
Android Apps
for Absolute
Beginners

Covering Android 7
—
Fourth Edition
—
Wallace Jackson

www.allitebooks.com

http://www.allitebooks.org

Android Apps for
Absolute Beginners

Covering Android 7

Fourth Edition

Wallace Jackson

www.allitebooks.com

http://www.allitebooks.org

Android Apps for Absolute Beginners: Covering Android 7

Wallace Jackson
Lompoc, California, USA

ISBN-13 (pbk): 978-1-4842-2267-6 ISBN-13 (electronic): 978-1-4842-2268-3
DOI 10.1007/978-1-4842-2268-3

Library of Congress Control Number: 2017934892

Copyright © 2017 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Chaim Krause
Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484222676. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
www.apress.com/bulk-sales
http://www.apress.com/9781484222676
http://www.apress.com/source-code/
http://www.allitebooks.org

This Android Apps for Absolute Beginners book is dedicated to everyone in the
open source community who is working so diligently to make professional application

development software and media content development tools freely available to
multimedia application developers to utilize to achieve creative dreams and financial goals.

Last, but not least, I dedicate this book to my father, Parker Jackson, my family,
my life-long friends, and content production ranch neighbors, for their constant help,

assistance, and those stimulating, late night BBQs.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

 ■Chapter 1: An Introduction to Android 7�0 Nougat �� 1

 ■Chapter 2: Setting Up an Android Studio Development System �������������������������� 17

 ■ Chapter 3: An Introduction to the Android Studio
Integrated Development Environment ��� 33

 ■ Chapter 4: Introduction to XML: Defining Android Apps,
UI Design, and Constants ��� 59

 ■ Chapter 5: Introduction to Java: Objects, Methods,
Classes, and Interfaces ��� 91

 ■ Chapter 6: Android User Interface Design: Using Activity,
View, and ViewGroup Classes �� 121

 ■Chapter 7: Making Apps Interactive: Events and Intents ���������������������������������� 147

 ■Chapter 8: Android Design Patterns: UI Design Paradigms ������������������������������� 177

 ■Chapter 9: Android Graphic Design: Making UI Designs Visual ������������������������� 209

 ■Chapter 10: Android Animation: Image and Procedural Animation ������������������� 251

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

 ■ Chapter 11: Digital Video: Streaming Video, MediaPlayer,
and MediaController Classes ��� 291

 ■Chapter 12: Digital Audio: Sequencing Audio Using SoundPool ������������������������ 339

 ■Chapter 13: Android Services and Threads: Background Processing ��������������� 387

 ■Chapter 14: Android Content Providers: Datastore Concepts ���������������������������� 415

Index ��� 473

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

 ■Chapter 1: An Introduction to Android 7�0 Nougat �� 1

The History of the Android OS: An Impressive Growth�� 1

Advantage Android 7�0: How Can Android Benefit Me? �� 4

The Scope of This Book �� 5

What Is Covered in This Book ��� 6

What Is Not Covered in This Book ��� 7

What’s New in Android Nougat: Powerful New Features �� 8

Android Apps for the Google Chrome OS: Custom Pointer API �� 8

Power and CPU Optimization: Sustained Performance Mode API ��� 9

Seamless Updates: Background Installation to Secondary Partition �� 9

Multiple Concurrent Windows: Run Two Android Apps at Once �� 10

Picture in a Picture: Watch Video or TV in an Android TV HD iTV Set �� 10

Change Display Density: Adjusting Pixel Per Inch (PPI) via Slider �� 11

Keyboard Themes: Customize Onscreen Keyboard Using Skins ��� 11

Enhanced Doze Mode: Control Android 7�0 Device Resting States ��� 12

www.allitebooks.com

http://www.allitebooks.org

viii Contents

OpenJDK: Moving Android Java from Oracle Java to OpenJDK �� 12

The Data Plan Saver: Sync Only When Connected to a Wi-Fi Portal ��� 13

The Future of Android: 3D, VR, AR, OpenGL, and Vulkan ��� 13

Khronos Vulkan: i3D Rendering Engine That Replaces OpenGL ES ��� 13

Vulkan for Android: Leading-Edge i3D Performance for Android 7�0 �� 14

OpenGL ES for Android: Desktop i3D Performance for Android 7�0 �� 14

Summary �� 15

 ■Chapter 2: Setting Up an Android Studio Development System �������������������������� 17

Assembling Your Android 7 Development Workstation ��� 17

Android Development Workstation: Hardware Foundation ��� 19

Android Development Workstation: Software Foundation �� 20

Java 8: Download and Install a Foundation for Android ��� 20

Android Studio: Download and Install Android Studio 2 ��� 23

Open Source New Media Content Software: UI and UX �� 28

New Media Software: Download and Installation Work Process �� 29

Other Affordable New Media Software Readers Should Know About ��� 29

Summary �� 31

 ■ Chapter 3: An Introduction to the Android Studio Integrated
Development Environment �� 33

Android Application Structure: Java, XML, and Assets ��� 34

Android 7 Platform Structure: A Collection of Open Technologies �� 35

Android 7 Executable Structure: Compiled Runtime Java Bytecode �� 36

Creating Android 7 Apps: Android Studio’s New Project ��� 37

The Android Studio Welcome Menu: Creating a New Android 7 App �� 38

Exploring Your Android Studio Project: The Android App Structure ��� 45

Android Resource: Project Folder Hierarchy for Assets �� 48

Android Drawables: Images or Illustration That Draws on the Screen ��� 49

Android User Interface Design Layout: Asset to Design UI Layout �� 50

Android Menu Design: Asset to Define Menu Structure and Options �� 51

Android Data Values: Assets to Define Fixed Application Constants ��� 52

Android Anim Folder: Assets Defining Vector or Tween Animation ��� 54

www.allitebooks.com

http://www.allitebooks.org

ix Contents

Android Animator: Assets for User Interface Property Animation ��� 54

Android Raw Folder: Pre-Optimized Video and Audio Asset Files ��� 54

Android XML: Arbitrary XML and Configurations ��� 55

Updating Android Studio: Upgrading an SDK over Time ��� 55

Summary �� 57

 ■ Chapter 4: Introduction to XML: Defining Android Apps, UI Design,
and Constants �� 59

Extensible Markup Language: XML Overview �� 60

XML Naming Schema: Tag and Parameter Repository ��� 61

XML Syntax: Containers, Brackets, and Nesting ��� 64

XML Referencing: Chain XML Constructs Together ��� 66

XML Constants: Adding New Constants Using XML �� 68

XML Dimensions: Editing Dimensions Using XML��� 70

Alternate XML Resource: Dimensions for Tablets ��� 71

XML Styles: Editing Styles or Themes Using XML ��� 72

XML Colors: Define Application Color Using XML �� 74

Configuring an App Using XML: Android Manifest �� 75

UI Design Editor: XML Markup Generation ��� 76

Summary �� 90

 ■ Chapter 5: Introduction to Java: Objects, Methods, Classes,
and Interfaces ��� 91

The Three Versions, or Editions, of Java ��� 92

A Foundation of OOP Constructs: An Object ��� 92

Some Programming Terms: Variable, Method, and Constant �� 95

Java Constructs: Create Your Own Objects �� 96

The Java Class: Java Code Structure Container ��� 96

The Java Method: Java Code Function Definition ��� 98

Constructor Methods: The Java Object Blueprint ��� 102

Instantiating Objects: The Java “new” Keyword ��� 104

Extend an Object’s Structure: Java Inheritance �� 105

Java Interfaces: Defining Class Usage Patterns ��� 107

www.allitebooks.com

http://www.allitebooks.org

x Contents

Logical Collection of Classes: Using a Package �� 110

The API �� 111

Modifiers: Data Type, Access, Inheritance �� 112

Java Access Modifiers: Four Levels of Access ��� 112

Non-Access Modifiers: Static, Final, and Abstract �� 114

Analyzing Your MainActivity�java Class ��� 117

The AppCompatActivity Class: Spans OS Versions ��� 118

Summary �� 119

 ■ Chapter 6: Android User Interface Design: Using Activity, View,
and ViewGroup Classes ��� 121

How Activity, View, and ViewGroup Classes Interrelate �� 122

The ViewGroup Class: A Known Direct Subclass of View �� 124

The View Class: A Foundation of User Interface Design ��� 126

The Activity Class: A User Interface Design Container �� 127

Creating UI Design from Scratch �� 129

Add a CheckBox User Interface Element to your Design �� 134

Add a TextView User Interface Element for Your Title ��� 136

Add a Button User Interface Element for Interactivity �� 137

Squashing Bugs (Removing Errors) in the Design Editor �� 139

Eliminate Any Remaining Errors Using the XML Text Editor �� 143

Summary �� 145

 ■Chapter 7: Making Apps Interactive: Events and Intents ���������������������������������� 147

About Intent Objects: The Android Intent Class �� 148

Intent Types: Explicit Intent versus Implicit Intent �� 149

IntentFilter: Construct an Implicit Intent Definition ��� 150

Instantiating an Intent Object: Passing App Context ��� 151

Explaining Context: The Android Context Class ��� 152

Event Processing: Using Events with Event Listeners �� 153

Events: Turning Device User Interaction into Events ��� 153

Event Listener: Java Methods Process UI Widget Events ��� 154

Event Handler: Java Methods Process Global Event Type��� 155

www.allitebooks.com

http://www.allitebooks.org

xi Contents

Creating a Second Activity: The UniverseActivity Class �� 155

Adding Event Listeners to the Activity Button Objects �� 161

Adding Intent Processing to your Event Handling ��� 165

Emulating Hardware: Creating an AVD to Test Your App ��� 168

Running the Application: Building the App Using Gradle �� 173

Summary �� 175

 ■Chapter 8: Android Design Patterns: UI Design Paradigms ������������������������������� 177

Android Design Patterns: Ensuring App Visual Quality ��� 178

Material Design: i3D Animated User Experience Designs ��� 178

Hardware Devices: Code Design Patterns Across Devices ��� 179

Pure Android: Application Design Branding Conformance �� 182

Creating a Sliding Drawer: UI Only When Users Need It ��� 186

Creating Menu Structures for a UI Design: The Android Menu Interface �� 195

Deprecated Java Code: Researching Replacement APIs �� 205

Summary �� 207

 ■Chapter 9: Android Graphic Design: Making UI Designs Visual ������������������������� 209

Imaging Concepts, Formats, and Techniques ��� 210

The Foundation of Digital Images: The Pixel ��� 210

The Shape of a Digital Image: The Aspect Ratio ��� 211

Coloring Your Digital Images: RGB Color Theory ��� 212

Image Compositing Transparency: Alpha Channels �� 215

Algorithmic Image Compositing: Blending Modes �� 216

Masking Digital Imagery: Using Alpha Channels �� 216

Smoothing Edges: The Concept of Anti-Aliasing ��� 217

Optimizing Digital Images: Compress and Dither ��� 218

Using Indexed Color Imagery: Dithering Pixels ��� 220

Android Image Formats: Lossless versus Lossy ��� 222

Creating Android NinePatchDrawable Assets ��� 223

Installing the Draw 9-Patch Source PNG32 Image ��� 224

Exploring Android Studio’s 9-Patch Editor �� 225

Using Your NinePatchDrawable Asset in Android �� 231

xii Contents

Using NinePatchDrawable Assets in an App ��� 232

Creating Multi-state PNG32 Image Assets ��� 235

The ImageButton Class: Multi-state Button �� 240

The States: Normal, Pressed, Focused, Hovered �� 242

Creating Android Multi-state ImageButtons ��� 243

Summary �� 249

 ■Chapter 10: Android Animation: Image and Procedural Animation ������������������� 251

Frame Animation: Concepts and Techniques �� 252

Frame Animation: Cels, Frames, and Terminology �� 252

Android Image Format: PNG, GIF, JPG, WebP, BMP �� 252

Optimizing Frames: Color Depth and Frame Count ��� 253

Animation Resolution: Pixels Add to File Size! �� 254

Frame Animation: Using AnimationDrawable ��� 255

Creating Frame Animation: XML Frame Definition �� 256

Creating Frame Animation in XML and Java �� 258

Create the XML Frame Animation Definition File �� 258

Create ImageView and AnimationDrawable Objects ��� 265

Android Tween Animation: Vector Concepts ��� 268

Procedural Concepts: Rotate, Scale, Translate �� 268

Procedural Data Values: Ranges and Pivot Point �� 269

Procedural Animation Compositing: Alpha Values �� 270

Procedural Timing: Using Duration and Offsets �� 271

Procedural Loops: RepeatCount and RepeatMode�� 272

Android Animation Class: Tween Animation ��� 273

Creating Tween Animation Using XML Markup ��� 274

Create an /anim Folder: Tween Animation Assets ��� 274

Android ScaleAnimation Class: Animated Scaling �� 275

The Scale Transform: Configuration Parameters �� 276

Android AnimationSet Class: Transform Grouping �� 278

AnimationSet Container: Groups and Subgroups �� 279

Java Code: Tying Two Animation Types Together �� 280

xiii Contents

Complex Animation: Android Interpolators ��� 283

Creating Complex Animation Using XML Markup ��� 283

Android Interpolator Interface: Motion Curves �� 284

Java Code: Two Widgets Use the Tween Animation �� 286

Procedural Animation or Frame Animation? ��� 287

The Animator Class: Parameter Animation ��� 289

Summary �� 289

 ■ Chapter 11: Digital Video: Streaming Video, MediaPlayer,
and MediaController Classes ��� 291

Creating a Video App: FullscreenActivity �� 292

The FrameLayout Class: Framing DV Content �� 295

FrameLayout�LayoutParams Nested Class: Gravity �� 297

The VideoView Class: A VideoPlayer Widget ��� 299

The VideoView Lifecycle: Video Playback Stages ��� 300

Create a VideoView Layout Design with your XML ��� 303

Digital Video Concepts: Bitrates and Codecs �� 305

Digital Video in Android: MPEG4 H�264 and WebM ��� 306

Digital Video Compression: Bitrate and Streams �� 307

Digital Video Optimization: Codec and Settings �� 308

Creating Digital Video Content: Terragen4 �� 311

Digital Video Compression: Sorenson Squeeze 11 ��� 314

Creating a Digital Video Folder: Raw Resources ��� 319

The Uri Class: Referencing the Video Data ��� 321

The Uri�parse() Method: Loading Your VideoView ��� 323

Android MediaPlayer: VideoPlayback Engine ��� 328

Android MediaController: A VideoTransport �� 329

Add a Video Transport UI Using MediaController �� 330

Loop Digital Video: Using OnPrepareListener �� 334

Streaming Digital Video: Using HTTP URL in URI��� 336

Summary �� 337

xiv Contents

 ■Chapter 12: Digital Audio: Sequencing Audio Using SoundPool ������������������������ 339

Audio Waves: History, Concepts, and Theory �� 340

Foundation of Analog Audio: Sound Waves of Air ��� 340

Digital Audio: Samples, Resolution, and Frequency �� 341

Digital Attributes: HD, Stream, and Bitrate �� 343

Android Digital Audio: Digital Audio Formats �� 343

Digital Audio Optimization: Device Compatible ��� 346

Audio Sequencing: Concepts and Principles �� 347

Audio Synthesis: Concepts and Principles �� 348

Raw Audio Data Optimization: Memory Footprint ��� 349

Digital Audio Synthesis and Sequencing Caveats ��� 350

Audacity 2: Creating Digital Audio Assets ��� 351

Audacity 2�1�2: Installing Software and Codecs ��� 352

Free Audio: Locate DigitalAudioSequencer Audio ��� 354

Digital Audio Optimization: Concepts and Formats ��� 356

DigitalAudioSequencer: ScrollingActivity ��� 360

Android SoundPool: Digital Audio Engine ��� 368

Add SoundPool Engine to DigitalAudioSequencer �� 370

Android AudioAttributes: Configuring SoundPool ��� 374

Configuring a SoundPool Using AudioAttributes ��� 376

Summary �� 385

 ■Chapter 13: Android Services and Threads: Background Processing ��������������� 387

Android’s Service Class: Characteristics �� 388

Controlling Your Service: Privacy and Priority ��� 390

Processes or Threads: Foundational Information ��� 391

Spawn a Process: android:process XML Parameter ��� 392

The Process Life Cycle: Keeping a Process Alive �� 393

Thread Caveats: Don’t Interfere with UI Thread �� 397

Should Android Apps Use Services or Threads? ��� 398

xv Contents

Creating a Service: AmbientAudioService �� 400

Configuring AndroidManifest to add a <service>��� 402

Service: Background Processing Services ��� 403

Configure AmbientAudioService: Play Audio �� 403

Starting a Service: Using �startService() ��� 410

Summary �� 413

 ■Chapter 14: Android Content Providers: Datastore Concepts ���������������������������� 415

Overview of Android Content Providers: Sharable Data ��� 416

Database Fundamentals: Concepts and Terms �� 417

SQLite: An Open Source Database Engine �� 419

Android’s Built-In SQLite DBMS Content Providers �� 420

Android 1�5 Contacts Database Contact Provider ��� 421

Deprecated Database Structures: Software Upgrades ��� 421

The Android MediaStore Content Providers �� 425

The Android CalendarContract Content Providers �� 425

Referencing the Content Provider: Using a Content URI ��� 426

Creating a Basic Activity: The SQLiteProvider Project �� 428

Examining and Testing Your SQLiteProvider Bootstrap��� 430

Configuring the Manifest: Uses SDK and Permissions ��� 433

Creating Your Dummy Contact Database Using an AVD ��� 436

RelativeLayout: Create Morphing User Interface Design �� 441

Creating Your RelativeLayout UI for MainActivity �� 442

Transform the MainActivity Class for Database Access ��� 454

Creating Your Custom �listContacts() Database Access Method ��� 455

Writing to a Database: Using the ContentValues Object ��� 463

Summary �� 472

Index ��� 473

xvii

About the Author

Wallace Jackson has been writing for leading multimedia
publications about his work process for interactive new media
content development since the advent of Multimedia Pro-
ducer Magazine nearly two decades ago, when he wrote about
advanced computer processor architecture for a special issue
centerfold (removable “mini-issue” insert) distributed at the
SIGGRAPH trade show. Since then, Wallace has written for a
significant number of other popular publications about his work
in interactive 3D and new media advertising campaign design,
including 3D Artist Magazine, Desktop Publishers Journal, Cross
Media Magazine, AV Video and Multimedia Producer Magazine,
Digital Signage Magazine, and Kiosk Magazine.

Wallace Jackson has authored more than half a dozen Android
Development book titles for Apress, including several titles in

the popular Pro Android series. This particular Android Apps for Absolute Beginners title
has been rewritten entirely from scratch four times, and this fourth edition is one of the most
thorough and comprehensive Absolute Beginner Android titles to be found in the market.

Wallace is currently the CEO of Mind Taffy Design, a new media content production and
digital campaign design and development agency located in North Santa Barbara County,
halfway between clientele in Silicon Valley to the north and in Hollywood, “The OC,” and
San Diego to the south. Mind Taffy also produces interactive 3D content for major brands
around the world from their content production studio on Point Concepcion Peninsula in
the California Central Coast area. Mind Taffy Design has created open source technology
(HTML5, Java, and Android) and digital new media content deliverables for more than a
quarter century (since 1991) for a large number of the top-branded manufacturers in the
world, including Sony, Samsung, IBM, Epson, Nokia, TEAC, Sun, SGI, Dell, Compaq,
ViewSonic, Western Digital, CTX International, KDS USA, KFC, ADI, and Mitsubishi.

xviii About the Author

Wallace received his undergraduate degree in Business Economics from the University of
California at Los Angeles (UCLA) and his graduate degree in MIS Design and Implementation
from the University of Southern California (USC). His postgraduate degree from USC is in
Marketing Strategy. He also completed the USC Graduate Entrepreneurship Program at
USC’s popular Marshall School of Business MBA program. You can connect with Wallace at:
http://www.linkedin.com/wallacejackson and follow him on Twitter @wallacejackson if you
like, or visit the iTVset.com or iTVclock.com websites to see his i3D HD and UHD work.

http://www.linkedin.com/wallacejackson
www.iTVset.com
www.iTVclock.com

xix

About the Technical
Reviewer

Chaim Krause presently lives in Leavenworth, Kansas, where
the U.S. Army employs him as a Simulation Specialist. In his
spare time he likes to play PC games and occasionally develops
his own. He has recently taken up the sport of golf to spend
more time with his significant other, Ivana. Although he holds a
BA in Political Science from the University of Chicago, Chaim
is an autodidact when it comes to computers, programming,
and electronics. He wrote his first computer game in BASIC on
a Tandy Model I Level I and stored the program on a cassette
tape. Amateur radio introduced him to electronics while the
Arduino and the Raspberry Pi provided a medium to combine
computing, programming, and electronics into one hobby.

xxi

Acknowledgments

I would like to acknowledge all my fantastic editors and the support staff at Apress who
worked long hours and toiled so very hard on this book to make it the ultimate Absolute
Beginner Android title.

Matthew Moodie, for his work as the Lead Editor on the book, and for his experience and
guidance in the process of making this book one of the great Android Absolute Beginner
development titles.

Mark Powers, for his work as the Coordinating Editor on the book, and for his constant
diligence in making sure I hit or surpassed my deadlines.

Chaim Krause, for his work as the Technical Reviewer on the book, and for making sure I
didn’t make any programming mistakes. Java code with mistakes does not run properly, if at all,
unless they are very lucky mistakes, which is quite rare in computer programming these days.

Frank Serafine, my close friend, the world’s finest and most respected sound designer, and
popular rock musician, for contributing the background audio sample used in this book. This
audio sample is from his stellar (no pun intended) work on some of the world’s most popular
science fiction as well as action adventure movies and television shows, including but not
limited to Star Trek and Hunt for Red October.

Finally, I'd like to acknowledge Oracle for acquiring Sun Microsystems, and for continuing
to enhance Java so that it remains the premiere open source programming language; and
Google, for making Android the premiere open source operating system, and for acquiring
ON2’s VP8 and VP9 video codecs (WebM) and making these available to multimedia
producers on the Android OS and HTML5 platforms, allowing open source video encoding
performance similar to HEVC (H.265).

xxiii

Introduction

The Android OS is currently the most popular operating system in the world. The Android OS
runs on everything from smartwatches to HD or UHD smartphones to touchscreen tablets to
e-book readers to game consoles to smartglasses to smartwatches to auto dashboards to
new ultra-high definition interactive television sets (or iTV sets). If you want your apps to run
everywhere, Android is the optimal solution.

There are even more types of consumer electronics devices, such as those found in the
automotive, home appliance, security, robotics, drones, photography, industrial, and home
automation markets, which are adopting the open source Android OS as their platform as
time goes on. This book will show you how to develop applications for these new device-
type verticals as they emerge into the market.

Since there are literally billions of Android consumer electronics devices owned by billions
of people all over the world, it stands to reason that developing great Android applications
for all these people might be an extremely lucrative undertaking, assuming that you have the
right concept and design.

This book will help you go a long way toward learning how to develop Android applications
that will run across the plethora of Android-compatible consumer electronics devices; and
across all popular versions of the Android OS, including 32-bit Android 4.4 OS and the 64-bit
Android 5, 6, and 7 OSes.

Developing an Android application that works well across all of these types of consumer
electronics devices requires a very specific work process if you are an Absolute Beginner,
involving leveraging all the Android Studio helper features, which I cover during this book.
I had to write Android Apps for Absolute Beginners, Fourth Edition, from scratch because
most of Android Studio 2.3’s new features are targeted at Absolute Beginners. This book is
intended for readers who are Absolute Beginners to Android development. Of course you
must be technically savvy, but this book is for readers who are not yet familiar with computer
programming concepts and techniques.

xxiv Introduction

The book will be more advanced than previous editions of Android Apps for Absolute
Beginners. The first edition of this book was a mere 300 pages, as Android 1.5 was the first
version to appear on Android hardware devices (smartphones), and a second edition of this
book was 33% longer, at 400 pages. I’ve expanded this version of the book even more.

I designed this book to be a more comprehensive overview of the Android application
development work process than most beginning Android application development
books, because, at this point, there is really no way to sugarcoat the Android application
development process. The new Android Studio IDE is however attempting to help beginners
code and design applications using some helper features and drag-and-drop visual design
editors that we will cover in detail in the book.

To become the leading Android 7 application developer that you seek to become, you
will have to understand, as well as master, XML markup, user interface design, Java 8
programming, as well as new media content creation. Once you have done this, hopefully
by the end of this book, you will be able to create the vanguard user experience required to
create popular, best-selling Android 7 apps.

Android apps used to be developed for 32-bit Android 1.x through 4.x using Eclipse ADT’s
IDE. Starting with 64-bit Android 5, Eclipse ADT IDE was replaced with Android Studio.
Android applications are not developed via Android Studio alone (currently at version 2.3),
but are also developed in conjunction with several key genres (2D, SVG, i3D, audio, video,
imaging, SFX, etc.) of new media content development software packages.

For this reason, this book covers a wide variety of popular open source software packages,
including GIMP 2.8.18, Planetside Terragen 4, Sorenson Squeeze Pro 11, and Audacity 2.1.
These professional new media content production tools should be utilized in conjunction
with developing your Android 7 applications. This book will show you exactly how to
accomplish this, as well as how to download, install, update, configure, and actually use a
number of the popular open source software packages.

This comprehensive Android 4/7 application development work process will allow you to
experience exactly how the use of all of these multimedia content development software
packages needs to fit into your overall Android application development work process.
This 100% comprehensive "soup to nuts" multimedia-centric Android app development
approach sets this 32-bit Android 4.4 and 64-bit Android 5/6/7 book title distinctly apart
from all of the other Android application development titles that are currently on the market.
This book covers an Android development process at a broad level while at the same time
showing the Absolute Beginner Android application developer how to use an Android Studio
handholding approach, by leveraging Android Studio’s ability to code bootstrap application
projects allowing you to simply add your application specifics, use pop-up Java and XML
code helper dialogs, use code completion, utilize a new Visual Design Editor, and implement
backward compatibility features.

Chapter 1 starts at the absolute ground level, explaining what Android is, where it came
from, what it is used for, where it is going, what its benefits include, what is covered in this
book, as well as what is not covered in this book, as well as what some of the new features
in Android 7.1.1 (called Nougat) include.

http://dx.doi.org/10.1007/978-1-4842-2268-3_1

xxv Introduction

Chapter 2 covers how to assemble your Android Studio 2.3 application development
workstation from scratch. This starts by covering hardware requirements and considerations,
and then downloading and installing the current Java SE 8 JDK and Android Studio 2.3,
along with more than half a dozen powerful open source content development applications,
including Fusion, Audacity, Inkscape, Blender, GIMP, Lightscape, Open Office, and more.

Chapter 3 gives you an overview of how the Android Studio IDE, Java 8, XML, multimedia
assets, and Android hardware devices are used together to create Android applications. You
will be exploring the Android Studio 2.3 IDE, and learn how to have Android Studio create an
application Java code and XML markup infrastructure for you to use to create your Android
7.1.1 application with. You will examine an Android Project structure and hierarchy, to see
how everything comes together, and will learn about the project resource folder hierarchy and
new media formats and genres that are supported in Android, of which there are many. You
will learn about Android Drawables, Animation, and Menu capabilities, and how to pre-define
data, constants, user interface design, and multimedia assets for your applications by using
XML markup. You will learn how to update your Android Studio 2.3 IDE, so you can keep your
Android development workstation current, as new versions are released.

Chapter 4 teaches you all about the XML markup language, including how to use the new
Android Studio Visual Design Editor to generate entire XML markup code listings that define
complex user interface design. We will dissect what XML parent and child tags are used
for in UI layout containers and how to create functional UI elements in a UI design using
widgets. You will also look at how XML can be used to define your application constants
(fixed settings, UI designs, themes, and assets that will not change during your application’s
usage). We will do all of this while expanding on the Hello World application that you created
in Chapter 3, by adding 2D graphics and a user interface design to make the application
more professional, and show you how to add appeal to your bootstrap Android 7.1.1 app.

Chapter 5 serves as a Java 8 primer for those not yet exposed to Java 8, and as a review
for those who have been exposed to Java 8 before. You learn all about the Java 8 SE
programming language, including packages, classes, methods, constants, variables,
interfaces, modifiers, keywords, versions, objects, and OOP concepts and techniques. All of
this is additionally demonstrated using a sample Java code project and its structures. Thus,
the first third of this Android 7.1.1 book is foundational material, which explains how the
Android 7 OS works together as a whole, as well as how each of these components works in
and of itself. You will build on this learning material throughout the remainder of the book.

Chapters 6 explores user interface design concepts, techniques, and workflows for Android
Studio 2.3 – specifically your Visual Design Editor usage, and the Android View, ViewGroup,
and Activity classes, which user interface design code, UI layout containers, and UI
elements (called widgets) come from. You learn how View and ViewGroup subclasses are
used to create UI layout containers filled with UI widgets, and how an Activity screen hosts
and displays these, and all about the Activity class life cycle, and how these organize the
application Java 8 code into logical phases (create, start, pause, resume, stop, destroy). You
create a user interface design from scratch, for the project you created in Chapters 3 and 4,
including graphics (Drawable objects) assets, UI design elements, and Android 7 OS themes.

http://dx.doi.org/10.1007/978-1-4842-2268-3_2
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_5
http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_4

xxvi Introduction

Chapter 7 takes your static application, and makes it interactive, by using Android 7 Intent
objects and coding Java event handling and event listening constructs for user interface
elements defined using XML. This is where the book starts to get more complicated,
both conceptually, with real-time event queue processing and application component
communication using Intent objects, as well as Java 8 code-wise, with deeply nested event
processing structures, explicit Intent objects, and implicit Intent Filter concepts. You will learn
about the Android Intent class and objects and about what operating system events do to
allow applications to know what is going on in the operating environment and what users are
doing with the hardware and with user interface designs (covered during Chapter 6).

Chapter 8 examines Pure Android UI design patterns. These are guidelines for making
your Android applications look and feel like they belong on the popular Android platform.
This chapter covers the new Material Design paradigm, introduced in 64-bit Android 5, and
advanced concepts such as i3D UI design, real-time automated shadowing, and animated
user interface design concepts. We cover different types of hardware devices that run
Android OS, and the different types of Android APIs, such as the core API for smartphones
and tablets; the Wear 2.0 API, for smartwatches; the Glass API, for smartglasses; the Auto
API, for automobile dashboards; and the Android TV API, for iTV Sets. I show you how to
have Android Studio create one of these design paradigms, the sliding drawer UI design,
for you, and how to examine the XML and Java code to understand how it works under the
hood. We then test and configure this application using an AVD emulator and an Android
manifest XML definition file.

Chapters 9 delves into the concepts and work process of Digital Imaging for Android,
including how to create NinePatch drawables; how to use GIMP 2.8.18 to create image
assets; Android Drawable classes; supported digital image formats; and digital image
concepts such as pixels, resolution, alpha channels, aspect ratio, color depth, dithering,
compositing, blending modes, anti-aliasing, and similar concepts that are supported across
Android’s advanced digital image compositing, rendering, and Porter-Duff blending and
transfer (compositing) algorithms. I show you how to have Android Studio 2.3 create a
navigation drawer UI design pattern for you, and how to create multi-state image buttons.

Chapter 10 brings your application into the fourth dimension using 2D animation engines
in Android such as the frame (bitmap) AnimationDrawable class and the tween (vector)
Animation class. This chapter outlines the necessary animation concepts, data formats,
and classes, and shows you how to create frame (or bitmap) animation, tween (vector, or
procedural) animation, and a hybrid (frame and procedural combined) animation. We also
add these animation assets to the NavDrawerPattern project that you created in Chapter 9,
to show how different animation approaches will work inside of one of the five different pure
Android design patterns you’ll create during the course of this book.

Chapter 11 shows you how to stream Digital Video content to your Android application
by using the Uri, MediaPlayer, and MediaController classes. This chapter goes into detail
regarding digital video concepts, formats, and data footprint optimization, and also shows
you how to create a 3D digital video asset from scratch, using Planetside Software’s
Terragen 4 and Sorenson Squeeze Desktop Pro 11. You’ll code a DigitalVideoMedia project
using yet another Android design pattern (FullscreenActivity) and address how to code a
captive (part of the APK) video, and a streaming (from an external server) video asset.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7
http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_8
http://dx.doi.org/10.1007/978-1-4842-2268-3_9
http://dx.doi.org/10.1007/978-1-4842-2268-3_10
http://dx.doi.org/10.1007/978-1-4842-2268-3_9
http://dx.doi.org/10.1007/978-1-4842-2268-3_11

xxvii Introduction

Chapter 12 gets your Android hardware device’s speakers involved by adding digital audio
assets to your application, using the powerful Android SoundPool class. This chapter goes
into detail regarding digital audio concepts, formats, and data footprint optimization, and
also shows you how to optimize a digital audio asset from scratch, using open source
Audacity 2.1.2. You’ll code a fourth, DigitalAudioSequencer project, using yet another
pure Android design pattern (ScrollingActivity) and you’ll code a children’s educational
application that teaches kids the sounds that different animals make.

Chapter 13 offloads processing-intensive tasks to Android OS for background processing.
You’ll learn about advanced operating system processing concepts like threads, processes,
and services, which are used to perform background processing using the Android Service
or Thread class. We’ll add this capability to the DigitalAudioSequencer application you
created in Chapter 12 so it can play ambient background audio as a Service process, using
the Android MediaPlayer operated by the Service class.

Chapter 14 looks into the Android SQLite database management system, as well as Android
ContentProvider, ContentResolver, and ContentValues classes. You will learn about RDBMS
database theory and how to use Android content providers to access databases.

Whereas the first five chapters of the book are foundational information, in the final five
chapters of this book, you will learn about some of the more advanced development topics
that normally would not be included in an Absolute Beginner title. I included these so that
the important topics regarding leading-edge Android application development are all in this
one, single, unified book. The included advanced topics include 2D animation, digital video,
digital audio, threads, processes, and SQLite databases.

This book attempts to be the most comprehensive Absolute Beginners book for Android
application development out there, by covering most, if not all of, the significant Android
Studio 2.3 application development assistance features, and those core Android classes that
will always need to be used to create leading-edge, 32-bit Android 4.4.4, or 64-bit Android
5.0 through 7.1.1, software applications.

It is the intention of this book to take you from being an “Absolute Beginner” in Android
application development, to having a comprehensive, solid, intermediate knowledge of both
32-bit Android 4.4 and 64-bit Android 7.1.1 application development.

You should be advised that this book contains a significant amount of technical knowledge
and work processes that may take more than one read-through to assimilate into your
application development knowledge base (your current Android knowledge “quiver of
arrows,” so to speak). This vast journey developing backwardly compatible applications for
32-bit Android 4.0 (API Level 15) through the 64-bit Android 7.1.1 (API Level 25, and later
versions) will be well worth your time, however; rest assured.

http://dx.doi.org/10.1007/978-1-4842-2268-3_12
http://dx.doi.org/10.1007/978-1-4842-2268-3_13
http://dx.doi.org/10.1007/978-1-4842-2268-3_12
http://dx.doi.org/10.1007/978-1-4842-2268-3_14

1© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_1

Chapter 1
An Introduction to Android 7.0
Nougat
These days, you will see Android OS powered devices of every size and shape everywhere
you look. They can be worn on your person, thanks to Android WEAR; used in an appliance,
thanks to Android TV; and they are a part of your car, thanks to Android AUTO. Android
devices will provide you entertainment in your living room taking the form of your iTV set;
help you learn at school using a tablet; inform you in bed using an e-book reader; or excite
you on the couch using an Android game console, such as the OUYA, the Razer Forge, or
the nVidia Shield.

In this chapter, we will explore some basic history regarding Google’s Android operating
system (OS), to give you a high-level overview of the history of Android. We will look at the
benefits of learning Android application development, and which open source programming
languages and OSs Android is based upon. We will look at the percentage distribution
amongst the different Android versions, and the new features in Android 7.0 Nougat.

The History of the Android OS: An Impressive Growth
The Android OS was originally created by Andy Rubin to be an OS for mobile phones.
This happened around the dawn of the 21st century. In July of 2005, Google acquired
Android and made Andy Rubin the Senior Vice President of Mobile Platforms for Google,
where he remained until November of 2014. Many feel this acquisition of Android OS by
Google was largely in response to the appearance of Apple’s iPhone around that same time.
However, there were enough other large players, such as RIM Blackberry, Nokia Symbian,
and Microsoft Windows Mobile, that it was deemed to be a savvy business decision for
Google to purchase the engineering talent of Android Incorporated along with its Android OS
intellectual property. This allowed Google to insert their Internet search engine company into
the emerging mobile market, which many now refer to as Internet 2.0.

2 CHAPTER 1: An Introduction to Android 7.0 Nougat

Internet 2.0, or the Mobile Internet, allows users of consumer electronic products to access
content via widely varied data networks, using portable consumer electronic devices. These
currently include tablets, smartphones, phablets (a phone-tablet hybrid), game consoles,
smartwatches, smartglasses, personal robots, drones, cameras, and e-book e-readers.
These days, Android OS–based devices will also include those not-so-portable consumer
electronics devices such as iTV sets, home media centers, automobile dashboards,
automobile stereos, music players, home appliances, home control installations, and digital
signage system set-top boxes.

This ever-growing Android phenomenon puts new media content such as games, 3D
animation, interactive television, digital video, digital audio, e-books, and high-definition
imagery into our lives at every turn. Android is one of those popular open source vehicles
(others being HTML5 and JavaFX) that digital artists will increasingly leverage in order to be
able to develop new media creations that their end users have never before experienced.
Over the past decade, Android has matured and evolved, to become a stable, exceptionally
reliable, embedded open source OS. An Android OS that started out with its initial version
just a decade ago, once acquired by Google, has released stable OS versions 1.5, 1.6, 2.0,
2.1, 2.2, 2.37, 3.0, 3.1, 3.2, 3.3, 4.0, 4.1, 4.2, 4.3, 4.4, 5.0, 5.1, and 6.0.

As of the writing of this book, Android 7.1.1 is in beta, with a projected release in Q1 of
2017. Android 7.1.1 should show up in 64-bit Android devices in 2017 and 2018. If you want
to see the latest statistics regarding each of the previous Android OS revisions, directly from
the Android developer website, you should visit this URL:

http://developer.android.com/about/dashboards/index.html

Table 1-1 shows this progression of all the popular versions of Android OS that have been
installed on popular embedded OS consumer electronics products over the past decade.
I wanted to collect all of this Android OS information together into one single infographic
for you, so that you could get a “bird’s eye view” of the current historic progression of the
Android OS. As you can see, there are certain Android market share “sweet spots.” In case
you’re wondering what an embedded OS is, it’s like having an entire personal computer on
a motherboard that’s small enough to fit in a handheld device, and which is powerful enough
to run applications, or “apps.”

http://developer.android.com/about/dashboards/index.html

3CHAPTER 1: An Introduction to Android 7.0 Nougat

Just like today’s personal computers and laptops, the Internet 2.0 devices, such as
smartphones, tablets, e-readers, smartwatches, and iTV sets, now feature quad-core
(4 CPU) and even octa-core (8 CPU) computer processing power, as well as two gigabytes
of system memory. This is approaching the power of a modern-day PC, such as the
workstation you are going to set up during the next chapter of this book, which you can get
for $500 at Walmart. Mini-tower PCs feature octa-core 64-bit processors along with 6GB or
8GB of system memory, and a 750GB (or larger) hard disk drive with Windows 10,
Fedora 24, or Ubuntu Mate 17.04.

The Android OS contains the power of a complete computer OS. It is based on the Linux
Kernel open source platform, and Oracle (formerly Sun Microsystems) Java 8 Standard
Edition, one of the world’s most popular programming languages. Android 5 and 6 also use
a 64-bit Linux Kernel, along with the Java 7 Standard Edition.

Note This term open source refers to software that has been developed collaboratively, usually
by an open community of individuals, and is freely available for commercial use (or non-
commercial use). Open source software also comes with all the source code, so that it can be
further modified, if necessary. The Android OS is open source, though Google develops it internally
before releasing the source code. From that point on, the source code is freely available for
commercial use by software developers.

Table 1-1. Released Android OS Versions, Their Internal OS Names, API Levels, and Current Market Share

VERSION CODENAME API LEVEL MARKET SHARE

1.5 Cupcake 3 Less than 0.1%

1.6 Donut 4 Less than 0.1%

2.0, 2.1 Eclair 5, 6, 7 Less than 0.1%

2.2 Froyo 8 Less than 0.1%

2.3.7 Gingerbread 9, 10 2.0% (Kindle Fire)

3.0, 3.1, 3.2 Honeycomb 11, 12, 13 Less than 0.1%

4.0, 4.0.4 Ice Cream Sandwich 14, 15 1.0%

4.1.2 Jelly Bean 16 6.8%

4.2.2 Jelly Bean Plus 17 9.4%

4.3.1 Jelly Bean Plus 18 2.7%

4.4.4, 4.4W Kit Kat 19, 20 31.6%

5.0 Lollipop 21 15.4%

5.1 Lollipop 22 20.0%

6.0 Marshmallow 23 10.1%

7.0 and 7.1.1 Nougat 24 and 25 Less than 0.1% (so far)

4 CHAPTER 1: An Introduction to Android 7.0 Nougat

It’s not uncommon for an Android device to have a 2.4GHz processor and 2GB of fast,
computer-grade DDR3 memory. This rivals desktop computers of just a few years ago, and
notebooks that are still currently available. You will continue to see this convergence of
Internet 2.0 (mobile device) OSs with desktop OSs, such as we are seeing with Windows 10
and Windows Mobile, and with Chrome OS and Opera OS currently, as time goes on.

Once it became evident that Java, the Android OS, and open source software platforms
were vanguard forces to be reckoned with, a bunch of the popular consumer electronics
manufacturers, including Philips, Sony, HTC, Samsung, LG Electronics, and others, formed
and then joined the Open Handset Alliance (OHA). This was all done in order to put the
momentum behind Google’s open source Android platform, and it worked! Today, hundreds
of leading branded consumer electronics manufacturers leverage Android as an OS on their
consumer electronic devices. In fact, Android OS is used more than any other OS that has
ever existed on the planet.

This development of the OHA is a significant benefit to Android developers. Android allows
developers to create their applications using a single IDE, or integrated development
environment, and now this support by the OHA enables developers to deliver their content
across dozens of major branded manufacturers’ hardware products, as well as across
several different types of consumer electronic devices, including smartphones, iTV sets,
e-book readers, smartwatches, game consoles, home media centers, set-top boxes, and
touchscreen tablets. The Android OS affords developers a plethora of powerful content
delivery tools and device playback possibilities, to say the least! You have realized this, as
you are reading this book right now, so you can get in on all this power!

In summary, Android is a seasoned OS that has become one of the biggest players in
computing today, and with Google behind it. Android uses freely available open source
technologies, such as the Linux Kernel, Java SE 8, and open standards such as XML, CSS3,
MPEG-4, JPEG, PNG, MP3, OGG Vorbis, FLAC, SVG, WebM, WebP, OpenGL 3.2, WebKit,
Vulkan, and HTML5. Android incorporates all of these open source resources, so that it can
provide the free new media content and application delivery platform to Android developers,
and an OS platform to consumer electronics manufacturers. Can you spell OPPORTUNITY?
I sure can! It’s spelled: A-N-D-R-O-I-D!

Advantage Android 7.0: How Can Android Benefit Me?
There are simply too many benefits for the Android OS development platform to ignore your
Android applications development workflow, and environment, for even one minute longer.
We are going to get you set up with all of the latest IDE’s, new media apps, programming
languages, and Android OS SDKs and components during the next chapter, so that you will
have an extremely valuable Android 7.1.1 multimedia content development workstation.

That’s great, but how can Android benefit me, you might be thinking? First of all, Android
is based upon open source technology, and it’s free for commercial development use, with
no up-front costs and no on-going royalties. Android, at its inception, was not as refined as
expensive paid technologies from Apple, Adobe, and Microsoft.

During the past several decades, open source software technology has become equally as
sophisticated as conventional paid software technologies. You will see this during this book
as you work with your professional-level Android Studio 2.3 (IntelliJ) IDEA and the new media

5CHAPTER 1: An Introduction to Android 7.0 Nougat

content software that you’ll be acquiring (for free) during the next chapter, when we put
together an Android Studio content development workstation, 100% from scratch.

The increasing adoption of open source technology over paid software is clearly evident
with Internet 2.0, as the majority of the consumer electronics manufacturers have chosen
Android and HTML5, based on a Linux Kernel and using Java, JavaFX, and JavaScript, over
Windows 10, Windows Mobile, iOS, and Macintosh OS/X OSes.

For this key reason, Android developers can develop applications not only for their
smartphones, but also for new and emerging consumer electronics device ecosystems,
which include never-before-seen products such as smartglasses and smartwatches, or UHD
(4K, or IMAX) iTV sets, which are network compatible and available to connect to the Google
Android (Play) Marketplace. The Android App Marketplace was rebranded by Google as
Google Play, due to legal action brought by Apple Computer over what Google calls their
Android application storefront.

The free nature of open source translates directly to more sales of more consumer
electronics devices in more areas of your potential customer’s lives, and this offers steadily
increasing Android market share, and an ever-increasing incentive to develop for the Android
7.1.1 OS over “closed” technologies such as Windows or iOS, and over less popular and
less prolific PC OSes, such as OS/X, Open Solaris, and Linux distributions.

In addition to being free for commercial use, the Android OS has one of the largest,
wealthiest, and most innovative companies in modern-day computing currently behind it:
Google. Add in the OHA, and you have more than a trillion dollars of mega-brand companies
behind you, supporting your app development efforts. It certainly seems too good to be
true; however, it’s a fact: if you’re an Android developer (which you are about to be, in about
a dozen or so chapters), then you now have a supreme hardware and software sales and
support team behind your new media content development business.

Finally, and most important, it’s much easier to get your Android applications published than
it is with those other platforms that are similar to Android 7.1.1 (I won’t mention names here,
to protect the not-so-innocent). We all know we would rather spend our time on applications
development than on trying to get our Android apps approved for sale!

We’ve all heard those horror stories regarding major development companies waiting months,
and sometimes years, for their apps to be approved for other app marketplaces. These
problems are nearly non-existent on the open source Android platform. Publishing an app in
the Google Play store is as easy as paying $50, uploading your Android .apk file, and specifying
whether you are offering a free or a paid download. Let’s take a look at what we are going to
cover during this book, and at what we are not going to be covering. Finally, we’ll look at the
new Android 7.0 “Nougat” operating system features, before we finish up with this first chapter.

The Scope of This Book
This book is an introduction to the core features and attributes of Android, and to the
work process for developing applications for Android. The book is intended for absolute
beginners; that is, people who have never created an application on the Android platform for
a consumer electronic device. If you are already familiar with Android, then this book is not
appropriate for you. I do not assume that readers know what Java is; or how XML works;
or what styles or themes are; or what a codec, alpha channel, color depth, dithering, or
a blending mode algorithm is.

6 CHAPTER 1: An Introduction to Android 7.0 Nougat

All I know is that by the end of this book, you’re going to appear as if you are speaking a
foreign language when you start talking about new media Android application development
in front of friends, family, and clientele, which ultimately will get you hired, and hopefully,
well paid. Be advised that it will take far more than one book to learn the “ins and outs”
of Android, so be sure to check out all of the other Android and Pro Android titles at
http://www.apress.com.

What Is Covered in This Book
This book covers the basic and essential elements of Android application development,
including but not limited to the following areas:

	The open source software development tools required to develop for the
Android 7.x platform

	Where to get this free software development environment, as well as
professional new media content creation tools that can be used in
conjunction with the Android Studio 2.3 IDE

	How to properly install and configure the necessary tools for Android 7
application development, as well as for new media content creation tools
that can be used with Android Studio 2.3

	Which third-party tools are useful to use in conjunction with the Android
Studio 2.3 IDE

	Which OSs and platforms currently support development for Android
using these tools

	The concepts and programming constructs for Java and XML, and their
practical applications in creating Android applications

	How Android Studio 2.3 goes about setting up an Android application

	How Android OS defines Android application user interface (UI)
components using the View class

	How Android OS controls UI component layout on the display screen
using the ViewGroup class

	How Android can communicate with other Android applications using
the Intent class

	How Android apps interface with content providers, datastores,
resources, networks, and the Internet

	How Android alerts users to events that may be taking place, inside or
outside of an Android app

	How Android applications are defined for publishing using the app’s
Android manifest XML file

	How Android applications can use threads for background processing
using the Service class

www.allitebooks.com

http://www.apress.com/
http://www.allitebooks.org

7CHAPTER 1: An Introduction to Android 7.0 Nougat

It is important to know that Android OS has more than 250 Java packages, and that one
book cannot introduce you to everything that is available to you in the Android 7.1.1 OS
development environment. This Android development environment contains functionality that
allows you to do just about anything imaginable, from putting a button on the display screen;
to synthesizing speech; creating virtual reality or smart watch faces; leveraging interactive
television set or auto dashboard features; or accessing advanced smartphone features, such
as the high-resolution camera, Bluetooth communication, NFC, GPS, gyroscope, compass,
or accelerometer. If you would like to review each of these Android packages for yourself,
you can find them at the following URL for the Android developer website:

https://developer.android.com/reference/packages.html

Unlike this book, most Android books will specialize in a specific area of Android
programming. For instance, my Pro Android Wearables (Apress, 2015) title focuses on
SmartWatch application development, and my Pro Android Graphics (Apress, 2014)
focuses on Android graphics pipeline design. We will be learning about APIs, or Application
Programming Interfaces, in the chapter on Java. There is plenty of complexity in each Android
API, which ultimately, from the developer’s perspective, translates into incredible creative
power. What is the price of this power, you might ask? Your valuable time spent mastering
each API is the only price you will pay, as Android 7.x OS is otherwise free for commercial use.

What Is Not Covered in This Book
So then what is not covered in this book? What cool powerful capabilities do you have to
look forward to in the next level book on Android programming? In a nutshell, anything that’s
not a core class or feature that Android apps are built upon. On the hardware side, we will
not be looking at how to control the camera, access GPS data from the smartphone, or
access the accelerometer, or the gyroscope, which allows the user to turn the smartphone
around, or have the application react to the smartphone position. We will not be delving into
advanced touchscreen concepts, such as gestures; accessing other device hardware, such
as a microphone, Bluetooth, NFC, and Wi-Fi connections; or image compositing, which is
covered in Pro Android Graphics (Apress, 2013).

On the software side, we will not be diving into creating your own Android MySQLite
database structure, or real-time 3D rendering system (OpenGL ES 3.2 and Vulkan), although
we will take a closer look at these areas in later chapters, so that you know how to utilize
them, and how they fit into the overall Android 7.1.1 infrastructure. We will not be exploring
speech synthesis and speech recognition, nor the universal language support that allows
developers to create applications that display characters correctly in dozens of international
languages and foreign character sets. We will not be getting into advanced programming

Note A package in Java is a collection of programming utilities, or functions, that all have related
(and interconnected) functionality. For example, the java.io package contains the utilities that
deal with input and output (IO) to your program, such as reading the contents of a file, or saving
data to a file. A later Java primer chapter describes how to organize your Java code into your own
custom Android application packages.

https://developer.android.com/reference/packages.html

8 CHAPTER 1: An Introduction to Android 7.0 Nougat

such as game development, artificial intelligence, image compositing pipelines, blending
modes, and physics simulations. We won’t get into advanced user interface design concepts
and techniques, such as the topics covered in my Pro Android UI (Apress, 2014) title or my
Learn Android App Development (Apress, 2013) title that I wrote previously.

What’s New in Android Nougat: Powerful New Features
In this section, I will go over some of the new features that will make Android 7 (Nougat)
more attractive to both end users and developers alike. Even new end-user features can be
considered “wins” for Android developers, because these new features serve to expand the
majority market share currently enjoyed by Android OS. One of these new features even
allows Android apps to run on Google Chrome OS, which runs on millions of ChromeBook,
ChromePhone, and ChromeCast (iTV) products, greatly expanding the market for
Android 7.x Nougat applications.

Since it expands Android onto netbooks, notebooks, laptops, and PCs, let’s take a look at
the Custom Pointer API first. This new API allows pointing devices (mice and cursors) to be
used with Android devices such as iTV sets or personal computers, making Android more
like a desktop operating system with context-sensitive cursor graphics for the pointer.

Android Apps for the Google Chrome OS: Custom Pointer API
Recent versions of the Google Chrome OS have a placeholder for an entry point into the
Google Play store, which indicates that Google is going to make Android applications run under
the Google Chrome OS. Part of this on the Android application development side is the Custom
Pointer API, which will allow keyboard and mouse support for Google Chrome OS users, and
could also help Android TV users to interface with their iTV Sets as well. Until iTV Set and PC
Android support came into view recently, Android OS was primarily a touchscreen environment.
However, Android has had some basic support for mice and keyboards for several years now.
Mice will become more common with new Android devices such as iTV sets emerging, and
Android 7.1.1 moves to support these with the addition of a new Custom Pointer API, which
is available as of the developer previews (betas). The cursor can actually change to indicate
different user interactions, just like a mouse pointer (cursor) does on your desktop PC or laptop.

The Custom Pointer API allows developers to customize the cursor (also called the pointer)
visibility, appearance (icon used), and behavior. The capability of controlling the cursor
appearance and visibility is especially useful when your users are using their mouse (or
trackball or touchpad) to interact with objects in your application such as user interface
components or game players or game pieces. The default pointer for the API will use the
standard pointer icon for its appearance. The Custom Pointer API includes advanced
functions that allow developers to change the pointer icon’s appearance in real time based
upon your user’s mouse (or touchpad or trackball) movement. The Custom Pointer API

Note Android Version 7.1.1 Nougat is currently in beta development during the writing of this book,
and should be released on devices at about the same time that this book is released to the public.

9CHAPTER 1: An Introduction to Android 7.0 Nougat

allows your Android application cursor to function more like a traditional desktop computing
cursor, which will change depending on what the application user is doing. For example,
when you hover a cursor over a text field, the pointer icon will become an “insertion bar” text
cursor. If you move the cursor over a link, the pointer will change to a pointing finger. If you
drag objects the cursor will show an open hand pointer. If you hover over a resizable window
border, the cursor will show the appropriate resize direction arrow. Developers can change
pointer behavior in their apps by using this API, which is detailed on the Android developer
website, which is located at:

https://developer.android.com/reference/android/view/PointerIcon.html

The implication of this Chrome OS to Android OS “bridge” is also important to Android
developers, as it allows both of these rapidly growing platforms to fuel each other’s growth.
Chrome OS gives Android applications a new platform, with ChromeBook (laptops);
ChromeCast (iTV sets); and possibly a Chrome PC, Chrome Phone, and Chrome SmartWatch
in the future. In the other direction, Android applications will give Chrome OS a massive digital
library of software that will eventually match up with the number of applications available for
desktop OS leader Microsoft and their Windows 10 OS. What this may signify is that now that
Google has won the mobile OS market, they’re now going to go after the desktop OS market.
Chrome OS is impressive, like most Linux distros, and brand-new ChromeBooks are priced to
sell rapidly (in the United States they are $120 to $180, with quad-core CPUs).

Power and CPU Optimization: Sustained Performance Mode API
Google started focusing on Android device power consumption optimization via CPU and
memory performance optimization back in Android 5.0, which I covered in my Android
Apps for Absolute Beginners Third Edition (Apress, 2014). An even more advanced API
dedicated to power saving and battery life optimization is in Android 7 Nougat. It is called
the Sustained Performance Mode API, and gives developers a way to define when their app
uses CPU, display and memory resources, which are the things that can potentially drain the
device battery life.

The power optimization objective of the Sustained Performance Mode API in Android 7.x is to
allow developers to identify their applications that need to use memory and processor cycles
high rates of speed for long durations. This would include multimedia applications such as
virtual reality (VR), augmented reality (AR), or interactive 3D (i3D) real-time rendered games.
Using the Sustained Performance Mode API allows developers to specify the performance
level that is sustainable for the duration of the application execution without monopolizing the
device CPU, memory, and display (and therefore the battery life). According to Google, this
new API should allow “OEMs to provide hints about device-performance capabilities for long-
running apps. Application developers can use these hints to tune apps, for a predictable,
consistent level of device performance, over long periods of time.”

Seamless Updates: Background Installation to Secondary
Partition
Android 7 now features a seamless download, install, and update system for your Android
OS. Instead of users being prompted and then required to download Android OS updates,
then install them, and finally reboot, starting with Android 7.0, the OS will automatically

https://developer.android.com/reference/android/view/PointerIcon.html

10 CHAPTER 1: An Introduction to Android 7.0 Nougat

download and install its next revision on a secondary disk storage partition. When users
subsequently reboot an Android device, the OS will switch partitions once a newer version is
completely installed on the second (other) partition, and then you will have the latest Android
OS revision. This saves users from having to spend device-use time going through a time-
consuming Android OS update process.

The idea of automatically downloading Android versions in the background is not new,
but with Android 7, it also installs the OS. That means users do not have to reboot their
devices and waste device-usage time witnessing a lengthy installing-update dialog screen.
With Seamless Update, once everything has been installed and users reboot, things will be
ready to use on the next startup. It is important to note that this is the same approach to OS
updates that Google Chromebook OS utilizes, so the fusion of Android OS and Chrome OS
continues to happen.

When an Android update is released by Google, the update is installed to a secondary
partition. Once the device is restarted, the secondary partition becomes the primary
partition, and the primary partition becomes the secondary. This approach will be supported
by Android 7.0 and later hardware devices. This does not require consumer electronics
device manufacturers to release updates any faster, unfortunately; it just means Android 7
will install an update in the background while Android end users are doing more important
things with the device!

Multiple Concurrent Windows: Run Two Android Apps at Once
The first Android 7 feature to be officially confirmed was a multiple concurrent window
mode, which is another feature addition that makes Android come closer to being used as
a desktop computing and iTV set operating system. This is because desktop PCs now use
HDTVs and UHDTVs as displays and because interactive TV set devices are one of these HD
or UHD screens with a quad-core or octa-core computer inside of it.

Android 7.1.1 developers will need to add support for multiple concurrent window modes
to their apps. Compatible apps will be able to be opened up side by side in Android 7 or
later. Windows can be resized using slider UI elements. Users will be able to drag and drop
content between multiple concurrent windows, and windows can be toggled into full-screen
mode by dragging a UI slider to the edge of the window. Developers will also be able to
specify a minimum initial window size for the app window.

Picture in a Picture: Watch Video or TV in an Android TV HD
iTV Set
There is a new picture-in-a-picture (PIP) mode for Android TV that is similar to this same
feature in Apple iOS 9. This works like a minimized video in YouTube, which is not surprising,
as Google owns both Android TV and YouTube. The Android 7 picture-in-a-picture mode
essentially allows an app to be positioned over the rest of the Android iTV OS user interface
using an overlaid window, with no chrome (border). In an Android 7 overview, Google used
an example of a video player app to show the picture-in-a-picture mode.

11CHAPTER 1: An Introduction to Android 7.0 Nougat

This picture-in-a-picture capability is clearly targeted at HD and UHD iTV sets running
Android TV; however, Google did indicate support for larger devices as well, so this could
mean large tablets with HD and UHD (iTV set) capable resolutions should be able to leverage
this new feature. It is interesting to see hardware devices conforming their screen resolutions
with 16:9 and 16:10 widescreen aspect ratios, to support Blu-ray (1280 by 720), True HD
(1920 by 1080) and Ultra HD (4096 or 3840 by 2160) video, television, and film content.
The reason for this is to prevent CPU and memory usage for pixel scaling, and most device
(smartphone, tablet, iTV set, e-reader, game console and auto dashboard) screens will be one
of these three pixel resolutions, going out into the future. Samsung has enabled PIP in the
video player on their smartphones already, and Apple has done the same on the iPhone, so
there’s no reason for Google to limit this PIP feature only to larger Android device hardware.

Change Display Density: Adjusting Pixel Per Inch (PPI) via
Slider
Android 7 includes an ability to set different display densities, which will serve to zoom all
elements on the screen in or out. This helps to help improve device accessibility for users
with impaired vision. To access the new feature, go to Settings ➤ Display ➤ Display Size.
Android 7.x allows you to change the display size on your device, also known as changing
your display’s DPI (dots per inch) or PPI (pixels per inch) setting. Simply go to Settings ➤
Display ➤ Display Size and slide a slider, and this will change the perceived size of the
onscreen content.

Google claims this feature will not require developers to make changes to the code in their
apps; however, in user interface design developers need to select a DPI level (LDPI, MDPI,
HDPI, XHDPI, etc.). To make sure there is enough resolution for Android to leverage for
this new feature, Android developers should create higher DPI designs (HDPI, XHDPI, or
XXHDPI) so that there is more data available to sample for scaling algorithms. This will allow
Android OS to “render” the density-altered text and graphics, whether content is zoomed
in (large), or zoomed out (small). Developers should test this feature to make sure it works
properly within their application.

Keyboard Themes: Customize Onscreen Keyboard Using Skins
One of the most popular things to do since MP3 players were released decades ago is to
“skin” or provide a custom user experience (background graphics and edge detail) for the
user interface for a given application. The 5.1 version of Google Keyboard comes with theme
(skins) customization features that developers (and users) that custom skin their apps are
going to utilize. Now you can have thoroughly customizable keyboards and a selection of
preconfigured themes to choose from.

After installing Google Keyboard 5.1, if it is not preinstalled already, users are presented with
a menu option called “Themes.” Users can choose from several included layouts, but the real
advantage here is that Google Keyboard 5.1 puts the pixels in the user’s control, to allow users
to “skin” whatever style of keyboard they desire. This includes adding custom images to the
background of the keyboard, and developers can access this feature as well to customize the
keyboard look and feel to their application look and feel, or UX (User eXperience).

12 CHAPTER 1: An Introduction to Android 7.0 Nougat

Enhanced Doze Mode: Control Android 7.0 Device Resting
States
Just like developers can manage power using the Sustained Performance API, so to can
Android Users using the Enhanced Doze Mode. One of the favorite Android 6 features
(Doze Mode) is vastly improved in Android 7. Android Doze features two levels for its power
optimization system. The first level kicks in when the screen has been dark (off) for a while,
whether your Android device is motionless (stationary) or not. This means users can enjoy
the benefit of Enhanced Doze Mode anytime that the device is not in use, even when it is in
your pocket, purse, briefcase, or backpack. Once the device screen has been off for a while,
Enhanced Doze Mode will also shut down all network access, except for during certain
occasional periods of activity, and will also schedule any processing during those brief
windows of time. Note that this behavior will only go into effect if the device is on battery
power, and will not kick in if the device is attached to an AC power charging source.

The second layer of Android 7.0 Enhanced Doze Mode works like the Android 6 Doze Mode,
but with significant improvements. When the device is laying still, the OS will enter a deep
hibernation mode, deferring all network and other activity, except for during some wide
(spaced-out) maintenance windows before slipping back to sleep. If the device remains
stationary, after a while Android OS will place it into a deeper state Enhanced Doze Mode,
which has no wake locks, defers alarms as well as data synchronization and processing
jobs, and shuts down GPS services and Wi-Fi connection scanning. The deeper the doze
mode, the further these windows of intermittent activity will be spaced out, allowing for more
battery savings the less you move your device. If you are worried about the device dozing
off too much, this is also not a problem, as once you activate the device screen, or plug the
device in, the device will exit Enhanced Doze Mode altogether, until its criteria are met again.

OpenJDK: Moving Android Java from Oracle Java to OpenJDK
Google and Oracle have been in legal contention for several years regarding the use of Java
in Android, since Oracle purchased Sun Microsystems to obtain Java (and the Solaris OS)
and Google purchased Android, as you learned earlier in this chapter. Java 6 was utilized up
until Android 6, which uses Java 7, while Android 7.x will use Java 8. To settle these legal
contentions, Google plans to officially make the switch to OpenJDK in Android 7. OpenJDK
code still belongs to Oracle, but OpenJDK is, as the name suggests, part of an open
source JDK (Java Development Kit). Anticipation of an open source Java 8 development
programming language move have been percolating for a quite a while now, as snippets of
open source Java code have recently shown up as far back as Android 6.

Google confirmed all of these speculations in 2016 with the following statement: “As an
open-source platform, Android is built upon the collaboration of the open-source community.
In our upcoming release of Android, we plan to move Android’s Java language libraries to an
OpenJDK-based approach, creating a common code base for developers to build apps and
services. Google has long worked with and contributed to the OpenJDK community, and we
look forward to making even more contributions to the OpenJDK project in the future.”
– A Google Corporate Spokesperson

13CHAPTER 1: An Introduction to Android 7.0 Nougat

Note that in the next chapter you will still download and install the Oracle Java 8 SE JDK to be
able to run IntelliJ IDEA and Android Studio with, but the Android packages we will be learning
about in this book will be based upon the OpenJDK. What is the difference in the package code,
you may wonder. From the end user’s standpoint, there will likely be little to no noticeable change
in the Android OS user experience. It is developers who will likely have to adapt to the new
Java standard. Fortunately you will have never coded Android before, so you will start with the
OpenJDK Android API and thus you will not be affected by any slight Java 8 API code changes.

The Data Plan Saver: Sync Only When Connected to a Wi-Fi
Portal
Since networks charge you per unit of data transferred, it is important to optimize the data
usage for your cellular data plan. Android 7 has a new Data Plan Saver feature that can
help users take control of their data usage. When the data saver setting is enabled, it stops
background data syncs from occurring, except when connected to Wi-Fi networks. Not only
will this Data Plan Saver block data-expensive background activities from using up your data
plan allowance, it will limit the amount of data that applications use in the foreground as well.

Users can create an “exception list” that highlights specific apps that users want to sync
as usual, so that they can still make use of the Data Plan Saver feature. Android users have
been able to specify cellular network data limits using their settings menu in previous OS
revision, and now in Android 7, there is this additional feature that will let users take their
data saving specifications even one step further.

The Future of Android: 3D, VR, AR, OpenGL, and Vulkan
Interactive 3D, or i3D, has been growing in popularity for over a decade now, due to the
advent of 3D gaming consoles like the Nintendo Wii, Sony PlayStation, and Microsoft
xBox. Vulkan is an i3D rendering API that manages multi-core GPUs in an efficient, highly
optimized fashion, and will eventually replace OpenGL ES 3.2.

Khronos Vulkan: i3D Rendering Engine That Replaces OpenGL ES
Vulkan is a leading-edge i3D programming API being developed by industry experts for use
in Android games and other i3D applications on other platforms such as HTML5 and Linux.
Vulkan is being created (coded) by i3D experts from across the gaming and effects industry
by working together through Khronos.org, which you can find at http://www.khronos.org,
as you may have surmised. The Vulkan API is at: http://www.khronos.org/vulkan/ and was
released a year ago, on February 16, 2016. Vulkan will be included in the Android 7.1.1 OS
release later this year, and will be powered by the nVidia Tegra Parker chipset.

What the Vulkan API does is to provide common, low-level (direct) access to i3D processing
(GPU) hardware on a wide range of operating systems and platforms. If you want to explore
how to leverage the Vulkan API on Android 7 (and later), and learn all the latest Vulkan
techniques, you can research NVIDIA developer information, as well as NVIDIA’s main Vulkan
developer hub, at https://developer.nvidia.com/vulkan-android Do this because nVidia
manufactures the powerful Tegra 3D processors, including the latest “Parker” chipset, used
in more and more i3D and VR capable Android devices such as iTV sets and game consoles.

http://www.khronos.org/
http://www.khronos.org/vulkan/
https://developer.nvidia.com/vulkan-android

14 CHAPTER 1: An Introduction to Android 7.0 Nougat

Vulkan for Android: Leading-Edge i3D Performance for
Android 7.0
Vulkan for Android is unlike current Android graphics APIs, such as OpenGL ES 3.x, in
that its processing engine does not perform certain application optimizations, such as
graphics processing pipeline reuse, for instance. Android applications that use Vulkan must
implement pipeline optimizations themselves. If they don’t, it is possible that they could
even implement worse performance than apps running OpenGL ES 3.2. For this reason, I am
using OpenGL ES 3.x, and optimizing the assets that the engine renders to achieve a similar
result to Vulkan.

When apps implement scheduling optimizations themselves, they have the potential to do so
more successfully than the rendering engine can, because they have access to contextual
usage information for any given rendering scenario. As a result, skillfully optimizing an
app that uses Vulkan could potentially yield better performance than if the app were using
OpenGL ES. It is important to note that properly creating and optimizing the geometry
and shader assets that are being rendered can often provide even greater performance
enhancements. I cover this in my Android Studio New Media Fundamentals (Apress, 2015)
title in greater detail.

For instance, one of the key rendering engine optimizations is to minimize the number
of rendering “passes” or calls to the rendering engine on each frame of the game (i3D)
or animation (3D). In general, the less calls, the less processing overhead is incurred.
Additionally, for embedded device GPU architectures starting and ending a rendering pass
is a processor intensive undertaking. Android apps improve performance by organizing
rendering operations into as few render passes as possible using well-formed Java 8 classes
and methods, which we will be learning about in Chapter 5.

OpenGL ES for Android: Desktop i3D Performance for
Android 7.0
OpenGL ES 3.2 was released around the same time as Vulkan and promises to bring
more advanced in mobile graphics capabilities and quality by incorporating the Android
Extension Pack (AEP) functionality into the core of OpenGL ES. The AEP was announced
with the launch of Android 5, and added a set of i3D rendering technologies to Android OS
using “extensions” to OpenGL ES 3.1. These have now been added “natively” to Android 7
OpenGL ES 3.2 API.

The introduction of OpenGL ES 3.2 builds on a previous release, to add 3D graphics
functionality making full use of mobile, iTV set, and automotive dashboard hardware.
OpenGL ES 3.2 has a number of improvements over OpenGL ES 3.1. OpenGL ES 3.2
compliant hardware supports Tessellation, which adds 3D geometry detail. It includes new
geometry shaders, ASTC texture compression for an optimized memory footprint, floating-
point rendering for high-accuracy compute processing, and enhanced debugging features.
These high-end features are already found in Khronos Group’s OpenGL 4.0 specification.
High-quality special effects are also a part of OpenGL ES 3.2, including deferred rendering,
physically based shaders, HDR tone mapping, Global Illumination, and reflections. These
features will bring desktop-quality graphics to Android 7 devices running OpenGL ES 3.2.

http://dx.doi.org/10.1007/978-1-4842-2268-3_5

15CHAPTER 1: An Introduction to Android 7.0 Nougat

Summary
In this first chapter, you learned about Android 7, including its history, advantages to
developers, and its major new features. I outlined what we will, and will not, be covering
during over the course of this absolute beginners title. In the next chapter, you’ll learn exactly
how to download, install, and set up an Android 7.1.1 application development workstation,
and how to configure it for use for Android 7.x application and content development.

17© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_2

Chapter 2
Setting Up an Android Studio
Development System
These days, you see Android operating system powered devices of every size and shape,
everywhere you look. These can be worn on your person; used in home appliances; as a
part of your car; or providing entertainment in your living room, taking the form of your iTV
set, or a tablet, an e-book reader, or even an Android game console.

During this chapter, you’ll learn how to assemble a 64-bit workstation that will allow you to
develop applications for the Android 7 (and previous versions) operating system (OS). This
will give you a high-level overview of the software requirements, the workstation hardware
requirements, which open source programming language software development kits (SDK)
and integrated development environment (IDE) you will need to download and install, where
to download these and how to properly install them, and how to configure and update them
as well.

You will get all of the tedious Google searches and downloads out of the way regarding
how to go about obtaining all of these professional open source software and content
development packages, SDKs, IDEs, and related plug-in components, which together will
form your comprehensive Android Studio 2.3 production workstation.

Even though this is an “Absolute Beginners” Android title, I want to teach you how to put
together a pro Android development workstation, so that you are all ready to get into the
various Pro Android series of books from Apress (after you finish mastering this book, of
course). So that everyone experiences this book equally, this chapter will outline all of the
steps needed to obtain a completely decked-out Android 7.1.1 development workstation.

Assembling Your Android 7 Development Workstation
In this chapter, I will outline a detailed overview of what will be needed to put together a
complete Android Studio development workstation, which you’ll be able to utilize throughout
this book, and others, to create Android apps.

18 CHAPTER 2: Setting Up an Android Studio Development System

The first thing that you will do is to download the entire Java SE 8 software development kit
(SDK), which Oracle calls the JavaSE 8 JDK (Java Development Kit). Android Studio uses
Java Standard Edition (SE) Version 8 update 121, as of Android Studio 2.3, as well as the
IntelliJ 2016.3 IDEA.

The second thing that we will download and install is the Android Studio Development
Toolset, which we will get from Google’s tools.android.com website. Android Studio is
currently at Version 2.3 (Android 7.1.1), and Android 6 used Android Studio Version 2.1.
Android Studio currently consists of the IntelliJ 2016.3 IDEA along with the Android 25 APIs.
These Application Programming Interfaces (APIs) bridge the Android 7.1.1 SDK with the
IntelliJ IDEA, making them into one seamless Android 7 software development environment.
It is important to note that IntelliJ can also be used for other types of non-Android application
development as well, including HTML5, Java, JavaFX, and C++, among others.

After your core Android development environment software is downloaded, you’ll then
download and install external new media asset development tools, which you will utilize
in conjunction with Android 7.1.1 to do things such as UI wireframing (Pencil), digital image
editing (GIMP), digital audio editing (Audacity), digital video editing (Lightworks or DaVinci
Resolve), 3D modeling and animation (Blender), digital illustration (Inkscape), visual effects
(Fusion), and even running your Android development business (OpenOffice). Professional
Android applications use more than just Android code, they use what I call “new media
assets,” such as digital audio, digital images, digital video, 3D, and SVG, all of which you will
learn to reference from Android using XML (eXtensible Markup Language).

All of these software development tools, which you will be downloading and installing,
will come close to matching all of the primary feature sets of the expensive paid software
packages, such as those from Microsoft (Office and Visual Studio), Apple (Logic, Avid, Final
Cut Pro), Autodesk (Maya, Flint, Smoke, Flame and 3D Studio Max), and Adobe (Photoshop
CS, Premeire and After Effects).

Each of these paid software packages would cost a couple thousand dollars each to
purchase and maintain, so plan on paying ten thousand (your local currency unit here) to put
together a similar paid software workstation to develop for the proprietary (closed) iOS or the
Windows consumer electronics device platforms.

Open source software is free to download, install, and even to upgrade, and is continually
adding features and becoming more and more professional, each and every day. You’ll be
completely amazed at how professional open source software packages have become over
the last decade or so; if you have not experienced this already, you are about to, in a very
significant way. I also have Digital New Media Fundamentals books on each of these new
media software genres, in case you need to get up to speed on the basics of each genre of
new media, and I also wrote an Android Studio New Media Fundamentals (Apress, 2015) title,
covering all of them. You can even run your workstation on Ubuntu Linux 17.04 if you like!

Note Java 9 also exists, and is under a beta release, at Java 9 Build 156. In the third quarter of
2017, there will be a Java Version 9 released, which will include powerful JavaFX 8.0 APIs that turn
the Java programming language into a powerful new media engine. JavaFX 8.0 will also work in
the 64-bit Android OS.

19CHAPTER 2: Setting Up an Android Studio Development System

Android Development Workstation: Hardware Foundation
Since during the chapter you will put together what will be the foundation for your Android
applications development system for the duration of this book, let’s take a moment to
discuss the Android development workstation’s hardware configuration, as that’s an
important factor for your performance (speed of development), which is as important as the
software itself.

This section will therefore cover a plethora of important systems hardware considerations
that you should consider when assembling your workstation.

I recommend using at a bare minimum an Intel i7 hexa-core processor, or an AMD 64-bit
octa-core processor, with at least 16GB of DDR3-1600 memory. I’m using the Octa-core
AMD 8350 with 16GB of DDR3-2000, but I recently got an Octacore Intel i7 workstation for
Android Studio 2.3 development. Intel also now has a deca-core i7 processor. This would be
the equivalent of having 20 AMD cores, as each Intel core can host two threads, so even an
i7 quad-core looks like 8 AMD cores to an OS thread-scheduler algorithm.

AMD has a 16-core processor as well, which is usually deployed inside of server
architectures, but this CPU can be used in a client-side Android development workstation,
which would greatly speed video compression or 3D rendering for your Android applications
development.

There are also high-speed DDR3 1866, and DDR4 2400 clockspeed memory module
components available. A high number signifies faster memory access speed. To calculate
the actual megahertz speed at which memory is cycling, divide the number by 4
(1333=333Mhz, 1600=400Mhz, 1866=466Mhz, 2400=600Mhz clock rate). Memory access
speed is the key workstation performance factor because your processor is usually “bottle-
necked” by the speed at which the processor cores can access the data (in memory) that
they need to process.

With all this high-speed processing and memory access going on inside your workstation
while it is operating, it is also important to keep everything cool so that you do not
experience “thermal problems.” I recommend using a wide full-tower enclosure, with
120mm or 230mm cooling fans (one or two at least), as well as a captive liquid induction
cooling fan on the CPU. This type of CPU cooler has cooling tubes filled with water that
touch the CPU and draw away heat, turning the water into steam, which rises up the
tubes to the cooling fan, which cools this steam, condensing it back into water, which runs
back down the pipe to cool the CPU. It’s important to note that the cooler your system
runs, the longer it lasts, and the faster it runs, which is important for Android 7 application
development.

If you really want the maximum performance, especially while emulating Android Virtual
Devices (AVDs), which are used for app prototyping or testing, which you will learn about in
the next chapter, you’ll want to make sure that your Android development workstation has a
solid state disk (SSD) hard drive as its primary (C:\ “boot” drive) disk drive, from which your
applications and OS software will launch.

You can always use more affordable hard disk drive (HDD) hardware for your D:\ (secondary)
hard disk drive, for your data storage, which does not need the speed of operation as it is
just used for long-term storage.

20 CHAPTER 2: Setting Up an Android Studio Development System

For my OS, I’m using 64-bit Windows 10 OS, which is not very memory efficient, for this
book since it is very commonly found on computers. Linux 64-bit OSes are also extremely
memory efficient; a good example of this is Ubuntu Mate 17.04 which uses around 350MB
of system memory. It’s important to note that Windows 10 comes on most quad-core
workstations in retail stores such as Walmart and Staples, and with an OS price of several
hundred dollars if purchased separately, you could look at the hardware as essentially being
free. That said, Ubuntu 17.04 running on Intel i7 will be an order of magnitude faster for
development, especially emulation of Android devices.

Android Development Workstation: Software Foundation
To create a well-rounded Android applications development workstation, you will be
installing content development open source software, after you install Java SE 8u121, IntelliJ
IDEA 2016.3, and the Android Studio 2.3 application development environment. These are
all open source programming packages, and therefore we will be assembling a 100% open
source workstation for your company, with the exception of the Windows 10 OS. If you use
Ubuntu 17.04 your workstation would be 100% open source and free.

For those readers who have just purchased their new Android workstations, and who are
going to put their Android development software suite together completely from scratch, I’ll
go through an entire work process throughout the rest of this chapter, starting with Java SE
8u121, as it is the foundation for IntelliJ IDEA 2016 as well as for Android Studio. After that,
you will acquire the Android Studio 2.3 (Android 7.1.1 and IntelliJ 2016 Bundle). Finally, we’ll
search for, and download, your new media content development software, including digital
imaging, digital audio, digital video, 3D animation, and visual effects, all of which will be
used with Android Studio. We will even acquire a complete business software suite called
Open Office 4.2, originally created by Sun Microsystems, and acquired, and made open
source, by Oracle, who also owns the OpenJDK and Java 8 programming language.

Java 8: Download and Install a Foundation for Android
Before you run a Java SE installation, you should remove any older versions of Java SE
using your Windows Control Panel, via the Add or Remove Programs (XP or Vista), or
Programs and Features (Windows 7, 8 or 10) utility. To remove an older version of the Java
JDK or Java Runtime Environment (JRE) select them and right-click on the selected entry
and use the “Uninstall/Remove” option to uninstall.

This will be necessary especially if your workstation is not brand new, so that only your latest
Java SE 8u121 and JRE 8u121 are the sole Java versions that are currently installed on your
new Android development workstation.

To install a new JDK:

1. The first thing that you will want to do is to visit Oracle’s Java
Archive website, and download and install the latest Java 8 JDK
environment, which at the time of writing this book was Java SE
8u121. Note that Java8u91 is shown in Figure 2-1, as that was what I
was using in 2016 to develop this book.

21CHAPTER 2: Setting Up an Android Studio Development System

The URL is in the address bar of Figure 2-1, or you can simply Google Java SE 8 JDK
Archive Download, which will also give you the latest link to this web page, which I’ll
include here, in case you want to cut and paste:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

You can pull the scrollbar on the right side of the web page down the page, until you see the
Java SE Development Kit 8u121 Windows x64 download link, which you can see at the
very bottom of Figure 2-1. This last link in the long list of version links is the latest revision of
the Java SE 8 JDK Development Kit, and since you want to get the latest, bug-free, Java 8
version for 64-bit Windows 10 OS, then this is the download you’ll want.

Make sure that you use this Java SE Development Kit 8u121 download link, and do not
use a JRE download link. The JRE is part of the JDK 8u121, so you do not have to worry
about getting the Java Runtime separately. In case you’re wondering, you will indeed use the
JRE to launch and run your IntelliJ IDEA, and you will also use the JDK inside of IntelliJ, to
provide your Java 8 programming language foundation for the Android 7.x OpenJDK API
used by the Android 7.x classes.

Make sure not to download a JDK 7u79 from the Java 7 download page, because Android 7
uses JavaSE 8u121 and the IntelliJ 2016.3 IDEA, not Java 7 and the NetBeans 7.4 IDE with
its ADT plug-ins, so be very careful regarding this foundational installation step.

Note The JRE is the executable (platform) that runs the Java 8 or JavaFX 8 software, once it has
been compiled into an application, and thus a JRE will be needed to run IntelliJ IDEA 2016.3. This is
because IntelliJ IDEA 2016.3 (dot three means version three) was originally coded using Java SE.

Figure 2-1. Oracle TechNetwork web site Java SE 8u91 Archive; scroll down to the middle, and accept the license
agreement

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

22 CHAPTER 2: Setting Up an Android Studio Development System

I actually use a completely different workstation for Android development, which has Java
SE 8u121 and IntelliJ 2016.3 IDEA under Android Studio 2.3, and I have another HTML5 and
JavaFX 8 development workstation that has Java SE 8u91 and NetBeans 8.1 installed on it.

2. Once you click on the Accept License Agreement radio button, you
will activate the Java SE 8 Development Kit 8u121 Download section
of this page, shown in Figure 2-1, where you will be able to select
the OS you want to use. Once you click on this Accept License
Agreement radio button on the top left of this download links table,
the links will become bolded, and you will be able to click on the link
for the OS version that you need to use for your 64-bit workstation.

3. Click on the “Windows x64” link. This is the 64-bit version of Java
for Windows, which I am using on my Windows 10 workstation. If
you are using Linux, then click on “Linux x64” instead.

If you’re on Windows and your OS is 64-bit, you would use the Windows
x64 link; otherwise, you would use the Windows x86 link. To find out what
level of bit-depth your Windows OS is running at, open the Start menu,
right-click on the Computer option, and select the Properties menu
option. For Windows 10, right-click the start menu (Windows) icon and
then choose System. This will tell you all about your computer’s hardware,
including if it is using a 32-bit or 64-bit CPU and OS. Optimally, your
workstation should match the bit-depth of the CPU with the bit-depth of
the OS, and I highly recommend using a 64-bit OS for Android application
development, as much older 32-bit software has been outdated for almost
a full decade now.

4. Once the installation executable has downloaded, locate the file on
your workstation’s hard disk, and install Oracle’s Java SE 8u121 JDK
on your system, by double-clicking on the EXE file.

5. Accept the default setting in the second dialog, seen on the
top-middle in Figure 2-2, and click on the Next buttons in the first
two dialogs, which will extract the installation.

6. Accept the default Java installation folder value, which is shown
in the dialog on the bottom left in Figure 2-2, entitled Destination
Folder.

7. After Java installs, as shown in the center bottom dialog in Figure 2-2,
use the Close button to finish the installation, and use your Control
Panel ➤ Programs and Features utility to confirm the successful
JDK 8 installation on your Android 7.x development workstation.

23CHAPTER 2: Setting Up an Android Studio Development System

Once Java 8u121 (or later) JDK is installed on your workstation, you can then download and
install the Android Studio Installer from the tools.android.com website. You can also use
that same Add or Remove Programs utility in your Control Panel (that you just used for Java)
to remove older Android Studio versions, and to confirm the success of the new Android
Studio 2.3 installation, just like you did for your Java SE 8 JDK installation.

Android Studio: Download and Install Android Studio 2
Now we need to visit the tools.android.com website, and download and install the Android
development environment Android Studio 2.3 zip file from the /download/studio/ folder of
the site, located at the following URL:

http://tools.android.com/download/studio/

1. Click on the Android Studio Stable Channel link, found on the
bottom right of the Android Studio Project website’s home page.
There is also a Canary (latest untested build) Channel, a Developer
Channel (latest internally tested build), and a Beta Channel (latest
beta or externally tested build). I do not recommend that Absolute
Beginners use these channels until they’re more advanced users.

2. This will take you to a page with “Android Studio Stable Channel”
at the top. Click the topmost link to download the most recent
version of Android Studio 2.3.x and then right-click on the file once
it is on your system and select the Run as Administrator option from
the context-sensitive menu. You will see the Welcome to Android
Studio dialog shown on the left side of Figure 2-3.

Figure 2-2. The six dialogs which install the Java 8 SE JDK onto your Android Studio 2.3 software development
workstation

http://tools.android.com/download/studio/

24 CHAPTER 2: Setting Up an Android Studio Development System

3. Click the Next button and select the Standard install option from the
Install Type dialog shown on the right side of Figure 2-3, and then
again click on the Next button, and advance to the Android Studio
Verify Settings dialog screen.

4. If you want to review or change installation settings, click the
Previous button; otherwise click on the Finish button to begin the
Installation of Android Studio, as shown on the left in Figure 2-4.

Figure 2-3. Launch the Android Studio installer, click the Next button, and select a Standard install and click the Next
button

Figure 2-4. In Verify Settings, review the SDK components to install, and click Finish to begin Downloading SDK
components

5. Once you click Finish, the Downloading Components dialog,
shown on the right side in Figure 2-4, will appear, and you will see
a Downloading… progress bar with a data field area showing you
what components are being downloaded and installed.

25CHAPTER 2: Setting Up an Android Studio Development System

6. If there are any components that cannot install or which fail for some
reason, you will see red colored text, as is shown on the left-hand
side in Figure 2-5. In my case, I have an AMD OctaCore CPU and so
the Intel HAXM component will not install as it requires an Intel CPU
architecture. I then clicked the Finish button, and launched Android
Studio 2.3. Since I am writing this book to release at the same time
as Android 7.1.1 (Android 2.3), I am using Preview (beta) versions
of the IDE in order to be able to write this book to coincide with the
stable version release.

7. At the bottom of the Welcome to Android Studio launch screen
you will see a tool gear icon and a Configure drop-down menu, as
is shown in the middle of Figure 2-5. Select the Check for Update,
to force Android Studio to check its repository (Android component
software server database), so that you can make sure that you have
all the latest Android SDK component versions installed.

8. To see what components make up the Android Studio installation,
drop-down this Configure menu a second time, as shown on the top-
right corner of Figure 2-5, and select the SDK Manager option.

Figure 2-5. Finish downloading components, and use the Configure menu to check for updates, and then manage
the SDK

9. In the Default Settings dialog, under the Appearance & Behavior
➤ System Settings ➤ Android SDK section, in the SDK Platforms
tab, make sure that Android 7.1.1 is installed. This is shown on the
left side of Figure 2-6.

10. Click the SDK Tools tab, to review what Android Studio 2.3 has
installed. This is shown on the right side of Figure 2-6. Select the
Google USB Driver, which you’ll need to work with hardware devices.

26 CHAPTER 2: Setting Up an Android Studio Development System

11. Next, click on the SDK Update Sites tab, as seen on the left side of
Figure 2-7, to make sure all of the repositories are in place, and click
on the OK button (shown as number 1 in Figure 2-7).

12. Click on the OK button in the Confirm Change dialog, shown
as number 2 in Figure 2-7, which appears because you selected
Google’s USB Driver to be added as a component of Android Studio.

13. In the License Agreement dialog, shown on the right side of
Figure 2-7, click on the Accept radio button, shown as number 3, to
accept the Google USB Driver licensing agreement.

Figure 2-6. SDK Manager

Figure 2-7. Install the Google USB Driver (latest version) so that you can test your apps on real Android hardware
devices

14. After the USB Driver download and install, shown in Figure 2-8, is
complete, click the Finish button.

27CHAPTER 2: Setting Up an Android Studio Development System

15. Next, let’s go back into the SDK Tools tab, as is shown in Figure 2-9,
and make sure that the Google USB Driver is showing as being
installed. This is the equivalent of using your Programs and Features
utility in Windows. Now, you can plug your Android devices into
your Android Studio workstation, and test your applications on a
real Android device, instead of using a slow and cumbersome AVD
(Android Virtual Device) emulator. Next, click the OK button, and exit
the Default Settings dialog.

Figure 2-8. Google USB Driver; installing the requested components in the Component Installer dialog in Android
Studio 2.3

www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2: Setting Up an Android Studio Development System

Now that we have Android Studio working on your workstation, I’m going to give you a
bonus in this chapter, and tell you how to obtain some other professional-level software
packages that will help your Android development business to create “front-end” multimedia
assets that will set your products apart from the rest of the marketplace because you will
add audio, video, imagery, 3D, and 2D SVG Illustration to enhance your user experience
(UX) and User Interface (UI) design. These are also free for commercial use, making your
workstation more valuable.

Open Source New Media Content Software: UI and UX
As you can see in Table 2-1, there are professional software tools for each of the new media
asset genres that are supported in Android 7.x. Each of these has been under development
for well over a decade, and match all the primary features found in paid multimedia software
packages, costing in some cases thousands of dollars each.

Figure 2-9. The minimum Android 7.1.1 development tools needed for absolute beginners are now confirmed to be
installed

29CHAPTER 2: Setting Up an Android Studio Development System

I recommend that you go to each of these URLs and download these impressive free
multimedia production software packages, because there are no strings attached, and
because they give you the capability to make your Android 7.1.1 applications an order of
magnitude more desirable, by making them visually (and aurally) superior.

New Media Software: Download and Installation Work Process
I’m not going to spend a lot of time going through how to download and install the new media
packages because the work process is so similar to what you did during this chapter. Find
the download link, find the installer file on your workstation, right-click and run the installer
as Administrator, and create a short-cut launch icon on your taskbar. Also, make sure to
remove any older versions before you do this, by using the Programs and Features utility.

Finally, let’s take a look at powerful new media content production software packages that
are almost free, in case you’re intending to create Android new media applications (games,
iTV shows, wallpaper, watchfaces, etc.) specifically.

Other Affordable New Media Software Readers Should
Know About
There are also some extremely affordable (less than $100 up to $200) new media software
packages, which you should take a look at as well, if you are serious about creating
impressive new media assets for use in your Android 7.x application development. In the
area of 3D, these include:

	NeverCenter SILO 2.3.1 (Quads 3D Modeling)

	Hash Animation Master 18 (Character Animation)

Table 2-1. New Media Genres supported by Android 7 asset data formats, along with open source software and their
URLs

New Media Asset Genre Open Source Software
Package Name

URL for Download

Digital Image Compositing GIMP 2.8.18 (Version 3 due
out in 2017)

http://www.gimp.org/

Digital Audio Editing Audacity 2.1.2 http://www.teamaudacity.org/

Digital Illustration or Painting Inkscape 0.91 http://www.inkscape.org/

Visual Effects (VFX) Compositing Blackmagic Design Fusion 8.2 http://www.blackmagicdesign/
fusion/

Digital Video Editing and Effects Editshare Lightworks or
DaVinci Resolve

http://www.lwks.com/

3D Modeling and Animation Blender 2.78b (Version 2.8
due in 2017)

http://blender.org/

Office Productivity Suite Apache (formerly Oracle)
Open Office 4.1.2

http://www.openoffice.org/

http://www.gimp.org/
http://www.teamaudacity.org/
http://www.inkscape.org/
http://www.blackmagicdesign/fusion/
http://www.blackmagicdesign/fusion/
http://www.lwks.com/
http://blender.org/
http://www.openoffice.org/

30 CHAPTER 2: Setting Up an Android Studio Development System

	Moment of Inspiration 3D 3 (NURBs 3D Modeling)

	TerraGen 4 Pro (3D virtual worlds generation)

	Hexagon 2.5 (Polygon 3D Modeling)

	Auto-Des-Sys Bonzai (3D Modeling, with all 3D modeling paradigms
being supported)

In the area of digital imaging, digital video editing, digital illustration. and digital painting,
Corel Corporation in Canada offers a large number of software packages under or around
$100 that offer an amazing value. Many of these (other than CorelDRAW) were acquired
from other software companies, are covered in my Digital Painting Fundamentals and Digital
Video Editing Fundamentals (Apress, 2016) titles, and include:

	Corel Painter 2016 (formerly Fractal Design Painter)

	Corel PaintShop Pro (like Photoshop or GIMP 3)

	Corel VideoStudio Ultimate

	CorelCAD 2016

	A number of different versions of CorelDRAW (Graphics X8, Home/
Student X7, and Technical X7)

Corel has a number of affordable DVD Authoring and Office Suite solutions as well.

There are also other open source packages in the 3D software genre and include:

	SketchUp (architectural rendering)

	TerraGen 4 Free Version (virtual world creation)

	Microsoft TrueSpace 8 (3D Animation)

	Wings 3D (3D Modeling)

	Bishop 3D (3D Modeling)

	POV Ray 3.7 (3D Rendering)

	DAZ Studio 4.9 (Character Modeling)

For audio composition, production, and engineering areas, impressive packages include:

	Rosegarden (Music Composition, MIDI, Score Publishing) for Linux and
Windows

	Qtractor (Sound Design) for Linux

The list of amazing open source software just goes on and on, which is why I took a page
or two out of this book to expose you to all of it, as it can make your Android software
development workstation at least ten times (known as an “order of magnitude”) more
impressive than it would be using only the Android Studio 2.3 IDE, Java SE 8, IntelliJ
2016.3.3 and the OpenJDK.

31CHAPTER 2: Setting Up an Android Studio Development System

Summary
In this second chapter, you learned about Android Studio and its hardware requirements,
and acquired the software that you will need to be able to create your comprehensive
Android 7.1.1 application development workstation. I also showed you how to install
Android Studio; configure Android Studio; upgrade Android Studio; examine what SDK
packages were active in Android Studio; and how to enhance Android Studio with additional
Android software development features, such as the ability to test Android applications on
a real-world Android device, by connecting it using a USB cable (USB to Micro-USB) in
conjunction with Google’s latest USB driver software.

From Java SE 8, to Android Studio (IntelliJ), to new media content production software, to
business productivity tools, you downloaded and then installed the most impressive open
source software packages that can be found anywhere on this planet, adding incredible
value to your Android 7.1.1 development workstation with zero monetary outlay. You did this
in order to create a foundation for the Android application development work process that
we will be undertaking throughout this book; and rather than install these software packages
as we go along, I made the decision to get all of our Absolute Beginners readers 100% set
up with this amazing software right off the bat!

I did this in case you wanted to explore some of the many features of these powerful,
exciting new media content production software packages before you actually use them
during this book. I think that’s only fair.

The best thing about the process was that we accomplished it by using open source, 100%
free for commercial usage and professional-level application software packages, which is
pretty darned amazing, if you think about it.

We started by downloading and installing Oracle’s Java SE 8u121 JDK or Java Development
Kit, which is the Java 8 programming language’s SDK. This Java JDK is required to use IntelliJ
2016.3 and Android Studio 2.3, so you can develop application software for Android 7.1.1 OS
(and all previous Android versions) for consumer electronic devices.

We then visited the Android Developer Tools website, and downloaded and installed
Android Studio 2.3, which offers the IntelliJ 2016 IDEA and seamlessly integrates Android
7.1.1 SDK Development Tools on top of IntelliJ and the Java SE 8 JDK and JRE. I also
showed you how to get all of the professional new media content development tools that
you will want to leverage to create the new media assets used in your Android application,
especially if you are targeted graphics-centric HD or UHD iTV set, smartphone, tablet or
e-reader device hardware. Lower SD resolution smartwatches will also need to leverage new
media visuals to “skin” your users’ smartwatches to make them visually impressive to their
friends and family.

In the next chapter on how Android and Android Studio works, you will see how these new
media assets integrate into Android using XML, and how to create an Android Project using
the Android Studio 2.3 software that you just installed during this chapter. This is getting
exciting already! Hang on, you’re in for a wild and fun ride!

33© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_3

Chapter 3
An Introduction to the
Android Studio Integrated
Development Environment
During this chapter, we will take a look at how the Android Studio 2.3 development
environment and Android platform works. Android OS has moved away from using the
Eclipse Integrated Development Environment (IDE) with Android Development Tools
(ADT), and as of 64-bit Android 5.0 and later, has adopted the IntelliJ IDEA (Integrated
Development Environment Application). We installed IntelliJ as part of Android Studio 2.3
in the previous chapter, and have already used some of its configuration tools and dialogs,
such as the SDK Manager, to configure it for basic Android application development usage.

To cover this overview of Android Studio 2.3 and IntelliJ IDEA properly, and still make steady
progress toward actual hands-on Android application development at the same time, in
this chapter I will show you the work process for creating an empty Android application
“bootstrap.” This is the foundation that you will always use when you start creating your
Android applications. This bootstrap application structure provides you with the basic
foundation of an Android 7.1.1 application, which also makes it perfect for Absolute
Beginners to learn the minimum code structure that Android applications are built on. This
includes an Android Activity Java class, an Android Manifest application definition XML file,
a PNG32 Android application icon, a basic menu system XML definition, and a basic user
interface (UI) layout container XML definition.

We will take a closer look at all of the basic Android application components during this
chapter, by looking at the Android application resource folder structure in IntelliJ IDEA, which
the Start a New Android Project series of dialogs will also automatically create for you. As
you have seen already in Chapter 2, this is inside of the Android Studio start menu, which
you saw in red as the first item in the middle section of the screenshot in Figure 2-5.

http://dx.doi.org/10.1007/978-1-4842-2268-3_2
http://dx.doi.org/10.1007/978-1-4842-2268-3_2#Fig5

34 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

We will do a detailed examination of the bootstrap (empty) Android application file and folder
structure in IntelliJ. This will tell you how Android Studio 2.3 (and Android 7 OS) wants to
see your application components and assets structured and organized. We will also take
a detailed look at some other resource folders that are not auto-created in the bootstrap
Android application project folder structure, so that you know what you can optionally create
yourself. You will be creating some of these specialized resource folders during the book,
such as the /res/anim/ folder, which holds XML animation definitions. Custom resource
folders usually hold new media assets such as animation, video, audio, user interface
designs, and other assets that will enhance the Android application user experience.

As you progress in your knowledge of Android, you will enhance the application foundation
that you will put into place in this chapter into something that is truly impressive, and
learn more about the Android 7.x OS as well as Android Studio 2.3 and IntelliJ IDEA in the
process. After you get some high-level overview regarding how everything fits together
inside Android Studio, we can then start “drilling down” into XML for asset definition and
Java 8 for application logic programming during Chapters 4 and 5.

Android Application Structure: Java, XML, and Assets
Android 7 components are built on the solid foundation of the 64-bit Linux OS Kernel.
Android 6 runs on Linux Kernel 3.18.10, and Android 7 runs on Linux Kernel 4.4.1 or later.
Later Linux Kernels have more features and fewer bugs, as you might expect.

On top of the are a massive number (thousands) of high-level Java functions, or Java
methods, that are logically arranged by using Java classes. These classes are stored by
what tasks they accomplish using around one hundred Java packages. These packages are
further organized into Java libraries, or APIs, which simplify your task of communicating with
Android and its Linux Kernel as well as with device hardware.

This is inherently complex, as you might well imagine, so don’t expect to cover all of
Android 7’s functionality in one book (or even a dozen, for that matter). I’ll cover Java 8
concepts of libraries and packages, as well as what Java objects, constants, classes, and
methods are, during Chapter 5.

On top of this complex Java code libraries layer, you can define app assets using a high-
level (and less complex) layer of XML markup. XML markup allows you to more easily define
your application’s Java object structures, as well as any data constants that will be used
in your Java 8 programming logic. Additionally, XML markup can define your application
UI design, style, theme, and new media assets. These design-oriented assets allow you to
control how your Android application looks, sounds, and functions, and ultimately will define
the user experience.

Since XML is easier to create Android application content in, I will be using it in the middle
five chapters of this book, to show you how to define various application components,
assets, looks, and feels. I will be covering XML-based UI, graphics, and animation design in
Chapters 6 through 10. Figure 3-1 shows the hierarchy of an Android application structure
starting with the foundation of the Linux OS Kernel, hidden from the developer; and Java 8,
XML, and new media assets that developers create, code, design, define, and construct,
eventually marrying these layers together into an Android application. These layers tend to
reduce in complexity from bottom to top, especially if your new media assets already exist.

http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_5
http://dx.doi.org/10.1007/978-1-4842-2268-3_5
http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_10

35CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

Creating new media assets from scratch can be as complex as Java programming can be, so
if your assets do not already exist, these levels of decreasing complexity do not necessarily
hold true. If you want to start on the road to mastering new media content production, I have
a series of six books on mastering new media fundamentals (search for this author’s name,
at: http://www.Apress.com), as well as an Android Studio New Media Fundamentals (Apress,
2015) title, which contains information and work processes regarding 3D, digital audio, digital
video, digital image compositing, and digital illustration (SVG) new media content creation.

Android 7 Platform Structure: A Collection of Open
Technologies
As you have learned, the foundation on which Android is built is the carefully coded, and
painstakingly tested, Linux Kernel. Linux and its core services manage physical hardware
for smartphones, tablets, e-book readers, smartwatches, and iTV sets, and give Android
applications complete access to the features of each consumer electronics device, including
GPS, touchscreen, memory, data storage, camera, flash, gyroscope, compass, accelerometer,
barometric sensor, biometric (e-Health) sensors, Bluetooth, Wi-Fi, NFC, 4G LTE, USB, and
much more.

Linux doesn’t do it all alone, however. Android has a wide array of Java API libraries, that
provide higher-level customized functions and services for things like SQLite database
management, 2D image compositing, image blending, SVG rendering, 3D rendering, web
page (HTML5, CSS3 and JS) rendering, digital audio playback, digital video streaming,
frame-based and procedural animation, Bluetooth, and more. The majority of these are
based on open technologies, such as SQL, GIF, SVG, WebKit, OpenGL, Vulkan, PNG, FLAC,
Ogg Vorbis, Ogg Theora, VP8, and VP9. Some “almost” open source (these patents expire in
a few years) have been licensed for Android by Google, such as MPEG-4, MP3, WAVE, BMP,
JPEG, Bluetooth, and similar new media technologies.

The higher-level Java functional libraries are the ones that Android app developers use to
create their applications. This is so that developers do not have to “talk” directly to the
low-level operating system functions. This is done so that application development
becomes an order of magnitude more easily! You will be learning about some of the core
Java 8 functional libraries that are used to develop Android 7.1.1 applications during the

Figure 3-1. The Android OS foundation: from Linux Kernel, to Java Libraries, to XML Definitions, to Application Media
Assets

http://www.apress.com/

36 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

course of this book, starting with this chapter when we look at the basic (empty) Android
application bootstrap Java code.

The Android OS on the user side of the equation (versus the developer side, which we will be
focusing on during this book) also includes a large number of “end-user utility” applications,
which Android device users have come to expect on their Android device. Examples of
these include a phone call management utility, an e-mail client, various social media platform
clients, a contact manager, a web browser, an alarm clock, a calendar, Google Maps, Google
Search, a media player, and possibly some basic casual games, to name a few.

Android OS supports all of the popular open source new media formats that developers
will want to use in their applications, including the powerful ON2 VP9 video codec, added
in Android 5. ON2 was acquired by Google, and VP8 and VP9 were released in an open
source video codec called WebM, which you can find in Android as well as in browsers such
as Firefox, Opera, and Chrome. Both the WebM and the MPEG-4 H.264 AVC digital video
codec’s “Quality to File Size Ratio,” and therefore their playback performance, are fairly
impressive for open source video codecs. Also added in Android 5.0 was the ability to play
back MPEG-H H.265 HEVC content.

For more information regarding the two dozen new media formats that are supported in
Android 7.1.1 you can visit:

http://developer.android.com/guide/appendix/media-formats.html

The next section of this chapter introduces Java’s Dalvik Virtual Machine (VM), which
optimizes your Java code, so that it will execute effectively in low-power, embedded
(portable and iTV set) consumer electronics devices.

Now let’s take a look at the runtime, or compiled version, of your Android application, and
how it uses Java bytecode with the Android Run-Time (ART) to optimize the runtime (end
user) performance of an Android app.

Android 7 Executable Structure: Compiled Runtime Java
Bytecode
Everything in the Android Studio 2.3 development environment, as well as all of the included
applications, is created by using a combination of Java code and XML markup. This is
compiled by IntelliJ and Gradle into a Java “bytecode” version of your app that will be

Note In this book you will build apps using a combination of XML and Java. These sit in layers on
top of the operating system, as shown in Figure 3-1. However, you could, if you were advanced in
Android development, access the operating system and its services directly, using the lower-level
language C++, by utilizing the Android Native Development Kit (NDK), rather than using higher-level
Software Development Kit (Android SDK), which we will be using for this book. You might consider
this “under-the-hood” approach for an application that needs the utmost speed, such as a game, or
real-time heart-monitoring workout program. This Android NDK is currently beyond the scope of this book.

http://developer.android.com/guide/appendix/media-formats.html

37CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

“executed” (run) using the Android Run-Time (ART) utility, which is a part of Android OS.
IntelliJ creates this bytecode, and puts it into the .DEX file format (similar to an .EXE file).

This .DEX file extension and data format essentially amounts to being a compact, low-level
executable file format that the Android operating system, and therefore Android devices that
run Android OS, will be able to understand and run. A DEX is not specifically encrypted, but
if you look at the contents of one of these compiled files, it will not be readily decipherable.
The flow of XML, to Java code, to bytecode, to executable data would be as follows:

XML (.XML) Java (.CLASS) ByteCode (.DEX) App (.APK) Runtime (ART) Device
Display

The Android runtime environments before Android 4.4 used only Dalvik Virtual Machine
(DVM); and in Android 4.4, you could choose between DVM and ART. Android 5.0 and later
use only ART. These runtimes give your apps access to hardware device features, as well as
the low-level Android and Linux Kernel functions, so that you don’t have to do all of that low-
level programming yourself.

The good news is that an an Android Absolute Beginner, you don’t need to understand
much about ART, other than what this .DEX file is, the place it provides in the chain of code
to runtime, and that it will do a good job optimizing your application for your users. To use
the Java programming language, you’ll simply include the appropriate components from
the Java libraries you need in your program, using something in Java called an import
statement. After you do this, your app’s code can employ that built-in Java library’s
capabilities. You will learn how to put a number of these powerful Java libraries to work later
on in this chapter, and in all the chapters, for that matter, during the remainder of the book.
We will also cover this in detail in the Java Primer in Chapter 5.

