Android Programming

Bill Phillips; Chris Stewart;
and Kristin-Marsicano

Android
Programming:
The Big Nerd
Ranch Guide

by Bill Phillips, Chris
Stewart and Kristin
Marsicano

Copyright © 2017 Big Nerd Ranch,
LLC.

All rights reserved. Printed in the United
States of America. This publication is
protected by copyright, and permission
must be obtained from the publisher
prior to any prohibited reproduction,
storage in a retrieval system, or
transmission in any form or by any
means, electronic, mechanical,
photocopying, recording, or likewise.
For information regarding permissions,
contact

Big Nerd Ranch, LLC.

200 Arizona Ave NE

Atlanta, GA 30307

(770) 817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is
a trademark of Big Nerd Ranch, Inc.

Exclusive worldwide distribution of the
English edition of this book by

Pearson Technology Group
800 East 96th Street

Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken
care 1n writing and printing this book but
make no expressed or implied warranty
of any kind and assume no responsibility
for errors or omissions. No liability is
assumed for incidental or consequential
damages in connection with or arising
out of the use of the information or

programs contained herein.

Many of the designations used by
manufacturers and sellers to distinguish
their products are claimed as
trademarks. Where those designations
appear in this book, and the publisher
was aware of a trademark claim, the
designations have been printed with
initial capital letters or in all capitals.

ISBN-10 0134706072
ISBN-13 978-0134706078

Third edition, first printing, February
2017
Release E.3.1.1

Dedication

1o the record player on my desk.
Thanks for keeping me company
through all this. I promise I’ll get
you a new needle soon.

— B.P.

1o my dad, David, for teaching me
the value of hard work. To my mom,
Lisa, for pushing me to always do
the right thing.

—C.S.

1o my dad, Dave Vadas, for
inspiring and encouraging me to
pursue a career in computing. And
to my mom, Joan Vadas, for cheering
me on through all the ups and downs
(and for reminding me that watching
an episode of The Golden Girls
always makes things better).

— K.M.

Acknowledgmer

With this being our third edition, we find
ourselves used to saying this. It always
needs to be said, though: Books are not
created by authors alone. They are
shepherded into existence by a
community of collaborators, risk-takers,
and other supporters, without whom the
burden of comprehending and writing all
this material would be crippling.

e Brian Hardy, who, along with
Bill, had the gusto to bring the
very first edition of this book
into the world. From nothing,

Brian and Bill made something
great.

Our co-instructors and
members of our Android
development team: Andrew
Lunsford, Bolot Kerimbaeyv,
Brian Gardner, David
Greenhalgh, Josh Skeen, Matt
Compton, Paul Turner, and
Rashad Cureton. (Soon,
Rashad. Soon.) They taught
everything in this book before
it was polished enough to be
presentable and gave us many
invaluable suggestions and
corrections. Most people live
their entire lives without ever
working with such a talented

and entertaining crew. They
make work at Big Nerd Ranch
an everyday joy.

Special thanks to Andrew, who
went through the entire book
and updated all the Android
Studio screenshots. We
appreciate his thoroughness,
attention to detail, and acerbic
Wwit.

Zack Simon, our fantastically
talented and soft-spoken Big
Nerd Ranch designer.
Unbeknownst to us, Zack went
behind our backs and updated
the nifty cheat sheet you can
find attached to this book. If

you enjoy that sheet, you should
find Zack and tell him so
yourself. But we will also
thank Zack right here: Thanks,
Zack!

Kar Loong Wong, for his work
redesigning the crime list
screen. The more help we get
from Kar, the better the apps in
this book look. Thanks, Kar.

Mark Dalrymple, who
reviewed our constraint layout
coverage for accuracy and
wonderfulness. If you happen
to run into Mark, ask him to
review your constraint layout
coverage. He is so good at

doing that! But if you have
none, ask him to make balloon
animals for you instead.

Thanks to Aaron Hillegass. As
a practical matter, it is not
possible to do this work
without Big Nerd Ranch, the
company Aaron founded.
Thank you.

Our editor, Elizabeth Holaday.
The famous beat author
William S. Burroughs
sometimes wrote by cutting up
his work into little pieces,
throwing them in the air, and
publishing the rearrangement.
Without a strong editor like

Liz, our confusion and
simpleminded excitement may
have caused us to resort to such
techniques. We are thankful that
she was there to impose focus,

precision, and clarity on our
drafts.

Ellie Volckhausen, who
designed our cover.

Anna Bentley, our copyeditor,
and Simone Payment, our
proofreader. Thank you both
for sanding away the remaining
rough edges of this book.

Chris Loper at
IntelligentEnglish.com, who
designed and produced the

print and ebook versions of the
book. His DocBook toolchain
made life much easier, too.

Finally, thanks to our students. There is a
feedback loop between us and our
students: We teach them out of these
materials, and they respond to it. Without
that loop, this book could never have
existed, nor could it be maintained. If
Big Nerd Ranch books are special (and
we hope they are), it is that feedback
loop that makes them so. Thank you.

Table of
Contents

Learning Android
Prerequisites
What's New in the Third Edition?
How to Use This Book
How This Book Is Organized

Challenges
Are you more curious?

Code Style

Typographical Conventions
Using an eBook

Android Versions

The Necessary Tools
Downloading and Installing
Android Studio
Downloading Earlier SDK
Versions
A Hardware Device

1. Your First Android Application
App Basics
Creating an Android Project
Navigating in Android Studio
Laying Out the UI

The view hierarchy
Widget attributes
Creating string resources
Previewing the layout
From Layout XML to View

Objects

Resources and resource IDs
Wiring Up Widgets
Getting references to
widgets
Setting listeners
Making Toasts
Using code completion
Running on the Emulator
For the More Curious: Android
Build Process
Android build tools
Challenges
Challenge: Customizing the
Toast
2. Android and Model-View-
Controller
Creating a New Class

Generating getters and
setters
Model-View-Controller and
Android
Benefits of MVC
Updating the View Layer
Updating the Controller Layer
Running on a Device
Connecting your device
Configuring your device for
development
Adding an Icon
Adding resources to a
project
Referencing resources in
XML
Challenge: Add a Listener to the

TextView
Challenge: Add a Previous
Button
Challenge: From Button to
ImageButton

3. The Activity Lifecycle
Logging the Activity Lifecycle

Making log messages

Using Logcat
Exploring the activity

lifecycle by example
Rotation and the Activity
Lifecycle

Device configurations and

alternative resources
Saving Data Across Rotation

Overriding

onSavelnstanceState(Bundle
The Activity Lifecycle, Revisited
For the More Curious: Current
State of Activity Cleanup
For the More Curious: Log
Levels and Methods
Challenge: Preventing Repeat
Answers
Challenge: Graded Quiz
4. Debugging Android Apps
Exceptions and Stack Traces
Diagnosing misbehaviors
Logging stack traces
Setting breakpoints
Using exception breakpoints
Android-Specific Debugging
Using Android Lint

Issues with the R class
Challenge: Exploring the Layout

Inspector
Challenge: Exploring Allocation

Tracking
5. Your Second Activity

Setting Up a Second Activity
Creating a new activity
A new activity subclass
Declaring activities in the
manifest
Adding a cheat button to
QuizActivity

Starting an Activity
Communicating with intents

Passing Data Between Activities
Using intent extras

Getting a result back from a
child activity
How Android Sees Your
Activities
Challenge: Closing Loopholes
for Cheaters
6. Android SDK Versions and
Compatibility
Android SDK Versions
Compatibility and Android
Programming
A sane minimum
Minimum SDK version
Target SDK version
Compile SDK version
Adding code from later APIs

safely

Using the Android Developer
Documentation
Challenge: Reporting the Build
Version
Challenge: Limited Cheats
/. Ul Fragments and the Fragment
Manager
The Need for UI Flexibility
Introducing Fragments
Starting Criminallntent
Creating a new project
Two types of fragments
Adding dependencies in
Android Studio
Creating the Crime class
Hosting a UI Fragment
The fragment lifecycle

Two approaches to hosting
Defining a container view
Creating a UI Fragment
Defining CrimeFragment’s
layout
Creating the CrimeFragment
class
Adding a UI Fragment to the
FragmentManager
Fragment transactions
The FragmentManager and
the fragment lifecycle
Application Architecture with
Fragments
The reason all our activities
will use fragments
For the More Curious:

Fragments and the Support

Library

For the More Curious: Why

Support Fragments Are Superior
8. Displaying Lists with
RecyclerView

Updating Criminallntent’s Model

Layer
Singletons and centralized

data storage
An Abstract Activity for Hosting
a Fragment

A generic fragment-hosting

layout

An abstract Activity class
RecyclerView, Adapter, and
ViewHolder

ViewHolders and Adapters
Using a RecyclerView
A view to display
Implementing a ViewHolder
and an Adapter
Binding List Items
Responding to Presses
For the More Curious: ListView
and GridView
For the More Curious: Singletons
Challenge: RecyclerView
ViewTypes
9. Creating User Interfaces with
Layouts and Widgets
Using the Graphical Layout Tool
Introducing ConstraintLayout
Using Constraintlayout

The graphical editor
Making room

Adding widgets
ConstraintLayout’s inner
workings

Editing properties
Making list items dynamic

More on Layout Attributes
Screen pixel densities and

dp and sp

Margins vs padding
Styles, themes, and theme

attributes

Android’s design guidelines
The Graphical Layout Tools and
You
Challenge: Formatting the Date

10. Using Fragment Arguments
Starting an Activity from a
Fragment

Putting an extra
Retrieving an extra
Updating CrimeFragment's
view with Crime data
The downside to direct
retrieval
Fragment Arguments
Attaching arguments to a
fragment
Retrieving arguments
Reloading the List
Getting Results with Fragments
For the More Curious: Why Use
Fragment Arguments?

11.

Challenge: Efficient

RecyclerView Reloading

Challenge: Improving CrimelLab
Performance

Using ViewPager

Creating CrimePagerActivity

ViewPager and

PagerAdapter

Integrating
CrimePagerActivity

FragmentStatePagerAdapter vs
FragmentPagerAdapter

For the More Curious: How
ViewPager Really Works

For the More Curious: Laying
QOut Views in Code

Challenge: Restoring

CrimeFragment’s Margins
Challenge: Adding First and Last
Buttons
12. Dialogs
Creating a DialogFragment
Showing a DialogFragment
Setting a dialog’s contents
Passing Data Between Two
Fragments
Passing data to
DatePickerFragment
Returning data to
CrimeFragment
Challenge: More Dialogs
Challenge: A Responsive
DialogFragment
13. The Toolbar

AppCompat

Using the AppCompat library
Menus

Defining a menu in XML
Creating the menu
Responding to menu
selections

Enabling Hierarchical Navigation
How hierarchical navigation
works

An Alternative Action Item
Toggling the action item
title
“Just one more thing...”

For the More Curious: Action Bar

vs Toolbar

Challenge: Deleting Crimes

14,

Challenge: Plural String
Resources

Challenge: An Empty View for
the RecyclerView

SQLite Databases

Defining a Schema

Building Your Initial Database
Exploring files using Android
Device Monitor

Debugging database issues
Gutting CrimeLab

Writing to the Database

Using ContentValues
Inserting and updating rows
Reading from the Database

Using a CursorWrapper
Converting to model objects

15.

For the More Curious: More
Databases

For the More Curious: The
Application Context
Challenge: Deleting Crimes
Implicit Intents

Adding Buttons

Adding a Suspect to the Model

Layer

Using a Format String

Using Implicit Intents
Parts of an implicit intent
Sending a crime report
Asking Android for a contact
Checking for responding
activities

Challenge: ShareCompat

Challenge: Another Implicit
Intent
16. Taking Pictures with Intents
A Place for Your Photo
File Storage
Using FileProvider
Designating a picture
location
Using a Camera Intent
Firing the intent
Scaling and Displaying Bitmaps
Declaring Features
Challenge: Detail Display
Challenge: Efficient Thumbnail
Load
17. Two-Pane Master-Detail
Interfaces

Adding Layout Flexibility
Modifying
SingleFragmentActivity
Creating a layout with two
fragment containers
Using an alias resource
Creating tablet alternatives

Activity: Fragment Boss
Fragment callback interfaces

For the More Curious: More on

Determining Device Size

Challenge: Adding Swipe to

Dismiss

18. Localization

Localizing Resources
Default resources
Checking string coverage

using Translations Editor
Targeting a region
Configuration Qualifiers
Prioritizing alternative
resources
Multiple gqualifiers
Finding the best-matching
resources
Testing Alternative Resources
Challenge: Localizing Dates
19. Accessibility

TalkBack

Explore by Touch

Linear navigation by swiping
Making Non-Text Elements
Readable by TalkBack

Adding content descriptions

20.

Making a widget focusable
Creating a Comparable
Experience

Using labels to provide

context
For the More Curious: Using
Accessibility Scanner
Challenge: Improving the List
Challenge: Providing Enough
Context for Data Entry
Challenge: Announcing Events
Data Binding and MVVM

Different Architectures: Why
Bother?
Creating BeatBox

Simple data binding

Importing Assets

Getting At Assets

Wiring Up Assets for Use

Binding to Data
Creating a ViewModel
Binding to a ViewModel
Observable data

Accessing Assets

For the More Curious: More

About Data Binding
Lambda expressions
More syntactic sugar
BindingAdapters

For the More Curious: Why

Assets, Not Resources

For the More Curious: Non-

Assets?

21. Unit Testing and Audio Playback

Creating a SoundPool
Loading Sounds
Playing Sounds
Test Dependencies
Creating a Test Class
Setting Up Your Test
Using mocked dependencies
Writing Tests
Testing object interactions
Data Binding Callbacks
Unloading Sounds
Rotation and Object Continuity
Retaining a fragment
Rotation and retained
fragments
For the More Curious: Whether
to Retain

22.

For the More Curious: Espresso
and Integration Testing

For the More Curious: Mocks
and Testing

Challenge: Playback Speed
Control

Styles and Themes

Color Resources
Styles
Style inheritance
Themes
Modifying the theme
Adding Theme Colors
Overriding Theme Attributes
Theme spelunking
Modifying Button Attributes
For the More Curious: More on

23.

Style Inheritance

For the More Curious: Accessing
Theme Attributes

XML Drawables

24.

Making Uniform Buttons
Shape Drawables

State List Drawables

Layer List Drawables

For the More Curious: Why
Bother with XML Drawables?
For the More Curious: Mipmap

Images
For the More Curious: 9-Patch

Images
Challenge: Button Themes

More About Intents and Tasks

Setting Up NerdLauncher

25.

Resolving an Implicit Intent

Creating Explicit Intents at

Runtime

Tasks and the Back Stack
Switching between tasks
Starting a new task

Using NerdLauncher as a Home

Screen

Challenge: Icons

For the More Curious: Processes

vs Tasks

For the More Curious:

Concurrent Documents

HTTP and Background Tasks

Creating PhotoGallery
Networking Basics
Asking permission to

network
Using AsyncTask to Run on a
Background Thread
You and Your Main Thread
Beyond the main thread
Fetching JSON from Flickr
Parsing JSON text
From AsyncTask Back to the
Main Thread
Cleaning Up AsyncTasks
For the More Curious: More on
AsyncTask
For the More Curious:
Alternatives to AsyncTask
Challenge: Gson
Challenge: Paging
Challenge: Dynamically

Adjusting the Number of
Columns
26. Loopers, Handlers, and
HandlerThread
Preparing RecyclerView to
Display Images
Downloading Lots of Small
Things
Communicating with the Main
Thread
Assembling a Background
Thread
Messages and Message
Handlers
Message anatomy
Handler anatomy
Using handlers

27

Passing handlers
For the More Curious:
AsyncTasks vs Threads
For the More Curious: Solving
the Image Downloading
Problem
For the More Curious:
StrictMode
Challenge: Preloading and

Caching

. Search

Searching Flickr
Using SearchView
Responding to SearchView
user interactions
Simple Persistence with Shared
Preferences

28.

Polishing Your App
Challenge: Polishing Your App
Some More

Background Services

Creating an IntentService
What Services Are For
Safe background networking
Looking for New Results
Delayed Execution with
AlarmManager
Being a good citizen: using
alarms the right way
PendingIntent
Managing alarms with
PendingIntent

Controlling Your Alarm
Notifications

Challenge: Notifications on
Android Wear
For the More Curious: Service
Details
What a service does (and
does not do)
A service’s lifecycle
Non-sticky services
Sticky services
Bound services
For the More Curious:
JobScheduler and JobServices
JobScheduler and the future
of background work
Challenge: Using JobService on

Lollipop
For the More Curious: Sync

Adapters
29. Broadcast Intents

Regular Intents vs Broadcast
Intents
Receiving a System Broadcast:
Waking Up on Boot
Creating and registering a
standalone receiver
Using receivers
Filtering Foreground
Notifications
Sending broadcast intents
Creating and registering a
dynamic receiver
Limiting broadcasts to your
app using private
permissions

30.

Passing and receiving data

with ordered broadcasts
Receivers and Long-Running
Tasks
For the More Curious: Local
Events

Using EventBus

Using RxJava
For the More Curious: Detecting
the Visibility of Your Fragment
Browsing the Web and WebView

One Last Bit of Flickr Data

The Easy Way: Implicit Intents

The Harder Way: WebView
Using WebChromecClient to
spruce things up

Proper Rotation with WebView

31.

Dangers of handling
configuration changes
For the More Curious: Injecting

JavaScript Objects
For the More Curious: WebView

Updates

Challenge: Using the Back
Button for Browser History
Challenge: Supporting Non-
HTTP Links

Custom Views and Touch Events

Setting Up the DragAndDraw

Project

Creating a Custom View
Creating BoxDrawingView

Handling Touch Events
Tracking across motion

32.

events
Rendering Inside

onDraw(Canvas)

Challenge: Saving State
Challenge: Rotating Boxes

Property Animation

Building the Scene
Simple Property Animation

View transformation
properties

Using different interpolators
Color evaluation

Playing Animators Together
For the More Curious: Other
Animation APIs
Legacy animation tools
Transitions

33.

