIO output buffer. A simplified block diagram of a
DAC channel is shown as follows (a more detailed diagram can be found in STM's RM0O090
Reference manual at http://www. st .com):

DaC Control Register

TSELx[2:0]
SWTRIG - (==
Tin2 il]
- x| %5
| ==
o | =L
| ==
|
TINE g
Ext —-
[
Control Logic
N
DHRx ” g
|- f———
1T
DORx
T
et s DAC_DUTH
re Digital-ta-Analogue
= Converter -

The DAC can be configured in 8- or 12-bit mode. In 12-bit mode, the data can be left- or right-
aligned by writing to the appropriate Data Holding Register (DHR). The DAC Data Output
Register (DOR) cannot be written to directly. Data is transferred from the DHR to the DOR
after one APB1 clock if no trigger is selected; or if a trigger is selected, then the transfer
occurs three APB1 clocks after the trigger event.

155

Data Conversion

The DAC Initialize () function performs the following operations:

1. The first step is to write to the Reset and Clock Control (RCC) peripheral and enable
clocks for the DAC and GPIO port A.

2. To enable the DAC clock, we write bit-29 of the APB1 peripheral clock enable register:
RCC->APB1ENR |= RCC_APB1ENR DACEN;

3. To enable Port A, clocks write bit-0 of the AHB1 peripheral clock enable register:
RCC->AHB1ENR |= RCC_AHBI1ENR GPIOAEN;

4. Then, we configure Port A bit-4 (PA4) in analog mode to source the analog output by
writing to the mode register:

GPIOA->MODER |= (3UL << 2*4);

5. Finally, we enable the DAC channel 1 and its associated output buffer. This step
involves writing to the DAC control register:

DAC->CR |= DAC_CR_EN1;
DAC->CR |= DAC_CR BOFF1;

We write a statement in the main loop to write the ADC value to the DAC. We use the simplest
conversion mode that triggers a conversion each time data is written to the (DHR). There are
three Data Holding Registers for each channel. Each loads the (DOR) slightly differently. We
choose the DHR that loads the DOR with a right-aligned 12-bit value. Writing to the DHR is
achieved by the following:

DAC->DHR12R1 = adcValue;

Instead of writing adcvalue to the LEDs, we read the DAC DOR and write its value instead.
Please note that the DOR is read-only (it cannot be written by software). Writing the LEDs in
this way will confirm that we've correctly configured the DAC. If the DOR shows the correct
value but there is no output voltage on PA4, then the problem lies with the GPIO Port
configuration. The following statement writes the DAC1 DOR value to the LEDs:

LED Out (DAC->DOR1 >> 4);

The DAC converter includes a linear-feedback shift register (LFSR) and can be configured to
generate pseudo-random noise and a programmable triangle-wave generator is also available;
refer to STM's RM0O090 Reference manual and STM, Application Note AN3216: Audio and
waveform generation using the DAC in STM32 microcontroller families (http://www.

st . com) for more details.

156

Chapter 5

Generating a sine wave

Sinusoidal signals are commonly used in signal processing applications and generating these
waveforms provides an interesting project that is the focus of this recipe. A common approach
is a direct method that stores the sinusoidal waveform samples in a look-up-table (LUT). This
recipe is called dacSinusoid c5vo0.

Getting ready

First, we need to calculate the (12-bit) DAC values that will be stored in the LUT. We'll attempt
to generate a 50 Hz sinusoidal signal and use a spreadsheet (for example, Microsoft Excel) to
calculate the following values:

Smpl. No | Theta Rads floor((sin(theta)+1)*4095/2)
0 0 2047
1 0.31415927 | 2680
2 0.62831853 | 3250
3 0.9424778 3703
4 1.25663706 | 3994
5 1.57079633 | 4095
6 1.88495559 | 3994
7 2.19911486 | 3703
8 2.51327412 | 3250
9 2.82743339 | 2680
10 3.14159265 | 2047
11 3.45575192 | 1414
12 3.76991118 | 844
13 4.08407045 | 391
14 4.39822972 | 100
15 4.71238898 | O

16 5.02654825 | 100
17 5.34070751 | 391
18 5.65486678 | 844
19 5.96902604 | 1414

157

Data Conversion

How to do it...

Follow the outlined steps to generate a sine wave:

1. Create a new recipe called dacSinusoid_c5v0 by cloning timerISR_c5v0 from
the Using timers to trigger conversions recipe.
2. Replace timerISR.c with a file named dacSinusoid. c and add a declaration for
an LUT:
uintl6_t dacLUT [] = {2047, 2680, 3250, 3703, 3994,
4095, 3994, 3703, 3250, 2680,

2047, 1414, 844, 391, 100,
0, 100, 391, 844, 1414 };

3. Add an interrupt handler to service TIM2:

/* __
TIM2 IRQ Handler
K o e e e e e */
void TIM2 IRQHandler (void) {
static uint8 t idx = 0;

if (TIM2->SR & (1<<0)) {
TIM2->SR &= ~(1<<0); /* clear UIR flag */
/* write LUT wval to DAC */
DAC->DHR12R1 = dacLUT[idx++];
idx %= 20;
LED Out (idx); /* Write idx to LEDs */

}

Add the following main () function:

int main (void) {

HAL Init();
SystemClock Config() ;

LED Initialize (); /* LED Init. */
DAC Initialize (); /* DAC Init */
TIM2 Initialize ();

while (1) {

/* empty statement */ ;

}

158

Chapter 5

Add dacSinusoid. c to the project.

5. Only one statement in the TIM2 Initialize () function (inthe timer.c file)
needs to be changed:

/***

* TIM2 Initialize ()

R R R R S S R S S R S R R R S R R S S R S R S R R Rk S R o
* Initializes TIM2 generates interrupts every 1lms

* SystemCoreClock = 168 MHz - set by SystemInit ()
* Refer to Figure 134 of STM Reference Manual RM0090
* TIMxCLK = SystemCoreClock/2

* Hence ticks = 0.001 * 168,000,000 / 2 = 84,000

* Prescaler = 84-1; ARR = 1000-1;
***/

void TIM2 Initialize (void) ({

const uintlé6é t PSC val = 84;
const uintlé t ARR val = 1000;

/* En. TIM2 clk */
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
TIM2->PSC = PSC val - 1; /* set prescaler */
TIM2->ARR = ARR val - 1; /* set auto-reload */
TIM2->CR1 = (1UL << 0); /* set command reg. */
TIM2->DIER = (1UL << O0); /* En. TIM2 IRQ */

NVIC EnableIRQ(TIM2_IRQn); /* En. NVIC TIM2 Int. */

}

6. Build, download, and run the program.

The many techniques that could be used to generate a sinusoidal waveform are the subject
of the digital signal processing literature. A common approach is a direct method that stores
the sinusoidal waveform samples in a look-up-table (LUT). This may seem very crude but

if the output is passed through an analog low-pass filter with a cut-off frequency set to the
fundamental frequency of the output signal, then the result is a reasonably pure sinusoid. In
fact, this approach works equally well for a triangular waveform (which can be generated by
the DAC hardware), but the LUT approach will produce something that looks convincing when
displayed on an oscilloscope without the need for a filter.

159

Data Conversion

In theory, the minimum number of samples needed is determined by the Nyquist-Shannon
Sampling Theorem. This states that we need a minimum of two samples per cycle. At this
limit the raw samples describe a 50 Hz square wave that will produce a sinusoid when
processed by a suitable low-pass output filter. However, as an ideal square wave contains only
components of odd-integer harmonic frequencies (of the form 2m(2k-1)f), the order of the
filter will need to be ~12 so that the harmonics are highly attenuated while the fundamental
is unaffected. To achieve a satisfactory output with a much simpler second-order filter, the
number of samples is usually increased by a factor of ~10.

We store the samples in an array, as follows:

uint32 t dacLUT [] = {2047, 2680, 3250, 3250, 3994,
4095, 3994, 3703, 3250, 2680,
2047, 1414, 844, 391, 100,
0, 100, 391, 844, 1414 };

Then, we use a timer to generate an interrupt every 1 ms (that is, the period of the sinusoid
T=20ms; 1/20 ms = 50 Hz.). Please note that we could use any timer (in this case, we use
TIM2; reusing code discussed previously but changing the prescaler value):

Uintl6_t PSC val = 84;

We write the sample to the DAC's Data Holding Register in the timer ISR (we postincrement
idx), as follows:

DAC->DHR12R1 = dacLUT [idx++] ;

To ensure the index is incremented by modulo 20 (because the LUT array stores 20 values),
we use the following:

idx %= 20;

160

Chapter 5

We output the idx variable to the LEDs just to give a visual check that the program is running.
A screenshot of an oscilloscope connected to PortA4 is shown as follows:

The lower trace shows the output (Vout) of the low-pass filter. The cut-off frequency for the
low-pass filter is set to 50 Hz approximately, (refer to T. Floyd and D. Buchla, Electronics
Applications Circuits Devices and Applications (8e), Pearson Education, 2014) which can be
seen in the following figure:

4/\/\‘;\“{

47K

o SEDIEF | Wour

161

Multimedia Support

In this chapter, we will cover the following topics:

» Setting the RTE for the I12C Peripheral Bus
» How to use the LCD touchscreen

» Writing a driver for the audio codec

» How to use the audio codec

» How to use the camera

» Designing bitmapped graphics

» ldeas for games using sound and graphics

Introduction

Multimedia peripherals are discrete components that are connected to the microcontroller
by a bus. Support for LCD touchscreens, audio codecs, and camera peripherals is a very
attractive feature of the STM32F4xxx microcontroller, and selecting an evaluation board that
includes these peripherals, although more expensive, will increase the range of projects that
can be undertaken. Multimedia projects using the touchscreen and codec are great fun and
much more likely to motivate young programmers than blinking LEDs. These peripherals

are quite complex, but the libraries that are provided to support them are reasonably
straightforward to use.

Multimedia Support

Setting the RTE for the 12C Peripheral Bus

The LCD touchscreen, three-axis motion sensor (LIS302DL), audio-codec (CS42L52),

64k EEPROM (M24C64), camera, and other peripherals that are supported by the
MCBSTM32F400 evaluation board are connected to the STM32C microcontroller by a
synchronous serial bus called I2C. The bus standard adopted is called the Inter-Integrated
Circuit (12C) Interface, which was developed by Phillips in the 1980s. Before we can use any
peripherals that are connected to the I12C bus, we must first configure the 12C interface. We'll
illustrate this by a recipe called touchScreenDemo_c6vO0. Later in this chapter, we'll show
you how to configure other I2C peripherals.

How to do it...

To set RTE for an 12C Peripheral Bus perform the following steps:

1. Open a new project (touchScreenDemo), in a new folder named
touchScreenDemo_c6vO0.

2. Using the RTE manager, select Touchscreen (an 12C peripheral) under Software
Component | Board Support.

3. Set the CMSIS and Device options, as we've done for the previous recipes. Click
Resolve and then OK:

K Manage Run-Time Environment — - e
Software Component Sel. Variant Version Description
¢ Board Support MCBSTM32F400 | » | 200 Egil Development Board MCBSTIMIZFI00 &
4 A/D Converter (APT) T A/D Converter Interface
| i @ Accelerometer (AP) 1.00 Accelerometer Interface
| # 4 Buttons (AP]) 1.00 Buttons Interface
| 3 @ Camera (AP]) 1.00 Camera [nterface
| i @ Graphic LCD (AP 1.00 Graghic LCD [nterface
i @ Gyroscope (AP]) 100 Gyrescope Interface
| i 4 Joystick (APT) 100 loystick [nterface
| i 4 LED (AP 100 LED Interface
| @ Touchscreen (AP 100 Touchscreen Intedace
| @ Touchscreen @ 200 Teuchscreen Interface for STMPESLL
| 5 @ emWin LCD (APT) 11 emWin LCD Interface
| & oS Corex Microgontroller Software Interface €
| ¥ CORE @ 430 CMSIS-CORE for Cortex-M_SC000. and SCI00
| @ Dse T 146 SMEIE-DSP Likrary for Comex
| 4 RTOS (API) Lo SMSI5-RTOS AP] for Core
| ¥ Kel RTX @ 4200 CMSIS-RTQS RTX imph fgr Corte C000, and SC300
|| @ € CMSIS Driver Unified Device Drivers comphiant to CMSIS-Driver Specifications =
|| @ @ Compiler ARM Compiler Seftware Extensions
| | & @ Device Sarup. System Setug
| @ Startup 240 System Startup for STMicroelectronics STM32F4 Series
| & STM32Cube Framework (APT) TMI2Cube Framewark
| @ Classic @ 140
@ STM32CubeMX T 100 l
Validation Output Description

v |

|
I Fiesolve Select Packs Detads

’
a
2
o

Chapter 6

4. Openthe RTE Device.h file, select the Configuration Wizard editor tab, and enter

the configuration choices that are shown in the following screenshot:

] RTE_Device.h

Boand Al | Collapse Al Hep | I~ ShowGrd

Option
@-USARTIL (Universal synchronous asynchronous receiver trans...
@--USART2 (Universal synchronous asynchronous receiver trans...

@ USART3 (Universal synchronous asynchronous receiver trans...

- UART4 (Universal asynchronous receiver transmitter) [Driver_...
@--UARTS5 (Universal asynchronous receiver transmitter) [Driver_...
@~ USART6 (Universal synchronous asynchronous receiver trans..,

(- UART7 (Universal asynchrenous receiver transmitter) [Driver_...

&

UARTS (Universal asynchronous receiver transmitter) [Driver_...
12C1_SCL Pin 3
12C1_SDAPin PB9

®-DMA Rx -

@-DMA Tx r

ROOOOoooang
c
m

b=l
@

12C1 (Inter-integrated Circuit Interface 1) [Driver_12C1]
Configuration settings for Driver 12C1 in component ::CMSIS Driver:2C

TextEditor_}, Configuration Wizard |

5. Openthe RTX Conf CM. c file, select the Configuration Wizard editor tab, and enter

the configuration choices that are shown in the following screenshot:

Number of concurrent ru... 6
Default Thread stack size [...
Main Thread stack size [b...
Number of threads with u..,
Total stack size [bytes] for...
Stack overflow checking

'ﬂﬂc‘:’gg

Stack usage watermark

Processor mode for threa... Privileged mode
= RTX Kernel Timer Tick Config...

Use Cortex-M SysTick tim... 7

RTOS Kernel Timer input ... 168000000

RTX Timer tick interval val... 1000
= System Configuration

Round-Robin Thread swit..

M- User Timers &
1SR FIFO Queue size 16 entries
Thread Configuration

] RTX_Conf_CM.c X
Epand Al | Colapse Al Hep | I ShowGnd

QOptien Value

= Thread Configuration =

Text Editor }\E_nnhjuraﬂnn Wizard /

165

Multimedia Support

6. Check whether the program successfully compiles by declaring an empty main
function (name the file, touchScreenDemo. ¢) and include this in the project:

int main (void) {
HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

}

A bus is the name that is given to a collection of signals (data, address, and control) that
interconnect the processor infrastructure. The microcontroller uses a serial (rather than
parallel) bus interconnection, and to keep the microcontroller pin count low, the bus signals
are driven via a GPIO port that is configured in alternate function mode. 12C is a half-duplex
synchronous serial bus comprising clock (SCL) and serial data (SDA) lines. Devices that

are connected to the bus are identified by a 7- or 10-bit address and can be configured as
master or slave. The following diagram shows a master node (in this case, the microcontroller)
sourcing the clock and controlling slave devices connected to the bus (note that the master
node does not have to be a microcontroller):

9 \dd

[

22

. sDA)
SCL

ul hMaster Touch Screen Camera Accelerometer

Before we can use the 12C bus, the bus master (that is, the microcontroller) must be
configured. The MCBSTM32F400 evaluation board drives signals SDA and SCL via GPIO Port
B bits 8 and 9, so before the interface can be used, GPIOB must be configured. This task

is simplified using the uVision vb5.x Run Time Environment (RTE) manager. To successfully
compile a program that needs 12C, we must configure the RTE_Device. h file for our
evaluation board. As we chose the Device option STMCube_Framework — Classic, the
RTE_Device.h file for our evaluation board is provided by the RTE manager. A configuration
wizard provides a simple user interface that allows different peripherals and parameters to be
selected by tick boxes and drop-down lists. (Note that the Board Schematic confirms GPIO bits
PB8 and PB9 are used to source signals, SDA and SCL.)

166

Chapter 6

Accurate control of bus timing is critical for successful operation of the I12C. The RTE solves
this by using a real-time kernel called RTX (we'll meet RTX in Chapter 8, Real-Time Embedded

Systems). The Configuration Wizard for the RTX_Conf CM. c file establishes certain

scheduling parameters for the kernel.

Another serial interface standard supported by the MCU is known as Serial Peripheral
Interface (SPI) and was developed by Motorola. For further information on 12C and SPI, refer
to http://www.byteparadigm.com/applications/introduction-to-i2c-and-

spi-protocols/.

How to use the LCD touchscreen

The LCD touchscreen used by the MCBSTM32F400 evaluation board is a resistive film
giving a resolution of 4000 x 4000 (that is, far greater than the GLCD). This recipe extends
touchScreenDemo_c2v0 and illustrates how to use the LCD touchscreen.

How to do it...

Perform the following steps to use the LCD touchscreen:

1. Return to touchScreenbDemo c2v0 and open the project.

2.

Use the RTE manager to add Software Component — Board Support for the Graphic
LCD (in addition to the Touchscreen). Click Resolve and then OK.

Open touchScreenDemo. ¢, and include the following headers:

#include
#include
#include
#include
#include
#include
#include

Define the following macros, global variables, and function prototypes:

<stdio.h>
"stm32f4xx hal.h"
"cmsis os.h"
"Driver I2C.h"
"Board GLCD.h"
"GLCD Config.h"
"Board Touch.h"

// The size of the touch-screen co-ordinates system.
#define SCREEN_TS WIDTH 4000
#define SCREEN_TS HEIGHT 4000

#define wait delay HAL Delay

/* Globals */

167

Multimedia Support

extern GLCD_FONT GLCD_Font_ 16x24;

/* Function Prototypes */
void screenTransformTS (TOUCH STATE *ts);

void SystemClock Config(void) ;

void setDisplay(void) ;

void updateDisplay (TOUCH STATE *tsc state);
void clearDisplay (void) ;

5. Extend the main () function:

int main (void) {
TOUCH_STATE tsc_state;

HAL Init (); /* Init Hardware Abstraction Layer
SystemClock Config () ; /* Config Clocks
Touch Initialize(); /* Touchscrn Controller Init
GLCD_Initialize(); /* Graphical Display Init
setDisplay () ; /* Draw GLCD Display

while (1) {
Touch GetState (&tsc_state); /* Get touch state

if (tsc_state.pressed)
updateDisplay (&tsc_state) ;
else
clearDisplay () ;

wait delay(100) ;

}
}

6. Addthe setDisplay () function to touchScreenDemo. c file:

/* __
setDisplay
K o o e e e e e e e e e e e e e e e =
void setDisplay() {
GLCD_SetBackgroundColor (GLCD_COLOR WHITE) ;
GLCD_ClearScreen (); /* clear the GLCD */

168

Chapter 6

}

GLCD_SetBackgroundColor (GLCD COLOR_BLUE) ;
GLCD_SetForegroundColor (GLCD COLOR_WHITE) ;
GLCD_SetFont (&GLCD Font 16x24) ;

GLCD DrawString (0, 0*24, " CORTEX-M4 COOKBOOK ") ;
GLCD DrawString (0, 1*24, " PACKT Publishing ");

GLCD_SetBackgroundColor
GLCD_SetForegroundColor

(GLCD_COLOR_WHITE) ;
(GLCD_COLOR_BLACK) ;

GLCD DrawString (0, 3*24, "Touch:");
GLCD DrawString (0, 4*24, "x ")
GLCD DrawString (0, 5*24, "y ")
GLCD DrawString (0, 6*24, "xt ")
GLCD DrawString (0, 7*24, "yt ")

7. Add the updateDisplay () function to file touchScreenDemo. ¢

/* __
updateDisplay
__ */

void updateDisplay (TOUCH STATE *tsc_state) ({
char buffer[128];

GLCD_SetForegroundColor (GLCD COLOR_BLACK) ;

GLCD DrawString (7*16, 3*24, "DETECTED");

sprintf (buffer, "%i ", tsc_state->x); /* raw x _coord */
GLCD DrawString (7*16, 4*24, buffer);

sprintf (buffer, "%i ", tsc_state->y); /* raw y coord */
GLCD DrawString (7*16, 5*24, buffer);

}

screenTransformTS (tsc_state) ;
sprintf (buffer, , tsc_state->x);
GLCD DrawString (7*16, 6*24, buffer);

n%i n

n%i n

sprintf (buffer,
GLCD DrawString (7*16,

, tsc_state->y);
7*24, buffer) ;

8. Addthe clearDisplay () function to file touchScreenDemo. ¢

void clearDisplay () {

GLCD_SetForegroundColor
GLCD DrawString (7*16,

(GLCD_COLOR_LIGHT GREY) ;
3*24, "DETECTED") ;

169

Multimedia Support

}

GLCD DrawString (7*16, 4%*24, " ") ;
GLCD DrawString (7*16, 5%*24, " ") ;
GLCD DrawString (7*16, 6*24, " ") ;
GLCD DrawString (7*16, 7*24, " ") ;

9. Addthe screenTransformTsS () function to file touchScreenDemo. ¢

}

void screenTransformTS (TOUCH STATE *ts)

int y = ts->y;
int X = ts->x;
// Note: co-ordinates are inverted
if (x > 0)
ts->y = GLCD HEIGHT - (int) (((double)x /
(double) SCREEN TS HEIGHT) * (double)GLCD HEIGHT) ;
if (y > 0)
ts->x = (int) (((double)y /
(double) SCREEN TS WIDTH) * (double)GLCD_WIDTH) ;

10. Check the Use MicroLIB project option.
11. Build the project, download it, and run the program. The GLCD will display the LCD

170

touchscreen and screen coordinates when touched (refer to the following screenshot):

Chapter 6

The Touch GetsState () function updates the tsc_state variable, which stores the status
of the LCD touchscreen and coordinates. These are stored as a structure that is defined by a
typedef keyword in the Board Touch.h file:

/* Touch state */
typedef struct TOUCH STATE

intlé6_t x; ///< Position X
intlé6_t y; ///< Position Y
uint8_t pressed; ///< Pressed flag

} TOUCH STATE;

The LCD touchscreen and GLCD coordinate systems are different in resolution and origin.
The screenTransformTS () function maps between GLCD and touchscreen coordinate
systems. Notice how we pass a pointer to the tsc_state variable and access specific fields
such as ts->y, and so on.

Writing a driver for the audio codec

The audio codec is a peripheral that enables an analog signal to be converted and coded

to a digital data stream or conversely the data stream to be decoded and converted back

to an analog signal (https://en.wikipedia.org/wiki/Codec). The MCBSTM32F400
evaluation board uses a CS42L52 device that is manufactured by Cirrus Logic (http://www.
cirrus.com/en/products/). As, this codec is not yet included in Board Support, and as
no CMSIS-compliant device driver is available, we are faced with the task of having to write
our own driver.

However, this is not as daunting as it first appears because the code to set up and manage
data transfer across the 12C bus can be lifted from the previous recipe (the Touch
STMPES811.c file) and the configuration of the CS42L52 codec is described in the data sheet.
The recipe to develop and test this codec driver is called codecDemo_c6voO.

How to do it...

Perform the following steps to write a driver for the audio codec:

1. Create a new project called codecDemo, and using the Run-Time Environment
manager, include Board Support for the Graphic LCD. Remember to configure
Software Support for CMSIS and Device as in earlier projects.

2. Create a new file named codecDemo . c. Add the boilerplate to configure clocks, and
so on, and a skeleton main () function:

int main (void) {

171

Multimedia Support

172

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

}

Add the #include files for the codecDemo. c file:

#include "stm32f4xx hal.h"
#include "cmsis os.h"
#include "codec CS42L52.h"
#include "GLCD Config.h"
#include "Board GLCD.h"
#include <stdio.h>

Create a new file called timer. c and add this to the source code group. Add a
function named TIM3 Initialize () to this file:

void TIM3 Initialize (void) {
const uintlé_t ARR val = 7;

/* enable clock for TIM3 */

RCC->APB1ENR |: RCC_APB1ENR TIM3EN;

TIM3->CCMR1 = 0x00000070; /* Set PWM Mode 2 */
TIM3->ARR = ARR val - 1; /* set auto-reload */
TIM3->CCR1 = 3; /* Duty cycle (~50%) */
/* Enable capture/compare on Chan 1 */

TIM3->CCER = 0x000B00001;

TIM3->CR1 = 0x000B00001; /* Enable counter */

}

Create a new file called codec_CS42L52. c and add this to the source code group.
Copy the first 75 lines of the Touch STMPE811.c file to codec_CS42L52.c, the
first part of the file, including the Touch Read () and Touch Write () functions.
Change the #include directives in the codec_CS42L52. c file to the following:

#include "CS42L52.h"
#include "codec CS42L52.h"
#include "stm32f4xx hal.h"
#include "Driver I2C.h"

#include "timer.h"
Replace any references to TSC_I2C ADDR with CODEC_I2C ADDR.

