
www.allitebooks.com

http://www.allitebooks.org

An Introduction to
HTML5 Game Development
with Phaser.js

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://taylorandfrancis.com
http://www.allitebooks.org

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

An Introduction to
HTML5 Game Development
with Phaser.js
Travis Faas

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160404

International Standard Book Number-13: 978-1-138-92184-9 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Faas, Travis, author.
Title: An introduction to HTML5 game development with Phaser.js / author,
Travis Faas.
Description: Boca Raton : Taylor & Francis, CRC Press, 2016.
Identifiers: LCCN 2016008918 | ISBN 9781138921849 (alk. paper)
Subjects: LCSH: Computer games--Programming. | Internet programming. | HTML
(Document markup language)
Classification: LCC QA76.76.C672 .F335 2016 | DDC 794.8/1526--dc23
LC record available at http://lccn.loc.gov/2016008918

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://lccn.loc.gov/2016008918
http://www.copyright.com/
http://www.copyright.com/
http://www.copyright.com
http://www.allitebooks.org

Contents
Preface . xiii
Author . xv

Chapter 1: Introduction .1
1.1 Web Technologies. .1
1.2 Important Advancements .2
1.3 Where Games Are Played .3
1.4 Web Development in the Modern Day .4
1.5 Who This Book Is For .5

Chapter 2: State of HTML5 Games .7
2.1 Growth of the Interactive Capabilities of a Web Browser . . .7
2.2 Wide Selection of HTML5 Game Engines10
2.3 Tools .12

2.3.1 Phaser.js. .12
2.4 Basic Structure of an HTML5 Game Project13

Chapter 3: A Simple Game . 15
3.1 Game Goals .15
3.2 Setup .15
3.3 Getting Phaser .16
3.4 Getting the Images. .16
3.5 Setting Up the html .16
3.6 Preload Phase .17
3.7 Create Phase .18

3.7.1 Setting Up the Player and Cat .18
3.7.2 Adding the Score Text .19
3.7.3 Setting Up the Arrow Keys .19

3.8 Putting the Gameplay in the Update Phase.19
3.9 Collision Handler .21
3.10 Testing. .22

Chapter 4: Workspace Setup . 23
4.1 Installing Git .25

4.1.1 Node.js .25
4.2 Command Prompt .25

4.2.1 Opening the Command Prompt.26
4.2.1.1 Windows. .26
4.2.1.2 Macintosh. .26

4.2.2 Command Prompt Navigation26
4.2.2.1 Location .26
4.2.2.2 Entering Commands.27
4.2.2.3 Viewing Directory Content27
4.2.2.4 Changing Directories27

v

www.allitebooks.com

http://www.allitebooks.org

4.2.2.5 Quickly Opening a Folder in the
Command Prompt .27

4.2.2.6 Command Prompt Flags
and Arguments .27

4.2.2.7 Command Prompt Hints28
4.3 Node Package Manager .28
4.4 Installing Bower .29
4.5 Installing Browserify. .30
4.6 Babel and Babelify .31

4.6.1 Installing Grunt .32
4.7 Setting Up a Basic Project .32

4.7.1 Getting Ready .32
4.7.2 Getting the Grunt Packages. .33

4.7.2.1 Local Grunt .33
4.7.2.2 Grunt Connect .33
4.7.2.3 Grunt Watch . 34
4.7.2.4 Copying Bower Files to the Project 34
4.7.2.5 Babel and Babelify . 34

4.8 Writing the Grunt File . 34
4.8.1 module.exports .36
4.8.2 grunt.initConfig .36

4.8.2.1 Browserify Task. .36
4.8.2.2 Watch Task .37
4.8.2.3 Connect Task. .37
4.8.2.4 Bower Task .38

4.8.3 Loading Tasks .39
4.8.4 Registering Tasks .39

4.9 Testing Grunt .39
4.10 Installing Yeoman .41
4.11 Conclusion .42

Chapter 5: Phaser Project Setup . 43
5.1 Setting Up the html . 44
5.2 App.js . 44

5.2.1 Boot State .45
5.2.2 Preload State . 46

5.3 Testing the Setup with a Simple Game49
5.3.1 Before Starting Development .49
5.3.2 Getting and Loading the Assets49
5.3.3 Writing the Gameplay .50

Chapter 6: Phaser Principles . 55
6.1 Game Loop .56

6.1.1 Logic Update Step .57
6.2 States .58

6.2.1 Finite-State Machines .59
6.2.2 Creating a Phaser State . 60
6.2.3 Phaser State Flow. 60

vi

www.allitebooks.com

http://www.allitebooks.org

6.3 Display List .61
6.4 The World. .62
6.5 Camera .63
6.6 Loading and the Asset Cache . 64

6.6.1 Asset Cache . 64
6.6.2 Displaying Load Progress .65
6.6.3 Preloading Phase .65

6.7 Images. 66
6.7.1 Loading an Image . 66
6.7.2 Adding an Image into the Game 66

6.8 Sprites . 66
6.8.1 Loading and Using Static Sprites67
6.8.2 Sprite Sheets .67

6.8.2.1 Sprite Sheet Layout. .67
6.8.2.2 Loading a Sprite Sheet. 68
6.8.2.3 Specifying the Frames of a

Sprite’s Animation. 68
6.8.2.4 Playing an Animation. 68

6.8.3 Fixed to Camera .69
6.9 Texture Atlases .69

6.9.1 Loading Atlases. .69
6.10 Tile Sprites .71
6.11 Input. .72

6.11.1 Keyboard. .72
6.11.1.1 Testing if a Key Is Currently

Depressed . 72
6.11.1.2 Responding to Key Presses73

6.11.2 Pointers .73
6.11.3 Gamepad .74

6.11.3.1 Gamepad Buttons .75
6.11.3.2 Gamepad Joysticks .75

6.12 Sound .76
6.12.1 Loading Sound .76
6.12.2 Playing a Sound .77
6.12.3 Changing Audio Loudness .77
6.12.4 Audio Formats. .77
6.12.5 Decompressing Audio .78
6.12.6 Audio Sprite .79
6.12.7 Generating Audio Sprites .79

6.12.7.1 Installing Codecs .79
6.12.7.2 Using the Audiosprite Tool. 80

6.12.8 Adding Markers and Playing Audio Sprites81
6.13 Maps. .81

6.13.1 Scenes .83
6.13.2 Tilemaps . 86

6.13.2.1 Loading Tilemaps .87
6.13.2.2 Tiled . 88

6.14 Tweens . 88

vii

www.allitebooks.com

http://www.allitebooks.org

6.14.1 Writing Tweens .89
6.14.1.1 Tween Syntax .89
6.14.1.2 Tweenable Properties 90
6.14.1.3 Easing . 90
6.14.1.4 Chaining Tweens .91

6.15 Physics Primer. .92
6.15.1 Velocity .93
6.15.2 Forces . 99

6.15.2.1 Acceleration. 100
6.15.2.2 Friction (Drag). 100
6.15.2.3 Restitution (Bounciness) 100
6.15.2.4 Collisions. 101
6.15.2.5 Putting the Physics Properties

Together . 101
6.16 Phases of a Physics System. 101
6.17 Bodies . 102
6.18 Arcade Physics . 103

6.18.1 Bounding Boxes . 103
6.18.1.1 Changing Bounding Box Size 103
6.18.1.2 Debugging the Bounding Boxes 104

6.18.2 Quad Trees . 104
6.18.3 Collision. 104

6.18.3.1 Sprite versus Sprite 105
6.18.3.2 Sprite versus Group 106
6.18.3.3 Group versus Group 107

6.18.4 Gravity and Immovable Objects. 107
6.18.5 Drag and World Bounds . 109
6.18.6 Angular Velocity and Bounce 109

6.19 P2. .110
6.19.1 Setting Up the P2 World .111
6.19.2 Debugging Bodies. .111
6.19.3 Adding Basic Objects .111
6.19.4 Building Compound Objects .111
6.19.5 Adding Complex Objects .112

6.19.5.1 PhysicsEditor .112
6.19.5.2 Exporting from PhysicsEditor113
6.19.5.3 Importing and Using a Complex Shape . . . 113

6.19.6 Responding to Collisions. .114
6.19.6.1 Contact Signal .114
6.19.6.2 Collision Callback. .115

6.19.7 Collision Groups .115
6.19.8 Constraints .116

6.19.8.1 Lock .116
6.19.8.2 Distance .117
6.19.8.3 Spring .117
6.19.8.4 Revolute .118

6.19.9 Contact Materials .118
6.20 Particles. 120

viii

www.allitebooks.com

http://www.allitebooks.org

6.20.1 Particle Engine Components 120
6.20.1.1 Particle. 120
6.20.1.2 Emitter. .121

6.20.2 Setting Up a Burst Emitter .121
6.20.3 Setting Up an Area Emitter. 122

6.21 Signals . 122
6.21.1 Using a Signal . 123

6.22 Making a Custom Signal . 123
6.23 Removing a Listener from a Signal .124
6.24 Prefabs. .124

6.24.1 Making a Game Object Prefab 125
6.24.2 Making a User Interface Prefab 125
6.24.3 Using Prefabs. 126

6.25 Exists Flag. .127
6.25.1 Game Memory and the Garbage Collector.127

6.26 Object Pooling . 129
6.26.1 Life. .131

6.27 Animation .131
6.27.1 Rigs . 134
6.27.2 Animation Software . 135

6.27.2.1 For Creating Pixel Art 135
6.27.2.2 For Creating 2D Animations 135

6.27.3 For Both Art and Animations 135
6.28 Making Atlases . 136

6.28.1 Using Texture Packer . 136
6.29 Viewport Scaling .137

Chapter 7: Game Examples . 139
77.1 Shoot ‘em Up. 140

7.1.1 Preload Phase . 143
7.1.2 “Start” and “Game Over” States 144

7.2 Game Prefabs . 144
7.2.1 Player Prefab . 145

7.2.1.1 Player Motion . 145
7.2.1.2 Firing . 146
7.2.1.3 Player Health . 148

7.2.2 Enemy Prefab .151
7.2.2.1 Creating a Sinusoidal Motion151
7.2.2.2 Enemy Shooting. 152

7.2.3 User Interface Prefabs . 154
7.2.3.1 Score Field . 154
7.2.3.2 Healthbar .155

7.2.4 Game State . 156
7.2.4.1 Imports . 156
7.2.4.2 Create Method . 157
7.2.4.3 Update Method .159
7.2.4.4 Increment Wave Method 160

ix

www.allitebooks.com

http://www.allitebooks.org

7.2.4.5 Damage Enemy Method. 160
7.2.4.6 Damage Player Method.161

7.3 Game State Source Code .161
7.3.1 Wrap Up. 164
7.3.2 Tiled . 166

7.3.2.1 Laying Out a Map in Tiled.171
7.3.2.2 Adding In Metadata in Tiled171
7.3.2.3 Exporting a Tiled Map for Phaser 172

7.4 Making the Ground Fox Platformer . 173
7.4.1 Level Layout. 173
7.4.2 App.js .174
7.4.3 Preloading .174
7.4.4 Player Character Prefab .175

7.4.4.1 Player Prefab Constructor. 177
7.4.4.2 Player Prefab Update178
7.4.4.3 Player Prefab Animation Controller . . . 179
7.4.4.4 Player Jump Method 180
7.4.4.5 Player Flash Method 181

7.4.5 Mouse Prefab. 181
7.4.5.1 Mouse Constructor 182
7.4.5.2 Mouse Update . 183

7.4.6 UI Components. 184
7.4.6.1 Fixed to Camera . 185

7.4.7 Game State . 185
7.4.8 Level State . 185

7.4.8.1 Game State Constructor 187
7.4.8.2 Update Method . 192
7.4.8.3 Hit Enemy Handler 192
7.4.8.4 Hit Door Handler . 192
7.4.8.5 Hit Coin Handler. 193

7.4.9 Game Over State . 193
7.4.10 Conclusion . 194

7.5 Tower Defense . 194
7.6 Spatial Cues . 195

7.6.1 Overlapping Objects. 200
7.7 Rendering an Isometric Grid . 201

7.7.1 Isometric Depth Sorting . 202
7.7.2 Picking Grid Locations via Screen Position 202

7.8 Phaser Isometric Plugin. 203
7.8.1 Pathfinding. 204

7.8.1.1 Hardcoded Paths . 204
7.8.1.2 Pathfinding Algorithms. 205

7.9 Skeleton Shootout Project Design . 209
7.9.1 Asset Pack . 209

7.9.1.1 Tilemap .211
7.9.2 Prefabs .211

x

7.9.2.1 NumberBox .211
7.9.2.2 Human. .211
7.9.2.3 Skeleton .213

7.9.3 Game State .215
7.9.3.1 Imports .215
7.9.3.2 Create. .215

7.9.4 Conclusion . 223
7.9.4.1 Slicer Game Example 224

7.10 Gestures . 224
7.10.1 Creating a Gesture Manager for Phaser 229

7.10.1.1 Create Phase . 230
7.10.1.2 Update. 230
7.10.1.3 Pointer’s Speed and Velocity. 231
7.10.1.4 Up Handler. 232

7.11 Dealing with Stage Scaling . 232
7.11.1 Challenges of Stage Scaling . 233
7.11.2 Phaser Scale Modes. 233

7.11.2.1 EXACT_FIT . 233
7.11.2.2 NO_SCALE . 233
7.11.2.3 SHOW_ALL. 233
7.11.2.4 RESIZE . 234
7.11.2.5 USER_SCALE . 234

7.11.3 Resize Callback and Positioning Elements 234
7.11.4 Enforcing Device Orientation 235
7.11.5 Restricting Resize Zones . 236

7.12 Making 80’s Tech Slicer . 236
7.13 Slicer HTML and CSS. 237

7.13.1 CSS File. 237
7.13.2 HTML File . 238

7.14 Slicer Boot State . 238
7.15 Slicer Preload State . 238
7.16 Slicer Game State. 239

7.16.1 Game State Prefabs . 239
7.16.1.1 Device Sprite Prefab 239
7.16.1.2 SliceBody Prefab . 241

7.16.2 Game State . 242
7.16.2.1 Game State Imports 242
7.16.2.2 Game State Constructor 243
7.16.2.3 Create Method . 243
7.16.2.4 Spawning Waves . 244
7.16.2.5 Simple Responsive UI. 245
7.16.2.6 Slice Segment Life . 245
7.16.2.7 Slice Hit Method. 246
7.16.2.8 Update Method . 248

7.16.3 Conclusion and Future Additions. 251
7.16.4 Launcher Game . 252

xi

7.17 Additions to App.js . 254
7.17.1 Preload State . 255
7.17.2 Game State . 255

7.17.2.1 Create Method . 255
7.17.2.2 Reset Board . 258
7.17.2.3 Start Pull Method. 261
7.17.2.4 End Pull Method . 261
7.17.2.5 Update Function . 262

7.17.3 Conclusion . 263

Chapter 8: Game Deployment . 265
8.1 Web Deployment . 266
8.2 Creating the Grunt Production Task . 267

8.2.1 Clean. 268
8.2.2 Copy . 268
8.2.3 Uglify . 268

8.3 Build Task . 269
8.4 App Deployment. 269
8.5 Testing with CocoonJS . 270
8.6 Debugging Cocoon Apps. 271
8.7 Building with Cocoon JS . 273

8.7.1 Using the Cocoon Cloud Build 274
8.7.2 Using the Cocoon Command Line Tools 276
8.7.3 Configuring the Cordova/Cocoon Command

Line Tools . 276
8.7.3.1 Configuring the Command Line

Tools for Android . 276
8.7.3.2 Configuring the CLT for iOS 276
8.7.3.3 Building an Application File. 277

8.7.4 Creating an App Store Ready Package 277
8.7.4.1 Signing for iOS . 277
8.7.4.2 Signing for Android 277

8.8 Conclusion . 278

Chapter 9: Conclusion . 279

Index . 281

xii

Preface
If I had to give another title to this book, it would be “All the things I wish
I had known about HTML5 game development before I started.” New and
emerging technologies make mastering game development rather difficult.
Typically, there is a flurry of motion as people create new technologies,
experiment, and solidify best practices. I spent a lot of time during the
writing of this book delving into this storm of creation. I examined how
people were making their HTML5 games and what tools and technologies
they were experimenting with, and I was digging into the source code for the
Phaser framework. I have written this book to accumulate all this knowledge
into one place with the hope that another me out there is spared the fate
I chose for myself.

Anyone who is technically competent will tell you that writing a book on
technology, especially if it is new and evolving, is a losing game. Oftentimes
the technology will change so quickly that by the time a large scale project
is finished the new version of the game engine will be incompatible with
the original project. This remained true for this book, to the effect that every
chapter I wrote was rewritten with each new monthly release of Phaser.
I highly recommend that you take a look at the official Phaser website while
you read this book in order to see how the framework has progressed.

Knowing that technology will progress ever onward, I have attempted to
write a book that focuses on game development techniques and tooling,
using a specific build from the Phaser game engine as its base framework.
The intention is that you learn the basics of HTML5 game development
from this book and then you can apply it with Phaser or other similar game
engines out there. To help you with this process, this book has been broken
down into two major sections. The first section covers the basics Phaser’s
game engine, which can apply more broadly to a multitude of HTML5 game
engines. The second section then takes these basics and applies them in
the construction of a series of different example games. The purpose of the
second section is to show the basic building blocks that Phaser provides in
use inside of fully working game systems. This will give you both a better
understanding of how these elements can be used and you will have some
projects that can be used to kickstart your own development.

Like most human endeavors, this book has been a group effort. Many people
contributed to the content of these pages, sometimes directly, other times
in a more intangible manner. My biggest thanks must go to my wife, who
was kind enough to give up weekends and nights with me as I sunk into the
terrible depths of HTML5 game development. Claire, your wondrous patience
with my madness is always appreciated.

xiii

On the technical side of things, major thanks to Alex Porter for letting me
know I was mostly on the right track with my book. And sorry to my media
applications students. I told you all that you were just guinea pigs for my
ideas. I probably learned more from you all than you learned from me, and this
book shines because of it. One last technical thanks both to Adam Saltsman
for getting me into game programming originally with the wonderful
Actionscript 3 Flixel library and Richard Davey for making and leading the
development of Phaser.js.

Working with such wonderful art made the creation of these games in these
books a true pleasure. My wife, Claire, provided the lovely robot and glitch for
the shoot ‘em up, and Steve Brand did the great speedy fox platformer game
art. In the tower defense style game, I took the approach of using free game
assets to quickly prototype the game. The tileset is from Kenny Vleugels,
who makes a huge array of high-quality and free game prototyping graphics.
I highly recommend checking out his site, http://www.kenney.nl/assets.
Finally, the skeleton and human sprites were produced by Kacper Woźniak,
who has a lot of lovely work ranging from free to a few dollars per asset on his
site http://thkaspar.tumblr.com/.

As I previously mentioned, I like to think of this book as partially a message to
my previous self. I’d like to include my last bit of advice I would give to my past
self if I were so lucky to meet him: Don’t wait to make a game. I say this simply
because the world of game development is complex and is quickly changing.
Making a game is time consuming and requires hard work. It is going to take
you a long time to make something you’re happy with, so it is best to start at it
early. Once you get in there, you will learn that there is no better feeling than
putting everything together and having a little world come to life on your
screen. So go start making games. Every little one counts.

xiv

http://thkaspar.tumblr.com/
http://www.kenney.nl/assets

Author
Travis Faas has taught game and app development at Indiana University–Purdue
University Indianapolis (IUPUI) for half a decade. Before switching to a different
career as a teacher, he spent some time making cutting-edge interactive
websites for local, regional, and national clients. He loves the multidisciplinary
trait of game development because it keeps things fresh and can engage
people on a broad spectrum. For him, game development is just another way
to express oneself, and he wants to see as much variance and creativity in
those expressions as possible. When not teaching, he’s tinkering with new and
emerging technologies.

xv

http://taylorandfrancis.com

Chapter 1

Introduction

HTML and JavaScript (JS) are technologies out to change the world. Or,
more likely, they already have and have simply not given up on the change.
Hardly a single day goes by without a new capability being added to the
presentation powers of JS and HTML5. In a few short years, the web browser
has gone from being relatively slow to a media machine capable of rendering
games that people would swear were on modern gaming machines. Today it
is even possible to play games inside a web browser using only a game pad
one might use to play later on an XBOX or Playstation (and they will even look
as good). JavaScript and HTML have come a long way since their early days as
simply document markup and display.

1.1 Web Technologies
HTML5 and JS have a low enough learning curve and such a low barrier
to entry that many people have found they can quickly and easily find a
an outlet for their creativity using these technologies. Because the only
requirement for viewing HMTL5 projects is a modern web browser, one’s
output is easily shared across the web (and increasingly on mobile devices).

1

For slightly more complex creations, the developer might require a specific
web browser, but that is increasingly becoming the only limit on what is
needed to get someone up and running with an interactive web-based
project. This same limit applies to the creator—nothing more is needed to
get up and running and making things beyond having a text editor and a
web browser with the chops to make the code run.

Along with this easy-to-use environment comes a great community of other
creators who are committed to making tools, tutorials, and inspirational
media for the world to see and use. This community is excited about what
they are making, quick to help a newcomer, and always looking for ways to
make the creation of fun and interesting things easier and more enjoyable.
While community is not often talked about when technologies are discussed,
it is worth noting simply because as solitary as they may be, programmers
and developers love company, and the better the community, the more
enjoyable an associated technology tends to be.

The major web browser manufacturers—Mozilla, Microsoft, and Google—are
astoundingly dedicated to bringing their users (and thus the developers who
rely on these browsers for their capabilities) the latest and greatest features. It
is getting quite easy to access some of the most powerful features of a device
through easy-to-use APIs (application programming interfaces) made by the
hardworking people who make our web browsers. Today we have access to
things like geolocation, accelerometers, advanced audio, the canvas tag, and
WebGL to make advanced interactions with (relative) ease. Additionally the
browser manufacturers continue to improve JavaScript, the “glue” of the web.
Each year brings new features to the language, making it more manageable
to work with and easier to understand.

The aforementioned development community has not stopped with just
what the browser manufacturers provided to them. Instead the community
goes out of its way to build toolkits and frameworks that supply what the
browser manufacturers could not make or decided was not within the scope
of a browser API. While this book will be talking about building games
using one of these frameworks, there are more available that can be used
for games, business applications, or even artistic expression. There is the
ubiquitous jQuery that makes web coding life easier in general. Angular
JS and other frameworks are appearing to help make the production of
interaction sites faster and more manageable. Each day offers something
new in the JS world that shows just how powerful the simple scripting
language really can be.

1.2 Important Advancements
The wealth of new, creative JS games would not be possible without several
advances in web technology, notably the introduction of the canvas element and
a general increase in JS performance. Along with the canvas element came two
drawing contexts: two dimensional (2D) and three dimensional (3D). Both enable
JavaScript to draw into a HTML element, but they rely on different technology

2

An Introduction to HTML5 Game Development with Phaser.js

to produce graphics. The 2D context enables per-pixel manipulation, while the
3D context allows access to lower-level graphics capabilities through the use of
WebGL. These two advancements give the developer the ability to manipulate
graphics at quite a fast speed, a necessity for games.

The HTML5 canvas is a combination of the canvas tag in HTML and a JS API to
give a programmer the capability draw into the pixels inside the bounds of
the canvas’ width and height. The API provides some basic functionality like
drawing rectangles, lines, and images. It is then up to the developer to figure
out how to use the canvas, typically in some manner of animation loop. By
creatively drawing to the canvas, clearing the drawn pixels, and drawing
elements again in a slightly different place, a developer can get gamelike
interactions onto an HTML page.

WebGL (or “web graphics library”) is a subset of OpenGL that was used
primarily in the development of desktop media. With WebGL, web
developers gain access to the low-level graphics capabilities (notably the
graphics processing unit [GPU]) of the device the web page is running on.
In other words, with WebGL, a developer now can use graphical looks and
capabilities that can rival any other game being released for the same device.
Though it has had varying support, current trends indicate nearly all new
browsers and devices will soon support this technology.

Finally, the hard work of the browser manufacturers has paid off with
extremely fast JS execution times. The major browsers all compete in
getting to the grail of “fastest JavaScript” engine. As the title swings
between browsers, the public tends to benefit from faster web pages. Game
developers benefit from a scripting language that can run games with less
of a performance hit. Combining the quick speed of current JS engines with
WebGL provides an extremely easy environment to make games, all thanks to
the hard work and competition of our web browsers.

1.3 Where Games Are Played
The wonderful thing about making games using JS and HTML is that they are
accessible nearly anywhere. Nearly any web browser your target audience
may be using will at least be able to render a 2D canvas, and quite likely will
get the speed (and graphical boost) from a WebGL context for the canvas.
Today web-based games don’t have to be restricted to just the desktop
either. When it comes to deployment, one has a wealth of options where your
games could be played including desktop, tablet, and phone devices.

Perhaps the easiest way to get an HTML5 game out to a potential user is to
host it on a website. All a developer needs is a webhost and a URL. Once they
have uploaded their game to the web, anyone who navigates to the page will
load up the game and be able to play fairly quickly (assuming the game has
been optimized for web deployment and the game is quick to pick up). This
is of course a big pro simply for speed of deployment. However, one major
detraction is that one needs to pay for the bandwidth to serve all the game

3

Introduction

files (sometimes multiple times per player, especially if they decide to come
back to the game from another computer). Games, being fairly asset heavy in
the art and sound department, can quickly become expensive to host.

Another method of game deployment, which might help mitigate the need
for hosting dollars, is to take an HTML5 game and, through the use of some
extra programs, “wrap” the game up with some more code and release it as
an app for any of the big app stores (Windows, Google Play, and the Apple
App Store being major contenders). The programs that turn your HTML5
games into apps often give one access to a host of features that are not
available to a JS developer, such as access to the phone’s notification system
or the ability to post to the phone’s game hub. Using these features can make
it very hard to tell that the game was made originally for the web and keep
your players coming back.

Two players in the HTML5-to-app field currently are Cordova (and the related
PhoneGap technology) and Cocoon JS. The latter is focused primarily on
enabling game developers to have access to the fastest and most robust
wrapper for games and interactive content, typically accomplished by
stripping away any unneeded parts of the browser and speeding up any
graphics calls that are related to the 2D or 3D canvas context. In general, it
would be the most preferred of the two, but keep your eye on each just in
case they change in the future.

1.4 Web Development in the Modern Day
The past few years have brought tremendous changes to the web
development profession. An influx of talented developers has descended
on all parts of the technology to build frameworks and approaches to
make the resulting sites and applications robust and easily maintainable.
With technologies that range from the ubiquitous jQuery to growing new
technologies like Node.js (and the multitude of libraries available in Node’s
package manager), it is a good, if a bit confusing, time to be a web developer.
For example, a modern-day developer might find themselves using several
different features of Node to run a webserver, break up their files into more
easily edited pieces, and build their JS automatically.

All of this technology comes at a price. It takes some buildup time to
understand all the moving pieces and get them set up properly. There is a lot
of studying and reading of documentation before a particular technology
can be employed, and, technology moving at the speed it does, there is a
high chance that a library, approach, or framework that was chosen to be
employed will change at least once during the development of a project of
any significant scope. Thankfully, the benefits outweigh the costs (though
it may not always feel like that), and it appears as if the pace of change is
slowing.

Old web developers were used to simply working on their files with little
technological help, uploading all of the source files of their project to the

4

An Introduction to HTML5 Game Development with Phaser.js

web, and sending the URL of that resource out to their client. In order to
catch up with the modern day, web developers would need to learn how to
get their computer writing some of the JS for them, how to run commands
on their command prompt to test their project, and how to export their
final build files before deploying. It is more moving pieces than before but
becomes quick once one gets used to the process.

1.5 Who This Book Is For
This book is not a total basics introduction to game development. It is a bit
more advanced in its approach to web game development and makes an
assumption that the reader is not afraid to delve into technology to tinker
from time to time. In general, there are two groups who would most benefit
from this book, but general curiosity is a completely valid (and encouraged)
reason to pick up this book.

The first group that could benefit from this book is the “current web
developers” who have an interest in making games. This book uses a skill set
that the current web developers already have and most likely strengthens
that skill. If you’re a web developer who has some skill in JS, this is the book
for you. You don’t need to leave your current area of expertise and you’ll be
making games rather quickly.

The second group that has a chance of finding good use of this book is “game
developers” who are looking for a foothold in web development. This book
will help a game developer who is used to another framework, perhaps an
engine like Unity3D, to take their first steps into the web development world
without leaving something that feels familiar to them. It is only a few more
jumps from there to be making more robust HTML applications.

There are always others who will find some use of this book. If the content
within gets your interest, then this book is for you. Books are cool like that.

Hopefully I’ve scared you off only a little bit from diving into modern HTML5
game development. For someone who is interested in JS and HTML5,
learning how to develop games is a wonderful introduction to the practice of
web development. It will get you used to how to set up your workspace and
deal with modern libraries and how to build full working applications instead
of simply “pages with some components dropped into them.”

5

Introduction

http://taylorandfrancis.com

Chapter 2

State of HTML5 Games

Wherever computation goes, games tend to be quick to follow. And with
good reason. Games provide a fun way for any programmer to practice their
skills, and, if lucky, spread that joy and fun to other people as well. The web
has proven itself to be a great venue for games due to the ease of deployment
and the increasingly robust media capabilities of HTML. At the web’s very
beginning, web browser manufacturers didn’t have the time or desire to make
their media capabilities very robust. The resulting media on the early web was
quite slow and developers often looked to other, faster ways to get games and
interactivity onto their sites. These faster ways came in the form of “plugins” or
separate programs that the web browser would load into a page and allow it
to take over a section (or all) of the content in that region.

2.1 Growth of the Interactive
Capabilities of a Web Browser

The two major plugins used on websites were Java applets and Flash
Player (first developed by Macromedia and later Adobe). Java applets
didn’t fare too well as it had a tendency to have a long and painful loading

7

time (a killer on websites even today). The Java programming language
remains in use however for other media development such as Android
applications. Flash, however, quickly took the lead in displaying interactive
media to users on the web in part because of its easy-to-use vector animation
tools and relatively quick download times for files. Over time it accumulated
a strong developer mindshare and Flash quickly gained more advanced
capabilities, including filters and masks, a stronger scripting language, and
the ability to manipulate the individual pixels on the screen. For quite some
time, Flash remained the only sensible way to get high-quality interactive
media to a user on the web. Starting around 2008, it slowly became apparent
to both consumers and developers that plugins were not going to cut it
anymore, and the browser manufacturers began to play catch-up with Flash.
New features and capabilities were introduced into browsers quickly, and
today, it is safe to say that (save for a few features and hiccups) modern web
browsers can do natively everything Flash was needed for originally.

In order to catch up with the capabilities of other plugins, the two primary
areas browsers had to focus on were speed of code execution and graphical
capabilities.

While one could argue that the execution time of code is always important,
it is especially so when working with a user-facing system. Without fast code,
complex interactions will feel sluggish, the user won’t feel in control and will
likely quickly give up on the system and look for something more responsive
and rewarding. Early on, JavaScript (JS) did not need to be a fast language.
For the most part, it was only used for simple page enhancements like form
validation and little animations to catch the eye. Once it started getting used
for very complex systems like Gmail or interactive online maps, the slowness
of JS started to show. Browser based games require a similar increase in code
execution time. Graphical updates need to be run, preferably, at 30 frames/s
for a smooth user experience. In games with a lot of actors, particles, and
physics, this quickly turns into a lot of calculations being done several times
a second.

It is important to note that JS is not a compiled language, at least not by
default. JS is instead interpreted and executed the moment it is loaded into
the page by something called a JS engine. Each major browser has its own
engine with creative names like the Chakra engine for Internet Explorer,
V8 for Google Chrome, SpiderMonkey for Firefox, and Nitro for Safari. If
you’re interested in the current speeds of the different engines, searching
for “javascript benchmark” will surface a number of pages listing speed
benchmarks. In general, with each iteration from one engine, the others will
redouble their effort to catch up, getting a fairly close speed for each of the
major engines.

JS engines can boast some very impressive speeds now. The way they
achieve this speed is through the use of a series of optimizations that take
place at interpretation time. The major optimizations are just-in-time (JIT)
compilation, ahead-of-time (AOT) compilation, and several optimizations to
the instruction set of JS itself. AOT compilation is a series of actions that the

8

An Introduction to HTML5 Game Development with Phaser.js

JS engine takes before actually running the code. The engine will examine
all the code for anything that can be rewritten to faster instructions for the
machine and do those transformations to the code before actually running
the script. JIT is an applied approach to this compilation step, only doing the
AOT when it is absolutely needed so as to not slow down the user’s computer
too much during the compilation step. When seen in JS, the command “use
strict” at the top of a file has a tendency to force code that can be run faster.
Mozilla has been pushing the subset of JavaScript instructions that are truly
fast in JS with their asm.js technology, which limits JS to only instructions
that are as fast as possible, getting as close to native performance as JS can
currently. Asm.js is reaching speeds that enable the cross compilation of
C code to JS, with game engines like Unreal being able to export their games
to a JS runtime that can be run on a website.

Graphical speed is another key portion of the viability of a richly interactive
web, especially when it comes down to something as graphically
demanding as games. The early browsers were lacking in this realm, working
with a fairly light Cascading Style Sheet (CSS) specification (once it was
there) where even transparency was difficult to achieve and animations
were sluggish when one tried to transition document object model (DOM)
elements. Once rendering speed became important, the browsers rushed
to catch up, speeding up their DOM updates, increasing their CSS support,
and, perhaps most importantly, adding in support for the canvas tag. The
canvas tag gives developers the capability to forego writing HTML and CSS
to determine what to show on the page and instead just draw whatever
they want into a box on the page. The canvas tag has two different ways
to display graphics inside of its granted screen space. The first is 2D, which
gives developers the capability to manipulate the individual pixels inside
the canvas, allowing for games to be built in the way they were classically
made. This original game development method copied pixels from offscreen
spaces onto the canvas (a technique called “blitting”). These copied pixels
could be used for player characters, backgrounds, and even fonts. The
second context, 3D, provides a way for web pages to get access to the GPU
of the device (and its significantly faster graphics capabilities), so long as the
browser has enabled the support of this capability.

When running in the 3D canvas context, WebGL is used to render graphics
to the canvas’ space on the screen. WebGL is a specialized set of graphics
commands that work well with graphics cards JS API (application programming
interface) that is taken primarily from the OpenGL 2.0 (a graphics display
language used on personal computers) specification. In order to actually change
what is displayed in the canvas region, a shader must be written that tells the
graphics card what is should be displaying. Shaders can be programmed for
WebGL in the OpenGL Shading Language (GLSL) shader language and compiled
at runtime. The total combination gives a web developer access to nearly all the
graphical capabilities that modern games have.

As the browser got faster and better capabilities, it became clear around 2010
or so that JS and HTML would be the future of interactive content on the web.

9

State of HTML5 Games

New capabilities were slowly getting added into the browsers (faster than
some could keep up), but there simply wasn’t a lot of work done yet on
the frameworks that a developer would use to make their own workflow
acceptable. Not to mention the fact that not all users out there would be
using these modern browsers. Many developers set out to fix this problem,
and, in the process, developed a lot of different frameworks and tools to aid
in making interactive applications on the web today.

2.2 Wide Selection of HTML5 Game Engines
Part of the explosion of JS frameworks included a multitude of different
game engines. A quick look at html5gameengine.com lists a total of 22
unique engines and these are noted to be the “cream of the crop.” There were
many that were popular in 2010 that fell by the wayside as new ones arose.
The major issue behind this explosion of game engines is that the basics of a
game engine isn’t too hard to get down into code, and it is possible to get a
basic game engine up and running in about a day or so with dedicated work.
Many developers, when jumping into making a game, are quick to simply
write their own engine for the simple challenge of it. Unfortunately, even if a
game developer wishes that it would be better to go with one of the already
premade game engines, their work is not done.

One of the difficulties of any developer is finding the technology that best
suits their creative goals. Each engine (and toolset) has a set of strengths
and weaknesses, and some are known for being more well maintained
than the others. Some engines will have a focus on mobile or an emphasis
on a certain type of game. Others will have been built to work in tandem
with a certain plugin or editor (the top HTML5 game engine, Construct 2,
is like this).

In general, HTML5 game engines fall into three different categories, each with
a different focus:

 1. Pure JS and web development workflow
 2. Customized editor with a native HTML5 export
 3. Professional game development suite with optimized export

The first engine type, pure JS workflow, is the closest to the tooling that web
developers currently use to build web pages and hybrid mobile applications.
It is heavily reliant on Node.js for many steps of its process and keeps the
user closest to the final generated code. While great for current developers,
there is typically a requirement to pick up a few more programs (for things
like animation and map editing) and understand more of the pieces before
being able to hook everything together. Because this is more of a web
developer’s approach, compatibility with the widest range of web browsers is
typically a priority for these frameworks. They will gracefully fall back to older
technology when the latest and greatest browser features are not present.

10

An Introduction to HTML5 Game Development with Phaser.js

http://html5gameengine.com

The second approach is used by programs that are built for the graphical
design of games, giving the user the capability to position elements on the
screen and quickly add game logic to each of the game entities. While not
as full featured as the modern game development engines like Unity or
Unreal, these game makers are typically more approachable and stick to an
easily understood 2D context. Game Maker and Construct 2 both fall into this
category and are great for new game developers looking to get their feet wet
and potentially continue on to make full featured games. There are a number
of games built in Game Maker that are quite polished and have been released
professionally to great acclaim. The scripting languages for these engines are
typically specialized to the editor. While a simple and easy approach, if the
game needs to communicate with the rest of the page via JS, the final result
can get a little bit messy to deal with.

The final approach to creating web games is to use one of the big engines
(notably Unreal Engine and Unity3D). The teams working on these engines
have been working closely with the browser manufacturers to get exporters
working that transfer their games to a JS and WebGL context. While still a bit
slow, the engines will typically export games that have their code transpiled
(or taking source code and turning it into another language’s code) to JS via
Emscripten. This transpilation step performed by Emscripten will optimize all
the instructions for asm.js, ensuring the fastest execution times for the final
output game. The games generated via this approach tend to be large and
take some time to download, so a developer should take some care when
selecting this approach. It remains an option for the latest and greatest web
browsers, but is reliant on WebGL, potentially keeping a number of web
browsers away from the final export. As the code that is written for the game
is in the original editor and the final output isn’t the most human readable,
this could be seen as the least close to the “web developer” mindset.

With all the other engines and frameworks, why would one want to work in
just HTML and JS? One of the major advantages (or disadvantages) of JS in
the current day is simply that the language is so well adopted. Just about
anywhere someone needs a scripting language, JS can be found. One can
find it on websites, running robots, as a scripting language for web servers,
and even behind some powerful game engines (like Phaser). Many people
already know JS or, seeing its broad applicability, would like to know JS. Once
learned, not only can JS be applied everywhere, but it also becomes a de
facto tool for programmers to lean toward.

Another reason sticking “close to the gears” of JavaScript is good is to make
it easy to customize the HTML page the game is displayed in after it is
complete. Additionally, many developers who will be making web games will
already be web developers and will be able to quickly get up and running
in this new system, not having to step outside of their current capabilities.
This often means better compatibility across different web browsers as
well. Finally, because there is no in-between translation step to the game’s
programming, it is possible to have very lean games to send to users, great
for when total download size is an issue like it is on the web.

11

State of HTML5 Games

2.3 Tools
Today a web developer’s utility belt is swiftly growing to include a number
of technologies that make their life significantly easier, most enabled by a
program called Node.js. Originally Node was developed as a technology
for creating server-side JS applications (bringing with it the strengths of
JS’s event model and combining it with a strong input/output module
for filesystem manipulations). It was quickly adopted as a way to manage
dependencies on other bits of JS (formalized through the introduction of the
Node package manager), import needed code libraries (through a technique
called common JS), and run a lot of behind-the-scenes lifting that a backend
developer may need. As developers started playing around with Node, they
quickly realized that it could be used to do file operations on the developer’s
machine as well, giving them a way to automate otherwise fairly complicated
processes like and code scaffolding (or generating prebuilt sets of code).
Eventually tools for quickly fetching needed code libraries for the front end
were introduced, like Bower and Yeoman. This was a lot to manage, so some
automation systems were also built (Grunt and Gulp) that run tasks for the
programmer automatically so the developer can stay focused on writing and
debugging code.

These tools will be explained in more detail in Chapter 4. One important
tool to note is Babel (and the related Babelify). Each of these tools will let the
developer write their game code in the most modern versions of JS (currently
sitting at about ECMAScript 6, though 7’s features are quickly approaching as
well). Babel and Babelify will then transpile this code down to a lower level of
JS (ECMAScript5 currently). This lets a developer create a codebase that takes
advantages of all the great features of the future language without having to
wait for browsers to catch up. And once the browsers have caught up, then
the untranspiled code can be uploaded to get the benefits of a clean code
base and a faster interpreter.

2.3.1 Phaser.js
Finally, we go to our game engine of choice. Phaser.js is an HTML5 game
engine meant for use in creating graphically rich 2D games. Originally
created by Richard Davey, it has had future contributions by other
developers. Currently it ranks fifth on html5gameengine.com in terms of
popularity. While that number may not seem impressive at first glance,
two of the engines listed above Phaser (Easel.js and pixi.js) are not “full-
featured” game engines. Instead these engines only provide a clear graphics
API to work with but are reliant on the developer for things like game step
updates, physics, or states. The other two (ImpactJS and Construct2) are
not only game-focused engines, but they also come with a monetary cost
associated with them. Phaser is the only free game framework that works
via normal HTML and JS in the top five, making it a solid choice for any web
developer looking to get their feet wet with game development without
spending a dime.

12

An Introduction to HTML5 Game Development with Phaser.js

http://html5gameengine.com

One of the best features of Phaser is that Richard Davey uses it for
professional projects (and engages with others who do the same). Because
the framework has to be working for clients, the fixes made to get games
working for deadlines are pushed to the Phaser framework as well, giving
all the developers access to more power and a less buggy system. Phaser
has a great community that has formed around it that helps drive its feature
set and helps others who are also using the engine. The community is quick
to get back on a question about a bug or quirk in the system and happy to
discuss best practices.

Phaser’s lineage is clearly inspired by the Flixel game engine that was (and
remains) popular in the Flash game development world. Improvements have
been added to the original Flixel approach since the earliest builds of Phaser,
and it has been rewritten to work in a way that works best in a JS context. It
has support for sprite animations, sounds, tilemaps, several different physics
engines (and the capability to add in more as needed), and particles (and
many other, smaller but still useful things). An important addition to Phaser
is the capability to deal with touch input pointers and the ability to support
screen resizing, which are considerations that have become quite important
for mobile devices.

Another important feature of Phaser currently is its ability to quickly and easily
switch between a hardware-accelerated (but slightly less supported) WebGL
mode and a slower but widely support 2D context for its rendering. Following
the principles of “graceful degradation,” it is possible to have Phaser choose
the best approach by default and fall back to slower but more supported
approaches when needed. The rendering of game objects is actually done
behind the scenes using another framework called Pixi.js, which simplifies the
graphics calls in JS and provides a single API that will run for both WebGL and
the canvas (save for some specialized items like shaders in the 3D context). It
is actually Pixi that does the heavy lifting of animations and image rendering
into the different contexts.

2.4 Basic Structure of an
HTML5 Game Project

In general a HTML5 game is going to include these folders and files:

• Scripts/ (or js/)
• Holds the framework file (in this case Phaser.js)
• Often will have a file for the game code that uses the framework

• Src/ (optional)
• A folder used to store the source files that will be compiled into the

full game code
• Assets/

• Images
– Used for backgrounds and sprites

13

State of HTML5 Games

www.allitebooks.com

http://www.allitebooks.org

• Maps
– The data for any tilemaps in the game

• Sounds
– Sound effects for the game, often in multiple formats

• Music
– Music for the game, often in multiple formats

• Misc
– Any additional data (dialog files, runtime scripts, or special files

used by the game)
• Index.html

• The html file that sets up the game and starts the loading; the JS will
handle all interactions after the basic setup

• Often has some basic styling to position the game and set up a nice
user interface (UI) around it

When the game is run the only files linked in index.html are typically the
Phaser engine, the gameplay code, and the CSS needed to style the page.
Phaser will handle the rest of the work of loading in the assets and putting
them into the page. The only thing to note with this setup is that, especially
when Phaser is running in WebGL mode, it cannot load these files from the
local file system. Instead, due to a number of browser security codes, the
files need to be loaded from a web server instead. This can be a bit of a pain,
but with a little bit of setup, one can find that the process of getting a web
server ready to go isn’t too big of an issue. Most of the code in future chapters
will be written in a series of separate small JS files that will be compiled into
one final file. These smaller files will be included in a directory called the src
directory, which is technically a folder that will not be included in the final
deploy to the user. There will be more and more of these “development only”
files and folders as the book progresses, but in general, this is the structure
that you as a developer will be working with the most.

14

An Introduction to HTML5 Game Development with Phaser.js

Chapter 3

A Simple Game

This chapter is going to walk you through the construction of a simple game
in Phaser.js. Because this game is only meant to “get your feet wet,” it will not
delve too deeply into all the different parts of Phaser.

3.1 Game Goals
The player takes control of the unnamed hero, Cat Catcher. Using the arrow
keys, they are tasked with getting their hero over to collect a cat on the
screen. Sadly the hero isn’t a shining example of an animal control employee,
and the cat will always get away, but the player’s score will increase. It’s a
race against the clock to run into the cat and get points for reasons only the
simulation knows.

3.2 Setup
A good start for Cat Catcher, like many projects, will be the creation of a
folder to hold all the associated files for the project. Go ahead and create a

15

new folder and give it a name like CatCatcher. Inside this folder, create two
more directories: img and js. Additionally make an index.html file inside the
root folder.

3.3 Getting Phaser
In order to use Phaser on a web page, you’ll need to download and include
the script inside of your HTML markup. The download can be found at http://
phaser.io/download (or, more specifically, http://phaser.io/download/stable).
This page will give you a number of options to download, the easiest one
for this walkthrough is to right click and download the phaser.min.js file from
the stable page. If you know how to use git and are insistent on using it, it
is possible to clone the repo with all the source, examples, and build files to
your computer. If you go this route, make sure to find the minified Phaser file
from the dist folder.

3.4 Getting the Images
Head to https://github.com/meanderingleaf/PhaserBookExamples/tree/
master/CatCatcher2000/img and download the images folder. Move the
images into your project's img folder.

3.5 Setting Up the html
With the folders and files in place, it is time to start writing some code. The
first step is to get a web page setup, so it can hold the game and include the
scripts required to run the gameplay. Open up index.html in your text editor
of choice and write up the basic html boilerplate and a few extras to get
Phaser ready to go.

<html>
 <head>

 <title>Cat Catcher 2000</title>
 <script src=“js/phaser.min.js”></script>
 <script>

 var game = new Phaser.Game(800,
600, Phaser.CANVAS, { preload:
preload, create: create, update:
update });

 function preload() {
 //load in assets needed
 }

 function create() {
 //setup game
 }

16

An Introduction to HTML5 Game Development with Phaser.js

https://github.com/meanderingleaf/PhaserBookExamples/tree/master/CatCatcher2000/img
https://github.com/meanderingleaf/PhaserBookExamples/tree/master/CatCatcher2000/img
http://phaser.io/download/stable
http://phaser.io/download
http://phaser.io/download

 function update() {
 //run game loop code
 }

 </script>
 <head>
 <body>

 </body>
</html>

The notable addition to the boilerplate is linking the Phaser library (before
the other scripts) and the game setup code at the top. The game setup
code is where Phaser begins to work its magic. The first line in the setup
script tag sets up a Phaser game and will always be the entry point to every
game written in Phaser. The first two numbers are the width and height
of the game. The next call is to specify what rendering context should be
used for the canvas. It is possible to specify to the Phaser if it should run
on the canvas in 2D mode or in a 3D, hardware-accelerated mode. For this
example, the (potentially confusing) Phaser.CANVAS option is supplied,
instructing Phaser to run in a 2D context. This is the only time it will be used
in this book, letting us run this simple example without having to launch
a server to test. Generally, however, unless there are specific use cases,
one should always supply Phaser.AUTO in order to render in hardware-
accelerated mode by default and fall back to 2D if the browser does not
support WebGL.

The final argument to the setup code is a Javascript object. Behind the
scenes, this actually creates a simple Phaser state. States will be covered later
in this book, but in short, they are an object with properties that specify
functions to run throughout the state’s lifespan. There are three phases
defined in this state. “Preload” is used for loading in assets for the game
before gameplay starts. Here one loads in the images, sounds, and other
related pieces of the game. “Setup” is called once before the game starts
running, providing a chance to get game objects ready and placed into the
game. “Update” is set to the game’s internal tick (or clock) and is called during
the game loop. This is where most of the game logic will be written. Beneath
the setup line are the actual functions that will be called by the state that still
need to be fleshed out.

3.6 Preload Phase
The preload phase is used to load in any asset (whether it be audio, textual,
graphical, or a specialized type) into the game before the game runs. This
ensures the assets will be ready for use in the game and not suddenly appear
only once the gameplay has begun. This phase can take some time and will
generally be longer and the bigger and more numerous the assets will be
loaded. Keep this in mind as the preload phase will continue until all the
assets are loaded, stopping players from getting to the actual gameplay.

17

A Simple Game

Longer preload times can have a chance of losing players before they even
get to the game (and its hopefully catchy mechanics). Listed here is the
code to preload three image assets that should be placed into the preload
function.

game.load.image(‘cat’, ‘img/cat.png’);
game.load.image(‘catcher, ‘img/catcher.png’);
game.load.image(‘bg, ‘img/bg.png’);

This is the general method for loading any asset into a Phaser game. The first
argument is the “id” (or key) of the asset and must be unique. The second
argument is the path to the asset to be loaded in. Other assets may take more
arguments, but thankfully images are an easy one to load. Take note of the
IDs, they will be used later to create objects in game based off the assets
loaded.

3.7 Create Phase
The create phase is used to get the game completely set up and ready
to run. This means creating the objects that will first appear in the game,
setting up user interface elements, and generally getting anything out
of the way that doesn’t need an update timer but does need to be in the
game. Because we’re working in a basic Javascript tag, it is necessary to add
a few variables outside of the other function scopes so they are accessible
throughout the game. I’ve chosen to put them right underneath the
Phaser.Game setup line.

var cat, catcher, cursors, txtScore, score;

In this particular setup function, the sprites will be created, the score text
field will be added, and the input keys will be defined and readied. Because
sprites are rendered in the order that they are added, the first sprite to be
added should be the background. The line “game.add.sprite” creates
a new sprite of the type specified at the end (this will be an instance of the
bg image) and adds it at the x and y positions (in this case 0, 0).

game.add.sprite(0,0,“bg”);

3.7.1 Setting Up the Player and Cat
The player sprite is after background, so that it will render atop our game’s
lovely backdrop. Here the player sprite is added to the game at the center
of the page, and its anchor (the point that counts as the center for its
rotation and scaling) is set to its top center. Centering the anchor will
allow us to easily “flop” the player’s sprite around for easy left and right
animation. Finally, the physics for the player sprite is enabled. By default,
sprites are not enabled for physics, so they will not be able to collide
against other objects nor will the developer be able to specifically respond

18

An Introduction to HTML5 Game Development with Phaser.js

to collisions. There are different physics in Phaser, but arcade physics is an
acceptable choice for this game.

catcher = game.add.sprite(400, 300, “catcher”);
catcher.anchor.setTo(.5,0);
game.physics.enable(catcher, Phaser.Physics.ARCADE);

After the player, the code to add the cat should look quite similar. The only
difference is that instead of a predefined x and y location, the cat is put to a
random location inside of the game (based on the game view’s width and
height).

cat = game.add.sprite(Math.random() * game.width,
Math.random() * game.height, “cat”);

game.physics.enable(cat, Phaser.Physics.ARCADE);

3.7.2 Adding the Score Text
Phaser’s text object comes in two parts: (1) the definition of the text style
(defined in a subset of CSS) and (2) the addition of the actual text field. This
text field is added near the upper left-hand corner, with a starting text of zero
(from the score variable).

score = 0;
var style = { font: “20px Arial”, fill: “#FFF” };
txtScore = game.add.text(10, 10, score.toString(),
style);

3.7.3 Setting Up the Arrow Keys
Usually getting input from several keys would require a lot of code and
setup for the keys and to store their up/down states. Thankfully, Phaser has
a simple way to set up an object that will automatically track the arrow keys
on the keyboard. We’ll be referencing the cursor object in the update step,
but this will set up listeners for the up and down states of the up, down, left,
and right keys.

cursors = game.input.keyboard.createCursorKeys();

3.8 Putting the Gameplay
in the Update Phase

All game engines are built upon this critical concept called the “game
loop,” which is the method that is called on a predictable interval that
involves the calculation of all the simulation’s code. The loop is the place
where positions are changed, collisions are checked, input is taken, AI is
calculated, and any other miscellaneous tasks are completed. In Phaser, the
game loop method is named update. This particular update function will

19

A Simple Game

implement two components of the gameplay. First, it will move the player
when any of the arrow keys are down. Second, it will check to see if the
player has hit the cat.

if(cursors.left.isDown) {
 catcher.x – = 5;
 catcher.scale.x = 1;
}

if(cursors.right.isDown) {
 catcher.x += 5;
 catcher.scale.x = –1;
}

if(cursors.up.isDown) {
 catcher.y – = 5;
}

if(cursors.down.isDown) {
 catcher.y += 5;
}

The first step is to move the player character based on the input of the player,
through the use of the cursor object made in the create phase. Cursors have
the properties for the four arrow keys and self-manage the down and up
states, so one only needs to check if they are currently depressed (using
the isDown property of each). If any of the buttons are down, the player’s
sprite is moved from where it currently is five pixels further in the associated
direction. While technically susceptible to the classic “moving diagonally is
faster” cheat, it will be fine for this simple game.

The only other notable lines of code are in the right and left handlers.
Changing a sprite’s scale isn’t often useful, but setting scale to −1 essentially
“flips” the sprite to face the other direction (in this case horizontally).
The point for the flip is based around the sprite’s anchor point. If its center
x point is not changed to the center of the sprite, setting the scale to −1 will
make it appear as if the sprite had warped back its length, instead of just
turning around. This is why, when creating the player sprite, the anchor is
set to the center x. When scaling now, the transformation will be applied
from the center of the sprites width, making it flip around its middle (see
Figure 3.1).

Finally, the last line of the code checks to see if the player has hit a
cat (they visually overlap). Should the player sprite and the cat sprite
be overlapping, a collision handler function is run, which is entitled
catHitHandler.

game.physics.arcade.overlap(catcher, cat,
catHitHandler);

20

An Introduction to HTML5 Game Development with Phaser.js

3.9 Collision Handler
Collision handlers respond to an overlap between two display objects, in
this case the player and the cat. All collision handlers in Phaser take two
arguments, which will be references to the objects that hit each other.
This function goes into the code at the same level as the create and update
functions.

function catHitHandler(catcherObject, catObject) {
 catObject.x = Math.random() * game.width;
 catObject.y = Math.random() * game.height;

 score ++;
 txtScore.setText(score.toString());
}

Since this is just meant to be a quick jump into Phaser, the game simply
moves the cat to a new place (using the reference passed into the collision
handler). Then, the almighty score is incremented, and the score text is
updated using the setText function. Nothing to fancy, but it still generates
a basic type of game without a lot of work.

21

A Simple Game

FIG 3.1 Screenshot of the finished version of Cat Catcher 2000.

3.10 Testing
Finally, in order to test this game, find the index.html file on your computer
and double-click to open it up. It will launch in your browser of choice and,
with luck, your game will be inside of a nice canvas in the screen. Click on the
canvas to make sure the browser has keyboard focus and use those arrow
keys to catch as many cats as you can before you get bored.

22

An Introduction to HTML5 Game Development with Phaser.js

Chapter 4

Workspace Setup

This chapter is one of the “necessary evils” of modern web development.
For better or worse, more and more projects are becoming reliant on build
script and configuration files for them to properly run. This means it is
becoming increasingly hard to simply open up a text editor, maybe download
a few files, and get to coding. Instead, there is often some time spent in a
command prompt (or terminal), setting up the project and getting it ready to
go. And even after the initial setup, it will be impossible to work without the
command line open and running something. This chapter explains the tools
that are used to get all this configuration done and the setup of a file that will
get one working on the cutting edge of web development (though the web
moving is fast as it does, it will not likely stay that way for long).

Don’t Want to Deal with All This Configuration?

If you don’t like walking through all the different steps of creating a build
script and getting everything installed (not many do, to be honest), there
are only a few steps you absolutely need to follow in this guide. First,
install git as directed near the start of this chapter. Then install Node.js,

23

right after git. Finally, install Yeoman as directed at the end of the chapter.
Then you can simply use the Yeoman generator described at the end of
the chapter to have your computer run through the rest of the setup in
this chapter automatically.

Modern projects that use the web technologies of HTML, JavaScript, and CSS
are becoming complex enough to need specialized scripts and configuration
files for different projects. The reason why toolchains are needed is that
modern sites need to take into account all the different people and devices
that may be using their work and support as many of those as possible.
Dealing with all the quirks and performance issues of the different browsers
takes a lot of time and effort, which is mitigated somewhat by using the work
of other web developers who have built tools to address the same problems
others are having.

Speed of development is another major reason for making use of toolchains
and build scripts. This is because using other’s work (with their consent, of
course) results in less work and thought that you need to take on. It may
appear that taking some time before hopping into the development of a
project can is a setback, or at least unnecessary, but that’s not quite the
case. Once an environment is properly set up and running, development will
often progress faster now that the project can catch errors and do things
automatically that would have had to have been done manually before.
Oftentimes, a good setup will also lead to more structure to the code, helping
speed up future additions or maintenance.

This chapter might feel like a parade of technologies, introduced in quick
succession. While this is true, each has an essential component in the
development of a robust Phaser game, and you’ll find yourself happy to have
this setup once you progress on to more complex games.

In this chapter we’re going to look at the following:

• Node.js and how it has changed the development of websites
• Grunt.js to examine the various tasks that developers may want to run to

speed up development
• Babel, Browserify, and Babelify that enables the creation of modules in a

future-looking ECMAScript 6 fashion
• Bower that will install and manage user-facing libraries like Phaser
• Yeoman for when you might want to set up another project like this

quickly (or skip this setup entirely)

In case you get lost, the end of this chapter has a way to quickly and easily
set up this project base without having to go through all the steps described.
This is a Yeoman generator that will scaffold out (or create the project
structure and directories needed) for you automatically. It can be used
to create new projects to work through the examples in this book or for
personal use.

24

An Introduction to HTML5 Game Development with Phaser.js

4.1 Installing Git
Git is a source control system and is commonly used by developers to
collaborate on programming projects. It’s a way for many different people to
add to a single code base without having to go through the arduous task of
sending over chunks of code and saying to a collaborator “Now this bit goes
at line five in file whatever.” A necessary part of the collaboration process is
downloading the new files, and, if it is a new collaborator, that means all the
files. The combination of source control being an easy way to download a
library of code and easily get any fixes that are later added to the code has
made source control systems a preferred distribution method.

Nearly all new publicly accessible code libraries are hosted on some sort of
source control system and git is one of the more popular ones. While you
won’t need to know how to use git specifically to get through this book, you
will need to have it on your computer for the next steps in this chapter to
work properly. Thankfully, the process of installing git is quite simple: head to
http://www.git-scm.com and download the installer. Once you run it, you will
be set.

Note for Windows Users

Make to select the option “use git from command prompt” as you progress
through the Windows installation process.

4.1.1 Node.js
After installing git, the next most important step in getting this environment
setup is to install Node.js, which will open up the ability to install all of the
other libraries explained in this chapter that rely on the Node being installed.
Installing Node will also install node package manager (npm) that will make
this process as simple as writing a few words in the command prompt. If
you don’t already have node installed, head to http://nodejs.org/ and click
the download button to get an installer for your system. Once installed, you
will have node on your computer. This will give you access to two terminal
commands: node and npm.

4.2 Command Prompt
Before moving on in this chapter, we need to take some time to familiarize
ourselves with the command prompt. For some time, a JavaScript developer
could get away with not opening the command prompt and working in
an integrated developer environment (IDE) like Adobe Dreamweaver or a
lighter-weight editor like Textmate or Notepad++. Thankfully, the command
prompt is not too complex to master, and it remains one of the basic skills of
a web developer, especially one using Node. Here are some basic commands
to get around the file system.

25

Workspace Setup

http://nodejs.org/
http://www.git-scm.com

4.2.1 Opening the Command Prompt
First, you need to know how to access the terminal. It is a different program
and process for different systems.

4.2.1.1 Windows
On Windows the program is called command prompt. The easiest way to find
it is to hit the Windows key on your keyboard and type in “cmd.” The search
will eventually find the program and run it, though you can also go looking
for it manually through your programs if so desired.

4.2.1.2 Macintosh
Access to the command line on Macs is done through a program called
“Terminal.” This program is inside the Utilities folder for the programs
on your computer, or you can get to it via opening spotlight (by pressing
command + spacebar) and typing “terminal” (see Figure 4.1).

4.2.2 Command Prompt Navigation
4.2.2.1 Location
Figure 4.1 is a picture of a command prompt. Note that to the left of where
the user can input text is a directory path. This is the path that the prompt is
currently pointing to and this path is used as a reference for any commands
run within it.

It is important to know where you are in the file system when working in
the terminal. Many commands throughout this book will only run in certain
locations with other files present. Other commands might create new
directories or files in the folder the prompt is currently situated at, so always
be mindful of location.

26

An Introduction to HTML5 Game Development with Phaser.js

FIG 4.1 Example of a command prompt.

4.2.2.2 Entering Commands
The next few sections will list out some basic commands. Every command
entered into a prompt needs to be followed by pressing the “return” or
“enter” key for the command to actually run.

4.2.2.3 Viewing Directory Content

dir (on windows)
ls (on everything else)

Entering “ls” (or “dir” on Windows) lists the contents of a directory. Similar
to looking at the window of an open folder, it will show all the files and
folders inside of the current directory.

4.2.2.4 Changing Directories

cd nameOfDirectory

Entering “cd” followed by a folder name will move to the folder named, so
long as it exists. For instance, typing cd music when in a folder that has a
music folder will move into that folder. Once in the music folder, typing ls or
dir will show the presumed musical content of the folder.

cd nameOfDirectory/nameOfSubdirectory

It is also possible to navigate through multiple directories by adding the slash
in between them, just like typical file structure syntax.

cd ..

Entering cd followed by two dots will move the prompt up one folder.

4.2.2.5 Quickly Opening a Folder in the Command Prompt
The command prompt will always start at a user’s home directory, which
is usually close to the root of the filesystem. Oftentimes, a lot of changing
of directories is necessary to get to a project’s folder. A great shortcut that
gets around having to navigate through the whole directory structure or
type in a long path name is to drag and drop a file or folder onto the command
prompt, which will fill in the path for you. In combination with the change
directory command, it can be really handy for quickly navigating to a project
folder by typing “cd” with the space after it and then dropping in the desired
destination folder (shown in Figure 4.2).