Challenges
Locations and Play Services

Locations and Libraries
Google Play Services
Creating Locatr
Play Services and Location
Testing on Emulators
Mock location data
Building Out Locatr
Setting Up Google Play Services
Location permissions
Using Google Play Services
Flickr Geosearch
Getting a Location Fix
Asking for Permission at
Runtime
Checking for permissions

Find and Display an Image
Challenge: Permissions
Rationale
Challenge: Progress
34. Maps
Importing Play Services Maps
Mapping on Android
Getting a Maps API Key
Setting Up Your Map
Getting More Location Data
Working with Your Map
Drawing on the map
For the More Curious: Teams
and API Keys
35. Material Design
Material Surfaces
Elevation and Z values

State list animators
Animation Tools
Circular reveal
Shared element transitions
View Components
Cards
Floating action buttons
Snackbars
More on Material Design
36. Afterword
The Final Challenge
Shameless Plugs
Thank You
Index

Learning
Android

As a beginning Android programmer,
you face a steep learning curve. Learning
Android is like moving to a foreign city.
Even if you speak the language, it will
not feel like home at first. Everyone
around you seems to understand things
that you are missing. Things you already
knew turn out to be dead wrong in this
new context.

Android has a culture. That culture
speaks Java, but knowing Java is not

enough. Getting your head around
Android requires learning many new
ideas and techniques. It helps to have a
guide through unfamiliar territory.

That’s where we come in. At Big Nerd
Ranch, we believe that to be an Android
programmer, you must:

e write Android applications

e understand what you are
writing

This guide will help you do both. We
have trained thousands of professional
Android programmers using it. We lead
you through writing several Android
applications, introducing concepts and
techniques as needed. When there are

rough spots, or when some things are
tricky or obscure, you will face them
head on, and we will do our best to
explain why things are the way they are.

This approach allows you to put what
you have learned into practice in a
working app right away rather than
learning a lot of theory and then having
to figure out how to apply it all later.
You will come away with the experience
and understanding you need to get going
as an Android developer.

Prerequisites

To use this book, you need to be familiar

with Java, including classes and objects,
interfaces, listeners, packages, inner
classes, anonymous inner classes, and
generic classes.

If these concepts do not ring a bell, you
will be in the weeds by page 2. Start
instead with an introductory Java book
and return to this book afterward. There
are many excellent introductory books
available, so you can choose one based
on your programming experience and
learning style.

If you are comfortable with object-
oriented programming concepts, but your
Java is a little rusty, you will probably
be OK. We will provide some brief
reminders about Java specifics (like
interfaces and anonymous inner classes).

Keep a Java reference handy in case you
need more support as you go through the
book.

What's New in the
Third Edition?

This third edition adds coverage of a
couple of new tools: constraint layout
(plus its associated editor) and data
binding. New chapters have also been
added on unit testing, accessibility, the
MVVM architectural style, and
localization. Toward the end of the book,
we have added material on the new
runtime permissions system. Finally,
many new challenges and For the More
Curious sections have been added and
many others have been revised

throughout the book.

How to Use This
Book

This book is not a reference book. Its
goal is to get you over the initial hump to
where you can get the most out of the
reference and recipe books available. It
1s based on our five-day class at Big
Nerd Ranch. As such, it is meant to be
worked through from the beginning.
Chapters build on each other, and
skipping around 1s unproductive.

In our classes, students work through
these materials, but they also benefit
from the right environment — a dedicated

classroom, good food and comfortable
board, a group of motivated peers, and
an instructor to answer questions.

As a reader, you want your environment
to be similar. That means getting a good
night’s rest and finding a quiet place to
work. These things can help, too:

e Start a reading group with your
friends or coworkers.

e Arrange to have blocks of
focused time to work on
chapters.

e Participate in the forum for this
book at
forums.bignerdranch.c

e Find someone who knows

http://forums.bignerdranch.com

Android to help you out.

How This Book Is
Organized

As you work through this book, you will
write eight Android apps. A couple are
very simple and take only a chapter to
create. Others are more complex. The
longest app spans 13 chapters. All are
designed to teach you important concepts
and techniques and give you direct
experience using them.

GeoQuiz In your first app, you
will explore the
fundamentals of

Criminallntent

Android projects,
activities, layouts,
and explicit intents.

The largest app in
the book,
CriminalIntent lets
you keep a record of
your colleagues’
lapses around the
office. You will
learn to use
fragments, master-
detail interfaces,
list-backed
interfaces, menus,
the camera, implicit
intents, and more.

BeatBox

NerdLauncher

PhotoGallery

Intimidate your foes
with this app while
you learn more about
fragments, media
playback, MVVM
architecture, data
binding, testing,
themes, and
drawables.

Building this custom
launcher will give
you insight into the
intent system and
tasks.

A Flickr client that
downloads and

DragAndDraw

Sunset

displays photos from
Flickr’s public feed,
this app will take
you through services,
multithreading,
accessing web
services, and more.

In this simple
drawing app, you
will learn about
handling touch events
and creating custom
views.

In this toy app, you
will create a
beautiful

representation of a
sunset over open
water while learning
about animations.

Locatr This app lets you
query Flickr for
pictures around your
current location and
display them on a
map. In it, you will
learn how to use
location services and
maps.

Challenges

Most chapters have a section at the end
with exercises for you to work through.
This is your opportunity to use what you
have learned, explore the documentation,
and do some problem solving on your
own.

We strongly recommend that you do the
challenges. Going off the beaten path and
finding your way will solidify your
learning and give you confidence with
your own projects.

If you get lost, you can always visit
forums.bignerdranch.com for
some assistance.

Are you more curious?

http://forums.bignerdranch.com

There are also sections at the ends of
chapters labeled “For the More
Curious.” These sections offer deeper
explanations or additional information
about topics presented in the chapter.
The information in these sections is not
absolutely essential, but we hope you
will find it interesting and useful.

Code Style

There are two areas where our choices
differ from what you might see
elsewhere in the Android community:

We use anonymous inner classes
for listeners.

This is mostly a matter of
opinion. We find it makes for
cleaner code in the
applications in this book
because it puts the listener’s
method implementations right
where you want to see them. In
high-performance contexts or

large applications, anonymous
inner classes may cause
problems, but for most
circumstances they work fine.

After we introduce fragments in
Chapter 7, we use them for all user
interfaces.

Fragments are not an absolutely
necessary tool, but we find

that, when used correctly, they
are a valuable tool in any
Android developer’s toolkit.
Once you get comfortable with
fragments, they are not that
difficult to work with.
Fragments have clear
advantages over activities that

make them worth the effort,
including flexibility in building
and presenting your user
interfaces.

Typographical
Conventions

All code and XML listings are in a
fixed-width font. Code or XML that you
need to type in is always bold. Code or
XML that should be deleted is struck
through. For example, in the following
method implementation, you are deleting
the call to makeText (..) and adding
the call to checkAnswer (true).

@Override
public void onClick(View v) {
_éoastTtENGTH:SHGRTfTshow+f7
checkAnswer (true) ;
}

Using an eBook

If you are reading this book on an
eReader, we want to point out that
reading the code may be tricky at times.
Longer lines of code may wrap to a
second line, depending on your selected
font size.

The longest lines of code in this book
are 86 monospace characters, like this
one.

IceCreamSandwich mySandwich =
IceCream. fromSandwichFactory (vanilla,
chocolate chips);

You can play with your eReader’s
settings to find the best for viewing long

code lines.

If you are reading on an iPad with
iBooks, we recommend you go to the
Settings app, select iBooks, and set Ful
Justification OFF and Auto-hyphenation OFF.

When you get to the point where you are
actually typing in code, we suggest
opening the book on your PC or Mac in
Adobe Digital Editions. (Adobe Digital
Editions is a free eReader application
you can download from

www . adobe.com/products/
digitaleditions.) Make the
application window large enough so that
you can see the code with no wrapping
lines. You will also be able to see the
figures in full detail.

http://www.adobe.com/products/digitaleditions

Android Versions

This book teaches Android development
for all widely used versions of Android.
As of this writing, that is Android 4.4
(KitKat) - Android 7.1 (Nougat). While
there is a small amount of market-share
on older versions of Android, we find
that for most developers the amount of
effort required to support those versions
is not worth the reward. For more info
on the support of versions of Android
carlier than 4.4, see earlier editions of
this book. The second edition targeted
Android 4.1 and up, and the first edition
targeted Android 2.3 and up.

As Android releases new versions, the
techniques you learn in this book will
continue to work thanks to Android’s
backward compatibility support (see
Chapter 6 for details). We will keep
track of changes at
forums.bignerdranch.com and
offer notes on using this book with the
latest version.

http://forums.bignerdranch.com

The Necessary
Tools

To get started with this book, you will
need Android Studio. Android Studio is
an integrated development environment
used for Android development that is
based off of the popular IntelliJ IDEA.

An install of Android Studio includes:
Android SDK

the latest version of the
Android SDK

Android SDK tools and platform

tools

tools for debugging and testing
your apps

A system image for the Android
emulator

lets you create and test your
apps on different virtual
devices

As of this writing, Android Studio is
under active development and is
frequently updated. Be aware that you
may find differences between your
version of Android Studio and what you
see in this book. Visit
forums.bignerdranch.com for
help with these differences.

http://forums.bignerdranch.com

Downloading and
Installing Android
Studio

Android Studio is available from
Android’s developer site at
developer.android.com/sdk/.

If you do not already have it installed,
you will need to install the Java
Development Kit (JDK 8), which you
can download from
WWwW.Ooracle.com.

If you are still having problems, return to
developer.android.com/sdk/
for more information.

http://www.oracle.com

Downloading
Earlier SDK
Versions

Android Studio provides the SDK and
the emulator system image from the
latest platform. However, you may want
to test your apps on earlier versions of

Android.

You can get components for each
platform using the Android SDK
Manager. In Android Studio, select Tools
— Android — SDK Manager. (You will only
see the Tooks menu 1f you have a project

open. If you have not created a project
yet, you can instead access the SDK
Manager from the Android Setup Wizard
screen. Under the Quick Start section,
select Configure — SDK Manager.)

The SDK Manager is shown in Figure 1.

Figure 1 Android SDK Manager

Preferences
X Appearance & Behavior > System Settings > Android SDK Reset
Appearance & Behavior Manager for the Android SDK and Tools used by Android Studio
Appearance Android SDK Location: /AndroidDeveloper/sdk Edit

Menus and Toolbars SDKPlatforms | SDK Tools SDK Update Sites

System Settings
Each Android SDK Platform package includes the Android platform and sources pertaining to

Fasswords an API level by default, Once installed, Android Studio will autematically check for updates.
HTTP Proxy Check "show package details” to display individual SDK components.
Updates Name AP Level Revision Status.
v ¥ Android 7.0 (Nougat) 2 Installed
Usage Statistics
2 Android 6.0 (Marshmallow) 23 3 Not installed
ADdroldiSDK Android 5.1 (Lollipop) 2 2 Notinstalled
File Colors Android 5.0 (Lollipop) 21 2 Not installed
Scopes Android 4.4W (KitKat Wear) 20 2 Not installed
Notifications & Android 4.4 (KitKat) 19 4 Not installed
Android 4.3 (elly Bean) 18 3 Not installed
QLB Android 4.2 (elly Bean) 17 3 Notinstalled
Path Variables Android 4.1 (elly Bean) 16 H Not installed
e Android 4.0.3 (iceCreamsandwich) 15 s Notinstalled
Editor Android 4.0 (IceCreamSandwich) 14 4 Not installed
: Show Package Details
Plugins
Version Control Launch Standalone SDX Manager
? Cancel Apply

Select and 1nstall each version of

Android that you want to test with. Note

that downloading these components may
take a while.

The Android SDK Manager is also how
to get Android’s latest releases, like a
new platform or an update of the tools.

A Hardware Device

The emulator is useful for testing apps.
However, it 1s no substitute for an actual
Android device when measuring
performance. If you have a hardware
device, we recommend using that device
at times when working through this book.

1

Your First
Android
Application

This first chapter is full of new concepts
and moving parts required to build an
Android application. It is OK if you do
not understand everything by the end of
this chapter. You will be revisiting these
ideas in greater detail as you proceed
through the book.

The application you are going to create
is called GeoQuiz. GeoQuiz tests the
user’s knowledge of geography. The user
presses TRUE or FALSE to answer the
question on screen, and GeoQuiz
provides instant feedback.

Figure 1.1 shows the result of a user
pressing the TRUE button.

Figure 1.1 Do you come from a
land down under?

4 A 7:00
GeoQuiz

App Basics

Your GeoQuiz application will consist
of an activity and a layout:

e An activity is an instance of
Activity, aclass inthe
Android SDK. An activity is
responsible for managing user
interaction with a screen of
information.

You write subclasses of
Activity to implement the
functionality that your app
requires. A simple application
may need only one subclass; a
complex application can have
many.

GeoQuiz 1s a simple app, so it
will have a single Activity
subclass named
QuizActivity.
QuizActivity will manage

the user interface, or Ul, shown
in Figure 1.1.

e A layout defines a set of Ul
objects and their positions on
the screen. A layout is made up
of definitions written in XML.
Each definition is used to
create an object that appears on
screen, like a button or some
text.

GeoQuiz will include a layout

file named

activity quiz.xml. The
XML in this file will define the

UI shown in Figure 1.1.

The relationship between
QuizActivity and

activity quiz.xmlis
diagrammed in Figure 1.2.

Figure 1.2 QuizActivity
manages what
activity quiz.xml defines

With those 1deas in mind, let’s build an
app.

Creating an
Android Project

The first step is to create an Android
project. An Android project contains the
files that make up an application. To
create a new project, first open Android
Studio.

If this 1s your first time running Android
Studio, you will see the Welcome

dialog, as in Figure 1.3.

Figure 1.3 Welcome to Android
Studio
?;

Android Studio

%% Start a new Android Studio project

[*1 Open an existing Android Studio project

& Check out project from Version Control ~
¢ Import project (Eclipse ADT, Gradle, etc.)

¥ Import an Android code sample

Configure ~ Get Help ~

From the dialog, choose Start a new Android
Studio project. If you do not see the dialog,
you may have created projects before. In
this case, choose Fie — New — New
Project....

You should see the New Project wizard

(Figure 1.4). In the first screen of the
wizard, enter GeoQuiz as the application
name. For the company domain, enter
android.bignerdranch.com. As you do
this, you will see the generated package
name change to
com.bignerdranch.android.geoquiz. For
the project location, you can use any
location on your filesystem that you
want.

Figure 1.4 Creating a new
application

Create New Project

H New Project

*X Android Studio

Configure your new project

Application name: GeoQuiz
Company Domain: android.bignerdranch.com
Package name: com.bignerdranch.android.geoquiz Edit

Include C++ Support

Project location: /Users /dev/AndroidStudioProjects /GeoQuiz

Cancel previous | ([IEEEED

Notice that the package name uses a
“reverse DNS” convention: The domain
name of your organization is reversed

and suffixed with further identifiers.
This convention keeps package names
unique and distinguishes applications
from each other on a device and on
Google Play.

Click Next. The next screen allows you
to specify details about which devices
you want to support. GeoQuiz will only
support phones, so just check Phone and
Tabket. Select a minimum SDK version of
API 19: Android 4.4 (KitKat) (Figure 1.5).
You will learn about the different
versions of Android in Chapter 6.

Figure 1.5 Specifying device
support

Create New Project

Select the form factors your app will run on

Different platforms may require separate SDKs

Phone and Tablet
Minimum SDK API 19: Android 4.4 (KitKat) [T

Lower API levels target more devices, but have fewer features available.

By targeting APl 19 and later, your app will run on approximately 73.9% of the devices
that are active on the Google Play Store.

Help me choose
Wear

Minimum SDK API 21: Android 5.0 (Lollipop)]
n

Minimum SDK API 21: Android 5.0 (Lollipop) T
Android Auto

Glass

Minimum SDK Glass Development Kit Preview (API 19) T

Gancel Previous IS Finish

Click Next.
In the next screen, you are prompted to

choose a template for the first screen of
GeoQuiz (Figure 1.6). You want the
most basic template available. Choose
Empty Activity and click Next.

(Android Studio updates regularly, so
your wizard may look slightly different
from what we are showing you. This is
usually not a problem; the choices
should be similar. If your wizard looks
very different, then the tools have
changed more drastically. Do not panic.
Head to this book’s forum at
forums.bignerdranch.com and
we will help you navigate the latest
version.)

http://forums.bignerdranch.com

Figure 1.6 Choosing a type of
activity

Create New Project

A Add an Activity to Mobile

Add No Activity

Basic Activity

Fullscreen Activity Google AdMob Ads Activity Google Maps Activity
Cancel previous | [Finish

In the final dialog of this wizard, name
the activity subclass QuizActivity

(Figure 1.7). Notice the Activity
suffix on the class name. This is not
required, but it is an excellent
convention to follow.

Figure 1.7 Configuring the new
activity

Create New Project

Hy Customize the Activity

Creates a new empty activity

Activity Name: QuizActivity
Generate Layout File
Layout Name: activity_quiz

Backwards Compatibility (AppCompat)

Empty Activity

Cancel Previous Next . Finish |

Leave Generate Layout Fie checked. The
layout name will automatically update to

activity quiz to reflect the activity’s
new name. The layout name reverses the
order of the activity name, is all
lowercase, and has underscores between
words. This naming style is
recommended for layouts as well as
other resources that you will learn about
later.

If your version of Android Studio has
other options on this screen, leave them
as is. Click Finsh. Android Studio will
create and open your new project.

Navigating Iin
Android Studio

Android Studio opens your project in a
window, as shown in Figure 1.8.

The different panes of the project
window are called tool windows.

The lefthand view is the project tool
window. From here, you can view and
manage the files associated with your
project.

The main view is the editor. To get you
started, Android Studio has opened
QuizActivity.java in the editor.

Figure 1.8 A fresh project
wmdow

(XX) java - GeoQuiz -

Q
g v
5 7
] & com. r (andr
4 £ com.bignerdranch.android.geoquiz (test) 3
¥ > Gares 1
& Gradle Scripts 12)

4 B 3
¢ 1
S

B Terminal i 6 Androld Moritor [Q:Messages 27000 Eventtog (5] Gradie Console

Gradlebuil finished i 45 872ms (11 minutes 390) L1 R UTF-8e

You can toggle the visibility of the
various tool windows by clicking on
their names in the strips of tool buttons
on the left, right, and bottom of the
screen. There are keyboard shortcuts for
many of these as well. If you do not see

the tool button strips, click the gray
square button in the lower-left corner of
the main window or choose View — Tool
Buttons.

Laying Out the UI

Open
app/res/layout/activity qui
If you see a graphical preview of the
file, select the Text tab at the bottom to
see the backing XML.

Currently, activity quiz.xml
defines the default activity layout. The
defaults change frequently, but the XML
will look something like Listing 1.1.