Replace any references to TSC_I2C PORT with CODEC_I2C PORT.

Replace TSC_I2C_ ADDR with that given in the CS42L52 data sheet, as follows:

/* 7-bit I2C Address = 1001010b */
#define CODEC_I2C_ADDR 0x4A

Chapter 6

10.

11.

12.

13.

14.

Rename the Touch Read () and Touch Write () functionsto Codec Read () and
Codec_Write (), respectively.

Add a global typedef to the codec_CS42L52.c file:

/* Global TypeDef - Register value */
typedef struct {

uint8 t Addr;

uint8 t Vval;
} REG_VAL;

Add a function named configureCodec () to the codec_CS42L52. ¢ file. The first
two statements of configureCodec power the device down and wait for 10 ms. Note
#define delay ms HAL Delay:

void configureCodec () {
Codec Write (0x02, 0x01); /* Keep Codec Power-down */
delay ms(10) ;

for (i = 0; 1 < ARR_SZ(CODEC_Config Init); i++)
Codec_Write (CODEC_Config Init[i] .Addr,
CODEC_Config Init[i].val);

for (i = 0; 1 < ARR_SZ(CODEC_Config Beep); i++)
Codec_Write (CODEC_Config Beep[i] .Addr,
CODEC_Config Beep[i] .Val) ;
} /* configureCodec */

Include this macro definition to calculate the size of a (const) array, as follows:

/* Calculate array size */
#define ARR SZ(x) (sizeof (x) / sizeof (x[0]))

Define a global array of codec register address/value pairs named

CODEC_Config Init:

/***

* CODEC initialization based on p38

* of CS42L52 data sheet DS680F2

*****/

REG VAL CODEC_Config Init[] = {
{ox00, 0x99
0x3E, OxBA

’

}
{ b
{oxa7, 0x80},
{ox32, 0x80},
{ }
{ }

0x32, 0x00
0x00, 0x00

’

’

173

Multimedia Support

15. Define a global array of codec register address/value pairs named
CODEC_Config_Beep:

/***

* CODEC initialization for Beep Generator
* of CS42L52 (Grant Ashton)
*****/
REG_VAL CODEC Config Beep[] ={
/* Set I2S Ser. Mstr Op Only, for Beep Gen */
{Ccs42L52 IFACE CTL1, 0x80},
/* Speaker Vol B=A, MONO */
{cs42L52 PB CTL2, 0xO0A},
/* Set master vol for A */
{Ccs42L52 MASTERA VOL, 0xCO},
/* Ignore jpr setting */
{Ccs42L52 PWRCTL3, OxAA}

}i

16. Create a new file named Ccs42L52 . h defining symbolic names (for example,
CS42L52 IFACE CTLL, CS42L52 PB CTL2, CS42L52 MASTERA VOL, and so on)
for CS42L52 register addresses. For example, as in the following addresses:

/* Register addresses */

#define CS42L52 CHIP_ID 0x01
#define CS42L52 PWRCTL1 0x02
#define CS42L52 PWRCTL2 0x03
#define CS42L52 PWRCTL3 0x04
#define Cs42L52 CLK CTL 0x05
// etc.

17. Add a function named genMCLK () to the codec_CS42L52. c file:

static void genMCLK (void) {
GPIO InitTypeDef GPIO_ InitStruct;

TIM3 Initialize();
___GPIOC_CLK ENABLE() ;

/* Configure GPIO pin: PCé6 */

GPIO_InitStruct.Pin = GPIO PIN 6;
GPIO_InitStruct.Mode = GPIO MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_ PULLUP;

GPIO InitStruct.Speed = GPIO_SPEED FAST;
GPIO InitStruct.Alternate = GPIO AF2 TIM3;
HAL GPIO Init (GPIOC, &GPIO_ InitStruct) ;

174

Chapter 6

18. Add a function named codecInitialize () to the codec CS42L52.c file.
Note that the code to configure the I2C bus is identical to the code in Touch
Initialize():

int32 t codecInitialize() {
int32 t status;
/* Configure I2C */
ptrI2C->Initialize (NULL) ;
ptrI2C->PowerControl (ARM POWER FULL) ;
ptrI2C->Control (ARM I2C BUS SPEED,
ARM I2C BUS SPEED FAST) ;
ptrI2C->Control (ARM I2C BUS SPEED,

/* Configure CODEC */
configureCodec () ;
genMCLK () ;

/* CODEC Power up */
status = Codec Write(CS42L52 PWRCTL1, 0x00);
delay ms(10); /* Wait 10ms */

return status;

}

19. Add a function named readCodecChipID () to the codec CS42L52.c file:

int32 t readCodecChipID(uint8 t *val) ({
int32 t status = Codec Read(1l, val);

return status;

}

20. Add a function named Beep () to the codec_C842L52. c file:

void Beep (noteInfo note) {

/* Beep off time 1.23s and volume 0dB */
Codec_Write (CS42L52_ BEEP_VOL, 0x00) ;
/* Set beep note and beep duration */
Codec_Write (CS42L52 BEEP_ FREQ,

note.pitch | note.duration) ;
/* play single beep */
Codec_Write (CS42L52 BEEP TONE CTL, 0x40);
/* Disable beep */
Codec_Write (CS42L52 BEEP _TONE CTL, 0x00);

175

Multimedia Support

21.
22.

23.

24,

25.

176

Create the timer.h header file containing the timer . c function prototypes.

Create the codec_CS42L52 . h header file containing the codec_Cs42L52.c
function prototypes.

Define symbolic names for the pitch of notes in the codec_Ccs42L52 . hfile, for
example, as in the following frequencies:

// Beep note frequency
#define A5 0x60
#define A6 0xDO
#define B5 0x70
#define B6 0xEO

// etc.

Define symbolic names for the duration of notes in the codec_CS42L52 . h file, for
example, as in the following:

#define TENTH_SECOND 0x00
#define HALF SECOND 0x01
#define ONE_SECOND 0x02
// etc.

Extend the main () function by adding code to initialize the GLCD and Codec. Define
a super-loop that outputs a beep every 0.5 seconds:

int main (void)
noteInfo note = {G5, 0x02};

uint8 t codecID;
char buffer[128];

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

GLCD_Initialize();
setDisplay () ;

showStatus (CodecInitialize()) ;

showStatus (readCodecChipID (&codecID)) ;
sprintf (buffer, "Chip ID: 0x%x", codecID) ;
GLCD DrawString (1*16, 9*24, buffer);

while (1) ({

Beep (note) ; /* Play the note */
wait delay(500) ; /* pause */
} /* WHILE */

}

Chapter 6

26. Add a function named setDisplay () (copy the first 12 lines of the similarly-named
function used in touchScreenDemo c6v0).

27. Add a function named showStatus ():

void showStatus(int32 t stat)
if (stat==0) GLCD DrawString (1*16, 8%*24,"Codec OK ");
else GLCD DrawString (1*16, 8*24,"Codec FAIL");

}

28. Check that the codec _CS42L52.c and timer. c files are added to the project.
29. Select the Use MicroLIB project option.

30. Remember to configure the RTE_Device.hand RTX Conf CM.c files, as we did for
the touchScreenDemo cé6vO0 folder from the Setting the RTE for the I12C Peripheral
Bus recipe.

31. Build the project, then download and run the program.

A Linux driver for the CS42L52 device has been written by Cirrus Logic (http://1xr.free-
electrons.com/source/sound/soc/codecs/cs42152.c) and is freely distributed
under the terms of the GNU General Public License. So, we can use this together with
information from the datasheet (http://www.cirrus.com) as a basis for our driver for the
MCBSTM32F400 evaluation board. As the audio codec is also connected to the 12C serial bus,
the touchscreen driver that we met in the previous section provides a good template for our
audio codec driver. Therefore, we will organize the codec driver in three files that mirror those
of the touchscreen driver, as follows:

» CS42L52.h: This defines codec registers
» Codec_CS42L52.c: This declares functions

» Codec_CS42L52.h: This declares function prototypes and defines symbolic names
for constants

The code in the Codec_Cs42L52. ¢ file first defines the 12C port that is used to communicate
with the audio codec. The board schematic confirms that the touchscreen and the audio
codec are connected to the same 12C port (that is, serial clock SCL = PB8 and SDA = PB9), so
we configure the RTE and RTX exactly as touchScreenDemo_c6v0 using I12C port 1 (I12C1).
The following preprocessor directives define the port number:

#ifndef CODEC_I2C PORT
#define CODEC_I2C_ PORT 1 /* I2C Port number*/
#endif

177

Multimedia Support

The following preprocessor macro ensures that the ptrI2C identifier points to the appropriate
12C driver:

/* I2C Driver */
#define 1I2C Driver (n) Driver I2C##n

#define 1I2C Driver (n) _I2C Driver (n)
extern ARM DRIVER I2C I2C Driver (CODEC_I2C_PORT) ;
#define ptrI2cC (&I2C_Driver_(CODEC_I2C_PORT))

The most-significant 6-bit audio codec's 12C address is shown on the board schematic and the
CS42L52 datasheet as 1001012. Bit-O reflects the logic level of the ADO pin (that is, O V), and
the LSB is O (for write operations). So, our codec's I12C address is 0x94, that is, the following:

#define CODEC_I2C_ADDR 0x4A /* I2C address */

Note that in practice, all accesses to the codec are writes because the read protocol uses
an abortive write cycle first to select the codec register before reading its contents (refer to
http://www.cirrus.com for further details).

We declare two functions: Codec_Write() and Codec_Read(), which mirror Touch_
Write() and Touch_Read(), which were declared in Touch. c to read and write to the
audio codec.

The function named CodecInitialize () performs three tasks. It configures the 12C
interface, then it generates the 12 MHz master clock MCLK (codec Pin 37), and finally, it
performs the codec's initialization sequence.

The function named genMCLK () configures TIM3 to generate a 12-MHz clock and maps this
onto the Alternate Function (AF) GPIO Port C pin 6 output. The initialization for TIM3 is similar
to that described in the previous chapter except that we use the PWM mode with the capture/
compare register to give an approximate 50% duty cycle. The code to configure the GPIO pin
that is used to source MCLK is similar to the one that we saw in the LED Initialize ()
function.

The initialization sequence for the audio codec is given on page 38 of the CS42L52 data
sheet. The initialization sequence is stored in an array named CODEC_RegInit []. The array
entries are structured as follows:

/* Register value */

typedefstruct {
uint8 tAddr;
uint8 t Vval;

} REG_VAL;

178

Chapter 6

The register names (for example, MASTERA VOL, and so on) are defined in the CS42L52.h
header file (note that the register names can be copied from the Linux CS42L52 driver).

To prevent odd pops and crackles, the data sheet advises that the chip is powered down
before initialization and then powered up. This configuration code is included in the
configureCodec () function. This function includes a nice example of a macro named ARR_
SZ to compute the size of the array:

/* Calculate array size */
#define ARR SZ(x) (sizeof (x) / sizeof (x[0]))

Note that unlike some languages, such as Java, C doesn't perform any array bounds checking,
so it can be quite difficult to track errors due to incorrect array access; because of this, this
macro is particularly useful.

In this recipe, we're only using the codec's beep generator (section 4.3 of the data sheet),
and the values stored in the CODEC_Config Beep [] array are concerned with setting
the codec up for this task. The remaining functions declared in the codec_Cs42L52. c file
are concerned with generating beeps and adjusting the volume of the speaker. The beep
generator can be configured to produce single, multiple, or continuous beeps, but we only
need single beeps to play our tune. The Beep () function generates a single beep. This
function takes an input parameter that determines the pitch and duration of the beep, and
this is combined into one byte and written to the codec register address offset 0x1C in the
format shown in the following table:

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

FREQ3 | FREQ2 | FREQ1 | FREQO | ONTIME3 ONTIME2 | ONTIME1 | ONTIMEO

How to use the audio codec

Listening to the beep generated by codecDemo_c6v0 gets very annoying after a couple of
minutes, so we will try and improve matters by adding a couple of functions that will enable us
to change and mute the volume. We'll also modify the code to use the beep generator to play
a tune. We're limited to a fairly simple tune because the beep generator only generates audio
frequencies across two octave major scales. For those who are musically minded, we define
the mapping between notes (pitch) and beep frequencies, and the beep ON time (see section
6.21 of the data sheet) as well, in the codec_CsS42L52.h header file. We call this recipe
codecDemo_c6vl.

179

Multimedia Support

How to do it...

Follow the outlined steps to use the audio codec:

5.

180

Clone the previous recipe and name the folder codecDemo_Cé6v1.

Open the RTE manager and add Board Support for Buttons (API) and LED (API).
Click Resolve and OK.
Add a function named setVolume () to the codec CS42L52.c file:

static void setVolume (int32 t vol) {

if (vol < -128)

Codec Write (CS42L52 MASTERA VOL, (uint8 t) vol+256);
else

Codec Write (CS42L52 MASTERA VOL, (uint8 t) wvol);

}

Add a function named getVolume () to the codec CS42L52.c file:

int32 t getVolume() {
int32 t vol, out_vol;
uint8 t wval;

Codec_Read (CS42L52 MASTERA VOL, &val);

vol = (int32 t) wval;
if (vol > 24) {
out_vol = -204; /* -102 db (saturated) */

if (vol > 52) out vol = vol-256;

}

else out vol = vol;

return out vol;

}

Add a function named decreaseVolume () to the codec_CS42L52. c file:

void decreaseVolume (uint32 t stepSize) {
int32 t currentVolume = getVolume () ;
const int32 t minvVolume = MIN VOL DB*2; /* -102dB */
uint32 t n = 0;

while ((currentVolume > minVolume) && (n<stepSize)) {
currentVolume--; /* 0.5dB decrement */
setVolume (currentVolume) ;
n++;

}
}

Chapter 6

6. Add a function named increasevVolume () to the codec CS42L52.c file:

void increaseVolume (uint32 t stepSize)

{

int32 t currentVolume = getVolume () ;
const int32 t maxVolume = MAX VOL DB*2; /* +12dB */
uint32 t n=0;

while ((currentVolume < maxVolume) && (n<stepSize)) {
currentVolume++; /* 0.5dB increment */
setVolume (currentVolume) ;

n++;

}

7. Add a function named setMute () to the codec_CS42L52. ¢ file:

void setMute (bool state)
uint8 t wval;

if (state) wval = 0x01;
else val = 0x00;
Codec_Write (CS42L52 PB CTL1l, val);

}

8. Declare a global constant array in the codecDemo. ¢ file and assign values
representing the notes for our tune:

noteInfo tune[] = {

{es, ox02}, {@s, o0x02}, {As, 0x02}, {F5, 0x04},
{es, oxo1i}, {ms, o0x02}, {B5, 0x02}, {B5, 0x02},
{ce, o0x02}, {B5, 0x04}, {A5, 0x01}, {G5, 0x02},
{ns, o0x02}, {@s5, 0x02}, {Fs5, 0x02}, {G5, 0x02},
{es, oxo1i}, {ms, oxo1i}, {B5, o0x01}, {C6, 0x01},
{p6, o0x02}, {D6, 0x02}, {D6, 0x02}, {D6, 0x04},
{ce, oxo01}, {B5, 0x02}, {cCce6, 0x02}, {C6, 0x02},
{ce, o0x02}, {ce, o0x04}, {B5, 0x01}, {A5, 0x02},
{B5, 0x02}, {ce, oxo01}, {B5, 0x01}, {A5, 0x01},
{es, oxo1i}, {Bs5, 0x04}, {ce, 0x01}, {D6, 0x02},
{6, oxo1}, {ce, oxo01}, {B5, 0x02}, {A5, 0x02},
{gs, o0x09} };

9. Replace function named setDisplay () in the codecDemo. c file:
void setDisplay()

GLCD_SetBackgroundColor (GLCD_ COLOR WHITE) ;
GLCD ClearScreen ();

181

Multimedia Support

GLCD SetFont (&GLCD Font 16x24) ;
GLCD_SetForegroundColor (GLCD_ COLOR BLACK) ;

GLCD DrawString (1*16, 1*24, "Volume: ");

GLCD DrawString (1*16, 5*24, "Wakeup toggles MUTE") ;
GLCD DrawString (1*16, 6*24, "User and Tamper") ;
GLCD DrawString (1*16, 7*24, "Adjust Volume");

#ifdef _ DEBUG
showCodecInfo();
#endif

}

10. Add a function named volumeUserInput () to the codecDemo. c file:

void volumeUserInput () {
uint32 t keyMsk;

keyMsk = Buttons GetState () ;
if (keyMsk & BUTTONS TAMPER MASK)
increaseVolume (10) ;
else {
if (keyMsk & BUTTONS USER MASK)
decreaseVolume (10) ;
else
if (keyMsk & BUTTONS WAKEUP MASK) {
mute = !mute;
setMute (mute) ;
} /* IF-ELSE */
} /* IF-ELSE */

}

11. Add a function named showVolumeGraph () to the codecDemo. c file:
void showVolumeGraph() {

if (mute) {/* If codec is muted, display red graph */
GLCD_SetForegroundColor (GLCD_ COLOR RED) ;
GLCD DrawString(1l*16, 2*24, " (Muted)");

}

else { /* else blue graph */
GLCD_SetForegroundColor (GLCD_COLOR BLUE) ;
GLCD DrawString(1l*16, 2*24, " ")

}

GLCD DrawBargraph (130, 24, 180, 20,

(getvVolume () - (MIN_VOL DB*2))/2);

182

Chapter 6

12. Replace the main () function in the codecDemo. c file:

int main (void)

uint32 t i = 0;
uint32 t beepTimeOut = 0;

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

GLCD_ Initialize();

LED Initialize ();
Buttons Initialize ();
CodecInitialize() ;
setDisplay() ;

while (1) {

if (!beepTimeOut) {
Beep (tune[i]) ; /* Play the next note */
beepTimeOut = tune[i] .duration;
i = (i+1)%ARR_SZ(tune) ;

}

else
beepTimeOut--; /* Wait */

volumeUserInput () ;
showVolumeGraph() ;
LED SetOut (1) ;

wait delay (BEAT TIME) ;
} /* WHILE */

}

13. Build, download, and run the program. You should get something similar to the
following screenshot

Multimedia Support

The functions in steps 2 and 3 of this recipe are concerned with controlling the speaker
volume. The setVolume () function can be made static to enforce privacy (static functions
can only be called within the file in which they are defined). Both functions access the register
that controls the master volume for codec channel A (Address Offset 0x20):

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

MSTxVOL7 | MSTxVOL6 | MSTxVOL5 | MSTxVOL4 | MSTxVOL3 | MSTxVOL2 | MSTxVOL1 | MSTxVOLO

The master the volume is represented using a special 8-bit 2's-complement code, which
allocates values 0-24 to positive numbers, and the remaining values to negative ones (note that
a normal 8-bit 2s-complement representation allocates code words equally between positive
and negative quantities). The function to read the getVolume () master volume register
converts the value read from the register to a signed 32-bit integer that represents twice the
volume in decibels (dB) (that is, values between -204 and +24 represent -102 dB to +12 dB).

An input parameter of the setVolume () function represents twice the volume (dB). If the
volume lies in the -128 to +24 range, then it simply casts the 32-bit signed integer as an

8-bit value before writing it to the codec's register. Otherwise, it adds an offset of +256. The
binary code that is used to represent the volume is explained in the CS42L52 data sheet. The
inceaseVolume (), decreaseVolume (), and setMute () functions described in steps 4 to
6 of the recipe provided a simple high-level interface that allows the volume to be manipulated.

Now that we have defined a codec driver, we can turn our attention to writing the main
function for our audio codec demo. This simply needs to initialize the codec and then write
appropriate values to the beep generator. The pitch and time values are stored in the global
array named tune [];can you guess the 'tune'? The wakeup, tamper, and user buttons
are used to increase, decrease, and mute the volume, so they need to be initialized too. The
super-loop inside main () outputs the array values (notes and durations by stepping through
the tune [] array. The VolumeUserInput () function checks and processes button
inputs, and the ShowvVolumeGraph () function displays a bar indicating the volume on the
GLCD. The function named wait_delay () ensures that each call to Beep () is separated
by an appropriate time interval set by the BEAT TIME constant.

How to use the camera

The camera is another 12C peripheral, but to display video we need to read the array pixels
that make up an image and write their values to the GLCD very rapidly. We achieve this by
using Direct Memory Access (DMA) to stream image frames directly to the GLCD rather
than writing individual values as we did for the audio codec demo. We'll name this recipe
cameraDemo_c6vO0.

184

Chapter 6

How to do it...

1.

Create a new project named cameraDemo. Using the RTE manager, go to Board
Support and select the Camera (API) and Graphic LCD (API) software components.

Set the CMISIS and Device software components, as we've done for previous
projects. Set the Use MicroLIB project option.

Create a file named cameraDemo . ¢ and add boilerplate code to configure clocks,
and so on. Add this file to the project.

Add amain () function to the cameraDemo. c file:

Build, download, and run the program, as follows:

int main (void) {

uint32 t addr;

HAL Init(); /* Initialize the HAL Library */
SystemClock Config() ; /* Config System Clk */
GLCD_Initialize(); /* Graphical Display Init */

/* Get fremebuffer addr */
addr = GLCD_ FrameBufferAddress() ;
Camera_Initialize (addr) ; /* Camera Init */

/* Prepare display for video stream from camera */
GLCD_SetBackgroundColor (GLCD_ COLOR BLUE) ;
GLCD_ClearScreen () ;

GLCD_FrameBufferAccess (true);
/* Turn camera on */
Camera On () ;

while (1) {
; /* Nothing to do here; all done by DMA */

185

Multimedia Support

6. Openthe RTE Device.h file and use the configuration wizard to set the 12C port
parameters. Remember to check the DMA transmit and receive options (we can
accept the default DMA parameters):

_] RTEDeviceh* |] cameraDemo.c v X '
Bpand Al | Collapse Al | Help I~ Show Grd
Option Value
@ -USARTL (Univers ynchronous receiver trans... 7 =
+ J nchronous receiver trans... ,_
®--USART3 (Univ r
& -UART4 (Unive tter) [Driver... [T
& UARTS giver transmitter) [Driver... ™
& USART6 r
®--UART7 r
@ UARTS (Unive 5 er tr) [Driver... T
12C1_SCL Pin PB8
[2C1_SDA Pin PB9
= DMA Rx @ -
Number 1
Stream 0
Channel
Priority Low
= DMA Tx @
Number 1
Stream 6
Channel 1
Priority Low j
12C1 (Inter-integrated Circuit Interface 1) [Driver_[2C1]
Configuration settings for Driver_12C1 in component ::CMSIS Driver2C
W/\Conﬁguraﬁon Wizard /

7. Build the project, then download and run the program.

As the camera is another 12C peripheral and the driver (APl) named Camera_OVM7690.c
provided by ARM is structured in a similar way to that for the touchscreen and audio codec, the
array named Camera RegInit [] stores a number of addresses and value pairs that are
written by the function named Camera Initialize (). The camera used on the evaluation
board is an OVM7690 part manufactured by OmniVision (http://www.ovt .com). The camera
resolution is 640 x 480 pixels and operates at up to 30 frames per second (fps). We need to
access OmniVision's OVM7690 Software Application Note in order to understand the code used
to initialize the camera, but currently, these documents are company-confidential and protected
by Non-Disclosure Agreements (NDAs). The camera is aimed at mobile phone, notebook, and
automotive applications and includes a number of programmable controls for image-processing
functions, such as exposure, gamma, white balance, hue, and so on. Camera_Initialize ()
also configures a DMA channel to stream data from the camera to SDRAM, so it needs to be
provided with the base address of a memory segment. This address is defined by the GLCD (API)
and acquired by the GLCD FrameBufferAddress () function.