4.2.2.6 Command Prompt Flags and Arguments
As seen in the changing directory examples, commands on the prompt
can have more arguments and flags come after them. In general, if you see
something with a dash or minus sign in front of it, then it means it is a flag
that is telling the command to behave in a certain way, or do something
special. Items that follow the initial command without a dash preceding them

27

Workspace Setup

are arguments used for specifying outputs, inputs, or other customization
options that don’t toggle how the command itself works.

4.2.2.7 Command Prompt Hints
For the most part, unless otherwise noted, it is expected that you will be in the
root folder of whatever game project you are working. However, for the next
parts of this setup chapter, you don’t need to be anywhere in particular. Now
that we have Node and npm installed, we can use the command line to install a
number of useful tools. We’ll be entering new commands into the prompt that
are provided by Node and npm, but the process will remain the same. Enter
the text and hit return. Sometimes, the command won’t run instantaneously.
Instead, you’ll see that the terminal will just hang. This doesn’t mean it is not
working; it’s just that it needs some time. Often it will be downloading files and
arranging them on your filesystem. If something does go wrong, you will see
an error pop up soon enough.

If you had the command prompt open, go ahead and close it and open a
fresh one for these next steps to ensure that the commands for the programs
you installed will be available to you.

4.3 Node Package Manager
Node package manager is a way to download JavaScript library bundles
onto your computer. These libraries are developed by individuals for
varying goals, ranging from creating full-featured web servers in Node
to checking to see if the JavaScript that one writes adheres to best
practices (a process called linting). Additionally, npm can be used to keep

28

An Introduction to HTML5 Game Development with Phaser.js

FIG 4.2 Changing directory via folder dropping.

the packages updated, making it easy to update to new versions of the
libraries that fix issues or add new features.

Another crucial feature of npm is the capability to detect and download any
other packages that a library needs automatically. These other packages that
are not necessarily part of the library but are required for the package being
installed to run correctly are called dependencies. When installing some
of the packages described in this chapter, note that a number of different
packages will be installed with names that do not match the original package
specified (you wanted npm to install “grunt” but it installs another package
called “taskrunner”). These other packages (most likely not made by the
creator of your library) are specifically configured inside of a package.json
that comes along with the original library.

The next few sections of this chapter deal exclusively with npm. An important
thing to keep in mind with npm is that it can install packages in two locations:
locally or globally.

Global: If you use the “-g” (short for “global”) argument when installing
a node package, it will download the files to the node directory and
add the package to your computer’s path. With it added to the path,
the package becomes a valid command for the terminal and can be
run by typing the command name and hitting enter at the prompt.
This will also give other node packages access to the command,
letting them run the libraries behind the scenes without you
specifically having to run the command yourself in the terminal.

Local: Conversely, if the -g command is not present, the npm will
install the library where the command prompt folder is located,
making a new folder named “Node_modules” to store all the
downloaded files. This is typically used for packages of code that
are needed for individual projects to run.

Because locally installed packages typically contain a lot of files that are hard
to move or delete, node projects will often include a file called “package.
json,” which is a JSON file that describes all the local code packages that
need to be present for the project to run. This ensures that the code can
easily be transferred from place to place without all the node modules. When
one needs to work on the project on a new computer, the modules that the
project is dependent on can be installed via the command “npm install.” In
order to save a package to the local JSON file, use the flag -save-dev when
running the npm install command. This flag will both add the package to the
project and specify it is a required part of the project that must be present
before it can run.

4.4 Installing Bower
Npm is typically used for code that is never going to be sent to the user.
Some of its primary uses include production tools that help the developer
as they work or actual node server development that sends data to the user
but does all the processing on a remote machine. Because both of these
uses don’t have to deal with moving all the required files around very often,

29

Workspace Setup

the package manager has an unfortunate tendency to download a lot of
unnecessary files that bloat the file size of the project. In general, npm is
not set up for dependency management for projects that will eventually be
deployed to user’s machines.

Bower is another package manager that was constructed with client-side
deployment in mind, and will work quite nicely with Grunt, once properly
configured.

In order to install bower, hop into the command prompt and enter this
command.

npm install -g bower

There are two different ways to install packages via Bower—either
individually from the command prompt or, if given a bower.json file, via the
command “bower install” at the project root. Bower won’t be used too much
throughout this book—once to install Phaser and a few other times to install
some plugins needed for more advanced game work. Just remember that
if you want a library that will eventually be sent along with the game to the
user, install it via Bower.

4.5 Installing Browserify
Browserify is a Node package that enables JavaScript developers to break
up their scripts into smaller files, including the content of those smaller files
in others where that code is needed. For example, a large game project
might include scripts to run the different states of a game (start, game,
game over), the different units within the game (player, enemy, boss), and
the entire game project itself. Each of these scripts will need to reference
others to make sure their code is included before it can run properly. The
gameplay state will not be able to run if it can’t create a player or enemy,
so the code for those objects need to be available to the state somehow.
Before, this would mean either writing all the code into one single file or
breaking these files up into separate files and writing several script tags
inside the index.html file. Either way can be cumbersome when it comes to
making sure that all the scripts are included in the right order and ensuring
all dependencies in the scripts are met.

One solution to this is to use Browserify, which is a tool that (with a
few additions to your separate code files) will check for all those script
requirements, and produce a single file that ensures all the scripts have
their dependencies met. Browserify makes the assumption that there is
one script that is the entry point for your application which will include
all the other scripts needed (included scripts can also specify their own
dependencies, so it is possible the first script won’t include all the final,
bundled scripts). The final output from the Browserify command will wrap
all the separate files up into one final app.js file that can be linked into the
html with a single script tag.

30

An Introduction to HTML5 Game Development with Phaser.js

In order to get browserify into your development environment, type this
command into your command prompt:

npm install -g browserify

If you want to know more about browserify, you can read about it at http://
browserify.org/.

4.6 Babel and Babelify
The next versions of JavaScript (ECMAScript 6+) have proposed a number of
very useful additions to the language that are yet to be fully implemented.
The two most useful approaches to game development of this book are the
addition of classes and modules. Working with classes, while not strictly
needed for JavaScript development, helps when crafting individual objects
and reduces the (somewhat) confusing prototype syntax JavaScript typically
requires. In the future, ECMAScript 6 modules will be the official way to
specify which JavaScript files are dependent on others.

Other Ways to Include Files

The problem of breaking up JavaScript files into small, manageable
chunks that can be required by other files has been a thorn in the
community’s side for a long time. There have been a number of different
attempts prior to ECMAScript 6’s modules to solve the problem, each with
their own advantages and disadvantages. The nature of JavaScript will
keep these module managers relevant for many years to come, keeping
ECMAScript 6 as only an official if not perhaps the ubiquitous approach.

There are two module managers you might come across the most: The
first one is AMD (asynchronous module definition), which is used for
frontend module requires and implemented in a library called require.js.
It is most easily recognized in use by a “define()” function that wraps
the rest of a module’s code. The second one, perhaps currently the most
commonly applied manager, is the CommonJS module syntax, which is
used by Node.js to require and include other files at runtime, given away
by the module.exports call at the end of module files.

The issue with using ECMAScript 6 is that while a number of browsers are
getting their implementations of the specification ready, no browser is quite
ready for production use. There will also be a number of people and devices
that will never get around to getting a browser ECMAScript 6 support. This
unfortunately means that, at least for a few years, there will be a requirement
for an intermediary technology that can take this newer code and translate
it into a version of JavaScript that the majority of users can run. There are a
few transpilers out there that will do this, but Babel.js has become one of the
more commonly used ones.

31

Workspace Setup

http://browserify.org/
http://browserify.org/

Babel will take JavaScript files and translate them from the future versions
of JavaScript (ECMAScript 6+) down to ECMAScript 5. It will only do this
on individual files, translating the code down to something that node can
recognize and understand.

Because it will not combine all the different classes and modules into a single
export file, it is reliant on other packages to finish the compilation. Browserify
is a package that will take multiple files and piece them together in the correct
order to get them working. The final piece of this puzzle is a package called
Babelify that will allow the two (Babel and Browserify) to work together.

npm install -g babel
npm install -g babelify

You can learn more about Babel.js from https://babeljs.io/.

4.6.1 Installing Grunt
Grunt is a JavaScript task runner, which sort of sounds pretty impressive.
In essence, it’s a way to bundle up a number of actions that one might have
to do manually on a computer, and it lets node handle them instead. Grunt
has a number of useful capabilities we will be using later on such as the
ability to start a small web server to test our games, automatically compiling
our scripts together using Browserify and exporting our finished project in
a clean format. The only potential drawback of Grunt is that every time one
goes to work on the project, they will need to open a command prompt in
the project root and start the development task before work can begin.

To install Grunt, type this into your command prompt:

npm install -g grunt-cli

If you want to know more about Grunt, you can read about it at http://
gruntjs.com/.

4.7 Setting Up a Basic Project
With luck, those few commands went pretty quickly and you’re now set
up with all the tools to get a modern HTML5 workflow ready. With these
packages installed, the next step is to make a project folder with the
necessary parts and components to build and run the games that we will
be making. This will require two parts: setting up Grunt and downloading a
few more libraries to the project template itself.

4.7.1 Getting Ready
First, create a new folder for this setup. A name like “PhaserBasicSetup” for
this step would describe it well. Navigate to that folder in your command
prompt (remember that you can type “cd” with the space and drop the folder
onto the prompt from the file system in order to quickly get to that folder).

32

An Introduction to HTML5 Game Development with Phaser.js

http://gruntjs.com/
http://gruntjs.com/
https://babeljs.io/

The rest of the commands in this section will need to be run inside this
project folder.

Once inside the project folder, type “npm init.” This will take you through a
series of configuration questions. If you’re in a rush or just noncommittal, you
can hit “enter” to go with the defaults (it won’t hurt, and you can easily change
them later). After specifying all the options, a file named “package.json” will be
created inside that folder. This file is used in part to store the names of all the
packages that are required for the project to work correctly. When installing
the packages in this chapter, make sure to use the -save-dev flag to add the
package name to the json file, which tells a developer they will need these
packages before they will be able to run the project. The stored package names
are also useful for easy transferability and your own personal reference, letting
you move the project around without the weighty node_modules folder.

4.7.2 Getting the Grunt Packages
Grunt is going to be a major part of this book’s development workflow, but
there needs to be a number of Grunt tasks in the project for it to be ready to
do a lot of the heavy lifting for us. During development, Grunt will do different
important tasks for us including compiling code, moving files, and launching
servers. The tasks come as node packages, and currently our project doesn’t
have any installed. To get Grunt ready to go, two steps need to be taken. First,
the packages that accomplish the different tasks will need to be downloaded
to the project folder, and second, we will need to set up Grunt to run the tasks
as we desire (through the use of something called a gruntfile).

4.7.2.1 Local Grunt
The first thing to install is a local version of Grunt that will find and run other
commands in the project. This is different from the grunt-cli and must be
installed per project. Type in the command prompt the following:

npm install grunt --save-dev

4.7.2.2 Grunt Connect
Next, up to install is Grunt connect, which is a command that makes a
lightweight web server to test games on. A web server is a necessity due
to security restrictions in the browsers that require the files to be sent by a
server before JavaScript is able to do essential things like render WebGL or
load in text documents (used for tilemaps and sprite atlases). This restriction
does not apply when building apps that are installed to the user’s phone, but
Chapter 8 will cover the pros and cons of that step in more depth.

Once properly configured, the web server will be started automatically when
one starts working on the project. This lets the developer get away from
needing to run an entire, full-featured web server like apache (or, even worse,
uploading every little change to a remote server) just to test their changes.

npm install grunt-contrib-connect --save-dev

33

Workspace Setup

www.allitebooks.com

http://www.allitebooks.org

4.7.2.3 Grunt Watch
The next tool to be installed is watch. This is a handy task that will watch for
any changes in a group of files (essentially, checking to see if the file is different
from what it was before when it is saved). If there is a change to any files being
watched, the watch task automatically runs other Grunt tasks for the developer.
One common use case of watch is to automatically run Browserify, changing
the developer’s ECMAScript6 code into ECMAScript5 code automatically
without any extra work. This will save you the time and annoying step of
having to click a button or enter commands to actually run the transformation
you want to see your code update. Another common use of the watch task is
to run JSLint on all the files a developer is working on. JSLint will check to make
sure the JavaScript is written in a form that is maintainable and uses “proper”
JavaScript practices.

npm install grunt-contrib-watch --save-dev

4.7.2.4 Copying Bower Files to the Project
When Bower installs new libraries for the developer to use, it will download
the file that the developer wants (typically a minified JavaScript file) along with
everything else in that file’s git repo. This means that the “bower_components”
directory will include a bunch of extra files that aren’t really needed while
building the game. They’re just there for reference at best. Since the developer
only needs one file or folder, it is common to see these files manually copied
into the project folder. This isn’t a bad approach since it won’t happen too
often but can run into issues when sharing the project with others. In order to
keep everything in the project automated, we’re going to use a package that
will automatically move Bower components over to our scripts folder.

To install this automatic copier, type this into the command prompt.

npm install main-bower-files --save-dev

4.7.2.5 Babel and Babelify
Finally, install the grunt-babel and babelify packages. These two tasks will be set
up to allow Grunt to take all the smaller ECMAScript6 JavaScript files and package
them up into one, neat JavaScript file that can be easily included on a page.

npm install grunt-browserify --save-dev
npm install babelify --save-dev

4.8 Writing the Grunt File
Now that the project has all of the required Grunt libraries installed, the next
step is to write the file that instructs Grunt on how to use those packages
when Grunt is running. This file is named gruntfile.js and should be included
in the project root (alongside index.html and package.json). The gruntfile
comes in three parts: configuration of tasks, loading of tasks, and registering
sets of tasks to run under different names.

34

An Introduction to HTML5 Game Development with Phaser.js

First, make a gruntfile.js file in your root directory and open it up in your text
editor of choice. Here is the gruntfile.js in its entirety. Following this file’s
contents will be a discussion of what each major section does.

module.exports = function(grunt) {

 grunt.initConfig({
 pkg: grunt.file.readJSON(‘package.json’),
 browserify: {
 main: {
 options: {
 browserifyOptions: {
 debug: true
 },
 transform: [[“babelify”, { “stage”: 1 }]]
 },
 src: ‘src/app.js’,
 dest: ‘scripts/app.js’
 }
 },
 watch: {
 files: [‘src/**/*.js’],
 tasks: [‘browserify’],
 options: {
 spawn: false,
 },
 },
 connect: {
 target:{
 options: {
 port: 9001
 }
 }
 },
 bower: {
 flat: {
 dest: ‘scripts’,
 options: {
 debugging: true
 }
 }
 }

 });

 grunt.loadNpmTasks(‘grunt-contrib-connect’);
 grunt.loadNpmTasks(‘grunt-contrib-watch’);
 grunt.loadNpmTasks(‘grunt-browserify’);
 grunt.loadNpmTasks(‘main-bower-files’);

 gr unt.registerTask(‘default’, [‘bower’, ‘connect’,
‘watch’]);

};

35

Workspace Setup

4.8.1 module.exports
The first bit of code that should go into the text editor looks like this:

module.exports = function(grunt) {

}

The purpose of module.exports is to specify what code in this file should be
available to any other files that request it. For Node to properly run this file, all
the configurations must come inside this anonymous function, because it is
the only code that Node will be able to find within this file.

4.8.2 grunt.initConfig
The next bit of code starts with a grunt file and looks like this.

grunt.initConfig({

});

Between these two lines of code will come the configuration of all the different
tasks that Grunt will run. After the first line in the configuring (which loads in
some details from package.json that may be used later on in the project), there
are four tasks configured: browserify, watch, bower, and connect.

4.8.2.1 Browserify Task

browserify: {
 main: {
 options: {
 browserifyOptions: {
 debug: true
 },
 transform: [[“babelify”, { “stage”: 1 }]]
 },
 src: ‘src/app.js’,
 dest: ‘scripts/app.js’
 }
}

This task will compile the content of the JavaScript files in the src folder
into one larger file to be included on the project’s HTML page. The two
properties at the bottom specify the file to start looking at (src/app.js) and
the file to create when all the files are compiled together (scripts/app.js). The
first app file in the src folder acts as the “root” file. If there are no inclusions
in that file, then this task will simply copy over src/app.js to scripts/app.js.
However, if there are inclusions at the top (like in the app.js example in
the next chapter), it will include those files as well. If any other files have
inclusions, Browserify will continue to copy these newly included file’s
content into the final export file.

36

An Introduction to HTML5 Game Development with Phaser.js

Note that there is a property of “transform” set to babelify. This tells
Browserify to transform any of your ECMAScript6 code into ECMAScript5
code before it is placed into your export file.

In this particular config, Browserify’s debug has been set to “true,” which
creates something called a sourcemap. This will let you easily debug your
projects when something goes wrong. Without a sourcemap, if your scripts
encountered an error, the error console would show you a line number
in the compiled file, which can be a bit of a pain to track down first, and
then you would need to go find it in the original file. With a sourcemap,
JavaScript will be able to tell you where the error occurred in the original
file. Instead of seeing “error on line 1134 of app.js” you will see “error on line
10 of Player.js.”

4.8.2.2 Watch Task

watch: {
 files: [‘src/**/*.js’],
 tasks: [‘browserify’],
 options: {
 spawn: false,
 }
}

A fairly simple task to configure. Watch will observe files for any changes
(a modification and save of the file). When the watch task sees a change
in any of the files it is watching, it will run the specified other tasks
automatically.

This watch task is configured to look for a change in any JavaScript file inside
of the src folder and its subfolders. When it sees a change, it automatically
runs the Browserify task we just configured, compiling the changed code
into the scripts/app.js file. Essentially, it lets a developer work with JavaScript
in a faster manner, closer to the way JavaScript development used to work
(make a change, and then refresh browser to see change). That said, they will
need to keep an eye on the terminal during changes. The compilation step
may not be instantaneous, so watching for the success message is important.
Additionally, there is a chance that you wrote some code wrong, resulting in
a file that cannot be compiled. If that is the case, the error will be displayed in
the command prompt and will need to be fixed before returning to the web
browser (see Figure 4.3).

4.8.2.3 Connect Task
connect: {
 target:{
 options: {
 port: 9001
 }
 }
}

37

Workspace Setup

Connect starts a lightweight web server that will serve files from the project
root. Just in case the machine is already running a web server, the config
file specifies a unique port to listen on, port 9001, instead of the default
port of 80. Once the server is up and running, typing http://localhost:9001
into your browser’s address bar will load up the site. Just like with other
web servers, index.html will be the default html file returned if no other
file is specified. When working with the projects in the book or using this
workflow, remember to always go to this URL instead of opening up just
the index.html file manually. If you don’t, files won’t load and images won’t
render correctly.

4.8.2.4 Bower Task

bower: {
 flat: {
 dest: ‘scripts’,
 options: {
 debugging: true
 }
 }
}

The last task is one that won’t be run quite as often, only at the start of a
development session. The bower task is set up to take all of the frontend
(user facing) components from the bower_components folder and copy
over the primary files to the project’s primary scripts folder. Because this
particular script is configured with the “flat” attribute, all of the files will
be copied into simply the “scripts” folder in the root, making them easy
to include. If you downloaded, say, easystar.js, then to include it later, one
would only need to write a script tag that referenced “scripts/easystar.js”
instead of “scripts/bin/easystar.js.”

38

An Introduction to HTML5 Game Development with Phaser.js

FIG 4.3 A task that has encountered an error.

http://localhost:9001

4.8.3 Loading Tasks
grunt.loadNpmTasks(‘grunt-contrib-connect’);
grunt.loadNpmTasks(‘grunt-contrib-watch’);
grunt.loadNpmTasks(‘grunt-browserify’);
grunt.loadNpmTasks(‘main-bower-files’);

With the configuration of Grunt complete, the next step is to load the tasks.
This is a quick step that instructs Grunt to load the associated files needed for it to
do its job. To do so, one writes grunt.LoadNpmTasks (“name-of-npm-task”).
This config file uses connect, Browserify, main-bower-files, and watch, so all
four are loaded.

4.8.4 Registering Tasks
gr unt.registerTask(‘default’, [‘bower’, ‘connect’,
‘watch’]);

Last in the setup of Grunt is the process of registering the tasks to execute
when Grunt is run. This is a fairly simple Grunt file at the moment, so there is
only one task registered, the default task. A default task is one that will run
when “Grunt” is typed into the command line without any other arguments.

When a command prompt is opened at the project root and the “Grunt”
command is entered three operations will happen. First, the main files for any
Bower packages will be copied into the output folder. Because this happens
only once, make sure to install any bower packages before running this Grunt
task, so they’ll get into your scripts folder. Second, a web server will start up
via our configured “connect” task. This server will stay open as long as Grunt is
running and the terminal remains open. Finally, grunt will begin to watch for
changes in the src folder, automatically compiling the changes in your source
to the final scripts/app.js file via the Browserify task. The order tasks specified
are important for the register task command. If the order of connect and watch
is swapped in the array, the watch task will run first and grunt will never get
around to starting up the web server.

After running this command, leave your command prompt open. Closing the
terminal will stop all of the tasks, closing the server and halting Grunt from
compiling your code. Additionally, if something goes wrong during the
compile step of the process, the terminal will give important feedback, so
don’t forget to check it if something seems off.

4.9 Testing Grunt
With luck, all the files are downloaded and installed into the project directory
and the Grunt file is properly configured. The time has come to test and
make sure that Grunt is properly configured and ready to go. This is another
command prompt step, so open it up and navigate to the folder with the
Grunt file. Once there, type this command (see Figure 4.4):

grunt

39

Workspace Setup

If everything is in order, you will see a message in the terminal indicating
that Grunt is running a server and watching your files for changes. Here are a
few steps to walk through in order to verify everything is set up as needed:

 1. In the root of your project, make an index.html file. Fill it with this basic
page markup:

<html>
 <head><title>Testing grunt</title></head>
 <body>
 <h1>It works!</h1>
 </body>
</html>

 2. Type http://localhost:9001 in your browser’s address bar and make sure
you see that page returned to your browser.

 3. Make two directories, src and scripts, in the same folder as index.html.
 4. Inside of the src folder, add an app.js script. It should contain this code:

import SecondScript from “./Second.js”;

 5. Inside of the src folder, create Second.js script. It should contain this code:

ex port default alert(“Browserify is working as
intended.”);

 6. Save those scripts and refresh the browser page. You should see one of
those annoying alerts pop up.

 7. Open up scripts/app.js to see how browserify combines your different
scripts into one (optional).

40

An Introduction to HTML5 Game Development with Phaser.js

FIG 4.4 Successfully running the watch task.

http://localhost:9001

4.10 Installing Yeoman
Hopefully it is becoming rather apparent that a lot of work goes into the
setup of these files to get a workflow configured. When it is time to start
working on a new game, the process to create a new project based on this
environment is less involved. One needs to copy over the file structure (sans
the node_modules and bower_components folders) and run the commands
“npm install” and “bower install” from the root of the project folder.

If even this is too much work, however, or playing the configuration game
just isn’t something you want to do and you skipped to here from the start
of this chapter, there is a simpler way to get this particular directory structure
setup (and many others). This simpler way is a tool is called Yeoman, which is
a command line tool that will create project directories with build scripts and
Node modules from simple prompts in your terminal. Yeoman is reliant on
other people to a “template” for the project type you want to make. There is
one template on the Yeoman templates directory that has been developed
to recreate the structure outlined in this chapter, giving you a familiar base to
use throughout the rest of this book.

Before using Yeoman, you will need to install a global tool.

npm install –g yo

Then, if you ever want a basic game structure as outlined in this chapter (and the
next since this generator will set up the html for you as well), these three lines
will ask a few questions and scaffold out a game application for you to use.

yo phaser-book-simple
npm install
bower install

Running the first line will download all the files for an empty game, set up
the Grunt file, and put the package.json and bower.json files into the root
directory. Next, npm install will fetch any of the packages that are specified
in the package.json file as necessary for the project and install them. Bower
install will get the frontend scripts, similar to npm install. Once both of these
commands have been run, you are ready to get coding a new game with a
minimum amount of setup time.

Phaser Yeoman Generators

There are a number of different generators for Phaser games—all take
slightly different approaches to the basics for a game. While the approach
in the book-simple generator works, it is a simple base that is intended to
explain and illuminate the basics. It would not be a bad idea to see what
else is available to scaffold out a basic game by heading to Yeoman’s
generator index at http://yeoman.io/generators/.

41

Workspace Setup

http://yeoman.io/generators/

4.11 Conclusion
Setting up a development environment is not the easiest thing to tackle in
JavaScript application development, but it does pay off in terms of faster
development later on, more maintainable code, and code that is easily
transferred and shared with others. The primary tool that enables all of this is
Node was originally developed to make server-side applications in JavaScript,
but it has turned into a multipurpose tool that no one can go without. Node
will let the developer easily and quickly download new libraries of code and,
in tandem with Grunt.js, run a number of tasks automatically that would
otherwise take time out of development and production.

The next chapters will assume that this project structure is used as the
base for all of the work, so be able to recreate it via copying files or through
scaffolding the project out via Yeoman.

42

An Introduction to HTML5 Game Development with Phaser.js

Chapter 5

Phaser Project Setup

Now that we have gotten through the trials of setting up a Grunt-based
workflow, the next step is to get it fully structured and tested by making a
simple game. In this chapter, we’re going to walk through some of the basics
of Phaser games using this build method and make a quick clicker game to
make sure we’ve got it all set and ready to go.

To start, copy the files from the setup phase into a new folder, except for
the node_modules folder. Open up a command prompt at the root of this
folder and run “npm install” in order to get the Grunt files installed again.
Again, if you’re not too worried about learning about this setup, you can
also use the Yeoman generator to quickly scaffold a new project by running
“yo phaser-book-simple.”

43

5.1 Setting Up the html
This project (and all subsequent projects) will only need one html file to run,
named index.html. Go ahead and edit the index to look like this:

<!DOCTYPE html>
<html>
<head>
 <title>Game Name</title>
</head>
<body>
 <div id=“game”></div>
 <script src=“scripts/phaser.js”></script>
 <script src=“scripts/app.js”></script>
</body>
</html>

The only major addition is the div element with an id of game. This is
where Phaser will place the canvas to render our game’s graphics once
it loads up properly. Unlike the previous game example, where all of
the codes for the game were written on the page itself, this game and
future ones will be complex enough that the code for the game will
be pulled out into its own script file, app.js. This script file needs to be
included after the Phaser library, or it will try to run without all the Phaser
capabilities loaded, and won’t get very far before it tries to do something
it doesn’t know how to do, eventually hitting an error and halting script
execution.

5.2 App.js
Next, inside of src/app.js

var game;

import Boot from “./states/Boot.js”;
import Preload from “./states/Preload.js”;
import Game from “./states/Game.js”;

window.onload = function () {
 //hi

 game = new Phaser.Game(800, 600, Phaser.AUTO, ‘game’);
 game.state.add(‘boot’, Boot);
 game.state.add(‘preload’, Preload);
 game.state.add(‘game’, Game);
 game.state.start(‘boot’);

};

This bit of code is a little different from the first Phaser game in this
book, taking a more robust, if more complex, approach to setting up a
game. Phaser.AUTO is a separate way to specify the mode to render
to the canvas. By default, it will render in 3D (using webGL) but will

44

An Introduction to HTML5 Game Development with Phaser.js

fall back to canvas if the device or browser it is running in cannot do
hardware acceleration.

Second, there is an id (“game”) specified in the last argument of the constructor
call. This will tell Phaser to put the game into the div with that id, helping one
position the game in the final rendered HTML via CSS. This is especially great
for games that will be deployed to the web where the “box” the user views the
game in needs to be positioned. Simply tell Phaser to put the game into that
box, and then the box can be positioned with traditional techniques.

Perhaps the most jarring new addition is the states. In the first game example,
one state was created and passed into the Phaser constructor because it was a
fairly simple game. In this template, several states are included from other files
(because they can get pretty long) and passed into Phaser’s state manager.
The grunt file will then at runtime go and fetch these states and include them
in the final, compiled app.js file. Browserify loads its modules in a weird format,
so to specify a folder beneath the current file, the path needs to start with a dot
and navigate down from there (unlike the approach that HTML and CSS paths
take, where the path would simply forgo the dot and slash and start with the
folder name). Each of these files contain unique Phaser states with their own
individual preload, create, and update methods.

5.2.1 Boot State
The boot state is the first state to run in this Phaser setup. This state is
used to ready and prepare the app’s base configuration, so the other
states don’t need to deal with application-wide concerns. Common tasks
here include setting up the input method (is this a mouse-only game,
or will it only work with one finger, or multiple), preparing resolution
of the game, and determining how Phaser handles device rotation and
rescaling.

export default class Boot {

 preload() {
 th is.load.image(‘preloader’, ‘assets/images/

loading_bar.png’);
 }

 create() {
 this.game.input.maxPointers = 1;
 this.game.state.start(‘preload’);
 }

}

This is a simple boot state that can be used to scaffold more complex ones
later on. A single class is exposed from this file, which contains Phaser
preload and create methods. The preload gets an image ready to show as
the loading screen for the next state, the preloading state. Once that bar
is loaded, the create method restricts this game to one finger or mouse
interaction and moves onto the preload state. If you’re looking to use

45

Phaser Project Setup

multitouch interaction, removing or at least upping the number on the
maximum pointers line will be necessary.

5.2.2 Preload State
The preload state is the state that runs while the game loads the assets
needed to play and gives the user feedback on how much longer of a
load time they will have (hopefully not too long, users can tend to be
impatient).

export default class Preload {

 constructor() {
 this.asset = null;
 this.ready = false;
 }

 preload() {
 th is.load.image(‘loading_bg’, ‘assets/images/

loading_bg.jpg’);
 }

 create() {

 //background for game
 this.add.sprite(0,0, “loading_bg”);

 th is.asset = this.add.sprite(this.game.
width/2,this.game.height/2, ‘preloader’);

 this.asset.anchor.setTo(0.5, 0.5);

 th is.load.onLoadComplete.addOnce(this.
onLoadComplete, this);

 this.load.setPreloadSprite(this.asset);

 //do all your loading here
 // this.load.image(‘player’, ‘assets/images/

player.png’); //width and height of sprite

 //staaaart load
 this.load.start();
 }

 update() {

 if(this.ready) {
 this.game.state.start(‘game’);
 }

 }

 onLoadComplete() {
 this.ready = true;
 }

}

46

An Introduction to HTML5 Game Development with Phaser.js

This state comes in three parts: starting the load in the create phase, showing
feedback during the update phase, and changing to a new state once the
load is complete.

This state also introduces another feature of Phaser: inside of a state, most
parts of the Phaser core code can be accessed by simply referencing the
state itself (“this”). In this state, all of the loading and game manipulation
are done from “this” (the state) instead of navigating up to the game object
via “this.game.” Not everything is accessible through the state, but some
of the key game objects are, such as the world, the display list, input, and
the loader.

This state has a few properties that will be accessed throughout its
different methods and need to be initialized before the state starts
running. Any of these object-level properties that need to start off at
a certain value can be set in the object’s constructor method, which
will run the moment the object is created. This state’s two key properties
are its preload asset (a bar that will change in size as the files load, giving
users an indication that the application is still running and how complete
the load is) and ready command (a Boolean variable that will flip to
“true” when the game is ready to go).

Because this is the first time we are using states, it is important to note that
actions taken in previous states can affect the current state. In this current
preloading state, a background is added and then a loaderbar is placed on
top of the background. Nowhere in this state is there any code to load up
bar graphic. The loading of the bar happened on the previous state (boot).
In other words, it is possible to load assets in one state and use them in
another. Phaser’s asset cache is not cleared between states. In fact, that is just
the purpose of the preload state. It is going to load in all the assets before
moving on to the game proper.

Why Preload Assets

Everyone hates preloaders. They’re a pain to write and they take up
the user’s time when they just want to get to gameplay. At their worst,
the loaders take too long and the players leave before they can even
get to the game itself. Wouldn’t it just be great to start the game and
load in assets as needed? Unfortunately, this would result in chugging
gameplay. Imagine you are playing a game and the big boss is about
to come in and the game has to halt to load up the boss. Players would
not be happy at all. Essentially, everything for a section of gameplay
needs to be ready the moment the game begins, or there will be
slowdowns and halts as the game takes the time to fetch what it needs
to play.

47

Phaser Project Setup

Dealing with Large Load Times

Large load times can be dealt with in two ways: asset optimization
and loading in stages. When working on the web, it is that assets are
optimized for the smallest size possible. Some techniques for optimization
will be covered later (such as image atlases), others include understanding
the different file formats and choosing the right format and image size for
the right place.

Another approach to loading is to not load in all the assets for the game at
the very start of the game. Instead, only the assets needed to get into the
first stage or menu are loaded (and maybe some of the bigger items that
can be put into a first, longer load). Then, as the user moves into different
parts of the game, they will encounter shorter load screens where a few
more assets are loaded for specifically that stage. This gets the player into
the action faster, but does put little pauses into the gameplay that the
players might find jarring, depending on the game.

The Phaser load system has a number of signals that will fire throughout
the loading process, but the one that the preload state most needs to
respond to is the moment all of the assets have completed their loading. An
onLoadComplete signal is set up to run a function (only once) when the
assets are fully loaded. All this handler does is toggle the load ready to true,
letting the update function handle the actual transition of states.

Perhaps the most important part of this state is the preload asset, which
is the bar that will scale as the assets are loaded in. Phaser will handle this
scaling automatically if the asset is set as a loader sprite, making it start at
an x scale of zero and progress to a scale of one, based on the percentage
of data currently loaded compared to how much needs to be loaded in
total. For instance, if two megabytes of data needs to be loaded in this
state and one megabyte has been currently loaded, this asset will have a
current scale of .5, making it appear half its full width.

The next part of this state is the essential part of the state that will be
edited in later games. Here, all of the assets for the game are loaded
via Phaser’s load object. Among the items that can be loaded are sprite
sheets, audio, tilemap files, physics data, and pure text. All of these assets
are queued up via the load object, and the loading is started via this.
load.start. Once all of the assets are loaded, the load system will fire
the onLoadComplete signal and the ready property will be set to true.
Inside the update function, when the ready variable is true, the next
state (game) is then started.

With the boot state and preload state complete, the game is ready to run.
This is the end of some of the common “boilerplate” stuff that will appear in
just about every game. Next is the more challenging part of actually making a
game someone wants to play.

48

An Introduction to HTML5 Game Development with Phaser.js

5.3 Testing the Setup with a Simple Game
To get a feel for this setup, let’s take a moment to go through and make a
cloud busting game (Figure 5.1). It is going to be a simple game that pops
some clouds up in front of the player, which they need to tap or click to make
them go away. This is a sort of whack-a-mole but with a less annoying theme.
This will take us through the process of loading in images and then using the
assets inside the game state.

5.3.1 Before Starting Development
The development of this game and the future games discussed in this book,
which are based on the ECMAScript modules and classes, are reliant on the
Grunt script to be running at all times during development. Before writing
any of this code, open up a command prompt at your project root and type
“grunt.” This will prepare your project to automatically compile all your code
changes, give feedback on any coding errors encountered, and will let you
see the game in a web browser at http://localhost:90001.

5.3.2 Getting and Loading the Assets
To begin, grab the assets at https://github.com/meanderingleaf/
PhaserBookExamples/tree/master/CloudClicker2024/assets/images and move
the files into the /assets/images folder of this project (make the folder if you
need to, of course).

Returning to the preload state, where the state mentions to “do all your
preloading here,” add these two lines to load the assets for the game.

this.load.image(‘cloud’, ‘assets/images/cloud.png’);
th is.load.image(‘game_bg’, ‘assets/images/
game_bg.jpg’);

49

Phaser Project Setup

FIG 5.1 Screenshot of the final busting game.

https://github.com/meanderingleaf/PhaserBookExamples/tree/master/CloudClicker2024/assets/images
https://github.com/meanderingleaf/PhaserBookExamples/tree/master/CloudClicker2024/assets/images
http://localhost:90001

5.3.3 Writing the Gameplay
Moving to the Game.js file, let’s fill in some basic game code to get a fully
working game out of this setup. This cloud busting game will create cloud
sprites at random places on the screen. When the user taps on a cloud, it will
be removed from the screen, giving the user an increase in their score. This
will be the first time that object pooling will be used in one of our games as
well, so a working implementation of a pool in a game will be implemented.

export default class Game {

 create() {
 this.add.sprite(0,0,“game_bg”);
 this.clouds = this.add.group();

 this.score = 0;
 va r style = { font: “24px Arial”, fill:

“#FFFFFF” };
 th is.txtScore = this.add.text(10,10,this.score.

toString(), style);
 }
 update() {
 if(Math.random() < .01) {
 var cloud = this.clouds.getFirstDead();
 if(cloud) {
 cl oud.x = Math.random() * this.game.

width;
 cl oud.y = Math.random() * this.game.

height;
 cloud.revive();
 } else {
 va r cloud = this.clouds.create(Math.

random() * this.game.width, Math.
random() * this.game.height, “cloud”);

 cloud.inputEnabled = true;
 cl oud.events.onInputDown.add(this.

onCloudClick, this);
 }

 cloud.alpha = 0;
 th is.add.tween(cloud).to({ y: “−50”, alpha:

1 }, 800, Phaser.Easing.Cubic.Out, true);
 }
 }

 onCloudClick(cloud) {
 cloud.kill();
 this.score ++;
 this.txtScore.setText(this.score.toString());
 }
}

This game will have three state-level variables that will be used throughout
the state: clouds, score, and txtScore. While there is no place to denote

50

An Introduction to HTML5 Game Development with Phaser.js

this in the code, keep them in mind as we work throughout the code. These
state-level variables are set in the create function.

this.add.sprite(0,0,“game_bg”);
this.clouds = this.add.group();

this.score = 0;
var style = { font: “24px Arial”, fill: “#FFFFFF” };
th is.txtScore = this.add.text(10,10,this.score.
toString(), style);

There’s not a lot new going on in the create function code. A background
sprite is added to the game to give some grounding and context to the game,
and the score is set up both through the numerical score and the score text
field. Also, a group is added to the display list to manage all the clouds. This is
the group all the clouds will be added into and will also be used to pool the
clouds, so no more clouds are created than needed.

Moving onto the update method that will implement the gameplay of
randomly popping up clouds.

update() {
 if(Math.random() < .01) {
 var cloud = this.clouds.getFirstDead();
 if(cloud) {
 cl oud.x = Math.random() * this.game.

width;
 cl oud.y = Math.random() * this.game.

height;
 cloud.revive();
 } else {
 va r cloud = this.clouds.create(Math.

random() * this.game.width, Math.
random() * this.game.height, “cloud”);

 cloud.inputEnabled = true;
 cl oud.events.onInputDown.add(this.

onCloudClick, this);
 }

 cloud.alpha = 0;
 th is.add.tween(cloud).to({ y: “−50”, alpha:

1 }, 800, Phaser.Easing.Cubic.Out, true);
 }
 }

The gameplay starts with some simple chance-based code to run the rest
of the instructions. Math.random() will return a number between zero
and one, with the numbers nearer to one and zero being less likely. This if
statement, checking for a Math.random() <.01, will trigger fairly infrequently.
Then, using a feature of the Phaser’s group, we first check to see if there is a
cloud that is in the group but not alive (or currently active in the game). If there
is a dead cloud, instead of making a new game object, the dead cloud is moved

51

Phaser Project Setup

to a new location and revived. This saves program memory space—there will
never be more clouds than needed for the game to run, and the game will not
be collecting a bunch of “dead” clouds in memory that are unused.

Chance Roll

If Math.random() < (someChance) is too obscure or verbose for you,
Phaser has a built-in feature that does about the same thing: chance roll.
A line of phaser.utils.chanceRoll(1) will accomplish the same task
as the Math.random() approach.

Next we’ll create the update method that will create the randomly appearing
clouds. Instead of using Phaser’s add.sprite method that would add it to
the display list root, the new cloud is added to the clouds group (thus putting
it in a space where it can be easily recycled once it is dead). By default, sprites
do not receive user input, so it is enabled for input that allows it to receive
mouse events such as onInputDown (a tap or click depending on the
context). The only important thing to note with this signal is the second part
of the argument, the word “this.” Function contexts are notoriously difficult
to deal with in Javascript, and this is Phaser’s way to being explicit about the
context in which the function should run. Even though the function exists in
the “game” state, the function itself can be run “on” any object. Oftentimes,
this object is not what one wants it to be like the document root (giving one
access only to very-high-level variables, like the “game” variable in app.js),
or it might also run on the cloud clicked (so the developer would be able to
change the clouds properties, but nothing else). It would be very hard to
get access to the score or score text from the cloud object or the document
object, so by passing “this” as the second argument, the context for the
handler will be the game state, giving the function onCloudClick access to all
the other properties that we have been working with in this file.

Finally, after the cloud is created (or revived), as an additional bit of flair, the
cloud is animated into view, starting at invisible and ending up fully opaque.
This is done via Phaser’s tween engine. Setting its alpha to zero, the tween then
fades the cloud into fully visible over the span of 800 ms (millisecond). While
that would look okay, a second argument in the tween, y, is given a textual
argument. If a tween receives a textual argument, it will treat those numbers
as a relative value and apply the motion starting from where it currently
is located. This relative animation with tween will take the cloud’s current
position and make it move 50 pixels upward. It is a small effect but brings a bit
of motion to call attention to the new clouds and can feel quite slick to the user.

Almost always add some sort of easing to a tween for a more natural
look, save for those rare instances you are trying to recreate mechanical
motion. An ease out will make the motion fast at the start and slows to
a stop. It is great bringing things into view, which is precisely what we
needed here.

52

An Introduction to HTML5 Game Development with Phaser.js

The last method needed to finish this game is the cloud click handler.

onCloudClick(cloud) {
 cloud.kill();
 this.score ++;
 this.txtScore.setText(this.score.toString());
}

When a cloud is clicked, both the numerical and textual scores need to be
updated. Numerical first, and then show that amount in the text on the screen.

Additionally, this is the end of that particular cloud for now. Since the click
handler knows what cloud was clicked, calling cloud.kill() will take it
out of the game for now. When there is an object in the game that needs
to go away and not be running its update function, colliding with other
objects, or being visible, the kill method is the appropriate choice. This keeps
the object around in memory, but functionally it is not in the game until it is
revived again. Once this method runs, the user will get a point, the clicked
cloud will disappear, and that’s the code for this game.

Head over to localhost:9001 and check on the game. There should be clouds
appearing at random on the page, and, when clicked, they disappear. It is not
a first person shooter, but there might be a bit of fun to be had there.

53

Phaser Project Setup

http://taylorandfrancis.com

Chapter 6

Phaser Principles

All game engines offer a set of capabilities to the developer who chooses to
use it. In fact, it is often these capabilities that make someone choose to use
one engine over another. One of the great things about Phaser is simply that
it is so full featured, with lots of great features ready right out of the box and
others available via plug-ins. The features that make up Phaser result in quite
a large system what is thankfully well documented at phaser.io/examples and
phaser.io/docs. The size and complexity of a framework is always a blessing and
a curse. While it is great that the framework can do so much, it also means that
a developer needs to understand what the framework offers, how it works, and
the limits of the technology before they can delve in and start working.

The purpose of this chapter is to explain the different parts of Phaser to give
an overview of how the engine works and that is, in general, possible with it.
This chapter contains source code where needed to help explain the ideas or
establish snippets that can be referenced for when you sit down to write your
own game later on. This is not an exhaustive list of what Phaser is capable of,
and it is highly encouraged that you take some time later on looking over at
the very least the example area of the live Phaser site to find more capabilities
and code snippets that you can work into your own games.

55

6.1 Game Loop
The first thing to understand about a game engine (and this will be true of
nearly any game engine) is the game loop that runs the whole game. In order
for a player to perceive the motion in a game as smooth and uninterrupted,
a game needs to run some code ideally 30 times a second, though it can
dip to around 20 and still be passable. Not only does the code that runs all
of the game need to execute tens of times a second but also it needs to do
it reliably each time the update runs. If something happens during a time
it is executing that takes very long, then there will be less time for the next
frames to run, and the number of frames rendered in that second will be
reduced (often called a frame drop). To get a function that runs reliably that
many times a second is a bit of an adventure.

In the early days, a game loop was beautifully simple. It would create a
block of code that would run forever (a while(true) doing the trick of
never stopping). Inside that code block, the game would run through three
major concerns of a game engine: getting input from the user, updating
the game state, and rendering the result of the two previous steps to the
screen. The input method will get whatever the user is currently doing
with their interface devices, notably mice and keyboards, but items like
controllers or remotes fall into this category as well. Updating the game
state is where all the gameplay itself is implemented. Images are moved
around, audio is triggered to play, and collisions are processed in the
update method. Finally, the render method clears the entire screen and
redraws every single visible element in the game. With the following
approach, all this happens as fast as possible with the goal of hitting or
exceeding the 30 frames/s mark.

while(true) {
 getInput();
 updateLogic();
 render();
}

While quick and easy to create, this simple loop comes with two flaws. First,
the code would slow down if too much computation was done inside it. More
code, complex algorithms, or just poor programming meant a slower loop
and less frames per second. The second issue with this approach was that in
the past the speed of the game was dependent on the speed of the processor
running it. Games that were programmed for old computers that were “state
of the art” in their days quickly began speeding up on later computers that
became significantly faster as Moore’s law held true and processors doubled
in speed every 2 years. Games quickly became unplayable as they were
processing at warp speed (relatively speaking).

The solution to the problem of a very fast update was to force a game to wait
until it is ready for the next update by having the computer pause processing
time until a certain fraction of a second has passed. This will not address the

56

An Introduction to HTML5 Game Development with Phaser.js

opposite speed issue of a slow game that is taking too long per game loop.
The fix to this issue is to store the time elapsed since the last update and run
the logical updates as often as needed to catch up to the current time. This
“catch up” process occurs in between a full loop. So the game will get input
once, run several times to update just the logic, and then render once. A slow
machine might need to update the game logic a few times to catch up, while
faster one will have to do it less, getting closer to the ideal of just one logic
update per full game loop.

It is important to remember that the rendering and logical updates do not
occur at the same time, or even in lockstep. It is entirely possible to process
updates for the game without rendering those updates, and this can
sometimes be very useful for the game to get everything “set up and settled,”
such as in a physics-based game. Movements and other updates may also be
different between the update and rendering. When moving an object five
pixels to the right per update, that is not the same thing as moving it five
pixels per frame render. It actually may move further based on the number of
logic updates that occur before rendering.

6.1.1 Logic Update Step
The logic update step is where the code that implements all the gameplay
is run. This method is actually two that are run in order for each update:
preupdate and update. During the preupdate phase, everything is cleaned
up and prepared for updating, but no actual gameplay code is run. Once
everything is ready for an update, Phaser will then run the current state’s
update method, move positions of elements on the stage, run physics
calculations, update any particle systems that are currently running, and do a
few other miscellaneous tasks for the game to keep running.

The state’s update method is where the developer’s work comes in. This is
where they will handle what to do with the input, how to move objects, when
to trigger animations, and whatever else goes into the uniqueness of their
game. Every game object also has the potential to run its own individual
update function if the developer defines a unique function for it. Individual
update functions are great for objects that need to do something more
unique to itself, like AI calculations or individual state management (for
instance, a door might need to close itself in a spooky game). If you want to
create objects that implement their own specialized update functions, they
need to extend from the Phaser classes, so Phaser can discover the update
methods and work with the classes. Examples of this approach are discussed
in section “Phaser Principles.” The combined updates of the state and its
individual objects make each game unique. The code that goes into an
update for a side-scrolling platformer is going to be vastly different from the
code for a match three game.

So long as the game is not paused, Phaser will run through each of these
methods for each logic step update. The following is a list of all the methods
that Phaser runs in order to process an update. Note the three phases

57

Phaser Principles

(pre update, update, and post update). First, the developer’s gameplay code
is run (in state.update()) and then the Phaser system does the rest of the
work of the game engine automatically. All of this happens behind the scenes
and doesn’t often need to be tampered with, but it is good to know the order
things are happening in the game.

this.debug.preUpdate();
this.world.camera.preUpdate();
this.physics.preUpdate();
this.state.preUpdate(timeStep);
this.plugins.preUpdate(timeStep);
this.stage.preUpdate();

this.state.update();
this.stage.update();
this.tweens.update(timeStep);
this.sound.update();
this.input.update();
this.physics.update();
this.particles.update();
this.plugins.update();

this.stage.postUpdate();
this.plugins.postUpdate();

6.2 States
All of the custom game logic that makes your game unique is placed inside
a state. States bundle up a series of methods that help get the program
into and potentially out of a section of gameplay. A basic game that only
has one section of gameplay or interaction will only have one state, but
the real power of states comes when making multiple different states and
transitioning between them to take the user through the sections of a game.
Common uses for different states include creating title screens that transition
to gameplay or different levels within a game. They are especially useful for
games that have different types of gameplay on different stages, like a flying
stage followed by an underwater stage. States give Phaser the ability to turn
these very different sections of gameplay into separate chunks of code that
can be more easily and logically managed.

Phaser states are actually an implementation of a programming structure
called a “finite-state machine” (FSM). Due to their nature as FSMs, Phaser
will run the methods inside the state in a specific order, starting with the
preload, staying on the update method, and calling a final cleanup function
if you need to transfer to another state. Phaser will call these methods
automatically just like how it automatically calls the current state’s update
to run the unique gameplay for a game. Before delving deeper into the
particularities of Phaser’s states, we will discuss some background on how
state machines work and their particular uses will help to trying to hook up
these different states in the game.

58

An Introduction to HTML5 Game Development with Phaser.js

6.2.1 Finite-State Machines
The goal of an FSM is to create a series of different unique modes that a
program can be in. These states are “finite” in the sense that, at any one
time, only one of the states can be currently active or running in the game.
The state machine is a construct that is made to ensure that only one state is
ever running and enables the smooth transitions between states. Transitions
between states happen by shutting down the current state (letting it destroy
things or do last-minute saves before it stops running) and turning that
state off. Once the old state is shut down, a new state is started letting it go
through its setup phase. Then this new state will run its update method in
tandem with the game update until it is shut down for a transition.

A workday is a good example of different states and the transitions between
them. Many people start off their workday at home, where they wake up and work
around the house. This could be thought as a “preparation” state. Next comes the
commute, often via car, which is a “driving” state. Next comes the actual work and
its associated “working” state. Each of these states do not overlap, at least not in
our idealized world here. When the employee is driving, they are simply driving.
That said, there is clearly an amount of time between each state, such as the
time the worker takes to leave the house and get into their car. Doors have to be
opened, houses left, keys found. This bit of putting away the items needed for one
state and getting moving to where the new state takes place can also be viewed
as a transition between states. These transitions come in two parts: finishing the
old state and starting the new one. In the case of transitioning to the commuting
state, the house needs to be exited and locked, closing off the “preparation” state.
Next the car needs to be opened, entered, and turned on, starting the “driving”
state. The combination of the shutdown and setup methods becomes that
transition between the meatier update loops of the state.

Phaser’s states work in the exact same way. Once a particular state is running,
its update loop will handle all of the game concerns. The game has a few
methods for changing from state to state, which will automatically call the
functions on the current state to wrap up the state’s concerns properly and
then create and set up a new state to get it running.

Other Finite-State Machines

Another great place to see FSMs in action are the animations inside of
video games, where one animation needs to complete before another can
begin. Fighting games are a great example of the application of FSMs. When
controlling a fighting game character, only one “attack” animation of that
character can be active at a given time. Once a character’s attack animation
has been triggered and started, it will play through its animation timeline
and then transition once the attack state is over. The transition can be to an
idle state, or in the case of combos, might be to another animation so long
as the chain of input is valid. The restriction of potential moves based on the
current state of an object is actually another great use of FSMs and can be
applied to great effect in your own games with a bit of work and attention.

59

Phaser Principles

6.2.2 Creating a Phaser State
Phaser states are just objects with specifically named functions that the
game engine will know to call. This state object below has all of the methods
attached to it that Phaser will call automatically in a state's lifespan. An
example of a basic state is as follows:

var sampleState = {
 init: function() {
 // do any setup needed before the state

begins to run
 },
 preload: function() {
 //load in assets needed for the game
 },
 create: function() {
 //setup the state with game objects
 },
 update: function() {
 //specific game code
 },
 shutdown: function() {
 // last minute considerations before the

state is over
 }

}

6.2.3 Phaser State Flow
When a new Phaser state is created, either in a transition from one to another
or as the first and only state in the game (as is the case in the simple example
in this book), the state will run the init, preload, and create methods before
the update loop begins it cycle. In the case of update and preload, the state
will actually run two functions in order to complete those parts of the state
flow (see Figure 6.1).

To start with, the state will run any “init” method it has. This method can
come in handy if there is some setup that needs to be done before any of the
other concerns of the state are handled. The next function, “preload,” is used
to load in assets that this and future states may need. Because preload may
take some time, Phaser actually runs a simple game loop while assets load,
giving the developer access to a “load update” and “load render” functions
to update the user on game loading progress (typically through the use of a
loader bar or displaying the percentage of assets loaded). Once the loading is
complete, the “create” method is executed, giving the developer a chance to
initialize and set the stage up for gameplay.

The meat of a Phaser state comes in its implementation of the game
loop. There are two methods that are called while the game loop is

60

An Introduction to HTML5 Game Development with Phaser.js

running: “update” and “render.” The update method is run first and is the
method where the majority of gameplay is implemented. The render
method, contrary to the implications of the name, is actually run after the
game has rendered (drawn to the screen) all the visible objects. This can be
used for any post-render effects like blur and color correction.

The final part of Phaser’s state flow is the “shutdown” method. This is called
before the current state object is destroyed and a new one takes its place in
the state transition. The shutdown method is great for saving data that need
to persist from one state to the next or handling any complex destructions
that need to take place before the state can be safely forgotten.

6.3 Display List
A great place to start with when it comes to any game engine is to understand
how the graphics are rendered to the screen. Phaser (and most two-
dimensional [2D] graphical systems) approaches the challenge of drawing
graphics to the screen using a method called a “display list.” The display list
is essentially an array of objects to be drawn to the screen. In order to show
updated positions and graphics, the screen is cleared every frame (typically
around 30 times a second), and the graphics in the display list are painted into
the visible screen area each time after the clearing of the frame data.

The order that the graphics in the display list are drawn to the screen is based
on their position in the display list array. Graphics near the start of the array
are drawn first (so a graphic at index zero will be the furthest back, great for
backgrounds), and the last graphic in the array will be drawn on top of the
others. If two objects would overlap visually in the display list, it is the one
higher up in the list that will appear “on top” of the other object. Phaser has a
basic display list built into the root of the game (see Figure 6.2).

61

Phaser Principles

Init

Preload

Create

(Game loop)

Shutdown

Render

Update

Load render

Load update

FIG 6.1 The Phaser state stages.

The order that graphics are added to the display list affects their position
in the backing array. Whenever you see a call to game.add.sprite or
game.add.group methods, it is adding a new object to the back of the
display list, putting it on top of the other graphics in the list. If something
needs to be near the back of the game (like a background for a game), then it
should be the first item added in your game before all the other graphics.

To make things even more complex, many objects in Phaser can have their own
display lists. When Phaser encounters a group or object with a sub-display list,
it will go and render all the objects in that sub-display list in the same order
(first to last). The display list will render all the objects in this group before
moving onto the next graphic (see Figure 6.2). The result is a sort of branching
structure for the list, with many objects containing multiple graphics and lists
of their own that are rendered for their bit of the display list algorithm.

6.4 The World
The game world is the space where all the game objects inhabit. This world
has a width and height where objects can exist in, which is originally set
mirror the visible size of the window into the game. If game objects are
moved outside the size of the world, the game will stop processing them
and some pretty strange bugs can occur, so it is best to make sure the world
is set to a size you know is big enough for your game. If the game is set to be
800 × 600 pixels, then the world will be 800 × 600 units big, and objects can
move freely about in that space.

The world does not have to just be the size of the screen. Imagine a Mario
game where the entire stage was visible the moment it loaded up. Beyond
the simple reaction of “but that’s just Donkey Kong,” it would also be a fairly
boring game of Mario. Instead, the Mario stage (its “world”) stretches far to
the right. For many games, a world will need to be resized to fit the actual

62

An Introduction to HTML5 Game Development with Phaser.js

FIG 6.2 The display list.

world of your game, only some of which will be visible to the player at any
given point during gameplay.

If a bigger world is needed, two methods need to be called to resize your
game’s world space. These two methods are setBounds and resize. Resize will
increase the width and height of the game, but not in the negative direction
(up and left). The command setBounds is similar; however, it will allow the
game (camera, physics, and thus game objects) to move negatively as well.

6.5 Camera
If the game world is now bigger than the window looking into it, there
needs to be some way for Phaser to know from what position of the world it
should currently be rendering objects. This object is called a camera (a term
borrowed from 3D game engines where the camera does more camera-like
things). Phaser’s camera has x and y positions in world space that can be
moved manually to look about the graphics in the world.

In lieu of manually changing the camera’s position, quite often the camera
is given an object in the game world to follow automatically by using the
camera’s follow method. By default, a camera that is following an object
will mirror the x and y changes of the object it is following perfectly. A
five-pixel move to the left for the target object would mean a five-pixel
move to the left for the camera, letting the user see more of the world to
the left (see Figure 6.3).

A one-to-one movement ratio can get pretty jumpy, moving everything
around on the screen even when the player makes tiny motions. The chance

63

Phaser Principles

Camera

FIG 6.3 Game world.

for a bit of motion sickness to kick in for the player is can be strong because
of all of these tiny little motions. In order to mitigate the amount of time the
camera spends moving (and making the movements themselves less jumpy),
there are other follow styles that will make the camera a little less jarring and
work more naturally. There are three follow styles (topdown, topdown tight,
and platformer) and they work by defining a “dead zone,” or part of the screen
where movement within the screen area will not cause the camera to move until
the player has passed the bounds of the dead zone. Because any movement
inside the dead zone doesn’t move the camera, it keeps the view into the world
steady for longer periods of time and gives the player some space where they
can explore without having the camera follow their every little move.

6.6 Loading and the Asset Cache
When Phaser starts in the web page, it doesn’t have any of the assets that
it needs to run the game. All of the images, sounds, map files, physics
descriptions, or other miscellaneous files needed for the game need to be
loaded into the engine before gameplay can begin. Phaser has a robust loading
engine that allows a game developer to load in a number of different assets
and gives the game access to the asset later on via Phaser’s asset cache.

Technically assets can be loaded at any point during the game, though it makes
the most sense to load them before the game begins to run during the game’s
preload phase. There are a few instances when it might be acceptable to break
the loading up across the game, notably if the game has a series of asset-heavy
stages where a bit of loading time in between each level is acceptable (so long
as the stages themselves provide a decent amount of gameplay).

6.6.1 Asset Cache
During loading, it is important to note the first argument which is a string
name. This argument is the asset’s key of asset and must be unique. When
Phaser finishes loading the asset, it will place it into the asset cache with that
string as the key used to access it. The asset cache will store all the objects
loaded into Phaser throughout the lifetime of the game and will persist
throughout the whole game session, so changing states or resetting the
gameplay will not remove all the assets in the cache. Later on, when an asset
is needed, the key that was specified will need to be provided to the game
object creation method (technically an object factory), so it can correctly look
it up. In the following code sample, note how the key (“cat,” in this case) for
the image loaded and the sprite displayed are the same:

function preload() {
 game.load.image(‘cat’, ‘img/cat.png’);
}

function create() {
 game.add.sprite(0, 0, “cat”);
}

64

An Introduction to HTML5 Game Development with Phaser.js

6.6.2 Displaying Load Progress
Because the assets that go into a game can often be quite large and
may take a bit of time to load into the game, it is important to give users
feedback on the status of the load time while they wait. While it won’t
keep everyone around, if a user knows that the system is still working and
the loading is done soon, they are more likely to wait around during the
preparatory time. The feedback is typically accomplished with a graphic
that is scaled from an invisible 0% loaded to 100% as the percentage
of loaded graphics increases (often called a “loading bar” because it is
commonly of a long, bar shape).

Phaser has a built-in support for the most basic type of loading bar that was
described earlier and it can be implemented with this line of code.

this.load.setPreloadSprite(someBarlikeImage);

When working in this way, one will need to know when all of the assets
are loaded into the game, so the loader bar asset can be removed from
display list or the current state switched to a game state. The loader class
has a set of signals (discussed later in this chapter) that it will fire during
different stages of the load including the start of a load, each time more
data have been loaded, and when the loading is done. The following
code makes use of the onLoadComplete signal to run a function
entitled “onLoadComplete” when the loading is done. The function
“onLoadComplete” can then do whatever is needed to set up the game,
typically by switching to a new game state that will make use of all the
assets that are now ready to be used.

this.load.onLoadComplete.addOnce(this.onLoadComplete,
this);

this.load.start();

The final line of load.start() must be in if you plan to use the loading
events. This line tells Phaser that the loading has begun and to start firing the
other signals as the loading progresses.

6.6.3 Preloading Phase
Note that in the aforementioned code sample the loading of the image
was started in a function named “preload.” All of the preloading of
assets must come inside of this function, and it makes good practice to
keep the preload code bundled close to each other so you can easily
reference the different keys of your game assets when loading them from
the cache later on.

As this chapter discusses the different game objects you are able to make,
some might require preloading. The code that you see in the discussion of
loading these game objects should always come in the preload method.

65

Phaser Principles

6.7 Images
Graphics are the basis of most games and the most basic way to get a graphic
into the game is through an image. In Phaser, images are static visual data
that cannot have frames of animation but they can be moved around on the
screen, rotated.

6.7.1 Loading an Image
Loading images couldn’t be easier. All one needs to do is provide the path to
the image file (preferably one of the major image files of the web: GIF, PNG,
or JPG) and specify the key for the image to be accessed at later on. This bit of
code loads in a duck image that can be created with the key of “ducky” via a
game.add.sprite or game.add.image.

game.load.image(‘ducky’, ‘assets/sprites/ducky.png’);

6.7.2 Adding an Image into the Game
The first way to get an image into the game is through the Phaser image type.
This is a barebones image file. While it can still do all the things one expects
an image to be able to do, such as transform its size and receive input, it
cannot animate nor be added to the physics system. It is just an image. When
adding images, a screen position for the image is first supplied, followed by
the key of the asset to show as the sprite.

game.add.image(20, 10, “ducky”);

6.8 Sprites
Sprites are the primary way to put the “video” into “video game” by adding
(typically animated) graphics into the world. They can be static images like the
aforementioned image type, but they can additionally be animated and added
to the physics system. It is possible to load in image assets into Phaser as static
images, sprite sheets, or sprite atlases. Each has their own uses and best practices.

What Image Format

When saving sprites for use in Phaser, it is important to save them as
either a png or a gif image. Both of these image formats are called lossless
formats, which means that no image data is lost when saving the images.
Image data that is lost often results in blurry images or pixels that don’t
quite match the original image.