Listing 1.1 Default activity
layout (activity quiz.xml)

xmlns:android="http://schemas.android.com/apk/res/andr

xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/activity quiz"

android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="16dp"
android:paddingLeft="16dp"
android:paddingRight="16dp"
android:paddingTop="16dp"

tools:context="com.bignerdranch.android.geoquiz.QuizAc
<TextView
android:layout width="wrap content"
android:layout_height="wrap_content"

android:text="Hello World!"/>
</RelativeLayout>

The default activity layout defines two
widgets: a RelativeLayout and a
TextView.

Widgets are the building blocks you use
to compose a Ul. A widget can show text
or graphics, interact with the user, or
arrange other widgets on the screen.
Buttons, text input controls, and

checkboxes are all types of widgets.

The Android SDK includes many
widgets that you can configure to get the
appearance and behavior you want.
Every widget 1s an instance of the View
class or one of its subclasses (such as
TextView or Button).

Figure 1.9 shows how the
RelativeLayout and TextView

defined in Listing 1.1 would appear on
screen.

Figure 1.9 Default widgets as
seen on screen

V41l 7.0
GeoQuiz

TextView

RelativeLayout

But these are not the widgets you are
looking for. The interface for
QuizActivity requires five widgets:

a vertical LinearLayout

a TextView

a horizontal LinearLayout

two Buttons

Figure 1.10 shows how these widgets
compose QuizActivity’s interface.

Figure 1.10 Planned widgets
as seen on screen

v 'd A 7:00
GeoQuiz

: LinearLayout
i (vertical)
1
|
I

Y

T e e e S | .
'l TRUE) FALSE | I'-——*—H'Qiﬁ%iﬁggt
Buttons

Now you need to define these widgets in
activity quiz.xml.

In the project tool window, find the
app/res/layout directory, reveal
its contents, and open

activity quiz.xml. Make the
changes shown in Listing 1.2. The XML

that you need to delete is struck through,
and the XML that you need to add is in

bold font. This is the pattern we will use
throughout this book.

Do not worry about understanding what
you are typing; you will learn how it
works next. However, do be careful.
Layout XML is not validated, and typos
will cause problems sooner or later.

You will see errors on the three lines
that start with android: text. Ignore
these errors for now; you will fix them
soon.

Listing 1.2 Defining widgets in
XML (activity quiz.xml)

<Relativebayout
Srotdtd=te i - A

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/andr

android:layout width="match parent"
android:layout height="match_parent"
android:gravity="center"
android:orientation="vertical" >

<TextView

android:layout width="wrap content"
android:layout height="wrap_content"
android:padding="24dp"
android:text="@string/question_text" />

<LinearLayout

android:layout width="wrap_ content"
android:layout height="wrap_content"
android:orientation="horizontal” >

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/true_button" />

<Button
android:layout width="wrap content"
android:layout height="wrap_ content"
android:text="@string/false_button" />

</LinearLayout>
</LinearLayout>

Compare your XML with the UI shown
in Figure 1.10. Every widget has a
corresponding XML element, and the
name of the element is the type of the

widget.

Each element has a set of XML
attributes. Each attribute 1s an
instruction about how the widget should
be configured.

To understand how the elements and
attributes work, it helps to look at the
layout from a hierarchical perspective.

The view hierarchy

Your widgets exist in a hierarchy of
View objects called the view hierarchy.
Figure 1.11 shows the view hierarchy
that corresponds to the XML in Listing
1.2.

Figure 1.11 Hierarchical layout
of widgets and attributes

LinearLayout
xmins:android="http:/ /schemas.android.com/apk/res/android"
android:layout_width="match_parent"

android:layout_height="match_parent"
android:gravity="center"
android:orientation="vertical"

LN

LinearLayout
android:layout_width="wrap_content"

TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"

) N android:layout_height="wrap_content"
android: padding="24dp"

android:orientation="horizontal"

android: text="@string/ ion_text"

Button Button
android:layout_width="wrap_content" android:layout_width="wrap_content"
android:layout_height="wrap_content" android:layout_height="wrap_content"
android:text="@string/true_button" android:text="@string /false_button"

The root element of this layout’s view
hierarchy is a LinearLayout. As the
root element, the LinearLayout must
specify the Android resource XML
namespace at

http://schemas.android.com/

LinearLayout inherits froma
subclass of View named ViewGroup.
A ViewGroup is a widget that contains
and arranges other widgets. You use a
LinearLayout when you want
widgets arranged in a single column or
row. Other ViewGroup subclasses are
FrameLayout, TableLayout, and
RelativeLayout.

When a widget is contained by a
ViewGroup, that widget is said to be a
child of the ViewGroup. The root
LinearLayout has two children: a
TextView and another
LinearLayout. The child
LinearLayout has two Button
children of its own.

Widget attributes

Let’s go over some of the attributes that
you have used to configure your widgets.

android:layout_width and
android:layout_height

The android: layout width and
android:layout height attributes are
required for almost every type of
widget. They are typically set to either
match parent orwrap content:

match parent view will be as
big as its parent

wrap content view will be as
big as its contents
require

(Youmay see £i11 parent insome
places. This deprecated value 1s
equivalentto match parent.)

For the root LinearLayout, the value
of both the height and width attributes is
match parent. The
LinearLayout is the root element,
but it still has a parent — the view that
Android provides for your app’s view
hierarchy to live in.

The other widgets in your layout have
their widths and heights set to
wrap content. You can see in

Figure 1.10 how this determines their
s1zes.

The TextView is slightly larger than
the text it contains due to its
android:padding="24dp" attribute.
This attribute tells the widget to add the
specified amount of space to its contents
when determining its size. You are using
it to get a little breathing room between
the question and the buttons. (Wondering
about the dp units? These are density-
independent pixels, which you will learn
about in Chapter 9.)

android:orientation

The android:orientation attribute on

the two LinearLayout widgets
determines whether their children will
appear vertically or horizontally. The
root LinearLayout is vertical; its
child LinearLayout is horizontal.

The order in which children are defined
determines the order in which they
appear on screen. In a vertical
LinearLayout, the first child defined
will appear topmost. In a horizontal
LinearLayout, the first child defined
will be leftmost. (Unless the device is
set to a language that runs right to left,
such as Arabic or Hebrew. In that case,
the first child will be rightmost.)

android:text

The TextView and Button widgets
have android:text attributes. This
attribute tells the widget what text to
display.

Notice that the values of these attributes
are not literal strings. They are
references to string resources.

A string resource is a string that lives in
a separate XML file called a strings
file. You can give a widget a hardcoded
string, like android:text="True", but
it is usually not a good idea. Placing
strings into a separate file and then
referencing them is better because it
makes localization easy.

The string resources you are referencing
inactivity quiz.xml do not exist

yet. Let’s fix that.

Creating string
resources

Every project includes a default strings
file named strings.xml.

Openres/values/strings.xml.
The template has already added one
string resource for you. Add the three
new strings that your layout requires.

Listing 1.3 Adding string
resources (strings.xml)

<resources>
<string name="app name">GeoQuiz</string>
<string name="question_ text">Canberra is the
capital of Australia.</string>
<string name="true button">True</string>

<string name="false_ button">False</string>
</resources>

(Depending on your version of Android
Studio, you may have additional strings.
Do not delete them. Deleting them could
cause cascading errors in other files.)

Now, whenever you refer to
@string/false button inany
XML file in the GeoQuiz project, you
will get the literal string “False” at
runtime.

If you had errors in
activity quiz.xml about the
missing string resources, they should
now be gone. (If you still have errors,
check both files for typos.)

Although the default strings file is named
strings.xml, you can name a strings

file anything you want. You can also
have multiple strings files in a project.
As long as the file is located in
res/values/, has a resources root
element, and contains child string
elements, your strings will be found and
used.

Previewing the layout

Your layout is now complete, and you
can preview the layout in the graphical
layout tool (Figure 1.12). First, make
sure that your files are error free. Then
returnto activity quiz.xml and
open the preview tool window (if it is
not already open) using the tab to the

right of the editor.

Figure 1.12 Previewing
activity quiz.xml in
graphical layout tool

ﬁ E] § O [ONexus4~ mi24~ (PAppTheme ELlanguage~ D'
EHNEE Ox®E ¥ B

600
GeoQuiz

Canberra is the capital of Australia.

TRUE FALSE

From Layout XML
to View Objects

How do XML elements in

activity quiz.xml become View
objects? The answer starts in the
QuizActivity class.

When you created the GeoQuiz project,

a subclass of Activity named
QuizActivity was created for you.
The class file for QuizActivity isin
the app/ java directory of your
project. The java directory is where
the Java code for your project lives.

In the project tool window, reveal the
contents of the app/java directory
and then the contents of the
com.bignerdranch.android.geoquiz
package. Open the
QuizActivity.java file and take a
look at its contents.

Listing 1.4 Default class file for
QuizActivity
(QuizActivity.java)

package com.bignerdranch.android.geoquiz;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class QuizActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity quiz);

(Wondering what
AppCompatActivityis? Itisa
subclass of Android’s Activity class
that provides compatibility support for
older versions of Android. You will
learn much more about
AppCompatActivity in

Chapter 13.)

If you are not seeing all of the import
statements, click the symbol to the left of
the first import statement to reveal the
others.

This file has one Activity method:
onCreate (Bundle).

(If your file has
onCreateOptionsMenu (Menu)
and

onOptionsItemSelected (Menul
methods, ignore them for now. You will
return to menus in detail in Chapter 13.)

The onCreate (Bundle) method is
called when an instance of the activity
subclass is created. When an activity is
created, it needs a Ul to manage. To get
the activity its Ul, you call the following
Activity method:

public void setContentView (int layoutResID)

This method inflates a layout and puts it
on screen. When a layout is inflated,
each widget in the layout file is
instantiated as defined by its attributes.
You specify which layout to inflate by
passing in the layout’s resource ID.

Resources and resource
IDs

A layout is a resource. A resource is a
piece of your application that is not code
— things like image files, audio files, and
XML files.

Resources for your project live in a
subdirectory of the app/ res directory.
In the project tool window, you can see
thatactivity quiz.xml livesin
res/layout/. Your strings file,
which contains string resources, lives in
res/values/.

To access a resource in code, you use its
resource ID. The resource ID for your

layout is R.layout.activity quiz.

To see the current resource IDs for
GeoQuiz, you must first change your
project view. By default, Android Studio
uses the Android project view

(Figure 1.13). This view hides the true
directory structure of your Android
project so that you can focus on the files
and folders that you need most often.

Figure 1.13 Changing the
project view

4 GeoQuiz
o | Project

t

§' Clapp Packages
-l Mmani Scratches
) [java v Android
Fares Project Files
£ » (@Gradles Problems
g Production
& Tests
i Tests
v Android Instrumentation Tests

Locate the dropdown at the top of the
project tool window and change from
the Android view to the Project view. The
Project view will show you the files and
folders in your project as they actually
are.

To see the resources for GeoQuiz, reveal
the contents of the
app/build/generated/source/
directory. In this directory, find your
project’s package name and open

R. java within that package. Because
this file 1s generated by the Android
build process, you should not change it,
as you are subtly warned at the top of the
file.

After making a change to your resources,
you may not see this file instantly update.
Android Studio maintains a hidden

R . java that your code builds against.
The R. java file in Listing 1.5 is the
one that 1s generated for your app just
before it is installed on a device or
emulator. You will see this file update

when you run your app.

Listing 1.5 Current GeoQuiz
resource IDs (R. java)

/* AUTO-GENERATED FILE. DO NOT MODIFY.
*

* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.

*/

package com.bignerdranch.android.geoquiz;

public final class R {
public static final class anim {

}

public static final class id {

}

public static final class layout {

public static final int
activity quiz=0x7£030017;
}
public static final class mipmap {
public static final int
ic_launcher=0x7£030000;

}

public static final class string {
public static final int app_name=0x7f0a0010;
public static final int
false button=0x7£0a0012;
public static final int
question_text=0x7f0a0014;
public static final int
true_button=0x7£0a0015;
}
}

The R. java file can be large, and
much of this file is omitted from Listing
1.5.

This is where the
R.layout.activity quiz comes from
— it is an integer constant named
activity quiz withinthe layout
inner class of R.

Your strings also have resource IDs. You
have not yet referred to a string in code,
but if you did, it would look like this:

setTitle (R.string.app name);

Android generated a resource ID for the
entire layout and for each string, but it
did not generate IDs for the individual
widgets inactivity quiz.xml.
Not every widget needs a resource ID.
In this chapter, you will only interact
with the two buttons in code, so only
they need resource IDs.

Before generating the resource IDs,
switch back to the Android project view.
Throughout this book, the Android project
view will be used — but feel free to use
the Project version if you prefer.

To generate a resource ID for a widget,
you include an android: id attribute in
the widget’s definition. In

activity quiz.xml, add an

android:id attribute to each button.

Listing 1.6 Adding IDs to
ButtonsS (activity quiz.xml)

<LinearLayout ... >

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:padding="24dp"
android:text="@string/question text" />

<LinearLayout
android:layout width="wrap content"
android:layout height="wrap content"
android:orientation="horizontal">

<Button
android:id="@+id/true button"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/true button" />

<Button
android:id="@+id/false_button"
android:layout width="wrap_ content"
android:layout height="wrap content"
android:text="@string/false_button" />

</LinearLayout>

</LinearLayout>

Notice that there 1s a + sign in the values
for android: id but not in the values for
android:text. This is because you are
creating the 1Ds and only referencing
the strings.

Wiring Up Widgets

Now that the buttons have resource IDs,
you can access them in
QuizActivity. The first step is to
add two member variables.

Type the following code into
QuizActivity.java. (Do notuse
code completion; type it in yourself.)
After you save the file, it will report two
errors.

Listing 1.7 Adding member
variables (QuizActivity. java)
public class QuizActivity extends AppCompatActivity {

private Button mTrueButton;

private Button mFalseButton;
@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity quiz);

}

You will fix the errors in just a second.
First, notice the m prefix on the two
member (instance) variable names. This
prefix is an Android naming convention
that we will follow throughout this book.

Now mouse over the red error
indicators. They report the same
problem: Cannot resolve symbol 'Button'.

These errors are telling you that you
need to import the
android.widget.Button class
into QuizActivity.java. You

could type the following import
statement at the top of the file:

import android.widget.Button;

Or you can do it the easy way and let
Android Studio do it for you. Just press
Optiont+Return (or Alt+Enter) to let the
IntelliJ magic under the hood amaze you.
The new import statement now appears
with the others at the top of the file. This
shortcut is generally useful when
something is not correct with your code.
Try it often!

This should get rid of the errors. (If you
still have errors, check for typos in your
code and XML.)

Now you can wire up your button
widgets. This 1s a two-step process:

e get references to the inflated
View objects

e set listeners on those objects to
respond to user actions

Getting references to
widgets

In an activity, you can get a reference to
an inflated widget by calling the
following Activity method:

public View findViewById(int id)

This method accepts a resource ID of a
widget and returns a View object.
InQuizActivity.java, use the
resource IDs of your buttons to retrieve

the inflated objects and assign them to
your member variables. Note that you
must cast the returned View to Button
before assigning it.

Listing 1.8 Getting references
to widgets
(QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

private Button mTrueButton;
private Button mFalseButton;

@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity quiz);

mTrueButton = (Button)
findViewById (R.id.true_button);
mFalseButton = (Button)
findViewById(R.id.false_button);
}
}

Setting listeners

Android applications are typically event
driven. Unlike command-line programs
or scripts, event-driven applications
start and then wait for an event, such as
the user pressing a button. (Events can
also be initiated by the OS or another
application, but user-initiated events are
the most obvious.)

When your application is waiting for a
specific event, we say that it is
“listening for” that event. The object that
you create to respond to an event is
called a listener, and the listener
implements a /istener interface for that
event.

The Android SDK comes with listener
interfaces for various events, so you do
not have to write your own. In this case,
the event you want to listen for is a
button being pressed (or “clicked”), so
your listener will implement the
View.OnClickListener interface.

Start with the TRUE button. In
QuizActivity.java, add the
following code to

onCreate (Bundle) just after the
variable assignment.

Listing 1.9 Setting a listener
for the TRUE button
(QuizActivity.java)

protected void onCreate (Bundle
savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity quiz);

mTrueButton = (Button)
findviewById(R.id.true button);
mTrueButton.setOnClickListener (new
View.OnClickListener () {
QOverride
public void onClick (View v) {
// Does nothing yet, but soon!
}
I

mFalseButton = (Button)
findvViewById (R.id.false button);
}
}

(If you have a View cannot be resolved to a
type error, try using Option+Return
(Alt+Enter) to import the View class.)

In Listing 1.9, you set a listener to
inform you when the But ton known as
mTrueButton has been pressed. The
setOnClickListener (OnClickL
method takes a listener as its argument.

In particular, it takes an object that
implements onClickListener.

Using anonymous inner classes

This listener is implemented as an
anonymous inner class. The syntax is a
little tricky, but it helps to remember that
everything within the outermost set of
parentheses 1s passed into
setOnClickListener (OnClickL
Within these parentheses, you create a
new, nameless class and pass its entire
implementation.

mTrueButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick(View v) {
// Does nothing yet, but soon!
}

b

All of the listeners in this book will be
implemented as anonymous inner
classes. Doing so puts the
implementations of the listeners’
methods right where you want to see
them. And there is no need for the
overhead of a named class because the
class will be used in one place only.

Because your anonymous class
implements onClickListener, it must
implement that interface’s sole method,
onClick (View). You have left the
implementation of onClick (View)
empty for now, and the compiler is OK
with that. A listener interface requires
you to implement onClick (View),
but it makes no rules about Zow you

implement it.

(If your knowledge of anonymous inner
classes, listeners, or interfaces is rusty,
you may want to review some Java
before continuing or at least keep a
reference nearby.)

Set a similar listener for the FALSE button.

Listing 1.10 Setting a listener

for the FALSE button
(QuizActivity.java)

mTrueButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick(View v) {
// Does nothing yet, but soon!
}
1)

mFalseButton = (Button)
findViewById (R.id.false_button);

mFalseButton.setOnClickListener (new
View.OnClickListener () {

3

QOverride
public void onClick (View v) {
// Does nothing yet, but soon!

Making Toasts

Now to make the buttons fully armed and
operational. You are going to have a
press of each button trigger a pop-up
message called a toast. A toast is a
short message that informs the user of
something but does not require any input
or action. You are going to make toasts
that announce whether the user answered
correctly or incorrectly (Figure 1.14).