186

Chapter 6

A demo project that exercises many of the features of the MCBSTM32F400 evaluation board
can be downloaded by the pack installer with the Device Family Pack (currently the version is
DFP 2.6.0). As the demo program displays icons on the GLCD that are encoded as bitmaps,
the executable image for the program exceeds the limit imposed by the evaluation version of
the uVision IDE. This code is read-only, but it has been precompiled so that the project can be
downloaded and run on the board.

The main function declared in the demo.c file implements a finite-state machine (FSM) that
determines the operating mode of the program. An integer variable named mode is assigned a
value of 0, 1, 2, or 3 depending on the mode that was selected. These modes are mapped to
theM INIT,M_STD,M MOTION, and M_CAM literals by the enumerated type definition:

/* Mode definitions */
enum {

M_INIT = O,
M _STD,

M_MOTION,

M_CAM,

}i

The mode variable is assigned by the function called SwitchMode () that takes an input
argument that identifies the current state (that is, O, 1, 2, and 3) and returns the next state.
For example, the first call to SwitchMode () is made when the current state isM_INIT:

mode = SwitchMode (M _INIT) ;
A switch statement in main () determines different behaviors for each mode, as follows:

switch (mode) {
case M _STD:

break;
case M_MOTION:

break;
case M_CAM:

break;

default:

mode = SwitchMode (mode) ;
break;

}

187

Multimedia Support

This behavior is better described by a state diagram (shown as follows). This diagram is a
graph where states are identified by vertices and the permitted transitions between states by
edges. The edges are labeled with events that give rise to the changes of state.

—

WAKELIP

RESET

WAKEUP
WAKEUP

l WAKEUP l

The Demo project is a very useful resource as it provides example code for many of the
evaluation board functions. The #include statements at the start of the main source file
provide some insight into what is available:

=1 B3

Acceleration [g)

X:
Y:

Angular rate [d/s]

Rt - . .

X:
Y-
z.

188

Chapter 6

Designing bitmapped graphics

User interfaces and games can be made much more interesting using color graphics. The GLCD
library includes a function called GLCD_DrawBitmap () that can be used to render 16-bit color
bitmaps. Bitmaps can be designed using standard editors or downloaded from elsewhere. The
following recipe shows you how to generate a simple bitmapped representation of a ball that can
be used with the helloBounce and helloPong recipes we developed in Chapter 2, C Language
Programming. We'll call this recipe bitmapBounce c6voO.

How to do it...

To design bitmapped graphics, follow these instructions:

1. Create a color bitmap of width 16 pixels and height 24 pixels using the Windows Paint
application. A screenshot of what this should look like is displayed, as follows:

| Untitled - Paint - SRS
E
_‘{ \,.{ _[" Ru.ler-s ;,jJ

+f| Gridlines
Zoom Zoom 100 Full Thumbnail
in out % J| Status bar | sereen
Zoom Show or hide Display

|-_-: |

800% (=) J ®

2. Save the ball icon as a standard 24-bit bitmap, with the filename as ball .bmp.

189

Multimedia Support

3. Use GIMP (http://www.gimp.org) to convert the 24-bit-per-pixel bitmap to a
16-bit-per-pixel format and store the pixel values in an array. First install GIMP and

open the ball.bmp file.

@ [ball] (imported)-1.0 (Indexed color, 1 layer) 16x24 — Gimpl SR -

Eile Edit

|=E|| [-209 o [359 ¢ o |00 o 180 o Oy o 159, 1600, 150, [390,

Select Miew Image Layer Colors Tools Filters Windows Help

@
m

1

1 2 1}0

| 1-33%E| ball.bmp (217 kB) |

b=

4. Export the image as a C source file in 16-bit format using the GIMP export sub-menu.
This creates the C source file (in this case, named ball 16bit.c).

& Export Image as C-Source @

Prefixed name: gimp_image

Comment:

Save comment to file

Use macros instead of struct

Use 1 byte Run-Length-Encoding

Save alpha channel (RGBA/RGE)
V| Save as RGB565 (16-bit)

Opacity: [] 1000 =

Help | [Export l | Cancel |

5. Clone the folder named helloBounce c2v0 from the Creating a game application
- Stage 1 recipe that we introduced in Chapter 2, C Language Programming, and cut
and paste the contents of the ball 16bit.c file into helloBounce. ¢, as follows:

/* GIMP RGB C-Source image dump (ball 16bit.c) */

static const struct {

unsigned int
unsigned int
unsigned int

width;
height;
bytes per pixel; /* 2:RGB16 3:RGB 4:RGBA */

190

Chapter 6

unsigned char pixel datallée * 24 * 2 + 1];
} gimp image = {
le, 24, 2,
"\377\377\377\377\377\377\... etc.
}
Delete the extern GLCD_FONT GLCD_Font_16x24; declaration:

7. Search for the following references:

GLCD Font 16x24.width
GLCD_Font_ 16x24.height

Replace these reference with the following ones:

gimp image.width

gimp image.height
8. Delete the call to GLCD_SetFont (&GLCD Font 16x24) ;.
9. Search for the following statement:

GLCD DrawChar (x, y, 0x81);

Replace this statement with the following one:

GLCD DrawBitmap (x, y, gimp image.width,
gimp image.height, gimp image.pixel data);

10. Rebuild, download, and run the program.

The ball used in the original recipes in Chapter 2, C Language Programming, is rendered using
the filled circle character, which is one of a number of binary character bitmaps defined in

a file named GLCD_Fonts. c. We're now using the GLCD_Bitmap () function to render the

ball rather than GLCD_DrawChar () . This function expects a pointer to a 16-bpp bitmap. The
bitmap data is provided by GIMP. The escape sequences \377\377\377, and so on, represent
characters in the string encoded in octal. Therefore, 3778 = 111111112 and two bytes encode
each 16-bit pixel, so 16-bit bitmaps can represent 65,536 colors. If the alpha channel is omitted
(as in our case), then RGB channels are encoded by 5, 6, and 5-bits, respectively.

191

Multimedia Support

The pixel data field of gimp image comprises 16 x 24 x 2 + 1 = 769 bytes. If we store larger
images in this way, our executable code image will quickly exceed the maximum allowed under
the terms of our free MDK license. However, after examining the values in the array, we can
see that many of the values are repeated, and this suggests that there may be a more efficient
way of storing the pixel values. Run-length encoding (RLE) is a lossless compression algorithm
that exploits the fact that there are often many repeated values in a bitmap (that is, adjacent
pixels are often the same color). There are many variations of run length encoding, and a good
introduction to the topic is given by Arturo Campos (http://www.arturocampos.com/ac_
rle.html). We can export a run length encoded-version of our 16-bit BMP using GIMP.

& Export Image as C-Source

Prefixed name: gimp_image
Comment:
[] Save comment to file
[] Use GLib types (guint8*)
Use macros instead of struct
OU-:-E 1 byte Run-Length-Encoding
Save alpha channel (RGBA/RGB)
@

Opacity: [] 1000 -

[Help H Export H Cancel]

GIMP adopts a run length encoding format known as PackBits, which was originally
developed by Apple. A data stream encoded by PackBits comprises a series of packets. Each
packet consists of a one byte header followed by data. The header byte (n) is interpreted as

a signed value (8-bit 2's complement) and the data. A positive value (n) indicates that the n
data elements that follow should be interpreted as literal values, and a negative value implies
that the single data element that follows should be repeated n times. The data structure
(produced by GIMP) with run length encoded data representing the pixel values exported from
the ball.bmp file is as follows:

/* GIMP RGB C-Source image dump l-byte-run-length-encoded
(ball 16-bit _rle.c) */

static const struct ({

unsigned int width;

unsigned int height;

192

Chapter 6

unsigned int bytes per pixel; /* 2:RGB16 3:RGB 4:RGBA */
unsigned char rle pixel data[390 + 1];
} gimp image = {
le6, 24, 2,
"\325\377\377\5\377\377\ ... etc.

}

The run length encoded image comprises just 391 bytes (approximately 50% compression).To
render the encoded bitmap, we'll need to define a version of GLCD_Bitmap () that unpacks
the data before writing it to the GLCD:

int32 t GLCD RLE Bitmap (uint32 t x, uint32 t y, uint32 t width,
uint32 t height, const uint8 t *bitmap) ({

int32 t npix = width * height;
int32 t i=0, j;

uintlé t *ptr bmp;

uint8 t count;

#if (GLCD_SWAP_XY == 0)
y = (y + Scroll) % GLCD HEIGHT;
#endif

GLCD_SetWindow (x, y, width, height);

wr_cmd (0x22) ;
wr_dat start () ;

while (i<npix)
count = *bitmap++;
ptr bmp = (unsigned short *) bitmap;

if (count >= 128) {
count = count-128;
for (j = 0; j<count; j++) { /* repeated pixels */
wr_dat only (*ptr bmp) ;
}
bitmap+=2; /* adjust the pointer */
}
else {
for (j=0; j<count; j++)
wr dat_only(ptr bmp[j]);
bitmap+= (count*2); /* adjust the pointer */
}
i+=count;
} /* while */

wr_dat_stop() ;
return 0;

193

Multimedia Support

As the library source file, GLCD_MCBSTM32F400.c, is read-only, we'll need to add the GLCD_
RLE Bitmap () function to a local copy (named GLCD_MCBSTM32F400_ plus.c). We'll

also need to add a local copy of Board GLCD.h (Board GLCD_plus.h)that includes the
function prototype, GLCD_RLE_Bitmap (). Remember to modify the conditional preprocessor
statement, as follows:

#ifndef _ BOARD GLCD PLUS H
#define _ BOARD GLCD PLUS H

Include a modified version of the header in rle bounce.c and GLCD_MCBSTM32F400_
plus.c. We've named this recipe that uses run length encoding rleBounce c6vO0.

Ideas for games using sound and graphics

The scope to develop games for the MCBSTM32F400 evaluation board is unlimited; however,
the restricted memory image imposed by the evaluation version of the MDK constrains their
complexity and the size of bitmaps that can be used (we address this issue in Chapter 9,
Embedded Toolchain). A number of general introductory texts on game development can
inspire new ideas. While we used the topic of generating audio mainly to introduce the audio
codeg, it is a topic in its own right and those who wish to create a really professional gaming
experience should refer to the book, The essential guide to game audio: The theory and
practice of sound for games (http://www.taylorandfrancis.com/books). Screenshots
of a few examples of games developed by students studying embedded systems are shown in
the following screenshot:

Sco -00 Lives=1
® Collect for Points o —

@ Avoid
erse Joystick

& Double Points

Tap Screen to Start

Space Invaders Score:0 Lives:5
o=

Easy

. Teeesnenw
-‘ Medi um | - m—eeeeeee
-

Hard

Instructions alaBlalal
e !

The board lends itself to single-player games but two-player scenarios can be accommodated
by designing an Artificial Intelligence (Al) opponent. Two (human) players can compete either
by taking turns or linking two boards together using the RS232 COM port.

194

Real-Time Signal
Processing

In this chapter, we will cover the following topics:

» Configuring the audio codec

» How to play prerecorded audio

» Designing a low-pass digital filter

» How to make an audio tone control

Introduction

In the last chapter, we used the audio codec's beep generator to play a tune, but if you
looked at the codec manufacturer's data sheet, you must have noticed that the device can
do much more. Audio signals can be recorded by connecting a microphone to the evaluation
board's stereo analog audio input, and the signal can be sampled using the audio codec's
on-chip ADC. Digital audio can be played by sending digital samples to the codec, and the left
and right speakers can be driven by the output of an on-chip DAC. A dedicated digital serial
audio interface using a protocol called 12S (12S, or 1IS) conveys digital samples between the
microcontroller and audio codec. Inter-IC-Sound (12S) or Integrated Interchip Sound (lIS) is

a serial bus interface standard developed by Phillips Semiconductors in 1986 (revised 1996)
that is used to connect digital audio devices together. This specification is widely available
online (for example, www . cypress . com). Unfortunately, the STM32F400 evaluation board
only supports a half-duplex channel, so audio cannot be recorded and played simultaneously.

Connecting a powerful microcontroller (that is, the computer) and codec together brings
the prospect of Digital Signal Processing (DSP). DSP applications manipulate digital audio
samples to create digital filters and other amazing audio effects.

Real-Time Signal Processing

Configuring the audio codec

The STM32F400 evaluation board schematic (http://www.keil.com) shows that a Cirrus
Logic CS42152 codec IC (http://www.cirrus.com)is used, and the I12S bus signals are
driven by GPIO port | bits 0, 1, and 3. SDIN and SDOUT are wired together, so the I2S interface
must be operated half-duplex. In addition to managing the 12S interface, the microcontroller
must also source a Master Clock (MCLK), which clocks the codec's delta-sigma modulators
(Note that we described a function to achieve this in Chapter 6, Multimedia Support). A block
diagram that summarizes the I12S interface connection is shown, as follows:

GPIOCE MCLE
-
GPIOIG SCLK
STM32FA0730 >
Microcontroller Sl LRCK .- C5-1I2L52 C:.:IdEl:
{MASTER] GPIOIS SN > |SLAVE]

SO0

:

The codec also uses MCLK to power an inverter, which supplies a higher DC voltage to support
analog parts of the codec. The codec data sheet explains that MCLK should be instantiated
and the codec's registers must be configured while the device is powered down and the power
up/down sequence outlined in the data sheet must be carefully followed to ensure the codec
operates correctly.

The 12S specification identifies master and slave roles. An 12S bus must include one

master (to source SCLK and LRCK), and it may include more than one slave. Normally, the
microcontroller is configured as master, and as SDIN and SDOUT are connected together
(externally), SDOUT must be switched to a high-impedance (HI-Z) state before SDIN is driven.
If we refer to the following table the only option that allows for SDOUT to be HI-Z is to configure
the codec as slave:

3ST_SP Serial port status
Slave mode Master mode

0 This is when serial port clocks are This is when serial port clocks and SDOUT
inputs, and SDOUT is output. are outputs.

1 This is when serial port clocks are This is when serial port clocks and SDOUT
inputs, and SDOUT is HI-Z. are HI-Z.

The microcontroller's Serial Peripheral Interface (SPI) and 12S interface is described in
section 28 of STM's RMO090 Reference Manual (http://www. st .com). The following
recipe, codecbDemo_c7v0, describes how to configure the codec and output a continuous
audio tone.

196

Chapter 7

How to do it...

1.

2.

Clone codecDemo_c6v0 from the Writing a driver for the audio codec recipe in
Chapter 6, Multimedia Support to a new folder named codecDemo_c7vO0.

Configure the Runtime Environment, as we did for the folder, codecDemo_c6v0 from
the Writing a driver for the audio codec recipe in Chapter 6, Multimedia Support, and
add support for Device — STM32Cube HAL — 128, as follows:

Manage Run-Time Environment —
Software Component Sel. Variant Version Description
ER JstvaCubera | TM32F 4o Hardware Abstraction Layer (HAL) Driver -

¥ ADC I 140 Anslog-to-digital converter (ADC) HAL driver
¥ CaN r 140 Controller area network (CAN) HAL driver
¥ CRC E 140 CRC calculation unit (CRC) HAL driver
¥ Common ~ 140 Common HAL driver
¥ Cortex I 140 Cortex HAL driver
@ DaC r 140 Digital-te-analog converter (DAC) HAL driver
¥ DCMI r 140 Digital camera interface (DCMI) HAL drver
¥ DMA e 140 DA controller (DMA) HAL drriver
ETH E: 140 Ethernet MAC (ETH) HAL driver
@ Flash r 140 Embedded Flash memaory HAL driver
¢ GPIO = 140 General-purpose /0 (GPIO) HAL driver
¥ HCD] 140 USE Host controller (HCD) HAL driver
L. o 7 140 Inter-integrated circutt (2C) interface HAL driver
@ @ 140 RS HAL driver
¥ IRDA 140 DA HAL driver
@ IWDG G 140 Independent watchdeg (TWDG) HAL driver
¥ MNAND] 140 MAMD Flash controller HAL driver

L ¥ NOR | uj 1140 MNOR Flash contreller HAL driver

L ¥ PCCard |] 140 PC Card controller HAL driver

I ¢ PCD = 140 USE Peripheral controller (PCD) HAL driver
@ PWR [140 Power controller (PWR) HAL driver
¥ RCC 5 140 Reset and clock control (RCC) HAL driver I
¥ RNG r 140 Random number generator (RNG) HAL driver
¥ RTC = 140 Real-time clock (RTC) HAL driver
¢ 5 r 140 Secure digital (S0) interface HAL driver
¢ 5P 3 140 Serial peripheral interface (SPT) HAL driver
¥ SRAM + 140 SRAM controfler (SRAM) HAL driver
@ Smartcard r 140 Smartcard HAL driver
¥ M r 1440 Timers (TIM] HAL driver j

I
[Resove | [SelectPacks| [Detats [o |
~\‘
Q There is no need to select CMSIS Driver— SPI (API).
3. Use the Configuration Wizard tabs in RTE Device.hand RTX Conf CM.cto

configure 12C and RTX parameters, as we did in the folder, codecDemo_c6v0 from
the Writing a driver for the audio codec recipe in Chapter 6, Multimedia Support.

197

Real-Time Signal Processing

4. Create a new file named 128 _audio.c and add this to the project:

Project 7 (@
=} % Project: codecDemo
-l 367 Targetl
-1 |7 Source Group 1
] codecDemo.c
7] codec C542L52.c
-] 125 audio.c
4] timer.c
+ € Board Support
5 € CMsis
T RTX_CM4.lib (RTOS:Keil RTX)
] RTX_Conf_CM.c
2 4 CMSIS Driver
€ Device

ﬂProjedI@-‘ ks | {} Functions | (), Ten

5. Adda global 12S HandleTypeDef handle structure in the I2S_audio.cfile,
as follows:

/* Global I2S handle structure */
I2S HandleTypeDef hiZ2s;

6. Definethe Set _I2s GPIO Pins () function inthe I2S audio. c file, as follows:

void Set I2S GPIO Pins (void) ({
GPIO InitTypeDef GPIO_ InitStruct;

__GPIOC CLK ENABLE() ;
__GPIOI_CLK ENABLE() ;

/* Configure GPIO pin: PIO,1,3 */
GPIO InitStruct.Pin = GPIO PIN 0 |
GPIO PIN 1 | GPIO PIN 3;
GPIO InitStruct.Mode = GPIO MODE AF PP;
GPIO InitStruct.Pull = GPIO NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED FAST;
GPIO_InitStruct.Alternate = GPIO_AF5_ SPI2;

198

Chapter 7

7.

10.

HAL GPIO Init (GPIOI, &GPIO InitStruct) ;

/* Configure GPIO pin: PCé6 */
GPIO_InitStruct.Pin = GPIO_PIN 6;
GPIO_InitStruct.Mode = GPIO_MODE_AF_ PP;
GPIO_InitStruct.Pull GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED FAST;
GPIO InitStruct.Alternate = GPIO AF5 SPI2;
HAL GPIO_ Init (GPIOC, &GPIO_InitStruct);

}

Define the 128 Audio Initialize () function (skeleton)in the 12S audio.c file:

HAL StatusTypeDef I2S Audio Initialize(void) ({
HAL StatusTypeDef status;

/* Enable the SPIx interface clock. */
/* Configure I2S Pins */

/* Program the Mode, Standard, Data Format,
MCLK Output, Audio frequency and Polarity
using HAL I2S Init() function. */

}

Add this code to enable the clock in the I2S Audio Initialize () function:
/* Enable the SPIx interface clock. */
RCC->CR |: RCC_CR_PLLI2SON; /* Enable the PLLI2S */

/* Wait till the main PLL is ready */
while ((RCC->CR & RCC CR _PLLI2SRDY) == 0)

{}

___HAL RCC_SPI2 CLK ENABLE() ;

Call set _I2S GPIO Pins(), as follows:

/* Configure I2S Pins */

Set I2S GPIO Pins();

Set the appropriate fields of the global I12S_HandleTypeDef handle structure and
call HAL I2S Init():

/* Program the Mode, Standard, Data Format,
MCLK Output, Audio frequency and Polarity
using HAL I2S Init() function. */

hi2s.Instance = SPI2;
hi2s.State = HAL I2S STATE RESET;

199

Real-Time Signal Processing

11.

12.

13.

200

hi2s.Init.Mode = I2S MODE MASTER TX;
hi2s.Init.Standard = I2S STANDARD MSB;
hi2s.Init.DataFormat = I2S DATAFORMAT 16B;
hi2s.Init.MCLKOutput I2S MCLKOUTPUT_ENABLE;
hi2s.Init.AudioFreq = I2S AUDIOFREQ 22K;
hi2s.Init.CPOL = I2S CPOL LOW;

hi2s.Init.ClockSource = I2S CLOCK PLL ;
hi2s.Init.FullDuplexMode = I2S FULLDUPLEXMODE DISABLE;

status = HAL I2S Init (&hi2s);

Add the #include files to the I2S_audio. c file:

#include "codec CS42L52.h"
#include "stm32f4xx hal.h"
#include "I2S audio.h"
#include "stm32f4xx hal i2s.h"

Open the codec_45L52. c file and add an array of register or value pairs to configure
the codec for sampled audio:

REG_VAL CODEC_AudiO_I2S_Slave[] ={
/****

*Configure I2S Interface as Slave, 16bits
******/

{Ccs42L52 IFACE CTL1, 0x03},

/* SDOUT is HI-Z */

{Ccs42L52 IFACE CTL2, 0x10},

/* Speaker Vol B=A, MONO */
{cs42152 PB CTL2, O0xO0A},

/* Set master vol for A/B */

{Ccs42L52 MASTERA VOL, 0xCO},

/* Ignore jpr setting (speaker always ON) */
{Ccs42L52 PWRCTL3, OxAA}

Vi
Modify the function named configureCodec () so that we can select an
appropriate setup, depending on an input argument named mode:

static void configureCodec (codecMode mode) {
uint32 t i;

Codec Write (0x02, 0x01); /* Keep Codec Power-down */
delay ms(10); /* Wait 10ms */

for (i = 0; 1 < ARR_SZ(CODEC_Config Init); i++)
Codec_Write (CODEC Config Init[i] .Addr,

Chapter 7

CODEC Config Init[i].Val);

if (mode == AUDIO BEEP)
for (i = 0; 1 < ARR _SZ(CODEC_Config Beep); i++)
Codec_Write (CODEC_Config Beep[i] .Addr,
CODEC Config Beepl[i].Val) ;
else
if (mode == AUDIO SAMPLED)
for (i = 0; i < ARR SZ(CODEC Audio I2S Slave); i++)
Codec_Write (CODEC_Audio I2S Slave[i] .Addr,
CODEC_Audio I2S Slave[i].Val);

}

14. Use mode to manage calls to configureCodec () and genMCLK () in the
codecInitialize () function:

/* Configure CODEC */
configureCodec (mode) ;

/* Configure I2S */

if (mode == AUDIO SAMPLED)
status = I2S Audio Initialize();
else
if (mode == AUDIO BEEP)
genMCLK () ;

15. Define mode in codec_42L52.h, as follows:

typedef enum {
AUDIO_BEEP,
AUDIO_SAMPLED
} codecMode;

16. Open the codecDemo. c file and add the following;:

#include "I2S audio.h"
#include "stm32f4xx hal i2s.h"

/* Timeout value fixed to 100 ms */
#define I28 TX TIMEOUT VALUE ((uint32 t)100)
/* Macro to calculate array size */
#define ARR SZ(x) (sizeof (x) / sizeof (x[0]))

/* Global External Vars */

extern I2S HandleTypeDef hi2s;

201

Real-Time Signal Processing

17. Add a global const array of audio samples to the codecDemo. c file:

/* 20 left+right channel samples @ 22kHz ~= 1.4 kHz. */
const intlé_t dacLUT [] = {
0, 0, 9830, 9830, 19660,
19660, 26214, 26214, 31456, 31456,
32767, 32767, 31456, 31456, 26214,
26214, 19660, 19660, 9830, 9830,
0, 0, -9830, -9830, -19661,
-19661, -26214, -26214, -31457, -31457,
-32768, -32768, -31457, -31457, -26214,
-26214, -19661, -19661, -9830, -9830 };

18. Modify the main () function in the codecDemo. ¢ file. Add and initialize the variable
mode and pass the value to CodecInitialize (), as follows:

int main (void) {
noteInfo note = {G5, 0x02};
codecMode mode = AUDIO SAMPLED;
HAL StatusTypeDef status;

/* Uncomment for BEEP */
//mode = AUDIO_BEEP;

HAL Init();
SystemClock Config() ;
GLCD_Initialize();

status = CodecInitialize (mode) ;
setDisplay();
// etc.