Equally important is that both of these formats have an alpha
(or “ see-through”) channel that lets the sprites not be entirely square.
When saving an image, always make sure that the transparency is also
exported. An added benefit of saving to the png format is that the pixels
on a sprite can have partial transparency, which can be used for effects
like tinted windows or glasses.

66

An Introduction to HTML5 Game Development with Phaser.js

6.8.1 Loading and Using Static Sprites
The process to load a static, non-animated sprite is the same as that for an
image.

game.load.image(‘ducky’, ‘assets/sprites/ducky.png’);

However, when adding the image to the game, add it as the sprite type
instead. This will add a sprite at the coordinates specified, but unlike an
image, these sprites can be added to the physics system.

var sprite = game.add.sprite(20, 10, “ducky”);

6.8.2 Sprite Sheets
Sprite sheets are the way to get animation into a sprite. Each frame of the
animation will need to be laid out in an image and then loaded in. These
animation frames will then be used in animation timelines that you will
need to write for each sprite. Phaser makes the assumption that the different
frames of a sprite’s animation are laid out in a horizontal format, and that
each frame takes up the same width and height. These are the traditional
sprite sheets that are common to find out on the Internet and fairly easy to
make. See Figure 6.4.

6.8.2.1 Sprite Sheet Layout
Sprites in Phaser have a set width and height. By default, Phaser will make
frames out of every rectangle that the height and width can fit in the image,
starting from the top left corner and fitting in as many sprites as it can
horizontally. If it hits the right edge of the image and there is enough space to
fit in another row of frames beneath, it will return to the left and start a new
row of frames, moving until there is no space either vertically or horizontally.
See Figure 6.5.

67

Phaser Principles

FIG 6.4 Example of a sprite sheet layout with two rows.

6.8.2.2 Loading a Sprite Sheet
Once you have a sprite sheet laid out in the proper format, Phaser’s load
command needs to know the width height of the sprite’s frames. If the
image contains more white space than it has actual sprite content, the final
argument can specify how many frames to load in total.

This load will create a sprite called Marella that has each frame of animation
set to be 16 × 32 pixels tall, with 12 frames of animation.

game.load.spritesheet(‘Marella’, ‘assets/sprites/
Marella.png’, 16, 32, 12);

6.8.2.3 Specifying the Frames of a Sprite’s Animation
Adding animations is done via the animations property of a sprite. An
animation can be added with either all the fames or only specific frames.
With each of the following lines of code, a new animation will be added to
the sprite with the name that is specified as the first argument (“idle” and
“jump”). Just like with the keys used in the asset cache, these names will be
important for playing the animations later.

In order to add an animation that contains every frame in a loaded sprite
sheet, add the animation with only a name and no other arguments.

spriteName.animations.add(‘idle’);

More commonly, one will add specific frames to an animation. This is done
by passing an array of the frames that compose the animation as the second
argument:

spriteName.animations.add(‘jump’, [0,2,4,5]);

6.8.2.4 Playing an Animation
After an animation has been added to any sprite, it is possible to play the
animation via the play method. When calling the method, one needs to

68

An Introduction to HTML5 Game Development with Phaser.js

FIG 6.5 Frame numbers associated with each sprite frame.

specify the name of the animation, the frame rate to play, and whether its
animation loops (returns to the start and plays again once it finishes) or is a
one shot (plays once and then stops). The frame rate is specified in frames per
second, so higher number equals faster animation times.

This line will play the idle animation at 10 frames/s (which is a decently fast
animation time). The true at the end will force it to loop, so assuming the
idle animation is a little breathing clip, the sprite will breathe forever until
another animation is triggered.

spriteName.animations.play(‘idle’, 10, true);

6.8.3 Fixed to Camera
By default, when a sprite is added into the game, it is added into the
game world itself. If the game camera moves, the sprite will move as if it
is positioned inside the world. This means that a big enough move of the
camera will result in the sprite no longer being visible on screen. Great for
most objects, but not really all that preferable for user interface (UI) objects,
which should not scroll away when the camera gets to moving.

For UI objects like heart bars, text, or power meters, fixing them to the
camera’s motion is the way to go.

someSprite.fixedToCamera = true;

6.9 Texture Atlases
Texture atlases are another approach to placing several different frames
of an animation (or even different images altogether) into a single, larger
image. The major difference from sprite sheets is that these images can be
of different widths and heights and may be laid out in a manner that saves
overall image space.

Because the frames of the images in an atlas are not a standard width and
height, they will come with a second data file that describes the frames that
are present in the image and how to extract that frame’s data from the image.
The frames are typically described via the upper left corner of a frame and
the width and height of that frame. Once loaded, it is possible to use texture
atlases either as frames of an animation or as static images. Either approach
helps reduce the size and number of images that need to be loaded into the
final game. See Figure 6.6.

6.9.1 Loading Atlases
In order to load an atlas, Phaser needs to be pointed toward an image and
the data file that describe the frames inside the image. There are a number of
different atlas data formats that Phaser supports, but this book will only be
dealing with the JSON hash version. For your reference, here are the currently

69

Phaser Principles

supported versions of hashes that Phaser can load and use. Take note that
while the function names are different, the format of the function call is
always the same. Each atlas load takes the key for the atlas, the path to the
image, and the path to the atlas data.

The first format is the Starling atlas, typically used in conjunction with the
Adobe Flash platform and exports from the Flash Professional animation tool.

game.load.atlasXML(‘penguins’,
 ‘assets/sprites/penguins.png’,
 ‘assets/sprites/penguins.xml’
);

A much more common export format for recent games is JSON, in part because
it is a format used throughout the JavaScript world. Phaser can load in JSON
atlases as arrays or as hashes. An atlas array will have different frames listed via
array numbers (0, 1, 2, 3, and so on). The hash version of an atlas will have the
frames listed by the string names of the different images in the hash (“red_
apple,” “blue_kangaroo,” “buffalo”). In general, if given the choice, it is better to
export and load the atlas as an array if you are planning to use it for animation
and load in the atlas as a hash if you are going to use the individual images.

To load in a JSON array, use the atlasJSONArray method.

game.load. atlasJSONArray(‘penguins’,
 ‘assets/sprites/penguins.png’,
 ‘assets/sprites/penguins.json’
);

Alternatively, if the atlas has been saved as a hash, use atlasJSONHash
method.

game.load.atlasJSONHash(‘penguins’,
 ‘assets/sprites/penguins.png’,
 ‘assets/sprites/penguins.json’
);

70

An Introduction to HTML5 Game Development with Phaser.js

Gunbot

Circle

Hex

Fox

FIG 6.6 Texture atlas.

6.10 Tile Sprites
Sprites be hard to manage if you need a background to appear as it scrolls
forever or wraps around the screen. Typically the solution to this problem is to
create a series of sprites and move them all at the same rate as the background
“scrolls.” Once one of these sprites goes off screen and is no longer visible to
the player, it is moved to the opposite side of the screen (just out of view),
ready to move inward and appear again. Moving these chunks of background
from one edge of the screen to the other can give the illusion of infinite
scrolling. See Figure 6.7.

Tile sprites are a built-in object that handles the creation of all the smaller
sprites and swapping. When creating a tile sprite, the first two arguments are
the position and the last is the key of the image asset, just like with a normal
sprite sheet. The middle two arguments are the width and height of the
sprite, which make up the area that the sprite will take up and scroll across
when moving its tile position.

game.add.tileSprite(0, 0, 500, 500, ‘wasteland’);

Because a tile sprite is still a sprite, the x and y properties will still move
the position of the sprite in the world space. In order to move the scrolling
position of the background of the tile sprite, one needs to change the x and
y positions of a tile sprite’s tilePosition.

For instance, this bit of code in a Phaser state will make the background of a
tile sprite scroll to the left indefinitely.

function update() {
 gameBackground.tilePosition.x − = 5;
}

71

Phaser Principles

Objects move forward Out of view

Move to opposite side

Loop indefinitely

FIG 6.7 Infinitely scrolling background.

6.11 Input
Without input, a game wouldn’t be all that fun to play. The player wouldn’t
be able to affect anything that was taking place in the simulation, which
would lose that key feature of interactivity that makes games so engrossing.
Phaser supports a wide array of different inputs, and if you need more,
there is a chance there’s a good JavaScript library out there that can help.
The three types of input that Phaser supports are the keyboard, pointers
(which are counted as both mice and touches), and gamepads (like
XBOX controllers).

6.11.1 Keyboard
The keyboard is the most basic type of input an HTML5 game can have. It is
easy to implement and everyone using a basic web browser on a desktop or
laptop computer will have access to the keyboard. Using the keyboard will
prevent your game from being played on mobile devices where access to the
keyboard is nearly impossible when playing a game.

A key on a keyboard can either be up or down, though many game
developers will also want to respond to the moment a key is pressed or
released.

6.11.1.1 Testing if a Key Is Currently Depressed
Testing for a simple key down is great for games where a constantly
depressed key is vital such as shooters where bullets need to be constantly
flying, or a racing game where the acceleration is always on. The code for a
key down test should always come inside of the update loop.

if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT))
{
 // acceleration, fire bullets, anything else

that needs a constant press
}

Why Not Use the Browser Keyboard Events?

Phaser abstracts away the keyboard events of the browser, so the game
developer doesn’t need to handle the built-in key repeating rate of the
operating system. By default, the browser will claim the key is down when
it is first depressed and then up for a few moments before kicking in
the repeat of the key until the finger is finally lifted. You can test out the
repeat rate on your keyboard by opening up a text document and just
holding down a key. Note that there is a moment when, even though your
finger is still resting on the key, no new characters are being added. This
momentary “up” is a delay built into operating systems with no JavaScript
API to disable it. Instead game engines create a system that listens only for
the physical ups and downs, storing the state of the key for a developer to
use in their game without the repeat pause.

72

An Introduction to HTML5 Game Development with Phaser.js

6.11.1.2 Responding to Key Presses
A key press can be thought of as an event that occurs for the first frame when
a user has pressed a key down. Since they are singular events that only repeat
when a user triggers them again, they are usually used for the meat of a
video game. Great examples of actions in games triggered by key presses are
jumps, kicks, punches, and opening doors.

Phaser’s key objects have signals that will fire on key down.

function create() {
 th is.kickKey = game.input.keyboard.

addKey(Phaser.Keyboard.SPACEBAR);
 this.kickKey.onDown.add(doKick, this);}
}

function doKick() {
 // this function will be called when the

spacebar key is pressed
}

If you prefer to keep all your key event handling inside of an update function,
it is also possible to check if a key was just pressed in a similar format to
checking if it is down. The keys will need to be set up in the create function
and then later checked inside the update function.

function create() {
 th is.kickKey = game.input.keyboard.

addKey(Phaser.Keyboard.SPACEBAR);
}

function update() {
 if (this.kickKey.justPressed(250))
 {

 //kick!
 }

}

Key Up Events

The key up is a lesser used key state but has its uses as well. Uses like a
charge-up shot or a golfing meter that challenges the player to hold a key
down until just the right time are great examples of the key up event. The
cost of time tends to give these actions a bigger feeling of power to the
player and can emphasize the importance of timing and patience over
rapid key presses.

6.11.2 Pointers
As stated previously, the pointer input in Phaser works as either the mouse
or as touch input on mobile devices. The number of pointers that Phaser
can handle is limited only by the system that is running it, though Phaser
has some build-in objects to get access to a few touch points quickly.
Pointers have x and y positions on the world and a size of 44 pixels.

73

Phaser Principles

Phaser will use these values when checking for taps on buttons and other
objects in the game.

Important pointer properties include the following:

• The x and y positions of the pointer on the screen
• The movementX and movementY properties that state how far the

pointer moved since the last frame
• The isDown property that returns true if the user’s finger is holding

down the mouse button or is pressed to the screen

Don’t Want Multitouch?

There is an option in the Phaser input manager named “maxPointers”
that limits how many pointers Phaser will recognize. Setting this
property to one will limit the number of pointers that will be followed to
a single pointer. This removes the chance of multiple touch points and
makes a game that can be controlled similarly by both a mouse and a
single finger.

Just like keyboard keys, pointers can be either pressed or released, which
can be used for watching for general input from the user. Unfortunately,
currently Phaser does not have gestures built into the game system, but
creative use of the down and up events can be used to implement gestures
for a game (see the slicer game for an example of writing a simple gesture
watcher).

If the game is set to just one pointer and the game is meant to target both
mobile devices and traditional computers, always access the pointer input
via game.input.activePointer. This will be either the mouse or the first
(and only) pointer in the game.

The quickest way to access a pointer is via game.input.activePointer.
This will work properly only on games that have a maximum of one pointer
and will return the only active pointer in the game. If you need access to
more than one pointer, you can get access to them via game.input.
pointer1 progressing up to game.input.pointer10.

6.11.3 Gamepad
At about the time that HTML5 game development was showing itself
as viable the browser manufacturers started adding support for using
gamepads (or video game controllers) with their browsers. Gamepad support
is not fully implemented on all browsers at this time, but it can make for a fun
addition for the Firefox and Chrome browsers. The gamepad API gives the
browser the capability to respond to button presses on any game controllers
that are connected to the computer such as the XBOX controllers or any of
the other number of USB gamepads on the market.

74

An Introduction to HTML5 Game Development with Phaser.js

Unlike pointers and keyboards, it is necessary to start up the gamepad API
with the game.input.gamepad.start() command before trying to
access the gamepad. After that, it is possible to access the first gamepad at
game.input.gamepad.pad1. Phaser supports up to four total connected
pads and each is accessible by changing the pad number.

Because the gamepad is something that could conceivably be attached,
detached, and reattached to the computer, it is important to check to make
sure the gamepad is attached and running before using any of the gamepad
API calls. Failing to catch a detached controller may result in an error and the
game crashing.

if(game.input.gamepad.active && game.input.gamepad.
pad1.connected) {
 // gamepad code like justPressed and isDown

checks here
}

6.11.3.1 Gamepad Buttons
Once a controller is connected and the gamepad API is started, the process of
working with the buttons is the same as the keyboard keys. There are ways to
check to see if a button is down or has just been pressed. By default, Phaser
provides some built-in mappings to the XBOX 360 controller, one of the more
common gamepads that happens to have a fairly standard button layout.

To check for a button just being pressed, the following is done:

if(game.input.gamepad.pad1.justPressed(Phaser.
Gamepad.XBOX360_B)) {

 //respond to button press
}

To check if a button is down, the following is done:

if(game.input.gamepad.pad2.isDown(Phaser.Gamepad.
XBOX360_A)) {
 //acceleration or other constant input
}

6.11.3.2 Gamepad Joysticks
Joysticks work differently than buttons. Instead of having discrete states of
left, center, or right they have a range of values. These values are split into
two axes, the up and down axes of y, and the right and left axes of x. The
numerical range of these axes goes between −1 (far left or bottom) and
1 (far right or top), with 0 meaning that the stick has not been moved from its
center point. See Figure 6.8.

Having a range of values means that the input can be split up into
incremental values. Perhaps, if the user has only slightly moved the stick to

75

Phaser Principles

the left, the player will move at a crawl, while if the user has pushed the stick
all the way to the left, the player will sprint at a good pace. In the following
example, a simple check is done to see if the user has moved the stick far
enough to the right or left to be considered an intentional move. So long as
they keep the joystick far enough to either direction, the player will be moved
in the direction the controller stick is pressed.

if (game.input.gamepad.pad1.axis(Phaser.Gamepad.
XBOX360_STICK_LEFT_X) < −0.1)

{
 player.x− −;
}

if (game.input.gamepad.pad2.axis(Phaser.Gamepad.
XBOX360_STICK_LEFT_X) > 0.1)

{
 player.x++;
}

6.12 Sound
Audio in the browsers (specifically WebAudio in this case) remains one of the
more problematic areas for HTML5 game developers. While it will certainly
get better in the future, there will remain a number of browsers and devices
that will not support these newest and most advanced features for some
time. The two major concerns with browser audio are the lack of a single
supported audio format and the problems some browsers have with playing
more than one sound file at a time. If sound is a must in your web-based
game, it would be good to consider using an audio sprite and making sure to
get your sound-encoding workflow properly set up.

6.12.1 Loading Sound
Loading music and sound effects works approximately the same way as
loading an image. The major difference is that the audio loader’s second

76

An Introduction to HTML5 Game Development with Phaser.js

0,0

0,1

0.5,–0.5

1 y

1 x

–1 y

–1 x

(a) (b)

FIG 6.8 (a) Gamepad joystick axes. (b) Gamepad joystick positions.

argument takes an array of strings. The reason for this array of strings is to
provide paths to versions of the audio in different formats. Phaser will then
attempt to choose the audio file that will work properly in the current browser.

The following line will load in audio that can be played later on using the
“music” key in the asset cache. Note that it specifies both an MP3 and an
Ogg audio format as options for the sound.

game.load.audio(‘music’,
 [
 ‘assets/audio/gameMusic.mp3’,
 ‘assets/audio/gameMusic.ogg’
]
);

6.12.2 Playing a Sound
Once a sound is loaded, playing it is as simple as creating an audio element
and using its play method. Sounds can be played either as a one-off or a
looping sound. For the most part, looping sounds are used for music (and
maybe engine noise sound effects). The other sounds, like the clangs and
bloops in the game, will be one shots.

levelUp = game.add.audio(‘levelUp’);
levelUp.play(); //plays once

gameMusic = game.add.audio(‘music’);
gameMusic.play(‘’, 0, 1, true); //plays forever

6.12.3 Changing Audio Loudness
The second argument to the play method will control how loud to play the
sound. Zero will be inaudible, one is its basic volume, and a value of .5 being
half of its original loudness.

levelUp.play(‘’, .5);

6.12.4 Audio Formats
It is proving difficult for the different browser manufactures to decide on a
single audio format that is acceptable for everyone to use. Here are the major
three audio formats a web developer may consider using, along with their
advantages and disadvantages.

MP3 is a very common audio format. One of the reasons for its popularity
is that the format does good job of compressing sound without losing too
much quality. The final compressed file is small enough that they can be
easily stored and transported, making it a great choice for games where
space and download times are important. Unfortunately, due to patent
concerns, many builds of Firefox and Opera do not support MP3 playback.
While it is true that Mozilla is working its way forward with MP3 support as

77

Phaser Principles

best it can, it still would much prefer people to be using the open-source Ogg
format encoding instead.

The WAV format is also quite common. It is an uncompressed file format that
stores the exact samples for every moment of sound, giving it the best audio
fidelity of the three audio options. This great sound often comes with a very
high file size that might still be passable for sound effects, but would be
too large for music of any type. The format is supported by a wide range of
browsers save for some builds of Internet Explorer.

Ogg: A final file type that is perhaps more rare than the previous two. It is also a
compressed audio file that grants sounds and sizes comparable to MP3 (though
not always as efficient), but with less of a concern of patent enforcement.

At least two audio formats will need to be included with any web game that
wants to have sound reliably play in all browsers. With file size being a large
concern (faster downloads being preferable), it would be wise to choose the
two that are compressed. When building for the web, try to include MP3 and
OGG files as those two combined should give you the biggest browser range
with the smallest sizes.

6.12.5 Decompressing Audio
While the smaller file sizes of the compressed MP3 and OGG formats are
great for download times, they come with a cost of decompression time.
Another word for compression is “packing,” so just like when you’re moving
and you pack everything up, once the boxes are moved, everything needs to
be unpacked again and put into place. This unpacking process happens on
the user’s device that decodes and readies the audio to play, and it can take
some time to get through all of the audio files. Lower-powered devices like
mobile phones will typically take longer than others. It is important to keep
in mind that even if an audio file is loaded, it may not be ready to play. The
Phaser method “setDecodedCallback” can be used to tell when a set of
sounds have all been decoded. This method takes an array of sounds and
calls a function when all the files have been decoded. The callback needs an
array of sounds because, even though the sounds may be added to the game
in a certain order, it is not assured they will be decoded in that same order.
Additionally, like many other Phaser calls throughout this book, the final
argument to the method call is “this,” specifying the context in which the
function will run when the callback fires.

var poof,jumpSound,levelUp;

function create() {

 poof = game.add.audio(‘poof’);
 jumpSound = game.add.audio(‘jumpSound’);
 levelUp = game.add.audio(‘levelUp’);

 ga me.sound.setDecodedCallback([poof, jumpSound,
levelUp], audioReady, this);

}

78

An Introduction to HTML5 Game Development with Phaser.js

function audioReady() {
 //sounds have been decoded
}

6.12.6 Audio Sprite
In addition to the lack of support of a single audio format, some current
browsers have issues loading and playing more than one audio file at a
time. If you are looking to support the most devices and browsers and you
want to play multiple sound effects at the same time, the best solution is to
create an audio sprite. Just like a sprite sheet that contains several different
images in one file, an audio sprite has multiple different sounds and music
packaged into one audio file. For the sprite to work, a second file is created
that describes the sounds, when they start, and their duration.

Once you have the sprite audio and descriptor files generated, loading the
sprite is done via the audio sprite method. Note that audio sprites still require
multiple sound formats to support all browsers.

game.load.audiosprite(‘sfx’,
 [
 ‘assets/audio/sfx.mp3’,
 ‘assets/audio/sfx.ogg’
],
 ‘assets/audio/sfxJSON.json’
);

6.12.7 Generating Audio Sprites
While it is possible to manually create an audio file that is a combination of
multiple sounds and add a series of markers in code that specify the start
of the individual sounds in that audio file, it is much easier to use a program
that can make an audio sprite automatically. An audio sprite generator will
put a series of audio files together into one, transform the combined file into
different formats (ogg, mp3, and wav), and create the JSON file that will tell
Phaser what sound is where in the sprite.

One tool that generates a file that works with Phaser perfectly is tonistiigi’s
audiosprite generator. It is yet another node tool, so the next few commands
will be in your command prompt or terminal.

To install audio sprite globally, enter this command into the prompt.

npm install -g audiosprite

6.12.7.1 Installing Codecs
This will only install the command-line utilities to make the audio sprite, but
it will not install the codecs required to make the audio files. The process of
installing the codecs varies based on the operating system.

79

Phaser Principles

To install the codecs on MacOS:

Installing the codes on a Mac is done via brew. If you don’t have brew on your
computer yet, head to http://brew.sh/ and follow the instructions to get it
installed (it is as simple as pasting some text into the terminal).

Once brew is installed, you can use the terminal to install the required codecs
with this line:

brew install ffmpeg --with-theora --with-libogg
--with-libvorbis

To install the codecs on Windows, follow these steps:

Download ffmpeg from http://ffmpeg.zeranoe.com/builds/. Extract the files
to a permanent (unchangeable) directory on your computer (some people
are happy with C:/dev/ffmpeg). Once extracted, edit your Windows path to
include the ffmpeg’s bin directory inside of the ffmpeg root. In the case of
the example directory applied, the folder you would add to Window's path
would be C:/dev/ffmpeg/bin.

Adding to Your Path on Windows

The Windows path is a listing of a number of directories that contain
programs one may want to run from the command prompt. It can be
edited by going to system -> advanced system settings -> environment
variables. Select the path in the system variables list and click edit.
Add a semicolon (;) to the end of the list and then append path to
ffmpeg. Clicking “ok” will update the path, but you will need to close
and reopen any command prompts you have opened for the change to
effect them.

6.12.7.2 Using the Audiosprite Tool
The audiosprite tool is fairly easy to use once it is downloaded and set up. In
the command prompt, navigate to a folder that has a collection of audio files
you want to include in the sprite. They do not need to be in the same format.
For example, if you had a file called “sound.wav” and “somemusic.mp3”
(or as many sounds as you need), you could type in this command:

audiosprite --output audioSpriteName sound.wav
somemusic.mp3

This will take the different sounds and combine them, putting this combined
sound in the same folder with the name “audioSpriteName” in four
different formats: MP3, M4A, AC3, and Ogg. After running this command, there
will be four new files in that directory along with an audioSpriteName.json
file that contains the data for the duration and start time of each sound in the
combined file. These four audio files and the JSON file are what you will need
to put into your assets folder to load into a Phaser game.

80

An Introduction to HTML5 Game Development with Phaser.js

http://ffmpeg.zeranoe.com/builds/
http://brew.sh/

6.12.8 Adding Markers and Playing Audio Sprites
Audiosprites are really just markers that specify when to start and how long
to play. It is also possible to add markers to audio inside of the game code
itself, and then use that marker to play the sound from the marker’s start
point and duration.

The add marker method needs at least three arguments: the name of
the marker to use when playing the sound later, when the sound starts
(in seconds), and how long that particular sound lasts (also in seconds).
The following code adds a marker manually and then plays the sound from
that marker. Later, when calling play, simply pass in the string name of the
marker in order to play that sound from the list of the markers.

sounds = game.add.audio(‘sounds’);
sounds.allowMultiple = true;
sounds.addMarker(‘gameMusic’, 2, 1.2);
sounds.play(‘gameMusic’);

The only other important item to note when using audio sprites is to set
the audio’s allowMultiple property to true, which helps the sound to
be played multiple times (good for a single sound that may be triggered
multiple times to play many different instances of the same sound, like
overlapping bullet sound effects).

If the audio has been loaded in as an audio sprite, then the markers are added
for you automatically. The previous code can be simplified by the removal of
the add marker method.

sounds = game.add.audio(‘sounds’);
sounds.allowMultiple = true;
sounds.play(‘gameMusic’);

6.13 Maps
Many people, when they think about the possibility of making games, dream
of creating the lush worlds and environments that the players will eventually
inhabit and run around in. Laying out all these areas via code can become
quite a time-consuming task. To compound the problems of game world
creation, if each individual part of the world that was displayed in game was
a unique graphic, the game would have so many assets to download, the
wait would stop players from ever wanting to give it a try. Equally bad, the
artist for the game would have to work forever to make all those little pieces
of the game, resulting in an extremely long development time. Asset reuse
and GUI-based map creation solve these problems, and each will be explored
throughout this book (examples shown in Figures 6.9 through 6.12).

The two major approaches to creating maps for games are scenes and
graphs. Scenes are a form of map where the objects don’t need to be placed

81

Phaser Principles

82

An Introduction to HTML5 Game Development with Phaser.js

FIG 6.9 A map used to create a platformer environment.

FIG 6.10 Tiles that are repeated to build a map.

FIG 6.11 Visual representation of the numerical map.

in particular areas and can take up as much or little space as they want.
Graphs are much more rigid, with spaces parceled out to different objects
that can only take up a set width and height on the screen. Each has their
advantages and disadvantages, discussed throughout this chapter, though
currently the Tiled map editor is the only clear winner for the most robust
mapping system in Phaser.

What about Other Map Editors?

Although Tiled is the strongest map editor while this book is being
written, it may not always be the best tool for creating maps for Phaser.
Keep your eyes on the Phaser discussion boards as the community seems
to be moving quickly on making more Phaser-specific tools. There is a
good chance that there will be at least one if not more map editors built
just for Phaser that are nearly as good as Tiled when it comes to creating
maps for your games.

6.13.1 Scenes
The easiest way to begin to envision a scene-type map is to think about
everything in the map floating in space. It helps to even imagine the objects
as spacefaring objects to begin with. While, technically, all the planets in
space are moving quickly, for simple games, they can be imagined as simply
fixed in place. A scene is a similar great vastness with objects floating in

83

Phaser Principles

Start

Original position

Tween to

Tween from

Start

FIG 6.12 Difference in start and stop positions of a ween from and tween to.

www.allitebooks.com

http://www.allitebooks.org

their locations throughout it. In fact, one of the best uses of scene levels is
for space games, where physicality might not be best represented through
graphs or rigid positioning. However, it can also be great for more organic
games (such as underwater systems or advanced platformers), where a grid
system would appear too out of place and unnatural. This is also the type of
system that 3D games use to represent the positions and locations of all the
objects in their game maps.

When using a scene system for games that need to work like 2D
platformers, the platforms will need to have their gravity turned off and
their physics body type set to static. Since there is no good editor for
this type of Phaser game yet, each world object in a scene will need to
be created and placed into the scene in the game state’s create method.
Here is an example of this basic approach, seen before in some of the
more simple examples in this book. In this example, a group is set as
ground and any object added to that group will work as if it were ground.
Essentially the world created in this example will be made up of a series
of floating platforms (or walls) that will not budge a single pixel when a
player hits them.

function setup() {
 ga me.physics.startSystem(Phaser.Physics.

ARCADE);
 game.physics.arcade.gravity.y = 250;

 player = game.add.sprite(200, 100, “player”);
 player.anchor.setTo(.5,1);
 ga me.physics.enable(player, Phaser.Physics.

ARCADE);
 player.body.drag.x = 1000;

 ground = game.add.group();
 ground.enableBody = true;
 ground.create(100, 500, “ground”);
 ground.create(−100, 400, “ground”);
 ground.create(300, 400, “rockyGround”);
 ground.setAll(“body.immovable”, true);
 ground.setAll(“body.allowGravity”, false);
}

This process of creating each individual bit of a level and adding it to the
game inside the create function manually can get a bit out of hand quickly
when there are large levels that may need to be loaded in and set up.
Another approach that helps mitigate the need of hardcoding the level
data in the setup function would be to create a level dataset. This dataset
can provide the objects in the scene and where those graphics should
be placed. The best data format to use if one needs a bit of extra data to
drive their game is the JSON format. Here is a very small example of what a
JSON-level description might look like.

84

An Introduction to HTML5 Game Development with Phaser.js

{
 “ground”: [
 { “x”: 100, “y”: 500, “key”: “ground” },
 { “x”: –100, “y”: 400, “key”: “ground” },
 { “x”: 300, “y”: 400, “key”: “rockyGround” }
]
}

The JSON format specifies the key of an asset to be used, which references
the asset in Phaser’s asset cache. It also gives the position to place the
asset once created. This particular example is only for ground, but
other objects could be created and specified in other arrays named
“collectables,” “enemies,” or “traps” as needed. The next steps in the
process are to load in the data and then use that data to create the objects
in the scene, making them fixed ground objects in the game just as before.

function preload() {
 ga me.load.json(‘scene_data’, ‘data/scene_data.

json’);
}

function setup() {
 va r sceneData = game.cache.

getJSON(‘scene_data’);

 ground = game.add.group();
 ground.enableBody = true;
 var currentObject;
 for(var i = 0; i < sceneData.ground.length; i++) {
 currentObject = sceneData.objects[i];
 ground.create(
 currentObject.x,
 currentObject.y,
 currentObject.key
);
 }
 ground.setAll(“body.immovable”, true);
 ground.setAll(“body.allowGravity”, false);
}

Assuming the other assets have been loaded in before, we then add a new
line to the preload method that loads in the scene data JSON file. Any JSON
file that has been loaded in can be accessed from the Phaser cache via
“game.cache.getData.” When accessed, it returns a JavaScript object that
can be navigated via the dot operator just like any other JavaScript object.

Using this approach to scene layout, it becomes easy to separate the objects
that are in the scene from the code that actually does all the game-state setup.
One potential advantage of this method is the increased chance that the actual
layout of the game world could take place in another application that simply
exported the JSON for use in the Phaser engine.

85

Phaser Principles

6.13.2 Tilemaps
A major goal of a level layout system is to enable the creation of levels
that are small in total file size. This is done by creating level systems that
do not need lots of unique assets to still look varied and interesting.
Tile engines are a common solution because they give a structured way
to create large worlds with a very small amount of graphic assets. They
encourage asset reuse by breaking the world up into a grid that can have
tiles placed into each grid cell. The tiles come in one image file and are
typically small in size. A game developer benefits in two ways if they
choose to create a world based on a tilemap. Firstly, grid code is very
simple to write. Everything can only take up one space on the grid, and
each grid space is defined by just its x and y locations. Second, any game
logic that takes place on that grid is easy to calculate. Algorithms like
A*, Conway’s game of life, and even simple fluid dynamics are typically
implemented and represented with grids. If a game world can be broken
up into small manageable chunks, then the game can take advantage
of these techniques and will generally be easier for a programmer to
work with.

A tilemap works by placing a series of (typically square) images into the game
in a grid layout. These images will work as the “game world,” with certain
tiles being platforms and walls, and others being parts of the world the player
can walk through. The end result is rather like a series of tiles put onto a
bathroom floor to create a graphic (thus the name “tile map”). The images
that make up these tiles are not loaded in individually, but rather they are
brought in as one large file. The different tiles are laid out side-by-side in the
single image, a similar manner to a sprite sheet. The tile engine then copies
the tiles to the game map piece-by-piece based on their index number
provided by a map file.

Because the images are loaded in a single file, the computer needs to know
how these tiles should be copied into the world to create the full map. Much
like the animation frames for a sprite sheet, behind the scenes the computer
stores an array of numbers that specify which tile it should be drawing to the
world in what location. When the game starts up, before anything is drawn
to the stage, the world map is rendered by looping through this map and
copying the frames to its full map image file.

Here is a computer’s representation of a map. This would be a map with a
little platform in the middle, assuming zeroes are navigable area and ones are
ground or platforms.

var tileMap = [
 [1,1,1,1,1,1,1,1,1],
 [1,0,0,0,0,0,0,0,1],
 [1,0,0,1,1,1,0,0,1],
 [1,0,0,0,0,0,0,0,1],
 [1,1,1,1,2,1,1,1,1]
];

86

An Introduction to HTML5 Game Development with Phaser.js

The next step for a tile engine after getting the numerical map data is to use
those numbers to draw the visual map. A tile set image will need to be created
with tiles that can be used for each number. Figure 6.10 is an example of a tile
set imageaforementioned. Each tile needs to be the same size, and note that
there are three tiles in total, one for each of the numbers in the numerical map.
The white tile is tile zero, stone is tile one, and skull is tile two.

If the tileset image and the tilemap were provided to Phaser in a format it
understood, Phaser would then go through and place the tiles into a bigger
map, putting the white tiles where a zero appears, ground tiles where a
one appears, and the skull where a two appears. The final result of the
combination of map and tileset looks like Figure 6.11.

Once the map is drawn, the next step is getting the player and other game
objects into the world that the map represents. Tile collisions become the
next consideration for a tilemap to work correctly. If all of the tiles are not
collidable, the map would be just about worthless. The player would either
fall through or walk through all the tiles with ease. Conversely, if all the tiles
were set to collide with the player and other objects, the world would pin
everything down into its solid state and nothing would ever move.

Tile engines typically have a way to setting which tiles are “open” and which
ones should count as solid objects that the player cannot get past. For the
this tile map, setting tile zero (the white tile) to open would give the player a
nice space to navigate around while not being able to fly beyond the edge of
the world.

Tile Metadata

More advanced tile engines (and the editors that come with them) might
add more attributes to each tile beyond walkability. Items like wind, death
zones, or poison areas are all completely valid attributes that a tile may
have that can be calculated inside of a tile engine as it runs its collision
code for the player and other game objects.

6.13.2.1 Loading Tilemaps
Here is the base way to load a tilemap, with the format that will be used later
on in this book (the Tiled format).

game.load.tilemap(‘map’,
 ‘as sets/tilemaps/maps/tilemap.

json’, null,
 Phaser.Tilemap.TILED_JSON
);

Similar to sprite atlases, there are several different tilemap formats that
can be saved. There are two different tilemap formats that can be loaded
into Phaser. The first is Phaser.Tilemap.CSV, which is simply an array of
numbers separated by commas. It is very similar to the 2D example map array

87

Phaser Principles

explained earlier. The second format (Phaser.Tilemap.TILED_JSON) is a
tilemap from the program Tiled, which can be used as a type of full-featured
level editor for Phaser. This format comes with a number of extras including
multiple layers to the map and additional zones that can be used to place
objects with the right additions.

6.13.2.2 Tiled
While writing a comma-separated list of indices isn’t a bad way to go about
making a game world, it lacks a bit of visual feedback that is useful for making
sure that the world is coming out the way the designer is expecting it to.
Some may go through esoteric routes of creating editors, like using the pixels
in an image to represent tiles in a game (red means lava), but in general,
a full-featured tile map editor really speeds up the workflow for a game
designer who wants to make a game with a large tile-based world.

There are many tilemap editors available free usage. Some good examples
include Mappy, Tiled, and DAME, which all have good communities and are
feature-rich choices. In fact, making a tilemap editor is easy enough that
many programmers (for better or worse) take it upon themselves to write
their own editor instead of using a prebuilt solution. If you’d rather get to
using an editor and not making one, Tiled is the program of choice for Phaser
game developers.

It actually includes a number of extra features beyond simply laying out tiles
that can turn it into a nearly full-featured level editor if used correctly. Additional
features of Tiled (which Phaser supports) are its ability to do several layers of tiles
and to lay out other assets where they would appear in the game world itself.
While Phaser doesn’t automatically recognize non-tile assets placed throughout
the world, it is able to access the data that can be used later on to do things like
placing doorways, enemies, or collectables for the player to find.

Tiled has installers for Windows, Linux, and Mac and can be found at the
(wonderfully named) website http://www.mapeditor.org/.

6.14 Tweens
Tweens are a way to animate properties of an object from one value to
another over a specific amount of time. For most games, the animations will
be controlled via the game’s physics and a few simple rules programmed
into the game objects like user input and AI responses. These animations
are great, but they can be a bit unpredictable. Oftentimes a developer will
have a need for an animation where the duration, start, and end points of
the motion are all fixed and known. UI animations commonly need to have
these sorts of predictable animations to have things like title graphics fade
it and buttons bounce and respond to user input. Cutscenes in games also
may need these predictable animations to ensure an object reaches a specific
location before reaction animations occur. If a developer needs a reliable
animation for these or other reasons, tweens are their best option to get the
motion they are looking for.

88

An Introduction to HTML5 Game Development with Phaser.js

http://www.mapeditor.org/

What Does the Word “Tween” Mean?

The term “tween” is taken from the world of traditional 2D animation.
When working on an animation, the lead animator would draw two (or
more) key poses for a figure that described positions at critical parts of the
animation. These poses were chosen for their ability to define what the
motion between them would look like. Good choices for two poses might
be the “ready to swing” frame and the “hitting the ball” frame of a golfer.
Once the two poses were defined, timing notations would be added to
the frames and the work would be passed on to an assistant who would
draw all the frames in between (or “tweens” as they were called). Today,
the computer can do the tweens for the programmer or animator, but the
term persists.

6.14.1 Writing Tweens
When writing a programmatic tween, the computer needs to know three
things. First, it needs to know the starting property values of the object being
tweened (position or other properties such as its alpha or visibility). Second, it
needs to know the final values of those same properties. Third, it expects the
time or duration that the tween will play over.

Because the game objects being tweened on the screen already have
visual properties for the current position, rotation, and alpha, it can be
assumed the start or stop points of the animation are those properties that
the object currently has. The animation methods from and to are different
ways to specify how to use the current properties of an object as values
in an animation. From will start from the current position and move to the
specified one. Conversely, to will start at the values provided and move back
to where the sprite currently is.

6.14.1.1 Tween Syntax
The general syntax for tweening an object in Phaser appears a bit odd since it
is added to the game via game.add. The tween is actually an object that can
be created, stored, and replayed as necessary. The basic syntax starts a tween
on an object and tells it to move either to or from the properties specified in
the first argument’s object. The duration comes in milliseconds and an easing
object can be specified (covered later). Finally, if you want the tween to play
automatically (which is typically the case), set autoStart to true.

game.add.tween(object).to({property: value},
duration, easing, autoStart);

For example, here is a tween that will move the player to an x position of 400
pixels over the span of 0.7 s. The animation starts right away and will ease out
based on the cubic easing model.

game.add.tween(player).to({x: 400}, 700, Phaser.
Easing.Cubic.Out, true);

89

Phaser Principles

A great use of the “from” animation method (and relative animation
positions) is for UI transitions. This will start the logo 400 pixels higher than it
currently is, and then tween the logo back to where it was before the tween
began. The power of this technique comes from the developer’s ability to get
the UI laid out correctly first, and then add in the transitions as a final effect.

game.add.tween(logo).from({y: “−400”}, 700, Phaser.
Easing.Cubic.Out, true);

6.14.1.2 Tweenable Properties
While it is possible to tween any property, when it comes to animating visual
elements, there are a few that are the most commonly tweened.

• X, Y are the most commonly tweened properties, as they can be used to
move objects into, out, and around the screen.

• scale .x, scale .y are used lesser, but still common. Changing an object’s
scale is a good way to fake 3D space without having all the complicated
calculations that come with it. A bit of scaling of UI elements can go a
long way to provide a visually appealing experience. Tweening scale is
somewhat different from tweening other properties. The scale tween has
to be a separate tween targeting the object.scale property.

this.game.add.tween(bar.scale).to({ x: .8 }, 350);

• Alpha is used for fading in or out. Starting from an alpha of zero and
progressing toward one will fade an object in. Going toward zero is an
easy way to fade it out. Fade outs are an easy way to cheat in enemy
death animations or other transitions.

6.14.1.3 Easing
Most motion in real life does not move at a set pace from start to finish. Anything
that starts at full speed and moves at that speed until it suddenly stops looks very
strange and robotic to a human observer (or terrifying, if the motion is applied
to humanlike figures). Instead, most motion naturally starts slow, speeds up to
its fastest pace, and slows down to a stop. This applies to a wide range of cases,
including the swing of a clock pendulum (or human arm), the acceleration and
deceleration of cars in between lights, and sliding an object across a table not
made of ice. Tweening engines will typically include a series of different functions
that ease the tweens so that they look natural to the viewer. Following is a list of the
built-in easing functions, with a brief explanation of the general use cases for each.

Each of these easing functions comes in three different forms: in, out, and
inOut. These refer to when the ease is applied to the animation. An ease “in”
will start slow and speed up, ending the animation at full speed. Great for
moving things off screen or for an animation with a very sudden collision.
An ease “out” will start the animation at full speed and slow the motion to
a stop. Ease outs are great animating things into view from off screen, or
having characters skid to a stop in a cutscene. Finally, the ease inOut will start
slow and end slow. It is typically used for motions where the object will both
start and stop on the screen. Great examples of an inOut-type motion would
include avatar motions or sliding pieces around on a game board.

90

An Introduction to HTML5 Game Development with Phaser.js

Easing is a subtle thing that really makes animations shine, but it does
take a bit of fiddling with to truly understand. Take some time to play
around with them and get a sense for what does and does not feel
good. When in doubt, exponential or quadratic are great default easing
functions.

• Linear is first on the list because it is technically not an ease. Instead, a
linear tween is just the interpolation without any slowing near the start or
the stop. Instead of writing in or out for the easing, the easing command is
“Phaser.Easing.Linear.None.”

• Back eases will provide some “anticipation” of the motion by briefly
moving in the opposite direction of the ease, effectively overshooting or
winding up the motion.

• Bounce eases will hit their intended destination early and then bounce
three times as if someone had dropped a basketball onto a floor. Can be a
bit too animated, use with caution.

• Circular eases have a particularly long application time, taking until near
the end of the animation to get to full speed. Great for very subtle motion
that still looks organic.

• Elastic is similar to a back ease. The animation will overshoot its final
destination and have to correct back on the last few frames. If used
sparingly, it can be a nice effect.

• Exponential easing is a very quick motion into or out of the full speed of
the animation.

• Cubic, Quadratic, Quartic, and Quintic are placed together because
they are all technically the same idea, just more powerful versions of
each. They’re less extreme versions of exponential but still provide a
strong ease into or out of the motion.

• Sinusoidal is one of the “smoother” eases, like circular. Very subtle,
though it can feel a bit slow.

6.14.1.4 Chaining Tweens
Many animations will contain multiple different transitions that need to
occur in a certain sequence. In a cutscene, a character might be scripted to
walk up to a computer terminal, wait, and then walk over to a motorcycle to
speed off on a few moments later. This is a chain of animations that can be
implemented in Phaser with a chained tween. Unlike the previous tween
examples that play automatically, these animations are queued up and set in
motion by the start command at the end of the chain.

game.add.tween(robot)
 .to({ x: 600 }, 1000, Phaser.Easing.Linear.None)
 .to ({rotation: 90 }, 500, Phaser.Easing.

Linear.None)
 .to({ y: 300 }, 700, Phaser.Easing.Linear.None)
 .to ({rotation: 0 }, 500, Phaser.Easing.

Linear.None)
 .to({ x: 100 }, 1000, Phaser.Easing.Linear.None)
 .start();

91

Phaser Principles

Game engines often need to simulate physical interactions along with
the messiness that comes along with it. Racing games need the ability
to accelerate, turn, and slow to a stop. Destruction games like Angry
Birds needs objects to have velocity, gravity, and to accurately apply
collision forces when those balls-become-birds hit their targets. Built
into Phaser are two primary physics systems, arcade and P2, which
give a developer all the tools they need to make many of these games.
The physics systems have different purposes and take up different
amounts of computational resources, so the next portion of this book will
explore that.

Other Physics Systems

Currently, there are two other physics systems in Phaser. The first,
Ninja, is similar to the arcade system save for the fact that it introduces
sloped tiles and wall running capabilities. The second system, Box2D,
is a very robust physics system that is worth looking into if you need
polygonal collisions between items and very realistic physics. Box2D is a
paid add-on to Phaser with great documentation, which is why it is not
covered in this book.

The easiest system to delve into is the arcade physics system that provides a fairly
simple approach to the necessary elements like collision, gravity, and velocity. A
major downside to arcade physics is that it uses squares for its collisions, making
it hard to implement things like slopes or polygonal (non-square) collision
shapes. Due to the simplifications, the physics will run significantly faster but they
can be a bit less than realistic (thus the “arcade” nomenclature).

The second physics system, P2, is a more robust and “realistic” engine. This
system can have complex shapes (potentially made in other programs)
for the objects in it and implements a more realistic physics model. P2 is
the engine one may wish to use if they are looking to make a game with
vehicles that have shocks and thrust provided by the contact of the wheels
on the ground. This power comes with a price. P2 will typically take up more
computational resources than the arcade system, and it will take a bit of
study to really understand and master everything P2 has to offer.

6.15 Physics Primer
Before getting into the particularities of the different physics systems that
can be used in Phaser, it would be helpful to know a little bit about the
terms that will be used in those systems and how those factors affect the
motion and interaction of objects on the screen. In this section, we’re going
to talk about these factors and explain in simple terms what they are and
how they work. It is by no means a replacement for a real study of physics,
but should be enough to get one grounded in the use of the systems in
game engines.

92

An Introduction to HTML5 Game Development with Phaser.js

6.15.1 Velocity
Velocity (or, in simpler terms, speed) is the rate at which a game object is
moving in a direction. This is a critical component of an object’s physics
properties. Without a velocity, there would be no change in location on the
screen and players would be staring at static objects.

In Phaser, all objects have their velocity split into the rate of movement on
the x and y axes. Large velocities in either the positive or negative direction
mean that the object is moving quickly. Smaller numbers represent a slower
speed. Zero is the slowest an object can be going, or not going since zero
represent no motion at all (examples are shown in Figures 6.13 through 6.29).

93

Phaser Principles

x- and y-axis velocity components

Velocity.y: 25

Velocity.x: 25

Velocity: 50

FIG 6.13 Velocity and its subcomponents per axis.

Gravity

Acceleration

Drag

Simpli�ed view

Combined, �nal force

Forces on an accelerating object

FIG 6.14 Component forces and final combined force.

94

An Introduction to HTML5 Game Development with Phaser.js

Change in position each frame (with acceleration)

Downward acceleration
(gravity)

FIG 6.15 Effect of acceleration on object positioning.

Rough terrain (drag.x: .95)

Icy surface (drag.x: .2)

Distance traveled with di�erent drags

FIG 6.16 Slide difference based on drag values.

95

Phaser Principles

Total speed with di�erent drags

Drag.x: .2

Drag.x: .6

Velocity.x: 10

Velocity.x: 10

Final speed per frame: 8

Final speed per frame: 4

FIG 6.17 Maximum speed with different drag values.

Di�erence in bounce height at di�erent restitutions

Low restitution

High restitution

FIG 6.18 Bounce height at different restitution values.

After the impact

Moment of impact

FIG 6.19 Transferring motion from a physics impact.

96

An Introduction to HTML5 Game Development with Phaser.js

Sprite bounding box

FIG 6.20 Bounding boxes used for collisions.

Adjusted bounding box

FIG 6.21 Decreased bounding box size for less collision chance.

A quad tree with sub-quads

FIG 6.22 Division of game space into smaller quad trees.

97

Phaser Principles

FIG 6.23 Physics editor shape space on the left.

FIG 6.24 Physics editor tracer and resulting polygonal shape.

98

An Introduction to HTML5 Game Development with Phaser.js

FIG 6.25 Manually adjusting a polygon.

Table top and legs locked at a specific distance
Distance remains constant as assets are moved

Lock Lock

Lo
ck

.y

Lock.x Lock.x

FIG 6.26 Lock constraints.

Table top and legs constrained only via distance
Distance remains constant, legs may rotate freely

Constr
ain Constrain

FIG 6.27 Distance constraints.

6.15.2 Forces
When it comes down to it, most physics in games is about forces. Forces
are the things that ultimately change an object’s velocity, with bigger
forces having more of an effect. Forces can come in two forms: impulse and
constant. Impulse forces happen just once. Some examples of impulse forces
include kicking a soccer ball or throwing an object into the air. These forces
transfer some energy to the game object and are done. Constant forces
are continuously applying a force to an object and always pushing on that
object. A constant force we need to live with every day is gravity, though
there are many others like the acceleration of a car or the ground pushing
back on our feet as we stand.

99

Phaser Principles

Set “resting length” Pushes back toward
resting length

Pulls toward
resting length

FIG 6.28 Spring constraints.

Pin points established for the two objects

Moved to overlap pin points
Objects are free to rotate around that point

FIG 6.29 Revolute constraints.

6.15.2.1 Acceleration
Acceleration is a constant force that is pushing an object in a direction. It is
also the change in a velocity over time. It can be used to speed objects up or
slow them down. It is great for a natural motion effect because nothing ever
goes instantaneously from not moving to full speed in real life (though in
games that’s not always the case). Perhaps the most important acceleration in
many games is gravity, which is a constant downward force on the characters
and objects in a game (see Figure 6.15).

An object with no velocity that is given a positive acceleration will begin
moving in a positive direction, faster and faster, until that acceleration is
turned off. If that object needs to be slowed, giving it a negative acceleration
will begin to decrease that object’s velocity, though it is possible to decrease
the velocity to a negative amount and the object will begin moving in the
opposite direction.

6.15.2.2 Friction (Drag)
Friction is a critical force that pushes in the opposite direction an object is
moving. In a frictionless world, everything would be sliding around, nearly
incapable of coming to a complete stop. Games without friction would
appear as if everything were sliding on ice, or the players were in space. While
there are games where that is the intent, many games will rely on drag to
bring their objects to a resting position.

Different surfaces and areas can have different amounts of drag. A rocky
road will have a sufficiently large amount of drag and quickly stop people or
vehicles. Conversely, an icy road won’t do much to slow down anything on it
and the smallest inputs can have huge effects on motion (see Figure 6.16).

Friction is applied during all motion, not just when something has stopped
accelerating. This is why it is easier to get going faster (and reach a higher
speed) in plain air compared to walking underwater. The water is going to
push back on all your motions, slowing both the acceleration and reducing
the fastest speed you can reach. Higher amounts of drag on an object can
make it seem significantly slower, because it is going to take longer for that
object to get moving and will effectively reduce its maximum speed (see
Figure 6.17).

6.15.2.3 Restitution (Bounciness)
Everything in the world pushes back on an object hitting it. Some will push
back more than others. Restitution is the term that defines the amount of a
force returned to an object when it hits something. The difference is easy
to see between a bouncy ball and a stone. Throwing the ball at the ground
will cause it to rebound to a great height, while the stone will just thud to
the ground once and be done with its adventures.

While the restitution of an object is technically a very complex calculation,
game engines commonly represent it as a number between one and zero.
A restitution value of one means the object is perfectly bouncy. This “perfect”

100

An Introduction to HTML5 Game Development with Phaser.js

object is dropped from a certain height on the screen it will return without fail to
the original height it was dropped from. The opposite restitution, zero, will not
bounce the object at all. If an object with a bounciness of zero hits something, it
will have no recoil and simply stop dead in place (see Figure 6.18).

6.15.2.4 Collisions
When objects collide, they transfer energy to each other. Hitting a baseball
with a bat, the bat will transfer its velocity energy to the baseball, sending
it flying away. At the same time, the baseball will transfer some of its energy
to the bat. This is how batters can feel the hit, or why bats may shatter. The
actual energy transferred is a factor of the current velocity of each object,
their mass, and their restitution. If the objects are equally matched, they
will transfer their energy perfectly. Two boxes flying in perfectly opposite
directions will collide, transfer their energies, and come to a dead stop.
Heavier objects will take more energy to get moving, and objects with larger
restitution will tend to have much bouncier responses (see Figure 6.19).

6.15.2.5 Putting the Physics Properties Together
When creating your game objects, make sure to take some time to play with
their velocities, acceleration (including gravity), and drag to get the right
“feel” for the game you are trying to make. They will most likely be different
numbers for your different objects and it is important to get them all right.
A heavy car is most likely going to have a slow acceleration with some very
strong drag working on it. That car also wouldn’t bounce around too much,
so a bounciness closer to zero would be preferable. A paper airplane won’t
have much drag on the x-axis but may have a huge drag on the y-axis to
cause it to fall very slowly.

6.16 Phases of a Physics System
Most physics systems follow a general pattern of setup and execution flow.
While the point of this book is not to go into detail of how to construct all
the parts of a physics engine, it will be helpful to know in general how they
work to be able to make sense of later code examples and debug future
problems.

In general, physics engines execute three major steps: first they check for
potential collisions between objects (the broad phase), second they look for
actual collisions between objects (the narrow phase), and finally they attempt
to separate the objects so they are not overlapping. When working in a basic
system like the arcade physics engine in phaser, the bounding boxes are easy
enough to calculate and separate that these actions can take place quickly
without a lot of hassle. More advanced systems take a lot more factors of the
colliding bodies into account (such as restitution, mass, and friction) and can
have some odd shapes for engine that require longer and more advanced
calculations.

101

Phaser Principles

The broad phase of the physics engine is important for cutting down on
processing time. Once a game gets a significant number of different entities
into it, calculating if any of them are colliding (and running the resulting
collision separation code) with any others can take a significant amount of
time. During the broad phase, the physics engine will do a series of quick
calculations to figure out which collisions even have a chance of happening
and store a list of potential game object collisions it needs to check more
closely. This can often take out a large number of collisions right off the bat.

In the narrow phase, the engines check all of the lines that make up the
parts of the body of the object and see if they are inside of any of the areas
of a potentially colliding object. If they are, then the engine will separate
the objects, moving them backward until they do not overlap anymore. In
an arcade system, this is done automatically, and any of the properties of
the collision are also applied (momentum transfer based on mass, friction
between the two objects, any bounciness). In other systems, the engine
will attempt to push the object backward based on how fast it was moving
inward toward the object it collided with. When these advanced systems
start pushing objects away from each other, they have to consider all the
other objects in the system. In order to mitigate the effect of causing another
collision by pushing the object all the way back, the systems may not
completely separate an object right away so the other objects in the world
can have a chance to collide with resulting, backward movement from the
collision. The other physics components like friction and bounciness are also
applied over these steps. Over a few iterations the system tends to become a
reasonable “solved” version of the world with no collisions.

Fixed Time Steps

Many physics systems work on a fixed time step. This means that the
physics calculations won’t be run for every frame, but only on a fixed
time interval. Knowing how much time will pass in between each physics
step lets the engine be predictable about how to move items during
the frames it is not running physics calculations. It can also predict
where objects may be in the future with a certain degree of certainty
(barring user input). Many of these systems will actually run the physics
calculations a few frames in advance of the rendering of object positions
to give the system a chance to catch up on unexpected changes in the
model, such as users taking a sharp left turn into a wall and creating a
10-car pileup.

6.17 Bodies
In order for physics systems to work, it needs to have objects inside of
the physics “world” that can collide against each other. These objects are
termed “bodies.” A body is something that has a certain shape like a box,
circle, or complex shape made up of points and lines and exists in the world.

102

An Introduction to HTML5 Game Development with Phaser.js

These bodies are not visual elements and are only used by the physics system
to calculate things like change in position and collisions. Since they are not
visible objects, they are often associated with a visible element that will reflect
the position and rotation of the physics body in a visible way on screen.

By default, Phaser sprites do not have bodies associated with them. The
bodies need to be activated for the physics system you will be using. Once
activated, the sprites will be controlled by the body in the physics system.
For instance, to create a body for a sprite and add it to the physics system in
arcade physics, this is the general approach.

var meteor = game.add.sprite(200, 0, ‘meteor’);
game.physics.enable(meteor, Phaser.Physics.ARCADE);

6.18 Arcade Physics
As stated previously, the arcade physics system in Phaser uses exclusively
boxes and rectangles for its physics bodies. The technical term for the boxes
the arcade system uses is “axes-aligned bounding boxes.” This is a fancy way
to say the boxes can never rotate but always remain fixed, so the width of a
box will always be how much space the box takes up on the x-axis and the
height of a box will be how much space it takes up on the y-axis.

Before using any of the arcade physics in Phaser, it needs to be initialized with
this call:

game.physics.startSystem(Phaser.Physics.ARCADE);

6.18.1 Bounding Boxes
By default, these bounding boxes equal the width and height of the sprite’s
graphics, but they can be adjusted to be smaller or larger as necessary (see
Figure 6.20).

6.18.1.1 Changing Bounding Box Size
While most of the time a bounding box that takes up the width and height
of a sprite makes sense and works well, there are instances where it can
become frustrating to the player when a bounding box is larger (or smaller)
than expected. One use case for adjusting bounding boxes includes making
smaller bounds for an enemy, so the player can more easily dodge them on
the screen. Alternative, another use case might be making the player’s attack
bounds bigger, making it easier to hit objects in the game. Keep in mind that
this does not change the size of the sprite, just what counts as the body for
the physics system collisions (see Figure 6.21).

Changing collision box size is part art and part science. Here is the general
form to adjust the bounding box.

sprite1.body.setSize(300, 200, 20, 20);

103

Phaser Principles

6.18.1.2 Debugging the Bounding Boxes
When changing the size of a bounding box, it can be helpful to have the
game draw the actual bounds of a sprite. It is possible to have Phaser draw
the bounding boxes, so you can verify exactly how much “space” an object
takes up in the physics system. For the arcade physics system, debug drawing
is done in the render method of a Phaser state.

var phaserState = {
 render: function() {
 game.debug.body(spriteName);
 }
}

6.18.2 Quad Trees
Collision detection can quickly become a very expensive process in a
game with a lot of objects that need to check if they are overlapping.
When a game has 100 objects that all may be hitting each other, that’s
a 10,000 different calls to check for a collision between any one of them.
The method Phaser uses to reduce those numbers of checks is called a
quad tree.

A quad tree stores references to objects in different (increasingly smaller)
quadrants in world space. If enough objects are in any particular quadrant,
it will break that rectangle into four smaller quads and continue to store
locations in these smaller rectangles. With these quad trees, it becomes quick
and easy to rule out groups of sprites that couldn’t possibly be colliding with
others based on how far away one quad is from another. With even a basic
quartering of the world space, it is possible to cut out sprites on the three
quads that a sprite does not exist in, potentially removing a lot of collision
checks in the process (see Figure 6.22).

6.18.3 Collision
A physics system would certainly be incomplete without some way for
different entities to collide with it each other. The arcade physics system
can check for collisions between: a sprite and another sprite, a sprite and
a group of sprites, and a group of sprites against another group of sprites.
Each of these has a callback that contains references to the two objects
that have collided against each other. The key to checking for collision
between any of these three different types of objects is the collide
method.

game.physics.arcade.collide(itemOne, itemTwo,
 co llisionCallback,

processCallback,
context

);

104

An Introduction to HTML5 Game Development with Phaser.js

 Note
Collisions will also separate the two objects that collided, pushing them
back to a state where they do not overlap visually on the screen. There
will be some times when separation isn’t needed or gets in the way of
the final game. Phaser has another method, overlap, that only checks to
see if objects are overlapping.

6.18.3.1 Sprite versus Sprite
The most basic way to do collisions in Phaser is check for collisions between
two single sprites. In the following example, a raindrop is created and given
a downward velocity. The collision check is called in the update function to
verify when it hits the ground. When the raindrop does hit the ground, it will
destroy itself.

Take note in this example and further examples that it is necessary to create
the bodies on the sprites (via the game.physics.enable call). After
enabling the physics bodies on the sprites, it will be possible to access all of the
properties and methods of a sprite’s body, such as acceleration and velocity.

var ground, rain;

function create() {
 game.physics.startSystem(Phaser.Physics.ARCADE);

 ground = game.add.sprite(200, 400, ‘ground’);
 rain = game.add.sprite(200, 10, ‘rain’);

 ga me.physics.enable([ground, rain], Phaser.
Physics.ARCADE);

 rain.body.velocity.y = 100;
}

function update() {
 ga me.physics.arcade.collide(ground, rain,

collisionHandler, null, this);
}

function collisionHandler (obj1, obj2) {
 obj2.kill();
}

Collision checks in the arcade physics system need to be done in the update
function. The first two arguments to the collide function are the objects to
check to see if they are colliding. The third argument is a function that will be
called if the two do collide.

The arguments to the collision handler function are always passed in the
order they were specified in the collide method call. Because rain was the
second argument to the collide method call in the update function, it will
be the obj2 variable in the handler. In this example, we kill the rain sprite,
though we could also play sound effects or whatever else that needs to
happen when rain hits ground.

105

Phaser Principles

6.18.3.2 Sprite versus Group
Colliding a sprite against a group isn’t much different from colliding a sprite
against a sprite; the only change is that the process creates a group and
enables all the bodies in that group to be part of the physics system. Here is
some code that creates a minefield and sends a poor spaceship off to almost
certain doom.

var ship;
var group;

function create() {

 game.physics.startSystem(Phaser.Physics.ARCADE);

 ship = game.add.sprite(10, 10, ‘ship’);

 ga me.physics.enable(ship, Phaser.Physics.
ARCADE);

 group = game.add.group();
 group.enableBody = true;
 group.physicsBodyType = Phaser.Physics.ARCADE;

 for (var i = 0; i < 50; i++)
 {
 var mine = group.create(
 game.rnd.integerInRange(20, 780),
 game.rnd.integerInRange(20, 580),
 'mine');
 }

 ship.body.velocity.x = 20;
 ship.body.velocity.y = 20;
}

function update() {

 ga me.physics.arcade.collide(ship, group,
collisionHandler, null, this);

}
function collisionHandler (player, mine) {
 player.kill();
}

The major changes here are the creation of a group and the enabling of all
the physics bodies on that group via group.enableBody and group.
physicsBodyType. This will create bodies for all the sprites in the group
without having to go through each sprite individually and run game.
physics.enable to create the body. Otherwise, the update function
should look pretty similar, though now the second argument to collide
becomes a group instead of a single sprite. This will check for collisions
between the player and any mine, running the collision handler for each
collision it finds (though in this case, after the first collision, the player will be
dead, so future collisions will not occur).

106

An Introduction to HTML5 Game Development with Phaser.js

6.18.3.3 Group versus Group
Now that we know how to collide groups against single sprites, the process
to do a group versus a group should be pretty easy to understand: create two
groups, enable the physics for them, and collide them.