Next, I show you how to create your first Android application, so that you can see how to
organize your Android 7 application assets in a highly structured Android project hierarchy,
which must be followed for Android apps to work properly. In this way we can get right to
some hands-on use of the Android Studio application development environment, to see
how you create a new, empty Android bootstrap application infrastructure; and start learning
about Android Development, Android Studio, Java, XML, Gradle, application resources, and
new media assets.

Creating Android 7 Apps: Android Studio’s New Project
By now you are probably quite eager to fire up Android Studio and IntelliJ 2016, and to
create your first Android 7 application. We need to do this so that you can observe how Java
code, XML markup, and new media assets, called “resources” in Android, work together
when it comes to creating your own custom Android 7.0 application.

A time-honored tradition across every programming language is for new users to create
a “Hello World” application. Let’s create our own Absolute Beginner Hello World Android
application, right here and now. Just so that we do things as “out-of-the-box” as possible, we
will eventually turn this application into a “Hello Universe” application during the book so that
we can expand (no pun intended) on the bootstrap (empty) application that Android Studio
creates for us as we learn more and more about Android graphics, user interface design, and
so forth. We’ll add all sorts of impressive features that you’ll find around our universe.

http://dx.doi.org/10.1007/978-1-4842-2268-3_5

38 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

First, we will launch Android Studio, and create the new application. Then we will take a look
at all of the files that Android Studio creates for us, as well as the Java and XML code that
Android Studio generates to get your app up and running. We will then examine in detail the
resource folder hierarchy for the project structure and see how Android Studio wants you to
structure your Android 7.0 project assets (resources).

Finally, we will take a look at how to upgrade to later versions of Android Studio when you
already have Android Studio installed. A later version of Android Studio 2.3 was released
when I was working on this chapter, so I took some screenshots that show what you will
see when a new version of Android Studio is released and how to handle the download,
upgrade, and installation process from inside of Android Studio itself.

The Android Studio Welcome Menu: Creating a New
Android 7 App
The first step is to launch Android Studio 2.3. From there, using the Welcome to Android
Studio menu that you saw in Figure 2-5 in Chapter 2, you will create your new Android 7.1.1
application project. The application infrastructure we are about to create (or Android Studio
is about to create for us) will contain your application’s Java programming logic, XML
markup, new media assets, and your other application resources.

1. To launch Android Studio, find and click the Android Studio quick
launch icon, located on your workstation taskbar. If you didn’t create
one of these, find Studio64.exe on your hard drive (you can use
Search in your File Management Utility), and double-click it.

2. You will see the Welcome to Android Studio launch dialog, and you
will click the first option, Start a New Android Studio Project. If you
want to see a screenshot of this aforementioned dialog, see Figure 2-5,
from Chapter 2.

3. Once you select this option you will get the New Project dialog, as is
shown in Figure 3-2. This is the first in a series of five dialogs you will
be using to create a blank Android Studio project. These dialogs will
step you through the process of creating a new Android application
project infrastructure. Accept the default My Application name for
your app and user.example.com Company Domain. Since this is
the Absolute Beginners title, you will not need to select your Include
C++ Support option check box. Click the Next button to advance to
the Target Android Devices dialog, where you will accept the default
Phone and Tablet application type option.

http://dx.doi.org/10.1007/978-1-4842-2268-3_2
http://dx.doi.org/10.1007/978-1-4842-2268-3_2

39CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

4. After you click a second Next button in the Target Android Devices
dialog, there is a possibility that Android Studio might launch the
Installing Android SDK repository updater progress bar, which
can be seen in Figure 3-3. What Android Studio is doing is that it
is checking the Android APIs that you have specified for the use of
the core Android OS (phone and tablet), as well as Android Wear 2,
Android TV, Android Auto, or Glass. If any of these need installing
or updates, this Installing Android SDK update function will kick in
automatically and make Android Studio compliant with the application
types that you wish to develop your Android application for.

Figure 3-2. Accept the default My Application name, user.example.com Company Name, Phone and Tablet, and click
Next

Figure 3-3. Android Studio will install any components needed for those target Android devices that you want to utilize

40 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

5. Once Android Studio has downloaded all of the new updates and
APIs that you will need to develop the Android application you
have specified in the Target Android Devices dialog, you will get the
Installing Requested Components dialog shown in Figure 3-4. This
will show you what is being added to your Android Studio. Once
you see Done at the bottom left of this dialog, click the Next button
to advance to the next dialog and continue creating a new blank
Android application bootstrap software infrastructure.

Figure 3-4. The Installing Requested Components dialog will tell you what APIs Android Studio has installed for you

6. The next dialog you will encounter is the Add an Activity to Mobile
dialog, which can be seen in Figure 3-5. The default option is the
creation of an Empty Activity (shown selected in blue in the top
middle of this figure). This is the best option for an Absolute Beginner
title, as we will need to examine what the minimum XML markup and
Java code is required to create Android applications. We will then
build up from that knowledge, and learn about what comprises the
basic Android application infrastructure.

41CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

7. Take a look at some of the other options in the Add an Activity
to Mobile dialog to see what Android Studio is able to create for
you. This is a pretty cool feature, because Android Studio will do
a lot of the core application Java coding and XML markup for you
automatically, allowing you to get to that application development
stage where you can drop in your new media assets, and define your
software functionality much more rapidly. You can create a Fullscreen
Activity for iTV sets or tablets; Google AdMob and Maps Activities;
Navigation Drawer Activity; a Scrolling Activity; a Tabbed Activity; a
Basic Android Activity; and various utility-based Activities, such as
login screens, settings collections, master-detail data display utilities
and more. In case you may be wondering what this “Activity” is, it is
a functional user interface display screen or collection of functionality
in Android.

8. After you click the Next button, you will advance to the Customize
the Activity dialog, which is shown on the left-hand side in Figure 3-6.
Accept the default MainActivity Java class name and the activity_
main.xml user interface layout container name, as we will be learning
about these Android application component naming conventions as
well during this chapter. Leave both the Generate Layout File (so
Android Studio writes XML markup for you), as well as the Backwards
Compatibility (AppCompat) options selected. The AppCompat API
inclusion allows you to code apps for Android 7.0, which also work

Figure 3-5. In the Add an Activity to Mobile dialog, accept the default Empty Activity option, shown in blue, and click
Next

42 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

on Android 4.0.3, 5.0, and 6.0, as you already specified in the Target
Android Devices dialog, shown on the right-hand side, back in
Figure 3-2.

9. Once you click on the Finish button, Android Studio will start
building the Gradle files for your application, as can be seen
(numbered as 2) in Figure 3-6. Gradle is an open source build tool
that was adopted in Android 5.0 and which manages the compilation
(building) of your Android application. Prior to Android 5 Eclipse
used the Apache Ant and Apache Maven build tools. Since this is
an Absolute Beginner title, we will not be delving deeply into the
complexities of Gradle build tools and configurations, other than to
utilize them to create your Android applications.

10. If at some time your Windows Firewall blocks the OpenJDK Platform
binary using the Windows Alert dialog, like the one shown in the
right-middle of Figure 3-6, click the Allow Access button (numbered
as 3), to allow the OpenJDK Platform binary to communicate with
your own private network. You can also select public networks as
well, if you know for a fact that they are safe. After you do this, the
Gradle build tool will continue to create Android 7 application build
files, and a progress bar dialog will tell you precisely which files are
being generated for you. We will take a look at these files a bit later
on, so you know what, and where, they are in your project.

Figure 3-6. Customize the Activity with the MainActivity name and activity_main user interface layout name, and click
Finish

43CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

11. Once this Gradle build process has been completed, Android Studio
will launch. You will see your MyApplication project name in the
title bar, as well as the location of your project files and the Android
Studio version, as can be seen on the top left in Figure 3-7. In my
case, the project files are located in the C:\Users folder, under
C:\Users\user\AndroidStudioProjects\MyApplication.

12. In the Tip of the Day dialog that comes up in the middle of the
screen (I moved it to show you what was behind it in a virgin launch),
look through some or all of the tips, and then use the Close button
to close that educational feature of Android Studio 2.3. You can
leave the Show Tips on Startup checked, if you want to avail
yourself of this feature later on, which I will recommend that you do
as an Absolute Beginner, until you are familiar with Android Studio.
I numbered this first step as number 1 in Figure 3-7.

13. After you close the Tip of the Day dialog, Android Studio will open a
pop-up dialog, numbered as 2 in Figure 3-7, that asks if you want to
share your usage statistics with Google so that they can make user
interface and user experience improvements to Android Studio 2.3.
If this is acceptable to you, click the I agree link, and if not, click the
I don’t agree link.

14. Android Studio and the Gradle build system will continue to build and
index the project, as seen at the bottom right in Figure 3-7, using a
progress bar and a text update as to what is being done.

44 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

15. Also notice in the center of the Android Studio screen there are some
shortcuts that you can use to speed up your Android 7 applications
development (this is why I have moved the Tip of the Day dialog
out of the way). At the bottom of the list, notice the “Drop files
here to open,” which lets you know you can drag existing Android
Studio files into Android Studio 2.3 to open them. You can also use
Double Shift to Search Everywhere, Alt+1 to get a Project View,
Ctrl+Shift+N to Go to a File, Ctrl+E to open Recent Files, and
Alt+Home to access the navigation bar.

Once your new project build has finished building, indexing, generating Java code and XML
markup, and all of the other steps needed to create your Android application, the blank
screen in Android Studio will be replaced with the project navigation and development
panes that we will use during the remainder of the book to develop (and learn) Android
applications.

These various panes let you navigate your project structure as well as edit your Java code
and XML markup structure, as well as more complex files such as the Gradle build files that
use the Groovy programming language. Let’s explore Android Studio 2.3 next, and see what

Figure 3-7. Close the Tip of the Day dialog, agree (or disagree) to help improve Android Studio, finish indexing your
project

45CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

we can learn about Android applications, and how they need to be put together, in order to
compile (build) into a usable Android package (.APK) file that you can use in Google’s Play
Store, to publish applications.

Exploring Your Android Studio Project: The Android App
Structure
Once Android Studio opens, use the right-facing arrows to open the primary application
folders, so you get what is seen on the left half of the screen in Figure 3-8. The right-facing
arrows are called expand arrows, which turn into downward-facing arrows, called collapse
arrows. These arrow heads toggle folder directories open or closed, as you’ll see, once you
get familiar with them. As you can see, Android has a top-level app folder, which contains
three primary subfolders: manifests, java, and res (resources). java and res subfolders
have subfolders as well.

Figure 3-8. Open the Android Project pane folder hierarchy, and see what folders need to be used for Android
Development

Your application Java code is in an app\java\com.example.user.myapplication folder that
takes its name from the Application Name and Company Domain fields, which you saw
in Figure 3-2. Inside of that folder is the Java code file MainActivity.java, which when
compiled into Java bytecode, will become MainActivity.class after a build.

46 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

Your application resources (I like to call these your application’s “assets”) on the other
hand are contained in the app\res\drawable (images and illustration), app\res\layout
(user interface design), app\res\mipmap (app icons), and the app\res\values folder and its
subfolders, which contain XML definitions and constant values for the app.

We will be getting into what the Java code in the MainActivity.java tab in the Android Studio
central editing pane does in Chapter 5, so in this chapter, let’s focus on the contents of the
Android project management pane, and learn what all of the components are that make up an
Android project structure. As we do this during this chapter, we will take a look at the various
subfolders and what components of our Android application need to be stored in certain
subfolders. One of the things you need to do to become an Android developer is to learn how
Android projects need to be organized. It’s really too bad there is not “forced organization” in
more areas of our lives, because as you will soon see, Android is organized in such a way that
it forces your application development work process to be surgically precise!

Let’s take a quick look at the activity_main.xml tab, which is shown selected in the center
of Figure 3-9. You will be learning about XML in Chapter 4, but I wanted to make sure you
knew how to click on tabs in the editing section of Android Studio, so you can go back and
forth easily between editing your app’s XML markup and Java code.

Figure 3-9. Select the activity_main.xml editing tab (top) and Text tab (bottom), and use the Preview pane to see
your app

As you can see, Java files go in the /app/java folder hierarchy, and the rest of the folders
contain XML files and (or) new media assets. There are a large number of different types of
resource folders, which start with specific names, such as drawable (image, animation, or
shape assets), layout (UI Design XML definition assets), mipmap (app icon imagery), and
values (value constants defining colors, dimensions, styles, and text strings).

http://dx.doi.org/10.1007/978-1-4842-2268-3_5
http://dx.doi.org/10.1007/978-1-4842-2268-3_4

47CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

You can also add other types of Android application project asset folders to this project folder
hierarchy, which we will be doing during the course of this book, when we add advanced
assets like digital video and animation. Since these folders also require specific names, which
indicate the type of assets, as well as their functionality, I will outline what Android asset folder
types (indicated by their folder names) and naming conventions are. I will provide them in a
tabular format in Table 3-1, just so you have an overview of Android’s project folder hierarchy.

Table 3-1. Android Project Directory (Folder) Hierarchy, showing key subfolders that you will be using during this book

Android Project
Subfolder Name

Type of application assets that this subfolder must contain

/manifest Android Manifest XML files (your application permissions and
specifications)

/java Java source code files (your Java programming language application logic)

/res Project resources (your new media assets, UI, menus, and XML markup
definitions)

/res/drawable Digital imaging and digital illustration assets (these are called “drawables”
in Android)

/res/layout UI design layout XML definitions (UI elements are “Views” or “ViewGroups”
in Android)

/res/mipmap Application icons (resolution/density-specific [DPI] PNG32 digital image
graphics assets)

/res/menu Application menu item XML definitions (we will be creating these from
scratch later on)

/res/anim 2D image/illustration animation (procedural, frame, or tween animation XML
definition)

/res/animator Android widget (UI elements) property animation (also XML definitions)

/res/xml Custom XML definitions (other than UI, menu, style, theme, animation,
constants, etc.)

/res/raw Digital video or digital audio assets (which have already been data footprint
optimized)

/res/values Data values that remain fixed for the application duration (these are called
constants)

/res/values/colors Application color value constants

/res/values/dimens Application dimension (width and height) constants

/res/values/strings Application text string (labels, titles, messages, fixed text phrases)
constants

/res/values/styles Application styles and themes

/res/values/bool Application Boolean (true or false data value) constants

/res/values/array Application data array (lists or collections of data values) constants

/res/values/integer Application integer constants

48 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

Let’s spend the rest of the chapter taking a look at the types of resource folders and what
they contain, as this will show you what an Android application can contain, where you will
need to place assets in order for them to be utilized properly, and show you capabilities
and design factors that you’ll need to be aware of to make Android apps work on different
Android hardware device types with various sizes, shapes, orientations, and resolutions.

Android Resource: Project Folder Hierarchy for Assets
If you want to add custom animation, custom menus, digital video, or digital audio to your
Android project, you will have to create new folders under your project resource folder
hierarchy. You will be learning how to do this during the course of this book, as you learn
about how to add these types of assets to your Android application. I want to expand on
Table 3-1 for you to give you a deeper understanding regarding the different folder types that
are available for use in your Android applications. This is so that you have a high-level view
of what is possible in Android development and the types of Android assets you are going to
learn how to incorporate during this book.

Your “external” new media assets, that is, those which are created outside of Android Studio
using software like GIMP, Fusion, Lightscape, Blender, Audacity, and Inkscape are kept in
the resources folder, shown in Figure 3-9 opened up to show all subfolders, and referenced
as app/res/.

Other “internal” resource assets, which are ultimately referenced by your Java code, or in
other XML definitions, are created using XML markup in what I call “definition files,” because
they define application assets using XML markup. XML definitions can include things
such as number, text and Boolean constants, styles, themes, menus, animation, and user
interface layouts, and these are also kept in the resources (app/res) folder hierarchy.

There are many different resource types in Android, and they either have their own
subfolders under the app/res/ project folder, or their own filenames, under the /res/values/
folder. We’ll go over the majority of these in detail in the next eight sections of this chapter.

You can also provide alternate resources in this application project resource folder
hierarchy. The alternate resource folders provide support for a wide array of device types
or physical hardware specifications, by grouping new media assets, user interface designs,
and style and theme definitions into specifically named alternate resource folders. The \res\
values-sw600dp folder is an example of an alternate resource folder name that would hold
assets that are specific to an application design for 600-pixel or larger screen dimensions.
The sw signifies “smallest width” and thus anything larger than 600 DIP (Device Independent
Pixels) would qualify.

At runtime, Android 7 will use the appropriate resource based on the device hardware
specification.

Note Runtime is the stage when your code runs as an application. This is after the compilation
process when Android Studio turns your code into bytecode. The ART uses this bytecode to run the
application at runtime.

49CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

As an example, if you want to provide different UI design layouts that morph, or change,
based on the physical screen size, shape, or orientation (portrait or landscape), you can
define different UI layout designs using different layout folder names, such as app\res\
layout-land for a landscape-specific UI layout design, or app\res\layout-port for a
portrait-specific UI layout design.

As another example, you could define different string (a collection or array of text characters)
values, which would be evaluated at runtime based on the language setting on the end
user’s Android device. As you can see, there is a reason for the way Android organizes
resources, and one of the major reasons is so that developers can create alternate resources
(alternate resource folders) that can be accessed at runtime based on Android device
characteristics. As this book progresses, I will show you how to reference and access
external resources from within your Java code and XML markup. We will look into how to
set up alternate resource folders in the chapters covering user interface design, themes, and
styles. Let’s look at Android drawable assets next, as most apps will use digital image (PNG)
and digital illustration (SVG) assets.

Android Drawables: Images or Illustration That Draws on the
Screen
A “drawable” in Android is aptly named, as it is anything that can be drawn onto the display
screen. As you can see in Figure 3-9, Android Studio created five different application icon
drawable-dpi versions for your PNG32 app icon. The app icon is named ic_launcher.
png and is in the app/res/mipmap folder in the five most common pixel density drawable-
mdpi, drawable-hdpi, drawable-xhdpi, drawable-xxhdpi, and xxxhdpi DPI resolutions.
The latest XXXHDPI resolution density was added in Android 4.2 to accommodate Ultra-
High Definition (UHD) displays, such as those found on 4K TVs, which have a 4096 by
2160 resolution; or the screen on the Samsung Galaxy S7, which has a 2560 by 1440
pixel resolution screen. From smartwatch (ldpi) to 4K TV (xxxhdpi), Android has a density
constant to fit any consumer electronics hardware device.

You will be learning all about pixels and resolutions during Chapter 9 when we cover
graphic design, but to give you an overview here of what the different DPI levels are for
Android screen resolution density constants, I have put all of the density constants and their
specifics in Table 3-2, for those of you who are already “pixel savvy.”

http://dx.doi.org/10.1007/978-1-4842-2268-3_9

50 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

As you can see in Figure 3-9, I opened the drawable folder for you to show the ic_launcher
graphic file that Android Studio created for you in five different resolution density versions.
If you are wondering what the pixel dimensions are for these ic_launcher files, take a look at
the sixth column in Table 3-2.

There are about a dozen different types of drawable objects in Android, each of
which has their very own class. Some of the more important drawable types include
BitmapDrawable, ShapeDrawable, NinePatchDrawable, AnimationDrawable, LayerDrawable,
TransitionDrawable, and StateListDrawable, to name a few. I will try and implement as
many different types of drawables as I can during this book, so you will be well rounded
when it comes to using drawables in Android application development.

There are several types of drawable assets that will need to be placed in the drawable
folders for these assets to be visible to, and accessible to, the Android application. The
primary one is bitmaps, which we will be covering in Chapter 9, as well as media assets that
are based upon (created with) bitmaps, such as frame animation, which we will be covering
in Chapter 10. Assets that reference Bitmaps or Frame Animation in an XML definition file
format would also be kept in this folder, as would any XML definitions creating shapes (2D
vector graphics).

Android User Interface Design Layout: Asset to Design UI
Layout
A “layout” in Android is also aptly named, as it is a definition of how your user interface
elements and drawable assets are going to be “laid out” relative to each other on the
Android device display screen. Once we get you up to speed on Java, in Chapter 5, you will
be learning more about UI layout design throughout the rest of this book! Chances are, if you

Table 3-2. Android Device DPI: Seven levels of Pixel Density constants specifically supported in Android 7 and previous
APIs

Android DPI Constant
(and its Density Level)

Constant
Name

Pixel
Density

Pixel
Multiplier

Minimum
Display

Icon Size
(in pixels)

Action Bar
Icon Size

Notify
Icon Size

LDPI (Low Density) small 120 0.75 426x320 36x36 24x24 18x18

MDPI (Medium
Density)

normal 160 1.0 470x320 48x48 32x32 24x24

TVDPI (HDTV
1280x720)

tv 213 1.33 640x360 64x64 48x48 32x32

HDPI (High Density) large 240 1.5 640x480 72x72 48x48 36x36

XHDPI (Extra-High
Density)

xlarge 320 2.0 960x720 96x96 64x64 48x48

XXHDPI (Super-High
Density)

xxlarge 480 3.0 1280x960 144x144 96x96 72x72

XXXHDPI (Ultra-High
Density)

xxxlarge 640 4.0 1920x1080 192x192 128x128 96x96

http://dx.doi.org/10.1007/978-1-4842-2268-3_9
http://dx.doi.org/10.1007/978-1-4842-2268-3_10
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

51CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

want your Android app to have a custom design for each type of device (iTV, smartphone,
tablet, smartwatch, and iTV set), you’re going to have a number of custom /res/layout
folders, not just /res/layout-land or /res/layout-port folders as I gave as an example
earlier. You can have complex alternate resource folders as well, such as /res/layout-
sw800dp-land for tablet, and /res/layout-sw480dp-port for phone or smartwatch.

The /res/layout/ folder and any custom layout alternate resource folders that you create
will generally contain UI layout definition XML files. As you will see during Chapters 6 and 8,
and over the rest of the book, UI layouts in Android are defined using XML layout definitions.
These are handcrafted using XML markup, and stored in filename.xml files in the /res/
layout folder or one of the alternate layout resource folders that you create.

Since we are going to look at the XML for the UI layout that Android Studio created for us
in Chapter 4, and because we have a couple of chapters coming up specifically covering UI
layout design, I am going to leave the /res/layout/ folder coverage at that, and move on
to look at some of the other resource folder types next. Although Android applications tend
to use Activity screens filled with UI widgets for navigation, Android does support menus as
well, so let’s take a look at that next, as it is often integrated with the Activity user interface
design layout.

Android Menu Design: Asset to Define Menu Structure and
Options
A “menu” in Android is exactly what it says it is, and what you would expect it to be: a menu,
or a list full of options, for your end users to select from in order to navigate around your
Android application infrastructure. In previous versions of Android. menu use was not as
much as a priority as it is going to be as iTV set devices and integration with Chrome OS
(and Android laptops and PC sticks) become popular with billions of consumers.

There are several types of menus in Android, including pop-up menus, context-sensitive
menus, and options menus. We will get more into menu design as we progress through
this book, adding menu items to your application’s menu. Technically, the Android menu
that your application uses, via a hardware MENU button on the Android device or via those
three vertical dots on the Action Bar at the top of an Android device if there is no hardware
MENU button, is called the Options Menu. The Status Bar is always above the Action
Bar, at the very top of every Android device, and holds the battery power indicator, network
mode indicator (3G, 4G, 4G LTE, and so forth), signal strength indicator, wireless connection
indicator, and other device operation indicators.

In addition to the options menu, the Action Bar contains your application icon; application
title; and if you code it correctly, either icons or text tabs that can access areas of your app,
each of which is generally an Activity with its own UI design layout scheme.

The app/res/menu/ folder will contain XML definitions outlining the menu structure that you
want to create for your application. Notice in Figure 3-9 that Android Studio follows file
naming conventions for Java and XML files, so you would want to follow those and name
the file containing your menu definition menu_main.xml. Notice the file naming convention;
a menu_main.xml menu XML definition, a MainActivity.java and an activity_main.xml
layout XML definition file. These all logically match up (type+function), so you know they are

http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_8
http://dx.doi.org/10.1007/978-1-4842-2268-3_4

52 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

all functionally related to each other. This is because each Activity will have a UI layout and
a menu, so this keeps things organized so that you know what code works together as an
Android application complexity increases over time.

Android Data Values: Assets to Define Fixed Application
Constants
A “value” in the Android project folder hierarchy is what is known in Java programming as
a “constant.” Values in Java code are different than Java constants, as they are meant to
change, whereas constants are meant to stay the same (that’s why they’re called constants).
We will be getting into this distinction as far as Java goes soon, in Chapter 5, when we
look at the Java programming language specifically. You will, of course, be required to
understand exactly how Java works before we get much further into the book, as things will
get more and more complicated with each successive chapter.

Android values (constants) are a bit more flexible than Java constants, because once your
Java code places these initial constant values into memory, the application code may
change them if needed.

Let’s examine the app/res/values/ folder from the current application bootstrap project in
more detail. This is where you (or Android Studio, in the case of the New Android Application
Project series of dialogs) will place any predefined application values. These exist in the form
of XML files. These XML files contain constant definitions that define constant names and
their data values.

The value constants that are defined inside of these XML files will later be referenced inside
of your Java code, or via your XML markup. For example, these values might be strings (a
collection of text characters), styles (how you want a UI design to be formatted throughout
your app), dimensions (numeric size specifications), or other constants that need to be
“hard-coded” values that your Java code or XML markup uses in your program logic or UI
design that you do not want to change.

The logic behind having an app/res/values/ folder involves holding all of your constant
values for your application in one place. This is a similar concept to the repository we used
in Chapter 2 to update Android Studio, only the /res/values/ is a resource repository
for value constants that are used in your Android application. The /res/values/ folder is
therefore your application constants repository data (folder) structure, and its usage allows
you to make your application constant changes in one single location. In this way, if you
need to adjust your constant values during application development or testing, you can do
this using XML files.

Figure 3-9 shows four examples of the types of constant value XML files that Android Studio
has already created for you and placed into the app/res/values/ folder in your bootstrap
Android application IntelliJ project hierarchy:

	colors.xml: An XML file that will define the color constant values to
be used in your application. These allow you to standardize the UI. For
example, you could define your app’s background color as a constant.
Then, if you decide to tweak it later, you need to do the tweak in only
one place and the change is implemented across your entire application.

http://dx.doi.org/10.1007/978-1-4842-2268-3_5
http://dx.doi.org/10.1007/978-1-4842-2268-3_2

53CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

We cover color theory and hexadecimal color values in detail in Chapter 9,
which will cover Android graphic design concepts and principles.

	dimens.xml: An XML file that defines dimension constant values like
standard screen dimensions, or font sizes for your UI. You can then use
these values across your app, to ensure it is consistent.

	strings.xml: An XML file that defines text (known as “strings” in Java)
values that are used in your application. For example, you can place
your screen titles, menu options, or your app name, here, and reference
these text constants in your code. If you need to change or refine these
items in the future, you simply do it in this one central location, rather
than in your Java code or XML markup.

	styles.xml: An XML file that defines UI design styles that you’ll use
across your application. These styles constants will be applied to the
UI elements, which will then reference these styles constant definitions,
allowing you to separate the look and feel of your app from the physical
layout and UI functionality. This makes your app easier to refine, change,
and enhance stylistically over time.

Some of the other types of value constant XML definition files that you could later create,
and locate, in your Android project’s app/res/values/ folder would include the following
data value constant types:

	arrays.xml: An XML file that defines any series of data value
constants that are intended to be utilized together (known in Java as an
array) in your application. For example, this could be a list of icon files,
a list of graphic layers, a list of menu items, or a list of options to display
to the user.

	integers.xml: An XML file that defines numeric integer constant
values that will be used in your Java programming logic for your Android
application. We will be covering this topic in Chapter 5.

	bool.xml: An XML file that defines Boolean constant values (true or
false) that will be used for the default (initial) setting for logic states (like
switches) in your application. Examples of these might include states
such as on or off, yes or no, visible or hidden, minimized or maximized,
and so forth.

Notice that Android uses certain file name conventions for the different types of XML files in
the app/res/values/ folder, adding another level of complexity. It is important to note that
you can also create your own customized XML files and file names in this folder, so you are
not limited to the constant types that are discussed here. Next, let’s cover the folder names
that Android Studio (IntelliJ) did not automatically create for you, and that you can optionally
utilize to contain other asset types, such as animation, digital video, digital audio, or custom
XML data.

http://dx.doi.org/10.1007/978-1-4842-2268-3_9
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

54 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

Android Anim Folder: Assets Defining Vector or Tween
Animation
Besides frame animation, also known as bitmap animation, or raster animation, Android 7
also supports vector animation, which it terms tween animation. This type of animation is
also known in the industry as procedural animation, and is created using Java code or XML
markup parameter definitions, rather than by “flipbooking” through a series or collection of
bitmap images (like frames of video) to create the illusion of motion.

Whereas bitmap animation in Android uses the BitmapAnimation class, tween animation in
Android uses just the Animation class, and thus the proper folder to contain resources or
assets related to procedural animation is not the app/res/drawable/ folder, but instead the
app/res/anim/ folder, which you will have to create in order to utilize this type of animation
in Android. Fortunately, we will be covering this during Chapter 10, so you will create this
Android animation resource folder at that time.

Android Animator: Assets for User Interface Property
Animation
There is a third type of animation in Android, called property animation, used to animate
“properties” also known as “attributes” or “parameters,” for any of your UI widgets, called
“Views” in Android, and this can even be done across your entire UI design. You can use
this to obtain impressive special effects, especially transitional effects, which will entice
your end users and increase your app professionalism. Property animation XML definition
files are held in the app/res/animator/ folder, and reference the UI elements that you want
to animate, as well as To and From data values that are interpolated between to create a
smooth property animation. The reason the folder is called the animator folder is because
the Android Java class is called ViewPropertyAnimator.

Android Raw Folder: Pre-Optimized Video and Audio Asset
Files
The app/res/raw/ folder in Android OS holds your application’s “raw data.” Raw data in
Android is not optimized (touched) in any way by the Android OS, it is simply played back
(usually streamed) from this folder “as-is.” This is the folder that you want to contain your
new media assets for which you have taken the time to optimize the data footprint (file size)
to quality ratio. This would be done outside of Android Studio, using new media software
packages like Audacity, GIMP, Inkscape, or Lightworks, all of which you downloaded and
installed in Chapter 2.

We’ll be looking at how to create and leverage the app/res/raw/ folder a bit later on in
this book during Chapters 11 and 12, where I will cover the Android MediaPlayer and
MediaController classes, as well as how to play back digital audio and digital video new
media asset resources using this particular raw asset resource folder.

http://dx.doi.org/10.1007/978-1-4842-2268-3_10
http://dx.doi.org/10.1007/978-1-4842-2268-3_2
http://dx.doi.org/10.1007/978-1-4842-2268-3_11
http://dx.doi.org/10.1007/978-1-4842-2268-3_12

55CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

Android XML: Arbitrary XML and Configurations
The last resource folder that you should know about is the app/res/xml/ folder, which
is used to contain non-Android XML files that specify data structures or configuration
parameters that are for use in your application but which are external to (outside of) the
scope of Android-specified XML structures. As you will see during Chapter 4 and the rest
of the book, Android defines a great many application components and characteristics
using XML, and this (the XML markup) must be done (written or structured) in exactly the
correct way or format. This folder usually contains XML files that have nothing to do with the
Android app creation process, but that are “parsed” (read) by an Android application using a
Resources.getXML() method. We cover Java method calls in Chapter 5.

Updating Android Studio: Upgrading an SDK over Time
When I fired up Android Studio to create the figures for this chapter, there was an update
available link on the startup screen. I clicked it and got a Default Settings dialog, seen in
Figure 3-10, showing an Android 7 update.

1. Select the Update Available SDK Version (on the upper right,
highlighted in blue, in Figure 3-10), in this case this is 24.0.1, or
Android 7.0.1, if you prefer, and then click on the OK button.

Figure 3-10. If you see an update link on the Android Studio startup screen, click it and see what new SDK has been
released

2. Click the SDK Tools tab and select the Show Package Details and
make sure 24.0.1 is selected, seen as step number 1 in Figure 3-11;
and click the OK button, seen as step number 2 in Figure 3-11.

http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

56 CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

3. Click the OK in the Confirm Change dialog, seen as step number
3 in Figure 3-11, and wait until the installation finishes, seen as step
number 4. Click Finish when the update is installed, seen as step
number 5 in Figure 3-11.

Figure 3-11. Create a New Layer dialog

4. Deselect the Show Package Details option, and make sure that the
24.0.1 update, or whatever more recent update you are probably
looking at, is showing as being installed. For my installation this was
24.0.1, and is shown in Figure 3-12. Once everything is updated,
click the OK button to exit, and when Android Studio launches it will
then be the most recent version. Note that in the future this could be
API 25 or 26, as API revisions come out quarterly.

57CHAPTER 3: An Introduction to the Android Studio Integrated Development Environment

Figure 3-12. Use a Select ➤ Invert menu sequence to invert the selection so it selects the logo instead of white areas

Make sure to update Android Studio whenever it informs you that an update is available, as
it is connected in real time to the Android Studio server. Now we’re ready for XML markup!

Summary
In this third chapter, you learned about how the Android platform is structured, and about
how it deals with the application at runtime, when one of your end users launches it on one
of their many Android hardware devices. You learned about Dalvik Virtual Machine (DVM)
and Android RunTime (ART) virtual machines (VM). You learned how to create an Android
Studio 2.3 application bootstrap and Android project folder foundation, by using the New
Android Application Project series of dialogs in Android Studio. You took a closer look at the
folders that comprise an Android 7 application, most of which (besides the Java source
app/java/ folder) are application resource folders. We looked at the various types of
resource folders that you can have in an Android application.

In the next chapter, you will learn all about the XML markup language by taking an in-depth
look at the Android application that you created during this chapter, including the XML files in
the app/res/values/ folder as well as the app/res/layout/ folder and the AndroidManifest.xml
file from your app/manifests/ project folder.

59© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_4

Chapter 4
Introduction to XML: Defining
Android Apps, UI Design, and
Constants
During this chapter, we will take a closer look at how Android’s XML capabilities allow
application developers, and more importantly, application designers, to define their Android 7
application user interface (UI) design, styles, themes, constants, permissions, icons,
activities, services, and how they function within the Google Play e-storefront, all without
having any knowledge of Java programming. Of course, I am going to teach you Java
programming in this book, starting with the next chapter, but you could hire people to do
just Android 7 design, and all they would have to know is how to use the XML and Visual
Design Editor features that we are going to learn about during this chapter. It is important to
note that these same XML concepts that you will be learning in this chapter apply to both
the 32-bit Android 4.4.4 OS as well as to the 64-bit Android 5.0, 5.1, 6.0, 7.0, and to the new
Android 7.1.1 OS.

In the previous chapter, you created the foundation for your Hello World bootstrap Android
application using the Android Studio 2.3 (IntelliJ 2016) New Android Application series
of dialogs. As part of this new application creation process, more than half a dozen XML
definition files were created. We are going to review all of these XML files during this chapter,
as well as show you how to add features to them and refine them. We will do this so that
you can learn the basics of XML implementation, and also to show you how to visually
design user interfaces, add text constant values, create styles using Android themes (high-
level Android OS user interface element styles), set your screen layout dimensions, request
your Android application permissions, and define your Java 8 code module configuration.
These last two are done using the Android Manifest XML definition. All this can easily be
implemented using only XML, or eXtensible Markup Language, once you know the rules of
the XML game in Android 7.x.

60 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

We will again take a closer look at all of the basic Android application components that are
defined using XML in your bootstrap project during this chapter; but this time, instead of
doing this by looking at the Android Studio application (app) resource (res) folder structure,
we will do this by looking at the XML files themselves. We will be learning about the
Android Manifest XML definition file and its functions, structure, and its role in defining and
controlling how your application will work within the Android OS. It is important to note that
the AndroidManifest.xml application characteristics definition file works in exactly the same
way, whether you are developing for 32-bit Android 4.4.4 OS devices, or for 64-bit Android
5.0 through 7.1.1 OS devices. We’ll also look at the Android Studio Visual Design Editor.

As you progress in your knowledge of Android – in this chapter, this will be your knowledge
of XML – you will continue to enhance the application foundation that you put into place
in Chapter 3, and will continue to do so during each chapter in the book, learning the
fundamental capabilities of Android OS, as well as the Android Studio 2.3 IDE in the process.

Extensible Markup Language: XML Overview
XML stands for eXtensible Markup Language. Extensible means that you can use it for
whatever you like (think “customizable”). You could in fact create your own set of XML tags
for any purpose that you wish. It is a markup language, because it uses simple “tags” to
define what you wish to do. Most of you will be familiar with another markup language called
HTML5, or Hypertext Markup Language V5, which is used for creating HTML5 websites, and
more recently, for creating HTML5 applications.

Markup languages differ from programming languages, in that they use tags, parameters
(also called attributes or characteristics) within these tags, and nesting structures to
accomplish tasks that high-level programming languages, such as Java 8, will implement
using complex programming structures like data arrays, logic loops, and method calls. We
will be getting into Java 8 and these types of Java constructs in Chapter 5’s Java primer.
You’re really learning two programming languages: one that uses code, and the other that
uses markup, and how they work together in Android Studio, during this book.

The reason for this approach, that is, using XML for everything that could possibly be
construed as being design oriented, is that using XML frees the members of your application
development team who are designing your application’s usability, feature access, user
interface, user experience, styles, theme, graphics, and the like, from having to learn (that is,
understand) how Java 8 programming works.

As you will soon see, when you compare this chapter to the next one on Java, XML markup
is an order of magnitude easier to learn and implement than Java 8 programming structures
and concepts are. For this reason, during this Absolute Beginners book, I’m going to
implement everything that I possibly can using XML markup, including using the parts of
Android Studio where you can “drag and drop” components into the Visual Design Editor,
and have Android Studio write your XML markup for you, which is a great way to learn
XML markup as you design user interfaces. I will do this so that I can quickly get you to an
intermediate level of 32-bit Android 4.4.4 and 64-bit Android 5.0 through 7.1.1 application
development in this book in less than 600 (dense) pages of learning material.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

61CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Although I’d like to take all the credit for this book being able to take you so very far from
being an Absolute Beginner (zero Android app development experience) to an Android
developer, the primary reason this is possible is because Google Android OS developers
made sure the advanced, “front-facing” features, which allow you to ratchet up the “wow-
factor” for your applications, can be designed and implemented almost entirely using XML,
often using only a few lines of Java programming logic!

Some examples of advanced Android design-related features that you can implement
primarily using XML markup “definitions” include multi-state graphics, skinned UI elements
(custom graphic design User Interface elements), frame or bitmap image animation, vector
or “tween” (procedural) animation, user interface layout design animation (UI property
animator), options menus, pop-up menus, and context-sensitive menus, dialog boxes, alert
dialogs, styles, themes, and your application’s manifest.

You can also implement less advanced, strategic design features using XML, including
string (text) constant values for your app, integer (numeric) value constants, state or status
(Boolean) value constants (such as on or off, visible or hidden, true or false), and screen
spacing (dimension) values for your UI designs. Arrays, which are collections of data used in
your app (like a simple database), can also be created, and loaded with their data values, by
using XML files. Again, remember that all of this holds true for XML in 32-bit Android 4.4.4
devices and for 64-bit Android 5.0 through 7.1.1 devices.

XML markup is contained in simple text format files identified using the .xml file extension.
You can create XML files in a text editor, such as Windows Notepad; however, most
programmers usually use a software editing tool with programming and markup design
features, such as Eclipse, IntelliJ, and NetBeans. These XML files can then be read or
“parsed” by the Android OS, or your application Java code, and turned into Java object
structures using an XML “data or object definition” in each XML file.

XML Naming Schema: Tag and Parameter Repository
XML is comprised of “tags” and their “parameters.” Parameters are part of the tags, and
are used to configure and fine-tune what each of these tags accomplishes, as well as to
reference any new media assets, or text fonts, or color values, or styles, or themes, or other
XML definitions, and similar Android application assets that might be required to “skin,” or
otherwise define how that application user interface element will appear, or “render,” relative
to your users’ Android device display screen.

XML tags and parameters that you can use in any particular design framework, such as
in Android 7.1.1 development, are specified by using an XML “naming schema.” This
definition of the XML tags and their parameters are stored in a centralized repository,
similar to the one Android Studio accessed in Chapter 2, when you did a Check for Updates
function; or Chapter 3, when I updated Android 7 to API 24.0.1, or when you update the
Android 7.1.1 API 25 to the next version coming in late 2017.

The SDK repository hosts the latest Android SDK versions and code base, whereas the
Android XML repository is located at a different URL location (a different folder) on Google’s
Android OS servers. The reason XML needs to have a naming schema is because this

http://dx.doi.org/10.1007/978-1-4842-2268-3_2
http://dx.doi.org/10.1007/978-1-4842-2268-3_3

62 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

language is inherently designed to be “extensible.” This means there is no “standard”
version of XML; each version is customized for some required implementation (end use) by
whatever person or organization needs to use it. The process of making sure that XML tags
and their attributes or parameters are correct, or valid and in conformance with their XML
definition, is called XML validation.

Android XML has been specifically customized for, and implemented for, the development
of Android applications. For example, Android OS developers created the XML tag named
<ConstraintLayout> for UI design using Constraint Layouts. The ConstraintLayout Java
class was introduced in Android 7, as an improvement to the Android RelativeLayout Java
class, which was covered in my previous three editions of this book (and still exists in the
SDK), and was specifically designed to work hand-in-hand (code-in-code) with the drag and
drop Layout Editor in Android Studio 2.3. Since this is an Absolute Beginner title, we will be
showing you how to use the Layout Editor and ConstraintLayout class together, so that you
can use Android Studio 2.3 for visual design rather than writing XML markup.

The XML naming schema is referenced inside of each of your XML definition files, at the very
top, as you’ll see in Figure 4-1, in the first two lines of XML markup in the central editing
pane of Android Studio. This is done so that the XML markup inside of your XML file can
reference its XML naming schema.

Android Studio does not need to validate the XML file in “real time”, so you do not need an
active Internet connection to be able to develop the XML markup.

In any custom extensible markup language, such as the one that has been created by
Google for Android, the XML version is declared on the first line, and the naming schema
URL reference needs to be contained in the first outermost parent tag, which is most
always the second line of XML markup. The following lines of XML markup from Figure 4-1

Figure 4-1. The contents of the activity_main.xml file in the app/res/layout folder in the Android Studio middle
editing pane

63CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

declare XML and the XML naming schema, abbreviated as XMLNS, as well as configuring
the ConstraintLayout Java class characteristics using attributes or parameters inside of the
parent <ConstraintLayout> tag:

<?xml version="1.0" encoding="utf-8" ?>
< android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.user.myapplication.MainActivity" >

This parent layout container tag will usually contain other child tags, which are nested inside
of, and underneath, the opening parent tag. This nesting of child tags, as well as nesting
parameters inside of the tag, can more easily seen if the XML programmer uses indenting
to show which tags are inside of other higher-level (parent) tags, as I have done in the above
markup, and which Android Studio has done as seen in Figure 4-1 in the activity_main.xml
editor tab in the middle of the screen.

Let’s take a look at the Constraint Layout UI design in the activity_main.xml file, which
Android Studio created for you as the UI layout foundation to start building your UI design
upon for the MyApplication Hello World Android application. As seen in Figure 4-1, the first
line of the parent <ConstraintLayout> UI layout container tag has xmlns:android="http://
schemas.android.com/apk/res/android" as its first parameter. This parameter defines the
XML naming schema repository for Android 7 as being in the schemas virtual server, on an
android.com HTTP address, in an /apk folder, in a /res subfolder, and finally in an /android
sub-subfolder.

In this case the <ConstraintLayout> container is the parent tag and the xmlns:android
is one of the parameters that configures this tag. This parameter will allow this UI layout
tag to reference the XML naming scheme repository, and defines the prefix android as a
markup shortcut to reference this repository. Note that just because it references the proper
XML definition repository does not mean that it is connecting in real time to check this
repository, as I pointed out earlier (it is used as a unique identifier). As you can see inside
of the <ConstraintLayout> tag, there are a significant number (three) of parameters that
start with android: and what this android: reference equates to, as it is defined by that first
xmlns:android parameter. Essentially, what is happening here, is that this xmlns:android
parameter is defining a shortcut for all the other parameters that start with android: to be
able to check themselves against the XML naming schema repository. Thus, because of the
xmlns:android URL definition parameter, the android:width="match_parent" parameter is
actually shorthand for an http://schemas.android.com/apk/res/android:width="match_
parent" parameter.

The same code-replacement logic would apply to the xmlns:tools parameter in
conjunction with your tools:context="com.example.user.myapplication.MainActivity"
<ConstraintLayout> parameter, also seen in Figure 4-1. An XML tools parameter sets the
context for the ConstraintLayout definition as the MainActivity class, which Android Studio
created for you, using the New Android Application dialogs.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android:width="match_parent
http://schemas.android.com/apk/res/android:width="match_parent

64 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

As you can see here, Android OS really has three XML naming schemas (language
definitions), in three different software repositories, as there is also one that defines an
app: shortcut that you can see is used inside of the <TextView> child tag inside of the
<ConstraintLayout> parent tag. This is set to xmlns:app="http://schemas.android.com/apk/
res-auto" and is used in four app:layout_constraint parameters. The Android Package
APK naming schema was designed for high-level, design-oriented XML and is at schemas.
android.com/apk. It is also the XML naming schema you will be using 99% of the time in
your Android application development, and the one I will be covering throughout this book.

The Android Tools (tools) naming schema was created to provide low-level (OS-related
usage) XML, and is at schemas.android.com/tools. You can use it to do things such as
declare the Context object using XML. You’ll learn more about Context objects during
Chapter 14, when I cover Android Service class concepts and structures, as well as
when we encounter Context objects. This Context object here defines the context for the
ConstraintLayout class UI design as your MainActivity activity class, which is obvious as
context is set to the MainActivity class in your com.example.user.myapplication Android
project, as can be seen in Figure 4-1, and in the previous XML markup example.

XML Syntax: Containers, Brackets, and Nesting
There are two ways to code (or to mark up, to be more precise) any XML tag, and which
markup approach you use depends upon whether that tag is going to have any children
(nested tags) or not. Attributes, also known as parameters, are inside of each tag and
configure the tag and what it will do. Parameters would not be considered children of the
tag, but are attributes specifying values or references customizing the tag. Parameters will
use quotation marks to do this, such as the android:text="data value" parameter, which
we’ll be changing shortly to more closely follow Android design conventions.

If an XML tag is a parent tag (which it is if it has “nested” or child tags inside of it), it can
be said to be a container, just like the XML file itself is the container for that entire XML
construct, which Android uses for data or Java object definition of one type or another, as
you will see throughout this chapter, as well as throughout the rest of this book.

Fortunately the bootstrap UI layout design seen in Figure 4-1 shows both of these types of
bracketing treatments, so I can simply describe the usage here, and you can observe it in
Figure 4-1 or in Android Studio if you have it running on your computer workstation, which I
am hoping you do.

Since the <TextView> UI element that defines a Text User Interface element on the screen (as
you might have guessed) stands alone; has zero children; and has parameters configuring
width, height, and text content, this tag is opened using the <TextView portion of the tag,
and is closed using the /> character sequence. Tags that contain other tags are closed using
only the right-chevron > bracket.

So, with android and app parameters inside of this TextView tag, your tag structure will look
like this:

<TextView android:parameter="value" app:parameter="value" />

http://schemas.android.com/apk/res-auto
http://schemas.android.com/apk/res-auto
http://dx.doi.org/10.1007/978-1-4842-2268-3_14

65CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

The XML for this child tag, which is shown in Figure 4-1 and below in full, uses indentation
for easy parameter views, as well as setting Android Text class constants that you will learn
about in the next chapter covering Java. The android:text parameter references a Java
String directly setting a text data value in quotes. I will be showing you how to use a text
String constant in your strings.xml file a bit later on during this chapter, which is really how
things should have been set up initially by Android Studio.

For now, we are just going to look at the syntax of XML—that is, how it needs to be
constructed or structured (written on the screen). We will look at how it all works together
in the next section of this chapter. Since your <ConstraintLayout> tag does indeed have
a child <TextView> tag nested inside it, it will use a different (parent) bracket configuration.
Using high-level pseudo-code, it looks like this:

<android.support.constraint.ConstraintLayout xmlns:parameter="value"
android:parameter="value" >
 <TextView android:parameter="value" app:parameter="value" />
</ConstraintLayout>

Once you put parameters inside of the parent and child tags, and indent everything, so that
you know what level each of these tags and its parameters are supposed to be at, it will look
exactly like what you see in Figure 4-1, which I will replicate below. We will be going over
what all of this XML markup is doing during this chapter, as well as using the Visual Design
Editor to add User Interface elements to it. Since an entire book could be written on XML (and
has, such as my 2014 Pro Android UI title from Apress), this will be one of the longer chapters
in the book, as a significant percentage of what your application looks like, and what it is
allowed to do via the Android OS, will ultimately be defined using XML markup definitions.

<?xml version="1.0" encoding="utf-8" ?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.user.myapplication.MainActivity" >
 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="@+id/activity_main"
 app:layout_constraintBottom_toLeftOf="@+id/activity_main"
 app:layout_constraintBottom_toRightOf="@+id/activity_main"
 app:layout_constraintBottom_toTopOf="@+id/activity_main" />
</android.support.constraint.ConstraintLayout>

In summary, any tag that you will use as a parent tag will have an opening tag; in this case
that is the <ConstraintLayout> tag, and its paired closing tag </ConstraintLayout> with the
tag name in both the opening and the closing tag. The closing tag will have a slash in front
of the tag name to signify to the XML parsing engine (the code that is interpreting the XML
markup and turning it into something else; in this case, Java objects, data constants, and
data variables) that this is the closing tag.

66 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Alternatively, the child tag that has no children of its own will have the closing slash at
the end of the opening tag, like this: <TextView android:parameters app:parameters />
which allows a much more compact way of writing a child tag. You might think of this as an
implicit closing tag, so a tag with no child tags nested inside of it, will not have an explicit
closing tag, or a backslash in front of the tag name inside of < > chevron bracketing like the
</ConstraintLayout> UI layout container has. Since a layout container will always inherently
be a container it will always have child tags, and therefore UI layout container tags will
always have an explicit closing tag at the bottom of the XML definition. It is important to
note, nesting can be more than one level deep, so you can have the following structure:

<ConstraintLayout>
 <LinearLayout>
 <TextView android:parameter="data value" />
 <ImageView android:parameter="data value" />
 <TextView android:parameter="data value" />
 </LinearLayout>
</ConstraintLayout>

As you can see, the explicit closing tags must be in the reverse order from the opening tag
order, so that the XML tag structure exhibits the proper nesting for the parsing engine within
its level hierarchy.

XML Referencing: Chain XML Constructs Together
XML files can also reference other XML files, so that you can create a chain where XML
definitions can be modular, since they can be blocks of code that can be used by more than
one XML construct. XML file referencing is somewhat akin to XML tag nesting, but it spans
across files. XML referencing in Android is done by using an @ symbol, which is specific to
Android XML file referencing syntax.

Android uses the @ character to signify that another XML file is being referenced, as you will
see over the rest of the chapter, as we look at how to use XML markup, to define values,
dimensions, strings, styles, themes, and your Android Manifest, which defines everything
regarding your application.

Without this referencing capability XML markup would end up being all lumped together in
one or two massive files. Referencing allows an XML structure to be created, such as the
XML structure for your Hello World bootstrap application, which the Android Studio IDE put
into place for you using the New Android Application Project series of dialogs.

We’ll be looking at your application’s current XML structure, and all of the files within it, as
well as how these XML files reference each other. We will also be looking at how to change
tag parameter values within these XML files in order to customize an Android application
during the remainder of this book.

Once we’re all finished looking at each of the XML files that are currently in your bootstrap
project, I’ll include a visual of how all of these go together to for the foundational XML
structure for your Android application that Android Studio created for you in Chapter 3. If
you want to cheat and look ahead in this chapter, you can go ahead and take a quick peek;
the visual is in Figure 4-11.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3

67CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Let’s take a closer look at the strings.xml file located in the app/res/values folder first, as
this is one of the most often used XML files in Android application development, and one
we’ll be adding to soon.

Open the app/res/values folder by clicking the right-facing arrow next to it. Find and right-
click on the strings.xml file, and select the Jump to Source option from the context-
sensitive menu. This is how you open an editing tab for a file you want to view or edit in
the Android Studio 2.3 central editing pane, so if you are used to a File Open, or a File Edit,
context menu sequence, then pay close attention to this!

As you can see in Figure 4-2, the strings.xml file does not need to reference the XML
repository URL, as it just contains resource constant definitions, using the parent
<resources> tag, and, in this case, child <string> tags defining each string data value
and giving the value a (variable) name. We will get into variables in Chapter 5. The
reason this file doesn’t require an xmlns:android XML naming schema definition at
the top of the XML definition is because the attributes (parameters) used inside of the
child tags in this file do not preface themselves with something else (such as app: or
android: or tools: for instance, which require xmlns:app, xmlns:tools, or xmlns:android
repository definition parameters).

Figure 4-2. Right-click on the strings.xml file located in the app/res/values folder, and select Jump to Source
from the menu

Notice in Figure 4-2 and the line of code below the XML markup uses name="app_name"
and not android:name="app_name". If you needed to use android:name="app_name" then
you would need the xmlns:android XML name schema definition in the top of the definition
(resource tag) before you used this parameter naming convention.

http://dx.doi.org/10.1007/978-1-4842-2268-3_5

68 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

The way a <string> child tag defines a string (text) variable is that the name parameter is
used as the parameter in the first part of the string value XML definition. This defines a string
variable name, and the actual text data value for a string goes inside of the <string>text
data</string> as you can see in Figure 4-2. The app_name string XML definition would thus be:

<string name="app_name">My Application</string>

Next, we will add an app_message string constant with the data “Hello World” in it, because
we want to collect all the string constants in one place, so we can customize the application
text in one place.

XML Constants: Adding New Constants Using XML
Since the “Hello World!” message is “hard-coded” in the activity-main.xml UI layout XML
definition, I will show you how to change this to a string constant value in the strings.xml
file that is referenced from the activity_main.xml file using the @ character. Why Android
Studio did not follow text constant convention, and install this in the strings.xml file, I do
not know (previous versions of Android did set all of the bootstrap application text constants
up in this way). I will simply take this as an opportunity to teach you in a more “hands-on”
way how to do this, so you can experience inter-XML file referencing.

Select the entire first <string> child tag construct, and either use CTRL-C (Copy) and
then CTRL-V (Paste), or right-click the selection and select Copy, and then click in the
beginning of the line the <string> tag is on, and right-click and select Paste. This will give
you two identical <string> constant constructs, and you can edit the second one to name it
app_message with a data value of Hello World, as can be seen in Figure 4-3. Notice we are
using Hello World without the exclamation point, so we can see the change, as well as when
Android Studio renders that change in the Preview pane on the right-hand side, which will
be visible in Figures 4-4 and 4-5.

Figure 4-3. Add a string constant named app_message with the Hello World data value underneath the
app_name constant

69CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Once your strings.xml file looks like the following XML markup, click the activity_main.xml
editing tab.

<resources>
 <string name="app_name">My Application</string>
 <string name="app_message">Hello World</string>
</resources>

In the <TextView> child tag android:text parameter value area, remove Hello World! and
type in @string. As you can see in Figure 4-4, Android Studio will give you a drop-down
selector containing all the current constant values which are currently in the strings.xml file
in the app/res/values folder.

Figure 4-4. Edit activity_main.xml and change the <TextView> android:text parameter to reference a new @string
constant

Select the @string/app_message constant, as seen in Figure 4-4, under the line of markup
that you are editing. Notice that Android names the String constant XML definition file
strings.xml (more than one String is usually in this file) but it references it using @string
only (no “s” at the end). Also notice that while you are editing this change, the preview on
the right shows the previous (hard-coded) text value. Once you select the app_message
String constant, the preview on the right shows the new Hello World without the exclamation
point. This can be seen in Figure 4-5, along with the completed (new) android:text value, a
reference to your app_message constant in the app/res/values/strings.xml String constant
repository for the Android application. I zoomed in 33% so you could see this better.

70 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Now, if you wanted to change this text message, you can change it in this strings.xml
file without touching any of your other XML markup or Java programming logic. Next, let’s
take a look at the dimensions constants XML definition file located in your app/res/values/
dimens.xml project hierarchy.

XML Dimensions: Editing Dimensions Using XML
Let’s take a look at the dimens.xml file in the app/res/values folder and see what global
application margin spacing has been set up for your Android application by Android Studio.
Right-click on your dimens.xml file, and select the Jump to Source option from the context-
sensitive menu.

As you can see in Figure 4-6, there are two <dimen> child tags defined inside the parent
<resources> tag. These are similar to what you just created in your strings.xml file, but
instead of <string> tags, your child tags are <dimen> tags. These also use the name=
parameter to name the dimension constants, and then set a data value of 16 dp, or density
pixels. This is done in exactly the same way that your text string values were set. Here is an
example of the XML child tag and parameter format that was used:

<resources>
 <dimen name="activity_horizontal_margin">16dp</dimen>
 <dimen name="activity_vertical_margin">16dp</dimen>
</resources>

If you wanted to put a little more space between your UI design (or content), and the edges
of your Android device hardware, you could edit these values, and use something like 24dp
or 32dp. You can try and edit these values and play around with the results of how close to
or far away from the edge of the display screen you want your application content to be,
to get some practice with using Android Studio. I’ll be covering dp (or DP), also known as
device-independent pixels (DIP) during more advanced chapters (Chapters 6 through 9),
covering UI design and graphic design.

Figure 4-5. Zoom in 33% in the Preview pane to make sure the new referencing is working with a new Hello World
message

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

71CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Next, we are going to take a look at the second dimensions constants file, which has been
defined using an alternate resource folder called \res\values-w820dp\ that we will learn
about how to locate using the context menu in Android Studio by using the File Path
command.

Alternate XML Resource: Dimensions for Tablets
As you can see in Figure 4-7, there are two dimens.xml files in the app/res/values folder,
one of which has a (w820dp) next to it, telling us that there is an alternate resource folder
named /values-w820dp somewhere that has another dimens.xml file in it. If you want to
use the same file name for another file, it needs to be in another folder. So, how do we find
out where this alternate folder is located? Android Studio has a File Path command in its
context-sensitive menu (right-click menu) that will show you this.

As you can see in Figure 4-7, I right-clicked and used Jump to Source to open the w820dp\
dimens.xml tab in the editing area, and I also used the File Path command to show me the
path to the file, which is shown in a File Path pop-up, seen next to the context menu in
Figure 4-7. As you can see the file is located in C:\Users\user\AndroidStudioProjects\
MyApplication\app\src\main\res\values-w820dp, and this is the actual physical address
on your hard disk drive, whereas the Project folder structure in Android Studio represents a
simplified view of your Android 7.1.1 application’s project hierarchy.

Figure 4-6. The dimens.xml file is located in the app/res/values folder, and has two <dimen> dimensions constants
defined

72 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

You can use this File Path command on any file in your project pane to see where that file is
being stored on your workstation hard disk drive. As you can see in the res/values-w820dp
alternate folder version of the dimens.xml file, tablets with width (w) greater than 820, which
would include your 960, 1024, 1280, 1920, 3840, and 4096 pixel devices) would get 64dp
of horizontal margin allocated to the Activity screen. The vertical margin dimensions would
remain whatever you had set them to be in the res/values/dimens.xml file, which sets the
baseline or default dimensions, so in this case that would be 16dp (which can also be coded
as 16DP, 16dip, or 16DIP, if you prefer). Also notice that on your operating system hard disk
drive directory structure is delineated using the backslash character, as I did above for the
actual location of the \values-w820dp\dimens.xml file on my workstation, whereas in Android
coding and markup (as well as in the Linux OS) the project folder structure is delineated with
a forward slash character, as I have been doing in most of this chapter, as in /app/res/
values/dimens.xml for instance). If you think that this is confusing, I agree, it is, and it is one
of the things that you’ll just have to get used to, and probably are already, if you use both
Linux and Windows.

XML Styles: Editing Styles or Themes Using XML
Whereas text strings and density pixel dimensions are fairly straightforward, Android
styles and the Android OS themes they reference, which are actually a collection of style
definitions, are a bit more involved and detailed, and hence are more complicated. If you’re
familiar with websites, e-books and applications created using HTML5 and CSS3, then you
are already familiar with the concept of styling something by using a style definition, which is
held separate from your Java code and XML content.

Styles and themes, as of Android 5.0 are called “materials,” and will be covered in Chapter 6
covering UI design. In short, what a style does is allow you to define, in one central location,
how the UI design of your application is going to look, as far as color, spacing, and font
characteristics (text typeface, type, and size) are concerned. This approach will allow you to
extract the styling of your UI design from the actual content within that design, and from the
programming logic behind how that UI design functions.

Figure 4-7. The dimens.xml file is located in the app/res/values folder, and has two <dimen> dimensions constants
defined

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

73CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

We’re not going to completely cover styles and themes in this chapter, as that more
advanced subject matter is better suited for the UI design chapter, but I am going to show
you how the styles.xml file fits into your overall app structure, and how it sets a default OS
theme, so you can make your application use “light” (white or light gray) or “dark” (black or
dark gray) operating system user interface themes.

Right-click on your styles.xml file, in your app/res/values folder, and select the Jump
to Source option from your context-sensitive menu, so you can take a look at the XML
markup in the styles.xml file in the central editing pane of Android Studio, as can be seen in
Figure 4-8.

Figure 4-8. The styles.xml file is located in the app/res/values folder, and has the Theme.AppCompat.Light theme
defined

As you can see, the parent <style> container has a name AppTheme that will be referenced in
your AndroidManifest.xml file, as well as a parent parameter that is set to the Android OS
constant Theme.AppCompat.Light.DarkActionBar standard Android theme definition. There
is also a Light ActionBar theme as well. Inside the <style> tag are child <item> tags that
override the style settings.

What this does is to set up the <style> tag named AppTheme to reference the standard or
“parent” Android theme, which is simply a collection of all styles and their settings. This is
done using the parent parameter, which makes the Light.DarkActionBar theme the parent
of the AppTheme style. The Light.DarkActionBar and the Light.LightActionBar are part of
the Theme.AppCompat application compatibility library that makes styles and themes work
across all versions of Android OS. There may also be a Dark.DarkActionBar and a Dark.
LightActionBar theme included in Android 7.x someday.

As you will see later this AppTheme style is referenced as the theme for the Android
application in the AndroidManifest.xml file, which we will be looking at a bit later in the
chapter, and the “chaining” that I talked about earlier between XML definitions would go
something like this:

Manifest XML theme="@style/AppTheme > AppTheme Style > parent="Theme.AppCompat.Light.
DarkActionBar"

74 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

As you can see in Figure 4-8 you can change any of the components of Android’s
Light.DarkActionBar theme inside of your <style> parent tag by using <item> child tags.
In the markup below, the primary (light) color, primary dark color, and accent color for
Android 7.1.1 OS can be customized by using the <item name="style-constant-name">new
data value</item> child tag structure, using references to the colors.xml color constants
using the @color/constant-name reference structure.

<resources>
 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar" >
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>
</resources>

Next, let’s take a look at the colors.xml file that is referenced in these <style> child <item>
tags.

XML Colors: Define Application Color Using XML
Right-click on the app/res/values/colors.xml file, and select Jump to Source to open it.
Figure 4-7 shows that there are three custom colors defined using hexadecimal notation
using <color> child tags named colorPrimary, colorAccent and colorPrimaryDark, inside of
the parent <resources> tag. This is to define the primary and accent colors for the Android
theme you are modifying in the styles.xml file.

Figure 4-9. The colors.xml file is located in the app/res/values folder and has three hexadecimal app color constants
defined

Just like the @ symbol is used to preface a reference value, an # (hash or pound sign) is used
to preface a hexadecimal value, as is shown in the XML markup below. We will cover this
hexadecimal notation in Chapter 9 covering graphics design in Android 7.1.1, so for now,
let’s just focus on the XML tags.

http://dx.doi.org/10.1007/978-1-4842-2268-3_9

75CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

<resources>
 <color name="colorPrimary">#3F51B5</color>
 <color name="colorPrimaryDark">#303F9F</color>
 <color name="colorAccent">#FF4081</color>
</resources>

As with the other XML resource constant definitions, a <resources> parent tag contains
<color> child tags. Now that you have taken a look at the file resource XML definition files in
your app/res/values folder, and the alternate value folder, let’s look at the XML that is used
to define your app itself. This is defined inside of the app/manifests/AndroidManifest.xml
file.

Configuring an App Using XML: Android Manifest
Open your app/manifests folder (if it is not open already), and right-click on the
AndroidManifest.xml file, and select the Jump to Source command option from the
context-sensitive menu, and open the XML manifest definition file from the central editing
area of Android Studio.

The parent tag of the manifest is the <manifest> tag, as you may have expected, which
references an XML repository for android:parameter names as well as a com.example.user.
myapplication package that you created and named back in Chapter 3. This tells Android
where your application Java code will be stored, as well as a repository reference for the
XML definition syntax used in the manifest file.

As you can see in Figure 4-10, the <application> child tag defines your application
attributes, and its <activity> child tag defines your MainActivity attributes, which you
created and named in Chapter 3.

Figure 4-10. The AndroidManifest.xml file defines your application characteristics, theme, assets, activities, and
permissions

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3

76 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

As you can see in this manifest XML definition, which I will list below, inside of the
<manifest> parent tag there is an <application> child tag that has parameters defining the
theme in the styles.xml file we looked at earlier, the application label (title in Actionbar)
in the strings.xml file we looked at earlier, the application icon in the app/values/mipmap
folder, shown on the left middle in Figure 4-10, opened up to show the PNG32 images used
for the application icon, and two switches, both set to “on” or true for allowBackup (allows
backups) and supportsRtl (right to left language support).

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.user.myapplication">
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

There is also a child <activity> tag under the <application> parent tag referencing the
MainActivity Java class, which uses a period character to reference the Java .class file.
Inside the <activity> there is also an <intent-filter> child tag, which we will be learning
about during Chapter 7. This tells the app to launch the main Activity upon app startup.
Next, let’s take a look at the Android Studio Visual Design Editor.

UI Design Editor: XML Markup Generation
Since this is an Absolute Beginner title, and Android Studio 2.3 has added a new Visual
Design Editor that will generate the XML markup for your UI design automatically, I am
going to spend the rest of this chapter showing you how this works, and how you can use
it to learn XML, by switching back and forth between the Design and Text (Secondary
Editing) tabs at the bottom of your activity_main.xml primary top tab, or any other
Activity user interface XML tab. Select the activity_main.xml top editing tab, which is
seen in Figure 4-11, and then click the Design tab at the bottom left of the central editor
area in Android Studio. Select your Button widget (UI elements are called “widgets” in
Android), and drag it onto the visual application design on the right, as shown on the right-
hand side in Figure 4-11.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

77CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

As you drag the Button UI element onto the existing visual design, you will see an outline
and dashed red lines that will change as you drag the Button around the screen, showing
in real time how this UI element will be aligned to other UI elements. Notice I am centering
this under your existing TextView UI element, a comfortable distance down the screen. Let’s
define its properties (parameters) next.

Once you release (drop) your new Button UI element in place, as shown in Figure 4-12, you
will get a Properties pane on the right side of the Visual Design Editor. Name the Button ID
button_universe, and the Button text “Upgrade App” using the data fields shown on the far
right in Figure 4-12. Once you hit the return key to enter these values they will appear on the
Button UI element preview as well.

Figure 4-11. Select the bottom Design tab and drag a new Button UI element onto the current Hello World UI
design screen

78 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

The next UI element we’re going to add is the CheckBox widget, at the bottom of the
screen, which will allow the user to select an alternate “Hello Universe” application message.
The CheckBox widget is two widgets under the Button widget, as seen in Figure 4-12 in the
Palette ➤ Widgets folder on the left-hand side of the Visual Design Editor.

Go ahead and use the same work process that you utilized for the Button UI element
placement, and drag the CheckBox widget under the Button widget, and use the dashed
red line to center it perfectly with the rest of the user interface design you are creating using
Android Studio’s Visual Design Editor.

Once you drop the CheckBox into the design, the Properties pane for the UI element will
appear, and you can create the checkBoxEarth ID (so we can all say Hello Universe to
everyone in the Galaxy), and enter the Hello Universe text value. This is very similar to what
we did for the Button UI element.

Notice that underneath the Palette pane that contains all of the UI Design elements, there is
also a Component Tree pane. As you add user interface elements to your design, this pane
keeps track of the UI element XML markup child tags that you are going to see inside of the
ConstraintLayout parent tag when you switch back over into the XML Text editing tab. We
will be doing this soon to show you that Android Studio is indeed writing your XML markup
for you, which is really quite cool!

As you can see in Figure 4-13, the CheckBox UI element is now in place and informs
the user that if checked, the Hello World message will be upgraded to a Hello Universe
message. We will be doing the actual code implementation for this in the next chapter on
Java 8 programming in Android 7.1.1.

Figure 4-12. In the Properties pane that appears once you drop the Button in place, provide the Button ID and
Button text

79CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

As you can see below adding these two UI elements has added two child tags and seven
parameters, including an ID (which is used in Java code to reference UI components) and
the text values that you specified in the Properties pane, as is shown in Figure 4-14.

<?xml version="1.0" encoding="utf-8" ?>
<android.support.constraint.ConstraintLayout xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android" android:id=”@+id/activity_

main”
 xmlns:app="http://schemas.android.com/apk/res-auto" android:layout_width="match_parent"
 android:layout_height=”match_parent" tools:context="com.example.user.myapplication.

MainActivity">
 <TextView android:text="@string/app_message"
 android:layout_width="match_parent" android:layout_height="match_parent"
 app:layout_constraintBottom_toBottomOf="@+id/activity_main"
 app:layout_constraintBottom_toLeftOf="@+id/activity_main"
 app:layout_constraintBottom_toRightOf="@+id/activity_main"
 app:layout_constraintBottom_toTopOf="@+id/activity_main" />
 <Button android:text="Upgrade App" android:id="@+id/button_universe"

android:elevation="0dp"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_editor_absoluteY="312dp” android:layout_editor_absoluteX="143dp" />
 <CheckBox android:text="Hello Universe" android:id="@+id/checkBoxEarth"

android:checked="false"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_editor_absoluteY="453dp” android:layout_editor_absoluteX="150dp" />
</android.support.constraint.ConstraintLayout>

Figure 4-13. Drag a CheckBox UI element onto the visual design editor and name it checkBoxEarth, with text Hello
Universe

www.allitebooks.com

http://www.allitebooks.org

80 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

As you can see in my above XML markup, how you space out the tags and parameters is
flexible as long as you indent properly and can easily ascertain what your XML tags and
parameters are doing.

Figure 4-14. Click the Text tab at the bottom of the activity_main.xml edit tab to look at the new XML tags and
parameters

To follow convention, create app_button and app_checkbox constants in the strings.
xml file as seen in Figure 4-15. Next, change your text values, to "@string/app_button"
and "@string/app_checkbox" respectively, in the <Button> and <CheckBox> android:text
parameters, as you did for app_message.

81CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Next, let’s add a friendly image to this design. This is done using the ImageView, seen
selected in gray in Figure 4-16 in the Palette pane. Notice your @string reference now shows
in the Properties pane, shown labeled with a red 1. We will right-click on app/res/drawable
and use File Path to see where we need to place our SmileyFace.png file. This is labeled
with a red 2 in Figure 4-16.

Figure 4-15. Create String constants in strings.xml for Button (app_button) and CheckBox (app_checkbox) UI elements

Figure 4-16. Right-click on app/res/drawable and use a File Path command to find where you need to place SmileyFace.png

82 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Use your file management utility to place the SmileyFace.png image into the folder on
your hard disk drive indicated by the file path that you got using the File Path command,
as is shown in Figure 4-17. In my case it’s C:\Users\user\AndroidStudioProjects\
MyApplication\app\src\main\res\drawable.

Figure 4-18. Make sure your drawable is in place and drag the ImageView onto the UI Design and drop it once it is
centered

Figure 4-17. Place the SmileyFace.png file

As you can see in Figure 4-18, once you copy this PNG file into the correct folder, it will
appear in the drawable folder, as shown highlighted in the top left. Drag the ImageView into
the UI Design and drop it in the top center of the Activity screen, as seen in Figure 4-18 with
a red dashed center align guide.

83CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Once you drop the ImageView, the Resources dialog will open and you can select the
drawable, as is shown highlighted in blue in Figure 4-19. Click the OK button to load the
drawable in your ImageView.

Figure 4-19. Select the SmileyFace drawable asset and click the OK button to use it in the ImageView

Figure 4-20. Use the resizing handles on the perimeter of the ImageView to scale the image down 50% so it will fit in the UI

As you can see in Figure 4-20, the image is bigger than the ImageView you dragged onto
the screen, so you will reduce the image size about 50%, and position it so that it fits in the
top of the UI Design. I have highlighted the new component tree, as well as the @drawable/
SmileyFace reference (note you do not need to specify the .PNG file extension) shown circled
in red in Figure 4-20.

84 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Drag the lower-right corner (solid) resizing handle for this ImageView, until the layout_width
and the layout_height are set to 220 pixels (DP), which is about half the original image
dimension. You can also enter these values directly into the data fields in the Properties pane
if you prefer to work that way; the Visual Design Editor is very flexible.

As you will see in Figure 4-21, Android 7.1.1 has a very effective scaling algorithm. We will
be covering scaling of imagery in Chapter 9 on graphics design. You may be wondering what
the wrap_content means in the layout_width and layout_height data fields in Figure 4-20,
and we will be covering this wrap_content UI design constant in detail during Chapter 6,
so don’t worry about what that does or what it means, at least for now. Here’s a hint: Think
Shrink-Wrap! More on this later.

To position the resized ImageView click in the middle of it, and drag it into position using the
centering guidelines, until you have a well-balanced UI design, as is shown in Figure 4-21.
We now need to adjust or “tweak” the UI design a bit more to perfect it, for instance, the
Hello World text is too small to be read comfortably on a smartphone, so we will need to use
a large font instead of a small one.

After we do that, we will take a look at the Text (XML markup) tab once more to see how
Android Studio’s coding of our UI design for us is progressing (an automated labor force
is always nice). I will then show you how to fix any anomalies Android Studio finds in our
design, and we’ll be ready to get into Java programming in Chapter 5’s Java primer. This just
keeps getting more and more exciting!

Figure 4-21. Position the ImageView at the top middle of the UI design, and make sure the image is a square 220x220
pixels

http://dx.doi.org/10.1007/978-1-4842-2268-3_9
http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

85CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Select the TextView widget in the UI design (in either rendered view or architect view) and
drop-down your textAppearance constant selector, seen circled in red in Figure 4-22. Select
AppCompatLarge for your constant, which will give you a nice, large text font size across all
versions of the Android OS.

Figure 4-22. Select the TextView widget, drop-down the textAppearance parameter, and select a AppCompatLarge
font size

Now that we are getting close to a more professional UI design, let’s click the Text tab at
the bottom of the XML editor pane (tab) and look at all of this XML markup Android Studio
generated, which is shown in Figure 4-23. There are some problems (red underlined markup)
that we need to look into!

86 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Figure 4-23. Android Studio generated two dozen lines of additional XML markup that you did not have to write yourself

If you place the mouse over the red underlined tag, you will get the pop-up shown in
Figure 4-24. This informs you that although the UI layout design (technically called a view
in Android, as it comes from the View superclass) has design-time positions, it will snap,
jump, or collapse to the upper-left corner of the screen (pixel X,Y location 0,0) unless you
add constraints. Fortunately, this is easy to do in Visual Design Editor so let’s take a look
at how you’ll do this next. Constraints will remove all of these errors.

Figure 4-24. Mouse-over any of the three error highlights (Figure 4-23), and you’ll get the following positioning
advisement

To set constraints, you use the edge (middle) handles, which will have a round white circle
around them when you mouse-over them. Let’s do the Button UI widget first, dragging
the left constraint, shown in Figure 4-25 in panes 1 and 2, to the left side of the screen.
Release the mouse to create the left constraint, as shown in pane 3, and then drag the
right constraint to the right side of the screen, shown in pane 4, which will then re-center
the Button widget, which is shown in pane 5. Repeat this process for the top and bottom
constraint (middle) handles, and you will get the result that is shown in pane 1 in Figure 4-26,
which shows the constraint results (sawtooth constraint lines in place) for all three of the UI
widgets that were generating errors in the XML markup shown in Figure 4-23.

87CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

The reason this sawtooth (or accordion) line representation is used, is because when the
screen size and (or) shape changes, the position of the UI widget stays the same, while the
space on the top, left, bottom, and right will expand or contract, thus making sure the design
maintains the same spacing or alignment. You could also think of these alignment constraint
lines as being springs, if you prefer.

Figure 4-25. Set UI widget positioning constraints using the middle edge handles on each widget and drag to edge of
screen

Figure 4-26. UI widget position constraints in place for Button, CheckBox, and ImageView widget so they can conform
to the UI

Now if you click on the Text tab at the bottom of your XML editing pane (tab) as shown in
Figure 4-27, you will see that your XML markup is error free. There are now app:layout_
constraint parameters in all of your three new UI widgets, similar to the ones that were
already in the TextView widget that Android Studio had in the UI design in the first place.
Since the XML tag parameters use a verbose, detailed parameter naming schema, you can
pretty much figure out what each parameter is doing, based on what it is named, which
makes working with XML markup that much easier, as long as you understand user interface
design terms and concepts. If you don’t, take a look at the Pro Android UI title from Apress,
which covers UI design concepts, UI design prototyping (with Evolus Pencil), and UI layout
containers and the XML markup that is needed to create different UI design approaches and
scenarios.

88 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

We will be learning more about XML-based user interface design in Chapter 6, but just in
case you want to look over the parameter names (which are fairly self-explanatory), I will list
the code that the Visual Design Editor created for us (four dozen lines of code that we didn’t
have to write ourselves) here in case you want to examine how XML defines and places
these user interface components on the screen. I can’t teach you all of the Android XML in
this book in one chapter, so we will be using (and learning) XML markup for the rest of the
book, excepting possibly Chapter 5 covering Java.

<? xml version="1.0" encoding="utf-8" ?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context="com.example.user.myapplication.MainActivity"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/app_message"
 app:layout_constraintBottom_toBottomOf="@+id/activity_main"
 app:layout_constraintLeft_toLeftOf="@+id/activity_main"
 app:layout_constraintRight_toRightOf="@+id/activity_main"
 app:layout_constraintTop_toTopOf="@+id/activity_main"
 android:textAppearance="@style/TextAppearance.AppCompat.Large"
 app:layout_constraintVertical_bias="0.56"

Figure 4-27. Use the Text tab to check the XML markup to make sure all errors are gone and layout_constraint
parameters are inserted and correct

http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

89CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

 android:id="@+id/textView2" />
 <Button android:text="@string/app_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/button_universe"
 android:elevation="0dp"
 android:layout_marginStart="16dp"
 app:layout_constraintLeft_toLeftOf="@+id/activity_main"
 android:layout_marginLeft="16dp"
 android:layout_marginEnd="16dp"
 app:layout_constraintRight_toRightOf="@+id/activity_main"
 android:layout_marginRight="16dp"
 app:layout_constraintTop_toTopOf="@+id/imageView"
 app:layout_constraintBottom_toBottomOf="@+id/activity_main"
 android:layout_marginBottom="16dp"
 app:layout_constraintVertical_bias="0.78" />
 <CheckBox android:text="@string/app_checkbox"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/checkBoxEarth"
 android:checked="false"
 android:layout_marginStart="16dp"
 app:layout_constraintLeft_toLeftOf="@+id/activity_main"
 android:layout_marginLeft="16dp"
 android:layout_marginEnd="16dp"
 app:layout_constraintRight_toRightOf="@+id/activity_main"
 android:layout_marginRight="16dp"
 app:layout_constraintBottom_toBottomOf="@+id/activity_main"
 android:layout_marginBottom="16dp"
 android:layout_marginTop="16dp"
 app:layout_constraintTop_toTopOf="@+id/activity_main"
 app:layout_constraintVertical_bias="0.97" />
 <ImageView android:layout_width="220dp"
 android:layout_height="220dp"
 app:srcCompat="@drawable/SmileyFace"
 android:id="@+id/imageView"
 android:layout_marginStart="16dp"
 app:layout_constraintLeft_toLeftOf="@+id/activity_main"
 android:layout_marginLeft="16dp"
 android:layout_marginEnd="16dp"
 app:layout_constraintRight_toRightOf="@+id/activity_main"
 android:layout_marginRight="16dp"
 android:layout_marginTop="16dp"
 app:layout_constraintTop_toTopOf="@+id/activity_main"
 app:layout_constraintBottom_toBottomOf="@+id/activity_main"
 android:layout_marginBottom="16dp"
 app:layout_constraintVertical_bias="0.03" />
</android.support.constraint.ConstraintLayout>

Now we are ready to show you how Java can be used to “inflate” the XML definitions (turn
them into Java objects) as well as make them interactive and functional so you can make
Android applications.

90 CHAPTER 4: Introduction to XML: Defining Android Apps, UI Design, and Constants

Summary
In this fourth chapter, you learned about the XML markup language, as well as how Android
utilizes XML markup to simplify the application development work process, so that non-
programmers can get involved. You learned about how XML uses tags and parameters to
define XML definition structures, as well as how levels of nesting define parent and child
XML tags.

You also learned about XML naming schemas, and how these are defined in the parent tags
at the beginning of XML definition files. You looked at some of the types of XML files that
are always included in an Android application. These were created by Android Studio in the
bootstrap XML files that were generated by the New Android Application Project series of
dialogs in Chapter 3.

You examined, and in some cases edited, XML files defining String value constants,
application styles from Android OS themes, and the Android Manifest, which defines your
entire application. You learned how to utilize the @ sign to reference one XML file from inside
of another XML file, allowing you to create more complex and organized XML infrastructures,
and allowing a modularization similar to what Java offers via objects, classes and packages,
which we will be learning about next.

Finally, you learned how to use the Visual Design Editor in Android Studio 2.3, and added
a Button, CheckBox, and Imagery to the Hello World UI design, refining the UI design in
its entirety and learning how to use the primary components (panes) in the Visual Design
Editor. You observed how this can be used to learn XML markup by switching back and forth
between the Design and Text tabs at the bottom of the XML editing pane in Android Studio.

In the next chapter, you will learn all about the Java SE programming language by taking
an in-depth look at the Android application that you created in Chapter 3, including the
Java files in the app/java/ folder. You’ll also learn all about Java objects, classes, methods,
variables, constants, and interfaces in Chapter 5 for those readers who are really absolute
beginners and do not know Java.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

91© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_5

Chapter 5
Introduction to Java: Objects,
Methods, Classes, and
Interfaces
The programming language used for developing your Android applications is Oracle’s Java
SE, which was created by Sun Microsystems and later acquired by Oracle. As you learned
in Chapter 2, Java SE stands for Java Standard Edition, though many programmers shorten
this to just “Java.” Java is what is called an object-oriented programming (or “OOP”)
language, which you are going to learn all about during this chapter. It is important to note
that all of these Java programming concepts, components, and constructs that you will be
learning during this Java primer chapter will apply equally well to both the 32-bit Android
4.4.4 OS; as well as to the 64-bit Android 5.0 OS, released in 2014; Android 6.0 released in
2015; Android 7.0, released in the fourth quarter of 2016, and Android 7.1.1, released in the
first quarter of 2017.

OOP is based on the programming concept of developing modular, self-contained
constructs that are called objects. These OOP constructs can contain their own attributes
and characteristics. In this chapter, you will learn a great deal about the OOP characteristics
of Java, and the logic behind using a modular programming approach and OOP techniques
to build applications that are easy to share and debug due to an OOP approach. You’ll
also learn about all of the other Java programming language constructs, like packages and
classes, methods and interfaces, loops and arrays, variables and constants, and application
programming interfaces (APIs), which tie everything together into one coherent computing
ecosystem, such as the 100 Android Java platform APIs discussed in Chapter 2. Together
these Java constructs will allow you to create the application’s objects and then modify
them according to the programming logic that the application will utilize. This creates a
user experience for your end users. We will also learn what the bootstrap Java code in your
existing application is doing.

http://dx.doi.org/10.1007/978-1-4842-2268-3_2
http://dx.doi.org/10.1007/978-1-4842-2268-3_2

92 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

The Three Versions, or Editions, of Java
There are two other “editions,” or versions of the Java programming language, in addition
to the Java SE. These are called Java EE, short for Java Enterprise Edition; and Java ME,
or Java Micro Edition, which was originally used for mobile application development, thus a
lot of people incorrectly assume that Java ME stands for Java Mobile Edition. Many mobile
phones now use the Android OS, which uses the more powerful Java SE, instead of Java
ME, due to much more powerful hardware that is utilized.

Java EE was designed for use on massive computer networks. These types of computing
networks are used to run large enterprises, that is, corporations with thousands of active
users. This could be termed “server-side” computing. Conversely, Java SE could be termed
“client-side” computing, as the Java application, in the case of this book, an Android
application, runs on a user’s personal computing device, which is termed the “client” in the
computer programming industry.

It is important to note Java EE can also be run on smaller installations, as long as they have
enough system memory and a couple of processing cores, and this is sometimes done in
companies that are developing applications for use on Java EE installations, so that they
can work in, and simulate, that type of environment for their testing. Java EE’s differentiating
feature to Java SE is Java EE features a multi-user, scalable design, whereas Java SE has
been designed for use by a single user, on a single computer system, say a home PC or
a laptop, or better yet, on an Android device such as an iTV Set, e-book reader, tablet,
smartphone, game console, set-top box, auto dashboard, or smartwatch.

Java ME was designed for low-power, embedded systems, to create highly portable
computers such as mobile phones. It has fewer features than Java SE, so that it can fit onto
a phone without using too much memory and resources to run it. Most mobile flip-phones
run Java ME, but Android phones run the more powerful Java SE. Android phones can run
Java SE because most have a gigabyte or more of memory, and a 1GHz or faster CPU, so
essentially, today’s Android devices are Linux computers.

A Foundation of OOP Constructs: An Object
The foundation of OOP is the object itself. Everything you create in Java is an object and
uses other objects (and data primitive values). Objects in OOP languages are similar to the
objects that you see around you every day, except Java objects are virtual, and are not
tangible, since computers will use zeroes and ones (binary) to represent things. Just like
tangible real-world objects, Java objects have characteristics, called states or attributes,
and things that they do, called behaviors. One way to think about this distinction is that
Java objects are nouns, or things that exist in and of themselves, whereas their behaviors
are like verbs, or things that these nouns can do.

93CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

As an example of Java objects, let’s define a Java object based on a popular real object that
we see around us every day in all of our lives: the automobile. Some of the characteristics,
or states, of the common automobile might be defined as follows:

	Color (candy apple red, for instance)

	Direction or heading (north, south, east, or west)

	Speed (45 miles per hour, for instance)

	Engine type (gas, diesel, biofuel, hydrogen, propane, electric, or hybrid)

	Gear setting (1, 2, 3, 4, 5, 6, or reverse)

	Drivetrain type (2WD or 4WD)

The following are some things that you can do with a car, that is, the car’s behaviors:

	Accelerate

	Shift gears

	Apply the brakes

	Turn the wheels

	Turn on the stereo

	Use the headlights

	Use the turn signals

You get the idea. Objects can be as complicated as you wish them to be, and Java objects
can nest, or contain, other Java objects within their object structure, just like XML. An object
hierarchy is like a tree structure, with a main trunk, branches, and sub-branches as you
move up (or down) its structure. An example of a hierarchy you use every day would be your
multi-level directory, or folder structure, which is on your computer’s hard disk drive (refer to
Figure 4-17 in Chapter 4 for a visual example). The directories or folders on your hard disk
drive can contain other directories or folders, which can in turn contain yet other directories
and folders, allowing complex hierarchies of organization to be created. We saw another
great example of this in Chapter 3 in Figure 3-8, where your Android MyApplication project
folder was shown in the Android Studio Project pane, showing project subfolder hierarchies,
with an app folder, Java and resource folder, and subfolders for layout, drawable, values,
and so on.

Figure 5-1 shows the simple “Anatomy of a Car Object” diagram of the Java object
structure, using a car as the example. It shows the characteristics, or attributes, of the car,
which are central to defining the car object, and around those, behaviors that the car object
can perform, and which effect changes on the attributes or states of the car. The states and
behaviors serve to define the car to the outside world, just like your application objects will
define the states and behaviors regarding the functionality of your Android application for
your end users. It’s all very logical, as you will see during this chapter.

http://dx.doi.org/10.1007/978-1-4842-2268-3_4#Fig17
http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig8

94 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

You can do this same hierarchical construction by using Java objects, which can contain
subobjects, which can themselves contain further subobjects, and so on and so forth, as
needed to create your object hierarchy structure. You will see nested object hierarchies
when you are working with Android, because nested objects are very useful for grouping
related objects that are used together, but that are used in more than one place, as well as
for more than one type of use. After all, one of the goals of modular code in object-oriented
programming is to foster effective code reuse.

In other words, some types of objects are also useful to other types of objects in an Android
app. You will see examples of this during this book, as we will be covering all of the primary
Java-based classes (which as you will soon see, are used to create objects) in the
Android 7.1.1 OS during the course of this book.

As an exercise, you should practice identifying different objects in the room or space
around you, and then break down their definition or description into various states (variable
characteristics, and fixed, or constant, characteristics) as well as behaviors (things that the
object can or will do). This is a good exercise to perform, because this is exactly how you’ll
need to start thinking in order to become more successful in your OOP endeavors using the
Java programming language, and even using the XML markup language, for that matter,
which you learned about in Chapter 4.

It is important to remember that you can use both Java programming logic, as well as XML
markup, to define objects for Android applications, as you learned in the previous chapter,
when you learned about object inflation from XML object definitions. You’ve already defined
a TextView user interface object, having several characteristics, in Chapter 4, using XML
markup, as well as a Button UI object and a CheckBox UI object. You have also defined an
ImageView object as well, so you are well on the way to defining hundreds of objects for use
in Android 7.1.1 applications over the course of this book.

Figure 5-1. A car object showing the car attributes or characteristics (inner oval) and car behaviors (outer oval)

http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_4

95CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

Some Programming Terms: Variable, Method, and
Constant
Next, let’s cover some of the technical terminology used in Java. First, objects have data
fields to hold variable data, constants to hold fixed data, and methods to define behaviors,
as follows:

	Data fields that hold a Java object’s states that can change over time
are called variables. Using the car example, the direction you’re driving
in, the gear that you’re driving in, and the speed you’re driving at change
in almost real time, and therefore are all variables.

	Data fields that hold an object’s states that do not change over time are
called constants. Using a car example, the candy apple red paint job on
the car could be a constant, as is the car’s engine type (unless you own
a paint and body shop, or are an auto mechanic, that is).

	Methods are programming logic or program code routines that operate
on, and will change, the object’s internal variable data fields. Methods
will also allow other Java objects that are external to the object itself to
communicate with that object, as long as the method is declared to be
public. We will be getting into methods in greater detail a bit later on in
the chapter, so I won’t get into how exactly they work here.

One of the key concepts of OOP is data encapsulation. In Java, data encapsulation is
implemented by only allowing a Java object’s variable data fields to be modified directly
through that same Java object’s internal methods. This allows a Java object to be self-
sufficient, or encapsulated.

Using the car example, in order to turn the car, you would use the .turnWheels() method,
shown in Figure 5-1 on the bottom right of the diagram. This method would be comprised of
Java programming logic that would correctly position the wheels of the car, ultimately
causing it to move in the desired direction. You would not see details of how the object's
wheels are turned, because of encapsulation. That detail is left to the private, internal
functionality contained (encapsulated) inside the method in the Java object.

Using data encapsulation, you can individually build and test each object that is part of a
larger object construct, without requiring any data to be accessed from other objects, or
modules, of an application. External data access can translate into bugs, so encapsulation
helps when developing complicated, large-scale applications. Without data encapsulation,
developers on your team could simply access any part of your object data and use it

Note Notice the empty parentheses I am using after my method names in the text. These are
always used when writing about a method, so that the reader knows that the author is referencing
a Java method. Additionally, since method calls are invoked using dot notation, I usually will preface
the method names with a dot, further reinforcing that this is a method call, so that you can visualize
it. You will see this method naming convention used throughout the rest of this book.

96 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

however they pleased. This could introduce bugs affecting the methods you have perfected
to manipulate your object and to provide your encapsulated solution. So data encapsulation
promotes the core concept in OOP of modularity. Once an object is created and tested,
other objects can use it without worrying about its integrity.

Data encapsulation thus allows code reuse, so programmers can develop libraries of useful
objects, which don’t need to be rewritten or retested by other programmers. You can see
how this might save developer time and money by structuring only the work that needs to
be done and avoiding redundant work processes related to testing multiple code modules
in conjunction with one another at the same time. Data encapsulation will also allow
developers to hide the data and the internal logic of their Java object, if that is so desired.

In the car object example, the attributes of our car are encapsulated inside of the car object,
and can thus be changed only via the methods that surround them in each diagram. For
instance, one would use a .shiftGears() method to change the Gears=1 field variable to
Gears=2.

Finally, Java objects make debugging easier, because you can add or remove them
modularly, or isolate them during testing in order to ascertain where bugs are located within
the overall code.

Java Constructs: Create Your Own Objects
In the next few sections of this chapter, you will learn about the primary Java programming
constructs (or code structures) that developers will create to be able to define their own
custom Java objects. These custom objects will have their own characteristics (variables
and constants), behaviors (methods), accessibility (access control modifiers), procreation
(constructors), and even can have their own rules of engagement (interfaces). They can even
have their own home offices (packages).

This is in large part accomplished using the top-level structure in Java, which is called a
Java class. For this reason, we will start learning about classes first, since all of the other
structures in Java are either created (nested) inside of the class, or relate to its usage and
implementation in some way. The exception to this is the Java package, which houses,
collects, and contains these Java classes. Java 9 will introduce the concept of modules
(collections of packages) when it is released in the fourth quarter of 2017.

The Java Class: Java Code Structure Container
In real life, there is seldom just one single type or kind of object. Usually, there is a large
number of different object types and variations. For instance, for a car object, there are
different manufacturers, sizes, shapes, colors, prices, seating capacities, engine types, fuel
types, transmission types, drivetrain types, roof types, carrying capacities, luxury features,
sound systems, and so on and so forth.

In Java SE, you write something called a class that defines what your object can do (its
methods), and what data fields it will possess. Once the class has been coded in Java,
you can then create an instance of an object that you wish to use, by referencing a class
definition. In architectural terms, the class is a kind of blueprint as to what the object will
be structured like, including what states it will contain (its variables), its other attributes
(constants), and the tasks it can perform (the methods that it has).

97CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

To illustrate this further, let’s construct a basic class for our car object example. To create a
car class, you use the Java keyword class, followed by a custom name for the new class
you are writing, and then curly brackets, which will eventually contain Java code for a class
definition. It looks like this:

class Car {
 // Java code definition for the car class will go in here. We will do this next.
}

The first thing that you will usually put inside of the class (inside of the curly {} brackets) are
the data fields (variables). These variables will hold the states, or characteristics, of your
object that will be created by the class. In this case, you will have six data fields, which will
define the car’s current gear, current speed, current direction, fuel type, color, and drivetrain
(two-wheel drive or four-wheel drive), as was specified in the basic diagram which was
shown earlier in Figure 5-1.

To define a variable in Java, you must first declare its data type.

	An integer or int data type declares a variable to be able to hold a
whole (non-fractional) number.

	A String data type declares the variable to hold a text value.

	A Boolean data type declares the variable to hold a true or false value (I
think of this like a switch or a toggle, like a binary on or off state).

The next portion of the variable definition or declaration after the data type has been
specified is your custom variable name, which you will use to refer to that variable later on,
within your Java programming logic. If you want to know technically what the Android OS is
going to do with these variable declarations, it is essentially going to set aside, or allocate,
an area in the system hardware (the system memory, to be more precise) to hold this value
for your application to access while it is running.

You can also (optionally) set a default or a starting data value for your variable. This is done
by using the equal sign and a starting data value. The variable definition is ended once
it reaches, or is terminated with, a semicolon character. This is how the Java compiler in
Android Studio 2.3, which is reading or parsing your Java code, knows that each statement
is finished being defined.

Note An instance is a concrete object created from the blueprint of the class, with its own states
or unique data attributes. For example, you might have a (second) baby blue car instance that is
traveling south and is in third gear. (In the example, our first car instance is red, and is traveling
north, and is in first gear.)

Note Semicolons are used in programming languages to separate each code construct, or
definition, from the other code constructs within that same body of code (package, class, method,
or interface), which I often refer to as a Java code structure, or Java logic structure.

98 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

So, with the six variables from our Anatomy of a Car Object diagram, shown in Figure 5-1, in
place, the core Car class definition would initially look something like the following:

class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas";
}

Remember that since we specified a starting value using the equal sign for all of these
variables, that these variables will all contain this default, or starting, data value. These initial
data values will be set (in the system memory) as the Car class variable’s initial data values
upon object creation in system memory.

Notice how the example spaces out the curly braces ({ }) on their own lines, as well as
indenting certain lines, similar to what you did with your XML markup. This is done as
a Java programming convention, so that you can visualize the organization of the code
constructs that are contained within your Java class structure, inside of those curly braces,
more easily and clearly. This would be analogous to having a bird’s eye view of your Java
code construct.

The Java Method: Java Code Function Definition
The next part of your Java class definition file will contain your methods. A Java method will
define how your Car object will function; that is, how it will operate on the variables that you
defined at the top of the class, which hold the Car object’s current state of operation.

Method calls can invoke a variable (state) change, and methods can also return data
values to the entity that calls or invokes the method, such as data values that have been
successfully changed, or even the result of an equation. For instance, there could be a
method to calculate driving distance by multiplying speed by driving time, and this method
would return this driving distance data value to the Java code that invoked this method.

You will see a bit later on exactly how a Java method is invoked; this is usually accomplished
by using something in the Java programming language called dot notation. Next, let’s
take a closer look at how a Java method is declared and created inside of your Java class
structure.

To declare a Java method that does not return any data values to the calling entity, and
that only invokes some sort of state change in the object, you would utilize the Java void
keyword before the method’s name.

99CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

The .shiftGears() method is a good example of using void in a method that triggers
something. This type of method would be used to trigger (invoke) a change in the object,
such as a shifting in gears, and thus would not need to send any specific data values back
to its calling entity.

void shiftGears (int newGear) { The Java code which defines the method's functionality }

If your method or function returns a data value, then instead of using the void keyword, you
would use the data type of the data value that needs to be returned, say int or String. As
an example, a simple, whole number addition method might return a number data value after
finishing its sum calculation, so you would declare a data type using the int keyword.

int addTwoNumbers (int x, int y) { int z; x + y = z; return z; }

After the data type keyword comes a name for the method (say, addTwoNumbers). This is
followed by the type of data (in this case, an int) and variable name or names (x and y) in
parentheses, which is called the parameter list, and then finally the curly braces, which will
contain the method’s Java code, which will add the two input x and y integers, returning a
result held in a z variable to the calling Java code.

The data variable’s data type and name, seen within the parameter list, contains the data
parameter that will be passed into the method, so the method now has this passed-in
data variable to work with inside of the Java code that is defined inside of the method
programming logic (inside of its curly braces). This declares the variable for use, so you can
use these parameter variables inside the method as you can see in the previous example,
where I had only to declare the z variable for use.

Note In this chapter especially, but also throughout the book, you will be learning about a plethora
of Java and Android keywords. Keywords are reserved words that cannot be used in your own
custom code (because that would confuse the compiler, which needs to have everything that
is defined be 100% unique, and thus not ambiguous), because each keyword does something
specific in Java or Android. As an Android programmer you will need to learn all of the programming
language keywords and what they mean (do) and how to implement them properly, which we will
be doing throughout the rest of this book.

Note The normal method naming convention is to start a method name with a lowercase letter,
and then to use uppercase letters to begin words embedded within the method name, called
CamelCase like this methodNameExample(). Read more about Java naming conventions at:
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf.

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

100 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

Some methods, such as those that trigger something, will be called without using any
variables, as would be done in a .turnCarEngineOff() method, which would be called in
your Java code as follows:

carObject.turnCarEngineOff();

To call the .shiftGears() method, you would want to pass the desired gear over using
the parameter list as an integer data variable, so you would therefore utilize the following
method call format:

carObject.shiftGears(4);

This passes over the integer value of 4 using the .shiftGears() method’s newGear data
variable, which sets this data value as well as passing it into the method. This data value
is then utilized in the interior of the .shiftGears() method logic (the part inside the curly
braces), where it is finally used to set the object’s gear (internal) field to the new gear shift
value of 4, or fourth gear. We will be looking at that code construct next. If you want to set
up your .shiftGears() method so that it does not require any integer data values, that is, if
you wanted to set it up to be a method with no calling parameter, you would need to create
a .shiftGearUp() as well as a .shiftGearDown() method. The programming logic inside of
these methods would add (or subtract) a value of one from the current gear setting, instead
of setting the gear value to the passed-in (desired) gear value. In Java coding, there’s always
more than one way to skin a car! Or is it, there’s always more than one way to shift a cat?

A common reason to use a method without any parameters is to invoke a state change
in an object that does not depend on any data being passed into the method. In the case
of this particular gear shifting example, this would also fix a potential problem of skipped
gears, as you would simply code a .shiftGearUp() method and a .shiftGearDown()
method, which would upshift and downshift by one gear level each time they were called,
rather than change to a gear selected by the driver. If you have ever shifted from first into
fifth gear on your car, you know that it does not work very well, and could even cause a
stall. This might be a smarter way to code this particular method, and then you would not
need to pass a parameter in order to shift gears on your Car object; you would just simply
call .shiftGearUp() or .shiftGearDown() whenever any gear shifting for the Car object was
needed.

After the method declaration, the method’s programming logic procedures are contained
inside the curly braces. In this Car class and object definition example, we have four
methods, as defined back in Figure 5-1:

	The .shiftGears() method will set the Car object’s gear to the gear
value that was passed into the .shiftGears() method. You should allow
an integer to be passed into this method, to allow “user error,” just
as you would when you are driving your car in the real world. The Car
object’s gear attribute is set to the newGear data value, which is passed
into the method using the method parameter list area.

void shiftGears (int newGear) {
 gear = newGear;
}

101CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

	The .accelerateSpeed() method takes your object’s speed state variable
and adds your acceleration factor to the speed, which causes your
object to accelerate. This is done by taking your object’s current speed
setting, or state, and adding an acceleration factor to it, and then setting
the result of this addition operation back into the original speed variable,
so that the object’s speed state now contains the new (accelerated)
speed value.

void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
}

	The .applyBrake() method takes the object’s speed state variable and
subtracts a braking factor from the current speed, which causes the
object to decelerate, or to brake. This is done by taking the object’s
current speed setting, and subtracting the braking factor from it, and
then setting the result of the subtraction back to the original speed
variable, so that the object’s speed state now contains the updated
(decelerated) braking value.

void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
}

	The .turnWheel() method is straightforward, much like the
.shiftGears() method, except that it uses a string value of N, S, E, or W
to control the direction that the car turns. When .turnWheel("W") is used
a car will turn to the left, when .turnWheel("E") is used, the car will turn
to the right, given, of course, that the Car object is currently heading to
the north, which according to its default direction setting, it is.

void turnWheel (String newDirection) {
 direction = newDirection;
}

The methods that make the Car object function go inside of the Car class’s code body inside
of the curly braces, and after the variable declarations. The updated Car class would look
like the following:

class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas";

 void shiftGears (int newGear) {
 gear = newGear;
 }

102 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

 void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 void turnWheel (String newDirection) {
 direction = newDirection;
 }
}

This Car class allows us to define a Car object, but only if we include a Car() constructor
method, which we will be covering in the next section of this chapter.

Constructor Methods: The Java Object Blueprint
If you want to be able to make an object with preset values out of your class definition, then
you need to include what is called a constructor method. If you don’t, Java will create one
for you called a default constructor. This method will need to be named the same as the
class name, in this case, it would be the Car() constructor method, and should be the first
method that is defined inside of the class construct, after the variable (data field) definitions.
The constructor method is used to construct an object, configure it, and load it into memory
for use. The first thing we will want to do is to make our variable declarations undefined,
by removing the equal sign and initial data values, so we can use the constructor to set the
variables differently for each object created using the class. If all objects that are created
using the class need to have the same starting variables, you can include these in the class
instead of the constructor. This is shown in the following Java code:

class Car {
 String name;
 int speed;
 int gear;
 int drivetrain;
 String direction;
 String color;
 String fuel;
 public Car (String carName) {
 name = carName;
 speed = 15;
 gear = 1;
 drivetrain = 4;
 direction = "N";
 color = "Red";
 fuel = "Gas";
 }
}

103CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

As you can see above, a Car() constructor method will set the data values as part of the
construction and configuration of the Car object, and thus the Java code for the Car()
constructor method contains your data field initialization values, not the Java class itself.
As you may have inferred from this, some Java classes are built to create objects, others
are built to process logic; the choice is yours regarding how to use the powerful Java
programming language.

The Java constructor method differs from a regular Java method in a number of distinct
ways. First of all, a constructor method does not use any of the data return types, such
as void and int, because it is used to create a Java object, rather than to perform some
function. It does not return nothing (the void keyword) or a number (the int, double, or float
keywords), but rather, it returns an object! Indeed, that’s why it’s called a constructor in the
first place – because its function is solely to construct or create the new Java object; in this
particular case, that would be a basic or generic Car object.

Note that every class that needs to create a Java object will feature a constructor with the
same name as the class itself, so a constructor is the one method type whose name can
(and will, always) start with a capital letter, which is essentially disobeying the standard Java
method naming convention.

Another difference between a constructor and a standard method is constructors must use
the public access control modifier, and cannot use any non-access-control modifiers, so be
sure not to declare your constructor as: static, final, abstract, or synchronized. We will be
covering these modifiers a bit later on in this chapter, so stay tuned!

In case you may be wondering how you would modify the previous Car() constructor
method example if you wanted to not only name the new Car object using the constructor
method, but also wanted to define its speed, direction, and color using that same Car()
constructor method call, you would do this by simply creating a longer parameter list for the
constructor method call. This revised Car(carName, carSpeed, carDirection, carColor)
constructor method code structure would look something like this:

class Car {
 String name;
 int speed;
 int gear;
 int drivetrain;
 String direction;
 String color;
 String fuel;
 public Car (String carName, int carSpeed, String carDirection, String carColor) {
 name = carName;
 speed = carSpeed;
 gear = 1;
 drivetrain = 4;

Note Later in this section I’ll show you how to change this constructor to set more of the
variables.

104 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

 direction = carDirection;
 color = carColor;
 fuel = "Gas";
 }
}

It is important to note that this Car() constructor method will not do anything at all until you
use it to instantiate an instance of the Car object. An instance is just what it sounds like it is;
the Android OS will allocate system memory space to hold each particular instance of any
Java object created by its class’s constructor method.

A constructor method must be called or invoked in conjunction with the Java new keyword,
which we will cover next. The new keyword creates a new object in a new area of system
memory, so it’s keyword appropriate!

Next, let’s look at how you would create new Car objects in an Android onCreate() method
structure.

Instantiating Objects: The Java “new” Keyword
To create an instance of an object, you instantiate it. Here’s what it would look like if you
added this code to the .onCreate() method of your current Android application. This shows
the creation of two Car objects, as well as how you would use these Car objects along with the
dot notation used to call the methods which would operate upon them. Refer to Figure 3-8
in Chapter 3 to see this bootstrap .onCreate() method code for the Android Hello World
(MyApplication) application.