}

19. If required, we can add a function named showCodecI2SInfo () that displays the
status (to debug):

#ifdef _ DEBUG

if (mode == AUDIO_SAMPLED)
showCodecI2SInfo (status) ;
#endif

20. Modify the super loop in main () and call HAL I2S Transmit (), as follows:
while (1) ({

if (mode == AUDIO BEEP) {
Beep (note) ; /* Play the note */
wait delay(500) ; /* pause */

202

Chapter 7

}

else
if (mode == AUDIO_SAMPLED) /* Play a tone */
HAL I2S Transmit (&hi2s, (uintlé t *) dacLUT,
ARR SZ(dacLUT), I2S TX TIMEOUT VALUE) ;
} /* WHILE */

21. Uncomment the mode = AUDIO BEEP; statement. Build and run the program to
confirm that I2C communication with the audio codec is established and the program
performs as codecbDemo_c6v0 from the Writing a driver for the audio codec recipe in
Chapter 6, Multimedia Support.

22. Reinstate the comment. Build, download, and run the code. We should now hear a
shrill tone.

Before powering the codec up (by clearing bit O of the codec's power control 1 register), we
must first ensure that MCLK is established. As we're using the stm32f4xx_hal i2s.h HAL
library to manage the 12S low-level interface, we can take advantage of its ability to generate
MCLK rather than configuring a timer as we did in Chapter 6, Multimedia Support. The 12S bus
and audio codec channels are configured by a function named I12S_Audio_ Initialize(),
which, in turn, is called by CodecInitialize (). The I2S Audio Initialize () function
performs the tasks that are identified in the comment at the start of the stm32f4xx_hal
i2s.c file. This enables the 12S clock, configures the GPIO pins, sets GPIO for 12S Alternate
Function (AF), sets the 12S handle struct, and initializes the I12S peripheral (using the HAL
device driver). Referring to STM's reference manual, RMO090 (http://www. st .com), we
can see that the microcontroller has a number of 12C and SPI peripherals, which begs the
question, How do we decide which instance of a peripheral to use? The answer is that, as
we're using an evaluation board, the board's designer already made this choice when they
laid out the PCB. The board schematic (http://www.keil.com) shows that port pins
GPIOB 8 and 9 are used by the 12C interface. Table 9 (Alternate Function Mapping) of the
STM32F405xx and STM32F407xx Datasheets (DoclD022152 Rev 6) shows that Port B Pins
8 and 9 are used by the AF2/3/4/5/9/11/13/15 alternate functions and AF5 connects
instance I12C1. Similarly, the codec connections shown on the schematic and the Alternate
Function Mapping (Table 9) mean we must use SPI2 as the I2S peripheral.

Information on sourcing the I12S clock can be found by referring to the clock tree in RMO090
Reference Manual (Doc ID 018909 Rev 6), Figure 21. If the 12S Phase Locked Loop (I2SPLL)
is not running or an external 12S clock is not sourced, then we must enable the I2SPLL
function, I2S_Audio Initialize():

RCC->CR |= RCC_CR PLLI2SON; /* Enable the PLLI2S */
/* Wait till the main PLL is ready */
while ((RCC->CR & RCC_CR PLLI2SRDY) == 0) { }

203

Real-Time Signal Processing

As the SPI2 peripheral uses the APB1Periph clock, we also include the following:
__HAL RCC_SPI2 CLK ENABLE() ;

Configuring the GPIO pins and connecting the SPI2 AF is relatively straightforward; for
example, we use GPIO_Initialize () as we did in earlier recipes. Note that we also need
GPIO C Pin6 to source MCLK.

The final step is to initialize the 12S handle struct (defined in stm32f4xx hal i2s.h) with
default values. A pointer to this structure is passed to the function named HAL I2S Init ()
that performs the low-level initialization. An important task within HAL. _I2S Init () is for the
I2SPLL clock divider to give the desired I12S SCLK frequency.

The function used to initialize the codec named CodecInitialize () is very similarto
the one that was presented in codecDemo_c6v0 in the Writing a driver for the audio codec
recipe in Chapter 6, Multimedia Support, but we've added some extra statements to allow this
function to be used for either BEEP or SAMPLED audio. Similarly, conf igureCodec () also
selects the appropriate setup.

The main () function super loop uses the function, HAL I2S Transmit (), to output audio
samples representing a sinusoid. We can reuse the Look-up-table (LUT) that was introduced
in dacSinusoid_c5v0 from the Generating a sine wave recipe in Chapter 5, Data
Conversion to represent the sampled sinusoid. However, as the 12S serial interface supports
16-bit signed samples, we'll need to convert the LUT to this format.

The 12S interface standard supports two (stereo) channels, and although we're operating the
codec in mono (that is, channel A=B), we still need to transmit left and right samples, so each
sample is repeated in the LUT array.

We've described the audio initialization in some detail and seem to have done a lot of work to
produce very little so far, but judging from the number of posts on associated microcontroller
internet forums, many novice embedded-system programmers have difficulty with this topic.
Many developers use source code published by STM for their evaluation boards as a starting
point, but they all tend to use different codec/microcontroller combinations, so reusing the
code isn't always straightforward.

There's more...

Having generated a 'note', the question, what frequency?, arises. The 12S standard (Phillips
Semiconductors, 1986) can help us answer this. The timing diagram depicted as follows
illustrates an 12S data transmission:

204

Chapter 7

\\

i
7/
— . .
(s X Y N v X X . X X
D S = A
7

|
|
LEFT CHANNEL I RIGHT CHANNEL
|
I

BOIN X Lse
/

RIGHT CHANMNEL

P, - S <

As the sinusoid is described by 20 samples and a sample frequency of 22 kHz (Fs), the
period will be 20 x 10"(-3)960.909 ms, that is, a frequency of approximately 1.2 kHz. We can
confirm this by connecting an oscilloscope to the audio jack.

Currently, the main super loop only comprises one function call. We must be mindful that
adding further statements in the loop may result in the I12S transmit register being starved.

How to play prerecorded audio

This recipe demonstrates how to play audio clips downloaded from the Internet globally. When
you search for digital audio, you will encounter two common digital audio formats: Waveform
Audio File Format (WAVE or WAV) and MPEG-1, MPEG-2 Audio Layer lll Format (MP3). This
recipe focuses on playing WAV-encoded audio clips. The STM3241G-EVAL and STM32F4-
DISCOVERY evaluation boards both include an MP3 player demo that can be ported to other
systems. This recipe illustrates a skeleton that could form the basis for a similar application
on the MCBSTM32F400 evaluation board. We'll call this recipe codecDemo_c7v1.

205

Real-Time Signal Processing

Getting ready

The easiest way to import WAV audio samples into our program is to convert them into C
source code (in the same way that images were imported in Chapter 6, Multimedia Support).
A number of programs to manipulate WAV files and write samples to a C source file are
available. This recipe uses a free converter by Colin Seymour called WAVtoCode that supports
a number of WAV file formats. The following screenshot shows the conversion program being
used (note that this program also includes a mixing desk):

WAVToCode: 0_
File Tools Help
Original

Mix

Mix

The program exports samples in 8/16 mono/stereo formats, as follows:

1. Download a 1-kHz WAV test signal sampled at 96 kHz (that is, Fs = 96 kHz) (http://
www . rme-audio.com). Play the test signal using the converter, then select 16-bit
Mix to Mono from the Tools menu, and save as signed 16-bit C Code. A sample of
the output is as follows:

BYTE data[NUM_ELEMENTS] = {
-23417, -21874, -20238, -18517, -16716, -14844,
-12909, -10920, -8885, -6811, -4709, -2586,
-452, 1683, 3812, 5923, 8010, 10063,
12073, 14033, 15931, 17763, 19519, 21193,
22775, 24261, 25645, 26919, 28078, 29119,
30037, 30825, 31483, 32008, 32397, 32648,
32760, 32733, 32567, 32262, 31821, 31244,
30535, 29696, 28730, 27642, 26438, 25121,
23696, 22171, 20553, 18847, 17060, 15201,
13279, 11299,...

More exciting audio clips are available!

206

Chapter 7

Examine the output to confirm that the sinusoidal cycle repeats approximately every
96 samples (that is, approximately half a cycle is shown previously) giving a frequency
of 1 kHz. Note: the size of the global array needed to store the samples exceeds the
limit imposed by an unlicensed copy of uVision 5. Chapter 9, Embedded Toolchain,
offers some open source compiler options that can be adopted to solve this problem.

How to do it...

Follow the outlined steps to play prerecorded audio:

1.

Clone codecDemo_c7v0 from the Configuring the audio codec recipe that we
described earlier in this chapter.

Store the test signal samples in a simple global array (note that the samples are
duplicated for left and right channels), as follows:

int16_t data [] = {
-23417, -23417, -21874, -21874, -20238, -20238,
-18517, -18517, -16716, -16716, -14844, -14844,
-12909, -12909, -10920, -10920, etc...

}i

Open I2S_audio.c and change the sample frequency defined in the 125 Audio
Initialize () function to match that of the WAV file:

hi2s.Init.AudioFreq = I2S_AUDIOFREQ 96K;

Add a statementin I2S Audio Initialize () to enable interrupts:
NVIC EnableIRQ(SPI2 IRQn);

Include the following Interrupt Service Routine (ISR) in the codecDemo. c file:
void SPI2 IRQHandler (void) {

HAL I2S IRQHandler (&hi2s) ;

}

Include a transfer complete callback in the codecDemo. c file (that is, overriding this
in stm32f4xx _hal i2s.c):

void HAL I2S TxCpltCallback(I2S HandleTypeDef *hi2s) ({
HAL I2S Transmit IT(hi2s, (uintlé t *) dacLUT,
ARR_SZ(dacLUT)) ;

207

Real-Time Signal Processing

7. Modify the main () function so that it calls the HAL._I2S Transmit_ IT () function
before entering the super loop (note that there is nothing left to do in the super loop
as the interrupt service routine takes care of everything):

HAL I2S Transmit IT(&hi2s, (uintlé t *) dacLUT,
ARR_SZ(dacLUT)) ;
while (1) ({

if (mode == AUDIO BEEP) {
Beep (note) ; /* Play the note */
wait delay (500) ; /* pause */

}

} /* WHILE */

8. Build, download, and run the program.

The HAL_I2S Transmit () function that we deployed in codecDemo_c7v0 from the
Configuring the audio codec recipe sends a block of audio samples to the codec. This function
operates in polling mode to establish when the I12S transmit data register is empty, and it
spins (busy waiting) on the codec's status register to determine when successive samples are
needed. Unfortunately, while the processor is doing this, it can't perform much useful work.

To address this problem, this recipe uses the HAL_ I2S Transmit IT () library function to
set the 12S interface to generate an interrupt when the 12S transmit data register is empty. It
also keeps count of the number of samples that are transmitted and calls a function named
HAL_I2S_ TxCpltCallback () when the last audio sample in the block has been sent.

Prior to calling HAL. I2S TxCpltCallback (), we need to enable interrupts (step 4),
provide an interrupt service routine (step 5), and override the HAL_I2S TxCpltCallback ()
function (step 6).

As the audio channel is essentially managed by the ISR, there isn't anything for the main ()
function to do!

Designing a low-pass digital filter

Joseph Fourier discovered that a complex signal could be described by a sum of sinusoids
that is known as a Fourier series, and applying this idea enables us to visualize a signal
frequency spectrum. A spectrum analyzer is a device that allows the frequency content of a
signal to be displayed and measurements to be made. Two parameters, known as magnitude
(amplitude) and phase, describe a sinusoidal signal. The magnitude spectrum describes the
amplitude of each sinusoidal component that is summed, and the phase spectrum describes
its associated phase. Often, we ignore the phase information and focus on the magnitude
spectrum, but for some applications, particularly those that involve feedback, the phase of the
signal is very important.

208

Chapter 7

The magnitude spectrum of a pure 10 kHz sinusoidal signal is illustrated in the following
diagram (the left panel) and that of a sampled version of the signal (the right panel):

A A

pmplitude (dB) Amplitude [dB]

Y

_/ |

o |- 0 —_
™

|

|
I

|

L I

Law Pass Filter [Fc = Fs/'2)

10.0 Frequency (kHz) 10.0 F5/f2 86,0 96.0 1060 Frequency {kHz)

sampling Frequency [Fs)

(a} {b)

When we sample a signal, the steps in the digitized waveform (illustrated in Chapter 5, Data
Conversion) introduce significant frequency components at higher frequencies. These appear
as sidebands that are symmetrically displaced around integer multiples of the sampling
frequency (Fs). As we saw in Chapter 5, Data Conversion, an analogue low-pass filter
connected across the output of the D-A converter removes these harmonics and leaves the
pure sinusoid.

The aim of digital filtering is to simulate the effect of analogue filters by writing a program that
manipulates the digital signal samples. A digital filter is a function that accepts signhal samples
as inputs and returns samples that represent the processed signal in real time. In this case,
real time implies that, if the input samples cannot be processed so as to produce output
samples in a time frame 1/Fs, then the filter will fail.

We can only hope to provide an introduction to digital filters in this short chapter, and so we'll
skip the preliminaries that are needed to gain a deeper understanding of this topic. Those
motivated to find out more should consult an introductory text book.

209

Real-Time Signal Processing

Getting ready

The structure of a simple Finite Impulse Response (FIR) digital filter is shown next. It's called
FIR because the output of the y (n) filter is only produced from input samples. FIR filters are
inherently stable, but they cannot be implemented as efficiently as another class of digital
filter, known as Infinite Impulse Response (lIR) filters. In IR filters, the y(n) output is fed
back and reused as another filter input. Potentially, this technique can produce instability,
but this can be eliminated with careful design. We'll restrict ourselves to FIR designs here. In
the following diagram, the block labeled T represents a time delay that is equal to the sample
period, 1/Fs. So, in this case, the y(n) output is formed by the (equally-weighted) average of
the current sample, x(n), and four previous input samples: x(n-1), x(n-2), x(n-3), and x(n-4):

wlin) x[n-1] un-2) #n-3) w[n-4)

i)

The output of a digital filter can be computed by a mathematical operation called discrete
convolution and can be described mathematically, as follows:

n

y(n) = Z x(n)h(n — k)

k=0

Here x(n),y(n) represent the input and output and h(n-k) represents the filter coefficients that
are used to scale the input samples before they are summed. The number of coefficients
used and their values determine the filter characteristic, and methods of calculating these
parameters form the core of digital signal processing texts.

210

Rather than compute the filter weights longhand, which is rather tedious, we'll use a

Chapter 7

mathematical prototyping language called MATLAB to calculate them for us. Readers who do
not have access to MATLAB could compute the filter coefficients using one of the techniques
described in a digital signal processing text. Alternatively, there are a number of open source
environments that are similar to MATLAB, such as GNU Octave, Sage, Scilab, and FreeMAT.

The MATLAB script to design the filter is presented, as follows:

o\°

©0000000000000000000000000000000000029
6000000000000 0000000000000000000000600

Mark.Fisher@uea.ac.uk

o° o° o° o° o° o°

set filter parameters

[oR

% design filter
Hd=design(d, 'FIR') ;
% plot fiter respose

fvtool (Hd, 'legend', 'on'); axis ([0 22 -70 10])

MATLAB Script to generate low pass filter coefficie

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\
o\°
o°

= fdesign.lowpass('Fp,Fst,Ap,Ast',1000,2000,1,20,22000) ;

The MATLAB script computes coefficients for a FIR filter having a pass band from < 1 kHz and
a stop band from > 2 kHz. Attenuation in the pass band is < 1 dB, and in the stop band this
is < 20 dB. The sampling frequency is 22 kHz. The filter's transfer function can be visualized

using MATLAB's fvtool.

[EJE Bd # + [T~ BB k] @ B 9

Figure 1 Magnitude Response (d8)

Magnitude Response (dB)

Filter Visualization Tool - Figure 1: Magnitude Response (dB) A o | (S
Eile Edit Analysis Insert View Debug Deskiop Window Help e x
DSR|L|OTNN\H| @ « & d|EE B o a@)

Magnitude (dB)
o
=

40 B N ea- —

Filter #1

-0 :
0 12 14
Frequency (kHz)

22

211

Real-Time Signal Processing

This frequency response confirms that our design meets the specifications. We can obtain the
filter coefficients by plotting the filter impulse response, as shown in the next screenshot, and
these can also be printed by the following MATLAB command prompt:

>> Hd.Numerator

ans =

Columns 1 through 9

-0.0537 -0.0138 -0.0071 0.0063 0.0259 0.0502 0.0767 0.1021 0.1233
Columns 10 through 18

0.1372 0.1421 0.1372 0.1233 0.1021 0.0767 0.0502 0.0259 0.0063
Columns 19 through 21

-0.0071 -0.0138 -0.0537

Filter Visualization Tool - Figure 1: Impulse Response

File Edit Analysis Inset View Debug Desktop Window Help e x

DESR|HOTNNNY a0 EHE ==]
ARE#+0-BLeRE

Figure 1: Impulse Response

Impulse Response

Amplitude

Time (useconds)

We'll implement this filter on our evaluation board as recipe codecbDemo_c7v2.

212

Chapter 7

How to do it...

1. Clone folder codecDemo_c7v1 in the How to play prerecorded audio recipe. Change
the RTE to include the LED (API).
2. Addthe filter () function to the codecDemo. c file, as follows:
uintlé t filter(intlé t inSmpl) {
/* Normalized Filter Coefficients */
static const float 1lpfiltCoef[] =
{ 0.0, 0.0184, 0.0215, 0.0277, 0.0368, 0.0480,
0.0602, 0.0720, 0.0818, 0.0882, 0.0905, 0.0882,
0.0818, 0.0720, 0.0602, 0.0480, 0.0368, 0.0277,
0.0215, 0.0184, 0.0 };
static float smplBuff[] =

{ 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 },

static uint8_t idx = 0;

float 1pval = 0.0, outVal = 0.0;

uint8 t coefIdx, newldx;

static const float intlémax = (float) INT16_ MAX;

/* update buffer */
newIdx = (nTaps-1-idx) ;
smplBuff [newIdx] = (float) inSmpl;
/* do convolution */
for (coefIdx = 0; coefIdx<nTaps; coefIdx++)

lpval += lpfiltCoef [coefIdx] *

smplBuff [(newIdx+coefIdx) $nTaps] ;

outVal = (intlé_t) (lpval*sFactor * intlémax) ;
idx = (idx+1)%nTaps;

return (uintlé_t) outVal;

}

3. Change the ISR to write samples directly to the 12S data register:
void SPI2 IRQHandler (void) {

if (flag) LED On(0) ;
else

LED Off (0) ;
/* Transmit data */
hi2s.Instance->DR = sample;
flag = true;

213

Real-Time Signal Processing

4. Change the global LUT to hold audio data samples for a square wave (note: we're
only storing data for one channel rather than a pair):

{ o, o, o, o0, 0,

’

0 o, 0, 0, O
i, 1, 1, 1, 1,
1 1 1 1, 1

’

i

5. Delete the HAL _I2S TxCpltCallback () function.

’ ’ ’ ’

Define global variables, as follows:

uintlé t sample = 0;
bool flag = false;

7. Inmain(), remove the call to HAL_I2S Transmit_IT () and replace this with
the following:

/* Enable I2S peripheral */
__HAL_I2S ENABLE (&hi2s) ;

na e nterrupts
/* Enable I2S Int ts */
__HAL_I2S ENABLE IT(&hi2s, (I2S_IT TXE | I2S IT ERR));

8. CallLED Initialize() inmain() and remember to add #include "Board
LED.h".

9. Add the code for the appropriate call to filter () within the super loop (note that,
as the left and right channels carry the same signal, we only need to filter one):
while (1) {
if (mode == AUDIO BEEP) ({
Beep (note) ; /* Play the note */
wait delay(500) ; /* pause */
}
else {
if (flag) {
rightSmpl = 1%2;
if (!rightSmpl) /* run filter */
sample = filter(datali>>1]);

%= (sz<<l); /* MOD 2%*sz */
flag = false;

}

10. Build, download, and run the program.

214

Chapter 7

At the heart of the filter function is a mathematical operation known as convolution. This
operation forms the sum of the current and previous 20 samples (that is, 21 in total), each

of them is multiplied by a filter coefficient (weight). This is computationally demanding, and
we're lucky that the ARM Cortex-M4 includes a floating point unit. This unit can perform single
precision multiplications in three cycles (that is, ~18ns) plus the time needed for memory
access. The most recent 21 input samples are stored in an array that is configured to operate
as a circular buffer. A variable named newIdx identifies the oldest sample in the array and this
sample is overwritten when a new sample becomes available. As it is critical that each sample
is processed before it is written to the I12S transmit register, we clear a global boolean flag once
the filter completes. If the ISR detects the flag set, then we switch an LED on to indicate an
error. As time is critical, we chose to output samples directly to the 12S transmit register rather
than use the HAL _I2S Transmit_ IT() library function. We chose to use a square wave

as our test signal as it contains higher frequency harmonics. Note that the values of the filter
coefficients (given by MATLAB) used in the program have been scaled, so they sum up to 1.0.
We do this to avoid problems due to a possible overflow occurring when we assign the outval
variable. The following screenshot of an oscilloscope trace shows that the filter is recovering
the fundamental frequency component (~1.2kHz) quite nicely with little evidence of distortion:

How to make an audio tone control

For the final recipe of this chapter, we'll make a digital tone control that emulates analogue
circuits found on portable radios, and so on. Simple analogue tone circuits take the form of an
active filter that uses a potentiometer to affect the filter transfer function (that is, emphasizing
low/high frequencies—bass/treble—in the audio signal.

Although this recipe illustrates our filter operating in real time, it isn't the most efficient way
of filtering digital audio. The audio codec includes its own DSP processing block, and this
can be programmed to produce similar results more efficiently. We'll refer to this recipe as
codecDemo_c7v3.

215

Real-Time Signal Processing

Getting ready

The high- and low-pass FIR filter coefficients that we need for this recipe are found using
MATLAB. We've chosen the pass and stop bands that are shown in the following screenshot:

I} Filter Visualization Tool - Figure 3: Magnitude Response (dB) Y - EE |
File Edit Analysis Insert View Debug Desktop Window Help v e x
D&B|KOTNN\ Q&< & I|EE =N =]]

B # = M - Bk e & oo

| Figure 1: Impulse Response | Figure 2: Impulse Response | Figure 3: Magnitude Response (dB) |

Magnitude Response (dB)

-20

Magnitude (dB)

IS
S

50 ---

60 -

Filter #1
—Filter#2 |

70 - i i i
] 2 4 6 § 10 12 14 16 18 20 22

Frequency (kHz)

How to do it...

1. Clone codechemo_c7v2 from the Designing a low-pass digital filter recipe and name
the new folder codecbemo_c7v3.

2. Use the runtime management tool to add board support for the A/D converter. Add
this statement to initialize the A/D converter:

ADC Initialize_and Set_ IRQ() ;

3. Add #include "Custom ADC.h".

4. Include the Custom_ ADC. c file in the project and copy the Custom_ ADC.h file into
the project folder. We developed these in adcISR_c5v0 from the Setting up the ADC
recipe in Chapter 5, Data Conversion.

5. Add high-pass filter coefficients to the £ilter () function, as follows:

static const float hpfiltCoef[] =
{ 0.0511, 0.0540, 0.0524, 0.0533, 0.0528, 0.0517,
0.0493, 0.0450, 0.0363, 0.0 , 0.1000, 0.0637,

216

Chapter 7

6.

10.

0.0550, 0.0507, 0.0483, 0.0472, 0.0467, 0.0476,
0.0460, 0.0489, 0.0 };

Modify the £ilter () function so that the output is formed by a weighted sum of low-
pass and high-pass samples:
for (coefIdx = 0; coefIdx<nTaps; coefIdx++) {
lpval += lpfiltCoef [coefIdx] *
smplBuff [(newIdx+coefIdx) %$nTaps] ;
hpval += hpfiltCoef [coefIdx] *
smplBuff [(newIdx+coefIdx) %$nTaps] ;

}

outVal = (intlé _t) ((lpVal*sFactor +
hpval* ((float)1l.0-sFactor)) * intlémax) ;

Add an ISR to service interrupts from the ADC, as follows:
void ADC_IRQHandler (void) {

ADC3->SR &= ~2; /* Clear EOC interrupt flag */
adcValue = (ADC3->DR)>> 4; /* Get converted value */
ADC3->CR2 |= (1 << 30); /* Start next conversion */

}

Change the main () super loop so that we compute a global scale factor when we're
not filtering the signal, that is, as follows:

if (flag) {

rightSmpl = i1%2;

if (!rightSmpl) /* run filter */
sample = filter(datal[i>>1]);

else /* update scalefactor */
sFactor = ((float) adcvalue) / c;

1++;

i %= (sz<<1); /* MOD 2*gz */

flag = false;

}
Add the following global variables:

int32 t adcValue;
float sFactor = 0.0;
const float ¢ = 255.0;

Build, download, and run the program.