Figure 1.14 A toast providing
feedback

¥ d i 7:00
GeoQuiz

Canberra is the capital of Australia

TRUE FALSE

First, returnto strings.xml and add

the string resources that your toasts will
display.

Listing 1.11 Adding toast
strings (strings.xml)

<resources>
<string name="app name">GeoQuiz</string>
<string name="question text">Canberra is the
capital of Australia.</string>
<string name="true button">True</string>
<string name="false button">False</string>
<string name="correct_toast">Correct!</string>
<string name="incorrect_toast">Incorrect!
</string>
</resources>

To create a toast, you call the following
method from the Toast class:

public static Toast makeText (Context context, int
resId, int duration)

The Context parameter is typically an
instance of Activity (Activity is
a subclass of Context). The second

parameter is the resource ID of the string
that the toast should display. The
Context is needed by the Toast
class to be able to find and use the
string’s resource ID. The third parameter
is one of two Toast constants that
specify how long the toast should be
visible.

After you have created a toast, you call
Toast.show () onitto getiton
screen.

In QuizActivity, you are going to
call makeText (..) in each button’s
listener. Instead of typing everything in,
try using Android Studio’s code
completion feature to add these calls.

Using code completion

Code completion can save you a lot of
time, so it is good to become familiar
with it early.

Start typing the code addition shown in
Listing 1.12. When you get to the period
after the Toast class, a pop-up
window will appear with a list of
suggested methods and constants from
the Toast class.

To choose one of the suggestions, use the
up and down arrow keys to select it. (If
you wanted to ignore code completion,
you could just keep typing. It will not
complete anything for you if you do not
press the Tab key, press the Return key,

or click on the pop-up window.)

From the list of suggestions, select
makeText (Context context,
int resID, int duration).
Code completion will add the complete
method call for you.

Fill in the parameters for the
makeText method until you have
added the code shown in Listing 1.12.

Listing 1.12 Making toasts
(QuizActivity.java)

mTrueButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick(View v) {
Toast.makeText (QuizActivity. this,
R.string.correct_toast,
Toast.LENGTH_SHORT) .show() ;

#/—boesnothing—yet;—but—soont

mFalseButton = (Button)
findviewById(R.id.false button);
mFalseButton.setOnClickListener (new
View.OnClickListener () {

QOverride

public void onClick(View v) {

Toast.makeText (QuizActivity. this,
R.string.incorrect_ toast,
Toast.LENGTH_SHORT) .show () ;

//—Poesnothing—yet;—but—scont
1)
InmakeText (...), you pass the
instance of QuizActivity as the
Context argument. However, you
cannot simply pass the variable this as
you might expect. At this point in the
code, you are defining the anonymous
class where this refers to the

View.OnClicklListener.

Because you used code completion, you
do not have to do anything to import the
Toast class. When you accept a code

completion suggestion, the necessary
classes are imported automatically.

Now, let’s see your new app in action.

Running on the
Emulator

To run an Android application, you need
a device — either a hardware device or a
virtual device. Virtual devices are
powered by the Android emulator,
which ships with the developer tools.

To create an Android virtual device
(AVD), choose Tools — Android — AVD
Manager. When the AVD Manager
appears, click the +Create Virtual Device...
button in the lower-left corner of the
window.

In the dialog that appears, you are
offered many options for configuring a
virtual device. For your first AVD,
choose to emulate a Nexus 5X, as shown
in Figure 1.15. Click Next.

Figure 1.15 Choosing a virtual
device

e 0 Virtual Device Configuration

Select Hardware

H‘ Android Studio

Choose a device definition

[Nexus 5%
Cuegory | | Names sie | Resoluton Densiy
™ Nexus § a0 480800 ndpi
Wear Nexus One 3.7 480x800 hdpl —
s large
m Nexus 6P 5.7 1440x2560 560dpi Demsity: L;gum
Tablet Nexus 6 5.96" 14402560 560dpi
CONCEN T | - |-
1080x1920 xaxhdpi
Nexus 4 ar 7681280 xhdpi
Galaxy Nexus 465" 7201280 xhdpi
5.4 FWVCA 4 480x854 mdpi
Import (%] Cione Device...

Gancel proviovs (SN Finish

On the next screen, choose a system
image that your emulator is based on.
For this emulator, select an x86 Nougat
emulator and select Next (Figure 1.16).
(You may need to follow the steps to
download the emulator’s components
before you can click Next.)

Figure 1.16 Choosing a system
image

Virtual Device Configuration

) System Image

H Androld Studio

Select a system image

Recommended [IXB6magEsH| Other Images

Nougat
Marshmallow Download 23 x86 Android 6.0 2 ;‘lﬂobﬂ
Lollipop Download 22 x86_64 Android 5.1 “ Android Open
Lollipop Download 22 x86 Android 5.1 Source Project
Lollipop Download 21 x86_64 Android 5.0 (with Google A Srsieninage
Lollipop Download 21 x86 Android 5.0 (with Google A¥ x86
Lollipop Download 21 x86_64 Android 5.0 Recommendation
KitKat 19 x86 Android 4.4 (with Google AF. Services.
KitKat 19 x86 Android 4.4
? Cancel provious | [T Finisn

Finally, you can review and tweak
properties of the emulator. You can also
edit the properties of an existing
emulator later. For now, name your
emulator something that will help you to

identify it later and click Finish
(Figure 1.17).

Figure 1.17 Updating emulator
properties

(oK) Virtual Device Configuration

£ Android Virtual Device (AVD)

M Androld Studio

Verify Configuration

AVD Name | Nexus 5X API 24 AVD Name

[Nexus 5x 5.2 1080x1920 420dpi Change...
The name of this AVD.
i Nougat Android 7.0 x86 Change...
Startup I !
e
Portrait Landscape
Emulated .
e Graphics: Automatic 2]

Cancol Provious. [l Fieh |

Once you have an AVD, you can run
GeoQuiz on it. From the Android Studio
toolbar, click the run button (it looks like

a green “play” symbol) or press
Control+R. Android Studio will find the
virtual device you created, start it,
install the application package on it, and
run the app.

Starting up the emulator can take a
while, but eventually your GeoQuiz app
will launch on the AVD that you created.
Press buttons and admire your toasts.

If GeoQuiz crashes when launching or
when you press a button, useful
information will appear in the Logcat
view in the Android DDMS tool
window. (If Logcat did not open
automatically when you ran GeoQuiz,
you can open it by clicking the Android
Monitor button at the bottom of the
Android Studio window.) Look for

exceptions in the log; they will be an
eye-catching red color, as shown in

Figure 1.18.

Figure 1.18 An example
NullPointerException at line
21

Text

Compare your code with the code in the
book to try to find the cause of the
problem. Then try running again. (You
will learn more about Logcat and
debugging in the next two chapters.)

Keep the emulator running — you do not
want to wait for it to launch on every

run.

You can stop the app by pressing the
Back button on the emulator. The Back
button is shaped like a left-pointing
triangle (on older versions of Android, it
looks like an arrow that is making a U-
turn). Then re-run the app from Android
Studio to test changes.

The emulator is useful, but testing on a
real device gives more accurate results.
In Chapter 2, you will run GeoQuiz on a
hardware device. You will also give
GeoQuiz more geography questions with
which to test the user.

For the More
Curious: Android
Build Process

By now, you probably have some
burning questions about how the
Android build process works. You have
already seen that Android Studio builds
your project automatically as you modify
it rather than on command. During the
build process, the Android tools take
your resources, code, and the
AndroidManifest.xml file (which
contains metadata about the application)

and turn them into an . apk file. This
file is then signed with a debug key,
which allows it to run on the emulator.
(To distribute your . apk to the masses,
you have to sign it with a release key.
There 1s more information about this
process in the Android developer
documentation at
developer.android.com/
tools/publishing/
preparing.html.)

How do the contents of

activity quiz.xml turninto
View objects in an application? As part
of the build process, aapt (Android Asset
Packaging Tool) compiles layout file
resources into a more compact format.
These compiled resources are packaged

into the . apk file. Then, when
setContentView (..) is called in
the QuizActivity’s

onCreate (Bundle) method, the
QuizActivity uses the
LayoutInflater class to instantiate
each of the View objects as defined in

the layout file (Figure 1.19).

Figure 1.19 Inflating

activity quiz.xml

setContentView(R.layout.activity_quiz)
'

|
<LinearLayout ...> ->ClassLoader.\oadCIass("LinearLayout")Ab‘ LinearLayout

i

I
\—’

|
<LinearLayout...> -»ClassLoader.loadClass("LinearLayout")—————————| LinearLayout

i

i ¥
<Button .../> ——»ClassLo: adenloadClass("Bunon")4f

i

I

(You can also create your view classes
programmatically in the activity instead
of defining them in XML. But there are
benefits to separating your presentation
from the logic of the application. The
main one is taking advantage of

<TextView .../> —ClassLoader.loadClass(TextView").

configuration changes built into the
SDK, which you will learn more about

in Chapter 3.)

For more details on how the different
XML attributes work and how views
display themselves on the screen, see

Chapter 9.

Android build tools

All of the builds you have seen so far
have been executed from within Android
Studio. This build is integrated into the
IDE — it invokes standard Android build
tools like aapt, but the build process
itself is managed by Android Studio.

You may, for your own reasons, want to

perform builds from outside of Android
Studio. The easiest way to do this is to
use a command-line build tool. The
modern Android build system uses a tool
called Gradle.

(You will know if this section applies to
you. If it does not, feel free to read along
but do not be concerned if you are not
sure why you might want to do this or if
the commands below do not seem to
work. Coverage of the ins and outs of
using the command line is beyond the
scope of this book.)

To use Gradle from the command line,
navigate to your project’s directory and
run the following command:

$./gradlew tasks

On Windows, your command will look a
little different:

> gradlew.bat tasks

This will show you a list of available
tasks you can execute. The one you want
is called “installDebug”. Make it so
with a command like this:

$./gradlew installDebug

Or, on Windows:

> gradlew.bat installDebug

This will install your app on whatever
device 1s connected. However, it will
not run the app. For that, you will need
to pull up the launcher and launch the
app by hand.

Challenges

Challenges are exercises at the end of
the chapter for you to do on your own.
Some are easy and provide practice
doing the same thing you have done in
the chapter. Other challenges are harder
and require more problem solving.

We cannot encourage you enough to take
on these challenges. Tackling them
cements what you have learned, builds
confidence in your skills, and bridges
the gap between us teaching you Android
programming and you being able to do
Android programming on your own.

If you get stuck while working on a
challenge, take a break and come back to
try again fresh. If that does not help,
check out the forum for this book at
forums.bignerdranch.com. In
the forum, you can review questions and
solutions that other readers have posted
as well as ask questions and post
solutions of your own.

To protect the integrity of your current
project, we recommend you make a copy
and work on challenges in the new copy.

In your computer’s file explorer,
navigate to the root directory of your
project. Copy the GeoQuiz folder and
Paste a new copy next to the original (on
macOS, use the Duplicate feature). Rename
the new folder GeoQuiz Challenge. Back

http://forums.bignerdranch.com

in Android Studio, select Fie — Import
Project.... Inside the import window,
navigate to GeoQuiz Challenge and
select OK. The copied project will then
appear in a new window ready for
work.

Challenge:
Customizing the
Toast

In this challenge, you will customize the
toast to show at the top instead of the
bottom of the screen. To change how the
toast is displayed, use the Toast
class’s setGravity method. Use
Gravity.TOP for the gravity value.
Refer to the developer documentation at
developer.android.com/
reference/android/widget/
Toast.html#setGravity (int,
int, int) for more details.

https://developer.android.com/reference/android/widget/Toast.html#setGravity(int, int, int)

2

Android and
Model-View-
Controller

In this chapter, you are going to upgrade
GeoQuiz to present more than one
question, as shown in Figure 2.1.

Figure 2.1 Next!

¥ d i 7:00
GeoQuiz

Canberra is the capital of Australia

TRUE FALSE

NEXT)

To make this happen, you are going to
add a class named Question to the

GeoQuiz project. An instance of this
class will encapsulate a single true-false
question.

Then, you will create an array of
Question objects for
QuizActivity to manage.

Creating a New
Class

In the project tool window, right-click
the com.bignerdranch.android.geoquiz
package and select New — Java Class.
Name the class Question and click OK

(Figure 2.2).

Figure 2.2 Creating the
Question class

@ @ Create New Class
Name: Question
Kind © Class

Superclass:

Interface(s)

Package com.bignerdranch.android.geoquiz

Visibility @ Public Package Private

Modifiers: J None Abstract Final

Show Select Overrides Dialog

Cancel

InQuestion. java, add two member
variables and a constructor.

Listing 2.1 Adding to Question

class (Question. java)

public class Question {

private int mTextResId;
private boolean mAnswerTrue;

public Question(int textResId, boolean
answerTrue) {
mTextResId = textResId;
mAnswerTrue = answerTrue;

}

The Question class holds two pieces
of data: the question text and the
question answer (true or false).

Why is mTextResId an int and not a
String? The mTextResId variable
will hold the resource ID (always an
int) of a string resource for the
question. You will create the question
string resources in a later section.

These variables need getter and setter
methods. Rather than typing them in
yourself, you can have Android Studio
generate the implementations for you.

Generating getters and
setters

The first step is to configure Android
Studio to recognize the m prefix for
member variables.

Open Android Studio’s preferences
(from the Android Studio menu on Mac and
from Fie — Settings on Windows). Expand
Editor and then expand Code Style. Select
Java, then choose the Code Generation tab.

In the Naming table, select the Field row
and add m as the name prefix for fields
(Figure 2.3). Then add s as the name
prefix for static fields. (You will not be
using the s prefix in the GeoQuiz
project, but it will be useful in later
projects.)

Figure 2.3 Setting Java code
style preferences

® o

Appearance & Behavior
Keymap
Editor
General
Colors & Fonts.
Code Style
C/C++
Groovy
HTML

JSON
Properties
XML
YAML
Other File Types
Inspections
File and Code Templates
File Encodings
Live Templates
File Types
Copyright

Emmer

Click oK.

Editor > Code Style » Java
Scheme: Default 5]

Tabs and Indents

Preferences

Manage...

Naming

{2 Prefer longer names.

Name prefix:
Field: 'm
Static field: |s
Parameter:

Local variable;

Final Modifier

Make generated local variables final

For current project

Name suffix:

Reset

Set from...

Spaces Wrapping and Braces. BlankLines JavaDoc Imports Arrangement Code Generation

Order of Members.

Static fields
Instance fields
Constructors.
Static methods.
Instance methods
Static inner classes

Make generated parameters final

Comment Code

[Line comment at first column

Add a space at comment start

2 Block comment at first column

Override Method Signature

Default Visibility
Escalate
Private
Package local
Protected

Cancel Apply

What is the point of setting these
prefixes? Now, when you ask Android
Studio to generate a getter for
mTextResId, it will create

getTextResId () rather than
getMTextResId () and
isAnswerTrue () rather than
isMAnswerTrue ().

Backin Question. java, right-click
after the constructor and select Generate...
and then Getter and Setter. Select
mTextResId and mAnswerTrue and
click OK to create a getter and setter for
each variable. The results are shown in

Listing 2.2.

Listing 2.2 Generated getters
and setters (Question. java)

public class Question {

private int mTextResId;
private boolean mAnswerTrue;

public int getTextResId() {
return mTextResId;

}

public void setTextResId(int textResId) {
mTextResId = textResId;
}

public boolean isAnswerTrue() {
return mAnswerTrue;

}

public void setAnswerTrue (boolean answerTrue) {
mAnswerTrue = answerTrue;

}

}

Your Question class is now
complete. In a moment, you will modify
QuizActivity to work with
Question. First, let’s take a look at
how the pieces of GeoQuiz will work
together.

You are going to have QuizActivity
create an array of Question objects. It
will then interact with the TextView
and the three Buttons to display

questions and provide feedback.
Figure 2.4 diagrams these relationships.

Figure 2.4 Object diagram for
GeoQuiz

Model

Question

mTextResld
mAnswerTrue

Controller

mQuestionBank

QuizActivity

mCurrentindex

mQuestionTextView mNNextButton

View (layout) mTrueButton mFalseButton

[Textview | [Button | [Button | [Button |

Model-View-
Controller and
Android

Notice that the objects in Figure 2.4 are
separated into three sections labeled
Model, Controller, and View. Android
applications are designed around an
architecture called Model-View-
Controller, or MVC. In MVC, all objects
in your application must be a model
object, a view object, or a controller
object.

e A model object holds the

application’s data and
“business logic.” Model
classes are typically designed
to model the things your app is
concerned with, such as a user,
a product in a store, a photo on
a server, a television show — or
a true-false question. Model
objects have no knowledge of
the UI; their sole purpose is
holding and managing data.

In Android applications, model
classes are generally custom
classes you create. All of the
model objects in your
application compose its model
layer.

GeoQuiz’s model layer

consists of the Question
class.

View objects know how to
draw themselves on the screen
and how to respond to user
input, like touches. A simple
rule of thumb is that if you can
see it on screen, then it is a
view.

Android provides a wealth of
configurable view classes. You
can also create custom view
classes. An application’s view
objects make up its view layer.

GeoQuiz’s view layer consists
of the widgets that are inflated
from

activity quiz.xml.

Controller objects tie the
view and model objects
together. They contain
“application logic.”
Controllers are designed to
respond to various events
triggered by view objects and
to manage the flow of data to
and from model objects and the
view layer.

In Android, a controller is
typically a subclass of
Activity, Fragment, or
Service. (Youwill learn
about fragments in Chapter 7
and services in Chapter 28.)

GeoQuiz’s controller layer, at
present, consists solely of
QuizActivity.

Figure 2.5 shows the flow of control
between objects in response to a user
event, like a press of a button. Notice
that model and view objects do not talk
to each other directly; controllers sit
squarely in the middle of everything,
receiving messages from some objects
and dispatching instructions to others.

Figure 2.5 MVC flow with user
input

i
User interacts with view object
i

Controller updates
model objects o

I

i

i View sends message

| to controller

v . b

o a
"~ Poe
Controller takes data

Co;lroller updalzs Ivle[;l_v w‘\th from model obijects that its
onangesn mocetonests views are interested in

Controller

Benefits of MVC

An application can accumulate features
until it is too complicated to understand.
Separating code into classes helps you
design and understand the application as

a whole; you can think in terms of
classes instead of individual variables
and methods.