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 // Two forward slashes will allow you to insert comments into your code
 // Create two new Car Objects by using the Car() constructor method
 Car carOne = new Car("carWon", 20, "S", "Blue");
 Car carTwo = new Car("carTwoon", 10, "N", "Green");
 // Invoking three methods on CarOne Car Object through the use of dot notation
 carOne.shiftGears(3);
 carOne.accelerateSpeed(15);
 carOne.turnWheel("E");
 // Invoking three methods on CarTwo Car Object through the use of dot notation
 carTwo.shiftGears(2);
 carTwo.applyBrake(10);
 carTwo.turnWheel("W");
}

Upon creation of this Android application, which is what the .onCreate() method is used for, we
now have instantiated and configured two Car objects. Note that this code will only work if you
have created a Car class in your Android application, so this is for example purposes only. We
have done this by using the Car() class constructor and the Car object name, along with the Java
new keyword, which creates each new Car object for us, using the following Java code format:

Car carOne = new Car("carName", carSpeed, "carDirection", "carColor");

http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig8
http://dx.doi.org/10.1007/978-1-4842-2268-3_3

105CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

The syntax for doing this is very similar to what we used to declare our variables, which
are declared with a variable type, variable name, and (optional) variable starting data value.
Object instances will be declared similar to this, with an object constructor, object name,
and configuration values, like this:

	Define the object type Car using the constructor method

	Give a name to our Car object (carOne) that we can reference in our
class and method code constructs

	Set the carOne object equal to a new Car object definition using four
state parameters (a String carName, an integer carSpeed, a String
carDirection, a String carColor)

It is also important to notice that I have put comments in the Java code by using two
forward slashes, which tells the Java compiler to “ignore everything else on this line after
these, as it is a comment!”

To invoke our methods using our new Car objects requires the use of dot notation. Once you
have created and named a Java object, you can call methods on it, by using the following
code construct:

objectName.methodName(parameter list variables);

So, to shift into third gear on the Car object named carOne, we would use this Java code
statement:

carOne.shiftGears(3);

This calls or invokes the .shiftGears() method on the carOne Car object, and passes over
the gear parameter, which contains an integer value of 3. This value is then placed into the
newGear variable, which is then utilized by the .shiftGears() method’s internal code.

So, as you can see in the final six lines of code in the public void onCreate() method,
we set the carOne Car object to third gear, using .shiftGears(3), accelerate it from 15 to
30 mph, by accelerating by a value of 15, using .accelerateSpeed(15), and then turn east
by using the .turnWheel() method with a String value of "E" (the default direction is north,
or "N").

Car two (carTwo) we shift into second, using .shiftGears(2), then .applyBrake(10) to slow
it down from 15 to 5 mph, and finally turn the car west, by using a .turnWheel("W") method
call, all using dot notation. Dot notation connects the Java method call to the Java object,
invoking that method on that Java object. Once you understand all of this, you will see it is
actually really cool how Java works.

Extend an Object’s Structure: Java Inheritance
There is also support in Java for developing different variations on custom objects, in this
case, it is a Car object. This is done using a technique called inheritance. Inheritance is
where more specialized Car classes (more uniquely defined Car objects) can be subclassed
using the basic Car superclass. This allows Java developers to develop more organized,

106 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

modular, inheritance-oriented approaches to designing their Java objects, making them into
building blocks, and thus powerful for the construction of an infinite number of future object
types. This inheritance process can be seen in Figure 5-2.

Figure 5-2. Inheritance of the Car Object superclass to create the SUV and the SPORT Car object subclasses

Once a class is used for inheritance by subclassing it, it becomes a superclass. Ultimately,
there can be only one superclass at the very top of the chain, but there can be an unlimited
number of subclasses. All of the subclasses inherit the methods and fields from the
superclass. If you want to change a superclass’s method, you can use the Java keyword
@Override before the subclass’s method, and your custom method implementation will then
be used instead of the superclass method.

The ultimate example of this in Java SE is the java.lang.Object superclass (I call it the
masterclass), which is used to create all other classes in Java.

The SUV subclass might have additional .onStarCall() and .turnTowLightOn() methods
defined, in addition to inheriting the usual Car object operational (basic car function)
methods allowing the Car object to shift gears, accelerate, apply the brakes, and turn the
wheels.

Similarly, we might also generate a second subclass, called the Sport class, which would
create sport car objects. These might include an .activateOverdrive() method to provide
faster gearing, and an .openTop() method to put down the convertible roof.

To create a subclass using a superclass, you extend the subclass from the superclass, by
using the Java extends keyword inside of the class declaration. The Java class construct
would thus look just like this:

class Suv extends Car { // Additional New Variable Data Fields, Constants, and Methods Go In
Here. }

107CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

This extends the Car class so that SUV objects have access to, essentially contain, all of
the data fields and methods that the Car object features. This allows the developer to
have to focus only on just the new or different data fields and methods that relate to the
differentiation of the SUV object from the regular or master Car object definition.

Since classes create objects, given that they have a constructor method, the same hierarchy
should be applied at the spawned object level. So logically, the SUV object will be more
complex (more data fields and more functionality) than the parent Car object.

To refer to one of the superclass’s methods from within the subclass you are coding, you can
use the Java super keyword. For example, in the new SUV class, you’ll probably want to use
the master Car class .applyBrake() method, and then apply some additional functionality to
the brakes that will be specific to SUVs. You can call a Car object’s .applyBrake() method
by using super.applyBrake() in the Java code. The following Java code will add additional
functionality to a Car object .applyBrake() method, inside of the SUV class’s .applyBrake()
method, by using the super keyword to access the Car class’s .applyBrake() method, and
then adding in additional logic:

class SUV extends Car {
 void applyBrake (int brakingFactor) {
 super.applyBrake(brakingFactor);
 speed = speed - brakingFactor;
 }
}

This code makes the SUV object’s brakes twice as powerful as the generic Car object’s
brakes, which is again something that would have to take place in real life for an SUV to be
safe for use. The reason the Java code doubles the SUV braking power is because the SUV
object’s .applyBrake() method first calls the Car object .applyBrake() method from the Car
superclass from inside SUV using super.applyBrake(brakingFactor); line of Java code in
the SUV subclass’s .applyBrake() method, and then the line of Java code that comes next
(again) decreases the speed variable, by applying the brakingFactor a second time, making
the brakes twice as powerful, or twice as effective!

Be sure to use good programming practices and refer to documentation for your
superclass’s fields and methods within each subclass that uses the super keyword to
reference superclass programming infrastructures in one way or another. The Java class
documentation should let users (developers) of your superclass know which of your
superclass fields and methods are public and are available for use, since these do not
explicitly appear in the Java code for the subclass, as only incremental code (new and
different methods and variables) will appear in the subclass Java code.

Java Interfaces: Defining Class Usage Patterns
In many Java applications, as well as in the Android 7 APIs, Java classes must conform
to a certain usage pattern. There is a specialized Java construct called an interface that
you can implement, so that other application developers will know exactly how to utilize
your Java classes implementing an interface, as well as which methods are required for
proper implementation of your Java class. Implementing the Java interface will allow your
class to become more conformant regarding those behaviors that your class offers for other

108 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

programmers to utilize. To implement a Java interface you would use the Java implements
keyword, as you will see later on during this section.

Interfaces in essence form a programming contract between your class and the rest of
the development world. For any class implementing a Java interface, the Java compiler can
enforce this contract at build time. If a class claims to implement a public interface using
the implements keyword, all of the methods that are defined by that Java interface definition
must be implemented (be present) in the source code for the class that implements that
interface before that class will successfully compile.

Interfaces are especially useful when working within a complex Java programming
framework such as Android 7.1.1, which is utilized by other developers who build
applications based on the Java classes that the Google Android 7.x OS developer team
members have written specifically for that purpose. A Java interface can be used like a road
map, showing developers how to best implement and utilize the Java 8 code structure that
is provided by that Java class within another larger Java program structure. Basically, a Java
interface guarantees that all methods in a given class will get implemented together, as an
inter-working, interdependent, used-as-a-collective, programming structure, guaranteeing
that any individual function needed to implement this functional collective doesn’t get
inadvertently left out.

This public interface that a class presents to the other developers who are using the Java
language and Android platform makes using that class more predictable, and allows
developers to safely use that class in their own programming structures and objectives
where a class of a particular end-usage pattern is suitable for their implementation.

In other words, a public interface is an implementation road map that will tell your
application what functions that class needs to be able to perform, and how to implement it
without your application needing to test any of that class’s functional capabilities. In case
you are wondering, Java 8 (Android) does not allow a private interface; however, the new
Java 9 programming language will allow this later on in 2017. When Android will adopt
Java 9 is anyone’s guess, however.

In Java terms, making a class conform to a usage pattern is done by implementing a Java
interface. The following is an ICar interface, that forces all cars to implement all of the
methods that you will be defining within this Java interface.

These methods must each be implemented (exist) even if they are not utilized, that is, no
additional or custom code exists inside their curly braces. This also guarantees that the
rest of the Java application knows that each Car object can perform all of these actions, or
behaviors, because implementing the ICar interface defines this public interface for all of the
Car objects that implement the ICar interface.

The way that you will implement the ICar public interface for the methods in your Car class
would be as follows:

public interface ICar {
 void shiftGears (int newGear);
 void accelerateSpeed (int acceleration);
 void applyBrake (int brakingFactor);
 void turnWheel (String newDirection);
}

109CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

So, the Car class that implements this ICar public interface must implement all of these
declared methods.

To implement an interface, you need to use the Java implements keyword, as follows, and
then define all of the methods exactly as you did before, except that the methods must now
be declared using a public access control modifier in addition to the void return data
type. We’ll be covering Java modifiers in a future section of this chapter, after we cover the
Java package and the concepts of an API.

Here is how a Car class would implement this ICar interface, by using the Java implements
keyword:

class Car implements ICar {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas ";

 public void shiftGears (int newGear) {
 gear = newGear;
 }

 public void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 public void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 public void turnWheel (String newDirection) {
 direction = newDirection;
 }
}

Notice we added the public keyword before the void keyword, which allows any other Java
class to be able to call or invoke these methods, even if those classes are in a different
package (packages are discussed in the next section). After all, this is a public interface,
and anyone (more accurately, any class) should be able to access it. The Java 8 interface
cannot use any of the other Java access control modifier keywords, so it cannot be declared
as private or protected. We’ll be learning about these access control modifiers in a future
section of this chapter.

It is important to note that only the methods declared in the interface absolutely need to be
included. The data fields that I have at the top of the class definition are optional and are in
this example to show its parallel to the Car class that we declared earlier without using an
interface. There is not much difference other than using the implements keyword, except
that implementing an interface tells the compiler to check and make sure that all of the
necessary methods that make a Car class complete (work properly) have been included by
the developer who is using the class and interface.

110 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

Logical Collection of Classes: Using a Package
As you know, each time you define a new project for Android 7.1.1 Android Studio will create
a package to contain your own custom classes, which you will define as you implement
your application’s custom functionality. In your MyApplication Android 7.1.1 application,
which you created back in Chapter 3 using the New Android Project series of dialogs, you
named your package com.example.user.myapplication. If you remember, that first dialog in
the New Android Studio Project series of dialogs asked you to specify this package name
(refer to Figure 3-2 if you need to refresh your memory).

The Java package declaration is the first line of code in any Android application class,
or in any Java class in any application for that matter. The package declaration tells Java
how to package your application. Recall the first line of code in our Hello World application
MainActivity.java Activity class, as was shown in Figure 3-8:

package com.example.user.myapplication;

After the package keyword and declaration come the import statements, which import
existing Java classes and packages into your declared package. So, a package is not only
for your own code that you write yourself, but rather for all code that your application uses,
even if it is open source platform code; or even code that has been written by another
programmer or company; or, in the case of Android applications, Android API code, which
serves up Android 7 OS functionality that is only available within the Android 7.x OS and
earlier OS versions.

Basically, a Java package naming strategy is similar to the folder-naming hierarchy on
your computer. A package is just a way of organizing (grouping) Java code according to
functionality. As an example, Android organizes its classes into over 100 logical packages,
which we will routinely import, and use, throughout this book. Each Android API Level
contains a vast collection of functional packages that are utilized by developers to access
the Android OS feature set. These were shown in Chapter 3 in Figure 3-10 on the left-hand
side. We will take a closer look at APIs in the next section of this chapter.

In your Hello World bootstrap application we’ve been examining over the past couple of
chapters, the Android environment needs us to have these following two import statements
in the MainActivity.java file to be able to utilize the Android AppCompatActivity and the
Bundle class:

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

This import keyword references that API address where Java code needed to complete each
import statement is located. Here is a generalization of how an import statement follows a
path to the class:

import platform.functionality.version.classification.classname;

The functionality and version portions are not always utilized, as you can see in the above
two import statements.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig2
http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig8
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig10

111CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

The Android AppCompatActivity class import statement tells the developer the following
information about the Android AppCompatActivity Java class, as well as telling the compiler
where to locate it:

	android indicates that this is the Android OS software development
platform API

	support refers to the backward compatibility support functionality

	v7 refers to Android OS Version 7.0 and 7.1.1

	app refers to the application area of Android component classification

	AppCompatActivity refers to the proper name of the class that we intend
on using

Thus, the AppCompatActivity class, which is the superclass for any Android Activity that
you want to be backward compatible across previous Android versions, is found in the
android.support.v7.app package. This .app part says that this package logically contains
classes that are necessary for the creation of Android applications, and one of these is the
AppCompatActivity class, which allows us to create Activity subclasses that work across
all Android OS versions. The Bundle class, which allows us to bundle together application
variables into custom Bundle objects, is kept in a different package for OS utilities, as Bundle
objects can be used in any area of Android, not just in Activity.

The API
You might be wondering if a Java package is the highest level of organization in Java. The
answer is actually no; there is one even higher level, which is, as you might well imagine, a
collection of these packages themselves! This level is sometimes called the platform or the
application programming interface (API) level. An API for any given programming platform,
like Android or Java, is a collection of all of the packages that comprise the totality of that
particular computer programming language.

Thus, there is a separate API for Java SE, Java EE, and Java ME, containing all those
packages for each specialized platform’s implementation, as well as an Android TV, Android
Wear 2, and Android Auto API. You are using the core Android (phone and tablet) API in your
Hello World application, as can be seen on the right side in Figure 3-2 in Chapter 3.

Android 4.4.4 KitKat API Level 19 was the 19th Android platform to be released, and Android
4.4 “W” API Level 20 was for Android Wear, Android API Level 21 is the first 64-bit version of
Android 5, and Android API Level 23 was for Android 6.0. The current Android API Level was
24 for the Android 7.0 API when I started writing this book in 2016, and is currently at API Level
25 for Android 7.1.1. Android 7.1.1 is expected to be released at the same time as this book.

For this reason, if you want to develop applications using any given programming language,
you must download and obtain (and eventually learn) the API for that programming language
in order to be able to develop any applications using its API, which is simply a collection of
all of that language’s classes, methods, and interfaces, which have been logically grouped
into categorized packages. We essentially will be learning about some of the core classes
used in Android 7.x API during the course of this book.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig2
http://dx.doi.org/10.1007/978-1-4842-2268-3_3

112 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

Modifiers: Data Type, Access, Inheritance
Java uses strategic keywords prefacing, or in front of, its major constructs, called
modifiers. Java constructs that can be classified using modifiers include variables,
methods, interfaces, and classes. Since we have already looked at data type keyword
modifiers in the chapter already, at least the void (signifying no data type used), String
(text data type,) and int (integer or whole number data), I will go over the other data type
keywords that are used in Java and Android here, and then we will cover the more advanced
access and non-access modifiers that are used in the Java programming language.

It is important to note, that even though using a data type keyword in front of your variable
name will modify the type of data they are defined to contain, a more precise technical term
in Java for this data type keyword is the data type specifier keyword. These two terms
are often used interchangeably in Java. In the next section, the access control modifiers
could be looked at as access control specifiers, as they’re specifying a level of access, by
prefacing a Java keyword in front of a Java code construct.

Other types of data type specifier keywords used in Java (and therefore, in Android 7)
include float or floating-point numbers, which have a fractional component, represented
using decimal notation, for instance, 1.375, as well as boolean, which hold Boolean
math states“ such as true and false. There are other data types in Java for holding more
complicated (longer) numeric representations, such as the long and double data types,
which have 64-bit accuracy, and can accommodate extremely large or extremely small
numeric representations. There is also a data type that can hold one single 16-bit Unicode
character, called the char data type. The byte data type can hold one number from an 8-bit
range (256, from -128 to +127) of numeric data values, and finally, the short data type can
hold one number from a 16-bit range (65,536, from -32,768 to +32,767) of numeric data
values. Data types are relatively easy to understand in comparison to access or non-access
modifiers, which we cover next.

Java Access Modifiers: Four Levels of Access
Java has a number of modifiers that you can place before Java constructs, to define what
they are and who can see them. There are two types of Java modifiers: access control
modifiers and non-access control modifiers. In case you are wondering what I mean by
access control, I am talking about other Java programming constructs outside of a given
Java class or package being able to see or reference (utilize) Java assets inside of that class,
or even the package that class is contained in.

You can apply access control modifiers to classes, methods, interfaces, constructors,
constants, and variables, and include the public, private, and protected Java access
modifier keywords. Not using any access control keyword at all also defines the package
protected level of access control, so let’s cover all of these concepts here, in order from
the most restrictive (closed) level of access control, to the least restrictive (open) level of
access control. Table 5-1 shows four levels of Java access control modifiers in one place.
Remember, the last one is no modifier (blank) but is called package protected.

113CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

As you might imagine, the private access modifier is the most restrictive, and, if declared,
only allows access to private variables and private methods from inside of the containing
class. It is important to note that classes themselves cannot be declared as private unless
they are inside of another class, in which case they are a special case, and are called private
inner classes. Java interfaces, which we learned earlier, are public interfaces, and therefore
also cannot be declared as private, since they are inherently public in their access control.
As I have mentioned, this will change in Java 9, as well as in Android when it adopts Java 9.

The next most restrictive access modifier keyword is the protected access modifier
keyword, which is utilized with Java classes that are intended to be used as superclasses
and that need to allow access to their subclasses only, to protected variables, protected
methods, as well as protected constructors. Protected access can be viewed as being
protected from access by any class outside the inheritance chain, keeping it in the family, if
you will. Like a private access modifier, the protected access modifier cannot be applied to
any class itself, only to Java code elements inside of the class. Protected access cannot be
applied to a Java 8 interface definition, as these are required to be declared using the public
access modifier. It also follows that methods or data fields (variables) within a Java interface
definition also cannot be declared using a protected access control modifier keyword, as
they also must always be declared using a public or an abstract access control modifier. If
an access modifier is not explicitly provided for a Java method that is inside a Java interface,
it will default to being declared as public.

The next most restrictive access modifier is actually using none of the access control
modifiers at all, which is the norm in Java, as we saw when we created our original Car
class, using the data type declarations of void, int, or String without any public, private,
or protected modifier in front of them. Using no access control modifier allows visibility
throughout your entire package, essentially, inside of your entire application, if you have
your entire Android application in one package, as we will be doing in this book, and which
Android Studio 2.3 does for you, as you saw during Chapter 3.

The least restrictive access modifier, which removes all access restrictions, is the public
access control modifier. This allows Java code in other packages to access your Java
variables, methods, interfaces, and classes from outside of your package. It’s like you are
opening the door to your code and saying, “come on in, folks, I’m giving you access to
everything.” Use this modifier with caution!

Table 5-1. Access Control Modifier keywords in the Java programming language and their functionality definition

Access Control Modifier Keyword Functionality Definition

private Access is allowed only within that particular class

protected Access is allowed to subclasses of that class, as well as to other
classes within the same package

public Access is allowed to all classes, even those that are located
outside of your package

package protected (unspecified) Access is allowed to other classes in that package

http://dx.doi.org/10.1007/978-1-4842-2268-3_3

114 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

It is important not to confuse access control and non-access control modifiers with Java
variable data type declarations that are used before variables to declare their data type, and
which thus look a lot like a modifier. In fact, modifiers and data type declarations are often
utilized right next to each other, like we did in the public void shiftGears() method.

Java methods have their own rules regarding inheriting access control modifiers, as the
classes that contain methods are later subclassed or enhanced to become more detailed
and refined subclasses. For instance, any method that has been declared using a public
access in a superclass must also be declared using public access in all subclasses.
Similarly, any method that has been declared using protected access in a superclass must
either be declared using the protected access, or using public access, in any subclass.
It can never be declared using a private access control modifier.

A method declared without using an access control modifier is the only scenario where
a method can be declared using a private access control modifier in a subclass. It is
important to note that a method that has been declared using a private access control
modifier keyword is not inherited, because it is private relative to that class within which it is
contained, and no others, including any subclasses.

As you can see, although access control modifiers seem fairly simple and straightforward,
you have to pay attention to what you are doing with them, especially where inheritance
(superclasses and subclasses) is going to be utilized in your Java programming structure
and Java package design.

Non-Access Modifiers: Static, Final, and Abstract
There are also modifiers in Java that are not access control modifiers, and not data type
declarations. These are called non-access modifiers and these are the most complicated
ones to understand and to implement in practical usage. There are three modifiers that are
frequently used in Java programming that we’ll be covering in this section of the chapter:
a static modifier, a final modifier, and an abstract modifier. There are also some more
advanced modifiers such as synchronized or volatile, which are used to manage the use
of system memory using something called threads. Memory allocation using modifiers is a
topic that is largely beyond the scope of an Absolute Beginners Android programming book,
although we will cover what a Thread class in Android is in Chapter 13.

The static Keyword: Share Variables Between Objects
A static modifier keyword when used in conjunction with a variable will create a variable
that will exist independently of any object instances created using that class. Static variables
will be initialized only one time, at the start of the execution of the application, sometimes
called the app launch. The variables that use the static modifier keyword will be initialized
first, before the initialization of any instance variables. Only one copy of a static variable will
exist in system memory regardless of the number of instances of the class that contains that
variable are created. Thus, static in Java code means that variable that belongs to the class,
and not to the object instances created by that class.

http://dx.doi.org/10.1007/978-1-4842-2268-3_13

115CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

Objects created by that class can share that variable with the class and with each other, so
use of static variables can optimize system memory. The opposite of static is dynamic, and
thus, any variable not declared as static would therefore be dynamically created (created
at the time it is instantiated, not ahead of time as when it is declared statically). System
memory will be allocated for dynamic variables as each object instance is created by that
class constructor method.

To use a variable from the Car class example, if you wanted all Car objects to reference
the fuel variable, which is set in the code to "Gas" at the class level, and wanted that fuel
variable to belong only to the class, and not to any of the Car objects that will be created
using that class, you would declare the fuel variable as follows:

static String fuel = "Gas";

The static modifier keyword works in much the same way for methods that are declared as
static, thus a static modifier would be utilized to create methods that are intended to exist
independently of any object instances created using the class. This again fixes the method
in place, so it is the only copy of that method that will be used by your class and objects
from that class.

A static method can be referenced using the class name and dot notation even without
an object instance of the class ever being created. For instance, if you declared the
.applyBrake() method to be static, you could reference it using the code statement Car.
applyBrake() even without having created a Car object using the new keyword.

Static methods cannot use any instance variables of any object instances created using
the class in which they are defined, until one of those object instances has been created.
Static methods should take all their data values from the incoming parameter list, and
then compute something from those parameters, with no reference to variables, which are
inherently not static, because they’re variable!

So, to re-code your .applyBrake(int brakingFactor) method as static, and reference the
class speed variable, you would modify your method to look something like this:

public static void applyBrake (int brakingFactor) {
 Car.speed = Car.speed - brakingFactor;
}

Notice that the access control modifier comes first, then the non-access modifier, and
then finally the return data type declaration comes last in the list. This is the modifier and
declaration ordering convention for the Java 8 programming language. Next, let’s look at
the final modifier, which sometimes gets confused with the static modifier, as the final
modifier also means that something cannot be changed, and is thus fixed as well! Java can
be confusing in a number of areas, and this happens to be one of them!

116 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

The final Keyword: Lock Down Your Java Code
You can define a class using the final modifier keyword, and if a class is designated final, it
cannot be subclassed. This is usually implemented for reasons of Java security, so tested,
mission-critical Java code cannot be modified or changed. You will notice as we get deeper
into the Android API and Java that many standard Android Java-based library classes are
declared using the final modifier keyword. As an example, the java.lang.System and java.
lang.String classes are declared to be final so that their functionality cannot be altered.

All methods in a final class are implicitly final methods. Any method declared using the final
modifier keyword cannot be overridden by subclasses. This is also for security reasons and
is used to prevent unexpected behavior resulting from a subclass altering a method that
might be crucial to the function or to the consistency of a class’s functionality.

You can explicitly initialize a final variable only once. A reference variable that is declared
as final can never be reassigned to refer to a different object, if the variable references an
object, rather than a data value. If the final variable references an object, the data contained
within that object can still be changed, only the reference to the object is fixed, and is said to
be final.

Thus, you can change the state of an object referenced by the final variable, but not the
reference to the object, which is what is locked or final. With variables, the final modifier is
often utilized in conjunction with the static modifier to make the class variable into what is
considered a constant, or an immutable fixed variable, for the duration of the class. So this
is how you would make your own constant values in your own code.

As an example, the <string> constant named app_name that you defined using XML in the
strings.xml file would have to be declared in your application’s Java code by using the
following single line of Java syntax:

public static final String app_name = "Hello Universe";

This above constant definition contrasts how using XML to define constants is much simpler
than using Java, because Android sets all of your modifiers and puts it all into proper Java
syntax for you. Next, let’s take a look at the abstract modifier keyword, which allows you
to create classes that can be subclassed (used for Java logic development), but which not
instantiated (used as Java objects in memory).

The abstract Keyword: Designate Class as a Superclass
A class declared using an abstract modifier keyword can never be instantiated, or placed
into memory as an object and actually utilized in the functionality of an Android (or Java/
JavaFX) application. Think of the literary use of the word abstract, which means a summary
or a guide to a literary work, but not the literary work itself. Java code designated as abstract
is used for a guide or template (superclass) for creating other code that may actually be used
as an object, later on down the subclassing line.

If your class is declared as abstract, then the sole purpose for that class is to be extended—
that is, subclassed. If a class contains any methods that have been declared using the
abstract modifier, then the class should also be declared using the abstract modifier. If your
class contains any abstract methods, and is not declared as abstract, a compiler error will
be thrown when you use the Run ➤ App work process, which invokes the Java compiler.

117CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

An abstract class can, however, contain both abstract methods as well as standard (non-
abstract) methods, so the rule is, if you want to put an abstract method inside of a class,
make sure that class is declared as abstract as well, or you will get a compiler error. In
summary, you cannot have abstract methods inside of a class that is not also declared to be
abstract.

A Java interface differs from an abstract class in a couple of key ways. Your abstract class
can have instance methods that implement your default or baseline behaviors. A variable
declared in a Java interface is final. An abstract class can contain non-final variables. A Java
class can implement more than one interface, but may only extend a single abstract class.

Let’s take a look at the Java code that Android Studio wrote for you in Chapter 3 and see
what it does, and how we can upgrade it.

Analyzing Your MainActivity.java Class
Let’s use what we have learned to analyze the Java code for our Hello World application,
which is shown in Chapter 3 (Figure 3-8), so I won’t waste space with that screenshot here.
The Java code shown in the Android Studio MainActivity.java editing pane looks like the
following:

package com.example.user.myapplication;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

The first line of code uses the Java package keyword to declare the com.example.user.
myapplication package name, which is also declared in the AndroidManifest.xml as you
saw in Chapter 4. The manifest file defines your application and also ties Google Play to the
application, and defines what the application is allowed to do, what hardware device types
and Android OS versions the application supports, and defines its included components
(Activity, Service, Receiver, Provider, etc.).

The next two lines of code import the AppCompatActivity and Bundle Android classes into
the package, as they will be utilized in the MainActivity.java class.

The fourth line of code is the MainActivity class declaration. The class extends the
AppCompatActivity superclass, so we’ll take a look at that next, and is designated using the
public access modifier. One of the superclass methods, .onCreate() has been overridden
using an @Override annotation, so we can replace some of the standard AppCompatActivity
class Java code with our own application logic, such as the .setContentView() method that
will be used for inflating your UI layout XML definition, which as you know from Chapter 4 is
contained in an activity_main.xml file in an app/res/layout folder. This Activity subclass is
also referenced specifically, using the AndroidManifest.xml <activity> tag.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig8
http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_4

118 CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

The protected void onCreate() method allows access to other classes in your package,
and returns no values (void), and simply starts up the Activity screen on the device display,
as well as creating the application Main Activity in memory. This is done my calling the
superclass onCreate() method using the super.onCreate(savedInstanceState); line
of Java code. The savedInstanceState Bundle object contains all of the Activity state
values, so that if you leave the Activity, to do something else on your device, and return
to your app Activity later, it can restore where the Activity was (its states) correctly. This
Bundle object passed into the MainActivity.onCreate(Bundle) method will be passed to
Android’s AppCompatActivity.onCreate(Bundle) superclass method by using this super.
onCreate(Bundle) call.

The next line of code in onCreate() uses the setContentView(Resource) method to inflate
your UI design by referencing the /app/res folder using an R, and the app/res/layout folder
(R.layout), and finally the activity_main.xml file (file extension not required) using R.layout.
activity_main path as the value passed into the method. This renders your design to the
screen in the same way that the Visual Design Editor renders it to the Preview pane in
Android Studio.

Next, let’s learn more about Java by taking a look at one of the Android classes that are
used in the Hello World (MyApplication) application. The AppCompatActivity class is the
superclass that is used to define the MainActivity class that extends it (see above Java
code), and therefore is used as the code template for the MainActivity class. This makes it
important for us to review it to see what the MainActivity class is able to do, as it gets its
functionality from Android’s AppCompatActivity class.

The AppCompatActivity Class: Spans OS Versions
Let’s take a look at how you will look at the AppCompatActivity superclass on the Android
developer website, to see what methods you can override, and what variables and functions
you have available to you. You should familiarize yourself with every Android class you use in
this way, so this is a good exercise. Google “Android AppCompatActivity class,” and you’ll
get the following documentation URL:

https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html

At the top of the class documentation you will see the Java Object (master class) to
superclass to subclass hierarchy. Half a dozen classes contain Java code which will affect
the AppCompatActivity class, because it’s an object, needs to have Context information, is
a type of Android Activity with application (backward) compatibility features added. The
chain of Java class design is as follows:

java.lang.Object
 ↳ android.content.Context
 ↳ android.content.ContextWrapper
 ↳ android.view.ContextThemeWrapper
 ↳ android.app.Activity
 ↳ android.support.v4.app.FragmentActivity
 ↳ android.support.v7.app.AppCompatActivity

https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html

119CHAPTER 5: Introduction to Java: Objects, Methods, Classes, and Interfaces

It also tell you at the top of the class what the access is, and which interfaces which are
implemented.

In this case there are three interfaces, AppCompatCallback, TaskStackBuilder.
SupportParentable, and ActionBarDrawerToggle.DelegateProvider, and the class is public.
There is also one known direct subclass, ActionBarActivity, the base class for activities
that use ActionBar features in the V7 support library. Under this information are the inherited
constants from the Activity and Context superclasses, and the inherited data fields
(variables) from the Activity superclass. There is also one constructor, AppCompatActivity()
and then a few dozen methods that can be used (overridden) in your class. I don’t have
the time to go into all of these methods in detail in this Java primer chapter, but you should
review them if you plan to use this Activity type extensively or at an advanced level once you
become more proficient in Android 7.x application design and programming.

Summary
In this fifth chapter, you learned all about the Java programming language, as well as
how the Android platform utilizes Java 8 to facilitate the application development work
process. You learned about Java versions used in enterprise, client, and mobile application
development, and about OOP. You learned about java.lang.Object, which is the foundation
of OOP, and about how Java objects define attributes, characteristics, states, and behaviors
which allow Java programmers to mimic real-world objects in a virtual software development
environment.

You learned about various components of Java 8 programming structures, such as methods,
constants, variables, classes, public interfaces, and constructor methods. You learned
about the Java concept of inheritance, and how to use the new keyword to instantiate an
instance of a Java object by using this constructor method call. You looked at the higher-
level Java organization constructs called packages, and how the total collection of packages
in a programming language forms the API for the language. We also covered some Java 9
features which are not yet in Android, but which will be in the future.

Next, you looked at some of the data type specifiers and access control modifiers, as well as
the more complex non-access modifiers, and after that you were ready to take a closer look
at the MainActivity Java class, which you created in Chapter 3, to see how its Java code
works and integrates with XML.

In Chapter 6, you will start to learn more about Android user interface design using
the Android View class, the ViewGroup class, and more about XML UI definition tags,
parameters, and work processes.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_6

121© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_6

Chapter 6
Android User Interface
Design: Using Activity, View,
and ViewGroup Classes
Now that you’ve been exposed to the Android 7 operating system and have seen how it
works from a high-level view, using XML and Java, and how these are used in Android
application development, the next thing we need to do is take a closer look at how Android
addresses, or writes things to, a device screen, to display UI and content.

In this new age of touchscreen devices, such as smartphones, tablets, e-book readers, and
smartwatches, your display screen has become the center of not only the visual feedback
for the application but also for interacting with it. This chapter will cover those classes that
allow your Android app to write things to the device display screen, such as your Activity
class; core User Interface (UI) classes; and, of course, your Android application primary
subject matter, text, audio, video, animation and graphics content.

There are some very important Android superclasses, such as Activity, View, and
ViewGroup, which provide a foundation for the subclasses that you will utilize to get your
application content and UI onto the display screen. These superclasses are not used directly
in your application, but you need to know about them nonetheless.

We will look at AppCompatActivity subclasses, which provide support across all Android
versions, and can be utilized for organizing your application’s functional screens, which
ultimately will provide the structure for your end-user’s workflow; let’s call it the “use-flow”
for your Android application.

122 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

We will look at View subclasses used for creating your application’s UI element components,
which as you know are known as widgets in Android jargon. We’ll look at the ViewGroup
subclasses, used for creating Android UI layout containers. Layout containers are used to
contain View (subclassed) UI widgets, which make up the body of the UI design, providing
the UI layout with its functionality. Since Android Studio now has drag-and-drop UI design
functionality, we will use the UI layout compatible with the Application Compatibility
(AppCompat) Android 7 backward support (support.v7) library. This is so that I can show you
how to develop Android 7.1.1 applications with as little coding and XML markup as possible,
leveraging Android Studio 2.3 as thoroughly as possible.

Finally, you will put all of this newfound knowledge to use and will create your first original
Hello Universe UI design so that you get some hands-on experience in creating your own
UI design. We will create a Hello Universe Galaxy and Smiley Face user interface design for
your Hello World bootstrap application.

How Activity, View, and ViewGroup Classes Interrelate
Before we look at the Android Activity, View, and ViewGroup UI superclasses and their more
functional subclasses (those classes that you should actually utilize to construct your apps),
it is important to understand how these relate to each other, within the user interface design
and display context of your Android 7.1.1 application.

The reason I am not including the Menu superclass and its functional subclasses in this
chapter is because Android menus are handled separately from UI widget View and UI layout
ViewGroup UI design elements. Menus pop up over a screen triggered by a hardware MENU
button or the ActionBar Overflow menu. For this reason, we are going to cover Menu objects
separately, in a future chapter.

As you’ve learned already, the Android runtime environment (ART) resides on top of a Linux
kernel, and talks to the Android 7.1.1 OS, under which your application executes (or runs).
Your application defines itself to ART using the AndroidManifest.xml application definition
XML file that we looked at in detail, in Chapter 4.

For each functional display screen in an app, which will generally contain some sort of UI
design, as well as related app content, your application will define an Activity subclass.
Your Hello World application currently has one of these Activity subclasses already, as you
saw in Chapter 3 in Figure 3-8 with an AppCompatActivity Activity subclass, used in your
public class MainActivity extends AppCompatActivity declaration at the top of the class.

Each Activity subclass in your Android application would be required to have an
.onCreate() method defined, and this method will in turn be required to contain the
setContentView() method call, to load a user interface ViewGroup (layout), and View (widget)
UI elements. The setContentView() parameters contain the reference to your Activity
subclass’s UI layout XML definition. For the MainActivity.java class, this reference is
R.layout.activity_main, which is Android shorthand to reference the /res/layout/
activity_main.xml file, as you can see in Figure 3-8, which, after our Java primer during
Chapter 5 should be making a whole lot more sense to you!

http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig8
http://dx.doi.org/10.1007/978-1-4842-2268-3_3#Fig8
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

123CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

A parent tag in a UI layout XML definition will generally reference a ViewGroup subclass
such as the ConstraintLayout class, which in the activity_main.xml file is represented
by a <ConstraintLayout> parent tag. The ViewGroup superclass in Android is used to
subclass (create) custom layout container classes in Android, which I’ll be covering in
detail throughout the rest of this book. There are a large number of custom layout container
classes in Android, because these UI layout classes provide the foundation of UI design in
Android.

Inside of ViewGroup UI layout container parent tags are child tags representing UI
elements, which are called widgets in Android. UI widgets are based on Android’s View
superclass. Each widget, like that <TextView> child tag you used in Chapters 3 and 4,
references your Android TextView widget class, which is subclassed using the View
superclass. Inside each (View subclass) UI widget child tag, you set parameters that
reference the new media assets for your application, such as drawables (images and
bitmap animation), animation (procedural, tween, or vector animation), audio or video,
scalable vector graphic (SVG) shapes, custom UI elements and similar assets.

Thus, getting your app’s assets onto the Android device display screen involves putting
parameters in child widget tags inside of parent UI layout tags referenced by the Activity
subclass that you have declared in the application Android manifest XML file. All of this can
be done in Android Studio.

Code is passed over to the ART engine, which then converts all this into machine language,
and then passes it over to the Linux kernel, whose job it is to interface the OS software
with the hardware, and to render your application’s UI design and content to the Android
device display screen hardware with pixel-perfect accuracy. Whew! This chain from Android
Runtime to app resources looks like this:

Android RunTime > Manifest > Activity Subclass > ViewGroup Parent Tag > View Child Tag >
Resources

To make this even easier to visualize, I created a diagram, seen in Figure 6-1, which
shows layers (and connections) between your application’s new media resources, your
UI widgets that hold them, UI layouts that hold your UI widgets and resources, and the
Activity subclasses that defines and control your UI layout XML definition, by referencing
it using your .setContentView() method call. It is important to note that since you can
set a background image or animation for the UI layout container, so a ViewGroup can also
reference new media resources; thus, the new media resource area of the diagram in
Figure 6-1 connects with both View and ViewGroup subclasses.

As you learned in Chapter 3, your Android manifest defines for ART what Activity classes
an application contains, as well as what your application is allowed to do; and other
information about your application’s version history, support, structure, permissions,
communications, intents, network access, Google Play access, and so on.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_3

124 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Next, you will take a closer look at the relationship between ViewGroup (layout container)
and View (UI widget) superclasses in Android, since the ViewGroup superclass is actually a
subclass of the View superclass. It is interesting to remember that a superclass can also be a
subclass.

ViewGroup inherits characteristics from View like margin settings, which as you will see, are
supported in both layout containers (ViewGroup subclasses) as well as UI widgets (View
subclasses), thanks to Java inheritance and how well the Android OS developers have
designed and coded the user interface design superclass structures.

The ViewGroup Class: A Known Direct Subclass of View
Even though View widgets are nested inside of ViewGroup layout containers, the ViewGroup
superclass is actually subclassed from the View superclass in Android’s Java class hierarchy.
Starting with the Java Object master class, the inheritance hierarchy is structured as follows:

java.lang.Object
 > android.view.View
 > android.view.ViewGroup

The reason that the Android OS development team structured the View class hierarchy in
this fashion is because View class attributes such as top, bottom, left, and right margin
attributes (properties, or parameters), should also be available for use in a ViewGroup
layout container, as well as in every View UI widget. So, the logical Java structure would be
subclassing ViewGroup from View, so that the ViewGroup subclasses inherit all of those same
variables, constants, and methods that the View subclasses will include.

Figure 6-1. Stratification of Android app, from new media resources up to execution

125CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

If you look at the ViewGroup class documentation page, on the Android developer website,
you will see that the ViewGroup class has 18 known direct subclasses. Some of the most
common UI layouts include your LinearLayout, for horizontal or vertical UI design;
GridLayout for grid UI design; Toolbar for UI toolbars; ViewPager for UI page viewing;
DrawerLayout and SlidingDrawer for UI in drawers; AbsoluteLayout and FrameLayout for
fixed layouts, or fullscreen content; SlidingPaneLayout for sliding UI design; TvView for iTV
set UI design; RecyclerView for efficient, long-item list UI design (recycles or optimizes
memory use); and several others for specialized UI.

There are 55 known indirect subclasses of this ViewGroup class. These are the subclasses
of the 18 known direct subclasses. These are even more highly customized user interface
layout container classes, and thus you have around 75 user interface layout containers
to choose from. There are a couple that have not yet been added to the developer
documentation since they are new in Android 7, including the one we are going to using with
the Visual UI Layout Designer tool (ConstraintLayout).

You’ll be learning about some of these UI layouts over the course of this book. ViewGroup
UI layout subclasses are just as important as View UI widget subclasses; however the
ViewGroup class doesn’t have as many subclasses as the View class does. If you want to
explore the ViewGroup documentation further, it’s found at this URL:

http://developer.android.com/reference/android/view/ViewGroup.html

We’ll be looking at several popular ViewGroup subclasses during the rest of the book. When
using ViewGroup subclasses, termed UI layout containers in Android, and View subclasses,
termed UI widgets in Android, your View widgets will be contained inside of the ViewGroup
layout containers. This is why the ViewGroup class is named the way it is, as it groups View
objects together into a UI layout design, as shown in Figure 6-2. The ViewGroup layout
container specifying your user interface design is then referenced inside of, and contained
in, your Activity using R.layout.uiName inside of a setContentView() method that loads the
UI and content into the display.

Note A known direct subclass is a subclass that has been created from the class that is being
documented on that developer website class reference page. Known means it has been officially
added to the Android API. If you subclass your own Android class, it would be called an unknown
direct subclass, because it is unknown to the public Android API. A known indirect subclass
will represent a subclass of a known direct subclass. It is indirect to the class being documented,
because it is more than one level away from, and not a direct subclass of the documented class.

http://developer.android.com/reference/android/view/ViewGroup.html

126 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

It’s important to note that even though a ViewGroup subclass must be used for a parent
object in an XML UI layout design, ViewGroup subclass objects might also be nested
underneath a parent ViewGroup, such as a LinearLayout UI containing Buttons.

ViewGroup objects are able to be used as both parent and child objects, whereas View
widgets are child UI design element objects. Hands-on experience is the best way to show
you all of this UI design theory, which we will be doing a bit later on during this chapter as
well as during the second half of the book. Before we get into more UI design, let’s take a
closer look at the Android View superclass.

The View Class: A Foundation of User Interface Design
As you may have surmised from its class name, a View object is designed to hold anything
that needs to be viewed in an Android app using the device display screen. Since devices
are almost 100% comprised of display screen on their front; this is ostensibly the most

Figure 6-2. Activity contains UI created using ViewGroup layout and View UI widgets

127CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

important class in Android at least from your visual design and user interface usability
standpoint. Since I already showed the class hierarchy in the previous section, this time I will
show you the View class declaration from the developer documentation (this is always at the
very top of the class documentation):

public class View
extends Object implements Drawable.Callback, KeyEvent.Callback, AccessibilityEventSource

This tells us that View can be publicly used by all Android application classes in the API,
that it extends the Object superclass, and that it implements Java interfaces for graphics
(Drawable.Callback interface) and interactivity (KeyEvent.Callback interface), and supports
users with disabilities (AccessibilityEventSource interface).

If you look at the View class documentation page on Android’s developer website, you will
see that this View class has a dozen known direct subclasses, one of which is the ViewGroup.
Some of the most common UI widget objects are created using these classes include your
ImageView, which you have already used in Chapter 4; TextView, which Android Studio
created for you in Chapter 3; TextureView for texture mapping; SurfaceView for rendering
graphics; AnalogClock for creating clocks; KeyboardView for creating virtual keyboards;
ProgressBar for creating progress bars; and several utility classes relating to View user
interface design.

Because of ViewGroup, there are hundreds of known indirect subclasses for View, some
of which we will be using during this book, but each of which we would not be able to
cover even in one book, and especially in an Absolute Beginner Android book – as you can
imagine. Even advanced Android users are not familiar with all of these! Many of them are
covered in the 2014 Apress title Pro Android UI, however.

If you want to take a closer look at what the Android View superclass includes, you can see
for yourself, by visiting the following URL:

http://developer.android.com/reference/android/view/View.html

Whereas View subclasses in Android 7 control what you see on the screen, each Activity
object controls how the Activity that hosts the View(s) and ViewGroup(s) start, load in
memory, stop, and manage the View object hierarchy that you will create in the Android
Studio Visual Design Editor.

The Activity Class: A User Interface Design Container
As you’ve seen in Chapter 5, whereas a View UI design hierarchy is crafted with XML
markup, an Activity is crafted using Java, and references that XML UI design definition.
The Activity fuses the OS theme, as you can see below in the class definition that extends
ContextThemeWrapper, with your user interface design. It implements Java 8 interfaces for UI
inflation, window, keyboard, menu, and components.

public class Activity
extends ContextThemeWrapper
implements LayoutInflater.Factory2, Window.Callback, KeyEvent.Callback,
 View.OnCreateContextMenuListener, ComponentCallbacks2

http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://developer.android.com/reference/android/view/View.html
http://dx.doi.org/10.1007/978-1-4842-2268-3_5

128 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

This tells us that an Activity inflates (turns XML elements into Java objects) your UI design,
handles OS windowing calls, listens for ContextMenu usage, handles Android components,
and passes through KeyEvents to user interface elements.

If you look at the Activity class documentation page on the developer website, you will see
that this Activity class has 7 known direct subclasses; the AppCompatActivity subclass
you are using in your Hello World app is an indirect subclass of the FragmentActivity direct
Activity subclass. Some of the most common Activity subclasses besides the indirect
subclass AppCompatActivity, which allows your app to be used across all versions of
Android currently in the marketplace, include the FragmentActivity, which allows you to
assemble UI fragments into one Activity; ListActivity and ExpandableListActivity,
which manage lists (i.e., data collections); and AccountAuthenticatorActivity, used for
log-in (account authentication) screens. There is also a NativeActivity, declared in the
manifest, for use with the Android NDK (Native C++ Development Kit) and an AliasActivity
for aliasing Activity classes (also declared using the manifest), both of which are used for
advanced Android developer use.

There are five known indirect subclasses for Activity according to the Android
documentation, including the AppCompatActivity used with the Visual Design Editor
(ConstraintLayout), TabActivity (tabbed UI design), ActionBarActivity (ActionBar
UI design), LauncherActivity (launchers of other activities), and PreferenceActivity
(preference screen UI design). As you can see, Android offers Activity subclasses that
are already customized for most of those application UI tasks you want to do. Android
applications will almost always contain more than one Activity (functional screen with its
own purpose and a user interface design to accomplish the purpose).

An Activity object in Android contains a single UI focused on a specific task or feature
that your application offers to the user. Almost all activities interact with the user, so
each Activity object must take care of creating a window, using a call to the Android
OS so the user can interact with a UI that is loaded using the setContentView(R.layout.
uiDesignName) method call. Activities are usually presented to a user in a fullscreen window.
They can be used in floating windows (windows and their styling is called the operating
system’s UI elements or “Chrome”) to simulate a conventional OS, using a theme with a
windowIsFloating parameter set.

All activity classes will have a corresponding <activity> declaration in their package
Android manifest XML file. You have already seen this in Chapters 3 and 4 in your Android
Studio AndroidManifest.xml editing pane. We’ll be adding more of these <activity> child
tag (and their child tag) entries in the <manifest> parent tag as we add Activity UI design
screens to our Hello World application during the first half of the book. You’ll be adding
Activity UI screens for all apps created during this book, in fact, so be sure to understand
the material contained in this chapter.

There is one Activity class method Android classes must implement to get your UI design
screen into system memory: the onCreate(Bundle), where you initialize the Activity object
and use setContentView() to reference and load your UI design. You can also use six other
Activity state methods, including onPause(), onResume(), onStart(), onStop(), onRestart()
and onDestroy() to control what your Activity does throughout each of the stages of an
Activity object’s life cycle. I have outlined these seven life-cycle states in Figure 6-3, and
shown how they are logically paired and how they are logically classified in the create, utilize,

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_4

129CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

and destroy phases of the Activity object (constructed using your Activity subclass) in
your Android device’s system memory. As you can see creating and starting launch the
Activity, a pause and resume can be used for a running the Activity, and a stop and
destroy end the Activity life cycle. They are logically paired as one might expect from their
names.

Figure 6-3. The Activity class (object) life cycle spanning creation to destruction

It is important to note that these other six methods do not need to be implemented, unless
you wanted to do something other than what the Activity superclass will already do to
make your Activity work well with other Android apps installed on the same end-user
device. So if in onCreate() you opened up a socket on a media server, in onDestroy() you
will want to close that socket so as not to hang your media server. If in onStart() you start
streaming data of some kind, in onStop() you may want to stop streaming that data to save
bandwidth. You may want to tell your users “Welcome Back” in onResume(), or check what
your Activity is doing regarding its given functionality. You might want to resume your data
stream onRestart(), for instance.

If you want to take a closer look at what the Activity superclass includes, you can see for
yourself, by visiting the following URL:

https://developer.android.com/reference/android/app/Activity.html

Next, let’s get back into UI Design in Android Studio, using the Design Editor.

Creating UI Design from Scratch
Let’s use all of this knowledge you have learned over the past few chapters and implement
a new Activity. The first step that we need to take to do this is to do a UI design for the
screen that the Activity will display; in this case that would be your Hello Universe screen,
which you can select at the bottom of the current Hello World user interface in your main
Activity (activity_main.xml). In the last half of this chapter we will learn how to design
a user interface design from scratch using your Android Studio Design Editor, which will

https://developer.android.com/reference/android/app/Activity.html

130 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

write your XML for you. Over this chapter, and the next one on interactivity, we will connect
these two Java Activity classes together using interactivity (Events and Intents). Since this
chapter is on user interface design, we will focus on creating your new user interface design
XML definition, called activity_universe.xml, so we have everything we need for Chapter 7,
where we will focus on the Java programming part of creating this new Activity.

Let’s fire up Android Studio to create a new user interface design XML definition for the
new Activity we’re going to create in Chapter 7. As you will see in Figure 6-4, Android
Studio does a Gradle build on your current project, when you first start the IDE. If there
are any issues, or problems, the Gradle Build Messages window (pane) appears at the
bottom. Android requires lowercase letters and numbers to be used in asset file names, so it
points out the SmileyFace PNG32 asset uses the capital S, and advises us that “File-based
resource names must contain only lowercase a-z, 0-9, or underscore” characters. So, let’s
fix this now!

Figure 6-4. Gradle build upon Android Studio launch reveals a file naming error

Find your SmileyFace.png file in your User/AndroidStudioProjects/MyApplication/ folder
hierarchy on your hard disk drive, and rename it to smileyface.png. Also make sure to
change the referencing to this asset file name in your XML UI definition to also be lowercase.
This is seen circled in red in Figure 6-5, as well as the Tools ➤ Android ➤ Sync Project
with Gradle Files command, which will trigger a rebuild so that you can see if you have
fixed this particular problem.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7
http://dx.doi.org/10.1007/978-1-4842-2268-3_7

131CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Remember if you can’t find your project files on your hard disk drive using the operating
system file management utility, you can right-click on the SmileyFace.png file in your /app/
res/drawable/ folder, and select your File Path context-sensitive menu option, which will
show you where to go with the file management utility. Once you right-click on that file, and
rename it smileyface.png, it will show up in your Android Studio project with the correct
name. This can be seen in Figure 6-5 on the left side of the screen. Also shown is the
updated markup in the activity_main.xml.

Figure 6-5. Rename smileyface.png using all lowercase and Sync Project with Gradle

Figure 6-6. Right-click on app/res/layout and select the New ➤ Layout resource file

Now we are ready to create the new user interface design for the Activity we’re going
to code in Chapter 7. Let’s call this activity_universe.xml since we’re going to call this
new Activity class UniverseActivity.java. The way you create a new XML UI layout
definition is to right-click on your app/res/layout/ project folder, then select New ➤ Layout
resource file from the context-sensitive menu, seen on the left side of Figure 6-6. This will
open the New Resource File dialog, shown on the right side of Figure 6-6. Name the XML
resource file activity_universe, and select a Root element class value of android.support.
constraint.ConstraintLayout as seen highlighted.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

132 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Leave the other data fields at their default values and click on the OK button. This will create
the new activity_universe.xml file in the app/res/layout/ folder, and open it in an editing
tab at the top middle of Android Studio. Click on the Design tab at the bottom of the XML
editing pane to switch into Visual XML UI Design mode, which can be seen in Figure 6-7
with an empty screen design ready for you to create your new design in. We will create a
universe UI from scratch to use in the UniverseActivity that we will be creating in
Chapter 7, to learn about events and Intents, and how these can add interactivity to your
Android 7.1.1 applications.

In the Properties panel name the ID for the UI design universe, as shown on the right of
Figure 6-7, and click on the View all properties link at the bottom of the pane. Make sure
that the Component Tree panel has the ConstraintLayout selected, which is should be, as it’s
the only layout in use in the user interface design currently!

Figure 6-7. Select your activity_universe.xml editing tab, and the Design mode tab

The first thing that you want to do is to set a black background color for this universe UI,
since a universe is largely black. Mouse-over the background property that actually tells you
how to use #ff000000 to specify a Black color background.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

133CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Select the ImageView UI widget, shown selected in Figure 6-9, then drag it into the upper-left
corner of the UI design, which now has your Black background color. Select a galaxy.jpg
image from the Resources dialog and click the OK button.

Figure 6-9. Drag an ImageView into the upper-left corner; select a galaxy.jpg image

Figure 6-8. Mouse-over the background property to see how to set the color to black

In the blueprint mode, seen on the right in Figure 6-10, drag your ImageView so that it fits into
your UI screen. Notice the @drawable/galaxy reference.

134 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Next, let’s add a CheckBox UI element so that the user can switch back to Hello World
mode if they so desire.

Add a CheckBox User Interface Element to your Design
Select the CheckBox UI widget, as is shown on the left side of Figure 6-11, and drag it to
the bottom-left side of the user interface design underneath the galaxy. Keep the default
(suggested) checkBox ID and enter “Hello World” in the text field, in the Properties dialog,
as shown on the right side in Figure 6-11.

Figure 6-11. Add and Position a CheckBox UI widget, and set its text to Hello World

Figure 6-10. Drag the ImageView into position in the UI screen using blueprint mode

135CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

You can see in Figure 6-11 that we have a problem, since the default text color is set
to Black and our background is now black to accommodate the Universe design. The
checkbox itself is also not showing, as it also uses black in its default color configuration.
Let’s address this issue first before we move on with our UI design.

The property (or attribute, or parameter if you prefer that term) that controls the color of
the checkbox part of the UI element is buttonTint, shown at the bottom right portion of
Figure 6-12.

The property (or attribute, or parameter if you prefer that term) that controls the color of the
checkbox text for the UI element is textColor, which you can find if you scroll down the
Properties dialog using the scrollbar shown at the top-right corner in Figure 6-12.

After you scroll down to the UI text parameters, which are shown in Figure 6-12 on the left-
hand side, click the three dots (called ellipses), on the right of your textColor parameter
(numbered as 1), and open the Resources dialog and select white (numbered as 2). Click
the OK button (numbered as 3), which should install the white color constant in the property
field as @android:color/white. Click your View fewer properties link (numbered as 4), and
then enter the hexadecimal #ffffffff value for the buttonTint property (numbered as 5) as is
shown in Figure 6-12.

Figure 6-12. Set textColor and buttonTint to white, using a constant or hexadecimal

It’s important to note that you could also use the same work process as you did for the
textColor property for the buttonTint property if you wish, since the white color constant
ultimately installs this hexadecimal value into system memory at the end of the day, so you
can use either of these in your specification of color. Next set your constraints, as shown in
Figure 6-13, and set textSize to 18sp and specify the sans typeface. To better match the
Hello World UI design use the Bold textStyle as well. All these settings make your CheckBox
element significantly more readable.

136 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Notice that I have constrained the left and right of this CheckBox to the sides of the screen to
center it, but only constrained the bottom of the CheckBox to the bottom of the screen, which
keeps it at the bottom of the design where we need it. You are not required to implement all
of the constraint sides if you don’t need to.

Add a TextView User Interface Element for Your Title
Next, select a TextView widget, shown selected in blue in Figure 6-14, and drag it into the
top center of your UI design. Keep the textView suggested (default) ID, and set the text
value to “Hello Universe” using 36sp textSize and set an #ffffffff textColor value and a
Bold textStyle setting as seen in red in Figure 6-14. Set the side constraints to center the
TextView heading at the top center of the UI design.

Figure 6-13. Add side and bottom constraints and adjust your textSize and textStyle

137CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Next, let’s add a UI Button widget, so that the end user can return their Hello Universe app
back to being just a simple Hello World app again.

Add a Button User Interface Element for Interactivity
Next, select a Button widget, seen selected in blue in Figure 6-15, and drag it into the
bottom center of your UI design. Keep the button suggested ID, and set the text value to
“Downgrade App,” because when your user clicks it, it will return the user to the Hello World
MainActivity.java Activity subclass.

Let’s use default textSize, textStyle, and textColor values. All you have to do now is to
set the side constraints to center the Button and add a bottom constraint that attaches
the Button to the top of the CheckBox, so that these UI elements stay aligned relative to
each other. Let’s do that next, and then we can see if there are any errors that we need to
address, and how that’s done in the Visual Design Editor.

Figure 6-14. Add a TextView widget; configure its parameters as an Activity heading

138 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Set your side constraints to center your Button at the bottom center of your UI design, as
shown circled in red in Figure 6-16, and drag the bottom constraint onto your CheckBox
widget, to show the constraint system you want to constrain these two UI widgets to each
other. Set constraints have a dot in the middle of each circle.

Figure 6-16. Set side constraints for the Button widget so it centers in the design

Figure 6-15. Drag a Button UI widget in the design and center it above the CheckBox

139CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

You can see the bottom constraint dot for the Button widget has not been set in Figure 6-16,
but that it has been set in Figure 6-18 (look for a tiny center dot). Let’s take a break from our
user interface design creation and see if we can remove some of the errors, which are shown
circled in red at the top right in Figure 6-16.

Squashing Bugs (Removing Errors) in the Design Editor
If you click on the red square with a number (of errors) in it, as seen circled in red in Figure 6-16,
you will pop up the Lint Warnings in Layout dialog, shown in Figure 6-17. This dialog lists
errors and warnings, regarding user interface design in the Visual Design Editor; in this case,
there are half a dozen issues that we should address.

The top of the Lint Warnings dialog contains the errors and warnings themselves in red
(Error) or black (Warning). Click on any of these, and in the bottom you will get your Issue
Explanation (right), and Applies To (left) UI element description and location, as you can see
in Figure 6-17. I left the top constraint for the TextView unset, so that I could show you this
feature, and how to fix it, which we are going to do next. In fact, let’s fix all six of the issues,
before we finish this user interface design.

Note The Android Studio editors, both Text Editor (Java code and XML markup) and the Visual
Design Editor, will give you hints, suggestions, warnings, and errors, using different colored wavy
underlines (text editors) and colored squares (design editor). You can mouse-over these and get
pop-up helpers or click on them in the Visual Design Editor to get a Lint Warnings in Layout dialog.
Android Lint was added in Android Tools API 16 and scans Android project Java code and XML
markup in real time to find bugs (errors) and issues (warnings) of varying severity in your Android
application project.

Figure 6-17. A Lint Warnings in Layout dialog organizes errors and warnings for you

140 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

As you can see selected in Figure 6-17, Lint will tell you it needs the vertical (top) constraint,
which will bind the UI element to the top of the screen.

To fix this first error, drag the top TextView constraint to the top of your UI design screen,
until it says “Release to Create Top Constraint,” as shown in Figure 6-18.

Figure 6-19. Click second error, to see what it applies to, and is needed to solve it

Figure 6-18. Create TextView top constraint; click error count flag, to show errors

Also notice that now that you have invoked Lint, the wavy red underlines appear under those
files in the project that contains errors. The next error applies to an ImageView, and says that
it is not constrained, as shown in Figure 6-19. This error is more difficult to solve, because
the ImageView fills the design, thus you cannot simply pull the constraint markers to each
edge to set this widget’s constraints.

141CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Whenever I am looking for a solution I always right-click and check the context-sensitive
menu, to see if there is a solution. As you can see in Figure 6-20, this is exactly what I did to
find the solution to how to set constraints when there is no room to drag the arrow indicator.
I right-clicked inside the hatched area of the ImageView, and in the ConstraintLayout
submenu, I found the solution: the algorithm that will Infer Constraints for you in situations
such as this one. After clicking this, my error count decreased yet again, and I was ready to
deal with the Warnings.

Figure 6-20. Right-click the ImageView and use ConstraintLayout ➤ Infer Constraints

The next three warnings suggest using the @string/ method of entering text constants in
the strings.xml file, even though the Hello World app was created by Android Studio using
literal (hard-coded in quotes) string constants! I modified the strings.xml file to add the new
constants, by using this following XML markup:

<resources>
 <string name="app_name">My Application</string>
 <string name="app_message">Hello World!</string>
 <string name="app_button">Upgrade App</string>
 <string name="app_checkbox">Hello Universe</string>
 <string name="app_message2">Hello Universe!</string>
 <string name="app_button2">Downgrade App</string>
 <string name="app_checkbox2">Hello World</string>
 <string name="image_desc_world">Hello World Image</string>
 <string name="image_desc_galaxy">Hello Universe Image</string>
</resources>

142 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Once you modify the strings.xml file accordingly, you can use those three dots, called
ellipses, at the end of the text parameter in the Properties pane, to access the Resources
dialog, seen in Figure 6-21, which will list text (string) resources.

Figure 6-21. Select the app_message2 string constant for your TextView UI element

As you can see in Figure 6-22, your TextView UI element’s text parameter is now referencing
an @string/app_message2 constant and the error count has now gone down.

Figure 6-22. Error count decreased, as TextView text parameter referencing @string/

143CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Once you have replaced all of the text parameters for your widgets with @string references,
there is only one Warning left, regarding using your contentDescription parameter to
reference text describing the ImageView for use by the sight impaired. I added two string
constants for this, for both Activity UI designs for Hello World as well as Hello Universe.
Figure 6-22 shows this contentDescription referencing in place, and the removal of all errors
and warnings, shown in red at the top right of the screenshot.

Figure 6-23. Add an @string/image_desc_galaxy contentDescription for your ImageView

As you can see on the left side of Figure 6-23, there are still errors in your XML file, which
means you can eliminate errors in your Visual Design Editor, and still have errors or issues
in the Text (XML Markup) Editor. Let’s take a look at how you eliminate those next. You will
be eradicating errors in both Java and XML using Lint throughout the rest of the book.
It is important to note this is one of the best ways to learn Android application programming
(Java and XML markup) because your IDEA is guiding you as to the latest rules for
Android 7.1.1 (and later, as new APIs come out) development.

Eliminate Any Remaining Errors Using the XML Text Editor
Click on your Text (XML Editor) tab, at the bottom of the activity-universe.xml editing tab.
The results, before and after the fix, are shown in Figure 6-24. What is causing a problem is
the textAlignment parameter, which the Visual Design Editor has set to textStart as it was
generating the XML markup for the UI design. Since I want the title to center at the top of
the design, I clicked on the Design tab at the bottom of the editing pane, and found the
textAlignment parameter, which needs to be changed from textStart to a different (better)
setting so that I do not have to add yet another layout gravity parameter.

The fewer parameters you can utilize to achieve your user interface design, the less code
your Android application has to process, and less device memory is used.

144 CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Once you find the textAlignment parameter, click on the drop-down selector, and select
the center option, as can be seen on the right-hand side of Figure 6-25. I then went back
into the Text tab and confirmed that the error had been removed from the XML markup, as
shown on the right-hand side of Figure 6-25.

Figure 6-25. Find the textAlignment parameter, and select a center alignment option

Figure 6-24. Mouse-over wavy red underline parameter to see what is needed to solve

You can choose to address these errors and warnings at any time; most choose to deal with
them as they notice them. I will suggest keeping an eye on the error icon and dealing with
them as they pop up, as the more they accumulate the harder they will be to find and fix,
especially if any of them are related or reference each other! I saved up a half a dozen of
them for this section of the chapter, to show you how to address several of these different
issues; and now that we have, I will continue on with the chapter and add more advanced
UI design features to the Hello Universe Activity user interface design we’re creating in the
Visual Design Editor.

145CHAPTER 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes

Summary
In this chapter, you learned about several important Android superclasses that are used
to create Android applications, and get them running on the device display screen. These
include the Activity class, the View class, and the ViewGroup class; and the subclasses
of these classes, which are actually used to create your Android applications, such as the
AppCompatActivity class that you’ve seen in use already.

You already know you do not have to write an Activity subclass all by yourself, and
as far as View and ViewGroup subclasses are concerned, Android 7.1.1 has generously
written all of these subclasses for you as well. All you have to do is to “include” them in
your Android application code, by using an import statement, and of course you have to
implement their features correctly, which, as you have seen in this chapter, the new Visual
Design Editor will do for the Absolute Beginner as well, as long as you use it correctly. This
feature makes Android 7.x development more accessible to all Absolute Beginners!

You learned about the inter-relationships between the Activity class, the View class, and
the ViewGroup class, and how these can be used together to get your application UI design
and content onto the device display screen. You learned how to create a user interface
layout XML definition from scratch in Android Studio using the Visual Design Editor, Lint, and
the right-click context-sensitive menu and the New ➤ Layout Resource dialog.

In Chapter 7, you will start to learn about how Android 7.1.1 handles Events and uses Intent
objects, and all about how to make your UI design interactive, by using Event Handlers and
Intent objects.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

147© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_7

Chapter 7
Making Apps Interactive:
Events and Intents
User interface designs are built upon the foundation of the Activity superclass as well as the
View and ViewGroup superclass, as you learned in Chapter 6. However, without interactivity in
a UI design, the usefulness of what users can accomplish with your Android 7.1.1 applications
will be somewhat limited. For this reason, I’m going to cover some more advanced
programming concepts, for the absolute beginner at least, including events and intents.

We will look at how Events and Event Listening work in Android, as well as how Intent
objects will be utilized to switch between your Activity subclasses. You can use Intent
objects to switch between functional UI screens in your Android applications, each of which
is defined using one of the Android Activity subclasses, which references a ViewGroup UI
layout container XML definition containing View UI widgets that generate the events that
your event listeners will handle (process).

Besides covering Android Intent objects and event handling capabilities, we will also cover
broader concepts, such as Implicit Intents, Explicit Intents, and Intent Filters and how
they relate to the Android Manifest and other Android applications. You encountered Intent
Filters in Chapter 4, in Figure 4, near the bottom of the screenshot, when we looked over the
bootstrap AndroidManifest.xml file in detail.

In this chapter, we’ll switch between Hello World and Hello Universe Activities using Intent
objects. This will allow users to update the application, using Button and CheckBox widgets
along with event handling (i.e., processing) and Intent objects.

Adding interactivity to user interface elements, or widgets, would require that you learn what
Event Listeners are, and how to implement them. Event Listeners will be used to make UI
elements (widgets) interactive. Now that your Constraint Layout UI design is completed,
and referenced using your .onCreate() and .setContentView() methods, we will instantiate
Button and CheckBox objects, and then attach .onClick() event listener Java structures to
them, so that your user can use them interactively to upgrade the status of your Hello World
application, and downgrade it, as well.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_4#Fig10

148 CHAPTER 7: Making Apps Interactive: Events and Intents

About Intent Objects: The Android Intent Class
An Intent object is used within the Android 7.x framework as a messaging construct that
you dispatch to request some sort of action from one of your other components within
your Android application. Intents can also be used to request actions within someone else’s
Android application, that is, one which is external to your Android application. There are
three primary uses for Intent objects in Android:

	Launching Activity subclasses

	Starting Service subclasses

	Sending messages in your app

As I mentioned, these uses can also be accomplished even using external Android
applications. This is done with broadcast receiver classes and methods. We’ll
cover advanced Intent usage during advanced chapters at the end of the book.

Here’s a basic workflow that shows how your Activity uses this Intent object:

Activity > Intent object containing the Start Activity Action > New Activity (will be launched)
--or--
Activity > Intent object containing the Start Service Action > New Service (will be launched)

As you have learned, Activity subclasses each represent one single user interface design
within your application’s functionality. You will start each new instance of an Activity
subclass by passing an Intent object over to its startActivity() method.

An Intent object passed into the startActivity() method will contain action data that will
dictate which one of your application’s Activity subclasses you wish to start. The Intent
object also includes a Context object that describes the current context for your application.
We’ll cover the concept of Context within the chapter as well, as it is used often in Android
programming.

You will also use the Intent object to start Service subclasses. We’re covering services
in Chapter 13. A service is an Android component that can perform operations in the
background. These operations usually do not require user interfaces, and can be performed
“asynchronously,” or out of sync, with the user’s normal flow of use of your application and
its purpose and objective. An example of a service would be playing a background music
track. You can also start a Service subclass using an Intent object in order to perform a
one-time operation, like a file download. This is done by passing the Intent object over to
your .startService() method call. This Intent should describe the Service subclass to
start, as well as any necessary data that is needed for the Service to process.

You can also use an Intent object to deliver a message broadcast across the Android
OS, including anything running on the user’s Android device. A broadcast in Android is a
term for any message that any apps running on the same Android device as your app can
potentially receive. Your Android operating system will schedule broadcasts for system
events, such as when the system boots up, or when your device is plugged in, or when it is
finished charging.

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/guide/components/fundamentals.html#Components
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
http://developer.android.com/reference/android/content/Intent.html
http://dx.doi.org/10.1007/978-1-4842-2268-3_13
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
http://developer.android.com/reference/android/content/Intent.html

149CHAPTER 7: Making Apps Interactive: Events and Intents

Developers can deliver a broadcast message to other apps by passing Intent objects
via the .sendBroadcast(), the .sendOrderedBroadcast(), or the .sendStickyBroadcast()
method call.

Intent Types: Explicit Intent versus Implicit Intent
There are two types of Intent objects you can create and utilize within Android OS: explicit
Intent objects and implicit Intent objects. The explicit Intent object will specifically
reference the Android application component to start, by using an application component
(Activity or Service, for instance) name and component type.

An implicit Intent object provides a description of the component you want to launch
but does not specify which one (name) to utilize. Implicit Intent infrastructures are more
complicated to set up correctly than explicit Intents are, because you have to set up
an Intent filter object to specify exactly what Android OS should look for, as an exact
component (class) name is not specified for launch (loaded into memory and processing). If
you think of an Intent as something that you wish to do (your intent), there are two types.
For example, go out to see the new Star Wars film (an explicit intent), or, go out and see any
of the newly released films (similar to an Android implicit intent).

Explicit Intents: A Direct Reference to the Component to Launch
When you create an explicit Intent object to start your Activity subclass or to start a
Service subclass, the Android operating system will start (place in memory) the component
specified in that Intent object and schedule it for processing.

In the next section, you will start the HelloUniverse.class by using this fully qualified .class
(compiled) class name. HelloUniverse.java is your uncompiled (code) file name. A fully
qualified compiled class name should be referenced in your Android Manifest XML definition
as HelloUniverse.class.

In other words, your Android Intent is launching your .class compiled version of your
Activity subclass from within your compiled package, designated as .APK, or Android
PacKage.

You would typically need to use the explicit Intent object to start a component within your
own application. This is because you inherently know the class name for your Activity
subclass or Service subclass that you want to launch, and so you can utilize, or hard code,
that component name in the Android Manifest and Java code.

Implicit Intents: A Description of a Component You Want to Launch
Implicit Intent objects do not specify their target application component, but instead
declare a general action to perform. This implicit Intent approach allows an application
component, even from another Android application outside of your own Android app, to
handle that Intent. The reason that Android also has Intent filters and the IntentFilter
class is to aid with the processing, action determination, and successful handling of these
implicit Intent objects.

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(android.content.Intent)
http://developer.android.com/reference/android/content/Intent.html

150 CHAPTER 7: Making Apps Interactive: Events and Intents

For example, if you wanted to show your app user a location on a map, you could use an
implicit Intent object to ask, or request, that another map-capable Android application show
your application user that specific location on the map that your application is referencing.
Implicit Intents allow Android apps to work together seamlessly!

When you create an implicit Intent object the Android operating system finds an appropriate
application component (Activity, Service, broadcast receiver) to start up, by comparing
the contents of your implicit Intent object to the <intent-filter> definitions declared in the
Android Manifest XML file for other apps on the same Android device.

If the implicit Intent matches up with one of the IntentFilter definitions, the Android
operating system will start that component if it’s not already running, and delivers your
implicit Intent object to it for processing. If multiple IntentFilter definitions are found to
be compatible on the Android device, the Android operating system will display a pop-up
dialog, so the user can select which app to use.

It’s important to note that every Android user will install different apps, and therefore,
different Android devices will invariably exhibit different combinations of installed Android
applications. This results in different pop-up dialog selection choices. A good example of
this is when you click a URL and an implicit Intent goes out to find apps which have WebKit
(browser API) capability. A dialog comes up with an internal browser; Chrome, Firefox,
Opera, or whatever browsers you have installed on that particular device. This is what
implicit Intent objects should be used for: to allow users to control which applications
are used with your applications. Let’s take a look at IntentFilter objects next, to better
understand how implicit Intent objects work as they need good IntentFilter definitions in
order to work optimally.

IntentFilter: Construct an Implicit Intent Definition
Each IntentFilter object is an Intent processing definition construct, which is defined
using the application’s Android Manifest XML definition. An <intent-filter> construct
defines a structure for each type of implicit Intent object your Android application’s
components would like to be able to receive and process. This can be quite powerful, and
can also get quite complex as well, as it allows developers to create Android applications
that do things (perform tasks) for other Android apps. This effectively opens up an entirely
new genre of Android application that Android developers can create so other Android
developers can incorporate that service in their applications as well. The leading example of
this type of app is Google Maps.

By declaring an IntentFilter object for an Activity subclass, as Android Studio did for
your MainActivity class, in your AndroidManifest.xml (see Figure 4), you make it possible
for other applications to directly start your MainActivity Activity subclass by using an
Intent object that evaluates to the MAIN action and the LAUNCHER category. In this
case, the application that will start your Activity would be the Android OS application
launch screen.

If you do not create <intent-filter> XML definitions, constructing IntentFilter objects
for any of your Activity subclasses, then these Activity subclasses will be invisible to
outside Android applications. This means that they will only be able to be started using an
explicit Intent object. A good example of this is what we’re doing in this chapter with your

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/reference/android/content/Intent.html
http://dx.doi.org/10.1007/978-1-4842-2268-3_4#Fig10

151CHAPTER 7: Making Apps Interactive: Events and Intents

HelloUniverse Activity subclass, since we only want your MainActivity class Button
object to be able to start this private component of your MyApplication Android 7.1.1
application.

Finally, remember one important rule regarding the use of Intent objects in your Android
programming. To ensure that your Android applications are completely secure you will
generally want to use an explicit Intent object when starting your Service components
(any of your Service subclasses). This also means that you wouldn’t want to declare
<intent-filter> XML constructs that create IntentFilter objects for your application’s
Service subclasses, since IntentFilter objects are only utilized with implicit Intent object
processing, and aren’t needed when utilizing explicit Intent objects. You will need one
<intent-filter> definition for Android OS to use for the application launch sequence, as
you’ve seen already in Chapter 4 (see Figure 4-10).

The reason for this security rule is because by using an implicit Intent object to start a
background processing Service class, you risk creating a security hazard within the
Android OS on your end user’s device. This is because a developer cannot always ascertain
what Service subclass will respond to their implicit Intent object and the end user
cannot see which Service is starting on their Android device. This opens up the ability for
destructive Services to be created. Do not launch Services using the implicit Intent object
approach unless it is absolutely necessary.

Instantiating an Intent Object: Passing App Context
Let’s look at the way you’ll instantiate, name, and configure an explicit Intent object, named
upgradeIntent, which we will use to start the HelloUniverse Activity subclass, which we
are going to create as the next step in this work process. This Activity will be similar to your
MainActivity, and will use a user interface design created using the Visual Design Editor.
You will declare the Intent object for use, provide a name, and “load” the Intent object using
an equal sign, while at the same time, within the same Java statement, create your Intent
object by using a Java new keyword, configuring the new Intent with the class name that you
will be starting.

All of these programming tasks would be accomplished by utilizing the following single line
of Java programming logic in Android Studio:

Intent upgradeIntent = new Intent(this, HelloUniverse.class);

The Intent declares the object type; the upgradeIntent gives the object a name; the equals
sign signifies that we are about to instantiate it; the Java new keyword creates an instance
of the Intent object in memory; and finally, the parameter list passes over a Context object
for our MainActivity Activity subclass, using the Java this keyword, as well as the
HelloUniverse.class Activity subclass that we want to start, or launch, using an explicit
Intent object created with this Java statement.

Next, we will go over what the Java this keyword and a Context object do for your Android
application, and then we will continue our work process in the section after that, and allow
Android Studio to create our MainActivity.java class.

http://developer.android.com/reference/android/app/Service.html
http://dx.doi.org/10.1007/978-1-4842-2268-3_4
http://dx.doi.org/10.1007/978-1-4842-2268-3_4#Fig10

152 CHAPTER 7: Making Apps Interactive: Events and Intents

Explaining Context: The Android Context Class
The concept of context in Java programming is simple in its definition, and yet is often
complex in its implementation. It is something that you would need to know about, regarding
what this application context is doing, and why it is needed, to be able to accomplish certain
things in Android. This isn’t something you will need to manipulate directly, at least not until
you become an advanced Android developer.

Android provides a Context class, which by the very nature of a Java class, can construct a
Context object, which is used to hold the context for each application component. The context
defines how the component fits into the overall application, which is inherently what the word
context actually means, so this class and object are aptly named. If you want to take a look at
the Context class in greater detail, visit the following Android developer website URL:

https://developer.android.com/reference/android/content/Context.html

This Context object, which is represented by the Java this keyword, essentially passes
over a Context object for the MainActivity.class Activity component for your Android
application containing detailed contextual information, referencing how your MainActivity
application component will integrate with other application components to accomplish a
cohesive working application, which is properly wired together.

If someone asks you to do something for them you will usually ask them what the context
for the task is, so that you know what, why, and how to accomplish the task! The reason for
giving a receiving application component this context (clever Java keyword pun intended) is
that these Context objects will allow a called application component to see or ascertain what
the calling application component is doing, so that it can do the job (task) that it is being
asked to do efficiently, effectively, and with proper referencing to the other components that
comprise the application.

When the Context object is filled or populated with information regarding the calling
application component, this data is combined with the (inherent) knowledge of what the
called application component is doing. The result is total application context, which, as we
all know from real life, can be defined as the clear, overall view of the entire work process
that we are currently involved with.

A Context object is similar to a Bundle object, in that it contains a collection of related application
information all bundled together into one complex object and sub-object hierarchy. Bundles tend
to contain the states of the application, whereas the Context objects tend to clarify how the
application components reference each other, and how they should work together.

Note You’ve already used a Bundle object to save the current "state bundle" for your
MainActivity Activity subclass, with your Bundle object named savedInstanceState in
your onCreate() method call. The Bundle class allows you to put together bundles or collections
of variables and data, so it is not complex enough to merit its very own section in the book. That
said, if you are really into bundling data, you can take a detailed look at the Android Bundle class if
you like. It is located at the following Android developer website URL:

https://developer.android.com/reference/android/os/Bundle.html

https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/os/Bundle.html

153CHAPTER 7: Making Apps Interactive: Events and Intents

Where Android Manifest XML definition files are used to provide some of the global
information to the Android OS when it goes to launch the application, the Context object
provides all of the local technical-, systems-, component-, and resource-level information
for each of your application’s components, in real time (these attributes change) while an
application is running.

As I mentioned previously, you only need to know how to pass application component
Context objects (often using a Java this keyword) properly in order to be successful in the
majority of your Android 7.x application programming, design, and development endeavors,
so I am not going to spend too much time delving into Android’s public abstract Context
class during this Absolute Beginners book. I just thought you might want to understand why
this Context object was used so frequently in Java and Android.

Now we can continue on in our work process for creating a second Activity that will
be launched using a Button UI element from your MainActivity class. The second
HelloUniverse Activity subclass will use the second UI design created in Chapter 6,
making it functional with event processing, using UI events and event listeners.

Event Processing: Using Events with Event Listeners
Android uses something called an event to allow the users of your application to interact
with your UI design. There are different events for button (or mouse) click, touchscreen
usage, and keyboard usage, and your Java code must handle these events, by
implementing event listener code structures that trap these events as they move from your
UI elements through your event handling code structures.

When a user interfaces with their Android device hardware, the user interface elements
will generate events, and the Android OS will deliver these events to your Java code for
processing. This is done by using event listener Java constructs that take the form of
an event listener method construct. The most common event listener methods include
onClickListener() for MouseClick (supports touchscreen tap as well), onTouchListener()
(touchscreen support only), or onKeyListener() (keyboard support). These listener methods
listen for (wait for) and then process different kinds of events relating to user interface
elements that are accessed by different hardware features on different kinds of Android
devices. These include touchscreen devices, like phones and tablets; and keyboard devices,
like iTV sets, tablets, and laptops.

Events: Turning Device User Interaction into Events
There are a handful of important events that relate to things like keypresses and mouse
clicks, which we need to go over here so you have a comprehensive overview of what is
available to you for your user interface design and its interactivity.

The primary events are for keyboard keystrokes (onKey), mouse clicks (onClick), which user
interface element is being used (called “focus” or onFocus), touchscreen usage (onTouch)
and menu usage (onCreateContextMenu). There is also an onLongClick event, which is the
equivalent of a right-mouse button click for touchscreens, where you touch the screen for a
longer period of time (called a “Long Click”) to pop up (create) the ContextMenu.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

154 CHAPTER 7: Making Apps Interactive: Events and Intents

Text (onKey) events are used for the text editing field UI element; mouse click events are used
for UI elements such as buttons, radio buttons or checkboxes; touch events are used with
touchscreen hardware; and focus events are used when moving to the next (or previous) UI
element on the user interface design screen (Activity).

Event Listener: Java Methods Process UI Widget Events
An event listener is a Java interface for the View superclass, which as you now know, is
used to construct your user interface widgets in Android. These event listeners are termed
“callback methods,” because they listen for the event, and then execute your application
code when they encounter that event. These methods will be called by the Android
framework when each View widget to which the listener has been registered (attached) is
triggered by your user’s interaction with the UI element. This interaction will generate an
event (and often, more than one event).

There are a half dozen event listener Java interfaces that are included in the View superclass,
and therefore are available to all of the widget subclasses that are created using the View
superclass. Since the ViewGroup superclass used to create layout containers is also a
subclass of View, these are also available to UI layout container classes as well, since these
UI layout contains extend ViewGroup.

The most common of the events, because it works with touchscreen as well as the mouse,
trackball, and similar pointer hardware, is the onClick() event. This is used inside of the
View.OnClickListener interface. An onClick() event handler is called by the Android OS
when a user touches any UI element when using touchscreen, or focuses upon an item with
a navigation key, trackball or mouse, by pressing a mouse button, or any device navigation
hardware’s enter key or by pressing down on the trackball itself.

The next most common event, also because it works with touchscreen and with the mouse,
trackball, and similar pointer hardware, is the onLongClick() event. This is inside of the
View.OnLongClickListener interface. An onLongClick() handler is called by the Android OS
when a user long-touches a UI element when using touchscreen, or right-clicks a trackball
or mouse, by pressing the right-mouse button, or the right trackball button.

Another very common event is the onKey() event, which is used with text-related content
and user interface elements. It is used with hardware keyboards. This is inside of the View.
OnKeyListener interface. This is called when the user is focused on the text element and
presses or releases a hardware key on the device or uses a keyboard peripheral with a
tablet, laptop, or iTV set hardware device.

There is also an onTouch() event specifically for use with touchscreen devices, and this
is in the View.OnTouchListener interface. An onTouch() handler is called when the user
performs an action that Android terms a “touch event.” This includes a touch, a release, or
movements (called gestures) on a touchscreen within the UI element.

If you want to pop up a context-sensitive menu that contains options for the UI element,
there is also an onCreateContextMenu() event construct that is used inside of View.
OnCreateContextMenuListener. This is called when a context menu is being opened as the
result of a long-click, and therefore this event will be fired at the same time as a LongClick
event, since a LongClick event would be needed to open the ContextMenu.

155CHAPTER 7: Making Apps Interactive: Events and Intents

Another event that will often get fired at the same time as other events is the
onFocusChange() event, which is inside of the View.OnFocusChangeListener interface.
An onFocusChange() handler is called when the user navigates into (or exit from) the UI
element, using the navigation keys hardware, keyboard tab key, mouse clicks, or the
trackball. It is common that other events (key, click, touch, or long-click) should usually
accompany an onFocus event for this reason, so there may be scenarios where a number of
separate but related events are fired during user interface activity.

These are the six primary (core) events that you will use in Android. There are also six more
specialized types of events that I will cover for you here so you will be exposed to all twelve
event types in Android. For mouse (or trackball) use, there’s an onHover() event handler that
has a View.OnHoverListener for when a pointer is over a View (subclass) but not clicked.
There is also an onDrag() event handler that uses the View.OnDragListener for when a View
(subclass) is being dragged around the screen.

There is a GenericMotion event that uses a View.OnGenericMotionListener used to handle
MotionEvents and three events that detect changes in UI layout configuration, including
onLayoutChange, onAttachStateChange, and onSystemUiVisibilityChange, each of which
have their own associated event listener interfaces. These would contain code for what you
want to happen when your UI layout (arrangement) changes, when you attach or detach UI
elements, or when the system UI (status bar and action bar) becomes visible (or invisible) or
on an orientation change of the hardware device.

Event Handler: Java Methods Process Global Event Type
The term event handler is oftentimes used interchangeably with the term event listener, but
there is a difference. The event listener is part of each widget View subclass, and implements
the View.OnEventTypeListener interface for each of the UI element (widget) subclasses.
This means that the implemented method construct processes a specific type of event, and
is doing so for a specific user interface element (widget) type. This means that this event
processing code is much more localized to that user interface element’s instance, and the
type of event that you want to execute your Java code statements for. This approach leaves
little room for confusion, from the code design standpoint.

An event handler, on the other hand, forces you to define your event processing code
for each event type, irrespective of the widget or layout container that may generate that
particular event. For this reason, creating code that handles all occurrences of that particular
event is therefore global in nature, as the processing is not part of the widget class definition.
Event handlers are thus more complex, and not used as frequently as event listeners,
which attach each event type you want to process to a specific UI element. Since this is an
Absolute Beginner title, we will focus on mastering event listeners, as these are what you will
use most of the time to make your user interface interactive. The way I look at it is the outer
method structure “listens” for the event and the inner method structure “handles” the event.
So .onClickListener() listens, and onClick() handles.

Creating a Second Activity: The UniverseActivity Class
Now that you know what the Java this keyword is, which we will use here to pass over the
Context object for your MainActivity.class to your UniverseActivity.class, we can go
ahead and pick up where we left off in Chapter 6, and finish programming the application
Java logic to process events and leverage explicit Intent objects.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

156 CHAPTER 7: Making Apps Interactive: Events and Intents

Let’s add code that switches from the MainActivity to another Activity when the user
clicks on a Button user interface element. This will demonstrate how Intent objects and
events work together.

The first thing that we’ll need to do in Android Studio 2.3 is to create a new Activity class.
Click on the app/java/com.example.user.myapplication/ folder, and select the New ➤
Activity ➤ Empty Activity menu sequence, as shown selected in blue in Figure 7-1.

Figure 7-1. Right-click Java app folder, and select New ➤ Activity ➤ Empty Activity

In the Configure New Android Activity dialog use an Activity Name field to name your
new Activity UniverseActivity. Next, deselect the Generate Layout File, shown as number
1, on the right side of Figure 7-2. Notice on the left side of Figure 7-2 that if you leave this
selected, Android Studio will create your activity_universe2 XML UI definition file, since
you already create the activity_universe.xml Universe Activity UI back in Chapter 6.

Make sure that you check the Backwards Compatibility (AppCompat) option so that
Android Studio extends the AppCompatActivity superclass, just like Android Studio did
when you created your application. This assures that your application will be compatible
across all of the earlier versions of Android that are still in use.

Finally, leave the default package name setting in your drop-down selector, as it is set to
your current package name already, so there is no need to change this.

Once you are finished setting all of these options, click on the Finish button, shown as
number 2 in Figure 7-2, and have Android Studio write your Activity Java code for you. Next,
you will open up the UniverseActivity.java tab in your editing area, so you can click on it,
and continue adding to the bootstrap Java code.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

157CHAPTER 7: Making Apps Interactive: Events and Intents

Figure 7-2. Name your Activity UniverseActivity, and deselect Generate Layout File

Figure 7-3. Right-click UniverseActivity and select the Jump to Source menu option

In the Project navigation pane, right-click your UniverseActivity Java file found in the app/
java/com.example.user.myapplication/ folder, and select the Jump to Source option from
the context-sensitive menu which appears, seen on the left side in Figure 7-3.

This will open a UniverseActivity.java editing tab, which can be seen in Figure 7-4. Notice
that since you’ve changed the project, the Gradle files will eventually need to be put in sync.

158 CHAPTER 7: Making Apps Interactive: Events and Intents

Figure 7-4. Android Studio created the bootstrap empty Activity code infrastructure

Figure 7-5. Add setContentView() method referencing activity_universe, and Sync Now

As you can see, Android Studio created the AppCompatActivity subclass, named it
UniverseActivity, and created an onCreate() method. Next, add your setContentView()
method call referencing the /app/res/layout/activity_universe XML as seen in Figure 7-5.

159CHAPTER 7: Making Apps Interactive: Events and Intents

Also seen in Figure 7-5 is a warning drop-down telling you that you need the sync operation
to be performed on your project Gradle files. Select the Sync Now option, to have Android
Studio do this for you as well. Android Studio 2.3 can do a lot for Absolute Beginners; they
just have to follow the proper work process (steps), which I am going to be showing you how
to do over the course of this book. As you can see in Figure 7-6, Android Studio even added
your <activity> tag for UniverseActivity.

Figure 7-6. Android Studio added a second <activity> declaration in AndroidManifest

Let’s click on your MainActivity.java editing tab, and add the Button object so that we can
wire in your UI button, and then add onClick() event processing to it. At the top of your
class, type the word Button, and then double-click on the Button android.widget option in
the pop-up dialog to have Android code an import statement.

Figure 7-7. Declare Button object top of class; double-click adds import statement

160 CHAPTER 7: Making Apps Interactive: Events and Intents

As you can see at the top of Figure 7-8 you now have an import android.widget.Button
statement that allows you to use the Android Button class. Inside of the onCreate() method,
add an instance of the Button object, named universeButton. This is done by using the
findViewById() method. Reference the button element ID value that was used in your user
interface design XML definition, which, following the Android naming conventions we are
following, was button_universe.

Figure 7-8. In onCreate(), instantiate universeButton, using findViewById() method

Figure 7-9. The universeButton object is now declared and instantiated (error free)

After you double-click the button_universe ID (notice it is an integer, or int) in the drop-down,
Android Studio will complete the method call. Android Studio will cast the findViewById()
method as being from the Button class by adding (Button) before the method call. Add
a semicolon, as is seen in Figure 7-9, at the end of the Button instantiation statement to
complete it. I clicked on universeButton in Android Studio to color its declaration and use.

161CHAPTER 7: Making Apps Interactive: Events and Intents

Notice when you click on an object or variable in Android Studio, it allows you to visually trace
where it is being used in your code. Now do the same Button code in your UniverseActivity.
java editing tab with the worldButton Button object, as is shown highlighted in Figure 7-10
using Button worldButton = (Button)findViewById(R.id.button);. Your UI button elements
are now wired from XML to Java and are error free, so we can now move on to add our event
listener Java code.

Figure 7-10. Add your worldButton declaration and instantiation to UniverseActivity

Adding Event Listeners to the Activity Button Objects
Now that your Button objects have been declared, and instantiated, they will be used to
call methods such as the .setOnClickListener() method that sets the event listener to
an implementation of View.OnClickListener that in turn contains your onClick() event
processing infrastructure.

Add a line of code under the worldButton instantiation in the onCreate() method in your
UniverseActivity.java tab. Hit the period to invoke dot notation, then type setOn, as is
shown in Figure 7-11. Select the setOnClickListener(OnClickListener l) option from the
drop-down, which will highlight it in blue, and double-click on it, which will then tell Android
Studio to insert the method into your code structure.

Since we have not declared and instantiated an OnClickListener required for the method,
we will be using the Java new keyword inside of the .setOnClickListener()’s parameter
area, as a short-hand format for creating this event listening construct. The long form way to
do this would be to create a public listener class, like this:

public class WorldButtonListener implements View.OnClickListener {
 @Override
 public void onClick (View view) {
 // Your Intent processing code to start the Universe Activity would go in here
 }
}

This would create a plethora of classes for handling all your UI events, so the shorter, denser,
code construct has become the convention for setting up listeners.

162 CHAPTER 7: Making Apps Interactive: Events and Intents

Inside of your .setOnClickListener() parameter area, you will instantiate a new View.
OnClickListener that will contain your onClick() event handling construct.

Inside of the method parens, as is shown in Figure 7-12, type new View.On and double-
click on the View.OnClickListener (android.view.View) (android.view) option. This will
tell Android Studio 2.3 to insert an empty View.OnClickListener(){} Java code construct,
inside of which you will soon be writing the Java code for the public void onClick(){}
event handling infrastructure.

What this is doing in a short-hand or “dense” Java code construct, which is providing you
with an instance of the View superclass OnClickListener interface, which will be used to
contain your onClick() event handling Java programming logic, which is really where your
primary event processing programming logic is going to end up.

Once you double-click the Android Studio Java code writing helper (drop-down), you will
have the empty construct {} for your code, which will override the onClick() method, which
is the next step in our event listening and handling work process.

The rest of the code for this construct will be entered inside of the empty {…} View.
OnClickListener, just as you would have done if you had coded an event listener using a
WorldButtonListener class, as I showed you earlier in this section.

This can be seen in Figure 7-13, if you want to look ahead, and once this Java code
structure is completed, you will then have one of your two Button click event processing
code structures, and you can get some practice duplicating the process again for the
MainActivity.java class.

Figure 7-11. Call a .setOnClickListener() method off the worldButton Button object

163CHAPTER 7: Making Apps Interactive: Events and Intents

Type @ and select Override (java.lang) from the drop-down shown in Figure 7-13.

Figure 7-12. Call .setOnClickListener() off worldButton and use new keyword in call

Figure 7-13. Inside OnClickListener() use Java @Override keyword to override method

164 CHAPTER 7: Making Apps Interactive: Events and Intents

Next, enter the onClick() method declaration as public void onClick(View view){ } after
the @Override, and create another empty method. Notice that I am creating Java code
constructs that are initially empty and that are error free as I go along, so that any errors that
may arise are isolated, and easier to diagnose and fix. I show this empty onClick() code
structure, which thus far is error free, in Figure 7-14.

Figure 7-14. Create public void onClick empty method structure for event processing

Figure 7-15. Select android.view.View package for Android Studio to import for you

Once you finish typing in your empty onClick() event handling method structure, Android
Studio might pop up a dialog, advising that your empty Java method structure needs an
import statement. If it does, click OK, as seen in Figure 7-15, and one will be added for you!
If Android Studio sees something missing, it will alert you and even add it for you!

165CHAPTER 7: Making Apps Interactive: Events and Intents

Adding Intent Processing to your Event Handling
The first step in adding an Intent object is very similar to declaring a Button object, in as
much as you declare the Intent at the top of the class, double-click the pop-up helper to
have Android Studio import your android.content.Intent class, and then name the Intent
object, finishing your declaration statement using a semicolon. This process is shown in
Figure 7-16; I am naming this Intent worldIntent.

Figure 7-16. Declare an Intent at top of class; double-click adds import statement

Now that you have declared and named your Intent object, you will instantiate it inside
of your onClick() structure using the Java new keyword along with the Intent class
constructor, which takes a Context object using the Java this keyword and the class that
you want to launch, which in the case is your UniverseActivity class.

Inside of your onClick() construct, type in the worldIntent object and then the equals sign.
On the right side of your equals sign, utilize the Java new keyword to instantiate the Intent
object using the Intent(Context, Target) constructor method.

Once you type in worldIntent = new Intent(this, Ma) Android Studio will show you your
MainActivity (com.example.user.myapplication), which you can select and double-click to
add it into the Java programming statement (Figure 7-17).

166 CHAPTER 7: Making Apps Interactive: Events and Intents

As you can see in Figure 7-18, Android Studio puts its wavy red error underline under the
parameter area, indicating there may be a problem. Mouse-over this so you can see what
Android Studio thinks that the problem may be related to (Android could not resolve the
Context object passed into the constructor method because it was not for the calling class).

Figure 7-18. Mouse-over red underline error, to see what the issue is with the code

Figure 7-17. Instantiate Intent inside onClick() method, and reference MainActivity

167CHAPTER 7: Making Apps Interactive: Events and Intents

Android cannot resolve the Context of android.view.View.OnClickListener because it needs
the Context for the UniverseActivity class, so you can fix this error with dot notation.
Append a UniverseActivity class name before your Context this keyword so that the this
(Context) becomes the UniverseActivity.this (your UniverseActivity class’s Context object,
rather than your OnClickListener method’s context). As you see, in Figure 7-19, this gives
you an error-free statement.

Figure 7-19. Add path for Context object to the UniverseActivity using dot notation

Figure 7-20. Use the startActivity() method with your worldIntent to start Activity

The final step is to add the startActivity() method call. Type startActivity(), as is shown
in Figure 7-20, and inside of the parens type “wo” and double-click the worldIntent Intent
object from the drop-down helper menu to insert it in your code.

168 CHAPTER 7: Making Apps Interactive: Events and Intents

This startActivity() method is contained in every Activity subclass. It takes as a
parameter the Intent object that you defined using the UniverseActivity Context and
the MainActivity.class (which you would like to start). Make sure to also complete
this same Java code structure for the MainActivity class (where you want to start the
UniverseActivity instead of the MainActivity), which I show on the right side of
Figure 7-21, and references UniverseActivity from MainActivity.

Emulating Hardware: Creating an AVD to Test Your App
Before we “Run” and test this application, we need to create an Android Virtual Device
(AVD), which is called an emulator, as it emulates real-world hardware devices like
smartphones, tablets, iTV sets or smartwatches. Use the Tools ➤ Android ➤ AVD Manager
menu sequence, seen in Figure 7-21, and let’s open the AVD Manager dialogs.

Figure 7-22. Click on Create Virtual Device, and enter Virtual Device Configuration

Figure 7-21. Replicate code in MainActivity; then use Tools ➤ Android ➤ AVD Manager

Click the Create Virtual Device button in the AVD dialog, shown in Figure 7-22.

169CHAPTER 7: Making Apps Interactive: Events and Intents

This will bring you to a Select Hardware dialog, where you will select the type of hardware
device that you would like to emulate for your application testing. We are developing a
Phone application, so, leave the default Phone Category selected, and select the popular
Nexus 5, as shown in Figure 7-23. The Nexus 5 has a True HD display, and at about five
inches diagonal, is a competitor for the Samsung Note 5.

Figure 7-23. Select the default Nexus 5 device definition and click the Next button

If you are using the AMD CPU, you will want to install the ARM System Image, because in
the next dialog, you will be selecting either an Intel (x86) or an AMD (ARM) ABI for use as
your AVD emulator. An Application Binary Interface (ABI) defines how the machine code for
your app will run on your CPU as it executes your AVD emulator. If you want to look ahead
and see the System Image dialog, take a look at Figure 7-25.

To install ARM v7a System Image files, you’ll use the same Tools ➤ Android menu
sequence, and select the SDK Manager option, which you are quite familiar with, and which
can be seen in Figure 7-21 immediately under the AVD Manager in the submenu.

Once the SDK Manager opens, select the SDK Platforms tab and select the Android 7.1.1
Nougat API. Select the Show Package Details checkbox at the bottom-right corner of the
dialog to show what is underneath the API and select all the ARM v7a related entries, as is
shown in Figure 7-24.

Next, click on the Apply button, and select OK in the Confirm Change dialog, as is shown
on the right side in Figure 7-24. Once you click on the main OK button, at the bottom of
the SDK Manager Default Settings dialog, you will get an SDK Quickfix Installation dialog,
which will then show you what packages are being downloaded or installed, along with a
progress bar for each operation, as it is occurring.

170 CHAPTER 7: Making Apps Interactive: Events and Intents

If you have an AMD CPU, and have installed these ARM v7a system image files for Android
(and for Google Play Services if the app needs them), you will then have both Intel (x86) and
AMD (ARM v7a) system image options available in AVD Android Virtual Device Configuration
dialog’s System Image panel, which follows the System Hardware panel shown in Figure 7-23.

If you are using Intel you can skip the step seen in Figure 7-24. I had to make sure all
readers could install and use an AVD emulator for application testing, so I had to include that
important SDK Manager step for our AMD users so that the next step will work, regardless
of what CPU you have decided to develop applications on.

If you’re using an Intel system click the x86 tab, if you’re using an AMD click on the Other
Images tab. I selected the latest Nougat Android 7.0 API Level 24 ABI, which as you can see
in Figure 7-25, I have now downloaded in the step shown in the previous Figure 7-24. This is
why there’s no Download link next to the Release Name in the far-left column.

AMD users can now safely ignore the red warning on the right and click the Next button
to advance to the Verify AVD Configuration dialog, where we will confirm all of the default
settings.

After we complete this last step, Android Studio will create your AVD and use it when you
run your application, so that we can make sure all of the code is working that we have
created (and Android Studio has created for us using the Visual Design Editor and New
Android Application series of dialogs).

Figure 7-24. If using AMD CPU, install the ARM v7a System Image in your SDK Manager

171CHAPTER 7: Making Apps Interactive: Events and Intents

To see all of the default settings, which are obviously the ones Android Studio recommends
for use with that particular AVD emulator, click Show Advanced Settings, a button on the
bottom left of the AVD Verify Configuration (fourth) dialog in the series. Once you do this,
you can define how everything about an AVD is configured.

As you can see, I have the AVD launch in Portrait (vertical) mode, although the AVD has a
toolbar that allows you to change this orientation as you are testing the application. We will
be using this feature in future chapters of the book.

I leave the Cameras as emulated, although if you have webcams installed on your
workstation, you can pipe these through the emulator using these drop-down menus.

Leave your Network Speed at maximum with no Latency, which is best for testing,
because there is enough latency on the busy (often overloaded) Google Play Server to make
your testing process slow down as it is, no need to add to your wait times.

Leave Graphics (GPU) performance optimization set to automatic and leave Multi-Core
CPU capability enabled (selected), which are the default settings. The settings here will allow
Android Studio to optimize the most speed out of your AVD emulator.

If you have a high-capacity (memory, hard disk drive, etc.) workstation you can increase the
values in the Memory and Storage section of the dialog to make the AVD emulator work
faster. I used the defaults to simulate what the AVD would work like for most readers. Finally,
I left the Device Frame enabled to simulate the Nexus 5. See Figure 7-26.

Figure 7-25. Select the Android 7 Nougat API Level 24 System Image for AMD or Intel

172 CHAPTER 7: Making Apps Interactive: Events and Intents

If you want to see what the device frame looks like, take a look at Figure 7-27 to see that the
device frame simply makes your application look like it is running on a smartphone. I left this
on, to make screenshots for this book more realistic.

Once you click the Finish button, you will get the Your Virtual Devices dialog, with an entry
for the Nexus 5 API 24 device. I’m not sure why the Your CPU does not support required
features and the ARM CPU/ABI is supported for the AMD CPU, as you will soon see in the
next section. Possibly some code should be added in this dialog series to detect if the AMD
processor is in use and the ARM v7a ABI System Image has been installed and remove this
message from this dialog. Ignore it for now, and no need to “Troubleshoot” (link) a problem
that does not actually exist. Let’s run the application next, and make sure that it (and the
AVD) actually works!

Figure 7-27. The Nexus 5 API 24 AVD is now shown in the Virtual Device Manager list

Figure 7-26. Accept default Portrait orientation, and accept the other AVD defaults

173CHAPTER 7: Making Apps Interactive: Events and Intents

Running the Application: Building the App Using Gradle
Now that you have installed your AVD, you can use your Android Studio Run menu, and
test your application. As you can see in Figure 7-28, your Run ➤ Run ‘app’ menu sequence
is used to test your app the first time. Once you have used Run, make sure that you use
the Run ➤ Stop menu sequence to stop the executing app in memory, even if you have
minimized or even closed the AVD emulator, which is a separate process.

Figure 7-28. Use a Run ➤ Run ‘app’ menu sequence and test your Java code in the AVD

Figure 7-29. Open your Event Log pane to see Gradle events (sync, build, execution)

This will open the Event Log pane at the bottom of the Android Studio IDEA, and start
telling you what is being done, primarily in the Gradle Build System, to sync and build your
application in to an executable format, as is shown in Figure 7-29.

174 CHAPTER 7: Making Apps Interactive: Events and Intents

If there are no errors in the app Java or XML, the AVD emulator, seen in Figure 7-30, will
open, execute (run), and display your Android 7 Hello World application.

Figure 7-30. MyApplication running in Nexus 5 emulator switching between Activities

Let’s test your application, by clicking on the UPGRADE APP button, seen on the left side
of Figure 7-30, and make sure your event handling and Intent processing opens the Hello
Universe activity, shown on the right side of Figure 7-30. To test all of your code, click on the
DOWNGRADE APP button next, and make sure your event handling and Intent processing
opens the Hello World activity (MainActivity), shown on the left side of Figure 7-30. Click
these buttons back and forth a few times to make sure there are no memory leaks or errors
generated, to stress test your app.

Notice the Icon Toolbar (in the center of Figure 7-30) that accompanies the AVD emulator.
The top two (tiny) icons will minimize (left) and close (right) your AVD, and the rest are
hardware (in this case smartphone) controls including, from top to bottom, Power, Audio,
Orientation, Camera, Zoom, as well as the Back, Home, History and Overflow menu buttons
found in Android’s ActionBar, and on the hardware device.

175CHAPTER 7: Making Apps Interactive: Events and Intents

Congratulations, you have created your first Android 7 application! We will be looking at
other user interface design paradigms in the remaining chapters, as well as how to use
other types of new media assets, and advanced concepts such as MySQL databases and
Services (background processing and threads).

Summary
In this seventh chapter, you learned about how to make your Android application interactive.
This is done by leveraging Intent objects, events, event listeners, and event handling.
Intent objects are unique to the Android platform; however, events and event processing
can be found in many programming platforms, including Java and JavaFX, HTML5 and
JavaScript, and other OOP languages as well.