Here is a variation of the last example, but with several ships. Let the carnage
begin.

var ships;
var mines;

function create() {

 game.physics.startSystem(Phaser.Physics.ARCADE);

 ships = game.add.group();
 ships.enableBody = true;
 ships.physicsBodyType = Phaser.Physics.ARCADE;

 mines = game.add.group();
 mines.enableBody = true;
 mines.physicsBodyType = Phaser.Physics.ARCADE;

 for (var i = 0; i < 50; i++)
 {
 va r mine = mines.create(game.rnd.

integerInRange(20, 780),
 game.rnd.integerInRange(20, 580),

 ‘mine’);
 va r ship = ships.create(game.rnd.

integerInRange(20, 780),
 game.rnd.integerInRange(20, 580),
 ‘ship’);
 ship.body.velocity.x = 20;
 ship.body.velocity.y = 20;

 }

}

function update() {
 ga me.physics.arcade.collide(ships, mines,

collisionHandler, null, this);
}

function collisionHandler (ship, mine) {
 ship.kill();
 mine.kill();
}

6.18.4 Gravity and Immovable Objects
Gravity is a downward acceleration applied to sprites in the game world.
It is easy to put a bunch of objects on the stage and add gravity, but if we
want them to stay visible and not just fall past the bottom of the screen,
there needs to be something for the objects to collide with to stop them.
Because the collide method is a standard physics call that will transfer

107

Phaser Principles

forces when two objects hit, if we put some ground on the stage that
was not affected by gravity and had a player collide with, the ground
would begin to move from the force of impact. If you have objects, like
ground, that should not be moved by a collision they should be set to
immovable.

This example is a quick sample of how to get a player controlled by left and
right arrows on the screen, an island for them to fall into. The island is not
affected by gravity nor can a collision transfer an impulse to its body.

var player, ground, cursors;

function create() {

 //setup game
 game.physics.startSystem(Phaser.Physics.ARCADE);

 game.physics.arcade.gravity.y = 300;

 player = game.add.sprite(200, 100, “player”);
 player.anchor.setTo(.5,1);
 ga me.physics.enable(player, Phaser.Physics.

ARCADE);

 ground = game.add.sprite(100, 500, “ground”);
 ga me.physics.enable(ground, Phaser.Physics.

ARCADE);
 ground.body.immovable = true;
 ground.body.allowGravity = false;

 //controls
 cursors = game.input.keyboard.createCursorKeys();
}

function update() {
 //run game loop code

 if(cursors.left.isDown) {
 player.body.velocity.x = −200;
 player.scale.x = 1;
 }

 if(cursors.right.isDown) {
 player.body.velocity.x = 200;
 player.scale.x = −1;
 }
 game.physics.arcade.collide(player, ground);
}

The important lines in this snippet are the inclusion of gravity via game.
physics.arcade.gravity.y, which will give all the arcade bodies a
downward acceleration of 300. The ground has gravity explicitly turned off
(ground.body.allowGravity = false) and is immovable, so when the
player hits the platform, it stays where it is. Next, now that physics is enabled,
it is preferable to use the body’s velocity over modifying x positions directly

108

An Introduction to HTML5 Game Development with Phaser.js

for movement. This will let the sprite work nicely with the physics system.
Finally, in this example, it is not important to write a handler for collision
between the player and the ground. Instead we just need the collision to
happen between the player and the ground so that they are separated
correctly when they do collide.

6.18.5 Drag and World Bounds
One thing you may have noticed with the last example is that the character
will seem to slide forever in one direction or another without fail and
eventually will fall off the screen. This is because currently the character
exists in a world without friction. While a world without friction can be
cool for a while, at some point it would be good to introduce drag into the
game so the player doesn’t have to constantly be adjusting for overshooting
goals. Then, just in case the player does jump off the edge of the platform,
we can keep the player avatar on the screen using a built-in command,
collideWorldBounds. This command automatically collides the player
against the four edges of the screen.

If you want to add friction to the previous game example, right after the
player is enabled for the physics system in the create function, add these two
lines of code:

player.body.collideWorldBounds = true;
player.body.drag.x = 1000;

6.18.6 Angular Velocity and Bounce
There is one last way to move arcade bodies on the screen which is via their
angular velocity or angular acceleration. Both of these properties change the
“rotation speed” of the game object the body is attached to. These are lesser
used properties but can find some use in top-down driving games or similar
sorts of games with a top-down view.

This final example puts the player in control of a ship that can be driven
around on the screen. Additionally, because most ships will absorb most
of the recoil of an impact and float at least a little away, the bounciness
of the ship and the asteroids has been adjusted to get a good feel for
the game.

function create() {
 game.physics.startSystem(Phaser.Physics.ARCADE);

 player = game.add.sprite(200, 100, "player");
 player.anchor.setTo(.5,.5);
 ga me.physics.enable(player, Phaser.Physics.

ARCADE);
 player.body.collideWorldBounds = true;
 player.body.drag = { x: 1000, y: 1000 };
 player.body.angularDrag = 750;

109

Phaser Principles

 asteroids = game.add.group();
 asteroids.enableBody = true;
 as teroids.physicsBodyType = Phaser.Physics.

ARCADE;

 for (var i = 0; i < 10; i++) {
 va r asteroid = asteroids.create(game.rnd.

integerInRange(20, 780),
 game.rnd.integerInRange(20, 580), 'roid');

 asteroid.body.bounce = .9;
 }

 //controls
 cursors = game.input.keyboard.reateCursorKeys();
}

function update() {
 //run game loop code

 if(cursors.left.isDown) {
 player.body.angularVelocity = -200;
 }

 if(cursors.right.isDown) {
 player.body.angularVelocity = 200;
 }

 if(cursors.up.isDown) {
 ga me.physics.arcade.velocityFromAngle(player.

angle, 200, player.body.velocity);
 }

 ga me.physics.arcade.collide(player, asteroids);
}

6.19 P2
The second major physics system that comes with Phaser is P2. Developed
by Stefan Hedman, it is a full-featured physics system that includes colliders
(another term for parts of a body that can hit other parts) that come in more
shapes than just square. Some of the major colliders it may have include
circles, planes, rectangles, capsules, and convex polygons. All of these
colliders don’t need to be aligned to the axis, so rotation of an object affects
collisions in a natural way.

These colliders are often used to create fun and interesting physics
simulation games. Common types of games that P2 could be used for
include building-destruction style games like Angry Birds, landing or vehicle
games with rough 2D terrain to be navigated, or advanced 2D platformers
with rickety bridges that wobble as the player runs across it. Unlike the
arcade physics engine, this system processes collisions by default. Once
a body is added to the world, it will always collide with the other bodies
around it.

110

An Introduction to HTML5 Game Development with Phaser.js

6.19.1 Setting Up the P2 World
Like every physics system in Phaser, P2 needs to be started before adding
bodies to the world.

game.physics.startSystem(Phaser.Physics.P2JS);

Once started, sprites can have their bodies enabled. Just like the arcade
bodies, by default the collider will be box shape around the width and height
of the sprite.

brick = game.add.sprite(300, 400, ‘brick’);
game.physics.p2.enable(brick);

6.19.2 Debugging Bodies
When working with the P2 system, quite often it can be handy to see visually
what the body of a sprite is. Adding a “true” as the second argument when
enabling the sprite will cause Phaser to shade the body of the sprite differently.

game.physics.p2.enable(brick, true);

6.19.3 Adding Basic Objects
The default body for a sprite is a box that matches the width and height of
the sprite. To add a different shape, the default body will need to be removed
and replaced with the new body shape. Phaser has functions to create and
replace simple bodies automatically. The primary replacement methods are
setCircle and setRectangle.

In the following code, the original box of the pill sprite will be replaced by a
circle. Then that circle body will be again replaced with another box of a size
different from the original.

game.physics.startSystem(Phaser.Physics.P2JS);

pill = game.add.sprite(300, 400, ‘pill’);
game.physics.p2.enable(pill);

pill.body.setCircle(40);
pill.body.setRectangle(50, 100);

6.19.4 Building Compound Objects
Not all bodies in the real world are perfect circles or boxes. Most are very
complex, though games will often simplify them down to a compound of
primitive shapes. For instance, a 2D chair has at least four boxes that make it
up (the seat, back, and two legs). The shapes that can be used to make these
compounds are boxes, circles, and capsules (a pill shape). Lesser used options
include lines and planes, which take up entire areas of the game world (great
for bounds, or ground).

111

Phaser Principles

When creating compound bodies, the old body shapes will first need to be
removed from the sprites via body.clearShapes().

In the following case, a baton sprite with circular weights on each side of
the bar is loaded into the game. A box wouldn’t represent this baton well. It
would either be too large for the middle or too small for the circles. A capsule
would at least have rounded ends, but still would be affected by the same
problems of the box. The best solution would be to create a box for the
midsection and two circles for the weights.

game.physics.startSystem(Phaser.Physics.P2JS);

baton = game.add.sprite(300, 400, ‘phaser’);
game.physics.p2.enable(baton, true);

baton.body.clearShapes();
baton.body.addRectangle(35, 10);
baton.body.addCircle(10, −20, 0);
baton.body.addCircle(10, 20, 0);

When adding shapes, the arguments after the ones that size the shapes
(width, height, and radius) are the offsets. By default, all shapes are placed
over the center point of the sprite they are being added to. If offsets are
specified, they are offset from the center of the sprite but that much. In the
earlier code, note that the x offset for the two circles is set to 20 and −20. This
will place the circles at the edges of the baton where they should be.

6.19.5 Adding Complex Objects
Some shapes are just impossible to represent as a combination of rectangles,
circles, and pills. These shapes are often represented as a polygon, which is a
collection of line segments that define the outer regions of the shape. While
it is possible to write the code that would create these lines, it is much easier
to create the shapes and load in the shape data into Phaser.

6.19.5.1 PhysicsEditor
One program supported by Phaser that is made to create and export shape
data is PhysicsEditor. This program, made by the CodeAndWeb can trace
sprites to create fairly accurate polygon outlines that can also be manually
edited by the player. To follow along, find the download at https://www.
codeandweb.com/physicseditor.

For the quick and easy way to add a shape to a sprite, drag the sprite into the
left-hand “shapes” area (see Figure 6.23). It is possible to trace and outline
many different shapes in this program before exporting all the bodies, so
when your project has many custom shapes you can do all your work by
moving between the different entries in the shapes panel.

Once you have a shape into your working area, find the magic wand tool
over the picture and click that tool. You’ll be presented with a screen
that will automatically trace the sprite object for you, based on the

112

An Introduction to HTML5 Game Development with Phaser.js

https://www.codeandweb.com/physicseditor
https://www.codeandweb.com/physicseditor

alpha transparency of the object, using the border between visible and
transparent for the base of the shape (so make sure to be saving your
images as a png). Adjusting the tolerance upward will make the shape
calculation more lenient, typically reducing the number of points in the
final shape. A reduced number of points will create a faster-to-calculate
shape for the physics system. Adjusting downward toward zero will add
more points creating a more accurate shape with more points that requires
more processing (see Figure 6.24).

Once you are happy with the shape, click okay and you can fine-tune the
shape by grabbing and moving the points around manually. It is also possible
to remove points by right-clicking on them, or add new points by right-
clicking on a blank part of the polygon’s lines.

6.19.5.2 Exporting from PhysicsEditor
When you have all your shapes traced to your liking and you are ready to
bring your work into a Phaser game, the data needs to be exported into
a readable format. Before exporting, make that Lime + Corona (JSON) is
selected in the right hand of the screen under exporter (see Figure 6.25).
The publish button will then prompt for a name and location to save
the physics data. Because this file will hold the data for multiple objects,
it is common to name it something pluralized like “sandwiches” or
“vehicleBodies.” Here is the output from the export of just a boat.

{

 “boat": [

 {
 “density”: 2, “friction”: 0, “bounce”: 0,
 “f ilter”: { “categoryBits”: 1,

“maskBits”: 65535 },
 “s hape”: [29, 18, 35, 42, 29, 72, 10,

72, 4, 42, 10, 18, 19, 4]
 }
]

}

Note that the JSON data contain a key for the boat physics info. Much like the
keys used in Phaser’s asset cache, this name will be used later on to associate
this particular boat shape with the sprite when creating the sprite body.

6.19.5.3 Importing and Using a Complex Shape
The Phaser loader method to preload physics body data is called “physics”. This
loader method takes a key name for the physics data and a URL to the asset.
Physics data that have been loaded can be used to create a complex body shape
for a sprite. Before adding the new body, the old one needs to be removed.
Then the loadPolygon method can be used to load in a shape from a physics
data file. The two arguments are the key to the physics data in the asset cache

113

Phaser Principles

and the key to the actual shape in the physics data. If you’re looking for the
shape key, as mentioned earlier, it can be found in the physics data JSON file. In
the previous example, the shape key was “boat,” which is used to load in a boat
shape for this example. After this particular loadPolygon line, the boat sprite
will have a body shape that fairly accurately mirrors the visible boat.

function preload() {
 th is.game.load.image(“boat”, “assests/sprites/

boat.png”);
 th is.game.load.physics(“vehicleBodies”, “assets/

bodies/vehicleBodies.json”);
}

function setup() {
 game.physics.startSystem(Phaser.Physics.P2JS);
 var boat = game.add.sprite(300, 300, “boat”);

 game.physics.p2.enable(boat, true);

 boat.body.clearShapes();
 boat.body.loadPolygon(“vehicleBodies”, “boat”);
}

6.19.6 Responding to Collisions
Unlike the arcade physics system, P2 processes collisions automatically.
If code needs to be run when certain objects collide (to play sounds, destroy
objects, or anything else), there are two ways to create collision handlers. The
first approach is to respond to a contact signal and the second method is to
create a collision callback.

6.19.6.1 Contact Signal
Contact signals fire whenever one object comes into contact with another. It
doesn’t matter what the other object is, the signal will always fire. It is up to
the developer to figure out what the other object is and what should happen
based on that collision. The handler function does have one input which is the
body that collided with the object. Using this input, it is possible to get access
to the other sprite that hits the object and manipulate it. In the following
example, the colliding sprite is destroyed and the bullet continues on its path.

var target, bullet;

game.physics.startSystem(Phaser.Physics.P2JS);

target = game.add.sprite(300, 400, ‘target’);
bullet = game.add.sprite(400, 400, ‘bullet’);

game.physics.p2.enable([target, bullet], true);
bullet.body.velocity.x = −40;

bullet.body.onBeginContact.add(function(otherBody)
{
 otherBody.sprite.kill();
});

114

An Introduction to HTML5 Game Development with Phaser.js

6.19.6.2 Collision Callback
Collision callbacks added with the method createBodyCallback are
more specific event handlers that will only fire if two specific objects collide.
Phaser will not recognize and run them automatically. To turn collision
callbacks on, P2 must have setImpactEvents set to true. Turning on
impact events can get very process intense, so try to restrict this code to
small worlds or only when absolutely needed.

var target, bullet;

game.physics.startSystem(Phaser.Physics.P2JS);

target = game.add.sprite(300, 400, ‘phaser’);
bullet = game.add.sprite(400, 400, ‘phaser’);

game.physics.p2.enable([target, bullet], true);
bullet.body.velocity.x = −40;

game.physics.p2.setImpactEvents(true);

bullet.body.createBodyCallback(
 target,
 function(myBody, otherBody) {
 otherBody.sprite.kill();
 },
 this
);

6.19.7 Collision Groups
Collision groups are the P2 physics system’s way to specify what objects
should collide with others. Using a collision group, it is possible to have
objects only collide with another specific group. Perhaps like “friendly fire,”
one could use groups to only have player bullets hit enemies and not allies by
creating different groups for the player bullets and enemies. It is also possible
to set a group of objects to not collide with anything. Laser beams, snow, or
ghosts all might fall into this category.

Maximum Number of Groups

Groups are calculated using bitmasks for quick logical checks. These
bitmasks are limited to the number of bits that make up a single value,
which is currently 31 in JavaScript. The maximum number of collision
groups in Phaser is limited to 31, so plan your groups ahead of time.

In the following example, two collision groups are created, apples and
oranges. Later on, when sprites are created and added to the game, they
are set to be in their respective collision groups and to only collide with the
opposite one. When the game is run, the apples will hit oranges, but sail past
their other, apple friends.

115

Phaser Principles

function create() {

 game.physics.startSystem(Phaser.Physics.P2JS);

 va r applesCollisionGroup = game.physics.
p2.createCollisionGroup();

 va r orangesCollisionGroup = game.physics.
p2.createCollisionGroup();

 var apples = game.add.group();
 apples.enableBody = true;
 apples.physicsBodyType = Phaser.Physics.P2JS;
 var oranges = game.add.group();
 oranges.enableBody = true;
 oranges.physicsBodyType = Phaser.Physics.P2JS;

 for (var i = 0; i < 20; i++)
 {
 va r apple = apples.create(game.world.

randomX, game.world.randomY, ‘apple’);
 apple.body.velocity.x = Math.random() * 60;
 apple.body.velocity.y = Math.random() * 60;
 ap ple.body.setCollisionGroup(applesCollision

Group);
 ap ple.body.collides([orangesCollisionGroup]);

 va r orange = oranges.create(game.world.
randomX, game.world.randomY, ‘orange’);

 or ange.body.setCollisionGroup(orangesCollis
ionGroup);

 or ange.body.collides([applesCollisionGroup]);
 }
}

6.19.8 Constraints
Most advanced physics engines attempt to recreate more than just
complex bodies. Typically they also simulate the different ways a
body could be connected to other bodies. By creating and managing
these connections, constructs like vehicles, bridges, or buildings can be created.

The general approach to creating machines and structures in a game engine
is to define connections and the properties of those connections between
two bodies. These connections are called constraints in the engine, and there
are a number of different types of constraints that interact differently on the
connected objects. Some common constraints include distance (this object will
always stay a certain distance away from another), spring (great for shocks on
cars), or gears (the rotational motion of one object will transfer to the other).

6.19.8.1 Lock
The most basic and approachable of the constraints is the lock constraint.
Once two bodies are locked, they will move as if they had been

116

An Introduction to HTML5 Game Development with Phaser.js

superglued together. This essentially makes them move like one body, with
any movement and rotation on one of the objects being applied to the other.
Great for very rigid structures like desks or chairs.

A lock constraint is created by specifying which objects should be locked
together and the distances to keep them locked at. This distance is broken up
into distances they should be separated on the x and y axes. In this example,
the tabletop and legs are locked together, with the legs locked 30 pixels
lower than the top. If the tabletop rotates, the legs will rotate with it, so while
they won’t be 30 pixels down visually anymore, they will still be attached
“beneath” the tabletop.

var tabletop = game.add.sprite(300, 300, ‘top’);
var tablelegs = game.add.sprite(300, 400, ‘legs’);
game.physics.p2.enable([tabletop, tablelegs]);
ga me.physics.p2.createLockConstraint(tabletop,
tablelegs, [0, 30], 0);

6.19.8.2 Distance
A distance constraint attaches two objects together with an invisible “pipe”
that drags one object along with the other as they move. The total distance
between two objects cannot change, but they are free otherwise to move in
the x and y directions in an orbit so long as that doesn’t change the distance
between the two. Distance is a bit easier than locking. After passing in the
two objects to constrain, the last argument is the distance to maintain
between the two objects. See Figure 6.26.

car = game.add.sprite(200, 300, ‘car’);
trailer = game.add.sprite(200, 360, ‘trailer’);
game.physics.p2.enable([car, trailer]);
ga me.physics.p2.createDistanceConstraint(car,
trailer, 70);

6.19.8.3 Spring
Springs attach two objects together in a rather bouncy way. Similar to a
distance constraint, they have a preferred distance to keep the attached
objects apart by. Unlike a distance constraint, a spring allows for a little “give”
in the distance the two objects can separate. The further away the spring is
from its desired size, the more force it exerts on the objects to bring them
back to this preferred length. Thus, if the objects move too far away from
each other, the spring will begin to pull them back. See Figure 6.27.

The parameters that control this generated force for a spring are resting
length, stiffness, and damping. Resting length is the desired length of the
spring. Stiffness controls how strongly it will try to pull back to its resting
length. A higher stiffness means the spring will stretch and compress
less. Damping reduces how “bouncy” the spring is. A damping of zero
means that the spring, once stretched out, will continue to bounce to

117

Phaser Principles

that length forever. Higher numbers reduce its bounciness. The following
snippet creates a paddle and ball and attaches them via a spring, making a
rather easy game of paddle ball. The parameters for the spring, seen after
the two object’s names, are a resting length of 15 between the two, with a
stiffness of 5, and damping of 1. See Figure 6.28.

game.physics.startSystem(Phaser.Physics.P2JS);

ball = game.add.sprite(200, 100, ‘ball’);
paddle = game.add.sprite(200, 200, ‘paddle’);

game.physics.p2.enable([ball, paddle]);

va r spring = game.physics.p2.createSpring(ball,
paddle, 15, 5, 1);

6.19.8.4 Revolute
Revolute constraints put a “pin” into two objects and affix those objects
together at the point of the pin. While they cannot move freely, they both
can rotate freely around that point. A great example of this would be a chain
or one of those wobbly wood-plank bridges. The planks or chains are linked
together at an individual point for each. Tugging on the chain will pull all of
the links, but they can still be “whipped” around as they revolve around their
link points. See Figure 6.29.

When creating a revolute constraint, each object needs to have a point
specified where the “pin” is placed into that object. In the following example,
the first plank has its pin placed to down and right, and the second plank is
pinned to the upper left. Once the constraint is made, the two sprites will be
moved, so their pins overlap visually.

var plank1 = game.add.sprite(400, 300, ‘plank’);
var plank2 = game.add.sprite(400, 300, ‘plank’);
game.physics.p2.enable([plank1, plank2]);
ga me.physics.p2.createRevoluteConstraint(plank1,
[50, 100], plank2, [0, 0]);

6.19.9 Contact Materials
In real life, not all surfaces are made equal. Some will be more slippery,
others rough, and others might be more bouncy. There’s along a number
of different physical properties that can change the interaction of an object
colliding and moving along another. If a different reaction from contact is
desired in a game, a contact material can be created in P2 to define specific
properties of an interaction between two objects.

When creating a contact material, it is possible to modify the physical
effects of contact between two bodies. The major properties of interest
are a contact material’s friction, restitution, and surface velocity. Friction
is how much the objects will push against any motion on their surface and
restitution is essentially “bounciness.” Surface velocity is a velocity that

118

An Introduction to HTML5 Game Development with Phaser.js

will be applied to any object hitting the surface of this object. It is sort of
like a moving walkway or current. Numbers above zero will push toward
the right of the contact point and velocity below zero will push toward
the left.

The slightly more obscure stiffness and relaxation properties are generally set
to their defaults. Playing with these can result in some fun, sometimes giving
a body more of a “squishy” appearance than normal. Stiffness is the term
that defines how insistent the physics system is on pushing objects away
from each other so they are not overlapping. A very high number ensures
that objects never appear as if they “overlap” when colliding. Lower numbers
will still separate the two objects, but not all the way, letting it appear as if
the two objects are almost merging together (like a boat into water, never
quite sinking but not entirely on top of the waves). Relaxation is a term for
how many frames it takes to get the objects fully separated. Typically set to a
number between three and five, this reduces “jumpiness” in the simulation.
Larger numbers will make the simulation feel a bit slower, but again make
everything move smoother in total.

In the following example, when the player collides with the ground, the
resulting friction force will be quite low between them, and there will be
a decent amount of bounce from the collision. A bit of an impulse will be
applied to the player, sending them off and to the right with each bounce.
Essentially this creates a slippery, bouncy, conveyor belt. Note that contact
materials are actually the combination of two object materials, so it is a
multistep process.

var player = game.add.sprite(200, 200, ‘player’);
var ground = game.add.sprite(200, 500, ‘ground’);

va r playerMaterial = game.physics.p2.createMaterial
(‘playerMaterial’, player.body);

va r groundMaterial = game.physics.p2.createMaterial
(‘groundMaterial’, ground.body);

var contactMaterial = game.physics.p2.createContactM
aterial(spriteMaterial, groundMaterial);

contactMaterial.friction = 0.2;
contactMaterial.restitution = 0.5;
contactMaterial.surfaceVelocity = 1;

Just for fun, here’s a variation of the code earlier that creates a bit of ground
that lets a sprite bob atop it like it was water.

var player = game.add.sprite(200, 200, ‘player’);
var ground = game.add.sprite(200, 500, ‘ground’);

va r playerMaterial = game.physics.p2.createMaterial
(‘playerMaterial’, player.body);

va r groundMaterial = game.physics.p2.createMaterial
(‘groundMaterial’, ground.body);

119

Phaser Principles

va r contactMaterial = game.physics.p2.createContact
Material(spriteMaterial, groundMaterial);

contactMaterial.stiffness = 10;
contactMaterial.restitution = 0.5;

6.20 Particles
Particle systems are a game developer’s method for getting flashy and
visually appealing effects into their game. They are used particularly when
those effects require a lot of small, moving objects (or particles) to accurately
represent the effect. Some great examples of particle systems include fire,
smoke, rain, and the common explosion with its resulting debris. In order to
create these effects, a particle system will create a collection of sprites that
will be animated and moved according to the rules of the system.

The History of Particle Systems

The term particle system was coined in 1982 with the release of Star Trek II:
The Wrath of Kahn. In that movie, a system of particles was used to
simulate the progression of “fire” along a planet. Before 1982, animators
accomplished similar effects with hand drawn animation methods. In
these cartoons, someone would need to manually animate those little
pieces of debris, the snowflakes, or that water splashing off a character
getting doused.

6.20.1 Particle Engine Components
Particle engines are built to efficiently create and manage a lot of sprites
and their motions. They are essentially display list groups with some extra
features for generating particles and updating the states of each individual
particle as quickly as possible. They come in two pieces—the particle that is
the visible objects on the screen and the emitter that controls the properties
of the particles and how they are spawned.

6.20.1.1 Particle
Without the individual particles that are displayed on the screen, there
wouldn’t be much of interest to a particle system. The particles are single
images that are generated by the particle system and animated for the
duration of their lifespan. Once their lifespan is reached, the particle will be
killed and potentially reused if the system needs a new particle. The particle
has several properties that will affect how it lives and changes during its
lifespan and the following are the major ones:

• Sprite is the graphical asset associated with the particle. The sprite could
be puffs for smoke, little blue dots for rain, or little sparks for a “clashing
swords” effect. The sprite asset can be a single image or a set of images
that will be randomly selected for the sprite.

120

An Introduction to HTML5 Game Development with Phaser.js

• Acceleration is for particles that are affected by gravity like rain, snow,
and debris.

• Rotation will spin the particle as it flies. Makes for a very frantic effect.
• Life controls how long a particle will live. Short lives are good for bursts,

while longer lives are needed for ambient effects like snow.
• Scale controls the size of the particle over its lifespan. Increasing a

particle’s scale works very nicely as a dissipation effect that smoke or
similar systems may need.

• Alpha is often used to fade a particle away as it nears the end of its life.
This makes the particle system feel a bit less jarring and more “natural.”

6.20.1.2 Emitter
The other half of a particle system is the emitter. The emitter creates the
particles, sets up their initial properties, animates them through their lives,
and handles the destruction and reuse of the particles once their visible life
is over. Emitters are similar to a group inside of Phaser’s display list. While
technically the particles of the emitter are children of the emitter’s display
list, they will not change position when the emitter is moved around on the
screen unless it is set to not use world coordinates for its particles.

Just like other display objects, emitters can have a width and a height. The
size of the emitter is used as the “area” that a particle might potentially be
generated within. A wide emitter at the top of the screen would make a great
setup for rain, and a square-shaped emitter (down to nearly a point even)
might work better for a smokestack or hit explosion.

Particle systems can generate particles continuously or in a burst. A looping
particle emitter will run forever and generate new particles on a set interval.
These looping systems are great for atmospheric effects like rain or fireflies. A
burst emitter is used for moments when some visual spectacle is needed in a
game. Some common uses for a burst emitter include explosions, dust rising
from a player’s footsteps, or nice little visual rewards when something is done
right in the game.

6.20.2 Setting Up a Burst Emitter
Burst emitters are used for one-shot “explosions” of particles. Before creating
a burst of particles, the emitter should be placed at the center point of the
explosion and then the “explode” method can be used. The explode method
first takes the lifespan of the particles to be generated (in milliseconds) and
then the numbers of particles to be made.

In the following example, a particle system is set up to explode wherever the
user clicks on the screen. The emitter will generate poof cloud particles and
is set up to scale those particles up and fade them away during their lifespan.
The scaling is set on the emitter in the “setScale” method. This particular
configuration of the scaling will start all the particles emitted at a scale of one
and increase the scale to three times bigger over the period of 2 s. There are
four numbers because the first two are for the x scale and the second two

121

Phaser Principles

are for the y scale. The alpha works in a similar way to scaling, taking the start
and end values that every particle should be at.

var emitter;

function create() {
 emitter = game.add.emitter(0, 0, 100);
 emitter.makeParticles(‘poof’);
 emitter.setAlpha(1, .2, 2000);
 emitter.setScale(1,3,1,3, 2000);
 game.input.onDown.add(makeExplosion, this);
}

function makeExplosion(pointer) {
 emitter.x = pointer.x;
 emitter.y = pointer.y;

 emitter.explode(2400, 15);
}

6.20.3 Setting Up an Area Emitter
Area emitters are a great choice for large atmospheric effects. To make an area
emitter, the size of the emitter needs to be adjusted to take up the width (or
height) of the area where a particle might spawn. Here is a simple example of
an emitter that simulates some basic rain in a game scene (see Figure 6.30).

var emitter = game.add.emitter(game.world.centerX,
0, 400);

emitter.width = game.world.width;

emitter.makeParticles(‘rain’);

emitter.minParticleScale = 0.1;
emitter.maxParticleScale = 0.5;
emitter.setYSpeed(300, 500);
emitter.start(false, 1600, 5, 0);

6.21 Signals
Signals are a form of event-driven programming. They are a way to defer
calling a function until something notable has happened that requires a
response. In other words, they are functions can be defined that will handle

122

An Introduction to HTML5 Game Development with Phaser.js

Area emitter with random particle velocity

Emitter

FIG 6.30 Particle area emitter with possible particle velocities.

important events throughout an application’s lifetime. Some common events
in Phaser include mouse clicks, sound events like complete and restart, and
collision events.

Signals come in two parts. The first part is the signal object itself. This is the
object that will inform others that something has happened that needs to be
responded to. In order to inform other objects that the event has happened,
the signal needs to be “fired.” The signal object also has methods to register
functions that should be run when the signal fires. Methods that respond to a
signal firing are often called event handlers.

Listener Memory

Signals in Phaser take up memory and also reference count in JavaScript’s
garbage collector. It is important to clean away any unneeded signals so
that the JavaScript engine can remove objects that are the reference of a
signal. If you only need to respond to an event once, use the addOnce()
signal listener, and, when you’re done with a signal, make sure to remove
all its event listeners with the removeAll method.

6.21.1 Using a Signal
Just about anywhere the add or addOnce methods are used in Phaser and a
function is provided as an input a signal is being used. Here is a very common
signal used throughout this book:

create() {
 th is.load.onLoadComplete.addOnce(this.

onLoadComplete, this);
}

onLoadComplete() {
 //handler
}

The two parts of adding the handler is specifying the function to be run
(onLoadComplete) and the context that function should be run in (this).
The difference between add and addOnce is that addOnce will respond to
the signal only once. After the onLoadComplete function runs, the listener
will be removed and the function will not respond to the signal in the future.

6.22 Making a Custom Signal
Sometimes a developer might have some events that their own objects will need
to dispatch. Perhaps, it will fire an event when a player dies or when an AI has
made a decision that needs to be communicated to other objects. Whatever the
need, the process of creating and using a custom signal is quite easy.

this.countdownStarted = new Phaser.Signal();
th is.countdownStarted.addOnce(this.swapBackground,
this);

123

Phaser Principles

6.23 Removing a Listener from a Signal
Sometimes one needs to get rid of a listener from a signal, either because
the event no longer needs to be handled or it is time to clean up the
object and get rid of it safely. In the following example, a listener is added,
and then remove once it is called, simulating the way the “addOnce”
listener works. Note that when removing a listener, both the handler
function and the context have to be the same (making it look like a mirror
of the add code).

function create() {
 this.nukeWorld = new Phaser.Signal();
 this.nukeWorld.add (delayNuke, this);
}
function delayNuke() {
 this.nukeWorld.remove(delayNuke, this);
}

6.24 Prefabs
Games have a lot of moving parts that a developer needs to track. Even in
a simple shoot ‘em up game, a player is tasked with making a character to
avoid enemies and attacks that are flying at them from the opposite side of
the screen. Different parts of this game would include the player character,
the objects being flung, a timer, a score box, and perhaps even a health bar
for the player. Already for this rather simple game, there is a lot of lines of
code needed to set up, manage, and update these different components in
the game.

Writing the code for all the different parts of a game in one large file can
quickly get out of hand. The file gets huge, the different phases of the
object’s lifecycle are strewn about this huge file, and editing can become
a mess. A good solution to this problem is to break the code up into small,
self-managing files and components. Breaking these files down into these
“classes” or “components” makes the game state’s code more readable
and helps with the maintainability of the project in total. In the game
development world, another term for these self-managing components is
“prefabs,” short for “prefabricated.” These prefabs are typically objects that
will be used in multiple scenes and in multiple projects.

The best approach to making a prefab in ECMAScript 6 is to extend a Phaser
object and add on the properties and methods that make this extended
Phaser object unique. Any methods that are called automatically on the
base class (like update) will still be called automatically within a prefab
as well. The prefab’s update methods will be called when the state runs
its update methods, so it is a great way to remove code from the game
state and put it into a separate container. There are two common types of
prefabs: UI (that usually extend a group) and game object (typically extend
a sprite).

124

An Introduction to HTML5 Game Development with Phaser.js

The process of making a prefab starts with creating a new JavaScript file to
store the object’s code. Throughout this book, the prefabs will be placed into
the src/prefabs folder and will have the same name as the object in the file. If
it is an angry enemy, the file name will be “AngryEnemy.js”.

6.24.1 Making a Game Object Prefab
A game object prefab nearly always extends a Phaser sprite. When extending
a sprite, the constructor arguments need to be passed onto Phaser’s sprite
prototype via the super method in the constructor. In a prefab the update
method is often overridden with custom movement, input, or AI code. In later
chapters, it will also be very common for new signals to be added to a sprite,
so it can fire signals when the game needs to know something significant has
happened internally in the prefab. Following is the boilerplate for making a
game object prefab.

ex port default class PrefabExample extends Phaser.
Sprite {

 constructor(game, x, y, frame) {
 super(game, x, y, ‘spriteAssetKey’, frame);

 // initialize your prefab here

 //here is a simple, speed variable
 this.speed = 2;
 }

 //simple usage of the update function
 //along with the class properties
 update() {
 this.x += this.speed;
 }
}

6.24.2 Making a User Interface Prefab
UI objects are typically collections of graphics and text that need to stay
together in fix positions compared to each other, but the group of all the
assets may be moved around based on the size of the display viewing
the game. A group is great at being able to be repositioned while keeping
the position of all the objects inside of it the same relative to each other,
making it an optimal choice for a UI prefab. In the following example, some
text is added to show a common setup for a UI prefab, but images and even
particles are all acceptable items to add as well.

ex port default class UIComponent extends Phaser.
Group {

 constructor(game, parent) {
 super(game, parent);

125

Phaser Principles

 // initialize your components here
 //ad d hearts, text, or whatever else is

needed.

 //for instance, here’s some text
 va r style = { font: “30px Arial”, align:

“center”, fill: “#fff” };
 th is.txtValue = new Phaser.Text(this.

game, 55, 55, “Hello World”, style);
 this.add(this.txtValue);
 }

 update() {

 }
}

6.24.3 Using Prefabs
When working with prefabs like this, there is no built-in constructor in
Phaser to generate the prefabs as there are for tilemaps, sprites, or text
fields. Instead, the object will need to be created and added into the scene
manually. Phaser supports adding new objects to the display list (including
our custom objects) via the “game.add.existing” method.

Just like creating and setting up the states for the game, these prefabs
need to be imported into the current script before they can be used. When
creating these prefabs, the first argument must be a reference to the active
Phaser game. If the game is not passed into the prefab, it will break and not
work with the rest of your application.

//require our other computers
import PrefabExample from “../prefabs/PrefabExample.js”;
import UIComponent from “../prefabs/UIComponent.js”;

export default class Game extends Phaser.State {

 constructor() {
 //object level properties
 super();
 }

 create() {
 //add a prefab
 th is.prefab = new PrefabExample (this.game, 0, 0);

 this.game.add.existing(this.prefab);

 //add a UIComponent
 this.component = new UIComponent (this.game);
 this.game.add.existing(this.component);

 }

}

126

An Introduction to HTML5 Game Development with Phaser.js

6.25 Exists Flag
Video games remain an interesting field for many programmers because
they need good performance at a high speed to be acceptable to the player.
Spikes in processing time for individual frames can ruin the game, as can
eventual slowdown for the entire game due to memory leaks. For small
and simple games, especially ones where nothing new is being created
and added into the game after setup, these memory issues are not a huge
problem. A good example of these “limited memory” games would be a
game of checkers. Though some pieces might change form, new pieces are
never actually added to the board. The amount of stuff in the game (the
“memory” it takes up) is preloaded before the game begins and thankfully
never gets out of control with more and more checkers as the gameplay
progresses.

Modern games sadly are not often like checkers. Games like shoot ‘em ups
will create and destroy assets quite often, especially if the shmup is one of
the “bullet hell” variants where hundreds of bullets will be on the screen
at a time. All of those bullets need to be generated and destroyed and are
quite often done so very quickly. Creating, destroying, and managing those
objects quickly is where the management of objects becomes tricky due to
the time it takes to create and clean up objects.

6.25.1 Game Memory and the Garbage Collector
The two things it takes to make a new game object is time and memory.
When constructing an object, the computer has to find space for that object
in the computer memory. Once the computer has found the space for the
object, it still will need to run through the object’s constructor and hook up
all the pieces of the object and get the values of its properties set, which will
take up a bit more time on the computer.

The number of objects or variables that an application can take up is
limited by the computer’s free memory and the memory the computer
will give to this particular JavaScript application. If the application keeps
running and needs more memory, it might get a bit more memory
to work with, but the JavaScript engine will also attempt to clear out
unused variables, in order to get your game some new free space
to work with. This attempt to clear out the unused memory is called
“garbage collection,” and it can happen at just about any time during
your program execution. When the JavaScript engine does its garbage
collection, the rest of your scripts will slow down until the collection pass
finishes. The slowdown will be especially apparent if you have a lot of
objects that need to be deleted from the game.

The way a garbage collector knows when to delete an object from
memory is through a technique called reference counting. A reference
count for an object is started at one when the variable is created. It is

127

Phaser Principles

incremented upward for other references that refer to it. For instance,
you might create a variable called “player” in the game state and then
make another reference to that player in an enemy prefab (so it knows
to chase the player); the final reference count would be two. If the
enemy is deleted, but the player is kept in the state, the reference would
return to one. Once the state is exited and destroyed (taking with it the
player variable in it), there will be no variables that still reference the
player instance, dropping its reference count to zero. During the next
garbage collection pass, the JavaScript engine will remove the player
object from the application memory, freeing the memory space up for
something else.

Because it takes time to create objects, making a multitude of objects in
a single frame will slow an application down for that frame. While this
slowdown wouldn’t be bad in backend applications, it is a killer in a user-
facing game where the stutter can bother a player and make them mistime
a jump or shot. If all these objects that are being created are needed
for only a short time before being abandoned (such as the particles in a
particle effect), the game will quickly start taking up a lot of memory space
and eventually slow down from the memory load. If the developer doesn’t
do something to clean up an object when they’re done with it (usually by
clearing any references to it and setting the object to null), JavaScript’s
garbage collector will never mark it for deletion and it will never get
properly cleaned up. Instead, more and more objects of the same type are
created, taking increasing computation time that leads to an application
slowdown.

The takeaway from this discussion is that all those bullets that have
flown off screen and the enemies that have been destroyed in the game
don’t really need their physics updated, or positioned changed, or even
to be rendered. The first solution to this problem of running a bunch of
unnecessary computation on items that really don’t need to be updated is
to have a flag on the object to tell the game engine not to run the update
methods on that object. The exists property that every Phaser display
object has can be set to false to cause the game to stop rendering and
processing the logic (physics and update) of the object. Flagging the object
as not currently existing is great for removing an object from the game
when it would otherwise be wasting processing time, or getting in the way
of other objects in the game.

Quickly Removing Objects

Phaser game objects have a kill() method that will also remove the
object from the game and set it to not existing. It is best to use this
method in your code over simply toggling the exists flag to false because
it will make sure that the loss of the object won’t hurt the game and is a
more readable method.

128

An Introduction to HTML5 Game Development with Phaser.js

6.26 Object Pooling
Simply setting the “exists” flag to false does not remove the object from
memory, just from the game state’s updates. The object is still there taking
up memory, but most likely it has lived out its usefulness in the game. The
bullet has hit something or the enemy is dead, and their “exists” flag has been
toggled off so they’re not wasting time. The object is most likely ready to
have the final references to it removed, so the garbage collector can pick it
up and free the memory space. Until the garbage collector gets to it through,
it is just a waste of space, unused and unneeded. Some smart developers
quickly realized that there are two problems than can be solved here. It takes
time to create a new object in memory, and there is a perfectly fine (if slightly
used) version of the object that will also take time to clean up. Their solution
to these time-wasting processes was to reuse those “dead” items instead
of creating new ones all of the time. This winds up in the game creating
and destroying a lot less assets throughout its lifespan. This approach to
reusing similar objects is called an “object pool” and is something that Phaser
supports (to a certain degree) via the group object. A group object that will
be used as a pool needs to be used as a collection of all the similar objects
like all enemies or all bullets. The group has a method that will find the first
object in the group that is currently “dead,” which can be presumed to be
ready to be revived and brought back into the game as a “new” object.

There are a few approaches to pooling objects in a video game. The first
approach is to create the maximum number of objects that could ever be
needed in the game and turn off their existing property right when they
are created. Then, when the game needs a new object, revive the first dead
object in the group as needed throughout the game. You can rely on this
approach never taking up more memory and never slowing down due to
object creation. Unfortunately, if the maximum number of game objects that
were prewarmed into the group is reached, no more objects will be made. In
a game, the player firing the bullets would just suddenly run out of ammo.

The second approach to object pooling is to reuse old objects when they are
available and create new ones if there are no old objects free. The end result
is a much more “elastic” pool that grows to the size it is needed but tends to
grow slowly and not get too large. This approach takes a bit more code to
accomplish and will incur hits near the start of the game most likely as the
pool generates the first objects. For both approaches, if the game objects are
still not properly managed and toggled to “dead” when they have done their
work, a memory usage buildup will continue.

Groups in Phaser can be used to collect similar objects together and find
any dead ones that can be brought back to life. The most important parts
of an object pool is being able to mark an object as “dead,” knowing if there
are any “dead” objects that can be revived, and being able to find those
objects to revive them when needed. These tasks can be accomplished
in Phaser with the “alive” attribute of Phaser sprites and the countDead

129

Phaser Principles

and getFirstDead methods of a Phaser group. Following is a short code
example that shows an implementation of a pool using a Phaser group.

var poolGroup;

function create() {
 game.physics.startSystem(Phaser.Physics.ARCADE);
 game.physics.arcade.gravity.y = 100;
 poolGroup = game.add.group();
 poolGroup.enableBody = true;
 poolGroup.createMultiple(40, “particle”);
}

function update() {
 if(poolGroup.countDead()) {
 var particle = poolGroup.getFirstDead();
 particle.reset();
 particle.x = Math.random() * game.width;
 particle.y = 0;
 particle.lifespan = 1000;
 }
}

This example is the first type of pool that creates all the objects before the
game begins. This particular pool and example will act like a particle system,
placing new particles at the top of the screen and having them live out their
life falling downward. The objects will be flagged as dead after a second.
Each update, if the group has at least one dead object it will be reset to its
starting state and placed at a random point at the top of the screen. This
object is given 1 s (1000 ms) to “live” and sent on its way, with the world
gravity quickly taking its effect and pulling it down. Once the object “dies”
after that second, it is open again for the group to find it with another
getFirstDead method call, recycling it once again.

Difference between Revive and Reset

There are two ways to bring an object “back from the dead”: revive and
reset. For the most part, the .revive() method will work just fine. This
simply sets the object back to existing and makes it visible again, without
changing any of its other properties (things like position and physics body
properties remain unchanged).

If properties from the object’s old “life” get in the way (for instance,
a dead object might have an unwanted velocity due to gravity), then
the reset() method is the best way to revive the object. The reset
method will clear out old positions and physics attributes on the
object, essentially making it a “clean slate” version of the object. In the
aforementioned example, replacing the reset with a revive would fail to
reset the particle’s downward velocity. They would begin to fall faster
and faster, until they become almost untraceable by the human eye.

130

An Introduction to HTML5 Game Development with Phaser.js

6.26.1 Life
Sometimes an object only needs to live for a short while in a game scene.
A bullet will only be on screen for so long, a particle will slowly putter out, or
a collectable may only need to be on the screen briefly before it disappears
and stops tempting the player. The property “lifespan” is a built-in system
to automatically kill objects after a set amount of time. This property can be
set on various game objects, such as sprites, and is set in milliseconds (1000
to every 1 s). Phaser will automatically decrement the life of any object that
has a lifespan set. Once the life hits zero, the game object will be killed. In the
previous example, there is a 1 s lifespan set on the particles. When reviving
them, it is important to set their life once again, so they can live out a life
instead of simply existing forever.

6.27 Animation
Animation can be a key feature of many games, and it is not always feasible
to rely on others to create and implement all the animations in your game,
especially if it is a small game. For a small developer, it is important to know
how animations are made, what formats to export, and what tools are
available for the game developer to create these animations. In general, there
are two different ways to create animations, each with their own toolsets
and approaches. The first approach is called frame by frame, which gives the
animator more control over each frame of animation. The second animation
technique that gives a bit less control over the animation but is typically
faster is keyframed animation.

Frame by frame is the more “traditional” way to work. When working
frame by frame, an animator creates the art for each frame of movement
individually. A skillful animator working per frame can create something
that is quite engaging and beautiful, usually producing work that simply
cannot be recreated by keyframed animations due to complex changes in
positions and forms of the sprite. Traditional sprites in classic 8-bit or 16-bit
video games are a great example of frame by frame animation. During this
period of game development, each frame of animation was handcrafted by
the animator, sometimes on a per pixel basis to get the most out of every
pixel. It took a great amount of care and skill, but the result was often very
powerful imagery in a very small amount of space (examples are given in
Figures 6.31 through 6.36).

Keyframed animation is a second way to create animation for a game. The
resulting animations are often smoother and the process of creating the
animations is much faster than frame-by-frame movement. When creating
a keyframed animation, the artist or animator will work with static graphics
pieces that transformed from one position to another over the duration
of the animation. The static assets for a humanoid character then might
include individual assets for the arms, legs, head, and torso. Before doing the
animation, each of the assets is arranged in the animation program, so a full

131

Phaser Principles

human is formed. The animator then creates different positions, rotations,
and scales of the assets at set moments in time (called keyframes), and the
program will calculate where they should appear in between the keyframes
(the tweens). See Figures 6.31 and 6.32.

Exporting keyframed animations to a sprite sheet can prove problematic for
video games. In order to get the benefits of the “fluid” animation, even at the
12 frames/s for a human to perceive motion, a lot of frames of animation will
need to be rendered to the sprite sheet. The number of frames required would
be huge. Some programs will forego rendering out individual frames by simply

132

An Introduction to HTML5 Game Development with Phaser.js

Frame one Frame two

FIG 6.31 Two keyframed positions for animation.

Tween frames (at low opacity)

FIG 6.32 The “filled in” frames of a tween.

133

Phaser Principles

FIG 6.33 Texture packer JSON array option location.

FIG 6.34 Export settings on the right-hand side of the program.

exporting the animation data and relying on the game to render the animations
of the individual pieces at runtime. This approach takes up less disc space but
will incur a hit to processor load during gameplay because the animations will
have to be interpreted and performed for each individual sprite.

6.27.1 Rigs
Phaser has begun to support one type of keyframed animation called skeletal
animation. This type of animation is commonly used by game developers
working on character animations for their 3D game assets and has also
been applied to 2D animations. In a skeletal animation, a series of bones are
defined for a character. In general, each bone controls the rotation of one
sprite that makes up the character, and each bone is connected to others
via joints. These bones affect the bones they are attached to through a

134

An Introduction to HTML5 Game Development with Phaser.js

Different ratios and set widths

2:3 4:3 3:5 16:9

FIG 6.35 Comparison of ratio sizes.

Original and scaled sprite

FIG 6.36 Loss of visual detail from upscaling.

something called a kinematic chain and will drag neighbors along when they
move. In a fully rigged skeleton, pulling up on a finger will drag the hand,
lower, and upper arm along with it, quickly moving all the pieces into place
without the need of adjusting the positions of all the individual elements.
A complete set of bones is called a rig, which is animated via keyframes.
Positions are specified for the rig at distinct parts of the animation and the
computer will generate the in-betweens for the poses automatically.

6.27.2 Animation Software
There is a wide selection of different programs that are capable of creating
animations for Phaser, especially if one is focused on creating simple pixel art
for their games. The following is a curated selection of tools that tend to be
popular among game developers for creating animations. It is possible to create
wonderful art assets with free software and this list will attempt to indicate
where a paid application brings extra power or capabilities to developers.

6.27.2.1 For Creating Pixel Art
• Photoshop is the clear winner in the professional space, but it comes at a

professional’s price. Many tutorials will make an assumption that you are
using Photoshop or are well versed in it. It can handle everything from
complex painting (and photo editing) all the way down to pixel drawing.
It does a lot more than just pixel editing though and may be too bloated
for some.

• Gimp and paint.net are free programs that can easily do all the things that
one would need Photoshop to accomplish when creating art for games
and sprites.

6.27.2.2 For Creating 2D Animations
• Creature is a relative newcomer. It is an animation system that gives

an animator access to bones and the ability to deform the pixels of
the sprites around the bones in a believable way. Phaser supports
the exports from Creature’s skeletal animations, but not the pixel
deformations at this time.

• Spine is one of the leading sprite animation packages. It is a paid program
that supports creating rigs for animating 2D puppets as well as mesh
deformation of sprites. Spine has a large amount of support among game
developers, but it does not have the best integration with Phaser at this time.

• Spriter is another puppet animation tool. It is a bit less full featured than
the previous two, but it remains a good and approachable program that
has a great community for support.

6.27.3 For Both Art and Animations
• Aseprite is a free program for frame-by-frame pixel animations. It has a

robust feature set like a zoom view for pixel creation, a timeline view, and
onion skins to see previous frames of an animation.

135

Phaser Principles

http://paint.net

• Adobe Flash is one of the older animation software packages on this
list. Unlike the other two programs in this section that create both art
and animations, Flash is a vector animation package, meaning it doesn’t
edit pixels directly. Instead, it stores lines and colors between lines.
The drawing tools tend to impart a more cartoony look to the final
animations that can be done either frame by frame or keyframed. It is a
paid application, but will worth it for complex cartoony animations.

• Graphics Gale is another sprite editing system that is similar to Aseprite.
It supports the creation and animation of pixel sprites, along with the
necessary tools to animate quickly like looping test animations and
zooming in on the animation.

6.28 Making Atlases
Texture atlases are ways to put many different sprites into a single image.
This saves some space on the computer and allows for spites to be packed as
tightly as possible into an image’s space. Because there are multiple sprites
in an atlas, there will also be a need for a file that describes the locations of
those sprites in the image. For JavaScript games, this file is typically a JSON
file that needs to be loaded and associated with the packed image.

There are a lot of programs on the web that can produce sprite atlases.
A search engine query for “texture packer” or “sprite atlas” will return a good
selection of programs that can get the job done for you. One good choice
due to its ease of use and the ability to export to formats that Phaser can
use is “Texture Packer,” made by CodeAndWeb. The basic features of this
program are free, and you can find a download for the program at its website
https://www.codeandweb.com/texturepacker.

6.28.1 Using Texture Packer
When you launch “texture packer”, you will be presented with a new project
screen. If you scroll down, you will see that there are two options defined for
Phaser already: JSON array and JSON hash. If this atlas is meant to be used
for an animation, use JSON array. Otherwise you should select JSON hash
when creating a packed set of unrelated objects.

Once you create a new project, you can then drag and drop as many
sprites as you want into the center area of the screen. Texture Packer will
automatically lay these sprites out for you whenever you add a new one.

Once you have all the sprites you want in your texture atlas, you will need
to export the project into the files that Phaser can read. So long as you
started the project as one of the two of the Phaser defaults, you can go to
file → export to create these files. You will be prompted twice to input file
names and locations. The first prompt is for the JSON file that contains the
information about what sprites are in the atlas and how big they are. The
second prompt is to name the image that contains all the sprites itself. A
pluralized name that fits both files is a good way to name these two, such

136

An Introduction to HTML5 Game Development with Phaser.js

https://www.codeandweb.com/texturepacker

as “gameAssets.json” and “gameAssets.png”. It is best to save these
assets into your game project assets folder. Once the atlas and image have
been made, they can be loaded into Phaser via the load.atlasJSONHash
or load.atlasJSONArray methods.

6.29 Viewport Scaling
For many games, the width and height of the screen will vary based on the
size of the user’s screen, such as when the game is in full screen on a mobile
device. This will result in different rectangular views into the game world
because devices are not made with the same resolutions (number of pixels
in the display) nor do they all have the same display aspect ratio. The display
aspect ratio (commonly just shorted to “aspect ratio” or even just “ratio”) is
the proportion of width-wise pixel to height-wise pixel expressed with two
numbers. Common ratios include 4:3 (or “square TV shape”), 5:4, 16:9 (which
is monitor standard), and 16:10. These ratios are only the most common ones,
and there are others that may be encountered on devices and display targets
for your game (see Figure 6.35).

The difference in resolution and ratio means that different resolutions will
require different scales of sprites. The second issue a mobile developer needs
to address is the different sizes of their canvas. Phaser has some built-in
features to handle changes in canvas size that instructs Phaser on how to
automatically scale the entire game scene and how to handle overflow. If not
properly handled, the game can either display too small, too large, or may
render assets in unexpected places with large gaps on the edge of the screen.

The base resolution of your sprites is important. If your game is too large and
your sprites were built for a smaller display, your sprites will look somewhat
blurry when they are upscaled. When making your games, decide on a
specific resolution first, and create your graphics to match that resolution.
This may necessitate making different builds of your game for different
targets if you want the highest resolution graphics on each (one version
for mobile, another for the web). When targeting mobile, stick to smaller
graphics, even if you may want to deploy to devices with high resolutions.

When working with mobile devices you should choose a device orientation
and aspect ratio as your target and scale from that ratio. When developing
for mobile devices, the ratio can be swapped into two different directions:
portrait and landscape. A device in portrait mode is held in one hand like a
phone and will be taller and not wider. In landscape mode, a device is wider
and not taller and is typically held in two hands.

For a further discussion of resizing UIs and game worlds, read through the
slicer game example chapter 7.9 that implements some of the more common
resizing techniques for mobile applications.

137

Phaser Principles

http://taylorandfrancis.com

Chapter 7

Game Examples

The previous chapters (4,5, and 6) in this book were like a box of Legos. There
were a lot of pieces and potentials, but they were strewn about with no real
direction on how they all might fit together. The next section of this book is
going to give you a few projects to begin to show you the way these pieces
can be fit together. The goal is to give you a good base to start a game and
to show you some techniques that are commonly used when crafting games.
Each project is described in a similar manner to online tutorials in order to
keep them approachable and help you understand any other Phaser tutorials
you may come across when looking for more inspiration. When finished with
a project, don’t just leave in its final state. Like any good Lego model, half of
the project is breaking it apart and remixing the model. I will leave you with a
few ideas on how to remix the games, but I hope you have a few ideas of your
own by the end.

Project one is a shoot ‘em up (or “shmup” for short) that will bring together
the concepts of states and transpiling into the classic introduction to game
development. In this game, a player will be tasked with flying around the
screen and shooting as many of the enemies hurtling at the player character
as possible. Collisions, prefabs, user interface (UI), and showing scores are

139

concepts that will be explored in this game. Basic functionality like “start” and
“game over” screens will also be covered in this chapter.

Project two is a platformer that builds upon the concepts in project one with
the addition of tilemaps, map creation, and level object placement. Some
simple artificial intelligence (AI) will be covered in this game, along with a
closer look at the Tiled map editor on how it can be used to generate all the
parts of a level including enemy and collectable placement.

Project three is an isometric tower defense game that explores how
two-dimensional (2D) space can be manipulated to give the impression of a
third dimension. While some of the math and concepts will be explored for
both pathfinding and isometric engines, plugins will be used for the actual
final build of the game, and there will be a brief discussion of finding and
integrating external plugins into your game.

Project four is an object slicing game that tasks the user with cutting objects
on the screen via swipe gestures. Because this is a game intended for play
on mobile devices, resizing the game and implementation of a fluid UI will
be discussed in order to handle the wide variance in screen resolutions.
Implementation of basic gestures will also be covered due to Phaser lacking a
gesture library of its own.

Project five is a take on the catapult destruction sim that will fall in a similar
vein as games like Angry Birds. The development and layout of the objects
in these types of games can be tricky to correctly implement, so this chapter
will delve more deeply into the P2 physics system in Phaser.

Each game will have unique assets that will be used for the gameplay. It is
outside the scope of this book to walk you through the process of creating
all the assets you need, and many of the projects are reliant on the code
matching the assets (so animations match up, or hitboxes are the correct
size). If you want to follow along with these tutorials you will need to
download the assets for the games. They all have been hosted at https://
github.com/meanderingleaf/PhaserBookExamples. You should be able to
find a download zip link on the first page that will let you download all the
assets without a lot of hassle.

Each of these games will be stepped through in as much detail as possible. If,
however, you just want to see the final result in order to get a better picture
of how it all fits together or to check out the code for yourself and make
modifications, you can find the git repo that hosts all the examples at https://
github.com/meanderingleaf/PhaserBookExamples.

7.1 Shoot ‘em Up
Common advice to any beginning game developer, who has a game idea
with a huge scope, is to “program a shoot ‘em up first.” While it may sound
condescending at first, it actually remains a great advice. The shoot ‘em up
game genre, which contains many classics like Galaga, Gradius, and Defender,

140

An Introduction to HTML5 Game Development with Phaser.js

https://github.com/meanderingleaf/PhaserBookExamples
https://github.com/meanderingleaf/PhaserBookExamples
https://github.com/meanderingleaf/PhaserBookExamples
https://github.com/meanderingleaf/PhaserBookExamples

contains all of the basics one needs to master in order to make games while
still remaining quite simple and approachable for a beginner. Like games that
claim to be “easy to play, hard to master,” a shoot ‘em up has a ton of room to
evolve and grow and can potentially keep the novice engaged for a long time
after their first shooter game. Dual-stick shooters like Geometry Wars (which
doesn’t restrict the player to just shooting forward), or the bullet hell–type
games like Ikaruga (where the number of projectiles to dodge on the screen
is just staggering), all come from the exact same template as the base shmup
(examples are shown in Figures 7.1 through 7.5).

The concepts behind a shoot ‘em up game are fairly simple. The player is
given control of a ship (or whatever it may be). Sometimes they are restricted
to one axis of movement, being only able to move horizontally or vertically.
Space Invaders is a great example of a game with single-axis movement.
Most shmups, however, give the player the capability to navigate in both the
x- and y-axes. Objects are then spawned into the game that the player must
avoid or destroy. At its very simplest as in the case of Asteroids, the enemies
are dumb rocks, and the player has a very basic single shot projectiles to
destroy its obstacles. More advanced versions give the player the capability
to upgrade weapons, waves of opponents, and AIs to deal with. In short, the
shoot ‘em up provides a nice canvas that can be used as the base for a lot of
engaging gameplay.

The shoot ‘em up in this chapter is meant to be a simpler version of the
genre that will demonstrate many of the common elements of the genre
and can then be used as a base that can be built upon to make something
more engaging later. Common gameplay elements that will be explored in
this game include enemies, wave spawning, projectiles, collisions, and score
keeping. The end result will be a game with start and end screens, a player
character controlled via the arrow keys on the keyboard, enemies that
shoot projects, and the capability to shoot at and destroy those enemies.

141

Game Examples

Player

Shoot ‘em up template

Player projectiles Enemy targets

FIG 7.1 Basic design of a shmup.

142

An Introduction to HTML5 Game Development with Phaser.js

Sinusoidal motion

“High amplitude” motion

Smaller sample size motion

Basic sine motion

FIG 7.3 Variations on sinusoidal motion.

Score text with “framing” image

22

FIG 7.4 UI image frame.

FIG 7.2 Player character sprite sheet.

To begin with, create the basic project structure described in chapter five.
We will be adding to that base throughout this exercise. Should you need
to see the finished code or to get the assets for the game, you can find the
full source at https://github.com/meanderingleaf/PhaserBookExamples/
tree/master/shmup.

7.1.1 Preload Phase
Here the assets for the game will be loaded in. In this case, the focus is on
learning how all the pieces fit together in a game, so only images and sprite
sheets will be loaded in for this game. Most of the images are self-explanatory,
with nearly every asset in this game being a simple image. Future games
will be including sounds, tilemaps, and a number of other sorts of extra
information, so take this as an opportunity to get used to the style and syntax
of loading.

In the preload.js state file, where the template mentions to do all the
preloading, add these lines to load in the assets for this game.

this.load.image(‘enemy’, ‘assets/images/enemy.png’);
this.load.image(‘explosion’, ‘assets/images/
explosion.png’);

this.load.spritesheet(‘player’, ‘assets/images/
gunbot.png’, 214, 269);

this.load.image(‘hexagon’, ‘assets/images/
hexagon_particle.png’);

this.load.image(‘bullet’, ‘assets/images/bullet.png’);
this.load.image(‘enemyBullet’, ‘assets/images/
enemyBullet.png’);

this.load.image(‘bg’, ‘assets/images/bg.jpg’);

this.load.image(‘health_bar’, ‘assets/images/
health_bar.png’);

this.load.image(‘health_holder’, ‘assets/images/
health_holder.png’);

this.load.image(‘circle’, ‘assets/images/circle.png’);

The only animation in this game is for the player, who will have two different
animations: an idle “flying” animation that will play when she’s not doing
anything else and a shooting animation. Note in Figure 7.2 how the frames

143

Game Examples

Healthbar at 80% full

FIG 7.5 Scaled down healthbar.

https://github.com/meanderingleaf/PhaserBookExamples/tree/master/shmup
https://github.com/meanderingleaf/PhaserBookExamples/tree/master/shmup

can be laid out both vertically and horizontally and how Phaser will still be
able to compute the frames.

7.1.2 “Start” and “Game Over” States
Before hopping into the action of the gameplay, most games have some form
of home or start screen. This is the screen that is used for imparting the flavor
of the game like the game name, giving a chance for the player to choose
options or see instructions, and make sure the player is actually ready with
their hands on the right buttons and keys before the game starts.