Similarly, separating classes into model,
view, and controller layers helps you
design and understand an application;
you can think in terms of layers instead
of individual classes.

Although GeoQuiz is not a complicated
app, you can still see the benefits of
keeping layers separate. In a moment,
you are going to update GeoQuiz’s view
layer to include a NEXT button. When you
do that, you will not need to remember a
single thing about the Question class
you just created.

MVC also makes classes easier to reuse.

A class with restricted responsibilities
1s more reusable than one with its
fingers in every pie.

For instance, your model class,
Question, knows nothing about the
widgets used to display a true-false
question. This makes it easy to use
Question throughout your app for
different purposes. For example, if you
wanted to display a list of all the
questions at once, you could use the
same object that you use here to display
just one question at a time.

Updating the View
Layer

Now that you have been introduced to
MVC, you are going to update
GeoQuiz’s view layer to include a NEXT
button.

In Android, objects in the view layer are
typically inflated from XML within a
layout file. The sole layout in GeoQuiz
is defined inactivity quiz.xml.
This layout needs to be updated as
shown in Figure 2.6. (Note that to save
space we are not showing the attributes
of unchanged widgets.)

Figure 2.6 New button!

TextView { Button

android:id="@+id/question_text_view" android:id="@+id/next_button"

android:layout_width="wrap_content" LinearLayout android:layout_width="wrap_content"

android:layout_height="wrap_content" android: layout_height="wrap_content"

android:padding="24dp" android:text="@string/next_button"

So the changes you need to make to the
view layer are:

e Remove the android:text
attribute from the TextView.
You no longer want a
hardcoded question to be part
of its definition.

e (ive the TextView an
android:id attribute. This

widget will need a resource 1D
so that you can set its text in
QuizActivity’s code.

e Add the new Button widget
as a child of the root
LinearLayout.

Returnto activity quiz.xml and
make it happen.

Listing 2.3 New button... and
changes to the text view
(activity quiz.xml)

<TextView
android:id="@+id/question_text view"
android:layout width="wrap content"
android:layout height="wrap content"
android:padding="24dp"
amdroidtext="gstring/question—text® />

<LinearLayout ... >
</LinearLayout>

<Button
android:id="@+id/next button"
android:layout width="wrap_ content"
android:layout height="wrap_content"
android:text="@string/next_button" />

</LinearLayout>

You will see a familiar error alerting
you about a missing string resource.

Return to
res/values/strings.xml.
Rename question text and add a
string for the new button.

Listing 2.4 Updating strings
(strings.xml)

<string name="app name">GeoQuiz</string>

W‘Wtext%emmw o - — - - —
ofAustratia—~</string>

<string name="question_ australia">Canberra is the

capital of Australia.</string>
<string name="true button">True</string>
<string name="false button">False</string>

<string name="next button">Next</string>
<string name="correct_ toast">Correct!</string>

While you have strings.xml open,
go ahead and add the strings for the rest
of the geography questions that will be
shown to the user.

Listing 2.5 Adding question
strings in advance
(strings.xml)

<string name="question australia">Canberra is the
capital of Australia.<7string>
<string name="question_oceans">The Pacific Ocean is
larger than

the Atlantic Ocean.</string>
<string name="question_mideast">The Suez Canal
connects the Red Sea

and the Indian Ocean.</string>
<string name="question_ africa">The source of the Nile
River is in Egypt.</string>
<string name="question americas">The Amazon River is
the longest river

in the Americas.</string>

<string name="question_asia">Lake Baikal is the
world\'s oldest and deepest
freshwater lake.</string>

Notice that you use the escape sequence
\ ' in the last value to get an apostrophe
in your string. You can use all the usual
escape sequences in your string
resources, such as \n for a new line.

Returnto activity quiz.xml and
preview your layout changes in the
graphical layout tool.

That is all for now for GeoQuiz’s view
layer. Time to wire everything up in your
controller class, QuizActivity.

Updating the
Controller Layer

In the previous chapter, there was not
much happening in GeoQuiz’s one
controller, QuizActivity. It
displayed the layout defined in
activity quiz.xml. It set
listeners on two buttons and wired them
to make toasts.

Now that you have multiple questions to
retrieve and display, QuizActivity
will have to work harder to tie
GeoQuiz’s model and view layers
together.

OpenQuizActivity.java. Add
variables for the TextView and the
new Button. Also, create an array of
Question objects and an index for the

array.

Listing

2.6 Adding variables

and a Question array
(QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

private
private
private
private

private

{

new
true),

new

new
false),

new
false),

Button mTrueButton;

Button mFalseButton;

Button mNextButton;

TextView mQuestionTextView;

Question[] mQuestionBank = new Question][]

Question (R.string.question_australia,

Question (R.string.question_oceans, true),
Question(R.string.question_mideast,

Question (R.string.question_africa,

new Question(R.string.question_americas,
true),
new Question(R.string.question_asia, true),

}i

private int mCurrentIndex = 0;

Here you call the Question
constructor several times and create an
array of Question objects.

(In a more complex project, this array
would be created and stored elsewhere.
In later apps, you will see better options
for storing model data. For now, we are
keeping it simple and just creating the
array within your controller.)

You are going to use
mQuestionBank,
mCurrentIndex, and the accessor
methods in Question to get a parade

of questions on screen.

First, get a reference for the TextView
and set its text to the question at the
current index.

Listing 2.7 Wiring up the
TextView
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
éé;erride
protected void onCreate (Bundle
savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity quiz);

mQuestionTextView = (TextView)
findViewById (R.id.question_ text_view);
int question =
mQuestionBank [mCurrentIndex] .getTextResId() ;
mQuestionTextView. setText (question) ;

mTrueButton = (Button)
findviewById(R.id.true button);

}

}

Save your files and check for any errors.
Then run GeoQuiz. You should see the
first question in the array appear in the
TextView.

Now let’s see about the NEXT button.
First, get a reference to the button. Then
seta View.OnClickListener onit.
This listener will increment the index
and update the TextView’s text.

Listing 2.8 Wiring up the new
button (QuizActivity. java)
public class QuizActivity extends AppCompatActivity {
¢override
protected void onCreate (Bundle

savedInstanceState) {

mFalseButton.setOnClickListener (new
View.OnClickListener () {

});

mNextButton = (Button)
findViewById(R.id.next button) ;
mNextButton.setOnClickListener (new
View.OnClickListener () {
QOverride
public void onClick (View v) {
mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
int question =
mQuestionBank [mCurrentIndex] .getTextResId() ;
mQuestionTextView. setText (question) ;
}
})

}

You now have code in two separate
places that updates the
mQuestionTextView variable. Take
a moment to put this code into a private
method instead, as shown in Listing 2.9.
Then call that method in the
mNextButton’s listener and at the end
of onCreate (Bundle) to initially

set the text in the activity’s view.

Listing 2.9 Encapsulating with
updateQuestion ()
(QuizActivity. java)
public class QuizActivity extends AppCompatActivity {
eoverride
protected void onCreate (Bundle

savedInstanceState) {

mQuestionTextView = (TextView)

findViewById (R.id.question_text view);
m‘ . — ol

mNextButton.setOnClickListener (new
View.OnClickListener () {

@Override
public void onClick(View v) {
mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
mstron—-—‘ . 3

updateQuestion() ;
}

private void updateQuestion() {
int question =
mQuestionBank [mCurrentIndex] .getTextResId() ;
mQuestionTextView. setText (question) ;

}
}

Run GeoQuiz and test your new NEXT
button.

Now that you have the questions
behaving appropriately, it is time to turn
to the answers. At the moment, GeoQuiz
thinks that the answer to every question
1s “true.” Let’s rectify that. Here again,
you will implement a private method to
encapsulate code rather than writing
similar code in two places.

The method that you are going to add to
QuizActivity is:

private void checkAnswer (boolean userPressedTrue)

This method will accept a boolean
variable that identifies whether the user
pressed TRUE or FALSE. Then, it will
check the user’s answer against the
answer in the current Question
object. Finally, after determining
whether the user answered correctly, it
will make a Toast that displays the
appropriate message to the user.

InQuizActivity. java, add the
implementation of
checkAnswer (boolean) shownin

Listing 2.10.

Listing 2.10 Adding
checkAnswer (boolean)

(QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle
savedInstanceState) {

private void updateQuestion() {
int question =
mQuestionBank[mCurrentIndex] .getTextResId () ;
mQuestionTextView.setText (question) ;

private void checkAnswer (boolean userPressedTrue)

boolean answerIsTrue =
mQuestionBank [mCurrentIndex] .isAnswerTrue () ;

int messageResId = 0;

if (userPressedTrue == answerIsTrue) {
messageResId = R.string.correct toast;
} else {

messageResId = R.string.incorrect toast;

Toast.makeText (this, messageResId,
Toast.LENGTH_SHORT)
.show() ;

Within the button’s listeners, call
checkAnswer (boolean), as shown

in Listing 2.11.
Listing 2.11 Calling

checkAnswer (boolean)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle
savedInstanceState) {

mTrueButton = (Button)
findvViewById(R.id.true button);
mTrueButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v) {

checkAnswer (true) ;

mFalseButton = (Button)
findViewById (R.id.false button);
mFalseButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v) {

GeoQuiz 1s ready to run again. Let’s get
it running on a real device.

Running on a
Device

In this section, you will set up your
system, device, and application to get
GeoQuiz running on your hardware
device.

Connecting your device

First, plug the device into your system. If
you are developing on a Mac, your
system should recognize the device right
away. On Windows, you may need to

install the adb (Android Debug Bridge)
driver. If Windows cannot find the adb
driver, then download one from the
device manufacturer’s website.

Configuring your device
for development

To test apps on your device, you need to
enable USB debugging on it.

Developer options 1s not visible by default.
To enable it, go to Settings — About
Tablet/Phone and press Buid Number seven
times. Then you can return to Settings, see
Developer options, and enable USB debugging.

The options vary considerably across

devices. If you are having problems
enabling your device, visit
developer.android.com/
tools/device.html for more help.

You can confirm that your device 1s
recognized by opening the Devices view.
The quickest way to the Devices view is
to select the Android Monitor tool
window near the bottom of Android
Studio. Inside of this window, you will
see a drop-down list of connected
devices (Figure 2.7). You should see
your AVD and your hardware device
listed.

Figure 2.7 Viewing connected
devices

Android Monitor
il Emulator Nexus_5X_API_24 Android 7.0, APl 24 =4

I & logcat Monitors —+*

o [09-
o8
o I HostC
J 29-01 15:48:26.311 2861-2861/7 W/art: Before A
“ 4 09-91 15:40:26.398 2861-2861/7 W/gralloc_ranch
@ ,
? =

“* pg-p1 15:40:26.655 2861-2876/com.bignerdranch.
89-01 15:40:26.655 2861-2876/com.bignerdranch.

. 4:Run ® TODO & 6: Android Monitor [E Terminal
If you are having trouble getting your
device recognized, verify that your

device is turned on and the developer
options are enabled.

If you are still unable to see your device

in the devices view, you can find more
help on the Android developers’ site.
Start at
developer.android.com/
tools/device.html. Youcanalso
visit this book’s forum at
forums.bignerdranch.com for
more troubleshooting help.

Run GeoQuiz as before. Android Studio
will offer a choice between running on
the virtual device or the hardware
device plugged into your system. Select
the hardware device and continue.
GeoQuiz will launch on your device.

If Android Studio defaults to your
emulator without offering a choice of
device to run the app on, recheck the
steps above and make sure your device

http://forums.bignerdranch.com

is plugged in. Next, ensure that your run
configuration is correct. To modify the
run configuration, select the app drop-
down list near the top of the window, as

shown in Figure 2.8.

Figure 2.8 Run configurations
GeoQuiz -

[mapp~ | P H I [&

| » Edit Configurations... |

L app

Choose Edit Configurations... and you will
be presented with a new window with
details about your run configuration

(Figure 2.9).

Figure 2.9 Run configuration
properties

Run/Debug Configurations

+=-Q¥a~vD Name: | app Share
=Android App
24P General | Miscellancous Debugger Profiling
%~ Defaults
Module: [3app <]

Installation Options

Deploy: Default APK B

install Flags: |Gptions to ‘pm inst
Launch Options

Launch: Default Activity |5

Launch Flags: |Options to 'am start’ comm:
Deployment Target Options

Target: | Open Select Deployment Target Dialog |

Use same device for future launches

~ Before launch: Gradle-aware Make, Activate tool window
& Gradle-aware Make

Cancel

Select app in the left pane and verify that
Deployment Target Options 1S set to Open
Select Deployment Target Dialog and that Use
same device for future launches 1s unchecked.

Select OK and re-run the app. You will
now be presented with a choice of
device to launch the app on.

Adding an Icon

GeoQuiz is now up and running, but the
UI would be spiffier if the NEXT button
also displayed a right-pointing arrow
icon.

You can find such an arrow in the
solutions file for this book, which is a
collection of Android Studio projects
for each chapter of this book. The
solutions are hosted here:

www.bignerdranch.com/
solutions/
AndroidProgramming3e.zip

https://www.bignerdranch.com/solutions/AndroidProgramming3e.zip

Download this file and open the

02 MVC/GeoQuiz/app/src/main
directory. Within this directory, locate
the drawable-hdpi, drawable-
mdpi, drawable-xhdpi, and
drawable-xxhdpi directories.

The suffixes on these directory names
refer to the screen pixel density of a
device:

mdpi medium-density screens
(~160dpi)

hdpi high-density screens
(~240dpi)

xhdpi extra-high-density screens
(~320dpi)

xxhdpi extra-extra-high-density
screens (~480dpi)

(There are a few other density
categories that are omitted from the
solutions, including Idpi and xxxhdpi.)

Within each directory, you will find two
image files —arrow right.pngand
arrow left.png. These files have
been customized for the screen pixel
density specified in the directory’s
name.

You are going to include all the image
files from the solutions in GeoQuiz.
When the app runs, the OS will choose
the best image file for the specific
device running the app. Note that by

duplicating the images multiple times,
you increase the size of your application.
In this case, this is not a problem
because GeoQuiz is a simple app.

If an app runs on a device that has a
screen density not included in any of the
application’s screen density qualifiers,
Android will automatically scale the
available image to the appropriate size
for the device. Thanks to this feature, it
1s not necessary to provide images for
all of the pixel density buckets. To
reduce the size of your application, you
can focus on one or a few of the higher
resolution buckets and selectively
optimize for lower resolutions when
Android’s automatic scaling provides an
image with artifacts on those lower

resolution devices.

(You will see alternatives to duplicating
images at different densities, along with
an explanation of the mipmap directory,

in Chapter 23.)

Adding resources to a
project

The next step is to add the 1mage files to
GeoQuiz’s resources.

Make sure the project tool window is
displaying the Project view (select Project
from the dropdown at the top of the
project tools window, as shown in

Figure 1.13 in Chapter 1). Expand the

contents of
GeoQuiz/app/src/main/res.
You will see folders named mipmap-
hdpi and mipmap-xhdpi, for
example, as shown in Figure 2.10.

Figure 2.10 A distinct lack of
drawable directories

~ -* Project Packages | |1 Scratches » O = | £ 1+
[3 GeoQuiz [Users/dev/AndroidStudioProjects /GeoQuiz
[.gradle
[.idea
CEapp
1 build
libs
EBasrc
[JandroidTest
CImain
[CJjava
Cires
1 drawable
Edlayout
[E1 mipmap-hdpi
1 mipmap-mdpi
[E1 mipmap-xhdpi
[E1 mipmap-xxhdpi
[E1 mipmap-xxxhdpi

Back in the solutions file, select and
copy the four directories that you located

earlier: drawable-hdpi,
drawable-mdpi, drawable-
xhdpi, and drawable-xxhdpi. In
Android Studio, paste the copied
directories into app/src/main/res.
You should now have four density-
qualified directories, each with an
arrow left.pngand

arrow right.png file, as shownin

Figure 2.11.

Figure 2.11 Arrow icons in
GeoQuiz drawable directories

Packages Scratches | p D 5= | B I
Es GeoQuiz /Users/dev/AndroidStudioProjects /GeoQuiz
[1.gradle
[.idea
[Happ
[build
Mlibs

[1sFC
[androidTest
[main
[java
[Zres

[:] drawable

[] drawable-hdpi
[4] arrow_left.png
[#] arrow_right.png

[7 drawable-mdpi
[8] arrow_left.png
[é] arrow_right.png

[:] drawable-xhdpi
[§] arrow_left.png
[&] arrow_right.png

[:] drawable-xxhdpi
[d] arrow_left.png
[&] arrow_right.png

[layout

[mipmap-hdpi

If you switch the project tools window
back to the Android view, you will see the
newly added drawable files summarized

(as shown in Figure 2.12).

Figure 2.12 Summary of arrow
icons in GeoQuiz drawable

directories
" Android Project Files | 4» @ = | BB
Caapp
1 manifests
Cjava
Cares
[F1drawable
] arrow_left.png (4)
=7 arrow_right.png (4)
[£1 layout
[E1 mipmap
[Jic_launcher.png (5)
1values

Including images in your app is as
simple as that. Any .png, . jpg, or
.gif file youaddto a
res/drawable folder will be
automatically assigned a resource ID.

(Note that filenames must be lowercase
and have no spaces.)

These resource IDs are not qualified by
screen density, so you do not need to
determine the device’s screen density at
runtime. All you have to do is use this
resource ID in your code. When the app
runs, the OS will determine the
appropriate image to display on that
particular device.

You will learn more about how the
Android resource system works starting
in Chapter 3. For now, let’s put that right
arrow to work.

Referencing resources in

XML

You use resource IDs to reference
resources in code. But you want to
configure the NEXT button to display the
arrow in the layout definition. How do
you reference a resource from XML?

Answer: with a slightly different syntax.
Openactivity quiz.xml and add
two attributes to the Button widget
definition.

Listing 2.12 Adding an icon to
the NEXT button
(activity quiz.xml)

<LinearLayout ... >

</LinearLayout>

<Button
android:id="@+id/next button"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/next button"
android:drawableRight="@drawable/arrow_right"
android:drawablePadding="4dp" />

</LinearLayout>

In an XML resource, you refer to another
resource by its resource type and name.
A reference to a string resource begins
with estring/. Areference to a
drawable resource begins with
@drawable/.

You will learn more about naming
resources and working in the res
directory structure starting in Chapter 3.