217

Real-Time Signal Processing

The output sample is a weighed sum of the low-pass and unfiltered signal. These weights
depend on the ADC value that, in turn, reflects the position of the potentiometer thumbwheel.
The computation of the scale factor (0.0 < sFactor < 1.0) involves division, and as this is more
time-consuming than the multiply accumulate operation, we choose to do this when we're not
running the filter.

To implement convolution requires the multiplication and addition of real numbers. These
operations are performed by the Floating Point Unit (FPU) of the Cortex-M4. Real numbers
are represented using a floating-point binary format. Early computers used many different
(manufacturer-specific) formats to represent real numbers, but nowadays formats are
standardized. The IEEE 754-2008 standard defines two formats known as IEEE double- and
single-precision. Our programs use the single-precision (32-bit) format by declaring variables
of the £1oat type. Numbers encoded using the double-precision format are declared using
the double (64-bit) type. It is important to understand that the representations of floating-
point numbers approximate the real values that they represent and the rounding errors
introduced can be particularly problematic for DSP applications.

Early 16-bit microprocessors, such as Intel 8086, were unable to carry out arithmetic
operations on floating point numbers without using a floating point library, and users who
didn't purchase the additional 8087 coprocessor were faced with quite poor performance.
However, in the last decade, integrated hardware FPUs have become more common.
Convolutions, at the heart of DSP applications, make repeated use of Multiply-Accumulate
(MAC) operations, and processors aimed at DSP applications, such as the Cortex-M4, include
specific instructions that allow these to be executed very efficiently.

218

Real-Time Embedded
Systems

In this chapter, we will cover the following topics:

» Multithreaded programs using event flags

» Multithreaded programs using mailboxes

» Why ensuring mutual exclusion is important when accessing shared resources
» Why we must use a mutex to access the GLCD

» How to write a multithreaded Pong game

» Debugging programs that use CMSIS-RTOS

Introduction

The title of the last chapter included the phrase, "Real Time". The term, Real Time, is used to
describe a computing system that must meet deadlines. We did not define this term in Chapter
7, Real-Time Signal Processing because, in the context of handling audio samples, an implicit
deadline is the sampling rate. However, you may recall that our ISR illuminated an error LED if
the main super loop did not output the previous sample before a new sample arrived.

The audio application is an example of a soft deadline. It wouldn't be a catastrophe if the
system missed this deadline once or twice; the audio quality would suffer, but this may go
unnoticed. Contrast this with other applications, such as an embedded system used in fly-by-
wire avionic applications, medical equipment, or a nuclear reactor. In these cases, missing a
deadline could be catastrophic and result in death. Deadlines in these cases are known as
hard deadlines and, in order to meet safety standards, designers need to guarantee that the
system meets them. They may even be required to design redundancies to ensure that the
system is robust to the catastrophic failure of a processor.

219

Real-Time Embedded Systems

The last chapter illustrated that, although it is possible to design a simple real-time embedded
system using a super loop, it gets increasingly tricky to ensure that deadlines are met as the
system becomes more complex. An operating system is what is needed, but real-time systems
do not use standard desktop operating systems, such as Windows or Linux, because it is
impossible to guarantee that such systems will meet deadlines. Imagine a scenario where

the pilot was landing an aircraft and the computer avionics system decided that now was a
good time to defragment the hard disk! Instead of this, they use so-called real-time operating
systems (RTOS), which are sometimes referred to as simply an embedded RTOS. Embedded
RTOS are compact because the hardware running an embedded operating system is very
limited in resources, such as RAM and ROM. Unlike a desktop operating system, the embedded
operating system does not load and execute applications. This means that the system is only
able to run a one application that is statically linked as a single executable image.

Operating systems based on the Linux kernel, and known as embedded Linux, are a popular
choice as they are free from license fees. Embedded Linux forms the basis of the Android OS
developed for smart phones and tablets. Many other examples of open source embedded
RTOS exist. Most adopt the Portable Operating System Interface (POSIX) standard that
supports open-standard application programming interfaces (APIs). We've adopted ARM's
RTOS kernel, called RTX, as the RTOS used by examples in this chapter as it's included in the
uVision5 IDE distribution. RTX was originally distributed as a Real-Time Library (RL-ARM™),
designed to solve the real-time and communication challenges of embedded systems that are
based on ARM processor-based microcontroller devices (refer to www.keil.com/product/
brochures/rl-arm_gs.pdf). This library was recently revised and added to the CMSIS
middleware standard and is now known as CMSIS-RTOS. A description of the API can be found
athttps://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html, and advice

on migrating from RL-ARM to CMSIS-RTOS is available here at http://www.keil.com/
appnotes/docs/apnt 264 .asp.

Support for multitasking is a key function of any operating system. Multitasking is a
rudimentary form of parallel processing in which several tasks are run at the same time.
Multitasking doesn't mean that tasks are executed in parallel. On a uniprocessor, there can
be no true simultaneous execution of different tasks. Instead of this, the operating system
switches between them, executing part of one task, then part of another, and so on. To the
user, it appears that all the tasks are executing at the same time. The job of the operating
system is to schedule each task on the CPU. The act of reassigning a CPU from one task to
another one is called a context switch.

220

Chapter 8

Embedded systems are at the heart of many everyday devices, such as smartphones, TVs,
cameras, dishwashers, and so on. The system may comprise many tasks. For example,

the dishwasher may embody a user interface, pump controller, and sensors. It is efficient

to partition the software dealing with these elements into separate tasks. At any time, the
total number of tasks can be divided into two groups: those that can be executed, and those
suspended and waiting for an external event to occur (for example, the water temperature
reaching a specific value or user input). RTOS supports preemptive scheduling, which allows
tasks to be prioritized and can guarantee that some tasks in waiting will be given the CPU
when an external event occurs.

We can illustrate how tasks are executed on the CPU by drawing an execution diagram.
Consider three processes (just another name for tasks): a, b, and ¢ that are executed
periodically with a period of T seconds and have computation time (that is, they must be
allocated on the CPU) of C seconds, as shown in the following table. The tasks are prioritized
so that the task with the shortest period is allocated the highest priority (higher numbers
imply a higher priority):

Process (P) Period (T) Computation Priority
Time (C)
50 12
40 10
c 30 10 3

g]

c

t 10 20 30 40 50
|:| Process Preempted f Process Released (@] Deadline Met
. Process Executing @ Deadline Missed

221

Real-Time Embedded Systems

All the processes are released at t=0. Processes b and ¢ are both meeting their respective
deadlines. Process a gets preempted by b and ¢ and misses its deadline. We can see from the
execution trace that, in this case, the tasks cannot be successfully scheduled.

M We've assumed the context switch takes place instantly and
Q the RTOS consumes no CPU time (in practice, both will incur
some overhead).

Processes may need to share resources, and this raises the question of how they might
communicate. The CMSIS-RTOS API solves both of these problems and more.

Multithreaded programs using event flags

This recipe will illustrate how to use CMSIS-RTOS to make an LED blink. We'll define two tasks
or threads. The job of one task is to switch the LED ON, and the other one is to switch it OFF.
The ON and OFF events are triggered by the tasks sending messages to each other. CMSIS-
RTOS supports a number of intertask-communication strategies; our program uses event
flags. We can illustrate our program using a state diagram, as follows:

o _
¢ LED ON 1> ~

> Y
QQ R /@/B / \ LED OFF
N N

We'll call our first recipe, RTOS_Blinky c8vO0.

222

Chapter 8

How to do it...

Create a new project (in a new folder) named RTOS_Binky and use the Run-Time
Environment manager to select Board Support — LED (API) and CMSIS — Keil RTX as
shown in the following screenshot. As usual, we can select Resolve to fix the warning
messages. Note that this RTE is the same as the one that we introduced in Chapter 2, C
Language Programming.

k] Manage Run-Time Environment . I@
- L]
Software Component Sel. Variant Version Description
=4 Board Support MCBSTM32F400 |z| 100 Keil Development Board MCBSTM32F400 =
=€ MCBSTM3ZF00
¥ A/D Converter r 100 A/D Converter driver for Keil MCBSTM32F400 Development Board
@ Accelerometer r 100 Accelerometer driver for Keil MCBSTM32F400 Development Board
@ Camera r 100 Camera driver for Keil MCBSTM32F400 Development Board
@ Graphic LCD r 100 Graphic LCD driver for Keil MCBSTM32F400 Development Board
Gyroscope r 100 Gyroscope driver for Keil MCBSTM32F400 Development Board |
@ Joystick r 100 Joystick driver for Keil MCBSTM32F400 Development Board
Keyboard r 100 Keyboard driver for Keil MCBSTM32F400 Development Board
@ LED [100 LED driver for Keil MCBSTM32F400 Development Board
Touchscreen r 100 Touchscreen driver for Keil MCBSTM32F400 Development Board
@ emWin LCD [16-bitlF 100 emWin LCD driver (16-bit Interface) for Keil MCBSTM32F400 Development Board =
= ‘ CMSIS Cortex Microcentroller Software Interface Cemponents
CORE r 3300 CIMSI5-CORE for Cortex-M. SC000. and SC300
¥ DsP r 14.2 CIMSI5-DSP Library for Cortex-M, SC000. and 5C300
=4 RTOS (APD) 10 CIMSIS-RTOS API for Cortex-M. SC000. and SC300
L4 Iv 4740 CMBSIS-RTOS RTX implermentation for Cortex-M, 5C000, and 5C300 j
R P ~ FR—— ~ R
Validation Output Description
=L ARM:CMSIS:RTOS:Keil RTX Additicnal software components required =
=) require Device:Startup Select component from list
@ Keil:Device:Startup System Startup for STMicroelectronics STM32F4 Series
=b Kei MCBSTM32F400::Board SupportMCBSTM32F... Additional software components required
=) require CMSIS:CORE Select component from list
@ ARM:CMSIS:CORE CIMSIS-CORE for Cortex-M, SC000, and SC300
= require Device:GPIO Select compenent from list ﬂ
Cancel Help

1. Create a new file named RTXBlinky.c, and create a skeleton by adding boilerplate
code for SystemClock Config (), and so on. Add this file to the project.

Real-Time Embedded Systems

2. Select the Configuration Wizard tab for the RTX_Conf CM. c file and configure

the RTOS:

kA EACMP_D_HSW124)\book_v2\Chapter8\programs\RTXBlinky\RTXBlinky.uvprojx - pVision

m@ﬂ

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
=" - NEEER Ly | | | 5 = I 1| @B phasea
& E | $% | rarget1 EEIN.ERN
Project o @ RTX_Conf_CM.c v x
..... stdint.h -
N tddeth Egand Al | Collapse Al | Help [Show Grd
""" stm32fkoch Option Value
""" core.cmkh (=~ Thread Configuration
""" core_chFnstr.I': Nurmber of concurr... 6
= core_cmrunc,
core_cm4 im Default Thread stac... 200
_____ syste_m ctr32f Main Thread stack ... 200
_____ LED.h - MNumber of threads ... 0
..... GLCD.h Total stack size [byt... 0
E|’ Board Support Check for stack ove.. [¥
; E LED.c (MCBSTM3Z Processor mode for.. Unprivileged mode
=4 CMSIS] E =1 RTX Kernel Timer Tick ...
5] RTX_CMiib (RTO Use Cortex-M SysTi.. [
Ed X-c"”f-CMh'C(F RTOS Kernel Timer ... 168000000
cmsis_os
. RTX Timer tick inter... 1000
stdint.h
stddef.h [=] Systern Configuration
. RTH_CM_lib.h Round-Robin Threa... [«
-4 Device User Timers [
@ GPIO_STM32Fd0e. ISR FIFO Queue size 16 entries
RTE_Device.h (Star—
X System Configuration
1 [| Ty
=] Pr... @Ba... {}Fu. | OgTe.. Text Editor }\Cnni"lgurait'mnl.llﬁz.‘irdI,-'r
Build Qutput : Q|
Application running ... l—l
] b

3. Openthe RTXBlinky.c file and tasks A and B:
#include "RTXBlinky.h"

* Thread 1

void taskA
(i) A

for

'taskA': Switch LED ON

(void const *argument) {

/* wait for an event flag 0x0001 */

osSignalWait (0x0001,

224

osWaitForever) ;

ULINK2/ME

LED On (LED A);

osDelay (500) ;

/* set signal to taskB thread */
osSignalSet (tid taskB, 0x0001);

* Thread 2 'taskB': Switch LED OFF

void taskB (void const *argument) {
for (;;) {

/* wait for an event flag 0x0001 */
osSignalWait (0x0001, osWaitForever) ;
LED Off (LED A);
osDelay (500) ;
/* set signal to taskA thread */
osSignalSet (tid taskA, 0x0001);

* Main: Initialize and start RTX Kernel

int main (void) {
HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

LED Initialize(); /* Initialize the LEDs */

tid taskA = osThreadCreate (osThread(taskA), NULL) ;
tid taskB = osThreadCreate (osThread (taskB), NULL) ;

/* set signal to taskA thread */
osSignalSet (tid taskA, 0x0001);

osDelay (osWaitForever) ;
while (1) ;

Chapter 8

225

Real-Time Embedded Systems

4. Create the RTXBlinky.h header file and add the following code:

#ifndef _ RTX BLINKY H
#define _ RTX BLINKY H

#include "stm32f4xx hal.h" /* STM32F4xx Defs */
#include "Board LED.h"
#include "cmsis os.h"

#define LED A 0

/* Task ids */
osThreadId tid taskA;
osThreadId tid taskB;

/* Function Prototypes */
void taskA (void const *argument) ;
void taskB (void const *argument) ;

/* Define Threads */
osThreadDef (taskA, osPriorityNormal, 1, O0);
osThreadDef (taskB, osPriorityNormal, 1, O0);

#endif /* _ RTX BLINKY H */

5. Build, download, and run the program.

In RTOS, the basic unit of execution is a task. A task is very similar to a C procedure, but it
must contain an endless loop:

void taskA (void const *argument) {
for (;;) {
/* taskA statements */
}
}

So, a task never terminates and thus runs forever in a similar manner to the way that a
program does. We can think of tasks as small self-contained programs. While each task
runs in an endless loop, the task itself may be started by other tasks and stopped by itself or
other tasks.

226

Chapter 8

An RTOS-based program is made up of a number of tasks, which are controlled by the RTOS
scheduler. The scheduler is essentially a timer interrupter that allots a certain amount of
execution time to each task. So, task 1 may run for (say) 100 ms, then be descheduled to
allow task 2 to run for a similar period of time; task 2 will give way to task 3; and finally,
control passes back to task 1. If we open the Configuration Wizard tab for the RTX Conf
CcM. c file and expand the System Configuration menu, then we'll see that we're allocating
slices of runtime to each task in a round-robin fashion, and tasks are switched every 5 ms
(refer to the following screenshot):

L2 EACMP_D_HSW124)\book_v2\ChapterB\programs\RTXBlinky\RTXBlinky.uvprajx - uVision =Nacl X
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
SA@ s a0 cle] | @ oo arlal
& [e 3| Targets A& 6@
Project 7@ RTX_Conf CM.c RTXEBlinky.c - x
B4 Target1 -)
51 = Source Group 1 Bpand Al | Colapse Al | Help I~ Show Grid
E-[£] RTXBlinky.c Option Value
(] emsis_osih #- Thread Configuration
stdinth + RTX Kemnel Timer Tick Configuration
stddef.h System Confi "
strn32fdoch =l ystem Lon |gra on i i
core_emd.h =R Round-Robin Thread switching ¥
core cminstr.h Round-Robin Timeout [ticks] 5
core_cmFunc.l +-User Timers [¥
B core_cmd _simi 3 ISR FIFO Queue size 16 entries
system_stm32{
%] LED.h
(-4 Board Support
[%] LED.c (MCBSTMZ
& CMSIS
(5] RTX_CM4.lib (RTO
- [%] RTX_Conf_CM.c (F
cmsis_os.h Round-Robin Thread switching
stdint.h Enables Round-Robin Thread switching.
i o] stddefh
RTX_CM_libh
B4 Device i
4 . ;? — B 13
{1} 0, Text Editar }\Conﬁguration Wizard f
Build Output 1 @
Programming Done. -
Verify CH.
hpplication running ...
)

I ULINKZ2/ME Cortex Debugger II

It is useful to think of all tasks running simultaneously, and each of them performing a specific
function. This allows each functional block to be coded and tested in isolation and then
integrated into a fully running program that, in turn, imposes structure and aids debugging.
When a task is created, it is allocated its own task ID. This is a variable, which acts as a
handle for each task and is used when we want to manage the activity of the task. We declare

two such variables, one for taskA and one for taskB:

osThreadId tid taskA;
osThread tid taskB;

227

Real-Time Embedded Systems

When CMSIS-RTOS runs on ARM-Cortex it uses the SysTick timer within the processor to
provide the RTOS time reference. Each time we switch running tasks, the RTOS saves the
state of all the task variables to a task stack and stores the runtime information about a task
in a Task Control Block that is referenced by the task ID. In addition to the task variables,
the Task Control Block also contains information about the status of a task. Part of this
information is its run state.

A task can be in one of four basic states: RUNNING, READY, WAITING, or INACTIVE. Only one
task can be running at a time, so the other tasks must be either READY, WAITING, or INACTIVE.
A task is placed in the WAITING state when its execution is suspended. This may occur when

it is waiting for an event to occur, such as a signal from another task. CMSIS-RTOS provides

a number of mechanisms to enable tasks to communicate with each other, such as events,
semaphores, and messages.

There may be many tasks that are READY for execution and it is the job of the scheduler to switch
between them. CMSIS-RTOS is preemptive; the active thread with the highest priority becomes
the RUNNING thread, provided that it is not waiting for any event. The initial priority of a thread

is defined with the osThreadDef () function but may be changed during execution using the
osThreadSetPriority () function. The function prototype for osThreadSetPriority () in
the cmsis_os.hfile identifies the function parameters, as follows:

/// \param name name of the thread fn.

/// \param priority initial priority of the thread fn.
/// \param instances number of possible thread instances.
/// \param stacksz stack size (bytes) for the thread fn.

Our program uses two threads, one to switch an LED ON and another to switch it OFF, so we
define them, as follows:

osThreadDef (taskA, osPriorityNormal, 1, 0);
osThreadDef (taskB, osPriorityNormal, 1, O0);

M The osPriorityNormal argument is a pseudonym for the
Q value, 0 (positive numbers indicate a higher priority, negative
numbers a lower one).

Threads are created by the osThreadCreate () function, which returns a pointer to the Task
Control Block. This function requires two arguments, a pointer to the thread definition and a
pointer to its start argument. In our case, we write the following:

tid taskA = osThreadCreate (osThread(taskA), NULL) ;
tid taskB = osThreadCreate (osThread(taskB), NULL) ;

228

Chapter 8

When each task is first created, it has sixteen event flags stored in the Task Control Block. It

is possible to halt the execution of a task until a particular event flag or group of event flags
are set by another task in the system. Our A and B tasks are very similar; the first statement in
each is as follows:

osSignalWait (0x0001, osWaitForever) ;

This system call, suspends the execution of the task and places it into the WAIT EVNT state.
Any task can set the event flags of any other task in a system with the osSignalSet ()
CMSIS-RTOS function call. The main program statement is as follows:

osSignalSet (tid taskA, 0x0001);

This statement sends a signal to taska, which has been held by the following statement
since this task was created:

osSignalWait (0x0001, osWaitForever) ;
The remaining taskA statements are as follows:

LED_on (LED_A);
osDelay (500) ;
osSignalSet (tid taskB, 0x0001);

These statements turn the LED ON, invoke a delay, and then signal taskB. As well as running
our application code as tasks, CMSIS-RTOS also provides some timing services, which can

be accessed through CMSIS-RTOS function calls; osDelay () exemplifies the most basic of
them. As CMSIS-RTOS ticks have been set at 1 ms, the delay is set at 0.5 seconds.

Multithreaded programs using mailboxes

The event flags that we saw in the last recipe can only been used to trigger the execution of
tasks. In contrast to this, mailboxes support the exchange of program data between tasks.
CMSIS-RTOS provides a mailbox system that buffers messages into mail slots and queues
them between the sending and receiving tasks. This recipe, RTOS_Blinky c8v1, provides
an introduction to sending fixed-length messages between tasks using mailboxes.

How to do it...

1. Clone the RTOS Blinky c8vo0 folderin the Multithreaded programs using event
flags recipe that we described earlier.
2. Replace taska () with the following function definition:

void taskA (void const *argument) {
uint32 t i=0;
for (;;) {
mail t *mail = (mail t*)osMailAlloc(mail box,

229

Real-Time Embedded Systems

osWaitForever) ;
mail->counter = i+4+;
osMailPut (mail box, mail) ;
osDelay (1000) ;

}
}

3. Replace taskB() with the following function definition:

void taskB (void const *argument) {

for (;;) {
osEvent evt = osMailGet (mail box, osWaitForever) ;
if (evt.status == osEventMail) {
mail t *mail = (mail t*)evt.value.p;

LED Out (mail->counter) ;
osMailFree (mail box, mail);

}
}
}

4. Replace the main () function with the following:

int main (void) {

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */
LED Initialize(); /* Initialize the LEDs */

mail box = osMailCreate(osMailQ(mail box), NULL) ;

tid taskA = osThreadCreate (osThread(taskaA), NULL) ;
tid taskB = osThreadCreate (osThread (taskB), NULL) ;

osDelay (osWaitForever) ;
while (1) ;

}

5. Declare the mailbox in the header file, RTXBlinky.h, by adding the following lines
of code:
/* Mailbox */
typedef struct {
uint32_t counter; /* A counter value */
} mail t;

osMailQDef (mail box, 16, mail t);
osMailQId mail box;

6. Build, download, and run the program.

230

Chapter 8

There are two tasks, named taskA and taskB. The role of taska is to increment a counter,
taskB displays the count value on the LEDs. The two tasks communicate by a mailbox, as
shown in the following figure:

taskA taskB

(transmitter) (receiver)

The message passed from taskA to taskB is declared as a struct named mail t. The
mailbox comprises a buffer that is formatted into a series of mail slots with pointers to each
slot stored as an array. Take an example of the following statement:

osMailQDef (mail box, 16, mail t);

This statement creates a mail queue definition. We've chosen to use 16 mail slots, an
arbitrary number that can be changed according to the complexity of our system. Sufficient
memory is allocated to store 16 messages of type mail t. Once defined, the following
statement declares a mailbox variable:

osMailQId mail box;
The main function then creates and initializes the mail queue, assigning this variable:
mail box = osMailCreate(osMailQ(mail box), NULL) ;

The transmitter thread named taska () calls osMailAlloc (mail box,

osWaitForever) to allocate a slot in the mailbox, and assigns a pointer to it. The second
parameter represents a timeout value (we may need to wait for a slot to become free). The
following statements assign a count value to the memory slot and put it in the mail queue:

mail->counter = i++;
osMailPut (mail box, mail) ;

The receiver thread named taskB() calls osMailGet (mail box, osWaitForever)

to check for messages in the mailbox. This function returns an event that contains mail
information. Again, the second parameter represents a timeout (that is, there may be none). If
there is a mail event, a pointer to the message data (that is, amail_t struct) is assigned and
the count is output to the LEDs. The following statement frees the memory slot:

osMailFree (mail box, mail);

231

Real-Time Embedded Systems

Further information on mailboxes can be found in the CMSIS-RTOS API (https://www.
keil.com/).

Why ensuring mutual exclusion is important

when accessing shared resources

A fundamental problem in multitasking is accessing shared resources. Text books often
introduce this topic by considering the following problem. Imagine two tasks, both having
access to a global variable. The job of one task, called an incrementer, is to increment the
shared variable. The other task, called the decrementer, decrements the shared variable. The
increment and decrement operations in each task are embedded within identical £or loops.
In this way, we arrange for the variable to be incremented and decremented the same number
of times. The shared variable is reset to zero before the tasks are created and run. Once the
tasks complete, one may expect the value of the shared variable to equal zero, as increment
and decrement have been executed in equal measure by the two tasks. This recipe, named
RTOS_Sem_c8v0, illustrates that, surprisingly, this is not the case.