In a similar vein, a “game over” screen gives a developer a chance to let
the player cool down from a play session, and maybe show stats and
feedback from the round they just played. Or just give the player a bit of
encouragement, such as in the game over screen for Earthbound.

The start and end screens for this shmup are going to fall on the simple side,
simply displaying a graphic and waiting for user input. The following is a
basic form for the start screen, which can easily be cloned for the game over
screen as well by changing the class name and file name.

export default class StartScreen {

 create() {

 }

 update() {
 if (this.game.input.keyboard.isDown(Phaser.

Keyboard.SPACEBAR)) {
 this.game.state.start(‘game’);
 }

 }

}

7.2 Game Prefabs
Remember that prefabs are little reusable components where it makes sense
to separate the code for that game object from the rest of the game. Usually
these are things that will be operating as their own, distinct entities in the
game. These could be enemy that can control its own paths and decisions,
or a door that needs to manage its internal open and closed states. In this
game, there are two game objects that immediately come to mind as good
candidates for prefabs—the player and the enemies. Both of these are sprite
objects that do a bit more than just a normal sprite and can easily manage all
of their workings internally without needing help from the game application
or the game state. What makes them exceptionally great candidates to be
turned into prefabs is that each needs a custom update method. While it is
possible to write all the update code for the player and the enemies in the
game state’s update method, pulling those lines of code out into a new file
will keep everything clean and readable.

144

An Introduction to HTML5 Game Development with Phaser.js

7.2.1 Player Prefab
The player character is our first concern in this game. Without an object in
the game that the player can control, it quickly becomes less a game and
more a simulation. Getting the player in will help when testing the other
parts of the application and generally gives the developer a good sense
of the “feel” of a game if they have access to their character right away. In
a shoot ‘em up game, common things a player may need to do are move
freely on both axes and shoot bullets. Additionally, it makes sense for the
player object to be managing other information about its state, such as the
current player health, active power-ups, or player shielding (for advanced
games, of course).

Because the player character is flying around with what appears to be little
jet packs, we’re going to add a bit of extra play in her movement by having
her slow out of her movements when the player stops inputting motion.
This will be done by adding some vertical drag to her motion, and moving
her via a velocity instead of via pure pixel dimensions. She’ll be a bit more
“slippery” because when the player releases a key, she will continue moving
in the same direction for a few moments, until her drag takes over and
brings her to a halt.

7.2.1.1 Player Motion
The motion of the player is a combination of the drag and speed. The drag, set
in the constructor, is the amount of force that pushes work against a sprite’s
body when it moves via velocity.

this.speed = 100;
this.game.physics.enable(this, Phaser.Physics.ARCADE);
this.body.drag.x = 35;
this.body.drag.y = 35;

When arrow keys are held down, a force is applied to the player, overriding the
majority of the drag, but not all of it. The drag will continue to pull back on the
player, meaning that even if the speed is set to 100 like it is in the constructor,
the drag will pull back on the player when it is moving, so she’ll never actually
hit a speed of 100. Increasing the drag will affect the maximum speed the
player can reach and how quickly the player will slow to a stop. Larger drags
mean lower max speeds and faster stopping times. Changing the speed
property in the constructor will affect how quickly the player moves in general.
In general, when raising the speed of an object, if you want it to stop at about
the same rate as it was before, raise the drag an equal percentage.

if(this.cursors.left.isDown) {
 this.body.velocity.x = –this.speed;
}

if(this.cursors.right.isDown) {
 this.body.velocity.x = this.speed;
}

145

Game Examples

if(this.cursors.up.isDown) {
 this.body.velocity.y = –this.speed;
}

if(this.cursors.down.isDown) {
 this.body.velocity.y = this.speed;
}

if(this.fireButton.isDown) {
 this.fire();
}

7.2.1.2 Firing
The next step in getting this player ready to blast her way through anything
she sees is to set her up to fire bullets. The bullets will need to be on their
own group in the game state’s display list to be able to take advantage of
Phaser’s physics.overlap method to check to see if they have “hit” anything
later on. This group will be passed into the player object through its object
constructor. A few other setup actions related to the firing mechanic take
place in the constructor, including setting up the fire button, initializing a
variable that will be used to control how often the player will actually be able
to fire, and setting up the animation that will play when the user fires a shot.
Finally, there is a playFly event handler that triggers when the fire animation
has completed.

The following is the firing-specific code in the create method:

 this.bulletGate = 0;
 this.shotInterval = 500;
 this.bullets = bullets;
 th is.fireButton = this.game.input.keyboard.addKey(
 Phaser.Keyboard.SPACEBAR
);

 this.fireposition = { x: 160, y: 100 };

 th is.fireAnimation = this.animations.add(“fire”,
[11,12,13]);

 th is.fireAnimation.onComplete.add(this.playFly,
this);

The update function checks every frame to see if the fire button (in this case,
the spacebar) is down. If it is, it calls the fire function, discussed next.

The following is the fire code in the update function:

if(this.fireButton.isDown) {
 this.fire();
}

The fire function does a number of interesting things and is worth a close
look, especially considering the number of games that may rely on this
mechanic or a variation of it.

146

An Introduction to HTML5 Game Development with Phaser.js

Here is an example of the player fire method:

fire() {

 if(this.game.time.now > this.bulletGate) {

 var bullet = this.bullets.getFirstDead();
 if(bullet) {
 bu llet.x = this.x + this.

fireposition.x;
 bu llet.y = this.y + this.

fireposition.y;
 bullet.revive();
 } else {
 bullet = this.bullets.create(

 th is.x + this.
fireposition.x,

 th is.y+this.
fireposition.y,

 “bullet”
);
 th is.game.physics.enable(bullet,

Phaser.Physics.ARCADE);
 bullet.outOfBoundsKill = true;
 bullet.checkWorldBounds = true;
 bullet.body.velocity.x = 250;
 }

 th is.bulletGate = this.game.time.now +
this.shotInterval;

 this.animations.play(“fire”);
 }

}

The first bit of code in the fire function checks to make sure that enough
time has elapsed between the last shot and the current frame for a new
shot to be generated. This is based on the bullet gate (which stores the
next time a shot is allowed). If the time is greater than this number, a new
bullet is generated, and, at the end of the if statement, the gate is updated
to an amount of time in the future, as specified by the shot interval (set
in the constructor function). By default, the shot interval is set to 500 ms,
so every shot can only take place every half second. With this function, if
the current time the shot is fired at is 1200 ms, the next time one can be
generated is at 1700 (1200 + 500) ms, making the player wait that half a
second before they can shoot again, even if they’re mashing the button or
holding it down.

This particular fire method uses the “elastic” form of object pooling. Because it
is not prewarmed like other pools with all the bullets it could possibly need, the
code looks a little bit more complex. First, it starts checking if a “dead” bullet
already exists. If it does, then that means that the bullet is already set up with

147

Game Examples

a velocity and everything it needs, and it simply needs to be repositioned and
brought back to life. If a bullet is not available already, a new one is generated
and added to the bullet layer. The bullet is enabled for physics, so it can collide
against other things and be affected by velocity. Its velocity is set to a positive
value making it move right nonstop because it has no drag. Additionally,
the bullet is set to kill itself once it flies off screen, setting itself to “dead” and
readying it for reuse later on in the game (it will be returned by the getFirstDead
method when a new shot needs to be generated in this block).

When the bullet is placed onto the screen, it is placed based on the player’s
current x- and y-coordinates. Putting it at just the player’s registration point
would be a problem, however, because that point is not likely to be exactly
where the gun is. In fact, in this game the registration point is near the
heroine’s head. While it is cool to think of her having some weird sort of hair
beam, these shots are repositioned based on the final bit of configuration in
the constructor: the firePosition. Adjusting the numbers in that object in the
constructor will move the starting point of the bullet around on the player,
but it is currently pretty close to the gun’s position.

The last bit of the fire method plays the “shooting” animation. This is a quick
animation, and another animation (the idle animation) needs to play once
that animation is complete. In order to accomplish this, the animation has an
event that was attached to it in the create method that will run the “playFly”
method when the firing animation completes.

PlayFly Method

All this method does is play the flying animation. When used as the
onComplete handler of the fire animation, it will bring the player back to her
default, “flying” state when the shooting is over. It is actually a small detail
and is barely noticeable if the player is just holding down the “shoot” button
for the duration of the game because the shooting animation takes up most
of the interval in between shots. If this method is not here, however, the
flying animation would never been seen after the start of the game

playFly() {
 this.animations.play(“fly”, 14, true);
}

7.2.1.3 Player Health
Unless one wants to make a game with a pretty wicked difficulty state
where the player can only take one shot before they are blown into tiny
pieces, a player will need some sort of health value. Giving the player a
number that be slowly decremented from (or added to, with power-ups
perhaps) is the way to begin implementing player life. There are different
ways to show to the player how much life they have left, with either a
Zelda-style row of bars or a simple numerical value. This game is going to
be using a healthbar that works similarly to the loading bar in the preload
phase. When the player is at full health, they will see the full bar, while at

148

An Introduction to HTML5 Game Development with Phaser.js

low health, they will only see a small percentage of the bar. In order to
calculate the percentage to show to the player, two numbers are needed:
current health and the maximum it could be.

The numbers are set up in the player’s constructor.

this.health = { current: 10, max: 10 };

Next, there needs to be some way to actually hurt the player. While it
certainly is possible to just change the current health, writing a function
gives opportunity to later on add signals to fire when the player dies or does
checks to make sure the player’s health doesn’t fall beneath a certain amount.

damage(amt) {
 this.health.current –= amt;
}

Full Source of the Player class

export default class Player extends Phaser.Sprite {

 constructor(game, x, y, bullets) {

 super(game, x, y, ‘player’, 0);

 th is.game.physics.enable(this, Phaser.
Physics.ARCADE);

 this.body.drag.x = 35;
 this.body.drag.y = 35;
 this.body.collideWorldBounds = true;

 // initialize your prefab herea
 this.speed = 100;
 this.bulletGate = 0;
 this.bullets = bullets;
 th is.cursors = this.game.input.keyboard.

createCursorKeys();
 th is.fireButton = this.game.input.keyboard.

addKey(Phaser.Keyboard.SPACEBAR);

 this.health = { current: 10, max: 10 };
 this.fireposition = { x: 160, y: 100 };

 th is.animations.add(“fly”, [0,0,1,1,2,2,3,4,
5,6,7,8,9,10,10]);

 th is.fireAnimation = this.animations.
add(“fire”, [11,12,13]);

 th is.fireAnimation.onComplete.add(this.
playFly, this);

 this.animations.play(“fly”, 14, true);

 }

149

Game Examples

 update() {

 // write your prefab’s specific update
code here

 if(this.cursors.left.isDown) {
 this.body.velocity.x = –this.speed;
 }

 if(this.cursors.right.isDown) {
 this.body.velocity.x = this.speed;
 }

 if(this.cursors.up.isDown) {
 this.body.velocity.y = –this.speed;
 }

 if(this.cursors.down.isDown) {
 this.body.velocity.y = this.speed;
 }

 if(this.fireButton.isDown) {
 this.fire();
 }
 }

 fire() {

 if(this.game.time.now > this.bulletGate) {

 va r bullet = this.bullets.
getFirstDead();

 if(bullet) {
 bu llet.x = this.x + this.

fireposition.x;
 bu llet.y = this.y + this.

fireposition.y;
 bullet.revive();
 } else {
 bu llet = this.bullets.

create(this.x + this.
fireposition.x, this.y+this.
fireposition.y, “bullet”);

 th is.game.physics.
enable(bullet, Phaser.
Physics.ARCADE);

 bullet.outOfBoundsKill = true;
 bullet.checkWorldBounds = true;
 bullet.body.velocity.x = 250;
 }

 this.animations.play(“fire”);

 th is.bulletGate = this.game.time.now
+ 500;

 }

150

An Introduction to HTML5 Game Development with Phaser.js

 }

 damage(amt) {
 this.health.current –= amt;
 }

 playFly() {
 this.animations.play(“fly”, 14, true);
 }
}

7.2.2 Enemy Prefab
The enemy is the next consideration in our game. They are thankfully not as
intricate as our player, but they still have a number of special considerations.
In this particular game, we’ll be making only one specific enemy that will
move in a sine-wave pattern and maybe shoot back at the player. It is entirely
possible to build other enemies on this base, perhaps even using the Phaser
tween engine to create different paths for different enemies.

The first order of business for the enemy is movement. After enabling
the body, a quick and easy way to get the enemies moving is to set their
velocity to move them consistently in one direction. In the constructor, note
the “this.body.velocity = −175”. That will get the enemy moving
to the left. Higher numbers mean faster movement, so adjust upward or
downward based on the pace of the game. Setting the velocity only gets
the enemies moving in a straight line. Not a challenge for the player at all to
hit and sort of a dumb strategy on the opposing team’s side as well. At the
very least, they should be attempting to confound their opponent, perhaps
by juking up and down as they approach. One way to get the enemies
some vertical motion is to write some code that will make them move in a
sinusoidal pattern. Let’s examine how to implement sinusoidal movement
in this game.

7.2.2.1 Creating a Sinusoidal Motion
Built into JavaScript is a series of math functions that come in handy from
time to time. Of particular interest when it comes to making something move
in a smooth, wavelike pattern is the trigonometry function of “Math.sin.”
This method will take a number, treat it as an angle, and calculate a ratio of
the two sides of a right triangle based on that angle. The ratio will progress
from zero, up to one, back down to zero, falls down to negative one, and
returns to the zero once it hits the full circle. If one were to chart the path of
a sine wave using an x-coordinate as the input for the sin function and the
y-coordinate as the output value, one would see a wave pattern emerge, as
shown in Figure 7.3.

Now, look at the sine-wave chart and imagine that the x-axis depicted time
instead of position. This is how one can simulate a bouncing wave pattern
on an object. By changing an input value over time and getting the sin value

151

Game Examples

from it, one will get a way to create a “bouncing” value that shifts between
a positive and negative extreme. If that value is used to offset a sprite’s y
position every frame by the value calculated, then the sprite would appear
to move up and down, as if bobbing on a wave. In the update function, these
two lines do just that:

this.bounceTick += .02;
this.y += Math.sin(this.bounceTick) * 1;

Note that there are two “magic numbers” left in this code, or numbers that
seem to be there with no real reason for their existence. One of them is even
a multiplication by one, which is technically a worthless calculation. Each of
these numbers is there for a reason.

The first number (.02) you can think of is the “sample rate” or frequency of
the sine curve. It lets one specify how much detail they want of the curve
and also how quickly to move through it. The bigger that number gets, the
further in the x-direction of the sine curve will it sample each frame. If you
choose a large value, the jumps will be significant, and it will appear as if your
enemy is warping about the screen. Imagine if you have a big number, say
0.5, and you’re currently at the “top” of a curve. The next update happens,
and you ask for a value 0.5 further down. This will “jump” from the top of the
curve hallway down the hill to zero. This could be a big jump for an enemy,
especially in combination with the second magic number. A smaller value
will take forever to change for zero to one, and most likely your enemy will
be long gone before that happens. Still, this is one of those magic values that
can be toyed with, and I encourage you to do so to see how it changes your
enemy’s motion.

The second magic number, that useless multiplication by one, is a scalar.
It works as an amplitude modifier and changes how “tall” the enemy arcs
can get. Bigger numbers will make the enemy move in bigger arcs, taking up
more y space on the screen and making them harder to hit. Smaller will do
the opposite and have them move in more minute arcs.

The last bit of code that is associated with this wave pattern movement is in
the constructor, “this.bounceTick = Math.random() * 2;”. This is
just a little trick to start each enemy off at a random point on the sine curve,
so they’re not moving in identical patterns each time. One might be headed
up, while another is headed down on the same location on the screen.

7.2.2.2 Enemy Shooting
The approach this game takes to enemies “fighting back” is to decide randomly
when an enemy is created if it will fire a shot or not. This is a slightly uncommon
approach, as most shmups will include different enemy types, some of which
are “dumb” and seem to exist to just soak up bullets, while others are more
intelligent and will actually fire back at the player. In this game, intelligence is
brought down to a simple chance roll. This constructor will, on a 50% chance,
set the enemy to one of the types that will fire back at the player. If the enemy

152

An Introduction to HTML5 Game Development with Phaser.js

is set to fire, it will then create a countdown timer to shoot back in 3½ s. The fire
shot, similar to the player’s version, will generate a new enemy attack and send
it hurtling toward the left side of the screen.

The last thing to note is that the enemy constructor expects to get a
reference to a group in the game used for the enemy bullets. This reference
will be used in the object later on to create and set the bullets up, so it is
stored in the enemy object as “bulletLayer.”

Here is the firing code in the constructor:

 this.bulletLayer = bulletLayer;
 this.willFire = Phaser.Utils.chanceRoll(50);

 if(this.willFire) {
 th is.fireTimer = this.game.time.

create(false);
 th is.fireTimer.add(3500, this.fireShot,

this);
 this.fireTimer.start();
 }

The following uses the fire shot method:

fireShot() {
 var bullet = this.bulletLayer.create(this.x,
 this.y,
 “enemyBullet”
);
 th is.game.physics.enable(bullet, Phaser.

Physics.ARCADE);
 bullet.outOfBoundsKill = true;
 bullet.checkWorldBounds = true;
 bullet.body.velocity.x = –250;
}

The following is the full source of the enemy object:

export default class Enemy extends Phaser.Sprite {

 constructor(game, x, y, bulletLayer, frame) {
 super(game, x, y, ‘enemy’, frame);

 // initialize your prefab here
 th is.game.physics.enable(this, Phaser.

Physics.ARCADE);

 this.body.velocity.x = –175;
 this.bounceTick = Math.random() * 2;

 this.outOfBoundsKill = true;

 this.bulletLayer = bulletLayer;
 this.willFire = Phaser.Utils.chanceRoll(50);

 if(this.willFire) {

153

Game Examples

 th is.fireTimer = this.game.time.
create(false);

 th is.fireTimer.add(3500, this.fireShot,
this);

 th is.fireTimer.start();
 }
 }

 fireShot() {

 va r bullet = this.bulletLayer.
create(this.x, this.y, “enemyBullet”);

 th is.game.physics.enable(bullet, Phaser.
Physics.ARCADE);

 bullet.outOfBoundsKill = true;
 bullet.checkWorldBounds = true;
 bullet.body.velocity.x = –250;
 }

 update() {

 this.bounceTick += .02;
 this.y += Math.sin(this.bounceTick) * 1;

 }

}

7.2.3 User Interface Prefabs
With the primary objects in the game out of the way, the next parts of
the game to tackle are the UI elements. Our final game is going to have a
score field and a healthbar to display the current health ratio of the player.
While these objects could easily be added into the game as just parts of the
gameplay state itself, one could argue that they are self-sufficient parts of the
application that could easily be “componentized” and transferred from one
game to another if needed as well (and we’ll be doing just that with them).
This lets us pull their code out of the game state and hide it in their own
objects, so the gameplay state code stays relatively clean and readable.

7.2.3.1 Score Field
Technically the score field is just going to be a graphic with a text field
overlaid on top of it, which isn’t too complex to set up in the startup method
of the game state. However, pulling it out into its own object makes sense
partially because it is a unique object on the screen. Making an object
called “scoreBox” and adding it to the display list read a lot easier than six
lines of code with a comment about it setting up a score box beforehand.
Additionally, this score field will also introduce us to the process of creating
reusable objects on the screen with their own groups and layers. Note that
this score field is named generically as “NumberBox.” It is named this way
so it could be used to store any number, not just a score, and it set up for

154

An Introduction to HTML5 Game Development with Phaser.js

a decent amount of configurability for the background asset to be used to
frame or ground the text it displays (See Figure 7.4). Its constructor makes a
group and adds the “bgAsset” image to the back of the group and a text
field on top of it. Calling the setValue method of the NumberBox object will
update the text shown in this number box.

export default class NumberBox extends Phaser.Group {

 constructor(game, bgasset, val, parent) {
 super(game, parent);

 this.create(0,0, bgasset);

 var style = {
 font: “30px Arial”,
 align: “center”,
 fill: “#fff”
 };

 th is.txtValue = new Phaser.Text(
this.game, 55, 55,

 val.toString(), style
);
 this.txtValue.anchor.setTo(.5, .5);
 this.add(this.txtValue);

 }
 setValue(val) {
 this.txtValue.text = val.toString();
 }
}

7.2.3.2 Healthbar
The healthbar, or any sort of scaling bar, is a very common asset to make
in games. It is a bar that either fills in a region, or slowly drains from a
region based on player actions. Sometimes I like to think of the healthbars
as sodas in a bottle, slowly draining as the sugar water gets imbibed.
Much like the NumberBox, the healthbar has a number of interior
concerns that make sense to pull away into its own little component.
Common parts of a healthbar include a holder or asset that works as the
visual “grounding” for the filling that can be drained (See Figure 7.5). The
filling is a second asset and is scaled in the horizontal direction (though
the same principle works for vertical bars). A scale of one will be a “full”
bar, and scales progressing from one to zero will decrease down to an
empty bar. These two assets are placed into a group so they can be easily
placed and positioned together (moving the group’s position will move
all the assets inside of it automatically).

A method is placed on this object to allow setting the scale of the bar easily
at runtime. The easiest way to modify the width of the filling is to simply set
the bar’s scale. Sometimes it is nice to add a bit of flare into a UI, and tweened

155

Game Examples

transitions are a great example of this. Whenever the setValue method
is called, the bar is tweened to its new value for a subtle but hopefully
enjoyable bit of polish to this game. Take care with animations like this.
They’re there to add flair, but if they take too long, they will keep the player
from seeing the actual values of their life during the gameplay, which may
prove frustrating to them later on.

export default class HealthBar extends Phaser.Group {

 co nstructor(game, xpos, ypos, barGraphic,
holderGraphic) {

 super(game);

 this.x = xpos;
 this.y = ypos;

 this.bar = this.create(0,0, barGraphic);
 th is.holder = this.create(0,0,

holderGraphic);
 }

 setValue(val) {
 if(this.tween) this.tween.stop();

 th is.tween = this.game.add.tween(
 this.bar.scale

);
 this.tween.to({ x: val }, 350);
 this.tween.start();
 }

}

7.2.4 Game State
With the prefabs and components all ready, it is time to place them into the
game itself. The game will manage the creation of all the enemies, check for
collision between all the different game objects, update the UI as needed,
check for the game to be over, and add some bits of flair in when possible.

Some threads that will be followed throughout the game state include

• Spawning enemies on a chance, in different locations
• A wave spawn timer that makes it more likely that enemies will spawn as

time progresses
• Players colliding with enemy bullets and taking damage
• Enemies colliding with player bullets, getting destroyed, and

incrementing the score
• Management of particles and UI elements

7.2.4.1 Imports

import Player from “../prefabs/Player.js”;
import Enemy from “../prefabs/Enemy.js”;

156

An Introduction to HTML5 Game Development with Phaser.js

import NumberBox from “../prefabs/NumberBox.js”;
import HealthBar from “../prefabs/HealthBar.js”;

Add these lines of code at the top of the Game.js file, before any other code.
These are the lines of code that lets the game state make use of all of the
prefabs that are already done.

7.2.4.2 Create Method
This method is where the game gets set up. Any objects that need to exist at
the start of the game are made here. It is important with the create method of
any gameplay state to reset objects that need to be reset as well, as there is a
strong chance that this state is never deleted if Phaser returns to this state from
a different one. If you don’t reset scores or timers or anything else that needs
to start with specific settings or configurations, they may wind up having those
increased values even when returning after a “game over.”

Much of the work of this method is getting objects onto the display list.
Since the order items added to the display list affect the render order of the
objects, we’re going to step through this function in the order the different
display objects are added starting with the background tile sprite. This tile
sprite is going to be scrolled to the left infinitely, working as a quick “cheat”
to make it appear as if the player is flying through a large world when, in
actuality, they are in front of one of those old time set props that scrolls a
paper background behind the actors forever. This technique works best if
the background doesn’t have too many unique areas that a player will see
repeating.

this.bg = this.add.tileSprite(0, 0, 1024, 768, ‘bg’);

The next step is to add the groups to be used in this game. The bullet groups
won’t be used until a shot is fired, but the enemies will be preloaded with
a few baddies, so the game isn’t reliant on the spawner to create the first
enemies on the screen, which could result in a delay until the first one is
randomly generated.

The preloading of enemies follows a simple loop, set to create five new
enemies at the start of the game. These enemies are placed to the right of
the screen, at a random y position within the bounds of the world’s height
and with a bit of randomness on the x-axis, so they don’t all come at the same
time. In case the enemies will fire a projectile, each enemy will need to know
where the bullet layer is, so that layer is passed into their constructor as the
final argument.

this.bullets = this.add.group();
this.enemyBullets = this.add.group();
this.enemies = this.add.group();

for(var i = 0; i < 5; i++) {

 var enemy = new Enemy(this.game,

157

Game Examples

 th is.game.width + 100 +
(Math.random() * 400),

 Ma th.random() * this.
game.height,

 this.enemyBullets
);

 this.enemies.add(enemy);

}

The next step is to put in a particle system that will be used for some visual
feedback when the enemies get annihilated. This needs to come after the
enemy layer is added so the particles will appear atop the enemies and
other objects. This particular particle system will spew out hexagon particles
whenever it is active. The final line of this setup sets the particles to fade from
a full visible to 20% visible over the span of 2 s starting from the moment the
particle is made visible.

 this.explosions = this.game.add.emitter(0,0, 200);
 this.explosions.makeParticles(“hexagon”);
 this.explosions.setAlpha(1, .2, 2000);

After the explosions are configured and ready to go, the UI needs to be added.
It is done as the last of the additions to the display list, so the UI elements will
always appear atop the other objects in the game. This has been broken down
into its own method and is called right beneath the explosion code.

The UI section creates its own layer for the UI elements to exist on, partially
for organization, though this approach will be useful in later games that
scroll through the world. After that, the two UI elements coded before are
instantiated and added to the group. The number box is positioned to the
far left and configured to use a simple circle to ground the number that will
appear inside of it. The healthbar is positioned further to the right of the
number box and is set up with the assets to show a simple green bar inside of
a basic holder to ground that bar.

setupUI() {
 this.UILayer = this.add.group();

 th is.scoreField = new NumberBox(this.game,
“circle”, 0);

 this.UILayer.add(this.scoreField);

 th is.healthBar = new HealthBar(this.game, 120,
40, “health_bar”, “health_holder”);

 this.UILayer.add(this.healthBar);
}

The last bit of setup to be done in the create method is to make and start
a timer that will increase the difficulty of the game as time progresses. This
timer is created and set to run the method “incrementWave” once every
20 s, which is a method that will be explored later on.

158

An Introduction to HTML5 Game Development with Phaser.js

 this.waveTimer = this.game.time.create(false);
 th is.waveTimer.loop(20000, this.incrementWave,

this);
 this.waveTimer.start();

7.2.4.3 Update Method
The next method that is critical for a Phaser state, especially one that
implements gameplay, is the update method. This is the method that is
responsible for the majority of the game’s interactivity such as checking for
collisions, moving objects about on the screen, and getting input. Much
of the movement and input of the objects has already been covered in the
previous sections, with the player and enemies handling their own movement
in their individual update methods. All this section will need to do is move the
background, check to see if objects are overlapping, and spawn new enemies.

The first step in the update function, move the background, is as simple as
decrementing its tile x position. Because it is a tile sprite, this will make it appear
as if the half pixel on the left of the tilesprite had been pushed over to the right.
Overtime, it will scroll the background to the left, repeating itself indefinitely.

this.bg.tilePosition.x –= .5;

The next step is to attempt to spawn and place an enemy on the screen. There
are numerous ways to approach this task, but this is a fairly simple chance roll.
The spawn chance (defined in the create function) starts at a fairly low number,
but will be high enough that enemies will still be generated quite often. Should
the chance roll pass, a new enemy will be generated and added to the game in
the same way that the enemies were prewarmed before (randomly in a box as
tall as the game and a bit to the right of the screen).

if(Math.random() < this.spawnChance) {
 var enemy = new Enemy(this.game,
 this.game.width + 100),
 Ma th.random() * this.game.

height,
 this.enemyBullets
);
 this.enemies.add(enemy);
}

The last bit of the update method is to check for collisions, using the overlap
method (because we don’t want to transfer energy from any collisions,
making it seem like the player got “knocked back” by one of the enemy’s
shots). There are two methods that will need to be added to make these
overlaps work. One will damage the enemy hit by a player bullet and the
other will damage the player for different actions.

th is.physics.arcade.overlap (this.enemies,
(this.bullets,

 th is.damageEnemy,
 null,this);

159

Game Examples

th is.physics.arcade.overlap(this.player,this.enemies,
 th is.damagePlayer,

null, this);

th is.physics.arcade.overlap(this.player,
this.enemyBullets,

 th is.damagePlayer,
null,this);

7.2.4.4 Increment Wave Method
The increment wave function simply increases the spawn chance by 20% every
time it ticks. It is set to tick every 20 s, whenever the timer started in the create
function cycles through its timer and restarts. The maximum chance that is
really needed for an enemy to be spawned with 100% certainty for every frame
is one (as Math.random() will always return a number less than one), so
anything above that is just overkill. If the player manages to play that long that
will be dealing with a lot of enemies on the screen, so it is not very likely that
the spawn chance will need to be clamped to a maximum of one.

incrementWave() {
 this.spawnChance *= 1.2;
}

7.2.4.5 Damage Enemy Method
The next method to tackle is the damage enemy method that runs when a
player’s attack hits an enemy. The antagonists in this game currently aren’t
that robust since we didn’t give them any health. One hit will off them with
ease. Because it is so simple to kill these enemies, this function only needs
to do three things (the “damaging” in this case being more “obliterating”
than anything). First, it will reposition the particle emitter to the location
of the enemy and have the emitter generate a burst of four particles that
will fade away quickly. Even though the emitter may later be moved for the
destruction of another enemy, these generated particles will remain at where
they were generated in the world space for the duration of their lives. Next,
the player’s bullet and enemy are removed from the game via a.kill(),
ready to be revived later on. Finally, the score is incremented, and the score
box is fed the new score to be displayed to the player.

damageEnemy(enemy, bullet) {

 this.explosions.x = enemy.x;
 this.explosions.y = enemy.y;

 this.explosions.explode(2000, 4);

 enemy.kill();
 bullet.kill();

 this.score++;
 this.scoreField.setValue(this.score);
}

160

An Introduction to HTML5 Game Development with Phaser.js

7.2.4.6 Damage Player Method
The last process is the damage player method. It actually will bring us to
the end of both the game state’s code and the player’s gameplay, as it is
the function that checks for a game over state. In this game, game over
means that the player’s life has hit zero, so we’ll be checking the player’s
health to hit zero inside of this function. The player in this game can take
several hits before it dies, and the player object manages the total number
of hits they can take. If an overlap between a player and an enemy bullet
is detected, the player’s apply damage method is called, subtracting 1
from its health and bringing the player closer to death. This new state
of the health is sent to the healthbar via a percentage calculation. The
healthbar is programmed to reduce its size to the percentage sent in. For
instance, if the player’s current health is 9 and the player’s max health is
10, then when the player hits something, it will take one point of damage.
Its new current health property will have a value of 8, and the percentage
of 0.8(8/10) will be sent to the healthbar, which will scale down to show
a missing 20% gap between its rightmost side and the right of the bar
container.

Next, the enemy or enemy bullet is killed, ready to be reused in the future.
Finally, there is a check to see if the player is dead (if their health is less than
or equal to zero). If their hp is at that low level, they have taken too much
damage, and the game is over. It is time to move on to the game over state.

damagePlayer(playerRef, enemyRef) {
 this.player.damage(1);
 this.healthBar.setValue(
 th is.player.health.current /

this.player.health.max
);
 enemyRef.kill();

 if(this.player.health.current <= 0) {
 this.game.state.start(‘gameOver’);
 }

}

7.3 Game State Source Code
The following is the contents of the shmup game.js file in full.

import Player from “../prefabs/Player.js”;
import Enemy from “../prefabs/Enemy.js”;
import NumberBox from “../prefabs/NumberBox.js”;
import HealthBar from “../prefabs/HealthBar.js”;

export default class Game extends Phaser.State {

 constructor() {
 super();
 }

161

Game Examples

 create() {

 this.spawnChance = .02;
 this.score = 0;

 th is.game.physics.startSystem(Phaser.Physics.
ARCADE);

 th is.bg = this.add.tileSprite(0, 0, 1024,
768, ‘bg’);

 this.bullets = this.add.group();
 this.enemyBullets = this.add.group();

 th is.player = new Player(this.game, 0, 0,
this.bullets);

 this.game.add.existing(this.player);

 this.enemies = this.add.group();
 for(var i = 0; i < 5; i++) {
 var enemy = new Enemy(this.game,
 th is.game.width + 100

+ (Math.random() *
400),

 Ma th.random() * this.
game.height,

 this.enemyBullets
);
 this.enemies.add(enemy);
 }

 th is.explosions = this.game.add.emitter
(0,0, 200);

 this.explosions.makeParticles(“hexagon”);
 this.explosions.setAlpha(1, .2, 2000);
 this.setupUI();

 this.waveTimer = this.game.time.create(false);
 th is.waveTimer.loop(20000, this.incrementWave,

this);
 this.waveTimer.start();

 }

 setupUI() {
 this.UILayer = this.add.group();

 th is.scoreField = new NumberBox(this.game,
“circle”, 0);

 this.UILayer.add(this.scoreField);

 th is.healthBar = new HealthBar(this.game, 120, 40,
 “h ealth_bar”,

“health_holder”
);
 this.UILayer.add(this.healthBar);
 }

162

An Introduction to HTML5 Game Development with Phaser.js

 update() {
 this.bg.tilePosition.x –= .5;

 if(Math.random() < this.spawnChance) {
 var enemy = new Enemy(this.game,
 th is.game.width + 100 +

(Math.random() * 400),
 Ma th.random() * this.

game.height,
 this.enemyBullets
);
 this.enemies.add(enemy);

 }

 th is.physics.arcade.overlap(this.enemies, this.
bullets,

 th is.damageEnemy,
null, this);

 th is.physics.arcade.overlap(this.player, this.
enemies,

 th is.damagePlayer,
null, this);

 th is.physics.arcade.overlap(this.player, this.
enemyBullets,

 th is.damagePlayer,
null, this);

 }

 incrementWave() {
 this.spawnChance *= 1.2;
 }

 damagePlayer(playerRef, enemyRef) {
 this.player.damage(1);
 this.healthBar.setValue(
 th is.player.health.current / this.

player.health.max
);
 enemyRef.kill();

 if(this.player.health.current <= 0) {
 this.game.state.start(‘gameOver’);
 }
 }

 damageEnemy(enemy, bullet) {

 this.explosions.x = enemy.x;
 this.explosions.y = enemy.y;

 this.explosions.explode(2000, 4);

 enemy.kill();
 bullet.kill();

163

Game Examples

 this.score++;
 this.scoreField.setValue(this.score);

 }

}

7.3.1 Wrap Up
With the addition of the player damage code to the game state, the basic
example of a shmup is completed. It is a simple introduction to the genre, but
it demonstrates a lot of the essentials of game development including input,
collision, and proper separation of code into state and prefabs. Make sure to
master the essentials of creating UI components and extending game objects
as these are techniques that will be used in every other example in this book.

The best way to learn about code (beyond simply stepping through it, like we
have in this chapter) is to alter the code and see what happens when you run it
again. Sometimes it breaks, which can seem frustrating, but even broken code
presents you with an opportunity to really engage with the code and see why it is
breaking. Never take a broken build as a failure so much as a chance to learn and
ask “why?” Listed here are a few places where changing the code can produce
interesting results without there being a large chance of breaking the game.

Some great places to “play with numbers” include the following:

• Change the original spawn rate of the enemies.
• Change the multiplier of the spawn rate.
• Edit the enemy movement speed.
• Edit the player movement speed or player drag.
• Change the chance that an enemy is a “shooter.”
• Adjust the firing gate of the player.

While there is something to be said just for playing with the numbers for
playfulness sake (sneaking in a bit of fun into the tiring process of game
development), there is another reason for tinkering with numbers, especially
those that control physical movement. Think back to some of the different
games you have played. Did some of them feel more “right” than others? It
is likely that some of them just felt better. Everything in those games moved
in such a way that just moving around and existing in the game brought a
lot of joy. The movement numbers here are the ones that control precisely
that feel. It is quite likely that the first values one puts into player and enemy
movement will be off in some way. This is where the tinkering and playtesting
will have to be done to get them to be “just right.” This example has included
some sensible defaults for the interaction numbers, but changing them can
lead to vastly different types of games. A lower drag on the player would
lead to a very slidey hero, making it harder to position her right where one
wanted, perhaps putting the player on edge or leading them into laughable
mishaps. Higher spawn rates on the enemies would make the game very hard
to dodge enemies, bringing it closer to a “bullet hell”–type experience. In

164

An Introduction to HTML5 Game Development with Phaser.js

short, playing with numbers will be critical to get the gameplay to act in the
intended way and impart the right feeling to the player that you are trying to
convey.

Of course, not all changes to code are simply numerical. While this is a
working game, there remains a number of places to improve the game that
could make it more fun, challenging, and interesting to a player. Adding these
new features will take some addition of code and modification of the game
structure itself. Here are a few ideas to get you started (some of which you
probably are already thinking on):

• Add in new enemy types and path patterns.
• Add in new shot types for the player. Perhaps a double shot, large bullet,

or a pass-through beam?
• Use power-ups to unlock shots or grant the player more health.
• Manage shielding for the player either via power-ups or recharging when

not getting hit.
• Add in collectable currency and a store for unlocks after gameplay

(advanced).

Go forth and play with the code. Break things and learn. Make something
beautiful or ugly, or both. You can always come back to the original source if you
need to. When you’re ready to move on to the next game, a platformer, we will
build upon all the base ideas from this chapter, so make sure you know them well.

When it comes to 2D games, the platformer genre rules. Nearly every major
2D game engine provides built-in support for platformers and tilemaps to
give interested game developers the ability to quickly get a world set up with
walls, floors, and other objects that they can jump around on. Perhaps the
most notable platformer is Super Mario Brothers with its heavily tweaked
movement, intelligent camera system, and memorable music. Other great
and classic examples include the Sonic the Hedgehog series, Megaman
(actually a combination of platformer and shooter), and Super Metroid. These
games clearly stuck in the minds of future game developers, who have gone
on to create new and wonderful additions to the genre including Super
Meat Boy, Braid, and Thomas Was Alone (examples are shown in Figures 7.6
through 7.17).

165

Game Examples

Platformer gameplay

Jump across platforms Collect coins

Avoid enemies

FIG 7.6 Platformer basic gameplay.

Though the gameplay may differ slightly from game to game, there are
certain elements that make a platformer what it is. In general, these elements
are as follows:

• A side-on view of the character similar to a paper puppet
• A character that can move right and left, and jump
• A world for the character to navigate with solid walls and floors
• Gravity that pulls the player and game objects down
• An item or object to collect throughout the levels
• Enemies to dodge and avoid, typically with some simple AI
• Multiple stages or levels to traverse to get to the end of the game

Throughout this chapter, we will be placing all these necessities into our
game, Ground Fox. To begin with, we will need to make a world that will
serve as the location for the gameplay, and we will be using a new piece of
software to get the job done.

7.3.2 Tiled
While it is possible to lay out whole tile-based world by editing numbers
in a text file, it can be pretty hard to imagine what the final world will look

166

An Introduction to HTML5 Game Development with Phaser.js

FIG 7.7 Creating a new map in Tiled.

like without loading the game up and seeing how it looks with the actual
tile images. Tiled is a piece of software that lets someone lay out the tiles
(square bits of graphics) that make up a platformer world visually without
having the reload of the game with every change. It is a popular program with
a lot of great tools that make laying out a map and planning a game easier.

167

Game Examples

FIG 7.8 Specifying a tileset image.

FIG 7.9 Individual tiles extracted from the tileset image.

168

An Introduction to HTML5 Game Development with Phaser.js

FIG 7.10 Example level drawn with the imported tiles.

FIG 7.11 Adding an object layer in Tiled.

169

Game Examples

FIG 7.12 Placing objects in a layer.

FIG 7.13 Finished level layout in Tiled.

170

An Introduction to HTML5 Game Development with Phaser.js

Path step, per frame

FIG 7.14 Enemy distance moved per frame with turn limits.

Attack radius of mouse

Distance

Attack radius

FIG 7.15 Area that an enemy will begin to attack.

FIG 7.16 Individual tile IDs.

FIG 7.17 Camera movement bounds.

For this game, we’re going to be making use of some of its nontiled, object
layers in order to even lay out collectables and enemies in the game.

Before moving on, you’ll need to install Tiled. You can find an installer for your
operating system at http://www.mapeditor.org. This website also contains
a set of documentation for the program that is worth checking out if you
are interested in using the more advanced features of Tiled on this or future
projects.

7.3.2.1 Laying Out a Map in Tiled
There are two steps to laying out a map in Tiled. The images for the tileset
need to be imported and then those tiles can be used to stamp the images
onto the map. To begin, create a new map in Tiled. Ensure that this map is
orthogonal (not isometric or hexagonal) and that the tile size is 100 × 100.
The tile sizes will vary with your games, but for the platformer in this chapter,
100 × 100 is the size of a single tile. Save this map as “level1” (See Figure 7.7).

7.3.2.1.1 Loading In a Tileset Image
The next step in the creation of a tilemap is to load in a tileset to the Tiled
map editor. The tileset is a series of tiles laid out much like a sprite sheet, with
each tile appearing to the right of the previous tile. All the tiles need to have
a set width and height. The option to add a new tileset is in the file bar under
map → add new tileset.

When loading in a new tileset, there are two important areas to focus on: First
is the tile size, which usually is the same as the size of the tiles on the map
(100 × 100 in this case). The second important field is the “name” field. The
value you type into this field will be used later in the game scripts, so name
the tiles something descriptive and memorable. For simple games that only
use one tileset (like ours) “tiles” is a good standby (See Figure 7.8).

7.3.2.1.2 Drawing to the Map
Once a tileset is loaded in, they will be added to the tileset panel on the right
of the program. Based on the width and height given for the tiles, the different
images for the tiles will be split into individual boxes under the tileset panel
(See Figure 7.9).

Clicking on any of these tiles in the tab will set it as the active tile for
drawing. Once a tile is active in the tileset pane, clicking (or dragging) in the
middle area of the Tiled program will draw the tiles to the game world. This
is your chance to be creative, so spend some time drawing to the world
(See Figure 7.10).

7.3.2.2 Adding In Metadata in Tiled
Once you finish a map, it is not much work to export it and load it into Phaser.
Unfortunately, if you were to load this level into Phaser right now, it would
wind up being pretty boring after the first few minutes of play. There’s
nothing else in the map beyond platforms and walls. Most games have
objects like collectables and enemies to populate the world and make it a bit
more lively.

171

Game Examples

http://www.mapeditor.org

Tiled has a second type of layer that can be used for laying out objects that
are meant to fill the game world. This layer type is called an “object layer,” and
a new one can be added by clicking the “new layer” icon at the bottom left of
the layer’s pane (See Figure 7.11).

7.3.2.2.1 Placing Assets in an Object Layer
Assets that are placed in an object layer still need to be imported as tilesets
into Tiled. In this example, the whole sprite sheets for the enemies will be
imported in to be used for their placement in the world. Go back to map
→ new tileset. This time find the image for the mouse enemy and set its
dimensions to 160 × 160. A new tileset will be added to the tiles panel that
contains the mice.

When working with object layers, it is important to always place the same
sprite on the page because that particular sprite (and only that one) will
cause Phaser to place objects into the game. When placing objects like this
mouse, try to rely only on the first entry in the sprite sheet.

Because object layers are not restricted to the game grid, the stamp tool
that you used to lay out the world will not work. Instead you will need
to place objects using the “place tile” tool. This tool can be found right
above the map and looks like an image instead of a stamp or shapes (see
top of Figure 7.12). To put some enemies on the screen, select the enemy
layer in the layers panel, select the first enemy of the enemy sprites in the
tiles panel, and make sure the “place tile” tool is the currently active tool.
Once these three conditions are met, clicking anywhere in the map view
will place a new enemy. Try to place them above the ground, with a little
bit of walking room because we’ll be writing some code in a bit to make
them patrol back and forth.

Any object can be laid out in this manner in the map, and the different layers
can have many different objects in their layers. Later on if development of
this game were to continue, the enemy layer might also contain hedgehogs
or bees in addition to the mice. For this chapter, other layers will also be
set up to hold coins for the character to collect and doors to progress the
player through the game. The process of making more layers is the same as
for the enemies. Start with a new layer, import an image as a tile sheet, and
lay the objects out on that layer with the place tile tool. See Figure 7.13 for an
example of a finished map.

7.3.2.3 Exporting a Tiled Map for Phaser
Once the map is completely laid out (or far enough along that is worthwhile
testing), the next step is to get the map into a format that Phaser can
understand and render. Phaser imports and reads the JSON export format from
Tiled (called tiledJSON inside of the Phaser engine). Maps can be exported by
going to file → export and selecting the JSON format from the list of options.
When saving the file, make sure the file gets saved into the assets folder.

Before moving on, take a moment to open up the exported JSON file and
look through it. When creating the enemies and collectables, the GIDs of the

172

An Introduction to HTML5 Game Development with Phaser.js

objects in this file will need to be passed to Phaser. These GIDs can be found
in the JSON in the objects layer data. Here is a snippet of the JSON for the
enemy layer. If you are working on your own map, take note of your object
GIDs because it will likely differ from this map’s data.

{
 “draworder”:”topdown”,
 “height”:15,
 “name”:”Enemies”,
 “objects”:[
 {
 “gid”:225,
 “height”:160,
 “id”:5,
 “name”:””,
 “properties”:
 {
 },
 “rotation”:0,
 “type”:””,
 “visible”:true,
 “width”:160,
 “x”:436,
 “y”:1388
 }
]
}

7.4 Making the Ground Fox Platformer
The example in this chapter is used to demonstrate the 2D platformer genre is a
simple fox platformer game. It is going to have two levels for player to navigate
that will be filled with collectables and terrifying mice with swords. The player’s
goal is to finish the game with as many coins as possible, but they will need to
avoid the mice who will take a coin from them with every collision. Everything
in the level, including the enemy placements, player start positions, and
collectable locations, will be laid out in Tiled first and then pulled into Phaser.

To begin with, create the basic project structure described in chapter five.
We will be adding to that base throughout this exercise. Should you need to
see the finished code or to get the assets for the game, you can find the full
source at https://github.com/meanderingleaf/PhaserBookExamples/tree/
master/platformer.

7.4.1 Level Layout
Take a moment to look through the levels in Tiled (you can find the maps in
the project’s assets folder). The map files for this game have two tile layers
and four object layers. There is one tile layer that is just the background and is
made of up a number of tiles that make up a full image. It is separate from the

173

Game Examples

https://github.com/meanderingleaf/PhaserBookExamples/tree/master/platformer
https://github.com/meanderingleaf/PhaserBookExamples/tree/master/platformer

foreground (“tiles”) layer because it will be scrolled slower to give the game
the appearance of parallax. The object layers are player, doors, enemies, and
collectables. Each of the object layers is used to specify where an object
should appear when the level associated with this map is loaded.

7.4.2 App.js
The app will need to load in a few extra states and add them to the state list.
Also, the size of the game is changed from its defaults to 1024 × 768 to give
us a bigger view into the world.

var game;

import Boot from “./states/Boot.js”;
import Preload from “./states/Preload.js”;
import Game from “./states/Game.js”;
import Level1 from “./states/Level1.js”;
import Level2 from “./states/Level2.js”;
import GameOver from “./states/GameOver.js”;

window.onload = function () {
 ga me = new Phaser.Game(1024, 768, Phaser.AUTO,

‘game’);
 game.state.add(‘boot’, Boot);
 game.state.add(‘preload’, Preload);
 game.state.add(‘game’, Game);
 game.state.add(‘Level1’, Level1);
 game.state.add(‘Level2’, Level2);
 game.state.add(“GameOver”, GameOver);
 game.state.start(‘boot’);
};

7.4.3 Preloading
This game will load in a lot of image and sound files. It needs sprite sheets for the
animated player and mouse, which have some beautiful animations and images
that will be used for the world foreground and background. The map data for the
two levels is loaded in, using the tiled_json format, so we can access the extra
data that Tiled exports with its specific maps. Some images are loaded in for other
game objects, like the signs, collectables, and UI elements. Finally, an audiosprite
(with multiple sounds inside of it) is loaded. Multiple audio formats are passed to
the sprite, so the browser can select which format it can actually play.

this.load.spritesheet(
 ‘pl ayer’, ‘assets/images/sprites/FoxSprite.png’,

210, 210
);
this.load.spritesheet(
 ‘mo use’, ‘assets/images/sprites/MouseSprite.png’,

165, 160
);

174

An Introduction to HTML5 Game Development with Phaser.js

th is.load.image(‘gamebg’, ‘assets/images/Background.
png’);

this.load.tilemap(
 ‘level1’, ‘assets/levels/level1.json’,
 null, Phaser.Tilemap.TILED_JSON
);
this.load.tilemap(
 ‘level2’, ‘assets/levels/level2.json’,
 null, Phaser.Tilemap.TILED_JSON
);
this.load.image(‘Tiles’, ‘assets/images/Tiles.png’);
this.load.image(‘coin’, ‘assets/images/coin.png’);
th is.load.image(‘scoreholder’, ‘assets/images/
scoreholder.png’);

this.load.image(‘sign’, ‘assets/images/sign.png’);
th is.load.image(‘gameover_bg’, ‘assets/images/
gameover_bg.png’);

this.load.audiosprite(
 ‘sfx’,
 [‘ assets/sounds/sfx.mp3’, ‘assets/sounds/

sfx.ogg’], “assets/sounds/sfx.json”
);

7.4.4 Player Character Prefab
The player character in this game is a rather fast-looking fox. This game is built
to run on the keyboard, so the fox is going to need to respond to the standard
cursor keys for left and right movements and the spacebar will cause him to jump.

export default class Player extends Phaser.Sprite {

 constructor(game, x, y) {
 super(game, x, y, ‘player’, 0);

 //game object level variables
 this.speed = 400;
 this.airSpeed = 300;
 this.jumpPower = 600;
 this.inAir = true;
 this.hitGround = false;

 //animations
 th is.animations.add(“idle”,

[0,1,2,3,4,3,2,1]);
 th is.animations.add(“jump”,

[0,5,6,7,8,9]);
 th is.landAnimation = this.animations.

add(“land”, [7,6,5]);
 th is.animations.add(“run”,

[11,12,13,14,15,16,17]);

 th is.game.physics.enable(this, Phaser.
Physics.ARCADE);

175

Game Examples

 this.body.collideWorldBounds = true;
 this.body.drag = { x: 600, y: 0 };
 this.body.setSize(60, 100);
 this.anchor.setTo(.5, 1);
 th is.cursors = this.game.input.keyboard.

createCursorKeys();
 th is.jumpButton = this.game.input.keyboard.

addKey(Phaser.Keyboard.SPACEBAR);
 th is.jumpButton.onDown.add(this.jump, this);

 this.animations.play(“idle”, 9, true);

 th is.flashEffect = this.game.add.
tween(this)

 .to ({ alpha: 0 }, 50, Phaser.
Easing.Bounce.Out)

 .to ({ alpha: .8 }, 50, Phaser.
Easing.Bounce.Out)

 .to ({ alpha: 1 }, 150, Phaser.
Easing.Circular.Out);

 }

 animationState() {
 if(this.hitGround) {
 this.animations.play(“land”, 15);
 } e lse if(!this.inAir && !this.

landAnimation.isPlaying) {
 if (Math.abs(this.body.velocity.x)

> 4) {
 th is.animations.play(“run”, 9,

true);
 } else if(this.body.onFloor()) {
 th is.animations.play(“idle”,

9, true);
 }
 }
 }

 update() {

 this.hitGround = false;
 var wasAir = this.inAir;
 this.inAir = !this.body.onFloor();

 if (this.inAir != wasAir && this.body.
velocity > 0) {

 this.hitGround = true;
 }

 this.animationState();

 th is.speedToUse = this.inAir ? this.
airSpeed : this.speed;

 if(this.cursors.left.isDown) {
 this.scale.x = –1;

176

An Introduction to HTML5 Game Development with Phaser.js

 th is.body.velocity.x = –this.
speedToUse;

 }

 if(this.cursors.right.isDown) {
 this.scale.x = 1;
 th is.body.velocity.x = this.

speedToUse;
 }
 }

 jump() {

 if(this.body.onFloor() == true) {
 th is.body.velocity.y = –this.

jumpPower;
 this.animations.play(“jump”, 30);
 this.doubleJump = true;

 } else if(this.doubleJump == true) {
 console.log(this.doubleJump);
 this.doubleJump = false;
 th is.body.velocity.y = –this.

jumpPower;
 this.animations.play(“jump”, 30);
 }
 }

 flash() {

 if(!this.flashEffect.isRunning) {
 this.flashEffect.start();

 }
 }
}

7.4.4.1 Player Prefab Constructor
The fox constructor starts the process of getting the fox read to move
and animate fluidly. To get things started, there are a series of object-level
variables that will be used throughout the lifespan of this fox. The first three
variables are used to control the speed that the character moves. For this
game, to give the fox a bit more responsive feel, he will have a different
speed when in the air. The first condition requires that the fox was in the air
last frame and has hit the ground on the current update frame.

this.speed = 400;
this.airSpeed = 300;
this.jumpPower = 600;
this.inAir = true;
this.hitGround = false;

The next sections of constructor code set up the player physics and
animations. Much of it is basic animation setup, but there are a few

177

Game Examples

important parts of the setup that either are tweakable or will come up
later in the player object. The first line of code of interest is the landing
animation that will need to be referenced later on, so it is stored in an
object-level variable.

th is.landAnimation = this.animations.add(“land”,
[7,6,5]);

Drag is an important property to tweak to get a character’s motion feeling
correct. In this case, we want him to have a snappy start and stop feeling
when moving horizontally. A large drag in the x direction will pull him to a
stop quickly. The drag is set to zero for the y-axis because the fox doesn’t
need any effects of air resistance in this game. The hitbox for this character
starts out quite large, especially because it is sized to encompass his long tail.
The hitbox is reduced to a size that won’t aggravate the player via the setSize
method of the physics body. The new collision box is located in the middle
of the character. Finally, the anchor point (from which he will rotate and scale
around) is set to the center bottom point of the sprite. Later on, we will be
“flipping” this character to face right and left by changing his scale, and this
prevents him from flipping around on the back of his tail.

this.body.drag = { x: 600, y: 0 };
this.body.setSize(60, 100);
this.anchor.setTo(.5, 1);

The last interesting part of the setup function is the addition of a chained
tween to the sprite. This animation tweens to zero visibility and back to full
visibility creating an extra flash in between from the bounce easing (which
will cause it to flicker as it “bounces” the alpha back before settling). This
animation is stored in an object-level variable, so it can be stopped and reused
without having to create a new animation every time a flash is needed.

this.flashEffect = this.game.add.tween(this)
 .to ({ alpha: 0 }, 50, Phaser.Easing.

Bounce.Out)
 .to ({ alpha: .8 }, 50, Phaser.Easing.

Bounce.Out)
 .to ({ alpha: 1 }, 150, Phaser.Easing.

Circular.Out);

7.4.4.2 Player Prefab Update
Now that the player is set up, the next step is to implement the player’s custom
update method. The first step of this process is to place the object into the
right animation state. This game object has animations for running, standing,
jumping, falling, and hitting the ground. For the animations to work properly,
the prefab needs to track the properties that relate to those animations and
trigger a change when something significant happens. The factors that affect
the player’s are if it is currently airborne of it hit just hit the ground and should
trigger the hit ground animation.

178

An Introduction to HTML5 Game Development with Phaser.js

The start of the update method tracks these states. First, the inAir state of the
object is stored from the last frame, which will be contrasted later on with
the current in air state to determine if the player just hit the ground. Next,
using this.body.onGround, the player updates its inAir state. Finally, the
hitGround property is set to false to ensure the value will only be “true” frame
when it hits the ground. There are two conditions that need to be met for the
hitGround property to be true. First, the fox needs to be in the air last update,
and on the ground this update. Also the player needs to be falling downward
(meaning they need a downward velocity greater than zero).

Once the general state of the player has been properly set, a method is called
to actually figure out which animation should be currently playing.

this.hitGround = false;
var wasAir = this.inAir;
this.inAir = !this.body.onFloor();

if(this.inAir != wasAir && this.body.velocity > 0) {
 this.hitGround = true;
}

this.animationState();

The next step in the update is to move the player. The actual movement code
is a simple test to see if the left or right arrows are depressed and to add
velocity to the object if they are. Because the player has a varied speed based
on his grounded state, the speed to use as his velocity is stored in a variable
beforehand. If the player is in the sky, then speedToUse will default to the left
side of the colon in the first line (this.airSpeed). If the player is grounded,
the right side of the colon (this.speed) will be the speed that will be used
for the player motion. Based on the direction the player is inputting to the
keyboard, the player sprite will be flipped right or left by changing its scale.x
to be positive (facing right) or negative (facing left).

th is.speedToUse = this.inAir ? this.airSpeed :
this.speed;

if(this.cursors.left.isDown) {
 this.scale.x = –1;
 this.body.velocity.x = –this.speedToUse;
}

if(this.cursors.right.isDown) {
 this.scale.x = 1;
 this.body.velocity.x = this.speedToUse;
}

7.4.4.3 Player Prefab Animation Controller
In the update method, the process of animating was handed on to the
animation controller method. This has been placed into a separate method
so as much of the animation can be done in one place and not get lost
throughout all the other portions of the player’s update and state code.

179

Game Examples

First, if the player has just hit the ground, then the landing animation is
triggered. While it is only a few frames, the bit of down and compression
on the character when he lands imparts a good and solid “landing
feeling.”

If the player is not in the process of landing and they are on the ground, the
game then checks the player’s speed. If they’re moving fast enough on the
x-axis (the Math.abs removing the need to deal with negative speed), then
the run animation is activated for this sprite. If the player isn’t moving fast
enough to warrant a run animation, the idle is played instead. Because the
check for the switch to idle transition still contains some movement for the
character, fox will slide slightly to a complete stop.

animationState() {

 if(this.hitGround) {
 this.animations.play(“land”, 15);
 } else if(!this.inAir && !this.landAnimation.

isPlaying) {
 if(Math.abs(this.body.velocity.x) > 4) {
 th is.animations.play(“run”, 9,

true);
 } else if(this.body.onFloor()) {
 th is.animations.play(“idle”, 9,

true);
 }
 }
}

7.4.4.4 Player Jump Method
So far, we’ve gotten the player to run to the right and the left, but the player
still is lacking the critical jump capability that makes a platformer enjoyable.
The jump is handled by a key down handler that is set up in the player’s
constructor.

th is.jumpButton = this.game.input.keyboard.
addKey(Phaser.Keyboard.SPACEBAR);

this.jumpButton.onDown.add(this.jump, this);

The handler will implement a double jump, so there are two sets of jump
conditions to be validated. For the first jump, it is only necessary to check
to see if the player is on the ground. If they are, they are given an upward
velocity equal to the jump power configured in the constructor. The jump
animation is triggered and the doubleJump flag is set to true.

If the jump button is pressed and the player is not on the ground, the double
jump flag is checked. If it is “true,” then the player can jump again. The same
impulse and animation are applied, and the double jump flag is deactivated.
The player will not be able to use another jump in the sky until they jump
from the ground again and reset the doubleJump variable.

180

An Introduction to HTML5 Game Development with Phaser.js

jump() {
 if(this.body.onFloor() == true) {
 th is.body.velocity.y = –this.

jumpPower;
 this.animations.play(“jump”, 30);
 this.doubleJump = true;
 } else if(this.doubleJump == true) {
 console.log(this.doubleJump);
 this.doubleJump = false;
 th is.body.velocity.y = –this.

jumpPower;
 this.animations.play(“jump”, 30);
 }
 }

7.4.4.5 Player Flash Method
The final method in the player prefab is the flash method. It is a simple
method that will play the flash animation that was configured in the
constructor. The only other special consideration in this method is to ensure
that it will not restart the animation every time the flash method is called.
This will give the animation the time it needs to actually play through its
whole duration, so the player will actually flash and not just fade.

flash() {
 if(!this.flashEffect.isRunning) {
 this.flashEffect.start();
 }
}

7.4.5 Mouse Prefab
The next unique prefab in this game is the mouse prefab that will act as the
enemy and obstacle in the game. They’re not going to be the smartest of
mice and will simply patrol back and forth. Should the fox get near enough to
them to bother them, they will stop and slash at the player, but the moment
the fox gets out of their “anger range,” they will resume their patrol. The
following is the entirety of the code for the mouse prefab.

export default class Mouse extends Phaser.Sprite {

 constructor(game, x, y) {
 super(game, x, y, ‘mouse’, 0);

 //game object level variables
 this.speed = 200;
 this.stepLimit = 90;
 th is.currentStep = Math.floor(Math.

random() * this.stepLimit);

 //animations
 this.animations.add(“stand”, [0]);

181

Game Examples

 th is.swingAnimation = this.animations.
add(“swing”, [0,1,2,3,4,5,6,7]);

 th is.animations.add(“run”,
[8,9,10,11,12,13,14]);

 th is.game.physics.enable(this, Phaser.
Physics.ARCADE);

 this.body.collideWorldBounds = true;
 this.body.drag = { x: 600, y: 0 };
 this.body.setSize(60, 80);
 this.anchor.setTo(.5, 1);

 this.animations.play(“run”, 9, true);
 }

 update() {

 va r dist = Phaser.Math.distance(this.x,
this.y, this.player.x, this.player.y);

 if(Math.round(dist) < 210) {
 this.animations.play(“swing”, 9);

 if(this.x < this.player.x) {
 this.scale.x = 1;
 } else {
 this.scale.x = –1;
 }

 }

 if(!this.swingAnimation.isPlaying) {

 this.currentStep++;
 this.body.velocity.x = this.speed;

 th is.animations.play(“run”, 9,
true);

 th is.scale.x = (this.speed > 0) ?
1 : –1;

 if (this.currentStep >= this.
stepLimit) {

 this.speed *= –1;
 this.currentStep = 0;
 }

 }

 }

}

7.4.5.1 Mouse Constructor
The constructor for the mouse does many of the basic setup functions to get
a sprite into a 2D world including setting up its drag, adding animations, and
placing the anchor at the center of the sprite so it can be flipped widthwise.

182

An Introduction to HTML5 Game Development with Phaser.js

The important new additions to this sprite are a set of variables that will
control its patrol area and where it starts on its patrol.

this.stepLimit = 90;
th is.currentStep = Math.floor(Math.random() * this.
stepLimit);

The first variable, stepLimit, is the number of steps that the mouse can take in any
direction before it will turn around and start walking in the other direction. The
currentStep is where the mouse is on its step limit and is initialized as a random
number within the step limit. Setting each mouse to a random starting point in
its patrol helps to randomize the directions the mice in the game are facing. With
the random starting points, the mice will change directions at different times
in the game instead of all of them doing an about-face at exactly the same time
(which has the potential to just look a bit jarring to the player). (See Figure 7.14).