Run GeoQuiz and admire your button’s
new appearance. Then test it to make

sure it still works as before.

GeoQuiz does, however, have a bug.
While the app is running, press the NEXT
button to show another question. Then
rotate the device. If you are running on
the emulator, click the rotate left or
rotate right button in the floating toolbar

to rotate (Figure 2.13).

Figure 2.13 Control the roli
o
QO

After you rotate, you will see the first

question again. How did this happen,
and how can you fix it?

The answers to those questions have to
do with the activity lifecycle, which is
the topic of Chapter 3.

Challenge: Add a
Listener to the
TextView

Your NEXT button is nice, but you could
also make it so that a user could press
the TextView itself to see the next
question.

Hint: You can use the
View.OnClickListener listener for the
TextView that you have used with the
Buttons, because TextView also
inherits from View.

Challenge: Add a
Previous Button

Add a button that the user can press to go
back one question. The Ul should look
something like Figure 2.14.

Figure 2.14 Now with a

previous button!
w4 A 7:00

GeoQuiz

Canberra is the capital of Australia

TRUE FALSE

{ PREV NEXT)

This 1s a great challenge. It requires you
to retrace many of the steps in these two
chapters.

Challenge: From
Button to
ImageButton

Perhaps the Ul would look even better if
the next and previous buttons showed
only icons, as in Figure 2.15.

Figure 2.15 Icon-only buttons

¥4 0 7:00

GeoQuiz

Canberra is the capital of Australia

TRUE FALSE

. B

To accomplish this challenge, these two
widgets must become ImageButtons
instead of regular Buttons.

ImageButton is a widget that inherits

from ImageView. Button, on the
other hand, inherits from TextView.
Figure 2.16 shows their different

inheritance hierarchies.

Figure 2.16 Inheritance
diagram for ImageButton and

Button

| inherits from
1

ImageView

A
: inherits f

rom

ImageButton

| inherits from
1

TextView

i
! inherits from

Button

You can replace the text and drawable

attributes on the next button with a single
ImageView attribute:

<Button ImageButton
android:id="@+id/next button"
android:layout width="wrap content"
android:layout height="wrap content"

android:src="Qdrawable/arrow_right"
/>

Of course, you will need to modify
QuizActivity to work with
ImageButton.

After you have changed these buttons to
ImageButtons, Android Studio will
warn you about a missing
android:contentDescription
attribute. This attribute supports
accessibility for users with vision
impairments. You set the value to a

string, which is read aloud when users
have the appropriate settings applied.

Add an android: contentDescription
attribute to each ImageButton to
complete the challenge.

3
The Activity
Lifecycle

What good is an app that resets itself
when the user rotates the device? At the
end of Chapter 2 you discovered that the
geography question displayed is reset to
the first question every time the device
1s rotated, regardless of what question is
displayed prior to rotation. In this
chapter you will address the dreaded —
and very common — “rotation problem.”
To fix it, you will learn the basics of the

activity lifecycle.

Every instance of Activity has a
lifecycle. During this lifecycle, an
activity transitions between four states:
resumed, paused, stopped, and
nonexistent. For each transition, there is
an Activity method that notifies the
activity of the change in its state.

Figure 3.1 shows the activity lifecycle,
states, and methods.

Figure 3.1 Activity state
diagram

[Nonexistent J

| }

onCreate(...) onDestroy()

‘77$ 7777777777777 177-- Entire Lifetime
1 i (instance in memory)
[Stopped J :
onStart(onStop() ;
3 iﬁﬁﬁﬂwﬂt 7777777777777 1 777777777777 _._ 7 Visible Lifetime
P (wew partially or fully visible to user)
Paused

| f

onResume() onPause()

E 1 I _._._,_ Foreground Lifetime
i [] : (user interacting with this activity)

Figure 3.1 indicates for each state

whether the activity has an instance in
memory, is visible to the user, or is
active in the foreground (accepting user
input). Table 3.1 summarizes this
information.

Table 3.1 Activity States

In Visible to In
State 0 o

memory?juser? for
nonexi stenl‘ no no no
stopped [fyes no no
paused yes yes/partially*|fno
resumed [yes yes yes

(*Depending on the circumstances, a

paused activity may be fully or partially
visible. This is discussed further in the
section called Exploring the activity
lifecvcle by example.)

The resumed state represents the activity
the user is currently interacting with.
Only one activity across all the apps on
the device can be in the resumed state at
any given time.

Subclasses of Activity can take
advantage of the methods named in
Figure 3.1 to get work done at critical
transitions in the activity’s lifecycle.
These methods are often called /ifecycle
callbacks.

You are already acquainted with one of
these lifecycle callback methods —

onCreate (Bundle). The OS calls
this method after the activity instance is
created but before it is put on screen.

Typically, an activity overrides
onCreate (Bundle) to prepare the
specifics of its Ul:

¢ inflating widgets and putting
them on screen (in the call to
(setContentView (int))

e getting references to inflated
widgets

e setting listeners on widgets to
handle user interaction

e connecting to external model
data

It is important to understand that you
never call onCreate (Bundle) or
any of the other Activity lifecycle
methods yourself. You simply override
the callbacks in your activity subclass.
Then Android calls the lifecycle
callbacks at the appropriate time (in
relation to what the user is doing and
what is happening across the rest of the
system) to notify the activity that its state
1s changing.

Logging the
Activity Lifecycle

In this section, you are going to override

lifecycle methods to eavesdrop on
QuizActivity’s lifecycle. Each
implementation will simply log a
message informing you that the method
has been called. This will help you see
how QuizActivity’s state changes
at runtime in relation to what the user is
doing.

Making log messages

In Android, the android.util.Log
class sends log messages to a shared
system-level log. Log has several
methods for logging messages. Here is

the one that you will use most often in
this book:

public static int d(String tag, String msg)

The d stands for “debug” and refers to
the level of the log message. (There is
more about the Log levels in the final
section of this chapter.) The first
parameter identifies the source of the
message, and the second is the contents
of the message.

The first string is typically a TAG
constant with the class name as its value.
This makes it easy to determine the
source of a particular message.

OpenQuizActivity.java and add
a TAG constant to QuizActivity:

Listing 3.1 Adding a TAG
constant (QuizActivity. java)

public class QuizActivity extends AppCompatActivity {

private static final String TAG = "QuizActivity";

}

Next, in onCreate (Bundle), call
Log.d(..) to loga message.

Listing 3.2 Adding a log
statement to
onCreate (Bundle)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

éééerride

protected void onCreate (Bundle
savedInstanceState) {

super.onCreate (savedInstanceState) ;

Log.d(TAG, "onCreate (Bundle) called");
setContentView (R.layout.activity quiz);

}

Now override five more methods in
QuizActivity by adding the

following after onCreate (Bundle):

Listing 3.3 Overriding more
lifecycle methods
(QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle
savedInstanceState) {

}

@Override

public void onStart() {
super.onStart() ;
Log.d(TAG, "onStart() called");

}

@Override

public void onResume () {
super.onResume () ;
Log.d(TAG, "onResume () called");

}

@Override

public void onPause() {
super.onPause() ;
Log.d(TAG, "onPause() called");

}

@Override
public void onStop() {
super.onStop () ;
Log.d(TAG, "onStop() called"):;
}

@Override

public void onDestroy () {
super.onDestroy () ;
Log.d (TAG, "onDestroy() called");

}

Notice that you call the superclass
implementations before you log your
messages. These superclass calls are
required. Calling the superclass
implementation should be the first line of
each callback method override
implementation.

You may have been wondering about the
@override annotation. This asks the

compiler to ensure that the class actually
has the method that you want to override.
For example, the compiler would be
able to alert you to the following
misspelled method name:

public class QuizActivity extends AppCompatActivity {
@Override

public void onCreat (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

}
o
The parent AppCompatActivity
class does not have an
onCreat (Bundle) method, so the
compiler will complain. This way you
can fix the typo now rather than waiting
until you run the app and see strange
behavior to discover the error.

Using Logcat

To access the log while the application
is running, you can use Logcat, a log
viewer included in the Android SDK

tools.

When you run GeoQuiz, you should see
Logcat appear at the bottom of Android
Studio, as shown in Figure 3.2. If Logcat
1s not visible, select the Android
Monitor tool window near the bottom of
the screen and ensure that the logcat tab 1s
selected.

Figure 3.2 Android Studio with
Logcat

- 3
stc) Ciman) v android) 1 geouuiz | € Quizhciiy
PP g
manifests H
java
com.bignerdranch.android.geoauiz
© = Question
© o QuizAcrivity
com.bignerdranch.android.geoquiz s
com.bignercranch.androld.geoquiz
@ Gradle Scripts
Search Everywhere Double ¢
Go toFile 080
Recent Files $E
Navigation Bar %21
Drop files here to open
Android oritar an
8 Emulator Nexus_5X_AP_24 Andr ai2i [combignerdranch.android.geoquiz (10353 3
H Verbose 2 Regex show anly selected application
H 239 10353-10353/7 1/art: Not late-enabling -Xcheck: jni (already on)
ia 11084140240 10353-1035377 Wart: Unexpected CPU variant for X8 using defaults:
T5 0506 11:04140.328 16553-10353/com.bignerdranch. androdd.grone WSyston Ciasstoader refercnced nknanm path. /data/app/con:bignerdranch. andro1d geoaui
3 13508 s 1522 1 0/ $
io lonz:Get() Nea Host Cornaction cstablished OuBafceesy, tid 1565 §
5 40,369 16353-10353/con. ¢ .1, nethad sndroid.graphics. Porterbu fCalorf iLter android. support. §
i o= a7 Quizhctivit H
& a2 10353-10353/ /Quirictivi £
423 1 /Quizhctivity)
£9-06 11:04:46.436 10 droid.acoqui w/arallec
Bichn 21000 | GANOAMONGr | [Termnal 5 O Messages % ventlog 8 Gradie Console

Gradie bul finkshed in 3 440rms (x minute 390) 529 -

Run GeoQuiz and messages will start
materializing in Logcat. By default, log
statements that are generated with your
app’s package name are shown. You will
see your own messages along with some

system output.

To make your messages easier to find,
you can filter the output using the TAG
constant. In Logcat, click the dropdown
in the top right of the Logcat pane that
reads Show only selected application. This is
the filter dropdown, which is currently
set to show messages from only your
app. Selecting No Fiters will show log
messages generated from all over the
system.

In the filter dropdown, select Edit Fiter
Configuration to create a new filter. Name
the filter QuizActivity and enter
QuizActivity in the Log Tag field

(Figure 3.3).

Figure 3.3 Creating a filter in
Logcat

] Create New Logcat Filter
+ - Filter Name: QuizActivity

Specify one or several filtering parameters:
Log Tag: Q- QuizActivity @ [Regex
Log Message: Q- [Regex
Package Name: Q- */ Regex
PID:
Log Level: Verbose [~

Cancel

Click ok. Now, only messages tagged
QuizActivity will be visible in
Logcat (Figure 3.4).

Figure 3.4 Launching GeoQuiz
creates, starts, and resumes an
activity

i logcat | Moni - Verbose [Q- 4 Regex QuizActivity

f 0906 11:04:40.373 10353 10353/ m. bignerdranch.andro. a ge q D/Q izActivity: onCreate(Bundle) called
W 09-06 11:04:40.420 1 53/ dra ch.androi D/QuizActivity: onStart() called
[09-06 11:04:40.423 10353 IBBSBIC m.bignerdranch.andro. d geo q D/O zActivity: onResume() called

Exploring the activity
lifecycle by example

Three lifecycle methods were called
after GeoQuiz was launched and the
initial instance of QuizActivity was
created: onCreate (Bundle),
onStart (), and onResume ()
(Figure 3.4). Your QuizActivity
instance is now in the resumed state (in

memory, visible, and active in the
foreground).

(If you are not seeing the filtered list,
select the QuizActivity filter from Logcat’s
filter dropdown.)

Now let’s have some fun. Press the Back
button on the device and then check
Logcat. Your activity received calls to
onPause (), onStop (), and
onDestroy () (Figure 3.5). Your
QuizActivity instance is now in the
nonexistent state (not in memory and thus
not visible — and certainly not active in
the foreground).

Figure 3.5 Pressing the Back
button destroys the activity

ifik logcat - Monitos Verbose [Q- 4 Regex QuizActivity

= 09-86 11:04:40.373 10353-10353/com.bignerdranch.android.gecquiz D/QuizActivity: onCreate(Bundle) called
“ 09-06 11:04:40.420 10353-10353/com.bignerdranch.android.geoquiz D/QuizActivity: onStart() called

[# 09-06 11:04:40.423 10353-10353/com.bignerdranch.android.geoquiz D/QuizActivity: onResume() called
09-06 11:28:06.720 10353-10353/com.bignerdranch.android.geoquiz D/QuizActivity: onPause() called

09-06 11:28:07.296 10353-10353/com.bignerdranch.android.geoquiz D/QuizActivity: onStop() called

09-06 11:28:07.296 10353-10353/com.bignerdranch.android.geoquiz D/QuizActivity: onDestroy() called

When you pressed the Back button, you
told Android, “I’m done with this
activity, and [won’t need it anymore.”
Android then destroyed your activity’s
view and removed all traces of the
activity from memory. This is Android’s
way of being frugal with your device’s
limited resources.

Launch GeoQuiz again by clicking the
GeoQuiz app icon. Android creates a
new instance of QuizActivity from
scratch and calls onCreate (),

onStart (), and onResume () to
move QuizActivity from
nonexistent to resumed.

Now press the Home button. The home
screen displays and QuizActivity
moves completely out of view. What
state is QuizActivity in now?
Check Logcat for a hint. Your activity
received calls to onPause () and
onStop (), but not onDestroy ()

(Figure 3.6).

Figure 3.6 Pressing the Home
button stops the activity

i logcat Monitors + Verbose [Qv 7 Regex QuizActivity 1<}

= 09-06 11:31:21.013 16024-16024/com.bignerdranch.android.geoquiz D/QuizActivity: onCreate(Bundle) called

" 09-86 11:31:21.053 16024-16024/con. bignerdranch.android.geoquiz D/QuizActivity: onStart() called

% 09-06 11:31:21.855 16024-16824/com.bignerdranch.android.geoquiz D/QuizActivity: onResume() called
09-06 11:31:48.716 16024-16024/com.bignerdranch.android.geoquiz D/QuizActivity: onPause() called
09-06 11:31:48.874 16024-16024/com.bignerdranch.android.geoquiz D/QuizActivity: onStop() called

Pressing the Home button means the user

is telling Android, “I’m going to go look
at something else, but I might come back.
I’m not really done with this screen yet.”
Android pauses and ultimately stops
your activity. This means, after pressing
Home, your instance of
QuizActivity hangs out in the
stopped state (in memory, not visible,
and not active in the foreground).
Android does this so it can quickly and
easily restart QuizActivity where
you left off when you come back to
GeoQuiz later.

(This 1s not the whole story about going
Home. Stopped activities can be
destroyed at the discretion of the OS.
See the section called The Activity
Lifecycle, Revisited for the rest of the

story.)

Go back to GeoQuiz by selecting the
GeoQuiz task card from the overview
screen. To do this, press the Recents
button next to the Home button
(Figure 3.7). (On devices without a
Recents button, long-press the Home
button.)

Figure 3.7 Back, Home, and
Recents buttons
F:4

Email Gallery
®
S © 9 7=
< @) O
f T f
Back Recents

Home

Each card in the overview screen
represents an app the user has interacted
with in the past (Figure 3.8). (The

overview screen is often called the
“Recents screen” or “task manager” by
users. We defer to the developer
documentation, which calls it the
“overview screen.”

Figure 3.8 Overview screen
wd 0700

* BeatBox

65_CJIPIE 66_INDIOS 67 _INDIOS2

Criminalintent

Scooter stolen while going to the restroom
Sun Oct 30 21:16:28 EDT 2016

Paper clip ponzi scheme OD

30 21:16:42 EDT 2016

Instagram photos at beach on "sick day”
Sun Oct 30 21:16:55 EDT 201¢

Fragment fraud

@ GeoQuiz

Click on the GeoQuiz task card in the
overview screen. QuizActivity
will fill the screen.

A quick look at Logcat shows that your
activity got calls to onStart () and
onResume () . Note that

onCreate () was not called. This is
because QuizActivity was in the
stopped state after the user pressed the
Home button. Because the activity

instance was still in memory, it did not
need to be created. Instead, the activity
only had to be started (moved to the
paused/visible state) and then resumed
(moved to the resumed/foreground
state).

It is also possible for an activity to hang
out in the paused state (fully or partially
visible, but not in the foreground). The
partially visible paused scenario can
occur when a new activity with either a
transparent background or a smaller-
than-screen size is launched on top of
your activity. The fully visible scenario
occurs in multi-window mode (only
available on Android 6.0 Nougat and
higher) when the user interacts with a
window that does not contain your

activity, and yet your activity remains
fully visible in the other window.

As you continue through the book, you
will override the different activity
lifecycle methods to do real things for
your application. When you do, you will
learn more about the uses of each
method.

Rotation and the
Activity Lifecycle

Let’s get back to the bug you found at the
end of Chapter 2. Run GeoQuiz, press
the NEXT button to reveal the second
question, and then rotate the device. (On
the emulator, press Command-+Right
Arrow/Ctrl+Right Arrow or click the
rotation icon in the toolbar to rotate.)

After rotating, GeoQuiz will display the
first question again. Check Logcat to see
what has happened. Your output should
look like Figure 3.9.

Figure 3.9 QuizActivityls
dead. Long live QuizActivity!

ifi logcat - Monitors +* Verbose [&] Q- 4 Regex QuizActivity

B 09-96 11:34:12.302 16024-16024/com.bignerdranch.android.geoquiz D/QuizActivity: onStart() called
09-06 11:34:12.302 16024-16024/com.bignerdranch.. an\iru).d gEumuu D/QuizActivity: onResume() called
[% 09-06 11:34:22.837 16024-16024 /com, bi dranch. andre iz D/QuizActivity: onPause() called
09-06 11:34:22.858 16024-16024/com.bignerdranch.androi d geoquiz D/QuizActivity: onStop() called
09-06 11:34:22.858 16024~ 1&024/com bignerdranch.android.geoquiz D/Q izActivity: onDestroy() called
09-06 11:34:22.900 i dranch.android iz i dvity: onCreate(Bundle) called
09-06 11:34:22.910 16024~ 15024/[0"! bignerdranch.android.geoquiz D/OUlecllety: onStart() called
09-06 11:34:22.911 16024-16024/com.bignerdranch.android.geoquiz D/QuizActivity: onResume() called

When you rotated the device, the
instance of QuizActivity that you
were looking at was destroyed, and a
new one was created. Rotate the device
again to witness another round of
destruction and rebirth.