How to do it...

1. Create a new project and using the manager configure the RTE to provide support for
the Graphic LCD.

2. Add the following code to the project:
#include "RTXSem.h"

#define NCYCLES 500000 /* User Modified Value */
int sharedvVar; /* Shared Variable */
/* __

* Thread 1 'taskA': Increment Shared Variable

K o o e = */

void taskA (void const *argument)
uint32 t p;
bool flag = true;

for (;;) {
if (flag==true) {

/* Inccrement the Shared Variable */

for (p=0; p<NCYCLES; p++)
sharedvVar++;

/* set signal to taskC thread */

osSignalSet (tid taskC, 0x0001);

flag = false;

232

Chapter 8

* Thread 2 'taskB': Decrement Shared Variable

void taskB (void const *argument) {
uint32 t p;
bool flag = true;

for (;;) {

if (flag==true) {
/* Decrement the Shared Variable */
for (p=0; p < NCYCLES; p++)

sharedvVar--;

/* set signal to taskC thread */
osSignalSet (tid taskC, 0x0002);
flag = false;

* Thread 3 'taskC': Display Shared Variable
void taskC (void const *argument) {

for (;;) {
/* wait for an event flag 0x0003 */
osSignalWait (0x0003, osWaitForever) ;
GLCD_show_result (sharedvar) ;
/* Kill Threads */
osThreadTerminate (tid taskAa);
osThreadTerminate (tid taskB) ;
osThreadTerminate (tid taskC);

* Main: Initialize and start RTX Kernel

int main (void) {

233

Real-Time Embedded Systems

234

HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

GLCD_setup() ;

sharedvar

0;

tid taskA = osThreadCreate (osThread(taskaA), NULL) ;
tid taskB = osThreadCreate (osThread (taskB), NULL) ;
tid taskC = osThreadCreate (osThread (taskC), NULL) ;

osDelay (osWaitForever) ;
while (1) ;

}

Create file header file, RTXSem. h, and add the following code:

#ifndef _ RTX SEM H
#define = RTX SEM H

#include "stm32f4xx.h" /* STM32F4xx Definitions */
#include "RTXBlinkyUtils.h"
#include "cmsis os.h"

/* Thread id of thread: task a, b, c */
osThreadId tid taskA;
osThreadId tid taskB;
osThreadId tid taskC;

/* Function Prototypes */

void taskA (void const *argument) ;
void taskB (void const *argument) ;
void taskC (void const *argument) ;

/* Thread Definitions */

osThreadDef (taskA, osPriorityNormal, _ FI, 0);
osThreadDef (taskB, osPriorityNormal, _ FI, 0);
osThreadDef (taskC, osPriorityNormal, _ FI, 0);

#endif /* _RTX _SEM H */

Create the RTXBlinkyUtils. c file, enter the following code, and add it to the
project:
#include "RTXBlinkyUtils.h"

void GLCD_setup (void) ({

GLCD_Initialize(); /* Initialise and */
GLCD_SetBackgroundColor (GLCD COLOR_WHITE) ;
GLCD_ClearScreen (); /* clear the GLCD */

GLCD_SetBackgroundColor (GLCD COLOR_ BLUE) ;
GLCD_SetForegroundColor (GLCD COLOR WHITE) ;
GLCD_SetFont (&GLCD Font 16x24) ;

GLCD DrawString (0, 0%*24, " CORTEX-M4 COOKBOOK ") ;
GLCD DrawString (0, 1%*24, " PACKT Publishing ");

void GLCD show result (int value) {
char buffer[128];

GLCD_SetBackgroundColor (GLCD COLOR WHITE) ;
GLCD_SetForegroundColor (GLCD COLOR BLACK) ;

GLCD DrawString (0, 3*24, "VAL =");

sprintf (buffer, "%i ", value) ; /* make string */
GLCD DrawString (7*16, 3*24, buffer); /* Display it */

}

Define the header file, RTXB1inkyUtils.h, and enter the following code:

#ifndef _ RTX BLINKY GLCD UTILS H
#define _ RTX BLINKY GLCD UTILS H

#include "Board GLCD.h"
#include "GLCD Config.h"
#include <stdio.hs>
#include <stdlib.h>
#include <stdbool.h>

#define FI 1 /* Font index */
extern GLCD FONT GLCD Font 16x24;

/* Function Prototypes */

void GLCD_setup (void) ;

void GLCD_show result (int);

#endif /* _ RTX BLINKY GLCD UTILS H */

Build, download and run the program.

Chapter 8

235

Real-Time Embedded Systems

1
~ Note the value of the shared variable output to the GLCD (it should be 0).
Try running the program a few times.

7. Change the value of NCYCLES, as follows:
#define NCYCLES 500000

8. Build, download, and run the program. The value of the shared variable is output to
the GLCD (it should be # O). Try running the program a few times.

There are three tasks. Tasks A and B are incrementer and decrementer tasks, task C outputs
the value of the shared variable to the GLCD. Task C waits for signals from both tasks, A

and B, before calling the GLCD_show_result () function. To achieve this, task A sets flag
0x0001 and task B sets flag 0x0002; task C is released on flag Ox0003 (that is, the logical
AND of task A and B flags).

To explain how the value of the shared variable can be anything other than zero, once the
program terminates, we must consider how low-level machine instructions implementing
increment or decrement operations will be executed for every possible scheduling of taska
and taskB. The increment operation involves reading a value from memory, storing it in one
of the processor registers, adding one to it, and storing the result back in memory. Decrement
will work in a similar way.

Assuming that the task switch between A and B always occurs after the task has written the
updated value of the shared variable to memory, then the program operates successfully.
When NCYCLES = 10, this will probably be the case. However, if the task switch occurs at the
point just before the shared variable is written, then one task will be working with an outdated
copy of the shared variable. This problem manifests as the error we observed.

CMSIS-RTOS provides a solution to the problem of providing safe access to a shared resource
(in this case a shared variable) by implementing a primitive known as a Semaphore. In
general, a number of tasks (say, p tasks) may share a resource (that is, the resource can
support a maximum of p tasks). To ensure that no more than p tasks access the resource

at any time, we provide a variable (initialized to p) that will decrement each time a resource
needs to use it and is incremented when the resource finishes with it. Thus, processes can
only access the resource when p>0.

236

Chapter 8

The case when a shared resource can only support one task (that is, p=1) can be managed by
a binary semaphore called a Mutual Exclusion (Mutex). Mutexs are often used to ensure that
critical sections of code are thread-safe. A piece of code is thread safe if it only manipulates
shared data structures in a manner that guarantees safe execution by multiple threads at the
same time. To ensure that the read, modify, or write operation produced by the increment or
decrement is thread safe, we enclose the increment/decrement statement in task A or B

as follows:

osMutexWait (mut sharedVar, osWaitForever) ;
sharedVar++;
osMutexRelease (mut_ sharedvar) ;

The variable named mut _sharedvar holds the semaphore. However, before we can use
the semaphore, we must declare, register, and initialize it. The following recipe illustrates
how this is done for a mutex used to control access to the GLCD. The same code statements
can be used here; simply replace the mut GLCD variable with mut _sharedvar. Once we've
protected our critical section in this way, the program will run correctly and always return a
value of zero, no matter how many cycles we specify.

Although the previous program is thread safe, there is another potential problem. Data is
transmitted to the GLCD by a serial bus that is managed by functions that are defined in the
GLCD library. If a task using the GLCD is switched while it is mid-way through writing to the GLCD,
then there is a chance that the GLCD serial bus will stall and we'll lose data. This will manifest
as a corruption of the screen and there is a chance that we'll misdiagnose this as a hardware
fault, when in fact it is due to software. Many students try to fix this problem by arranging for all
GLCD write statements to be in one task. This doesn't work because the serial bus is stalled as
soon as a context switch occurs irrespective of what goes on in the other tasks. The solution

is to treat the GLCD as a shared resource and enclose every invocation of the library code with
calls to osMutexWait () and osMutexRelease (), even if they occur within the same
thread. The following recipe illustrates this by emulating the RTOS_Blinky c8v0 folder in the
Multithreaded programs using event flags recipe that we considered earlier in this chapter, this
time using the GLCD to simulate the LEDs. We'll call this: RTOS_Blinky c8v2.

Why we must use a mutex to access

the GLCD

How to do it...

To access the GLCD using mutual exclusion, follow the steps outlined:

1. Create a new project and using the manager configure the RTE to provide support for
the Graphic LCD.

2. Create a new file named RTXB1inky.c, add the boilerplate code, and then add this
source file to the project.

237

Real-Time Embedded Systems

3. Add the following code to RTXBlinky.c:

#include "stm32f4xx hal.h" /* STM32F4xx Defs */
#include "RTXBlinkyUtils.h"
#include "cmsis os.h"

osThreadId tid taskA; /* 1d of thread: task_a */
osThreadId tid taskB; /* 1d of thread: task_b */

osMutexId mut GLCD; /* Mutex to control GLCD access */

void switch On (unsigned char led) {

osMutexWait (mut GLCD, osWaitForever) ;
GLCD_SetBackgroundColor (GLCD COLOR _WHITE) ;
GLCD_SetForegroundColor (GLCD_COLOR_RED) ;
GLCD_SetFont (&GLCD Font 16x24);

GLCD DrawChar (led+(7*16), 4*24, 0x80+1);
osMutexRelease (mut GLCD) ;

void switch Off (unsigned char led) ({

osMutexWait (mut GLCD, osWaitForever) ;
GLCD_SetBackgroundColor (GLCD COLOR _WHITE) ;
GLCD_SetForegroundColor (GLCD_COLOR_RED) ;
GLCD_SetFont (&GLCD Font 16x24);

GLCD DrawChar (led+(7*16), 4*24, 0x80+0);
osMutexRelease (mut GLCD) ;

/* __
* Thread 1 'taskA': Switch LED ON

K o e o */
void taskA (void const *argument) {

for (;;) {

osSignalWait (0x0001, osWaitForever) ;
switch On (LED_A) ;
osDelay (500) ;

238

Chapter 8

osSignalSet (tid_taskB, 0x0001); /* signal taskB */

}
/* __
* Thread 2 'taskB': Switch LED OFF
K o e e e e e e e e e = = */
void taskB (void const *argument) {
for (;;) {
osSignalWait (0x0001, osWaitForever) ;
switch Off (LED A);
osDelay (500) ;
osSignalSet (tid_taskA, 0x0001); /* signal taskA */
}
}

osMutexDef (mut GLCD) ;

osThreadDef (taskA, osPriorityNormal, FI, 0);
osThreadDef (taskB, osPriorityNormal, FI, 0);
/* __
* Main: Initialize and start RTX Kernel
K o e e e e e e e = */
int main (void) {
HAL Init (); /* Init Hardware Abstraction Layer */
SystemClock Config () ; /* Config Clocks */

GLCD_setup() ;
mut GLCD = osMutexCreate (osMutex (mut GLCD)) ;

tid taskA = osThreadCreate (osThread (taskA), NULL) ;
tid taskB = osThreadCreate (osThread (taskB), NULL) ;

osSignalSet (tid_taskA, 0x0001); /* signal taskA */

osDelay (osWaitForever) ;
while (1) ;

239

Real-Time Embedded Systems

4. Create the RTXBlinkyUtils. c file, enter the following code, and add this to
the project:

#include "RTXBlinkyUtils.h"
void GLCD_setup (void) ({

unsigned char led;

GLCD Initialize(); /* Initialize and */
GLCD_SetBackgroundColor (GLCD COLOR _WHITE) ;
GLCD ClearScreen () ; /* clear the GLCD */

GLCD_SetBackgroundColor (GLCD COLOR BLUE) ;
GLCD_SetForegroundColor (GLCD COLOR WHITE) ;
GLCD_SetFont (&GLCD Font 16x24);
GLCD DrawString (0, 0*24, " CORTEX-M4 COOKBOOK ") ;
GLCD DrawString (0, 1*24, " PACKT Publishing ");
GLCD_SetBackgroundColor (GLCD COLOR WHITE) ;
GLCD_SetForegroundColor (GLCD_COLOR_RED) ;
for (led=LED A; led<LED G+1; led++)

GLCD DrawChar ((led+7)*16, 4*24, 0x80+0);

}

5. Modify RTXBlinkyUtils.h (defined in the previous recipe), accordingly.

6. Build, download, and run the program.

Calls to GLCD functions within switch Off () and switch_On () are protected by
mut_GLCD, thus enforcing mutual exclusion. The mut _GLCD variable is declared as follows:

osMutexId mut GLCD; /* Mutex to control GLCD access */
We also need to register the semaphore by including the following statement:
osMutexDef (mut GLCD) ;

We initialize this statement within main () by including the following:

mut sharedVar = osMutexCreate (osMutex (mut GLCD)) ;

240

Chapter 8

How to write a multithreaded Pong game

To further illustrate how to use the features of CMSIS-RTOS that we've introduced in this
chapter, we'll return to the Pong program that we first introduced in Chapter 2, C Language
Programming. We'll call this recipe: RTOS_Pong v8v0. Due to space limitations, we're
only showing those parts of the code that are relevant to the RTOS implementation.

Refer to Chapter 2, C Language Programming for details of helper functions defined

in the pong_utils.c file.

How to do it...

To create a multithreaded pong game, follow the steps given:
1. Create a new project (new folder) called RTOS_Pong. Set the RTE to include board
support for the ADC and GLCD. Include CMSIS-RTOS.
2. Create a file named RTOS_Pong. c and add a task to handle the GLCD:

void taskGLCD (void const *argument) {
BallInfo init pstn = thisGame.ball;

for (;;) |
osEvent evt = osMailGet (mail box, osWaitForever) ;
if (evt.status == osEventMail) ({
mail t *mail = (mail t*)evt.value.p;

thisGame.pl.y = mail->pdl;
osMailFree (mail box, mail) ;

osMutexWait (mut GLCD, osWaitForever) ;
update player () ;

if (thisGame.ball.x<BAR W) { /* reset pstn */
osDelay (T LONG) ;
erase ball();
thisGame.ball = init pstn;

}

draw_ball () ;

osMutexRelease (mut_ GLCD) ;

osDelay (T SHORT) ;
osSignalSet (tid taskBall, 0x0001);

241

Real-Time Embedded Systems

3. Add a task to update the ball and check for collisions:

void taskBall (void const *argument) {

for (;;) {
osSignalWait (0x0001, osWaitForever) ;

update ball () ;
check_collision() ;

osSignalSet (tid taskGLCD, 0x0001) ;

}
}

4. Add a task to handle the ADC:

void taskADC (void const *argument) {
uint32 t adcValue;

for (;;) {
mail t *mail = (mail t*)osMailAlloc(mail box,
osWaitForever) ;
ADC StartConversion() ;
adcValue = ADC GetValue ();
mail->pdl = (adcValue >> 4) * (HEIGHT-BAR H)/256;

osMailPut (mail box, mail) ;
osDelay (T_SHORT) ;

}

5. Addmain (), save RTOS_Pong.c, and add the file to the project:

int main (void)
HAL Init ();
SystemClock_Config ();

game Initialize();

ADC Initialize();

GLCD Initialize ();

GLCD Clear (White); /* Clear the GLCD */
GLCD_SetBackColor (White); /* Set the Back Color */
GLCD_SetTextColor (Blue); /* Set the Text Color */

mail box = osMailCreate(osMailQ(mail box), NULL) ;
mut GLCD osMutexCreate (osMutex (mut GLCD)) ;

tid taskGLCD = osThreadCreate (osThread (taskGLCD), NULL) ;

242

tid taskBall = osThreadCreate (osThread(taskBall), NULL) ;
tid taskADC = osThreadCreate (osThread (taskADC), NULL) ;

osDelay (osWaitForever) ;
while (1)

7

}

Create an appropriate header file named RTOS_Pong. h:

#ifndef RTOS_ PONG_H
#define RTOS_PONG_H

#include "cmsis os.h"
#define FI 1 /* Font index 16x24 */

/* Mailbox */
typedef struct {

uint32 t pdl; /* paddle position */
} mail t;

osMailQDef (mail box, 1, mail t);
osMailQId mail box;

/* Mutex */
osMutexDef (mut GLCD) ;
osMutexId mut GLCD; /* Mutex to control GLCD access */

/* Function Prototypes for Tasks */

void taskGLCD (void const *argument) ;
void taskBall (void const *argument) ;
void taskADC (void const *argument) ;

/* Declare Task IDs */

osThreadId tid taskGLCD; /* id of thread: taskGLCD */
osThreadId tid taskBall; /* id of thread: taskGreq */
osThreadId tid taskADC; /* id of thread: taskMotor */

/* Define Threads */

osThreadDef (taskGLCD, osPriorityNormal, _ FI, O0);
osThreadDef (taskBall, osPriorityNormal, _ FI, 0);
osThreadDef (taskADC, osPriorityNormal, __ FI, 0);

#endif /* RTOS PONG H */

Chapter 8

243

Real-Time Embedded Systems

7. Copythe pong utils.c and pong utils.h files (refer to Chapter 2, C Language
Programming.) and add these to the project.

8. Build, download, and run the program.

The tasks named taskGLCD () and taskBall () are synchronized using a flag so the ball
position is updated every time the screen is refreshed. The task named taskADC () sends
the position of the paddle to a mailbox; taskGLCD () receives this value and uses it to
render the paddle. The tasks are illustrated in the following diagram:

flag = 0x0001

taskBall

The tasks are loosely coupled and can be independently tested. For example, during
debuging, the taskADC () function and statements within taskGLCD (), which read the
mailbox and render the paddle, can be "commented out," leaving a simpler program that
just moves the ball around the screen. The mailbox has only one slot. This is a key design
decision that ensures that the paddle is rendered each time the ADC is read, so everything is
synchronized to taskADC ().

Debugging programs that use CMSIS-RTOS

Using Keil's ULINK, we can gather and display general information about system resources
while debugging our program.

How to do it...

1. Clone the RTXB1inky project that we described earlier in this chapter.
2. Select Project — Options. Under the Debug tab, select Settings.

Chapter 8

Options for Target 'MCBSTM32C'
Device I Target I Output I Listing I User I C."CH' Asm I Linker Debug | |tilities I
 se Simulator Settings | i« Use: IULINKZ,-’I'H'IE Cortex Debugger Settings |
[Limit Speedto Real-Time
W Load Application at Startup ¥ Funto main() ¥ Load Application at Startup ¥ Run to maing
Initialization File: Initialization File:
|] e |]]
Restore Debug Session Settings————————————— Restore Debug Session Seftngs——————————————————
¥ Breakpaints ¥ Toolbox v Breakpoints v Toolbox
[V Watch Windows & Performance Analyzer Vv Watch Windows
[V Memory Display [V System Viewer v Memory Display ¥ System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
IS}\F{MCME’..DLL I—HEI‘u‘IﬁP MPU ISﬁHI‘u‘ICI‘u‘IB.DLL I-I'u'IPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|DCM.DLL |-pCM4 |TCM.DLL |1;c:M4
[ok || canced || Defauts | Help

3. Inthe Cortex-M Target Driver Setup dialog, use the Debug tab to select the Serial
Wire (SW) Communications protocol:

Cortex-M Target Driver Setup "l Wl HLG e - . - o
Debug |Trace | Rash Download |
~ULINK USB - JTAG/SW Adapter — ~ SW Device
Seral No: |[E[EEEINEIS - IDCODE Device Name | Mov
SWDIO 477 M ight SW-DP
ULINK Version: [ULINK-ME © 02BA1477 ARM CoreSight SW-D p |
Device Family: [Cortex-M Dowr I

Firmware Version: [V2.02 15 Riker ati Detechor I

v swJ PamQSW - € Manual Configuration B euice [ame |

MaxClock: [1MHz v pdd | Deete | | Update | AP: |00
Debug
Connect & Reset Options Cache Options 1~ Download Options

Connect: |Nomal _v| Reset: [Atodetect v] | | ¥ CacheCode [~ Verfy Code Download
[V Beset after Connect ¥ Cache Memory | | [T Download to Fash

S e

245

Real-Time Embedded Systems

4. Still in the Cortex-M Target Driver Setup dialog, use the Trace tab to set the Core
Clock frequency (168.0 MHz) and check Trace Enable:

Cortex-M Target Driver Setup = % ‘ - s -

Debug Trace |Flash Duwnloadl

Core Clock;| 168.000000 MHz ®|ace Enable

(- Trace Port [~ Trace Events
ISena Wire Output - UART/NRZ _-j J_ Enable Prescaler: m ™ CPI: Cycles per Instruction
SWO Clock Prescaler: [122 _ PC Samping || BN Eacaphon ovidieed
¥ Autodstect Prescaler: [1024716 Bt
' [~ LSU: Load Store Unit Cycles
SWOClock: | 1.166666 MHz [~ Periodic Period: | <Disabled> [~ FOLD: Folded Instructions
[on Data R/W Sample [~ EXCTRC: Exception Tracing

 ITM Stimulus Ports
A Port 2423 Port 16 15 Port 8 7 Port 0
Enable: IUKFFFFFFFF VIVVIVIVIVIVIV WVIVIVIVIVIVIV WVIVIVIVIVIVIV VIVIVIVIVIVIVIV

Privilege: |(:00000008 Port 31.24 V¥ Port 23.16 [Pott 15.8 ™ Pot 7.0 [

[ok | [cancel Help

5. Download and run the program.
6. Debug the program by selecting Debug — Start/Stop Debug Session (Ctr/+F5).
7. Select Debug — Run (F5) to run the program.
8. Select Debug — 0S Support — System and Thread Viewer.
System and Thread Viewer =]
Property Value

Tick Timer: 1.000 mSec

Round Robin Timeout: 5.000 mSec

Default Thread Stack Size: 200

Thread Stack Overflow Check: Yes

Thread Usage: MAvailable: 7, Used: 4

= Threads Priority State Delay Event Value Stack Load
E.E___-_m_

255 | os_idle_demon Running

3 taskA Normal WSOV SSENN 0:0000 00001 40%
2 main Mormal Wait_DLY 32%
1 osTimerThread High Wait_MBX 40%

246

Chapter 8

1
‘\Q The cells that are highlighted in the previous screenshot are

updated in real time as the program is running.

9. Select Debug — 0S Support — Event Viewer. The cells that are highlighted in the
following screenshot are updated in real time as the program is running;:

Event Viewer @
|Load. . | Min Time Max Time Grid Zoom Update Screen Jump to I~ TaskInfo [~ Cursor
Save...||| 26us | 146.00015 [10ms |[In |[out] Al ||[Stop |[Clear | |[Code [[Trace] [~ Show Cydes

Transition
|Prev ||Next|

All Tasks

Idle {255)

<Error= [1]

taskA [3]

taskE [4]

ldle (255

14586645 ' ' ' ' | 14593645 ' ' ' ' ' 14500645

247

Real-Time Embedded Systems

The System and Thread Viewer window provides some useful information on System
configuration and Threads. The values shown for the System reflect the ones that are defined
inthe RTX Conf CM. c file in the Configuration Wizard. There are a total of four threads, as
CMSIS-RTOS manages main () and the osTimerThread () as discrete threads in their own
right. When configuring the Trace (refer to step 4), it is very important to set the Core Clock
frequency to agree with what is defined in RTX_Conf CM.c:

[#] RTX_Conf_CM.c v X
Bpand Al | Collapse Al | Help I~ Show Grid
Option Value

(= Thread Configuration

Number of concurrent runni... 6

Default Thread stack size [byt... 200

Main Thread stack size [bytes] 200

Number of threads with user-... 0

Total stack size [bytes] for thr... 0

Check for stack overflow [

Processor mode for thread ex... Privileged mode
= RTX Kernel Timer Tick Configurat...

Use Cortex-M SysTick timer a...

RTOS Kernel Timer input cloc..{ 168000000

RTX Timer tick interval value ... 1000
- Round-Robin Thread switching [+
[+ User Timers [v
ISR FIFO Queue size 16 entries
System Configuration 4

TextEditor_}\ Configuration Wizard /

Further features of the debugger are discussed in Keil Application Note No. 261 (refer to
http://www.keil.com/appnotes/files/apnt 261 .pdf).