7.4.5.2 Mouse Update
Like most prefabs, the meat of the code for the mouse is going to come in the
update method. The update method handles moving the mouse forward,
flipping it around when it has reached the limits of its patrol, and attacking
the player when it gets too near.

The first consideration is checking to see if the player is near enough for an
attack to make sense and stopping to play the attack animation if that is the
case. To begin with, the distance between the mouse and the player is calculated
using Phaser’s built-in distance method. Distance in this case is the length of the
line from the player’s anchor point to the mouse’s anchor point (i.e., from the
bottom center of the player to the bottom center of the mouse). (See Figure 7.15).

var dist = Phaser.Math.distance(this.x, this.y,
this.player.x, this.player.y);

The next portion checks to see if the player qualifies as “close enough” based
on the distance between the mouse and player. The “magic number” of 210 has
been provided in here because it gives a very good feel to the reaction time
of the mouse, but you are free to play with this number to get values for a very
lazy mouse or one that really just wants to swing its sword a lot. If the player
is close enough, the swing animation is triggered, and the mouse is flipped
to face the player. The flip (scaling left or right) is based on the location of the
mouse relative to the player. If the player’s x location is less than the mouse’s
x position, then the mouse needs to face left to swing, or vice versa, for right.

if(Math.round(dist) < 210) {
 this.animations.play(“swing”, 9);

 if(this.x < this.player.x) {
 this.scale.x = 1;
 } else {
 this.scale.x = –1;
 }
}

183

Game Examples

Where Does the Player Object Come From?

Nowhere in the mouse’s code is the player explicitly set. The player
reference will be provided in the game state code right after the mouse is
created. Look for the line ‘this.enemies.setAll(“player,” this.
player)’ to see how the reference is provided.

The patrol code finishes off the sprite’s update method. In order to ensure
that the mouse only patrols when it is not attacking, the patrol code is
wrapped in a condition that will run only when the attack animation is not
playing.

During each update call when on patrol, the current step is incremented by
one, bringing it closer to the maximum number of steps it can take in one
direction. The velocity is set back to full to override any effects of friction,
and the running animation is played so it can continue to animate its steps.
Because the sprite might flip around to attack the player, the scale is set to
face the direction the mouse is moving. A negative velocity will force its scale
to be negative one, while a positive velocity will result in a positive scale to
make it face right.

The final bit of code checks to see if the step limit has been reached. If that is
so, the walking speed of the mouse is reversed, which will cause it to move in
the opposite direction starting with the next frame, and its step limit is reset.
It will need to walk in this new direction for as many frames as it takes to get
to the step limit again before it will turn around once more (See Figure 7.15).

if(!this.swingAnimation.isPlaying) {
 this.currentStep++;
 this.body.velocity.x = this.speed;

 th is.animations.play(“run”, 9,
true);

 th is.scale.x = (this.speed > 0) ?
1 : –1;

 if (this.currentStep >= this.
stepLimit) {

 this.speed *= –1;
 this.currentStep = 0;
 }
}

7.4.6 UI Components
There is exactly one UI component that will be used in this game, and
thankfully it is a reused component from the last game example. The number
box from the shoot ‘em up will be brought into this game to give the user
feedback about how many coins they have collected during gameplay.

184

An Introduction to HTML5 Game Development with Phaser.js

7.4.6.1 Fixed to Camera
Unfortunately, when the number box is added to the game, it is added into
the game world space. This works fine for a game where the camera never
moves, but it won’t look quite so good the moment the game camera begins
to budge. As the camera moves away from its starting position, the number
box will move with the rest of the objects, as if it were an object in the fox’s
world. The fix to this problem is to affix your UI components to the camera
so that when the camera moves, so does the UI element. This is done by
setting UI element’s “fixedToCamera” property to “true.” In the game state’s
constructor, you will see this is done on the number box right after it is
created and added to the world.

7.4.7 Game State
This game has multiple levels, which means that it has more than one state
that implements the gameplay. For this project, the game state is going
to start the score for the gameplay and then bounce the player to the
first level of our game. This score object is added to the game itself, so it
can exist throughout the life of all the states. It will move from level one
to level two unaffected because it is not in the level’s scope. Watch for it
to be used in three separate states and keep its value each time the state
changes.

create() {
 this.game.score = 0;
 this.game.state.start(“Level1”);
}

7.4.8 Level State
A level state in this game takes all of the prefabs and adds the final logic
of the game. It handles the creation of the game world, changing levels,
collisions between player and game objects, and player feedback. For each
level in your game, you will need to create a separate level object that
will help with writing special code that is associated with the level. In this
game, there are two different levels. When the player reaches the end of
the first level, they are taken to the second level. Completing level two will
bring the player to the game over screen. The following is the template for
a level state that will undergo some small modifications for the level two
state.

//require other components
import Player from “../prefabs/Player.js”;
import Mouse from “../prefabs/Mouse.js”;
import NumberBox from “../prefabs/NumberBox.js”;

export default class Level1 extends Phaser.State {

 constructor() {
 //object level properties

185

Game Examples

 super();
 }

 create() {

 //physics
 th is.physics.startSystem(Phaser.Physics.

ARCADE);
 this.physics.arcade.gravity.y = 800;

 //map start
 this.map = this.add.tilemap(“level1”);

 //parallax background
 this.map.addTilesetImage(‘gamebg’);
 this.bg = this.map.createLayer(‘bg’);
 this.bg.scrollFactorX = .6;
 this.bg.scrollFactorY = .6;

 //walkable tiles
 this.map.addTilesetImage(‘Tiles’);
 this.layer = this.map.createLayer(‘Level’);

 //collision
 this.layer.resizeWorld();
 th is.map.setCollisionBetween(6,25,true,this.

layer);

 //coin layer
 this.coins = this.add.group();
 th is.coins.physicsBodyType = Phaser.Physics.

ARCADE;
 this.coins.enableBody = true;
 th is.map.createFromObjects(“Collectables”, 41,

‘coin’, null, true, false, this.coins);
 this.coins.setAll(“body.gravity”, 0);

 //place doors
 this.doors = this.add.group();
 th is.doors.physicsBodyType = Phaser.Physics.

ARCADE;
 this.doors.enableBody = true;
 th is.map.createFromObjects(“Doors”, 242, ‘sign’,

null, true, false, this.doors);
 this.doors.setAll(“body.gravity”, 0);

 //player
 th is.map.createFromObjects(“Player”, 243, null,

null, true, false, this.world, Player);
 this.player = this.world.getTop();

 //place enemies
 this.enemies = this.add.group();
 th is.map.createFromObjects(“Enemies”, 25, null,

null, true, false, this.enemies, Mouse);
 this.enemies.setAll(“player”, this.player);

186

An Introduction to HTML5 Game Development with Phaser.js

 //UI
 this.UIGroup = this.add.group();
 th is.scoreField = new NumberBox(this.game,

“scoreholder”, this.game.score, this.UIGroup);
 this.scoreField.fixedToCamera = true;

 //sound
 this.sfx = this.add.audioSprite(‘sfx’);

 this.camera.follow(this.player);
}

update() {
 th is.physics.arcade.collide(this.player, this.

layer);
 th is.physics.arcade.collide(this.enemies, this.

layer);
 th is.physics.arcade.overlap(this.player, this.

coins, this.collectCoin, null, this);
 th is.physics.arcade.overlap(this.player, this.

doors, this.hitDoor, null, this);
 th is.physics.arcade.collide(this.player, this.

enemies, this.hitEnemy, null, this);
}

collectCoin(playerRef, coinRef) {
 coinRef.kill();
 this.game.score ++;
 this.scoreField.setValue(this.game.score);
 this.sfx.play(“coin”);
}

hitDoor(playerRef, doorRef) {
 this.game.state.clearCurrentState();
 this.game.state.start(“Level2”);
}

hitEnemy(playerRef, enemyRef) {
 if(!playerRef.flashEffect.isRunning) {
 playerRef.flash();
 this.sfx.play(“hit”);
 if(this.game.score > 0) {
 this.game.score – –;
 th is.scoreField.setValue(this.game.

score);
 }
 }

}
}

7.4.8.1 Game State Constructor
The constructor is responsible for setting up the world, loading in the
tilemap, placing the player into the world, creating all the collectables, and
instantiating all the enemies. All of that work is accomplished based on the

187

Game Examples

data that have been set up and exported from the Tiled map editor. Among
the miscellaneous items the constructor accomplishes are getting the sounds
ready to play and placing the UI elements on to the stage.

To start everything, a new tilemap is added to the world. This is the map that
will display all the “world tiles” in the game and the background. The world
tiles will specify where a player can and cannot walk, so there will be some
setup required to tell Phaser which tiles are solid.

this.map = this.add.tilemap(levelName);

Once the map is added, the next step is to add the first layer to the map that
shows the background of the game. This background is actually a collection
of background tiles that will be rendered behind the foreground elements
and cannot collide with anything. To load in a tile layer, first you specify the
tileset image to use and then create a tilemap. Make sure when creating these
layers that the ID for the layer is the same as the ID of the layer in the map’s
JSON file. In this case, in the JSON file, there is a layer named “bg” that has the
data for the background tiles, so the create layer method must reference the
“bg” layer when it is called. (See figure 7.2k.)

The last part of the setup of the background reduces its scroll factor. The
scroll factor is how fast the tile layer moves relative to a camera movement.
A value of one means it will move equally as much as the camera, so if the
camera moves 20 pixels to the right, the background will show 20 more of
its pixels to the right. Lesser scroll factors make the background move less
quickly than the camera. In the following example, the background will move
about 60% as fast as the foreground. When the camera moves 20 pixels to
the right, the background will only move 12 now.

//parallax background
this.map.addTilesetImage(‘gamebg’);
 this.bg = this.map.createLayer(‘bg’);
 this.bg.scrollFactorX = .6;
 this.bg.scrollFactorY = .6;

Parallax

The scroll factors establish the effect of parallax for the game world. Parallax
is the tendency for faraway objects to appear to be moving less quickly than
ones nearby. It is actually a depth cue that helps one determine the relative
distances of objects. By adding parallax to a game, you add an extra bit of
depth to something that would otherwise look flat. The overall effect is a
nice bit of polish that makes the game read and feel very solid.

After the background comes the foreground tiles. First, the tileset for the
foreground is added and then the tiles are drawn to the foreground via this.
map.createLayer. These two calls will create the actual platforms and ground
for the player to stand on, but they don’t make them solid objects in the
physics system.

188

An Introduction to HTML5 Game Development with Phaser.js

The first step in making the visible tiles of the foreground solid is making the
world big enough to hold them all. Currently, the world space is as big as the
screen. Anything beyond the bounds of the screen doesn’t exist physically.
Map layers have a method (resizeWorld) that will increase the bounds of the
world space to contain all the tiles in the layer. Now that all of the tiles in the
layer can potentially be collided with, the next step is to tell the game which of
the tiles should be “solid” tiles in the world. The method setCollision between
will set all of the tiles with IDs between the first two arguments as being solid.
These tiles then will work as platforms and walls for the game.

//walkable tiles
this.map.addTilesetImage(‘Tiles’);
this.layer = this.map.createLayer(‘Level’);

//collision
this.layer.resizeWorld();
this.map.setCollisionBetween(6,25,true,this.layer);

Where to Find Tile IDs

If you are looking for the ID of the tiles, the best place to find them is in
the tilemap JSON file. Open up the JSON and look at the IDs of the tiles
that appear in the layer’s data property and in the tileset property. For
this game, the tiles being used as the foreground start at ID 1. You can
then count forward from the starting ID to figure out which tiles count as
“collidable” on the tilesheet. The tile on the far left will start at the first GID
and move upward from there.

“tilesets”:[
 {
 “firstgid”:1,
 “image”:”..\/images\/Tiles.png”,
 “imageheight”:400,
 “imagewidth”:600,
 “margin”:0,
 “name”:”Tiles”,
 “properties”:
 {
 },
 “spacing”:0,
 “tileheight”:100,
 “tilewidth”:100
 },

After the world space has been set up and properly configured, the next step
is to get the game objects into the world. There are four different object layers
in the game map files. These objects are the enemies, the coins to collect, the
player, and the sign that leads to the next room. Each of these objects will be
added to the game using a method of Phaser’s map system that can create
objects at the same location they were placed in the map editor. The different

189

Game Examples

objects will all need a bit of custom configuration, so we will discuss each in
turn, starting with the coins.

The coins have been placed onto the “collectable” layer in the map. In
order to create sprites at the same location as the coins in the layer, the
createFromObjects method is invoked. The arguments to this method tell it
to search through the “Collectables” layer in the map file for any object with
a GID of 41. If it finds that object, it will create a “coin” at the same location in
the game. The next few arguments (null, true, and false) are simply needed to
get to the final input, this.coins. This will place all the created coin sprites into
the newly created coins group.

The coins have a problem though. They need to collide with the player, but
we want them to also float in midair. We’ve already set their physics bodies
up with the physicsBodyType and enabled their bodies, but gravity will still
tug them to the ground the first moment it gets a chance. To stop gravity’s
pull on the coins the gravity for each individual coin’s body is set to zero
using a call to this.coins.setAll (a method of Phaser’s group object), telling it
to give each coin no gravitational pull.

//coin layer
this.coins = this.add.group();
this.coins.physicsBodyType = Phaser.Physics.ARCADE;
this.coins.enableBody = true;
th is.map.createFromObjects(“Collectables”, 41,
‘coin’, null, true, false, this.coins);

this.coins.setAll(“body.gravity”, 0);

The signs are actually set up the same way as the coins. The only change is
that a signs group is created, and the doors layer is referenced when creating
the signs using the createFromObjects method.

//place doors
this.doors = this.add.group();
this.doors.physicsBodyType = Phaser.Physics.ARCADE;
this.doors.enableBody = true;
th is.map.createFromObjects(“Doors”, 242, ‘sign’,
null, true, false, this.doors);

this.doors.setAll(“body.gravity”, 0);

Next on the list of layers to import from the Tiled map is the player. Unlike the
coins and the doors, we want to add a custom object at the player location.
To create a custom object, “null” is passed in as the name for the sprite and
the last argument is the class that should be used to create the new object on
the stage.

The player itself is easy to create and position, but the game also needs to
know what object the player is so it can have the mice give chase and collide
the player against different objects in the game. The createFromObjects
method does not return a reference to the object created, but it is possible
to find the last object added to a group using the getTop method. Since the

190

An Introduction to HTML5 Game Development with Phaser.js

player is added into the root “world” group, we’ll store a reference to the
player via this.world.getTop(), which will return the last objects added
to the world (our player, in this case).

//player
 th is.map.createFromObjects(“Player”, 243, null,

null, true, false, this.world, Player);
this.player = this.world.getTop();

The mice are the final bit of object instantiation done in the constructor. They
are on the enemy layer in the Tiled map and are created as custom objects
in the enemy group in the game. For their simple AI to work properly, each
enemy needs to know what object the player is. The reference to the player is
set the same way the gravity was turned off on the coins, via a set all that tells
each enemy where the player object is.

//place enemies
this.enemies = this.add.group();
th is.map.createFromObjects(“Enemies”, 25, null,
null, true, false, this.enemies, Mouse);

this.enemies.setAll(“player”, this.player);

For the UI, we will be reusing the NumberBox from the last game. Without
fixing it to the camera, it would fly off the screen, so after creating this score
box and adding it to the stage, its fixedToCamera property is set to true to
keep it always visible in the upper left-hand corner of the game.

//UI
this.UIGroup = this.add.group();
this.scoreField = new NumberBox(
 th is.game, “scoreholder”, this.game.

score, this.UIGroup
);
this.scoreField.fixedToCamera = true;

The final two lines in the setup function create a sound to play when
collisions happen between objects. This is an audio sprite that has two
sounds. One sound is for coins and the other sound is for each instance the
player collides with an enemy.

Finally, the camera is told to follow the player. If this line was not here, the camera
would never budge from its original position. Once the player spawned and
walked too far to the right (or jumped too far up), they would wind up off screen
and unable to play the game. The camera follow method will follow whatever
object it is told to follow, which is the player character in this case. The camera
will not move further if the world bounds have been reached, instead it will move
to be fully flush with the edge of the world and stay still until the player moves in
a direction that does have space and new objects to render (See Figure 7.17).

this.sfx = this.add.audioSprite(‘sfx’);
this.camera.follow(this.player);

191

Game Examples

7.4.8.2 Update Method
Because the majority of the update code for this game has already been
written in the individual sprite update methods, the game state’s update
code is just a series of physics calls. The first two collide the player and mice
against the tilemap layer, which will keep them on the ground and unable
them to walk through walls. The others check for collisions between player
and objects in the game (collecting coins, hitting enemies, or reaching a
door). Each of these final collide calls has collision response handlers, which
will be discussed next.

update() {
 th is.physics.arcade.collide(this.player, this.

layer);
 th is.physics.arcade.collide(this.enemies, this.

layer);
 th is.physics.arcade.overlap(this.player, this.

coins, this.collectCoin, null, this);
 th is.physics.arcade.overlap(this.player, this.

doors, this.hitDoor, null, this);
 th is.physics.arcade.collide(this.player, this.

enemies, this.hitEnemy, null, this);
}

7.4.8.3 Hit Enemy Handler
When the player hits the enemy, this game is going to have the fox flash to
give the player some feedback that they messed up. Additionally the mouse,
apparently trickier than the fox, will steal one coin from the fox (so long as the
player has any coins to be stolen). All of this code is only executed if the fox is
not currently in a flash animation, so all the coins don’t get zapped away for
every frame the fox touches the mouse. As a reminder, the flash effect is not
built into Phaser sprites, but it is a method added to the player that runs an
animation that animates the transparency of the sprite to give it a flashing
effect.

hitEnemy(playerRef, enemyRef) {
 if(!playerRef.flashEffect.isRunning) {
 playerRef.flash();
 if(this.score > 0) {
 this.score – –;
 this.scoreField.setValue(this.score);
 }
 }
}

7.4.8.4 Hit Door Handler
The hit door handler will be run whenever the player collides with the
“forward” sign that has been placed at the end of each level. The response
that is caused by hitting the sign differs based on which level the player is
currently engaged in.

192

An Introduction to HTML5 Game Development with Phaser.js

For the first level, the hit door handler will transition the game to level two.
Because many of the properties and objects are the same between level one
and level two, the current state needs to be explicitly cleaned up so objects
can be reconstructed in the new state without having any leftover properties
from their old level.

hitDoor(playerRef, doorRef) {
 this.game.state.clearCurrentState();
 this.game.state.start(“Level2”);
}

The hit door handler for level two loads in the game over scene. Because this
scene does not share objects like player, map, or mice, it only needs the state
start call.

hitDoor(playerRef, doorRef) {
 this.game.state.start(“GameOver”);
}

7.4.8.5 Hit Coin Handler
When the player hits a coin, it is removed from the game, the score is
incremented, and the UI is updated to show the new number of coins the
player has collected.

collectCoin(playerRef, coinRef) {
 coinRef.kill();
 this.score ++;
 this.scoreField.setValue(this.score);
}

7.4.9 Game Over State
The game over state adds an image to the back of the display list to act as
grounding to the text. It also shows the final score of the player, using the
˝this.game.score˝ variable that has now been used between the game and
the level one and level two states. If the player presses down on the screen,
the score will be reset and they will be able to play through the two levels
again.

export default class GameOver extends Phaser.State {

 create() {
 this.add.sprite(0,0,’gameover_bg’);

 va r style = { font: “30px Arial”, align:
“center”, fill: “#fff” };

 th is.txtValue = this.add.text(
 51 2, 534, this.game.score.toString() +

“ points”, style
);

193

Game Examples

 this.txtValue.anchor.setTo(.5, .5);
 th is.game.input.onDown.addOnce(this.

switchState, this);
 }

 switchState() {
 this.game.score = 0;
 this.state.start(“Level1”);
 }
}

7.4.10 Conclusion
The process that goes into making maps, placing items, tweaking values,
creating animations, and transitioning between levels is engaging and
intricate work. We have breezed through a number of concepts in this
chapter, and you might feel a need to take further study of the underlying
concepts. There are a number of great examples on the web that can be
found with a web search that can give you another angle on what is going on
behind the scenes to make all of this work. Look for “Tiled map tutorials” and
“tile engine creation” examples in specific to get a good start.

This game gives you the basics of a platformer and really actually pushes
Phaser and HTML5 games to a high degree with its large render area, lots of
moving parts, and big graphics to animate. As always, I encourage you to have
fun with it and make it your own. Swap out graphics, make new animations,
and break things so you can fix them. Here are a few places where you can
play with numbers or ideas that can add to advancement of the game:

• Change gravity and friction on the characters.
• Adjust speed and jump power.
• Play around with collider sizes on the characters.
• Change the collideable tiles in the world (dangerous but fun).
• Adjust the mouse AI chase range.

Also, here are some things that will prove more advanced techniques:

• Add more levels.
• Add extra doors that go to different levels, or back to old ones.
• Add new enemies or collectables.

The next examples in this book are going to take a step back and focus on
less complex world interactions and mobile input, so continue reading from
here if “simpler” mobile games are of interest to you.

7.5 Tower Defense

Tower defense games are a great combination of several different major areas
of game development. They bring together map making, real-time AI, and

194

An Introduction to HTML5 Game Development with Phaser.js

even pathfinding. When a tower defense game is made in a 2D engine, there
is also an additional challenge of how to show depth (or 3D space) in a system
that was not originally built for the task. All of these tasks can be quite complex
to tackle, so we’ll be using the work of others in order to get our game done
faster, pausing only to look at the concepts behind the code libraries that will
be used without actually implementing the algorithms completely.

7.6 Spatial Cues
Our brains use a number of different cues to discern how far away objects
are. These cues are separated into monocular and binocular cues. Binocular
cues require both eyes to be open and each eye to see a different, slightly
offset view of the world. This is a task that VR viewers like the Oculus
Rift can tackle, but it is pretty much impossible for phone and computer
screens to accomplish. Thankfully, monocular cues work just as well with
only one image (or an eye closed). We use monocular cues all the time to
interpret space on screens and on paper, even though the image itself is
only in two dimensions. They are important enough that artists will study
these cues and practice their implementation so they can accurately show
them in their work.

Why Study Depth Cues

It may seem odd to be reading about depth cues in a technical
manual, but as mentioned earlier, they are part of the trade of an artist.
Unfortunately, while an artist can make some beautiful assets for a
game, it is up to the developer to finish the job and assemble them into
a fully functioning world. The developer will need to figure out how and
when to work these depth cues into the game. The proper setup and
implementation of a depth cue can really make a game world feel alive
and vivid, making them important considerations of any game developer.

See Figures 7.18 through 7.26.

Some of the more commonly used monocular depth cues include
perspective, shading, relative heights, atmospheric effects, and occlusion.
Lines that converge until they hit a point on the horizon are the hallmarks
of perspective and they give the viewer a very strong sense of depth.
Shading indicates where light is and how an object is illuminated. A
well-shaded scene and object can show what parts of an object is where
based on how bright portions of the object are relative to the light source.
Relative heights describe how our brains interpret distance based on sizes.
The closer something comes to us, the bigger it gets. This works really well
with objects we know their general heights (like people, books, or cars).
When we see a human figure, but it is tiny and takes up a small amount of
space in our field of view, we can assume that the human and other objects
near it are far away (See Figure 7.18).

195

Game Examples

196

An Introduction to HTML5 Game Development with Phaser.js

Pespective

Relative heights Overlapping objects

Shading

FIG 7.18 Some of the major depth cues.

Z:3 Z:2 Z:1 Z:3 Z:2 Z:1

Z indexes in normal phaser groups

FIG 7.19 Z indexes and corresponding layering.

197

Game Examples

0,2

0,0 0,0

Orthogonal Isometric

0,20,1
0,1 1,0

1,2
1,1 2,0

2,2
2,1

1,0

1,1

1,2

2,0

2,1

2,2

FIG 7.20 Appearance differences between isometric and orthogonal tiles.

Isometric tile movement distance

Half tile height

Half tile width

FIG 7.21 Determining layout position in isometric space.

Out of all of the cues, occlusion is the most important and perhaps easiest
to implement. If something is overlapping something else, we assume it is
closer. Cars closer on the highway obscure cars further away, and a fence
between you and someone else obscures some of their form behind the
fence (See Figure 7.18).

The actual calculations to create a fully 3D space are quite intense. When 2D
games emulate 3D space, they typically strip out as much of the calculations
as possible and cheat the other cues into the rendering process. Some cheats
include background images that are drawn in perspective, sprites with
shading added before being added to the game, and drawing more distant
objects in a much hazier style. All of this work offloads the task of figuring

198

An Introduction to HTML5 Game Development with Phaser.js

FIG 7.22 Sample isometric grid with cube placements.

Start at �rst node and
consider adjacent nodes

5

5 4

G G

Move to lowest cost node
and consider new nodes Repeat until goal is reached

FIG 7.23 Visualization of a simple pathfinding approach.

out spatial cues to the artists and leaves the developer with less they need to
implement. Often when working on a “faked” 3D world, the developer will
only have to figure out what size an object should be based on its depth and
manage the proper overlapping of the game objects.

Most games will bypass the need to scale sprites by keeping the relative
difference in distance from camera low enough that the minute reduction
in scale would not be noticeable. Brawler games are a common example of
this approach. In these games, the characters on the screen are able to move

199

Game Examples

Simple search A* search

S S

G G

FIG 7.24 Difference in a path found between a simple pathfinder and an A* search.

FIG 7.25 Screenshot of the finished defense game.

Tile drawing process
(1) Place �rst tile (2) Build �rst x-axis row (3) Continue for each y-axis row

FIG 7.26 Visualization of an isometric tile layout order.

away from the viewer but never very far and keep their size the same the
whole time. This winds up giving a game a 2.5D feeling, where there is some
very limited depth to the game world.

Removing scaling from the spatial depiction of objects can cause some issues
for viewers of the world. Things that are far away will never look quite right
in a game with even faked perspective. They would appear to grow larger
the further away they moved from the camera. If a game’s goal is to present
a world that has some significant depth to it, but still doesn’t need to figure
out the correct scale and position for a sprite in the world, the best goal
would be to remove perspective from the world altogether. Isometric worlds
discard the calculations of perspective and shrinking objects as they move
into the background. In an isometric world, all distances (left, right, and back)
have a set measurement, and objects are laid out in a grid based on these
measurements. This makes it easy to lay out a whole world with objects that
always remain visible, but it becomes difficult to tell the distance between
objects because the only depth cue left to rely upon is overlapping objects.

7.6.1 Overlapping Objects
The display list is how Phaser and other games can create the depth cue of
overlapping objects (see Figure 7.19). As objects move around in the world
space, the display list will need to be resorted to make sure that any objects
that have moved behind others actually appear behind the other objects in
the game. Phaser’s group object has a built-in sort method that can be used
to achieve this effect by reordering the items in the array based on a metric
given to the sorting function. Typically this metric is a position in space. In
most programming environments, the depth (how far away the object is) of
an object is stored in the “z” property.

Before delving into simulating space with a z property and the calculations
that go into isometric games, it might be helpful to explore the easiest way
to simulate depth in a game: y-sorting. This form of depth sorting is the kind
that gives a sort of 2.5D look to a game. It is commonly used in the brawler
and 2D adventure game genres because it is fairly quick and simple to
implement. When y-sorting, objects that are lower on the screen are sorted
to the top of the display list, making them render first. The closer the object
gets to the bottom of the screen, the closer the object will appear to the
player.

function create() {
 ga me.physics.startSystem(Phaser.Physics.

ARCADE);

 sortGroup = game.add.group();
 sortGroup.enableBody = true;

 for(var i = 0; i < 200; i++) {
 va r sprite = sortGroup.create(Math.

random() * game.width, Math.random() *
game.height, “particle”);

200

An Introduction to HTML5 Game Development with Phaser.js

 sp rite.body.velocity.x = Phaser.Utils.
randomChoice(–20, 20);

 sp rite.body.velocity.y = Phaser.Utils.
randomChoice(–20, 20);

 }
}

function update() {
 so rtGroup.sort(‘y’, Phaser.Group.

SORT_ASCENDING);
}

This code snippet shows an example of sorting a layer based on its y position.
Objects higher in the frame will be sorted such that they will appear behind
objects that are lower in the frame. Because objects are moving around in
the scene, the sort needs to be done once per frame to ensure that changed
depths are shown with the update.

Solid Depth Objects

If you implement this code and watch the objects moving around in
the sample scene, you’ll notice that the objects will just “snap” through
other objects, warping through each other as if they were never really
there. A good solution for this distracting effect is to add a reduced
collision box to these objects that is about one-third of the sprite’s
original height.

7.7 Rendering an Isometric Grid
Isometric games implement their world with a 2D array of data, much like
a tile system does. These two different grids are shown in Figure 7.20. The
original on the left is a standard tile system, with the tiles laid out in an
axis-aligned way. The second is an isometric view, with the “camera” or view
rotated 45° to the right and 30° down. Above each grid is an example of a
single tile asset that might be used in the respective engine.

Because the boxes are no longer laid out on an axis-aligned grid, a new
algorithm will be needed to place these tiles. The process for placing
an isometric tile starts with getting a point in 3D space (x-, y-, and
z-coordinates) and then translating that point into a 2D point. The two most
important factors of this translation is that a move in any direction on an
isometric grid will affect both the x and y positions and that the distance
moved in both directions is half of the original width and height of the tile
(See Figure 7.21).

Here is the method to turn an isometric point into a screen position.
The equation needs to know the half width and half height of the
isometric tiles.

201

Game Examples

function isoToCartesian(isoCoords) {
 var cartesianCoords = {}
 ca rtesianCoords.x = (isoCoords.x –

isoCoords.y) * tileHalfWidth;
 ca rtesianCoords.y = (isoCoords.x +

isoCoords.y) * tileHalfHeight;
 return cartesianCoords;
}

Isometric Tile Sizes

Because the calculations to convert to and from isometric coordinates
require dividing the height and width of the tile by two, it is important
to keep the tiles sized to something that comes out to a whole number
when halved. If they are set to an odd number, such as 74 × 37, the final
positioning will continue to be off by half-pixels height-wise (as 37/2 is
18.5), eventually ruining the grid.

Common sizes for isometric tiles include 32 × 16 and 64 × 32. All of these
are sizes that are common for other artists working with tiles and typically
can be rendered faster by graphics engines optimized for power-of-two
graphics. They aren’t steadfast sizes though. If you feel your game looks
simply amazing at 72 × 36, then it is fine to create tiles at that size as well.

7.7.1 Isometric Depth Sorting
Sorting based on y position is a cheat that only works for one fixed camera
angle. The sense of depth to objects is quite limited in this view because
all the objects must face the camera head on. You really only see an
object’s front, with no depth. A box in the view that a y-sorted game grants
would only look like a square sitting on the screen. Shifting the camera
so that objects could be viewed on an angle will let the game display the
side of the box as well, granting more depth to the game. An isometric
projection will turn the camera so its look at the game objects at a 90°
angle and keep all the x, y, and z measurements the same. This will create
fixed foreshortening where nothing ever converges into the distance
and objects never shrink as they move further back. Note in Figure 7.22
how there is now depth to the grid in two different directions (slanted in
both directions), and it becomes somewhat easier to interpret the space
something takes up.

7.7.2 Picking Grid Locations via Screen Position
The player of this game is going to need to be able to interact with the
game world somehow, and the most intuitive (especially for mobile
deployment) is via targeting using the pointer. The process for getting a tile
that is under a click requires getting the x and y positions of the click and
putting it through the opposite of the layout positioning equation. This will

202

An Introduction to HTML5 Game Development with Phaser.js

return a grid position of the tile in the isometric world. If the user were to
click in the middle tile of an isometric world of size 10 × 10, this function
would return a point with values {x: 5, y:5}.

function catesianToIso(cartesianCoords) {
 var isoCoords = {};
 is oCoords.x = (cartesianCoords.x /

tileHalfWidth + cartesianCoords.y /
tileHalfHeight) /2;

 is oCoords.y = (cartesianCoords.y /
tileHalfHeight - (cartesianCoords.x /
tileHalfWidth)) /2;

 return isoCoords;
}

7.8 Phaser Isometric Plugin
Given the math discussed earlier, it wouldn’t be too much work to implement
a working isometric system for a Phaser game. The major problem is that the
time to make the isometric engine would be time not spent actually making a
game. Thankfully, there already exists a plugin for Phaser that has all the tools
a developer needs for an isometric game without having to go through the
process of making the engine, testing it, and squashing all the little bugs that
are inevitable with software development.

The Phaser Isometric Plugin is a plugin developed by Lewis Lane that provides
isometric layout, depth sorting, and a number of other isometric features for
Phaser. It does this with an API that won’t look out of place next to the other
Phaser code in a game. Its homepage (http://rotates.org/phaser/iso/) contains
a number of code samples that can help one get started with the plugin, and
the Github repository (https://github.com/lewster32/phaser-plugin-isometric/)
contains the plugin itself that can be integrated into Phaser.

For this library and the pathfinding library that will be used later on in this
chapter, we’ll use Bower to install and manage the dependency. To install
the isometric plugin, open your console at the project root and type in this
command. This will download and install the isometric plugin to your bower
components. Make sure to exit and rerun grunt after running the script, so
the bower-main-files task can move the plugin to your scripts folder.

bower install phaser-plugin-isometric --save

In order to use this script with Phaser, it will have to be included in the html
page, after Phaser but before the game’s script.

<script src=”bower_components/phaser/build/phaser.
min.js”></script>

<script src=”scripts/phaser-plugin-isometric.min.
js”></script>

<script src=”scripts/app.js”></script>

203

Game Examples

https://github.com/lewster32/phaser-plugin-isometric/
http://rotates.org/phaser/iso/

Once the plugin is included, before using any of the plugin’s capabilities,
activate it with the Phaser core. This line of code is added in the game state’s
creation function.

this.game.plugins.add(new Phaser.Plugin.
Isometric(this.game));

Once activated, it will be possible to use all the isometric code provided by
the plugin throughout the rest of the game.

7.8.1 Pathfinding
A major feature of any tower defense game is the path or walkable areas that
the enemy units can advance upon. Many tower defense games will have
set paths that enemies use, though some variations of the game genre give
the enemies larger walkable areas and let the opposing units find the ideal
path to their goal. In either case, there has to be a pathfinding step during
development or during gameplay to find a path from where the attacking
units can walk across to their end goal.

7.8.1.1 Hardcoded Paths
Before delving into the implementation of a pathfinding algorithm, it will help
to think through the process of doing it manually. This will help when reading
about the actual pathfinder because it will be easier to visualize what the
pathfinding algorithm is doing and the final encoding of the path.

First, we will need a world to find a path in. Here is a simple 2D grid, where “1”
will count as a walkable space and “0” as a nonwalkable space.

[
 [1,1,1,1,0,0,0],
 [0,0,0,1,0,0,0],
 [0,1,1,1,0,0,0],
 [0,1,0,0,0,0,0],
 [0,1,1,1,1,1,1]
]

One way to encode the path for the enemies to take is to create a series of
locations that they should visit on the map in order. Taking a look at the grid,
we can easily trace the path that needs to be followed. It starts at the top left
at position (0, 0) and progresses to the right, eventually hitting (3, 0). It moves
down to (3, 2) and continues on its way to the left, around, and down. Now all
that needs to be done is to manually enter each of these values into an array
for the unit to follow. Here is that final path array.

[
 [0 ,0], [1,0], [2,0], [3,0], [3,1], [3,2], [2,2],

[1,2], [1,3], [1,4], [2,4], [3,4], [4,4], [5,4],
[6,4]

]

204

An Introduction to HTML5 Game Development with Phaser.js

In order to have a unit walk this path, they should be told: “Move to the first
point in this array.” Once they get to the first point in the array, the program
should find the next point, and have the enemy move to the next point. In
this example, they would move from [0, 0] to [1, 0] onward, until they
hit their destination of [6, 4].

7.8.1.2 Pathfinding Algorithms
The work of figuring out a path for the units to follow and then encoding
that into an array literally can be quite an amount of effort. If the game
developer wants the unit to be able to choose new paths at runtime as
circumstances change in the world, it would be impossible with only
predefined paths. It would be much better if the computer could figure
this path out at runtime instead. The process of finding a route from a start
and end points on a grid is called pathfinding, and there are a number of
algorithms that tackle the problem of finding the most efficient route on a
grid. The most common pathfinding algorithm used in game development
is named A* (pronounced A Star).

7.8.1.2.1 Basic Pathfinder
Running an A* search will return a path of nodes just like the node list we
precomputed. While it is possible to find an implementation of A* in just
about every programming language out there (and we will be using one
for this game), understanding the basics of the implementation will help
you when it comes to setting up game maps or when choosing which
implementation of A* you want to use with your game.

Here are the steps to write a simple pathfinder. This will be lacking some
critical components of the A* algorithm that make it such a strong approach,
but it will give you the fundamentals to understand how it approaches the
problem:

 1. Look at open spaces around the current location.
 2. For each open space, figure out how much closer the open space is to the

goal.
 3. Calculate the cost associated with the move.
 4. Figure out which of the considered spaces get closest to the goal with the

least cost.
 5. Move to that space and add it to the node list.
 6. Return to step one if not at the goal yet.

Figure 7.23 shows how the process works in general. When considering the
next grid positions to take on the path, potential moves might be either
the four compass directions (up, down, left, or right) or the diagonals. Each
of these spaces needs to be considered in turn as the algorithm decides
how desirable it is to move to the different locations via something called a
heuristic. When considering each space, the heuristic (a function) guesses
at how much closer the cell is to the destination. There are different ways to
make the guess, but the simplest is just the distance between the location

205

Game Examples

being considered and the goal. The application of the distance heuristic
means that for each space considered the program would figure out the
distance from that cell to the goal, and the cell that has the lowest distance to
the goal would be the next step on the path.

Here is the general idea of an implementation of the pathfinder discussed
earlier, a type often called a “greedy best first” search. It is not a fully working
Javascript, but it should give you an idea of the approach.

path = []
current_node = start_node

while (current_node != end_node) {
 considered_nodes = []

 neighbors = current_node.getNeighbors()
 neighbors.each(neighbor) {
 if(neighbor.walkable) {
 ne ighbor.pathValue =

heuristic(neighbor, end_node)
 considered_nodes.push(neighbor)
 }
 }

 considered_nodes.sort(“pathValue”)
 current_node = considered_nodes[0]
 path.push(current_node)
}

This assumes there is a method named heuristic that will return how far
something is from its goal. The simplest implementation is distance. Many
A* searches use a variation of the distance calculation called Manhattan
distance that calculates how far something is when only vertical and horizontal
movements are allowed (like driving through a city). Both versions are shown in
the following, though you’ll note that Manhattan distance is easier to calculate
(though it will return a higher number than the normal calculation because it is
not calculating “as the bird flies” but rather “as the cab drives”).

Euclidean Distance

function heuristic(current, goal) {
 var difference_x = goal.x – current.x;
 var difference_y = goal.y – current.y;
 re turn Math.sqrt(differenceX*differenceX +

differenceY*differenceY);
}

Manhattan Distance

function heuristic(current, goal) {
 re turn abs(goal.x – current.x) +

abs(goal.y – current.y)
}

206

An Introduction to HTML5 Game Development with Phaser.js

What Differentiates A*

The problem with a greedy search is that it doesn’t really think ahead
and will always move toward the goal, even if there is a wall in the way
and it would have been much easier to go around the wall first. A* has an
additional step to its calculations that safeguards against creating a path
that walks into a room with only one door, get to a walls, and turns around
(or worse, it stops entirely). The safeguard is that it favors paths that are
closer to where it has already been, so it won’t go wandering too far as it
selects its best route (See Figure 7.24).

7.8.1.2.2 Easy Star
Knowing the basics of a pathfinding algorithm, we could go on to implement
a variation for this game that would find a path for our enemies to traverse
at runtime. This is an enjoyable challenge to tackle and very rewarding when
successfully implemented. In the interest of both time and learning how to
make use of external code libraries, we’re going to find a package that can do
the searching for us. There are a number of great implementations of A* that
can be used in a Javascript project (Phaser now has one built in for its tilemaps).

The pathfinding package we’ll be using for this game is named “easystar.js,”
and information about it can be found at http://www.easystarjs.com/. Some
of the key features of this package include its small size, asynchronous
solutions (so the game can continue to run until a path is found), and its
ability to be installed via Bower. The first step in using easystar is to install it.

bower install easystarjs -save

7.8.1.2.3 Working with Easystar
Easystar works on a grid of nodes that can either be walkable or not walkable,
just as in our manual pathfinding process. Here is a grid that can work for the
pathfinding algorithm.

var map = [
 [1,1,1,3,1,1,0],
 [0,0,0,3,0,0,0],
 [0,2,2,2,3,3,0],
 [0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1]
]

Easystar can find paths on this world but it needs to know what the world
looks like and what it can walk on. These next three lines of code start up
easystar and get it ready to search.

var easystar = new EasyStar.js();
this.easystar.setGrid(map);
this.easystar.setAcceptableTiles([0]);

207

Game Examples

http://www.easystarjs.com/

Finally, easystar needs to know its starting and stopping points, and then it
can find a path. This is done via the findPath method. The first two arguments
of the method are the starting point, while the second two are the final
goal. This is an asynchronous function, so the final argument is a callback
that will be called when the path is found. Once a path is found, it calls the
callback function and passes in that path that is an array of points like we had
calculated before.

this.easystar.findPath(1, 0, 0, 4, function(path) {
 //start walking the path
});

7.8.1.2.4 Walking through a Path
Once we have a path from either hardcoding it or by using a search
algorithm, the next step is to have an object actually walk through the whole
path. While it is fairly simple to have a loop iterate over all the entries in the
node list and put the object at the locations specified in the list, the loop will
run so quickly that there will be no delay between each move. In the end,
it won’t look like the object has walked the path, but just warped from the
starting point to the end point.

To make it look like the game object is actually walking the path, there needs
to be a delay in between each step the object takes. The time in between
those grid moves would ideally be filled with an animation to make it look
like the unit is actually moving from grid space to grid space. One solution
to this is to let the unit remember the path it is meant to take and then
animate the transitions from point to point along the path using Phaser’s
tween engine. The unit will need to store its current index on the path so
that when the animation ends it can look up the next point it needs to move
to on the path. Then, when a tween’s onComplete signal fires, it can check
for the next point and start a new tween. Over time the unit will tween itself
from position to position appearing as if it is smoothly walking a path. The
following is a simple implementation of a path walker.

ex port default class PathWalker extends Phaser.
Sprite {

 constructor(game, x, y, frame) {
 super(game, x, y, ‘spriteKey’, frame);
 }
 setPath(path) {
 this.path = path;
 this.pathPosition = –1;
 this.advanceTile();
 }

 advanceTile() {
 this.pathPosition ++;

 if(this.pathPosition < this.path.length) {
 //tween

208

An Introduction to HTML5 Game Development with Phaser.js

 th is.walkMotion = this.game.add.
tween(this).to(

 { isoX: this.path[this.
pathPosition].x,

 is oY: this.path[this.
pathPosition].y

 },
 20 00, Phaser.Easing.Linear.

None, true);
 th is.walkMotion.onComplete.add(this.

advanceTile, this);

 }
 }
}

7.9 Skeleton Shootout Project Design
The gameplay for this tower defense game draws from a number of common
features in the genre. The core features of this game are as follows:

 1. A set path or walkable area for opposing units to traverse.
 2. A goal the opposing units are walking toward.
 3. Enemies damage the player “health” once they reach their goal: this is a

one-time effect, with the enemy unity being destroyed after their attack.
 4. Enemies are spawned in set waves or patterns as needed, getting more

difficult as the game progresses.
 5. The player places units throughout the level that automatically attack the

enemy units: These units must be purchased at a cost.
 6. Game money is typically earned via the defeat of enemies.
 7. The map for this world will be custom coded and stored in a JSON file.

To begin with, create the basic project structure described in chapter five.
We will be adding to that base throughout this exercise. Should you need to
see the finished code or to get the assets for the game, you can find the full
source at https://github.com/meanderingleaf/PhaserBookExamples/tree/
master/slice.

7.9.1 Asset Pack
In the previous games, the loading was all done inside of a state built to
do the loading. There was line after line of code to load in images, sprites,
sounds, and map files. While this approach is not terrible, it does lend the
project to be strongly linked to the assets in the game code itself. A better
approach would be to specify assets to be loaded outside of the code to keep
the data and the application separate, much like how map files are encoded
in external data files. This gives other programs the capability to generate
the listing of assets to be loaded into the game and lets the developer keep
management of assets and game logic separate.

209

Game Examples

https://github.com/meanderingleaf/PhaserBookExamples/tree/master/slice
https://github.com/meanderingleaf/PhaserBookExamples/tree/master/slice

Phaser supports this sort of separation of code and assets through a feature
called an asset pack. Asset packs are JSON files that specify assets for a Phaser
game project, the keys they will be stored under in the cache, and the URL
where the asset can be loaded from. Later, when loading in assets for the
game, a single line of code is needed to load in all the files specified in the
asset pack. When using asset packs, your loading state will look much simpler
than before and will be more easily portable from project to project.

Here is a sample asset pack:

{
 "level1": [
 {
 "type": "image",
 "key": "gameoverText",
 "url": "assets/images/gameoverText.png",
 "overwrite": false
 },
 {
 "type": "spritesheet",
 "key": "skeleton",
 "ur l": "assets/images/sprites/Skeleton/

skeleton.png",
 "frameWidth": 60,
 "frameHeight": 60
 }
],
 "meta": {
 "version": "1.0"
 }
}

When it is time to load in the assets instead of all the different calls to the
load object, you will just need to use a single call to the load object’s pack
method. In order to load in a pack, you need to still create a key for the pack
to be stored at in the cache, in addition to the URL for the pack.

this.load.pack(‘level1’, ‘assets/assetPack.json’,
null, this);

Why Level Packs

It might be a bit confusing that there can be different levels or subsets
of items to load in an asset pack, but there is a good reason for it. It takes
time to load in assets and the longer a user has to wait, the more likely
they are to leave a game instead of playing it. This feature of an asset pack
makes it easy to break the assets up into the different chunks that can
be loaded in between gameplay, loading them only when required. This
spreads the loading out over the course of a game with shorter bursts of
loading that hopefully will keep the player around for the whole game.

210

An Introduction to HTML5 Game Development with Phaser.js

7.9.1.1 Tilemap
Take a moment to look through the assets in the asset pack for this project.
At the bottom of the asset list is a JSON asset that we haven’t encountered
yet. This will load and parse JSON data, adding the parsed object to the asset
cache. If you take a look at the JSON file, you’ll see that it is a tilemap and
also the name of a few tiles. We’ll be using these data in the game state to
manually construct the world for the game.

7.9.2 Prefabs
There will be three prefabs in this game that can later be used as bases to
build out the multitude of different opposing forces that would typically
be in a tower defense–type game. Our UI will be handled by NumberBoxes,
which we have seen before in the shmup and platformer games. The prefabs
in the game will be a human to defend the towers and skeletons who are
trying to get to the treasure at the end of the path.

7.9.2.1 NumberBox
This game is going to use a number box, which is a text field that is grounded
by a graphic asset behind it. There is no change in how this number box is
coded from the one created for the shmup, so refer the code in chapter 7.1
and place the resulting NumberBox.js into the prefabs folder (or, if you have it
already, simply copy the file over to your new project).

7.9.2.2 Human
These humans are not terribly smart ones, but they get the job done. Their
tasks in this game are to wait until they see skeletons, face the closest one
they can find, and fire as many arrows at that skeleton as they possibly can.

The human starts off by adding an idle animation to give him a bit of a living
feeling (else he would be more like a turret than a living being). The anchor
for this human (and every other asset that will be placed into this world) is set
to the middle of the sprite, because our positioning code that will be used
later on will return a point in the middle of the iso tile.

This class needs to know about the enemies and the arrows group. The
arrows group will be used to generate the player’s attacks and the enemy
group will help this human look through all the skeletons and decide which
one to shoot at.

Finally, a shot interval is set up that works much like the fire gate in the shoot
'em up example. The game chooses a time in the future for when it will be
okay to fire a shot again. The update method will check every frame to see
if the future time has been reached. If it is time to fire another arrow, the
prefab asks the enemy layer to find the nearest enemy to it. Find nearest
is not a built-in Phaser function. If you want to know how this function is
implemented, look at the game state’s construction for an explanation.

If there is something to shoot at, an arrow is created or recycled and placed at the
location of the player firing it. This is the 2D screenspace position of the human

211

Game Examples

because this arrow is a bit of a cheat. It is only a simple Phaser sprite and not an
isometric object. These arrows will never be sorted behind any other element,
but its lifespan of 4 s and the fact that it disappears the moment it hits an enemy
means it can exist believably outside of the isometric world space. Finally, taking
advantage of the fact that this is just a 2D sprite, the arrow is rotated toward the
skeleton and sent flying with the Phaser’s arcade physics moveToObject method.

How Does the moveToObject Method Work?

The moveToObject method will rotate the sprite toward the target
and move it toward that object at a set velocity. The task of finding
the rotation angle is a matter of trigonometry applied to the distance
between the arrow and the enemy separated into its x and y directions.
This x and y distances act as the two sides of a triangle that can be used
to get the angle. The inverse trigonometric function arctan gets an
angle from these two lengths (Math.atan(distanceY/distance in
Javascript).

In order to move the object toward its target, a single speed is split
between the object’s x and y velocities. Sines and cosines can be used
to get the amount of speed that should be applied to each velocity by
breaking up the velocities into relative speeds based on the relative
distance between the two points. These method calls will return a number
between zero and one and will return smaller numbers for the side that is
the lower of the two distances. These numbers can then be used as scalers
on the intended speed of the object. The final lines of code would be
Math.cos(facingAngle)* desiredVelocity for the x speed and Math.
sin(facingAngle)* desiredVelocity for the y speed.

export default class Human extends Phaser.Plugin.
Isometric.IsoSprite {

 constructor(game, x, y, enemies, arrows) {
 super(game, x, y, 0, ‘human’, 0);

 // initialize your prefab here
 this.animations.add(‘idle’, [10,11]);
 this.animations.play(‘idle’, 2, true);

 this.anchor.setTo(.5, .5);
 this.enemies = enemies;
 this.arrows = arrows;

 this.shotInterval = 400;
 th is.shotTime = this.game.time.now+this.

shotInterval;
 }

 update() {

 if(this.game.time.now > this.shotTime) {

212

An Introduction to HTML5 Game Development with Phaser.js

 th is.target = this.enemies.
findNearest(this.x, this.y);

 if(this.target) {
 va r arrow = this.arrows.

getFirstDead();
 if (!arrow) arrow = this.

arrows.create(0, 0,
“arrow”);

 arrow.revive();
 arrow.x = this.x;
 arrow.y = this.y;
 arrow.lifespan = 4000;

 ar row.rotation = this.game.
physics.arcade.
moveToObject(arrow, this.
target, 120)

 th is.shotTime = this.game.
time.now+this.shotInterval;

 }
 }
 }

}

7.9.2.3 Skeleton
This walking skeleton person is going to serve as your antagonist for the
game. The primary concerns of the skeleton are following the path to the
treasure, attacking and damaging the treasure chest, and managing its own
health to let it take a few hits before it is destroyed.

There’s not much to note in the constructor that is new, beyond the fact
that it is inheriting from the IsoSprite giving it a z position and the ability to
exist in isometric space. All of our IsoSprite are going to start at z position of
zero, which is the third argument to the constructor. Next, a signal is created
that will be fired when the skeleton reaches its goal and the other tasks are
animation and physics setup.

The majority of this class is a variation on the path walker that was
described earlier in this chapter. The two major additions include some
scaling code that will flip the sprite left or right based on the next tween’s
direction. Here is the check to see what direction the skeleton should flip
in. It tests if the next point on the path is to the left or right and if it swaps
scale accordingly.

if(this.path[this.pathPosition].x > this.isoX) {
 this.scale.x = 1;
} else {
 this.scale.x = –1;
}

213

Game Examples

The walker also has a conditional that runs when the skeleton has reached its
target. Once at the target, the skeleton will play its attack animation to give
the player some feedback (and one last moment to kill the skeleton). When
the animation completes, the attackOver signal is fired. The game state has a
listener to the event that will respond to by decreasing player’s life and killing
the skeleton.

ex port default class Skeleton extends Phaser.Plugin.
Isometric.IsoSprite {

 constructor(game, x, y, frame) {
 super(game, x, y, 0, ‘skeleton’, frame);

 // initialize your prefab here
 th is.walkAnim = this.animations.

add(‘walk’, [10,11]);
 this.animations.add(‘hurt’, [12]);
 th is.animations.add(‘attack’,

[13,14,13,14,14,13,14]);

 this.animations.play(‘walk’, 2, true);

 this.anchor.setTo(.5, .5);

 th is.game.physics.enable(this, Phaser.
Physics.ARCADE);

 this.path, this.pathPosition;

 this.health = 5;
 this.worth = 20;

 this.pathFinished = new Phaser.Signal();
 }

 setPath(path) {
 this.path = path;
 this.pathPosition = –1;
 }

 advanceTile() {

 this.pathPosition ++;

 if(this.pathPosition < this.path.length) {
 //tween
 if (this.path[this.pathPosition].

x > this.isoX) {
 this.scale.x = 1;
 } else {
 this.scale.x = –1;
 }

 th is.walkMotion = this.game.add.
tween(this).to(

214

An Introduction to HTML5 Game Development with Phaser.js

 {
 is oX: this.path[this.

pathPosition].x,
 is oY: this.path[this.

pathPosition].y
 },
 20 00, Phaser.Easing.Linear.

None, true);
 th is.walkMotion.onComplete.

add(this.advanceTile, this);

 } else {
 this.animations.play(“attack”, 2);
 th is.animations.currentAnim.onComplete.

addOnce(this.attackOver, this);
 }
 }

 attackOver() {
 this.pathFinished.dispatch(this);
 }
}

7.9.3 Game State
The game state will snap these prefabs all together into a working game
system. This state handles the creation of the map, user input, player and
enemy interactions, and scoring.

7.9.3.1 Imports
To start, this state will be working with our prefabs, so they will need to be
imported at the top of the file to make them available throughout the state.

import Human from “../prefabs/Human.js”;
import Skeleton from “../prefabs/Skeleton.js”;
import NumberBox from “../prefabs/NumberBox.js”;

7.9.3.2 Create
The create method will draw the map, add the layers for the enemies and UI,
and start the wave timer. There’s a lot that goes into this game, so the setup
method is going to be particularly long.

7.9.3.2.1 State Properties
There are a few state-level properties that need to be set up for the game
to run properly. This includes how many hits the player can take before the
game is over, the amount of money the player has to spend, and the time that
should elapse in between spawning enemies.

 this.playerLife = 10;
 this.money = 100;
 this.spawnTime = 1000;

215

Game Examples

7.9.3.2.2 Miscellaneous Setup
Before getting the rest of the game configured, a background is added to the
game to give the tiles a bit of grounding, and the physics system is initialized.

th is.game.physics.startSystem(Phaser.Physics.ARCADE);
this.game.time.advancedTiming = true;
this.game.add.sprite(0,0, “gamebg”);

7.9.3.2.3 Setting Up the Isometric World
In order to set up the isometric world, groups will need to be created for the
objects, the isometric engine needs to be started, and the data for the map
will need to be loaded and used to draw the tiles to the screen.

th is.game.plugins.add(new Phaser.Plugin.
Isometric(this.game));

this.game.iso.anchor.setTo(0.5, 0.2);
this.isoGroup = this.game.add.group();
this.isoChars = this.game.add.group();
this.mapData = this.game.cache.getJSON(‘mapdata’);
this.spawnTiles();

Before the isometric plugin can be used, it needs to be plugged into the
Phaser game engine. When the isometric engine starts, the center of its world
space is the upper left corner of the screen, which isn’t really where we want
our tiles positioned around. To get the iso world further into the game view,
its center point is repositioned closer to the middle of the screen. Then two
groups are added for different levels of the game. The first group (isoGroup)
will hold the game world tiles and the second (isoChars) will contain the
skeletons and humans in our game.

Finally, the map data is loaded and used to spawn the tiles. The isoengine
does not have a built-in tile layout method like we used in the platformer
example. Instead we will have to write our own. For reference, here is a map
data that is a JSON file that contains an array of tile numbers and the images
that should be used to draw those tiles.

{
 “tileNames”: [“beach”, “dirt”],
 “tileMap”: [
 [0,1,0,0,0],
 [0,1,1,0,0],
 [0,0,1,0,0],
 [0,0,1,1,1],
 [1,0,0,0,1],
 [1,1,1,1,1]
]
}

This data are then passed into the spawn tiles method as “this.
mapData.” Before the tiles can be laid out, we need to know the width and
height of the map so that we can set up a loop to iterate through all the tiles
in the map.

216

An Introduction to HTML5 Game Development with Phaser.js

Two loops are required to iterate through 2D map in Javascript. The first,
exterior, loop will iterate down the x direction and create arrays for the
x direction of the grid. The second, interior, loop will step through the
x positions on the stage in a similar manner to the y loop (See Figure 7.26).

Inside of those nested loops, the tile is actually created and placed onto the
stage. The first step of creating the tile is to figure out what number is at the
current index in the map data. The line this.mapData.tileMap[y][x]
will return the tile index from the map at that x and y positions. For instance,
for the position (3,2), the number returned would be zero. Because this game
is using individual assets for the tiles instead of a tile sheet, the numbers need
to be mapped to the images individually. That is done with the next line that
uses the mapping in the tile names array from the map json file. Zeroes will
return a “beach” tile, while ones will return a “dirt” tile. These names need to
link to the asset keys in the Phaser cache.

Next, a tile is added to the stage that makes use of the position and tile
name. By stepping forward 55 pixels for each iteration, the tiles will be laid
out in a grid (going through 55 pixel jumps in the width of the game and
then jumping 55 pixels down to lay out another row when the “y” variable
increases). The image created is the one that is found from the mapping of
tile number to asset name (either ground or dirt). Finally, these tiles are added
to the isoGroup. After running through both loops, the ground of the game
will have been built and added to the stage.

We don’t want the player to be able to add their player units to the path that
the enemies are walking on. In order to restrict the open tiles, a buyable
property is added to the tile objects. If the tile is a zero, it will not be part of
the path and it will be set to buyable. Finally, this tile is added to an internal
listing of tiles that will be used later on for selecting, buying, and placing
characters.

spawnTiles() {
 var size = 55;
 va r map_width = this.mapData.tileMap[0].

length – 1;
 va r map_height = this.mapData.tileMap.

length – 1;

 this.gameTiles = [];

 var i = 0, tile;
 for (var y = 0; y <= map_height; y ++) {

 this.gameTiles[y] = [];

 for (var x = 0; x <= map_width; x ++) {
 va r tileNumber = this.mapData.

tileMap[y][x];
 v ar tileName = this.mapData.

tileNames[tileNumber];

217

Game Examples

 tile = this.game.add.isoSprite(
 x* size, y*size, 0,

tileName, 0, this.
isoGroup

);
 tile.anchor.set(0.5, 0);
 ti le.buyable = (tileNumber == 0) ?

true : false;

 this.gameTiles[y][x] = tile;
 }
 }
}

7.9.3.2.4 Further Setup of the Groups
The next step is to add the groups that will hold the game objects. The
groups for the characters and enemies will be added to the isoChars group
to keep them in isometric space. The arrows group will also be added to
the world and added to the physics system so that we can check collisions
between the arrows and enemies.

this.allies = this.game.add.group(this.isoChars);
this.enemies = this.game.add.group(this.isoChars);
this.enemies.findNearest = this.findNearest;
this.arrows = this.game.add.group();
this.arrows.enableBody = true;
this.arrows.physicsBodyType = Phaser.Physics.ARCADE;

The enemy group has a special method added to it called findNearest. This
is a function that will find the closest enemy to a given point. Here is the
implementation of findNearest. Because this function is applied to the enemy
group object, the “this” property in this function will be a reference to the
enemy group.

findNearest(xc, yc) {
 var lowestChild = null;
 var lowestDist = null;

 this.forEach(function(child) {
 va r dist = Phaser.Math.distance(xc, yc,

child.x, child.y);

 if(!lowestChild) {
 lowestChild = child;
 } else {
 if(dist < lowestDist) {
 lowestChild = child;
 lowestDist = dist;
 }
 }
 }, this, true);
 return lowestChild;
}

218

An Introduction to HTML5 Game Development with Phaser.js

To find the object nearest the given point, this function loops through all
the objects in the enemy layer and calculates the distance between that
enemy and the point. If the distance is the lowest distance yet found, the
function stores that enemy in the “lowestChild” variable and the new, lower
distance in the lowest distance variable. The loop will go through every
enemy, continuously selecting the closet enemy if there is one nearer than
the current “winner.” Once the loop completes, it returns the closest enemy
of the group to the given point.

7.9.3.2.5 Pathfinder Setup
With the world setup and the enemies placed, the next step is to find a
path for the enemies to follow. We’ll be using easystar to accomplish this
task, which needs some setup before it can find a path through the world.
The grid that will be used for the pathfinding is the 2D array of numbers
that was loaded in with the JSON file. For this game, the only acceptable
walkable tiles are the tiles with indices with value of “1”. Next, we bind the
callback function to the state object so it will be able to access the enemies
in our enemy group in the state. Then, we start the game on finding a
path, from the first tile in the path (1, 0) to the final tile (0, 4). We will have
to tell easystar to continue calculating every frame, which will occur in our
update function.

this.easystar = new EasyStar.js();
this.easystar.setGrid(this.mapData.tileMap);
this.easystar.setAcceptableTiles([1]);
this.boundFound = this.pathFound.bind(this);
this.easystar.findPath(1, 0, 0, 4, this.boundFound);

The pathFound method will run when easystar returns with a path. First, the
handler checks to make sure a walkable path exists. If there is a valid path
through the world, the path is translated from the simple x and y indices of
the path to the actual tiles that the path will need to walk. This will change
the path from a series of map values like (3, 2) to world space values like
(165, 110). The world space values will make our tile-walking system in the
skeleton work as desired. These translated tiles are pushed into their own
node list, which will be handed to the enemies to walk.

pathFound(path) {
 if (path != null) {
 this.convertedPath = [];
 var curPoint;
 for(var i = 0; i < path.length; i++) {
 cu rPoint = this.gameTiles[path[i].y]

[path[i].x];
 th is.convertedPath.push({ x:

curPoint.isoX, y: curPoint.isoY })
 }
 }
}

219

Game Examples

7.9.3.2.6 Final Lines of Setup
The last bit of the create method creates an object that will contain the
point of the cursor in isometric space. It then starts the spawn gate running,
choosing a time in the future for the next enemy spawn to happen.

th is.cursorPos = new Phaser.Plugin.Isometric.
Point3();

th is.nextSpawn = this.game.time.now + this.
spawnTime;

7.9.3.2.7 Update Method
The update method handles collisions between arrows and the enemy,
responding to the user input, spawning enemies, calculating the enemy path
through the world, and sorting the enemies.