We spent the first part of the chapter learning some basic concepts regarding the important
Android superclasses and Java interfaces that allow these events and Intent objects to be
processed, allowing user interface designs to be interactive.

You learned about how to add a new class to an application, to create the Hello Universe
Activity subclass that was used to host the Universe UI design you created in Chapter 6 by
using Android Studio 2.3’s new Visual Design Editor.

You coded an event listener structure and an onClick event listener, which starts a new
Activity, by using an Intent object, configured with the Activity Context and the target
Activity subclass name. You cross-wired the two Activity classes together, so you could
go back and forth from Hello World to Hello Universe.

Next, you learned how to set up an AVD emulator that you can use to launch and test an
application. You did this by using the AVD Manager series of dialogs.

Finally, you tested your application using the Android Studio Run menu, and saw that your
two Hello World Activity UI designs work properly and can call each other back and forth
without any crashes.

Next, in Chapter 8 you will start to learn about some of the other more popular Android UI
design paradigms, such as the navigation drawer UI design, tab-based UI design, and a
scrolling UI design.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_8

177© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_8

Chapter 8
Android Design Patterns:
UI Design Paradigms
Android Studio includes a number of popular user interface design approaches, called
“patterns,” as pre-coded Activity subclasses found in the Create New Project series of
dialogs that you used during Chapter 3. Since this is an Absolute Beginner title, we will be
leveraging these application design and user experience templates to teach you how to
quickly create apps using some of the most popular Android 7 UI approaches. At the same
time, I will teach you what the Java code or XML markup is doing for the application, so that
you will learn Android 7.1.1 development rapidly and efficiently, while also creating several
types of Android applications.

This approach will make some very advanced (and popular) user interface layout designs
immediately available to every Absolute Beginner Android Studio developer. This is
precisely why I am including this chapter in the book, and only halfway through the book,
to accelerate us into professional Android 7.1.1 application development, now that we have
covered the basics of what Android is, how to install it, how to create an application, how
to design a user interface, how to make a UI interactive, and now how to access popular
UI design patterns recently included in Android Studio’s “coding and UI design helper”
functionality introduced in 2016 in Android Studio 2.2.

To be able to implement advanced Android UI design patterns right out of the gate as
Absolute Beginners is a real testament to the quality and reach of Android Studio 2.3,
and the advanced nature of the new Android APIs, which are focusing on making code
structures, and design patterns, available to developers who might just be Absolute
Beginners. Google’s marketing motivation regarding this is to get many more developers
creating Android 7.1.1 applications, as you probably have already surmised.

One of the ways that I am “refreshing” this Android Apps for Absolute Beginners title in
its fourth edition is the incorporation of many of the changes that have taken place with
Android Studio 2.3 and in Android 7.1.1 APIs that are specifically targeted at helping Absolute
Beginners. Two of the areas that have had the most change in Android Studio 2.3 and

http://dx.doi.org/10.1007/978-1-4842-2268-3_3

178 CHAPTER 8: Android Design Patterns: UI Design Paradigms

Android 7 include the area of drag-and-drop user interface design (Visual Design Editor,
Chapter 6) and creating new bootstrap applications with the Create New Android Application
series of dialogs (Chapter 3). We will be looking at the Create New Application series of
dialogs further in this chapter. Three of the most popular UI design pattern Activity application
design approaches have been added to this series of dialogs since Android became 64-bit (in
Version 5), so I added these to the book, to expose them to Absolute Beginners.

In this chapter, we will be covering Android design patterns. These will assist you in making
Android applications that conform to what Android users expect from a user experience.
We’ll also cover several application design approaches provided as Activity classes in the
Create New Android Application dialogs. These also include, and conform to, the Android
design patterns, making for a very synergistic chapter.

Android Design Patterns: Ensuring App Visual Quality
An Android design pattern is a work process for, that is, a way of going about, designing
Android application user interfaces (UI) and user experiences (UX). These Android
applications are hosted in the Google Play marketplace, and therefore Google has an
interest in having all their apps conform to a stringent UI design standard.

In the first section of the chapter I will be going over what would be included in these
Android design patterns, all of which are targeted at increasing the user experience of
Android users so that they’re captivated by your Android application.

Besides captivating Android users with your visually exciting Android UI design and content,
Google also wants to make sure that you keep your applications simple to use and easy to
comprehend. This involves making sure the app is usable even for first-time users, and that
users are not overwhelmed by a plethora of choices or by complex tasks, which should be
performed in the background whenever possible.

We’ll be conforming to, and covering, these Android design patterns throughout the rest of
this book. I wanted to have a chapter specifically covering this topic, before we got too far
along in the book. Let’s start by looking at material design.

Material Design: i3D Animated User Experience Designs
Material design is a definition of how visual elements, animated motion, and GUI interactivity
should work across all Android devices (smartphone, tablet, iTV set, e-book reader,
smartwatch, auto dashboard, game console, etc.) and Android platforms (Android TV,
Android Auto, Android Wear 2, Android Glass, etc.). Android now contains material design
components that we’ll be referencing and using throughout the book, so that you can
develop the most professional Android applications as an Absolute Beginner.

Material design is a three-dimensional environment that will allow Android developers
to control light, shadowing, and materials, sometimes called textures or shaders in 3D
software packages. This runs in sharp contrast to the “flat design” currently in use in
HTML5, iOS, and template-driven systems, such as WordPress and Wix. These 3D features
will allow Android application developers and i3D designers to set themselves apart from the
crowd, allowing the visual sensation that Google wants to set Android apps far apart from
the rest of the marketplace, and continuing to increase their dominant market share.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://developer.android.com/reference/android/content/Intent.html

179CHAPTER 8: Android Design Patterns: UI Design Paradigms

Each material design object in Android 7 supports an X, Y, and Z dimension, as well as a
variable that holds its current Z axis (height) position in the layer stack, which will be used to
calculate automated shadowing features and options. Material design support for key lights
allows developers to create directional and even animated shadows. Ambient light is also
supported to create softer shadows, for realistic 3D effects.

Material design attributes sets Android distinctively apart from flat template-driven 2D
design. Material design occupies XYZ coordinates for 3D spaces, allows 3D mutable
(morphable) shapes, enables seamless joins with other material design components, allows
UI elements and content to split (separate) and heal (join), can move along any axis, and
can be created (placed into memory) or destroyed (removed from memory) in real time, and
interactively, using Java code within your Android applications.

Some of the new material design components available for 64-bit Android (5-7) apps include
new themes, widgets, and layout containers, a visual design editor, and new APIs that allow
custom shadowing and animation. We have already covered some of the material design
features in this book, such as themes and the visual design editor, and we’ll continue to
cover the other ones during the course of this book.

Hardware Devices: Code Design Patterns Across Devices
As there are a plethora of consumer electronics hardware genres that will run Android OS,
some of which we will cover in this section specifically, it’s becoming a challenge to design
a UI that can morph between different screen sizes, shapes, and orientations. Android
provides tools and capabilities that address this issue directly, and other operating systems,
including four HTML5 OSes, are copying these features to deal with running apps, and
websites, on hundreds of different devices.

Smartphones, Tablets, Phablets, and e-Book Readers: Core Android API
In the beginning, with Android 1.x, the operating was a mobile operating system used for
mobile phones. Android 2.x added tablet support, and 2.3 was used for the popular Amazon
Kindle Fire e-book reader. Android 3 added features for phablets, or phone-tablet hybrids. At
this point in the Android API, there were no specialized APIs like the ones we will cover later
on in this section; those started around Android 4. The “core” Android API, that is, the one
that holds the primary features and has been known as “Android OS” since day one is the
Android API that is used on smartphones, tablets, e-book readers and now even on laptops
and personal computers.

These four devices will require two user interface designs, one for users using their device
vertically, or up and down, called “portrait mode,” and one for those who prefer using their
device horizontally, or widescreen, called “landscape mode.” The trend is toward landscape
mode due to previously popular devices (laptops and personal computers), as well as
the more rapidly growing (in sales figures) device, the iTV set, or interactive television set,
hardware device. These only function in widescreen (landscape) mode, allowing better use
of screen real estate for working and cinematic entertainment.

180 CHAPTER 8: Android Design Patterns: UI Design Paradigms

These devices used to vary widely in resolution, however, this is changing again, due to iTV
technology and content, which exists in three primary HD and UHD resolutions: 1280 by
720 (1280 by 800 devices) 720P Blu-ray, 1920 by 1080 (1920 by 1200) 1080P HD, and 3840
by 2160 (or 4096 by 2160 devices) 2160P UHD. Most popular content is also developed
and distributed using these formats, so the trend for all device manufacturers has been to
support one of these three resolutions, so that content does not have to be scaled, which
can take up most of a devices memory and CPU capacity by calculating pixel arrays.
Scaling also reduces image quality. A good example of this is the recent 2560 by 1440
resolution, which plays 1280 by 720 Blu-ray content with no reduction in quality, as if scaling
is done by 100% (2X) up or down, the visual quality is maintained. If you want to learn
more about pixels and scaling, check out the Digital Image Compositing Fundamentals title
(Apress, 2015).

There are three primary screens used on all these devices: an apps screen that contains all
of the launcher icons for the apps on the device; a Home screen, which contains widgets,
icons for your favorite apps, folders and the like; and a recent screen, which shows your
recently used applications.

The core Android OS has two system bars for OS UI functions, your top-mounted Status
Bar for system, network, and hardware status indicators; and notifications. For hardware
that does not have hardware navigation keys, there is also sometimes a bottom-mounted
Navigation Bar that provides the Back (triangle), Home (circle), and Recent (square) icons.
Developers can also provide their own Action Bar, underneath the Status Bar as well as
Navigation Drawers, which we’ll be looking at during this chapter, along with other popular
user interface design and content navigation approaches that will enhance usability, overall
user experience and Wow-Factor.

Smartwatches and Wearable Technology: The Android Wear 2 API
An Android Wear API, now in its second version, was introduced in Android 4.4W, a
special version of Android 4.4.4. Android versions previous to Version 5 were 32-bit, and
therefore only able to address 3.24 GB of system memory. Smartwatches are square and
therefore have a unique 1:1 aspect ratio (screen shape), and thus will require a third UI
design for optimal user interaction and user experience. Initially smartwatch devices had
a low resolution of 240 or 320 pixels, later devices supported 400 or 480 pixel screens;
and I expect to see 640 or 800 pixel resolution screens out by 2018, or even sooner. High-
resolution smartwatches will further enable innovation by new media content developers.

Wearable devices demand a totally different user interface and user experience than
phones, tablets or iTV sets, as they have different ergonomics, usage profiles, and hardware
specifications. The smaller (in resolution, width, and height) form-factor portends that you
use what Google terms the “suggest and demand” design approach, which is why Android 5
introduced card-based UI layouts and widgets, for use with smartwatches.

To suggest, Android uses the “context stream,” a list of cards that scrolls in a vertical
dimension to show top or home cards, and which can be swiped horizontally, to show
additional cards underneath the home (top or title) card. Background images can provide
visual context, so users can browse the context stream to see what is going on in their
devices, and drill down into only what currently interests them.

181CHAPTER 8: Android Design Patterns: UI Design Paradigms

For user demands, Android provides the “cue card” that can be opened by saying “OK
Google.” Swiping up on a cue card will show a list of commands; these can be touched to
select, or spoken for use with the smartwatch voice recognition features. Each top or voice
command is wired to a different Intent object, which you learned about in Chapter 7. If an
implicit Intent object is used, applications that conform to the category and action of this
Intent will be listed for preferential selection by the smartwatch user. Intents can trigger the
launch of an application, Activity, or an update (or addition) of a context stream card.

Android smartwatches also feature a Home screen that is usually a custom-watch
face design, created by using the Android WatchFaces API. If you are interested in the
WatchFaces API, check out the Pro Android Wearables title (Apress, 2015). There are also
status icons in the watch face showing charge, watch modes, and unread card status
(count). Watch faces can also show “peek cards,” which show a portion of the card at the
bottom of the WatchFace design.

Automobile Dashboards: The Android Auto API
Around the same time as the Wear API was introduced, Google also added the Auto API to
provide a custom Android user interface for automobile dashboards, which are increasingly
using digital OLED displays, rather than expensive analog dashboard gauges. This API is
designed toward minimizing driver distraction by optimizing quick selection of as few
salient options as possible displayed prominently on the screen, a design approach that I’ve
been implementing for my international clients for decades now.

When the driver connects their Android device to their auto, they will encounter the Android
Auto “Overview screen,” which displays widescreen context cards based on the auto
location, weather, time, date, and so forth. This screen can also display a user’s messages
and also supports voice recognition. Touching a headphone icon will give users a list of
all Auto apps installed. Auto apps use a standard transport UI that can be customized as
needed to add feature icons to the audio playback icon. Android Auto also supports different
color themes for day (light) and night (dark).

iTV Sets: The Android TV API
The next customized API that Google released for Android products in the international
marketplace targeted the exploding interactive television set product currently replacing
“dumb TV sets” in all big brand brick and mortar stores, as well as in online retail. Android
TV competes with HTML5 iTV OSes, including Firefox OS (Panasonic HDTVs), Opera OS
(Sony Bravia HDTVs), and Google Chrome OS (ChromeCast).

Most iTV sets use one of two resolutions currently: True HD (1920 by 1080P); or Ultra HD
(3840 by 2160P), which is twice the resolution of True HD on each X/Y axis, or four times the
resolution of True HD in total. This much resolution, 2,073,600 pixels (HD) to 8,294,400 pixels
(UHD) allows iTV set device screens to span several feet across with high-quality imagery.
This gigantic screen size yields by far the best user experience of any Android hardware
device type, especially if you have the 24-bit HD Audio piped into your home stereo system
and Dolby THX 5.1 speaker system with 24 inch sub-woofers! Interactive Television Sets also
can hook into the types of peripherals (game controllers, keyboards, mouse, HD camera, etc.)
that can enhance the interaction with the iTV set using USB, Bluetooth, or Wi-Fi connections.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

182 CHAPTER 8: Android Design Patterns: UI Design Paradigms

Finally, iTV sets are used in a situation where your users can (and will) focus 100% of their
attention on the application being used on their iTV set, as they are in their favorite easy
chair, undistracted in the comfort of their bedroom or living room. Compare this to using
phones, tablets, or auto dashboards out in public, and you will see a major difference in
ergonomics and environment for the iTV set device type.

Again, Android UI design can be customized to fit iTV set ergonomics and iTV end use case
scenarios, in order to optimize the end user experience, which should be vastly different
than smartphone, smartwatch, dashboard, e-reader, or tablet usage.

The Android TV Home screen is the entry point into the iTV user experience, and offers
content search, recommendations, and application launch. Developers can offer cinematic
previews or animated overviews of their content in this Home screen area.

Game and iTV applications both have their own separate areas on the Home screen and will
be placed in the order that reflect the user’s usage and allow easy access to the most often
used games and applications. Settings and Wi-Fi networks are also accessible at the bottom
of the Home screen.

Interactive Television design guidelines are similar to good UI design for tiny devices such
as smartphones, because the iTV set is mounted up on the wall a good distance (10 feet or
more) from the user (viewer). A large 16 to 24 pixel font size for text with a sans serif (Arial or
Roboto) typeface will be readable by anyone from any distance, and easy-to-select buttons
can be quickly accessed via remote or touchscreen without having to figure out how to
zoom or scroll around, which should be unnecessary on a screen with that resolution and
dimension using good UI design.

Future APIs: Android Glass, Android Home, Android VR, Android Robot
If Google brings Google Glass back, there will be an Android Glass API added to Android
Studio, and with all of the VR goggles out there, I expect an Android VR API sometime in
the future as well for use with i3D, VR and AR (Augmented Reality). I’d also like to see an
Android Home API sometime soon for Home Appliance and Security; and an Android Robot
API, for a growing number of Android-powered robots! I already have several Android robots
already, for use in my Pro Android IoT book, (which is slated to come out in 2018). As long
as Android keeps dominating consumer electronics device verticals, these customized APIs
should continue to be released.

Pure Android: Application Design Branding Conformance
Android OS powers billions of smartphones, tablets, e-book readers, iTV sets, game
consoles, smartglasses, smartwatches, home appliances, home media centers, and
new emerging devices that come under the heading of IoT, or Internet of Things. The
devices support a wide variety of screen sizes, form factors (shapes, or aspect ratios),
and orientation (portrait and widescreen or landscape). This means that developers must
properly leverage Android's layout system in their Java 8 code, XML markup, and user
interface design. If you optimize your application so that it can morph UI layout design
between device types, you can create apps that seamlessly accommodate display screens
from smartwatches to smartphones to tablets to laptops to PCs to game consoles to home
media centers (often called set-top boxes) iTV sets.

183CHAPTER 8: Android Design Patterns: UI Design Paradigms

Display Shape, Resolution, and Orientation: User Interfaces That Morph
To do this your user interface design approach must be flexible enough to fit your UI layout
design in such a way that optimized the design to use the screen real estate to a wide
variety of screen aspect ratios (shapes), heights, and widths.

On larger (usually widescreen) iTV set, laptop and tablet devices, you should take advantage
of valuable screen real estate with a user interface that stays out of the way on the top and
sides of the screen allowing your content to dominate the view, rather than a logo, banner, or
user interface panels. Gone are the landing pages of old, replaced by immediate gratification
of content surrounded by a touch-once go anywhere user interface design optimized for
touchscreen, not mouse scroll-wheels. How often on your widescreen tablet or iTV set do you
go to a blog site where 40% of the screen is used in the center (with 30% on each side unused)
where you have to endlessly scroll for miles to find that content needle in the digital haystack?

Android now has hundreds of API features that allow developers to correct this design
malady that plagues almost all current content; all you have to do is to design, optimize,
implement, and code your user interface to utilize every pixel on every screen optimally to
give the user a fast and easily understandable user experience.

To do this is not easy (like drag-and-drop, template-driven CMSes are), as you must provide
three or four different sets of digital asset resources for different screen densities (MDPI,
HDPI, XHDPI) to ensure that apps look great on all devices.

Designing for multiple screens is an art form that few have sought to master due to the ease
of drag-and-drop CMS and templates, which don’t make for a unique brand experience,
which a “Pure Android” standard requires. The best approach is to work in UHD (4K),
designing for the far more popular (and usable) widescreen devices with the larger screen
sizes, and then scale down (down-sampling pixels retains quality, while up-sampling pixels
reduces quality); then figure out any UI “compromises” you will need to make on smaller
screens, portrait smartphones, and square smartwatches.

Backwards Compatibility: Support 32-bit Android Versions and Devices
Android 7 has enhanced the OS backwards compatibility capabilities, which we’ll be
leveraging in this book, since it is an Absolute Beginner title, and since these features are
also tied into the Visual Design Editor, as you have already seen over the course of the first
half of the book. This ensures apps work on 32-bit Android 2.37 (Kindle Fire) and Android
4.4.4 devices, which are still in use (phones and tablets).

Confirmation and Acknowledgment: Are We All on the Same Page?!
Part of Pure Android Design involves staying in sync with your users. When your users take
part in a user interface interaction in your app, which we covered in Chapter 7, it is a good
idea to confirm or acknowledge that action through text if there are no change to the
screen’s content (such as loading a new Activity screen).

Confirming involves asking a user to verify that they want to proceed with the action they
just invoked using your user interface. In some cases, the confirmation will be presented
along a warning dialog and (or) important information related to the result of that action that
you feel that they will need to consider.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

184 CHAPTER 8: Android Design Patterns: UI Design Paradigms

Acknowledging involves a display of text that lets a user know that the action they just
requested be performed has been completed. This removes any uncertainty about
background (Service) operations that the operating system may be undertaking to
accomplish (complete) that action. In some cases, an acknowledgment is presented along
with an option dialog allowing the user to undo (reverse) the performed task.

Communicating to users using confirmation and acknowledgment helps to remove any
uncertainty regarding actions that have been undertaken or that are about to be performed
by the Android OS have happened. This ensures a good user experience for your users by
making them think about what they are doing, preventing them from making mistakes that
they otherwise might regret using your (branded) application.

Accessibility: Design Your Apps for the Hearing and the Sight Impaired
Accessibility is defined as the measure of how successfully your product can be utilized by a
wide range of people who have disabilities of one type or another. Examples of these would
include visual impairment, hearing impairment, color deficiency (commonly called “color
blind”), hearing loss, limited manual dexterity, and afflictions which cause symptoms such as
these.

Universal accessibility design involves including code that makes your product user interface
and user experience easily accessible to all users regardless of their physical capabilities.
An Android design pattern should be optimized to be in accordance with universal design
principles. Adhering to universal design means you should enabling all of the Android
accessibility-related tools and API features, so as to make your application, game, iTV show,
e-book, etc. as accessible as possible.

Android includes a number of features that support access for users with visual impairments.
These are built into the Android API and do not require drastic visual changes to your app;
however, they do require Java code or XML markup to implement in your user experience
design patterns. TalkBack is a pre-installed screen reader service that is provided by
Google. It uses vocal feedback to describe the result of end user actions, like launching
an app or Activity, dialogs, and notifications. The Explore by Touch operating system
feature works hand in hand with TalkBack, allowing users to touch the device screen and
hear what's under your finger (or the cursor) via TalkBack vocal feedback. Android OS
accessibility settings allow users to modify the device display, as well as audio options.
This includes increasing font sizes, changing the speed at which text is spoken, and similar
settings.

The Pure Android design principle, “Users should always know where they are” is key for a
successful accessibility user interface design. As users navigate through an application, they
need visual feedback as well as a GUI model of where they are, like navigation tabs or 3D UI
buttons that show where you are in the content. Users will always benefit from this strong
sense of hierarchy and logical content access.

All users benefit from visual, haptic (sense of touch) feedback during their UI navigation.
This is aided by 3D, button labels, color, icons, single touch feedback and logically placed
UI elements. Low-vision users can benefit from explicit verbal descriptions, large font sizes,
large buttons, and large visuals with high contrast. The following are Pure Android Design
guidelines that enable effective navigation.

185CHAPTER 8: Android Design Patterns: UI Design Paradigms

The first objective is to design intuitive, easy-to-use, navigation. You should design well-
defined, clear, information or task flow with minimal navigation steps, and minimum
navigation levels (called “flat” navigation). Make sure that tasks and information are
navigable via user interface design elements that pass focus (which UI element is active or in
use is said to have “focus”) in a logical, ordered fashion.

A second objective is to use recommended UI element “touch target” sizes. Small buttons
or tabs with small text labels will not be usable on small screen displays. 48 DIP (or Density
Independent Pixels) is the Pure Android recommended touch target size for screen UI
elements. For some users it might even be appropriate to use a larger touch target. An
example of this is educational apps and games where buttons larger than the minimum
recommended size are easier to use for children with developing motor skills and disabled
people who have manual dexterity challenges.

A third objective is to label your visual UI elements with short, concise text, using a large
font size, with a word that sums up a description of that information or function. If you want
to use glyphs (picture-based navigation icons), be sure to use the contentDescription
attribute to label functional UI components that have no visible text. Those components
can be buttons, icons, tabs with icons, and icons with state (like stars) information.
As you’ve experienced already in Chapter 6 on Visual Design, developers must use a
contentDescription attribute to set the glyph’s label.

The Android system-wide font size control is not often considered by developers. Users can
enable a system-wide large font size under their OS Settings. Using the default system font size
in an application will enable a user's system font size preferences to be used in your application
as well. To enable system font size in your app, mark text UI elements and their associated UI
layout containers to be measured using SP (scale pixels) instead of DP (Density Pixels) or DIP.

Home Screen Widgets: Miniaturized Applications
Android Widgets are an essential aspect of your home screen customization. They are
essentially entire applications that can be viewed at a glance and can contain important
data and functionality that is accessible right from the user's home screen. Users can move
widgets across their home screen panels, and, if supported, resize them to tailor the amount
of information displayed. For example, if you were a pharmaceutical company, you could
create a widget that advised customers when to take their dosages throughout the day.
Widgets classify as one of these categories:

	Information widgets typically display critical information elements
in real time, which are important to the user, and which will track how
information changes over time. Examples of information widgets are
health widgets, weather widgets, clock widgets, games, or sport
score trackers. Touch an information widget to launch an associated
application, which will open a detail view of the widget information.

	Collection widgets specialize in displaying multitude elements of
the same type, such as a collection of pictures from a gallery app,
a collection of articles from a news app, or a collection of emails/
messages from a communication app. Collection widgets typically focus
on two use cases: browsing the collection, and opening an element of
the collection to its detail view for consumption.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

186 CHAPTER 8: Android Design Patterns: UI Design Paradigms

	Control widgets can be used to display frequently used functions that
your user can select right from the home screen without having to open
the app first. These are kind of like having a remote control for your
app. An example of control widget would be a music app widget that
allows your users to play, pause, or select music tracks from outside of
the music app itself. While widgets tend to show attributes of the three
types described above, many widgets turn out to be hybrid widgets,
which combine design elements of these different types of widgets.

Swiping Views: More Efficient Content Browsing for Modern Devices
Efficient content navigation is one of the hallmarks of a well-designed digital application.
While websites and apps have historically been built in a hierarchical fashion, where many
levels of information nesting and scrolling are the norm, there are many instances on most
consumer electronics devices where horizontal navigation can “flatten” vertical hierarchies,
eliminate vertical scrolling, and make access to related data items faster and more
enjoyable. Swiping views to the side allows your users to far more efficiently and effortlessly
move from item to item, using simple swipe gestures. This makes browsing (consuming
content) a more seamless experience.

We will be creating some user interface design patterns during this chapter that involve
swiping gestures that allow easy UI access and content browsing. For instance, you can
swipe from tab to tab in a tabbed UI paradigm, which we will be looking at in detail. If your
app uses an action bar tab user interface approach, the user will be able to simply swipe to
navigate between the different page views.

Now that we have reviewed some of the most important aspects of Pure Android and
Android Design Patterns, let’s take a look at how we can get Android Studio 2.3 to create a
Sliding UI Drawer paradigm for use in an Activity that does Sliding Drawer Navigation. After
we create and test this bootstrap application, I will show you what the XML markup and the
Java 8 code does to create this type of UI, which you can use in your own applications, user
interface design and content delivery pipelines. As an Absolute Beginner, this is the fastest
way that I can get you up and running using advanced, Pure Android 7.1.1 application
design and programming.

Creating a Sliding Drawer: UI Only When Users Need It
First, let’s close the current MyApplication Hello Universe project. The way to do this in
Android Studio is to use the File ➤ Close Project menu sequence, shown on the top left in
Figure 8-1.

187CHAPTER 8: Android Design Patterns: UI Design Paradigms

This will close Android Studio and open up the Welcome to Android Studio dialog, which you
get when you first install Android Studio 2.3, and which can be seen in Figure 8-2.

Figure 8-1. Use File ➤ Close Project to close Hello Universe MyApplication project

Figure 8-2. Welcome to Android Studio dialog, where you Start new Android Projects

188 CHAPTER 8: Android Design Patterns: UI Design Paradigms

There is a difference in this welcome dialog now, as you can see, since we have a project
that we have developed, and now closed, but not deleted, which is shown on the top left
of the dialog in blue. What this means that we can reopen this project, or any project(s)
we have created and closed, at any time. This means that you can work on more than one
project at a time.

We will be using this feature during this book, as we reopen and enhance projects we
will be creating during the next few chapters, as we add content, special effects, digital
imagery (called “Drawables” in Android), digital audio, and animation, among other things,
as chapters continue to get more advanced throughout the book. This allows us to focus on
Android Design Patterns during this chapter.

During the rest of this chapter we will be exploring a popular user interface design paradigm
that Android Studio will code for us using the Start a new Android Studio Project dialog
series, which you are about to get some more practice using.

Select the Start a new Android Studio project option seen in red in Figure 8-2.

In the New Project dialog, seen on the left in Figure 8-3, name the application
NavDrawerPattern. Target the core Android Phone and Tablet API (Figure 8-3 middle), and
use a standard MainActivity naming convention for a main activity for this app.

Figure 8-3. Name app NavDrawerPattern, select Phone & Tablet API, name MainActivity

Select a Navigation Drawer Activity for your UI pattern, as seen in Figure 8-4.

189CHAPTER 8: Android Design Patterns: UI Design Paradigms

Once you click Finish, Android Studio 2.3 will open with a NavDrawerPattern project already
created for you, with the content_main.xml file open in an editing tab. For the rest of the
section we will dissect how the XML UI definition is set up using four XML files in the
app/res/layout folder. All of this can be seen in Figure 8-5.

Figure 8-4. Select the Navigation Drawer Activity for your Android Design Pattern

Figure 8-5. Android Studio opens with NavDrawerPattern project and content_main.xml

190 CHAPTER 8: Android Design Patterns: UI Design Paradigms

As you might have surmised, content_main.xml is where your application content will be
displayed, and currently contains the bootstrap Hello World placeholder text, as you can see
on the right side of Figure 8-5, in the Android Studio Preview pane.

This content UI layout uses one of Android’s legacy layout container classes, the
RelativeLayout design pattern, which, as you may have guessed, lays out your UI elements
relative to each other. This is similar to the ConstraintLayout class, but you have to create
the XML, whereas ConstraintLayout uses the Visual Design Editor.

The RelativeLayout (layout container or ViewGroup) UI design pattern positions its children
(widgets or View objects) in relation to each other as well as to the parent RelativeLayout
container. It was created in Android V1 (API Level 1) using the ViewGroup superclass, which is
a subclass of the View superclass, as you know. If you want to research the RelativeLayout
class in greater detail, you can do so at the following Android Developer website URL:

https://developer.android.com/reference/android/widget/RelativeLayout.html

As you can see in the XML markup in the center editing pane in Figure 8-5, the content
layout ID is content_main, the layout_width and layout_height scale to fill the screen using
a match_parent (the parent container’s dimensions) constant, the padding references the @
dimens dimension constants in /app/res/values/dimens.xml.

At the end of the RelativeLayout container parent tag there are two xmlns:tools parameters
that wire up the content view to the rest of the application. Context references the
MainActivity class and tools:showIn tells the content view to locate itself inside (under)
the app_bar_main.xml UI definition, which we will be looking at after we look at the primary
activity_main.xml top-level UI definition XML file.

Next, let’s take a look at the activity_main.xml top-level UI definition that is called from the
MainActivity.java class onCreate() method, as is standard operating procedure in Android
application development. Right-click on activity_main.xml, and select the Jump to Source
menu option to open this XML file in its own editing tab.

As you can see in Figure 8-6, this is the user interface definition that wires most of the XML
files in the res/layout and res/menu folders to create a navigation drawer, shown in the
Preview area, on the right side of the Android Studio IDEA.

The UI definition uses a DrawerLayout class for the parent layout container and uses
an <include> child class to include the app_bar_main navigation bar, which you know
contains the content view as well. Over this slides a navigation drawer, which uses the
NavigationView class to define the sliding UI drawer layout definition, as you can see in
Figure 8-6, highlighted in red. The NavigationView child tag uses an app:headerLayout to
reference a nav_header_main.xml file and the app:menu attribute to reference the activity_
main_drawer.xml menu hierarchy definition as shown by red lines drawn between the XML
editor onto the Project hierarchy pane, in Figure 8-6.

https://developer.android.com/reference/android/widget/RelativeLayout.html

191CHAPTER 8: Android Design Patterns: UI Design Paradigms

This child NavigationView class is part of the support.design library’s widget package, and
is a subclass of the FrameLayout class, which provides fixed UI layout design containers.
This class was designed to be used to provide developers with a standard navigation menu
for their application. This NavigationView will typically be nested inside of a DrawerLayout,
so the drawer slides out with a menu of options in it. This menu’s selection options can be
created using an XML menu resource file as we will see later on during this section. If you
want to investigate this class further, you can visit the NavigationView page at the following
developer URL:

https://developer.android.com/reference/android/support/design/
widget/NavigationView.html

The parent DrawerLayout class is part of the support.v4 library’s widget package, as you see
highlighted in blue at the top of Figure 8-6, and as a layout container, is created (subclassed)
using the ViewGroup superclass. The DrawerLayout serves as the top-level container, in
this case, that is a UI drawer, to contain UI elements. This class was designed to allow
developers to relatively easily create interactive “sliding drawers” that can be pulled out
from one (left or primary) or even from both (left and right) sides (also called “edges”) of the
display screen.

Drawer position and direction are specified using a layout_gravity attribute set in child
views, in this case, NavigationView. This attribute constant will define which side of the
user interface design you want the drawer to open from. This will be left or right, unless you
are supporting multi-directional language (left to right as well as right to left), in which case
you will use start or end. You should only define one drawer for each vertical edge of your
UI. If your layout configures more than one drawer per side, an exception (an error) will be
“thrown” at runtime.

Figure 8-6. Right-click on activity_main.xml to Jump to Source to view DrawerLayout

https://developer.android.com/reference/android/support/design/widget/NavigationView.html
https://developer.android.com/reference/android/support/design/widget/NavigationView.html

192 CHAPTER 8: Android Design Patterns: UI Design Paradigms

As you can see in Figure 8-6, you specify, using an <include>, the app_bar_main layout as
a first child, setting width and height to match_parent using no layout_gravity. Next, add
drawers as child views after the content view, and set the layout_gravity to left or start.
Drawers commonly use match_parent for height with a fixed width; in this case, we use
wrap_content, so that the drawer conforms to the menu content.

As per the Pure Android design pattern guidelines, any drawer positioned to the left (or start)
would always contain content for navigating around the application. Any drawer positioned
to the right (or end) would always contain actions to take on the content in the content view.
This preserves the Pure Android navigation to the left, actions to the right, design pattern
present in the ActionBar and applications. If you want to research the DrawerLayout class
further, visit the following URL:

https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html

Let’s drill down further into the UI design and take a look at the app_bar_main.xml file
referenced in the <include> child tag in the <DrawerLayout> parent tag. Include is used to
reference and nest a UI design component. Right-click the app_bar_main.xml file and select
Jump to Source to open the tab seen in Figure 8-7.

Figure 8-7. Right-click app_bar_main.xml; Jump to Source and view CoordinatorLayout

As you can see, this UI design component uses CoordinatorLayout, and references
content_main.xml using another child <include> tag, as shown in red. Above the content
view is an <AppBarLayout> layout container child tag containing a <Toolbar> widget as its
child tag. Below the content view is a <FloatingActionButton> widget.

https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html

193CHAPTER 8: Android Design Patterns: UI Design Paradigms

Android’s CoordinatorLayout class is part of the Android support design library and
widget package as you see highlighted in blue at the top of Figure 8-7, and as a UI layout
container, is created using the ViewGroup superclass. A CoordinatorLayout is similar to a
FrameLayout, and can be used to create fixed, top-level application user interface design
such as a navigation bar over a content view, as Android Studio is doing here. It is used as
a layout container to coordinate interactions between one or more child views, in this case,
this includes a Toolbar, a FloatingActionButton, and the content view. To learn more about
the CoordinatorLayout, visit this URL:

https://developer.android.com/reference/android/support/design/
widget/CoordinatorLayout.html

A Toolbar layout container is also a ViewGroup subclass, added in Android 5 API Level
21 to provide a standard toolbar for use in application content or UI design. The Toolbar
design element is a generic ActionBar for use with application layouts. Whereas the
Android ActionBar is part of an Activity that is controlled by the Android framework, the
Toolbar is controlled by the developer and can be located at any (nesting) level of your
UI design view hierarchy. An application can even designate this Toolbar to serve as the
ActionBar for your Activity. This is done by using the .setActionBar() method call or the
.setSupportActionBar() method call.

From left (or start, for bidirectional text language support) to right (or end) a Toolbar UI
element can contain a number of different types of nested UI elements. The most common,
located on the left, would be a navigation button, which can be seen as a three-bar icon in
the Toolbar for the app on the left side in Figure 8-12 in the AVD. Notice that your Android
Studio Preview does not include this, as it is passed through from the OS to the Toolbar
using the .setSupportActionBar() method call. Navigation elements supported include
the Up arrow, navigation menu icon, close icon, collapse icon, finished icon, or another
icon of the application developer’s choice. This button should be used to access navigation
destinations within Toolbar UI layout container. The navigation button icon will be vertically
aligned with, and scaled relative to, the Toolbar height attribute.

You can include a brand (sometimes called a “logo”) image for your application, and this
will come next in the Toolbar. This will be vertically aligned with, and scaled relative to, the
Toolbar height attribute, and can be as wide as you like. I recommend a 2:1 or 3:1 aspect
ratio, so you don’t take up too much of your Toolbar.

Next comes a title, and (optionally) a subtitle. A title should be an indicator of the Toolbar's
current position in the navigation hierarchy and content contained there. A subtitle, if
present, should indicate any additional information about the current content. After the title
you can optionally add one or two UI elements such as icons, if you have room, based on
your logo and title size. The application can also dynamically add views to the Toolbar. They
will appear at this center position within a Toolbar. If your Toolbar.LayoutParams attribute
for a UI element indicates a Gravity value of CENTER_HORIZONTAL that view will attempt to
center in available space that remains in the Toolbar, after all the other elements have been
measured.

The Action Menu, in this case the Settings menu item, will pin to the right (or end) of the
Toolbar. This is shown in Figure 8-13 as three dots on the right side of the Toolbar. This
offers important or typical actions along with an overflow menu for additional actions. Action

https://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html
https://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html

194 CHAPTER 8: Android Design Patterns: UI Design Paradigms

buttons are vertically aligned with the Toolbar height. If you want to delve further into the
Toolbar class, visit this URL:

https://developer.android.com/reference/android/widget/Toolbar.html

The FloatingActionButton class does not involve the ViewGroup class and is thus a UI
widget and not a UI layout container. It’s created using the ImageButton class, which is in
turn created using the ImageView class (a direct View subclass itself).

Floating action buttons are often used to expose actions (UI options) you wish to prioritize
for your users. In this case, this is e-mail access, as you can see in Figure 8-7. These are
earmarked using a circular icon, floating (using shadows) above the UI surface. These
floating action buttons come in two sizes, default and mini. The size can be controlled with
the fabSize (Floating Action Button Size) attribute, but most developers will use the Pure
Android design constants provided.

Figure 8-8. Right-click on nav_header_main.xml; Jump to Source to view LinearLayout

Because this class descends from ImageView, it inherits the .setImageDrawable() method,
so you will be able to control the drawable (graphic) which is used in the Button using
a .setImageDrawable(Drawable drawable) method call. The background color for this
FloatingActionButton is preset to utilize your OS theme colorAccent attribute. If you wish to
change the color, you can specify a different color using the .setBackgroundTintList(ColorS
tateList) method call.

Whereas the app_bar_main.xml UI definition contains the AppBarLayout container,
which contains the Toolbar, includes the content_main.xml UI definition and finally a
FloatingActionButton, the nav_header_main.xml UI definition, shown in Figure 8-8, is
referenced with a NavigationView layout container in the top-level activity_main XML UI
definition. This combines it with the navigation menu, which we will be looking at next. This

https://developer.android.com/reference/android/widget/Toolbar.html

195CHAPTER 8: Android Design Patterns: UI Design Paradigms

main navigation header design uses another “legacy” Android layout container from API
Level 1 called a LinearLayout, which is used to create a horizontal or vertical (in this case)
orientation collection of UI design elements.

The LinearLayout container, seen in Figure 8-8, contains ImageView and TextView UI
elements (View widgets) just like the Hello Universe application you designed in Chapter 6,
so you already know what these widgets do for your UI design. The result of this design can
be seen in the Android Studio Preview pane (on the right side).

Creating Menu Structures for a UI Design: The Android Menu
Interface
In Android, most of the heavy lifting to create and implement a menu is done by Android OS,
making this perfect for an Absolute Beginner title, so we’ll cover it here in Chapter 8.
Developers design their Menu objects using XML menu definition files, contained in the app/
res/menu folder, as seen on the left in blue in Figure 8-9.

Android supports several important types of menus, each of which have different features.
Context menus are like right-click context-sensitive menus in popular OS platforms, and
in Android these do not support key shortcuts and visual icons. The long-click on any UI or
layout element is used to access these context menus (using a touchscreen) if a right-mouse
button is not available to the user.

Options menus are provided in the OS chrome (remember chrome is perimeter OS-
provided UI functions and decoration), as shown in Figure 8-13. Icon menus don’t support
item check marks, and can only display the “condensed” (shortened) title for each menu
item.

Expanded options menus become available if six or more menu items are visible. These can
be accessed via a 'More' item in the icon menu and don’t show item icons. Pure Android
design principles also recommend against using item check marks so the menu stays
compact for the user. However, you can use them, if they are necessary.

Menus can also feature submenus. Submenus do not support icons for menu items and
do not allow nested submenu structures, to try to keep Pure Android menuing as simple as
possible for the users.

Android provides the Menu interface for managing the MenuItem objects contained in a
Menu object. By default, every Activity supports an options menu of actions or options.
You can add items to this menu and handle clicks on your additions. The easiest way of
adding menu items is by “inflating” an XML file into the menu via the MenuInflater method.
The easiest way of attaching Java code to clicks is via onOptionsItemSelected(MenuItem)
and onContextItemSelected(MenuItem) method calls.

The important thing for you to learn regarding menu design in Android is how to create the
parent <menu> XML structure with child <group> and <item> substructures. This can be seen
in the activity_main_drawer.xml file, which is seen in Figure 8-9.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_8

196 CHAPTER 8: Android Design Patterns: UI Design Paradigms

To view the activity_main_drawer Menu object XML definition, right-click on the XML file
and select Jump to Source. As you can see, there is a parent <menu> object, which contains
a child <group> object that contains four <item> MenuItem objects. These MenuItem objects
each contain an ID, icon (drawable) and title (text) values, which provide Import, Gallery,
Slideshow, and Tools menu options, in a sliding navigation drawer. The drawables are kept
in the app/res/drawable folder and can be seen in Figure 8-14, if you want to see the actual
files that are referenced.

After the main menu group, there is an <item> tag used as a menu header, using only an
android:title attribute (or parameter if you prefer that term). Since it is not a MenuItem
that will generate click events, it does not need an android:id attribute because the object
will not be referenced in your Java code; it is simply decorative. There is a child <menu> tag
under this <item> tag, which creates your submenu structure, under which are your child
<item> tags, defining submenu items. Submenus are thus created using child <menu> objects
under a parent <menu> object. There are two submenu items created using <item> tags for
share and send functions.

Finally, let’s right-click on the other application main.xml definition file and select Jump
to Source and take a look at the Settings menu item available using the overflow (three
vertical dots in the ActionBar) menu, as shown in Figure 8-10. The main.xml holds the
top-level menu for the application, and uses the same design process of a parent <menu> tag
and child <item> tags; in this case, the settings for the application are all that we need in the
menu, at least for the moment. We could add a Help menu item, for instance, to explain how
this application should be used.

Figure 8-9. Right-click activity_ main _drawer.xml and Jump to Source and view Menu

197CHAPTER 8: Android Design Patterns: UI Design Paradigms

Now that we’ve taken a look at how the XML UI design definitions have been put together, let’s
take a high-level view of how this all wires together, to cement how this all works together in
your mind, and then we’ll run the application in the AVD and see how it works. Then we’ll look
at the Android Manifest XML definition, and finally at how the Java 8 code works.

Visualizing the UI Design: High-Level View of XML and Classes Used
Let’s visualize the complex layout using a diagram, which can be seen in Figure 8-11, since
there is a lot of nesting (at least three levels of nested XML definitions) and Java classes
used within all of these XML definitions. As an Absolute Beginner, you should always do this,
either in your head or on paper (or using GIMP, as I did), to make sure that you comprehend
exactly what’s going on in Android to create a design pattern, using Android’s View (widget)
and ViewGroup (layout container) classes. As you become a more advanced Android
developer, you’ll need to do this less and less.

Figure 8-10. Open the menu.xml application menu; preview your Settings menu (right)

Figure 8-11. High-Level Diagram of XML definitions, references, and classes utilized

198 CHAPTER 8: Android Design Patterns: UI Design Paradigms

As you can see the top-level activity_main.xml UI design pattern definition has the
DrawerLayout class as its parent tag, and as the parent class, from a UI design perspective.
As you can see in the right side of Figure 8-13, when the options menu (the three horizontal
bar icon) is clicked, the sliding drawer will cover the other major UI components (ActionBar,
or AppBar, and main content view), and contains the navigation header and drawer menu
system, seen on the right portion of Figure 8-11.

The app_bar_main.xml second-level definition, seen on the left, handles the AppBarLayout,
which contains the Toolbar, using the CoordinatorLayout to combine this AppBar with
the FloatingActionButton, and uses an Include to tie in the third-level content_main.
xml definition, which contains your content for each screen referenced using the Menu’s
MenuItems. This is also contained in this top-level DrawerLayout.

The nav_header_main.xml is contained in a NavigationView in the DrawerLayout, and uses
LinearLayout to build a header bar for the sliding drawer using an Image (ImageView) and
Text UI elements. Also contained in this NavigationView is your activity_main_drawer.xml
Menu object definition, with four MenuItem objects in one group and two MenuItems at the end
of the Menu definition that are not in a group.

Previewing the UI Design in the Nexus 5 AVD: Rendering the UI Design
Let’s use your Nexus 5 AVD, and preview the design in an Android device, so you can see
the menu icon in the app_bar_main.xml, which is provided by the Android OS menu system
but which is not (as yet) supported in the Android Studio Preview pane. Use the Run ➤ Run
‘app’ menu sequence, and launch the AVD, as shown in Figure 8-12. Select the Nexus 5 and
click the OK button. After the AVD loads into memory the app will launch in the emulator,
which you can see in Figure 8-13. Click the menu icon, to make sure a UI drawer slides onto
the screen, seen on the right, in Figure 8-13.

Figure 8-12. Use the Run menu to run the app, which will initialize the Nexus 5 AVD

Click on menu items to make sure they do nothing, for now. The menu will close.

199CHAPTER 8: Android Design Patterns: UI Design Paradigms

Now that we have tested (and analyzed) the Android Studio code, let’s take a quick look at
the Android manifest, and then dive into the Java code, which is the most complex part of
the Android application created by Android Studio for you.

Application Configuration XML: The AndroidManifest.xml
All of this functionality does not require any special Android manifest XML definition
permissions, and only a couple of new settings, which we will go over in this section, to
reinforce your knowledge of working with the Android manifest XML.

As you can see in Figure 8-14, highlighted in green, Android Studio has set the
android:label attribute, for both the <application> and the <activity> section, to label the
app NavDrawerPattern.

Figure 8-13. Click the Menu icon at the top left and test the sliding nav drawer

200 CHAPTER 8: Android Design Patterns: UI Design Paradigms

There is a new attribute (parameter) called android:supportsRtl that turns on the
bidirectional screen language display (LTR or RTL for some non-ASCII languages), which
is highlighted in yellow in Figure 8-14. This is why we are using start instead of left and
end instead of right in the UI design XML definitions in this chapter, and since this is an
application-wide setting it is in the <application> tag, along with the android:theme,
android:icon and android:allowBackup parameters, which you are already familiar with,
from the first application we created earlier.

Also, notice that in the <activity> tag we set the NoActionBar application theme since
we have provided our own decorative ActionBar in this user interface design. In the next
section, you will see how to make the AppBarLayout and its Toolbar into the ActionBar for
this UI design pattern using Java methods of the Activity superclass, allowing us to use the
NoActionBar theme to remove the Android OS ActionBar, which would be redundant (and
confusing to the user) since the UI design provides one of its own, with features customized
to the sliding drawer UI pattern.

Figure 8-14. Right-click AndroidManifest.xml, and Jump to Source to preview the XML

Next, let’s get a bit more advanced, and take a look at what the Java code is doing for this
admittedly more advanced sliding drawer Android application design pattern, while at the
same time learning more about the Android classes involved in making this main activity
reference the UI design XML, and making it interactive.

Application Programming Logic: Looking at the Android API Java Code
Finally, let’s get a bit complicated (for the Absolute Beginner, at least), and take a look at
the MainActivity.java code generated by Android Studio. Click on the MainActivity.
java editing tab, shown selected on the left in Figure 8-15, and look at five methods
that comprise this public class, which extends AppCompatActivity, which we covered
in detail earlier in the book, in Chapter 6, and which implements a NavigationView.
OnNavigationItemSelectedListener Java interface. Let’s start with the smaller (shorter)
methods, which deal with menu processing and UI navigation, and then cover the two

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

201CHAPTER 8: Android Design Patterns: UI Design Paradigms

larger (longer) methods that deal with the event processing (onNavigationItemSelected) and
creating the objects for the application in system memory (onCreate). All this code is needed
to make the sliding UI fully functional.

Figure 8-15. Click on the MainActivity.java editing tab to look at the five methods

The public Boolean onCreateOptionsMenu(Menu menu) method creates the options
menu in system memory by inflating (turning XML definitions into Java objects) an
XML menu definition, called main.xml, in your app/res/menu/ directory, by using the
getMenuInflater().inflate() method, and returns a true value to the calling method,
signifying the menu is inflated into memory. Your method Java code looks like this:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
}

Although used with a Menu object, onCreateOptionsMenu(Menu menu) is a part of the
Activity superclass, and therefore its subclass. This is where you’ll initialize the contents
of your Activity’s options menu, using a MenuInflater object using a method chain. The
getMenuInflater() method chains to (calls) the .inflate() method, which takes the XML
Menu object definition and loads it into the Menu object named menu. After this has been done,
the onCreateOptionsMenu() method returns true, to signify successful inflation of the Menu
object named menu, passed into the method.

202 CHAPTER 8: Android Design Patterns: UI Design Paradigms

Although also used with the Menu class, onOptionsItemSelected(MenuItem item) is also a
part of the Activity superclass, and therefore its subclasses. This is where you process your
menu item selections in your Activity’s options menu, by using the .getItemId() method
from the Adapter class (object) that is used to process lists.

This method takes a MenuItem object named item passed into the method, and then calls
the .getItemId() off of that item MenuItem object, and places that integer value into an id
variable, which is then processed using an if-then-else loop, to determine which MenuItem
has been selected by the user. In this case, if the “Settings” MenuItem has been selected the
method will return a true value. Finally, the method calls the superclass method with the
same name, for further processing, using super.onOptionsItemSelected(item), using the
following Java code method structure:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 int id = item.getItemId();
 if (id == R.id.action_settings) { return true; }
 return super.onOptionsItemSelected(item);
}

The onBackPressed() is also a part of the Activity superclass, and therefore each of its
subclasses. This is where you define what is to be done when the Back button is used in the
Android OS or the Android device hardware. In this case, this will close the sliding drawer UI,
if it is open, or pass the onBackPressed() up to the superclass for further processing using
the super keyword, if the sliding drawer UI is closed. The Java 8 code will look something
like this:

@Override
public void onBackPressed() {
 DrawerLayout drawer = (DrawerLayout)findViewById(R.id.drawer_layout);
 if (drawer.isDrawerOpen(GravityCompat.START) { drawer.closeDrawer(GravityCompat.START); }
 else { super.onBackPressed(); }
}

What this does is to instantiate a DrawerLayout object (named drawer), and call the
.isDrawerOpen() method, to see if the sliding drawer is open on the screen. If it is, the
.closeDrawer() method is called to close the drawer. The GravityCompat class (a
backwards compatibility gravity constants helper class defining constants) is used with the
START constant we have been using for our bidirectional interface design (supports RTL
and LTR text and user interface design). If the drawer is not open, then the else part of the
statement passes the onBackPressed() method call up to the superclass for processing,
using super.onBackPressed().

The onNavigationItemSelected() method also takes in a MenuItem object named item as
its input and processes it, however, this menu is the one inside of the drawer, not in the
Activity menu, which has only one Settings option. This menu is accessed through a
NavigationView parent, as you saw earlier in the XML definition.

203CHAPTER 8: Android Design Patterns: UI Design Paradigms

Our Activity subclass definition implements a NavigationView Java interface for the
onNavigationItemSelectedListener, using the following class declaration code:

public class MainActivity extends AppCompatActivity
 implements NavigationView.OonNavigationItemSelectedListener { code

body }

The next method that we need to examine is onNavigationItemSelected(MenuItem).
This is in the body of our class code due to the implements keyword, which wires in the
NavigationView.onNavigationItemSelectedListener interface, and therefore requires that
we override this method with one of our own, which processes MenuItem selections. Since
this is an “empty method body” for now, while we get the bootstrap infrastructure code
working, we need to add the @SupressWarnings statement, telling the Android Studio
compiler that our application UI doing nothing is not an error, and that we know what we are
doing, so it can suppress the errors regarding this.

@SupressWarnings(“StatementWithEmptyBody”)
@Override
public boolean onNavigationItemSelected(MenuItem item) {
 int id = item.getItemId();
 if (id == R.id.nav_camera) { // Camera Logic Here }
 else if (id == R.id.nav_gallery) { // Gallery Logic Here }
 else if (id == R.id.nav_slideshow) { // Slideshow Logic Here }
 else if (id == R.id.nav_manage) { // Manage Logic Here }
 else if (id == R.id.nav_share) { // Share Logic Here }
 else if (id == R.id.nav_send) { // Send Logic Here }
 DrawerLayout drawer = (DrawerLayout)findViewById(R.id.drawer_layout);
 drawer.closeDrawer(GravityCompat.START);
 return true;
}

The actual onNavigationItemSelected() method takes in a MenuItem object, names it item,
inside of the parameter area of the method, and processes it within the body of the method
and returns a Boolean result (true if the processing completed).

Inside the method an id integer variable is created and assigned to the item ID value using a
.getItemId() method call. The majority of the method body is a 6-line if-else-if evaluation
loop that ascertains which MenuItem has been clicked by using XML ID values referenced
by using the R.id.name method used by Android to reference XML-defined application UI
objects.

After the if-else-if processing, a DrawerLayout object is instantiated, and the
.closeDrawer() method is called with the GravityCompat.START constant to show which
direction the drawer should slide shut. When you tested this application, you saw that
selecting any of the menu options automatically closes this sliding UI drawer.

Let’s split the onCreate() into logical sections to examine it object by object to see how the
sliding drawer UI is inserted to memory and controlled by the events queue (CPU). The first
two lines of onCreate() are standard fare in Android, and set up the object’s instance states
in a Bundle passed up to the Activity class onCreate() using the super keyword, and wire
the ContentView object to your top-level UI definition, activity_main, which we analyzed

204 CHAPTER 8: Android Design Patterns: UI Design Paradigms

during the first two-thirds of this chapter. After that Android instantiates a Toolbar object
named toolbar and wire it up to the <toolbar> definition seen in the middle of Figure 8-7, by
using an android:id parameter, inside of a findViewById(Resource) method call. The next
line sets support for that Toolbar object named toolbar to serve as the ActionBar object
for the Activity. The code for this Activity creation and Toolbar instantiation looks like the
following:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar)findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

The next section of code instantiates the FloatingActionButton object and names it fab,
referencing the UI widget’s XML definition in app_bar_main.xml using the ID parameter. Then
it uses the fab object to call the .setOnClickListener() method and sets up an onClick()
event handler structure, which you learned about in Chapter 7.

FloatingActionButton fab = (FloatingActionButton)findViewById(R.id.fab);
fab.setOnCLickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)
 .setAction("Action", null)
 .show();
 }
});

Inside of the onClick() event handler Android Studio 2.3 creates a Snackbar object, using
the Snackbar.make() method call, and chains a .setAction() and .show() method call
to this creating a Snackbar.make().setAction().show()code chain. The .make() method
takes in the onClick() method’s view object, the message, and the Snackbar.LENGTH_LONG
constant, which defines the length of time to display the message. The .setAction()
method allows users to interact with a Snackbar, and allows you to specify the button name
value, in this case “Action” and the action to execute, for this empty bootstrap application
this is currently null (do nothing).

Android Snackbar is a fairly new class, which is used to display brief messages on the lower
portion of the screen to update users as to what is happening with the processing of your
application logic for the current action or operation. Snackbars appear above all the other
UI elements on the screen. One Snackbar can be displayed at a time, and will automatically
disappear, after the specified length of time, or after user interaction elsewhere on the
screen. Snackbars may be swiped off-screen.

The next section of code instantiates a DrawerLayout object and names it drawer and
references the DrawerLayout ID of drawer_layout, in the activity_main.xml file. Then
an ActionBarDrawerToggle object is instantiated and named toggle, using a Java new
keyword and the ActionBarDrawerToggle() constructor method, which takes Context (this),
DrawerLayout and Toolbar objects, as well as content description strings to be used by
users who may have physical impairment, such as blindness, for instance.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

205CHAPTER 8: Android Design Patterns: UI Design Paradigms

DrawerLayout drawer = (DrawerLayout)findViewById(R.id.drawer_layout);
ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(this, drawer, toolbar,
 "Open navigation drawer",
 "Close navigation drawer");
drawer.setDrawerListener(toggle); // Deprecated Method!
toggle.syncState();

The ActionBarDrawerToggle class provides an object that will wire together the functionality
of this DrawerLayout sliding drawer UI design pattern and the Android ActionBar functions,
which have been replaced with a custom Toolbar in this design.

The .setDrawerListener(toggle) method call off the drawer object wires the DrawerLayout
object to the toggle ActionBarDrawerToggle object. You will notice that this method is
deprecated (lined-out in Android Studio) which means that it is scheduled for removal from
the API. We will look at the solution to this in the next section. The final line of code calls the
.syncState() method off the toggle object. This synchronizes the toggle indicator with the
state of your DrawerLayout.

The last two lines of Java code instantiates a NavigationView object, and names it
navigationView and uses the nav_view ID in the activity_main.xml UI definition file to inflate
the NavigationView object, configuring it with the specified XML parameters, which can
be seen in Figure 8-6. Notice that you do not always have to use an .inflate() method to
configure (inflate) a Java object with XML specified parameters in Android. Finally, the .setN
avigationItemSelectedListener(Context) method call is used to attach an event listener to
the NavigationView object.

NavigationView navigationView = (NavigationView)findViewById(R.id.nav_view);
navigationView.setNavigationItemSelectedListener(this);

Finally, let’s take a look at how you would deal with recently deprecated code, so that you
know the work process regarding how to research this scenario using the search engine of
your choice (since I am a Google Android and Chrome developer, I’d logically select Google
for this task).

Deprecated Java Code: Researching Replacement APIs
The last thing I want to show you in this chapter, since Android Studio coded a deprecated
method that was lined-out in the editing pane, which to me is not optimal, is how to research
what to do if the Google Android OS Development Team takes away one of your API calls
that you are utilizing for your application. The fastest way to find a solution is to use a
keyword pair “API-component deprecated,” in this case, this would put setdrawerlistener
deprecated in your search bar, as is shown at the top of Figure 8-16. As you can see in
the search result, you’ll often find the solution to the problem in the short description of the
search listing, in this case, “Use addDrawerListener() instead” as shown at the bottom of
Figure 8-16.

206 CHAPTER 8: Android Design Patterns: UI Design Paradigms

It can often be that easy, and luckily, it is here, since this is an Absolute Beginner
title! So, let’s try this simple solution, and see if it works. Click on the MainActivity.
java editing tab and change the onCreate() method’s fourteenth line of code, drawer.
setDrawerListener(toggle); to be drawer.addDrawerListener(toggle); as can be seen
highlighted in light blue and yellow near the bottom of Figure 8-17. No wavy red error
highlights appear, so the next step is to use a Run ➤ Run ‘app’ menu sequence and test the
application in the Nexus AVD emulator to see if it works the same way.

Figure 8-17. Replace the .setDrawerListener(toggle) with .addDrawerListener(toggle)

Figure 8-16. Search for information with search term “setdrawerlistener deprecated”

I will forgo another screenshot that would be a duplicate of Figure 8-13, as the application
works in exactly the same way as it did with the deprecated method call. Congratulations,
you have now created a second more advanced user interface design pattern, which we can
enhance during the second half of the book with new media assets and special effects as
we learn about advanced Android API components.

207CHAPTER 8: Android Design Patterns: UI Design Paradigms

Summary
In this eighth chapter, you learned about Android design patterns, as well as implementing
a sliding drawer user interface, which conforms to the sliding/swiping UI design pattern, as
well as the concept of optimizing screen real estate, so the user has the best experience
possible.

We covered Android design patterns, including material design; hardware device
characteristics; specialized APIs; future APIs, for emerging market verticals; and Pure
Android concepts, such as accessibility, compatibility, confirmation, acknowledgment,
widgets, swiping, and sliding view designs.

Next we looked at another popular Android design pattern and learned how to have Android
Studio create this design pattern for us, using the Create New Android Application series of
dialogs. We analyzed the XML markup, user interface design, and Java programming logic
to learn new Android API components and design concepts.

We learned how to diagnose and solve deprecated API components, even if these are
introduced by Android Studio, and how to correct and test these upgrades and get a clean,
functional application.

Next, in Chapter 9, you’ll learn about digital imaging concepts, and how to use digital image
assets in Android applications, like NinePatch assets and multi-state ImageButton user
interface elements. We’re going to start getting more advanced from this point on out in the
book, so you will no longer be an Absolute Beginner!

http://dx.doi.org/10.1007/978-1-4842-2268-3_9

209© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_9

Chapter 9
Android Graphic Design:
Making UI Designs Visual
In the first half of this book, I tried to stay as much “inside” of Android Studio, the Android API,
and Android OS as much as possible, so that we can get the IDEA to either code or help us
design as much of an application as possible. This approach still gives you a good “head start”
on the core classes, methods, and design concepts that an Android 7 developer should have
knowledge of, and eventually mastery of. I am trying to give you the global overview of what
the main components are in Android currently, and how everything in Android OS fits together.

In the second half of the book, which will show you how to incorporate new media
elements into your app’s UI design, such as digital imagery, digital audio, digital video, and
2D animation, we will venture “outside” of the core Android development tools, allowing you to
use open software packages outside of Android Studio that are commonly used by application
developers for new media content development. In this chapter, we’ll cover digital imagery.

We will utilize GIMP 2.8 in this chapter, to explore the graphics concepts for this chapter and
get some hands-on experience in applying image compositing concepts and techniques
we will be discovering during the course of the chapter. There is no way I can cover all of
the graphics concepts and topics I would like to in one single chapter, at least not using
less than a hundred pages! If you want to dive into digital imaging specifically, check out
the Digital Image Compositing Fundamentals (2015) title or the Android Studio New Media
Fundamentals (2015) title, both of which are currently available on the http://www.apress.com
website (search under my author name of Wallace Jackson).

We will be covering several of the core Android classes that are used to implement graphic
design elements, such as ImageButton, ImageView (which we have already covered in
Chapter 6), and NinePatch. During this chapter, you will utilize these three Android graphics
classes to skin the Sliding Drawer UI layout container design. Skinning the UI design using
graphics elements will enhance the visual aspects of this UI design, and increase its interest to
the end user, as well as increasing its perceived level of professionalism. First, we will go over
some foundational digital imaging concepts, so that this material makes more sense to you.

http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4842-2268-3_6

210 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Imaging Concepts, Formats, and Techniques
The first thing that we need to do is to get a knowledge foundation regarding the concepts,
formats, and terms that we are going to use during the rest of this book regarding working
with digital images. This area is most commonly called graphic design, although I am going
to approach it from a more professional “digital imaging” or “image compositing” standpoint.
As you already know, Android terms graphic design elements drawables.

The concepts, formats, techniques, and terminology that I cover in this chapter will also
apply to animation and digital video new media assets, as both of these are based on digital
imagery in one way or another, so we will be able to build on the knowledge base created
in this chapter in future chapters, which I am trying to do in each and every chapter in this
book, so your knowledge of Android 7.1.1 development increases exponentially, and in a
logical fashion.

First, we will cover the pixel, the foundational element of the digital image; and then the
concept of resolution, or the size of the digital image; and then the concept of aspect
ratio, or the shape of the digital image. Once we are done with the second dimension (2D)
aspects, we will go into the third dimension (3D) and look at how the colors of each pixel
are created, using red, green, and blue (RGB) layers of color, and then at how transparency
is defined within an image using a fourth alpha layer that contains transparency values.
After that, we’ll get into more advanced digital imaging concepts, like compositing and
pixel blending, and take a look at how all this knowledge is used when using digital image
formats and their codecs to compress digital image assets.

The Foundation of Digital Images: The Pixel
Digital imagery is made up of two-dimensional (2D) arrays (grids) containing pixels. The
industry term pixel is a conjugation of two words: pictures (commonly called pix) and
elements (shortened, to be simply els). The number of pixels in a digital image asset should
be expressed using a term called resolution. This is the number of pixels in both the width
(denoted using a W, or an X for the x-axis) and the height (denoted using an H, or a Y for the
y-axis) image dimensions. The resolution of an image asset is usually expressed using two
(X and Y) numbers with an “x” in the middle, such as 800x480, or using the word “by,” such
as 800 by 480 pixels.

To find the total number of pixels that are in a 2D image, simply multiply the width pixels
by the height pixels. For instance, an HDTV resolution 1920 by 1080 image will contain
2,073,600 pixels, over 2 million pixels, also referred to as two megapixels. The more pixels
that are in an image, the higher its resolution. Just like with digital cameras, which range
from 3 megapixel smartphone cameras to 75 megapixel DSLRs, the more pixels that are in
the digital image grid or array, the higher quality level the image will have.

Android supports everything from low-resolution, 320 or 480 pixel display screens for Android
smartwatches, or entry-level flip-phones and small screen phones; to medium-resolution, 854
by 480 pixel display screens for mini-tablets and smartphones; to high-resolution, 1280 by 720
pixel display screens, for HD smartphones and medium tablets; to extra-high-resolution, 1920
by 1080 pixel display screens for large tablets and iTV sets, to the recent super-high-resolution,
2560 by 1440 phones (such as Samsung’s Galaxy S5), and finally, new ultra-high-resolution,
4096 by 2160 (known as “4K”) pixel display screens for tablets, smartphones, and 4K iTV sets.

211CHAPTER 9: Android Graphic Design: Making UI Designs Visual

The Shape of a Digital Image: The Aspect Ratio
A slightly more complicated aspect (no pun intended) of image resolution would be the
image’s aspect ratio, a concept which also applies to Android device (hardware) display
screens. Aspect ratio is the ratio of width to height or W:H, or, if you like to think in terms
of an x-axis and y-axis, it would be X:Y. The aspect ratio will define the shape of an image or
display screen; that is, how square or rectangular (popularly called widescreen) the image or
the display screen might be. A tall rectangular display is popularly termed a portrait display.

A 1:1 aspect ratio display screen (or digital image) is perfectly square, like a smartwatch
screen. It is important to note that it is the ratio between these two numbers that defines the
shape of the image or screen and not these numbers themselves. That is why it is called the
aspect ratio, although it is often called the “aspect” for short.

Many Android display screens these days use an HDTV widescreen aspect ratio, which is
16:9. However, some use a less wide, or taller, 16:10 (or 8:5, if you prefer) aspect ratio. Even
wider screens will also surely appear on the market soon, so look for 16:8 (or 2:1, if you
prefer) ultra-wide screens, which will have the 2160 by 1080 resolution, and instead of being
taller than 16:9 aspect ratio screens will be shorter than 16:9 screens.

An image aspect ratio is usually expressed as the smallest set or pair of numbers that can
be achieved on either side of the aspect ratio colon. If you paid attention in high school,
when you were learning all about lowest (or least) common denominators, then this aspect
ratio mathematics should be fairly easy to understand and to calculate.

I usually do this mathematical matriculation (say this five times rapidly, to make what we are
about to do seem easier) by continuing to divide each side by two. Taking the fairly odd-
ball 1280 by 1024 (called SXGA in the display industry) resolution as our example, half of
1280:1024 is 640:512, and half of that would be 320:256, half of that is 160:128, and half of
that again is 80:64, half of that is 40:32, half of that is 20:16, half of that is 10:8, half of that is
5:4, so an SXGA screen will be said to utilize a 5:4 aspect ratio.

All of the above ratios are the same aspect ratio, and all are valid. So if you want to take the
really easy way out, replace the “x” in your image resolution with a colon and you have an
aspect ratio for the image, although distilling it down to its lowest format, as we’ve done
here, is far more useful to visualize the shape.

Original PC screens used a squarer 4:3 aspect ratio, and early 3:2 aspect ratio CRT “cathode
ray tube” TV sets were nearly square. Smartwatch aspect ratios are square, at 320x320,
400x400, 480x480 or 1:1 aspect ratio. HD and UHD iTV sets use a 16:9 widescreen aspect
ratio. The closer the numbers on either side of the colon are to each other in size, the more
square an image or a screen will be.

A 2:1 aspect is a widescreen display, and a 3:1 aspect display would be downright
panoramic! The current market trend is certainly toward wider screens and higher resolution
displays; however, Android smartwatches could change this trend back toward square
aspect ratios, which are certainly useful in a wide variety of applications.

212 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Coloring Your Digital Images: RGB Color Theory
So now you understand digital image pixels, and how they’re arranged using 2D rectangular
arrays, at a specific aspect ratio that defines their rectangular shape. The next logical aspect
(again, no pun intended) to look into, is how each of those pixels assign their color values.
Color values for pixels are defined by the amount of three colors, red, green, and blue
(hence the term RGB), which are present in varying amounts in each pixel.

Android (as well as other device) display screens utilize additive color, which is where the
wavelengths of light for each RGB color plane are summed together. Additive color can be
used by consumer electronics devices to create literally billions of different color values, and
is used in popular LED displays used in iTVs, smartphones, laptops, e-readers, and tablets.
Additive color is the opposite of subtractive color, which is utilized in printers.

To show the difference, under a subtractive color model, mixing a red color with a green
(using inks) will yield a purple color, whereas in an additive color model, mixing a red color
with a green color (using light) will yield a yellow color. Subtractive color models are limited in
the spectrum of color that they can produce, whereas the additive color model can produce
every color under the rainbow (or, I should say, every color in the universe!).

The amount, or numbers, of red, green, and blue “shades” or intensities of light that you
have available to mix together will determine the total amount of colors that you will be able
to reproduce. In today’s digital device hardware capabilities, we can produce eight bits
(8-bit) or 256 levels of light intensity for each red, green, and blue (RGB) color. Some of the
newer devices are supporting ten bits (10-bit) or 1024 levels of light intensity.

We can generate these color values for each pixel individually, so every pixel in your image
can have 256 levels (or 1024 levels) of color intensity variation for each of the red, green,
and blue values. This will therefore use one byte (8-bits) of data per red, green, and blue
color, unless you are using 10-bit color. A byte uses an 8-bit data value, which allows it
to represent the color intensity level from a minimum of zero (off, no color contributed, or
black, if all the RGB planes are using this value) to a maximum of 255 (on, maximum color
contributed, or white, if all RGB planes are using this value).

The Number of Colors in a Digital Image: Color Depth
The amount of data that is used to represent the amount or number of colors in a digital
image is referred to as the color depth of an image. It’s important to note that in digital
images less than 8 bits can be used to represent the amount of color in an image when
using an indexed color model that uses a color palette instead of RGB. There are several
common color depth levels used in the digital imaging industry. I’ll outline the most common
ones here, along with the digital image file formats used with each color depth in the Android
7 OS. The lowest color depth exists using 8-bit indexed color digital image format. The
indexed color image has a maximum of 256 total color values per pixel, and would use the
GIF and PNG8 image formats to contain this indexed color type of digital image data.
An indexed color image does not have three RGB color planes, so it is generally three times
smaller than “True Color” RGB imagery. Instead of three RGB color planes, indexed color
uses a palette, which is a data array containing up to 256 color values, used to represent all
of the colors in the indexed image.

213CHAPTER 9: Android Graphic Design: Making UI Designs Visual

A medium color depth image, which is not natively supported in Android, but which I will
discuss here, for continuity of learning, will feature the 16-bit “High Color” color depth.
A high color depth image will contain 65,536 colors. This would be calculated as 256 times
256 (8-bit and 8-bit is 16-bit), and is supported using TARGA (TGA), Tagged Image File
Format (TIFF), and the Windows BMP digital image file format.

A 24-bit truecolor color depth image will feature the full 8-bit color data values for each RGB
color plate (color plane) and will be capable of displaying more than 16.7 million potential
colors per pixel. This is calculated as 256 times 256 times 256 (8-bit red and 8-bit green and
8-bit blue is 24-bit RGB), and equals 16,777,216 colors. Android file formats that are capable
of supporting 24-bit color include JPEG (using the .jpg file extension), PNG24 and PNG32
(using a .png extension), and WebP (using a .webp extension), which stands for WebPhoto.

Using 24-bit color depth will give you the highest digital image quality level, which is why
Android 7.1.1 prefers the use of the PNG24 or the JPEG image file format. Since PNG24 is
lossless, which means that it loses no quality (and none of the original image’s data) during
the compression process, it has the highest quality compression, and the lowest original
image data loss, along with the highest quality color depth. This is a reason why PNG24 and
PNG32 are the preferred digital image formats to use, as far as Android OS is concerned,
because the usage of Portable Network Graphics ultimately produces the highest quality
visual result for an Android application.

It is important to note that there are higher color depth images out there, as we discussed
with 30-bit color, or “Deep Color,” images. These are also called HDRI, or High Dynamic
Range Images, which use 30-bit, 36-bit, 48-bit, and even 64-bit color depth (if there is an
alpha channel). The hope is that the Android 7.1.1 OS (and device hardware) will move to
support these extremely high quality digital image color depth standards, which are now
currently being utilized for advanced i3D console games, as well as in the new Samsung
SUHD 4K iTV Set.

A 30-bit deep color depth image will feature a full 10-bit color data value for each RGB color
plate (color plane), and will be capable of displaying 1,073,741,824 potential colors per
image pixel. This is calculated as 1024 times 1024 times 1024 (10-bit and 10-bit and 10-bit
is 30-bit). High Efficiency Video Coding (HEVC) which Android now supports, allows a color
depth of 8-bits to 10-bits per color plane. The second version of HEVC will feature five profiles,
which allow for a bit depth of 8-bits to 16-bits per sample, or 48-bit color digital video assets.

Representing Colors in Android: Hexadecimal Notation
Now that you know what color depth is, and that colors are represented as a combination of
three different red, green, and blue (RGB) color channels within any given image, we need to
look at how as Android 7.x, Java 8, and JavaFX 8 (now part of Java) programmers, we are
going to represent these three RGB color channel values inside of our Android applications.
This knowledge will allow us to create any single one of these 16,777,216 colors, and even add
alpha channel transparency values, which we will be covering in the next section of this chapter.

It is important to note that in the Android OS, color is not only used in digital images,
commonly called bitmap images, but also in 2D illustration, which is commonly referred to
using shapes or vector SVG imagery, as well as in color settings, such as the background
color value utilized in your Android 7 Theme specifications, or for your textColor values, for
instance, that define what color your text UI elements will be.

214 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

In Android, different levels of RGB color intensity are represented as data values using
hexadecimal notation. Hexadecimal notation is based on the original Base-16 computer
notation used decades ago to represent 16 bits of data value. Unlike Base-10, which counts
from zero through 9, Base-16 counts from zero through F, where F would represent a Base-
10 value of 15 (remember that counting from zero through 15 gives you 16 data values).

To tell the Android OS that we are giving it a hexadecimal value, we preface these Base-16
values with a pound sign like this: #FFFFFF. Because each slot in this 24-bit hexadecimal
representation represents one Base-16 value, to get the 256 values we need for each RGB
color will take 2 of these slots, as 16 times 16 equals 256. Thus, for a 24-bit image, you
would need 6 slots after the pound sign, and for a 32-bit image, we would need 8 slots after
the pound sign. We will be covering what these 32-bit type of digital images are, and what
they are used for, during the next section of this chapter, when we look at alpha channels.

These hexadecimal data slots represent the RGB values in the following format: #RRGGBB.
Thus, for the color white, all red, green, and blue channels in this hexadecimal color data
value representation are at the maximum luminosity of fully on, or FF, which would be 16
times 16, or a full 256 data value for each RGB color channel. For this reason, the value
#FFFFFF would represent the whitest white that is possible on a given device screen.

When you additively sum all of the RGB colors together, you will get white light. As I have
mentioned before, the color yellow is represented by the red and green channels being on,
and the blue channel being off, thus the hexadecimal notation representation for the color
yellow would be #FFFF00, where both red and green channel slots are on, using FF for a
color intensity (level) value of 256, and the blue channel slots are fully off, using 00.

As I mentioned earlier in this section, there is also a 32-bit image color depth whose data
values are represented using the ARGB color channel model, where the A stands for alpha,
which is short for alpha channel. We’ll be going over the concept of image alpha and alpha
channels in detail during the next section of the chapter, and we will also cover the related
concept of pixel blending.

The hexadecimal notation data slots for an ARGB color channel model data values will hold
data in the following format: #AARRGGBB. Thus, to represent the fully opaque color white,
all alpha, red, green, and blue channels in this hexadecimal color data value representation
would be at a maximum luminosity (as well as opacity), and the alpha channel fully opaque,
as represented by an FF value, so its hexadecimal value would be #FFFFFFFF.

A 100% transparent alpha channel is represented by the alpha channel slots being set to
zero; thus, a fully transparent image pixel could be #00FFFFFF, or #00000000. It is important
to notice that if an image alpha channel is set to be fully transparent, then each pixel’s color
value (represented by the last six hexadecimal data slot values) does not even matter, and
thus you could put any color value into these last six data slots.

Note As you can see, I'm giving you all of the different industry terminology (color channel, color
plane, color plate) that you will find currently being used in the graphics industry. All of these terms
can be used interchangeably.

215CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Image Compositing Transparency: Alpha Channels
In this section of the chapter, we will take a look at how digital images are composited
together, which is a process known as image compositing, which is usually done by a
professional who is called a digital image compositor. Digital image compositing is a
process of blending together more than one layer of digital imagery in order to obtain a
resulting image. A composite image on a display screen will appear as if it is one single
image, when, in fact, it is actually a collection (a “layer stack”) of several seamlessly
composited digital image layers.

To be able to accomplish seamless image compositing using layers, the images used in
each layer other than the bottom-most background or “backplate” layer need to have alpha
channel (transparency) values associated with each pixel in the image contained within
that layer. We can utilize this alpha value for each pixel in the image to precisely control the
blending of that pixel with other pixels in the same overall image composite coordinate or
location, that is, pixels on other layers above and below that particular image layer using the
same pixel coordinates.

It is because of this stacked layer paradigm that I refer to this compositing as 3D, as the
layers are stacked into place along, or using, the Z-axis, and can be said to have a particular
Z-order or Z-depth. Don’t get this confused with 3D modeling software, such as Silo or
Blender, as the end result of your digital image compositing (layer) stack is still a resulting 2D
digital image asset, and not a 3D geometric model asset.

Like the other RGB channels, the alpha channel also has 256 levels of transparency that
are represented via the first two slots in the hexadecimal representation for the ARGB data
value, which as you have seen has eight slots (for 32-bits) of data, rather than the 6 slots
used to represent a 24-bit image. A 24-bit image could thus be thought of as being a 32-bit
image with no alpha channel data.

If you think about it, if there is no alpha channel data, why waste another 8 bits of data
storage, especially if that alpha channel is filled with #FF alpha values, representing fully
opaque pixel transparency values. The uncompressed 32-bit image with an alpha channel
filled with #FF values has 25% more data than a 24-bit image with no alpha channel, and
yet it would yield the same exact visual result. So don’t use a 32-bit image unless you
need to use transparency values for the pixels in that image (for multi-layered digital image
compositing purposes).

Therefore, to summarize, 24-bit imagery has no alpha channel, and isn’t going to be used for
image compositing, unless it is the bottom backplate in the compositing layer stack. A 32-bit
image is always going to be used as a compositing layer, on top of something else which will
need the ability to show through via transparency values defined in the image alpha channel.
These transparency values may vary from pixel location to pixel location, in order to allow
compositors to create special effects and apply image enhancing treatments, such as anti-
aliasing, which we will be discussing later.

How does having an alpha channel and using digital image compositing factor into my
Android graphics design pipeline, you might be wondering? Your primary advantage here
is the ability to split what looks like one single image into a number of component layers.
A reason for doing this may be to apply Java code to individual layer elements in order to
control various parts of a 2D image that you would not be otherwise able to individually

216 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

control, were the image simply one single 24-bit image. A single image can be transformed
as a whole, or as a pixel array, but not on a per-subject (per pixel area) basis, as it could
be if each image element were on its own layer, and thus a separate element in memory,
which could later be controlled by using your Java program logic. The Apress Pro Android
Graphics title covers this in detail.

Algorithmic Image Compositing: Blending Modes
There is another even more powerful aspect of image compositing called blending modes.
Any of you familiar with Photoshop or GIMP know that you can set each layer in your
image composite to use a different blending mode. Blending modes are algorithms that
specify how the pixels that are contained within a layer are blended (mathematically) with
the previous layers (underneath that layer). These pixel blending algorithms will take into
account the transparency level. By combining blending modes and transparency, you can
achieve virtually any digital image compositing result, or special effect, that you are trying to
achieve. Since there are entire books written on using blending modes, and the effects that
you can create, I won’t get into this too much here.

Interestingly, blending modes can be implemented in the Android OS, by using the Android
PorterDuff class. This is a real tribute to, and an indicator of, the 2D power that lies in the
Android 7.1.1 software development APIs. The PorterDuff class gives developers many
of the powerful blending modes that Photoshop (or GIMP 2.10) affords to digital imaging
artisans. The PorterDuff class essentially allows Android apps to implement powerful image
compositing features similar to GIMP or Photoshop. The major difference, of course, is that
you can control the blending modes interactively, using custom Java programming logic,
which is the exciting part for Android 7.1.1 developers. The Pro Android Graphics (2014)
title from Apress covers how to implement PorterDuff blending modes inside a complete
digital image compositing pipeline, if you are interested in diving into this advanced graphics
compositing and blending area of Android 7.1.1 in greater detail.

Masking Digital Imagery: Using Alpha Channels
One of the most popular uses of the alpha channel is to mask out an area of a digital
image. This is usually done in order to create a layer that can be utilized in the digital image
compositing layer stack. Masking is the process of extracting subject matter, essentially
cutting that subject matter right out of the image, by placing it (pasting it) onto its own
transparent layer. I will show you how this can be done in GIMP a bit later.

The masking process yields a part of your image on its own layer. The masked subject
will be isolated from the rest of the source image, but because of layer transparency, will
look like it is still in the final image composite. The advantage to this is that now you can
do things to that subject matter, in GIMP, or later on in Android 7.1.1, and not have those
operations, whatever they may be (rotate, tint, distort, fade and so forth) affect the rest of
that image. If you save one of these transparency layers that has subject matter on it in
GIMP or Photoshop the transparency layer will be converted into an alpha channel.

The masking work process allows you to put image elements (subject material) to use inside
of other images, or in an animation, or to use in a special effects application like Fusion.
Digital imaging software (Photoshop, GIMP, Painter, Fusion, or Corel Draw) has many

217CHAPTER 9: Android Graphic Design: Making UI Designs Visual

tools and features that are specifically there for use in masking images for use in image
compositing. You can’t really do effective image compositing without creating a mask, so
this is an important area to master for graphic designers and Android 7.1.1 application
developers alike.

You can mask automatically, using blue screen or green screen backdrops, and computer
software that can automatically extract those exact color values, in order to create a mask
using an alpha channel. You can also mask manually, by hand, using a digital imaging
software package such as GIMP, and its wide array of pixel selection tools.

The most important consideration in the masking process is getting smooth but crisp edges
around your masked object, so that when you drop it in a layer over a background image, it
looks as though it had been photographed there in the first place. The key to this is a proper
selection work process, using digital image software selection tools (and there are a half-
dozen of these in GIMP 2.10) in the proper way. Using the optimal work process is the key
to “pulling a clean image mask” (more cool graphics industry terms for you to throw around,
to make you appear savvy and professional). The Digital Image Compositing Fundamentals
(2015) book from Apress covers this work process in more detail, if you happen to be
interested in this area of digital imaging, and VFX Fundamentals covers this using Fusion 8.

For instance, if there are areas of uniform color around the subject matter you wish to mask,
maybe you shot it using a blue screen or green screen, you can use the magic wand tool
along with a threshold setting to select everything except the object, and then invert
that selection set, in order to obtain a selection set containing the object. Other selection
tools contain complex algorithms which can look at color changes between pixels, which
can be very useful for edge detection, which you can use in other types of selection work
processes. The edge detection selection tool will allow you to drag your cursor along the
edge of the object that you wish to mask, while the edge detecting selection tool’s algorithm
lays down a precise, pixel-perfect placement of the selection edge, ultimately creating or
“pulling” that object’s mask for you. You can also use spline tools to create your Bezier
outline, and then convert that outline into a selection set. This approach is covered in the
VFX Fundamentals (2016) title from Apress.

Smoothing Edges: The Concept of Anti-Aliasing
Anti-aliasing is a digital imaging technique that is implemented using an algorithm, where
two adjacent colors in an image that share an edge between two color areas are blended
together along that edge. This will make that edge appear to be smoother (crisper, or more
razor sharp) when the image is zoomed out; that is, when the pixels are not individually
visible. What anti-aliasing does is it tricks your eyes into seeing a smoother edge, to
eliminate what is commonly termed “the jaggies” due to a jagged appearance along the
edges in the imagery.

Anti-aliasing provides impressive results, and does so by using only a very few (usually
seven or eight) averaged color values of the pixels that lie along the edge that needs to be
made smoother. By averaged, I mean some colors, or spectrum of colors, that are a portion
of the way between the two colors that are intersecting at the jagged edge in an image,
which you can see along the right-hand side in Figure 9-1.

218 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

I created a basic example of anti-aliasing to show you visually exactly what I mean.
In Figure 9-1, you will see that I created a (seemingly) smooth red circle against a yellow
background. I then zoomed into the edge of that circle, and I grabbed a screenshot. I placed
this alongside of the zoomed-out circle to show these anti-aliasing (orange) values of a
color between (that is, made using) the red and yellow color values that border each other
along the edge of the circle. If you are looking at black and white, you will see all of this
anti-aliasing using grayscale. Luckily for alpha channels, anti-aliasing works just as well in
grayscale as it does using color values.

The best way to get good anti-aliasing is to use a proper image masking work process, and
using the proper settings for any given selection tool that you might be using. One of the
other tricks to implementing your own anti-aliasing is to use a Gaussian Blur tool with a
very low blur value (0.15 to 0.35) on the (transparency) layer containing the object that has
the jagged edges. This will provide the same effect seen in Figure 9-1, and not only that,
it will “blur” the transparency values for the alpha channel (mask) itself as well, allowing
you to anti-alias that image object with any background imagery you may be attempting to
seamlessly composite it against.

Optimizing Digital Images: Compress and Dither
There are a number of technical factors that affect digital image compression, which is the
process of using a codec, which is short for COder-DECoder. A codec is also an algorithm
that looks at image data and finds a way to save it in a file using significantly less data.
A codec’s encoder essentially finds data patterns in an image, and then turns these data
patterns into a form of data that the decoder part of the same codec can reconstruct the
original image from, many times with zero loss of image quality. There are strategies that you

Figure 9-1. A red circle on a yellow background (left) and a zoomed-in view (right) showing the anti-aliasing

219CHAPTER 9: Android Graphic Design: Making UI Designs Visual

can use to get a better quality image compression result, which will result in a smaller file
size, along with higher image quality. Images with a small file size, and a high level of quality
can be said to have a “highly optimized data footprint.”

Let’s start out by discussing all of the digital image attributes that affect the image data
footprint the most, and later we can examine how each of these aspects will contribute to
the data footprint optimization for any given digital image. Interestingly, the order of aspects
that are important to data footprint optimization are similar to the order of the digital imaging
concepts that we have covered thus far during this chapter.

The most critical contributor to the resulting image file size (that is, the data footprint) is the
number of pixels, or the resolution of the digital image. This is logical because each of these
pixels needs to be stored, along with the color values for each of these pixel’s (ARGB) color
and alpha channels. Thus, the smaller you can make the image resolution, while still having
the image still look detailed, the smaller the resulting file size will be. This is because there is
less data overall that will need to be compressed by the codec’s data encoding algorithm.

You can calculate raw, uncompressed image data footprint using the formula:

Width times Height times Color Channels

Recall that for 24-bit RGB images, there are three (RGB) color channels, and there are four
(ARGB) color channels for a 32-bit image. Thus, any uncompressed, true color (24-bit) VGA
image will have 640 times 480 times 3, equaling 921,600 bytes of original uncompressed data.
If you divide 921,600 by 1024 (the number of bytes in a kilobyte), this will give you the number
of kilobytes (K or KB) that are in a raw VGA image, and that number is an even 900KB. Since
deep color imagery uses 16-bits per color channel, simply double this amount of data used.

As you can see, image color depth is therefore the next most critical contributor to a data
footprint of an image, because the number of pixels in that image is multiplied by 1 (8-bit)
or 2 (16-bit) or 3 (24-bit) or 4 (32-bit) or 6 (48-bit) or 8 (64-bit) color and alpha data channels.
Both GIMP and Photoshop have color channel palettes just like they have layer palettes.
Both channels and layers are represented in the same way in these digital imaging software
packages, as composited layers along a Z-axis, in a given Z-order. For color channels, this
Z-order goes R-G-B.

Compact pixel color data (one channel) is one of the reasons indexed color (8-bit) images
are still being widely used today, usually via the PNG8 image format, which features a
superior lossless compression algorithm to the one that the outdated CompuServe GIF
format utilizes. Lossless compression algorithms such as PNG lose zero image data (quality).
A lossy compression algorithm, such as JPEG, will throw away original image data, and
therefore, some of your image’s quality, to achieve more data compression at the expense of
the visual quality.

220 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Using Indexed Color Imagery: Dithering Pixels
Indexed color images can simulate truecolor images, if the colors that are used to create
the image do not vary widely. Indexed color images use 8-bit data to define the image
colors, using a palette of 256 optimally selected colors, rather than 3 RGB color channels.
Depending on how many colors are used in the image, using only 256 colors to represent
an image can cause an effect called banding, where the transfer between adjoining colors
is not smooth. Indexed color image codecs have an option to correct for this visually called
dithering. Dithering is the process of creating dot patterns along the edges of two adjoining
colors in an image. This tricks your eye into thinking there is a third color being used besides
these two colors, when, in fact, there is not.

Dithering gives you a maximum perceptual amount of colors of 65,536 colors, (256 times
256), but only if each of those 256 colors borders on each of the other 256 colors; otherwise,
this would be less than 65,536 perceived colors. You can see the potential there for creating
a plethora of additional colors, and you will be amazed at the result an indexed color image
can achieve in some scenarios (that is, with certain images). Let’s take a true color 3D
image, such as the one shown in Figure 9-2, and save it as an indexed color image to show
you the dithering effect. We will take a look at this dithering effect on the driver’s side rear
fender on the Audi racecar 3D image, as it contains a smooth gradient of gray color.

Figure 9-2. Truecolor source image using up to 16,777,216 colors that we are going to optimize to 5-bit PNG5

I set the Photoshop Save For Web and Devices dialog’s codec to encode a PNG8 image,
shown in Figure 9-3, using 5-bit color (32 colors), so that you can see this dithering effect.
As you can see, the dot patterns are made between adjacent colors, in this case this is
shades of gray, to create a perception that there are additional gray colors beyond the 32
total colors (5-bit data) that are being used to create the PNG5 indexed color image asset.

221CHAPTER 9: Android Graphic Design: Making UI Designs Visual

It is interesting to note that there is this option to use less than 256 colors when compressing
your 8-bit indexed color image. This is usually done to reduce the data footprint even further.
For instance, an image that can attain good results using 32 colors would actually be a 5-bit
image, and thus is PNG5, even though the general format is termed PNG8, or Indexed PNG.
The Colors: “spinner” value selector is where you set this number of colors, and you can set
any number from 2 (1-bit color, or on or off, or black and white) up to 256 colors (8-bits data).

Also, notice that you can set a percentage of dithering to use. I usually select either the
0% or 100% setting, but you could fine-tune your dithering effect anywhere in between
those two extreme values. You can also choose a dithering algorithm type; I use diffusion
dithering, as it will yield a smoother gradient effect along an irregularly shaped gradient, such
as the one that you see in Figure 9-3, on the Audi racecar fender.

Dithering, as you might well imagine, will add data patterns to an image that are more
difficult for the codec’s algorithm to compress. Because of this dithering should increase
your data footprint by a few percentage points. Be sure to check the resulting file size with,
and without, dithering applied, to make sure the dithering provides improved visual results,
and to see if the dithering adds any “data weight” to the resulting file size (data footprint).

The final concept that we have learned about so far that can increase the data footprint of the
image is the alpha channel, as adding an alpha channel will add another 8-bit (or 16-bit for
deep color imagery) color data channel containing pixel transparency data values to the image
being compressed. If you need an alpha channel to define transparency, in order to support
future compositing needs with that image, there is not much of a choice but to include this
alpha channel data. Just make sure not to use a 32-bit image format to contain a 24-bit image
with an empty (completely opaque, and not defining any transparency) alpha channel.

It is interesting to note that many alpha channels that are used to mask objects in an
image will compress very well. This is because alpha channels contain large areas of white
(opaque) or black (transparent), with very little gray value in the pixels along edges between
the two colors to anti-alias the mask. These gray values in an alpha channel are essentially

Figure 9-3. The dithering effect in an indexed color image with compression set to 32 colors (5-bit color)

222 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

the anti-aliasing values, and as you now know, are used to provide visually smooth edge
transitions between the masked object and the imagery that will be used behind it. Large
areas of the same color will yield the best compression as the codec can essentially say
“this entire area is white, and this entire area is black,” rather than “this pixel is this color,
and that pixel is that color,” and so on.

Alpha channels can also provide real-time anti-aliasing for applications that utilize
compositing. The reason for this is because in an alpha channel image mask, the 8-bit
transparency gradient is defined using a white to black spectrum (gradient) that defines the
alpha channel transparency. So these gray values along the edges of each object in the
mask are essentially averaging, or blending, the color of the (RGB) subject object (the image
that carries the mask with it) with color in the target background image. This essentially
provides a real-time anti-aliasing for the image element (object) on your transparency layer
with any background imagery that might be placed behind the masked image that carries its
own transparency (and anti-aliasing) data via PNG32 format.

Android Image Formats: Lossless versus Lossy
Android supports several popular digital image file formats, some of which have been
around for decades, and which are also available in other popular open source content
development platforms, such as HTML5 and JavaFX.

These range from the decades-old CompuServe GIF (Graphic Information Format) and
the Joint Photographic Experts Group (JPEG) formats, to the more recent PNG (Portable
Network Graphics) and WebP (Web Photo) formats. I will cover these in order of origin, from
the older (and less desirable) GIF, to the newer WebP format. WebP support has recently
been added to the Opera and Chrome HTML5 browsers.

CompuServe GIF is fully supported by the Android OS; however, it’s not recommended
for general use. GIF is a lossless digital image file format, as it does not throw away any
image data to achieve its better compression result. This is because this GIF compression
algorithm (codec) is not as refined (effective) as PNG, and it only supports indexed color,
which we covered earlier in the chapter. That said, if all your image assets are already
created, and they use the GIF format, you will still be able to use them without any problems
(other than the resulting quality to file size ratio) in an Android app. Android 7.x does not
yet support the Animated GIF (aGIF) format.

The next oldest digital image file format that Android supports is the JPEG format, which
uses the truecolor color depth, instead of an indexed color depth. JPEG is a lossy digital
image file format, because it throws away the original image data in order to be able to
achieve the smaller file size. The file sizes achieved by using this JPEG algorithm can be an
order of magnitude (10X) smaller than the original raw uncompressed image data.

It is important to note that the original (often referred to by using the term raw)
uncompressed image data is unrecoverable after compression by the JPEG codec’s encoder
has taken place. For this reason, you will want to make sure you have saved your original
uncompressed image file before you compress the image through the JPEG compression
algorithm.

223CHAPTER 9: Android Graphic Design: Making UI Designs Visual

If you zoom into a JPEG image after compression, you will see discolored areas that clearly
were not present in the original image. These “degraded” areas in the JPEG image data are
termed compression artifacts in the digital imaging industry, and compression artifacts only
occur when you utilize lossy image compression. This is the primary reason why the JPEG
file format is not the most highly recommended digital image format for use in Android, as
the Pure Android approach we covered in Chapter 8 seeks to provide a pristine visual result.

The most recommended image format for use in Android application development is called
PNG, or Portable Network Graphic, file format. PNG is always pronounced Ping in the
digital image industry. PNG has both an indexed color version, called PNG8, or PNG5 if you
only need to use 32 colors as we saw earlier in the chapter; and a truecolor version, called
PNG24, and a truecolor with alpha channel version, called PNG32.

The PNG8, PNG24, and PNG32 numbering extensions I am using represent the bit depth of
color support, so a truecolor PNG that has an alpha channel would technically be referred
to as a PNG32. Similarly, a PNG using 16 colors would be said to be a PNG4, a PNG using
64 colors could be referred to as a PNG6, and a PNG using 128 colors could be referred to
as a PNG7, and so forth. The reason PNG is the recommended format for use with Android
is because it uses lossless compression, and yields high image quality along with a very
decent (respectable) compression efficiency.

The most recent image format was added to Android when Google acquired ON2 and is
called the WebP image format. The format is supported under Android 2.3.7 for image read,
or playback support, and in Android 4.0 or later for image write, or file saving support. Image
write support in Android, in case you might be wondering, would be used with the Android
device camera, so that your users can save (write) images to their SD card or to the “cloud”
via remote web server. WebP is a static image version of the WebM video file format, which
is also known in the industry as the ON2 VP8/VP9 codec, which was acquired by Google,
and released as open source.

Creating Android NinePatchDrawable Assets
This section of the chapter will outline how to create the NinePatch graphic using the
Android Draw 9-patch tool, which used to be a DOS command prompt based tool (in
the previous three editions of this book), but is now integrated into Android Studio 2.3.
NinePatchDrawable objects are unique to Android, although there is some movement to add
this intelligent-tiling digital image format to the HTML5 and JavaFX standards as well.

A NinePatch image uses the PNG image format, and is designed to be able to tile efficiently
and asymmetrically in either the X or the Y image dimension, or in both dimensions at the
same time. This allows NinePatch images to be able to morph to fit different size and shape
UI widgets and/or display screens, if used as a border element.

You will need a source PNG image with which to create your NinePatchDrawable object.
I have provided a PNG32 (truecolor with alpha channel) digital image asset, which you’ll
find in the project assets repository for the book, called ninepatchframe. The reason I am
using an alpha channel to define transparency in the center area of the 9-patch that we’re
about to create is so that any image layers (intended composites) that are behind the image
asset inside Android will composite perfectly with the 9-patch image asset in the image
compositing stack, which we will be implementing using XML UI layout design definition
markup, later on in this chapter.

http://dx.doi.org/10.1007/978-1-4842-2268-3_8

224 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Installing the Draw 9-Patch Source PNG32 Image
Let’s get started by copying the ninepatchframe.png source image that we are going to use
with the Draw 9-patch editor in Android Studio into your project folder hierarchy, in the tools
subfolder. Open your operating system file navigation utility, for Windows this is the Explorer.
Download the ZIP file containing the assets for this book from the software repository on
Apress.com and copy the ninepatchframe PNG32 file to your project AndroidStudioProjects/
NavDrawerPattern/app/src/main/res/drawable folder, as shown in Figure 9-4.

Once you launch Android Studio, as can be seen in Figure 9-5, you’ll see the ninepatchframe.
png source file in the /app/res/drawable project folder. Right-click on the ninepatchframe.
png file and select the Create 9-Patch file menu option. This will bring up the Save As .9.png
dialog shown on the right side of Figure 9-5 where you select the same app/src/main/res/
drawable folder path that you did in Figure 9-4 to save your NinePatch asset in.

Figure 9-4. Copy the ninepatchframe.png source file into the NavDrawerPattern/app/src/main/res/drawable folder

Figure 9-5. Right-click on the ninepatchframe.png file and select Create 9-Patch file, and save in drawable folder

225CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Creating a NinePatch asset does not open it for editing. Right-click the
ninepatchframe.9.png file created by the steps in Figure 9-5, and use a Jump to Source
option, to open it in a 9-Patch Editor tab, as is seen in Figure 9-6.

Exploring Android Studio’s 9-Patch Editor
Make sure that the ninepatchframe.9.png tab is selected at the top of the IDE, as
well as the 9-Patch tab at the bottom, as seen in Figure 9-7. The left gray pane is the
NinePatchDrawable asset editing pane, where you will create your one-pixel wide black
lines which allow you to define “9 patches.” These patches will tell the NinePatch class (the
9-Patch engine) in Android what the scalable areas are for this NinePatchDrawable asset are,
as well as defining where the center (called the padding area for a 9-Patch asset) content
area will be.

Figure 9-6. Right-click the ninepatchframe.9.png 9-Patch image, and Jump to Source to open the 9-Patch Editor

226 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

The right pane is the result of the NinePatchDrawable asset configuration shown using a
preview pane, as you can see on the right side in Figure 9-7, where you can see what the
resulting NinePatchDrawable asset will look like when it is scaled according to the one-pixel
black border line definitions that you are about to learn how to define using the left editing
pane of the Android Studio 9-Patch Editor. As you can see, currently the 9-Patch definition
is incorrect, and skews part of the tiling effect, warping the screws, and the top (and bottom)
frame.

Defining the NinePatchDrawable Asset’s Scalable Areas
To define how your NinePatchDrawable asset will scale along the X-axis dimension, click
in the top, one-pixel transparent perimeter area, starting on the right side, after the corner
screw, as shown in Figure 9-7, and drag toward the left corner screw. This will draw out
a one-pixel black line, which will define your X-axis scalable patch. Once you draw in the
rough approximation of what you want, you can fine-tune the line using one pixel, light gray
lines that extend into the medium gray surrounding areas (these are difficult to see in the
current 9-Patch UI color schema). If you place the mouse-over these gray lines the cursor
will change into a double arrow, and you can then click and drag the grayed-out area, until
it fits pixel perfectly with the transparency area in the center of the ninepatchframe PNG32
source image, which you are using to create the NinePatchDrawable asset.

You can also right-click (or if you use macOS, hold the Shift key, and click) to erase
any previously drawn lines. As you can see in the preview pane on the right side of
Figure 9-8, you are now getting a visual result that is more in line for what we are going for,
as the NinePatchDrawable asset is not distorted.

Next, let's use one of the more colorful 9-Patch Editor options, the Show patches checkbox
option. As you can see circled in red at the bottom of Figure 9-8, this is located at the very
bottom of the 9-Patch editing pane. This option is there so that you can visualize your
9-patch X or Y settings using different colors. Look for the empty checkbox next to this
Show patches option, and select it, and turn this feature on. As you can see in Figure 9-8,
this option will provide coloration for your selection areas, by using a combination of purple

Figure 9-7. Draw out a horizontal patch using the top one-pixel black line segment to define an active X-axis area

227CHAPTER 9: Android Graphic Design: Making UI Designs Visual

and green colors. This will make it more clear to you during your editing process which areas
of an image asset are being affected by the patch definitions that you are implementing, by
drawing in these one-pixel black perimeter lines.

As you can see in Figure 9-8, a number of other useful controls exist at the bottom of the
9-Patch editing pane. These include a Zoom slider, which we will be using later to fine-tune
all of our control lines, which will allow you to adjust the zoom level of your source graphic
in the editing area from 1X up to 8X. The other slider at the bottom is the Patch scale slider,
which will allow you to adjust the preview scaling of your NinePatchDrawable asset, from
2X (200%) to 6X (600%), which is being shown in the preview area, on the right side of the
display.

The Show lock option check box will allow you to visualize the non-drawable areas of the
NinePatchDrawable when you mouse-over them. The Show content option checkbox, which
you will be using later on, highlights your content area in the preview pane image, where blue
areas will show the region in which any Android View subclass (widget or layout container)
content will be allowed to composite (to display, or to show through your transparency from
other z-order layers in your user interface compositing stack) with your NinePatchDrawable.

Finally, at the top of the editing area, there is a Show bad patches button, which will
add a red border around patch areas which might (emphasis on “might”) produce scaling
artifacts when the 9-Patch graphic is scaled. Visual excellence for scaled 9-Patch images
can be achieved if you strive to eliminate all bad patches in your NinePatchDrawable design,
however, depending on the pixel colors used, artifacts may not be an issue (visible).

Now it is time to draw in our left one-pixel border to define the Y-axis scaling behavior, as
shown in Figure 9-9. As you can see in Figure 9-9, I did not draw this one-pixel black border
line all the way down the left side. I did this so that you could visualize how well this Show
patches option works. This option will allow us to visualize exactly what we are doing right
down to the pixel level, as you can see in Figure 9-9, when you look at the color areas and
how they blend with the transparency checkerboard pattern and the source image asset.
This precision is necessary if you want to define a pixel-perfect 9-patch image asset for use
in your NinePatchDrawable object.

Figure 9-8. Turn on the Show patches check box option; finished drawing of the top one-pixel black line segment

228 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Figure 9-10 now shows your NinePatchDrawable PNG32 image asset with both the top, as
well as the left, one-pixel (border) black line definitions in place. As you can now visualize,
thanks to the Show patches option, we have now defined our static areas, shown as clear
(no coloration), which will not scale, and our scalable areas, shown using the green overlay.
The Show patches option has allowed us to do this with surgical pixel precision.

Also notice in Figure 9-10 in the right-hand preview of the 9-Patch Editor that the
NinePatchDrawable PNG32 image asset’s patch scale definition is now giving you a
professional scaling result. If you grab that scrollbar on the right side of the preview area of
the screen, and pull it up or down, you will see that the NinePatch algorithm is now scaling
in the portrait as well as in the landscape container shape, with perfect visual results. This
is what NinePatch technology is for, after all, to provide asynchronous scaling regardless of
the aspect ratio (shape) of a container that is holding the NinePatch asset, so that you don’t
have to “lock” aspect ratio, to prevent distortion.

Figure 9-9. Draw down a vertical Y patch using the left one-pixel black line segment to define a Y-axis patch area

Figure 9-10. Both your horizontal and vertical patch one-pixel black line segments now define active axis areas

229CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Defining the NinePatchDrawable Asset’s Padding Areas
Now that you have defined the scalable areas for your NinePatchDrawable image asset,
it is time to define the padding areas for a NinePatchDrawable image asset. This is
accomplished by using the one-pixel black border lines on the right and bottom of the
editing pane. As you can see in Figure 9-11, I have drawn in, on the right-hand side, the one-
pixel black border line segment that is necessary to define the Y image dimension for our
center (padding) area for the NinePatchDrawable image asset. The center area, in the case
of this PNG32 asset, contains an alpha channel value of #00000000, or 100% transparency,
which you could also define, as you now well know, using any other color value, such as
white, or #00FFFFFF, and the editor will still display it using a checkerboard pattern, which
those of you who use GIMP 2.8.20 or 2.10 know represents transparent pixel values.

Also notice in Figure 9-11 that I have also drawn in a second, one-pixel black border line
segment at the bottom of the image. I am doing this in order to define the X dimension for
the center padding area, which will define where content or other (composited) assets for
our user interface design will display in the NinePatchDrawable image asset. If I didn’t have
transparency in this graphic, image assets behind it (on a lower z-order layer) would not
show through, so this transparent area further increases the flexibility of using this 9-Patch
asset for your Android UI compositing purposes. Due to the padding, images on top of this
image would draw inside the NinePatch image. So if the NinePatch had a white interior, and
you used it in the background container, the image in the source UI plate would respect the
interior padding area, drawing on top of it (background is behind source or foreground).