248

Embedded Toolchain

In this chapter, we will cover the following topics:

Installing GNU ARM Eclipse

Programming the MCBSTM32F400 evaluation board
How to use the STM32CubeMX Framework (API)
How to port uVision projects to GNU ARM Eclipse

Introduction

A toolchain is a term that is used to describe a set of programming tools that are used to
create a software product, which is typically an application program. A simple software
development toolchain usually comprises a text editor, compiler, and linker, and often these
are packaged together with other tools, such as a debugger, as an Integrated Development
Environment (IDE). The ARM uVision5 IDE is very easy to use, but the constraints imposed on
the free evaluation version and the relatively high cost of the licensed, professional version
motivate many programmers to explore alternative, free, open source toolchains. Here is just
a sample of the available alternatives:

>

>

4

emlDE: This can be found at http://www.emide.org/

YAGARTO: This can be found at http://www.yagarto.org

CooCox: This can be found at http://www.coocox.org/

GNU ARM Eclipse: This can be found at http://gnuarmeclipse.github.io/

249

Embedded Toolchain

Open source software is usually made available as source code and then released under

a GNU General Public License. The GNU General Public License is intended to guarantee
users the freedom to share and change all versions of a program, ensuring that it remains
free software for all its users. Luckily, developers usually make precompiled versions of most
software released under the GNU license available, often supporting the Windows, Linux, and
Macintosh (0OSX) operating systems.

However, installing and configuring an open source toolchain from a precompiled binary is
not easy, so the aim of this chapter is to guide us through the process. We will illustrate the
installation of the GNU ARM Eclipse toolchain on a Windows platform. We are choosing this
route because the toolchain has recently migrated to GitHub and the installation guide has
been revised.

Installing GNU ARM Eclipse

What is GNU ARM Eclipse? Well, Eclipse is an open source, integrated-development environment
that can be configured for any toolchain. This is achieved, typically, by an extensible system of
plug-ins that allows the environment to be customized. Eclipse is written mostly in Java, but
plug-ins are available allowing it to be configured for a variety of languages. GNU ARM Eclipse
plug-ins provide Eclipse CDT (C/C++ Development Tooling) extensions for GNU ARM toolchains,
such as GNU Tools for ARM Embedded Processors, and others such as Linaro (https://www.
linaro.org/), YAGARTO (http://www.yagarto.org/), and so on.

To install GNU ARM Eclipse, we need the following components:

» The Eclipse IDE: This is the IDE itself, and it can be found at https://www.
eclipse.org/

» GCC ARM Embedded Toolchain: This is the GNU toolchain, and it an be found at
https://launchpad.net/gcc-arm-embedded

» Windows Build Tools: These are the tools for make, rm, and so on (native to Linux),
and they can be found at https://github.com/gnuarmeclipse/windows-
build-tools

» GNU ARM Eclipse plug-ins: These are the plug-ins, and thy can be found at
https://github.com/gnuarmeclipse/plug-ins

» GNU ARM Eclipse QEMU Emulator plug-in: This is an embedded processor emulator,
and it can be found at http://gnuarmeclipse.github.io/gemu/

» GNU ARM OpenOCD Debugging plug-in: This is a debugging tool, and it can be found
athttp://gnuarmeclipse.github.io/openocd/

» MDK-ARM Eclipse plug-in: This is support for the U-Link debugger, and it can be
found at http://www.keil.com/support/man/docs/ecluv/default.htm

250

Mostly, these are installed by downloading the latest version of their Windows installer
.exe file. As the MDK-ARM Eclipse plug-in only works with the Windows 32-bit version of
Eclipse, we chose 32-bit versions of the toolchain. The installation documentation provided is
comprehensive, so the following recipe (GNU_ARM Eclipse Install c9vO0) just gives us
an overview and links to the relevant web pages.

How to do it...

1. Follow the instructions at http://gnuarmeclipse.github.io/toolchain/
install/ and install the latest version (currently gcc-arm-none-eabi-4 9-
2015g3-20150921-win32.exe) of the prebuilt GNU toolchain for ARM Embedded

Processors. Execute the installer (in the final window, be sure to disable adding
toolchain path to the environment).

Chapter 9

the

2. Test the gcc compiler by typing "C: \Program Files (x86)\GNU Tools ARM
Embedded\4.9 2015g3\bin\arm-none-eabi-gcc.exe" --versionina

command window:

-

EM Administrator: CAWINDOWS\system32\cmd .exe |£I—E_G_J

C: Program Files (xB6>~GHU Tools ARM Emhedded-~4.9? 2815g3>'"C: \Prugram Files (xB6>
“GHU Tools ARM Emhedded~4.? 2815g3sbin“arm—none—eahi—gcc.exe” ——version
arm—none—eabhi—gcc.exe (GHU Tools for ARM Embedded Processors)> 4.9.3 201585292 <(re
lease? [ARM-s/embedded-4_9%-branch revizion 2279771

Copyright (C> 2814 Free Software Foundation. Inc.

Thiz is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITHESS FOR A PARTICULAR PURPOSE.

C:“Program Files {(x86>~GHU Tools ARM Emhedded-~4.9? 2815g3>

3. Refertohttp://gnuarmeclipse.github.io/windows-build-tools/
download/; download and run the latest version (currently gnuarmeclipse-

build-tools-win32-2.6-201507152002-setup.exe) of Windows Build Tools

from this link.

4. Check whether Windows Build Tools is functional by opening a command window in

the folder where it was installed (that is, "C: \Program Files\GNU ARM Ecli
Build Tools\2.6-201507152002")and run make --version as follows:

pse\

&l CAWINDOWS\system32\cmd.exe [

C:-“Program Files“GHU ARM Eclipze“Build Tools-2_6—-281587152802hin>*make ——verzion

GNU Make 4.1

Built for x86_64—wbd-mingu32

Copyright (C> 1988-2814 Free Software Foundation. Inc.

License GPLu3+: GHU GPL version 3 or later <http:/Agnu.org-licenszes-sgpl.html>
This iz free software: you are free to change and redistribute it.

There iz NO WARRAMTY. to the extent permitted hy law.

C:“Program Files“GNU ARM Eclipse“Build Tools-2_6—281587152802hin>_

-

251

Embedded Toolchain

5.

Referto http://gnuarmeclipse.github.io/gemu/install/, then download
and run the latest version of the installer (currently gnuarmeclipse-gemu-win32-
2.3.50-201508041609-dev-setup.exe) from this link.

Refer to http://gnuarmeclipse.github.io/openocd/install/, then
download and run the latest version of the installer (currently gnuarmeclipse-
openocd-win32-0.9.0-201505190955-setup . exe) from this link. Note that
the documentation advises using the SEGGER J-Link debugger; other hardware is
more difficult to set up.

Referto http://www.keil.com/support/man/docs/ecluv/default.htm
and install MDK Version 5 - Legacy Support.

Refer to https://www.eclipse.org, then download and run the latest version
of the installer (currently Eclipse Mars. 1) from this link. Choose the version for
C/C++ developers:

eclipse

e Eclipse IDE for C/C++ Developers
-

An |IDE for C/C++ developers with Mylyn integration.

Installation Folder C\cpp-mars

v
v

> LAUNCH

show readme file

keep installer

{ BACK

252

Chapter 9

9. Referto http://gnuarmeclipse.github.io/eclipse/workspace/
preferences/ and set the Eclipse preferences.

10. Referto http://gnuarmeclipse.github.io/plugins/install/ and install
the GNU ARM Eclipse plug-ins using the standard Eclipse installer in the Help —
Install New Software menu. Note that, as we are working with Mars and we installed
Eclipse configured for C/C++, then we may find that we already have some CDT tools
(by default, plug-ins that are already installed are not displayed).

11. Referto http://gnuarmeclipse.github.io/plugins/packs-manager/.To
install packs, we need to select the pack perspective and find available packs, then
install the ones that we want (make local copies). We're going to test our Eclipse IDE with
the emulator configured as Discovery Board. So, we'll need the STM32F4 support pack:

& Clarinox
Embedded Artists

(= Freescale

= Glyn
Hitex

= Infineon
Keil

= Maxim
Microsemi
NGX
NordicSemiconductor
Nuvoton
NXp

= Silicon Labs

B Console &

I GNU ARM Eclipse Packs console
f 2015-18-19 17:02:52

Parse completed in 47ms.

= . LN
* | We. = =
& =%
> Ambiq Micro
Analog Devices
ARM
(= Atmel

Fle Edit Novigate Search Project Bun uVision Window Help

R R ale= e =
O % Packs 2

Name
s B SAMG_DFP
& SAM-L_DFP
B SAMR21_DFP
SAM-S_DFP
B SAM-V_DFP
B STM32F0xx DFP
STM32F1xi_DFP (installed
STM32F2c_DFP
B STM32F30 DFP
4 i STM32F4ux DFP (installed
&® 260 (installed)
%% 250 (311MB)
%* 24.0 (213ME)

1 Quick Access
B E| Bl T O | B Outine ¢

Description z
%% 250
Atmel SAMG Series Device Suppert and Eamples e 250
Atmel SAM L Series Device Support and Examples es 240
Atmel SAM R21 Series Device Support and Eamples . 2 38
Atmel SAMSTD Series Device Support e 230
Atmel SAMVT Series Device Suppart e 21
STMicroelectronics STM32FD Series Device Support and Examples %8 150
STMicroslectronics STM32F1 Series Device Support, Drivers and Examples - 1‘0l£
STMicroelectronics STM32F2 Series Device Support, Drivers and Examples °® 107
STMicroelectronics STM32F3 Series Device Support and Bxamples A l‘ﬂlﬁ
STMicroelectronics STM32F4 Series Device Support, Drivers and Examples . l‘uli
Updated STMicroelectronics STM32CubeFd Firmware Package to Version 180 ad... ol I‘Ulll
Updated to STMicroelectronics STM32CubeF4 Firmware Package V160 s 103
Required PACKs: ARM.CMSIS.4.3.0.pack, Keil MDK-Middleware 5 30.pack, KeilLAR... S
® 102
a %101
- %% 100
% 001
=

b

Parsing "C:\Users\mhf\Packages\Keil\STM32F4xx_DFP\2.6.0\Keil.STH32F4xx_DFP.pdsc”...

woe @)
BE = A
B STM32Fdxc DFP

253

Embedded Toolchain

12. Referto http://gnuarmeclipse.github.io/tutorials/blinky-arm/ and
use the wizard to create a Blinky ARM test project:

File Edit Mavigate Search Project Run pVision Window Help
i e + R VL =R SRR S AR Quick Access | (55 | By C/C++ [T Packs)
Ho. BWe. = ik, = 0 |[#packs 2 FE|A%|$ =0 SEowines BE ~=0O
EE% 7 | Name Description B eﬂa STM32F4x DFP
» £ Ambiq Micro B . E1 SAMG_DFP Atmel SAMG Series Device Support and Examples ¥ 2680 El
» =+ Analog Devices - . E SAM-L_DFP Atmel SAM L Series Device Support and Examples o0
» = ARM > Atmel SAM RZ1 Series Device Support and Examples oo 240
> = Atmel b Atmel SAMST0 Series Device Support e 230
» & Clarinox . H SAM-V_DFP Atmel SAMVT Series Device Support =20
» £ Embedded Artists . E STM32F0 DFP STMicroelectronics STM32FO Series Device Support and Examples e
» E Freescale E > i STM32FLo DFP (installed STMicroelectronics STM32FI Series Device Support, Drivers and Examples a & 200
» @ Glyn o f3 STM32F20 DFP STMicroelectronics STM32F2 Series Device Support, Drivers and Examples I oo Log
» (= Hitex o 1 STM32F30 DFP STMicroelectronics STM32F3 Series Device Support and Examples K)
» (= Infineon 4 3 STM32Fho DFP (installed STMicroelectronics STM32F4 Series Device Support, Drivers and Examples o o6
> & Keil 1 %8 260 (installed) Updated STMicroelectronics STM32CubeF4 Firmware Package to Version 180 ad... oo o3
> B Maxim m 5° 250 G01MB) Updated to STMicroelectronics STM32CubeF4 Firmware Package V1.6 o o4
» (2 Micrasemi 58 240 213M8) Required PACKs: ARM.CMSIS 4 3.0.pack, Keil MDK-Middleware6 30.pack, KeilAR.. o Lo3
> B NGX = W 102
» (= NordicSemiconductor =g % 101
» &= Nuvoton % 100
> B NXP 8 001 o
» (> Silicon Labs - <[m v
& Console 51 BpfE MmBE-N-=0B
GNU ARM Eclipse Packs consale
I 2015-18-19 17:82:52 -
Parsing "C:\Users\mhf\Packages\Keil\STM32F4xx_DFP\2.6.8\Keil.STM32F4xx_DFP.pdsc”. .. j
Parse completed in 47ms. 3
| '

13. Referto http://gnuarmeclipse.github.io/tutorials/blinky-arm/. Build
the project and run the program on the Discovery Board emulator:

i ST Discovery kit for STM32FA07/417 lines " s =)

vd|@ ©| sd

WIOJ" 1S MMM

2 la L-.:i* =

= il

(3]
0

ST-LINK
| =]

2=
w
a
3
e}
B
£
2,
&
o
(=]
" <
(1]
5
<

[N __E
DISCOVERY (&

Ly
4

Chapter 9

Assuming that we successfully ran this code, then we have a working IDE. The Blinky wizard
generates C++ code, so it may look a little strange. Don't worry; for the next recipe we'll create
a C project.

Programming the MCBSTM32F400

evaluation board

This recipe will detail modifications that are necessary for the Blinky program created by the
Eclipse project wizard and will show how to use the MDK-ARM Eclipse plug-in to flash the
STM32F4071G part. We'll call this recipe GNU_ARM Blinky c9vo0.

How to do it...

Invoke Eclipse.

The MCBSTM32F400 evaluation board uses the STM32F4071G device, so we install
the pack supporting this. To install the pack, switch to the Packs perspective and
right-click the name of the pack:

S Packs - Blinky MCBSTM3ZF00_26.0DFP/src/BlinkLed.c - Echipse oo e

Fle fdit Source Refactor Navigate Seach Project Bun Vison Window Help

i [lin B A E T e e s e/ [METam)

B Devic. 13 @ = O |%Packs all= § ¥ = O g Outline B v=0
el % Name Description STM32F4 DFP

(& ABOV Semiconductor B STM32FLi DFP (installed STMicraelectronics STM32FL Series Device Support, Drivers and Eamples
(= Ambig Micre B s , Diivers and Eamples
(> Anslog Devices Series Device Support SR SAMpIES

AR STM32Fnc DFP (installed S Drivers and Eemples

(& Atme Updated STMicroelectronics STM32CubeFd Fimuare Package to Version 150 a

(= Freescale Jpcatecl 1o S INE2CubeEs 7

(& Holtek Required PACKs: ARM.CMSIS.4 3.0.pack, Keil MDK-Middleware 3.0.pack, Keil AR
Infineon - USB Host:
Maim PACK based on s STM32CubeF4 Fi ge V130

& Microsemi

PACK Based on STMicroelectronics STM32CubeF4 Firmware Package V130

(= Nordic Semiconductor Workshop Relesse not released publically

= Nuvoten Device: Start CC added, conditicns extended to reflect toclchain depe...
e Updated UA ded UART, UARTS)
(= Renesas Added
(& Silicon Labs Added STMI2FA01 devices
&= SONIX Updated drivers (namespace prefix ARM_ added)
& Spansion 80 103 (n/a) Added MCBSTM3ZF00 Board Support Bundie
STMicroelectronics %% 102 (n/3) Added emWin Example and GUIDemo for MCBSTMB2F400
Texas Instruments
Toshibe & Blinkied.c £

void
blink_led_init()
12 {

_2.6.00FP_elf 2

_MCESTH32F400_2.6.00FP. e1f" "Blinky MCBSTH32F460_2.6.00FP. hex"
y_PCBSTH32F400_2. 6. 80P hex

Invoking: Cross ARM GNU Print Size

255

Embedded Toolchain

3. Refertohttp://www.keil.com/support/man/docs/ecluv/ecluv_
flashSetup.htmand install the MDK-ARM Eclipse plug-in. Note that, once this
plug-in is successfully installed, the uVision icon and menu will appear in the toolbar:

© /G - Blinky. MCESTVB2R0/sro/main.c - Eclipse

File Edit Souce Refacior Mavigate Search Project gm-mndw Help
- RS SR 'ﬁ-,-"t"b'#'c'q"l-,t‘_, Vi e (] S s Rk Aroic o ([

Project Explore;

= =0 [@ meine 32 =10 BEou. &2 =.8
SRR e

M stdioh

M stk

o disg/Traceh

U Timerh

u

#

#

.

& Blinkledh
BLINK_OM_TICKS
BLINK_OFF TICKS
main(int, char(]) 1 ot

& Console 2 4B BEEER B rri-=¢

COT Build Console [Elinky MCBSTNE2F400_2 6.00FP]

Witable Smart Insert 131 C/Ces Indever: (0%}

4. Switch to the C/C++ perspective. Select File — New —C Project and create a new
project; give the project a name, select the STM32F4xx toolchain, and click Next:

S CProject o[-
€ Project =
Create C project of selected type

Project name: Blinky_MCBSTM32F400

¥ Use default location

s\mhf\workspace Blinky_MCESTM32FA00
efaul
Project type: Toolchains:
GNU Autotools Cross ARM GCC

Executable

& Empty Project
Hello World ANSI C Project

Hella World ARM C Project

Hello World ARM Caortex-M C/C++ Project
Freescale Kinetis KLice C/C+-+ Project
Freescale Processor Expert C/C++ Project
STM32F0hx C/C+ = Project

STM32F10x C/C++ Project

STM32F2x C/C

Project

STM32Fhx C/C+ + Project

Static Library
Makefile project
« 0 v

71 Show praject types and toolchains only if they are supported on the platform

I’?: B | Mext > Einisk Cancel

256

Chapter 9

5. Choose the STM32F407xx Chip Family, and select None (no trace output) in

Trace output:

£ C Project [==l
Target processor settings —
Select the target processor family and define flash and RAM sizes,
Chip farmily: L N 5.
Flash size (kB): 1024
External clock (Hz): 5000000
Content Blinky (blink a led) -
Use system calls: @cs{onding {ne POSLX system culE) - |
Taceoupst (Homeinonaceoutput > -]
Check some wamings |/
Check most warnings
Enable -Werror
Use -Og on debug /|
Use newlib nano il
Exclude unused El
Use link eptimizations
@ [<Back][hea> Cancel

6. OpenBlinkLed.c;intheblink led int () function, search for the

following statement:

GPIO_InitStructure.Pull = GPIO_PULLUP;

Replace this statement with the following one:

GPIO_InitStructure.Pull = GPIO_PULLDOWN;

257

Embedded Toolchain

7. Open the header file named BlinkLed.h. Replace the STM32F4DISCOVERY
definitions with the following:

// MCBSTM32F400 Eval. Board defs (led G6, active high)

#define BLINK PORT NUMBER (6)
#define BLINK PIN NUMBER (6)
#define BLINK ACTIVE LOW (0)
& CICe+ - Blinky MCBSTHIZFAN finclude/BlinkLed.h - Eclipse e e)
Eie Edt Sowce Refctor Movigate Segrch Project Bun Vision Window Help
e R SR W INE - SR c R s e RO R e R i PR L R Quick Acces: 5 | [EICrCes | % Packs
T2 Project Explorer ; = ¥ = B |[gmaine [dBlinklede [Sinkedh 52 & ou. B r
scovery 5 Bif de BOARD_OLIMEX STH32 E367) - R R e
iy MCESTMEZFI00 BLINKLED H_
S Includes h
< _initialize_hardware.c 21 sdefin INK_PORT_NUMBER (3]
&) _writec ndefine BLINE_PIN NUMBER (13
€| BlinkLed.c i 8define BLINK_ACTIVE_LOW)

MEER
Lo

U
BLINK_ACTIVE_LOW
0

iHssssaNREEs

5 Sdefine BLINK_GPION{ W) {(GPIO_TypeDef *)(GPLOA_BASE + (GPIOB_BASE-GPIOA_BASE)™(I~

B Console © s+ (@) 2 REA

COT Builki Console [Blinky_ MCBSTM32Fa00]

Writable SmortTnsert | 38:1

Select Project — Build All and build the project (or use the hammer icon shortcut).

9. Select U-Link Load — Flash Download Configurations... and create a new
configuration as shown in the following screenshot. Note that selecting Target
Options will open the familiar uVision project options dialog window.

258

Chapter 9

| X|E B~ Nang€ Blinky_MCESTM32F400(Blinky_MCBSTMI2F400.her)

type filter test A Main T Source M Trvwonmen
i pplication with yision Debugger

¢ MCBSTMEZF400 1.0 80FP hex Eclipse project
 MCBSTM22F400_2.5.0DFP.hex [Browe. |
Browse..
Target device to debug spplication
STMBIRAOTIG (STMicroelectronics) select..

| Target Qptions.]

8 Blinky_MCBSTM3ZFA00{Blinky_MCBSTMI2F40D.hex)
K Blinky_MCMSTREZC hex
& wvision Project

Application ta debuig
Debugy/Blinky_ MCBSTMIZFE00 hex

Connection
Port number: 5101

o

Glose

10. Select Flash Download. We may need to reset the board (depending on how we set
the Target Options).

We've simply configured the U-Link as a device programmer in this recipe. If you find that this
doesn't work, then refer to http://www.keil.com/support/docs/3061.htm. Copy

the . hex file created by Eclipse to a uVision project and use uVision to flash the board. You
may need to use the UL2_ EraseFW.exe utility that we discussed in Chapter 2, C Language
Programming. If you do erase the U-Link firmware and subsequently flash the board using
Eclipse, then expect the following to appear in the uVision Output Console:

S e - Eeige =5
Bl ff Jowce Reljor Nedgete Sepch Project Bus e Windew - Help
e SN s g ce Gy G OO e d N S] = | [T Pres
Prajeot Expleem w " af O 5ol o
& Benky Decevery
i By MCMSTMBITC in putiine @ not svadebile
) Comosle L b #8-0

ision Dstput Conscle

L iy MCMSTMTIC

259

Embedded Toolchain

The calls to the trace printf () function that appear in main can be ignored (or commented
out). They are present to allow text strings to be displayed in the console debug window using a
U-Link communication channel; however, although they work with the discovery board emulator,
they don't with the U-Link2 hardware. This is not a serious problem because Chapter 2, C
Language Programming describes other equally good approaches to debugging code.

You may have noticed that the GPIO support for LEDs provided by the Eclipse wizard is
inferior to that in uVision. To drive multiple LEDs, we'll need to adapt some of the functions
in the LED. c uVision file that is part of the Hello Blinky project that we encountered in
Chapter 1, A Practical Introduction to Arm® Cortex®.

How to use the STM32CubeMX Framework

(API)

uVision5 provides two routes for users to configure their RTE. The first option, called Classic
(used for all the recipes in Chapters 2-8), configures the STM's Hardware Abstraction Layer
(HAL) using the RTE_Device.h header file. This option allows users to quickly configure the
RTE for most CMSIS-enabled devices. The second option uses STM's graphical configuration
tool, STM32Cube MX, to perform low-level configuration of the HAL directly. Example projects
using both approaches are shipped with recent versions of Device Family Packs (for example,
DFP 2.6.0). This recipe (hamed ARM_STM32CubeMX Blinky c9v0)shows you how to build
a Blinky project using STM's tool.

How to do it...

1. Create a new project named STM32CubeMX_ Blinky. Choose the STM32F407IGHx
device.

2. Configure the RTE for the MCBSTM32F400 board. Check the Board Support — LED
(API) and Device — STM32Cube Framework (APl) — STM32CubeMX options. Then,
select Resolve and OK.

3. If you haven't installed STM32CubeMX yet, you will be prompted to do so. It is freely
available from www . st . com (search for STM32Cube initialization code generator).

4. If you have installed STM32CubeMX, then you should see this window asking you to
launch the program:

260

Chapter 9

MDK: Requires Code Generation by: "STM32CubeMX ' |t |

e —

@=% Aselected Software Component requires code generation or
W' configuration by an external code generator.

Component:
Keil:Device:5TM32Cube Framework:STM32CubeMX

Program:
STM32CubeMX

Generates:
EACMP_D_HSWI124MArchiveh\2015-16\TeachinghCMP-6024 B\boolk\G50
3EN_09_ForRewrites\Progs\ARM_STM32CubeMX_Blinky_cSvO\RTE\Devi
ce\STM32R071GH:\FrameworkCubeMX.gpdsc

Do you want to launch Program?