This is the source of your bug. Each time
you rotate the device, the current
QuizActivity instance is
completely destroyed. The value that
was stored inmCurrentIndex in that

instance is wiped from memory. This
means that when you rotate, GeoQuiz
forgets which question you were looking
at. As rotation finishes, Android creates
a new instance of QuizActivity
from scratch. nCurrentIndex is
initialized to 0 in

onCreate (Bundle), and the user
starts over at the first question.

You will fix this bug in a moment. First,
let’s take a closer look at why this
happens.

Device configurations
and alternative
resources

Rotating the device changes the device
configuration. The device
configuration is a set of characteristics
that describe the current state of an
individual device. The characteristics
that make up the configuration include
screen orientation, screen density, screen
size, keyboard type, dock mode,
language, and more.

Typically, applications provide
alternative resources to match device
configurations. You saw an example of
this when you added multiple arrow
icons to your project for different screen
densities.

Screen density is a fixed component of
the device configuration; it cannot
change at runtime. On the other hand,

some components, like screen
orientation, can change at runtime.
(There are other configuration changes
that can occur at runtime, such as
keyboard availability, language, and
multi-window mode.)

When a runtime configuration change
occurs, there may be resources that are a
better match for the new configuration.
So Android destroys the activity, looks
for resources that are the best fit for the
new configuration, and then rebuilds a
new instance of the activity with those
resources. To see this in action, let’s
create an alternative resource for
Android to find and use when the
device’s screen orientation changes to
landscape.

Creating a landscape layout

In the project tool window, right-click
the res directory and select New —
Android resource directory. You should see a
window similar to Figure 3.10 that lists
the resource types and qualifiers for
those types. Select lyout in the Resource
type dropdown. Leave the Source set
option set to main.

Figure 3.10 Creating a new
resource directory

[] []

New Resource Directory
Directory name: layout
Resource type: layout
Source set: main

Available qualifiers: Chosen qualifiers

S e
= Screen Width
[l Screen Height

1 Ul Mode
@ Night Mode
& Density

" Touch Screen
= Keyboard

& Text input

B Navination Stata

Cancel

Next, you will choose how the layout
resources will be qualified. Select
Orientation 1n the Available qualfiers l1st and
click the >> button to move Orientation to
the Chosen qualifiers section.

Finally, ensure that Landscape is selected

in the Screen orientation dropdown, as
shown in Figure 3.11. Verify that the
Directory name now indicates that your
directory is called 1ayout-1and. While
this window looks fancy, its purpose is
just to set the name of your directory.
Click ok and Android Studio will create
the res/layout—-land/ folder.

Figure 3.11 Creating

e e New Resource Directory
Directory name: | layout-land
Resource type: layout =2
Sourceset: main B
Available qualifie... Chosen qualifiers: s een orientation.
@ Country Code [Landscape Landscape
© Network Code -
d Lo
= Layout Directio

£ Smallest Screen

I Rat
WUl
@ Night Mode
[® Density

I Touch screen

Cancel

The -1and suffix is another example of
a configuration qualifier. Configuration
qualifiers on res subdirectories are
how Android identifies which resources
best match the current device
configuration. You can find the list of

configuration qualifiers that Android
recognizes and the pieces of the device
configuration that they refer to at
developer.android.com/
guide/topics/resources/
providing-resources.html.

When the device is in landscape
orientation, Android will find and use
resources inthe res/layout-land
directory. Otherwise, it will stick with
the default in res/layout/.
However, at the moment there are no
resources inthe res/layout-land
directory. Let’s fix that.

Copythe activity quiz.xml file
fromres/layout/ to
res/layout-1land/. (If you do not
see res/layout—-land/ inthe

project tool window, select Project from
the dropdown to switch from the Android
view. Just be sure to switch back to the
Android view when you are done. You can
also copy and paste the file outside of
Android Studio using your favorite file
explorer or terminal app.)

You now have a landscape layout and a
default layout. Keep the filename the
same. The two layout files must have the
same filename so that they can be
referenced with the same resource ID.

Now make some changes to the
landscape layout so that it is different
from the default. Figure 3.12 shows the
changes that you are going to make.

Figure 3.12 An alternative
landscape layout

"http:/ /sch

FrameLayout
drid.

android:layout_width="
android:layout_height=

"match_parent”
"match_parent"

e

l

N

TextView

android:id="@-+id/question_text_view"

android:layout
“center_verfical | center_hori:
android:orientation="horizontal"

LinearLayout

android:layout_width="wrap_content"
android:layout_height="wrap_content"

gravity=

Button
android:id="@ +id/next_button”
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom | right"

[\

- button'
android:drawableRight="@ drawable/arrow_right"
android:drawablePadding="4dp"

A FrameLayout will replace the top
LinearLayout. FrameLayout is
the simplest ViewGroup and does not
arrange its children in any particular
manner. In this layout, child views will
be arranged according to their
android:layout gravity attributes.

This means that the TextView,
LinearLayout, and Button
children of the FrameLayout need
android:layout gravity attributes.
The Button children of the
LinearLayout will stay exactly the
same.

Open layout-
land/activity quiz.xml and
make the necessary changes using

Figure 3.12. You can use Listing 3.4 to
check your work.

Listing 3.4 Tweaking the
landscape layout (1ayout-
land/activity quiz.xml)

<Eimearfayout—

<FrameLlayout
xmlns:android="http://schemas.android.com/apk/res/andr

android:layout width="match parent"
android:layout height="match_ parent" >

<TextView
android:id="@+id/question_text view"
android:layout_width="wrap_ content"
android:layout height="wrap content"
android:layout gravity="center_horizontal"
android:padding="24dp" />

<LinearLayout
android:layout width="wrap_ content"
android:layout height="wrap_ content"

android:layout gravity="center_vertical|center_ horizon
android:orientation="horizontal" >
</LinearLayout>

<Button
android:id="@+id/next_button"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout gravity="bottom|right"
android:text="@string/next button"

android:drawableRight="@drawable/arrow_right"
android:drawablePadding="4dp"
/>
<firineariayout>
</FrameLayout>
Run GeoQuiz again. Rotate the device to
landscape to see the new layout
(Figure 3.13). Of course, this is not just
a new layout — it is a new

QuizActivity as well.

Figure 3.13 QuizActivity in
landscape orientation

Canberra is the capital of Australia.

TRUE FALSE

NEXT)

Rotate back to portrait to see the default
layout and yet another new
QuizActivity.

Saving Data Across
Rotation

Android does a great job of providing
alternative resources at the right time.
However, destroying and re-creating
activities on rotation can cause
headaches, such as GeoQuiz’s bug of
reverting back to the first question when
the device i1s rotated.

To fix this bug, the post-rotation
QuizActivity instance needs to
know the old value of
mCurrentIndex. Youneed a way to
save this data across a runtime

configuration change, like rotation. One
way to do this is to override the
Activity method:

protected void onSavelInstanceState (Bundle
outState)

This method is called before

onStop (), except when the user
presses the Back button. (Remember,
pressing Back tells Android the user is
done with the activity, so Android wipes
the activity from memory completely and
does not make any attempt to save data
to re-create it.)

The default implementation of
onSaveInstanceState (Bundle)
directs all of the activity’s views to save
their state as data in the Bundle object.
A Bundle is a structure that maps

string keys to values of certain limited
types.

You have seen this Bundle before. It 1s
passed into onCreate (Bundle):

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

}

When you override

onCreate (Bundle), you call
onCreate (Bundle) on the activity’s
superclass and pass in the bundle you
just received. In the superclass
implementation, the saved state of the
views is retrieved and used to re-create
the activity’s view hierarchy.

Overriding

onSavelnstanceState(Bu

You can override
onSaveInstanceState (Bundle)
to save additional data to the bundle and
then read that data back in

onCreate (Bundle). This is how
you are going to save the value of
mCurrent Index across rotation.

First, in QuizActivity. java, add
a constant that will be the key for the
key-value pair that will be stored in the
bundle.

Listing 3.5 Adding a key for the
value (QuizActivity. java)
public class QuizActivity extends AppCompatActivity {

private static final String TAG = "QuizActivity";

private static final String KEY INDEX = "index";

private Button mTrueButton;

Next, override

onSaveInstanceState (Bundle)
to write the value of mCurrentIndex
to the bundle with the constant as its key.

Listing 3.6 Overriding
onSaveInstanceState(...)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
@Override
protected void onPause () {

}

@Override
public void onSavelnstanceState (Bundle
savedInstanceState) {

super.onSavelnstanceState (savedInstanceState) ;
Log.i(TAG, "onSavelnstanceState");
savedInstanceState.putInt (KEY_ INDEX,
mCurrentIndex) ;

}

@Override
protected void onStop() {

}
o
Finally, in onCreate (Bundle),

check for this value. If it exists, assign it
to mCurrentIndex.

Listing 3.7 Checking bundile in

onCreate (Bundle)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;

Log.d (TAG, "onCreate (Bundle) called");
setContentView (R.layout.activity quiz);

if (savedInstanceState != null) {
mCurrentIndex =
savedInstanceState.getInt (KEY_INDEX, O0);

}

Run GeoQuiz and press NEXT. No matter
how many device rotations you perform,
the newly minted QuizActivity will
“remember” what question you were on.

Note that the types that you can save to
and restore from a Bundle are
primitive types and classes that
implement the serializable Or
Parcelable Interfaces. It is usually a
bad practice to put objects of custom
types into a Bundle, however, because
the data might be stale when you get it
back out. It is a better choice to use
some other kind of storage for the data
and put a primitive identifier into the

Bundle instead.

The Activity
Lifecycle, Revisited

Overriding
onSaveInstanceState (Bundle)
is not just for handling rotation or other
runtime configuration changes. An
activity can also be destroyed by the OS
if the user navigates away for a while
and Android needs to reclaim memory
(e.g., if the user presses Home and then
goes and watches a video or plays a
game).

Practically speaking, the OS will not
reclaim a visible (paused or resumed)

activity. Activities are not marked as
“killable” until onStop () is called
and finishes executing.

Stopped activities are fair game to be
killed, though. Still, not to worry. If an
activity is stopped, that means
onSaveInstanceState (Bundle)
was called. So resolving the data-loss-
across-rotation bug also addresses the
situation where the OS destroys your
nonvisible activity to free up memory.

How does the data you stash in
onSaveInstanceState (Bundle)
survive the activity’s death? When
onSaveInstanceState (Bundle)
1s called, the data is saved to the
Bundle object. That Bundle object is
then stuffed into your activity’s activity

record by the OS.

To understand the activity record, let’s
add a stashed state to the activity

lifecycle (Figure 3.14).

Figure 3.14 The complete
activity lifecycle

Stashed [Nonexistent]
(activity instance
dead; instance I)
state saved) Launch Finished or

| destroyed by Android
|

onCreate(...)

Dest
User returns to activity, onDestroy()
process spins up again l |
Stopped
(in memory)

T
onRestart() T
e
onStart() onStop()

| I
Visible No longer visible
to user |

v |
Paused
(visible)

! t

Enters Leaves
foreground foreground
1 1

onResume() onPause()

! |

[Resumed

(active in foreground)

When your activity is stashed, an
Activity object does not exist, but
the activity record object lives on in the
OS. The OS can reanimate the activity
using the activity record when it needs
to.

Note that your activity can pass into the
stashed state without onDestroy ()
being called. You can rely on

onStop () and

onSaveInstanceState (Bundle)
being called (unless something has gone
horribly wrong on the device).
Typically, you override
onSaveInstanceState (Bundle)
to stash small, transient-state data that
belongs to the current activity in your
Bundle. Override onStop () to save
any permanent data, such as things the
user 1s editing, because your activity
may be killed at any time after this
method returns.

So when does the activity record get
snuffed? When the user presses the Back
button, your activity really gets
destroyed, once and for all. At that point,
your activity record is discarded.
Activity records are also discarded on

reboot.

For the More
Curious: Current
State of Activity
Cleanup

As of this writing, activities themselves
are not individually destroyed in low-
memory situations. Instead, Android
clears an entire app process from
memory, taking any of the app’s in-
memory activities with it. (Each
application gets its own process. You
will learn more about Android
application processes in the section

called For the More Curious:
Processes vs Tasks in Chapter 24.)

Processes containing foreground
(resumed) and/or visible (paused)
activities get higher priority than other
processes. When the OS needs to free up
resources, it will select the lower
priority processes first. Practically
speaking, a process containing a visible
activity will not reclaimed by the OS. If
a foreground process does get
reclaimed, that means something is
horribly wrong with the device (and
your app being killed is probably the
least of the user’s concerns).

If you are overriding
onSaveInstanceState (Bundle)
you should test that your state is being

saved and restored as expected. Rotation
is easy to test. And, luckily, so is the
low-memory situation. Try it out now to
see for yourself.

Find and click on the Settings icon
within the list of applications on the
device. When the Settings screen
appears, click Developer options (you will
need to scroll down until you see the
option you are looking for). On the
Developer options screen you will see many
possible settings. Turn on the setting
labeled Don't keep activities, as shown in

Figure 3.15.

Figure 3.15 Don’t keep
activities

Developer options

Apps

Don't keep activities
Destroy every activity as soon as the user leaves it

Background process limit
Standard limit

Show all ANRs
Show App Not Responding dialog for background
apps

Inactive apps

Force allow apps on external
Makes any app eligible to be written to external
storage, regardless of manifest values

Force activities to be resizable
Make all activities resizable for multi-window,

Now run your app and press the Home
button. Pressing Home causes the
activity to be paused and stopped. Then
the stopped activity will be destroyed,
just as 1f the Android OS had reclaimed
it for its memory. Restore the app to see
if your state was saved as you expected.
Be sure to turn this setting off when you
are done testing, as it will cause a
performance decrease and some apps
will perform poorly.

Remember that pressing the Back button
instead of the Home button will always
destroy the activity, regardless of
whether you have this development
setting on. Pressing the Back button tells
the OS that the user is done with the
activity.

For the More
Curious: Log Levels
and Methods

When you use the
android.util.Log class to send
log messages, you control not only the
content of a message, but also a level
that specifies how important the message
is. Android supports five log levels,
shown in Table 3.2. Each level has a
corresponding method in the Log class.
Sending output to the log is as simple as
calling the corresponding Log method.

Table 3.2 Log levels and
methods

Log level "Method IIUsed for

ERROR IILog .e(..)|errors

WARNING“Log .w (...) |[warnings

INFO Log.i(..) informational
messages
debug output

DEBUG |[Log.d(...)|[|[(may be
filtered out)

VERBOSE [Log . v (..) development

g-v ()| nly

In addition, each of the logging methods

has two signatures: one that takes a TAG
string and a message string and a second
that takes those two arguments plus an
instance of Throwable, which makes
it easy to log information about a
particular exception that your
application might throw. Listing 3.8
shows some sample log method
signatures. You can use regular Java
string concatenation to assemble your
message string or String. format if
you have fancier needs.

Listing 3.8 Different ways of
logging in Android

// Log a message at "debug" log level

Log.d (TAG, "Current question index: " +

mCurrentIndex) ;

Question question;
try {

question = mQuestionBank[mCurrentIndex];
} catch (ArrayIndexOutOfBoundsException ex) {

// Log a message at "error" log level, along with
an exception stack trace

Log.e (TAG, "Index was out of bounds", ex);

Challenge:
Preventing Repeat
Answers

Once a user provides an answer for a
particular question, disable the buttons
for that question to prevent multiple
answers being entered.

Challenge: Graded
Quiz

After the user provides answers for all
of the quiz questions, display a Toast
with a percentage score for the quiz.
Good luck!

4
Debugging
Android Apps

In this chapter, you will find out what to
do when apps get buggy. You will learn
how to use Logcat, Android Lint, and the
debugger that comes with Android
Studio.

To practice debugging, the first step is to
break something. In
QuizActivity.java, comment out
the code in onCreate (Bundle)

where you pull out
mQuestionTextView.

Listing 4.1 Commenting out a
crucial line
(QuizActivity.java)

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
Log.d (TAG, "onCreate (Bundle) called");
setContentView (R.layout.activity quiz);

if (savedInstanceState != null) ({
mCurrentIndex =
savedInstanceState.getInt (KEY INDEX, O0);
}

// mQuestionTextView =
(TextView) findViewById(R.id.question text view);

mTrueButton =
(Button) findViewById(R.id.true button);
mTrueButton.setOnClickListener (new
View.OnClickListener () {

}) i

Run GeoQuiz and see what happens.
Figure 4.1 shows the message that
appears when your app crashes and
burns. Different versions of Android
will have slightly different messages, but
they all mean the same thing.

Figure 4.1 GeoQuiz is about to
E.X.P.L.O.D.E.

GeoQuiz has stopped

ik Onen ann aaain

A Mute until device restarts

Of course, you know what is wrong with
your app, but if you did not, it might help
to look at your app from a new
perspective.

Exceptions and
Stack Traces

Expand the Android Monitor tool
window so that you can see what has
happened. If you scroll up and down in
Logcat, you should eventually find an
expanse of red, as shown in Figure 4.2.
This is a standard AndroidRuntime
exception report.

If you do not see much in Logcat and
cannot find the exception, you may need
to select the No Fiters option in the filter
dropdown. On the other hand, if you see
too much in Logcat, you can adjust the
Log Level to Error, which will show only
the most severe log messages. You can
also search for the text “FATAL
EXCEPTION,” which will bring you
straight to the exception that caused the
app to crash.