Notice the muted colors in Figures 9-11 and 9-12, which are used to show different layers
of the scalable versus padding area definitions. The padding definitions use a gray overlay
on a green or purple (or pink, if you prefer) scalable area definition. As you can see on the
right side, the NinePatchDrawable scaling result is giving us an exceptionally professional
result, regardless of the source image’s orientation or dimensions, which the 9-patch image
asset is being scaled into. Notice in Figure 9-12 that I’m pulling the right side one-pixel black
border line segment up, showing the light gray patch adjust guides, and how you can adjust
padding parameters precisely.

Figure 9-11. Defining the interior padding areas, using the one-pixel black line segments on the right and bottom

230 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Figure 9-13 shows a finished NinePatch image asset definition, with both a scaling set of
border line segments, as well as a padding set of border line segments. We’ve utilized patch
definition guides on four sides of a PNG. It’s important to note that if you place the mouse
in the left editing pane over any section of a 9-Patch definition, and then hold it there, a
tool-tip pop-up will appear giving you the precise pixel patch coordinates for your final
NinePatchDrawable component definitions, which you may want to know about for your XML
markup or Java 8 code.

In our case, this will show that you have utilized 256 pixels minus 26 pixels, or 230 pixels of
our total 280-pixel image dimension, for our center scalable area. Note that 256 is a numeric
value that scales quite well, because it is a “power of 2” data value (2, 4, 8, 16, 32, 64, 128,
256, 512, 1024). This means that you have used 25 pixels, or half of the 50 remaining pixels,
for the actual image assets (bars and screws) that will be scaled. The reason this isn’t 26
pixels is because the NinePatchDrawable image format uses one-pixel borders to define its
patches.

This also means that the fixed areas of this 9-Patch, in this case, it is a corner of the frame
with a standard screw in it (to hold the frame in place, of course, or so it appears), will each
be exactly 25 pixels square in size. These corner areas of the NinePatchDrawable will not be
distorted in either the X or Y dimension, although these may be uniformly scaled as needed.
There are enough corner pixels (more than two dozen) to be able to scale up, if it is used
on high pixel density (resolution) screens, and to have the detail to appear photo realistic if
scaled down.

As you can see in Figure 9-13, on the right-hand side of your 9-Patch Editor preview pane,
our scaling picture frame graphic looks extremely crisp, and quite realistic. If you scroll the
preview pane, this holds across all of the scaling orientation previews. The reason that the
interior of the NinePatchDrawable asset is blue is because I have selected the Show content
(area definition, that is, padding) checkbox, as shown in red in Figure 9-13.

Figure 9-12. Adjust Padding area via the bottom one-pixel black line segment (showing patch adjust guide)

231CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Using Your NinePatchDrawable Asset in Android
Android Studio will automatically save your NinePatchDrawable image assets as you work
on them, saving any modifications to the new asset that has the required .9.png file name
extension, which is required by Android OS when using NinePatchDrawable assets. If you
want to “force” a save, use a File ➤ Save All menu sequence.

When Android detects this type of PNG file in your app/res/drawable folder, it automatically
loads it, using the NinePatch class algorithm, and converts it into a NinePatchDrawable
image asset once it is referenced in your XML markup. A NinePatchDrawable can be utilized
within any Android class that supports using an Android drawable asset. In UI design this is
referenced using either a source (android:src) image plate or the background image plate
(android:background) parameter. Classes (widgets and layout containers) that are logical for
the use of NinePatchDrawable objects include ImageButton, ImageView, View widgets, and
ViewGroup subclasses.

Now that you’ve created a NinePatchDrawable asset, let’s go into the XML markup for your
NavDrawerPattern project that you started creating in the previous chapter, and we'll see
how a NinePatchDrawable is installed. After that we will get into using external digital image
editing software (GIMP) with Android Studio, and create the digital image assets needed for
the multi-state ImageButton widget. I will then show you how to modify the code to change
the static image button in your NavDrawerPattern project into a dynamic multi-state UI
button.

Figure 9-13. Final patch definition using the Show Content checkbox to fine-tune how the padding fits the content

232 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Using NinePatchDrawable Assets in an App
Let’s fire up Android Studio 2.3 and implement the new NinePatchDrawable asset you just
created. As you can see at the bottom of Figure 9-14, an error has appeared in a Messages
pane in Android Studio, which informs us that duplicate resources have been detected.
Since we just added these PNG files, this tells us and .png and .9.png image assets might
be being considered to be the same asset, if they have the same file name. This is fine with
us, as we want to use a NinePatchDrawable rather than a BitmapDrawable, because it has
unique asymmetric scaling superpowers!

Let’s ignore this for now, since we are going to investigate what is causing this, and add
an android:background parameter to the UI layout container parent <RelativeLayout> tag,
as seen highlighted at the top of Figure 9-14. If you type in “android:bac” you’ll get a pop-
up helper with all of the background related parameters. Double-click on the one that says
background to insert (add) the parameter in your parent layout container specification.

Just to make sure that Android Studio (Android SDK and API) considers both of these files to
be the same, let’s start to type the @Drawable referencing path inside of the quotation marks
in the android:background parameter we have just added, and see what Android Studio
brings up in the pop-up helper dialog. If it shows two of these ninepatchframe assets, we’ll
know Android Studio can tell the difference between these two files; if not, it will tell us that a
.9.png and .png are considered to be the same if they have identical file name prefixes.

As you can see in Figure 9-15, there’s only one ninepatchframe asset on the list of drawable
assets, so you need to delete the ninepatchframe.png file, which is easy to do in Android
Studio, using the context-sensitive menu. Double-click on the @drawable/ninepatchframe
reference to insert it as an android:background reference value.

Figure 9-14. Add the android:background parameter to your content_main.xml’s parent <RelativeLayout> tag

233CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Next, right-click on the ninepatchframe.png file in the Android Studio project pane, and select
the Delete option shown numbered as 1 in red in Figure 9-16. When the Safe Delete dialog
opens, shown numbered as 2 in red in Figure 9-16, leave both options selected and click OK.
When the Usages Detected dialog appears, shown numbered as 3 in red in Figure 9-16 click
on the Delete Anyway button since Android Studio can’t differentiate between the .9.png
and the .png files, and therefore, in fact, the ninepatchframe.png version is safe to delete.

Figure 9-15. Reference a ninepatchframe NinePatchDrawable asset inside of the parameter value, using quotes

Figure 9-16. Right-click on ninepatchframe.png and delete it using Safe Delete option and Delete Anyway button

234 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

As you can see in Figure 9-17, ninepatchframe.png is now gone and there are no wavy red
error underline markings in Android Studio, so we have cured the problem. Use the Run ➤
Run ‘app’ menu sequence to launch the AVD and test the application to make sure there
are no gradle, compile, or runtime errors, and to preview how the NinePatchDrawable asset
scales to fit the UI design. As you can see at the bottom of Figure 9-17, there are no errors
in the build, the load into the AVD, or in the launch of the application in the Nexus AVD
emulator.

As you can see in Figure 9-18, the ninepatchframe.9.png asset scales to fit the content view
layout container perfectly, with no scaling or stretching artifacts, and a visually professional
looking end result.

Click on the Menu (three vertical bars) icon and side the drawer out over the content view to
make sure the app is working, and to see how your NinePatchDrawable asset looks with the
tinting that dims out the content view.

Notice that we will either have to add some padding to the RelativeLayout, or to the
TextView, and to the ImageButton UI element in order to nudge them back inside of the
NinePatchDrawable image frame, which we will do during the next section of the chapter
when we upgrade the ImageButton element to use multi-state imagery with 3D components
to add some pizzazz to the current application.

Figure 9-17. Review completed error-free content_main.xml, and use Run ➤ Run ‘app’ and see no runtime errors

235CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Next, let’s create different density PNG32 image assets for use in upgrading the e–mail
button to be multi-state.

Creating Multi-state PNG32 Image Assets
Since we are going to look at the ImageButton class next as well as how to create multi-
state (mouse-out or un-clicked, mouse-over or hovered, mouse-down or clicked UI button
use-states) UI elements, let’s take a quick look at how to create digital image assets using
GIMP and how to save them as XXHDPI, XHDPI, HDPI, and MPDI assets for use with 4K,
2K, Blu-ray, and 1K screen resolution devices. Since this is the chapter on image design
and implementation this is important for Pure Android design patterns to make an app look
professional.

Let’s find a better envelope graphic online. Google “free commercial use artwork” and locate
pixabay.com, as shown in Figure 9-19, and enter the word “envelope” in the search bar and
then click the magnifying glass icon.

Figure 9-18. Run the app, and make sure the NinePatchDrawable is in the background of content_view UI layout

236 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Click on the envelope graphics you want to use, and download the native or original (print)
resolution that they were created in, as is shown on the right side of Figure 9-20 in green.
Click the Download button to download.

Figure 9-19. Find the www.pixabay.com free high quality images website and enter “envelope” in the search bar

Figure 9-20. Select a professional looking set of envelope graphics and download the original hi-resolution image

If you want to use the ones I extracted from the above file, visit the book repository and
download the PNG files that start with the word envelope and are centered in a 500-pixel
square file that fits the ButtonDecoration.png file that we are going to use in GIMP to create
image composites for the various ImageButton states. Also, if you have now downloaded
and installed either GIMP 2.8.20 (used here) or GIMP 2.10 do so now, and launch it.

Use the File ➤ Open as Layers menu sequence to open EnvelopeClosed.png (PNG32 file)
into its own layer in GIMP, as shown in Figure 9-21. The checkerboard pattern represents
transparent areas (the alpha channel data).

http://www.pixabay.com/

237CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Use the File ➤ Open as Layers command a second time to import the ButtonBorder.png
file into the layer that is above EnvelopeClosed.png, as shown in the Layers palette shown in
the center of Figure 9-22. Use the File ➤ Export As menu sequence to access the Export
Image dialog shown on the right side in Figure 9-22, and name the file envelopeclosed.png
and use it as an XXHDPI 500-pixel digital image, for use with the IMAX (4K by 4K) or UHD
iTV Set (4K by 2K) resolution.

Figure 9-21. Use the File ➤ Open as Layers menu sequence, and import EnvelopeClosed.png into its own layer

Figure 9-22. Use File ➤ Open as Layers to import ButtonBorder.png into a layer and export as envelopeclosed

238 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Next, click on the EnvelopeClosed.png layer to select it in blue, as shown in the left half of
Figure 9-23, so that when you import (open) the next graphic it goes underneath the topmost
ButtonBorder.png layer, as can be seen on the right half of Figure 9-23. Use the File ➤ Open
as Layer to open the EnvelopeOpened.png file and place it into its own layer. Then select the
ButtonBorder.png layer, seen in blue on the right, and use the Colors ➤ Hue-Saturation
menu sequence, and shift the Hue value -20 degrees to a bright cyan color, as shown in the
Preview area on the right half of Figure 9-23. In this way the hoop will brighten on mouse-
over (hover) and the envelope will magically open, connoting the “open mail” function for the
ImageButton. Use the File ➤ Export As menu sequence to open the Export Image dialog, as
shown on the right side in Figure 9-24, and name this PNG32 file envelopeopened.png.

Follow the same work process and select the EnvelopeOpened.png layer and import the
EnvelopeFilled.png into its own layer, as can be seen on the left side of Figure 9-24. Use the
Colors ➤ Hue-Saturation dialog to shift the UI hoop border decoration to a gold color, to offset
the blue envelope color, and use the File ➤ Export As menu sequence to open the Export Image
dialog, as shown on the right side in Figure 9-24, and name this PNG32 file envelopefilled.png.
I’m saving my ImageButton files in an AA4AB4/CH09/ImageButton folder, as you can see.

Figure 9-23. Select the EnvelopeClosed layer, and use Open as Layers to add the EnvelopeOpened layer on top

Figure 9-24. Use Open as Layer to import EnvelopeFilled.png into a layer and shift the ButtonBorder.png to gold

239CHAPTER 9: Android Graphic Design: Making UI Designs Visual

The next step in creating multi-state image assets for an Android application is to save
multiple resolution DPI versions to fit the Android XXHDPI, XHDPI, HDPI and MDPI constants
used to define screen density and resolution. I’ll use the original 500 pixels for Ultra High
(4K) XXHDPI, 250 pixels for Extra High (2K) XHDPI and 125 pixels for High (Blu-ray 1280)
HDPI and we’ll even create a Medium (1024 and 854 resolution) MDPI asset for older (or less
expensive) low-resolution phones and tablets. Let’s use the Image ➤ Scale Image menu
sequence to open the Scale Image dialog, seen in Figure 9-25, and down sample the image
pixels 100%, to 250 pixels, and then use the File ➤ Export As work process, and export
(save) the file as envelopefilledxhdpi.png.

Figure 9-25. Use Image ➤ Scale to create 250-pixel XHDPI version and File ➤ Export to save envelopefilledxhdpi

Figure 9-26. Create HDPI 125 pixel and MDPI 64 pixel resolution versions, for use with Blu-ray and 1K and lower

Once you have saved the XHDPI asset, use the Edit ➤ Undo Scale Image to return to the
500-pixel version, so that when you scale to 125 pixels the algorithm has the original (and
more) data to resample so it can obtain the best result. Then use the Scale Image dialog and
Export Image dialog to create and save envelopefilledhdpi.png.

240 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Perform the same work process (Undo, Sample to 64 pixels, Export/Save) and create
a envelopefilledmdpi.png asset. Then you will have all four assets done for the
envelopefilled ImageButton state. Repeat this process for the other two envelopeclosed
and envelopeopened multi-state buttons to create image states for all resolution devices.
The Scale Image dialog settings can be seen in Figure 9-26 for the last two button state
resolutions.

The ImageButton Class: Multi-state Button
Android’s ImageButton class is a direct subclass of the ImageView class, which is itself
a subclass of the View superclass, which, as you learned in Chapter 6, is a subclass of
the java.lang.Object master class. It is primarily utilized to create UI widgets and layout
containers (via the ViewGroup superclass). The Android class hierarchy for the ImageButton
class would thus be structured as follows:

java.lang.Object
 > android.view.View
 > android.widget.ImageView
 > android.widget.ImageButton

The ImageButton class, like its parent class ImageView, is stored in a separate Android
package for UI widgets, which is called the android.widget package. This is because the
ImageButton is an often-used UI widget which can be leveraged to create custom button
UI widgets which can be skinned using Android drawable objects. We’re looking at this
class in this chapter not only because it is used frequently by Android developers, but also
because it is the parent class (superclass) used to create the FloatingActionButton used
in NavDrawerPattern, so anything we can do with an ImageButton should also apply to the
FloatingActionButton class.

The ImageButton class is extremely powerful, as Android drawable objects can be
BitmapDrawable (images), NinePatchDrawable (asymmetric tiling imagery), AnimationDrawable
(animation), ShapeDrawable (vector illustrations) or any other Android drawable subclass. I
wish I could cover all the Android drawable subclasses in this book; however, if you wanted
to explore Android drawables further, you’ll want to check out the Apress Pro Android
Graphics (2013) title.

The ImageButton UI widget would be used when developers need to create a custom button
UI element, which will display the button using an image instead of using a standard text
label on a square gray background, as the standard UI Button widget should do. We have
already implemented both Button and ImageButton elements in previous chapters that
covered user interface layout design classes, including the LinearLayout, RelativeLayout,
CoordinatorLayout, and DrawerLayout.

Just like the Android Button class UI widget, an ImageButton UI widget can be pressed,
using a click or a touch event by the user, and can have button focus characteristics defined
as well by implementing multi-state images, such as hovered (over but not pressed), and the
default (not pressed and not hovered, that is, not used yet) state.

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

241CHAPTER 9: Android Graphic Design: Making UI Designs Visual

If you don’t utilize any of its custom parameters, your ImageButton widget should have a
visual appearance of a standard Android Button UI object with a gray button background
that changes color to blue when the button is pressed. The real power of the ImageButton
class comes when you use it with alpha channel capable images, in conjunction with
multiple image states, both of which you will be learning about in detail during this chapter.

The ImageButton UI widget can define up to four different ImageButton states that are
defined using XML markup, which we will be doing a bit later on in this chapter. We will
cover these ImageButton states in detail in the next section of this chapter, after I cover a
couple of the key XML parameters and Java methods here in this section on the ImageButton
class member methods and features.

The default image for your ImageButton, or in our case FloatingActionButton, UI widget,
which will define its normal state, can be defined statically using the app:srcCompat XML
parameter in a <FloatingActionButton> child tag inside of a CoordinatorLayout XML layout
container UI definition, as you did for your DrawerLayout in Chapter 8.

You can also define a default image for the FloatingActionButton UI widget, which will
define its normal state, dynamically (at runtime) in your Java code. You’ll implement this
by using the .setImageResource() method. Static definition would be defined as setting
an ImageButton state in advance, that is, before execution of your application, using XML
markup. Dynamic definition on the other hand occurs during an application execution, in
real-time, if you will, by using Java programming logic. Most Absolute Beginners will use a
static definition.

For this reason, I will be using XML to define our UI designs, which the Android OS prefers
that we do, for this book. If you use the app:srcCompat parameter to reference Drawable
assets, this will put the Drawable asset on your FloatingActionButton, as you saw in
Chapter 8. Now we are going to enhance this UI design.

It is important to note developers can use both the android:background parameter, which
allows a background image plate, or layer, to be added to the ImageButton element, as well
as the android:src parameter, or, in the case of appCompat the app:srcCompat parameter,
which allows you to install a foreground image plate (layer). This enables you to perform
image compositing inside of any ImageButton UI element (or subclass) itself.

If you do this, you will want to use alpha channels in your images, as we have been, and
will be, doing in this chapter. This is why I have been getting into alpha channels so deeply
during this chapter, as they will allow you far greater flexibility inside of your Android graphic
design pipeline.

The reason that you would want to define both a foreground image plate and a background
image plate at the same time, in the same UI element, would be so that you could take
advantage of the power of digital image compositing that Android affords you by allowing
multiple image plates (parameters that support drawable objects). This would give you two
image layers (24-bit backplate and one 32-bit compositing layer) and at least one text layer,
very similar to what you could do in GIMP, but within a single Android UI element.

You can extend this amount of compositing layers in your UI design by using your parent
layout container and nested layout containers to also do the same thing, as long as you use
alpha channels creatively, which is again why I went into this in such detail at the beginning
of this chapter.

http://dx.doi.org/10.1007/978-1-4842-2268-3_8
http://dx.doi.org/10.1007/978-1-4842-2268-3_8

242 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

For instance, if you also set the FloatingActionButton background color value to
transparent (#00000000), you can composite it with a background image in your
CoordinatorLayout container. This holds true for any other UI elements you position behind
the FloatingActionButton, as well as containers (like NavigationView) which are nested
inside of other layout containers (such as the DrawerLayout class), such as we’ve done in
the current NavDrawerPattern application we are working with during this chapter and the
previous one. Next, let’s look at the ImageButton states, which work with hardware pointers
(mouse, trackball, etc.) as well as touchscreens to a more limited extent.

The States: Normal, Pressed, Focused, Hovered
An ImageButton object allows you to define a custom image asset for each of the states for
your UI buttons. States include normal (the default or not in use), pressed (a user touching,
or pressing down on, device click selection hardware), focused (recently touched and
released, or recently clicked and released) and hovered (a user is over an ImageButton with
the mouse or navigation keys, but has not touched it, or clicked on it, as yet).

The hovered state was added recently in Android 4, API Level 14, possibly in anticipation
of using the Android OS for the Google Chromebook product, which now runs Android
applications natively, or in anticipation of an Amazon Fire iTV set or nVidia Shield iTV set
product, or other 2K or 4K iTV sets, which come with a mouse, a keyboard, and one or
more game controllers. I’ve summarized the four currently supported ImageButton states
as of Android 4.4.4, the last 32-bit Android OS, along with their mouse event programming
equivalents, that would be used on non-touchscreen devices, in Table 9-1.

Table 9-1. The Android ImageButton Class Primary Image Asset State Constants and Mouse Usage Equivalents

ImageButton State Description of Button State along with its Mouse Event Equivalent

NORMAL Default ImageButton state when not in use. Equivalent: Mouse Out

PRESSED ImageButton state when touched or clicked. Equivalent: Mouse Down

FOCUSED ImageButton state when touched and released. Equivalent: Mouse Up

HOVERED (API 14) ImageButton state if focused (not touched) Equivalent: Mouse Over

ImageButton UI elements are time consuming to create, because you will want to create a
unique digital image asset for each ImageButton state. Different images will visually indicate
to a user a different ImageButton state. The reason this can be difficult is not because of the
XML markup that is involved, but rather due to extensive digital imaging work that you will
need to do for each button, across several ImageButton states and across several different
resolution densities, as you have seen earlier in this chapter, when we created the minimum
12 image assets for NORMAL, PRESSED and HOVERED in the four most common resolution
densities (4K, 2K, Blu-ray, and 1K or 854 pixel).

243CHAPTER 9: Android Graphic Design: Making UI Designs Visual

After learning the lengthy work process for creating the dozen digital image assets you
will need to create your XML structures that will implement these multi-state ImageButton
UI elements we can then move on to learn the standard work process for defining each
ImageButton state. This is done by using an XML drawable asset, in the form of an image
selector definition file, which lives in your root /res/drawable folder. This file will use the
parent <selector> tag with child <item> tags. The <item> tags will define each of your
ImageButton’s states, using digital image asset references. Once this XML definition is set
up, Android will handle changing the image state for you based on what the end user is
doing with the device hardware.

Creating Android Multi-state ImageButtons
The standard work process to define an Android multi-state ImageButton UI element is to
utilize an XML Drawable definition file, which will use a <selector> parent tag and be
located in the /res/drawable folder.

This file will have a parent <selector> tag and child <item> tags that define each of your
ImageButton states, using custom PNG digital image asset references. Once an XML
definition is set up, Android OS will select the correct image asset to utilize. It will do this
based upon hardware device resolution, and the ImageButton state that is needed (normal,
pressed, focused, or hovered) at the time.

First we need to set up the res/drawable alternate folders that will hold the XXHDPI down
to MDPI assets we created earlier, which we will do now, so that you see the correct files
displayed in Android Studio once we launch it and begin to create the fab_state.xml file,
which will define the various image button visuals (states).

Right-click on the /app/res folder, and select the New Directory context-sensitive menu
option. This will open the New Directory dialog that is seen in Figure 9-27. Name your first
alternate app/res/drawable folder drawable-xxhdpi, and then click on the OK button,
and create it. Repeat this work process three more times, and create alternate drawable
directories that are named drawable-xhdpi, drawable-hdpi, and drawable-mdpi.

Figure 9-27. Right-click the /res folder and create a new directory named drawable-xxhdpi

244 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

You may notice that as you create these alternate folders that they do not show up under the
/app/res/ directory. This is because the Project pane is set to “Android” perspective, that
is, how the Android OS “sees” the project resources. This can be seen at the top left of the
Android Studio Project pane in a drop-down selector, which has a downward facing arrow
on the right side, which you can click to access the drop-down menu item list, as can be
seen in Figure 9-28 in the top left portion of the screenshot.

Select the “Package” perspective, which is shown selected in blue in Figure 9-28. This will
show you the actual directory and subdirectory path infrastructure that is being used for your
project. This can also be seen in the User/user/AndroidStudioProjects folder hierarchy on
your hard disk drive, which can be seen in Figure 9-29 on the left side of the screenshot. If
you are the inquisitive type, you can take some time now to try some of the other options,
and see what the other eight perspective views will show you regarding your Android Studio
project.

Figure 9-28. Select the Project perspective from your Project navigation pane drop-down menu item selector

Next, let’s open your operating system file management utility, and select the XXHDPI PNG
files (hold down a CTRL key modifier to group-select non-contiguous files), as shown in
Figure 9-29, and drag (and drop) them in the /res/drawable-xxhdpi folder. If you want to
copy (instead of move) the files, you can hold down the CTRL key before you drop the files
into the folder, which is also shown on the left side in the middle of Figure 9-29.

245CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Figure 9-30 shows resolution density specific files, in resolution density specific folders, in
Project perspective.

Figure 9-29. Select each of the three matching resolution density versions, and drag them into their correct folder

Figure 9-30. The density specific PNG files are now in density specific alternate folders in the Project perspective

246 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Right-click on the res/drawable folder as seen in Figure 9-31 and select New ➤ Drawable
resource file. In the New Drawable Resource File dialog name the file fab_state, and
keep the default <selector> root (parent) tag.

Figure 9-31. Right-click on the /res/drawable folder and select New Drawable resource file, and name it fab_state

Android Studio will open up the fab_state.xml definition file in your editing area with the
<xml> and <selector> tags in place, and ready to add child <item> tags, which hold the state
definitions and drawable asset references.

The order of the state definitions inside of the <selector> parent selection container
is important. This is because these states will be evaluated in the order that they are
encountered in the XML drawable definition file. This is why your normal image asset that
has the default normal state (that is, no state defined) must be referenced last, because
it will only be displayed after android:state_hovered, android:state_pressed, and
android:state_focused states are evaluated by the Android operating system. Read it like
this: Any hovering? No. Anything Pressed? No. Does it have Focus? No. Then display the
normal (unpressed, unclicked, not focused) default state graphic.

The <selector> XML state definition parent tag will allow you to implement a selection
set, much like the Java switch-case or if-then-else statements. A selector will allow the
Android OS to select among several different ImageButton, or its FloatingActionButton
subclass, drawable assets based on the set of android:state parameters that will define
your ImageButton states. There are dozens of these state parameters, which you will see in
your Android Studio pop-up helper, when you type the <item> tags inside the <selector>,
which we’ll be doing next.

247CHAPTER 9: Android Graphic Design: Making UI Designs Visual

The child <item> tags inside of the parent <selector> tag will implement the android:state
parameters, as well as referencing the image assets, using the android:drawable parameter.
This is shown in the fab_state.xml tab in Android Studio in Figure 9-32, and utilizes the
following XML markup, with pressed and focused using the same graphic:

<? xml version="1.0" encoding="utf-8" ?>
<selector xmlns:android=http://schemas.android.com/apk/res/android>
 <item android:state_hovered="true" android:drawable="@drawable/envelopeopened" />
 <item android:state_pressed="true" android:drawable="@drawable/envelopefilled" />
 <item android:state_focused="true" android:drawable="@drawable/envelopefilled" />
 <item android:drawable="@drawable/envelopeclosed" />
</selector>

Figure 9-32. Enter the four <item> child tags inside of the parent <selector> tag defining your multi-state imagery

To get some practice, try using envelopeopened for both hovered and pressed so that you
can see all three states when you test the XML (and app) in the AVD emulator, since the
emulator simulates a touchscreen and doesn’t support the hover state. With that drawable
set up, the envelope will open on mouse-down and fill on mouse-up.

You may have noticed when you typed in the @drawable part of the <item> tags that a lot of
envelope assets came up in the helper, and we really want only the three asset names to
come up, even though we have a dozen different resolution density versions of those PNG32
files. What you need to do is to go into your file manager software (seen in Figure 9-29) and
remove the density part of the filename for all of these (dozen) assets. The result of this can
be seen in Figure 9-33, on the left side of the screen, in your Project pane. The reason we
can now use the same file name for different resolution density image assets is because
they are now “sequestered” away from each other, using different directory (folder) names,
so we can use the same names and not have the files replace each other or get a naming
error from the operating system regarding duplicate file names, because the folder name is
part of the file name’s path. To select between different screen densities at runtime using the
different alternate drawable folder names, the actual file names inside of these folders must
be exactly the same.

248 CHAPTER 9: Android Graphic Design: Making UI Designs Visual

All you have left to do to upgrade the FloatingActionButton XML is add the
app:backgroundTint="#FFFFFF" parameter, to remove the pink background color, upgrade
your android:layout_margin to 40DP, to push in your button corner spacing, upgrade your
layout_width and layout_height parameters to use the value of 120DP, and change the
app:srcCompat parameter to reference the @drawable/fab_state value, all of which can be
seen in Figure 9-33 at the bottom left in the Android Studio app_bar_main.xml editing pane
(see yellow highlight bar).

It's important to note that not all of these interactive ImageButton states work in every AVD
emulator, so if you want to test the focused or hovered states, be sure to use an Android
hardware device that supports these to test your multi-state XML markup. The reason I
taught you the most extensive and complete work process, all four state across all four
resolution densities that would apply to 99% of the devices out there, is so you know how
to do this in case you want your application to span every possible hardware device type
and configuration. If one of these states is not supported on a given hardware device, the
Android OS will simply not access that image asset that is attached to that android:state
parameter. To play it safe, implement all these states in all densities!

Figure 9-34 shows the envelope closed and envelope filled button states, and the
SlidingDrawer is still working.

Figure 9-33. Add an app:backgroundTint parameter to remove a pink background, and tweak the button spacing

249CHAPTER 9: Android Graphic Design: Making UI Designs Visual

Summary
In this ninth chapter, you learned all about 2D graphic design concepts and principles, as
well as about Android drawables and supported image formats, including a NinePatch
image format, used to create a type of drawable in Android called a NinePatchDrawable.
You learned how to create NinePatchDrawable assets using Android Studio’s Draw 9-patch
Editor and then implemented this NinePatch asset inside your SlidingDrawer UI design.

Next, you learned about the Android ImageButton class and used GIMP to create all of your
assets, 12 of them in total, needed to implement 4 different resolution density multi-state
ImageButton elements, each having 4 UI states. You learned quite a bit about the proper
way to utilize GIMP for streamlined digital image editing and compositing, and got a lot of
practice creating image assets for ImageButton interactive states (which animate a button
based on interaction) across 4 resolution densities, spanning smartwatches through 4K iTV
sets. You also learned how to implement multi-state ImageButtons and NinePatchDrawables
all by using XML markup.

Next, in Chapter 10, you will learn how to create animation in Android, including animation
theory, concepts; how to create a wide spectrum of resolution density animation assets, as
well as how to create frame animation assets for use with Android's ImageView class; and
how to make them work within your SlidingDrawer layout.

Figure 9-34. Test the multi-state FloatingActionButton and SlidingDrawer layout in the Nexus 5 AVD emulator

http://dx.doi.org/10.1007/978-1-4842-2268-3_10

251© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_10

Chapter 10
Android Animation: Image and
Procedural Animation
In the previous chapter on graphic design, I covered two-dimensional (2D) concepts, such
as pixels, resolution, and aspect ratios, as well as three-dimensional (3D) concepts, such
as layers, color channels, and their z-order. In this chapter, we are going to take all of that
knowledge into the fourth dimension (4D), which is time, and discover how to implement
animation concepts, including motion and frame rates. We are again going to build upon all
of these fundamental graphics design concepts you learned about in the previous chapter,
because you can also apply all of these foundational digital imaging concepts to animation.
Thus we will be taking static (motionless) graphics concepts from the previous chapter, and
turning them into motion graphics, which can look even more realistic because it looks like
the subject matter is moving (animated), and therefore achieves even more realism.

You can use image animation to create an illusion of motion, using cels or frames. You will be
learning about all of these concepts, terminology, and techniques during this chapter, which
you will use to create animation. During this chapter, we will take a look at exactly how to set up
frame-based image animation for your Android app using an XML animation definition containing
a parent <animation-list> tag as an image animation frames container. An <animation-list>
parent tag allows you to add individual frames of an animation as child <item> elements. This
allows you to create XML-based frame animation definitions you can use as multimedia assets.

I will be covering more of the core Android classes that are used to implement graphic
design elements, such as ImageView, and Android classes that are used to implement motion
graphics, by using frame animation as well as procedural animation, AnimationDrawable
(frame animation), and Animation (procedural animation). During this chapter we’ll utilize
these Android animation and drawable classes to animate the SlidingDrawer UI layout
container content. We will install an ImageView UI widget underneath your content_layout to
hold an animation. We will also take a look at how to add procedural animation to your frame
animation so that you can scale, rotate, and move your frame-based animation, creating
powerful hybrid animation using only XML markup. We’ll also look at how you can animate
(interpolate, actually) Android OS and UI settings to achieve cool effects.

252 CHAPTER 10: Android Animation: Image and Procedural Animation

Frame Animation: Concepts and Techniques
The first thing that we will always need to do is to get our knowledge foundation regarding
frame animation concepts, formats, and terminology, since we’re going to use these during
the rest of this chapter, in conjunction with working with Android animation. This new media is
commonly called image animation, bitmap animation, or 2D animation, and I’m going to cover
2D vector animation, also known as procedural animation or tween animation, later on
during this chapter, as it can be used in conjunction with 2D bitmap image frame animation.

Frame Animation: Cels, Frames, and Terminology
Frame-based animation could be termed cel-based animation, because of the original 2D
animation created by Walt Disney. Disney animators drew on what at the time were called
cels, in order to represent each individual movement in their cartoon animation. Interestingly,
original cels from these 2D animation projects are now framed, and sold to collectors for
thousands of dollars. Thus there are both physical and conceptual connections between
these two animation industry terms, frame animation and cel animation. Later on, with
the advent of feature films, the term “frame” replaced the term “cel.” This was because the
analog film projectors that were used to display 24 frames per second used frames of film.
These frames of film were displayed using one or more reels containing film frames, which
would create the illusion of motion when light was projected through the moving frames
using film projectors in a theater projection room behind an audience.

The technical term for frame-based image animation is raster animation, as the frames,
or cels, are made up of collections of pixels. Pixel-based imagery is commonly known in
the industry as raster imagery. Raster images are also commonly called bitmaps because
they are a map (array) of bits (pixels). In fact, there is the bitmap (.BMP) file format that was
originally used in Microsoft Windows, and is now supported for use under Android OS.
Raster animation is also frequently called bitmap animation within the multimedia production
industry. We’ll utilize these various animation industry terms interchangeably throughout
this chapter, so that you will get used to using all of these different, but accurate, terms to
refer to your frame-based 2D animation, which can also be called raster animation, bitmap
animation, frame animation, cel animation, 2D animation, and image animation.

Android Image Format: PNG, GIF, JPG, WebP, BMP
Android supports the same open source digital image file formats that you use for 2D
imagery in the Android application for use within the frame-based animation assets. If you
think about it, this is logical as 2D animation is defined using individual 2D digital image
frames as the foundation for 4D motion. The significance of this is that you can use indexed
color images if you want to create 8-bit frame animation, using PNG8 or GIF formats. You
can use truecolor image formats to create your 24-bit, or 32-bit, frame animation. You will do
this by using PNG24, PNG32, WebP or JPEG digital image file format. Just as with image file
formats Android prefers PNG over GIF, WebP, or JPEG when used in frame-based animation.
This is due to a superior lossless image quality.

253CHAPTER 10: Android Animation: Image and Procedural Animation

Android OS support for several mainstream digital image file formats gives us an impressive
amount of latitude to be able to optimize the frame animation’s data footprint. Because
of Android’s support for the PNG32 format, you will also be able to implement an image
compositing work process in your frame animation endeavors. You can do this using 8-bit
alpha channel transparency capabilities in the PNG32 format on a frame-by-frame basis.

Optimizing Frames: Color Depth and Frame Count
In frame animation, there are three primary ways to optimize your animation data in order
to achieve a smaller data footprint. You can reduce the resolution of each frame, you can
reduce the color depth used to define each frame, and you can reduce the number of frames
utilized to create an illusion of motion in the animation. Since we should provide at least
three different resolution density targets to support Android, we will focus on optimizing
color depth and total number of frames as much as possible first, for practical purposes.
You’re going to want to provide frame resolution spanning from at least 120 pixels for MDPI
through 240 pixels for HDPI to 480 pixels for XHDPI. As you will see during this chapter,
you do have the option to provide fewer resolution density targets and have Android down
sample the others. The hope is that Android will scale your assets down (term: down sample)
rather than scaling assets up (term: up sample) as the quality results are better.

Since we have a choice between using a lossless PNG32 (which as you now know is a
truecolor PNG with a full 8-bit alpha channel) and an indexed color PNG8, which is many
times smaller (per each frame), we will use this lossless PNG8 for animated elements that
do not need to be composited (compositing requires a PNG32 8-bit alpha channel). We use
ImageView elements layers to implement a compositing pipeline by using a background plate
for static graphics and a source (foreground plate) for the animation.

It is interesting to note that there is an advanced way around this compositing challenge,
which is to use a white or a black background color for a PNG8 animation using no
alpha channel and then composite with the Android PorterDuff class. This is because
using certain PorterDuff blending modes, you can make white or black values become
transparent, using blending algorithms rather than alpha channels. Alpha channels are more
efficient (but have a heavy data footprint, especially when used across multiple frames
in an animation) because they are static (that is, predefined), whereas using a dynamic
algorithm at runtime will use valuable CPU processor cycles (system hardware resources).
This PorterDuff image blending algorithm class is covered in great detail in the Pro Android
Graphics (Apress, 2013) title, which I wrote before writing this Absolute Beginners title.

If you are not going to have to composite your animation over other graphics or UI elements,
or are compositing using blending algorithms with Android’s PorterDuff class, you can also
consider a JPEG format, to get a much smaller per-frame data footprint. As you know, a
JPEG codec does this by throwing away some image data, and thus throws away some of
the original image quality. It’s important to note that using JPEG for animation could increase
image artifacts in each frame of an animation. If you apply too much image compression on
each frame, this will cause motion artifacts. When you animate JPEG artifacts, it causes
the effect commonly termed in the industry as “dot crawl” or “pixel crawl.” With JPEG
animation, not only do you have artifacts, but because the medium is animated, and the
artifacts are on different pixels on each frame, it’s like they are waving their hands in the air
and saying: “Here I am, I’m an important artifact!” This does not lend itself to a great user

254 CHAPTER 10: Android Animation: Image and Procedural Animation

experience if the JPEG frames are poorly optimized, and this is contrary to the Pure Android
design principles we covered.

Just as you can optimize a 2D animation by using the indexed (8-bit) color depth, you can
also optimize the 2D animation by using fewer frames to create the illusion of motion. As
you will see in the next chapter on digital video, the same concepts hold true for bitmap
animation as with digital video: fewer frames to store will yield a smaller data footprint, which
ultimately should translate into a smaller Android application (or .APK) file size.

Also, the smaller the number of frames that will be used to achieve realistic motion, the
fewer frames will have to be defined in your frame animation XML definition markup. It’s also
important to note that at runtime, fewer frames will require less processing power in order to
play your frame animation, and less memory resources to hold the frames in, before they are
displayed on the device display screen. In fact, we get professional results in this chapter by
using only a few frames of animation for your ImageView UI’s 3D animation new media assets.

Data footprint optimization becomes more important as the number of frame animations
that are included in the application increases. New media applications such as games
and e-books tend to have several frame animations running at any given time inside of the
application Activity screen. Thus you need to consider processing power and system
memory as valuable resources! Animation assets require careful optimization, so that
the application does not use up your user’s Android hardware device memory and CPU
resources while your app is being used.

Animation Resolution: Pixels Add to File Size!
The number of pixels in each animation frame (the frame resolution for your image animation)
is of tantamount importance for optimization of an image animation asset data footprint.
Review the raw image data mathematics that we covered back in Chapter 9, and apply
this to each frame in your animation, so that you can calculate the exact raw data system
memory footprint you will need to hold all of the frames in your image animation.

Just like you did with your static digital image button assets, you will need to provide several
resolution density-specific raster animation image target resolutions so you can span every
popular Android device screen density. For this reason, if you can make an animation a few
dozen pixels smaller for each dimension, without affecting its visual quality, this adds up to
memory savings across the different power-of-2 down sample density versions.

It is important to make sure to trim any unutilized pixels within your animation, so that the
animated elements come as close (one pixel away) to touching the edges of your image
container as possible. You will see that I’ve done this in all the animation frame assets we
will be using in this chapter, so you’ll be able to see what I mean.

Similar to what you learned about digital imagery in Chapter 9, Android will automatically
handle the decisions regarding which of the 2D frame animation pixel densities to implement
for each device screen that the OS is running on. Our largest 480 by 480 pixel resolution
frame animation asset is for the XHDPI resolution density, and I will create a 240 by 240 pixel
version for HDPI, as well as a 120 by 120 pixel version to use for MDPI.

The reason that I’m not creating an XXHDPI resolution version on the high end (4K iTV) is
because the XHDPI animation frames can be scaled up if needed for those devices, which

http://dx.doi.org/10.1007/978-1-4842-2268-3_9
http://dx.doi.org/10.1007/978-1-4842-2268-3_9

255CHAPTER 10: Android Animation: Image and Procedural Animation

represent 5% of the device market, and on the low end (240 pixel flip-phone or smartwatch),
the MDPI animation frames can be scaled down if needed for those devices, which also
represent about a 5% market share among all the current Android hardware devices.

Frame Animation: Using AnimationDrawable
Android’s AnimationDrawable class is used to create frame animation drawable objects,
using digital image assets. This object holds a list of drawable assets that define the frames
of the animation. The object also has data fields that hold playback parameters such as
frame rate (speed) and looping parameters.

Android’s AnimationDrawable class is part of the android.graphics package, as you might
imagine, and is kept with all of the other types of drawable objects in Android, using the
android.graphics.drawable sub-package.

The class hierarchy starts with the java.lang.Object class. This is subclassed to create
a Drawable class, which is subclassed to create the DrawableContainer class, which
is subclassed to create this AnimationDrawable class. The Java class hierarchy for the
AnimationDrawable class would therefore look like the following:

java.lang.Object
 > android.graphics.drawable.Drawable
 > android.graphics.drawable.DrawableContainer
 > android.graphics.drawable.AnimationDrawable

The reason that this DrawableContainer class is between Drawable and AnimationDrawable
is because it was logical to create the DrawableContainer class for what you might consider
“multi-drawables,” or drawables with more than one state, level, layer, frame, or other
such drawable asset element. Examples of these ContainerDrawable subclasses include
a StateListDrawable, used to create your multi-state ImageButton, a LevelListDrawable,
used for level indicators, such as the signal level meter for your smartphone, and this
AnimationDrawable.

The simplest way to create one of these frame animation drawable assets is to define the
animation frames using an XML file, which will be stored in your NavDrawerPattern project’s
res/drawable folder. We will be creating three image animations during this chapter, using
AnimationDrawable and Animation classes, after we discuss how the AnimationDrawable
and Animation classes function. After we create the AnimationDrawable object(s), we will
set them up with images, using the ImageView object. Later on in the chapter, when we
write your Java code for the SlidingDrawer, we’ll call the .start() method to start an
AnimationDrawable object playback cycle.

The XML animation definition construct that you are going to be specifying later in the chapter
gets inflated by your Java code, and becomes the AnimationDrawable object. This object
contains all information regarding your frame animation asset, including each actual animation
frame’s image asset reference, as well as playback (duration) and looping (direction) settings.

After an AnimationDrawable object has been instantiated and inflated, you can trigger it
using a .start() method from within your application’s Java code. This is usually done from
the inside of your event handler, such as the one that we will be adding to the ImageButton
UI elements later in the chapter. You would use an event handler if you wanted the frame
animation to be triggered (started) interactively.

http://developer.android.com/reference/android/graphics/drawable/AnimationDrawable.html#start()

256 CHAPTER 10: Android Animation: Image and Procedural Animation

You can also call the .start() method from the inside of your AppCompatActivity subclass
onCreate() method, if the animation is intended to simply run on your Activity startup
screen somewhere, once the Activity is created. This can be done for content decoration
where looping animation adds realism to elements such as barber poles.

If you want to research more detailed information regarding the Android AnimationDrawable
class, you should investigate the more technical details for this class on the Android
Developer website using the following URL:

https://developer.android.com/reference/android/graphics/drawable/
AnimationDrawable.html

Now that we have gone over the AnimationDrawable class basics, let’s take a look at how to
use XML markup to create the frame animation definition file, which will live in the Android
Studio project res/drawable folder.

Creating Frame Animation: XML Frame Definition
The way that frame animation is defined in Android is by using an XML definition file
containing markup that defines an animation list filled with frame items. This XML file should
be stored in your /app/res/drawable/ folder, which you created in Chapter 9, and which
holds your Android drawable asset XML definitions, such as multi-state (StateListDrawable)
ImageButton elements, NinePatchDrawable asymmetrically-scalable digital image assets, and
soon your AnimationDrawable digital image frame animation assets.

In case you are wondering why this XML file is kept in your /res/drawable folder, and not in
a /res/anim folder, this is because there are two types of animation in Android.

	Frame animation uses the /drawable resource folder hierarchy to hold
AnimationDrawable XML definitions, and alternate image assets in /
drawable-dpi subfolders.

	Procedural animation, which we’ll be covering later on in this chapter,
uses the /res/anim project folder along with the Android Animation
class to create (procedural) Animation objects.

The frame animation XML file will specify the individual frames in your AnimationDrawable
object definition. Essentially the XML definition file is an AnimationDrawable object
constructor using a <animation-list> parent tag and <item> child tags. A frame animation
XML construct essentially creates the AnimationDrawable object, which contains references
to numbered frames (image files). The image file references represent your individual frames
for a raster animation. A procedural (also known as vector) animation XML file on the
other hand, won’t specify any frames, but will instead specify algorithmic, or procedural,
transformations, that when interpolated, will create the illusion of motion. We will be
covering this type of animation a little bit later on in this chapter.

https://developer.android.com/reference/android/graphics/drawable/AnimationDrawable.html
https://developer.android.com/reference/android/graphics/drawable/AnimationDrawable.html
http://dx.doi.org/10.1007/978-1-4842-2268-3_9

257CHAPTER 10: Android Animation: Image and Procedural Animation

The <animation-list> Tag: Your Image Frames Container
Your frame-based animation assets will be created by using an <animation-list> XML
parent tag along with its playback and visibility configuration parameters. The primary
configuration parameter that you will be using is an android:oneshot parameter. A
oneshot parameter controls whether animation playback loops continuously (using the
oneshot="false" setting), or if it will be configured to play just one single time (using the
oneshot="true" setting). One-single-time playback is usually used with an event handling
setup, because you want the animation to play one time whenever it is clicked. The
continuous playback method, on the other hand, is usually set up with a .start() method
call inside of an onCreate() method, so that your animated design element continues
playing (all the time, forever), somewhere on that Activity’s display screen.

Later on you’ll reference the XML file that contains this <animation-list> parent tag, and its
child tags, by using its first name (that is, the first part of the filename) without the extension,
just like you did with your multi-state ImageButton definition, in the previous chapter. We will
create a frame animation XML definition file that uses an anim_logo.xml file name, but which
references this file in XML markup and Java code as: anim_logo. Once this <animation-
list> is defined using XML, you’ll be able to reference the frame-based animation that you
have defined from any of your UI design or content containers across your entire application.

Finally, there is the android:visibility parameter, which you can utilize if you are going
to control the visibility of your AnimationDrawable object within your Java code. You can
use this parameter to set the initial visibility setting, which is usually going to be “true” or
visible, until a user clicks it, or some other code function hides it.

As you will see later, there is also a way to auto-start your animation using XML, so that you
do not have to use any ID parameter, which is generally used to provide a way for Java 8
code to reference your XML tag construct. This approach allows you to avoid declaring,
instantiating, and referencing the Java AnimationDrawable object!

The <item> Tag: How to Add the Image Animation Frames
The <animation-list> tag will always be the parent tag, because it is designed to contain
<item> tags, which will always be the child tags. The item tag is used to define the frames
in your <animation-list> tag, with one <item> tag for each animation frame. There are two
parameters utilized inside of an <item> tag: the android:drawable file name referencing
parameter; and the android:duration parameter, which specifies a frame display duration
integer value, using milliseconds. A millisecond is one-thousandth of a second, so one
second of frame duration would use the 1000 integer value. All these <item> tags exist inside
of the parent <animation-list> container, in the order in which they are to be displayed.
Essentially you are loading the animation frames into a data array in system memory, using
an AnimationDrawable object that will control and play these frames to create motion.

258 CHAPTER 10: Android Animation: Image and Procedural Animation

The math for calculating this duration value, which is ultimately going to represent the
animation’s frame rate, which is usually specified in frames per second, or FPS, is the
number of seconds you want the animation to last times 1000, divided by the number
of frames that you have in your animation. So if you want the logo to rotate once every
second, and you have 9 frames to create the smooth illusion of motion (40 degrees of
rotation per frame), then 1 times 1000 divided by 9 gives you 111.111, so you would use
an android:duration="111" parameter for each <item> tag. If you want a slower 2-second
rotation, you would use a 222 value, a 3-second rotation would be 3000 divided by 9 or a
value of 333, and so forth. Using XML markup will make it easier to experiment with these
data values, until you get the exact animation motion you are looking for.

Next, you will create the XML animation definition file with Android Studio, using a very
similar work process to what you did in the previous chapter, in order to create the XML for
the multi-state ImageButton UI element. After we create the logo_anim.xml file we will create
the XML markup; transfer nine frames for the seamlessly looping 3D animated logo; add an
ImageView widget to the content_main.xml definition to hold the animation; reference the
logo_anim.xml in the content_main.xml definition; write the Java code to declare, instantiate,
and wire up the ImageView and AnimationDrawable objects needed in memory to play back
the animation; and test the animation in the Nexus 5 AVD emulator. We have a lot of XML
and Java work to do, so let’s get started!

Creating Frame Animation in XML and Java
Let’s go through the process of creating your AnimationDrawable XML definition file, coding
image animation frames using XML, installing the image frames, coding the Java objects,
and testing the image animation itself.

Create the XML Frame Animation Definition File
In Android Studio, right-click the /app/res/drawable folder in your NavDrawerPattern app,
and select the New ➤ XML ➤ Layout XML File menu sequence. Once Android Studio adds
a New ➤ XML ➤ Drawable XML File option, you will use that, but for now, Android Studio is
only auto-creating files for /res/layout and /res/value subfolders, so we will have to use
what we have available to us. Figure 10-1 shows you the above-described work process.
Frankly, Android Studio should also have a New ➤ XML ➤ Anim XML File for the /res/anim
folder, as you’ll soon see when we create vector animation in the next section of this chapter
on procedural (vector) animation.

259CHAPTER 10: Android Animation: Image and Procedural Animation

In your New Android Component dialog, shown in Figure 10-2, configure your file name as
logo_anim, and enter your animation-list parent tag (Root Tag), and then click the Finish
button, and create this new XML file.

Figure 10-1. Right-click your app/res/drawable folder, and select: New ➤ XML ➤ Layout XML File menu sequence

260 CHAPTER 10: Android Animation: Image and Procedural Animation

Since there is no New ➤ XML ➤ Drawable XML File option (yet), we’ll have to remove the
two android:layout parameters, shown encircled in red in the middle of Figure 10-3. Also
shown on the left encircled in red is your /app/res/layout folder, which contains the
logo_anim.xml file which needs to be moved to the app/res/drawable folder by using a cut
and paste operation inside Android Studio. The first step in this operation is to right-click on
the logo_anim.xml file and select the “Cut” menu option, which will remove (gray out) the file
from layout.

Figure 10-3. To change XML to an animation list, remove the layout parameters, and cut and paste into drawable

Figure 10-2. Use the New Android Component dialog to name file logo_anim, and set parent tag to animation-list

261CHAPTER 10: Android Animation: Image and Procedural Animation

Notice that where you locate the logo_anim.xml file doesn’t change anything regarding the
open logo_anim.xml editing tab, which can be seen in Figures 10-3 and 10-4, as well as in 10-5
with the animation-list XML markup. Your frame animation XML definition markup will look
like the following, once you remove the android:layout parameters, add an android:oneshot
parameter, and add the nine child <item> tags specifying the image frames:

<?xml version="1.0" encoding="utf-8"?>
<animation-list
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false" >
 <item android:drawable="@drawable/logoanim_0" android:duration="111" />
 <item android:drawable="@drawable/logoanim_1" android:duration="111" />
 <item android:drawable="@drawable/logoanim_2" android:duration="111" />
 <item android:drawable="@drawable/logoanim_3" android:duration="111" />
 <item android:drawable="@drawable/logoanim_4" android:duration="111" />
 <item android:drawable="@drawable/logoanim_5" android:duration="111" />
 <item android:drawable="@drawable/logoanim_6" android:duration="111" />
 <item android:drawable="@drawable/logoanim_7" android:duration="111" />
 <item android:drawable="@drawable/logoanim_8" android:duration="111" />
</animation-list>

Notice that the screenshot in Figure 10-5 shows the slower two-second spin rate, using
the duration value of 222 milliseconds, while the XML markup above shows the faster one-
second spin rate, using a duration value of 111 milliseconds.

You can play around with this frame duration (frame rate) value to achieve the spin rate that
gives you the most realism for the 3D logo animation. I like to get it to spin as slowly as I
can, without detecting any jerkiness in the rotation motion.

Figure 10-4. Right-click on the drawable folder and select Paste and enter the drawable folder in the Move dialog

The second step, seen in Figure 10-4, is to right-click on the /app/res/drawable folder, and
select Paste from the context-sensitive menu options. This will bring up the Move dialog,
where you specify the drawable folder.

262 CHAPTER 10: Android Animation: Image and Procedural Animation

Figure 10-6. Use the operating system’s file management utility to copy the image frames to /res/drawable-xhdpi

Figure 10-5. Create a logo_anim.xml frame animation definition using numbered files

Copy the nine PNG8 animation frames (logoanim_0 through logoanim_8) from the book
assets repository to the AndroidStudioProjects/NavDrawerPattern/app/src/main/res/
drawable-xhdpi folder with an operating system file management utility. In my case, this was
the Windows Explorer utility, as is shown in Figure 10-6.

Also notice in Figure 10-5 that the @drawable/logoanim_n references to the PNG8 image
animation frames are highlighted in red in Android Studio. This tells us that there is
something that will cause an error, and we know what that is, since we have not installed
the 240 by 160 pixel XHDPI resolution density assets in the appropriate /app/res/drawable-
xhdpi folder, which we’ll be doing next, to get rid of these red error highlights in the markup.

263CHAPTER 10: Android Animation: Image and Procedural Animation

If you want to get some practice with that GIMP resolution density work process you learned
in Chapter 9, you can down sample this XHDPI into HDPI 120 by 80 and MDPI 60 by 40
assets. The reason I am not doing this is because these are 8-bit (indexed) images, and it
would be better to have Android 7.1.1 try and use these XHDPI 240 pixel images, if possible,
and use the Android 7.1.1 OS down sampling algorithms to reduce the image pixels only if
necessary. The 64-bit Android OS has improved the sampling algorithms considerably over
the ones in 32-bit versions.

Figure 10-7 shows the logoanim_n.png (xhdpi) files in the /app/res/drawable folder in the
Project pane on the far left, and the error-free image animation frame definition markup on
the right.

Figure 10-7. Once PNG files are in res/drawable-xhdpi, they will show up in the IDE and markup will be error free

The next thing that you need to do is reference this animation definition file inside of the
content_main.xml file. To do this you need to add an ImageView to hold the image animation,
so click on the content_main.xml tab in the Android Studio IDE and click the Design (Editor)
tab at the bottom left and drag an ImageView element out of the Images & Media subpalette
into the center of the UI design as shown in Figure 10-8. Enter a background (plate)
reference to @drawable/logo_anim to wire the ImageView to the AnimationDrawable definition,
and add a contentDescription parameter data value of Logo Animation to provide aural
feedback for the impaired, and leave the default imageView2 ID, as can be seen in the
Properties panel on the far-right side of Figure 10-8.

http://dx.doi.org/10.1007/978-1-4842-2268-3_9

264 CHAPTER 10: Android Animation: Image and Procedural Animation

Let’s also click on the TextView in the Design Editor and enter “3D Logo Animation” to
replace Hello World and add “Logo Animation” to the contentDescription data field for
the disabled (impaired). The final XML, as shown in Figure 10-9, for your new ImageView UI
widget child tag markup should look like the following:

<ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@drawable/logo_anim"
 android:id="@+id/imageView2"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:adjustViewBounds="true"
 android:contentDescription="Logo Animation" />

Figure 10-8. Test UI design in Galaxy Nexus AVD (left), and add a 38 DIP left margin parameter to center (right)

265CHAPTER 10: Android Animation: Image and Procedural Animation

Notice in Figure 10-9 that Android Studio highlights your new parameters that it added using
the Visual Design Editor (seen in Figure 10-8), as well as key parameters which reference
assets or assist the impaired or disabled users. We will be tweaking these parameters as we
continue to create our animated content_main UI definition, over the course of this chapter
covering the different types of animation available to Android 7 developers.

I also drew a red arc showing the connection between /src/drawable/logo_anim.xml
and the android:background parameter. This parameter references a logo_anim.xml
AnimationDrawable image frame asset XML definition.

Now that you have created an XML definition for an AnimationDrawable object and updated
content_main.xml to reference this image animation’s frame sequence in the background
plate of an ImageView, let’s go into your Java code using the MainActivity.java tab, so
that you can declare, construct, instantiate, and inflate the objects that will be needed to
hold these object definitions in system memory so they can be processed. In this case,
processing involves blitting (animating) image frames at your specified millisecond intervals,
to create motion.

Create ImageView and AnimationDrawable Objects
Now we have to use Java to create (instantiate) objects in memory to hold your ImageView
receptacle, and your AnimationDrawable frame animation engine. As you’ve seen before,
an object can be declared, instantiated, and inflated using a single Java statement. For an
ImageView object, this looks like the following Java statement:

ImageView imageView2 = (ImageView) findViewById(R.id.imageView2);

Figure 10-9. Click the XML Text tab and view the XML tags and parameters generated by the XML Design Editor

266 CHAPTER 10: Android Animation: Image and Procedural Animation

Type in ImageView, which will display in red, as there is no import statement yet. Mouse-over
this error, until the android.widget.ImageView? (import) pop-up appears and then use
Alt+Enter to have Android Studio write an import statement for you. Name the ImageView
imageView2 and use an equal operator to use an ImageView findViewById(R.id.imageView2)
method to inflate the ImageView using the parameters defined in the XML. Note that if you type
R.id. in the findViewById() method parameter area, Android Studio will provide you with a list
of all of the android:id parameters you have defined across all of your XML object definition
files, as you can see in the bottom-middle portion of Figure 10-10. Select, and double-click on,
imageView2 to insert it.

Figure 10-10. Declare and instantiate an ImageView object named imageView2, and inflate it using findViewById

The next thing we have to do is to create (instantiate) an AnimationDrawable object in system
memory that will hold your image animation frames, as well as the AnimationDrawable frame
animation engine. As we did with the ImageView object, we will declare, instantiate and inflate
the AnimationDrawable object using a single Java statement. For the AnimationDrawable
object, this should look like the following Java programming statement:

AnimationDrawable imageAnimation = (AnimationDrawable) imageView2.getBackground();

To inflate your AnimationDrawable object, as well as wiring it up to your ImageView object,
you call the .getBackground() method off the imageView2 ImageView object, which loads the
logo_anim.xml image frames definition that’s referenced by using android:background="@
drawable/logo_anim"" in the content_main.xml.

This AnimationDrawable object preparation can be seen highlighted in pale yellow in
Figure 10-11, along with a second Java statement, which starts the image animation
frames sequence displaying at around 5 FPS (222ms) using a .start() method call off the
imageAnimation AnimationDrawable object, or: imageAnimation.start().

267CHAPTER 10: Android Animation: Image and Procedural Animation

Use the Run feature (or Clean and Run) to test the image animation in the AVD. As
you’ll see in Figure 10-12 the animation is running, due to the android:oneshot="false"
parameter, and the UI elements still work well.

Figure 10-11. Add the AnimationDrawable object instantiation, and start image animation using a .start() method

Figure 10-12. Test your image animation, multistate button, and menu system

268 CHAPTER 10: Android Animation: Image and Procedural Animation

Next, let’s take a look at how to set up the other type of animation, vector or procedural
animation, in Android.

Android Tween Animation: Vector Concepts
The patron saint of 2D animation, Walt Disney, is also responsible for the animation term
tween since cels were “tweened,” which is short for “in-betweened,” by his apprentice
animators. Senior animators would create the primary key movement frames called key
frames and the junior animators would then create the tweens.

Tweening is now done algorithmically for you by the Android OS, using something that’s
called interpolation. Interpolation algorithms are provided by the Android Animation class,
which we will be learning all about after we get up-to-speed on all of our tween animation (or
vector or procedural animation) concepts and terminology. One of the cool things that was
added in 64-bit Android (5.0 and later) were additional interpolation algorithms.

The procedural animation attributes are types of vector attributes that can be interpolated,
or more accurately, which can be transformed by using mathematical interpolation, which
you learned about in high school. They include alpha (transparency), which you’ve already
learned about to some extent; as well as translation, which is the 2D industry term for
movement, scale, which is the industry term for size; and finally, rotation, which is the
industry term describing which direction something is facing.

Each of these concepts (rotate, scale, translate, and alpha) has an XML tag and class in
Android, so let’s cover these new vector animation concepts next. In case you might be
wondering, a vector is a ray that is traced out in two or three dimensions, starting at one
point and shooting out through another point (a line, basically). Vector graphics allow us
to define shapes algorithmically, rather than using arrays of pixels (bitmaps). If you want to
dive into SVG and vector graphics in depth, see the popular Digital Illustration Fundamentals
(Apress, 2015) title.

Procedural Concepts: Rotate, Scale, Translate
Let’s start out by learning about some of the concepts involved in vector imaging and vector
animation. First of all, there are two primary types of vector platforms: 2D (two-dimensional,
flat) vector graphics, like we find in Illustrator or Inkscape; and 3D (three-dimensional,
volumetric) vector graphics, like we find in 3D modeling software such as NewTek Lightwave,
open source Blender, or Autodesk 3D Studio MAX. Concepts that we cover in this section
of the chapter apply to both 2D and 3D imagery and animation; however, we will be only
covering the basic 2D vector animation implementations for this Absolute Beginners title.

The 2D vector that uses x and y coordinates is used in 2D, and 3D vectors, which use x,
y, and z coordinates, are used in 3D. Both 2D and 3D animation involve core concepts
of translation (movement), rotation (direction), and scale (size). There is a z concept in 2D
animation, but it is not a z-axis, but rather a z-order. Z-order in 2D is akin to layers in digital
imaging as we’ve already discussed earlier during the book. Z-order involves what layer
order each 2D (flat) layer is in, and whether it is front of, or behind, other 2D layers, making
z-order the number that orders the layers in a 2D composite. This z-order number defines
what is in front of, and what is behind, any given 2D layer. Changing this z-order numeric

269CHAPTER 10: Android Animation: Image and Procedural Animation

value in real time using your Java programming logic can create flip-book types of special
effects, and is a technique often utilized in 2D game programming.

Translation in 2D involves movement along an x or y axis and is the most basic of the three
transformations you can achieve in 2D animation. Translation is defined by a starting point
for a movement; an amount or distance for that movement in pixels or percentages; and a
direction of movement, along either an x or y axis (horizontal or vertical movement), or along
some relative combination of both x and y axis values (diagonal movement).

Rotation in 2D involves rotation around any given x,y pivot point coordinate. The amount
of rotation is defined using degrees, direction (positive/clockwise, or negative/counter-
clockwise) of the rotation, and the pivot point (center) location of the rotation. Since there
are 360 degrees in a full circle, rotational mathematics involves this 360 number specifically,
like FPS calculations involve the number 1000 (number of milliseconds in a second).

Scale in 2D involves a size for a given shape, and is defined by a decimal number relative
to the current size of the shape. For instance, a 0.5 scale would be half of the current size,
or 50%, and a 2.0 scale, or 200%, would be twice the current size of that shape. Like
translation, scaling has an x and a y component. If the values are the same, this scaling can
be said to be uniform scaling; if they’re not the same, the scaling would be said to be non-
uniform scaling.

To draw a parallel to something that you have learned about previously, uniform scaling
maintains aspect ratio, and non-uniform scaling skews or distorts (that is, changes) the
aspect ratio. Therefore, non-uniform scaling is most often used for animation special effects,
such as making a ball squash when it bounces off the ground.

Interestingly, you can also define a pivot point for your scaling operation, which allows
skewed scaling, where the placement of the pivot point can influence your scaling
operation. For irregular shapes, this can give a more precise level of scaling control over a
resulting shape-warping special effect for a scaling operation. Given that sometimes the 2D
shapes being scaled contain bitmap images (patterns and textures), you can obtain some
very interesting results using a pivot point placement that is not at the exact center point of
the vector shape being scaled. The industry term for putting digital imagery in a 2D shape or
on a 3D object is called texture mapping.

Procedural Data Values: Ranges and Pivot Point
In order to be able to interpolate, we need to specify more than one single numeric value,
because interpolation (tweening) involves creating new interim values between starting and
ending values. So, information learned in the previous sections (interpolation) will be applied
to information found in this section (ranges), and then in the next section we’ll cover alpha
blending and more complex procedural animation parameters that are available to control
animation start time offsets, loop type characteristics, and how many times your animation
will loop.

To have any procedural animation, you will always need to specify a range using a starting
value, called a From value, and an ending value called a To value.

270 CHAPTER 10: Android Animation: Image and Procedural Animation

Like a value range, a pivot point will also require two values to establish. However, unlike
a value range, which utilizes a From and To value, a pivot point uses a two-dimensional
location on your display screen, and uses the x and y coordinates, just like pixels do, to
define where the pivot point is to be placed within that 2D plane” A plane in 2D is like a
sheet of paper, or like a layer in compositing, and is an “infinitely flat” with only 2D (x and y
dimensions) surface (no volume). By infinitely flat, I mean that there is no z dimension (depth)
to a 2D plane.

Pivot points are also used extensively in 3D animation, where setting the pivot point
requires three (x, y, and z) data coordinates in order to be properly specified in 3D space.
In this book, we are only covering 2D, as that is the best starting point to use for Absolute
Beginners. As you get more advanced you can add 3D to your repertoire. Let’s take a look
at a fourth type of procedural transform, alpha blending; then we will look at advanced
parameters.

Procedural Animation Compositing: Alpha Values
There is one other attribute that can be animated procedurally in Android, but it is not a
transformation. Alpha blending is much more akin to a compositing feature; in fact, it is a
crucial part of compositing. If you transform an object, the object changes physically in
some way, moving it to a different location (translation), changing its size (scaling), or what
direction it is facing or how it is oriented (rotated).

Alpha blending an object with its background to create procedural animation is done by
specifying a change in the object alpha (transparency) value, with zero being transparent
and one being opaque. This is usually termed as a fade-in or a fade-out in the content
production industry, and technically is image compositing. In Android, alpha blending is
included with a procedural animation toolset, because alpha values are logical attributes
to animate, especially if you are creating an animated children’s ghost story, or a sci-fi
transporter beam special effect, or something similar.

You can finely control the Alpha attribute of an object you are animating procedurally by
using alpha parameter with floating-point values, and you can use an AnimationSet class
to seamlessly combine alpha (transparency) blending with movement, scale, or rotation
transformations.

Like most of the other procedural animation attributes, alpha blending amounts are specified
using real (floating-point, or float) numbers, between 0.0 (transparent) and 1.0 (visible). The
exception to this is pivot points, which you specify using a percentage, such as 50%; and
degrees, which you specify using degrees in decimal numbers (also called real, floating
point, or float) using values between 0.0 and 360 degrees.

It is important to note that using more than one decimal place (precision position) is allowed
when using real or float values. Thus if you wanted your object to be precisely one-third
visible, you would use 0.3333 or, for three-quarters visible, you could simply specify 0.75 as
the starting or ending value for your object’s alpha value.

You’ll set alpha starting and ending values by using the fromAlpha and the toAlpha
parameters. So, to fade-out any object, you would set fromAlpha to 1.0, and toAlpha to 0.0,
in order to achieve that fade-out special effect.

271CHAPTER 10: Android Animation: Image and Procedural Animation

To combine multiple different types of procedural animation parameters together, you should
create a set for the animation transformation parameters. Using a procedural animation
set will allow you to group transforms and compositing together in a logical and organized
fashion. This enables us to create very complex procedural animation.

We’ll be covering how to create procedural animation sets using the Android AnimationSet
class (and object) in detail a bit later on during the chapter. First, let’s take a look at
procedural animation timing and looping values.

Procedural Timing: Using Duration and Offsets
You might be wondering how you set the timing that is used between all of these different
range data values. You actually have done this already for your frame animation using the
android:duration parameter, which sets the duration for displaying one single frame. In
procedural animation, duration sets the timing value for the entire range, and will also to
some extent define how many interpolated data values are created by the Android OS
during that range duration, as well as the duration of each of the segments between each
interpolated value.

It is important to remember that the Android Animation classes decide this value based on
the device processing power, and what those algorithms (the procedural animation “engine”)
calculates will provide the most optimal, that is, the smoothest, visual results, given the
current processing power to applications in use ratio, or trade-off.

The duration for any given procedural animation range is set using the duration parameter,
which, like it does in frame animation, also takes an integer value in milliseconds. It’s
interesting to note that programming languages such as Java, JavaFX, and JavaScript will
utilize these millisecond values for all of their timing functions and operations.

It is also important to point out here that 64-bit Android OSes (5, 6, and 7) can provide even
finer timing granularity, by using nanoseconds, or “nanos,” which allow a billion time slices
per second, instead of a thousand! That being said, you can still also use milliseconds,
which are more reasonable to use for both image and vector animation. This capability was
primarily added to support high frame rate (60 FPS) i3D game development, so that things
could be synchronized with seamless perceptual precision to the game player.

If you wanted the fade-out we discussed in the previous section to take four seconds,
the XML parameter would be android:duration="4000" since 4000 milliseconds equals 4
seconds. If you wanted alpha fade-outs to take (or “span”) 4.352 seconds, you would use
a millisecond value of 4352, and thus you have a one-thousandth of a second “granularity,”
which is the level of precision, available for your procedural animation timing accuracy.

Each transformation (or alpha blend) range that you define has its own separate duration
settings, allowing for a great deal of precision in the XML markup definition of the composite
procedural animation special effect that you are trying to achieve.

There is one other important timing-related parameter, which allows you to delay when the
specified range will start playback. This is called an animation offset, and it is controlled
using the startOffset parameter data value.

272 CHAPTER 10: Android Animation: Image and Procedural Animation

Say that you wanted to delay the start of your four second fade-out by four seconds. All that
you would have to do is to add the android:startOffset="4000" to your <alpha> parent tag,
which we will be using for real, a bit later on during this chapter, and this four-second timing
delay control would then be implemented.

The startOffset parameter is especially useful when utilized in conjunction with animation
loops, which we are going to be covering next. The reason for this is that when used with
looping animation scenarios, a startOffset parameter will allow you to define a pause
during animated element loop cycles.

Let’s take a look at loops next along with different parameters, which are also called
attributes or characteristics, for controlling looping procedural animation. As you’ll soon see,
the definitions for these procedural animation composites can become quite complex, using
AnimationSet objects and deeply nested XML constructs.

Procedural Loops: RepeatCount and RepeatMode
Like frame animation, procedural animation can play once, and then stop, or can play
continuously in a loop, either forever (an infinite loop, which is acceptable for animation) or
for a specified (integer) number of times.

There are two parameters that control looping, one which controls whether the animation
will loop or not, and another which controls the direction in which the animation will loop
back and forth. The procedural animation parameter that controls the number of times
an animation, or component part of an animation set, will loop is called the repeatCount
parameter. This parameter will require a whole number (integer) data value.

If you leave this repeatCount parameter out of (that is, unspecified in) the procedural
animation definition, then an animation will play once and then stop. This means the default
setting is android:repeatCount="1" for this parameter. The exception to using an integer
value for this parameter is an infinite constant. If you want to have an animation loop
forever, you would want to use an android:repeatCount="infinite" parameter setting.

In case you’re wondering, the value that the constant infinite defines is -1, so an
android:repeatCount="-1" parameter definition works just as well. The parameter that
defines what style of looping is used is the repeatMode parameter, which you can set to one
of two predefined constants. The most common of these two is restart, which will cause
an animation to loop seamlessly, unless you’ve defined the startOffset parameter. In case
you’re wondering, the value that a restart constant defines is 1, so android:repeatMode="1"
works too.

The other repeatMode of animation looping is the reverse mode, which is also called pong
animation, as it causes the animation to reverse at the end of its range, and run backward,
until it reaches the beginning again, at which time it will run forward. Back and forth, ad
infinitum, like the video game Pong! In case you’re wondering, the value that a reverse
constant defines is 2, so android:repeatMode="2" will also work.

273CHAPTER 10: Android Animation: Image and Procedural Animation

These parameters may seem simple on their own, but when combined in structures using
an AnimationSet class, which we’ll take a look at later, or by nesting parent and child tags,
these parameters can quickly become quite complicated in combination with each other.
Don’t underestimate the power of these parameters when they are put together by a savvy
developer, in the right XML structure. Next, let’s take a look at the Android Animation
class and its subclasses that implement tween animation, and then implement procedural
animation using XML.

Android Animation Class: Tween Animation
The Animation class is used to create tween animations of View objects in Android. This is
via the interpolation of data values, within constructs of predefined transform types. This
will create frames of procedural animation, with Android deciding how many frames are
needed to create a smooth animation result. The Animation class is part of the android.view
package, and is kept with the other Animation classes, subclasses, and methods, using the
android.view.animation package. This is quite different from the image (bitmap or raster)
frame animation type, which uses the ImageView and AnimationDrawable objects, and the
frame animation engine is kept in the android.graphics.drawable package. This is centered
around graphic design and drawables rather than View UI.

The Animation class hierarchy starts with the java.lang.Object master object, which is then
subclassed, to create the Animation class. The Java class hierarchy for the Animation class
would therefore look like the following:

java.lang.Object
 > android.view.animation.Animation

It is interesting to note that any class that is subclassed from java.lang.Object is essentially
“scratch coded” in the sense that the class is created from nothing, other than the Object
infrastructure, so, in this case, the Android Animation engine was created using only the
procedural animation objectives of Android’s development team.

The Animation class was then used to create the subclasses, which are actually used
via the XML tags, which we will learn how to implement a bit later on during this chapter.
There is one subclass for each of the four types of tween animation you learned about in
the previous section, including the AlphaAnimation, RotateAnimation, ScaleAnimation, and
TranslateAnimation classes. There is also the AnimationSet class, which can be used to
create groupings of more complicated tween animation transforms, called, you guessed it:
animation sets.

Since we have already covered all of the XML parameters that can be used with the Android
Animation class, and therefore with any of its subclasses, in previous sections of this
chapter, let’s jump right into some hands-on XML markup, and create your /res/anim folder,
and procedural animation assets to put inside of that folder that takes a View widget, and
applies some procedural animation transforms to it to vector animate it, so that you’ll start to
learn about how to create tween animation in Android.

After you create the tween animation we’ll create a hybrid animation using both the frame
(AnimationDrawable class) and tween (Animation class) animation engines together, for the
ultimate in Android animation power!

274 CHAPTER 10: Android Animation: Image and Procedural Animation

Creating Tween Animation Using XML Markup
The simplest way to create one of these tween animation assets is to define your procedural
animation using an XML file. This will be stored in the NavDrawerPattern project /res/anim
folder. We’ll create this folder before we create an Animation object XML definition that will
live inside of that folder. The work process is similar to what you did previously to create a /
res/drawable folder and your AnimationDrawable XML asset definition.

Since we’re creating three different types of animation during this chapter (raster, vector, and
hybrid) using both an AnimationDrawable object and an Animation object, we will create our
second logo animation by scaling the AnimationDrawable object to give that animation the
appearance that it is coming in out of the distance.

This will show you how to combine vector and raster animation in Android to create
more advanced animation effects, which will show you how to create what I call “hybrid”
animation in Android. After that, I’ll show you how to use tween animation to create more
advanced vector animation effects that can be used on UI widgets.

After you create a /res/anim folder and XML file containing procedural animation
parameters, we will get back into Java coding and wire up the ImageView UI element to
the vector animation so I can show you how to set up and trigger both frame animation
and tween animation at the same time. After that we’ll look at how to combine rotate and
translate transforms along with the scale transform using the AnimationSet parent container.
By the end of this chapter, you will have a nice overview of the Android bitmap and vector
animation engine classes.

Create an /anim Folder: Tween Animation Assets
Right-click on the NavDrawerPattern project app/res folder, and select the New ➤ Directory
menu sequence, as shown in Figure 10-13. In the New Directory dialog name the folder
anim and click the OK button to create the new folder. This adds a sixth type of Android
asset (procedural, vector, or tween animation), a motion graphics asset, to your hierarchy,
which already includes static graphic assets (/res/drawable), UI design assets (/res/
layout), menu design assets (/res/menu), application icons (/res/mipmap), and constant
values (/res/values).

Figure 10-13. Right-click on the project app/res folder, and create an app/res/anim folder under the app/res folder

275CHAPTER 10: Android Animation: Image and Procedural Animation

Once you have a /res/anim folder in place, seen in Figure 10-14 on the left, right-click on
that folder and select the New ➤ Animation resource file menu sequence, to open the New
Resource File dialog shown on the right side of Figure 10-14. Since you right-clicked on the
/res/anim folder, Android Studio will automatically set the Directory Name field to anim. All
you need to do is to name this file tween_anim, and leave the other default settings as they
are. Once you click OK, Android Studio will open your empty bootstrap tween_anim.xml file.

Figure 10-14. Right-click on anim folder and use New ➤ Animation resource file to name the XML file tween_anim

Since we talked about the primary parameters earlier in the chapter, we will get down to
business, and configure the scale transform so we can bring our rotating logo in out of
distance to increase the animation realism.

Android ScaleAnimation Class: Animated Scaling
The Android public class named ScaleAnimation extends the Animation primary procedural
animation engine class and focuses on scaling animation, which changes the size of the
object that you want to animate. The class hierarchy for the Android ScaleAnimation class
looks like the following:

java.lang.Object
 > android.view.animation.Animation
 > android.view.animation.ScaleAnimation

The ScaleAnimation object constructed using this class, and generally specified using a
<scale> tag, in an XML definition file, creates animation that will animate, or more accurately,
interpolate, the scale of an object. You can specify the point to use for the center of this
scaling operation using a pivotX and pivotY parameters, along with a percentage, in our
case this will be the exact center of the object, or pivotX=50% and pivotY=50%. Let’s get right
into creating the XML markup for this scale operation, inside of the tween_anim.xml you just
created.

276 CHAPTER 10: Android Animation: Image and Procedural Animation

The Scale Transform: Configuration Parameters
Let’s go through the process of having Android Studio help us code a child <scale>
animation construct, inside of the AnimationSet <set> parent tag. Inside of the parent <set>
tag type a < left-facing chevron and select and double-click on the scale vector animation
child tag, as shown in Figure 10-15. Notice that when you resize the IDEA window that there
is a control on the right to access the open tabs, four in this case, that you cannot see, using
a drop-down (arrow) menu with the number of “overflow” tabs that are contained within the
drop-down.

Figure 10-15. Type a left-facing chevron inside of your parent <set> tag, and double-click on the scale animation

Figure 10-16. After the <scale opening tag, type a space and select and double-click on android:pivotX to insert it

To add parameters, type a space after the <scale tag and select one of the six available
parameters for this tag, in our case, this would be android:pivotX, and then double-click on
it, and insert it, as can be seen in Figure 10-16.

277CHAPTER 10: Android Animation: Image and Procedural Animation

Now that you have defined your perfectly centered pivot point by using the android:pivotX
and android:pivotY configuration parameters using a 50% value, you’ll need to reference
the starting scale range in both the X and Y dimension using the fromXScale and
fromYScaled configuration parameters. Add a line of markup after the pivot parameters,
and then type an “a” to bring up a helper drop-down, and select and double-click on the
fromXScale parameter, as can be seen selected in yellow and blue in Figure 10-17. Set your
fromScale data values for both the X and Y dimensions to zero using the “0.0” floating-point
number. Now all you have to set is the toScale X and Y range.

Figure 10-17. After the pivot parameter, type an “a” and select and double-click on android:fromXScale to insert it

Add another line of markup, after your fromScale parameters, and then type an “a” to bring
up the helper drop-down. Select and double-click on the toXScale parameter, and specify a
100% full scale, using a “1.0” floating-point number. Notice that for this parameter, the 0.0
equates to 0% and the 1.0 equates to 100%.

Then hit a space (spacebar) character, and select and double-click on the toYScale
parameter, as can be seen selected in yellow and blue in Figure 10-18. Also notice in
Figures 10-17 and 10-18 that Android Studio has put a yellow warning header on the top of
the XML markup editing pane that advises you that the markup is indented with 7 spaces,
instead of using the standard 4 spaces. This is because I wanted to show all of the code
and the pop-up helper drop-downs unhindered by one another, and so I had to space the
markup out a bit more!

After I was done with the screenshots, I selected the “Indent with 4 spaces” link (option).
The number of spaces you use to indent your code for readability purposes will not affect
the efficacy or execution of that code, either in Java or in XML editing for your Android
applications, so do whatever you feel the most comfortable with!

278 CHAPTER 10: Android Animation: Image and Procedural Animation

The XML markup for the six initial transform definition parameters are shown in Figure 10-18,
and should look like the following child <scale> tag (and its scaling parameters, attributes, or
characteristics) XML markup:

<scale xmlns:android="http://schemas.android.com/apk/res/android"
 android:pivotX="50%" android:pivotY="50%"
 android:fromXScale="0.0" android:fromYScale="0.0"
 android:toXScale="1.0" android:toYScale="1.0" />

Next, let’s learn a bit more about the parent <set> AnimationSet class, and then add more
parameters to the AnimationSet, so that we can specify and control the vector animation
duration, loop type, offset, and more.

Android AnimationSet Class: Transform Grouping
The Android public class named AnimationSet extends the Animation primary procedural
animation engine class and focuses on grouping animation, which allows you to apply group
hierarchies to procedural animation to allow more complex animation by combining the
four types of procedural animation (scale, rotate, move, alpha). The class hierarchy for the
Android AnimationSet class looks like the following:

java.lang.Object
 > android.view.animation.Animation
 > android.view.animation.AnimationSet

The AnimationSet object is constructed using this class, and generally specified using a
<set> tag, in an XML definition file, creates animation hierarchies that will contain constructs
of the four vector animation types as well as other AnimationSet constructs, allowing you to
deeply nest the different types of procedural animation relative to each other to create any
desired animation result imaginable. Let’s get right into creating the XML markup for this
AnimationSet operation, which forms the foundation of the tween_anim.xml you have created.

Figure 10-18. After the fromScale parameters type an “a,” select and double-click on android:toYScale to insert it

279CHAPTER 10: Android Animation: Image and Procedural Animation

To the Animation class the AnimationSet is used to construct a group of Animation
subclasses that are designed to be played together, either serially, or in parallel, or in more
complex animation constructs, both. Visually, the transformation of each individual animation
will be composed together into one single more complex transformation.

If an AnimationSet parent grouping specifies any properties (parameters) that its children
also specify, for example, duration, the values of the parent AnimationSet will override
the same values set in the children (tags). The way AnimationSet inherits behavior from
the Animation engine is different based upon each parameter. Some of the Animation
parameters applied to AnimationSet affect the AnimationSet as a whole, while others will be
“pushed down” into its children, while others will be completely ignored.

The duration, repeatMode, fillBefore or fillAfter properties, when specified for an
AnimationSet object, will be pushed down to all of its children animation transformation
types. The fillBefore and fillAfter parameters control whether the initial value of
the animation is applied before its start time (fillBefore) and whether the animation’s
ending values persists after it has transformed (fillAfter). These are for more advanced
applications, and therefore will not be delved into in this book, but you are welcome to dive
into them on the developer site.

The repeatCount and fillEnabled, which switches on or off the fillBefore and fillAfter
parameters, will be completely ignored if specified for the parent AnimationSet, as they are
inherently used at the transform level. The startOffset or shareInterpolator parameters
on the other hand only apply to an AnimationSet as a whole. The shareInterpolator tells
children of an AnimationSet whether to share (if set to “true’) the AnimationSet Interpolator
parameter, or if AnimationSet defines shareInterpolator="false", to put different
Interpolator values into each of the child transforms, to achieve a far more advanced vector
animation effect. Let’s get right into it!

AnimationSet Container: Groups and Subgroups
Let’s go into the tween_anim.xml tab and add some of the commonly used parameters into the
parent <set> tag. If you add a space before the end (right-facing) chevron of the AnimationSet
parent <set> tag, you will get the drop-down helper selector where you can select and
double-click on the android:duration parameter to add it, as is shown in Figure 10-19. Set
duration to 5000 milliseconds to make the animating logo come into view slowly.

Figure 10-19. Add a space before the closing ➤ chevron of the parent <set> tag, and select a duration parameter

280 CHAPTER 10: Android Animation: Image and Procedural Animation

Next, add the repeatMode parameter set to "reverse" and the sharedInterpolator
parameter set to "true" so that all of the transforms we will be adding later use the default
LinearInterpolator. Add a small 100 millisecond startOffset so that the animation takes a
little while to appear in the distance to add more realism. These parameters are shown inside
of the parent <set> tag in the middle of Figure 10-20, and configure the animation.

Figure 10-20. Add repeatMode, startOffset and ShareInterpolator parameters to your parent AnimationSet <set>

Figure 10-21. Declare an ImageView object named imageView2, and Animation object named tweenAnimation

Since your <ImageView> UI element already has an ID value in your XML markup and
has been instantiated in the Java code, all you have to add is the Java code in your
MainActivity.java file that will wire the tween animation to the ImageView in order to scale it
into view (out of the distance), to create this hybrid animation, which is frame animating the
background image assets, and vector animating your ImageView container itself!

Java Code: Tying Two Animation Types Together
Since you are going to use the ImageView object inside of your event handler for the
FloatingActionButton, to trigger the logo animation to emerge from the distance (scale), let’s
declare your ImageView object at the top of your MainActivity class, as is seen highlighted in
yellow in Figure 10-21. Also declare an Animation object and name it tweenAnimation, as we
will be instantiating that next, underneath your AnimationDrawable Java code.

281CHAPTER 10: Android Animation: Image and Procedural Animation

Make sure to remove the ImageView from the beginning of your ImageView findViewById
object instantiation statement (after the two NavigationView statements), or you’ll get a red
wavy error highlight in Android Studio.

Next, instantiate the tweenAnimation Animation object after the imageAnimation.start()
method call, as seen in Figure 10-22, so that Android will instantiate this object when your
application’s MainActivity starts. Reference your tween_anim.xml XML definition using a
.loadAnimation() method called on the AnimationUtils class, as shown highlighted in
yellow in Figure 10-22. The AnimationUtils class defines common utilities for working with
vector (procedural) animation, such as loading Animation objects, loading Interpolator
objects, and polling these objects so you can ascertain their current time (progress into the
animation’s duration) using milliseconds.

Figure 10-22. Instantiate the animImageView inside of the onCreate() method using the findViewById() method

The next thing that you will need to do is to wire the Animation object to the ImageView object.
This is done by calling the .startAnimation() method off of the imageView2 object and
passing the tweenAnimation object over in the parameter area of the method call, like this:

imageView2.startAnimation(tweenAnimation);

We will do this inside of the OnClickListener() event handling code for your
FloatingActionButton, instead of posting a text message about inserting your own code. As
you can see, highlighted in Figure 10-23, this makes your event handling routine simpler, and
gives you control over triggering the vector animation, so you can test your code.

282 CHAPTER 10: Android Animation: Image and Procedural Animation

Speaking of testing the Animation code, let’s do that now using the Run ➤ Run ‘app’ or
Run ➤ Clean and Rerun ‘app’ menu sequences. When you click the FloatingActionButton,
which we have “borrowed” here to control the test of our vector animation, and to keep it
separate from our raster (AnimationDrawable) animation, the animating logo comes in from
the distance, as can be as seen in the left-hand AVD emulator preview seen in Figure 10-24.

Figure 10-23. Declare an Animation object and name it tweenAnimation at the top of your MainActivity.java file

Figure 10-24. Test the vector animation by clicking on the the FloatingActionButton

283CHAPTER 10: Android Animation: Image and Procedural Animation

Finally, we need to look at Animation interpolator constants, so that you can create
complex motion curves for your image (raster) or tween (vector) animation constructs. In this
case, we are building a hybrid animation that uses both the Animation (engine) classes and
the AnimationDrawable (engine) class together for special effects.

Complex Animation: Android Interpolators
Let’s get more complex and add some motion curves, called Interpolator constants
in Android, to enhance the realism of the way that the animated objects (we will be
animating the TextView as well) fade-in and scale up. This will allow me to show you how
shareInterpolator works and teach you about Android’s Interpolator engine and how
to incorporate two different types of motion curves in the complex Animation transform
subgroupings.

Creating Complex Animation Using XML Markup
Let’s add a second <alpha> (transparency) transform child tag to the parent <set> tag, since
the primary purpose of an AnimationSet is to group transforms together, to make them run
as one seamless transform. It is important to note that you can use one transform inside of a
<set> without any issues or errors, as you have just seen in the previous section.
Add a carriage return (a new line of markup or newline character) and type in <alpha to
open an <alpha> tag and hit the spacebar to bring up the pop-up helper and select and
double-click on the fromAlpha parameter to insert it in your code, which is shown in
Figure 10-25 highlighted in blue.

Figure 10-25. Add an <alpha opening tag, and hit the spacebar to bring up the parameter pop-up helper selector

284 CHAPTER 10: Android Animation: Image and Procedural Animation

Set fromAlpha to a data value of 0.0, or 0% opacity. Repeat this work process and add
your toAlpha parameter, and set it to a data value of 1.0 or 100% opacity, as shown in
Figure 10-26. The resulting <alpha> tag and parameters should look like this:

<set android:parameters are in here >
 <scale android:parameters are in here />
 <alpha android:fromAlpha="0.0" android:toAlpha="1.0" />
</set>

Next, let’s add another level of complexity to a compound (multiple transforms) vector
animation definition, by adding motion control curves. A motion control curve is a
mathematical or algorithmic definition regarding how the animation frame rate should be
transformed in real time, changing how the vector transform will be applied over time. This
is done by using an Android Interpolator interface, which is part of the view.animation
package.

Android Interpolator Interface: Motion Curves
The Android public Interpolator interface implements the Android public TimeInterpolator
interface, which defines the rate of change over time for an animation. This allows
animations to have nonlinear motion, such as acceleration and deceleration, for instance.
The Interpolator interface therefore also defines your rate of change for Android procedural
animation. This will allow the four basic animation effects (alpha, scale, translate or move,
and rotate) to be accelerated, decelerated, cycled, bounced, anticipated, overshot, or made
to follow a predefined vector path.

The Interpolator interface is kept in the android.view.animation package, and has
fourteen known indirect subclasses, including: AccelerateDecelerateInterpolator,
AccelerateInterpolator, AnticipateInterpolator, AnticipateOvershootInterpolator,
BaseInterpolator, BounceInterpolator, CycleInterpolator, PathInterpolator,
DecelerateInterpolator, FastOutLinearInInterpolator, FastOutSlowInInterpolator,
LinearInterpolator, LinearOutSlowInInterpolator and OvershootInterpolator.

Figure 10-26. Add a toAlpha parameter set to a data value of 1.0, and add a closing tag to the alpha child object

285CHAPTER 10: Android Animation: Image and Procedural Animation

Next, inside your parent <set> tag, type a space after your <scale> child tag’s
android:toYScale parameter, and type android:interpolator="@android:anim" This will bring
up a pop-up helper containing the Interpolator constants, which is seen in Figure 10-27. The
XML markup for the <scale> tag should look like the following:

<set android:parameters are in here >
 <scale android:pivotX="50%" android:pivotX="50%" android:fromXScale="0.0"
android:toXScale="1.0"
 android:fromYScale="0.0" android:toYScale="1.0"
 android:interpolator="@android:anim/overshoot_interpolator" />
 <alpha android:fromAlpha="0.0" android:toAlpha="1.0" />
</set>

Figure 10-27. Add an android:interpolator parameter, set it to @android:anim, and select /overshoot_interpolator

Let’s follow the same work process, and add a different motion curve interpolator to your
<alpha> child tag, to create a more complex animation. Since we are using more than one
Interpolator constant, the first thing that we will need to do is to set android:shareInterpo
lator="false" in the parent <set> AnimationSet tag as shown in red in Figure 10-28. Next,
add a space after the android:toAlpha parameter in the <alpha> child tag, and then, add an
android:interpolator="@android:anim/accelerate_decelerate_interpolator" parameter,
seen in Figure 10-28. The XML markup after the second Interpolator has been added should
look like the following:

<set android:parameters are in here >
 <scale android:pivotX="50%" android:pivotX="50%" android:fromXScale="0.0"
android:toXScale="1.0"
 android:fromYScale="0.0" android:toYScale="1.0"
 android:interpolator="@android:anim/overshoot_interpolator" />
 <alpha android:interpolator="@android:anim/accelerate_decelerate_interpolator"
 android:fromAlpha="0.0" android:toAlpha="1.0" />
</set>

286 CHAPTER 10: Android Animation: Image and Procedural Animation

Now we are ready to instantiate the TextView object in the MainActivity.java code (tab)
so that I can show you that your procedural animation assets can be attached to more than
one widget, including text or button widgets, as well as widgets that use graphics, images,
video, and SVG (scalable vector graphic) assets. This will also give you more practice in how
to set up procedural animation assets to work with UI widgets and event handlers.

Java Code: Two Widgets Use the Tween Animation
To implement this new more complex animation set on the TextView at the top of the
main content UI design in content_main.xml, and the first thing you need to do is add an
android:id="@+id/textView" parameter in the <TextView> child tag so that this TextView
object can be declared at the top of the MainActivity.java class, and instantiated at the
bottom of the onCreate() method, and animated within your OnClickListener() event
handling structure. Declare a TextView object named textView at the top of the class under
the ImageView and Animation objects, then instantiate the TextView in onCreate() using:

textView = (TextView)findViewById(R.id.textView);

In the OnClickListener add the following statement, seen in Figure 10-29:

textView.startAnimation(tweenAnimation);

Figure 10-28. Change shareInterpolator to false; add the accelerate_decelerate_interpolator to your <alpha> tag

287CHAPTER 10: Android Animation: Image and Procedural Animation

Figure 10-29. Declare, Instantiate, and call Animation off the TextView object to wire a TextView to the Animation

To see the TextView and ImageView with the new Fade+Scale vector animation applied, use
your Run ➤ Run ‘app’ or Run ➤ Clean and Rerun ‘app’ menu sequence. When you click the
FloatingActionButton that we “borrowed” to control the test of our vector animations, to
keep it separate from our raster (AnimationDrawable) animation, the animating logo comes
in from the distance, and fades into view, and the TextView also scales and fades into view,
using a different timing (motion through time curve) than the scaling timing. Try different
parameters on your own time, and see how they affect the animation result, to get some
experience with procedural animation.

Procedural Animation or Frame Animation?
Finally, I wanted to discuss some of those higher-level theories, principles, concepts,
and trade-offs, which will serve to differentiate the image-based frame animation
AnimationDrawable approach from the mathematics-based procedural animation (vector or
tween) Animation approach.

Image (frame or raster) animation will tend to be more memory-intensive than it is
processor-intensive. This is because each frame that is going to be placed on the display
screen would need to be loaded into memory, so that these frames can later be used in your
application. Displaying these images from system memory in a View is fairly straightforward,
and does not require any complex calculations, so the processing overhead is low, as it only
involves moving each frame’s image asset from system memory over to the Android device
display screen.

288 CHAPTER 10: Android Animation: Image and Procedural Animation

Frame animation would give you more creative control outside of Android OS, because you
can use production software, including 3D, digital imaging, digital video, digital illustration,
special effects, particle systems, fluid dynamics, morphing, digital painting and the like, to
manipulate all your pixels into exactly the animation effect that you are looking to achieve. I
have a half-dozen new media fundamentals titles from Apress, including the Android Studio
New Media Fundamentals (2016) title, which covers how to produce these multimedia assets.

Since Android does not yet include all of these advanced multimedia production tools, using
a frame animation will allow you to leverage powerful production tools, some of which we will
be using within this book, during the digital imaging, digital video, and digital audio chapters,
outside of the Android development environment. You can then bring the results into your
Android application using the image, video, audio, SVG, and 3D assets. For image animation
this would include image bitmaps defined as frames within an AnimationDrawable object.

Procedural animation tends to be more processing intensive because it involves numeric
value interpolation, as well as the application of interpolator “motion curves” to the resulting
interim data values. Additionally, if sets and subsets are utilized to create a complex
animation structure, there can be a great deal more data processing involved, as well as
the memory space that would be required to hold the plethora of settings, ranges, pivots,
interpolation values, and similar animation processing data that will be needed by the
Animation engine classes.

Procedural animation gives you more control inside of Android 7.1.1. This is because you
are doing everything that controls your animation by using Java code and XML markup,
and your animation data can be made to interact within the Java programming logic. This is
because Java code and data, and even your UI element widgets, can be crafted to interface
with the procedural animation in real time, allowing animation to be made interactive,
whereas frame animation at least by itself, is not interactive. Frame animation by itself is
a more linear medium, like digital video, where frames are played sequentially in order to
achieve the motion graphics end result.

Since you can apply procedural animation to just about any View object in Android, including
your text, UI widgets, images, video, and frame animation, if you set things up correctly,
such as using image compositing techniques to their best end result, you can achieve some
impressive interactivity by using frame animation, audio, and digital video in conjunction with
procedural animation, as you have already seen during this chapter.

If you are combining image animation with procedural animation, as we did during this
chapter, you will have a load on both processor and memory resources, so you must try and
optimize what you are doing, so that you don’t use up too much of the system resources
needed to run the rest of your application code and UI. This is why we touched upon the
topic of data footprint optimization in Chapter 9, and why we’re learning about the same
type of optimization principles here. We will also touch upon data footprint optimization in
the digital video chapter (11) and the digital audio chapter (12) for exactly the same reason; if
you run out of memory, your application stops working, and may even take down the rest of
the Android user’s phone, tablet, or iTV set.

http://dx.doi.org/10.1007/978-1-4842-2268-3_9

289CHAPTER 10: Android Animation: Image and Procedural Animation

The Animator Class: Parameter Animation
There is one other animation engine class (besides Animation and AnimationDrawable) in
Android which I did not cover in this chapter, as it is not vector or raster animation of a new
media asset, but rather a way to animate attribute changes for any Android class, which
can also be done using Java programming loops.

Developers can use this Android Animator class as a predefined (pre-coded) shortcut to
animating object properties inside of Android that would usually be animated (interpolated or
changed over time) by using Java programming structures to accomplish smooth iteration
of object attributes using the same mathematics that is already defined for you using this
Animator class.

If you wanted to research this on your own, you can visit the following Android Developer
website URL, if this area is of interest for your application development requirements:

http://developer.android.com/reference/android/animation/Animator.html

Since Chapters 10 through 12 cover advanced new media assets (animation, digital video
and digital audio) in detail, I have opted to focus on image (animation), vector animation,
digital audio, and digital video specifically.

Summary
In this chapter, you learned all about 2D animation concepts and principles, expanding
on the 2D graphics concepts and principles that you learned about in the Chapter 9, into
the fourth dimension of time. Changing images over time is the foundation for both 2D
animation as well as digital video media. We will be covering digital video in the next chapter,
as a logical follow-on to subject material you learned in this chapter.

You learned about Android’s AnimationDrawable object and frame-based animation and
the supported digital image formats (PNG) utilized for animation frames. You learned about
how to define frame animation, as well as how to implement it inside of your DrawerLayout
UI design from Chapter 8, using the Android ImageView class, which is used to hold Android
Drawable objects, such as images and frame animation XML definitions.

Next, you learned about the Android Animation class, used to implement the other major
type of animation in Android, known as tween animation, procedural animation, or vector
animation. Tween animation uses XML tags and parameters to create animation, using alpha
blending, scaling, rotation, and translation (movement).

You learned how to define procedural animation, as well as how to implement it in your
DrawerLayout design from Chapter 8, using the ImageView class and Animation class. You
declared and instantiated these objects in your MainActivity.java AppCompatActivity
subclass in order to be able to “wire up" your procedural animation settings data to the
AnimationDrawable 3D logo image animation created during the first section of the chapter.

http://developer.android.com/reference/android/animation/Animator.html
http://dx.doi.org/10.1007/978-1-4842-2268-3_10
http://dx.doi.org/10.1007/978-1-4842-2268-3_12
http://dx.doi.org/10.1007/978-1-4842-2268-3_9
http://dx.doi.org/10.1007/978-1-4842-2268-3_8
http://dx.doi.org/10.1007/978-1-4842-2268-3_8

290 CHAPTER 10: Android Animation: Image and Procedural Animation

You also added an event listener to your multistate FloatingActionButton, which you
enhanced in the previous chapter. You created hybrid animation, which used both frame
animation and procedural animation, to achieve the ultimate 2D animation special effects.
You learned how to build even more complex animation, by using the AnimationSet class
and Interpolator interface and constants, and how to attach these to both text and image UI
elements, so that you can achieve the same special effects you can in DVE, SFX, or Titling
animation software.

Finally, we discussed trade-offs between frame animation’s use of system memory and
procedural animation’s use of CPU processing cycles. I also pointed out a third Animator
class that animates Android class attributes (or parameters, as I like to call them), which we
did not cover, as that class is not technically new media 2D or 3D animation at all, and is not
in the AnimationDrawable (raster) or Animation engine (vector) animation classes.

In Chapter 11, you will learn all about digital video in Android including foundational digital
video theory and concepts, what digital video file formats are best to use in Android, how to
create digital video assets for use with Android’s FrameLayout container class, and how to
use the Android VideoView class and widget. You’ll also learn how that class works with the
Android MediaPlayer class, the Android Uri class, and the Android MediaController class.
Chapter 11 will be just as advanced as this chapter, if not more so, as video is complex.

http://dx.doi.org/10.1007/978-1-4842-2268-3_11
http://dx.doi.org/10.1007/978-1-4842-2268-3_11

291© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_11

Chapter 11
Digital Video: Streaming
Video, MediaPlayer, and
MediaController Classes
In the previous chapter covering 2D Animation, we implemented motion graphics in Android
and digital image file formats such as PNG or JPEG in conjunction with XML constructs to
create frame-based animation, as well as using procedural (tween or vector) animation to
rotate, scale, move, and fade UI elements.

There is another way that you can play a series of frames in Android, called digital video.
Digital video assets are especially well-suited for situations when you have hundreds or even
thousands of frames, and cannot easily handle them all using an Android AnimationDrawable
class. Additionally, digital video can be streamed over a network connection, which 2D
animation assets cannot, and so new media can be external to your application.

In this chapter, we are going to take all of the newfound knowledge that you gained in
Chapter 10 regarding the fourth dimension of time, as well as concepts that you learned
about such as frames and frame rates, and we will again expand upon that knowledge with
new concepts such as bitrates and new digital video codec (file format) support in Android,
including the popular MPEG-4 and WebM digital video formats that are also the formats that
are used in HTML5 and JavaFX 8.

We will be covering several frequently utilized Android classes you can use to implement
video graphics design elements, such as a VideoView UI widget, a fullscreen UI layout
container great for use with video, and three media-related Android classes that you can
utilize to implement a digital video (or digital audio) transport UI, control and playback,
including MediaPlayer (media playback), Uri and MediaController (transport controls).
During the chapter we’ll use these digital video-related classes to create a digital video
playback Activity. We’ll create a 3D flythrough with Terragen 4, and learn how to optimize
digital video using Sorenson Squeeze Desktop Pro 11.

http://dx.doi.org/10.1007/978-1-4842-2268-3_10

292 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Creating a Video App: FullscreenActivity
The first thing we need to do is to see if there is one of the dozen pure Android design
patterns in Android Studio that is attuned to, or suits, digital video playback applications.
Fortunately there is, and this gives us a chance to dive into yet another (a third so far) of the
application development bootstrap templates that the New Android Studio Project series of
dialogs offers to all the Android 7.x application development Absolute Beginners.

Go into Android Studio 2.3 and the currently open NavDrawerPattern project and use the
File ➤ Close Project menu option to close the project and open the Android Studio master
dialog, as shown in Figure 11-1. As you can see on the left side of the dialog, your two
existing projects are easily accessible at any time you wish to continue working on them.
Since we are going to start a new digital video project, so that you can explore some of the
other pure Android design pattern application templates that build a full working Android
application for you, click on the Start a new Android Studio project option, which can be
seen in the middle right of Figure 11-1, highlighted in red.

Figure 11-1. Use File ➤ Close Project on NavDrawerPattern, and then select Start a new Android Studio project

In your Configure your new project dialog, name your application DigitalVideoMedia, and
accept the other default settings and leave Include C++ Support unchecked, as is shown
in the first pane in Figure 11-2. Click Next and accept the default settings in the Select the
form factors your app will run on dialog seen in the middle of Figure 11-2.

293CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Click Next from the Select Form Factors dialog, and select the Fullscreen Activity,
shown selected in blue in Figure 11-3, and click the Next button. In the final Customize
the Activity dialog, seen on the far right in Figure 11-2, title the Activity DigitalVideoPlayer,
and leave the default Activity and Layout names as suggested by Android Studio as
FullscreenActivity and activity_fullscreen, and again click on the Finish button.

Figure 11-2. The Configure Your New Project, Select the Form Factors, and Customize the Activity dialogs

Figure 11-3. Select the Fullscreen Activity option in the Add an Activity to Mobile dialog and click Next button

294 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Next, let’s test the bootstrap code that Android Studio has created for us to make sure that
it works. Be sure to use your AVD often at each stage of development to make sure your
application works after each major code addition, even the initial bootstrap code, to make
sure none of the API that underlies the code has changed.

Use the Run ➤ Run ‘app’ menu sequence to execute the DigitalVideoMedia application in
the Android emulator, as is shown in Figure 11-5. I show the initial startup screen on the far
left, the fullscreen mode with dummy content in the middle pane, and the UI overlay mode
(non-fullscreen content) on the far right.

This will create a DigitalVideoMedia project and FullscreenActivity in Android Studio as
shown in Figure 11-4. Take a look at the XML UI design hierarchy to ascertain how it works
like you did in Chapter 6.

Figure 11-4. Take a look at the activity_fullscreen.xml UI XML file to ascertain how the tag hierarchy is set up

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

295CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Let’s take an in-depth look at Android’s Framelayout class, which provides a foundation for
this design pattern.

The FrameLayout Class: Framing DV Content
The Android FrameLayout class is the most basic layout container class, as it provides simple
frame layout for content. Often this content involves fullscreen digital video, which is why
I waited until this chapter to cover the FrameLayout class in detail. A FrameLayout is often
utilized to contain one single UI widget that contains some sort of new media content such
as digital video or animation. An example of a complex UI widget that would be perfect
to use in conjunction with this FrameLayout container would be the VideoView widget. The
VideoView widget (class), which we’ll go over in detail later on this chapter, is designed to
contain an MPEG-4 or WebM digital video asset. We will be covering how to create a digital
video asset from scratch, and how to optimize it.

The FrameLayout class is a public class that extends the ViewGroup superclass, which as you
know is a master blueprint class that is used to create Android layout container subclasses.
The FrameLayout class hierarchy, which starts with the Java language Object master class,
would look like the following Java class hierarchy:

java.lang.Object
 > android.view.View
 > android.view.ViewGroup
 > android.widget.FrameLayout

Figure 11-5. Test the DigitalVideoMedia project with Run ➤ Run ‘app’ to see how the FullscreenActivity works

296 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

The FrameLayout class was designed by Android OS developers to specify the area on the
display screen that is intended to display one single item. This is why it is named using the
term “frame,” as typically a frame holds a single image. For this reason, you should design
a FrameLayout UI to hold one or two child widgets. Because the FrameLayout class does not
have a lot of methods defined that allow a lot of layout positioning attributes (or parameters),
it’s most basic of the Android layout classes. This also makes the class quite memory
efficient!

If you try to use multiple child UI widgets inside of your parent FrameLayout container, you
will find that it can be difficult to position multiple design elements accurately in a way that
is scalable across different screen sizes, shapes, and orientations. This is due to the lack of
advanced layout positioning attributes.