The first step in this process is giving the user some feedback about which
tile their cursor is currently over. This is done by translating the pointer’s
position from the 2D screen space to the iso world space. Once the position
is translated into the isometric space, we can check to see if the point is
sitting over any of the tiles in the world and store that as the active tile for
purchasing purposes, which is done with the checkTiles method.

th is.game.iso.unproject(this.game.input.
activePointer.position, this.cursorPos);

this.isoGroup.forEach(this.checkTiles, this, false);

The checkTiles method iterates over each tile and checks to see if the
cursor is on each individually. It checks to see if the pointer’s iso position
is inside of the tile using the containsXY method of the isometric plugin.
If the pointer is within the bounds of the tile, we know that it is currently
over that tile. If it is and the tile isn’t already selected, the tile will have the
selected flag on it set to true and it will be tinted and animated upward a
little to show that it is the currently active tile. The game state will also store
a reference to this tile under “selected tile,” so it can easily be found when
buying objects later.

Should the pointer no longer be over a tile that was once active, it has its
colorization and position reset, and sets its active value to false. This will
return it to the starting point and it will wait for the pointer to return.

checkTiles(tile) {
 var inBounds = tile.isoBounds.containsXY(
 this.cursorPos.x, this.cursorPos.y
);

 if (!tile.selected && inBounds) {
 tile.selected = true;
 tile.tint = 0x86bfda;
 this.game.add.tween(tile).to(
 { isoZ: 4 },

220

An Introduction to HTML5 Game Development with Phaser.js

 20 0, Phaser.Easing.Quadratic.InOut,
true

);

 this.selectedTile = tile;

 }

 else if (tile.selected && !inBounds) {
 tile.selected = false;
 tile.tint = 0xffffff;
 th is.game.add.tween(tile).to({ isoZ: 0 },

200, Phaser.Easing.Quadratic.InOut,
true);

 }
}

Next in the update method, the game handles any clicks on a tile. If there is
a tile selected when the player clicks, the game will verify that tile is both a
place where the player can buy something and that there is no occupant in
that tile. Should those conditions be met, the game will attempt to purchase
a unit to place on the tile. The purchase price of the human is set to 100 in
game “money.” If the player has enough money, a new human game object
is created and placed at the location of the selected tile. This human is also
passed the enemy and arrow layers, so it can search for an enemy to fire
arrows at. Once created, the human is added to the allies’ layer with the rest
of his compatriots. The selected tile is then set as having a character in it,
and the money for the human subtracted from the player’s account. The UI is
updated to reflect this change in money.

if (this.game.input.activePointer.isDown && this.
selectedTile) {

 if (!this.selectedTile.occupant && this.
selectedTile.buyable) {

 if(this.money >= 100) {
 va r human = new Human(this.game,

this.selectedTile.isoX, this.
selectedTile.isoY, this.enemies,
this.arrows);

 this.allies.add(human);
 this.selectedTile.occupant = human;
 this.money –= 100;
 th is.scoreBox.setValue(this.

money);
 }
 }
}

Next the update function checks to see if any arrows are hitting the enemy
and handles that hit with the arrowHitEnemyMethod. While dealing with the
enemies, the game also checks to see if it is time to create a new enemy. If it
is, the spawnEnemy method is called, and a new time in the future is selected
for the next time an enemy should be created.

221

Game Examples

th is.game.physics.arcade.overlap(this.arrows, this.
enemies, this.arrowHitEnemy, null, this)

if(this.game.time.now > this.nextSpawn) {
 this.spawnEnemy();
 th is.nextSpawn = this.game.time.now + this.

spawnTime;
}

The last two lines of the update method tell easystar to continue its calculation
and sort the enemies on the enemy layer so they appear correctly on top of
one another using their isometric positions. If they weren’t sorted, the most
recently added skeleton would appear on top of the others, which would look
quite off considering the skeletons are added at the back of the line.

this.easystar.calculate();
this.game.iso.simpleSort(this.enemies);

7.9.3.2.8 Arrow Hit Enemy Method
This method responds to an overlap between an arrow and an enemy. The
arrow is removed from the game and the enemy damaged. If the enemy’s HP
has fallen to zero, it will kill itself. Killing enemies in this game is the way to
earn money, so if the enemy is no longer alive, the player earns the reward for
killing that enemy and the money UI is updated for the game.

arrowHitEnemy(arrow, enemy) {
 arrow.kill();
 enemy.damage(1);
 if(!enemy.alive) {
 this.money += enemy.worth;
 this.scoreBox.setValue(this.money);
 }
}

7.9.3.2.9 Spawn Enemy Method
The spawn enemy method creates a new skeleton based on the spawn gate
that is checked in the update function. The enemy is placed at the start
position of the game path and told the path to walk via the “setPath” method.
To start it walking, it is told to advance to the next tile. The advance tile is part
of the path-walking code we wrote, so once the skeleton gets to the next tile,
it will keep walking until it hits the end of its path. The skeleton has a signal
that it will fire when it hits the end of the path that will cause this state to run
the enemyAtGoal method. Finally, the enemy is added to the enemy layer,
making it visible and sortable.

spawnEnemy() {
 var skel = new Skeleton(
 th is.game, this.convertedPath[0].x, this.

convertedPath[0].y
);

222

An Introduction to HTML5 Game Development with Phaser.js

 skel.setPath(this.convertedPath);
 skel.advanceTile();
 sk el.pathFinished.addOnce(this.enemyAtGoal, this);
 this.enemies.add(skel);
}

7.9.3.2.10 Enemy at Goal Method
This method is run when the enemy fires its path finished signal. This
signal only fires after it has reached the goal and played through its attack
animation. The player loses one bit of life and the UI is updated to reflect their
current health status

enemyAtGoal(enemy) {
 enemy.kill();
 this.playerLife – –;
 this.healthBox.setValue(this.playerLife);

 if(this.playerLife <= 0) {
 this.gameOver();
 }
}

If the player has lost too much health, the game over function runs, which
changes the state to the game over screen.

gameOver() {
 this.game.state.start(‘gameover’);
}

7.9.4 Conclusion
Tower defense games that implement animations, signals, pathfinding,
and world targeting are complex but interesting games. With the
added difficulty of dealing with isometric graphics and depth sorting
these wind up being a great projects to study game world simulation.
If the concepts seem a bit difficult to understand, it can help to take time
to play with each of the small parts in turn. After playing around for a
bit, returning to the full implementation will help you see how they all
fit together.

As with other examples in this book, one of the safer places to play with a
game’s code is to deal with numbers. Some easy points to play with numbers
to get a feel for the game system include the following:

• Change the damage the player does to the skeleton or the skeleton hp.
• Adjust the cost of buying a new archer.
• Change the firing rate of the humans.
• Figure out how to make the skeleton faster or slower.

If you are feeling more adventurous, then there are a number of areas
where the game can and should be improved to make it a more complete

223

Game Examples

game experience. All of these improvements will take a bit of thought and
experimentation but the result will be very rewarding.

Things that are typically in a full-featured tower defense style game include
the following:

• Predetermined waves with set enemies
• Different enemy types that can be faster or slower or with varying

strengths
• Attacks from the player units that might slow or damage a range of units
• A UI to enable the player to buy different sorts of defenses

Each of these additions presents new challenges that will need to be
creatively solved and will require some testing before they are good to
go. This isn’t to dissuade you from trying to add them. Rather they should
act as inspiration, now that you have a framework to work on. The next
games are going to be targeted more for mobile devices and casual play,
so if you’re looking for a break, head on to the final two examples in this
book.

7.9.4.1 Slicer Game Example

So far the game examples in this book have been programmed with an
assumption that they would be played primarily on a desktop computer.
These examples were made for the desktop mainly because it is easy
to create and test games in that environment. When targeting mobile
devices, any keyboard interaction needs to be removed and the games
need to be programmed so that simple taps can trigger the majority of the
gameplay. In order to give users the best experience on a mobile device,
games built for handheld devices are going to need to take up the full size
of the phones display (not matter what that size may be). There are some
technical hurdles that need to be overcome to properly display a game in
full screen on the many different resolutions and display ratios a device
may have.

The game example in this chapter will be a version of the “object slicing”
games that popped up with the rise of touch-screen devices. These games
were a take on the twitchy sorts of games that require good attention
and reaction speeds. Because buttons don’t work quite as well on a flat
screen, these slicer games took advantage of the fact that people are
generally really good at the rather inaccurate work of swiping fingers
across targets.

7.10 Gestures
A swiping game requires some sort of gestural input to the device. There are
a number of different gestures that have become standard for phones and
tablets. A quick survey might include a swipe (in either general or specific
directions), a two-finger pinch or rotate, and a long press on an object.

224

An Introduction to HTML5 Game Development with Phaser.js

This game is only going to tackle the swipping gesture, but the general idea
of translating time into input will apply to the other gestures one may want
to implement as well. Because Phaser does not have a built-in gesture library,
this section is going to cover the basics of implementing gesture handling
(see Figures 7.27 through 7.35).

Gestures need to take an aggregate of input from a user and decide if the
user is trying to trigger a reaction. They need to be forgiving for the fact
that humans are a little slow and inaccurate about our motions. In general,
gesture input systems listen for the presence of a pointer and the motion
of the pointer. The motion of the finger is used to check to see if the user’s
pointer has moved a substantial distance in order to trigger a gestural
interaction. There is a necessity for a substantial distance because there’s
always a chance that the player had intended for a tap or a long press but
their finger waivered slightly when they executed the input. Once the
finger is moving, the gesture handler will need to wait until either the
speed of the pointer moves below a certain threshold or the finger is lifted
from the device. Once the user has slowed down their finger to a speed
that could be considered a “stop” (with only perhaps a small bit of waiver),
the gesture is ended, and a response to the input can be calculated
(See Figure 7.30).

225

Game Examples

Basic slicer gameplay

Objects thrown into
view from offscreen

User swipes over
objects to score points

FIG 7.27 Fundamental slicing gameplay.

The stages of a gestural input system are as follows:

 1. Listen for a pointer to be down.
 2. Continuously check to see if the pointer starts moving quickly.
 3. Once the pointer starts moving quickly, assume a swipe has been initiated

and start watching for when the pointer comes to a “stop” or release.
 4. Once the pointer comes to the stop, fire a gesture event for any objects

listening to the gesture handler and begin listening for a new gesture.

226

An Introduction to HTML5 Game Development with Phaser.js

Swipe gestures with 50 magnitude

M
ag

: 5
0

x speed: 35.35

y speed: 35.35

x speed: 50
y speed: 0

Mag: 50

x speed: 0
M

ag
: 5

0

y speed: 50

FIG 7.28 Swipe gesture directions and the impact of both speed and magnitude.

Similarity of distance and magnitude

y speed: 35.35

x speed: 35.35

M
ag

: 5
0

Height: 10

Width: 10

Dist
an

ce
: 1

4.1
42

(10,10)

(0,0)

FIG 7.29 Stages of a full swipe gesture.

Initial press and hold

Velocity > �reshold Velocity < �reshold

Quick movement

Stages of a swipe

Slow to a half

FIG 7.30 Comparison of possible deployment screen sizes.

227

Game Examples

768 × 1280

Target resolution compared to
other common resolutions

768 × 1024

480 × 640

320 × 480

FIG 7.31 Overflow region of different screen sizes.

Device one

Device two (shows more of world)

Different device ratio effects on display

FIG 7.32 Issues with positioning objects at absolute pixel values.

228

An Introduction to HTML5 Game Development with Phaser.js

FIG 7.34 Screen shot of Tech Slicer in action.

Positioning of UI elements on di�erent device resolutions

2 2

FIG 7.33 Screenshot of the finished slicer game.

7.10.1 Creating a Gesture Manager for Phaser
Since gestures are something that one might want to use in other games, it will
be helpful to pull the code for a gesture recognizer out into its own component.
For this game, we will be writing a fairly simplified version of a swipe handler
that only recognizes swipes based on speed and cannot limit the swipes to only
vertical or horizontal input. Here is the SwipeHandler in its entirety, and we’ll take
a moment to break down some of the more critical parts in a moment.

export default class SwipeHandler extends Phaser.Group {

 constructor(game) {

 super(game);
 th is.game.input.onUp.add(this.inputUp, this);

 this.swipeStart = new Phaser.Signal();
 this.swipeEnd = new Phaser.Signal();

 this.swiping = false;
 }

 update() {
 if (this.game.input.activePointer.isDown) {
 if(!this.swiping) {
 if (this.game.input.speed.

getMagnitude() > 20) {
 this.swiping = true;
 this.swipeStart.dispatch(this);
 }

229

Game Examples

Making a rotational force in P2

Rotation based on distance
between force point and center

Apply force off-center

Force point

Center

FIG 7.35 Effect of applying a force on an object's center of mass.

 } else {
 if (this.game.input.speed.

getMagnitude() < 10) {
 this.swiping = false;
 this.swipeEnd.dispatch(this);
 }
 }
 }
}

 inputUp() {
 if(this.swiping) {
 this.swiping = false;
 this.swipeEnd.dispatch(this);
 }
 }

}

7.10.1.1 Create Phase

this.game.input.onUp.add(this.inputUp, this);

this.swipeStart = new Phaser.Signal();
this.swipeEnd = new Phaser.Signal();

this.swiping = false;

The create method sets up much of the functionality of the class as a
whole. The swipe handler keeps a Boolean toggle that is used in this
update method. If the component is currently in the swiping state, it will be
checking for a swipe end. Conversely, if it does not currently sense a swipe,
this component will be checking to see if a swipe has begun. To keep this
object self-contained, it will dispatch events when a swipe that has started
or stopped. Finally, the handler also responds to fingers being removed from
the screen in order to halt the gestures when a pointer is lost.

7.10.1.2 Update

if(this.game.input.activePointer.isDown) {
 if(!this.swiping) {
 if (this.game.input.speed.getMagnitude() >

20) {
 this.swiping = true;
 this.swipeStart.dispatch(this);
 }
 } else {
 if (this.game.input.speed.getMagnitude() <

10) {
 this.swiping = false;
 this.swipeEnd.dispatch(this);
 }
 }
}

230

An Introduction to HTML5 Game Development with Phaser.js

The update method of the swipe hander will continuously check to see
if a gesture has begun or halted. If a pointer is down, the cursor’s speed
is checked to validate if it is over a certain limit. Once the speed limit is
exceeded, the swipe state is set and an event is fired to tell any other objects
listening that a swipe has been initiated. If the component is already in the
swiping state, then the cursor’s speed is still checked to see if it has slowed
enough to complete the current gesture. When the swipe is over, the swiping
toggle is set to false, and the swipeEnd signal is dispatched indicating a full
swipe gesture occurred.

7.10.1.3 Pointer’s Speed and Velocity
Every update of the game loop Phaser calculates the speed of a pointer
based on how many pixels it is moving per frame. This speed is calculated as
the pure change in pixels from the current frame compared to the last frame.
The speed is calculated for both the x and y properties of the pointer.

Frame Position Speed

1 (10, 10) —

2 (13, 20) (3, 10)

3 (7, 17) (−6, −3)

This chart shows how speed is calculated per frame. On frame two, the
values from the previous frame {x:10, y:10} are subtracted from the current
position of the pointer {x:13, y:20}. The resulting x speed (13–10, or 3) and
y speed (20–10, or 10) are then stored as {x:3, y:10}, which is accessible
wherever one may need to know how many pixels the pointer moved since
the last frame. Note that on the third frame, the player had moved their
pointer to the upper left that creates a negative speed in both the x and
y directions.

Users never swipe in a pure horizontal or vertical direction that makes relying
and either of the axes a precarious idea. A swipe at an angle, especially near
a 45° angle, would have a decent chance at not moving fast enough in either
direction to trigger a swipe gesture (See Figure 7.29).

Instead of relying on the speeds in any one direction, a number that
represents their combined speeds would be preferred. In most game systems,
this number would be the magnitude of the pointer motion. The magnitude
is the length of the line that points in the direction the cursor is moving. It is
always a positive number that represents how strongly the pointer is moving.
“Magnitude” is a term borrowed from vector math that may seem scary but it
is really just a fancy word for “distance” (See Figure 7.29).

// sample code, this is already implemented in the
speed.magnitude method

var magnitude = Math.sqrt(
 po inter.speed.x*pointer.speed.x +

pointer.speed.y*pointer.speed.y
);

231

Game Examples

Because the speeds are multiplied before calculating the distance of that
vector, the final magnitude is perfect for use in a gesture system because
it will always be a positive number, so the limits for starting and stopping a
gesture only need to be positive as well. Keep in mind when coming up with
numbers for the swipe code (in the future, or when playing with the code later
on), the distance will always be a larger number than any of the other pixel
distances moved, so larger numbers will need to be used for the “trigger”
states to start and stop the gesture recognizer.

7.10.1.4 Up Handler

inputUp() {
 if(this.swiping) {
 this.swiping = false;
 this.swipeEnd.dispatch(this);
 }
}

The up handler runs when the user pulls their finger from the screen. If the
gesture handler was in the “swiping state” when the finger is removed, this
function will stop the gesture and fire the end signal, ensuring that when the
user presses their finger down on the screen next time, the component will
be ready to start a new gesture.

7.11 Dealing with Stage Scaling
Most mobile games are going to be built to scale to fill the screen of any device.
Once one decides to support different resolutions and ratios, they will need
to figure out how to make the graphics responsive and reposition themselves
based on the width and height of the game. The most common approach to
creating a game where the graphics reposition themselves for different views is
to decide on a base resolution and ratio for the game. Once the game has been
made for this resolution, the graphical assets are programmed to allow for the
width and height of the view into the world to grow or shrink by about 20%
in either direction. This means your assets should allow for a bit of “overflow”
beyond the base ratio. This base display resolution and ratio that you should
target will change over the years as devices change in size and shape,
preferences change, or display technology gets more powerful.

Step one is then to figure out what your base target will be. This will
require some research to find some data on current usage statistics. There
is no “master resource” for this information because different companies
gather the information in different ways and different developers may be
targeting different devices. If you’re looking to deploy your game only on
Apple devices, then looking at the different resolutions of Apple devices are
important (and much easier due to the limited types of devices). For other
devices, there are groups that keep their statistics on the resolution and
capabilities of the different devices out there. Searching for “mobile screen

232

An Introduction to HTML5 Game Development with Phaser.js

resolution statistics” typically will find a page or two with reports from
different groups about their findings. Try to find the most recent statistics
possible, and keep in mind that these findings are taken from only a sample
of the population coming to their site or using their tools. The nature of
the people drawn to the site or app will influence the statistics toward the
audience that uses those tools that might not match your own audience.

Currently, the most popular resolution for a mobile device is 320 × 480.
Figure 7.31 compares the different common display sizes and ratios to the
“base” of 320 × 480.

7.11.1 Challenges of Stage Scaling
Because we’re going to make a flexible display ratio game, we’re going to
have to figure out how to scale the stage. There are two challenges that come
with scaling the stage: scaling assets and properly repositioning assets.

The first challenge is rescaling a game to fit a different display. Simply scaling
everything to a new width and height has a chance at distorting the game
significantly, unless the ratio of the new display is the same as the base.
Keeping the ratio while scaling upward or downward helps, but there is a
chance the new device has a bigger or smaller display ratio that will cause
parts of the display to be lost or overflow (See Figure 7.32).

The next challenge is the placement of UI elements on the screen of smaller
sizers. An element placed at an absolute pixel value to the far right of the
screen will actually be off the screen when a phone with a smaller display
tries to play the game (See Figure 7.33).

7.11.2 Phaser Scale Modes
The first step into getting a game scaling correctly to the different screen
sizes is to understand the different ways that Phaser can scale a game. There
are five different ways to have Phaser scale a game automatically.

7.11.2.1 EXACT_FIT
An EXACT_FIT game will have its dimension and ratio modified so that it
takes up all the space it has been given to fill. If this means that sprites need
to be distorted, then they will be. A game that is put into an exact fit on a
device that doesn’t have the same display ratio the game was built at will take
on a squashed or stretched look.

7.11.2.2 NO_SCALE
This scale mode does not actually scale at all. Instead, it will simply show
black pixels for any place where content was not originally intended to be.

7.11.2.3 SHOW_ALL
This approach will scale the game but preserve the game ratio in order to
ensure the game will never look squashed or stretched. The game is scaled

233

Game Examples

up to maximum in the direction that it can take up the most space with
(either vertically or horizontally) and any space that can’t be used displays
black pixels instead.

7.11.2.4 RESIZE
This is the preferred mood for responsive scaling.

Resize works like show all, but instead of black pixels where there is overflow,
the view into the game world is increased. This will begin to show elements
in the world space that were previously off camera. Care must be taken to
make sure that the objects are off camera to show this bleed properly.

7.11.2.5 USER_SCALE

The hard way, user scale simply relies on the developer to go through the
scaling calculations. It can be immensely useful for custom solutions.

7.11.3 Resize Callback and Positioning Elements
Because the scale mode we will be relying upon actually changes the display
ratio, it is impossible for a responsive game to position its UI elements at absolute
positions. When there is a high chance that a device with a different display ratio
is used, then absolutely positioned UI objects like aiming reticles at the center of
the screen might appear off-center on other devices (See Figure 7.33).

Responsive UIs typically solve this problem by positioning objects relative to
pin points that act as landmarks on the screen. The five most common pin
points are the four corners of the screen and the very center of the screen.

When the display is resized and extra space is added to the game’s view, the
positioning of any pinned elements needs to be recalculated and set again
based on the new location of their pin points on the display. The first step in
this process is to be able to react to a screen resize. The following is the general
code that should be added into any state that needs to handle a resize.

function resize(width, height) {
 // reposition elements based on the new 0,0

position, and the new width and height
}

A relatively positioned element will always reference its pin for its final
position. For instance, let’s assume there is a game (with a display of
480 × 320) with a UI element (size 100 × 40) positioned at the lower right
corner. In an absolutely positioned game, this UI element will have its x
position set to (380, 270), making it appear in the lower right. If the game
is resized and the new display has a ratio of 4:3 instead of 3:2, this element
will actually wind up appearing close to the center of the display. The
original position was calculated simply by getting the far right of the screen
and subtracting the width and height of the asset before positioning. In a
responsive application, the positioning of elements is typically done inside
that resize function doing the calculations in code instead of in one’s head.

234

An Introduction to HTML5 Game Development with Phaser.js

The following is an example of positioning some elements based on the pin
points when a window resize occurs. Resizing can occur when a user first
launches a game, if they resize their browser window, or if they rotate their
device after first loading your game.

function resize(width, height) {
 //top left pin point
 this.score.x = 10;
 this.score.y = 10;

 //middle pin point
 this.aiming.x = width / 2;
 this.aiming.y = height / 2;

 //bottom right pin point
 this.healthBar.x = width – healthBar.width – 10;
 this.healthBar.y = height – healthBar.height – 10;

 //’custom’ pin point – middle center
 this.warning.x = width / 2;
 this.warning.y = 10;

}

In general, design a UI with a certain display ratio in mind and try to support only
small changes on that ratio. UIs designed for landscape modes will probably not
scale well to the tall format of a portrait mode. When you’ve designed a game
for a certain ratio, it will be important to enforce device orientation so players are
playing the game in a view that has been scaled appropriately.

7.11.4 Enforcing Device Orientation
On the web, it is not possible to enforce a certain orientation, and the view
into your game will reorient to a different display ratio if the user turns their
phone about. The only solution is to pause the game when it is in the wrong
orientation and display a message to the user telling them to rotate their
device to the right orientation before they begin or resume gameplay. When
building an application for one of the app stores, it is possible to enforce an
orientation. An app with a forced orientation will still display in the original
orientation intended even when the phone is tilted from portrait to landscape.

The forceOrientation method can be used in Phaser to specify a certain
orientation a game should appear in. In the setup we’re using throughout
the book, the optimal place for this method to be executed is in the
boot state, before moving into the rest of the application. This bit of
configuration will move over to other states and it will pause the game
when it is not running in the right orientation. The method takes two
Booleans. The first is if landscape should be allowed, the second is for
portrait. If only one of the two is set to true, then that orientation will be the
only one the game will run in.

game.scale.forceOrientation(true, false);

235

Game Examples

While the aforementioned code will work on mobile devices where the game
has been delivered as an app, it will not work perfectly on the web. When
a player is running your game inside their web browser, you will also need
to listen for the change of orientation and inform the user that they need
to rotate their devices back to the correct orientation when they are in an
incorrect orientation.

create() {
 th is.scale.enterIncorrectOrientation.

add(this.enterIncorrectOrientation, this);
 th is.scale.leaveIncorrectOrientation.

add(this.leaveIncorrectOrientation, this);
}

enterIncorrectOrientation() {
 //Show “please rotate your device” image
}

leaveIncorrectOrientation() {
 //Hide “please rotate your device” image
}

7.11.5 Restricting Resize Zones
The second issue that arises when attempting to create a responsive UI is that
there is a point where it would be harmful to resize to the device’s resolution.
Devices with a very small display simply won’t be able to render all the elements
correctly because everything would be squished down too tiny. Large displays
have the opposite problem of spacing everything extremely far out.

Most responsive pieces of digital media address this issue by choosing a
maximum and minimum resolution that is supported. After hitting either of
the extremes, the media will stop to scale any further and will become fixed at
the closet resolution it can render inside its acceptable range. This will result in
parts of the game being obscured on small resolutions, most likely making them
unplayable. The larger screens will still be playable but there will be some empty
space to the side of the game where the game stopped scaling to fill the screen.

The setMinMax method will let a developer specify these extremes. The first
two numbers are the minimum width and height and the second two are the
largest width and height for the game’s scale.

this.scale.setMinMax(480, 260, 1024, 768);

7.12 Making 80’s Tech Slicer
Next, we’re going to take the concepts of responsive layout and gestures and
implement them into a game. This game, 80’s Tech Slicer, challenges a player
to swipe over as many pieces of cool retro technology as possible. These
devices will be launched on a regular interval and will come from different
sides of the screen. When sliced, the tech will be split into two halves, and
another point will be added to the player’s score.

236

An Introduction to HTML5 Game Development with Phaser.js

Create the basic project structure described in chapter five. We will be adding
to that base throughout this exercise. Should you need to see the finished
code or to get the assets for the game, you can find the full source at https://
github.com/meanderingleaf/PhaserBookExamples/tree/master/slice.

7.13 Slicer HTML and CSS
The game is going to use a custom font to display the score to the user. There are
two ways to approach custom fonts in Phaser. One way is to include a bitmap
font, which is a font that has been laid out in a grid like a sprite sheet, wherein
Phaser copies these images on the stage to form full strings. This is a custom
approach and tends to be used by games that are looking for a “retro” look. The
second approach is to use fonts that were designed for computer use like TTF
and include them in the game as a webfont. This is the approach that will be used
for this game that requires work to be done on the HTML and CSS for this project.

7.13.1 CSS File
To begin with, create a new folder in the project root with the name “css” and add
a “style.css” file inside of it. Open the style.css file in your code editor of choice
and add the following code to include a webfont. It is a bit complex because
there is still not one accepted font face for browsers to use, so several different
font files will be included and the browser will decide which one it needs.

To make this game fill the whole screen, a few other styles are applied to the
document and the node that contains the game. The width and height of 100%
will force the game view to scale to fill the whole screen, and the border and
padding of zero on the body will remove any bit of a border. Any resize of the
window will change the size of the element that contains the game. This resize
will then get picked up by Phaser’s scale manager and we can run a resize method
in our gameplay code to resize and reposition all the UI elements on the screen.

@font-face {
 fo nt-family: ‘dymaxionscriptregular’;
 sr c: url(‘../assets/fonts/DymaxionScript-

webfont.eot’);
 sr c: url(‘../assets/fonts/DymaxionScript-

webfont.eot?#iefix’)
format(‘embedded-opentype’),

 ur l(‘../assets/fonts/DymaxionScript-
webfont.woff’) format(‘woff’),

 ur l(‘../assets/fonts/DymaxionScript-
webfont.ttf’) format(‘truetype’),

 ur l(‘../assets/fonts/DymaxionScript-webfont.
svg#dymaxionscriptregular’) format(‘svg’);

 font-weight: normal;
 font-style: normal;
}

#game {
 width: 100%;

237

Game Examples

https://github.com/meanderingleaf/PhaserBookExamples/tree/master/slice
https://github.com/meanderingleaf/PhaserBookExamples/tree/master/slice

 height: 100%;
}

body {
 margin: 0;
 padding: 0;
}

7.13.2 HTML File
Next, this style will need to be included in the html, so in the head tag of the
HTML, add a link to the stylesheet.

<l ink rel=”stylesheet” type=”text/css” href=”css/
style.css” />

7.14 Slicer Boot State
The boot state for this game needs to be modified to take into account the
resizing that the game will need to handle. Here is the new create method for
the boot state that will scale the game in between resolutions of 360 × 480
up to 768 × 1024 and has an orientation forced to portrait mode.

create() {

 th is.scale.scaleMode = Phaser.ScaleManager.
RESIZE;

 this.scale.setMinMax(360,480,768,1024);

 if (this.game.device.desktop == false)
 {
 this.scale.forceOrientation(false, true);
 }

 this.game.state.start(‘preload’);
}

7.15 Slicer Preload State
Phaser sometimes will fail to render a web font correctly the first time the
font is used in a game. In order to force this font to load in early, a text field
with the font is created in the preload state placed onto the stage with its
alpha set to zero to hide it from the player’s view. This will trick Phaser into
loading up the font early on, making it ready to use in the game state. Since
this is technically a sort of preload as well, this trick is done in the preload
state along with the other loading of assets.

var style = { font: “65px dymaxionscriptregular” };
th is.instructionText = this.add.text(–20, –20, “.”,
style);

this.instructionText.alpha = 0;

238

An Introduction to HTML5 Game Development with Phaser.js

Otherwise, the assets for this game are a number of images on a texture atlas
that contains all the images for the tech to be sliced up.

this.load.atlasJSONHash(‘devices’,
 ‘as sets/images/sprites/devices.

png’, ‘assets/images/sprites/
devices.json’);

this.load.image(‘gamebg’, ‘assets/images/gamebg.png’);
th is.load.image(‘triangle’, ‘assets/images/sprites/
triangle.png’);

th is.load.image(‘zoid’, ‘assets/images/sprites/zoid.
png’);

7.16 Slicer Game State
In order to implement the gameplay, this slicing game needs to

• Generate and launch new devices to be sliced
• Detect (and show on the screen) the swipe inputs of the user
• Determine if a user’s swipe gesture overlaps a device
• Destroy any devices swiped over and increment score

7.16.1 Game State Prefabs
For this game, we’re going to tap into the power of Phaser’s P2 physics
system and its ability to automatically process collisions. In order for Phaser
to process these collisions, there will need to be game objects for both the
objects to be sliced and the paths the player draws on the screen via swiping.

7.16.1.1 Device Sprite Prefab
The device sprite represents the different targets for the player to slice. In
order to configure these targets correctly, they need to know what image
they are going to display, be able to be launched into the game, and destroy
themselves once they are off screen again. Also these devices should collide
with the user input, but not with other devices. If they collide with each other,
then after the first few waves of devices, the screen would be filled with
objects continuously hitting each other, which ruins the smooth arc motion
that makes these games fun to play.

The constructor this game object as a sprite that will render from the
“devices” atlas in the asset cache. This asset is actually an atlas with many
different images that it can render. In order to select the sprite to render,
the frameName property is specified, which will cause it to render one of
the four devices in our device array that was randomly picked and sent
to this prefab. Next in the constructor, the sprite is set up to rotate from
its center, which will come into play when it is thrown into the air, forcing
it to rotate believably around the center of its mass instead of from its
upper left. Finally, the device is placed into the device collision group that
will be configured for custom collisions. The only objects we want the

239

Game Examples

devices to be able to collide with are the bodies of a user’s slice, so that it
is set as the only collision group that Phaser should check for and respond
to collisions with.

Launch is the other method of device. This is the method that will position
the prefab out of view and then send it flying upward toward the screen, so
the user can swipe over it. If this device is being revived, it actually already
has a velocity and rotation, so those are wiped at the start of the method by
resetting both velocities. A chance roll will decide if the device should be
launched from the right or the left and the object will be placed just beyond
and below the edge of the visible area of the screen.

The actual launching is done via the applyForce method of the sprite’s
body. One can think of this method as hitting the sprite with a baseball
bat. It is an instant increase of motion. The force is applied at a specific
location on the target and pushes in a direction. Combining location,
direction, and force of push can result in very different reactions from the
body. Think about the difference between a light tap at the edge of a boat
(or rubber ducky) on the water and a strong hit at its center back. The tap
at the edge won’t send it moving very far away, but it will start spinning.
The shove to the back of the boat will get it moving forward but with little
to no rotation.

This application of force to this device is set up to hit the edge of the object
with a strong force upward. It will send it flying upward toward the screen and
give the object a bit of a spin (see Figure 7.35). The upward and screenward
motion is set by the force itself, a vector that is pointing toward the center of
the player screen. To get the spin, the force is applied somewhat off-center.
The end result is a nice upward toss to the device that grants it a lazy arc
across the screen, eventually getting pulled back down via the acceleration
of the game’s gravity.

export default class Device extends Phaser.Sprite {

 co nstructor(game, x, y, frame, collisionGroup,
sliceGroup) {

 super(game, x, y, ‘devices’);
 this.frameName = frame;
 this.anchor.setTo(.5,.5);

 this.game.physics.p2.enable(this);
 this.body.setCollisionGroup(collisionGroup);
 this.body.collides(sliceGroup);

 }

 update() {
 if(this.body.y > 3000) {
 this.kill();
 }
 }

 launch() {

240

An Introduction to HTML5 Game Development with Phaser.js

 this.body.setZeroVelocity();
 this.body.angularVelocity = 0;

 if(Phaser.Utils.chanceRoll(50)) {
 this.body.x = this.game.width;
 this.body.y = this.game.height + 100;
 th is.body.applyForce([800, 2500],

this.body.x + 20, this.body.y);
 } else {
 this.body.x = 0;
 this.body.y = this.game.height + 100;
 th is.body.applyForce([–800, 2500],

this.body.x – 20, this.body.y);
 }

 this.life = 20;

 }

}

7.16.1.2 SliceBody Prefab
This is going to be a unique prefab to work on because it does not extend
a sprite or group like the other prefabs in this book. Instead, this prefab
extends just a P2 body, because it doesn’t need to display anything on the
screen. It only needs to collide with other objects. This prefab is to be added
to the world the moment a full slice gesture has been recognized. It takes the
start and stop positions of the gesture (as shown on the screen by a yellow
line) and creates a body that hangs in space that will collide with any devices
on the screen. This prefab will destroy itself quickly to ensure it doesn’t
destroy objects long after a slice gesture has faded.

A physics body by default does not actually have any shapes in it, so once
the body is positioned at the start of the line the user had drawn, a rectangle
shape is added to this body. It is of the same size as the user’s swipe and can
then be rotated so that it is facing the same way as the swipe via ray.angle.
Then this body is set so it will only collide with the devices prefabs that are
flying about the screen, by adding it to its own collision group and setting it
to only collide with the device collision group.

The P2 physics system works with collision handlers differently compared
to the arcade physics system. In P2, all collisions are handled automatically
by the engine. If you want some custom code to run when a collision occurs
(like destroying the object or playing a sound), then you will need to respond to
the body’s onBeginContact signal. The onBeginContact handler destroys any
item that hits this slice and fires a signal if it hits something.

Finally comes the life property in the constructor and the method update
life. We don’t want this body to sit in the world forever but it does need a
few frames of life to give the physics system a chance to detect any collisions
and to give the player a bit of flexibility on how accurate their swipes need to
be. The life property is reduced by one each frame until it hits zero and the
object is destroyed.

241

Game Examples

ex port default class SliceBody extends Phaser.
Physics.P2.Body {

 co nstructor(game, ray, collisionGroup, sliceGroup) {
 super(game, null, ray.x, ray.y, 1);

 this.ray = ray;
 this.addRectangle(ray.length,2,0,0,ray.angle);

 this.setCollisionGroup(sliceGroup);
 this.collides(collisionGroup);
 this.addToWorld();
 this.static = true;
 this.onBeginContact.add(this.sliceHit, this);
 this.life = 10;
 this.success = new Phaser.Signal();

 }

 updateLife() {
 this.life – –;

 if(this.life <= 0) {
 this.removeFromWorld();
 this.group.remove(this);
 }
 }

 sliceHit(other) {
 other.sprite.kill();
 this.success.dispatch(this, other);
 }
}

7.16.2 Game State
The next step is to bring these prefabs into the game state and implement
the full gameplay. This state will also be using the swipe handler from the
earlier discussion of gestures, so you can go back and refer that component
when working on this code. The threads that will be followed in this state
include tracking the start and stopping point of a swipe, setting up the
physics of the world, responding to collisions between objects, and drawing
the swipes the user inputs.

7.16.2.1 Game State Imports

import SliceBody from “../prefabs/SliceBody.js”;
import Device from “../prefabs/Device.js”;
im port SwipeHandler from “../components/
SwipeHandler.js”;

Note that the swipe handler has been added into a new “components” folder
that was not in any other games, so you’ll need to make that folder before
adding in the script.

242

An Introduction to HTML5 Game Development with Phaser.js

7.16.2.2 Game State Constructor
To get this game ready, an array is established with the different names of the
devices that can be spawned, and a method is attached to this array that will
return one of the three device names at random.

constructor() {
 th is.deviceTypes = [“boy.png”, “box.png”, “phone.

png”];
 this.deviceTypes.getRandomEntry = function() {
 re turn this[Math.floor(Math.random() * this.

length)];
 }
}

How Does getRandomEntry Work?

One of the great things about Javascript is that it can add new methods
and properties to any of its objects at runtime. In this example, a new
method, getRandomEntry, is added directly to the device types array.
Whenever the method is invoked from that array, it will run as if the
keyword “this” is the array itself when inside of the function. This is great
for attaching little utility methods that might be single use items in a game.

To break down the math of getRandomEntry, Math.random multiplied
by a number will be some value between zero and the number acting as
the scalar. Because the getRandomEntry method is on the array, “this.
length” is the number of entries in that array. Math.floor rounds the
number down to the nearest full number. This will give a range between zero
and the highest index number of the array. This random number can then be
used to get a random entry in the array every time the method is called.

7.16.2.3 Create Method
The create method begins by adding the visual items to the stage. Among
the visual items are the background and the groups for the devices and
finger trails. It also will create a particle emitter and a text field to show
the user’s score. Note that the score field is using the custom font, and has
its registration set to the center, which will be useful when repositioning
it later.

this.add.sprite(0, 0, ‘gamebg’);
this.devices = this.add.group();
this.trails = this.add.group();

this.emitter = this.game.add.emitter(0,0, 200);
th is.emitter = this.emitter.
makeParticles([‘triangle’, ‘zoid’]);

this.score = 0;

var style = {

243

Game Examples

 font: “70px dymaxionscriptregular”,
 fill: “#ff0044”,
 align: “center”
 };
this.txtScore = this.add.text(
 th is.game.width / 2, 30, this.score.

toString() + “ pts”, style
);
this.txtScore.anchor.set(0.5);

The next task of the create method is to set up the physics and world
space of this game. By default, the world is as big as the game window,
which will cause some issues with the swipe targets. Because they are
set to collide with the world bounds but are generated outside of the
bounds, the moment they are created they would be shoved into this tiny
world and sit there, pinned. To give the devices some breathing space, the
game world is made quite large. Then the physics system is started and
gravity is added to the world.

This game uses collision groups to ensure that the only collisions that happen
are between the swipe target and the actual slice bodies. Just like display
groups, they are made before adding any objects to their list.

th is.game.world.setBounds(–15000, –15000, 30000,
30000);

this.game.physics.startSystem(Phaser.Physics.P2JS);
this.game.physics.p2.gravity.y = 750;

th is.deviceCollisionGroup = this.game.physics.
p2.createCollisionGroup();

th is.sliceCollisionGroup = this.game.physics.
p2.createCollisionGroup();

One other important task of the create method is to create the swipe gesture
recognizer. The game will respond to the start and stop signals. For it to work
properly, it needs to be a part of the display list, so it is added to the world state.

this.swipeHandler = new SwipeHandler(this.game);
th is.swipeHandler.swipeStart.add(this.swipeStart,
this);

this.swipeHandler.swipeEnd.add(this.swipeEnd, this);
this.add.existing(this.swipeHandler);

Finally, to start the game off, the first wave is spawned, which will continue to
spawn more waves as the game progresses.

this.spawnWave();

7.16.2.4 Spawning Waves
The wave spawner is a simple bit of code that implements an object pool
for the slice targets. If there are no free devices, a new one will be made.

244

An Introduction to HTML5 Game Development with Phaser.js

When creating the device, a random asset is selected from the atlas, and the
collision groups for the devices and slices are passed into the constructor so
that the device can properly handle what it will, collide with.

spawnWave() {
 var d = this.devices.getFirstDead();
 if(!d) {
 d = new Device(this.game, 300, this.game.

height + 100, this.deviceTypes.
getRandomEntry(), this.deviceCollisionGroup,
this.sliceCollisionGroup);

 d.launch();
 this.devices.add(d);
 } else {
 d.revive();
 d.launch();
 }
}

7.16.2.5 Simple Responsive UI
When the game is resized, Phaser will automatically call the resize method
that is attached to the currently running state. Here, we move the txtScore
text field to the center top of the screen again, which is its pin location.
Then the background is repositioned to the center of the screen. Because
this game will only play in portrait mode, the height of the background will
always be scaled to take up the full height of the game, but the width will
stay constant. The background is set up to “bleed” a little, so minor changes
in widths will show a little more or less of the game world, but not enough to
substantially change the user experience.

resize(width, height) {
 this.txtScore.x = width / 2;

 this.bg.x = width/2;
 this.bg.y = height/2;
 this.bg.height = height;
}

7.16.2.6 Slice Segment Life
The creation and management of the player’s slice attacks is a feature of the
physics system, the gesture handler, and two functions that respond to the
gesture handler’s start and stop signals. These functions will show the input
of the user through a graphics object that we will draw into at runtime and
create the sliceBody when the gesture is successfully executed.

The first method, startSegment, is called when a gesture is started. It
prepares a new graphic to draw into while the user is dragging their finger
across the screen. New graphics objects are created for each swipe so they
can be faded away when the gesture ends.

245

Game Examples

startSegment() {
 this.sliceStart.x = this.input.activePointer.x;
 this.sliceStart.y = this.input.activePointer.y;
 th is.curGraphics = new Phaser.Graphics(this.game,

0, 0);
 this.curGraphics.lineStyle(10, 0xffd900, 1);
 this.trails.add(this.curGraphics);
}

The second method, endSegment, is called when a gesture finishes, and it
fades away the line the user was drawing with their gesture. This method
will also create a slice body that will impact any of the items that are flying
about the screen. In order to create this body, a Phaser ray (or line segment)
is created that has the same start and stop points as the yellow line that
was on the screen. This ray is sent into the new SliceBody, which will handle
generating a box and rotating it to fit with the user’s input. The slice will fire
a success signal when it hits something; the game state will need to respond
to that success and is configured to run a method “sliceHit” when it hears that
signal. Finally, the slice is added to a sliceBodies array set so it can have its life
updated for each game loop.

endSegment() {
 va r ray = new Phaser.Line(this.sliceStart.x,

this.sliceStart.y, this.input.activePointer.x,
this.input.activePointer.y);

 va r sliceBody = new SliceBody(this.game, ray,
this.deviceCollisionGroup, this.
sliceCollisionGroup);

 //add the line to it
 sliceBody.group = this.sliceBodies;
 sliceBody.success.add(this.sliceHit, this);
 this.sliceBodies.add(sliceBody);

 th is.game.add.tween(this.curGraphics).to({ alpha:
0 }, 800, Phaser.Easing.Quadratic.Out, true);

}

7.16.2.7 Slice Hit Method
When the slicebody fires a signal saying it has hit something, the slice hit
method will run. The major tasks here are increasing score, generating some
particles along the length of the slice for visual effect, replacing the sliced
object (or objects) with two halves to make it look like they have been “cut,”
and disabling the slicebody.

The approach to generating the particles in this game is unconventional. The
slice has occurred on a rotated body, but it is impossible to rotate an emitter.
The following code is one way around the problem. It takes the line that the
user had drawn (stored as the ray that hits the slice in the sliceBody object) and
requests a series of 20 points on that line. All of these points will be equidistant
from each other and will start and stop at the two end points of the ray. For
example, if the ray started at (0, 0) and ended at (20, 0), a set of points would be

246

An Introduction to HTML5 Game Development with Phaser.js

returned with the x-value moving up by one each time. Then, iterating through
that array of points, one particle is emitted at each point. The end effect is a
rotated line of particles that appear along the line the user sliced.

The second new chunk of code here is the creation of the sliced halves of the
object that was hit by the player. To make the halves, two new sprites with
the same image as the impacted device are added to the stage. These new
sprites are cropped to only show half of their entire sprite. The top has its
registration point put on its bottom center, while the bottom slice places its
registration point to the top center. Then these cropped sprites are rotated
and positioned to the center of the target sprite. Since they are positioned
in the dead center of the target sprite, they will appear “whole.” Finally, each
has their collisions disabled and given opposite rotational velocities. The
end result is an image that appears momentarily solid until the two halves
begin to fall and slowly rotate away from each other, showing the disastrous
aftereffect of the user’s actions.

sliceHit(sliceBody, device) {

 va r coords = sliceBody.ray.coordinatesOnLine(20);

 fo r(var i = 0; i < coords.length; i++) {
 this.emitter.x = coords[i][0];
 this.emitter.y = coords[i][1];
 this.emitter.explode(2000, 1);
 }
 this.score++;
 th is.txtScore.text = this.score.toString() +

“pts”;

 va r sliceSprite = this.slicedPieces.
create(device.sprite.x,device.sprite.y,device.
sprite.key,device.sprite.frameName);

 va r halfHeight = Math.floor(sliceSprite.
height / 2);

 sl iceSprite.crop(new Phaser.Rectangle(0,0,
sliceSprite.width, halfHeight));

 th is.game.physics.p2.enable(sliceSprite);
 sliceSprite.anchor.setTo(.5, 1);
 sliceSprite.body.rotation = device.rotation;
 sl iceSprite.body.setCollisionGroup(this.game.

physics.p2.nothingCollisionGroup);
 sliceSprite.body.angularVelocity = –1.2;

 va r sliceSprite2 = this.slicedPieces.
create(device.sprite.x,device.sprite.y,device.
sprite.key,device.sprite.frameName);

 sl iceSprite2.crop(new Phaser.
Rectangle(0,halfHeight, sliceSprite.width,
halfHeight));

 this.game.physics.p2.enable(sliceSprite2);
 sliceSprite2.anchor.setTo(.5, 0);
 sliceSprite2.body.rotation = device.rotation;

247

Game Examples

 sl iceSprite2.body.setCollisionGroup(this.game.
physics.p2.nothingCollisionGroup);

 sliceSprite2.body.angularVelocity = 1.2;

}

7.16.2.8 Update Method
The update method has two concerns: to draw the path of any current swipe
gesture and to update any of the slicebodies that are sitting in the worldspace.

Since the user’s finger might not always draw the straightest of paths,
whatever path was drawn last frame is cleared. Then a 10 pixel thick, yellow
line is drawn to the current graphics object. This line starts from when the
swipe gesture was first recognized to where the finger currently is. It provides
a nice “trail” to show the user where their gestures will hit on the screen.

Unfortunately, because the slice bodies are not display objects, they do not
get their update method called automatically like our other prefabs. We use
a feature of Phaser’s ArraySet that will let us call the updateLife method on
every sliceBody in the array.

update() {

 if(this.swipeHandler.swiping) {
 this.curGraphics.clear();
 this.curGraphics.lineStyle(10, 0xffd900, 1);
 th is.curGraphics.moveTo(this.sliceStart.x,

this.sliceStart.y);
 th is.curGraphics.lineTo(this.input.

activePointer.x, this.input.activePointer.y);
 }

 this.sliceBodies.callAll(“updateLife”);
}

The following is the entire game state in full for your reference:

import SliceBody from “../prefabs/SliceBody.js”;
import Device from “../prefabs/Device.js”;
im port SwipeHandler from “../components/
SwipeHandler.js”;

export default class Game {

 constructor() {

 th is.deviceTypes = [“boy.png”, “box.png”,
“phone.png”];

 th is.deviceTypes.getRandomEntry = function() {
 re turn this[Math.floor(Math.random() * this.

length)];
 }
}

create() {

248

An Introduction to HTML5 Game Development with Phaser.js

 this.add.sprite(0, 0, ‘gamebg’);

 th is.game.world.setBounds(–15000, –15000, 30000,
30000);

 th is.game.physics.startSystem(Phaser.Physics.P2JS);
 this.game.physics.p2.gravity.y = 750;
 this.game.physics.p2.restitution = 0.8;

 this.drawingSlice = false;

 this.devices = this.add.group();
 this.trails = this.add.group();

 this.sliceStart = { x: 0, y: 0 };
 this.sliceBodies = new Phaser.ArraySet();

 this.timer = this.game.time.create(false);
 this.timer.loop(1000, this.spawnWave, this);
 this.timer.start();

 this.score = 0;

 va r style = { font: “70px dymaxionscriptregular”,
fill: “#ff0044”, align: “center” };

 th is.txtScore = this.add.text(this.game.width /
2, 30, this.score.toString() + “ pts”, style);

 this.txtScore.anchor.set(0.5);
 this.emitter = this.game.add.emitter(0,0, 200);
 th is.emitter = this.emitter.

makeParticles([‘triangle’, ‘zoid’]);

 this.slicedPieces = this.add.group();
 th is.deviceCollisionGroup = this.game.physics.

p2.createCollisionGroup();
 th is.sliceCollisionGroup = this.game.physics.

p2.createCollisionGroup();

 this.swipeHandler = new SwipeHandler(this.game);
 th is.swipeHandler.swipeStart.add(this.swipeStart,

this);
 th is.swipeHandler.swipeEnd.add(this.swipeEnd,

this);
 this.add.existing(this.swipeHandler);
 this.spawnWave();

}

update() {

 if(this.swipeHandler.swiping) {
 this.curGraphics.clear();
 this.curGraphics.lineStyle(10, 0xffd900, 1);
 th is.curGraphics.moveTo(this.sliceStart.x,

this.sliceStart.y);
 th is.curGraphics.lineTo(this.input.

activePointer.x, this.input.activePointer.y);

249

Game Examples

 }

 this.sliceBodies.callAll(“updateLife”);
}

endSegment() {
 va r ray = new Phaser.Line(this.sliceStart.x, this.

sliceStart.y, this.input.activePointer.x, this.
input.activePointer.y);

 va r sliceBody = new SliceBody(this.game, ray,
this.deviceCollisionGroup, this.
sliceCollisionGroup);

 //add the line to it
 sliceBody.group = this.sliceBodies;
 sliceBody.success.add(this.sliceHit, this);
 this.sliceBodies.add(sliceBody);

 th is.game.add.tween(this.curGraphics).to({ alpha:
0 }, 800, Phaser.Easing.Quadratic.Out, true);

}
sliceHit(sliceBody, device) {

 var coords = sliceBody.ray.coordinatesOnLine(20);

 fo r(var i = 0; i < coords.length; i++) {
 this.emitter.x = coords[i][0];
 this.emitter.y = coords[i][1];
 this.emitter.explode(2000, 1);
 }

 this.score++;
 th is.txtScore.text = this.score.toString() + “

pts”;

 va r sliceSprite = this.slicedPieces.create(device.
sprite.x,device.sprite.y,device.sprite.
key,device.sprite.frameName);

 va r halfHeight = Math.floor(sliceSprite.
height / 2);

 sl iceSprite.crop(new Phaser.Rectangle(0,0,
sliceSprite.width, halfHeight));

 th is.game.physics.p2.enable(sliceSprite);
 sliceSprite.anchor.setTo(.5, 1);
 sliceSprite.body.rotation = device.rotation;
 sl iceSprite.body.setCollisionGroup(this.game.

physics.p2.nothingCollisionGroup);
 sliceSprite.body.angularVelocity = –1.2;

 va r sliceSprite2 = this.slicedPieces.
create(device.sprite.x,device.sprite.y,device.
sprite.key,device.sprite.frameName);

 sl iceSprite2.crop(new Phaser.
Rectangle(0,halfHeight, sliceSprite.width,
halfHeight));

250

An Introduction to HTML5 Game Development with Phaser.js

 this.game.physics.p2.enable(sliceSprite2);
 sliceSprite2.anchor.setTo(.5, 0);
 sliceSprite2.body.rotation = device.rotation;
 sl iceSprite2.body.setCollisionGroup(this.game.

physics.p2.nothingCollisionGroup);
 sliceSprite2.body.angularVelocity = 1.2;
}

startSegment() {
 this.sliceStart.x = this.input.activePointer.x;
 this.sliceStart.y = this.input.activePointer.y;
 th is.curGraphics = new Phaser.Graphics(this.game,

0, 0);
 this.curGraphics.lineStyle(10, 0xffd900, 1);
 this.trails.add(this.curGraphics);
}

swipeStart() {
 this.startSegment();
}
swipeEnd() {
 this.endSegment();
}

spawnWave() {
 var d = this.devices.getFirstDead();
 if(!d) {
 d = new Device(this.game, 300, this.game.height +

100, this.deviceTypes.getRandomEntry(), this.
deviceCollisionGroup, this.sliceCollisionGroup);

 d.launch();
 this.devices.add(d);
} else {
 d.revive();
 d.launch();
}

}

}

7.16.3 Conclusion and Future Additions
Presented in this chapter was the basics of a gestural object slicer game. Like
the other examples in the book and just about any project you may tackle
in your life, this is only the beginning. Once you understand all the basics,
this game will most likely feel incomplete and you may want to play with it
and make it your own. There are several places where numbers can be safely
played with, but a few of the more interesting ones are listed here:

• Change the spawn rate on the timer at setup.
• Adjust the gravity scale of the world at setup.
• Change the forces applied to the devices when they are launched.
• Modify the angular velocity of the device halves.

251

Game Examples

Each of these points will give you a good opportunity to get a real sense of how
the game is working. Adjustments to the middle two will change how quickly a
device appears and remains on the screen and will affect the gameplay the most.

To be honest, this is not a very challenging game. When looking at other quick
slicing games that one can find for mobile devices, the challenge isn’t just
cutting the object in half, but prioritizing motions and building up specific
combos. Adding in the ability to launch the objects from more than two
directions with varying speeds would be the next step for this slicing game. It
seems simpler than it actually will be, and so approach this puzzle with caution
and be prepared for a rewarding, struggle to implement those two additions.

7.16.4 Launcher Game

Our final game in this book is going to be a “destruction/launcher” type
game that plays around with the physics capabilities of Phaser. Perhaps the
most famous of game in this genre is Angry Birds, which is a game that tasks
you with launching some cartoony orblike birds at some shockingly resilient
structures. The eventual goal of the game is to collide enough birds with the
structures and hopefully take the structure down (along with killing some
pigs that happen to be within those houses). In order to make a move in
the game, the birds are pulled back from a center point on a rubber band
slingshot. The player can adjust the angle of release and tension by moving
the bird up and down behind the slingshot and closer to the weapon itself
for a less powerful throw. Once angle and power are decided, the input to
the screen is released, and a force is applied to a bird to send if flying in the
direction the slingshot would throw it.

There are a number of other games that rely on the gameplay elements
of applying an impulse to an object in order to send it hurtling toward
some targets off to the right. Some variants of the launcher-type game
might go less for destruction and focus on distance traveled. There is also
another variant of “archer” games, where accuracy of the shot is the critical
consideration for the player. See Figures 7.36 through 7.39.

Our game, Comet Crusher, is going to be a simple launcher game. The goal
of Comet Crusher is to launch a comet from the left of the screen into a series
of asteroids that are on the far right. If the comet manages to shove the
asteroids off the screen the player is rewarded with a point and the field is
reset for next comet launch.

A quick listing of the features of this game includes the following:

• A comet that can be launched by clicking on it and pulling it back to
establish a tension that will launch it when it is released.

• A line that indicates the direction and potential force of the throw while
the player is pulling back on the comet

• Asteroids that can be hit by the comet and can be thrown off screen
• A reset to the game state after each play has been made
• Physics controlled by the P2 Physics system

252

An Introduction to HTML5 Game Development with Phaser.js

create the basic project structure described in chapter five. We will be adding
to that base throughout this exercise. Should you need to see the finished
code or to get the assets for the game, you can find the full source at https://
github.com/meanderingleaf/PhaserBookExamples/tree/master/crusher.

253

Game Examples

Basic launcher style game

Choose direction and angle of launch Attempt to destroy targets

FIG 7.36 Template of a launcher game.

Registration point Body

FIG 7.37 Custom positions for the comet’s center point and circular body.

Press and hold Draw back Release

Object launch interaction flow

Force and direction of launch
based on finger’s last position

FIG 7.38 Interaction required to launch a comet.

https://github.com/meanderingleaf/PhaserBookExamples/tree/master/crusher
https://github.com/meanderingleaf/PhaserBookExamples/tree/master/crusher

7.17 Additions to App.js
There will be an extra scene added to the states, and the size of this game will
be increased for a larger view into the game world.

var game;

import Boot from “./states/Boot.js”;
import Preload from “./states/Preload.js”;
import Game from “./states/Game.js”;
import HomeScreen from “./states/HomeScreen.js”;

window.onload = function () {
 ga me = new Phaser.Game(1024, 768, Phaser.AUTO,

‘game’);
 game.state.add(‘boot’, Boot);
 game.state.add(‘preload’, Preload);
 game.state.add(‘game’, Game);
 game.state.add(‘homescreen’, HomeScreen);
 game.state.start(‘boot’);
};

254

An Introduction to HTML5 Game Development with Phaser.js

Creation of the projectile impulse force

2. Start a force with those ratios

force.x = .5;
force.y = .5;

.5

.5

force.x = force.x * line.magnitude();
force.y = force.y * line.magnitude();

.5 * 8 = 4

.5 * 8 = 4

3. Multiply the sides of the force by the length of the line

4 * 3

4 * 10

force.x * = 10;
force.y * = 3;

4. Adjust for game units and apply force

1. Get relative sizes of the sides of the force

Math.sin(angle) = .5
Math.cos(angle) = .5

Angle = 45

Dista
nce

=8

FIG 7.39 Launch force creation process.

7.17.1 Preload State
Only images will be needed for this game. There will be an image for the
background, comet, asteroids, particles, and the foreground.

th is.load.image(‘bg’, ‘assets/images/smasherBG.jpg’);
th is.load.image(‘particle1’, ‘assets/images/comet_
particle1.png’);

th is.load.image(‘particle2’, ‘assets/images/comet_
particle2.png’);

th is.load.image(‘comet’, ‘assets/images/comet.png’);
th is.load.image(‘asteroid’, ‘assets/images/asteroid.
png’);

th is.load.image(‘fg’, ‘assets/images/
smasherForeground.png’);

7.17.2 Game State
Everything for this game is going to come in the game state, making it one of
the more simple game examples in this book, even if the end result looks like
a complex game.

7.17.2.1 Create Method
The create method does most of the important work in this game. This setup
work will be split between this create method and the resetBoard function.
The following is the create method in its entirety, and the different sections
will be examined in detail afterward.

create() {

 //object level properties
 this.pulling = false;
 this.launched = false;
 this.round = 0;
 this.score = 0;

 //start physics
 this.physics.startSystem(Phaser.Physics.P2JS);
 this.world.setBounds(0, 0, 3000, 768);

 //add game bg
 this.bg = this.add.sprite(0,0,’bg’);
 this.bg.fixedToCamera =true;

 //impulse chain
 this.forceLine = this.add.graphics(0,0);

 //create and configure comet
 this.comet = this.add.sprite(300,330,’comet’);
 this.comet.anchor.set(.5, .5);
 this.physics.p2.enable(this.comet);
 this.comet.body.setCircle(40, 140, –10);
 this.comet.inputEnabled = true;

255

Game Examples

 //setup asteroids
 this.asteroids = this.add.group();
 this.asteroids.enableBody = true;
 th is.asteroids.physicsBodyType = Phaser.Physics.

P2JS;

 //emitter
 th is.trail = this.add.emitter(this.comet.x, this.

comet.y);
 th is.trail.makeParticles([‘particle1’,

‘particle2’]);
 this.trail.start(false, 3000, 50);
 this.trail.setAlpha(1, 0, 3000);
 this.trail.setScale(0.4, 1, 0.4, 1, 4000);

 //foreground
 this.add.sprite(0,0, ‘fg’);

 //Text
 var style = { font: “30px Arial”, fill: “#FFF” };
 th is.txtScore = this.add.text(20, 20, “Round 0,

Score 0”, style);
 this.txtScore.fixedToCamera = true;

 //follow that comet
 this.camera.follow(this.comet);

 //setup game board
 this.resetBoard();
}

The start of the create method establishes several object-level properties
that will be used throughout the lifespan of the game. Pulling and launching
are the states of the comet set to true if the users are readying their throw by
tugging back on the graphic or if the comet is currently flying. The score and
round are simple numbers to keep track of the progress of the game and will
be shown in a text field later on.

//object level properties
this.pulling = false;
this.launched = false;
this.round = 0;
this.score = 0;

Next, the physics system is started. The P2 physics system has been chosen
because this game has irregular shapes and we’re looking for fairly realistic
reactions to the collisions that do occur. As an added benefit, the collisions
are processed automatically in P2, meaning there is less code to write in the
update function. The world for this game needs to extend far to the right, so
the bounds are changed to take up a much larger expanse in that direction.
This will give us space to place the asteroid targets and for the comet to fly off
toward its target.

256

An Introduction to HTML5 Game Development with Phaser.js

The first image added to the game is the background and it is then fixed to
the camera so it won’t move. This will give it a bit more of a feeling of depth
compared to the quickly moving foreground that will appear above. The last
item added is the force line graphic, which will be used to show the player
the power and direction of their launch. It is a graphic so we will be able to
draw into it using the graphic API calls at runtime.

//start physics
this.physics.startSystem(Phaser.Physics.P2JS);
this.world.setBounds(0, 0, 3000, 768);

//add game bg
this.bg = this.add.sprite(0,0,’bg’);
this.bg.fixedToCamera =true;

//impulse chain
this.forceLine = this.add.graphics(0,0);

The next game object to get configured is the comet that the player will
be throwing around. It is a sprite, and its center point is repositioned to the
center of the mass of the comet, instead of the center of just the image.
 While this won’t affect its rotations from collisions, it will be used as a
position for a particle system, so it is put in a place with enough heft that
particles would reasonably fall away from the comet at the location. After
the comet is added to the physics system (via p2.enable), its rectangular
body is replaced with a 40 pixel radius circle that more accurately represents
the shape of a comet (See Figure 7.37). This new circular body begins center
of the sprite, which isn’t quite where the comet’s mass is, so the center of
the circle is offset 140 pixels to the right and about 10 pixels upward (see
Figure 7.37). Finally, the comet is enabled for input so it can respond to the
user pressing down on it to begin the slingshot motion on the comet.