5. Once STM32CubeMX is launched, you should see the initial welcome screen. Choose
New Project:

© STMIICubeMXUntitind S Mg S— e S— - T [] |
buiosoice ot cur i o

RoBRUR &8 o 4

New Project
Load Project

H Help

261

Embedded Toolchain

6. You should now see the microcontroller part rendered on the screen, as in the
following screenshot:

[bW & D ke cument sgnaistlacement 6 0 (] = @ o Pnd o@D @

5 DAC

CE L]

Hoe 12
e 123

e 1252

= o ns3

s WG
il = o rec

s ® RNG
@ s are
R 1
e SPTL
o & S
18 SPID
W = s¥s
=ow TIML
s TME

7. Select pin [G1] (left mouse button) and use the drop-down menu to configure the pin
as RCC OSC IN, as in the following screenshot:

o STM32CubeMX STCubeGenerated.ioc: STM3ZFAITIGH: - e - E‘Eﬂl

File Project Pinout Window Help

B MUE &5 Creponctspdstacmet 9 o 0 = @ < Frd] w|o L @ shonusertabel |7 P & |
Pinout | Clack Cenfiguratian | Configuration | Pewer Consumption Calculatar | |
[Configuration -
(- MiddleWares

o FATFS

& FREERTOS

(]

[}

c E
£1-Peripherals

© ADC1

& ADC2

© ADC3 —
o cam
& cAMZ [G1]-PHO-0SC_IN :
% CRC
& DAC
% DEMI ‘ '
© ETH

& FSMC
o I2C1
v 22
o 1203
o 1252
o 1253

“ TWDG
& RCC -

262

— ———

RCC_OSC_IN (High Speed Clack (HSE) Crystal/Ceramic Resonator)

Chapter 9

8. Similarly, configure pin [H1] as RCC 0SC OUT.

9. Expand Peripherals — RCC and use the drop-down menu to configure the HSE to
use a Crystal/Ceramic Resonator:

— —
0 STMiZCubeMXSTC_:A.be(ﬁzmtad.Wn(:gMSZFAOHGHx - T - (=]]

—
o LR —] -

File Project Pinout Window Help
G B EE & O ke curentSgnalslacement 9 o (] — @ < Find| v | O G @Ishowusertabel (7D 1 &

Pinout | clock Configuration | Configuration | Power Consumption Calculator
71203

@ 1252
@ 1253
@ IWDG
I % RCC
High Speed Clock (HSE)
i [] Master Clock Output 1
- [7] Master Clock Output 2
e [7] Audio Clock Input (125_CKIN)
“ RNG
@ RTC
@ SDIO
@ sPI1
© SP1I2
@ SPI3
“ sYs
@ TmM1
@ TIM2
o TM3
@ TIM4
@ TIMs
@ TIM6
o TIM7 -

m

10. Open the Clock Configuration tab and configure the clock tree to use a 25 MHz input
(crystal), set the clock divider, and select PLLCLK to give a SYSCLK frequency of 168
MHz. Also, set the AHB, APB1, and APB2 Prescalers:

—— . | [hiniz)

. e . - | —
“——» I | Ta TWDG [KHe) Emﬁ‘:;&
e o i & e T ——

I | Pk Corten seck (W)
|| srscupe | ame b e o) AR B
e I T E T '““Zlm. gl

i o - 2 -{Ilmnnmtmx]
o g | rop—
Bt E R “rlden m-: - o
It ey was] [Pl - ame e i -
rar i i oY i® =03 e | A e doda (i)

T - Aibz docks {Mitr)

Hain PLL

mugs Y X % S 125 cheuchs {MHE)

263

Embedded Toolchain

11. Select Project — Generate Code.
12. Select File — Save Project. Note that the Toolchain / IDE is EWARM:

Project Settings =X

UjEE"T‘Z.i Code Generator

Project Settings
Project Name

STCubeGenerated

Project Location
_0%_ForRewrites\Progs\ARM_STM32CubeMy_Blinky_covl\RTE\Device\STM32F407IGHK ‘ Browse |

Toolchain Folder Location
{_0%_ForRewrites\Progs \ARM_STM32CubeMy_Blinky _cSvD\RTE \Device\STM32F407IGHx\STCubeGenerated’,

Toolchain / IDE
EWARM -

Mcu and Firmware Package
Mcu Reference
STM32F4071GHx

Firmware Package Name and Version
5TM32Cube FW_F4 v1.9.0

Ok | ‘ Cancel

13. Select OK; then, quit STM32CubeMX by navigating to File — Exit.

14. We should see the following message when we return to uVision. Select Yes to import
the code that we've just generated:

pVision

'.6.' For the current project new generated code is available for import.

Project:
EACMP_D_HSWI124MArchive\2015-16\Teaching\CMP-6024B\book\650
3EN_09_ForRewrites\Progs\ARM_STM32CubeMX_Blinky_chNSTM32C
ubeMX_Blinky.uvprojx

Generated:

EACMP_D_HSWI124 \Archive\2015-16\Teaching\CMP-6024B\book\650
3EN_09_ForRewrites\Progs\ARM_STM32CubeMX_Blinky_ch\RTE\Devi
ce\STM32F07IGHx\FrameworkCubeMX.gpdsc

Import Changes?

Chapter 9

15. Open the Project tab and check whether we have successfully imported the code:

File Edit View Project Flash Debug Peripherals Tools SVCS ow Help

DS d] 6]2 o] o | P nnmEEendwomwos 2@ 600 |ETR

e g | 8 Terget1 EEIN Y]

Project @

=% Project: STM32CubeMX_Blinky
g Targetl
-3 Source Group 1
-3 STM32CubeMX:Common Sources
®- % Bosrd Support
& cmsis
=4 Device
%7 stm32thoc_hal.c (STM32Cube HAL:Comman)
%7 stm32fhoc_hal_cortex.c (STM32Cube HAL:Cortex)
%] stm32hoc_hal_gpio.c (STM32Cube HAL:GPIO)
%7 stm32fhochal_pwr.c (STM32Cube HALPWR)
%7 stm32fboc_hal_pwr_ex.c (STM32Cube HAL:PWR)
[*7 stm32fboc_hal_rec.c (STM32Cube HALRCC)
[* stm32fdoc_hal_rec_exe (STM32Cube HALRCC)
|1 stm32f4xc_hal_msp.c (STM32Cube Framework:STM32CubeMX)
|1 stertup_stm32f407xcs (Startup)
|1 system_stm32fdsoc.c (Startup)

1 L

[l project | @ Boaks | £} Functions | (I, Templates |

Build Output LN

4 »
ULINK2/ME Cortex Debugger 1 CAP NUM SCRL OVR R /W J

16. Open the file, main. ¢ (found in folder STM32CubeMX : Common Sources), navigate
to themain () function definition, and add this statement in the section identified by
the /* USER CODE BEGIN 2 */comment:

LED_Initialize ();

17. Add this code fragment in the section identified by the /* Infinite loop */
comment:

LED On(0) ;

for (i=0; 1<1000000; i++)
LED Off (0) ;

for (i=0; 1<1000000; i++)

18. Remember to declare the loop variables: i and #include "Board LED.h".
19. Build, download, and run the program.

265

Embedded Toolchain

We've used STM32CubeMX to generate a very basic runtime environment. We're still using
the Board Support API to provide functions to configure GPIO and drive LEDs. STM32CubeMX
is much more powerful, and we've only illustrated a very basic configuration. More details and
further tutorials can be found at www. st . com.

There's more...

We can also use STM32CubeMX to configure the GPIO pins that are used to drive the LEDs.
We illustrate this in the ARM_STM32CubeMX Blinky c9vil:

1. After configuring the oscillator (Step 7), select each of the GPIO pins that are
connected to the LEDs (GPIO PG6,7,8, PH2,3,6,7, PI10) and configure them as
outputs, as in the following screenshot:

"5 STME2CubeMX STCubeG diuc STNZHOIGHS = - 5 [P
File: Proect: Pinous Wiedow Help —
P B & D [Mreocument sonalslscement @ o O — @ 4 Fnd -l G Mtevsebd P §
| Pooust | Qock Combiouration | Configuraion | Pawes Consumpiion Cakaiater |
[Configqueation .|
[Middlrwares.

i & FATFS

T o FREERTOS

o e

Be

@8

= Peripherals
& ADCL
&8 ADC2
&5 ADCE
@8 cmt
s CAN2
- & (RC
& o DAC
i+ % DML
4% ETH
4w FEHE
4w 1201
w12
4 = 1y
em 12%2

266

Chapter 9

2. Then, select the GPIO menu in the configuration tab to set the other GPIO pin
parameters (GPIO Mode, Pull-up, and so on.):

-
% Pin Configuration Iﬁ
et

Search Signals
Search (CrH+F) [Show only Madified Pins
=
Pin Name Signal on Fin GPIO mode GPIO Pull-up/Pu... Maximum outpu. .. User Label Modified
PGE nfa Output Push Pull [No pull-up and no... |Low LED 4 ¥
PG7 n/fa Cutput Push Pull |No pull-up and no... [Low LED 5 V]

l{Fcs nfa Output Push Pull [No pull-up and no... [Low LED & ¥l |
PH2 nfa Output Push Pull [No pull-up and no...|Low LED 7 Fl
PH3 nja Output Push Pull Mo pull-up and no... Low LED O V]

PHB nfa Output Push Pull Mo pull-up and no... Low LED 1 ¥
FHT nfa Output Push Pull Mo pull-up and no... Low LED 2 V]

{[PT10 nja Output Push Pull Mo pull-up and no... [Low LED 3 ¥ I
|?| Select Pins from table to configure them, Multiple selection is Allowed.

[] Group By IP ’ Apply] [Ok] [Cancel

3. Use sTMCubeMX, as we did before, to generate the code. When we open the main.c
file, we should now find that STM32CubeMX has added code to configure the GPIO
pins in the MX GPIO Init () function, as follows:

void MX GPIO Init (void)

{

GPIO InitTypeDef GPIO InitStruct;

/* GPIO Ports Clock Enable */
__GPIOI_CLK ENABLE() ;

267

Embedded Toolchain

__ _GPIOH CLK ENABLE() ;
__ _GPIOG_CLK ENABLE() ;

/*Configure GPIO pin : LED 3 Pin */

GPIO InitStruct.Pin = LED 3 Pin;

GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;

GPIO InitStruct.Pull = GPIO NOPULL;

GPIO InitStruct.Speed = GPIO_SPEED LOW;

HAL GPIO Init (LED 3 GPIO Port, &GPIO InitStruct);

/*Configure GPIO pins : LED_7_ Pin
LED 0 Pin LED 1 Pin LED 2 Pin */

GPIO InitStruct.Pin =

LED 7 Pin|LED 0 Pin|LED 1 Pin|LED 2 Pin;
GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
GPIO InitStruct.Pull = GPIO NOPULL;
GPIO InitStruct.Speed = GPIO SPEED LOW;
HAL GPIO Init (GPIOH, &GPIO InitStruct);

/*Configure GPIO pins : LED 6 Pin LED 5 Pin LED 4 Pin */
GPIO InitStruct.Pin = LED 6 Pin|LED 5 Pin|LED 4 Pin;
GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;

GPIO InitStruct.Pull = GPIO NOPULL;

GPIO InitStruct.Speed = GPIO SPEED LOW;

HAL GPIO Init (GPIOG, &GPIO InitStruct);

}

4. TheMX GPIO Init () function that was generated by STM32CubeMX is almost
identical to that of LED Initialize ().As such, there is no need to call LED
Initialize () before calling LED On() and LED Off ().

268

Chapter 9

How to port uVision projects to GNU ARM

Eclipse

STM32CubeMX can also be integrated within the Eclipse IDE and used to configure the RTE
in a similar way because it is used by uVision. However, although STM provides a plug-in to
invoke STM32CubeMX (refer to STSW-STM32095 at www . st . com), the current situation is
that the code generated is not automatically copied across to the Eclipse project. Luckily,
there is a Python v2.7 script called CubeMXImporter that allows this to be done easily
(note that the procedure is documented at http://www.carminenoviello.com/). As
Carmine documents this process so thoroughly, this recipe will just explain how to port one
of the recipes that we developed earlier in the book. We've chosen Hel1loLCD_c2vO0 from
the Writing to the GLCD recipe in Chapter 2, C Language Programming, to illustrate this
procedure; we call this recipe: Eclipse STM32CubeMX HelloLCD c9voO.

How to do it...

1. Follow the instructions at http://www.carminenoviello.com/ and create a
new Eclipse project using the GNU ARM Plugin (that is, navigate to File — New —
C Project). We'll assume that this project is called test5. Use the Hello World ARM
Cortex-M C/C++ project template. Note that STM32F4071G has 1024 Kb Flash and
192 Kb RAM.

2. Install and invoke the STM32CubeMX Eclipse plug-in (refer to UM1718 sections 3.2.2
and 3.4.3 at www . st . com). Note that, alternatively, we can run STM32CubeMX as a
standalone application.

3. Use sTM32CubeMX to configure and generate code for the STM32F407IGHX exactly
as we did in the ARM_STM32CubeMX Blinky c9v0 folder in the How to use the
STM32CubeMX Framework. Note that it's really important to choose SW4STM32 as
Toolchain/IDE (rather than EWARM) before generating the code. Note that | named
my STM32CubeMX project mymcu.

4. Openacommand window and run the following:

$python cubemximporter.py <path-to-eclipse-workspace>/test5 <path-
to-cubemx-out>/mymcu

269

Embedded Toolchain

5. We now need to import the Board Support to handle the LCD. We can locate the
necessary source and include files by right-clicking them in the Hel1oLCD_c2v0 folder
in the Writing to the GLCD recipe in Chapter 2, C Language Programming:

L5 Project Explorer 23 =i L |

I Blinky_MCBSTM32F400+ CubeMXx
4 =% Hello_LCD_MCBSTM32F400+ CubeMX
4 Binaries
wjl Includes

.
Lg| GLCD_Fents.c
L] GLCD_MCBSTM32F400.¢

Le| stm32fdnoc_hal_msp.c
.c| stm32fdae_it.c

4 (£ system
= include
&= src

(= Debug

4 oE

Board_GLCD.h
GLCD_Cenfigh

()

]

i)
Uil stm32fdxc_hal_conf.h
| stm32fdsec_ith
Idscripts

0 items selected

THal I = m— ——

6. Openmain.c and update main () as follows:

int main(void)

{

/* Reset of all peripherals, Initializes the Flash
interface and the Systick. */
HAL Init();

/* Configure the system clock */
SystemClock Config() ;

/* Initialize all configured peripherals */
MX_GPIO_Init();

/* USER CODE BEGIN 2 */

270

GLCD Initialize();

GLCD_SetBackgroundColor (GLCD COLOR_WHITE) ;
GLCD_ClearScreen (); /* clear the GLCD */
GLCD_SetBackgroundColor (GLCD COLOR_ BLUE) ;
GLCD_SetForegroundColor (GLCD COLOR WHITE) ;
GLCD_SetFont (&GLCD Font 16x24) ;

GLCD DrawString (0, 0%*24, " CORTEX-M4 COOKBOOK ") ;

GLCD DrawString (0, 1%*24, " PACKT Publishing ");

GLCD_SetBackgroundColor (GLCD COLOR WHITE) ;
GLCD_SetForegroundColor (GLCD COLOR BLUE) ;
GLCD DrawString(0,3*24," Hello LCD ") ;
GLCD DrawString(0,4*24," ARM GNU Eclipse!");

Chapter 9

/* USER CODE END 2 */

7. Create a Flash Download Configuration and flash the program. (Note that Target

Options invokes uVision5.):

% Flash Download Configurations

Create, manage, and run configurations

=X B33~

4 3 C/C++ Application with pVision Debugger
3 Blinky_MCBSTM32C
{3 Blinky MCBSTM32F400 HEX
K Blinky_MCESTM32F400(Blinky_MCBSTM32F400.2lf)
WVision Project

Filter matched 5 of 5 items

Narne: Blinky_MCBSTM32F400_HEX
ﬂ Main

Eclipse project

E‘é Source EEnvirUnment Egummun

/Helle_LCD_MCBSTM32F400+ CubeMX

Application to debug
Debug/Hello_LCD_MCBSTM32F400+ CubeMi hex

Target device to debug application
STM32F4071G (STMicroelectronics)

Cennection

Port number: 5101

Browse...
Browse...

Select...
Target Options...

Flash Dawnload] ‘

Close

271

INDEX

Index Terms

A

ADC1
Alternate Function (AF)
Analog-to-Digital converter (ADC)
about
setting up
aperture time
arithmetic operations
performing
ARM Architecture
URL
ARM Architecture Procedure Call
Standard (AAPCS)
about
URL
ARM Assembler Directives
URL
ARM Unified Assembler Language
URL
ARMV7-M
URL
Arturo Campos
URL

Links

[EEN

[SN

w

o
= == | =
ol
w @R[N

35

= =
o

3

-~

76-82

11

»

1
15

~

2

e

112

N
N

192

Index Terms

ASCII code
URL

assembly language
and C, parameters passing between
debugging
interrupts, handling

audio codec
configuring
control, creating
driver, writing for
using

automatic variables

B

Baud Rate Register (BRR)

bitmapped Graphics
designing

bits

branch indirect (BX)

branch-with-link (BL)

C

C

and assembly language, parameters passing between

camera
using

Cirrus Logic
URL

Classic

6

131-133
121-126

196-205
215-218
171-179
179-184

[y
w = [S)]
© =

(o)
g}

189-194

[E
[N
(S}

[N
=l lw a1
ol | o

116-121

184-188

1

71

260

177

Index Terms

CMSIS-RTOS

about

used, for debugging programs
code

debugging, print statements used

Complex Instruction Set Computing (CISC)

architectures
console window
writing to
context switch
CooCox
URL
Cortex-M3 and M4 processors
URL
Cortex-M4 assembly language
user guide, URL
writing
Cortex Microcontroller Software Interface
Standard (CMSIS)
C program
writing, to blink each LED in turn
C Programming Language (C11)
online resources, URL
URL

D

Data Communications Equipment (DCE)

Data Holding Register (DHR)
configuring

Data Output Register (DOR)

220-222
244-248

68-71

N
N

N
| W
N | O
ol N

4

©

[EE
[EEY

111-116

(o]
w

31-37

[N
NN N
a1l |o w

[N

55
55

i

©
B

Index Terms

Data Register (DR)
Data Terminal Equipment (DTE)
data types
URL
debugger
using
decrementer
digital clock
creating, Timers used
Digital Signal Processing (DSP)
Digital-to-Analog converter (DAC)
about
setting up
directives
URL
Direct Memory Access (DMA)
Discovery Board emulator
driver

writing, for audio codec
E

Eclipse IDE
URL

emIDE
URL

end of conversion interrupt (EOCIE)

evaluation boards schematic
URL
event flags

used, for multithreaded programs

L.
>
=
7

N

[y
w
H E

5

~
e
~
w

N
w
N

105-

[HEN

08
3

N

w
(&3]

153-156

54

N || =
ol [w
I BlEle Il 3

171-179

250

49

= [ro
[~

222-229

[y
©
a1

184

Index Terms

exception
Executable and Linking Format (ELF)

F

Finite Impulse Response (FIR) digital filter
finite-state machine (FSM)

Floating Point Unit (FPU)

format control string

functions

writing
G

game application
stage 1, creating
stage 2, creating

GCC ARM Embedded Toolchain
URL

General purpose input/output (GPI10O)
configuring

general purpose timers
configuring

GLCD
accessing, mutex used

GNU ARM Eclipse
components, URL
installing
port uVision projects, porting
plug-ins, URL
URL

L.
>
=
7

N
[

==
=
SN

=N
| IN]| |of |
~N||©

IH!

37-42

16-21

144-149

237-240

250

250-255
269-271

N
a1
o

218

Index Terms

GNU ARM Eclipse QEMU Emulator plug-in
URL

GNU ARM OpenOCD Debugging plug-in
URL

GNU General Public License
URL

GPIO ports
configuring

Graphic LCD (GLCD)

H

Hardware Abstraction Layer (HAL)
hierarchical decomposition

high speed external (HSE) clock
high speed internal (HSI) clock

12C Peripheral Bus

RTE, setting
incrementer
Infinite Impulse Response (1IR) filter
input data register (IDR)
Integrated Development Environment (IDE)
Integrated Interchip Sound (11S)
Inter-1C-Sound (12S)
Inter-Integrated Circuit (12C) Interface
Internal trigger inputs (ITRX)
interrupts

handling

in assembly language, handling

L.
>
=
7

N

~

50

50

7

o1 |eo
A
Sl e
|

()
=3
N o] [w] |w
[y i PR3 BN i P

164-167

1
0
49

[

NN
w
(=11 S

©
o1

1

[y
©
a1

164

101-105

H
N
e
= =
w S
- ~

260

Index Terms

Interrupt Service Routine (ISR)
J

jump table
implementing

K

Keil
URL

L

LCD touchscreen
using
Linaro
URL
linear-feedback shift register (LFSR)
Link Register (LR)
Lock Register (LCKR)
look-up-table (LUT)
low-pass digital filter

designing
M

machine storage classes

illustrating
mailboxes

used, for multithreaded programs
Master Clock (MCLK)

93

167-171

50
56
10

= | =]~
ol
\IE

208-215

83-85

229-232
196

207

204

Index Terms

MCBSTM32F400 Evaluation Board
programming
MDK-ARM Eclipse plug-in
URL
MDK Version 5 - Legacy Support
URL
microcontroller performance
estimating
Multiply Accumulator (MAC)
multithreaded Pong game
writing
multithreaded programs
event logs used
mailboxes used
mutex (mutual exclusion)
about

used, for accessing GLCD
N

nested functions
Nested Vectored Interrupt Controller (NVIC)

@)

OmniVision
URL

P

PackBits

255-259

50

52

241-244

222-229
229-232

232-236
237-240

N N
NN
w| |-

03

[ERN
w
]

186

192

N
N

N
[
(e}

Index Terms

parameters

passing, between C and assembly language

pass-by-reference
pass-by-value
Phase Locked Loop (PLL)
Pong

about

URL

Portable Operating System Interface (POSIX)

prerecorded audio

playing
primitive
print statements

used, for debugging code
Program Counter (PC)
programs

debugging, CMSIS-RTOS used
Program Status Register (PSR)
pulse width modulation (PWM) schemes
PUTTY®

URL

R

Real Time Clock Control (RCC)
Real-Time Library (RL-ARM™)
real-time operating systems (RTOS)

Reduced Instruction Set Computing (RISC)

architectures
Reset and Clock Control (RCC) unit
resistor-capacitor (RC)

116-121

a1l | N W] W
o1l (o | |O]||©

N

20

N
o
(IJ'I

N
wl o
Hm

[N

0

244-248

(o]

[N =
N
~| |~

N

4

NN
NN [©
ol |o| [©

NI
(gl P A TN

w
o

[y
S
!

Index Terms

RS232
URL
RTOS
Run-length encoding (RLE)
Run Time Environment (RTE)
about

setting, for 12C Peripheral Bus
S

Sample/Hold block
sample time registers
Semaphore
Serial Peripheral Interface (SPI)
about
URL
simple program
writing
sine wave
generating
Single Instruction Multiple Data (SIMD)
sound and graphics
used, for gaming ideas
sound for games
URL
Stack Pointer (SP)
Status Register (SR)
STM
URL
STM32CubeMX Framework (API)

using

=N
N Ol IN| |
o N | |O

164-167

w| |w
N

36

96
67

[EEN
o1

-
2]
~

= == N =] =
Nl |o
w| |+~

194

[(e]
IS

1

o

0

) NN
N
@ 13

260-268

Index Terms

STM32 microcontroller

string

struct (structure)

subroutines. See functions

Successive Approximation Register (SAR)
superloop

symbol table

system clock (SYSCLK)

T

Task Control Block
TIM1
TIM2
configuring
TIM8
Timers
used, for creating digital clock

used, for triggering conversations

U

UART ports
configuring
Unified Assembler
Universal Synchronous/Asynchronous
Receiver Transmitter (USART)
ULINK-2 adaptor
URL
ULINK-Pro
URL

C.
S
x
w

a1

= = =
| |w||w
(NI IR

6

Q| |on
(o] I P

=
o
[o0]

28

47

14

105-108
150-153

= =N
o
| |©

©

'

=

al =l |o
@@H!O

150

Index Terms

uVision5
about
installing
URL
uVision projects
porting, to GNU ARM Eclipse

W

WAV
Waveform Audio File Format (WAVE)
WAVtoCode
Windows Build Tools
URL

Y

YAGARTO
URL

L.
>
=
7

N
I =12

269-271

NN NN
ol |19 |1©
Ol |o] |o1] |on

S
251

249