What happens if you attempt to use FrameLayout containers to organize multiple UI elements
is that you would see a high occurrence of UI elements overlapping each other. This is not
the professional result that you should be seeking for your pure Android design patterns.
There are better layout containers, some of which you have seen already in this book, like
the (horizontal or vertical) LinearLayout, RelativeLayout, and the GridLayout.

The only way to control positioning of your child UI widgets within the parent FrameLayout
UI container is by assigning a layout gravity parameter for each child widget. This is
done using the android:layout_gravity parameter inside of each UI widget’s child tag in
your FrameLayout XML user interface definition file, which you have seen in lines 9 and
23 in Figure 11-4. Here the TextView uses android:layout_gravity="center" and the
LinearLayout container uses the android:layout_gravity="bottom|center_horizontal"
to place a UI Button at the bottom of the non-fullscreen UI design. We will be learning all
about the FrameLayout class during this section, as well as its nested classes, which provide
FrameLayout parameters, during the next section.

This layout_gravity design parameter does not allow developers to do the pixel-precise
positioning, or relative positioning, that is possible using the other more advanced (and less
memory-efficient) layout container classes. The FrameLayout class essentially allows Android
to do all of your UI design positioning, so that you can scale your UI design to fit all the
different Android device screen sizes and orientations, usually in fullscreen mode, which is
the optimal mode for use with digital video assets. This gravity parameter for the
FrameLayout class is provided by a nested class called FrameLayout.LayoutParams. We’ll be
covering this nested class in the next section of this chapter. It’s identical to the gravity
parameter that is used in other ViewGroup layout container classes. I am going to cover
layout gravity in detail in this chapter, because it is an important UI design concept.

Since it is a basic UI layout class, you can also utilize the FrameLayout class as a superclass,
for the purpose of creating more specialized UI-related classes. Any class that you create by
subclassing the FrameLayout class would be termed a direct subclass of the FrameLayout
class. If added to the Android API, it becomes a known direct subclass; otherwise if it
remains private (with you), it would be termed an (unknown) direct subclass.

Note Nested classes are attached to the parent class in Java using dot notation, so the
FrameLayout nested LayoutParams class would be FrameLayout.LayoutParams.

297CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Some of the known direct subclasses of FrameLayout, that is, FrameLayout subclasses that
have already been coded for you, would include: DatePicker, TabHost, MediaController,
CalendarView, ScrollView, TimePicker, ViewAnimator, HorizontalScrollView,
GestureOverlayView, and the AppWidgetHostView class.

FrameLayout also has several known indirect subclasses. These are part of the Android
API and are subclasses of the above known direct subclasses. Indirect subclasses include:
TextSwitcher, ViewFlipper, ImageSwitcher, FragmentTabHost, and the ViewSwitcher class.
Next, let’s take a look at the FrameLayout.LayoutParams class.

FrameLayout.LayoutParams Nested Class: Gravity
The FrameLayout.LayoutParams class is a nested class that subclasses the ViewGroup.
MarginLayoutParams nested class, which, in turn, subclasses (extends) the ViewGroup.
LayoutParams nested class, which was coded originally in order to create layout parameters
for all ViewGroup subclasses. Android layout parameter, or LayoutParams, nested classes are
what provide the layout parameters for your UI designs, which are usually created via XML,
as you have seen throughout the course of this book. The Android Java class hierarchy
would therefore be structured in the following fashion:

java.lang.Object
 > android.view.ViewGroup.LayoutParams
 > android.view.ViewGroup.MarginLayoutParams
 > android.widget.FrameLayout.LayoutParams

FrameLayout.LayoutParams inherits all ViewGroup.LayoutParams as well as ViewGroup.
MarginLayoutParams (margin parameters), and then the class adds the layout_gravity
parameter and its constants, which we’re going to cover in detail in this section, since these
constants are specifically intended to be used with the FrameLayout UI container that we’re
going to be using for the digital video playback engine we are creating in this chapter.

MarginLayoutParams was created between FrameLayout.LayoutParams and ViewGroup.
LayoutParams to leverage the modularity of Java class design. This splits the margin layout
parameters out from LayoutParams, so that if you do not need to include margin support in a
layout container, you can subclass LayoutParams rather than MarginLayoutParams. A nested class
is usually a helper class, containing constants or parameters to be used with that nesting class.

The most often used gravity constant with the FrameLayout container is fill, as one usually
wants content or UI elements, such as the VideoView, to be scaled up to fit the frame
(display) if they are smaller (pixel dimension) than the device screen. Your second most often
used constant would be center, which is similar to fill, but does not scale (upsample) the
content; rather it centers the content or the UI element (the child widget) in the display.

There are also constants provided to fill or center your UI widget, or any nested UI layout
container, in only the horizontal (X-axis) or the vertical (Y-axis) dimensions. These would
be the fill_vertical or fill_horizontal, and the center_vertical or center_horizontal
constants. These constants, shown in Table 11-1 along with the other 14 constants, will
allow you to fine-tune how Android will position your UI widget inside of your FrameLayout
UI container. It is important to note that using fill_vertical or fill_horizontal may well
change the content aspect ratio, which may distort that content in an undesirable way,
especially if that content has human subjects in it.

298 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

There are some more advanced constants, such as clip_horizontal and clip_vertical,
which are conceptually a bit more challenging, as these will “clip” (that is, remove a portion
of) your UI element or content, in either the horizontal (X-axis) or the vertical (Y-axis). In
digital imaging, this operation is termed “cropping,” and instead of scaling your content (or
UI design) to fit any given screen dimensions, these clipping constants will instead remove
parts of your content or design, in order to make it fit the new screen size and dimensions.
This prevents often unwanted aspect ratio distortion, by removing fringe pixels, rather than
distorting the asset using assymetric scaling.

Table 11-1. The android:layout_gravity constants defined by nested class FrameLayout.LayoutParams

Gravity Constant The function that is specified by using this Gravity Constant

top Aligns UI element to or at the TOP of a FrameLayout container

bottom Aligns UI element to or at the BOTTOM of a FrameLayout container

left Aligns UI element to or at the LEFT of a FrameLayout container

right Aligns UI element to or at the RIGHT of a FrameLayout container

center_vertical Centers the UI element (or UI layout container) vertically

center_horizontal Centers the UI element (or UI layout container) horizontally

center Aligns UI element to or at the CENTER of a FrameLayout container

fill_vertical Scales UI element (or layout container) to fill Frame vertically

fill_horizontal Scale UI element (or layout container) to fill Frame horizontally

fill Scales UI element to FILL the FrameLayout container

clip_vertical Clips the top and bottom edges of the UI element for FrameLayout

clip_horizontal Clips the left and right edges of the UI element for FrameLayout

start Aligns UI element to or at the START of the FrameLayout container

end Aligns UI element to or at the END of the FrameLayout container

Finally, you can use start and end constants to implement both RTL (Right To Left) and LTR
(Left To Right) directional UI layouts. These would replace your left and right constants (for
LTR), or right and left constants (for RTL). If you are developing for end users that use RTL
languages, and you need your UI designs to be able to mirror this type of RTL language
design scenario, use the start and end constants, instead of left and right.

The RTL and LTR layout constants were added in Android 4.2 to allow design support for
languages that are read starting on the right side of the screen, and moving toward the left
side of the screen. Android 7 OS will automatically reverse the value of the start and end
constants, depending on whether a RTL or LTR screen direction is being used by the user
(that is, depending upon the language setting).

299CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Often these gravity constants will be used in a FrameLayout when there is more than one
child widget (multiple UI widgets, or nested ViewGroup layout containers). This is similar to
the way you should use the top, bottom, left, and right constants to pin UI widgets or layout
containers around the sides of the FrameLayout (display). Again, be sure to not use too many
child UI elements within your FrameLayout, and use gravity parameters to position them
so that they do not overlay, even when screen dimensions, size, and shape change across
Android devices such as smartphones, tablets and iTV sets.

It is important to remember that gravity is used for generalized positioning, not for precise
positioning, like the parameters that you find in the RelativeLayout class, for instance, which
can provide UI designs that are precise and at the same time are also scalable to different
screen sizes and shapes in a much more advanced fashion.

Before we can recode our current fullscreen UI design, shown in Figure 11-4, into a
digital video playback UI design pattern, we should get up to speed on the particulars of
the VideoView UI widget and the lifestyle stages of a digital video asset and its playback
parameters.

The VideoView Class: A VideoPlayer Widget
Before we get into all of the Java 8 code and how it interfaces to the XML markup to
implement a video player inside of the FrameLayout container that Android Studio has
installed in the DigitalVideoMedia Android application, I want to get into the VideoView
class in detail, so that you have the foundational knowledge about how all of these classes
work. After that we will be able to implement this knowledge and finish up the XML UI
design definition that will feature a FrameLayout that contains a VideoView. After that,
we’ll take some time to learn about digital video concepts as they relate to Android 7 OS,
and create video using the Terragen 4 virtual world creation software package along with
Sorenson Squeeze, a video encoding suite. At the end of the chapter we will learn about the
MediaPlayer and MediaController classes, and finish up with the Java 8 programming.

Android’s VideoView widget class is a direct subclass of the SurfaceView class, which is a
direct subclass of the Android View class, which is a direct subclass of the java.lang.Object
master class. Android’s VideoView class hierarchy would therefore be structured as follows:

java.lang.Object
 > android.view.View
 > android.view.SurfaceView
 > android.widget.VideoView

The SurfaceView superclass (a View subclass) is similar to the FrameLayout (ViewGroup
subclass) in as much as it is intended to provide a class for creating View widgets that are
used for one sole purpose: playing content on their surface. In the case of a VideoView
subclass, this would be playing digital video content on the surface of the View object, as is
clearly evident in the naming of this digital video playback optimized class.

The Android VideoView class is stored in the android.widget package, making the
VideoView a user interface element, which we know is called a UI widget in Android OS. For
this reason, your import statement for using a VideoView class in an Android application
would reference android.widget.VideoView as its package path.

300 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

This VideoView class is a public class, and has two dozen method calls and callbacks that
one might think of as actually being part of the Android MediaPlayer class, which we’ll be
covering in a future section of the chapter.

You can access these MediaPlayer functions (method calls) via the VideoView class. Thus,
ultimately, you will utilize these two classes as inexorably bound together. You’ll see how
these two key Android classes intertwine as we progress through this chapter, especially
when we get into Java program logic a bit later on in the chapter. It is rare that a UI design
class will integrate with a media playback engine in Android, so this is a special case.

We will take a closer look here at some of the more useful video playback control method
calls, so that you are familiar with them, in case you need to implement any of the extended
digital video features in your own video playback applications. In the next section, you will
also need to review your Android VideoView digital video playback lifecycle, so that you will
know exactly how all of the various video playback states all fit together.

The basic VideoView method calls include .pause(), .resume(), .stop(),
.start(), .suspend(), and .stopPlayback(). There’s also a .setVideoURI() and a
.setMediaController() method call, as well as a .setVideoPath() method call which
accomplishes much of the same end result as the .setVideoURI() method call using a
different parameter.

There are four .get() method calls for polling or getting information about digital video
assets. They include .getDuration(), .getCurrentPosition(), .getBufferPercentage() and
.getAudioSessionId() as well as an .isPlaying() method call, so that you can see if the
digital video asset is playing back at the current time.

There are also three .can() method calls that ascertain what actions the VideoView
can (or cannot) do, regarding the MediaPlayer object. These include: .canPause(),
.canSeekBackward(), and .canSeekForward() method calls.

There are also all of the standard event handling method calls, that will be inherited
from the Android View superclass. These include the .onTouchEvent(), onKeyDown(), and
onTrackballEvent() method calls, among all of the other event handlers. The event handler
that is usually used with the VideoView, for instance, to bring up the MediaController
transport UI control panel, is the onTouchEvent() event listener.

Finally, there are specialized method calls, such as .resolveAdjustedSize(), or
.onInitializeAccessibilityEvent(), which are included to allow developers to implement
accessibility standards if needed for their video playback.

The VideoView Lifecycle: Video Playback Stages
Before you start working with the Android digital video-related classes, learn about digital
video concepts, and create custom 3D digital video assets, you’ll need to understand the
different stages which a digital video asset goes through in Android. Playing digital video
may seem simple from an end user’s perspective. A Play, Pause, Rewind and Stop function
will provide basic video transport control. All these are involved in the overall video playback
process, which is sometimes referred to as the video playback lifecycle.

301CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

There are some other under-the-hood stages that allow Android to load the video asset into
memory, or to set parameters for playback, and similar system-level, behind-the-scenes
considerations. These unseen digital video lifecycle stages will allow developers to have the
flexibility to create an optimized digital video user experience, and these will serve to provide
Android developers with a much wider variety of playback options.

When you implement a VideoView widget, you are also instantiating a MediaPlayer object,
even though you do not have to write any XML markup, or even write any Java code, to
create the MediaPlayer object! MediaPlayer objects are essentially video playback engines,
and will play digital video assets associated with the VideoView UI element. This is done
using a URI object, and a video asset reference, which the URI object contains.

The digital video codec (stands for: COder-DECoder) algorithm references the digital video
asset using the URI, places it into memory and then decodes it, placing the result in the
FrameLayout, using the VideoView. We will cover URI and MediaPlayer classes later on in this
chapter. The video playback states are shown in Table 11-2.

Table 11-2. Video Playback States, and how these affect the Android MediaPlayer object and its video playback

Digital Video Playback State What is happening with the MediaPlayer object (digital video playback stages)

Idle State MediaPlayer object is instantiated and ready for configuration

Initialized State MediaPlayer object is initialized with data path, using a URI

Prepared State MediaPlayer object is configured, or “prepared,” for playback

Started State MediaPlayer object is started and is decoding the video stream

Paused State MediaPlayer object is paused and stops decoding video frames

Stopped State MediaPlayer object is stopped and stops decoding video frames

Playback Completed MediaPlayer object is finished decoding the video data stream

Ended State MediaPlayer object is ended and removed from system memory

I’ll go through these eight states in the logical order in which they are used, as well as in the
order in which they are listed in Table 11-2.

1. When the MediaPlayer object is first instantiated it will not actually
be doing any active video playback. A MediaPlayer object would
therefore initially be in what is termed the Idle state, much like a car
idles when it is not in gear and engaged.

2. Once you load your MediaPlayer object with the digital video data
reference, using your URI object, using the Uri.parse() method call
or the .setDataSource() method call, a MediaPlayer object will enter
what is termed its Initialized state. There is also an interim state,
between the Initialized MediaPlayer object state, and the Started
MediaPlayer object state, which is called the Prepared MediaPlayer
object state.

302 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

3. The Prepared state is accessed using the MediaPlayer.
OnPreparedListener, which is a nested class that we will be learning
about in the MediaPlayer sections of this chapter, and which we will
be using a bit later on inside of your DigitalVideoMedia application
Java code in the MainActivity.java AppCompatActivity subclass,
which we will recode to play a video asset.

4. Once the MediaPlayer object has been initialized, and is loaded with
video data, it is usually prepared (that is, configured, using various
playback option settings). After this is done, a MediaPlayer object
can then be started, which means the digital video asset frames will
start being decoded out of system memory, using the codec, and
placed into the VideoView, inside of the FrameLayout, which can (and
will) go fullscreen to allow optimal playback quality.

5. Once started, and the video is playing, it can be stopped by using a
.stop() method call, or paused by using the .pause() method call.
These three video states, started (play), stopped (stop), and paused
(pause) should be the most familiar to all users of digital video, as
they are represented by three primary buttons that are found on the
video transport bar. In the Android OS, the digital video transport bar
is provided using the MediaController class, as you will soon see.

6. The final MediaPlayer object digital video playback state is called a
playback completed state. When a MediaPlayer object reaches this
state it signifies that the video asset has stopped playing, and has
reached the EOF (End Of File) marker inside of your video asset. You
will bypass this playback completed state if you have invoked the
.setLooping(true) method call and looping on (true) boolean flag.
This would be called off of the MediaPlayer object. In this use case,
your digital video will continue to loop seamlessly forever until you
specifically call the .stop() method to stop it.

7. Finally, there is the .release() method call, which invokes an ended
state for a MediaPlayer object. This will terminate your MediaPlayer
object, which means that the Android OS will completely remove it
from the Android device’s system memory, allowing room for users to
run other apps on their Android devices.

Note There are also .start() and .reset() method calls available for the MediaPlayer
object, which will start and reset a MediaPlayer object at any time, based on the needs of the
Java 8 program logic. If you call the .start() method, your digital video asset would enter the
started state; conversely, if you call the .stop() method, your digital video playback will be
stopped. Methods will do to your video asset what their method names suggest that they will do.

303CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

As you will see in the MediaPlayer sections of this chapter, there are other nested classes
that will also allow you to do things such as listen for errors, such as MediaPlayer.
OnErrorListener, as well as for other states of the MediaPlayer, such as when it reaches the
Playback Completed state (MediaPlayer.OnCompletionListener).

First, you will need to create your <VideoView> widget inside of your parent <FrameLayout>
as that is the next logical step in implementing video inside of your DigitalVideoMedia
application. We will do this in the next section, and then we can get into some foundational
information regarding digital video assets and formats, and show you how exactly you would
create digital video content using open source software packages, and how to optimize it for
Android devices using something like DaVinci Resolve, EditShare Lightworks or Sorenson
Squeeze Desktop Pro.

Once we get through all of that foundational digital video information, we can review the
MediaPlayer class and all of its related classes, and then get into some Java coding to
implement digital video setup and playback!

Create a VideoView Layout Design with your XML
Let’s change the DigitalVideoMedia bootstrap FullscreenActivity application, which
Android Studio 2.3 generated for us, and which works well, as we saw in Figure 11-5, into
a digital video playback application. The first thing that we need to do is to change the
placeholder <TextView> tag into a <VideoView> tag, as is seen in Figure 11-6, and remove
any related parameters that do not apply (android:text parameters) or which will be covered
up by the fullscreen video (android:background). Android will still put a default background
color in place, and this will not be seen, but a custom background color is no longer needed,
and we are optimizing system memory here by removing objects and attributes that would
have taken memory locations to store and process later on.

Figure 11-6. Change the opening <TextView child tag into a <VideoView child tag and delete unused parameters

304 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

I optimized the remaining code for screen space, as you’ll see in Figure 11-7, and optimized
the strings.xml file.

Figure 11-7. Condense the XML; change the <Button> android:text parameter to reference @string/button_label

Figure 11-8. Edit the strings.xml file to remove the dummy text, and create a button_label named “Swap Video”

I removed the text constant for the dummy text, and changed the dummy_button text to
“Swap Video” and then I changed the name of that <string> attribute to be button_label, as
you can see referenced in Figure 11-7 in the lower-right corner, highlighted in your <Button>
child tag, as well as in the strings.xml file seen in Figure 11-8.

305CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Note that Android Studio uses different colors (blue, green, yellow, and orange in this case)
to highlight the nesting hierarchy, and shows the nesting hierarchy at the top of the XML
markup editing pane as well using these same color values. The reason I did not change the
ID parameter of dummy_button is because that is referenced in the Java code as an R.id.
dummy_button. We will update that later on, when we change our Java code into what we
want this application to do for us. The reason I left the <LinearLayout> background constant
(black_overlay) is because it has an alpha value, as you can see in Figure 11-5. Let’s take a
break from Android Studio 2.3, and get up to speed on concepts in digital video media.

Digital Video Concepts: Bitrates and Codecs
Like the 2D animation we learned about in the previous chapter, digital video extends digital
imaging into 4D, the fourth dimension of time, by using something called frames in the digital
video (and film) industry. Video is therefore comprised of an ordered sequence of frames that
are displayed rapidly over time. The difference from animation, at least in real-world use,
inside of Android, is that digital video usually has a fairly massive number of frames (up to 30
for every second of video playback), which require a different asset optimization approach.

The optimization concept using frames in a digital video is very similar to the one regarding
pixels in an image (the resolution of the digital image), because video frames increase data
footprint with each frame used, as will the number of pixels in each frame. In digital video,
not only does the frame’s (image) resolution greatly impact file size, but so does the number
of frames that the codec has to look at to encode. This is commonly referred to as FPS or
the “frame rate.” Standard industry video uses 30 frames per second, but you can use less if
you want!

Since digital video is made up of a collection of thousands of digital image frames, the
concept of digital video frame rate, expressed as frames per second, or more commonly
referred to as FPS, is also very important when it comes to digital video data footprint
optimization. This is because with video optimization, lowering a frames per second value the
codec looks at encoding will lower the total amount of data encoded, which lowers file size.

In Chapter 8, we learned that if we multiply the number of pixels in the image by its number
of color channels, we’ll get the raw data footprint for the image. With digital video, we
will now multiply that number again using the number of frames per second at which our
digital video is set to play back, and again by the number of total seconds that represent
the duration of a video “clip” being encoded into a digital video asset file. You can see why
having a digital video codec that can compress this raw data footprint down is extremely
important.

You’ll be amazed (later on in this chapter) at some of the digital video data compression
ratios that the MPEG-4 video file format can achieve, once you understand exactly how
to optimize the digital video compression work process by using the correct bitrate, frame
rate, and frame resolution for your digital video content. We will also get into the concept of
bitrates, as well as video optimization, during the next few sections of the chapter. In this
next section, let’s review the different open source digital video codecs that the Android
7.1.1 OS currently supports. These can also be used in Java9, JavaFX, HTML5 or other
platforms, so this will be of significant interest for the developers out there that want to use
their digital video assets across all of those popular open source platforms.

http://dx.doi.org/10.1007/978-1-4842-2268-3_8

306 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Digital Video in Android: MPEG4 H.264 and WebM
Android supports both MPEG-4 H.264 (MPEG stands for: Motion Picture Experts Group)
as well as the ON2 VP8 or VP9 formats, which were acquired by Google from ON2
Technologies, and distributed under a WebM moniker, and then released into the open
source environment. These open source formats are quite optimal from a content production
standpoint, as video content that a developer produces and optimizes could then be used
both in HTML5 engines, such as HTML5 apps, browsers, and devices, as well as in JavaFX
and in Android OS. This open source digital video format cross-platform support thus affords
us content developers with a “produce once, deliver everywhere” production scenario.
This will reduce content development cost, thus increasing your revenues, as long as this
“economy of scale in content development” is taken advantage of by app developers.

Since Android devices these days have displays that are using a medium (1280x720) to
high (HD 1920x1080) resolution, or even UHD 3840x2160 resolution, if you are going to use
MPEG-4 file format, you should utilize the MPEG4 H.264 AVC format, which is currently the
digital video format most often used in the world today, for Android and HTML5 apps,
as well as on the Internet and Business and Government formats, such as PDF. This
MPEG-4 H.264 AVC (Advanced Video Coding) digital video file format is supported across all
Android OS versions for video playback, and under Android 3.0 (and later versions) for video
recording. It is important to note that recording video is only supported if the Android device
hardware has video camera capabilities.

If you’re a video content producer, you will find that the MPEG4 H.264 format has the best
compression result, especially if you’re using one of the more advanced encoding suites like
the Sorenson Squeeze Desktop Pro 11 software, which we will be using to optimize our 3D
planet-fly-over video asset later on during this chapter.

File extension support for MPEG-4 video files includes a .3GP (MPEG-4 SP which stands for
“Standard Play”) and a .MP4 (MPEG-4 H.264 AVC). I suggested using the latter (.MP4 AVC),
as that is what I use for HTML5 apps, and MP4 is more common to stream in AVC format.
Either type of file should work just fine in Android apps, depending on what Android OS
versions (1.5, 2.3, 3, 4.4, 5, 6, 7) you are targeting delivery of your app to.

A more recent digital video format that Android supports is called the WebM (VP8, VP9)
digital video format. The format provides great quality results with a small data footprint.
This is a reason why Google acquired ON2, the company that developed the VP codec. VP
is used in OGG Theora (VP3), JavaFX 8 (VP6), and Android 7.1.1 (VP8 and VP9). We’ll learn
about codecs later on in this chapter. WebM video playback was first natively supported in
Android 2.3. The term native support is used with code (in this case, it is a codec) that has
become natively a part of the operating system software, which means it is included with the
rest of the operating system and API.

WebM also supports something called video streaming, which you will also be learning
about in a later section of the chapter. WebM video streaming playback capability is
supported only if your users have Android version 4.0 and later. For this reason, I would
recommend using WebM only for captive video assets, as Android 2.3 through 4.4 supports
non-streaming WebM codec use. If you’re only delivering to later version Android devices
you can use WebM, to deliver across all Android devices and versions, use MPEG-4. In case
you’re wondering, captive video is video that is not streamed, meaning video assets are

307CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

captive inside of the /res/raw folder. Use an MPEG4 H.264 AVC if you are only going to be
streaming video, as all of the Android versions, including Android 7.x, support that codec,
both for captive video playback, as well as for streaming video playback.

Digital Video Compression: Bitrate and Streams
Let’s start out covering the primary resolutions used in commercial video. Before HDTV, or
High Definition TV, came along, video was usually called SD, or Standard Definition, and
used a standard vertical resolution of 480 pixels. High Definition (called HD) video comes
in two resolutions, 1280x720, which I call “Pseudo HD” and a higher resolution 1920x1080,
which the industry calls “True HD.” There’s also a new “Ultra HD” (UHD) resolution, which is
3840x2160. All use a 16:9 widescreen aspect ratio, and are used not only in film, television,
and iTV sets, but also in smartphones (Razor HD was 1280 by 720) and tablets (Kindle Fire
HD is 1920x1200).

This 1920x1200 resolution is, by the way, a less wide, or taller, 16:10 pixel aspect ratio, and
is becoming more common as a widescreen device aspect ratio, as is a 16:8 (or 2:1) aspect
ratio, with 2160x1080 screens out now. There is even a 2560x1440 resolution screen on the
Samsung Galaxy S5 smartphone. Why this resolution, you may be wondering? Power of Two
(even) up sampling of the most common 1280x720 digital video content will provide the best
viewing results. Multiply 1280 by 2 and 720 by 2 and see what resulting screen resolution
you come up with.

There is also 16:10 Pseudo HD resolution, which features 1280 by 800 pixels. In fact, this is
a common laptop, netbook, and mini-tablet resolution. I would not at all be surprised to see
the 16:8 1280 by 640 screen offered at some point in time as well. Generally, most content
developers try to match their video content resolution to the resolution (and thus, the aspect
ratio as well) of each Android device upon which the video asset will be viewed.

Regardless of the resolution you use for the digital video content, your application can
access videos in a couple different ways. The way I do it, because I’m a data optimization
guru, is captive to the application. This means the data is inside of (captive to) the Android
application APK file itself, inside the /res/raw data resource folder.

The other way to access video inside your Android app is by using a remote video data
server. In this case, the video is streamed from this remote server, over the Internet, and
into your user’s Android device as the video is playing back, in “real time.” Let’s hope
that your video server does not crash, lose power, get hacked, or get too many playback
requests (that is, lots of data traffic), as these scenarios are some of the downsides of
streaming.

Video streaming is inherently more complicated than simply playing back captive video data.
This is because an Android device is communicating in real time with a remote data server,
receiving video data packets, decoding the data packets as the video plays, and writing the
frames to the Android hardware display. Video streaming is supported via WebM format on
Android 4 and later devices, or using MPEG4 across all Android OS versions.

The last concept that we need to cover in this section is the concept of bitrate. Bitrate is a
key setting used in the video compression process, as you will see when we utilize Sorenson
Squeeze Pro, later on in the chapter. Bitrates represent the target bandwidth, or data pipe

308 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

size, which is able to accommodate a certain number of data bits streaming through it every
second. Bitrates must also take into consideration CPU processing power for any given
Android phone, making video data optimization even more important to video playback quality.

This is because once bits travel through the data pipe, they also need to be processed and
displayed on the device screen. In fact, captive video assets that are included in Android
application APK files only need optimization for processing power. This is because if you’re
using captive video files, there is no data pipe for the video asset to travel through, and no
data transfer overhead. Therefore, bitrates for digital video assets need to be optimized not
only for bandwidth, but also in anticipation of variances in CPU capability. We’ll look at data
footprint optimization next.

In general, the smaller the video data file size you are able to achieve, the faster the data will
travel through any data pipe, the easier it will be to decode the data using the codec and
the CPU, and the smaller the APK file size will be, for obvious reasons. Single-core CPUs
in devices such as smartwatches may not be able to decode high-resolution, high bitrate
digital video assets without “dropping” frames. This is a playback quality issue, so make
sure to thoroughly optimize lower bitrate video assets if you plan to target older (or cheap)
devices, so they have fewer bits (smaller file sizes) to process, which uses less memory
overhead and therefore fewer CPU cycles.

Digital Video Optimization: Codec and Settings
Digital Video is compressed using a software utility called a codec, which stands for COde-
DECode. There are two opposing sides to each video codec; one will encode the video
data (for captive or streaming), and the other will decode this video data (captive video or
streamed video). A video decoder will be part of a platform (Java 9, JavaFX 8, Android 7.x,
or HTML5), or an HTML5 browser, across all operating systems. The decoder side of the
codec will always be optimized for speed, as smoothness of video playback is a key issue,
and the encoder side will be optimized to reduce data footprint for the digital video asset
that it is generating, which can also boost playback speed. For this reason, an encoding
process may take a long time, depending on how many cores your workstation contains.
Most digital video content production workstations should support 6, 8, 12, 16 or 20
processor cores (threads).

Codecs (on the encoder side) are like plug-ins, in the sense that they can be installed into
different digital video editing software packages, in order to enable them to encode different
digital video asset file formats. Since the Android OS supports H.263, H.264 or H.265
MPEG-4 formats, and ON2 VP8/VP9 WebM formats for video, you need to make sure that
you are using one of the codecs that encodes video data into these digital video file formats.

More than one software manufacturer makes MPEG encoding software, so there will be
different MPEG codecs (encoder software) that will yield different (better or worse) results, as
far as encoding speed and file size goes. The professional solution I recommend you secure
if you wish to produce professional video is called Sorenson Squeeze, which is currently at
Sorenson Squeeze Desktop Pro version 11. Squeeze has a professional-level version, which
I will be using in this book, which costs less than $750, and whose value is significantly in
excess of that suggested list price amount.

309CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

There is also an open source solution called EditShare LightWorks 12.6 that is scheduled
to natively support output using MPEG-4 and WebM VP9 codecs sometime in 2018. So for
now, I will have to use Squeeze Pro 11 for this book, until the codec support for Android
7.1.1, Java 9 and HTML5 is added to EditShare LightWorks 14. DaVinci Resolve 12.5.4 may
also soon add this support as well, as it is now free.

When optimizing for digital video data file size using encoder settings, there are a number
of important settings that directly affect the data footprint. I’ll cover these in the order in
which they affect file size, from the most impact to the least impact, so you know which
parameters to “tweak” or adjust in order to obtain the best result.

As in digital image compression, the resolution, or number of pixels, in each frame of video,
is the best place to start your data optimizion work process. If you are targeting 1280x720
or 1920x1080 smartphones, tablets, iTV Sets, or auto you don’t need to use 3840x2160
resolution to get great visual results from the digital video assets.

With high-density (termed high dot pitch) displays (XHDPI and XXHDPI) currently common
in the Android market, you can scale 1280 video up 33% and it will look reasonably good.
The exception to this might be iTV apps for GoogleTV, which has a medium (or even low)
dot pitch, due to large 50 to 70 inch screen sizes. In this use case, if you are developing
applications for iTV sets, you’ll want to use “True HD,” 1920x1080 resolution.

The next level of optimization will come in the number of frames used for each second
of video, called FPS, assuming the actual seconds contained in the video itself cannot be
shortened by editing. This is known as your frame rate, and instead of setting the video
standard 30 FPS frame rate, consider using a film standard frame rate of 24 FPS, or the
multimedia standard frame rate of 20 FPS.

You may even be able to use a low 15 FPS frame rate, depending upon your content. Note
that 15 FPS is half as much data as 30 FPS, a 100% reduction in data going to the encoder.
For some video content this may playback (look) the same as 30 FPS content. The only
reliable way to test how low you can get the frame rate before you start to affect video
playback quality is to set, encode, and review with these standard video framerate settings.
This would be done during your content optimization (final original or raw video asset
encoding) work process.

The next most optimal setting to tweak (experiment with settings for) in obtaining a smaller
data footprint will be the bitrate that you set for a codec to try and achieve. Bitrate settings
equate to an amount of compression applied, and thus sets the visual quality for video
data. It is important to note that you could simply use 30 FPS, HD 1920x1080 video and
specify a low bitrate ceiling. If you do this, your results might not look as good as if you first
experimented with lower frame rates and resolutions while using the higher (quality) bitrate
settings. The only way to find out what any give codec (encoder algorithm) will do is to
experiment with the settings and look at the resulting filesize, playback speed, and visual
quality for the resulting asset using an Android decoder.

The next most effective setting in obtaining a small data footprint is the number of
keyframes. The codec uses your keyframe settings to know when to sample the digital

310 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

video. Video codecs apply compression by looking at a frame, and then encoding only the
changes, or offsets, over the next few frames, so that it does not have to encode every
single frame in your video data stream. This is why a talking-head video will encode better
than a video where every pixel moves on every frame, such as video with fast panning or
rapid zooming, for instance.

The keyframe setting in the encoder will force the codec to take a fresh frame sample of a
video data asset every so often. There is usually an auto setting for keyframes; this allows
the codec to decide how many keyframes to sample. There is also a manual setting that
allows you to specify a keyframe sampling every so often, usually a certain number of times
per second, or a certain number of times over the duration of the video (total frames). The
more keyframes the codec needs to sample (and store in the file) the larger the resulting file
size will be.

The next most effective setting in obtaining a small data footprint is the quality or sharpness
setting, which is usually implemented using some sort of slider or spinner user interface
element. Sharpness controls the amount of blur that a codec will apply to the video pixels
before compression. A 100% quality doesn’t apply algorithms (pixel processing on any
frames); as you reduce this percentage, the amount of algorithmic processing increases.

In case you are wondering how this blur trick works, so that you can apply it yourself in
GIMP during your own digital image optimization work process, applying a slight blur to your
still image or video, which is usually not desirable, can allow for better lossy compression,
such as that found in JPEG and MPEG, or WebP and WebM.

The reason for this is that a sharp transition in a raster image, such as the sharp edges
between colors, are more difficult for the codec to encode optimally (that is, using less data).
More precisely (no pun intended), sharp or abrupt transitions in color will take more data to
reproduce than soft transitions will. This does not hold true in vector images (SVG, AI, EPS
or PDF) as the edges between strokes and fills are rendered and then anti-aliased.

I would recommend keeping the quality or sharpness slider between an 80% and 100%
quality setting, and try to get your data footprint reduction using many of the other variables
(data footprint optimization approaches), which we have discussed in this section of the
chapter.

Ultimately, there are a significant number of different variables that you’ll need to fine-tune
in order to achieve the best data footprint optimization for each particular video data asset.
Each video asset will be different (mathematically) to the codec, as each video asset is a
different array or collection of pixel color data.

For this reason, there is no “standard” collection of settings you can develop to achieve any
given result. Your experience tweaking various settings will eventually allow you to get a
better feel, over time, as to the settings you need to change as far as all the parameters go,
to get your desired result with different types of uncompressed video source assets.

Next, lets create some digital video content using Terragen 4.0, which came out recently,
is a professional-level production software package from Planetside Software, which
also happens to have a free version and a very affordable professional version as well. I
highly recommend this software, which, like Blackmagic Fusion, has a visual programming
paradigm that makes advanced production easier and more visual, like Android Studio’s new
Visual Design Editor.

311CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Creating Digital Video Content: Terragen4
The next thing that you need to learn is how to create digital video content that you can use
to show the various concepts that you just learned about in the previous sections of this
chapter. I’m going to use Terragen 4.0, a world creation 3D animation software package from
Planetside Software, because it is not only an impressive 3D software package, but is also
a professional-level 3D production software package. Fortunately, there is the free version
as well as a paid Pro version, which I suggest that you purchase if you are serious about
having all the top production tools in your quiver. Go to the website, at Planetside.co.uk, and
download the latest version of Terragen 4. After you download and install the software, you’ll
follow the following steps:

1. Launch Terragen 4, using your shortcut icon, and you will see the
startup screen, as shown in Figure 11-9. You can see exactly what
this 3D software is capable of by viewing this startup screen, as
these clouds were not photographed, but instead created using
Terragen algorithms!

Figure 11-9. Using the Terragen 4 world building software to create digital video content for use in Android 7.x

312 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

2. First, you will open a basic seamless looping camera fly-over of
a basic world that you will find in this book assets folder called
loopingOrbit_v03.tgd (tgd is TerraGen Data). Use a File ➤ Open
menu sequence to open it in the software, the result of which can be
is seen in Figure 11-10. Use an Edit ➤ Preferences menu sequence
and in the File Saving section select the BMP format and numbered
animation file output path, in my case this was C:\Terragen4.

Figure 11-10. Start Terragen3 and use File ➤ Open menu sequence to open loopingOrbit_v03

3. In the top of the Add Renderer tab which is seen on the left in
Figure 11-11, and is accessed using the Renderers button, shown
circled in red, set an image width of 1080 pixels, and an image
height of 1920 pixels. This is your Nexus 5 AVD resolution. This True
HD resolution will have enough pixels to be able to scale up (to UHD)
or down (to Blu-ray) with good visual results. Leave all the other
render settings at their default settings. If you just wanted to render
one frame, you could use the Render Image button, which is in the
middle of this dialog, but this will not create a sequence of frames,
which you will need to create motion video data. The Render All To
Disk will also not create a sequence of numbered files, although it
seems like it would. At the bottom of this tab you’ll see seven tabs
that control advanced settings.

313CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

4. Click on the seventh (right-most) tab, which is labeled Sequence/
Output to set the output file specifications as well as the image
sequence settings. Enter your project files directory in the Output
image filename field, as seen in Figure 11-11. Mine is C:\Terragen4
as you can see.

Figure 11-11. Use Project Settings and Renderers buttons to open option dialogs, then Render Sequence button

5. Make sure that your Sequence first field is set to a data value of
1, and set the value of 400 in the Sequence last data field. Set
Sequence step to 1 frame for a smoother camera movement.

6. Once you have set all of your parameters for the render, click the
Render Sequence button at the bottom of the Sequence/Output
tab. This will instruct Terragen to generate 400 frames of custom
digital video fly-over for you. Since Terragen outputs numbered files,
instead of .AVI format that most NLE software requires, unless you
are using Squeeze 11, which will read in numbered files, you will
need to use a software utility called VirtualDub to create an AVI file.

314 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Figure 11-12 shows one of the frames of the rendering sequence, which took 4 days on my
64-bit OctaCore PC.

Figure 11-12. Make sure render output window shows Frame number and total render time

Next, let’s take a look at how to turn these rendered frames into a digital video asset, using
Sorenson Squeeze Desktop Pro 11, and take a look at some of the settings we discussed in
the data footprint optimization section.

Digital Video Compression: Sorenson Squeeze 11
Next, we’re going to use Sorenson Squeeze Desktop 11 to compress the digital video asset.
One of the reasons I utilized Terragen 4 was to create completely uncompressed source
video with zero compression artifacts, so that you can see what a codec can do with clean
data, as video camera data tends to be somewhat chaotic from the codec’s perspective of
pixel data values. 3D software tends to output adjacent pixel values that relate in some way
or another to each other, whereas a camera CCD will simply output what it sees in real life,
which tends to be more chaotic, unless you are filming the night sky (or a clear blue sky),
in which pixels will closely relate to each other in both location and color. Also, many video
cameras pre-compress data using Motion JPEG or even MPEG to fit more minutes on a
cartridge, so if you want less chaos (less compression artifacts) using a camera, you should
use Firewire, capturing full frame uncompressed (raw) video data to your hard disk drive,
instead of going through the on-camera MPEG or Motion JPEG codec and onto a captive
digital video cartridge inside of the camera.

315CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

The other reason I am using Sorenson Squeeze Desktop is because it is the most professional
video compression solution, has affordable $199 (Lite), $549 (Standard), and $749 (Professional)
price points, and has support for every platform (as you’ll see in Figure 11-14) that you
will ever want to optimize digital video for. There is also a 30-day trial version that you can
use to follow along with this work process on the SorensonMedia website, and I recommend
purchasing one of the non-expiring versions for your digital media production workstation, as
this is currently the industry standard for digital media data footprint optimization.

Let’s take a look at the work process for optimizing a Terragen 4 flythrough, using Sorenson
Squeeze Desktop.

1. Install Sorenson Squeeze Desktop Pro 11, and launch it. Use File ➤
Import Image Sequence, shown numbered as 1, in Figure 11-13,
and open your Select image sequence to open dialog. Select the
Terragen4 folder (or wherever your files are stored) shown as number
2, and select the first file in the import image sequence shown as
number 3. Finally, click the Open button, shown as number 4, and
set a 25 FPS frame rate, shown as number 5. I used 25 FPS as it is
an even multiple of 400, giving us a clean full 16 seconds of looping
video. To invoke the import into Sorenson Squeeze Desktop 11, click
the OK button, shown as number 6 in Figure 11-13.

Figure 11-13. A six-step work process for importing a sequence of image frames to be used as a digital video clip

316 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

2. If you’re using a digital video file such as an uncompressed AVI
(Microsoft) or MOV (Apple) format file, click on the Import File icon,
seen in Figure 11-14, on the upper left. Notice that the Squeeze
software has left mounted panels for holding codec Formats,
Favorites settings, and Workflow options, as well as a top
previewing area and a bottom timeline area, which we will be using
to apply codec presets to the image sequence, seen selected in light
blue. This is done by dragging a codec on top of the video source,
and dropping it on top of it. This shows Squeeze that you want to
apply that codec to a source video (in this case, an image sequence).

Figure 11-14. The Squeeze Desktop 11 user interface panel (left), source preview (top), and timeline (bottom)

317CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

3. Next, let’s take a look at how you can edit existing codecs,
to see what their default settings are, and how you can then create
(and rename and add) new codecs that are customized to your
projects. Open the MPEG-4 (mp4) codec section in your Squeeze
Presets tab, as shown selected in blue, on the left in Figure 11-14.
Find the HEVC_3300Kbps_1080p preset, shown selected in blue in
Figure 11-15, and right-click on it and select the Edit option from a
context sensitive menu that appears. This will open a Presets
dialog for that codec settings collection, as shown in the middle of
Figure 11-15. An MPEG-4 H.265 (technically an MPEG-H codec) is a
High-Efficiency Video Codec (hence HEVC) which was recently added
to 64-bit Android OSes, so I am taking a look at it here first. It uses the
x265 codec, as shown in Figure 11-15, a single-pass, variable bitrate
(VBR) encoding method (algorithm), and the target 3Mbps (3068 Kbps)
quality level, Auto Key Frame on Scene Change selected, to allow
the codec to insert key frames (algorithmically). These are the settings
you’ll adjust to get the best data footprint.

Figure 11-15. Right-click on HEVC 1080 codec, and use Edit to open the codec Presets dialog for codec settings

318 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

4. Click OK to close the HEVC codec, since we’re going to use a more
widely supported AVC, or Advanced Video Codec, for this exercise.
This is so that we can span earlier versions of the Android OS that
don’t contain an HEVC codec but which represent a significant
percentage of the Android devices out there. If you are producing
Android TV apps, you will want to use HEVC codec to get a better
quality HD/UHD result, since Android TV was recently released.

5. Let’s create an Android_1080p MPEG-4 H.264 AVC preset by
selecting an Apple_TV preset and reconfiguring it for our use in
Android (versions 1.6 through 7.x support decoding AVC). Right-click
on the Apple_TV_1080p codec seen in Figure 11-16, and right-click
on it and use the Edit command to open it in the Presets editing
dialog. Select the MainConcepts codec, as I know it works well
from my previous books on Android, or the Sorenson codec, which
is a new addition to this software. In fact, you might try both with
identical settings to see which gives you a better data footprint to get
some practice using this software package! I set 2-Pass VBR (slower
but better compression) as the Method and 2Mbps (2000 Kbps) as
the Data Rate Target and used Constrain Maximum Data Rate to
make sure the codec did not exceed this. I also renamed the Preset
Name to Android_1080p, and the Preset Desc to For Android OS
supports 1080p resolution, as you can see at the top of the dialog
in Figure 11-16. It is also interesting to note that Apple does not call
their Apple_TV product iTV (like iPad, iPhone) as iTV is the “public
domain” term for interactive TV (or intelligent TV, or Internet TV, if you
prefer). Smart TV is trademarked by Samsung. Connected TV is also
privately trademarked.

6. To create the compressed video file, click on the OK button in the
Presets dialog to create the Android_1080p preset, and drag it out of
the Formats (Presets) tab and drop it on the source (numbered image
files). To start the compression process, click the Squeeze It! button
at the bottom-right corner of Squeeze Desktop. If your HEVC 1080
codec is still attached to the video source, right-click on that entry
in the timeline view, and delete it using the context sensitive menu,
before you apply the Android_1080p codec preset that you have just
created.

319CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Figure 11-16. Create an Android_1080p codec, by editing an AppleTV codec and selecting MainConcept’s codec

As you will see the HEVC codec gives you a 6.75MB file and the AVC codec gives you a
4MB file, because of the high 2MB compression setting. The HEVC file will have much better
quality and could be used for Android TV, whereas we’ll use the AVC file across Android
devices as well as across all Android OS revisions as well. Now we are ready to create
the /res/raw folder to hold the video asset and continue with our Java programming.

Creating a Digital Video Folder: Raw Resources
Go back into Android Studio, and right-click on your DigitalVideoMedia project’s /app/res
folder, and select the New ➤ Android resource directory menu sequence, shown on the
left side of Figure 11-17 to create a resource subfolder for already optimized digital video
(as well as digital audio) assets. Android will not attempt to double compress (which would
reduce the visual quality) and assets in this folder, which is what this /res/raw folder is used
for. I use this folder quite a bit, as it allows me to control optimization for files contained in
the .APK file.

320 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

In the New Resource Directory dialog, in your Resource type drop-down selector, select
the raw option, as is seen in Figure 11-18 in blue, and make sure the Directory name is
raw, and then click the OK button to create the app/res/raw/ folder. Now all you have to do
is install the digital video asset in this folder using your explorer file management utility, and
we’ll be able to move on to finish all the Java 8 code to implement the digital video.

Figure 11-17. Right-click on the project /res folder and use the New ➤ Android resource directory menu sequence

Figure 11-18. Select a raw resource type in the second drop-down selector in a New Resources Directory dialog

Open your OS file management utility, for Windows 10 this is the Windows Explorer,
and find the digital video asset, in my case this was C:\Terragen4\1080temp.001_
Android_1080p.m4v, and right-click on it, and select the Copy option. Then find your
AndroidStudioProjects\DigitalVideoMedia folder, in my case, this was located at C:\Users\
user\AndroidStudioProjects\DigitalVideoMedia\app\scrc\main\res\raw, as shown at
the top of Figure 11-19, and right-click on the folder (or in the empty area to the right), and
select the Paste option.

321CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Since Android OS will look for an .MP4 file, you will also need to rename your file generated
by Squeeze 11 to be flythru3d.mp4. Right-click on your file and select the Rename menu
item from the context sensitive menu, and replace the Squeeze generated .m4v filename with
a custom flythru3d.mp4 file name you’ll use in Android.

Figure 11-19. Place the MPEG-4 file you created in the project /res/raw folder, and rename it to be flythru3d.mp4

Before we get back into Java coding, let’s take an in-depth look at how digital video assets
are referenced using a URI in Android OS, as well as how that Uri object is parsed, and
passed into your VideoView’s MediaPlayer.

The Uri Class: Referencing the Video Data
URI is an abbreviation for Uniform Resource Identifier. Uniform because it is standardized,
Resource because it references a data path to some data (content) that applications will
operate on and utilize. It is an Identifier because it identifies where to go and load the data,
which is also known as the content’s data path.

The Android Uri class only capitalizes the U, the industry term capitalizes all three (URI)
letters in the term. A URI has four parts. The first is a URI schema such as HTTP://. Next
comes an authority, like apress.com. Next comes the data path, such as /data/video.
Finally comes a data object itself in its file format such as asset.mp4.

A Uri object in Android contains a reference to a data path that will be used to access raw or
specialized data, of one type or another. One example of data would be a SQLite database,
or in this case, the digital video asset. Other examples might include your website’s URL, or
similar types of content which the application might use.

322 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Android’s Uri class is a direct subclass of the java.lang.Object class, and therefore, was
created specifically for holding URI references. Just so that you don’t get confused when you
look at current Android 7.1.1 developer’s site documentation, note that the java.net.Uri
class exists alongside the android.net.Uri class. However, I suggest that you use the
Android-specific version of the Uri class, since it is optimized for use within the Android 7.1.1
OS. The Uri class is a public abstract class, and has over three dozen methods that allow
developers to work with Uri objects (and data path references).

Since this is an Absolute Beginner’s book, we will not be getting into this Uri class at a great
level of depth, but you’re welcome to research it yourself, on the Android developer website.
The Android Uri class hierarchy is structured as follows:

java.lang.Object
 > android.net.Uri

The Android Uri class is kept in the android.net package, making it a tool for accessing
data across a network. For this reason, the import statement for using the Uri class inside
of your Android application would reference a package path of android.net.Uri, as you will
see in the next section.

The Android Uri class allows developers to create Uri objects which provide what is termed
an immutable URI reference. Immutable objects and variables cannot be changed (think
“mutate,” or something that has been changed, usually with undesirable results), and you
certainly do not want something critical like your URI reference to change. In Android, you
make objects immutable by placing them into system memory for use, and you’ll need to
do this for your URI data path reference, by using Android’s Uri class, and its Uri.parse()
method.

Your Uri object reference includes a URI specifier, as well as a data path reference, which is
the component of the URI that follows the ’://’. The Uri class will take care of the process
of building and parsing the Uri object, which will then reference data in a manner that will
conform to the popular RFC 2396 technical specification.

To optimize the Android operating system and application performance, a Uri class
performs a minimal amount of data path validation. What this means is that Uri methods
aren’t specifically defined for handling invalid data input, so you will need to define your
own data validation. This means the Uri class is very forgiving in the face of an invalid input
specification. It also means that if data is invalid, your user may not get the result you desire!

This means that as a developer you have to be very careful about what you are doing, as
Uri objects could return garbage data rather than throw an exception, unless you specify
otherwise in the Java code. Thus, error trapping and data path validation are left up to the
developer to create, inside their code. This is why URI is an advanced area, which we are
only covering at an introductory level, so that you will be able to load the digital video data.

Next, we will create your Uri object as well as creating your VideoView object, so we will be
able to access our digital video asset. Let’s do that next, and after that we can get into the
MediaPlayer class and its related classes.

323CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

The Uri.parse() Method: Loading Your VideoView
Next, let’s declare the Uri and VideoView objects at the top of the FullscreenActivity
class, so that we can later instantiate them inside of the onCreate() method to set up the
MediaPlayer engine, so we can play digital video.

1. Declare a VideoView object at the top of the FullscreenActivity
class naming it videoHolder, as is shown in Figure 11-20. To
have Android Studio create the import statement for you, use the
Alt+Enter shortcut to instruct Android Studio to write the code.
The two Java statements that you’ll be coding at the top of the
FullscreenActivity class should look like the following:

public class FullscreenActivity extends AppCompatActivity {
VideoView videoHolder;
Uri videoAssetUri;
 // The rest of your class goes in here }

Figure 11-20. Declare a VideoView object named videoHolder at the top of the class, and use Alt+Enter to import

2. Next, declare your Uri object underneath the videoHolder object
and name it videoAssetUri. Use a videoHolder = (VideoView)
findViewById(R.id.fullscreen_content) Java statement to
instantiate a VideoView inside of onCreate() as seen highlighted in
Figure 11-21.

324 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Once you’ve instantiated the VideoView, you will then instantiate the Uri object by setting
it equal to the result of a Uri.parse() method call. This is done by using the following Java
statement, shown being created in Figure 11-22, using the Android Studio helper drop-down
selector that comes up once a videoAsset.Uri = Uri. (portion) of the Java statement has
been typed into the onCreate() method, after the VideoView instantiation:

videoAssetUri = Uri.parse("android.resource://" + getPackageName() + "/" + R.raw.flythru3d);

Figure 11-21. Declare a VideoView object named videoHolder at the top of the class, and use Alt+Enter to import

325CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

This Java statement sets the videoAssetUri (Uri) object to the result of the Uri.parse()
method call. Inside this method call is a concatenation operation that uses a + operator,
which is used in Java to concatenate things together. What this concatenation inside of the
Uri.parse() method parameter area does is create the URI path to the video data asset by
concatenating the android.resource:// with the package name and then the resource path.
The resulting URI, shown below as equated by this concatenation, provides Android OS
with the full path that starts with the Android resource area down to the package name, and
finally down to your digital video asset:

android.resource://com.example.user.digitalvideomedia/R.raw.flythru3d.mp4

Figure 11-23 shows the latter part of Android Studio creating this Java code statement for
you, which it will do regarding the Uri.parse(), getPackage() and R.raw.flythru3d portions
of this Java Uri object instantiation.

Figure 11-22. Use a New ➤ Folder menu sequence to create a /res/raw folder, then copy the fly-over asset into it

326 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Now that your videoAssetUri Uri object is loaded with the correct URI data path reference,
you can “wire” this videoAssetUri (Uri) object to the videoHolder (VideoView) object
using the .setVideoURI() method call, using the compact line of Java code shown in
Figure 11-24, which looks like the following Java statement:

videoHolder.setVideoURI(videoAssetUri);

This Java statement uses the setVideoURI called off of the videoHolder VideoView to install
the videoAssetUri object containing the URI reference to the digital video asset that needs
to be played.

The only line of Java code that we have not yet put into place is the call to the .start()
method, which we will make off of your videoHolder VideoView object. Since you have
loaded with a URI for /res/raw/flythru3d.mp4, you now have a digital video asset that can
be played, and so you can call the .start() method. Make sure that you call the .start()
method after you have wired all of the other components and new media assets together!

Figure 11-23. Load the videoAssetUri object using the Uri.parse() method, and the data path to /res/raw/flythru3d

327CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Figure 11-24. Configure videoHolder VideoView object to reference the videoAssetUri object with .setVideoURI()

A call to this .start() method off of the videoPlayer VideoView object is done using the
following simple line of Java code (more of a Java statement, actually) which is seen in
Figure 11-25:

videoHolder.start();

As you can see in Figure 11-25, you have implemented digital video playback in your Java
code in a half-dozen lines of Java code, not including two new import statements, which
brings the total new lines of code to eight.

If you want to use Run ➤ Run ‘app’ to run the application, you can if you wish, and as seen
in Figure 11-30, the digital video asset does indeed play fullscreen, which is our objective in
this chapter, to do a fullscreen video playback application!

As you can see in Figure 11-30, we will also be adding a media control transport using the
MediaController class (and object) after we learn more about the MediaPlayer class and the
MediaController class.

328 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Let’s take a look at two of Android’s media playback related classes before we continue with
more Java coding.

Android MediaPlayer: VideoPlayback Engine
The MediaPlayer class is a direct subclass of the java.lang.Object master class. As you
know, this indicates that this Android MediaPlayer class was designed specifically for the
purpose of providing MediaPlayer objects. A MediaPlayer object is a part of your VideoView
widget, and you will learn how to make the MediaPlayer object visible inside your Java code
in a future section of this chapter. The MediaPlayer class hierarchy looks like this:

java.lang.Object
 > android.media.MediaPlayer

The MediaPlayer class belongs to the android.media package. The import statement for
using the MediaPlayer class in an app would reference the android.media.MediaPlayer. This
MediaPlayer class is a public class, and features nine nested classes. Eight of the nested
classes offer callbacks for determining information regarding operation of MediaPlayer’s
video playback engine. We’ll be using one of these in a future section of the chapter.

Figure 11-25. Add the videoHolder.start() method call to finish implementation of a VideoView and start playback

329CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

The ninth nested class, the MediaPlayer.TrackInfo nested class, is utilized to return video,
audio, or subtitle track metadata information. The MediaPlayer nested class callback that
we’ll be implementing later on in the chapter is the MediaPlayer.OnPreparedListener, which
allows us to configure a MediaPlayer object before the digital video asset playback starts for
the first time.

Other often-used callbacks include your MediaPlayer.OnErrorListener, which responds to
(that is, handles) error messages relating to a digital video asset or a network connection,
MediaPlayer.OnCompletionListener, which you can use to trigger Java programming
structures once your video asset playback cycle has completed, MediaPlayer.
OnSeekCompletedListener, which is called when a digital video seek operation has
completed, and a MediaPlayer.OnBufferingUpdateListener, which is called in order to
obtain data buffering status for a video asset that is being streamed over a network.

There are also a couple of less-often-utilized nested classes, such as the MediaPlayer.
OnTimedTextListener, used when video timed text becomes available for display, and
the MediaPlayer.OnInfoListener, used when information or warnings regarding video
media being used become available for display. These nested class callbacks are not used
that often, at least not to my knowledge, but they are available to you if you need them for
specialized digital video implementation scenarios within your Android applications.

Android MediaController: A VideoTransport
The MediaController class is a direct subclass of the android.widget.FrameLayout class.
As you know, this is a ViewGroup layout container class, and a FrameLayout is a static layout,
in this case used to create a fixed video transport UI element. A MediaTansport object is
used to provide a video transport control set, which is a collection of Play, Pause, Stop, and
Rewind buttons, along with a Shuttle slider and current time readouts. You will learn how
to “wire” (connect or reference) a MediaController object up to your VideoView object in
the next section of this chapter. The MediaController class hierarchy should look like the
following Java class hierarchy:

java.lang.Object
 > android.view.View
 > android.view.ViewGroup
 > android.widget.FrameLayout
 > android.widget.MediaController

Android’s MediaController class belongs to your android.widget package. The import
statement for using the MediaController class in an app would reference the android.
widget.MediaController. The MediaController class is a public class, and features one
nested class: MediaController.MediaPlayerControl. This class is the public static interface
that contains eleven methods used to control a media player using the MediaController
class. These include seekTo(), isPlaying(), getCurrentPosition(), getAudioSessionId(),
getDuration(), getBufferPercentage(), canSeekForward(), canSeekBackward(), canPause(),
pause() and start().

330 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

A MediaController at the highest level (other than Object) is a View object containing
the transport controls for a MediaPlayer object that it is wired to via the VideoView which
accesses that MediaPlayer object. Typically, a video playback transport UI will contain
buttons such as play, pause, rewind, fast forward, go to start, and a progress bar and current
position. The MediaController class takes care of the synchronizing of the UI controls
with the state of the MediaPlayer (object) being used by the VideoView (object) inside your
fullscreen layout.

The way to use this class, as you will see in the next section of this chapter, is to instantiate
it programmatically. The MediaController object will then create a default set of controls
using its FrameLayout superclass and place these in a window floating above your
application.

Specifically, the controls will float above the view that is specified by the developer using the
setAnchorView() method call, in most cases this will be the VideoView which is hosting your
digital video asset and playing it using the MediaPlayer object that the VideoView utilizes to
play back that new media asset.

The video transport window will appear when the (in this case, fullscreen) video is touched
or clicked, and will disappear if left unused for video control for three seconds. It will then
reappear again when the user touches the anchor view; in our case this is a VideoView inside
a FullscreenActivity, which means anywhere on the screen.

Add a Video Transport UI Using MediaController
Next, let’s implement your MediaController UI transport controller, the UI buttons used to
control your video.

1. Once you declare a Java MediaController videoTransport;
statement at the top of your FullscreenActivity subclass, and hit
the Alt+Enter to have Android Studio write your import android.
widget.MediaController statement you’ll be able to instantiate and
construct your new MediaController object inside of your onCreate()
method. The next step is to use a new keyword in conjunction with
the MediaController(this) constructor method with the passed
parameter containing your standard Java Context object, which in this
case is passed using the Java keyword this. This code will construct
a MediaController object named videoTransport using the following
Java programming construct, which can be seen in Figure 11-26:

videoTransport = new MediaController(this);

331CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Notice in both Figures 11-26 and 11-27 that I’ve clicked on the videoTransport
MediaController object in the Java code, which tells Android Studio to highlight the (purple
colored) tracking of the instantiation. I did this in the next screenshot to show both your
videoTransport MediaController object declaration and instantiation, as well as the object
usage for the videoTransport MediaController object. This is an effective technique to
track an object’s use through your Java logic. The next thing you’ll need to do is to wire the
VideoView object to the MediaController object, such that they know each other are there,
and so they will work together seamlessly.

In pseudo-code speak, we need to tell the MediaController object that it is controlling
the VideoView, and tell the VideoView to use the MediaController object to control its new
media asset (in this case, digital video). This cross-wiring of the two objects will take two
lines of Java code, which, after they are in place, will give your user the ability to click (or
touch) the digital video content and bring up the MediaPlayer transport UI element. This
MediaController, or the MediaPlayer transport, whichever way you want to look at it, will
always work, regardless of whether you have your digital video asset set up to loop, or to
only play once.

1. As you can see in Figure 11-27, we will first use the .setAnchorView()
method call, off of the videoTransport object, to wire the
videoTransport and the videoHolder objects together. This tells the
videoTransport object: "the videoHolder VideoView object is your
anchor View.

Figure 11-26. Declare a MediaController named videoTransport, and construct your new MediaController() object

332 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

2. Then we will use a .setMediaController() method call off of the
videoHolder object, to wire the videoHolder and the videoTransport
objects together. This will tell the videoHolder object “use the
videoTransport MediaController object as the MediaController for
this VideoView object named videoHolder.” These two lines of Java
logic should look like the following:

videoTransport.setAnchorView(videoHolder);
videoHolder.setMediaController(videoTransport);

Figure 11-27. Wire the videoTransport and videoHolder together with .setAnchorView() and .setMediaController()

Use the Run ➤ Run ‘app’ menu sequence and launch your Nexus 5 AVD, as seen in
Figure 11-28, and rotate the device 90 degrees by using the rotate icon on the AVD icon
control bar, shown on the right, circled in red.

333CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Figure 11-28. Use Run ➤ Run ‘app’ and test your fullscreen VideoView, MediaPlayer and MediaController

Once the digital video starts playing, even if it is set to loop, which I will be showing you
how to do in the next section of this chapter, you can click on the screen at any time, and
bring up the video media transport controls. After a few seconds, these transport UI controls
will fade away, if they are not being actively used to start, stop, pause, rewind (reset), or
shuttle the digital video asset’s frames. Also notice in Figure 11-28 that the current time
(00:14) and the duration (00:16) are also shown in the transport bar user interface element
(MediaController).

Congratulations, you’ve essentially mastered the basics of digital video playback for your
Android applications development thus far during the chapter, doing everything from
learning the fundamentals of digital video asset concepts and creation to optimization and
encoding digital video assets, to coding a FullscreenActivity for video playback. Soon we
will add looping capabilities and streaming video playback support for your users to use.

Pretty comprehensive, for just one single chapter! If you wanted to venture more deeply into
this subject, look for my titles Pro Android Graphics (Apress, 2014) and Pro Android UI
(Apress, 2014) that delve deeper into this subject area, and combine it with more advanced
graphic design and user interface design topics.

Now, let’s continue with Java programming, and expose a MediaPlayer object using
OnPreparedListener. This will allow you to set your digital video asset to loop continuously.
Fortunately you learned about event listeners early on in the book, in Chapter 7, so that I
could cover more advanced callbacks, such as this one, during the second half of the book.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

334 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Loop Digital Video: Using OnPrepareListener
Now we are going to implement one of the most-used nested interfaces from the
MediaPlayer class, MediaPlayer.OnPreparedListener, which will allow you to configure
the videoHolder VideoView digital video asset to loop seamlessly. You’ll do this by calling
a .setOnPreparedListener() method off of your videoHolder object. Inside of that Java
programming construct, you will then utilize a new keyword to create an OnPreparedListener
implementation. Inside of that construct will live the onPrepared() event listener. This will be
accomplished via the following initial Java statement that creates an empty event listening
structure:

videoHolder.setOnPreparedListener(new MediaPlayer.OnPreparedListener(){empty onPrepared()
method });

As you can see in Figure 11-29, as you type in the videoHolder.setOnPreparedListener()
method call, off of your videoPlayer VideoView object, as you type in the .setOn part of
the statement, Android Studio will figure out what you are trying to do, and will pop up
the VideoView event listener helper dialog, shown at the bottom-right corner of the partial
screenshot.

It is important to notice that I am calling the .setOnPreparedListener() method before I call
the .start() method, because I don’t want to start the video before I prepare (configure) it
for use! Remember, the order of Java programming statements is extremely important, and
putting method calls in the wrong order would generate unintended results!

Figure 11-29. Type videoPlayer.setOn, and select setOnPreparedListener(OnPreparedListener l) option

Inside videoHolder.setOnPreparedListener, type new MediaPlayer and a period and
Android Studio will pop up your MediaPlayer nested class callback helper dialog. As you
will see, this dialog contains all nine of the nested class callbacks that you learned about
in the earlier Android MediaPlayer section of this chapter. Select the first MediaPlayer.
OnPreparedListener anonymous inner type option and double-click on it, which will insert it
into your Java code structure.

335CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Not only does it insert the OnPreparedListener() structure, but it also will add in an
unimplemented onPrepared() method structure, which you usually have to do via another
mouse-over operation. All you will have to do now is to add those operations that you want
to happen during this video preparation phase of the video asset. In this case, that would be
to set the setLooping() method’s parameter to be true, so that your video will loop forever.

Next, all you have to do is to add the .setLooping() method call and parameter to the
public void onPrepared() method that is inside of the OnPreparedListener() structure,
called off a MediaPlayer object named videoPlayer, which Android Studio has created for
you. This is done using the following Java logic, shown in Figure 11-30:

videoHolder.setOnPreparedListener(new MediaPlayer.OnPreparedListener() {
 @Override
 public void onPrepared(MediaPlayer videoPlayer) {
 videoPlayer.setLooping(true);
 }
});

As you can see in Figure 11-30, the code is error free and ready to test using a Run ➤ Run
‘app’ menu sequence. The digital video asset now both loops and fills your screen, and
(not in a screenshot; it should look like Figure 11-28) you can now watch the 3D planet
flythrough digital video asset loop seamlessly on the screen. You have implemented looping
digital video in an application using only 15 lines of Java code, not counting three import
statements that Android Studio wrote for you, which brings the total to a dozen and a
half. The Java statement count is so low because again, Android has written the majority
of the code for you using the classes we learned about during this chapter (MediaPlayer,
MediaController, Uri, VideoView, FullscreenActivity, FrameLayout).

Figure 11-30. Adding the onPrepared() method to our new MediaPlayer.OnPreparedListener() callback structure

336 CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Next, I am going to show you how to modify your current Java code to stream video, instead
of using a captive video asset in Android. All that you have to do is change your Uri object
to reference the HTTP:// instead of an android.resource:// in the URI datapath referencing
string. I already have a pag800x480landscape.mp4 version and a pag480x800portrait.mp4
version of the flythrough on one of my servers at HTTP://www.e-bookclub.com/ that you
can use to test the code, so let’s get started and stream digital video to an Android
FullscreenActivity.

Streaming Digital Video: Using HTTP URL in URI
Since Android handles all of the logistics regarding streaming video from the Internet into
the hardware device, all we as developers really have to do is to provide the correct HTTP://
URL, or Uniform Resource Locator, in the place of the android.resource://com.example.
user.digitalvideomedia/R.raw.flythru3d URI reference, which we have been using thus far
in the chapter. Fortunately, an HTTP URL can also be used in the Uri object.

Do this by replacing the android.resource://com.example.user.digitalvideomedia/R.raw.
flythru3d URI path with an HTTP://www.e-bookclub.com/pag480x800portrait.mp4 reference
to an external server, using this code:

VideoAssetUri = Uri.parse("HTTP://www.e-bookclub.com/pag480x800portrait.mp4");

As you can see in Figure 11-31, the Uri.parse() method call will accommodate this HTTP://
URL reference, as easily as an android.resource:// URI reference. This makes it easy for us
to switch our URI path references from captive video to streaming video. Notice the HTTP
URL is contained in quotes, and includes the file extension, which will tell Android which
codec family is utilized. This is needed as it is now “outside” of the Android OS.

Figure 11-31. Streaming digital video into your Android application using an HTTP URL in the Uri.parse() method

Test the streaming video using Run ➤ Run ‘app’, and watch the video stream! It is important
to note that once the video streams over the network the first time, the asset’s data will loop
out of the system memory thereafter.

http://www.e-bookclub.com/
http://www.e-bookclub.com/pag480x800portrait.mp4

337CHAPTER 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes

Summary
In this chapter, you learned all digital video concepts, formats, codecs, principles, creation,
optimization, and coding for Android, expanding on 2D animation concepts, formats, and
principles you learned in Chapter 10. You learned about Android’s FrameLayout UI layout
container class, and the FrameLayout.LayoutParams nested class along with the concept
of layout gravity and how to position UI elements inside of a FrameLayout container. This
FrameLayout superclass was used to create the VideoView widget used to contain your
video, and to play it back using the MediaPlayer engine, and eventually, the MediaController
transport UI element.

You created a FullscreenActivity class and modified its FrameLayout UI XML definition
file, so that you had a foundation for adding digital video functionality. After doing that, you
learned about the VideoView class and the video lifecycle stages and then you added a
VideoView to the FrameLayout. You learned about the Android Uri class and its Uri.parse()
method, used to implement the address or path to your digital video asset.

You learned about the foundational concepts of digital video encoding and optimization,
including frame rates, bitrates, codecs, resolution, quality (blur), and how these all work
together to allow you to optimize the digital video asset’s data footprint. After that, you
learned how to use Terragen 4 and Squeeze 11 to create a 3D planet-fly over video asset
and optimize that asset from image frames into MPEG-4 format, taking data that was
over 2310MB and turning it into a usable 4MB digital video asset. Amazing compression
technology.

You learned about the Android MediaPlayer class and its nine nested classes, most used for
callbacks allowing you to control the user’s digital video experience. You learned about how
the VideoView uses the MediaPlayer internally, as well as how to expose it for use in your
Java code.

You implemented a MediaController object named videoTransport and then wired it up to
your videoHolder VideoView by using the .setAnchorView() and the .setMediaController()
method calls.

You added an OnPreparedListener event listener to your videoHolder VideoView object
and then used a .setLooping(true) method call to tell the video asset to loop forever. Then
you learned how to alter a URI so that you were streaming video, instead of using captive
video. You have learned a plethora of core Android information, tricks, classes, methods,
callbacks, and techniques relating to digital video!

Next, in Chapter 12, you’ll learn about digital audio in Android, including foundational digital
audio theory and concepts, what digital audio file formats are optimal to use in Android, and
how to create digital audio assets for use with the Android SoundPool audio sequencing class.

http://dx.doi.org/10.1007/978-1-4842-2268-3_10
http://dx.doi.org/10.1007/978-1-4842-2268-3_12

339© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_12

Chapter 12
Digital Audio: Sequencing
Audio Using SoundPool
In the previous chapter on digital video, we covered the Uri, MediaPlayer, and
MediaController classes, which you can also use with digital audio, which we are going to
cover in this chapter. Since these classes are used in the same exact way with digital audio
assets, I am going to show you how to use the Android SoundPool audio sequencing class in
this chapter, so I can cover as many of Android’s new media classes as possible in this book.

If you want to play long-form digital audio, such as songs, albums, or audio books, you
would use the Android MediaPlayer class along with the Android MediaController and URI
classes, using the SeekBar widget, instead of the VideoView. You can also loop long-form
audio for background music without using the SeekBar widget, as you will see in Chapter 13
when we do just that using the Service class.

If you want to play short-form digital audio however, such as sound effects for your games
or your UI elements, for use as aural (that is, audible) feedback, you would use the Android
SoundPool class. The SoundPool “engine” is actually more versatile than the MediaPlayer
class, when it comes to controlling digital audio assets. SoundPool is a powerful digital
audio sequencing engine, basically allowing you to composite audio in the same way that
you use layers in digital image compositing to composite imagery. SoundPool is a complex
and versatile digital audio class, which Android 7.x continues to improve, and I wanted to
cover some of Android’s more powerful classes during the course of this book.

Digital audio is a bit different from digital imagery and digital video as you can’t see it; you
have to rely on your ears. Instead of using waves of light, as color does, digital audio uses
waves of sound, and as such, the technical fundamentals are completely different. If you are
new to digital audio, part of this chapter will cover the theory and the concepts behind digital
audio, as well as the plethora of digital audio codecs, that is, digital audio file formats, which
are supported in Android 7.1.1, as well as what each of them will be used for inside of an
Android application.

http://dx.doi.org/10.1007/978-1-4842-2268-3_13

340 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

In this chapter, we’ll utilize Android’s SoundPool digital audio sequencing class to add
amazing sound effects to ImageButton UI elements in the ScrollingActivity design pattern.
We will do this to add aural feedback for your users. We’ll learn how to implement this
SoundPool engine correctly in your Android applications, as this is no easy task. Digital audio
sequencing and synthesis is an advanced topic indeed, but a key part of an Android app,
and something I will cover even though this is an Absolute Beginners title.

Audio Waves: History, Concepts, and Theory
For Android 7 developers to use digital audio assets wisely and optimally, they would need
to know the basic foundation of both analog audio and digital audio—where they came
from, why they do what they do, and how to correctly “harness” them. I felt that this chapter
would not be complete without an in-depth discussion of analog and digital audio.

Foundation of Analog Audio: Sound Waves of Air
Those of you who are “audiophiles” already know that sound is created by sound waves
pulsing through the air. This is the reason you see sub-woofers with massive 18- to 30-inch
cones rapidly pushing out thunderous sound waves into audiences containing thousands
of screaming fans at rock concerts. Before the digital audio industry existed, the analog
audio industry was one of the major consumer electronics forces. In fact, it still is today,
with sound waves being created with complex analog electronics products, featuring
capacitors, resistors, oscillators, crystals, vacuum tubes, circuit boards, speaker cones,
cardiod microphones, and similar advanced high-quality analog audio technologies.

As mentioned, digital audio is quite complex, and part of this complexity comes from the
need to bridge analog audio technology and digital audio technology together. Analog audio
is usually generated using speaker cones of different sizes, manufactured using resilient
membranes made out of one space-age material or another. The speakers generate sound
waves by vibrating, or pulsing, them into existence. Our ears receive this analog audio in
exactly the opposite fashion, by catching and receiving pulses of air, or vibrations with
different wavelengths, and then turning them back into “data” that our brains can process.
This is how we “hear” sound waves, and our brains interpret different audio sound wave
frequencies as different notes, words, sounds, or tones.

Sound waves generate various tones depending on the frequency of a sound wave. A wide
or infrequent (long) wave produces a lower (bass) tone, whereas a more frequent (short)
wavelength produces a higher (treble) tone. It is interesting to note that different frequencies
of light produce different colors, so there is a close correlation between analog sound (audio)
and analog light (color), which also carries through to digital content production.

The volume of a sound wave will be predicated on the amplitude, or height, of that sound
wave. The frequency of the sound waves equates to how closely together waves are
spaced, along the X-axis. The amplitude equates to how tall the waves are as measured
along the Y-axis. Sound waves can be shaped uniquely, allowing them to “carry” different
sound effects. A baseline type of sound wave is called a sine wave, which you learned
about in high school math, with your sine, cosine, and tangent math functions. Those of you

341CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

who are familiar with audio synthesis are aware that there are other types of sound waves,
utilized in sound design, such as the saw wave, which looks like the edge of a saw (hence
its name), and the pulse wave, which is shaped by using right angles, resulting in immediate
on and off sounds, which translate into pulses.

Even randomized waveforms, such as noise, are used in sound design to obtain “edgy”
sound results. As you may have ascertained, using previous knowledge regarding data
footprint optimization, the more “chaos,” or “noise,” that is present in your sound waves, the
harder they will be to compress for a codec, resulting in a larger digital audio file size for that
particular sound. The next section takes a closer look at how an analog audio sound wave is
turned into digital audio data, by using a process called sampling. The “sampler” is the core
audio sample production tool for sound designers and music synthesis.

Digital Audio: Samples, Resolution, and Frequency
The process of turning analog audio (sound waves) into digital audio data is called sampling.
If you work in the music industry, you have probably heard about a type of keyboard (or
rack-mount audio equipment) called a sampler. Sampling is the process of slicing an audio
wave into segments, so that you can store the shape of that wave as digital audio data
using a digital audio codec format. This turns an infinitely accurate analog sound wave
into a discreet amount of digital data, that is, into zeroes and ones. The more zeroes and
ones that are used, the more accurate the reproduction of that infinitely accurate (original)
analog sound wave. Sample accuracy determines how many zeroes and ones will be used
to reproduce the analog sound wave, which is also the data footprint, so I will get into that
discussion next, so that you know how to optimize your Android digital audio assets.

Each digital segment of a sampled audio sound wave is called a sample, because
it samples that sound wave at that exact point in time. The precision of a sample is
determined by how much data is used to define each wave slice’s height. Just like with
digital imaging, this precision is termed the resolution, or more accurately (no pun intended),
the sample resolution. Sample resolution in digital audio is usually defined with 8-bit, 12-
bit, 16-bit, 24-bit, or 32-bit resolution samples. Today’s HD audio uses 24-bit audio samples,
and uncompressed audio usually uses 32-bit.

In digital imaging as well as digital video, resolution is quantified using a number of colors,
and in digital audio, the resolution is quantified in how many bits of data are used to define
each of the audio samples taken. Just like in digital imaging (more color yields better quality),
a higher sample resolution yields better sound reproduction. The only difference between the
two is that digital audio supports the 12-bit sample resolution. Higher sampling resolution—
using more data to reproduce a given sound wave sample—will yield higher audio playback
quality, at the expense of a larger data footprint. This is the reason that 16-bit audio, termed
“CD-quality” audio, sounds better than 8-bit audio, just like true color imagery will always
look better than indexed color imagery.

342 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

In digital audio there is now a 24-bit audio sampling, which is known as “HD audio” in the
consumer electronics industry. HD digital audio broadcast radio uses the 24-bit sample
resolution, so each audio sample, or slice of a sound wave, contains 16,777,216 different
potential units of sample resolution, like 24-bit color allows 16.8M potential colors. Most
new Android devices now support HD audio, such as the smartphones you’ll see advertised
featuring “HD quality” audio, and more recently, HD and UHD iTV sets. This means they
have 24-bit audio hardware, 24-bit capable audio decoder chips in their circuitry.

Beside a digital audio sample resolution, there is also a digital audio sampling frequency.
This is how many of these samples at a particular sample resolution are taken during one
second of sample duration. In digital image editing, the sampling frequency would be
analogous to the number of pixels that are contained within an image. More pixels in an
image would equate to an analog image being sampled more frequently, just as a higher
audio sample frequency would equate to a sound wave being sampled more frequently,
yielding a better reproduction.

Sampling frequency can also be called the sampling rate. You are probably familiar with the
term CD-quality audio, which is defined as using a 16-bit sample resolution and a 44.1kHz
sampling rate. This is taking 44,100 samples, each of which contains 16-bits of sample
resolution, yielding 65,536 bits of audio data in each sample. Let’s do some math, and find
out how many bits of data are available to provide one second of “uncompressed” digital
audio data. This is calculated by multiplying the 65,536 sample resolution by the 44,100
sample frequency. This gives you a maximum potential value of 2,890,137,600 bits to
represent one second of CD quality audio.

Divide this by 8 to get 361,267,200 bytes, and by 1,024 to get 352,800 kilobytes, and by
1,024 again to get 344 megabytes. Not every CD quality 16-bit sample will use all of these
potential data bits, however, thus your original raw, uncompressed audio samples will be
much smaller than this, usually only a few dozen megabytes. So, to figure out raw data in an
audio file, you would multiply the sampling bit-rate by the sampling frequency by the number
of seconds in that audio snippet. You can see that it can potentially be a huge number!
Audio codecs are great at optimizing this sampled data down to an amazingly small data
footprint, with little audible loss in quality.

In a visual medium, optimization is achieved using color depth and pixels. With digital
video, this also includes frames. In the aural medium, optimization is controlled via sample
resolution in combination with the sampling rate. Common sample rates in the digital audio
industry include 8kHz, 22kHz, 32kHz, 44.1kHz, 48kHz, 96kHz, 192kHz, and even 384kHz.
Lower sampling rates, such as 8kHz, 22.5kHz, and 32kHz, are optimal for sampling any
“voice-based” digital audio, such as a movie dialog or e-book narration track, for instance.
Higher audio sample rates are more appropriate for music and other sound effects, such as
rumbling thunder, which require a high dynamic range (high fidelity). High sample rates are
best for game or movie theater (THX) sound quality.

343CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Digital Attributes: HD, Stream, and Bitrate
As mentioned, the industry “baseline” for superior audio quality is known as CD-quality
audio, and it is defined using the 16-bit data sample resolution at a 44.1kHz data sample
frequency. This was used to produce audio CD products way back in the 20th century, and
it is still used as a minimum quality standard today. There’s also the more recent HD audio
standard, which uses a 24-bit data sample at a 48kHz or 96kHz sample frequency. This is
used today in HD radio as well as HD audio-compatible Android devices, such as Hi-Fi HD
audio smartphones and iTV sets.

If you are going to use HD audio in your Android applications, you need to make sure that
your target users will own the HD audio-compatible hardware that will be required to utilize
a higher level of audio fidelity. Just like with digital video data, digital audio data can either
be captive within the application, with data files in the /raw folder, or digital audio can be
streamed with remote data servers. Similar to digital video, the upside to streaming digital
audio data is that it can reduce the data footprint of an application just as streamed digital
video data can. The downside is reliability. Many of the same concepts apply equally well to
digital audio and digital video.

Streaming audio will shrink the size of your application’s data footprint, because you do
not have to include all of that heavy new media digital audio data inside of your .APK files,
so if you are planning on coding a digital Jukebox application, you may want to consider
streaming the digital audio data. Otherwise, try to optimize your digital audio data so you
can include it inside the .APK file. This way, the digital audio will always be available.

The downside to streaming digital audio is that if your user’s connection (or your audio
server) goes down, your digital audio file may not be available for your users to play and
listen to! The reliability and availability of your digital audio data is a key factor to be
considered on the other side of this streaming audio versus captive digital audio data trade-
off. The same trade-offs that are discussed in this book for digital video assets could also
be applied to digital audio assets. Just like with digital video, one of the primary concepts
regarding streaming your digital audio is the bitrate of that digital audio data. As you learned
in Chapter 11, this bitrate will be defined during your compression process. As with digital
video, digital audio files that need to support lower bitrate settings are going to have more
compression applied to the data, which will result in a lower digital audio quality level.

Android Digital Audio: Digital Audio Formats
There are considerably more digital audio codecs in Android than there are digital video
codecs, as there are only two video codecs—MPEG-4 and WebM. Android audio support
includes .MP3 (MPEG-3) files, WAVE (PCM, or Pulse Code Modulated) .WAV files, .MP4
(or .M4A) MPEG-4 audio, OGG Vorbis (.OGG) audio files, Matroska (.MKS) audio files,
FLAC (.FLAC) or Free Lossless Audio Codec audio files, and even MIDI (.MID, .MXMF, and
.XMF) Musical Instrument Digital Interface files, which technically are not digital audio. Let
me explain what MIDI is first, since it is not a format that we are going to be using in the
digital audio application we will be creating next.

http://dx.doi.org/10.1007/978-1-4842-2268-3_11

344 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

MIDI stands for Musical Instrument Digital Interface, and it is one of the very first ways that
digital audio and computers could work together, dating all the way back to ancient times
(the 1980s). The very first computer to feature integrated MIDI data port hardware was
Atari’s ST1040. This computer allowed me to plug a keyboard synthesizer, at the time, it
was my Yamaha TX-802 and Roland D50, into that MIDI port. MIDI allowed me to play and
record performance data into the computer using the MIDI data format, along with an audio
software genre called a MIDI sequencer, and MIDI Sequencing software called Final Track,
created by Charles Faris.

A MIDI file contains zero audio sample data, it only contains performance data. When this
performance data is played back into the synthesizer, using the MIDI hardware (cable and
ports), the synthesizer generates the audio tones using this MIDI performance data. MIDI
would record which keys on the synth or sampler keyboard were pressed, when they were
pressed, keypress duration, how hard it was pressed (after-touch), and similar nuances.
When MIDI files are played back through a synthesizer, the synth replicates the exact
performance of the performer or composer, even though that person is no longer playing
that performance track; the computer is now playing that performance data exactly the way
that it was originally performed.

The way that MIDI data was used in MIDI sequencing software is that you can play an
instrument track, record it as MIDI data, and the sequencer will then play it back for you,
while you play another instrument track right alongside of it. This enables digital songwriters
to assemble complex musical arrangements using the computer, instead of hiring a studio
full of musicians. You can download open source MIDI software called Rosegarden at
rosegardenmusic.com; it not only contains a full MIDI sequencer, but also contains a music
notation (scoring) program as well. Rosegarden was originally for Linux OS, but is currently
being ported to the Windows OS.

Android supports playback of MIDI files, but doesn’t implement a MIDI class, although
SoundPool can be used as a sequencer. It would not be an easy task to code a MIDI
sequencer for Android although some on the coding forums have been talking about it. For
that reason, it is beyond the scope of this book; I mention it here, only to educate you as to
the history and scope of digital audio. MIDI played an important role early on in the evolution
of digital audio, and is still part of digital audio today, especially if you are a songwriter or a
sound designer.

The most common digital audio format supported by Android is the popular MPEG-3, or
MP3, digital audio file format. Most of you are familiar with MP3 digital audio files, due to
music download websites, such as Napster. Most people collect songs in this format to
use on popular MP3 players and via CD-ROM- or DVD-ROM-based music collections. The
reason the MP3 digital audio file format is popular is because it has a good compression-
to-quality ratio and because the codec needed to play the audio back can be found
almost anywhere, even in the Android OS. MP3 is an acceptable format to use in Android
applications, as long as you get the highest quality level possible out of the codec, by using
an optimal encoding work process, and original (raw) audio data input.

345CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

It is important to note that MP3 is a lossy audio file format, like JPEG is for imagery, where
some of the audio data (and thus, quality) is thrown away during the compression process,
and cannot be recovered. Android does have a lossless audio compression codec, called
FLAC. This stands for Free Lossless Audio Codec. FLAC is an open source audio codec
whose support is widespread, primarily due to the free nature of the software decoder.

FLAC is also very fast, so the decoder is highly optimized for speed, it supports 24-bit HD
audio, and there are no patent concerns for using it. This is a great audio codec to use if you
need very high-quality audio within a reasonable data footprint. FLAC supports a wide range
of sample resolutions, from 4-bits per sample up to 32-bits. It also supports a wide range of
sampling frequencies from 1Hz to 65,535kHz (65kHz), in 1Hz increments so it is extremely
flexible. From an audio playback hardware standpoint, I would suggest using the 16-bit
sample resolution and either a 44.1kHz or 48kHz sample frequency. FLAC is supported in
Android 3.1 and later, so, if your users are using modern Android devices, you should be
able to safely utilize the FLAC codec. Therefore, it is possible to use completely lossless new
media assets for your Android applications, by using PNG24, PNG32, and FLAC as long as
you are targeting Android Version 3.1 and later OS revisions, which you probably will be.

Another open source digital audio codec supported by Android is the OGG Vorbis codec,
another lossy audio codec from the Xiph.Org Foundation. The Vorbis codec data is most
often held in an .OGG data file container, and thus Vorbis is commonly called OGG Vorbis
digital audio data format. The OGG Vorbis supports sampling rates from 8kHz up to 192kHz,
and supports up to 255 discrete channels of digital audio (as you now know, this represents
8-bits worth of audio channels). OGG Vorbis is supported across every version of the
Android OS. Vorbis is quickly approaching the quality of HE-AAC and WMA (Windows Media
Audio) Professional, and is superior in quality to MP3, MPEG-4 AAC-LC and WMA. It uses a
lossy format, so the FLAC codec is superior to OGG Vorbis, as it contains all of the original
digital audio sample data (and as such, it is therefore lossless).

Android supports the popular MPEG-4 AAC (Advanced Audio Coding) codecs, including
AAC-LC, HE-AAC and AAC-ELD. These can all be contained in MPEG-4 containers (.3gp,
.mp4, and .m4a) or file extensions, and most of them can be played back across all versions
of Android. The one exception to this is AAC-ELD, which is supported only after Android
4.1. ELD stands for Enhanced Low Delay, and this codec is intended for usage in a real-
time, two-way communications application, such as a digital walkie-talkie or Dick Tracy
smartwatch.

The simplest and most widely used AAC codec is AAC-LC, or Low Complexity codec.
It should be sufficient for most digital audio encoding applications. The AAC-LC should
yield a higher quality result, at a lower data footprint than an MP3 format. The next most
complicated AAC codec is the HE-AAC or High Efficiency AAC codec. Its codec supports
sampling rates from 8kHz to 48kHz and both Stereo and Dolby 5.1 channel encoding.
Android supports decoding both the v1 and v2 levels of this codec, and Android will also
encode audio, using this HE-AAC v1 codec after Android Version 4.1. Use AAC-LC codec to
support earlier versions of Android.

346 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

For encoding speech that usually features a different type of sound wave than music there
are two other AMR or Adaptive Multi-Rate audio codecs. They are highly efficient for
encoding things like speech or short-burst sound effects that do not need high-quality
reproduction (such as a bomb blast sound effect). There is also the AMR-WB (Adaptive
Multi-Rate Wide-Band) standard in Android, which supports nine discrete settings from
6.6 to 23.85kbps audio bitrates, sampled at 16kHz. This is a high enough sample rate
where voice is concerned. This is the codec to use for a narrator track, if you are creating
interactive e-book applications, for instance.

There is also the AMR-NB (Adaptive Multi-Rate Narrow-Band) standard in Android OS,
which supports eight discrete settings, from 4.75 to 12.2kbps audio bitrates sampled. This
can be an adequate sample rate if the data going into the codec is high quality, or if the
resulting audio sample does not require a high level of quality due to the noisy nature of the
content (such as a bomb blast).

Finally there is PCM (Pulse Code Modulated) audio, commonly known as the WAVE or
.WAV audio format. Many of you are familiar with this lossless digital audio format, as it is the
original audio format used with the Windows operating system. It is lossless because there
is no compression applied whatsoever! PCM audio is commonly used for CD-ROM content,
as well as for telephony applications. This is because WAVE audio is an uncompressed
digital audio format, and therefore has no CPU-intensive decompression algorithms applied
to the data stream. Thus, decoding overhead the data is not an issue for the telephony
equipment or for CD players.

For this reason, when you start compressing digital audio assets into the various file formats,
you can use PCM as a “baseline” file format. You probably won’t put it into an APK file,
however, because there are other formats (such as FLAC and MPEG-4 AAC) that will give
you the same quality, using an order of magnitude less data. Ultimately, the only real way to
find out which audio formats supported by Android have the best digital audio codec result
for any given audio data instance is to actually encode your digital audio in the primary
codecs that you know are well supported and efficient. We will be looking at how that is
done as well during this chapter.

Digital Audio Optimization: Device Compatible
Optimizing your digital audio assets for playback across the widest range of Android devices
in the marketplace is easier than optimizing your digital video or digital imagery (and thus
animation) across Android devices. This is because there is a much wider disparity of screen
resolutions and display aspect ratios than there is a disparity of digital audio playback
hardware support across Android devices, except for some Android hardware devices
that feature 24-bit (HD) audio playback hardware compatibility. This is because your ears
cannot perceive the same quality difference in audio that your eyes can, with digital imagery,
animation, or digital video. Generally, there are three primary “sweet spots” of digital audio
support, across all Android devices, which you should target.

347CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Lower-fidelity audio, such as narration tracks, or short sound effects, can use a 22kHZ or
32kHz sampling rate, with 8-bit, 12-bit, or 16-bit sampling resolution. Your high-quality
audio targets include CD-quality audio, also known as 16-bit data sampling at 44.1kHz
and HD-quality audio will be at the other end of this high-end audio spectrum, using a 24-
bit data sampling resolution and a 48kHz audio data sampling rate. There is an unnamed
“somewhere in the middle” specification, which uses 16-bit data sampling at a 48kHz
sampling rate. Ultimately, however, it comes down to the quality-to-file-size results that
emerge from your digital audio data footprint optimization process, which can yield some
amazing results.

Thus, the initial process for optimizing your digital audio assets across all of the Android
devices is going to be to sample 32-bit assets at 44.1kHz or 48kHz, and then optimize
(compress) them, using different audio formats supported in Android. Once that process has
been completed, you’ll then see which digital audio assets provide the highest quality digital
audio playback in conjunction with the lowest possible data footprint. You’ll do this using the
latest version of the open source Audacity 2.1 digital audio editing and engineering software
package. This software package is freely available at www.audacityteam.org, and will be
accessible to all readers, no matter which OS platforms they prefer, whether it be Windows,
macOS, Ubuntu, Fedora, RedHat or SUSE Linux.

Audio Sequencing: Concepts and Principles
As you now know, the earliest forms of digital audio sequencing actually utilized MIDI. MIDI
sequencers such as the Rosegarden for Linux (and soon Windows) software are still popular
and allow performance sequencing. This is where a composer plays each instrumental part
into a computer using a synthesizer to play an instrument sample, say a guitar, bass, drum,
or piano sample, and then the computer plays back this performance data later on, while the
composer accompanies the computer-replayed version of that performance.

Eventually, MIDI sequencing software added digital audio capabilities alongside MIDI
playback capabilities, as increased computer processing power, as well as specialized
digital audio adapters, such as Creative Labs X-Fi, became available to consumers at
affordable prices. It turns out that this concept of audio sequencing is applied equally well to
digital audio samples that are manipulated directly by a computer, as long as this computer
is powerful enough. The Linux Qtractor software package combines MIDI and Audio
Sampling, and the Ardour software for Linux is a DAW, or Digital Audio Workstation, which
focus primarily on digital audio sampling. In fact, my Ubuntu 17.04 Linux workstation has
Ardour, Qtractor, Audacity, and Rosegarden all installed on it right now!

Computers—in this case, Linux-based Android devices—keep getting more and more
powerful, and all feature four or eight processor cores, and one, two, or even four billion
bytes of system memory. This means Android devices today can hold several digital audio
samples in memory, and thus memory optimization is an issue with Android SoundPool,
as you will soon see. I wanted to cover SoundPool, an advanced audio sequencing engine
class in Android, during the book, even though the book is technically supposed to be for
“Absolute Beginners.” The reason for this is because if you want to utilize digital audio
assets in your application, especially using samples or short audio snippets, rather than
playing back long-form audio or songs, SoundPool is the way to go.

http://www.audacityteam.org/

348 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Audio Synthesis: Concepts and Principles
Some of the very first MIDI keyboards were digital audio samplers. These played back digital
audio samples, prerecorded (sampled) by digital audio sample design professionals such as
Frank Serafine, using a range of sample resolutions and sample frequencies. You learned about
samples in a previous section, so what you are going to focus on here is how those samples
are taken to the next level using audio synthesis (via algorithmic processing). Synthesizers can
also apply these algorithms to raw waveforms, such as sine, saw, or pulse waves.

Synthesizers take digital audio—whether it’s a generated wave, borne out of an oscillator
on a circuit board in a consumer electronics device, or a more complex sampled waveform,
such as a sample of a plucked instrument string—and apply algorithmic processing to
the waveform to create a different tonality, sound, or special effect. We’re all familiar with
the synthesized instruments in popular music today; these virtual instruments are created
solely by using math and programming code! One of the foundational mathematical
manipulations that can be applied to audio waveforms within the digital audio domain is
called pitch-shifting. This was a core technology that made keyboard samplers viable, as
one sample could be used up and down the keyboard, simply by shifting its pitch! Pitch-
shifting algorithms can take a sound wave up or down an octave (or even a small fraction of
an octave, which is commonly known as a pitch) to create a usable range for that sample,
much as though you were playing it up and down the keys of an electronic piano, a sampler
keyboard, or a synthesizer keyboard.

As you learned previously, the tone of a waveform can be determined by the frequency of
that waveform itself, so it becomes a fairly straightforward mathematical computation to
be able to accurately shift that pitch (wave) up an octave by shortening that wavelength by
cutting it in half, or shift the pitch down an octave by doubling that wavelength. Any fraction
between these two extremes changes the pitch of the audio sample, which is how you
would get different notes along a keyboard using a single waveform. You can even create
fractions between “known” pitches (common notes such as A, B, D, E, F, and G), which can
be used to create “micro-tonal” music. Digital audio synthesis is amazing and the Android
SoundPool class we’ll be using later supports these features.

SoundPool can perform pitch-shifting on your digital audio samples, which is why you are
learning about these concepts in the first part of this chapter. SoundPool has impressive
audio engineering capabilities and probably will add even more features in future versions
of the Android OS. You’ll need to understand these digital audio synthesis concepts in
order to leverage what SoundPool can do for your application effectively and optimally. If
you need the SoundPool engine, you’ll know how to use it correctly, as it can use a lot of the
system memory. After this chapter, you’ll understand why you need to optimize audio data in
this way to get SoundPool to work well.

Another core audio synthesis mathematical manipulation is the combination, or
compositing, of digital audio waveforms. This will allow the playback of two or more sounds
at the same time, using a single oscillator, or using the speaker hardware. Just as with digital
imaging, 2D animation or digital video compositing, this will involve adding two or more
different sample data values to arrive at the final data value. Today’s Android audio hardware
features impressive multi-channel support and will probably have a capability for playing
stereo (two channels) or quadrophonic (four channels) quality audio (effects, music, vocal
tracks, and so on) with the audio hardware that is inside of any given consumer electronics
device (iTV set, tablet, e-reader, smartphone, etc.).

349CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

But what if you want to combine six or eight tracks of digital audio in real-time, like an audio
sequencer can? This is why SoundPool is important to master, because it provides you with a
digital audio sequencing engine right inside your Android application. The Android SoundPool
audio sequencing and synthesis engine is a very complex class, as you might well imagine.
To make it work properly, you need to load it with the most highly optimized samples
possible. This class is in Android to stay, and its code will continue to be debugged, refined,
and improved, so if your Android app is going to be audio-centric, you need to master it.
This chapter gets you up to speed on how to best use SoundPool, as well as what it can
accomplish for your apps.

Raw Audio Data Optimization: Memory Footprint
What is important, if you are going to attempt the real-time audio compositing of six or
eight audio samples, is that each of these samples is well optimized. This makes what you’ll
learn about digital audio data optimization extremely relevant, especially when it comes to
using SoundPool. For instance, if you don’t really need HD (24-bit sample resolution) audio,
in order to get your quality target, you should use CD-quality 16-bit audio, or even 12-bit
audio, as you will save valuable memory, and get the same result. If you get the same audio
quality using the 32kHz sample rate instead of the 48kHz sample rate, you are using 50%
less sample (system) memory! For voiceover or sound effects audio these memory savings
are there for the taking, as often you can sample a bomb or laser blast effectively using only
8-bit resolution with an 8kHz sample rate. You often won’t be able to detect much aural
difference between 16-bit 48kHz stereo audio and the lower bitrate mono audio, as you
will see in later on in this chapter, when we dive deeper into the data footprint optimization
concepts and techniques.

If you don’t absolutely need stereo samples, and can mix them down into mono samples,
you will save 100% in memory. Combine this with lowering bitrate for the sample frequency
and bit depth for the sample resolution, and you can get an even greater digital audio
data footprint optimization result with the same level of quality, at least from the end
user’s perspective, oftentimes using a hundred times less data in many circumstances. It’s
important to remember that your end users don’t hear the “before” (uncompressed) and the
“after” (compressed) audio samples like you do. As long as they sound similar, you are good
to go!

The other significant variable you can optimize is the length (in time) of the sample. Reducing
sample durations by removing silent or unnecessary audio data can result in a reduction in
raw audio data that has been sampled in the first place. This kind of data savings can add
up the more digital audio samples that you are using.

I just showed you three different levels (sample resolution, stereo vs. mono, and sample
duration) of audio data reduction. You can think of this as system memory usage once the
digital audio data has been decompressed by the Android OS into the device’s memory. This
is before you get into file size optimization using the encoders.

Codec optimization will affect your application’s .APK file size, but when the audio sample
needs to play back inside your app, this audio sample still needs to be re-created in
(decompressed into) system memory, before it can be triggered by the SoundPool engine.

350 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Therefore there are really two stages to audio optimization. The first is what you do to a raw
audio wave sample prior to encoding, relating to the sample resolution, sample frequency,
sample duration, and mono versus stereo sample playback. The second is what you do
when you export to various codecs, using settings to ascertain how much APK file size they
can save your application as captive digital audio assets.

Digital Audio Synthesis and Sequencing Caveats
Just like with digital imaging, animation, and digital video, optimizing your digital audio
assets is important for two completely different, but related, reasons. With digital audio
samples, especially in regard to using Android SoundPool, you must consider the amount
of system memory needed to hold each sample once they have been decompressed by a
codec, and placed into the raw, uncompressed state, inside of the Android device’s memory.
The second reason that well-optimized audio is important is the CPU processing part of the
equation. It is pretty obvious that with less audio (duration, resolution, frequency, and the
number of stereo/mono tracks) to process, even if that is just sending the audio data to the
audio playback hardware, there are less CPU cycles being used.

Therefore, if you can get the same basic audio quality result with a lower sample resolution
(fewer bits per slice of audio) or lower sample frequency (fewer slices of audio waveform
each second), or fewer data tracks (mono, or one audio track instead of stereo, or two
audio tracks), and shorter playback duration, you will be saving both your Android operating
system’s memory resources, and your user’s Android CPU processing power resources.

The reason I’m going into all of this audio sample optimization information in such great
detail in this chapter is because Android’s SoundPool class will often get a bad rap, because
the raw audio sample sizes that developers load into SoundPool are too data heavy. The
SoundPool engine gets blamed for sluggish performance and slow playback response times
due to this, rather than the developer’s lacking a data footprint optimization skill set. I am
making sure that this does not happen here, and that you have the best chance for success
using SoundPool.

Raw audio data optimization thus becomes more and more important, at least where
SoundPool is concerned, as the number of digital audio samples that you require increases.
This is again true for both system memory use as well as system processing cycle usage
considerations, because as you add in samples both of these resources are utilized more
and more. Don’t forget that there are other things the application might be processing, such
as user interface event handling, digital imagery, animation, digital video, 3D rendering,
Internet access, and so on.

Another reason providing highly optimized digital audio samples is so important when
using a SoundPool class is because there is currently a one megabyte limit on digital audio
sample data when using a SoundPool engine. Although the limit might be increased in future
Android API revisions of this digital audio sequencing class, it’s still always best practice to
optimize any digital audio assets effectively and efficiently. Therefore, digital audio synthesis
and sequencing using SoundPool in the Android application is a balancing act, both within
the device that you are testing it on at the moment, as well as across all devices that your
application will ever be run on.

351CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

If a given hardware platform (smartphone, tablet, e-book reader, iTV set, auto dashboard,
or smartwatch) can’t handle playing a given audio data load, then it will simply not play a
given sample. As time goes on, this would happen less and less due to better code and
faster device processor and memory hardware. As you have learned thus far, digital audio
synthesis, sequencing, and compositing are heavily predicated on the speed of a processor,
the number of processor cores available, and the amount of system memory that is available
to hold all of the digital audio samples that will be needed, in their uncompressed (raw or
PCM) data format.

The bottom line is that you need to be extremely smart about how you are doing things
with SoundPool. This is not as much about how you write your code, although that is
certainly important, but more about how you set up your audio samples, so that they use
less memory, and can be leveraged further in the application. The common mistake many
Android developers make regarding SoundPool is trying to use it more like a sequencer than
like an audio synthesizer. Developers focus on SoundPool’s ability to load multiple audio
assets in memory, but do not leverage its processing capability for creating new waveforms,
by using a few waveforms and pitch-shifting.

Here’s a good example of sequencer versus synthesis (optimization) use. SoundPool allows
pitch-shifting across two full octaves, from a setting of 0.5 or down one full octave (half
of your original sample waveform) up to 2.0 or up one full octave (twice of your original
waveform’s width). Remember that the waveform height equates to amplitude, commonly
referred to as volume, and waveform width equates to pitch (tone, or octave). Developers
tend not to use this pitch-shifting feature, but instead, use different samples to achieve
different notes. This fills up memory rapidly and the end result is an app works less and less
well, especially across the older devices. The correct way to use SoundPool is to take your
samples: say one string pluck from a guitar, one horn blow from a saxophone, one piano key
strike, and three different drum samples, and using only six short mono 48kHz 16-bit high-
quality samples, make a basic synthesizer that has all four basic jazz instruments using the
pitch-shifting.

Using this basic synthesizer setup, your users would be able to play instruments up and
down two full octaves. This application would use less than a megabyte of memory to hold
these 16-bit 48kHz uncompressed samples. If you used a high-quality microphone for the
sampling process you would be amazed at the high-quality results that you can obtain
these days using a 16-bit 48kHz Mono sampling format. If you wanted to save memory, you
could also use a mono 16-bit 44.1kHz CD-quality audio, or mono 16-bit 32kHz audio with
similarly acceptable results. I hope I’ve covered enough digital audio sampling and synthesis
concepts in the first part of this chapter to give you some real insight as to how to optimize
your digital audio assets for use with the SoundPool engine!

Audacity 2: Creating Digital Audio Assets
In this section of the chapter, you will learn how to use the open source audio engineering
software Audacity, currently at version 2.1.2. First, we will make sure that Audacity and all of its
plug-ins and codecs are installed that are available for free so that you have the audio software
that will make your audio editing environment both professional and powerful. Then we’ll learn
how to use this software to optimize digital audio assets in some of the Android-supported
digital audio codecs (formats), including some that are from the open source domain.

352 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Audacity 2.1.2: Installing Software and Codecs
First, you need to download and install Audacity 2.1.2, as well as to add in some plug-ins,
which will greatly enhance the feature set of the software. You’ll need to download and add
the popular codecs that are supported in Android. Visit the audacityteam.org website seen
in Figure 12-1, download Audacity, and then install it.

Use the Download ➤ Plug-ins menu sequence, also seen in Figure 12-1, and download
and install the LADSPA, LAME, FFMPEG, and Nyquist plug-ins.

Algorithms that add features and codecs to Audacity 2 are kept in the Plug-Ins folder, so
adding features to this software package is as easy as exiting the software (if it is running),
copying a file or files into this folder, and restarting the software again. Figure 12-2 shows
the Audacity\Plug-Ins folder, with 122 plug-in files installed.

Figure 12-1. Visit audacityteam.org and download Audacity and LADSPA, LAME, FFMPEG and Nyquist plug-ins

353CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

The LADSPA installation process alone will have added around a hundred plug-in files to
this folder, as shown in Figure 12-2. To install the LADSPA plug-ins, locate and click on the
LADSPA plug-ins 0.4.15 link, which is found in the Plug-Ins section of the Audacity site,
shown in Figure 12-1, and download the.EXE file. Do the same for the FFMPEG and LAME
encoders.

When these downloads finish, launch the file and select the language you are using (I chose
English) and click the Next button to go through the dialog series for each collection of
plug-in algorithms. Be sure to accept the license agreement and use the suggested default
destination location suggested. Once you proceed through the installation dialogs, you can
click on the Finish button, exiting the install process.