//create and configure comet
this.comet = this.add.sprite(300,330,’comet’);
this.comet.anchor.set(.5, .5);
this.physics.p2.enable(this.comet);
this.comet.body.setCircle(40, 140, –10);
this.comet.inputEnabled = true;

After the comet, the asteroid group is readied. The actual asteroids won’t
be added to the game until the resetBoard method is invoked. For now,
their group will be created and configured to add its children to the P2
world.

this.asteroids = this.add.group();
this.asteroids.enableBody = true;
th is.asteroids.physicsBodyType = Phaser.Physics.
P2JS;

The next object added to the game is a particle emitter with two particle
sprites in its potential particle pool. The sprites will grow from about half their

257

Game Examples

size and fade out during their lifespan, thanks to the setAlpha and setScale
method calls. Then the emitter is started with the first argument of “false”
forcing it to continuously emit particles. This emitter will generate particles
with a 3 s lifespan, and it will create a new particle every 50 ms. Later in the
update method, we will write some code to cause the emitter to follow the
comet as it moves, making it create a trail of debris that the ice ball leaves in
its wake.

th is.trail = this.add.emitter(this.comet.x, this.
comet.y);

th is.trail.makeParticles([‘particle1’,
‘particle2’]);

this.trail.start(false, 3000, 50);
this.trail.setAlpha(1, 0, 3000);
this.trail.setScale(0.4, 1, 0.4, 1, 4000);

Next, in the create method, the foreground is added. This sprite is not fixed
to the camera and will move quickly as the comet flies, which will provide a
sense of space and speed to the game.

On top of the foreground, the score is added with some default values to
start with. This score field is also fixed to the camera, so it will always stay in
its place as the camera moves through the game world.

//foreground
this.add.sprite(0,0, ‘fg’);

//Text
var style = { font: “30px Arial”, fill: “#FFF” };
th is.txtScore = this.add.text(20, 20, “Round 0,
Score 0”, style);

this.txtScore.fixedToCamera = true;

The last bit of the create method starts the camera following the comet
object. Just like in the platformer, the camera will follow this comet as it
moves, so long as there is space in the world for the camera to display.

Finally, the board is reset. Resetting the board will place all the objects
in their places and get the round ready for play. This is a fairly long, and
important, function that is covered next.

//follow that comet
this.camera.follow(this.comet);

//setup game board
this.resetBoard();

7.17.2.2 Reset Board
The reset board function will place the objects when the game starts and will
later be used to reset the game to its starting state after every round. Because
it resets objects after they have moved and had their statuses changed, some

258

An Introduction to HTML5 Game Development with Phaser.js

extra work needs to be done to ensure that the objects are starting from
pristine starting point. Here is the reset board function in its entirety.

resetBoard() {
 this.comet.body.reset();
 this.comet.body.rotation = 0;
 th is.comet.body.motionState = Phaser.Physics.

P2.Body.STATIC;
 th is.comet.events.onInputDown.addOnce(this.

startPull, this);
 this.comet.body.x = 300;
 this.comet.body.y = 370;

 this.asteroids.removeAll(true);
 this.asteroids.create(2800, 400, ‘asteroid’);
 this.asteroids.create(2500, 200, ‘asteroid’);
 this.asteroids.create(2200, 500, ‘asteroid’);
 this.asteroids.create(2200, 200, ‘asteroid’);
 this.asteroids.create(2600, 600, ‘asteroid’);
 this.asteroids.create(1800, 600, ‘asteroid’);
 this.asteroids.create(1600, 300, ‘asteroid’);

 this.asteroids.forEach(
 function(asteroid) {
 asteroid.mass = .7;
 asteroid.checkWorldBounds = true;
 asteroid.body.setCircle(75);
 as teroid.events.onOutOfBounds.addOnce(this.

killedAsteroid, this)
 },
 this
);

 this.round ++;
 th is.txtScore.text = “Round: “ + this.

round + “ Score: “ + this.score;

}

The first object to be reset is the comet. After it is launched by the player
and the round ends, the comet will be moving quickly, not positioned at its
starting point, and potentially rotated from its original orientation. In order
to reset it, it will be brought back to its original position (300, 370), the forces
and velocity on the body are removed by running the reset method on its
body, and its rotation is set back to zero. This will put the comet back into its
pristine state.

Unfortunately, any remaining forces on the comet body will continue to act
on it once it gets repositioned. The comet will eventually fall off screen unless
something is done to negate the actions of the forces on the comet. Setting
its body to static will cause it to be unaffected by collisions and forces. While
the body is static, it will effectively be pinned in place. This body type will

259

Game Examples

be returned to dynamic once the comet is launched. When the comet has a
dynamic body, it will be affected by gravity and will collide with the meteors
again. Also added to this comet is an event listener that will fire when a user
presses the pointer down on the comet. The handler that runs on depress will
begin the process of drawing the visualization for the force on the comet and
also start listening for the pointer to be removed from the screen.

this.comet.body.reset();
this.comet.body.rotation = 0;
th is.comet.body.motionState = Phaser.Physics.
P2.Body.STATIC;

th is.comet.events.onInputDown.addOnce(this.
startPull, this);

this.comet.body.x = 300;
this.comet.body.y = 370;

The next items to be reset are the asteroids. Here, the existing ones are
explicitly destroyed with the call “removeAll(true),” so that there is a
completely clean asteroid group to begin with when placing the new objects.
These new asteroids are placed into fixed locations that will ensure they are
not overlapping in any way. If they were not positioned this way and some
of the asteroids overlapped with each other, the physics system will attempt
to separate them once they are placed. The separation process would
unintentionally add a significant amount of velocity to the asteroids, causing
them to explode away from each other and leave the game world before the
player had a chance to hit them with the comet.

After being placed, the asteroids need to be configured. The forEach method
of a Phaser group function is used to loop through all the asteroids in the
group. For each asteroid in that group, the anonymous function will execute
with a reference to the current asteroid being passed into the function as
the argument “asteroid.” The second argument that comes after the array
comprehension function, “this,” tells the forEach to act as if it were a method
on this current state object.

Using the “asteroid” reference that is passed into the function, the square
hitbox on each asteroid is replaced with a circle that more accurately
represents the shape of the asteroids. The mass of the asteroids is also
reduced. Their lower mass means the comet will be slowed down less by any
asteroid it hits. Finally, the asteroid is set to collide with the bounds of the
world and to run a function when it exits the world space. Because the goal
of the game is to knock the asteroids out of the game space, this method is
the one that will run when the player makes a successful launch of the comet.

this.asteroids.removeAll(true);
this.asteroids.create(2800, 400, ‘asteroid’);
this.asteroids.create(2500, 200, ‘asteroid’);
this.asteroids.create(2200, 500, ‘asteroid’);
this.asteroids.create(2200, 200, ‘asteroid’);
this.asteroids.create(2600, 600, ‘asteroid’);

260

An Introduction to HTML5 Game Development with Phaser.js

this.asteroids.create(1800, 600, ‘asteroid’);
this.asteroids.create(1600, 300, ‘asteroid’);

this.asteroids.forEach(
 function(asteroid) {
 asteroid.mass = .7;
 asteroid.checkWorldBounds = true;
 asteroid.body.setCircle(75);
 as teroid.events.onOutOfBounds.addOnce(this.

killedAsteroid, this)
 },
 this
);

The final bit of the reset board method increments the game round and
updates the text on the screen to give the player some information about
how many times they have chucked the comet and the number of asteroids
that have been shoved away from the screen over the course of those rounds.

this.round ++;
th is.txtScore.text = “Round: “ + this.round +
“ Score: “ + this.score;

7.17.2.3 Start Pull Method
The start pull method is called when a player presses down on the comet.
It toggles the state’s “pulling” variable to true (which will be used in the
update function to draw the line of the force input) and starts the game
listening to when the input is released. This is the start of the press, draw
back to determine force at an angle, and release sequence of a launcher
game. Setting the pulling property to true will put the game into the “draw
state” so that the player can set the direction to launch the comet. To give
the user a sense of force and angle, setting “pulling” to true will also begin
drawing a line from the pointer’s current position to the center of the comet
(See Figure 7.38).

startPull() {
this.pulling = true;
this.game.input.onUp.addOnce(this.endPull, this);
}

7.17.2.4 End Pull Method
The end pull method, fires when the user releases their pointer (a mouse up
or pulling their finger off the screen). Because the listener is added in the
pointer down handler, this method will only run after the player presses the
input down on the comet. While the intention is for the player to press, draw
back, and release, this method actually will run if they simply tap on the
comet as well. First, the method toggles two variables that move the game
out of the “pulling” state and into the “comet-is-flying” (launched) state.

261

Game Examples

In order to send the comet flying off to the right at the force and angle the
user indicated, we’ll need some extra information about the line the user had
drawn. We’ll use Phaser’s line object to create the data for the line. Into the
line object’s constructor, we’ll pass in the current position of the user’s pointer
as the start of the line and the center point of the comet as the end of the line.

Before applying any forces, the body of the comet is changed from static
to dynamic. With its dynamic body, it will react to the forces we apply to
it and also collide with the asteroids. Then, forces are added to the object.
The forces take the amount the line is “pointing” in each direction by
getting their ratio (via trigonometric functions) and scale those amounts
upward. Using Math.sin on the angle of the line will return how much
the line is pointing in the y direction as a number between zero and
one. Math.cos will do the same, but for the x direction. These numbers
are really small, and if they alone were used as the force on the comet, it
would barely move. In order to make the force a bit stronger, these basic
directions ratios are multiplied (scaled) by the length of the line the user
had drawn. Longer lines will result in bigger forces applied to the comet.
Even if the user pulled their force back as far as possible, the comet would
not get moving very fast. There is an additional bit of scaling applied to
the forces to make that comet really soar (See Figure 7.39).

After the forces are applied, the force line that the user was drawing is
removed. The last line in this handler tells the game to wait for 5½ s and then
run the reset board function again. This gives the player that 5½ s for each
round to hit some asteroids off screen. After that timespan, the round is over
and the board is reset, ready for another launch.

endPull() {
 this.pulling = false;
 this.launched = true;
 va r forceLine = new Phaser.Line(this.input.

activePointer.x, this.input.activePointer.y,
this.comet.x, this.comet.y);

 th is.comet.body.motionState = Phaser.Physics.
P2.Body.DYNAMIC;

 this.comet.body.velocity.x =
 Ma th.cos(forceLine.angle) * forceLine.length * 6;
 this.comet.body.velocity.y =
 Ma th.sin(forceLine.angle) * forceLine.length * 2;

 this.forceLine.clear();

 th is.time.events.add(5500, this.resetBoard, this);
}

7.17.2.5 Update Function
The final bit of the gameplay code is the update method that has three
sections. One part will always execute, the other two sections only run when
the game is in a certain states (either “pulling” or “launched”).

262

An Introduction to HTML5 Game Development with Phaser.js

The first state the game can be in is the “pulling” state. This state is active
when the user is deciding in what direction and how hard to launch the
comet. While in this state, the force line graphics are cleared every update,
and a new white line is drawn from where the user’s pointer is located to the
center of the comet.

The next state, “launched,” is active while the comet is flying. For the duration
of the flight, the comet will have some gravity applied to it via the body.force.y
property. Larger numbers will pull down on the comet with a greater strength.

Finally, at any point in the game, the particle emitter is repositioned to be at
the same location as the comet. This will make the particles for the comet
follow it as it flies around the screen.

update() {
 if(this.pulling) {
 this.forceLine.clear();
 this.forceLine.lineStyle(10, 0xffffff, .8);
 this.forceLine.moveTo(
 th is.input.activePointer.x, this.input.

activePointer.y
);
 th is.forceLine.lineTo(this.comet.x, this.

comet.y);
 }
 if(this.launched) {
 this.comet.body.force.y = 270;
 }
 this.trail.x = this.comet.x;
 this.trail.y = this.comet.y;
}

7.17.3 Conclusion
With the addition of the update function, the code for Comet Crusher is
finished. Go cause some celestial mayhem and marvel at how fun a physics
sandbox can be. This example game gives you a lot of room to grow and
play with the features of Phaser and P2. Play with the numbers, especially
the masses, forces, and velocities for the game, to see how you can change
it to make it easier or harder for the player (or just more hilarious). Other
interesting areas to tackle for this game include more accurate shapes for
the models and different levels. The comet and asteroid shapes could be
made using programs like PhysicsEditor and imported into Phaser. The levels
would need to be carefully laid out like our current one is, but would give
you a chance to create more objects for the player to contend with (perhaps
including objects that have higher mass, are completely immobile, or even
explode upon impact).

263

Game Examples

http://taylorandfrancis.com

Chapter 8

Game Deployment

Once your game is complete and polished up to your standards, the next
step is to get that game out to the people who matter: the players. These
players can be just about anywhere. They just need access to a capable
device and an Internet connection. Once the user gets to the page and
downloads the assets, your game can run. Other times, perhaps for financial
reasons, it may also make sense to package a game up for distribution on
mobile app stores like Google Play or the Apple app store. Each deployment
target will differ in the issues that will need to be overcome to correctly
package the game up and ready it for deployment. The stores themselves
also have different hoops to jump through to get things properly set up.
Even when deploying to the web, the original intended deployment area
for Phaser, there is a set of optimizations and precautions that should be
taken before releasing the game to the world at large. In this chapter, we’re
going to step through the process of readying a finished game for some of
the different deployment targets of the web and app stores.

265

8.1 Web Deployment
The first and easiest way to deploy a game is to put it on the web. In order
to do this, you will need to have a working webhost that can serve the files
up when a user requests them. This is the original intended location for an
HTML5 game and is the fastest way to get your game out to potential players.

The ease of deployment comes with several drawbacks. Firstly, if it’s a game
that you are hosting on your own website, the cost to get the game to users
starts out fairly high compared to other deployment methods and will increase
significantly if the game gets popular. Secondly, due to the open nature of the
web, it will be very easy for any person who happens upon the game to get
access to all the code and assets that make up the game. While some might be
okay with their blood, sweat, and tears being stolen and repurposed in other
places across the web, many developers might be less than happy with this. If
you have a unique game and with a decent amount of polish that gets enough
notoriety, expect it to be stolen in some way. There are ways to mitigate the
damage, but it is impossible to keep your game completely locked up. One final
issue when deploying to the web is the trouble of your games discoverability.
Unlike app stores that list all the games and show new games that have been
submitted, if you just upload your game to the web and leave it there, people
will never hear about it. Any game deployed to the web will need to have some
amount of advertising and marketing to get people to come to the site, and the
methods and approaches to getting users to these pages are a set of skills that
will need practice and study beyond the scope of this book.

There are a number of affordable hosts that can easily serve a game up to
an audience, if self-hosting appeals to you as a developer. Entering “web
hosting” into a search engine will return a number of companies that will host
websites that can work as hosts for small games. Often these companies can
scale (or “up” their capabilities) a certain degree to serve games that get more
popular. However, if a game gets too popular, you may need to move to a
more robust host that is willing to devote large amounts of resources or even
dedicate a server to distribute your game files to the players.

Once hosting has been secured, the game will need to be prepped for transfer
to the server. The first issue that needs to be dealt with is that not all the files
that are in your development directory need to be transferred to the server.
The files downloaded by node package manager (NPM) are so numerous and
large that it would take an inordinate amount of time to transfer them to your
server. The two folders that need to be excluded from the final build are the
src folder (which contains the unused source code) and the node_modules
folder that contains a lot of scripts only used for the development process.
Other files that should most likely be left out of a production deploy include
the bower.json, package.json, and the Grunt file.

The second consideration before transferring files to the web server is the
state of the game’s code. In order for a game to run correctly on a user’s
machine, all of the code will be transferred to from the server to the client
machine. With our current Grunt build script, this code is generated with a

266

An Introduction to HTML5 Game Development with Phaser.js

bunch of whitespace and comments that are lovely for developers but are
unnecessary for a final file to run. Most JavaScript files that are transferred
across the web are modified to remove any unnecessary characters that
aren’t required for the script to run. This process, called “minification,”
winds up making a file that is difficult to read but has a small file size that
gives your game a quicker load time and a lower memory footprint. While
the minification process makes the code hard to read, it doesn’t make it
impossible for others to reverse engineer your code.

Why Back Ends

Many HTML5 games have “back end” portions of the game that are only
run on the server. While it may be frustrating to the player that they
cannot play this game offline, it makes a lot of sense for the developer to
create a game with a back end. This back end code is never transferred
to the player’s machine and that makes it somewhat more difficult for
nefarious individuals to reverse engineer the game.

While it is possible to go through all these actions by hand, it will quickly
become a pain to remove files and minify Javascript manually to make a final
build. Thankfully, these are all tasks that Grunt can automate. Throughout this
book, Grunt has been stuck running our development task, but it can actually
run many different tasks for different use cases like building a final project.
Knowing that the project needs to be cleaned up and minified, we’re going to
add a few more packages and one new task to the Grunt file. Once configured,
the command `grunt build-productioǹ entered in the command
prompt in the project root will make a final build of your game to a fresh folder.

8.2 Creating the Grunt Production Task
(Note that if you’re using the Yeoman generator, you only need to skim this
section to understand how the project works.)

We’re going to head back to the command prompt in the project root and
then into the Grunt file to create a new task that can move all the essential
files into a new folder that can be easily deployed. The new packages that will
need to be downloaded are the clean, uglify, and copy commands. In
your command prompt at a project root, execute these commands.

npm install grunt-contrib-copy --save-dev
npm install grunt-contrib-clean --save-dev
npm install grunt-contrib-uglify --save-dev

Once these three packages have been added to your project, the Gruntfile.js
needs to be configured to be able to run these tasks to export a “clean”
version of the game. There are two additions to the Grunt file: the new
package configurations and the new command.

267

Game Deployment

The configuration comes first. Add a comma after the connect task, and add
these new lines of configuration for the new packages.

copy: {
 build: {
 files: [
 {e xpand: true, src: [‘assets/**’], dest:

‘build/’},
 {s rc: [‘index.html’], dest: ‘build/index.

html’}
]
 }
},
uglify: {
 build: {
 files: [{
 expand: true,
 cwd: ‘scripts’,
 src: ‘**/*.js’,
 dest: ‘build/scripts’
 }]
 }
},
clean: {
 build: [“build”]
}

Note that all of these new commands have the “build” property inside
of their configuration objects. This specifies to Grunt that this particular
configuration of the package should only be run when Grunt is run with
the “build” command (typing “Grunt” into the prompt will not run these
packages, but “Grunt build” will).

8.2.1 Clean
Clean is a fancy term for “delete.” For this particular command, the final
export will be pushed to a folder named “build.” To ensure that nothing is left
in an export of your project from a previous build, everything is wiped away
from the export directory before the new build is copied over.

8.2.2 Copy
The copy command will copy files from one folder to another. It is configured
to copy all the files from the entire assets folder (and its subfolder) to the
build directory. It will also copy the index HTML file into the build root.

8.2.3 Uglify
The final task to configure is uglify. This is the task that takes a JavaScript
file and removes all the unnecessary whitespace and comments from it and
generally makes it as small as possible. It comes with the option of doing

268

An Introduction to HTML5 Game Development with Phaser.js

some simple obfuscation which will make your code somewhat harder to
steal and modify. This script is set up to work its magic on every file in the
scripts folder, so the Phaser script and any plugins installed via bower will also
go through the transformation if they weren’t already minified.

8.3 Build Task

grunt.registerTask(‘build’, [‘clean’, ‘bower’,
‘copy’, ‘uglify’]);

This task should be added right beneath the main Grunt task. It runs the tasks
in the order they are specified in the array, starting with the clean task to delete
any old files and folders from the previous build. The Bower command executes
next to make sure to bring any new front-end packages over to the scripts
folder. Then the html and assets folder are copied into the build direction.
Finally, all the scripts are minified and placed into the build/scripts folder.

The last step of this process is to actually run the task. This is done in the
command prompt at your project root by entering this command.

grunt build

This second argument will tell Grunt to run our configured build script
instead of the main Grunt command. You will need to enter this command
every time you want to build a final export of your game. The resulting ‘build’
folder will contain the contents that you will need to upload to a web server
in order for your audience to be able to play your game.

8.4 App Deployment
It is common to build HTML5 games as “hybrid” apps. These hybrid applications
are games or media that were built with web technologies but packaged up
and distributed as applications for mobile devices. There are some advantages
to making hybrid apps. When working with web technologies, one doesn’t
need to invest in the specific technologies that each operating system
requires—Java for Android and Objective C for Apple devices. The apps that
are made with web technologies are, to a certain extent, cross-compatible with
all of those devices. Perhaps more important for game developers, more and
more people use their phone’s app stores to discover and play games. While
marketing will still be necessary for a game on the app stores, it will at least be
in a place where people know to look for it.

Not everything is rosy when it comes to hybrid application development.
A major drawback to this approach is that HTML5 games are not terribly
efficient. Even with the best optimizations, there is still a significant
gulf between JavaScript and native code performance. Users of these
apps won’t care what was used to build the game. They will expect
app-like performance and will be unhappy if the game does not meet

269

Game Deployment

those expectations. A second issue with creating a hybrid application is that,
while HTML5 is supposed to be write-once run-everywhere, it is never the
case that the code will be cross-compatible for every device. Testing will still
have to be done with different devices, and device-specific fixes may have
to be added into the code, which has a tendency to produce some ugly and
difficult to read scripts.

The two most common technologies used to create hybrid applications are
Apache Cordova and Ludei’s CocoonJS. Both of these will wrap up HTML,
Javascript, and CSS and place them into an app file that will run on the major
mobile operating systems. Each has a different community of support and
different goals for the usage of the generated hybrid applications. In general,
CocoonJS is the best choice when making games because Ludei is focused
on making the best wrapper for HTML5 games, not just HTML5 apps in
general.

Cordova is most commonly used to make apps that are not meant to be
optimized gaming experiences. Instead if focuses on creating an easily
managed app experience for text and limited graphics. It gives the developer
access to more of the mobile device’s capabilities and strives to make the
display and transitions between pages fluid and quick. There are guides
for building applications with Cordova at https://cordova.apache.org/. To
get Cordova working on your computer, you will need to install a set of
Node packages and other programs on your computer. For those that don’t
want to go through the process of setting up and using the build tools on
their command prompt, Adobe hosts PhoneGap (a variant of Cordova) at
https://build.phonegap.com/. PhoneGap gives web developers the capability
to upload a zip file of their project to Adobe’s servers, which will turn that zip
file into app files with only minimal setup. The simplicity of the process does
come with a cost and you’ll have to pay to compile more than one app when
using Adobe’s build servers.

CocoonJS is another hybrid app creator that is built to do hybrid game
creation. Like Cordova, Cocoon will wrap your code into a small web browser
that displays your game when your app is launched. Unlike Cordova, Cocoon
has a specialized build of a browser that takes out a lot of the capabilities
that an HTML5 game would not need and optimizes the browser for WebGL
graphics rendering. The easiest way to create a game using Cocoon is to
make use of their build servers at https://cloud.ludei.com.

8.5 Testing with CocoonJS
Before building your final application, you may need to do some testing on
the mobile device to make sure everything is working as intended. Because
Cocoon runs on a modified version of a normal web browser, there is always
a chance that something will go wrong. To help you test, the CocoonJS
team has created an app called the “Cocoon JS Launcher” that will let you
test your game without having to actually build an application file. The
development project files can be placed either on the phone’s file system or

270

An Introduction to HTML5 Game Development with Phaser.js

https://cloud.ludei.com
https://build.phonegap.com/
https://cordova.apache.org/

on the web for the launcher to find. The launcher is currently available for
the Android, Apple, and Amazon app stores.

The first step in the testing process is to register an account at https://cloud.
ludei.com/. This account will be needed to log into the Cocoon launcher, so
take note of the username and password you create.

To start testing, either FTP your project to a website or place the files onto
the file system of the device you want to test. With the files placed and an
account registered, it is time to download and install “Cocoon JS Launcher”
from your device’s app store. After launching the Cocoon JS launcher, click
on the “your app” button and log in. You can either then enter the URL of
the index html file on the web or point the app to the files on the phones
file system. Three buttons enable testing on a normal webview, a webview+,
and a canvas+. Exiting and returning to this view can allow you to reload the
game files.

• Webview is the closest to running a game in a normal web browser.
It has all the bells and whistles of a web browser, including the DOM and
CSS processing. It will use the device’s built-in web browser to display
the game (but without the look of a browser, so the user can’t tell they’re
actually inside of a webpage).

• Webview+ is Cocoon’s customized browser that includes a few
optimizations meant to speed up games. Because it is Cocoon’s browser,
it gives a game developer a standard deploy target, so they don’t need to
deal with the quirks that exist across the different browsers and devices.

• Canvas+ is a specialized view that runs by default in a WebGL context. This
view does not have any DOM surrounding the game, only a canvas to draw
graphics. It is a very fast mode, but UI will have to be done strictly within
the game.

In general, it is good to go with Canvas+, so long as your game doesn’t run
into any issues with testing. The Canvas+ view does not actually work with
Phaser’s WebGL because it will only speed up 2D canvas calls using its custom
implementation of a WebGL canvas. When building a game for this view, make
sure to set Phaser’s render mode to CANVAS when creating the game object.

8.6 Debugging Cocoon Apps
There are several approaches to debugging CocoonJS Javascript applications,
some of which are included on the launcher and others on your browser.

The first way to debug an app is to use the built-in tools in the launcher.
There is actually a pretty nice suite of tools for testing and evaluating game
performance that is included with the CocoonJS launcher. They can be
accessed by clicking on the FPS icon at the upper left corner of the screen when
running a game in the launcher. This will launch a view that is similar to a web
browser console. This view shows different outputs from the console, along
with specific errors and warnings from the Cocoon application. There is also

271

Game Deployment

https://cloud.ludei.com/
https://cloud.ludei.com/

an additional profiler tab that will export information about memory usage
throughout the game. This will help to narrow down areas that might be major
problem points in your application, whether it is a sprite, a tween gone wrong,
or some objects that were not getting properly cleaned up (see Figure 8.1).

Another option that can be used to debug any app running on a Chrome
web browser on an Android device is to use Chrome’s remote debugger.
This will let you debug any instance of Chrome open on your device that
is attached via USB. Unfortunately, Android phones are not set up for
debugging over a USB cable by default. In order to enable this option, open
up the phone’s settings and find the build number of the phone (typically
under “about device,” which sometimes can appear in a submenu). Tap on
this build number seven times, and the developer options will be enabled.
Inside the developer options menu, there is a toggle for USB debugging.
Activating that option will let you phone debug applications over USB.
Now, once the device is attached and the game is playing in Cocoon,

272

An Introduction to HTML5 Game Development with Phaser.js

FIG 8.1 Cocoon JS debugger.

open up the Chrome web browser on your desktop computer and type
“chrome://inspect” into the browser address bar. This will open up a listing
of all attached devices and the chrome pages that can be debugged
(including your game). Clicking on the “inspect” button of any of the
attached Chrome pages will open up Chrome’s basic web console for that
Chrome instance, along with all the tools you are used to having in a web
developer console (see Figure 8.2).

Can’t See Your Device?

Sometimes Chrome isn’t properly set up to discover USB devices on a
computer. If this is the case for you, a few more steps will be necessary to
get the whole thing up and running properly. You will need to manually
run the “Android debug bridge.” The first step is to download and install
the Android SDK tools from https://developer.android.com/sdk/installing/
index.html.

Once installed, find the folder with the “adb” executable and run that file.
Inside of the and prompt, type in “devices” to start the debug server. Now
that the server is started, you should be able to find your device’s pages in
the chrome://inspect tab.

8.7 Building with Cocoon JS
With the game finished, tested, and polished, the final step is to actually
build the mobile packages. There are different packages that will need to
be built for the different app stores and each needs to be configured before
the app can be built and deployed. In order to build your final apps, you can
either use the command line tools provided by Ludei to create and package
the app, or use the cloud build tools. The second method requires going to
Ludei’s site and uploading files to their servers to take advantage of their
preconfigured build systems. Which approach you take depends on whether
you prefer the convenience of the cloud or whether you would rather keep
your entire process to yourself.

273

Game Deployment

FIG 8.2 Using the chrome device inspector.

https://developer.android.com/sdk/installing/index.html
https://developer.android.com/sdk/installing/index.html

8.7.1 Using the Cocoon Cloud Build
In order to use the cloud build system, you will need to head to https://cloud.
ludei.com and log in using your CocoonJS credentials. Once you do, you
should be presented with a view that looks similar to Figure 8.3.

 Clicking on the “new project” button will start the process of creating a new
app. The next screen is a series of options that are generally shared between
all of the app stores. Once the project is created, there will be a chance to edit
more of the specific properties for the different targets of iOS and Android.
These basic options include the following:

Name: You should enter the full name of your app.

Bundle id: This comes in reverse-URL format, typically starting with a “com.”
In general, the id is named according to this template: “com.companyName.
projectName”.

Version: A version number. If you don’t know where to begin with
versioning, start with a “.1” or “.0.1” and work your way up from there. Every
update of your game that you push to the store will need to have its version
number changed to be larger than the one that is currently on the store, so
make sure to change this version number when making a new build of your
app with any updates.

Orientation: This is the orientation of the application that should be
displayed in. For most games, this will always be of the same value (either
portrait or landscape left).

Scale method: This method defines how the application will scale to take
up the different ratios of the screens. This is done automatically and does
not interact with Phaser scaling, so if you want to use Cocoon’s scaling, you
will need to take some time to play around with the settings and see how it
interacts with your game.

Splash scale method: This is the same as the aforementioned orientation
field but applies to the splash screen that appears while the application is
launching and being initialized.

274

An Introduction to HTML5 Game Development with Phaser.js

FIG 8.3 Location of the new project button for cocoon.

https://cloud.ludei.com
https://cloud.ludei.com

Once you fill in your application information, you will be presented with the
“compile project” page. In order to compile your project, you will need to zip
up your project folder and upload it to this site. Because of the file size limit
of the upload, it will be impossible to upload the original project due to the
number of Node package files that are sitting in your project directory. You
will need to follow the instructions in the “building for web” section that
covers how to make a final, clean export and zip up that exported folder to
upload to this site to be built into the final application files. This is also the
page you can return to create new version of your application.

If you are using the free plan, your project will be limited to thirty megabytes
in total, so make sure to keep your assets and file sizes minimal. Once your
zip file is uploaded, select the platforms you want to deploy to and hit the
“build button.”’ The build will start after a few minutes (based on resource
availability and the status of your user account). When the build completes,
your mobile app files will be sent to your email address you provided when
registering for the CocoonJS services. The files that you get from the cloud
build platform are ready for testing on a device, but not yet ready to submit
for display on the stores.

If you are targeting iOS you will need to open the generated IPA
application files up in a program named XCode (Apple’s developer
program available on the app store) and configure XCode to install the IPA
on your apple device. The process of getting the app to run on that device
is call provisioning, and it is a multiple-step process where you provide
information about the game you are making, the computers you are using
to build the game, and the devices you want to test the game on. Once you
provide all this information, Apple will generate a file that will authorize
your computers and devices (and only the ones you registered) to build
and run your game. These provisioning files can only be created by Apple
developers, so you will need to sign up for their developer program at
https://developer.apple.com and pay their yearly enrollment cost. The
developer portal will have detailed instructions on how to generate these
provisioning files and install applications to your device.

For Android, the cloud build platform will email APK files. The first is a
debug application file. This is an APK that can be installed on any Android
phone giving you the ability to test on any device that is set up to allow
unsigned applications. This file can even be uploaded to the web and
shared with anyone who downloads it via the link. Unfortunately, that
debug APK will not be accepted when submitted to the Android app store.
The second APK is an unsigned application that can be uploaded to the
app stores after it goes through a verification process that acknowledges
that the application was created by the developer who has uploaded it.
This verification process is called signing and is typically done using
command line tools. Before you can upload your app to the app store, you
will need to sign up for a Google Play developer license. At this time, the
license is a one-time fee that grants access to the ability to upload as many
applications as one desires.

275

Game Deployment

https://developer.apple.com

8.7.2 Using the Cocoon Command Line Tools
Cocoon’s command line tools wrap Cordova’s tools. The process of
working with the tools and many of the commands entered into the
prompt are the exact same as Cordova’s. The major advantages of using
Cocoon over Cordova’s command line tools include the ability to keep your
whole build process on your own development machine, access to the
cloud API build provided by Ludei, and access to all of the Cocoon plugins
for your game.

8.7.3 Configuring the Cordova/ Cocoon Command Line Tools
Unfortunately, for the Cordova tools to work properly the development
environment you will need to configure the development environment
for each target. The Android and Java developer tools will need to
be present for Cocoon to be able to build Android games. For iOS
games, XCode will need to be installed and you will need to have your
provisioning ready to go.

You will need to have NPM and Node.js installed on your computer to get the
Cordova/Cocoon tools. Assuming NPM is installed on your computer, these
are the steps that need to be followed in order to get the Cocoon command
line tools ready:

 1. Install Cordova tools via `npm install cordovà .
 2. Configure Cordova to build your target platform.
 3. Install Cocoon js tools via `npm install cocoonjs̀ .

8.7.3.1 Configuring the Command Line Tools for Android
In order to get the Cordova tools set up for Android, the tools for standard
Android development need to be downloaded, set up, and installed.

The primary tool for Android development is the Android SDK, which can be
found at https://developer.android.com/sdk/installing/index.html?pkg=tools.
Before you can install the SDK, you will need to install its dependency, the
Java Developer kit (or JDK). The JDK can be found at http://www.oracle.com/
technetwork/java/javase/downloads/index.html. Once the JDK and SDK are
downloaded and installed, make sure the JDK bin folder and the Android
SDK’s tools and platform-tools are in your computer’s path variable, so the
Cocoon tools can invoke them from the command prompt.

8.7.3.2 Configuring the CLT for iOS
In order to use the command line tools for iOS, you will need to get an Apple
Developers license from www.developer.apple.com (it will cost around a
hundred dollars, yearly). Once you have the license and are able to log into
the developer portal, download and install the XCode command line tools.
With these tools installed, Cordova will be able to build iOS applications from
your command line.

276

An Introduction to HTML5 Game Development with Phaser.js

https://developer.android.com/sdk/installing/index.html?pkg=tools
http://www.developer.apple.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

The Most Up-to-Date Configuration Methods

Technology moves fast and there is a chance that the way Cordova is
configured has changed since the time of this writing. If something isn’t
going quite as planned when following these directions, the Cordova
docs will most likely still have the most up-to-date information on its
setup and configuration. The docs for the most recent version can be
found on the webpage http://cordova.apache.org/, under the section
“documentation.”

8.7.3.3 Building an Application File
Once the Cordova and Cocoon command line tools have been installed and
configured, the next step is to build the application files. This is done by
creating a project folder via Cocoon, specifying the deploy targets that you
want to build for and adding the webview+ plugin (which is that custom
version of Chrome that runs on every device) to the project. Once everything
is properly configured, the command “cocoon run” will build the application
for you. This will take a few moments, so be patient.

cocoonjs create MyProject com.ludei.test LudeiTest
cd MyProject
cocoonjs platform add android
cocoonjs plugin add com.ludei.webview.plus
cocoonjs run

8.7.4 Creating an App Store Ready Package
Once you have your unsigned APK or an IPA without a deploy provisioning
file, there is only one last technical hurdle that needs to be jumped before
the app can be submitted to the store directories. Each app will have to go
through a signing process to verify you are the one who built and readied
this app for the store.

8.7.4.1 Signing for iOS
Creating the final application for iOS requires a new provisioning file to be
created and used to sign the final application. The process is nearly the same
as it is for creating the debug provisioning file. Follow the directions on the
Apple Developer portal related to creating a deployment provisioning file
and use it to sign the application in XCode.

8.7.4.2 Signing for Android
The process of signing an APK for release in Android requires you to create a
key that is unique to you. This key will be stored in a “.keystore” file in which
you should keep in a safe place where no one else can get to it, and you can’t
lose it. If you lose it, you will not be able to upload the updated versions of
you game in the future. You will need to use that key to sign your APK using a
tool called jarsigner.

277

Game Deployment

http://cordova.apache.org/

1. Create a key and a keystore. Entering this command into your prompt
will have you generate a keystore and a key (you will need to create
passwords for each). This particular key will be valid for 10,000 days, and
will be stored in a file called my-release-key.keystore in the folder
where you executed this command.

keytool -genkey -v -keystore my-release-key.keystore
-alias alias_name -keyalg RSA -keysize 2048
-validity 10000

2. Sign APK using jarsigner and the key you just made in that
keystore. This command assumes that the key and your app are
in the same folder. You will need to enter your keystore and key
passwords.

jarsigner -verbose -sigalg SHA1withRSA -digestalg
SHA1

-keystore my-release-key.keystore my_application.apk
alias_name

8.8 Conclusion
Once you have built an application for a device, tested it, and signed it, you
are ready to submit your game to the stores. Each app store has its own
submission and management process that is typically described and detailed
in their respective developer portal’s help and documentation sections.
In general, for each app store, you will need to upload some additional
information for the application, including the app description, images
of the app in use, and the application icons to be used in the store. After
submission, your game will be reviewed. If your game is not breaking any
of the app store rules, your game will be accepted into the store and placed
onto the market for others to download to their devices and enjoy. Where
you take it from there is up to you. If you go to update your app, remember
to have your key on hand and to increase the version number to something
higher than it was before. Putting your games onto the app store may feel
like a big step, but in the end it is simply a small move into the larger world of
game development.

278

An Introduction to HTML5 Game Development with Phaser.js

Chapter 9

Conclusion

Through the course of this book, you have learned about new and upcoming
features of JavaScript and another execution environment of Node and NPM,
which are robust tools that just about any modern web developer will have
on their computer. You played with the Grunt task runner that you can use
to customize your project workspace to work for you (or you can find others
who have done this already via Yeoman). Your introduction to these tools
was in the context of making games using Phaser, an ever-evolving library
built for making spectacular HTML5 games that work across a range of
devices. As you progressed through the examples, hopefully, you finally got
a good taste of what it takes to make a game in this particular environment.
The HTML5 game development world is a challenging one because it is
still in a state of flux and evolution. Even as you read this book now, new
approaches, techniques, and tutorials will have been released on the Internet
that cover Phaser or other HTML5 game engines. Even Phaser itself will most
likely be updated and will probably even receive updates if you keep working
with it past the scope of this book.

The pace of the web is fast but the rewards for working with web
technologies can be worth it. Though the technologies presented in this

279

book may seem complex, they will become easier and give you access to a
toolset that has broad applications beyond just video games. While in the
future you may move on to find new approaches and techniques that you
prefer for making video games in HTML5, I hope that this book served as a
good introduction to the production of web-based games that you can rely
on to get working quickly.

One of the problems that game developers have is finding the right tools
to express themselves with. We have so many technologies we could use to
implement all of the cool ideas we have in our heads, and we take forever
to start because we feel like we need to choose the latest, greatest, and
most perfect technology for our applications. This is true to a point, but the
paralysis of choice is lost time—time that could be spent making games.
Sometimes you don’t need the latest and the greatest. You need that familiar
tool that feels good in your hand, and this book has hopefully given you
that familiarity. Now that you’re hopefully filled with energy and confidence,
it is time to return to the reasons you picked up this book in the first place.
Before you get distracted again, Start a project now, before a new and shiny
technology distracts you again. Go make some new art. Go write some code.
Go make games.

280

An Introduction to HTML5 Game Development with Phaser.js

Index

A
addOnce method, 123
add.sprite method, 52
Adobe Dreamweaver, 25
Ahead-of-time (AOT) compilation,

8–9
App deployment, 269–270
App.js

create method, 255–258
end pull method, 261–262
forEach method, 260
preload state, 255
reset board function,

258–261
start pull method, 261
update method, 262–263

Application programming interface
(API), 2–3, 9

App store ready package, 277–278
Arrow hit enemy method, 222
Asteroid, 260–261
Asynchronous module definition

(AMD), 31
atlasJSONArray method, 70
atlasJSONHash method, 70

B
Babel, 12, 31–32, 34
Babelify, 12, 31–32, 34
Bower, 29–30, 34, 38
Browserify, 30–31, 36–37

C
Cascading Style Sheet (CSS)

specification, 9, 45
Chakra engine, 8
CocoonJS, 4

cloud build system,
274–275

command line tools, 276
Cordova tools, 276–277
debugging, 271–273
signing process, 277–278
testing, 271

countDead methods, 129
Create method, 60

D
Damage enemy method, 160
Damage player method, 161
Document object model (DOM), 9

E
ECMAScript, 31
ECMAScript 6, 34, 124
80’s Tech Slicer, 236–237
End pull method, 261–262
Enemy prefabs

shooting, 153–154
sinusoidal motion, 151–152

F
Finite-state machine (FSM), 58–59
Flash Player, 7–8
ForceOrientation method, 235–236
forEach method, 260
Frame drop

G
game.add.existing method, 126
game.add.group method, 62
game.add.sprite methods, 62
Game developers, 3, 5
Game loop, 19
Game prefabs

create method, 157–159
damage enemy method, 160
damage player method, 161
enemy

shooting, 153–154
sinusoidal motion, 151–152

imports, 156–157
increment wave method, 159–160
player

character, 145
firing, 146–148
health value, 148–150
motion, 145–146
playFly event handler, 146

update method, 159–160
user interface

healthbar, 155–156
score field, 154–155

Game state
code implementation, 161–164
tiled, 166–173
wrap up, 165–166

Gestures
absolute pixel values, 227
apply force off-center, 229
create method, 230
screen shot, 228
screen sizes, 226, 227
slicing gameplay, 225
speed and velocity, 231–232
stages, 226
substantial distance, 225
SwipeHandler, 229
update method, 230–231
up handler, 232

getFirstDead methods, 130
Goal method, 223
Graphical speed, 9
Graphics processing unit (GPU), 3
Ground Fox Platformer

advanced techniques, 194
app.js, 174
game over state, 193–194
game state, 185
level layout, 173–174
level state

code implementation,
185–187

constructor, 187–191
hit coin handler, 193
hit door handler, 192–193
hit enemy handler, 192
update method, 192

mouse prefab
code implementation,

181–182
constructor, 182–183
update method, 183–184

player character
animation controller,

179–180
code implementation,

175–177
constructor, 177–178
flash method, 181
jump method, 180–181
update method, 178–179

281

preloading, 174–175
UI components, 184–185

Grunt file
Babel and Babelify, 34
Bower files, 34
command prompt, 33
file creation

build script, 269
clean command, 268
copy command, 268
uglify command, 268

Grunt connect, 33
gruntfile.js, 34–35
grunt.initConfig

Bower task, 38
Browserify task, 36–37
connect task, 37–38
watch task, 37–38

installation, 32
loading tasks, 39
module.exports, 36
registering tasks, 39
testing, 39–40
watch, 34

H
HTML5 games

engines, wide selection of, 10–11
structure of, 13–14
tools, 12–13
web browser

asm.js technology, 9
Chakra engine, 8
code execution, 8
CSS, 9
Flash Player, 7–8
graphical capabilities, 8
Java applets, 7
Mozilla, 9
Nitro, 8
optimizations, 8–9
3D canvas, 9
2D canvas, 9
WebGL, 9

I
Increment wave method, 159–160
Init method, 60
Integrated developer environment

(IDE), 25
Isometric games

depth sorting, 202
grid locations, 202–203
screen position, 201–203
tile sizes, 202

J
Java applets, 7
JavaScript (JS), 1
Just-in-time (JIT) compilation, 8–9

L
loadPolygon method, 113

M
Math.random(), 51

N
Nitro, 8
Node.js, 12, 25
Node package manager (NPM), 266

O
OpenGL 2.0, 9
Overlapping objects, 200–201

P
P2

basic objects add, 111
colliders, 110
collisions, 114–116
complex objects add, 112–114
compound objects built, 111–112
constraints, 116–118
contact materials, 118–120
debugging, 111
setting up, 111

Pathfinding algorithms
basic pathfinder, 205–206
easy star, 207
Euclidean distance, 206
Manhattan distance, 206
path walker, 208–209
working principles, 207–208

Phaser isometric plugin
hardcoded paths, 204–205
pathfinding algorithms, 205–209

Phaser.js, 12–13
Phaser principles

animation
art, 135–136
frame by frame, 131
keyframed animation, 131–132
ratio sizes, comparison of,

131, 134
rigs, 134–135
software, 135

texture packer, 131, 133
tween, 131–132
visual detail, loss of, 131, 134

arcade physics
angular velocity and bounce,

109–110
axes-aligned bounding

boxes, 103
bounding boxes, 103–104
collisions, 104–107
drag and world bounds, 109
gravity and immovable

objects, 107–109
quad tree, 104

aspect ratio, 137
asset cache, 64
bodies, 102–103
camera, 63–64
displaying load progress, 65
display list, 61–62
exists flag, 127–128
features, 55
game loop, 56–58
game world, 62–63
image, 66
input

gamepad, 74–76
keyboard, 72–73
pointer, 73–74

maps
graphs, 81, 83
numerical, 81–82
platformer environment,

81–82
scenes, 81, 83–85
tilemap, 81–82, 86–88
tween, 81, 83

object pooling, 129–131
P2

basic objects add, 111
colliders, 110
collisions, 114–116
complex objects add,

112–114
compound objects built,

111–112
constraints, 116–118
contact materials, 118–120
debugging, 111
setting up, 111

particle system
area emitters, 122
burst emitters, 121–122
components, 120–121
game.add.existing

method, 126
history of, 120

282

physics systems
forces, 99–101
phases of, 101–102
velocity, 93–98

prefab
creation, 126
ECMAScript 6, 124
game object, 124–125
in multiple scenes and

projects, 124
UI, 124, 125–126

preloading phase, 65
signal

add/addOnce methods, 123
custom signal, 123
event handlers, 123
function, 122
listener remove, 124
parts, 123

sound
audio compression, 78–79
audio formats, 77–78
audio loudness change, 77
audio sprite, 76, 79–81
loading music and sound

effects, 76–77
play, 77
sound-encoding

workflow, 76
sprites

camera, fixed to, 69
lossless formats, 66
sprite sheets, 67–69
static, 67

states
creation, 60
flow, 60–61
FSM, 59
title screens creation, 58

texture atlases, 69–70, 136–137
tile sprites, 70
tweens

animation, 88
chain, 91–92
easing functions, 90–91
properties, 90
syntax, 89–90

Phaser project setup
app.js, 45

boot state, 45–46
code, 44
Phaser.AUTO, 44
preload state, 46–48

html, setting up, 44
simple game

assets, getting and
loading, 49

cloud busting game, 49
gameplay, 50–53
Grunt script, 49

Pixi.js, 13
Player prefabs

character, 145
firing, 146–148
health value, 148–150
motion, 145–146
playFly event handler, 146

R
removeAll method, 123
Reset board function, 258–261

S
Scale method, 274
setText function, 21
Shoot ‘em up (shmup)

character sprite sheet, 142
design, 141
game over screen, 144
image frame, 142
preload phase, 143–144
scaled down healthbar, 143
sinusoidal motion, 142
start and end screens, 144

Shutdown method, 61
Simple game

collision handlers, 21
goals, 15
html, setting up, 16–17
images, 16
phase creation

arrow keys, setting up, 19
game.add.sprite, 18
Phaser.Game setup line, 18
player and cat, setting up,

18–19
score text add, 19

Phaser project setup, 16
assets, getting and

loading, 49
cloud busting game, 49
gameplay, 50–53
Grunt script, 49

preload phase, 17–18
setup, 15–16
testing, 22
update phase, 19–21

Sinusoidal motion, 151–152
Skeleton shootout design

asset pack, 209–210
features, 209
game state

arrow hit enemy method, 222
arrows group, 218
enemy group, 218
goal method, 223
imports, 215
isoChars group, 218
isometric world, 216–218
miscellaneous setup, 216
pathfinder setup, 219
play with numbers, 223
spawn enemy method, 222–223
spawn gate run, 220
state-level properties, 215–216
update method, 220–222

prefabs
humans, 211–213
number box, 211
skeleton, 213–215

slicer game, 224
tilemap, 211

Slicer
aspects, 251–252
boot state, 238
CSS file, 237–238
game state

constructor, 243
create method, 243–244
device sprite, 239–241
hit method, 246–249
imports, 242
responsive UI, 245
segment life, 245–246
spawning waves, 244–245
unique prefab, 241–242
update method, 248–251

HTML file, 238
launcher game, 252–254
preload state, 238–239

Spatial Cues, 195–201
Spawn enemy method, 222–223
Spawning waves, 244–245
Splash scale method, 274
Stage scaling

callback and positioning
elements, 234–235

challenges, 233
forceOrientation method, 235–236
resize zones, 236
scale modes, 233–234

Start pull method, 261

T
Three dimensional (3D) canvas, 2, 9
Tower defense style game, see

Skeleton shootout design
Two dimensional (2D) canvas, 2–3

283

U
Update method, 51, 192, 220–222,

262–263
User interface (UI), 124–126

healthbar, 155–156
score field, 154–155

V
Velocity

acceleration effect, 94
bounce height, 95
bounding boxes, 96
component forces and final

combined force, 93
definition, 93
distance constraints, 98
drag values, 94–95
game space, division of, 96
lock constraints, 98

physics editor shape space, 97
physics impact, transferring

motion from, 95
polygon, 97, 98
revolute constraints, 99
spring constraints, 99
subcomponents per axis, 93

W
Web browsers

Google, 2
Microsoft, 2
Mozilla, 2, 9

Web deployment, 266–267
Web development, 4–5
Web graphics library (WebGL), 3, 9
Workspace setup

Babel and Babelify, 31–32
basic project, 32–34
Bower installation, 29–30

Browserify installation, 30–31
command prompt

directories changes, 27
entering commands, 27
flags and arguments, 27–28
folder open, 27–28
IDE, 25
location, 26
Node and npm installation, 28
terminal, 26
viewing directory content, 27
Windows, 26

development speed, 24
git installation, 25
Grunt file, 33–40
node package manager, 28–29
Yeoman, 41

Y
Yeoman, 41

284

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Author
	Chapter 1: Introduction
	1.1 Web Technologies
	1.2 Important Advancements
	1.3 Where Games Are Played
	1.4 Web Development in the Modern Day
	1.5 Who This Book Is For

	Chapter 2: State of HTML5 Games
	2.1 Growth of the Interactive Capabilities of a Web Browser
	2.2 Wide Selection of HTML5 Game Engines
	2.3 Tools
	2.3.1 Phaser.js

	2.4 Basic Structure of an HTML5 Game Project

	Chapter 3: A Simple Game
	3.1 Game Goals
	3.2 Setup
	3.3 Getting Phaser
	3.4 Getting the Images
	3.5 Setting Up the html
	3.6 Preload Phase
	3.7 Create Phase
	3.7.1 Setting Up the Player and Cat
	3.7.2 Adding the Score Text
	3.7.3 Setting Up the Arrow Keys

	3.8 Putting the Gameplay in the Update Phase
	3.9 Collision Handler
	3.10 Testing

	Chapter 4: Workspace Setup
	4.1 Installing Git
	4.1.1 Node.js

	4.2 Command Prompt
	4.2.1 Opening the Command Prompt
	4.2.1.1 Windows
	4.2.1.2 Macintosh

	4.2.2 Command Prompt Navigation
	4.2.2.1 Location
	4.2.2.2 Entering Commands
	4.2.2.3 Viewing Directory Content
	4.2.2.4 Changing Directories
	4.2.2.5 Quickly Opening a Folder in the Command Prompt
	4.2.2.6 Command Prompt Flags and Arguments
	4.2.2.7 Command Prompt Hints

	4.3 Node Package Manager
	4.4 Installing Bower
	4.5 Installing Browserify
	4.6 Babel and Babelify
	4.6.1 Installing Grunt

	4.7 Setting Up a Basic Project
	4.7.1 Getting Ready
	4.7.2 Getting the Grunt Packages
	4.7.2.1 Local Grunt
	4.7.2.2 Grunt Connect
	4.7.2.3 Grunt Watch
	4.7.2.4 Copying Bower Files to the Project
	4.7.2.5 Babel and Babelify

	4.8 Writing the Grunt File
	4.8.1 module.exports
	4.8.2 grunt.initConfig
	4.8.2.1 Browserify Task
	4.8.2.2 Watch Task
	4.8.2.3 Connect Task
	4.8.2.4 Bower Task

	4.8.3 Loading Tasks
	4.8.4 Registering Tasks

	4.9 Testing Grunt
	4.10 Installing Yeoman
	4.11 Conclusion

	Chapter 5: Phaser Project Setup
	5.1 Setting Up the html
	5.2 App.js
	5.2.1 Boot State
	5.2.2 Preload State

	5.3 Testing the Setup with a Simple Game
	5.3.1 Before Starting Development
	5.3.2 Getting and Loading the Assets
	5.3.3 Writing the Gameplay

	Chapter 6: Phaser Principles
	6.1 Game Loop
	6.1.1 Logic Update Step

	6.2 States
	6.2.1 Finite-State Machines
	6.2.2 Creating a Phaser State
	6.2.3 Phaser State Flow

	6.3 Display List
	6.4 The World
	6.5 Camera
	6.6 Loading and the Asset Cache
	6.6.1 Asset Cache
	6.6.2 Displaying Load Progress
	6.6.3 Preloading Phase

	6.7 Images
	6.7.1 Loading an Image
	6.7.2 Adding an Image into the Game

	6.8 Sprites
	6.8.1 Loading and Using Static Sprites
	6.8.2 Sprite Sheets
	6.8.2.1 Sprite Sheet Layout
	6.8.2.2 Loading a Sprite Sheet
	6.8.2.3 Specifying the Frames of a Sprite’s Animation
	6.8.2.4 Playing an Animation

	6.8.3 Fixed to Camera

	6.9 Texture Atlases
	6.9.1 Loading Atlases

	6.10 Tile Sprites
	6.11 Input
	6.11.1 Keyboard
	6.11.1.1 Testing if a Key Is Currently Depressed
	6.11.1.2 Responding to Key Presses

	6.11.2 Pointers
	6.11.3 Gamepad
	6.11.3.1 Gamepad Buttons
	6.11.3.2 Gamepad Joysticks

	6.12 Sound
	6.12.1 Loading Sound
	6.12.2 Playing a Sound
	6.12.3 Changing Audio Loudness
	6.12.4 Audio Formats
	6.12.5 Decompressing Audio
	6.12.6 Audio Sprite
	6.12.7 Generating Audio Sprites
	6.12.7.1 Installing Codecs
	6.12.7.2 Using the Audiosprite Tool

	6.12.8 Adding Markers and Playing Audio Sprites

	6.13 Maps
	6.13.1 Scenes
	6.13.2 Tilemaps
	6.13.2.1 Loading Tilemaps
	6.13.2.2 Tiled

	6.14 Tweens
	6.14.1 Writing Tweens
	6.14.1.1 Tween Syntax
	6.14.1.2 Tweenable Properties
	6.14.1.3 Easing
	6.14.1.4 Chaining Tweens

	6.15 Physics Primer
	6.15.1 Velocity
	6.15.2 Forces
	6.15.2.1 Acceleration
	6.15.2.2 Friction (Drag)
	6.15.2.3 Restitution (Bounciness)
	6.15.2.4 Collisions
	6.15.2.5 Putting the Physics Properties Together

	6.16 Phases of a Physics System
	6.17 Bodies
	6.18 Arcade Physics
	6.18.1 Bounding Boxes
	6.18.1.1 Changing Bounding Box Size
	6.18.1.2 Debugging the Bounding Boxes

	6.18.2 Quad Trees
	6.18.3 Collision
	6.18.3.1 Sprite versus Sprite
	6.18.3.2 Sprite versus Group
	6.18.3.3 Group versus Group

	6.18.4 Gravity and Immovable Objects
	6.18.5 Drag and World Bounds
	6.18.6 Angular Velocity and Bounce

	6.19 P2
	6.19.1 Setting Up the P2 World
	6.19.2 Debugging Bodies
	6.19.3 Adding Basic Objects
	6.19.4 Building Compound Objects
	6.19.5 Adding Complex Objects
	6.19.5.1 PhysicsEditor
	6.19.5.2 Exporting from PhysicsEditor
	6.19.5.3 Importing and Using a Complex Shape

	6.19.6 Responding to Collisions
	6.19.6.1 Contact Signal
	6.19.6.2 Collision Callback

	6.19.7 Collision Groups
	6.19.8 Constraints
	6.19.8.1 Lock
	6.19.8.2 Distance
	6.19.8.3 Spring
	6.19.8.4 Revolute

	6.19.9 Contact Materials

	6.20 Particles
	6.20.1 Particle Engine Components
	6.20.1.1 Particle
	6.20.1.2 Emitter

	6.20.2 Setting Up a Burst Emitter
	6.20.3 Setting Up an Area Emitter

	6.21 Signals
	6.21.1 Using a Signal

	6.22 Making a Custom Signal
	6.23 Removing a Listener from a Signal
	6.24 Prefabs
	6.24.1 Making a Game Object Prefab
	6.24.2 Making a User Interface Prefab
	6.24.3 Using Prefabs

	6.25 Exists Flag
	6.25.1 Game Memory and the Garbage Collector

	6.26 Object Pooling
	6.26.1 Life

	6.27 Animation
	6.27.1 Rigs
	6.27.2 Animation Software
	6.27.2.1 For Creating Pixel Art
	6.27.2.2 For Creating 2D Animations

	6.27.3 For Both Art and Animations

	6.28 Making Atlases
	6.28.1 Using Texture Packer

	6.29 Viewport Scaling

	Chapter 7: Game Examples
	7.1 Shoot ‘em Up
	7.1.1 Preload Phase
	7.1.2 “Start” and “Game Over” States

	7.2 Game Prefabs
	7.2.1 Player Prefab
	7.2.1.1 Player Motion
	7.2.1.2 Firing
	7.2.1.3 Player Health

	7.2.2 Enemy Prefab
	7.2.2.1 Creating a Sinusoidal Motion
	7.2.2.2 Enemy Shooting

	7.2.3 User Interface Prefabs
	7.2.3.1 Score Field
	7.2.3.2 Healthbar

	7.2.4 Game State
	7.2.4.1 Imports
	7.2.4.2 Create Method
	7.2.4.3 Update Method
	7.2.4.4 Increment Wave Method
	7.2.4.5 Damage Enemy Method
	7.2.4.6 Damage Player Method

	7.3 Game State Source Code
	7.3.1 Wrap Up
	7.3.2 Tiled
	7.3.2.1 Laying Out a Map in Tiled
	7.3.2.2 Adding In Metadata in Tiled
	7.3.2.3 Exporting a Tiled Map for Phaser

	7.4 Making the Ground Fox Platformer
	7.4.1 Level Layout
	7.4.2 App.js
	7.4.3 Preloading
	7.4.4 Player Character Prefab
	7.4.4.1 Player Prefab Constructor
	7.4.4.2 Player Prefab Update
	7.4.4.3 Player Prefab Animation Controller
	7.4.4.4 Player Jump Method
	7.4.4.5 Player Flash Method

	7.4.5 Mouse Prefab
	7.4.5.1 Mouse Constructor
	7.4.5.2 Mouse Update
	Where Does the Player Object Come From?

	7.4.6 UI Components
	7.4.6.1 Fixed to Camera

	7.4.7 Game State
	7.4.8 Level State
	7.4.8.1 Game State Constructor
	7.4.8.2 Update Method
	7.4.8.3 Hit Enemy Handler
	7.4.8.4 Hit Door Handler
	7.4.8.5 Hit Coin Handler

	7.4.9 Game Over State
	7.4.10 Conclusion

	7.5 Tower Defense
	7.6 Spatial Cues
	7.6.1 Overlapping Objects

	7.7 Rendering an Isometric Grid
	7.7.1 Isometric Depth Sorting
	7.7.2 Picking Grid Locations via Screen Position

	7.8 Phaser Isometric Plugin
	7.8.1 Pathfinding
	7.8.1.1 Hardcoded Paths
	7.8.1.2 Pathfinding Algorithms

	7.9 Skeleton Shootout Project Design
	7.9.1 Asset Pack
	7.9.1.1 Tilemap

	7.9.2 Prefabs
	7.9.2.1 NumberBox
	7.9.2.2 Human
	7.9.2.3 Skeleton

	7.9.3 Game State
	7.9.3.1 Imports
	7.9.3.2 Create

	7.9.4 Conclusion
	7.9.4.1 Slicer Game Example

	7.10 Gestures
	7.10.1 Creating a Gesture Manager for Phaser
	7.10.1.1 Create Phase
	7.10.1.2 Update
	7.10.1.3 Pointer’s Speed and Velocity
	7.10.1.4 Up Handler

	7.11 Dealing with Stage Scaling
	7.11.1 Challenges of Stage Scaling
	7.11.2 Phaser Scale Modes
	7.11.2.1 EXACT_FIT
	7.11.2.2 NO_SCALE
	7.11.2.3 SHOW_ALL
	7.11.2.4 RESIZE
	7.11.2.5 USER_SCALE

	7.11.3 Resize Callback and Positioning Elements
	7.11.4 Enforcing Device Orientation
	7.11.5 Restricting Resize Zones

	7.12 Making 80’s Tech Slicer
	7.13 Slicer HTML and CSS
	7.13.1 CSS File
	7.13.2 HTML File

	7.14 Slicer Boot State
	7.15 Slicer Preload State
	7.16 Slicer Game State
	7.16.1 Game State Prefabs
	7.16.1.1 Device Sprite Prefab
	7.16.1.2 SliceBody Prefab

	7.16.2 Game State
	7.16.2.1 Game State Imports
	7.16.2.2 Game State Constructor
	7.16.2.3 Create Method
	7.16.2.4 Spawning Waves
	7.16.2.5 Simple Responsive UI
	7.16.2.6 Slice Segment Life
	7.16.2.7 Slice Hit Method
	7.16.2.8 Update Method

	7.16.3 Conclusion and Future Additions
	7.16.4 Launcher Game

	7.17 Additions to App.js
	7.17.1 Preload State
	7.17.2 Game State
	7.17.2.1 Create Method
	7.17.2.2 Reset Board
	7.17.2.3 Start Pull Method
	7.17.2.4 End Pull Method
	7.17.2.5 Update Function

	7.17.3 Conclusion

	Chapter 8: Game Deployment
	8.1 Web Deployment
	8.2 Creating the Grunt Production Task
	8.2.1 Clean
	8.2.2 Copy
	8.2.3 Uglify

	8.3 Build Task
	8.4 App Deployment
	8.5 Testing with CocoonJS
	8.6 Debugging Cocoon Apps
	8.7 Building with Cocoon JS
	8.7.1 Using the Cocoon Cloud Build
	8.7.2 Using the Cocoon Command Line Tools
	8.7.3 Configuring the Cordova/Cocoon Command Line Tools
	8.7.3.1 Configuring the Command Line Tools for Android
	8.7.3.2 Configuring the CLT for iOS
	8.7.3.3 Building an Application File

	8.7.4 Creating an App Store Ready Package
	8.7.4.1 Signing for iOS
	8.7.4.2 Signing for Android

	8.8 Conclusion

	Chapter 9: Conclusion
	Index