Audacity supports other plug-ins, such as Steinberg (Cubase) VST and Nyquist that can
add many other digital audio editing, waveform analysis, and sound synthesis algorithms
(capabilities) to your Audacity installation. I feel the more power the better, so I suggest
getting every plug-in that is currently available for Audacity, but, then again, multimedia
production is my hobby, so I don’t look at it as work; so have some fun with Audacity!

To check and see if everything you need to perform basic digital audio editing for Android is
installed, use your control panel in your OS and go to the (installed) programs and features
utility, which is shown in Figure 12-3. I have circled in red the entries on my system showing
that these effects plug-ins and audio codecs have all been installed successfully.

Figure 12-2. The 122 plug-in files after the full installation of Audacity 2.1.2 with LADSPA, LAME, and FFMPEG

354 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Next, let’s get some audio samples for your Android digital audio application. I’ll include
a short section on free digital audio sample searches next, so that we can find some free
uncompressed PCM samples to use during the rest of this chapter.

Free Audio: Locate DigitalAudioSequencer Audio
To find some free-for-commercial-use audio samples, I’m going to use the Google Search
Engine, and type in a query for something like Free PCM Audio Samples, Free Digital
Audio Samples, Free PCM Audio Files, or Free Digital Audio Files, and similar Google
search term combinations. It’s important to note that each of these Google searches will turn
up different results, due to keywords used in each of the different websites that offer these
digital audio assets. Be advised that many of the paid audio sample websites will put the
word “free” in their websites (as an SEO tactic), so that they will come up on these types of
free PCM audio sample searches. To find word combinations, use the plus symbol, such as:
Free+Digital+Audio+Files, for instance. This will tell the search engine that you want to find
sites where these words are located adjacent (next) to each other.

There are dozens of good free audio sample websites, all of which will fit the bill for your
needs, so be sure and investigate these further when you have some spare time. Make sure
that the ones that you use for your Android application development are free for commercial
use, do not require any royalty payments, and do not have any copyright (usage) restrictions.
What you want to look for is high-quality, uncompressed PCM (.wav file format) samples,
using 16-bit or better (24-bit or 32-bit) sample resolution, with a 32 kHz, 44.1 kHz, or 48
kHz sample frequency (sample rates). Note that if you use MP3 files (which most of these
sites also offer), they will already have been compressed, and be ready for use, but you will
not have any control over the data footprint optimization process. This is because much of
the original audio sample data will have already been thrown away during the compression
process, and you do not want to compress any kind of data that is already (lossy)
compressed!

Figure 12-3. LADSPA Setup series of dialogs; Welcome, License Agreement, and Destination Location

355CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

I decided to use the freewavesamples.com website, which features some animal sounds
(samples) that we can use for an educational app where kids can click on the picture of the
animal and hear the sound that they make. I show the website in Figure 12-4; go there and
find the animal sounds section and download your animal sounds.

I’m going to download animal sounds for a cat, shown in Figure 12-5, dog, monkey, lion,
horse, and bird. To go to the download page and link, use the 1 attachment link in the
sample description area for each animal. Notice that these samples are each 16-bit, 44,100
Hz, CD quality, stereo format, PCM so we can practice some data footprint optimization
techniques to see how significantly system memory can be optimized for the Android
7.1.1 SoundPool digital audio engine.

Figure 12-4. The Free Wave Samples website offers animal sounds you can use for your educational application

Figure 12-5. Locate the cat, dog, lion, horse, monkey, and bird samples; click the 1 attachment link and download

356 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Now that you have seven uncompressed samples (I downloaded both bird samples),
you can listen to them and see which animal sounds you want to use for your
DigitalAudioSampler application. That is the first step in the digital audio assets
optimization process, to decide which samples you must absolutely use in your application.
The next steps, which we’ll cover after this, are to see what minimum sample rate is needed
to retain sample quality, to see if stereo samples are needed, or if mono samples can be
used, and compress using the two most widely used, and Android, JavaFX 8 and HTML5
supported, MPEG-4 AAC and OGG Vorbis codecs using a maximum quality setting. I will go
through the work process for this in the next section of the chapter, using Audacity 2.1.2, as
that software is open source, free for commercial use, and available on Windows, OSX, and
all Linux distros.

Digital Audio Optimization: Concepts and Formats
Let’s launch Audacity 2.1.2 by clicking its Quick Launch icon on your Taskbar, and use the
File ➤ Open menu command sequence to open the Galloping-Horse.wav file. This is the
one with the heaviest data footprint. The first time you open (or more accurately import)
an audio file in Audacity, you will get a warning dialog. I selected the Make a copy of the
files before editing (safer) radio button option, then I selected the Don't warn again and
always use my choice above check box, and then I clicked the OK button to load the initial
sample, which can be seen in Figure 12-6 in Audacity 2.1.2 for Windows 10.

Using these audio file import settings, and using a copy of the file, instead of the actual file
itself, is called non-destructive audio editing and this is a common practice in the digital
audio editing and special effects industry. The reason for using non-destructive audio editing
practices is because if you mess up in your audio sweetening and special effects application
and damage the audio data, you can always go back to square one by going back to loading
the original audio data.

Figure 12-6. Use the Project Rate (Hz) drop-down selector to set your down-sample from 44100 Hz to 22050 Hz

357CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Once the Galloping-Horse.wav sample data is loaded into Audacity, you’ll see a screen with
an audio transport control, including pause, play, stop, back, forward, and record, as well
as editing tools and level meters that show green, yellow, and red signal peak indicators,
showing when the audio is playing. There are microphone and speaker selector drop-downs,
where you can set which hardware you wish to utilize with Audacity as well.

In the Project Rate (Hz) drop-down selector at the lower-left corner of Audacity, select a
22,050 Hz sample rate, as this is a 100% reduction in data used, and a 2X down-sampling
of data, which will provide the best results, just like the concept we use for digital imagery
and digital video scaling. As I mentioned, many of the concepts apply equally well to digital
audio, digital imaging, and digital video. A 4X down-sample, to 11,025 Hz, would also be an
optimal down-sample to make, but might remove too much audio quality (clarity). Try it and
see, to get a feel for the Audacity software. The 22,050 Hz setting is shown highlighted in
Figure 12-6 on the lower left.

Use the File ➤ Export Audio menu sequence, and access the Export Audio dialog, as
shown in Figure 12-7, and export the file as Galloping-Horse-22050Hz.wav using the WAV
(Microsoft) signed 16-bit PCM option.

As you can see in Figure 12-7 numbered 1 and 2, the data footprint has decreased 100%
from 575KB to 288KB, and you heard using the green Play icon in the transport. For both
44,100 Hz and 22,050 Hz settings, the result is virtually identical in sound fidelity. A bit later,
we will reduce this data another 100% (or 4X total reduction) by making the Stereo sample
into a Mono sample, which is fine for animal noises for a game or child’s application.

This 288KB Stereo sample represents how much system memory will be needed to hold
a Stereo Horse sample. Let’s save the Stereo sample as an MPEG-4 AAC file, to see how
much data the MPEG-4 AAC codec can take out and still give us a high (the 500 setting
shown circled in red at the bottom right of Figure 12-7) quality result so that the APK size is
even smaller. Remember the decompressed Stereo sample will still use 288KB of system
memory, which is why I saved out a 22050Hz Wave file, to get a “baseline” for other codec
compression ratios.

Figure 12-7. Use the Export Audio dialog to export different versions of each audio asset using different codecs

358 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Use the same File ➤ Export Audio menu sequence, and name the file “horse,” using
lowercase letters (required by Android), and select the M4A (AAC) Files (FFmpeg) option
from the Save as type selector, shown in blue in the third panel in Figure 12-7. This will
generate an 84KB horse.m4a file, shown in Figure 12-7 as number 3.

I have just created a Stereo MPEG-4 AAC file for the application that takes only 84KB to
store of the original 44,100 HZ 575KB file (a 685% data footprint reduction) and a 343%
data footprint reduction on the 22,050 Hz PCM file. Next, let’s reduce memory data footprint
another 100% by making the Stereo sample a Mono sample.

To take the uncompressed audio data needed by memory to a mere 144KB for our largest
animal sound sample, we will open the Galloping-Horse-22050Hz.wav file and use the
Audacity Tracks ➤ Stereo Track to Mono (track) menu sequence, which is shown selected
in light blue at the top left in Figure 12-8.

What this does is to invoke an algorithm in Audacity, which merges the stereo channel data
formerly held in two tracks into one track, which reduces the amount of data going into the
codec (or PCM encoder) by 100% (half).

This should give us another reduction in data footprint, this time from 288KB to 144KB,
which is a 432KB data reduction from the 575KB original sample, which represents a more
than 75% reduction in system memory use, which means we should be able to get these
2MB of animal sound samples into less than half a megabyte of Android system memory
overhead. This is exactly what we will need to do to get the SoundPool engine (class) to
perform as expected. Next, let’s use the open source OGG Vorbis codec to compress this
new mono sample.

As you can see on the left in Figure 12-9, I saved out another PCM sample for this Mono
track I just created, as Galloping-Horse-22050Hz-mono.wav to see if it was 144KB, which
it was. I then used File ➤ Export Audio and saved out a horsemono.ogg asset, this time,
using another high-quality audio codec supported by Android, OGG Vorbis. This impressive
codec is supported in Android, JavaFX, and HTML5, and is 100% open source, whereas the
MPEG-4 patents do not completely expire until 2027. It gives us a 43KB data footprint in
the .APK file with a full quality-level setting of 10 (100%), which is a 335% reduction in data
footprint (that is, 144KB / 43KB).

Figure 12-8. Open the 22050Hz version of each sample, and use the Tracks ➤ Stereo Track to Mono algorithm

359CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

As you can see, the OGG file is about half as big as the M4A file, so their compression is
similar at maximum quality, given that we are compressing a Mono track here (half of stereo
data). We will have a half dozen stereo M4A files, and a half dozen mono OGG files, for use
in our application. If we use stereo files, we will be using 721KB of system memory. If we use
mono files, we will be using 361KB of system memory. The stereo M4A files total 219KB of
APK storage space. The mono OGG files total 116KB of APK storage space, using 100%
quality settings no less. So, as you can see, these two codecs (and Audacity 2) are nothing
short of phenomenal.

Given that the original samples total 1.4MB, this represents a significant data footprint
optimization result, with little to no loss of aural quality, as is seen in Figure 12-10. Even
before compression with the two most popular high-quality codecs (MPEG4 and OGG
Vorbis are still being improved today), we got a 400% memory footprint reduction using a
lower sample rate and a mono track with good-quality animal sound effects. You can see
each sample’s data go down by half along the left side files (PCM Wave), and applying
codecs at full quality takes a data footprint down to 8 to 84K. The stereo M4A files achieve
a 640% compression (1400 / 219), and the mono OGG files achieve a 1200% compression
(1400 / 116), again with no audible decrease in quality.

Figure 12-9. Save out mono Wave file to see the 4X data reduction and then as OGG Vorbis for a 14X reduction

Figure 12-10. Compare data footprint savings for your baseline PCM files with your compressed files in Explorer

360 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Remember, your users cannot hear the before and after sample comparison, only the final
result, so as long as it is effective audio for the application, get the most memory and
storage data footprint optimization that you can!

You may have noticed that in Audacity, once you click on the Export Audio dialog’s Save
button for any codec, an Edit Metadata dialog will appear. This dialog will offer data fields
containing text values for Artist Name, Track Title, Album Title, Track Number, Year, Genre,
and Comments. Since our application doesn’t require any audio metadata, I am leaving
these fields blank for now, so that we can get an accurate read on what the precise file size
is; that is, the size of a file containing only the audio data. If you’re wondering if Android can
read, and therefore support audio metadata, if you do want to put this data into audio files,
the answer is a resounding yes.

Android has a MediaMetadataRetriever class, which developers can utilize for this very
specific purpose. If, for some reason, your audio application needs to leverage audio
media metadata, you can use an Edit Metadata dialog, which will show itself every
single time you save any type of audio file format in Audacity 2, along with the Android
MediaMetadataRetriever class, which you can research and learn about at the following URL:

http://developer.android.com/reference/android/media/MediaMetadataRetriever.html

You should really spend some time with Audacity experimenting with data compression
using some of the other Android 7 supported formats, such as AMR (for voice) and FLAC (for
lossless HD audio). The MP3 codec has been improved upon by the MPEG-4 AAC codec,
so unless you are using audio assets someone else has already compressed, you will want
to use open source OGG or FLAC, or something from the MPEG4 family of codecs. Next
let’s create a ScrollingActivity class for this chapter’s application and then we’ll take a
look at SoundPool.

DigitalAudioSequencer: ScrollingActivity
As you know, I am trying to use all of the primary Android design patterns that Android
Studio will code for you automatically, to show you how these can be used to create
Android applications quickly, and without a ton of experience. We’ve already covered basic,
fullscreen, and navigation drawer Activity subclasses, so now we’re going to explore the
ScrollingActivity subclass of AppCompatActivity, which, as you know, allows the Android
application to work across all versions of Android OS. Pretty powerful development for an
Absolute Beginner!

Use the File ➤ Close Project menu sequence to close the DigitalVideoMedia project, and
select the Create New Project option from the Android Studio primary dialog that appears,
and enter your Create New Project series of dialogs that are shown in Figure 12-11. Name
the application DigitalAudioSequencer and accept the other defaults in the first dialog,
seen on the far left, and also accept the defaults in the Target Android Devices dialog seen
in the middle of Figure 12-11. We will be coding the SoundPool to work across all versions of
Android OS, and setting the API (15) to Android 4 better gives us coverage of close to 98%
of Android hardware devices out there.

http://developer.android.com/reference/android/media/MediaMetadataRetriever.html

361CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Next, select the ScrollingActivity Android design pattern shown selected in blue
in Figure 12-12, and click the Next button, to advance to the Customize Activity
dialog, shown on the far right in Figure 12-11. Change your application Title to
DigitalAudioSequencer and leave the Android Activity, Layout ,and Menu Resource
Naming at their default Android component and resource naming convention settings.

As you’ll see in Figure 12-13, Android Studio will also create a content_scrolling.xml user
interface definition file, which will eventually hold your scrolling content. For this application,
this will be a series of animal image assets, which your target users, in this case, young
children, will be able to tap, or click on, and hear the animal sounds that they make, courtesy
of the Android SoundPool digital audio sequencing engine.

Click on the Finish button, shown on the bottom right in Figure 12-11, and create your
digital audio sequencer project, so that we can take a look at the bootstrap (Android Studio
2.3 generated) code, and see what it does, next.

Figure 12-11. Create your Digital Audio Sequencer project by using the Create New Project series of dialogs

362 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

As you can see in Figure 12-13, your ScrollingActivity subclass of AppCompatActivity
has all of the familiar components, which we have already covered during the book. This will
allow us to focus on some new coding structures during this chapter, including creating your
own custom method; using if-else structures to detect the user’s Android OS version; and
how to instantiate, load, and play back SoundPool engine digital audio samples.

I opened the import statements, so that you can see what Android classes we are starting
out with, including the core Bundle, View, Menu, MenuItem, Toolbar and AppCompatActivity
classes, which are used in most of these pure Android design patterns that you can have
Android Studio code for you.

We will be removing the FloatingActionButton and Snackbar class import statements, as
we will be modifying this ScrollingActivity to provide scrolling animal imagery that users
can use to trigger animal-related audio samples. We will be adding import statements for
the digital audio-related classes we will be learning about during this chapter, including
SoundPool, AudioManager, AudioAttributes, and Build, as well as the ImageView class used
to hold the digital image assets. Build is an object builder class that we will use to build
SoundPool and AudioAttributes objects.

We will remove the FloatingActionButton functionality, and replace the Snackbar
functionality with triggers of SoundPool digital audio samples inside of the View.
OnClickListener() structures. We’ll also create a custom method to instantiate (initialize) the
SoundPool engine, and configure it for use, and load it with audio samples.

Figure 12-12. Select the ScrollingActivity pure Android design pattern and have Android Studio code your project

363CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

The first thing that we are going to modify is in the top-level activity_scrolling.xml user
interface definition file, so right-click on the app/res/layout/activity_scrolling.xml file in
the Android ➤ Project pane, shown on the left side of Figure 12-13, and select the Jump To
Source context menu option. This will open the XML markup in a tab for editing, which can
be seen in Figure 12-14.

Delete the FloatingActionButton child UI element, at the bottom of this top-level UI
definition, underneath the <include> child element that references the content_activity.xml
UI definition that contains the Nested Scroll View. The XML markup to delete is shown at the
bottom of Figure 12-14, highlighted in red.

Now we are ready to add our ImageView content to the content_scrolling.xml file. We
will be replacing the <TextView> child UI element with a <LinearLayout> element full of
<ImageView> child elements. The reason we have to use the LinearLayout is because the
NestedScrollView parent element must have only a single child UI element defined.

The only other thing that we have to do so that the <ImageView> UI elements have something
to reference is to go onto the Internet and get some free online image assets to use inside of
the <ImageView> UI elements. I am obviously going to use animal imagery to go along with
those six animal sounds digital audio samples we found online.

Once we download, optimize, and install these in the app/res/drawable folder, we will be
ready to code!

Figure 12-13. The bootstrap ScrollingActivity class has the basic Android Toolbar, Menu, and Activity features

364 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Next, go to Pexels.com (Figure 12-15) and get animal images (I chose dog, cat, lion, bird,
horse, and monkey) to use in the app.

Figure 12-14. Delete the FloatingActionButton widget so we just have a scrolling container for our animal images

Figure 12-15. Go to pexels.com, and search for “animals” and find dog, cat, lion, bird, horse, and monkey images

365CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

I made all of the images the same iTV HDTV resolution and 16:9 aspect ratio and saved
them in the book repository as JPEG images (50% to 75% quality). I also created MDPI 480
by 720 versions, and saved them as PNG files, as can be seen in Figure 12-16, and copied
these into the /app/res/drawable folder for the project. If you like you can get some practice
with GIMP 2.8.20 and create HDPI versions by down-sampling the HDTV resolution versions
by 100% to 960 by 540. To use all DPI versions, you create an app/res/drawable-hdpi and
/app/res/drawable-xhdpi folder in Android Studio 2.3 (by right-clicking on /app/res and
using New ➤ Android resource folder), and copy the JPEG originals into the XHDPI folder
and the 960 by 540 versions (can be JPEG or PNG) into the HDPI folder. Make sure all of
these files are using only the animal name, in all lowercase letters, as shown in Figure 12-16.

Replace the <TextView> UI element in the content_scrolling.xml tab with the
<LinearLayout> UI layout container, which will contain the six <ImageView> UI elements. Set
the orientation to vertical and the layout parameters to match the dimensions of the parent
NestedScrollView layout container using the match_parent constant. To match the blue color
value in the Toolbar, use the android:background="@color/colorPrimary" attribute, as is
shown in the following XML markup, also seen in its finished state in Figure 12-17:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent" android:background="@color/colorPrimary" >
 <ImageView android:id="@+id/bird" android:src="@drawable/bird"
 android:layout_width="match_parent" android:layout_height="wrap_content" />
</LinearLayout>

For the <ImageView> child tag elements, you can do one as shown above, and then copy
and paste it five more times, then change the animal names so that you have all six
animals with their own ImageView display pane in the scrolling view. Notice that I use the
match_parent constant to span the scrolling view container’s width, but wrap_content in the
height (Y) dimension in order to maintain the 16:9 aspect ratio for the imagery. If you used
match_parent on both layout parameters, your imagery would expand to fill the container
and there would be no blue bars between the images, and the images themselves look
distorted and unnatural (especially the horse). If you like, you can try this and see for yourself
the difference (see Figure 12-19 for the correct image aspect ratio) just to get a feel for what
wrap_content versus match_parent will do, regarding X-axis and Y-axis image scaling.

Figure 12-16. Copy the 480 by 270 PNG24 images into the DigitalAudioSequencer project’s /res/drawable folder

366 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Remove the FloatingActionButton class import statement in the ScrollingActivity.
java tab seen in Figure 12-18, add an import android.widget.ImageView; statement,
and change the FloatingActionButton instantiation to an ImageView instantiation. Call the
.setOnClickListener() off the ImageView object, instead of the fab object.

Figure 12-18. Remove FloatingActionButton import, and change FloatingActionButton instantiation to ImageView

Figure 12-17. Create a <LinearLayout> and child <ImageLayout> elements inside a <NestedScrollView> parent

367CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

This essentially uses the FloatingActionButton instantiation and event handling structure,
and steals it for use with the ImageView, using the following Java 8 code that replaces the
previous FloatingActionButton fab code:

import android.widget.ImageView;
...
ImageView bird = (ImageView) findViewById(R.id.bird);
bird.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 // Event Handling: Currently is Snackbar code. Will Be: SoundPool.
play(sampleIdAnimalName);
 }
});

Later, we will replace the SnackBar code with SoundPool code, and then copy and paste this
structure five more times, to create programming structures for all six ImageViews. Let’s use
the Run ➤ Run ‘app’ menu sequence and make sure that the code replacement works and
that the NestedScrollView now shows six animal images. As you can see in Figure 12-19,
this application is starting to look really great! Scroll through all six to test your app. Now
all we have to do is to create a custom method setting up and configuring your SoundPool
digital audio sequencing engine.

Figure 12-19. The ScrollingActivity is converted to a scrolling image repository, filled with beautiful animal images

368 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Now we are ready to start learning about SoundPool, and Android’s digital audio-related
classes and methods.

Android SoundPool: Digital Audio Engine
The Android SoundPool class is a direct subclass of the java.lang.Object master class. It’s
important to note that SoundPool is not a subclass of the Android MediaPlayer class, as one
might be liable to assume. However, like the MediaPlayer class, it is part of the android.
media package, and thus, the complete path to the class (as used in an import statement)
would be android.media.SoundPool. The Java class hierarchy looks like the following:

java.lang.Object
 > android.media.SoundPool

Since SoundPool is a direct subclass of java.lang.Object, we can infer that it is its own,
“scratch-coded” digital audio sequencing engine creation. It is also important to note that
you can use a SoundPool object and MediaPlayer objects at the same time, if you need to. In
fact, there are distinct applications for both of these audio playback classes. You should use
MediaPlayer for “long-format” audio (and video) data, such as albums, songs, audio books,
TV shows, or movies. SoundPool is best used for “short-form” audio snippets, especially
when they need to be played in rapid succession and (or) combined together, such as in a
2D or 3D game, e-book, iTV show, Android Wear Watch Faces, Android Auto application,
or any gamified application.

You can load your SoundPool collection of samples into system memory from one of two
places. The first, and most common, would be from inside of the APK file, which I call
captive new media assets, in which case, they would live in the app/res/raw project folder,
as they did for your DigitalVideoMedia application in Chapter 11. The second place you can
load samples from is an SD Card or similar storage location. This is what one would term the
Android 7.1.1 OS file system.

The SoundPool uses the Android MediaPlayer Service to decode an audio asset into memory.
We’ll be covering Android Service classes in the next chapter in this book (are you starting
to see the logical progression here?). It does this using uncompressed 16-bit PCM mono
or stereo audio. This is the main reason that I’ve been teaching you the work process that
optimizes digital audio using a 16-bit sampling resolution, because if you use 8-bit audio,
Android up-samples it to 16-bit, and you end up with wasted data, which could have been
spent on better quality.

This means that you should optimize your sample frequency, but not your sample resolution
(use 16-bit). Don’t use stereo audio unless you absolutely need to. It is very important to
conform your optimization work process to how SoundPool works to get optimal results
across the largest number of consumer electronics devices. The 48 kHz is the best sample
frequency to use if you can, with the 44.1 kHz coming in second, and 32 kHz coming in
third. To optimize, keep a sample short and mono, and use a modern codec, such as
MPEG4 AAC, OGG, or FLAC, to retain the most quality, and still get a reasonable amount
of data compression for your APK file. You can calculate system memory requirements
by using the original PCM uncompressed digital audio file size as your baseline.

http://dx.doi.org/10.1007/978-1-4842-2268-3_11

369CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

When the SoundPool object is constructed in Java 8, as you will be doing later on during this
chapter, a developer will set a maxStreams parameter using an integer value. This parameter
will predetermine how many audio streams you can composite, or render, at the same
time. This parameter sets aside system memory that can be used for digital audio. In our
application, we’ll set this to six, but you could use less, as a user will play only one sample at
a time for this particular application.

Setting the maximum number of streams parameter to as small a number as possible is a
good standard practice. This is because doing so will help to minimize CPU cycles used for
processing audio samples, and will reduce any likelihood that the SoundPool audio mixing
will impact other areas of your application performance. Thus, you could use maxStreams
as low as 1 or 2 for the application we are coding as there are only one or two image
occurrences per screen, as you can see in Figure 12-19.

The SoundPool engine will track the number of active (playing) audio streams (samples), to
make sure that it does not exceed the maxStreams setting. If a maximum number of audio
streams is ever exceeded, SoundPool will abort a previously playing stream. It will do this
based on a sample priority value that you can specify. I simply specified 1 through 6, as it
is unlikely that the user will scroll and click that rapidly for this application. If SoundPool finds
two or more audio samples playing that have an equal sample priority value, it will make the
decision regarding which sample to stop playing based upon sample age, which means the
sample that has been playing the longest is the one that’s terminated (playback stopped). I
like to call this the Logan's Run principle!

Priority level values are evaluated from low to high numeric values. This means that higher
(large) numbers will represent the higher priority levels. Priority is evaluated when a call
to the SoundPool .play() method causes the number of active streams to exceed the
maxStreams value, which is set when a SoundPool object is instantiated. In the case where
the sample priority for the new stream is lower than all the active streams, the new sound
will not play, and the .play() function will return a streamID of zero (nothing played). For this
reason, be sure your application’s Java 8 code keeps track of exactly what is going on with
your audio sample priority-level settings, if you’re doing something like a game that needs
dynamic, real-time audio sample playback decisions to be made.

Samples are looped in SoundPool by setting any non-zero looping value. The exception to
this is that a value of -1 will cause samples to loop forever, and under this circumstance,
the application code must make a call to the SoundPool .stop() method to stop the looping
sample. So a non-zero integer value will cause a sample to repeat itself that specified
number of times; thus, a value of 7 will cause your sample to play back a total of 8 times,
as computers start counting using the number 0 instead of 1. For instance with the horse
sample, you could remove some of the “dead space” (silence) before and after the hoof
beats so that you could extend this sound effect by using a numeric value greater than 1,
which would cause a longer hoof beats playback. The reason I did not do this is because
the public domain sample applied the Doppler Effect to the sample, causing the hoof beats
to fade into the distance. Get some practice with SoundPool, and try this for yourself, as a
variation on what we are doing here.

370 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

You can change each sample playback rate using SoundPool, which as mentioned makes
this class into an audio synthesis tool. A sample playback rate equal to 1.0 will cause your
sample to play back at its original frequency. A sample playback rate of 2.0 will cause the
sample to be played at twice its original frequency, which will shift it up a full octave higher,
if it is a musical instrument note. Similarly, a sample playback rate set to 0.5 will cause
SoundPool to play the sample at half of its original frequency. This will sound like it is playing
an octave lower. The sample playback rate range of SoundPool is currently limited to 0.5 to
2.0; however, this could be upgraded in a future API revision to, say, 0.25 to 4, which would
give us developers a five-octave sample playback range.

Now it is time to learn how to implement a SoundPool object, and learn about a couple of
other Android digital audio utility classes that are used in conjunction with SoundPool. As you
can see, I’m trying to cover as many powerful Android classes in this book as is humanly
possible, especially those new media classes that allow you to set your applications apart
from the rest of the applications in the Google Play application marketplace.

Add SoundPool Engine to DigitalAudioSequencer
Now it’s time to get into Java programming in the ScrollingActivity.java
AppCompatActivity class, and add the SoundPool engine so that you can add different
animal sounds to match your six ImageView UI elements. Open Android Studio and open
ScrollingActivity.java in an editing tab, and declare a SoundPool object at the top of your
class. Name it animalSamples using the following object declaration statement, seen at the
top of Figure 12-20:

SoundPool animalSamples;

Once you type in SoundPool if you double-click on the SoundPool (android.media.
SoundPool) pop-up Android Studio will also write the import statement for SoundPool for you.

Add a space after the onCreate() by using the newline character (the return key on the
keyboard) and type in void, and then select the public void setAnimalSamples option,
to have Android Studio create a new method infrastructure for you as seen at the bottom
of Figure 12-20. Note that because you added an animalSamples SoundPool object, that
Android Studio 2.3 suggests a method that will allow you to set up (configure) this SoundPool
object.

371CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Edit the setAnimalSamples() method name that Android Studio 2.3 created for you to
instead be setupAnimalSamples() as that more accurately represents what the method is
going to be doing. Inside of the method body, create an if-else conditional logic construct
that will use SoundPool.Builder() if Android OS is at version 5 or later. As you create
this code, be sure to use Alt+Enter to have Android Studio 2.3 add an import os.Build;
statement for you.

This will be accomplished using the following top-level pseudo-code (with some real code)
programming structure:

public void setupAnimalSamples() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP){ SoundPool.Builder()

method call }
 else { SoundPool() constructor method }

Inside the if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP){...} part of
the conditional logic construct, instantiate your animalSamples SoundPool object, using the
SoundPool.Builder() approach, as is shown in Figure 12-21, and chain a .setMaxStreams()
method call and finally a .build() method call, like this:

public void setupAnimalSamples() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 animalSamples = new SoundPool.Builder().setMaxStreams(6).build(); }

Figure 12-20. Add a SoundPool object named animalSamples and then a method named setupAnimalSamples()

372 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

In the else {...} section, use the deprecated SoundPool constructor method, seen in
Figure 12-22, to instantiate the animalSamples SoundPool object using the deprecated
constructor.

Figure 12-21. Type animalSamples = new SoundPool, and select the Builder class to import and insert into code

Figure 12-22. Instantiate animalSamples in the else section using a new SoundPool() deprecated constructor call

373CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

As you can see highlighted in Figure 12-22, this constructor method call is deprecated and
therefore is lined-out in Android Studio, which I find unnerving, as it’s like Android Studio is
saying “you can’t use this” when in fact you can use it, especially if you are developing for
32-bit (Pre Android 5) Android devices. When you write this code, be sure to have Android
Studio code the import android.media.AudioManager statement for you.

animalSamples = new SoundPool(this, AudioManager.STREAM_MUSIC, 0);

The parameters include the Java this keyword, an AudioManager stream type, and the
sample rate conversion quality level (zero being 100%, this is currently unimplemented but
portends more SoundPool development as a synthesizer, which is great for developers). If
you type in the AudioManager class and a period, a pop-up dialog in Android Studio 2.3 will
list all of the constants currently available to you using this class.

The AudioManager class provides access to audio volume and phone ringer mode controls
(as constants) for the Android 7.1.1 OS. Take some time and go over these constants, and
see what types of digital audio attributes for the Android OS that you as a developer are
allowed to control. The 90 constants are located at the following URL:

https://developer.android.com/reference/android/media/AudioManager.html

The AudioManager constant we’ll be using is the STREAM_MUSIC constant, used for music
or sound effects in Android applications using the MediaPlayer audio (and video) playback
engine, which is why the constant is using the word “stream” as many developers choose
to stream their audio and video content from an external data server. I prefer to optimize the
content and have it in an APK file, so that I do not require an external server or that the end-
user must be on-line in order to use the app.

The setupAnimalSamples() method, and its core if-else structure, which is used to decide
if the deprecated constructor method (used prior to API 21 Lollipop), or the new SoundPool.
Builder() class, is now error-free, and performs the SoundPool engine initialization function
that will be used to create the SoundPool object. The Java 8 code that creates this initial
method structure should at this point look like the following Java statements, which can be
seen error free and highlighted in Figure 12-23:

public void setupAnimalSamples() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 animalSamples = new SoundPool.Builder().setMaxStreams(6).build();
 } else {
 animalSamples = new SoundPool(6, AudioManager.STREAM_MUSIC, 0);
 }
 // Sample loading statements will be added here using animalSamples.load() method calls
}

We will be adding some initialization (sample loading) Java statements after this if-else
construct a bit later on, after we learn about the new AudioAttributes, but at this point, the
method is now usable for instantiation of the SoundPool object, so we can now add it to our
onCreate() method without generating any red error highlighting.

https://developer.android.com/reference/android/media/AudioManager.html

374 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

To make this setupAnimalSamples() method active in the ScrollingActivity class, we will
need to add a method call invoking it inside of the onCreate() method, after the super.
onCreate() and setContentView() method calls. This is the “organizational equivalent”
of putting the code in setupAnimalSamples() directly inside onCreate(). Add in this
setupAnimalSamples(); method call, inside of your onCreate() method after the super.
onCreate() and after the setContentView() method calls, by using the following Java
statement, as shown highlighted in red in the middle of Figure 12-23:

setupAnimalSamples();

Let’s take a break from coding, and learn about AudioAttributes so that we can configure
the SoundPool object.

Android AudioAttributes: Configuring SoundPool
The Android public final class AudioAttributes extends the Java Object class and also
implements the Parcelable interface. The AudioAttributes Java class hierarchy therefore
would look like the following:

java.lang.Object
 > android.media.AudioAttributes

Figure 12-23. Call setupAnimalSamples() in onCreate() to implement the basic SoundPool object instantiations

375CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

This AudioAttributes class was added in Android OS API 21 (Lollipop) to encapsulate a
collection of attributes that describe information about the audio stream, for use with the
new SoundPool.Builder() object instantiation approach. This AudioAttributes object
replaces the AudioManager class stream type constants (for instance, the STREAM_MUSIC or
STREAM_ALARM constants) previously used for defining behavior for audio playback.

Attributes will allow the developer to specify more information than is conveyed in the
stream type by allowing the application to define how it is using digital audio, that is, why
you’re playing that sound, and what purposes that sound is being used for. This is achieved
using audio “usage” and “content type” information attributes.

Examples of audio usage constants include USAGE_MEDIA, which we will be using,
and USAGE_ALARM. These two constants are the closest thing AudioAttributes has to
AudioManager stream type constants. Usage information is more detailed than stream type
information, allowing certain platforms or routing policies to use the information for refining
hardware volume and routing decisions. Usage is important information to supply in your
AudioAttributes object, and it is strongly recommended by Google to build any object
instance with this information supplied, as we will be doing in the next section of the chapter.

The content type attribute, on the other hand, involves what type of audio content you are
going to be playing. The content type attribute expresses the general category for your
digital audio content. This audio information is optional, but I’m going to use it, so I can
show you how to be thorough in your digital audio implementation.

There are five primary content types, as you will see in Figure 12-26, for instance, CONTENT_
TYPE_MOVIE would be specified for a movie streaming service, CONTENT_TYPE_MUSIC for music
playback applications, CONTENT_TYPE_SONIFICATION for sounds used to accompany UI
design elements or app content (this is what we’re going to be using for animal sounds that
accompany animal imagery), CONTENT_TYPE_SPEECH should be specified for vocal tracks, and
CONTENT_TYPE_UNKNOWN for anything else. This digital audio information can be used by an
audio framework to selectively configure audio post-processing code structures.

AudioAttributes can be used with Android audio classes other than SoundPool as well.
For example, one of the AudioTrack class constructors, AudioTrack(AudioAttributes,
AudioFormat, int, int, int) will allow you to configure your MediaPlayer using the .setA
udioAttributes(AudioAttributes) method call, or to configure a Notification with audio.
An AudioAttributes instance is built using a AudioAttributes.Builder() builder class,
which we will be using in the next section of this chapter. In fact, let’s dive in and get our
hands dirty now, configuring our SoundPool engine object by using AudioAttributes and
AudioAttributes.Builder().

376 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Configuring a SoundPool Using AudioAttributes
At the top of your ScrollingActivity.java class, add in the AudioAttributes object
declaration, underneath your animalSamples SoundPool object declaration. If you type in
the AudioAttributes and then double-click on the pop-up helper that shows the class and
package information, Android Studio will code the import statement for you, as is shown in
Figure 12-24. The Java object declaration statement should look like the following code:

AudioAttributes sampleAttributes;

Next, we have to instantiate the sampleAttributes AudioAttributes object inside of the if
statement which is in the setupAnimalSamples() method. Since this class was introduced in
API 21 it uses the Builder nested class, just like the new SoundPool class Builder also used
in API 21 and later, we will put this instantiation in the if portion of the conditional statement,
as is shown in Figure 12-24. Your new Java code should look like this:

public void setupAnimalSamples() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 sampleAttributes = new AudioAttributes.Builder().build();
 animalSamples = new SoundPool.Builder().setMaxStreams(6).build();
 } else { ... }

Figure 12-24. Add AudioAttributes object named sampleAttributes and instantiate it with AudioAttributes.Builder()

377CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

This code will build an empty AudioAttributes object named sampleAttributes that will
eventually be wired into the SoundPool object using, you guessed it, the .setAudioAttribu
tes(sampleAttributes) method call off of the SoundPool.Builder object instantiation chain
(this is in Figure 12-27, if you wanted to look ahead).

To add configuration parameters (AudioAttributes class constants) for the USAGE and
CONTENT_TYPE attributes we discussed in the previous section, you will insert the .setUsage()
and .setContentType() method calls in the method call chain prior to the final .build()
method call.

Let’s configure the AudioAttributes USAGE attribute (or characteristic, or parameter, or
setting if you prefer) first, since that is more important to set, according to the Android
developer website documentation. This would be done using the following AudioAttributes.
Builder() Java statement, as shown highlighted in Figure 12-25:

public void setupAnimalSamples() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 sampleAttributes = new AudioAttributes.Builder().setUsage(AudioAttributes.USAGE_GAME).

build();
 animalSamples = new SoundPool.Builder().setMaxStreams(6).build();
 } else { ... }

Notice in Figure 12-25 that you can have Android Studio provide you pop-up selectors with
Android classes, in this case, AudioAttributes, and constants, in this case, you would use
USAGE_GAME (faster response), or even USAGE_MEDIA if you prefer, or even USAGE_UNKNOWN. If
you were coding an animal sounds alarm app, you could select USAGE_ALARM. All of these
usage constants are shown in a light blue drop-down selector, in Figure 12-25.

Figure 12-25. Add the .setUsage() method in the .Builder() method chain, and specify a USAGE_GAME constant

378 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Next, let’s add another method call to .setContentType(CONTENT_TYPE) into the builder
method chain, which specifies CONTENT_TYPE_SONIFICATION. Sonification is exactly
what it sounds like it is: it is adding samples or sound effects to visual things, such as user
interface elements (Button, ImageButton, or ImageView) to sonify them. Since this is precisely
what we are doing in this application, this is the content type constant that we’ll utilize.

The Java programming constructs for adding yet another method call to this growing
method chain necessitates that we use a different code indentation (formatting) approach.
The code, shown in Figure 12-26, looks like this:

public void setupAnimalSamples() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 sampleAttributes =
 new AudioAttributes.Builder()
 .setUsage(AudioAttributes.USAGE_GAME)
 .setContentType(AudioAttributes.CONTENT_TYPE_SONIFICATION)
 .build();
 animalSamples = new SoundPool.Builder().setMaxStreams(6).build();
 } else { ... }

Figure 12-26. Add .setContentType() method into method chain, and specify CONTENT_TYPE_SONIFICATION

379CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

To wire the AudioAttributes object into the SoundPool object, you use the
.setAudioAttributes() method from the SoundPool class and pass over the
AudioAttributes object as its sole parameter. This would be done using the following line of
Java 8 code, as is shown highlighted in pale yellow in Figure 12-27:

animalSamples=new SoundPool.Builder().setMaxStreams(6).setAudioAttributes(sampleAt
tributes).build();

Make sure that this method call is inserted in your SoundPool.Builder chain either before
or after your .setMaxStreams() method call, and before the final .build() method call that
actually builds a SoundPool object.

Now that you have declared, instantiated, and wired together your SoundPool and
AudioAttributes objects in setupAnimalSamples() you can initialize the SoundPool object,
by using the .load() method to load your six animal sound samples, and assigning them
into their own sample identification numbers (integers). Before you write this code be sure
that you have copied the six animal sample assets you optimized earlier into the /res/raw/
folder, as you learned how to do (and create), in the previous chapter on digital video.

Declare six integer sId (sample identification) variables, named for each animal, using the
following compound Java code statement, which can be seen at the top of Figure 12-27,
located under the two object declarations:

int sIdCat, sIdDog, sIdBird, sIdLion, sIdHorse, sIdMonkey;

Figure 12-27. Wire AudioAttributes object to SoundPool object with .setAudioAttributes and add soundId integers

380 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

After the conditional if-else statement in the first part of the setupAnimalSamples() method
that instantiates and configures your SoundPool digital audio engine based on Android
version 7.1.1 (Nougat), you will add six Java statements that use the SoundPool .load()
method to load the digital audio asset data from the /app/res/raw folder into the SoundPool,
assigning a priority and passing the application Context object by using the Java this
keyword. The result of this operation is assigned to a sample ID integer value, which you
will later use with the SoundPool .play() method call, inside of the onClick() event handler
constructs, which used to contain SnackBar calls to display messages at the bottom of the
device screen. The completed setupAnimalSamples() method can be seen below, and is also
shown in Figure 12-27:

public void setupAnimalSamples() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 sampleAttributes =
 new AudioAttributes.Builder()
 .setUsage(AudioAttributes.USAGE_GAME)
 .setContentType(AudioAttributes.CONTENT_TYPE_SONIFICATION)
 .build();
 animalSamples =
 new SoundPool.Builder()
 .setMaxStreams(6)
 .setAudioAttributes(sampleAttributes)
 .build();
 } else {
 animalSamples = new SoundPool(6, AudioManager.STREAM_MUSIC, 0);
 }
 sIdCat = animalSamples.load(this, R.raw.cat, 1);
 sIdDog = animalSamples.load(this, R.raw.dog, 2);
 sIdBird = animalSamples.load(this, R.raw.bird, 3);
 sIdLion = animalSamples.load(this, R.raw.lion, 4);
 sIdHorse = animalSamples.load(this, R.raw.horse, 5);
 sIdMonkey = animalSamples.load(this, R.raw.monkey, 6);
}

We are now ready to replace the Snackbar code in the onClick() event handler, which we
morphed earlier in the chapter into an ImageView named bird, with .play() method calls
off of an animalSamples SoundPool object, as you can see being created in Android Studio
in Figure 12-28. Inside of the bird.setOnClickListener() event listening construct, type
the object name animalSamples, hit a period key, and select the play(int soundId, float
leftVolume, float rightVolume, int priority, int loop, float rate) pop-up menu
option.

381CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

After you type the period and double-click on the play() SoundPool method call option,
Android Studio will add it for you, which is shown on the left half of Figure 12-29. Type an
“s” inside the parameter area and select your sIdBird integer sample ID for the play action
for the bird ImageView onClick() event handler. Type a comma, a space, and then Android
Studio will pop up a parameter list balloon helper, which is shown on the right half of
Figure 12-29. I used 100% (1.0f, or float) for leftVolume and rightVolume, 1 (integer) for
priority, 0 (integer) for loop and no change (1.0f, or float) for the sample rate pitch-shifter,
which implements audio wave synthesis.

Figure 12-28. Inside the onClick() event handler type the animalSamples object and select the .play() method call

Figure 12-29. Use Android Studio to guide you through all the configuration parameters of the .play() method call

382 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Make sure you use the f (float) after decimal numbers like 1.0, otherwise Android Studio will
give you an error, thinking that you are using the Java double variable data value. Also make
sure integers do not use any decimal, and use correct float data value as the SoundPool
engine seems to have problems “casting” number types (from integer 1 to float 1.0, for
instance). I was getting runtime errors, using .play(sIdBird, 1, 1, 1, 0, 1), and when
I then implemented the more precise float number format specifications, the application
worked perfectly.

Now we are ready to copy and paste the ImageView related Java constructs for the bird,
which we created using the SnackBar construct that Android Studio originally created for
us. First make sure to run the application and click on the bird and make sure it chirps, as
a great work process for an Absolute Beginner is to make sure that the app works after any
material change or addition of new Java 8 programming logic, classes, methods, interfaces,
constants, asset references, or variables. The same goes for new XML markup as well.

Now select the four lines of code starting with ImageView bird, right-click on the selection and
click copy, and add a line of code under the construct and right-click in it and select paste.
You can also use CTRL-C (Copy) and then CTRL-V (Paste) twice. The first CTRL-V replaces
the selection, and the second CTRL-V adds the second (copied) construct, which you will
then replace the word bird (or Bird) with horse (or Horse), as is shown in Figure 12-30. On
the next iteration of copy, paste, and replace, you can copy both constructs and paste both
constructs (twice, which is thrice if you are using the CRTL-V method) and easily create all six
event listening (outer) plus event handling (inner) structures.

Figure 12-30. Copy and paste ImageView bird statement and event listener structure to create ImageView horse

383CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

Make sure that all of your ImageView names, digital image asset reference names,
.setOnClickListener() calls off the ImageView object name, and sample ID integer data
value names are all the same for each of the six Java constructs that you are duplicating.
This is shown in the Java 8 code below using bold text. This code is also shown along with
all of the other Java statements that are in the onCreate() method in Figure 12-31.

ImageView bird = (ImageView) findViewById(R.id.bird);
bird.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 animalSamples.play(sIdBird, 1.0f, 1.0f, 1, 0, 1.0f);
 }
});
ImageView horse = (ImageView) findViewById(R.id.horse);
horse.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 animalSamples.play(sIdHorse, 1.0f, 1.0f, 1, 0, 1.0f);
 }
});
ImageView monkey = (ImageView) findViewById(R.id.monkey);
monkey.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 animalSamples.play(sIdMonkey, 1.0f, 1.0f, 1, 0, 1.0f);
 }
});
ImageView lion = (ImageView) findViewById(R.id.lion);
lion.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 animalSamples.play(sIdLion, 1.0f, 1.0f, 1, 0, 1.0f);
 }
});
ImageView dog = (ImageView) findViewById(R.id.dog);
dog.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 animalSamples.play(sIdDog, 1.0f, 1.0f, 1, 0, 1.0f);
 }
});
ImageView cat = (ImageView) findViewById(R.id.cat);
cat.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 animalSamples.play(sIdCat, 1.0f, 1.0f, 1, 0, 1.0f);
 }
});

384 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

A completed onCreate() method is seen in Figure 12-31, and implements the creation of the
application’s functionality using less than three dozen lines of code, including declarations at the
top of your class. The method that you wrote was around a dozen lines of code, and including
imports, you have added (or modified), nearly 50 lines of code (not including XML UI), allowing
you to create a learning app for children using Android Studio’s scrolling design pattern.

Notice that Android Studio automatically implements the Java lambda expression format
for the event listener constructs, shown in Figure 12-31, in the first three of your animal
audio processing constructs. This is a coding shortcut that removes the (new View.
OnClickListener) and replaces this part of the structure with the view object and an arrow
and then replaces the { @Override public void onClick(View view) } inner structure with
your (inner) event handling structure’s programming logic, which greatly simplifies the event
listening and event handling structure. In this case, this is animalSamples.play(sIdAnimal,
1.0f, 1.0f, 1, 0, 1.0f).

As you can see, implementing SoundPool is not so complex that an Absolute Beginner cannot
understand it and harness its power, but it does require a decent understanding of digital audio
concepts, optimization techniques, and the SoundPool class (engine), which is much more
complex than what I have exposed you to here. I wanted to show you how to get it working
and that it can indeed work in many applications even at a rudimentary level. If digital audio
interests you there is a Digital Audio Editing Fundamentals (2015) title available from Apress.

Figure 12-31. Copy and paste all six animal ImageView instantiation and event listening and handling constructs

385CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

There is a ton of fundamental digital audio effects (panning) and synthesis (pitch-shifting)
that you can tap into using the left and right audio level (leftVolume, rightVolume) and
sample rate settings. You can also loop audio (loop = -1 for infinite looping), or prioritize
memory holding audio effects for your custom game engine design. Just remember, the less
memory your samples use (the better optimized they are), the better SoundPool works.

This class also has some code optimization of its own to implement still, and probably a few
bugs left to fix, so you may get some Gradle runtime warnings regarding audio playback
speed, AudioAttributes, AudioManager (constants) used, and the like. If you get these, simply
Google the error message and SoundPool and Android, in the same keyword string, and go
to StackOverFlow, and see how other developers are solving the same problem. For instance
I got an AUDIO_OUTPUT_FLAG_FAST denied by client, possibly because I set USAGE_GAME. The
audio still worked perfectly, at least in an AVD emulator (which is the client in this case).

If you are going to use the more powerful multimedia engines in Android OS 7.1.1 and
JavaFX8, such as SoundPool, MediaPlayer, PorterDuff, SVGPath, Vulkan, OpenGL ES, and
i3D rendering, and the SQLite databases, some complexity and ongoing development
bugs are to be expected as these advanced features are still being added, debugged, and
hopefully, perfected.

Summary
In this chapter, you learned all about analog and digital audio concepts and techniques
that will allow you to create digital audio applications for the Android 7.x OS, Android Wear,
Android TV, and Android Auto platforms. I covered analog and digital audio concepts such
as MIDI, waves, sample rate, frequency, PCM, codecs, and how to use PCM format as a
baseline, and how to optimize it using sample frequency and stereo versus mono tracks,
and how codecs can further reduce your APK file size with little audible loss of perceptible
quality to end users.

You learned about how to use Audacity 2.1.2 to optimize digital audio samples that you
found on the free audio sample website on the Internet. You learned how to create yet
another of Android Studio’s pure android design pattern templates, ScrollingActivity, and
how to customize it for use as a children’s animal learning application. You went onto the
Internet and found free-for-commercial-use PCM audio samples at CD quality as well as
matching images in HD quality to use in creating a young (age 2–6) children’s educational
application.

You learned about the Android SoundPool digital audio sequencing engine class, and how it
allows you to add multiple audio samples to your Android application, so that you can add
digital audio sequencing capabilities to your application. You learned about the various ins
and outs of the SoundPool digital audio sequencing and synthesis engine, as well as about
all of its caveats and considerations regarding how it works. You also learned about the
related AudioManager and AudioAttributes classes, which contain constants that are used
to configure the audio-related capabilities of your Android OS, Android TV, Wear, and Auto
applications.

386 CHAPTER 12: Digital Audio: Sequencing Audio Using SoundPool

You added ImageView tags in your content_scrolling.xml user interface definition and
declared and instantiated them in the ScrollingActivity.java code using existing code
that Android Studio created for you and added event listening and handling for SoundPool.
play(), replacing SnackBar. You created a setupAnimalSamples() method and added digital
audio sound effects to each of the ImageView UI elements to teach kids sounds animals
make.

Next, in Chapter 13, you’ll learn all about Service classes in Android, which you actually
got some exposure to in this chapter when you implemented the AudioManager object.
An instance of this AudioManager object can be obtained using a call to Context.
getSystemService(Context.AUDIO_SERVICE) (an Android Service). The next chapter is thus
a logical extension to what you learned in this chapter, as well as previous chapters where
a Service was used. As you can see, I’m trying to cover things in the most logical, optimal
fashion.

http://dx.doi.org/10.1007/978-1-4842-2268-3_13

387© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_13

Chapter 13
Android Services and
Threads: Background
Processing
In Chapter 12 on digital audio, you utilized the Android AudioManager class, which is a
subclass of the Android Service class. In Chapter 11, you also learned about the Android
FullscreenActivity, which has both threads (runnable) and Service features, which we
will cover during this chapter. Also in this chapter, we will take a good look at the Android
Service classes and related processing concepts, such as processes and threads.

Developers use the Android Service class and subclasses to perform background
asynchronous operations. “Asynchronous” means that these operations, or more
accurately, your Java code structures that utilize Service and thread classes, can “go off
on their own” and process data streams or perform complex computation, 100% in the
background, undetected by your application’s user. Background Service asynchronous
operations can do this without having to synchronize with an application user interface
design, which is probably busy controlling how your application’s content (its subject matter
and objective) is being presented to your application’s users.

Examples of using Android Service subclasses include the playback of long-form digital
video and audio, using the MediaPlayer class, while your user is using other areas of
the application, talking to servers, or databases, in the background, downloading data,
managing file input-output streams, streaming new media content (digital video streams
or digital audio streams), handling networking (SMTP and HTTP) protocol transactions,
handling payment gateway transactions, real-time processing of GPS data, and similarly
complex computational or data-processing tasks. The user would also be doing other
things using their devices, such as answering phone calls. This chapter looks at the Android

http://dx.doi.org/10.1007/978-1-4842-2268-3_12
http://dx.doi.org/10.1007/978-1-4842-2268-3_11

388 CHAPTER 13: Android Services and Threads: Background Processing

Service class and all of the various characteristics of Android Service classes. We’ll look at
how their features, functions, settings, constants, and characteristics are declared in your
Android application. Declaring a Service for usage is done in your AndroidManifest.xml file,
by using the <service> tag.

This is one of the most complex topics in Android OS, and is not generally touched upon by
Absolute Beginners; however, to cover Android development thoroughly, I had to include it,
thus, these last two chapters will be somewhat advanced. This is because this topic involves
advanced concepts like binding, synchronization, processes, processor cycles, threads,
access control, permissions, and similarly advanced OS layer (under the hood at a core
OS kernel level) topics, as these are all accomplished using the Linux Kernel (the lowest
operating system layer) for the Android 7.1.1 OS. We looked at these different levels of the
Android OS back in Chapter 3, so you can refer to Figure 3-1 if you need another “refresher”
view of this Android OS and application hierarchy.

Tasks that are delegated to an Android Service also tend to be very processor intensive, so
keep your end user’s battery life in mind if you are going to develop processing-intensive
applications. As you might guess, your two primary power drains on the Android battery
are prolonged CPU processing and display screen backlight usage for long periods of time.
Services are generally utilized when you need to handle things that need to be running in the
background of an app, in parallel with Android user’s real-time usage of your application,
but not directly synchronized with (connected with) your end user’s real-time usage of your
application’s user interface design.

Tasks that are delegated to Android’s Service class are not typically tied to user interface
and user experience tasks. This is because forcing concurrent (synchronized) processing
might cause that user interface task, which is ultimately a user experience task, to become
stilted or jerky. Overloading a processor ultimately will cause stilted playback, and will not
portray a smooth user interface response, and will therefore not result in a positive user
experience.

Android’s Service Class: Characteristics
In Android, a Service can be defined as an application component that can perform CPU
processor-intensive functions in the background. The Service is provided without the
need for any user interface design, or any Activity display screen front end. A Service does
not require any user interaction in order to accomplish its processing tasks. As you might
imagine, like anything else, an Android Service object is created using the class in Android
named, you guessed it, Service, in the Android app package (so, you import android.app.
Service).

The Android application starts a Service object by using an Intent object, and the Service
object will continue to process in the background, even if the Android device owner switches
over to a different Android application to do something else, for instance, answering phone
calls, replying to incoming email, or accepting social media connection requests. Any
Android application component can bind to a started Service object and then later interact
with it. Components can also perform interprocess communication, which you may have
heard referred to as simply IPC. We will be taking a closer look at processes and threads in
the next section of the chapter, after the overview of the Android Service class and primary
Service object attributes.

http://dx.doi.org/10.1007/978-1-4842-2268-3_3
http://dx.doi.org/10.1007/978-1-4842-2268-3_3Fig1

389CHAPTER 13: Android Services and Threads: Background Processing

Binding is an advanced programming concept, that involves establishing a real-time
connection between two separate application component processes. Once bound, the
processes will alert each other whenever something has changed in the other one. An
alerted process can then check, and see if an update needs to be made based on that
change. If you are a game programmer, you will commonly define a bind between the
scoreboard UI design and your game scoring logic engine, for instance, so your scoreboard
numeric read-out will change in real time, as the game is being played. You’ll bind a Service
so that your application can follow progress regarding tasks.

An Android Service usually will take one of two forms—either “bound” or “started.” Let’s
start with the started Service, as it is the most common. An Android Service becomes
started when an application component, such as an Activity, specifically starts it by using a
method call. This is done by calling the .startService() method.

Once it has started, a Service can run in the background indefinitely, even in a scenario
where a component that started the Service gets subsequently destroyed, that is, removed
from system memory. This can be done by either the application program logic, or by the
Android OS if it becomes necessary for the overall function of the device. A started Service
performs a single operation and does not return a result to the calling entity, much like a
void method performs its task without returning anything to the object calling the method.
For example, a started Service might download (or upload) data files over your network.
When your started Service operation is completed, the Service object should automatically
stop itself. This helps optimize Android operating system resources, such as device CPU
processing cycles and system memory usage, which should always be conserved.

A bound Service is created when an Android application component binds to a Service. This
is accomplished by calling a .bindService() method. The bound Service offers a client-
server interface that allows components to interact with the bound Service. Just like with
a client-server relationship, you can send requests, get results, and you can even do all of
this across (between) different processes, using interprocess communication (IPC). A bound
Service remain in system memory as long as other Android application components are
still bound to it. Multiple application components can bind to a bound Service at the same
time. When all of these application components unbind from the Service, that Service is
destroyed: that is, removed from the device’s system memory.

We will take a look at both of these types of Service formats, as well as a hybrid approach,
where your Service can work in both of these ways, and at the same time. What this means
is that you can start your Service, so that it is a started Service and can run indefinitely, and
later allow it to be bound. Whether the Android Service is specified as started or bound is
determined by whether you have implemented a couple of the more often used Service class
callback methods. For instance, the Service class .onStartCommand() method will allow
components to start a Service, and the .onBind() method will allow components to bind to
that Service.

390 CHAPTER 13: Android Services and Threads: Background Processing

Starting in 64-bit Android OSes (5.0 and later versions) there is also a scheduled Service.
A Service can be scheduled when an object created with the Android JobScheduler
class launches the Service. You can use this JobScheduler class by registering jobs,
and specifying their requirements for network access and execution timing. The Android
OS will then optimally schedule these jobs for execution, at the most optimal time. This
JobScheduler class provides methods that allow developers to specify the Service execution
parameters. The JobScheduler class and a scheduled Service is more advanced than the
basic Service, but I wanted to cover scheduled Service classes here, so that you know it
is an option, for more advanced Service scheduling, once you become a more advanced
Android application developer, that is.

Regardless of whether your application’s Service is started, bound, hybrid (both started
and bound), or scheduled, it is possible that other application components can utilize that
Service, even from a separate application, if you allow it. This is similar to the way that any of
your application components can start (launch) an Activity subclass, by starting it using an
Intent object, even if that Activity is not a part of your package. We covered using Intent
objects way back in Chapter 7. You will see how Android apps use Intent objects to start
a Service subclass, which we will create during this chapter named AmbientAudioService.
This class will use a background service to play background ambient audio with Android’s
MediaPlayer component.

Controlling Your Service: Privacy and Priority
Service subclasses will run at a higher priority than inactive Activity subclasses whose
UI is not active or being viewed on the device. Because of this fact, it is far less likely that
the Android operating system will terminate a Service class than it will an Activity class.
If your Activity subclass is active, or currently in use by your user on their display screen,
it will obviously possess the highest priority, as the assumption is that the user is currently
and actively using it to interface (hence the term “user interface”) with the application, and
therefore with the Android hardware device.

It is important to note that you can declare your Service as private using your Android
manifest XML file. This will block access to your Service subclass from other external
Android applications. This is usually a good idea for security reasons, which I also discuss
in the chapter. Android developers will often do this as a programming or development best
practice, unless other Android applications will absolutely need to use their Service.

A Service subclass, as a default, always runs inside the primary thread of the host
application’s primary process. This is often called a UI thread, as it runs the UI. Services that
run inside of this primary application process are often termed local Services. You will be
reading about processes and threads in the next section of the chapter.

A common misconception among Android programmers is that Android Service subclasses
always run on their own separate threads. This is certainly possible, if you configure your
Service subclass in that way. The Service does not, in fact, by default create its own thread,
and thus won’t run in a separate thread, unless you specify that.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7

391CHAPTER 13: Android Services and Threads: Background Processing

What this means is that if your Service is going to do any CPU-intensive work (such as
decoding streaming data in real time) or blocking operations (such as real-time network
access over busy network protocols), you should create a new thread within your Service in
order to do that type of processing so UI performance is not affected.

It is important to note that you may not need to use another thread for your Service class
apart from the thread it is on (using already); for instance, in the example in this chapter
we play a music file using the MediaPlayer in a Service without needing to spawn another
thread. The only way to determine if this is needed is to first try using a Service class for
your background processing, and then, if it affects user experience, consider using a thread.

Processes or Threads: Foundational Information
When one of your Android application components, such as the MainActivity class, starts,
and your application does not have any other components currently running, the Android
operating system will launch a new process for your application using the Linux kernel.
This single thread of execution is commonly called the UI thread. A process can generate
or launch (I often use the popular industry term spawn) more than one thread. There is
a Thread class (and therefore, a Thread object can be created) for the Android OS. As a
rule, all of your Android application components will run inside of this same initial process
and thread. This is generally termed the main thread, the primary thread, or the UI thread.
If one of your Android application components starts, and Android sees that a primary
process already exists for your application, due to the fact that another component from
your application already exists, the new component will also be started within that same
application process and thread.

To start your own thread, you must do so specifically within your Java code by creating a
Thread object. You can also have different components in your application run in separate
processes, and you can create additional threads for any process. This is what is usually
done with Android Service subclasses. The Service process for Android is created using
XML markup, unlike the Thread object, which is created using Java.

You will be taking a look at creating a <service> using XML, during the next section of
the chapter. Creating a Thread object, and how to do this, and when to do so, is currently
beyond the scope of this Absolute Beginner title. There are entire books written on the
subject of multi-process programming, threads, binding, and similar topics for professional
Android developers; however, those are on the other end of the spectrum from this book.

The default functionality in the Android OS is all of your Android application components
will run in the same process used to launch your application. Most of the bootstrap Android
applications will not need to change this behavior, and should not interfere with this default
application launching and running functionality, unless there is a very compelling functional
reason (which would be too advanced to cover in this book title) for doing so.

392 CHAPTER 13: Android Services and Threads: Background Processing

For advanced applications (which we are not going to be covering in this book), I will cover
this concept here, to be thorough regarding Android OS and its processes. If you happen to
find yourself in development situations where you absolutely need to control which Android
process/thread a certain application component belongs to, and functions in, you can
specify your own custom processes in your application’s AndroidManifest.xml file. The core
difference is threads run in a shared memory space, whereas processes run in their own
memory space.

Let’s take a look at how to spawn a process using the android:process parameter inside
of the four major areas of Android. These four major functional areas each implemented by
using a superclass, include the Activity, the Service, the broadcast receiver (communication
messages), and the content provider (database storage). These use the Android OS
<activity>, the <service>, the <receiver>, and the <provider> parent tags, respectively.

Spawn a Process: android:process XML Parameter
The AndroidManifest.xml application component tags for each major type of application
component, whether it is an Activity <activity> tag, a Service <service> tag, a broadcast
receiver <receiver> tag, or the content provider <provider> tag, can include the optional
android:process parameter. This parameter will allow you to control the process that a
component will run inside of (or under, if you prefer to visualize it that way).

An android:process parameter should be utilized to specify the process under which
the application component needs to run. You can set up this process parameter in such
a way that each of the application’s components run inside its own process, or you can
“mix and match” components and processes in such a way that some of your application
components will share a given process, while others will not share that process and would
even have their own process (memory space) altogether.

If you want to get really complex, you could set these android:process parameters so that
components from different Android applications can execute together inside the same
Android process (memory space). This can only be accomplished when those particular
applications share the same Linux user ID, and which are signed with the same certificates.
This topic is also too complex for this book; I mention it here just so that you know about it,
in case you wish to research it further.

It is interesting to note that the global <application> tag in the Android manifest XML file will
also accept an android:process parameter. Using the android:process parameter inside of
your <application> tag will set the default process value for your application, which would
then be applied to all of your application’s components, which are located inside of the
XML application component definition (nested) hierarchy. Of course, this would not include
those application components that then utilize their own android:process parameter. In this
situation, the application component child tag that utilized the android:process parameter
to specify a different process for that particular application component would override the
global or default process that you set as the process for your application to use via the
android:process parameter inside the <application> tag. If you want all your components,
except for one or two, to share the same custom process, define that process in your
<application> tag and then override it selectively using one of the component child tags
with android:process.

393CHAPTER 13: Android Services and Threads: Background Processing

It is important to note that the Android OS has the option to shut down any of your
processes at any given time. This is so that it can efficiently manage your user’s system
hardware resources (memory and processing cycles). This could be important when system
memory is running low or if the memory used by your process is required by other processes
that have a higher priority level, or are receiving more usage (attention) from the end user.

Application components running inside of a process that gets terminated by Android are
subsequently destroyed (which means they’re removed from memory). Not to worry, as
any of these processes can be restarted again, at a later time, for any of the application
components that still require that something be accomplished for or by a user. In fact, that
is exactly why the savedInstanceState Bundle object that you are now familiar with is often
utilized.

When deciding which process to kill, the Android OS weighs their relative importance to
a user. For example, Android more readily shuts down processes that are hosting Activity
subclasses that are no longer visible on the screen, as compared to a process hosting a
visible Activity that is being used. This decision regarding whether or not to terminate a
process depends on the state of the components running in that process. The rules Android
uses to decide which process to terminate are important to understand, so, let’s dive deeper
into this topic next.

The Process Life Cycle: Keeping a Process Alive
Android 7.1.1 OS will try to keep your application processes in its system memory for as
long as it can. However, it sometimes needs to destroy some older processes running
in the OS. This is done in order to reclaim the system memory resources for newer or
higher priority processes. After all, so many Android devices ship with only 2 or, at most,
4 gigabytes of main system memory; this may change in 2018 with iTV sets featuring the
nVidia Tegra Parker chipset and 8 or more gigabytes of memory. Android system memory
can fill up fairly quickly, as users simultaneously play games, launch apps, read e-books,
stream music, and place (and receive) phone calls.

Even when iTV set devices start to ship with 8 gigabytes of main memory, you will still
have memory management issues, and using processes and threads provide the tools for
optimizing these memory management issues, so it is important that you understand how
processes are handled in Android. In case you are wondering, a 32-bit OS will only address
3.24 MB of system memory, so Pre-Android 5 devices only have 1 to 3 megabytes! The
64-bit version of Android (5, 5.1, 6, 7, 7.1.1 and later) is based upon 64-bit Linux and 64-bit
Java, and has no memory limitation.

The way that the Android OS determines which of its processes to keep, and which of its
processes to terminate, is via a priority hierarchy. Android will place each running process
into this priority hierarchy, which is based on each of the components running in the
process queue, as well as the current status (running, idle, or stopped) of those application
components. The way that Android removes processes from this process priority hierarchy,
which is ultimately how memory is cleared, and reallocated, for any Android device, is that
the process with the lowest priority (or least importance) is terminated first. Then the next
lowest priority process is terminated, then the next lowest, until system resources that are
needed for a higher priority process have been recovered for use.

394 CHAPTER 13: Android Services and Threads: Background Processing

There are five process priority levels in this priority hierarchy. Once you know what these
are, you will see how practical the process priority hierarchy is, and you’ll have an overview
of how Service subclasses (background processing) or Activity subclasses (user interfaces)
fit into this process priority schema. Let’s get into this now, before we take a look at how to
implement a Service using XML markup and Java code.

This process (threading) information is quite important to understand for any Android
developer at any level, from Absolute Beginner through an Expert Professional, even if you
don’t implement custom processes in your Android 7 applications. The five process priority
levels are summarized in Table 13-1 for your quick reference.

Let’s take a look at each of these in greater detail, so you better understand what these
priority levels represent.

Foreground Process
The highest priority process level is called the foreground process. This is the primary
process that is currently running (actively processing), and that is required for the application
task that the user is currently engaging in.

A process will be considered a foreground process if it contains an activity (user interface)
that a user is actively interfacing with, or if it hosts a service which is bound to that activity
that the user is interfacing with. Note that an activity (subclass) in Android OS in an
Activity, and that a service (subclass) in Android OS is a Service.

A process will also be considered to be a foreground process if it is actively processing a
Service subclass that is running in the foreground, which means that the Service object
generated by your subclass implementation has already called the .startForeground()
method.

Table 13-1. Android’s five process priority levels, and what type of priority characteristics they exhibit regarding an app

Process Priority Characteristics

Foreground process The primary process that is currently actively processing your User Interface
and Content

Visible process A secondary process that will still have an effect regarding what is visible on
the screen

Service process A started process that contains a background processing service that is
currently processing

Background process A process containing an activity that is not currently visible on the device
screen

Empty process A process that does not currently hold any active application components
whatsoever

395CHAPTER 13: Android Services and Threads: Background Processing

If the Service object is currently executing one of the .onCreate(), .onDestroy(), or
.onStart() Service life cycle callbacks, which you will be learning about during this chapter,
or is broadcasting a BroadcastReceiver object that is calling its .onReceive() method, it will
be given a top foreground process priority-level status in Android.

In an optimal Android operating system scenario, only a few foreground processes will
be running at any given time. This is not common as Android device users tend to invoke
several different applications and functions at the same time, which is why devices such as
smartphones often become hot and lose their power charge rapidly. Regardless of proper
use (or overuse), Android processes will be terminated only as a last resort, if the system
memory gets scarce, and the Android OS cannot continue to run optimally.

Visible Process
The next highest priority process level is a visible process. This is a process that doesn’t
contain any foreground process components, but that can still affect what the users are
seeing on their displays. A process is deemed to be visible if it contains an activity that is not
in the foreground, but that is still visible to the user display screen. An example of this would
be an activity whose .onPause() method has been invoked. Another example would be a
foreground process activity that starts a dialog that permits another activity to be seen in the
background.

A process that contains a Service subclass that has been bound to a visible process would
also be able to get visible process priority. A visible process is considered to be almost as
important as a foreground process. Thus a visible process is not terminated, unless that is
absolutely required to keep all foreground processes running in the Android OS memory
space. Visible and foreground processes are thus extremely similar in the Android OS.

Service Process
The middle priority process level in the five levels is a Service process. This is a process
that contains a Service that has been started with the .startService() method call, but
that Android has not classified in either of the two higher-process priority-level categories.
The Service class processes, because they have no user interface screen, and are running
asynchronously in the background, are not directly tied to anything that a user sees on a
display, or interacts with. They are important to Android apps development, which is why I
cover them in this chapter.

Since a Service is still performing a task that the end user wants to complete, such as
playing an album of music in the background, or downloading a file over their network,
Android will keep a process that contains a Service object active, unless there is not enough
memory to support them along with foreground and visible processes.

396 CHAPTER 13: Android Services and Threads: Background Processing

Background Process
The second lowest priority process level is the background process. This is a process that
contains an Activity subclass that is not currently visible to the end user. An example of this
is when the Activity subclass .onStop() method has been called. Note that a background
process by its very nature should not affect the user experience.

Since a background process has no detectible impact on user experience, Android will
terminate these whenever it becomes necessary to recover system memory for any higher
priority-level process (foreground, visible, or Service). If there are several background
processes running, Android keeps background processes in something called the LRU
(Least Recently Used) list. This list guarantees that a process containing the Activity most
recently utilized by the user is the last process to be terminated.

Note that Activity subclasses that implement their life cycle methods correctly, and
save their current states using the savedInstanceState Bundle object, will not have any
discernible effect on user experience due to termination. This is because when a user
navigates back to their UI screen for that Activity, a process will again be started for it, and
your Activity subclass will restore all of its visible states. This is done by reloading your
savedInstanceState Bundle object.

Empty Process
The lowest priority process level is the empty process. This is a process that does not
hold any currently active application components. If you are wondering why these empty
processes would be kept in system memory at all, the strategic reason to keep the empty
process alive is for memory caching optimization, which improves the startup time the next
time a component, most probably an Activity, needs to be loaded (run) inside the process.

The Android operating system will terminate these empty processes once system memory
is full in an attempt to balance the overall system memory resources between the various
process caches, and with its underlying Linux OS kernel memory caches, which are at such
a low level that Android 7.1.1 developers cannot directly access them.

Increases in the Priority-Level Ranking
It is important to notice that process priority-level rank might be increased because another
process is dependent on a process. Any Android process that is currently servicing another
process cannot be ranked lower than the process that it’s servicing. This is a very logical
ranking behavior, if you think about it for a minute.

Let’s say your content provider (which is a database or data store, which we will be covering
in more detail in the next Chapter 14) that is contained in Process 01 is busy providing
content to a user interface Activity in Process 02, or a Service object in Process 01 is
bound to an application component in Process 02. In these scenarios, Process 01 will
always be considered by Android OS to be as important as Process 02. This is logical
because the two processes are acting together as one unified user experience, and thus
should be ranked equally.

http://dx.doi.org/10.1007/978-1-4842-2268-3_14

397CHAPTER 13: Android Services and Threads: Background Processing

The next section takes a bird’s-eye view at threads, which are even lower level than
processes, and can be utilized within a process (but only implemented using Java 8 code)
to schedule processor-intensive or user interface tasks. This is very advanced information,
and only included in this book so that you have a comprehensive overview of this “under the
hood” programming topic. It is not expected that, as an Android 7.1.1 Absolute Beginner,
you will write Java 8 code that controls thread execution.

Thread Caveats: Don’t Interfere with UI Thread
After Android launches your application, using the AndroidManifest.xml file, the operating
system will spawn a thread of execution. This main thread is in charge of dispatching
and managing system-level and application-level events, which you learned about during
Chapter 7. The events take place between the operating system and your app, such as an
incoming phone call, as well as between your user interface widget event handlers and your
application Java 8 logic, like clicks on an animal image to trigger audio.

The main thread also controls drawing graphics, playing video, audio, or animation assets to
an Activity display screen, so it’s doing a lot of processing. This is a reason you might need
to spawn your own thread, if something you want to do with your Android application might
overload the heavy workload that is on the main (primary) thread. Unless (or until) you spawn
your second thread, the main thread will be running your entire application.

The main or primary thread is also often referred to as the UI thread, or user interface
thread. This is because it’s the thread inside of which the application components
interact with components in the Android UI toolkit. The Android UI toolkit includes all the
components, as classes, contained in the android.widget as well as the android.view
packages, which you learned about during Chapters 6 through 9. All of these Android
UI toolkit components will run inside of, or under, this main process, and are handled
(managed) inside of this UI thread.

For this reason methods that respond to event handling callbacks, such as the .onKeyDown()
event handler used to report keyboard hardware interaction, or one of the life-cycle
callback methods, such as the .start() method or the .pause() method, will always run
inside the UI thread. This UI thread is contained within the main process for your Android
7.1.1 application. When the application dispatches intensive processing in response to
user interface interactions, a single thread model can result in a slow user experience
performance. This is why you must learn how to utilize threads properly, if you are going to
do advanced Android application development in the future.

The reason for this is obvious. If extensive processing is happening in your UI thread,
performing long-winded operations, such as network access, complex calculations, or
SQLite database queries, this will block some portion of the user interface response
processing. These more complex operations will reduce the amount of processing cycles
that are available to the UI, and will essentially block the UI-related events from being
smoothly, that is, quickly, processed. When application UI threads become blocked, UI
events cannot be dispatched for handling, and this includes drawing graphics, playing
samples, and animating elements to the display screen. From a user experience standpoint,
an application may appear to hang, which is not desirable and is not at all professional.

http://dx.doi.org/10.1007/978-1-4842-2268-3_7
http://dx.doi.org/10.1007/978-1-4842-2268-3_6
http://dx.doi.org/10.1007/978-1-4842-2268-3_9

398 CHAPTER 13: Android Services and Threads: Background Processing

It is important to note that if your application blocks the UI thread for more than a few
seconds (more than five seconds, actually) the user will be shown a dialog containing an
undesirable (from a user experience standpoint) “Application is Not Responding” dialog
(developers often abbreviate this, and call it the “A N R”dialog). It is important to note that
the Android 7.x UI toolkit is not currently what is known as thread-safe. For this reason, you
should not at any time manipulate your application’s user interface elements from inside a
worker thread.

A worker thread is any non-UI thread, and is also commonly referred to as the background
thread. In other words, it is a thread that you have spawned using your application’s Java
code. This would be done in order to off-load intensive, worker bee background processing,
so that your UI will continue to function smoothly.

Just remember, the first rule of Android thread processing is that you must do all
manipulation to your user interface elements from the inside of the UI thread, which is the
application’s main, or primary, thread.

The second key rule is more general, and it is simply to not block the UI thread at any time
for any reason. This is why you are able to create worker threads, in case you need to do
something that may block the UI thread. By block, I mean to stop a UI thread from smoothly
processing the application UI functions and content rendering.

Should Android Apps Use Services or Threads?
An Android Service is an application component that can run in the background, even when
your users are not interacting with the application. If you need to perform work outside of
your main UI thread, but only while the user is interacting with the application user interface,
that is when you should create an Android Thread object within that class in your application.
This is commonly used for more advanced applications, such as 3D games.

This would be done by instantiating a HandlerThread or an AsyncTask object. If you
declare a Thread object in your class, you do not have to go to the trouble of declaring an
entire Android Service subclass in the manifest. If you look at it using the “static versus
dynamic” standpoint, which I have been teaching you over the course of this book, you
are implementing a thread dynamically, in Java 8 code, whereas you implement a Service
statically, using XML markup to declare it before use in your Android manifest XML file, so
Android can optimize it!

Let’s say that you wanted to stream some music from a music Service while your Activity
is running. What you do is create a Thread object using the .onCreate() method, start
it running using the .onStart() method, and stop it by using the .onStop() method. As
mentioned, you will probably want to utilize a more refined Android Thread subclass, such as
the AsyncTask or HandlerThread class, instead of using a more general Thread class, which
is generally used as a superclass in order to create more application-friendly thread-related
subclasses.

399CHAPTER 13: Android Services and Threads: Background Processing

So when would you use Service subclasses over spawning Thread objects in existing
classes, you might wonder? If you remember from the previous section, Android processes
containing a Service subclass will be prioritized higher than processes that utilize a
background processing activity (Thread object). For this reason, if your apps are going to
undertake extensive processing, access, or streaming operations, then you’ll want to start a
Service component subclass for that operation, rather than simply create a Thread subclass
object like an AsyncTask.

This is an especially relevant consideration if your background process is going to outlast
your Activity screen. As an example, an Activity that is uploading a video that you created
using the Android Camera class to a web server would want to utilize the Service subclass
methodology to perform this upload. This is so that this upload process will continue in the
background and finish uploading even if the user leaves that video capture Activity.

Thus, the primary reason that you will want to use a Service subclass over a Thread object,
is because using the Service component will guarantee that your processing operation will
have at least the Service process priority level, regardless of what happens to your Activity
subclass. If you use the Thread subclass approach, your application could drop below the
Service process priority-level based upon your end user’s usage or interaction, because
with that approach, your Activity subclass only contains a Thread subclass and not a
Service subclass.

Next, you will learn how to write a Service subclass, and how to call it, using an Intent
object. You will do this using the ScrollingActivity Activity subclass that you created in
Chapter 12. You will implement the Android Service class life cycle by creating an ambient
background audio player background Service component named AmbientAudioService.
java.

This will be a Service subclass that will extend the Service class, by utilizing the Java
extends keyword inside of the class declaration. You will code the main Service class
life cycle methods in your Java code, including onCreate(), onStart(), and onDestroy()
methods. You will leverage an Android Intent object in one of these in order to start a
background Service, which will play background audio for that DigitalAudioSequencer
Android application project you created in Chapter 12.

Finally, you will also look at how to add the <service> tag to the AndroidManifest.xml
file, and you’ll test your background audio Service subclass inside of your Nexus 5 AVD
emulator. This will show you how to mix audio using SoundPool (Chapter 12), MediaPlayer
(Chapter 11), and Service (Chapter 13) Android superclasses.

As you can see, you are learning more advanced topics and techniques as this book
progresses, as I am attempting to take you from an Absolute Beginner, to someone who is
familiar with how Android works, what Android Studio can do, and how advanced you can
become during your journey from Absolute Beginner to a working Android developer. To do
this, I must cover some topics beyond the Absolute Beginner experience level.

http://dx.doi.org/10.1007/978-1-4842-2268-3_12
http://dx.doi.org/10.1007/978-1-4842-2268-3_12
http://dx.doi.org/10.1007/978-1-4842-2268-3_12
http://dx.doi.org/10.1007/978-1-4842-2268-3_11
http://dx.doi.org/10.1007/978-1-4842-2268-3_13

400 CHAPTER 13: Android Services and Threads: Background Processing

Creating a Service: AmbientAudioService
Let’s take a look at how you can direct Android Studio to code a Service class for you, using the
Android Studio 2.3 IDE, along with the proper work process, which can be seen in Figure 13-1.

1. Open your DigitalAudioSequencer project in Android Studio
2.3 and right-click on your Project pane’s /app/java/com.example.
user.digitalaudiosequencer/ folder, since that is where you want
this AmbientAudioService.java file, which you are having Android
Studio create, located.

2. Next, select the New ➤ Service ➤ Service menu sequence, as
shown on the left-hand side of Figure 13-1.

3. This menu selection will open up the New Android Component –
Configure Component dialog, which is shown in Figure 13-1 on the
right-hand side.

4. Name your Service subclass AmbientAudioService and select the
Enabled check box, below the Class Name field, and deselect the
Exported check box, as only this DigitalAudioSequencer project will
be using this Service subclass.

5. Finally, click the Finish button, which will tell Android Studio to
generate the code for you, and open up a tab in Android Studio
named AmbientAudioActivity.java with bootstrap code. We will be
learning more about the characteristics of the Service by examining
the code and then modifying it to fit our particular ambient audio
background application for that code.

Figure 13-1. Use New ➤ Service ➤ Service menu sequence, and name class AmbientAudioService in Configure
Component

401CHAPTER 13: Android Services and Threads: Background Processing

6. Take a look at the AmbientAudioService class Java code, shown
in Figure 13-2, which we will be adding functionality to during the
remainder of the chapter, after we take a closer look at some of the
involved Service class details regarding the Android Service-related
classes.

7. First look at the import statements to ascertain what Android classes
are utilized to make this Service subclass work. The first is the
Service superclass that this class is based upon, so obviously we
need those methods, constants, and so on which are in the android.
app package. The second in the Intent class, so that we can use
Intent objects to trigger the Service. The third is the IBinder class,
so that if you need to create a bound Service, you can create iBinder
objects to use with the public IBinder onBind(Intent intent)
method structure, which is also provided for you in this bootstrap
class, in case you want to utilize it.

8. After the import statements we have the class declaration as public
and extending Service using the public class AmbientAudioService
extends Service Java statement.

9. After the class declaration, Android Studio has written an (empty)
required constructor method using this empty Java method
declaration and body:

public AmbientAudioService() {...}

10. As you can see, Android Studio has given you a code infrastructure
for everything you might need to implement a basic Service
subclass, which is a great head start for an Absolute Beginner. We
will be adding objects and methods to this class to implement a
MediaPlayer that can be played as a background Service.

Figure 13-2. Android Studio creates your bootstrap AmbientAudioService subclass using the Android Service
superclass

402 CHAPTER 13: Android Services and Threads: Background Processing

Next, let’s take a look at how your Android manifest needs to be set up for a Service class,
and any Service subclass that you utilize or create, such as the one we will be creating
during the rest of this chapter, to function.

Configuring AndroidManifest to add a <service>
Whenever you add an Android Activity, Service, content provider, or broadcast receiver
component into your Android application, you need to declare it for use inside of your Android
manifest XML file, which is utilized to define, configure, secure, permission, optimize, specify
(hardware device support in the Google Play store), and launch the Android application.

We will take a look at this as it relates to Service, using the <service> tag, next, and see if
Android Studio 2.3 added the correct markup to the AndroidManifest.xml. Right-click on
your AndroidManifest.xml file, which is inside of the project’s /app/manifests/ folder, and
select Jump to Source. Inside of the <application> tag, there should be a child <service>
tag after the first <activity> tag and before closing </application> and </manifest> tags.

The <service> tag Android Studio inserted should implement the android:name=".
AmbientAudioService" parameter, which allows Android OS to wire up the Service subclass
that will utilize the Service object. Based on your dialog selections, Android Studio also
included an android:enabled="true"and an android:exported="false"parameter, to keep
your Service private, as a standard security measure, unless you’re creating a Service for
other apps to use. The <service> tag should look like the following markup:

<service
 android:name=".AmbientAudioService"
 android:enabled=”true”
 android:exported="false” >
</service>

The Android Studio modified AndroidManifest.xml file Service markup is shown highlighted
in orange and blue at the bottom of Figure 13-3.

Figure 13-3. Open AndroidManifest.xml file to see how Android Studio added a <service> tag under the <application> tag

403CHAPTER 13: Android Services and Threads: Background Processing

Next, let’s take a closer look at the Android Service class, and see what we are allowed to
add to the basic Service class Java code that is seen in Figure 13-2 to create a MediaPlayer
background digital audio player Service subclass, using our bootstrap AmbientAudioService
class Android Studio just created.

Service: Background Processing Services
The public abstract class Service extends the ContextWrapper class and implements the
ComponentCallbacks2 interface. This is the base class for all Service subclasses. Service
has 33 known direct subclasses, which you can use directly, or you can subclass Service
and code your own, as we are going to do. Its class hierarchy looks like the following:

java.lang.Object
 > android.content.Context
 > android.content.ContextWrapper
 > android.app.Service

We will use a simple but popular example of how to use a MediaPlayer inside of a Service to
play a one megabyte one minute MPEG4 audio in a seamless loop, just to give you an idea
regarding how a Service works.

Configure AmbientAudioService: Play Audio
Let’s go into your bootstrap AmbientAudioService.java class, which Android Studio has
written for you, and customize it to play a short ambient background audio loop using the
Android MediaPlayer class and a one megabyte, highly optimized, MPEG-4 digital audio
asset. I am doing this here as a follow-on to Chapter 12, using the same project, to show
you how to provide looped long-form background audio for the animal samples.

1. Declare a MediaPlayer object at the top of your AmbientAudioService
class, right after the class declaration, as is shown in Figure 13-4.
If you type “MediaP” you will get a pop-up helper, where you
can double-click on the MediaPlayer (android.media) option.
Android Studio will then add this object declaration for you, and
will additionally write your import android.media.MediaPlayer;
statement, which can be seen at the top of Figure 13-5.

2. Name this MediaPlayer object ambientAudioPlayer, and finish off
the Java declaration using a semi-colon. You can see the finished
MediaPlayer ambientAudioPlayer; declaration in Figure 13-6.

http://dx.doi.org/10.1007/978-1-4842-2268-3_12

404 CHAPTER 13: Android Services and Threads: Background Processing

3. The next step is to add an onCreate() method structure where you
will instantiate your MediaPlayer object. Add a line of code under
the AmbientAudioService() constructor method that Android Studio
created for you, and type “on,” and in the pop-up helper drop-down
menu double-click the public void onCreate() {} option, to insert
it into the body of your class. Android Studio will code a bootstrap
onCreate() method for the class which should look like the following
Java code structure:

public void onCreate() {
 super.onCreate();
}

Figure 13-5. Add a line below the AmbientAudioService() constructor, type “on,” and select the public void onCreate()
method

Figure 13-4. Declare a MediaPlayer object at the top of the AmbientAudioService class, and name it
ambientAudioPlayer

405CHAPTER 13: Android Services and Threads: Background Processing

4. Add a line of code underneath the super.onCreate(); superclass
method call and type the word “ambient,” and then double-click
on the ambientAudioPlayer MediaPlayer option to insert the
MediaPlayer object, so that you can instantiate it using an equals
sign and the .create() method.

5. After you add the equals sign, then type “Me,” so that Android
Studio’s pop-up coding helper drop-down menu will appear. Notice
that there is an option on the list to code the entire object plus
the method call (including dot notation) needed to instantiate the
MediaPlayer object.

6. Select your MediaPlayer.create(Context context, int resId)
(android.media) option, as shown in Figure 13-7, and double-click
on this, to tell Android Studio 2.3 to write this instantiation Java
code structure for you. You will use the Java this keyword to pass
the current class’s Context object, and the /app/res/raw resource
ID path to the ambient.m4a file, using R.raw.ambient for the second
method parameter. This will instantiate the MediaPlayer, and then
all you have to do next is to configure the MediaPlayer object, and
we can move on to create some of the other class methods for
starting the MediaPlayer, stopping the MediaPlayer, and destroying
(removing from system memory) the MediaPlayer object when the
application is done being used.

Figure 13-6. add an ambientAudioPlayer MediaPlayer object after the super.onCreate() method in an onCreate() method

406 CHAPTER 13: Android Services and Threads: Background Processing

7. Copy the ambient.m4a audio asset into the DigitalAudioSequencer
project app/res/raw/ folder from the book repository. I omit the
figure here, as you’ve seen how to do this in some previous chapters.
The asset will show up in Android Studio 2.3, as shown on the left
side of Figure 13-8.

8. Once the audio asset is visible to Android Studio, you will be ready
to reference the digital audio asset in your MediaPlayer(Context,
ResourceID) code construct. Add the Java this keyword and
resource path to the .create() method, and then add a
.setLooping() method, and set it to a Boolean value of true to
configure the MediaPlayer to loop the background audio. The Java
method structure should look like the following once you are finished
configuring it:

@Override
public void onCreate() {
 super.onCreate();
 ambientAudioPlayer = MediaPlayer.create(this, R.raw.ambient);
 ambientAudioPlayer.setLooping(true);
}

Figure 13-7. Select the MediaPlayer.create(Context context, int resid) (android.media) option, to code the instantiation

Figure 13-8. Add the ambientAudioPlayer.setLooping(true) method call to complete your onCreate() method structure

407CHAPTER 13: Android Services and Threads: Background Processing

9. The contents of your onStartCommand() method, which we’ll add
here next, will be called when you use the startService() method
call in the onCreate() method of your MainActivity. This will
amount to adding a MediaPlayer.start() method call inside of the
onStartCommand() method. Add a line of code under your onCreate()
method construct, and again type “on,” and select the public int
onStartCommand(intent, flags, startId) {...} option, and then
double-click on it, and have Android Studio 2.3 code it inside of the
AmbientAudioService class, as is shown in Figure 13-9.

10. Android studio will code your onStartCommand() method,
which is shown in Figure 13-10, including a return
super.onStartCommand(intent, flags, startId) statement up to the
superclass, passing up all of the parameters coming into this method
call. Add your ambientAudioPlayer object, and then hit the period
key, and select a void start() method call option. Do this before your
return statement, as any code after the return will not be executed.

Figure 13-9. Add a line of text, type “on,” and select the Service class onStartCommand(intent, flags, startId) method call

408 CHAPTER 13: Android Services and Threads: Background Processing

11. Once you’re done adding the ambientAudioPlayer code statement,
the method looks like this:

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
 ambientAudioPlayer.start();
 return super.onStartCommand(intent, flags, startId);
}

12. Next, add in a line of code after the onStartCommand() method, and
type “on,” as shown in Figure 13-11, and have Android Studio code
the body of a public void onDestroy() {...} method for you.

Figure 13-10. Add an ambientAudioPlayer object before the return statement, type a period, and select a start() method

Figure 13-11. Add a line of text, type “on,” and select the public void onDestroy() method call from the Service
superclass

409CHAPTER 13: Android Services and Threads: Background Processing

13. The first statement in the onDestroy() method should stop the
MediaPlayer from playing your ambient audio loop, using the
ambientAudioPlayer.stop() method call, shown in Figure 13-12.

14. The second statement in the onDestroy() method should remove
the MediaPlayer object from the system memory using the
ambientAudioPlayer.release() method, which releases system
memory for other Android operating systems or application
purposes.

15. Make sure that the super.onDestroy(); method call is last, as you
want the MediaPlayer object to stop and release before you want
the Service object to stop and release itself, which is done using the
.onDestroy() method call. Your completed code will look like the
following:

@Override
public void onDestroy() {
 ambientAudioPlayer.stop();
 ambientAudioPlayer.release();
 super.onDestroy();
}

Figure 13-12. Before the super.onDestroy() method call add a MediaPlayer object .stop() and .release() method calls

410 CHAPTER 13: Android Services and Threads: Background Processing

You have now coded your first Service subclass, which is shown in its finished form in
Figure 13-13. It has onCreate(), onStartCommand(), and onDestroy() methods that create,
start, and stop/remove the MediaPlayer object from system memory based on the same
three life cycle stages of the Service object itself. Pretty cool.

Next, let’s take a look at the ScrollingActivity class and see exactly what Java code we
need to add to that class in the onCreate() method, in order to start this Service, and have it
play background ambient audio for this Android application.

Starting a Service: Using .startService()
Now that you have created your AmbientAudioService Service subclass, and declared it for
use in your Android manifest XML file, you are ready to start it by using the .startService()
method that you learned about earlier in the chapter. This is done using an Intent object,
in a very similar fashion to starting up an Activity, which you have done already, so this
should be familiar to you. Let’s get right into the Java 8 programming part of your scrolling
Activity class, which will contain a startService() method call, as the very last step in
your onCreate() method.

1. Click the ScrollingActivity.java tab and add a line of code
at the end of the onCreate() method as you want to start the
AmbientAudioService Service subclass (object) right before you
launch your application. Type in “star” as seen in Figure 13-14, and
select the startService(Intent service) ComponentName option
from the drop-down helper menu.

Figure 13-13. The completed AmbientAudioService class, customized to implement the basic MediaPlayer functionality

411CHAPTER 13: Android Services and Threads: Background Processing

2. Inside of the startService() method parameter area, we are going
to nest another Java construct by typing the Java new keyword,
and then Intent (or type “In” and select Intent, in your helper drop-
down).

3. Inside of your Intent() constructor method parameter area,
type the Java this keyword, to pass the ScrollingActivity class
Context object, and then a comma, and then the name of a Service
subclass that you want to start, which, in this case, will be the
AmbientAudioService.class. Your Java startService() method call
statement, once it is fully completed, is shown in Figure 13-15, and
should look like the following Java code:

startService(new Intent(this, AmbientAudioService.class));

Figure 13-14. At the bottom of the onCreate() method add a line of code, type star, and double-click on the
startService()

412 CHAPTER 13: Android Services and Threads: Background Processing

4. Now you are ready to use the Run ➤ Run ‘app’ menu sequence
and test the code in the Nexus 5 AVD. The application now calls the
Service, as shown highlighted in pale yellow and blue in Figure 13-16,
 and plays background music behind the animal samples, which
mix perfectly with the ambient audio track in the background when
they are triggered via SoundPool. I’ll forego the screenshots as the
application looks the same as it did in Chapter 12.

Figure 13-15. Inside startService() instantiate a new Intent object passing Context (this) and AmbientAudioService.class

http://dx.doi.org/10.1007/978-1-4842-2268-3_12

413CHAPTER 13: Android Services and Threads: Background Processing

You now have a high-level overview of background processing in Android, and have created
a Service subclass.

Summary
In this chapter, you learned about the Android Service component subclasses as well as
about processing concepts, principles, prioritization, and optimization. You learned about
Thread objects, and how these threads differ from Service components. You learned all
about different types of Android Services, including started Services, bound Services, and
a hybrid between these two types, as well as about scheduled Services, characteristics of
Services, caveats about using Services, and when to utilize a Service subclass versus using
a Thread class based object.

You learned about processes as well, and how to spawn your own process in your Android
manifest XML file. You learned how to assign different application components to their own
process (shared memory), by using the android:process parameter inside of your parent
<application> tag or its child component tags, such as <activity>, <service>, <provider>,
or <receiver>.

Figure 13-16. The completed ScrollingActivity.java class code with the startService() at the end of the onCreate()
method

414 CHAPTER 13: Android Services and Threads: Background Processing

You created your own Service subclass called AmbientAudioService to start a MediaPlayer
object (and stop it on exit) so that you could play ambient background audio effects while
your SoundPool effects are being triggered by your users. Then you wrote Java code that
called the Service subclass from the ScrollingActivity subclass using the startService()
method.

In Chapter14, you will learn all about content provider classes in Android, which is an
advanced area that includes SQLite database technology. I saved the most complicated
chapter for last. As you can see, I am as always trying to cover things in the most logical,
optimal fashion, as you progress through this journey to learn Android.

http://dx.doi.org/10.1007/978-1-4842-2268-3_14

415© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3_14

Chapter 14
Android Content Providers:
Datastore Concepts
This chapter takes a look at how Android stores data and provides content to an application,
using what the Android 7.1.1 (and earlier) OS “jargon” calls a content provider. This chapter
covers how to share the provided content, as well as how to access, modify, update, and delete
the data that these content providers provide. You will also take a look at some of the content
providers for contact management that come installed as a part of Android 7.1.1 OS itself.

The topics have become significantly more advanced as you have progressed from one
chapter to the next over the course of this book, and this chapter is no different. Data
structure access is significantly more complex than event handling, multimedia content,
or even UI design. This is because it involves SQLite database design, and therefore,
you need to know how any given database is designed, in order to be able to access its
database structure correctly.

For this reason, I am going to provide you with the foundational basics of database design
during this chapter, as I have often done for other core topics for which deep knowledge
is needed for Android 7.x development, such as user interface design, digital imaging, 2D
animation, digital video, digital audio, services, threads, and processes.

Content provider (database) usage in Android 7.1.1 also involves requesting security
permissions for the application, for different types of content provider (database) access, such
as “read” and “write” access. As you’re probably surmising by now, since you have been
paying close attention during this book, this is accomplished using your Android Manifest XML
application definition file, by adding in the appropriate Android <permission> child tags.

This chapter begins with a high-level overview of exactly what Android content providers
are, as well as what they can do for your Android 7.1.1 applications and your end users.
After that, you will learn some foundational information regarding database theory, and learn
about a SQLite database API used in Android OS. Then you will take a look at the various
database structures provided with the Android OS, which you can use with your contact

416 CHAPTER 14: Android Content Providers: Datastore Concepts

management and new media endeavors, since they have already been created and installed
in the Android OS. After that, you will create a ContactManager Activity subclass, which will
allow you to learn the basics of how data is accessed.

Overview of Android Content Providers: Sharable Data
The term “content provider” is unique to Android OS development. It means nothing more
than a datastore of data values, and is primarily found in the form of SQLite databases,
which are an integral part of the Android OS. You can use the content provider SQLite
databases that are provided as an integrated part of the Android OS, or you can create your
own content provider databases for your application if you want, although that topic is too
advanced for this Absolute Beginner’s book. If you want to look for books that are dedicated
solely to the topic of Android SQLite database design, go to www.apress.com and enter
“Android SQLite” in the search field at the top.

An Android content provider provides you with access to sharable data structures,
commonly called databases, which the Android OS has chosen to use for their sharable data
structures because databases have the most high-level features, which unfortunately also
makes them much more complicated, hence this final (advanced) chapter. The general high-
level procedure for utilizing a database management system (DBMS) is as follows:

1. Get permission to read from a given database. If you wish to modify
your database’s content, you will also need to get permission to
write to your database.

2. Query (search for and find) the data in the database management
system (SQLite) using the “key,” which, in Android, uses the _ID data
field. You will be learning about fields very soon.

3. Access (read into memory) the data in the database management
system (SQLite) once you have located it using the query and _ID
key. The SQL and SQLite DBMS is open source (free).

4. Modify (over-write, append to, or delete) the data in your database
management system (SQLite) once you have located it, read it, and
ascertained that your data needs updating.

When accessing data, you might read the data, write to the data (change the values of the
existing data), append (add) new data onto the database structure, or delete existing data,
based on the type of permission and level of security permission that has been established
for your application in the Android manifest XML file. Data can be in Android internal
(operating system) memory; in an internal (Android API) SQLite database; or in an external
Android device storage location, such as an SD card, or even on an external database
server, which would be remote to Android OS as well as being remote to the Android device
hardware (and require network connection).

http://www.apress.com/

417CHAPTER 14: Android Content Providers: Datastore Concepts

Database Fundamentals: Concepts and Terms
A database management system, or DBMS, is a data storage system that I like to call an
“engine” as it is actually a collection of algorithms at its core, which can store data over long
periods of time (depending on the storage hardware medium) so that it can be accessed,
read, and updated. This capability is quite desirable for a software development platform
like Android. If you have never been exposed to database technology, this section covers
the database fundamentals. Popular database software packages that you may be familiar
with include Oracle, Microsoft Access or Claris FileMaker Pro. The company that is currently
developing FileMaker is known as FileMaker, Inc.

As you know, there is a complete open source DBMS API inside of Android OS called
SQLite, which is actually something called a Relational DBMS, or an RDBMS. An
RDBMS is based on relationships that can be drawn between data that is arranged using
tables. These data tables support rows of data and columns of data. This is similar to
a spreadsheet program like Excel, except that data in a relational database is not usually
visible all at the same time, like data in a spreadsheet. It is important to note that you can
generate reports using a database that can achieve the same result, if you want to (once you
learn about all of the programming that is involved).

Each database table column contains a similar type and classification of data within any
given database record structure, and this column is generally called a database field. This
means that, conversely, each row in your database table represents one entire database
record. Generally, when you are writing your database records, you will write one entire row
or record of data when you first add that record, usually using a form in the front-end (user
interface) application allowing users to interact with the database engine itself. On the other
hand, when you search a database for information, you will generally be looking through just
one of the data table’s columns, a collection of one type or classification of data field, for a
specific piece of data or information.

Database columns (fields) can contain many different data types, such as numbers, text,
or even references to data stored somewhere else, outside of the database structure itself,
such as an image file on a hard disk drive. It is important to note that each data field needs
to contain the same exact data type as the other data fields in that same column, as you can
see in Figure 14-1. Each row is a database record, and a database record will usually contain
all sorts of different data types across the different data table columns.

418 CHAPTER 14: Android Content Providers: Datastore Concepts

The classifications of data fields that Android SQLite data records contain usually spans
names (text), numbers (int), and references (addresses) to things such as e-mails, websites,
social media profiles, passwords, and so on.

One of the most popular database programming languages in the world is called SQL, which
stands for Structured Query Language. You will be learning about SQL, as used in SQLite
API, later on in the chapter.

The structured part comes from the structured tabular format of a relational database, and
the query part comes from the fact that these tables of data are designed to be efficiently
searched through, using a specific data value. The language part comes from the fact that
SQL has evolved over time into a database programming language, which is quite complex
and involved. In fact, I would speculate that there are almost as many books regarding SQL,
DBMS, and RDBMS topics as there are on Java 8 programming for the Android OS.

Caution Once the record structure and data fields that define your DBMS record structure have
been set up, make sure not to change this record structure later on, if you are designing your own
database. This is because currently loaded records (the data field organization) may not fit into the
new database structure definition correctly. It is best to design your database structures up-front.
The database design process is especially critical to the success of your DBMS project over time.

Figure 14-1. Basic overview of an RDBMS database (SQLite)

419CHAPTER 14: Android Content Providers: Datastore Concepts

If you have a massive amount of data fields (columns) in the database table, you will
probably want to optimize your database using more than one table of data. In real-world
database design, the theory of which is largely beyond the scope of this introductory book,
you will want to have more than one database table for search and access performance,
as well as for organizational reasons. In fact, the Android OS uses more than one database
table for its end-user information storage and access, as you will soon see, later in the
chapter when you get into the Contacts database table structure. This is quite complex,
spanning quite a large number of database tables.

The way to create multiple database tables that act together as one, massive, unified
database is to have a unique key (unique index) for each record in each of the tables. That
way, information for a single data record can span more than one database table, by using
this unique key. In Android OS, this key is called an ID and is always designated using the
system database constant _ID in Android’s SQLite databases. For instance, if the key, or
_ID value, is 154, your e-mail information and phone information could be contained in two
different data tables, but stored under that same key (index) value, and therefore will always
be accurately associated with the correct Android user account even though the associated
data will most likely span across multiple DBMS tables.

SQLite: An Open Source Database Engine
As you know, the SQL in SQLite stands for Structured Query Language. The “Lite” part
denotes that this is a lightweight version of an RDBMS, intended for embedded use in
consumer electronics devices, and not a full-blown DBMS, as would be used on an
advanced computer system such as a LAMP (Linux, Apache, MySQL, PHP) database server.
It’s also interesting to note that SQLite is included in WebKit HTML5 browsers. All you really
need to know about SQLite API is that it is part of the Android OS, and that you can use it
for data storage.

There’s a full SQLite API package included with the Android OS that contains all of the
DBMS functions needed to work with SQLite. These are contained in a series of classes
and methods in the android.database.sqlite package. All that you have to do is learn
how to use them properly, which is not at all a simple task, given that this SQLite database
structure complexity has evolved during over the 25 versions of Android (7.1.1 API Level 25).
I’ll introduce you to the basics during this chapter, so this book provides coverage of all the
key Android component types.

SQLite is designed specifically for embedded systems use (similar to JavaME’s memory
footprint), and as such, it has only a quarter megabyte (256KB) of total memory footprint.
This memory space is utilized to host relational database engine implementation. SQLite
supports a minimum (standard) set of relational database functions and features, including
the most common SQL syntax keywords; basic database operations like read, write, and

Note If you want to research SQLite a bit more on your own, which would be a great idea, if your
Android application needs to leverage SQLite databases extensively, SQLite has its own website! This
website is kept up to date on a regular basis. You can check it out at: http://www.SQLite.org

http://www.sqlite.org/

420 CHAPTER 14: Android Content Providers: Datastore Concepts

append; and prepared statements. These features are enough to provide robust Android OS
database support.

SQLite supports three different data types: TEXT, which is known as the String value in Java,
INTEGER, which is known as the long value in Java, and REAL, which is known as the double
value in Java. When working in SQLite, all other programming data types must be converted
(also referred to as “cast” in Java 8) into one of these SQL compatible data types, before
entering them into any database data field.

It is important to note that SQLite doesn’t validate any of the data types that may be written
into its data fields (table columns) as being one of the required data types. This means that
you can write an INTEGER value into a TEXT (String defined) data column, and vice versa, so
you will always need to pay close attention to exactly what you are doing with SQLite for this
reason. If you don’t validate what you are doing using your Java code, you may get a wrong
data type result written into one of your SQLite database fields.

To use SQLite in Android, you construct your SQLite statements for creating and (or)
updating your database, which will then be managed by Android OS. When your app creates
a database, the database structure will be kept in a specialized Android directory, which will
always utilize the following Android OS database path address:

DATA/data/YOUR_APPLICATION_NAME_HERE/databases/YOUR_DATABASE_FILE_NAME_HERE

Next, you will take a look at the many different types of predefined content providers that
come standard with the Android OS. You will also be looking at how these are accessed
within the Android 7 operating system and its android.content package. You will also be
looking at the content provider and content resolver classes and methods used in Android to
access its internal database structures that are actually a part of the Android OS.

There are a plethora of Android database structures for all of the different functional areas in
the OS. This is why you are getting up to speed on this in the next section, because as you
learned in the first part of the chapter, the first step in using any SQLite DBMS is familiarizing
yourself with, and completely understanding, its database structure.

Android’s Built-In SQLite DBMS Content Providers
A significant number of SQLite-based database structures are “hard-coded” into the
Android OS, so that users of Android devices can handle things that they expect from a
phone, iTV set, e-reader, smartwatch, or tablet. These include contact directories, address
books, calendars, camera picture storage, digital video storage, music albums (digital audio
storage), phone books, and so forth.

The most extensive of the SQLite database structures is the Contacts database, which
contains many different tables (essentially acting as sub-databases, or sister databases, if
you like) containing personal information, such as contact names, phone numbers, e-mails,
preferences, social media settings, and so forth. These structures are very complex, and
since this book is focused on programming for Absolute Beginners, and not database theory,
you will be working with the primary contact name database, to keep it more about Java
programming and Android content providers, rather than about database structure and theory.

421CHAPTER 14: Android Content Providers: Datastore Concepts

The base-level interfaces of the android.provider package allow you to access those data
structures that define the setup and personalization of each user’s Android device hardware.
Obviously, the data in each of these data structures will be completely different for each
user’s smartphone, smartwatch, tablet, phablet, e-reader, iTV Set, or automobile dashboard.

Android 1.5 Contacts Database Contact Provider
Table 14-1 lists the now deprecated Contacts database interfaces for Android 1.5, 1.6, or 2.0,
which can be found on the Android Developer site. Deprecated, in this case, means that this
Contacts database has been replaced with a more modern ContactsContract database
structure. However, the Contacts database structure is still valid, and will work just fine for
those users who are still using Android OS versions 1.5, 1.6, or 2.0. The Contacts DBMS
structure, shown in Table 14-1, was redone from scratch, starting in Android OS Version 2.1.

As mentioned, if you browse the current Android Developer website documentation, you will
find that these interfaces listed in Table 14-1 are all described as being deprecated. The
reason that these are called interfaces is because they define how and where you are going
to interface with the data, using the format database.table, so a table that has people in it
is referenced using Contacts.PeopleColumns, as you can see in Table 14-1, row 3. You will
be taking a look at how these structures have increased in complexity later in the chapter.

Deprecated Database Structures: Software Upgrades
Deprecated is a programming term that means that classes, methods, constants, interfaces,
and even database structures have been replaced by other more modern programming or
data structures. This usually happens during the release of newer versions of a programming
language (such as Java 8) or a new Android API version such as the recent Android 7.1.1.

Table 14-1. Original Android Contacts database and its data table interfaces to be used for Android 1.5, 1.6, or 2.0
support

Database.Table Content Description of what is Held in this Database
Table Structure

Contacts.OrganizationColumns Organization

Contacts.GroupsColumns Groups

Contacts.PeopleColumns People

Contacts.PhonesColumns Phone numbers

Contacts.PhotosColumns Contact photographs

Contacts.PresenceColumns IM presences

Contacts.SettingsColumns Phone settings

Contacts.ContactMethodsColumns Contact methods

Contacts.ExtensionsColumns Phone extensions

422 CHAPTER 14: Android Content Providers: Datastore Concepts

These newer structures replace the older structures, and are usually more robust (fewer
bugs), or more complex (more features), but sometimes they will only differ in how they are
implemented. In the case of a database, they sometimes differ in regards to how the data
fields are distributed amongst the database tables that contain them.

This deprecation is exactly what has happened with the Contacts database interfaces
between Android versions 1.x (1.0, 1.1, 1.5, and 1.6) and 2.0, and Android versions 2.1, 3.x,
4.x, 5.x, 6.0, and 7.x. So database interfaces that work on Android 1.x and 2.0 phones are
different than the ones that work in Android 2.1 through 7.1.1 phones. The newer versions
use more advanced, feature-rich database structures. If you’re going to support 1.x or 2.0
phones, you’ll use database interfaces listed in Table 14-1. This book uses the Android
suggested application support default settings of API Level 15 (Android 4) through API Level
25 (Android 7.1.1), so you need to use a more advanced database structure that replaces
the original database structure used prior to Android 2.1 (Level 7).

The good news is that deprecated does not mean disabled. In this case, it more accurately
means, “not suggested for general use, unless you need to support pre-2.1 OS versions for
your Android users.” So, if you need to support Android 1.5, 1.6, and 2.0 phones, you can use
the interfaces listed in Table 14-1. Note that inside Android Studio, deprecated structures and
method calls are lined out in the Java code, to show the developer that they are deprecated.
As you know, this can be a bit unnerving, since most devices these days are 2.3.7 through
7.1-compatible, so I suggest you take Android’s “advice” and develop for API Levels 15
through 25, or later. This is suggested in the New Android Application Project series of
dialogs, which you have already encountered several times over the course of this book.

You will not be able to access data from newer database tables until you add support for the
2.1 through 7.1.1 SQL DBMS structures in your code. You can do this by detecting which
OS your user is using, and having code sections that deal with each (1.x through 2.0, versus
Android 2.1 through 7.1.1) database access structure differently, using different
ContentProvider and ContentResolver Java code structures.

Deprecation is a common programming situation that developers need to get used to.
Hence, I am covering it during this book as needed, so that as an Absolute Beginner, you
can learn all about deprecation now, and not be blind-sided by this advanced programming
and application development concept later on down the line.

With Android 7.x OS, deprecation is especially prevalent, as different OS versions will feature
different support for the hardware features that manufacturers frequently add to their new
smartphones, iTV sets, smartwatches, e-book readers, tablets, game consoles, automobile
dashboards, and the like. These usually require new APIs, or changes to the existing Android
APIs, in order to support these new hardware features.

Note If you want to be able to access every new feature, you can always have your Java code
detect which version of Android a device is using, and then use custom code that delivers your
optimal application functionality for each specific Android OS version.

423CHAPTER 14: Android Content Providers: Datastore Concepts

For instance, Android 1.5 was initially designed for use on smartphones. Android added
touchscreen gestures in Android version 1.6, and camera support in version 2.0. Next,
tablets and e-readers came along, and Android 3.0 added feature support for large screen
consumer electronics devices such as computers, tablets, or iTV sets.

Later, iTV sets came out in huge volumes, and so Android version 4.0 added more iTV set
support, and the TVDPI constant for 1280 by 720p resolutions was added to the API. Next,
Android game consoles, such as the nVidia Shield, came out, and faster screen refresh
(60 FPS) was added to Android 4.1. Likewise, faster touchscreen refresh (60 FPS) was
added to Android 4.2, which focused on enhancing its i3D gaming capabilities.

Recently, smartwatches and smartglasses have become popular, and so the faster Bluetooth
4.0 standard support was added into Android 4.3 and 4.4. Android 5.0 featured new health
API additions that allow physical fitness hardware to be utilized with the Android OS, as well
as Bluetooth 4.1. Android 6.0 featured new Android TV and Android Auto API additions, as
well as Bluetooth 4.2, with Bluetooth 4.3 in Android 7.0, along with the Vulkan i3D rendering
engine, and Java 8 support. And so the version enhancements will go on and on, driven by
the Android hardware manufacturers, and end users’ demands for increased performance.
Manufacturers number in the hundreds internationally, because Android is an “open”
operating system platform.

Table 14-2 lists some of the content providers that are compatible with the new Android
versions (2.1 through 7.1.1) and that are used for manipulating contact information. A vastly
different content provider database structure approach solidified in API Level 8 and beyond
may well be the primary reason that the defaults in the New Android Application Project
dialog suggests (that is, defaults to) API Level 15 through 25 support.

All of these Contact related database tables replace the deprecated versions listed in
Table 14-1. If you want to look into these data tables in greater detail, detailed descriptions
of these are available from the Android developer site at this link:

https://developer.android.com/reference/android/provider/package-summary.html

As you can see in Table 14-2, the ContactsContract database table structure is an order of
magnitude more complex than the simple Contacts database table structure that was used
prior to Android 2.1. With this complexity comes power and flexibility, but at the cost of more
complex Java code needed to implement these databases and their features inside your
Android applications. This is a complex topic for the Absolute Beginner.

Note Over time Android version functionality gets more and more difficult to keep track of. Indeed
Android already has over two dozen different OS versions (API Levels) that your code should work
across. Keeping track of all these current programming constructs, database structures, and logic
mazes is enough of a challenge for most, without another layer on top, that involves remembering
which Java constructs and interfaces work, or do not work, with any given OS version. This is one
of the primary reasons that Android application programmers are so well-compensated financially.

https://developer.android.com/reference/android/provider/package-summary.html

424 CHAPTER 14: Android Content Providers: Datastore Concepts

Next let’s take a look at the MediaStore and CalendarContract databases and their tables,
and then you will get into how to use the Uri object you learned about earlier in the book,
using your content:// content provider URI.

Table 14-2. ContactsContract database tables in the Android provider package, along with the types of data they contain

Database.Table Interface Database Table Contents

ContactsContract.BaseSyncColumns Generic columns used by sync adapters

ContactsContract.CommonDataKinds.BaseTypes All type of datatypes supported

ContactsContract.CommonDataKinds.CommonColumns Common columns across specific types

ContactsContract.ContactNameColumns Contact name and contact name
metadata columns in the RawContacts
database

ContactsContract.ContactOptionsColumns Columns of ContactsContract.
Contacts that track the user preference
for, or interaction with, the contact

ContactsContract.ContactsColumns Columns of ContactsContract.Contacts
refer to intrinsic contact properties

ContactsContract.ContactStatusColumns Data used for contact’s status info

ContactsContract.DataColumns Columns (joined) from the data table

ContactsContract.DataColumnsWithJoins Combines all Join Columns returned by
ContactsContract.Data table queries

ContactsContract.DataUsageStatColumns Columns in the Data_Usage_Stat table

ContactsContract.DeletedContactsColumns Deleted Contacts Data

ContactsContract.DisplayNameSources DataType used to produce display name

ContactsContract.FullNameStyle Constant for combining into full name

ContactsContract.GroupsColumns Data used for contact’s grouping info

ContactsContract.PhoneLookupColumns Data used for contact’s phone lookups

ContactsContract.PhoneticNameStyle Constants for pronunciation of a name

ContactsContract.PresenceColumns Additional datalink back to _ID entry

ContactsContract.RawContactsColumns Data used for the RawContact database

ContactsContract.SettingsColumns Data used for contact’s OS settings

ContactsContract.StatusColumns Data used for social status updates

ContactsContract.SyncColumns Sync Information across accounts

425CHAPTER 14: Android Content Providers: Datastore Concepts

The Android MediaStore Content Providers
The other collections of content providers that you may find important for new media
content within the Android OS are the MediaStore content providers. These are listed in
Table 14-3.

Later in this chapter, you will look at how to declare content providers for use, access them,
read them, modify them, and append to them. First, let’s take a look at one more often-used
Android OS database, the CalendarContract database, and then you will look at how to use
Uri objects to reference Android content providers.

The Android CalendarContract Content Providers
The CalendarContract databases include eleven calendar-related databases, each
supporting various calendar functions, including events, attendees, alerts, reminders, and
other similar calendar-related data support functions.

The reason that the Android operating system provides pre-built support, via its android.
provider package, for your Android calendar database access is because it would be logical
for applications that access these calendar features to be able to add customized, new
capabilities to the existing Android calendar feature set.

Table 14-4 shows the CalendarContract content provider interfaces, as well as the different
types of calendar functional data they access, and which they will allow you to reference
directly using a content provider.

Table 14-3. The Android MediaStore Content Providers

Database.Table Interface Database Table Contents

MediaStore.Audio.AlbumColumns Album information

MediaStore.Audio.ArtistColumns Artist information

MediaStore.Audio.AudioColumns Audio information

MediaStore.Audio.GenresColumns Audio genre information

MediaStore.Audio.PlaylistsColumns Audio playlist information

MediaStore.Files.FileColumns Fields for master table for media files

MediaStore.Images.ImageColumns Digital images

MediaStore.Video.VideoColumns Digital video

MediaStore.MediaColumns Generic media storage

426 CHAPTER 14: Android Content Providers: Datastore Concepts

Next, you will take a look at how the content:// area in Android OS is used to access these
database structures using a content provider URI. Fortunately, you are already comfortable
with Uri objects, so you have a head start. After we take a look at how content:// URIs are
used with SQLite databases in Android OS, we will create yet another pure Android design
pattern Activity in Android Studio 2.3 to get you more experience with the bootstrap apps
that Android Studio will code for you and then get into how to code access and updates to
basic contact data records such as those contained in the ContactContracts SQL DBMS
structure held in the android.provider package that we learned the basics about during this
section of the chapter.

Referencing the Content Provider: Using a Content URI
If you want to be able to tell the Android OS what content provider you want to access, it is
important that you understand the concept of the Content URI. You have used Uri objects
before, so you are very familiar with the function they play in accurately referencing data
(content) pathways in Android apps. Content providers have a specialized path format. Just like
the Internet’s HyperText Transfer Protocol has a special format, HTTP://, Android content also
has a special format that is very similar (and thus easy to remember), which is: content://.

The complete URI for an Android content provider contained in your URI object will follow
this data path format:

content://Authority/Path/ID

Consider in the following (hypothetical) ContactManager Apress Contact database content URI:

content://com.example.user.contactmanager/apress/androidapps/12345

Table 14-4. CalendarContract databases in the Android provider package, and the type of data that they contain

Database.Table Interface Database Table Contents

CalendarContract.AttendeesColumns Columns (joined) from attendees database

CalendarContract.CalendarAlertsColumns Data used for calendar alerts function

CalendarContract.CalendarCacheColumns Data used for calendar cache function

CalendarContract.CalendarColumns Calendar columns that other URIs can query

CalendarContract.CalendarSyncColumns Generic columns for use by sync adapters

CalendarContract.ColorsColumns Data used for calendar colors function

CalendarContract.EventDaysColumns Data used for calendar event day function

CalendarContract.EventsColumns Columns (joined) from the events database

CalendarContract.ExtendedPropertiesColumns Data Used in Calendar Extended Properties

CalendarContract.RemindersColumns Data used for calendar reminders function

CalendarContract.SyncColumns Sync info columns used by other databases

427CHAPTER 14: Android Content Providers: Datastore Concepts

In this imaginary URI, com.example.user.contactmanager is the Data Authority, apress/
androidapps/ represents the Data Path, and finally, the 12345 represents the _ID key for the
actual Data Record that is being accessed by the URI path (using an Android Uri object).

A Content URI will always contain four necessary parts: The schema to use, in this case,
content:// as well as a data authority, an (optional) data path to the data, and the _ID of
the data record that you want to access. The schema for content providers is always the
word content. A colon and a double forward slash (://) always appear in the front of your
URI reference, and separates the data schema from the data authority.

The next part of the URI is known as the data authority for the content provider. As you
might have expected, the authority for each content provider must be unique. An authority
naming convention usually follows your Java package naming convention. Most organizations
choose to use the backward dot-com domain name of their organization, plus a data qualifier
for each content provider. Thus, the previous example would assume that you own the
example.com domain name, which, of course, you do not, as it is owned by IANA.

Since the Android developer documentation recommends that you utilize the fully qualified
class name of your ContentProvider subclass, you might then name your ContentProvider
subclass ContactManager.java if you were following this example Content URI. I am going
to use the ContactManager.java Activity subclass name in the next section, to follow the
Java class naming convention used throughout this book.

The third part of the URI standard is the data path to the data. Although it is optional, it
is a fairly standard practice for organizational purposes. You would not usually put your
data in the root folder of a server where it would get lost; instead, you would place it in an
Apress folder, using subfolders for each of the literary database tables. In this example, one
subfolder would be a table named androidapps.

The content provider for the Android MediaStore (which you looked at in the previous section
of the chapter) database, for example, will utilize different path names to make sure that the
audio, image, and video files are kept in separate data type (and data table) locations. By
using different path names, one single content provider can accommodate many different
types of data that are in some way related, such as the different new media content types,
for example, kept in the MediaStore content provider in the different data tables. For
unrelated data types, it is standard programming practice that you would want to utilize a
different content provider subclass, as well as a different data authority (and data path, for
that matter) for each database.

The last URI reference specification component is the ID, which, as you may have surmised,
needs to be unique and numeric. This ID, or _ID in Android, is utilized whenever you want to
access one single database record.

So, as you can see, the URI reference specification progresses from the most general or high-
level (content://) specification, through the authority (server name), down through the pathway
(folder hierarchy) to the database (directory path), and ultimately, to the data record itself (_ID).

Since you are using the default OS support range suggested in the New Android Application
Project of API Level 15 (4.0) through API Level 25 (7.1.1), you will use the more modern (that
is, not deprecated) content provider for this Android content provider example, which you
will be creating during the rest of this chapter.

428 CHAPTER 14: Android Content Providers: Datastore Concepts

Let’s get started by creating your new Basic Activity subclass of AppCompatActivity (this
will be named MainActivity.java by Android Studio 2.3), since we have already explored
the Empty Activity, Navigation Drawer Activity, Fullscreen Activity and Scrolling Activity
during other chapters. We’ll call this Basic Activity project the SQLiteProvider project.
For your UI design layout, we will take a closer look at Android’s RelativeLayout container
class, since it is one of the most popular UI layout containers prior to the CoordinatorLayout
introduced with the new Visual Design Editor (and can be used inside a CoordinatorLayout,
as you will soon see), and this is a great fit for use with SQLite database tables.

Creating a Basic Activity: The SQLiteProvider Project
Let’s create a new Android Studio project using an Android design pattern (Basic
Activity) that we have not used thus far, called SQLiteProvider, so that we can take a close
look at at least half of these primary app Activity patterns (notice that some are for helper-
activity use, such as login, settings, ads, and maps) during this book.

1. Go into your DigitalAudioSequencer project, and use the File ➤
Close Project menu sequence, and close the current project, which
will open the Android Studio 2.3 start (launch) menu.

2. Select the Start a new Android Studio project option. Notice on the
left that you already have created four different apps, using four of
the most popular pure Android design patterns.

3. In the Application Name field name the Application (and Project)
SQLiteProvider, as is shown in the left panel in Figure 14-1, and
leave the other options at their default (or automatic) settings, then
click the Next button, and proceed to the Select the form factors
your app will run on dialog.

4. Select the default Phone and Tablet option, shown in the middle
of Figure 14-2, to create the standard Android application type
(rather than using the Wear, Auto, iTV, or Glass APIs), and then hit
the Next button. Notice I scrolled the drop-down menu, to show
that it does not even offer Pre-API 8 options, so everyone will most
likely be using the API 7 and later DBMS structures, which is what
my examples will use during the rest of this chapter. That said, I’ll
show you in a future section how to manually set minimum and
target API levels in the Android Manifest XML definition, in case you
ever wanted to develop for Android 1.5 through 2.2.

5. Select the Basic Activity Android design pattern seen on the left
side of Figure 14-3, and click Next. We’ve now covered five of seven
Android design patterns that Android Studio will create for you!

6. Name the Title SQLiteProvider, and leave the rest of the default
Android naming conventions the same, as shown on the far right
panel in Figure 14-2. Click the Finish button to have Android Studio
2.3 create your bootstrap project, which we will look at in the next
section of this chapter.

429CHAPTER 14: Android Content Providers: Datastore Concepts

Once you become an advanced Android developer, be sure and check out the other two
(Tabbed and Master-Detail Flow) design patterns, seen in Figure 14-3, which utilize a
more advanced Fragments UI design approach. Fragments are a bit too advanced for an
Absolute Beginner’s title.

Figure 14-2. Configure your SQLiteProvider project for API 15 through 25 by using the New Android Project series of
dialogs

Figure 14-3. Select the Basic Activity Android design pattern, and click the Next button, to advance to the Customize
dialog

430 CHAPTER 14: Android Content Providers: Datastore Concepts

Examining and Testing Your SQLiteProvider Bootstrap
Let’s take a quick look at how this Android application is set up before we start modifying it, as
the best approach for an Absolute Beginner is to make incremental modifications to an already
working Android application. Click on the MainActivity.java tab, shown selected in Figure 14-4,
and open the import section, by clicking the plus (+) icon on the left. As you can see, we are
using the Bundle, View, and AppCompatActivity now used in most all Android 7.x and later
appluications, as well as several user interface design classes we have learned about during
the book, including the Snackbar, Toolbar, FloatingActionButton, Menu, and MenuItem classes.
Since the database code I am about to embark on in this chapter is complex, I wanted to use
an Android design pattern which would reinforce what you’ve learned thus far in the book, and
then build upon that knowledge with new Android provider classes.

You should be familiar with all of the Java code in Figure 14-4, since we have used and
gone over it in previous chapters, which is why I chose this Basic Activity design pattern,
so that we could cover other subjects and classes in this chapter. Next, let’s right-click the
activity_main.xml file in the /app/res/layout folder, and use Jump to Source to open
it in a tab, as seen in Figure 14-5. This top-level UI design should also be familiar, as it is
almost identical to the one you learned about back in Chapter 8 (see Figure 8-11), except it
references the content_main layout.

Figure 14-4. Click on the MainActivity.java tab, and examine the classes used (imported), and how the methods are set up

http://dx.doi.org/10.1007/978-1-4842-2268-3_8
http://dx.doi.org/10.1007/978-1-4842-2268-3_8Fig11

431CHAPTER 14: Android Content Providers: Datastore Concepts

Next, click on the content_main.xml tab, the contents of which can be seen in Figure 14-6, and
take a look at the basic Hello World TextView content, inside a RelativeLayout user interface
layout container. The RelativeLayout is one of the oldest layout containers in Android, and one
of the most popular, along with the FrameLayout, GridLayout and the LinearLayout containers.

Since RelativeLayout is so popular, I thought we’d take a deeper look at it during this
chapter, along with a deeper configuration of the Android manifest XML definition file, while
we learned about Android SQLite database management systems and content providers.
I’m trying to pack as much basic information about the voluminous Android OS into this
Absolute Beginner’s title as possible.

Let’s start with the easy <TextView> child tag which uses wrap_content layout configuration
constants and uses the hard coded android:text="Hello World" parameter to configure
TextView content. Get some practice using Android constants now, and add a Hello World
constant to your strings.xml file and then reference it using @string/hw.

The parent <RelativeLayout> layout container tag is far more complex in its parameter
configuration, as you can see at the top of Figure 14-6. It uses a content_main ID, so it can
be referenced from the activity_main.xml file’s <include> child tag. It uses match_parent
layout configuration parameters, so it fills the parent layout container, and uses four padding
parameters to reference the /app/res/values/dimens XML definitions for app dimensions.
It defines a scrolling_view_behavior using the app:layout_behavior parameter, defines
Context as the MainActivity class, and specifies that it will be shown in the activity_main
layout container definition.

Figure 14-5. Open the activity_main.xml tab and examine the top-level CoordinatorLayout and AppBarLayout UI
structures

432 CHAPTER 14: Android Content Providers: Datastore Concepts

We will be adding to this RelativeLayout UI design during the chapter to add more TextView
UI elements as well as other UI elements that will allow us to create a front end for this
Activity that will allow us to interface with the ContactsContract SQLite DBMS that is part of
the Android 7.1.1 OS.

Before we start modifying the Android manifest XML definition for this project in the next
section of the chapter, to add SDK support specifications and SQLite DBMS permissions
specifications, let’s test the bootstrap code that Android Studio 2.3 created for us to make
sure it works, before we start transforming it into a DBMS application.

Use the Run ➤ Run ‘app’ menu sequence to start the Nexus 5 AVD, and launch the
SQLiteProvider application, which can be seen in the left-hand side of Figure 14-7, and
is thus working well enough to launch in the emulator. Therefore all we have to do now
is to test the code concerning the user interface elements (the OptionsMenu and the
FloatingActionButton on the upper right and lower right, respectively).

Click the OptionsMenu (three vertical dots) and make sure the Settings option appears,
as can be seen in the right side of Figure 14-7. Then click the FloatingActionButton and
make sure that the SnackBar appears at the bottom of the screen. This is also shown on
the right side of Figure 14-7 (I consolidated screenshots into one Figure). So now you again
have a functional (empty) application and user interface ready to use to create your SQLite
ContactsContract database management application. Now all we have to do is configure
your Android manifest XML definition with database access permissions, and use your AVD’s
Contacts app to create dummy test data to use to make sure our database code we will be
writing after that is actually working properly. This is a complex topic; there are a lot of steps
(and classes) to cover, meaning this will be a long (final) chapter.

Figure 14-6. Click the content_main.xml tab, and examine the top-level RelativeLayout, and its UI configuration
parameters

433CHAPTER 14: Android Content Providers: Datastore Concepts

Next, let’s take a look at how to use the <uses-sdk> and <uses-permission> child tags inside
of the <manifest> tag.

Configuring the Manifest: Uses SDK and Permissions
Open the /app/manifests/ folder, and right-click on the AndroidManifest.xml file, and
choose Jump to Source to open it in a new tab. Add a line of markup under the parent
<manifest> opening tag and type <uses to get the pop-up helper, and select the uses-sdk
option, as is shown in Figure 14-8. Once you double-click on this option, Android Studio 2.3
will add this child <uses-sdk> tag into your parent <manifest> container, and you can
then hit the space bar to get your next pop-up helper parameter configuration drop-down
menu, where you can select minimum or target API level configuration parameters. This
allows you to explicitly define Android OS API level (device software) support.

Figure 14-7. Use the Run ➤ Run ‘app’ menu sequence to test all of the features of the bootstrap app’s user interface
design

434 CHAPTER 14: Android Content Providers: Datastore Concepts

Select, and double-click on, the android:minSdkVersion parameter in the pop-up helper
drop-down menu, shown in Figure 14-9, to insert a Minimum SDK Version parameter. Set
it to a value of 15 (Android 4), and then follow the same work process to set the Target SDK
Version to a value of 24 (Android 7.0) inside of this <uses-sdk> tag.

Now your <uses-sdk> manifest configuration is in place, as shown highlighted in yellow in
the top in Figure 14-10 and we are ready to do the same work process, only with the <uses-
permission> child tag. Type <uses and select uses-permission and hit the space bar and

Figure 14-8. Enter a line of markup after the opening parent <manifest> tag, and type <uses and double-click on
uses-sdk

Figure 14-9. Select the android:minSdkVersion parameter from your drop-down helper menu, and double-click it to
insert it

435CHAPTER 14: Android Content Providers: Datastore Concepts

then type android:name (or select it from the helper) and then in the parameter value helper
drop-down menu find the android.permission.READ_CONTACTS constant from the Manifest.
Permission nested class. This is also shown in Figure 14-10. The documentation containing
all of these constants can be found on the Android Developer website, if you are interested,
by following this URL:

https://developer.android.com/reference/android/Manifest.permission.html

Now that you have your permission to READ the CONTACTS database, follow the same
exact work process and add the permission to WRITE to the CONTACTS database. This is
done by adding a second <uses-permission> child tag to the <manifest> section of your
AndroidManifest.xml definition file, as is shown in Figure 14-11.

Figure 14-10. Use the parameter constant value drop-down helper to insert the READ_CONTACT permission in the
manifest

Figure 14-11. Use the parameter constant value drop-down helper to insert a WRITE_CONTACT permission in the
manifest

https://developer.android.com/reference/android/Manifest.permission.htmlContactGalaxy.javaMainActivity.java classtesting

436 CHAPTER 14: Android Content Providers: Datastore Concepts

Notice in Figures 14-10 and 14-11 that you do not have to have the developer information
page for the Android Manifest.permission nested class (see previous link) open to ascertain
what all of these permission constants do, although reviewing these is a great way to see
what you will be allowed to do in your Android applications. This is because the pop-up
permissions constants helper has a secondary (pale yellow) pop-up helper that you can
use to see what each of these constants are, and what they are used for, as well as how
dangerous it is considered for an Android developer to utilize it.

As you can see in Figure 14-12, you have now added child tags (objects) to your manifest
that define what device support your Android application will provide, which Google Play
Store will use to define which device users will be able to see your application in the store.
The uses-permissions (child) objects will be used to define what SQLite operations the
application will be able to perform on the ContactsContract Android database.

Next, we need to create some dummy test data, to use with this app. We can use your
Nexus 5 AVD to do this.

Creating Your Dummy Contact Database Using an AVD
When your AVD launches, you may have noticed that it appears to be a fully functional
Android device, and for the most part, it really is! Touch the circle icon at the bottom of the
AVD emulator to switch from your app test (seen in Figure 14-7) to get the main device
screen, shown on the left side of Figure 14-13. Click the apps icon, shown circled in red, and
then launch the Contacts app, shown circled in red in the center of Figure 14-13. This will
launch the Contacts app, shown on the far right in Figure 14-13, where you can click the Add
Contact icon in the lower-right corner (a plus + next to a person). Do that now, as you need to
add a few contacts to work with after we start writing code that will display, add to, edit and
remove these contacts from the SQLite database management system (API) in Android OS.

Figure 14-12. The finished <manifest> child <uses-sdk> and <uses-permission> tags configure how your app can be
utilized

437CHAPTER 14: Android Content Providers: Datastore Concepts

The first screen that you will see the first time that you try and add a new contact is the
“Your new contact won’t be backed up. Add an account that backs up contacts on-line?”
screen, which can be seen on the far left in Figure 14-14. Select the KEEP LOCAL option,
which is the Button user interface element on the left, shown circled in red. This will write
the Contacts database to your AVD emulator, so that it can be accessed by the app you are
going to code during this chapter.

The next screen, seen in the middle of Figure 14-14, is the Add new contact screen. Notice
that it indicates that it is “Saving to: Phone-only (unsynced contact)” on the top left of the
form, shown circled in red. Click in the Name field and enter a faux (dummy) name data value.

As you can see in the far right side of Figure 14-14, I decided to use some popular Star Trek
characters, including Mister Spock, Captain James Tiberius Kirk, and Nyota Uhura. I entered
Mister Spock in the Name field, which uses a symbol that looks like a person (head and
shoulders) and the Android onscreen keyboard also appeared, just as it would on a real-
world smartphone.

When I was finished, I clicked on the seafoam green add contact icon, shown circled in red
at the bottom-right corner of the third screen, seen in the far right pane in Figure 14-14.

Figure 14-13. The Nexus 5 AVD simulates a real-world Android Smartphone, including all OS UI functions and
standard apps

438 CHAPTER 14: Android Content Providers: Datastore Concepts

This entered the Name of the first Contact record, and I was then ready to add a phone
number and an e-mail address, which we will proceed to do next.

The next data field we can add dummy data in is the Phone Number field, which uses a
phone handset symbol. Enter a fake phone number, I used 1 234-567-8910, and click the
seafoam green enter (done, proceed to next field) button, shown circled in red in the lower
right-hand corner of the left-hand pane in Figure 14-15.

To remove the onscreen keyboard and see the rest of the data field inputs, I clicked on
the keyboard icon shown circled in red in the left-hand pane in Figure 14-15, underneath
the enter and proceed to next data field entry button. This should toggle off (remove) the
onscreen (virtual) keyboard, so we can see the lower data fields.

As you can see in the middle pane of Figure 14-15, the first time that you toggle an AVD
virtual keyboard off, you will get the Change keyboard dialog. This dialog provides you with
a slider switch, which if you drag it to the left position, will allow you to choose to use your
physical workstation keyboard with the emulator, instead of the current setting, which sets a
virtual keyboard function to “keep it on the screen while physical keyboard is active.”

After you toggle the virtual keyboard left (off) you will be able to see the rest of the form,
which can be seen in the right hand pane in Figure 14-15. Enter an e-mail address in the
E-mail Address field, shown using an envelope symbol. I used the made-up spock@
vulcan.planet e-mail address, as you can see at the bottom of Figure 14-15.

Figure 14-14. Keep contacts local to your AVD, and start creating the first contact by adding the contact name Mister
Spock

439CHAPTER 14: Android Content Providers: Datastore Concepts

Once you have entered the Contact Name, Phone Number and E-mail Address data, as
can be seen in the right hand pane of Figure 14-15, you will have enough data to work with
during this chapter. Use Check Mark (Done) icon at the top right of the screen, shown circled
in red, to enter this data record, and to advance to the next step.

Figure 14-15. Enter the phone number and e-mail address data fields, and turn off your on-screen virtual keyboard
function

Once you click on the Check Mark button to enter the data record into the ContactsContract
database you are creating, you will get a series of screens prompting you to set a series of
permissions for the ContactsContract SQLite database structure you are about to create by
entering its first data record. This will only happen the first time you add a data record to a
new SQLite database structure.

The first screen, shown in the left pane in Figure 14-16, asks “Allow Contacts to access
this device’s location?” As this is an AVD and there is most likely no GPS hardware on
the motherboard, I selected the DENY button option, since we are focusing just on the
ContactsContract SQLite database and its data during this chapter.

The second screen, shown in the middle pane in Figure 14-16, asks “Allow Contacts to
access your calendar?” As we are not dealing with the CalendarContract database (see
Table 14-4) during the remainder of the chapter, I selected the DENY button option, since
we are focusing primarily on the ContactsContract SQLite database and its data during the
remainder of the chapter.

The third screen, shown in the right pane in Figure 14-16, asks “Allow Contacts to send and
view SMS messages?” As this is an AVD and there is most likely no 4G LTE cellular network
hardware on the motherboard, I selected the DENY button option, since we are focusing

440 CHAPTER 14: Android Content Providers: Datastore Concepts

only on the ContactsContract SQLite database and its data during this chapter, and not on
SMS messaging APIs, which are too advanced for an Absolute Beginners title. After you
finish with these three screens, you should see your newly created Mister Spock contact in
your AVD smartphone emulator.

Figure 14-17 shows the completed (first) contact data entry, in the far left pane in red, as it
would look on a smartphone when it was actually in use, such as when you were making a
phone call to that contact. Now you need to add a couple more data sample contacts, Jim
Kirk and Nyota Uhura, and we’ll be ready to start coding.

To do this you need to retrace the nine primary steps that are shown in Figures 14-13
through 14-15. The way to get back to this position in the emulator is to use the circle icon
at the bottom of the Android OS UI, shown circled in red in Figure 14-17 in the bottom of the
left pane.

This will allow you to again access the apps icon and then click on the Contacts icon. When
you do this you will get the Contacts application start screen, shown in the middle pane in
Figure 14-17, where you will now see the Mister Spock contact you have added listed inside
of the application.

Use the Add Contact icon at the bottom-right corner of the application as you did before,
and bring up the screens that you used to enter contact data in Figure 14-14 and 14-15.
Enter a Jim Tiberius Kirk record using a false phone number and e-mail, and a Nyota Uhura
record using a false phone number and e-mail.

Figure 14-16. Select the DENY option for the three Allow Contacts Screens that would actually come up on real
smartphones

441CHAPTER 14: Android Content Providers: Datastore Concepts

Once you are finished the Contacts entry screen will have all three contacts, which is shown
on the far-right pane in Figure 14-17.

Next, you’re going to learn about Android’s RelativeLayout class, so you can create the
SQLiteProvider UI design.

RelativeLayout: Create Morphing User Interface Design
The Android RelativeLayout class is a good layout container ViewGroup subclass to learn
about in this chapter, as a database data entry UI uses a data entry form UI layout, and
that’s what the RelativeLayout class is optimized to provide. The RelativeLayout class is
most likely going to be used for applications that need to create user interface layouts that
can morph between different screen sizes and shapes. As such, it is a logical fit for use
with databases, and a great UI layout container class to learn about in this chapter, as it is
frequently used, and covered in all of my Android books.

The RelativeLayout class is subclassed from the ViewGroup class, which you have already
read about, so you will use the layout container to create a data entry form and user interface
buttons to trigger the database access functions. You will use Button UI elements as UI
widgets inside of the relative UI layout container, so that users can click on these Button UI
elements to be able to invoke changes to the database based upon the UI elements.

Figure 14-17. After a completed contact record is displayed, do an Add Contact work process twice more to create 3
records

442 CHAPTER 14: Android Content Providers: Datastore Concepts

The RelativeLayout class is a public class that extends ViewGroup, so its Java class
hierarchy is as follows:

java.lang.Object
 > android.view.View
 > android.view.ViewGroup
 > android.widget.RelativeLayout

A RelativeLayout is a fantastic layout container (class) to use in designing a user interface
because it can optimize memory usage by eliminating the need to nest multiple UI
layout objects (ViewGroup subclasses). This will keep your layout hierarchy “flat,” with no
deep nesting of objects, which improves memory usage and processing performance. If you
find yourself using nested LinearLayout containers to create a user interface design, you’ll
be able to replace them with one RelativeLayout container, after you learn the material in
this section of the chapter.

A RelativeLayout is a ViewGroup subclass that displays child View subclass UI widgets
using relative position algorithms. The position of each widget contained inside the parent
<RelativeLayout> is specified using a relative positioning algorithm (parameter) specifying
sibling elements in the parent layout container or the parent layout container itself. The
nested LayoutParams class contains constants that implement algorithms that will scale
and position widgets into positions relative to the parent RelativeLayout container (such as
aligned to the bottom, left, right, or center) or to neighboring widgets as the size and shape
of the Android device display changes. This allows the same UI design to be used on a
smartphone, iTV set, auto dashboard, e-book reader, or tablet.

RelativeLayout lets child widgets specify their position relative to the parent latout container
or to each other by specifying the ID of the widget (or layout) that they wish to position
relatively to. So you can align two elements by right border, or make one below another,
have both centered in the screen, or have one centered to the left of the other, and so
forth. By default, all child views are drawn at the top left of the layout, so you must define
the position of each view using the layout parameters available from the RelativeLayout.
LayoutParams nested class. If you want to investigate this class on your own, you can see
it at the following Android Developer website URL:

https://developer.android.com/reference/android/widget/RelativeLayout.
LayoutParams.html

Creating Your RelativeLayout UI for MainActivity
Right-click the strings.xml file in the /app/res/values/ folder and Jump to Source. First,
let’s add three <string> constants to serve as Button UI element labels. I added these after
the app_name and before the action_settings constants, as shown in Figure 14-18. These
will give us buttons to add, edit, and display your Contact database.

https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html

443CHAPTER 14: Android Content Providers: Datastore Concepts

Change the “Hello World” text value to be “Contact Name Operations” to label your
database access buttons. Add a line of code after the TextView and type a left-chevron, as
is shown in Figure 14-19, and select the Button widget to add that user interface design
element to your design underneath the text title for your user interface.

As you can see in Figure 14-20, this will code a Button child tag, along with the required
layout width and height parameters, which you’ll be prompted to select constant values
for. Buttons usually use wrap_content, so I used this constant for both. I also added an
android:id parameter set to @+id/addContact to allow me to access the Button in Java code
and an android:text parameter set to @string/add_name, to add the text label to the Button.

Figure 14-18. Add three <string> constants to strings.xml for use in labeling database read and write operation
buttons

Figure 14-19. Add a line of code after the TextView, type a left-chevron, and select the Button widget from the helper
menu

444 CHAPTER 14: Android Content Providers: Datastore Concepts

Add an android:id="@+id/screenTitle" parameter to the TextView so that you can position
UI elements relative to it. To implement your RelativeLayout positioning between the first
Button element and the TextView element (title), type in android:layout_below and select
the @id/screenTitle option, seen selected in the menu in Figure 14-21.

You now have your UI screen title <TextView> and Add Contact Name <Button> UI elements
in place and referencing each other using the Layout_Below algorithm, as shown in the
completed code in Figure 14-22. This means if you right align your title, the button will
align under it on the right. If you center the screen title, which we will be doing later on, the
UI button, as well as anything aligned to it, will follow it. As you will see, RelativeLayout
algorithm chains (connections) can be powerful, but will take some getting used to (practice
using parameters). I added an android:layout_centerVertical=”true” to center the button.
Notice the layout_below will take priority.

Figure 14-21. Wire the Button UI element’s relative position to the TextView using android:layout_below=“@id/
screenTitle”

Figure 14-20. Use the Graphical Layout Editor tab to preview the TableLayout filled with Button UI elements

445CHAPTER 14: Android Content Providers: Datastore Concepts

In this chapter I decided to code the XML markup by hand, to be more advanced than in
Chapter 6, where you used the Visual Design Editor to create your markup. You can use
the Design Editor tab, shown selected at the bottom of Figure 14-23, to preview what
your XML markup is going to be doing. This is especially useful when you are developing
RelativeLayout UI container designs, to see what any given chain of inter-connected
positioning algorithms referencing your UI widget’s relative positioning is going to produce
visually on the screen.

Copy and paste the Button element underneath itself to create a second Button element as
seen in Figure 14-24.

Figure 14-22. Referencing a TextView UI element’s master position for a Button UI element subordinate (below)
positioning

Figure 14-23. Use the Design tab to access the Visual Design Editor to preview your hand coded XML

http://dx.doi.org/10.1007/978-1-4842-2268-3_6

446 CHAPTER 14: Android Content Providers: Datastore Concepts

Change your second Button ID to editContact, change android:layout_below to reference
@id/addContact, and change android:text to reference @string/edit_name. Copy
and paste the second UI Button underneath itself, and create a third Button element, as
seen in Figure 14-25. Change your third Button ID parameter to be listContact, change
your android:layout_below parameter to reference @id/editContact and change your
android:text parameter to reference @string/list_names.

Figure 14-25. Create a third Button from the second, and position it relatively, using layout_below referencing
editContact

Figure 14-24. Create a second Button from the first, and position it relative to the first with layout_below via
addContact ID

447CHAPTER 14: Android Content Providers: Datastore Concepts

Again, click on the Design tab, at the bottom of the content_main.xml editing pane, and
preview the relative positioning results, which can be seen in Figure 14-26. As you can see,
each UI element lines up below each other, as specified in each UI widget’s XML markup
parameters. The blueprint view shows your entire hierarchy, as well as the classes used,
assigned names, widget rendering locations, and pixel dimensions and boundaries.

To demonstrate the power and flexibility of your RelativeLayout positioning hierarchy, let’s
add an android:layout_centerInParent parameter in the TextView UI element, and set its
value to true. This will center the title in the Activity screen, and RelativeLayout algorithms
in the Button tags will then align the buttons underneath it. As you’ll see in Figure 14-27,
I had Android Studio write this markup for me. Notice the algorithms are named (lower
case then camel case) the same way that Java methods are named, telling you that
these positioning algorithms are actually implemented as (and eventually calling) custom
relative positioning algorithm Java methods.

Figure 14-26. Use the Design tab to access the Android Studio Visual Design Editor, and check your relative UI
positioning

Figure 14-27. Add an android:layout_centerInParent parameter into the TextView UI element, and set its data value to true

448 CHAPTER 14: Android Content Providers: Datastore Concepts

To make the screen title more prominent, I also added the android:textAllCaps parameter,
using the drop-down helper menu in Android Studio 2.3, as seen in Figure 14-28, and set the
data value of that parameter equal to true.

Finally, to center the Buttons in the middle of the screen, underneath the now prominent title,
change the android:layout_centerVertical=“true” parameter inside each of the Button UI
elements to instead be an android:layout_centerHorizontal=“true” parameter, as shown
highlighted in cornstarch blue in Figure 14-29.

Figure 14-29. Change android:layout_centerVertical=“true” Button parameters to android:layout_
centerHorizontal=“true”

Figure 14-28. Add the android:textAllCaps parameter into the TextView UI element, and set its Boolean data value to
“true”

449CHAPTER 14: Android Content Providers: Datastore Concepts

The final XML markup for the contents of your bootstrap content_main.xml RelativeLayout
should look like this:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto" xmlns:tools="http://schemas.android.
com/tools"
 android:id="@+id/content_main"
 android:layout_width="match_parent" android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="com.example.user.sqliteprovider.MainActivity"
 tools:showIn="@layout/activity_main" >
 <TextView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_centerInParent="true" android:text="Contact Name Operations"
 android:id="@+id/screenTitle" android:textAllCaps="true" />
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/addContact" android:text="@string/add_name"
 android:layout_below="@id/screenTitle" android:layout_centerHorizontal="true" />
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/editContact" android:text="@string/edit_name"
 android:layout_below="@id/addContact" android:layout_centerHorizontal="true" />
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/listContact" android:text="@string/list_names"
 android:layout_below="@id/editContact" android:layout_centerHorizontal="true" />
</RelativeLayout>

Use the Design tab at the bottom of the XML editor pane to switch to Visual Design Editor
mode, and preview the revised design, which now centers nicely, and uses the bottom half
of your Activity screen, seen in Figure 14-30.

450 CHAPTER 14: Android Content Providers: Datastore Concepts

Let’s use the Run ➤ Run ‘app’ menu sequence, and make sure our UI design looks the same
in the AVD emulator as it does in the Visual Design Editor. As you can see in Figure 14-31, the
UI design looks good, and I also included a screenshot of the next step (on the right-hand
side) where we’ll remove the FloatingActionButton, and use its Java code for the first Button
user interface element, which we will then replicate twice more. After that, we will place the
database code in the event listener and handler constructs so we can access the database.

Figure 14-30. Use the Design tab to access the Android Studio Visual Design Editor, and preview your revised user
interface

451CHAPTER 14: Android Content Providers: Datastore Concepts

Next, let’s remove the FloatingActionButton from the bottom right of the user interface. We
will be using the Java code for the FAB to create one of our Button objects, and then copy
and pasting it twice more to create the other two Button event handling structures, adding
database access code to the Snackbar code.

Remove the Floating Action Button widget from the bottom of the CoordinatorLayout
(Figure 14-5), as is shown in Figure 14-32, by selecting that tag’s block of markup, and
then hitting the delete key on your keyboard.

Figure 14-31. Use the Run ➤ Run ‘app’ menu sequence and test the RelativeLayout user interface design in the Nexus
5 AVD

452 CHAPTER 14: Android Content Providers: Datastore Concepts

Next, change the FloatingActionButton code to instead reference the Button class, change
fab to add, and reference the addContact Button ID, as shown highlighted in Figure 14-33.
Delete the import statement for the FloatingActionButton class, and use Alt+Enter to have
Android Studio write a Button class import for you, or add an import android.widget.
Button; statement at the bottom of your import statements block, as shown at the top of
Figure 14-33 highlighted in light blue. The reason this is highlighted is because I clicked on
one of the Button class usage instances in the instantiation statement in order to track the
class usage, from import through instantiation through implementation.

Figure 14-32. Remove the <FloatingActionButton> child tag and its parameters, by block selecting it and using a
delete key

453CHAPTER 14: Android Content Providers: Datastore Concepts

Don’t forget to call your .onClickListener() off of this new add Button object. Your new
code should look like this:

import android.widget.Button;
public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 Button add = (Button) findViewById(R.id.addContact);
 add.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)
 .setAction("Action", null).show();
 }
 });
 }

Now you have enough infrastructure in place to start writing the Java logic that will access
your SQLite database.

Figure 14-33. Replace the FloatingActionButton fab code with Button add code referencing an addContact Button
definition

454 CHAPTER 14: Android Content Providers: Datastore Concepts

Transform the MainActivity Class for Database Access
As you know by now, the first step in the process of transforming the MainActivity.java
Activity subclass is to declare and instantiate your UI Button objects. These are contained
inside of a parent RelativeLayout container, which you have already defined using XML
markup inside the content_main.xml file in the /app/res/layout folder. Copy the add Button
structure underneath itself twice and change add to edit and list as shown in the following
Java code, which is also shown in Figure 14-34:

Button add = (Button) findViewById(R.id.addContact);
add.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Adding to Contact Database", Snackbar.LENGTH_LONG)
 .setAction("Action", null).show(); }
 });
Button edit = (Button) findViewById(R.id.editContact);
edit.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Editing the Contact Database", Snackbar.LENGTH_LONG)
 .setAction("Action", null).show(); }
 });
Button list = (Button) findViewById(R.id.listContact);
list.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Listing the Contact Database", Snackbar.LENGTH_LONG)
 .setAction("Action", null).show(); }
 });

455CHAPTER 14: Android Content Providers: Datastore Concepts

Now it is time to get into the most difficult sections of this chapter—the Java code
necessary to implement the ContentProvider and ContentResolver objects, which are
needed to access database structures in Android OS.

Creating Your Custom .listContacts() Database Access Method
Since resolving a content provider in Android takes more than one or two lines of code, in
fact it, will involve a do while type of loop to read through the database records one by one,
you should add a method call in the list Button object’s event handler to a listContacts()
method, which we will be coding next. Let’s add the method call inside of the list Button
object’s onClick() event handler, right after the Snackbar “Listing the Contact Database”
message creation method chain Java code, as can be seen in Figure 14-35. Once you
type in the listContacts(); line of code, Android Studio will give you a lightbulb with an
exclamation point in it on the left margin for that line of code. Use the drop-down menu
arrow to open the options and select the Create method ‘listContacts’ option, and when
the second Choose Target Class drop-down menu appears, choose the MainActivity
(com.example.user.sqliteprovider) option, since you want the method coded in the
MainActivity.

Figure 14-34. Copy and paste your add Button instantiation and event listening/handling structure underneath itself
(twice)

456 CHAPTER 14: Android Content Providers: Datastore Concepts

This drop-down menu sequence will instruct Android Studio to code an empty Java method
body for you to use to code your listContacts() database access method. Once you do this
the red code error highlighting will disappear, because a method can now be called. As you
can see in Figure 14-36, Android Studio writes the private void listContacts(){...} empty
method bootstrap programming structure for you, at the end of the onCreate() method. You’ll
be adding the database access Java code to the body of this method to list contacts.

The first step will be to declare and instantiate a Cursor object named nameCursor and
load it with the database content you are going to list by using the getContentResolver().
query() method call chain. A Cursor object is used to traverse database records looking for
the data that you are trying to locate. To create and configure this Cursor database searching
engine, use the following line of Java code, which is shown in Figure 14-37, along with a
series of several pop-up helper dialogs that contain methods and URIs that you will require:

Cursor nameCursor =
 getContentResolver().query(ContactsContract.Contacts.CONTENT_URI, null, null, null, null);

Figure 14-35. Add a listContacts() method call, and select the Create method ‘listContacts’ and MainActivity menu
options

Figure 14-36. A bootstrap private void listContacts() method created by Android Studio inserted after the onCreate
method

457CHAPTER 14: Android Content Providers: Datastore Concepts

As you can see in Figure 14-37, once you type the ContactsContract.Contacts (database.
table) reference in the .query() method parameter list, and then press the period key, a
list of possible URIs will then appear. Find the CONTENT_URI option, and select it, by double-
clicking it to insert that URI into your method call parameter. This will create the first
ContactsContract.Contacts.CONTENT_URI parameter for your method parameter list.

Remember that you will need to mouse-over the error highlighting for the Cursor object, and
trigger the code to Import ‘Cursor’ (android.database) to have Android Studio 2.3 code the
import for the Cursor class to use, or simply use Alt+Enter. After the Cursor object is declared
and imported, add a space and name it nameCursor, and then use the equals operator to
load the Cursor object with the results of the getContentResolver().query() operation. Type
“getCon” and select and double-click on the getContentResolver() ContentResolver class
option, as shown in the Android Studio pop-up Java coding helper, seen in blue on the right
side of Figure 14-38.

Figure 14-38. Use the ContentResolver class’s getContentResolver() method to load the Cursor object with your query
data

Figure 14-37. Declare Cursor object named nameCursor and instantiate it using getContentResolver().query() method
chain

458 CHAPTER 14: Android Content Providers: Datastore Concepts

Next, type a period after the Cursor nameCursor = getContentResolver portion of the
statement, and select the query(Uri uri, String[] projection, String selection, String[]
selectionArgs, String sortOrder) method (shown as being from the Cursor class), as is
shown, selected in blue, on the right side of Figure 14-39.

Notice that the four parameter options for the getContentResolver().query() method call
have been specified for you in the drop-down helper menu, on the left portion, and the class
(Cursor) that the method is contained in, on the right portion. The parameter list with object
or variable types and suggested name is provided to show you what valid data values go in
each of these positions in order for the method call to be valid, even if this is a “null” value,
which is used to serve as an unused parameter indicator (that is, no data value is provided,
or “none”).

Since this chapter does not cover advanced SQL database concepts, such as projection,
selection arguments, sorting order and selection, you are going to be using null values in
these optional database query parameters, as can be seen in the completed and error-free
line of code, which can seen in Figure 14-42, if you look ahead.

Inside of the query() method parameter area type “Contac” and select the
ContactsContract (android.provider) option, from the Android Studio pop-up helper drop-
down menu, as is shown selected in blue in Figure 14-40.

Figure 14-39. Type a period and select query(Uri, String[] projection, String selection, String[] selectionArg, String
sortOrder)

Figure 14-40. Type in “Contac” and select the ContactsContract (android.provider) option from the drop-down helper
menu

459CHAPTER 14: Android Content Providers: Datastore Concepts

Next, hit the period key and select Contacts from the drop-down helper menu, and then hit
the period again and select the CONTENT_URI constant from the drop-down helper menu, as
is shown in blue in Figure 14-41. This finishes the first Uri uri parameter requirement and all
you have to do is to add the null, null, null, null parameters.

Next, add a comma and four null parameters (no parameter specified), and you will have
your completed Cursor declaration, instantiation and configuration Java statement, as is
shown error free in Figure 14-42.

It is now time to create a do-while loop construct, which will read through the Cursor object
loaded using the ContentResolver object. In the Android OS, a do-while loop begins with
the keyword while and then specifies something to evaluate to determine how long to
process the statements inside of the do-while loop. In this case, that will be whether your
Cursor object, which is used to traverse or read through the database content, has reached
the end of the database. This happens when the Cursor object reaches the last (final) record

Figure 14-41. Hit a period key and select Contacts from the drop-down, then hit the period again and select CONTENT_URI

Figure 14-42. Add a comma and four null parameters (no parameter specied), and you have a completed Cursor
statement

460 CHAPTER 14: Android Content Providers: Datastore Concepts

in the database, and cannot read another record, much like reaching the EOF (End Of File)
character when reading a file. In pseudo-code, the do-while loop structure, which you’re
going to write next, equates to the following logic:

While (there's another record to moveToNext to, and therefore to be able to read, perform
this) {
 Create String object to hold Contact Name Data; place the name data from a database

Column into it;
 Use Android Toast and a makeText() method to write this value to the display using a long

duration;
}

Add a line of code after the Cursor code and type a Java while keyword and opening
parenthesis. Start to type the nameCursor object, and select, and double-click, the
nameCursor Cursor object option seen in Figure 14-43.

Next, type a period and select the Boolean moveToNext() method from the drop-down
helper menu, as shown in Figure 14-44. This will complete the nameCursor.moveToNext()
evaluation statement in the while loop condition.

Figure 14-43. Type while and parenthesis, then type the nameCursor object, and double-click the nameCursor Cursor
option

Figure 14-44. Type a period character, and then select the Boolean moveToNext() method from the drop-down helper
menu

461CHAPTER 14: Android Content Providers: Datastore Concepts

Inside of the while() loop, we will create a String object named contactName, and set it
equal to the result of the nameCursor.getString() method call. This will load the contactName
String object using the nameCursor Cursor object, which will be accessed using dot
notation and the .getString() method. The getString() parameter area will contain a
nested Java statement construct that will call the .getColumnIndex() method off of the
nameCursor Cursor object. Inside of the .getColumnIndex() method parameter area will be
your reference to the DISPLAY_NAME_PRIMARY constant using the ContactsContract.
Contact reference path. The full Java statement we will be creating would therefore look
like the following, and will be constructed using the Android Studio code helper (coding
assistant) work process, shown in Figures 14-45 through 14-47:

String contactName =
 nameCursor.getString(nameCursor.getColumnIndex(ContactsContract.Contact.DISPLAY_NAME_

PRIMARY));

Inside the .getString() parameter area, enter the nameCursor Cursor object, and hit the
period key. In the pop-up helper menu that appears, select the getGolumnIndex(String s)
integer method as shown in blue in Figure 14-46.

Figure 14-45. Create a String object named contactName; set it equal to the result of the nameCursor.getString(int)
method

Figure 14-46. Inside the .getString() parameter area, enter nameCursor, and hit the period key, and select
getColumnIndex()

462 CHAPTER 14: Android Content Providers: Datastore Concepts

Inside the getColumnIndex() parameter area select the ContactsContract.Contacts.
DISPLAY_NAME_PRIMARY.

The second statement will use the Android Toast class, similar to the SnackBar class, to
broadcast each name as it is read to the screen. Type the letters “Toa” and select the Toast
(Create a new Toast) option in the pop-up helper menu, as is shown in blue in Figure 14-48.
This will create the entire Toast.makeToast().show() method chain, instead of a single Toast
object, which you would get if you select the other Toast (android.widget) option.

Once Android Studio writes the Toast Java code structure for you, as shown highlighted
in Figure 14-49, you will need to add the Context object (this) as the first parameter, the
String (contactName) as the second parameter, a display time length as the third parameter
using the Toast.LENGTH_SHORT constant to the .makeText() method called off of the
Toast object. Then you chain a .show() method call to the end of the .makeText() method
call, to complete the complex Java statement structure. This is also shown completed, in
Figure 14-50.

Toast.makeText(this, contactName, Toast.LENGTH_SHORT).show();

Figure 14-47. Inside the getColumnIndex() parameter area select the ContactsContract.Contacts.DISPLAY_NAME_
PRIMARY

Figure 14-48. Type the letters “Toa” and then select the Toast (Create a new Toast) option seen in the pop-up helper
menu

463CHAPTER 14: Android Content Providers: Datastore Concepts

If you want to research the Toast class (object) further, visit the following Android 7.1.1
developer website URL:

https://developer.android.com/reference/android/widget/Toast.html

The final code for the listContacts() method can be seen in Figure 14-50.

Next, let’s take a look at how to do SQLite DBMS write operations, by using the Android
ContentValues class.

Writing to a Database: Using the ContentValues Object
Now you are ready to go to the next level of database access and write new data values
into your Contacts database.

This is more complex, as well as more advanced, because the WRITE operation can change
the database, and is thus termed a destructive database operation in the database industry.
Conversely, a database READ operation is inherently non-destructive, as the data is only
read, and the SQLite database will not be changed.

In this section of the chapter, you are going to create another custom method for your
MainActivity Activity subclass, this time to write new Star Trek officers to the Contacts
database, which you are accessing here as an example of how to work with Android
ContentProvider, ContentResolver and ContentValues objects.

Figure 14-50. The final Java code structure for the private void listContacts() method

Figure 14-49. The Toast messaging construct takes a Context object, a String object, and a Toast.LENGTH_SHORT
constant

https://developer.android.com/reference/android/widget/Toast.html

464 CHAPTER 14: Android Content Providers: Datastore Concepts

This chapter is getting a bit long, so I am not going to include a summary of these classes
here, however, if this SQLite database management is an area of interest to you, you can get
the foundational information regarding these core Android SQLite database management
classes by using these Android developer website URLs:

https://developer.android.com/reference/android/content/ContentProvider.html

https://developer.android.com/reference/android/content/ContentResolver.html

https://developer.android.com/reference/android/content/ContentValues.html

Just like you did in the previous section, add an .addContact() method call in the add
Button’s onClick() event handler method structure inside of your add.setOnClickListener()
event listener Java code construct.

This will force Android Studio to create your bootstrap private void addContact() method
structure for you, if you use the Alt+Enter keyboard shortcut, that is.

As shown in Figure 14-51, after you add the addContact(); line of Java code, you will select
the "Create method ‘addContact’ option in the red exclamation point (error) drop-down
in the left margin by the code statement, and then select the second MainActivity (com.
example.user.sqliteprovider) class and package to specify at what level you want this
method structure to be coded for you, which would be at the same level as all of the other
methods which are currently coded in your MainActivity class in your SQLiteProvider
application. As you’ll see in Figure 14-52, Android Studio again codes your new method
structure for you, right after the onCreate() method.

Figure 14-51. Add an addContact() method call in the add Button OnClickListener() and have Android Studio code it
for you

https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/content/ContentResolver.html
https://developer.android.com/reference/android/content/ContentValues.html

465CHAPTER 14: Android Content Providers: Datastore Concepts

In the addContact() method, declare a ContentValues object named newContact, add an
equals operator, and then use the Java new keyword to instantiate the object, using the
ContentValues() constructor method, as can be seen highlighted in Figure 14-52. To get rid
of that red ContentValues error highlighting indicating no import statement, use the Alt+Enter
keystroke combination to import android.content.ContentValues seen in the pop-up.

Add a second line of code in the addContact() method and type the newContact
ContentValues object and then a period character, which will open a pop-up helper where
you can select the put(String key, String value) void option, as shown selected in blue, at the
bottom of Figure 14-53. This calls a .put() method off the newContact ContentValues object,
allowing you to write a data value in the ContactsContract.RawContacts database table.

Figure 14-52. Declare a ContentValues object named newContact, instantiate it using new ContentValues(); use
Alt+Enter

Figure 14-53. Call a void .put(String key, String value) method off of the newContact ContentValues object, to load a
DBMS

For the String key parameter, type in the ContactsContract.RawContacts database table
we are using, and type a period character, which will open the pop-up helper, where you can
select the ACCOUNT_NAME data field, as is seen in Figure 14-54 highlighted in blue.

466 CHAPTER 14: Android Content Providers: Datastore Concepts

Add a String object named newName to the addContact() method parameter list, shown
highlighted in blue in Figure 14-55, and then reference this newName String object in the
.put() method call’s second String value parameter. This will put a new name passed
into the addContact() method into the RawContacts database table, by referencing it
inside of your newContact.put(ContactsContract.RawContacts.ACCOUNT_NAME, newName);
ContentValues.put() database data loading (WRITE) Java statement, as shown highlighted in
Figure 14-55.

Since you added an newName String parameter to the addContact method, to pass the new
name into the RawContacts database table ACCOUNT_NAME data field, let’s also add a new
name (using quotes) into your addContact(String newName) method call, as is shown at the
top of Figure 14-55 in quotes, using a green color.

I decided to use addContact("Leonard McCoy"); for my addContact() method call. Leonard
McCoy was the Chief Medical Officer on the Starship Enterprise, and was commonly
known as “Bones” to the crew and to Star Trek fans. Now we are ready to add some more
advanced Java statements involving Uris, ContentUris, and ContentResolvers, which
will populate other RawContacts data fields, and then utilize these Uri, ContentUri and
ContentResolver objects to move data around between this web of database tables and
data fields. You are now beginning to see why working with complex database structures is
an advanced endeavor in and of itself, Java coding aside. Your understanding of the DBMS
structure must be as advanced as your Java programming skills!

Figure 14-54. Add the ContactsContract.RawContacts database table, then hit a period and select an ACCOUNT_NAME
field

467CHAPTER 14: Android Content Providers: Datastore Concepts

Copy the .put() method call that loads the ContactsContract.RawContacts.ACCOUNT_NAME
table with the newName String passed into the method, and paste this underneath itself.
Change ACCOUNT_NAME to ACCOUNT_TYPE in order to put the name into this data field.
You could also classify your Account (Contact) Name with a classification using this field if
you wanted to classify contacts in some fashion.

Next, create a Uri object, name it newUri, and load it using a getContentResolver().insert()
method chain, as is shown in Figure 14-56, highlighted in pale yellow. Insert a newContact
ContentValues object into the ContactsContract.RawContacts database table using the
CONTENT_URI data field constant.

The Java statement for this insert operation should look like the following code:

Uri newUri = getContentResolver().insert(ContactsContract.RawContacts.CONTENT_URI, newContact);

Now we can use this Uri object to create a ContentUri object to write the Contact name
date into the data table!

Figure 14-55. Add a newName String to .put() call and addContact() parameter String; add “Leonard McCoy” to
method call

468 CHAPTER 14: Android Content Providers: Datastore Concepts

What you just accomplished, in a nutshell, was to create a newContent ContentValues
object to hold your content values, loading that object with your passed in newName name
String data, using the .put() method calls, and loading these content values into the
ContactsContract database RawContacts table by using the getContentResolver().insert()
method call to place this value into the newUri Uri object. You are about to convert this Uri
object data representation into a different type of (long) data value using the ContentUris
class .parseId(Uri) method call. Seems like a lot of matriculation to go through to write
a value to a data field, doesn’t it? I can’t say I disagree, but this is how this is done using
Android SQLite API classes, methods, and constants.

Now that you have a URI loaded with Uri data for the ContactsContract.RawContacts.
CONTENT_URI regarding the newContact ContentValues object, declare a long variable named
rawContactsId, and load it with the result (using the equals evaluator) of the ContentUris
class’s .parseId() method call, which contains the newUri Uri object as its sole parameter.

Finally, clear the newContact ContentValues object, by calling the .clear() method off of it.
This will empty all of the data that you just loaded it with in the previous (first three lines of
Java) code, and will thereby clear it for its next use (during the next four lines of Java code).
Your Java code should look like the following structure, which can be seen error free in
Figure 14-57:

protected void addContact(String newName) {
 ContentValues newContact = new ContentValues();
 newContact.put(ContactsContract.RawContacts.ACCOUNT_NAME, newName);
 newContact.put(ContactsContract.RawContacts.ACCOUNT_TYPE, newName);
 Uri newUri = getContentResolver().insert(ContactsContract.RawContacts.CONTENT_URI,

newContact);

Figure 14-56. Instantiate a Uri object named newUri and then use the getContentResolver().insert() method chain to
load it

469CHAPTER 14: Android Content Providers: Datastore Concepts

 long rawContactsId = ContentUris.parseId(newUri);
 newContact.clear();
}

Next, you are going to use the rawContactsId long data value to put this new name data
into the ContactsContract.RawContacts database Data table using the RAW_CONTACT_ID
key (_ID) constant. You will again use the ContentValues.put() method, called off of your
newContact ContentValues object, as shown in Figure 14-58. Now the rawContactsId for the
new contact name you passed into the addContact() method is loaded in the ContentValues
object. Next, we need to add the MIMETYPE into the ContentValues object as well.

Figure 14-58. Call the .clear() method and then the .put() method off of a newContact object to clear and load it with
the ID

Figure 14-57. Create a long variable named rawContactsId, and set it equal to the result of ContentUris.parseId(newUri)

470 CHAPTER 14: Android Content Providers: Datastore Concepts

Use another .put() method call to load the ContactsContract.RawContacts.Data.MIMETYPE
data field with the ContactsContract.CommonDataKinds.StructureName.CONTENT_ITEM_TYPE
MIME type, as is shown in Figure 14-59, using a pale yellow highlight. Adding these classes
and constants using the Android Studio pop-up helper drop-down menus will import all of
the necessary classes and packages for use with your application.

Next, you will use a third .put() method call again to place the DISPLAY_NAME data field
information for the new contact name into the ContactsContract.CommonDataKinds.
StructureName database tables. You select the DISPLAY_NAME constant, as shown in blue in
Figure 14-60, after you type a period after the StructuredName table in the Android Studio
pop-up helper drop-down menu selector.

The Java code is highlighted in Figure 14-61.

Figure 14-59. Add another .put() method call loading a CONTENT_ITEM_TYPE data constant into the MIMETYPE Data
table

Figure 14-60. Add a .put() method call to write the newName String to the StructuredName.DISPLAY_NAME database
field

471CHAPTER 14: Android Content Providers: Datastore Concepts

Once the (same) newContact ContentValues object has once again been fully loaded for
use, you will again use the getContentResolver().insert() method call chain to insert this
newContact ContentValues object into the ContractsContract.Data database table using
the CONTENT_URI data field using the following Java statement:

getContentResolver().insert(ContactsContract.Data.CONTENT_URI, newContact);

The final Java code for the entire addContact(String newName) method should look like the
following:

protected void addContact(String newName) {
 ContentValues newContact = new ContentValues();
 newContact.put(ContactsContract.RawContacts.ACCOUNT_NAME, newName);
 newContact.put(ContactsContract.RawContacts.ACCOUNT_TYPE, newName);
 Uri newUri = getContentResolver().insert(ContactsContract.RawContacts.CONTENT_URI,

newContact);
 long rawContactsId = ContentUris.parseId(newUri);
 newContact.clear();
 newContact.put(ContactsContract.RawContacts.Data.RAW_CONTACT_ID, rawContactsId);
 newContact.put(ContactsContract.RawContacts.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE);
 newContact.put(ContactsContract.CommonDataKinds.StructuredName.DISPLAY_NAME, newName);
 getContentResolver().insert(ContactsContract.Data.CONTENT_URI, newContact);
}

The code is shown in Figure 14-62, error free, and is ready to test in the Nexus 5 AVD
emulator. You have written a database WRITE method using less than a dozen lines of Java
code! Congratulations!

Figure 14-61. Track the newName String object usage from method parameter to three of the ContentValues.put()
methods

472 CHAPTER 14: Android Content Providers: Datastore Concepts

Now use the Run ➤ Run ‘app’ menu sequence and launch the Nexus 5 AVD and test the
application.

Summary
In this chapter, you learned about Android content provider databases as well as
about database concepts, principles, processes, and optimization. You learned about
ContentProvider, ContentResolver, Uri, ContentUris and ContentValues objects, and how
to use the getContentResolver(),.query(), and .insert() method calls.

You learned all about different types of databases that come with Android, including
Contacts, ContactsContract, CalendarContract, and MediaStore, among others. You learned
about CONTENT_URI and about what makes up a URI data path reference.

You created your own database access Activity subclass called MainActivity to read
from and write to the ContactsContract database in Android. You learned about the
RelativeLayout container class and how easy it is to use to make resizable layouts using
just a few lines of XML markup.

You created the infrastructure for your MainActivity class and created your listContacts()
database READ method and addContacts() database WRITE method. You used these methods
inside of your Button object event listener and handler structures to read and write to the
ContactsContract database table structures which come with the Android OS. I hope you
have enjoyed your journey from Absolute Beginner to Android Developer!

Figure 14-62. Finalize the work process by using getContentResolver().insert() method chain to insert the new
Contact name

473© Wallace Jackson 2017
W. Jackson, Android Apps for Absolute Beginners, DOI 10.1007/978-1-4842-2268-3

 ■A
Access control modifiers, 112–114
Accessibility, 184–185
Activity subclass, 122
Adaptive Multi-Rate (AMR) audio

codecs, 346
Alpha blending, 270
Analog audio, 340

sound waves, 340
pulse wave, 341
sampling, 341
saw wave, 341
sine wave, 340

Android application development, 1, 17
advantages, 4–5
elements of, 6
GPS data, 7
history of

devices, 2
embedded OS, 2
mobile internet, 2
OHA, 4
open source, 3
popular versions of, Android OS, 3
URL, 2
usage, 4

IDE, 23
Java package, 7
OpenGL ES, 14
3D rendering system, 7
scope of, 5
studio (see Studio development system)
Vulkan, 13–14
workstation, 8

bridge, 9
Data Plan Saver, 13
display densities, 11

Enhanced Doze Mode, 12
hardware foundation, 8, 19
insertion bar, 9
keyboards, 11
multiple concurrent window, 10
OpenJDK, 12
picture-in-a-picture (PIP) mode, 10
pointer, 8
power consumption optimization, 9
secondary disk storage partition, 10
skins, 11
software foundation, 20

Android design patterns, 178
deprecated Java code, 205–206
hardware devices, 179

automobile dashboards, 181
future APIs, 182
iTV sets, 181–182
smartphones, tablets, phablets, and

e-book readers, 179–180
smartwatches and wearable

technology, 180–181
material design, 178–179
Pure Android, 182

accessibility, 184–185
backwards compatibility, 183
confirmation and

acknowledgment, 183–184
display shape, resolution, and

orientation, 183
home screen widgets, 185–186
swiping views, 186

sliding drawer, 186
application configuration

XML, 199–200
application programming

logic, 200–205
CoordinatorLayout class, 193

Index

474 Index

DrawerLayout class, 190–191
FloatingActionButton class, 194
menu structures for UI design,

195–197
previewing UI design, 198–199
RelativeLayout design

pattern, 190
Toolbar layout, 193
visualizing UI design, 197–198

Android Development Tools (ADT), 33
Android Extension Pack (AEP), 14
Android OS, 179
Android runtime environment (ART), 122
Android Service class and thread

AmbientAudioService
AndroidManifest XML file, 402
completion, 410
IBinder() method, 401
Java method structure, 406
MediaPlayer.create option, 406
MediaPlayer object, 404
MediaPlayer object creation, 403
new java class dialog, 400
onCreate() method

structure, 404, 406
onDestroy() method, 407–409
onStartCommand method, 407
start() method, 408
stop() and release() method, 409
super.onCreate() method, 405
working priniciples, 400

application component, 388
<application> tag, 392
asynchronous, 387
binding, 389
bound service, 389
callback methods, 389
characteristics, 388
interprocess communication, 388
lifecycle process

background, 396
empty process, 396
foreground process, 394–395
priority hierarchy, 393
priority level rank, 394, 396
process queue, 393

service process, 395
system memory, 393
visible, 395

MediaPlayer class, 387
privacy and priority, 390
processes/threads, 391–392
process XML parameter, 392
scheduled Service, 390
service class, 403
startService() method,389 (see also

startService() method)
thread (see Threads)

Android Virtual Devices (AVDs), 19
Gradle Build System, 173–175
testing app, 168–172

Anti-aliasing, 217–218
Application programming interface

(API), 18, 91, 111
Android Auto, 181
Android TV, 181–182
Android Wear 2, 180–181
core Android, 179–180

arrays.xml, 53
Aspect ratio, 210–211
Audacity, 351

digital audio optimization
audio transport controls, 357
Mono algorithm, 358
non-destructive audio editing, 356
sample rate, 357
warning dialog, 356
wave file/data reduction, 359

downloads links, 352
edit metadata dialog, 360
free wave samples website, 355
HelloUniverse audio, 354
LADSPA setup, 354
license agreement, 353
MediaMetadataRetriever class, 360
Plug-Ins folder, 352–353
sample locations, 355
sample rate and resolution, 359

 ■B
Boolean moveToNext() method, 460
bool.xml, 53

Android design patterns (cont.)

475Index

 ■C
Cel animation, 252
COder-DECoder (codec), 218
Collection widgets, 185
colors.xml, 52
Compression artifacts, 223
Constants, 95
Constructor, 103
Constructor method, 102–104
ContactGalaxy.java, 428

addGalaxyViceroy() method, 463
database access, 454

getContentResolver().query()
method, 455

HelloUniverse project, 428
<TableLayout> parent tag, 431
MainActivity.java class

Android Contacts utility, 435
emperor contact database, 436
testing, 435

onCreate() method, 429
TableLayout container, 441–442
XML tag and parameter, 431

Content provider
database design, 415
DBMS (see Database management

system (DBMS))
SQLite, 419

Content providers
Android MediaStore, 425
CalendarContract databases, 425–426
contacts database, 421
content URI, 426

data authority, 427
data path, 427
ID component, 427

ContentValues object
ACCOUNT_NAME field, 466
addContact() method, 464
clear() method, 468–469
ContentUris.parseId(newUri), 469
ContentValues object, 465
destructive and non-destructive, 463
MIMETYPE Data table, 470
newName String, 467
process completed, 472

put() methods, 469, 471
put(String key, String value)

method, 465
Uri object, 468
URLs, 464

database access method, 455
ContactsContract (android.provider)

option, 458
ContactsContract.Contacts.

DISPLAY_NAME_PRIMARY, 462
CONTENT_URI, 459
cursor statement, 459
do-while loop structure, 460
getColumnIndex(), 461
getContentResolver().query()

method chain, 457
Java code structure, 463
letters, 462
listContacts() method, 456
methods and URIs, 456
nameCursor.getString(int) method, 461
onCreate method, 456
period and select query, 458
period character, 460
Toast.LENGTH_SHORT constant, 463
while and parenthesis, 460

deprecated databse structures, 421
ContactsContract database, 423
feature-rich database structures, 422
hardware features, 422

dummy test data, 436
AVD launches, 436
completed contact record, 441
DENY button option, 439
Mister Spock, 437–438
Nexus 5 AVD, 437
phone number and e-mail

address, 439
MainActivity

button instantiation, 455
database access, 454

manifest configuration, 433
child tags, 436
minSdkVersion parameter, 434
parameter constant value, 435
uses-sdk, 434
WRITE_CONTACT permission, 435

476 Index

RelativeLayout
button element, 446
button UI element’, 444
content_main.xml, 449
data entry form, 441
design tab, 450
editContact, 446
FloatingActionButton fab code, 453
graphical layout editor tab, 444
helper menu, 443
layout_centerInParent parameter, 447
layout_centerVertical, 448
<FloatingActionButton> child tag, 452
onClickListener() method, 453
strings.xml, 443
TableLayout UI, 442
textAllCaps parameter, 448
TextView UI elements, 444–445
UI positioning, 447
user interface design, 451
ViewGroup, 442
visual design editor, 445

SQLiteProvider project
activity_main.xml tab, 431
bootstrap, 430
configuration, 428–429
ContactGalaxy.java, 428–429
content_main.xml tab, 432
database structures, 420
MainActivity.java tab, 430
user interface design, 432–433

Control widgets, 186

 ■D
Database management system (DBMS), 416

database columns (fields), 417
database field, 417
database record, 417
high-level procedure, 416
sharable data structures, 416
SQL, 418
SQLite, 417
unique key, 419

Data Plan Saver, 13
Deprecated Java code, 205–206
i3D designers, 178

Device-independent pixels (DIP), 70
Digital audio, 340

adaptive multi-rate (AMR) audio
codecs, 346

attributes, 343
bit rate, 343
HD audio, 343
streaming audio, 343

audacity (see Audacity)
codecs, 343
combination/compositing, 348
DigitalAudioSequencer (see

ScrollingActivity)
free lossless audio codec (FLAC), 345
MPEG-4 AAC, 345
musical instrument data

interface (MIDI), 344
OGG Vorbis codec, 345
optimization, 346
pitch-shifting, 348
pulse code modulated (PCM), 346
raw audio data optimization, 349–350
sampling, 341

frequency/rate, 342
resolution, 341

sequences, 347
synthesis and sequencing, 348, 350
synthesizers, 348

Digital imagery, 210
coloring, 212–214
image compositing, 216
image compositing transparency, 215
indexed color imagery, 220–222
masking, 216–217
optimizing, 218–219
shape, 211

Digital Video
bitrate and streams, 307
codec and settings, 308

amount of compression, 309
dot pitch, 309
FPS, 309
keyframe setting, 310
quality/sharpness setting, 310

FrameLayout class, 295
direct subclasses, 296
FrameLayout.LayoutParams, 296
Java (and Android) class hierarchy, 295

Content providers (cont.)

477Index

layout gravity parameter, 296
memory-efficient, 296
overlapping, 296
using XML mark up, 303
VideoView widget (class), 295

frames per second, 305
in MPEG-4 H.264, 306
MediaPlayer class, 328–329
Sorenson Squeeze 9, 315
Terragen3.1, 311
URI class, 321
using HTTP URL in URI, 336
using MediaController, 330
using .OnPrepareListener() method, 334
VideoPlayer widget, 299

accessibility standards, 300
AndroidMediaPlayer class, 300
.can() method, 300
Ended state, 302
event handling method, 300
.get() method, 300
Idle state, 301
import statement, 299
Initialized state, 301
Paused state, 302
Playback Completed state, 302
playback lifecycle, 300
Prepared state, 302
.setVideoURI() and .

setMediaController() method, 300
Started state, 302
Stopped state, 302
VideoView class hierarchy, 299

WebM, 306
dimens.xml, 53
Dithering process, 220
Dot notation, 98
Doze Mode, 12
“Drawables” in Android, 188

 ■E
Eclipse Integrated Development

Environment (IDE), 33
Android app structure, 45

directory folder, 47–48
MainActivity.java file, 46
project pane folder, 45

Android resources
values (constants), 53

Android studio
activity dialog creation, 42
app creation, 38
components dialog

installation, 40
configure launcher icon

dialog, 41
default creation, 39
project name field, 39
Tip of the Day dialog, 44

IntelliJ 37, 2016
launch icon creation

invert menu sequence, 57
layer dialog, 56
transparency layer, 55

platform structure
Java, XML and assets, 34

resources, 37
alternative resources, 48
drawable, 50
Java code and XML markup, 48
layout, 50
media assets, 48
menu designs, 51
property animation, 54
raw data, 54
tween animation, 54
values (constants), 52
XML files, 55

EditShare LightWorks 11.5, 309
Emulator, 168
Enhanced Doze Mode, 12
Events and Event Listening, 147

event listeners, 153
device user interaction, 153–154
event handler, 155
Java methods process UI widget

events, 154–155
UniverseActivity.class, 155

event listeners to Button
objects, 161–162, 164

findViewById() method, 160
intent processing to event

handling, 165–168
setContentView() method, 158

Explicit Intents, 147

478 Index

eXtensible Markup Language (XML), 60
brackets, 64
colors, 74
configuring app, 75–76
containers, 64
device-independent pixels (DIP), 70
dimensions, 70
editing constants, 68–70
HelloUniverse Android application, 59
nesting, 60, 66
overview, 60
references, 66

spans across files, 66
strings.xml file, 67
variable name, 68

resource, 71
simple-text-format, 61
styles/themes, 72

APPBaseTheme parameter, 73
editing pane, 73

tags and parameter, 61
Android Package (apk), 64
Ecplise editing pane, 62
naming schema, 61
validation, 62
xmlns:android parameter, 63
xmlns:tools parameter, 63

UI design editor, 76–78, 80, 82–87, 89

 ■F
Focused state, ImageButton class, 242–243
Frame animation, 252

Android AnimationDrawable class, 255
android.graphics.drawable

sub-package, 255
Java class hierarchy, 255
.start() method, 255
XML file, 255

animation resolution, 254
bitmaps, 252
cels, 252
digital image file formats, 252

PNG, 252
WebP/JPEG, 252

MainActivity
anim_milkway.xml file, 259
imageviewwhitering.png, 258
XML definition markup, 261

optimization, 253
color depth reductiond, 253
data footprint, 254
dot crawl/pixel crawl, 253
downsampling, 253
fewer frames, 254
ImageView plates, 253
number of frames reduction, 253
PorterDuff blending algorithms, 253
resolution reduction, 253
static and dynamic algorithm, 253
upsampling, 253

parameter animation, 289
processing-intensive, 288
raster imagery, 252
truecolor image formats, 252
tween animation, 268
XML markup, 256

/res/drawable folder, 256
<item> tag, 257

Frame animation, 50
FrameLayout.LayoutParams class, 297

android:layout_gravity constants, 298
center constant, 297
center_vertical/center_horizontal

constant, 297
clip_horizontal and clip_vertical

constant, 298
fill constant, 297
fill_vertical/fill_horizontal constant, 297
generalized positioning, 299
RTL and LTR layout constants, 298
start and end constants, 298

Free Lossless Audio Codec (FLAC), 345

 ■G
Google Chrome OS, 8
Gradle Build System, 173–175
Graphic design, 209

ImageButton class, 240–241
multistate, 243–244, 246–248
states, 242–243

imaging concepts, formats, and
techniques, 210

coloring images, 212–214
foundation of digital images, 210
image compositing blending

modes, 216

479Index

image compositing transparency, 215
image formats, 222–223
indexed color imagery, 220–222
masking, 216–217
optimizing digital images, 218–219
shape of digital images, 211
smoothing edges, 217–218

multistate PNG32 image assets, 235–240
NinePatchDrawable assets, 223

assets, 225–235
draw 9-Patch source PNG32

image, 224–225
2D graphic design

anti-aliasing, 217–218
Gaussian Blur tool, 218
jaggies, 217

data footprint, 219
data patterns, 218
dithering process, 220

alpha channel, 221
diffusion dithering, 221
indexed color image, 221
PNG8 image, 220
spinner, 221

image compositing, 215
alpha-channel, 215
blending modes, 216
masking process, 216
PorterDuff class, 216

lossless compression algorithm, 219, 223
Lossless vs. Lossy, 222
lossy image compression, 223
pixels, 210

megapixels, 210
resolution, 210

RGB color theory, 212
8-bit / 256 levels, 212
color depth, 212
hexadecimal notation, 214
high dynamic range images (HDRI), 213
subtractive color, 212

WebP image format, 223

 ■H
Hard disk drive (HDD), 19
Hardware devices, 179

automobile dashboards, 181
future APIs, 182

iTV sets, 181–182
smartphones, tablets, phablets, and

e-book readers, 179–180
smartwatches and wearable

technology, 180–181
High Dynamic Range Images (HDRI), 213
High Efficiency Video Coding (HEVC), 213
Home screen widgets, 185–186
Hovered state, ImageButton class, 242–243
Hybrid widgets, 186

 ■I
ImageButton class, 240–241

android.widget package, 240
description, 240
multistate, 243–244, 246–248
.setImageResource() method., 241
states, 242–243
XML structure, 243

android:drawable parameter, 247
android:state parameters, 247

ImageButton class
Image compositing, 215

alpha-channel, 215
256 levals transparency, 215
ARGB data value, 215
bottom plate, 215

blending modes, 216
masking process, 216

edge detection, 217
magic wand tool, 217
tools selection, 217

Implicit Intents, 147
Indexed color model, 212
Information widgets, 185
Inheritance, 105–106

applyBrake() method, 107
Car features, 107
extends keyword, 106
Sport class, 106
super keyword, 107
SUV subclass, 106

integers.xml, 53
Integrated Development Environment (IDE)

platform structure
DEX file format, 37
Java API libraries, 35
Java bytecode, 36

480 Index

MPEG4 H.264 AVC digital video, 36
open technologies, 35

Intent Filters, 147
Intent objects, 147

context class, 152–153
event handling, 165–168
event handling capabilities, 147
explicit intent objects, 149
implicit intent objects, 149–150
IntentFilter object, 150–151
java programming logic, 151
messaging construct, 148
passing app context, 151
startActivity() method, 148
usage, 148

Interactive 3D (i3D), 9
Interface, 107

ICar interface, 108
implements keyword, 109
public keyword, 109

Interprocess communication (IPC), 388–389

 ■J
Java development kit (JDK)

Java SE 8u91, 22
NetBeans 8.1, 22
software development workstation, 23
TechNetwork web site, 21

Java enterprise edition (Java EE), 92
Java mobile edition (Java ME), 92
Java methods process

global event type, 155
UI widget events, 154–155

Java package, 7
Java Runtime Environment (JRE), 20

 ■K
Khronos.org, 13
Khronos Vulkan, 13

 ■L
Landscape mode, 179
Lifecycle process

background, 396
empty process, 396

foreground process, 394–395
priority hierarchy, 393
priority level rank, 396
priority levels, 394
process queue, 393
service process, 395
system memory, 393
visible, 395

listContacts() method, 455
Long-form digital audio, 339

 ■M
Masking, 216
Material design, 178–179
Memory caching optimization, 396
Memory footprint, 349
Menu class and interface

intentobjects (see Intent objects)
Mobile Internet, 2
MPEG-4 H.264 AVC (Advanced Video

Coding) digital video file
format, 306

Multistate PNG32 image assets, 235–240
Musical Instrument Digital Interface

(MIDI), 344

 ■N
Nexus 5, 169
NinePatchDrawable assets, 223

in Android, 231
in app, 232–235
9-patch, 231
draw 9-Patch source PNG32

image, 224–225
editing pane, 225
padding areas, 229–230

25 pixels, 230
one-pixel black border line

segment, 229
scalable areas, 226, 228

patch scale slider, 227
show bad patches button, 227
show content option, 227
Show patches check box

option, 226
studio’s 9-Patch editor, 225

NinePatchDrawable object, 223

Integrated Development
Environment (IDE) (cont.)

481Index

Non-access modifiers, 114
abstract keyword, 116–117
final keyword, 116
static, 114–115

Normal state, ImageButton class, 242–243

 ■O
Object-oriented programming (OOP), 91

access control modifiers, 112–114
API, 111
AppCompatActivity superclass, 118–119
behaviors, 92, 94
classes, 96

curly braces ({ }), 98
equal sign, 97
integer (int), 97
Java keyword class, 97
string, 97
variable name, 97

constructor method, 102–104
data types, 112
inheritance, 105–106

applyBrake() method, 107
Car features, 107
extends keyword, 106
Sport class, 106
super keyword, 107
SUV subclass, 106

instantiating objects
applyBrake() method, 105
Car() class, 104
dot notation, 105
onCreate() method, 104
shiftGears() method, 105
turnWheel() method, 105

interfaces, 107
ICar interface, 108
keyword, implementation, 109
public keyword, 109

Java code, analyzing, 117
Java enterprise edition (Java EE), 92
Java mobile edition (Java ME), 92
Java SE, 92
methods, 98

accelerateSpeed() method, 101
applyBrake() method, 101
Car class, 102
dot notation, 98

downShift() method, 100
parameter-list, 99
shiftGears() method, 100
turnWheel() method, 101
upShift() method, 100
void keyword, 98–99

non-access modifiers, 114
abstract keyword, 116–117
final keyword, 116
static, 114–115

object hierarchy, 93–94
packages, 110

Activity class, 111
android.app package, 111
bundle class, 111
Hello.World package, 110
import statements, 110
package keyword, 110

terminology, 95
data encapsulation, 95–96
data fields, 95
methods, 95
modularity, 96

Objects, 91
OGG Vorbis codec, 345
onPause() method, 395
onStop() method, 396
OOP. See Object-oriented programming (OOP)
OpenGL ES, 14
Open Handset Alliance (OHA), 4
OpenJDK, 12
Operating system (OS), 1

 ■P, Q
Parameter list, 99
Picture-in-a-picture (PIP) mode, 10
Pixel, 210

dithering, 220–222
Portrait mode, 179
Power consumption optimization via CPU, 9
Pressed state, ImageButton class, 242–243
Pulse code modulated (PCM), 346

 ■R
Raster animation, 252
Relational Database management system

(RDBMS), 417

482 Index

Resolution, 210
RGB color theory, 212

8-bit / 256 levels, 212
color depth, 212
hexadecimal notation, 213

#AARRGGBB, 214
#00FFFFFF, 214
pixel blending, 214
pound sign/hash-tag, 214
#RRGGBB, 214

high dynamic range images (HDRI), 213
palette, 212
subractive color, 212

 ■S
ScrollingActivity, 360

bootstrap class, 362
bootstrap ScrollingActivity class, 363
design pattern, 362
fab code, 367
FloatingActionButton widget, 364
<ImageView> child tag elements, 365
import statement, 366
new project creation, 360–361
pexels.com, 364
PNG24 images, 365
SnackBar code and SoundPool

code, 367–368
XML markup, 365

Shaders, 178
Short-form digital audio, 339
Sliding drawer, 186

application configuration XML, 199–200
application programming

logic, 200–205
CoordinatorLayout class, 193
DrawerLayout class, 190–191
FloatingActionButton class, 194
menu structures for UI design, 195–197
previewing UI design, 198–199
RelativeLayout design pattern, 190
Toolbar layout, 193
visualizing UI design, 197–198

Software development kits (SDK), 17
Solid state disk (SSD), 19
Sorenson Squeeze 9, 308, 314
SoundPool digital audio

analogaudio (see Analog audio)

AudioAttributes
AudioAttributes.Builder(), 376
object declaration, 376

AudioAttributes class, 374–375
code optimization, 385
definition, 339
digitalaudio (see Digital audio)
getStreamMaxVolume() method, 382
HelloUniverse

AudioManager class, 373
build() method, 371
constructor method, 372
Java object declaration

statement, 370
Java programming structure, 378
onCreate() method, 373
project /res/raw folder, 377
setupAnimalSamples()

method, 371, 373–374
top-level pseudo-code, 371
TypeanimalSamples, 372

ImageView instantiation, 384
Java class, 368
maxStreams parameter, 369
numeric values, 369
onClick() event handler type, 380–381
onCreate() method, 383
play() method, 369, 381
sample age, 369
sample playback rate, 370
setupAnimalSamples() method, 380
stop() method, 369
triggerSample() method, 379
usage, 368

SQLite, 417, 419
API, 419
database creation/updation, 420
database operations, 419
data types, 420

startActivity() method, 148
startService() method, 395, 410

Intent() constructor method, 411
XML and Java

contentDescription parameter, 411
findViewById(), 413

Streaming video, 336
strings.xml, 53
Structured Query Language (SQL), 418

483Index

Studio development system
download and installation, 23
eclipse ADT installation, 27
Eclipse ADT installation, 28
Google USB Driver, 26
Java SE installation,20 (see also Java

development kit (JDK))
manager, 26
media asset development tools, 18
menu configuration, 25
open source software, 18
SDK components, 24
SDK tools tab, 27–28
standard install option, 24
toolset, 18
workstation, 17

styles.xml, 53
Sustained Performance Mode API, 9

 ■T
TalkBack, 184
Terragen3.1, 311
Textures, 178
Threads

Camera class, 399
codeService class lifecycle

methods, 399
HandlerThread/AsyncTask object, 398
onKeyDown() event handler, 397
user interface thread, 397
worker thread, 398

Tweening, 268
alpha blending, 270

animation set, 270–271
fade-in or fade-out, 270
real/floating-point values, 270

alpha transparency, 268
android:duration parameter, 271
Animation class, 273
pong animation, 272
procedural concepts, 268

rotation, 269
scaling, 269
translation, 269
z-order, 268

procedural data values, 269
pivot point, 270
ranges, From and To value, 269

repeatCount parameter, 272
repeatMode parameter, 272
XML markup, 274

/anim folder creation, 274
animImageView instantiation, 281
findViewById() method, 287
ImageView setup, 277

 ■U
Uniform Resource Indentifier (URI) class, 321

android.net package, 322
data path, 321
error tapping and data path

validation, 322
hierarchy structure, 322
immutable URI reference, 322
Uri.parse() method, 322–323

User experience (UX), 178
download and installation, 29
media genres, 28
media software packages, 29

User Interface (UI) design, 59, 121, 147, 178
Activity subclass, 122
background image parameter, 142
build automatically option, 131
child tags, 123
Eclipse ADT, 131–132

build automatically option, 131
errors, 130

from scratch, 129–133
Button widget, 137–139
CheckBox, 134–136
remaining errors, 143–144
Squashing Bugs, 139–143
TextView, 136–137

Galaxy() method
Galaxy() constructor method, 132

parent tag, 123
thread, 397
View superclass, 123–124
ViewGroup class, 124, 126–127

Activity class, 127–129
direct subclasses, 125
margin attributes, 124
ViewGroup layout containers, 126
View UI widgets, 126

ViewGroup subclass, 123

484 Index

 ■V
Variables, 95
video streaming, 306
Video streaming, 307
ViewGroup subclass, 123
View superclass, 123
Vulkan, 14

 ■W
WebM (VP8) digital video format, 306
Widgets, 122
Wi-Fi networks, 13

 ■X, Y, Z
XML. See eXtensible Markup Language (XML)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to Android 7.0 Nougat
	The History of the Android OS: An Impressive Growth
	Advantage Android 7.0: How Can Android Benefit Me?
	The Scope of This Book
	What Is Covered in This Book
	What Is Not Covered in This Book

	What’s New in Android Nougat: Powerful New Features
	Android Apps for the Google Chrome OS: Custom Pointer API
	Power and CPU Optimization: Sustained Performance Mode API
	Seamless Updates: Background Installation to Secondary Partition
	Multiple Concurrent Windows: Run Two Android Apps at Once
	Picture in a Picture: Watch Video or TV in an Android TV HD iTV Set
	Change Display Density: Adjusting Pixel Per Inch (PPI) via Slider
	Keyboard Themes: Customize Onscreen Keyboard Using Skins
	Enhanced Doze Mode: Control Android 7.0 Device Resting States
	OpenJDK: Moving Android Java from Oracle Java to OpenJDK
	The Data Plan Saver: Sync Only When Connected to a Wi-Fi Portal

	The Future of Android: 3D, VR, AR, OpenGL, and Vulkan
	Khronos Vulkan: i3D Rendering Engine That Replaces OpenGL ES
	Vulkan for Android: Leading-Edge i3D Performance for Android 7.0
	OpenGL ES for Android: Desktop i3D Performance for Android 7.0

	Summary

	Chapter 2: Setting Up an Android Studio Development System
	Assembling Your Android 7 Development Workstation
	Android Development Workstation: Hardware Foundation
	Android Development Workstation: Software Foundation

	Java 8: Download and Install a Foundation for Android
	Android Studio: Download and Install Android Studio 2
	Open Source New Media Content Software: UI and UX
	New Media Software: Download and Installation Work Process
	Other Affordable New Media Software Readers Should Know About

	Summary

	Chapter 3: An Introduction to the Android Studio Integrated Development Environment
	Android Application Structure: Java, XML, and Assets
	Android 7 Platform Structure: A Collection of Open Technologies
	Android 7 Executable Structure: Compiled Runtime Java Bytecode

	Creating Android 7 Apps: Android Studio’s New Project
	The Android Studio Welcome Menu: Creating a New Android 7 App
	Exploring Your Android Studio Project: The Android App Structure

	Android Resource: Project Folder Hierarchy for Assets
	Android Drawables: Images or Illustration That Draws on the Screen
	Android User Interface Design Layout: Asset to Design UI Layout
	Android Menu Design: Asset to Define Menu Structure and Options
	Android Data Values: Assets to Define Fixed Application Constants
	Android Anim Folder: Assets Defining Vector or Tween Animation
	Android Animator: Assets for User Interface Property Animation
	Android Raw Folder: Pre-Optimized Video and Audio Asset Files
	Android XML: Arbitrary XML and Configurations

	Updating Android Studio: Upgrading an SDK over Time
	Summary

	Chapter 4: Introduction to XML: Defining Android Apps, UI Design, and Constants
	Extensible Markup Language: XML Overview
	XML Naming Schema: Tag and Parameter Repository
	XML Syntax: Containers, Brackets, and Nesting
	XML Referencing: Chain XML Constructs Together
	XML Constants: Adding New Constants Using XML
	XML Dimensions: Editing Dimensions Using XML
	Alternate XML Resource: Dimensions for Tablets
	XML Styles: Editing Styles or Themes Using XML
	XML Colors: Define Application Color Using XML
	Configuring an App Using XML: Android Manifest

	UI Design Editor: XML Markup Generation
	Summary

	Chapter 5: Introduction to Java: Objects, Methods, Classes, and Interfaces
	The Three Versions, or Editions, of Java
	A Foundation of OOP Constructs: An Object
	Some Programming Terms: Variable, Method, and Constant
	Java Constructs: Create Your Own Objects
	The Java Class: Java Code Structure Container
	The Java Method: Java Code Function Definition
	Constructor Methods: The Java Object Blueprint
	Instantiating Objects: The Java “new” Keyword
	Extend an Object’s Structure: Java Inheritance
	Java Interfaces: Defining Class Usage Patterns
	Logical Collection of Classes: Using a Package
	The API

	Modifiers: Data Type, Access, Inheritance
	Java Access Modifiers: Four Levels of Access
	Non-Access Modifiers: Static, Final, and Abstract
	The static Keyword: Share Variables Between Objects
	The final Keyword: Lock Down Your Java Code
	The abstract Keyword: Designate Class as a Superclass

	Analyzing Your MainActivity.java Class
	The AppCompatActivity Class: Spans OS Versions

	Summary

	Chapter 6: Android User Interface Design: Using Activity, View, and ViewGroup Classes
	How Activity, View, and ViewGroup Classes Interrelate
	The ViewGroup Class: A Known Direct Subclass of View
	The View Class: A Foundation of User Interface Design
	The Activity Class: A User Interface Design Container

	Creating UI Design from Scratch
	Add a CheckBox User Interface Element to your Design
	Add a TextView User Interface Element for Your Title
	Add a Button User Interface Element for Interactivity
	Squashing Bugs (Removing Errors) in the Design Editor
	Eliminate Any Remaining Errors Using the XML Text Editor

	Summary

	Chapter 7: Making Apps Interactive: Events and Intents
	About Intent Objects: The Android Intent Class
	Intent Types: Explicit Intent versus Implicit Intent
	Explicit Intents: A Direct Reference to the Component to Launch
	Implicit Intents: A Description of a Component You Want to Launch

	IntentFilter: Construct an Implicit Intent Definition
	Instantiating an Intent Object: Passing App Context
	Explaining Context: The Android Context Class

	Event Processing: Using Events with Event Listeners
	Events: Turning Device User Interaction into Events
	Event Listener: Java Methods Process UI Widget Events
	Event Handler: Java Methods Process Global Event Type

	Creating a Second Activity: The UniverseActivity Class
	Adding Event Listeners to the Activity Button Objects
	Adding Intent Processing to your Event Handling

	Emulating Hardware: Creating an AVD to Test Your App
	Running the Application: Building the App Using Gradle
	Summary

	Chapter 8: Android Design Patterns: UI Design Paradigms
	Android Design Patterns: Ensuring App Visual Quality
	Material Design: i3D Animated User Experience Designs
	Hardware Devices: Code Design Patterns Across Devices
	Smartphones, Tablets, Phablets, and e-Book Readers: Core Android API
	Smartwatches and Wearable Technology: The Android Wear 2 API
	Automobile Dashboards: The Android Auto API
	iTV Sets: The Android TV API
	Future APIs: Android Glass, Android Home, Android VR, Android Robot

	Pure Android: Application Design Branding Conformance
	Display Shape, Resolution, and Orientation: User Interfaces That Morph
	Backwards Compatibility: Support 32-bit Android Versions and Devices
	Confirmation and Acknowledgment: Are We All on the Same Page?!
	Accessibility: Design Your Apps for the Hearing and the Sight Impaired
	Home Screen Widgets: Miniaturized Applications
	Swiping Views: More Efficient Content Browsing for Modern Devices

	Creating a Sliding Drawer: UI Only When Users Need It
	Creating Menu Structures for a UI Design: The Android Menu Interface
	Visualizing the UI Design: High-Level View of XML and Classes Used
	Previewing the UI Design in the Nexus 5 AVD: Rendering the UI Design
	Application Configuration XML: The AndroidManifest.xml
	Application Programming Logic: Looking at the Android API Java Code

	Deprecated Java Code: Researching Replacement APIs
	Summary

	Chapter 9: Android Graphic Design: Making UI Designs Visual
	Imaging Concepts, Formats, and Techniques
	The Foundation of Digital Images: The Pixel
	The Shape of a Digital Image: The Aspect Ratio
	Coloring Your Digital Images: RGB Color Theory
	The Number of Colors in a Digital Image: Color Depth
	Representing Colors in Android: Hexadecimal Notation

	Image Compositing Transparency: Alpha Channels
	Algorithmic Image Compositing: Blending Modes
	Masking Digital Imagery: Using Alpha Channels
	Smoothing Edges: The Concept of Anti-Aliasing
	Optimizing Digital Images: Compress and Dither
	Using Indexed Color Imagery: Dithering Pixels
	Android Image Formats: Lossless versus Lossy

	Creating Android NinePatchDrawable Assets
	Installing the Draw 9-Patch Source PNG32 Image
	Exploring Android Studio’s 9-Patch Editor
	Defining the NinePatchDrawable Asset’s Scalable Areas
	Defining the NinePatchDrawable Asset’s Padding Areas

	Using Your NinePatchDrawable Asset in Android

	Using NinePatchDrawable Assets in an App
	Creating Multi-state PNG32 Image Assets
	The ImageButton Class: Multi-state Button
	The States: Normal, Pressed, Focused, Hovered

	Creating Android Multi-state ImageButtons
	Summary

	Chapter 10: Android Animation: Image and Procedural Animation
	Frame Animation: Concepts and Techniques
	Frame Animation: Cels, Frames, and Terminology
	Android Image Format: PNG, GIF, JPG, WebP, BMP
	Optimizing Frames: Color Depth and Frame Count
	Animation Resolution: Pixels Add to File Size!

	Frame Animation: Using AnimationDrawable
	Creating Frame Animation: XML Frame Definition
	The <animation-list> Tag: Your Image Frames Container
	The <item> Tag: How to Add the Image Animation Frames

	Creating Frame Animation in XML and Java
	Create the XML Frame Animation Definition File
	Create ImageView and AnimationDrawable Objects

	Android Tween Animation: Vector Concepts
	Procedural Concepts: Rotate, Scale, Translate
	Procedural Data Values: Ranges and Pivot Point
	Procedural Animation Compositing: Alpha Values
	Procedural Timing: Using Duration and Offsets
	Procedural Loops: RepeatCount and RepeatMode

	Android Animation Class: Tween Animation
	Creating Tween Animation Using XML Markup
	Create an /anim Folder: Tween Animation Assets
	Android ScaleAnimation Class: Animated Scaling
	The Scale Transform: Configuration Parameters
	Android AnimationSet Class: Transform Grouping
	AnimationSet Container: Groups and Subgroups
	Java Code: Tying Two Animation Types Together

	Complex Animation: Android Interpolators
	Creating Complex Animation Using XML Markup
	Android Interpolator Interface: Motion Curves
	Java Code: Two Widgets Use the Tween Animation

	Procedural Animation or Frame Animation?
	The Animator Class: Parameter Animation
	Summary

	Chapter 11: Digital Video: Streaming Video, MediaPlayer, and MediaController Classes
	Creating a Video App: FullscreenActivity
	The FrameLayout Class: Framing DV Content
	FrameLayout.LayoutParams Nested Class: Gravity

	The VideoView Class: A VideoPlayer Widget
	The VideoView Lifecycle: Video Playback Stages
	Create a VideoView Layout Design with your XML

	Digital Video Concepts: Bitrates and Codecs
	Digital Video in Android: MPEG4 H.264 and WebM
	Digital Video Compression: Bitrate and Streams
	Digital Video Optimization: Codec and Settings

	Creating Digital Video Content: Terragen4
	Digital Video Compression: Sorenson Squeeze 11
	Creating a Digital Video Folder: Raw Resources

	The Uri Class: Referencing the Video Data
	The Uri.parse() Method: Loading Your VideoView

	Android MediaPlayer: VideoPlayback Engine
	Android MediaController: A VideoTransport
	Add a Video Transport UI Using MediaController
	Loop Digital Video: Using OnPrepareListener
	Streaming Digital Video: Using HTTP URL in URI

	Summary

	Chapter 12: Digital Audio: Sequencing Audio Using SoundPool
	Audio Waves: History, Concepts, and Theory
	Foundation of Analog Audio: Sound Waves of Air
	Digital Audio: Samples, Resolution, and Frequency
	Digital Attributes: HD, Stream, and Bitrate
	Android Digital Audio: Digital Audio Formats
	Digital Audio Optimization: Device Compatible

	Audio Sequencing: Concepts and Principles
	Audio Synthesis: Concepts and Principles
	Raw Audio Data Optimization: Memory Footprint
	Digital Audio Synthesis and Sequencing Caveats

	Audacity 2: Creating Digital Audio Assets
	Audacity 2.1.2: Installing Software and Codecs
	Free Audio: Locate DigitalAudioSequencer Audio
	Digital Audio Optimization: Concepts and Formats

	DigitalAudioSequencer: ScrollingActivity
	Android SoundPool: Digital Audio Engine
	Add SoundPool Engine to DigitalAudioSequencer
	Android AudioAttributes: Configuring SoundPool
	Configuring a SoundPool Using AudioAttributes

	Summary

	Chapter 13: Android Services and Threads: Background Processing
	Android’s Service Class: Characteristics
	Controlling Your Service: Privacy and Priority
	Processes or Threads: Foundational Information
	Spawn a Process: android:process XML Parameter
	The Process Life Cycle: Keeping a Process Alive
	Foreground Process
	Visible Process
	Service Process
	Background Process
	Empty Process
	Increases in the Priority-Level Ranking

	Thread Caveats: Don’t Interfere with UI Thread
	Should Android Apps Use Services or Threads?

	Creating a Service: AmbientAudioService
	Configuring AndroidManifest to add a <service>

	Service: Background Processing Services
	Configure AmbientAudioService: Play Audio
	Starting a Service: Using .startService()
	Summary

	Chapter 14: Android Content Providers: Datastore Concepts
	Overview of Android Content Providers: Sharable Data
	Database Fundamentals: Concepts and Terms
	SQLite: An Open Source Database Engine
	Android’s Built-In SQLite DBMS Content Providers
	Android 1.5 Contacts Database Contact Provider
	Deprecated Database Structures: Software Upgrades
	The Android MediaStore Content Providers
	The Android CalendarContract Content Providers

	Referencing the Content Provider: Using a Content URI
	Creating a Basic Activity: The SQLiteProvider Project
	Examining and Testing Your SQLiteProvider Bootstrap
	Configuring the Manifest: Uses SDK and Permissions
	Creating Your Dummy Contact Database Using an AVD
	RelativeLayout: Create Morphing User Interface Design
	Creating Your RelativeLayout UI for MainActivity

	Transform the MainActivity Class for Database Access
	Creating Your Custom .listContacts() Database Access Method

	Writing to a Database: Using the ContentValues Object
	Summary

	Index