Figure 4.2 Exception and stack
trace in Logcat

09-03 12:44:
Process:

©8.523 5458-5458/7 E/AndroidRuntime : FATAL EXCEPTION: main
com.bignerdranch.android.geoquiz, PID: 5458

java.lang.RuntimeException: Unable to start activity ComponentInfo{com.bignerdranch.android.ge

Caused

at android.app.ActivityThread.performLaunchActivity(ActivityThread. java:2184)

at android.app.ActivityThread.handleLaunchActivity(ActivityThread. java:2233)

at android.app.ActivityThread.access$80@(ActivityThread. java:135)

at android.app.ActivityThread$H.handleMessage(ActivityThread. java:1196)

at android.os.Handler.dispatchMessage(Handler. java:182)

at android.os.Looper. loop(Looper.java:136)

at android.app.ActivityThread.main(ActivityThread.java:5001)

at java.lang.reflect.Method. invokeNative(Native Method) <l internal calls>

at com.android. internal.os.ZygeteInit$MethodAndArgsCaller. run(ZygoteInit. java:785)
at com.android. internal.os.ZygoteInit.main(ZygoteInit. java:601)

at dalvik.system.NativeStart.main{Native Method)

by: java.lang.NullPointerException

at com.bignerdranch.android.geoquiz.QuizActivity.updateQuestion(QuizActivity.java:35)
at com.bignerdranch.android.geoquiz.QuizActivity.onCreate(QuizActivity.java:98)

at android.app.Activity.performCreate{Activity.java:5231)

at android.app.Instrumentation.callActivityOnCreate(In

at android.app.ActivityThread.performLaunchActivity(Ac
at android.app.ActivityThread. handleLaun(hActwny(Ac(wuyThread java:2233)
at android.app.ActivityThread.accesss800(ActivityThread. java:135)

at android.app.ActivityThreadsH.handleMessage(ActivityThread. java:1196)

at android.os.Handler.dispatchMessage(Handler. java:162)

at android.os.Looper. loop(Looper. jav 6)

at android.app.ActivityThread.main(ActivityThread. java:5001)

at java.lang.reflect.Method. invokeNative(Native Method)

at java.lang. reflect.Method. invoke(Method. java:515) <3 more.

oot

The report tells you the top—level
exception and its stack trace, then the
exception that caused that exception and
its stack trace, and so on until it finds an
exception with no cause.

In most of the code you will write, that

last exception with no cause is the
interesting one. Here the exception
without a cause is a
Java.lang.NullPointerExcept
The line just below this exception is the
first line in its stack trace. This line tells
you the class and method where the
exception occurred as well as what file
and line number the exception occurred
on. Click the blue link, and Android
Studio will take you to that line in your
source code.

The line to which you are taken is the
first use of the mQuestionTextView
variable, inside

updateQuestion (). The name
NullPointerException gives you
a hint to the problem: This variable was

not initialized.

Uncomment the line initializing
mQuestionTextView to fix the bug.

When you encounter runtime exceptions,
remember to look for the last exception
in Logcat and the first line in its stack
trace that refers to code that you have
written. That is where the problem
occurred, and it is the best place to start
looking for answers.

If a crash occurs while a device is not
plugged in, all is not lost. The device
will store the latest lines written to the
log. The length and expiration of the
stored log depends on the device, but
you can usually count on retrieving log
results within 10 minutes. Just plug in

the device and select it in the Devices
view. Logcat will fill itself with the
stored log.

Diagnosing
misbehaviors

Problems with your apps will not
always be crashes. In some cases, they
will be misbehaviors. For example,
suppose that every time you pressed the
NEXT button, nothing happened. That
would be a noncrashing, misbehaving
bug.

InQuizActivity.java, make a

change to the mNextButton listener to
comment out the code that increments

mCurrentIndex.

Listing 4.2 Forgetting a critical
line of code
(QuizActivity.java)

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

mNextButton =
(Button) findViewById(R.id.next button);
mNextButton.setOnClickListener (new
View.OnClickListener () {

@Override
public void onClick(View v) {
// mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
updateQuestion () ;

}
});

}

Run GeoQuiz and press the NEXT button.
You should see no effect.

This bug is trickier than the last bug. It is

not throwing an exception, so fixing the
bug 1s not a simple matter of making the
exception go away. On top of that, this
misbehavior could be caused in two
different ways: The index might not be
changed, or updateQuestion ()
might not be called.

If you had no idea what was causing the
problem, you would need to track down
the culprit. In the next few sections, you
will see two ways to do this: diagnostic
logging of a stack trace and using the
debugger to set a breakpoint.

Logging stack traces

InQuizActivity, add a log

statement to updateQuestion ().

Listing 4.3 Exception for fun

and profit
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

private void updateQuestion() {
Log.d(TAG, "Updating question text", new
Exception());
int question =
mQuestionBank [mCurrentIndex] .getTextResId () ;
mQuestionTextView.setText (question);

}

The Log.d (String, String,
Throwable) version of Log.d logs
the entire stack trace just like the
AndroidRuntime exception you saw
earlier. The stack trace will tell you
where the call to

updateQuestion () was made.

The exception that you pass to
Log.d(String, String,
Throwable) does not have to be a
thrown exception that you caught. You
can create a brand new Exception
and pass it to the method without ever
throwing it, and you will get a report of
where the exception was created.

Run GeoQuiz, press the NEXT button, and
then check the output in Logcat

(Figure 4.3).

Figure 4.3 The results

©9-04 12:47:37.733 30612-30612/com.bignerdranch.android.geoquiz D/QuizActivity: Updating question text
Jjava. lang.Exception

at com.bignerdranch.android.geoquiz.QuizActivity.updateQuestion(QuizActivity. java:34)
at com.bignerdranch.android.geoquiz.QuizActivity.access$108(QuizActivity. java:12)
at com.bignerdranch.android.geoqui: 3.onClick(QuizActivity. java:83)
at android.view.View.performClick(
at android.view.View$PerformClick.
at android.os.Handler.handleCallback(
at android.os.Handler. dlsnatznﬁessage(
at android. 0s.Looper. loop(Loope
at android.app.ActivityThread. main tyThread. java:50@1)
at java.lang.reflect.Method.invokeNative(Native Method) <1 internal calls>
at com.android.internal.os.ZygoteInitsMethodAndArgsCaller.run(ZygoteInit.java:785)
at com.android. internal.os.ZygoteInit.main{ZygoteInit. java:601)
at dalvik.system.NativeStart.main(Native Method)

The top line in the stack trace is the line
where you logged out the Exception.
A few lines after that you can see where
updateQuestion () was called
from within your onClick (View)
implementation. Click the link on this
line, and you will be taken to where you
commented out the line to increment your
question index. But do not get rid of the
bug; you are going to use the debugger to
find it again in a moment.

Logging out stack traces 1s a powerful
tool, but it is also a verbose one. Leave
a bunch of these hanging around, and
soon Logcat will be an unmanageable
mess. Also, a competitor might steal
your ideas by reading your stack traces
to understand what your code is doing.

On the other hand, sometimes a stack
trace showing what your code does is
exactly what you need. If you are seeking
help with a problem at
stackoverflow.comor
forums.bignerdranch.com, it
often helps to include a stack trace. You
can copy and paste lines directly from
Logcat.

Before continuing, delete the log
statement in QuizActivity.java.

Listing 4.4 Farewell, old friend
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

private void updateQuestion() {
Fog—d(FAG,—‘Hpdating—questionmr—text'5—mew—
Exceptiomi
int question =
mQuestionBank [mCurrentIndex] .getTextResId () ;

http://forums.bignerdranch.com

mQuestionTextView.setText (question) ;

}

Setting breakpoints

Now you will use the debugger that
comes with Android Studio to track
down the same bug. You will set a
breakpoint on updateQuestion ()
to see whether it was called. A
breakpoint pauses execution before the
line executes and allows you to examine
line by line what happens next.

InQuizActivity. java, returnto
the updateQuestion () method.
Next to the first line of this method, click
the gray bar in the lefthand margin. You
should now see a red circle in the gray

bar like the one shown in Figure 4.4.
This is a breakpoint.

Figure 4.4 A breakpoint

private void updateQuestion{) {
int question = mQuestionStore(mCurrentIndex].getTextResId();
mQuestionTextView.setText{question);

To engage the debugger and trigger your
breakpoint, you need to debug your app
instead of running it. To debug your app,
click the debug button (represented by a
bug), which is next to the run button. You
can also navigate to Run — Debug 'app' in
the menu bar. Your device will report
that it is waiting for the debugger to
attach, and then it will proceed normally.

Once your app is up and running with the
debugger attached, it will pause. Firing

up GeoQuiz called
QuizActivity.onCreate (Bundl
which called updateQuestion (),
which hit your breakpoint.

In Figure 4.5, you can see that this editor
has opened QuizActivity.java
and highlighted the line with the
breakpoint where execution has paused.

Figure 4.5 Stop rlght there!

n— o - Androl 22 Preview 4
BHG ¢4 XOH QR ¢ A Raw- P sLaE L
£3 GeoQuiz) 3 app | B src) B main | 1 v

blgnerdranch | [androld

eoquiz | (€ Quizctviy

§ WS ¢ Projectries | o 15 © Quizherviyva x s
Caay 26 s duesion(-Te soure of we uite Rivr is iy Gy folse, o
S Dmanifens 7 new Question(*The Anazon River is the longest river in the Americas.”, true), &
) 8 o Glestion{rLoke BeEABL 1a-the vorLd o dest and deepest sresmete.. -1 truel_ *
® Cjava =
5 com bignerdranch android gesquiz &5
= e ion 2 private int sCurrentindex = 0; nCurr 0 2
g © R
H 3 pricate woid iptatctuestiont)
g E3 combignerdranch.androld.geoquiz (androldTes 33 ¢ gl O O
v [com.bignerdranch.android.geoquiz (test) 35 -quemmm o, SetText (quest ion) ;
Eres 3 i
1@ 37
A) private void checkinsuer (boolean userPressedTrue) {
H 39 Sottean ansverTSTrue » aduestionbankncurrentindex). ishTswerTrue();
S a®
> a int nessageRestd =
2
Py 3 tuserprssadtios = moeerieTon) {
a ressageRestd = “Correct
a5) etse
a5 nessagefesld = “Incorrect!";
a7)
]
. Toast.aakeText Cthis, nessagefestd, Toost.LENGTH_SHORT)
Dsbug . amp. EU
P Ocbugger [Console ks T X 2 Ao % = Y

11 (8 Frames ht
™ 1 "main'@4,349 in group ‘main": RUNNING 4 3 ¥ r Sthis = (QuizActivity@4489)

Y occion s uciy com et s i Sy i

H encreazeaa QuizActivity (con endranch.android. geox & mQuestionBank (mCurrentindex] = (C
B rap12 ctivityThread (android.app)

60, Activity ThreadsH (android.app)

Ppon prospuy

2l x
* 2

6 ¢ (android.ap,
Poachun [ESDGIGH 27000 & EAndrodMonior [Terminal i O: essages) bventlog [F Gradie Console

a

(Gradle buiid finished in 25 213ms (minute ago)

The debug tool window at the bottom of
the screen 1s now visible. It contains the
Frames and Variables views (Figure 4.6).

Figure 4.6 The debug tool
window

Resume Program Step Over Step Into Step Out
\mhug app \ / /
P Debugger [ElConsole +* = ¥ M ¥ A g ¥ M

£ "main”@4,348 in group "main”: RUNNING | * He o 2 4 R
8 npdalequestlnn 34, qulenlvlty (com.bignerdranch. andmldgeoq o e S
2 i i2)

& mquSUD Ba k[mCu ren rl d]
mCurrentindex =0

(android.app)

Close — 3 i

You can use the arrow buttons at the top
of the view to step through your
program. You can see from the stack
trace that updateQuestion () has
been called from inside

onCreate (Bundle). But you are
interested in investigating the NEXT

button’s behavior, so click the resume
program button to continue execution.
Then press the NEXT button in GeoQuiz
to see if your breakpoint is hit and
execution 1s stopped. (It should be.)

Now that you are stopped at an
interesting point of execution, you can
take a look around. The Variables view
allows you to examine the values of the
objects in your program. You should see
the variables that you have created in
QuizActivity as well as an
additional value: this (the
QuizActivity instance itself).

You could expand the this variable to
see all the variables declared in
QuizActivity’s superclass,
Activity, inActivity’s

superclass, in its super-superclass, and
so on. But for now, focus on the
variables that you created.

You are only interested in one value:
mCurrentIndex. Scroll down in the
variables view until you see
mCurrentIndex. Sure enough, it still
has a value of 0.

This code looks perfectly fine. To
continue your investigation, you need to
step out of this method. Click the step
out button.

Check the editor view. It has now
jumped you over to your
mNextButton’s
OnClickListener, right after
updateQuestion () was called.

Pretty nifty.

You will want to fix this implementation,
but before you make any changes to
code, you should stop debugging your
app. You can do this in two ways: You
can stop the program, or you can simply
disconnect the debugger. To stop the
program, click the stop button shown in
Figure 4.6. Usually it is easier to simply
disconnect the debugger. To do that,
click the close button also labeled in

Figure 4.6.

Now return your OnClickListener
to its former glory.

Listing 4.5 Returning to
normalcy (QuizActivity. java)

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

mNextButton =
(Button) findViewById(R.id.next button);
mNextButton.setOnClickListener (new
View.OnClickListener () {

@Override
public void onClick(View v) {
7# mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
updateQuestion () ;

}

1)
o
You have tried out two ways of tracking
down a misbehaving line of code: stack
trace logging and setting a breakpoint in
the debugger. Which is better? Each has
1ts uses, and one or the other will
probably end up being your favorite.

Logging out stack traces has the
advantage that you can see stack traces
from multiple places in one log. The

downside is that to learn something new
you have to add new log statements,
rebuild, deploy, and navigate through
your app to see what happened. The
debugger is more convenient. If you run
your app with the debugger attached,
then you can set a breakpoint while the
application is still running and poke
around to get information about multiple
issues.

Using exception
breakpoints
As if that were not enough choices, you

can also use the debugger to catch
exceptions. Return to

QuizActivity’s onCreate method
and comment out a line of code that will
cause the app to crash.

Listing 4.6 Making GeoQuiz
crash again
(QuizActivity.java)

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// mNextButton = (Button)
findViewById (R.id.next button);

mNextButton.setOnClickListener (new
View.OnClickListener () {

@Override
public void onClick(View v) {
mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
updateQuestion () ;

}
});

}

Now select Run — View Breakpoints... to
pull up the breakpoints dialog, as shown

in Figure 4.7.

Figure 4.7 Setting an
exceptlon breakpomt

Bre:

J Enabled

2 suspend

JLD!BkD!

Condition
®Exception Breakpoints i

Log message to consol
Log evaluated expres:

Remove once hit
Disabled until selected

<None>

pri t

uc
36 }

All

akpoif

Line 34 in QuizActivityjava

O Thread
I8 Fiters
bt Instance filt
Class filters
breakpoint is hit
Pass count

aud(n B on() {
onBank [aCur'
T(\lrw m\u st i)

entIndex] . getTextResTd() ;

This dialog shows all of your currently
set breakpoints. Remove the breakpoint
you added earlier by highlighting it and
clicking the - button.

The breakpoints dialog also allows you

to set a breakpoint that is triggered when
an exception is thrown, wherever it
might happen. You can limit it to only
uncaught exceptions or apply it to both
caught and uncaught exceptions.

Click the + button to add a new
breakpoint. Choose Java Exception
Breakpoints in the drop-down list. You can
now select the type of exception that you
want to catch. Type in
RuntimeException and choose
RuntimeException (java.lang) from the
suggestions. RuntimeException is
the superclass of
NullPointerException,
ClassCastException, and other
runtime problems, so it makes a nice
catch-all.

Click Done and launch GeoQuiz with the
debugger attached. This time, your
debugger will jump right to the line
where the exception was thrown as soon
as it happens. Exquisite.

Now, this is a fairly big hammer. If you
leave this breakpoint on while
debugging, you can expect it to stop on
some framework code or in other places
you do not expect. So you may want to
turn 1t off when you are not using it. Go
ahead and remove the breakpoint now by
returning to Run — View Breakpoints....

Undo the change from Listing 4.6 to get
GeoQuiz back to a working state.

Android-Specific
Debugging

Most Android debugging is just like
Java debugging. However, you will run
into 1ssues with Android-specific parts,
such as resources, that the Java compiler
knows nothing about. This is where
Android Lint comes in.

Using Android Lint

Android Lint (or just “Lint”) is a static
analyzer for Android code. A static

analyzer 1s a program that examines your
code to find defects without running it.
Lint uses its knowledge of the Android
frameworks to look deeper into your
code and find problems that the compiler
cannot. In most cases, Lint’s advice is
worth taking.

In Chapter 6, you will see Lint warn you
about compatibility problems. Lint can
also perform type-checking for objects
that are defined in XML. Make the
following casting mistake in
QuizActivity.

Listing 4.7 A simple mix-up
(QuizActivity.java)

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
Log.d (TAG, "onCreate (Bundle) called");

setContentView (R.layout.activity quiz);

mQuestionTextView =
(TextView) findViewById (R.id.question_text view);

mirveButtomr—
{Buttom) fimdvViewById{R-idtrue_buttom)s
mTrueButton =

(Button) findViewById(R.id.question_text view);

}

Because you used the wrong resource
ID, this code will attempt to cast a
TextView as a Button at runtime.
This will cause an improper cast
exception. The Java compiler sees no
problem with this code, but Lint will
catch this error. You should see Lint
immediately highlight this line of code to
indicate that there is a problem.

You can manually run Lint to see all of
the potential 1ssues in your project,
including those that are not as serious as

the one above. Select Analyze — Inspect
Code... from the menu bar. You will be
asked which parts of your project you
would like to inspect. Choose Whole
project and click OK. Android Studio will
now run Lint as well as a few other
static analyzers on your code.

Once the scan is complete, you will see
a few categories of potential issues in
the inspection tool window. Expand the
Android Lint categories to see Lint’s
information about your project

(Figure 4.8).

Figure 4.8 Lint warnings

Inspection Results for Inspection Profile 'Project Default"

W m # GeoQuiz (37 items)

Android > Lint > Correctness (2 items)
Android > Lint > Internationalization > Bidirectional Text (
Android > Lint > Performance
Android > Lint > Usability (- 15)
Android > Lint > Usabl!ity > Icons
Class structure ()

Code maturlty issues (1 item)

Data flow issues (1 item

o e Declal;ation redundancy (5 items

J2ME issues (1 item)

Probable bugs (1 item)

Spelling (2 items

XML (1 item

X [@

Tl
i

M

T B [

k-
"

You can select an 1ssue 1n this list to see
more detailed information and its
location in your project.

The Mismatched view type warning in the
Android > Lint > Correctness category is the
one that you created above. Go ahead
and correct the cast in

onCreate (Bundle).

Listing 4.8 Fixing that simple
mix-up (QuizActivity. java)

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
Log.d (TAG, "onCreate (Bundle) called");
setContentView (R.layout.activity quiz);

mQuestionTextView =
(TextView) findViewById(R.id.question text view);

mEPrveButtomr——

B EimdViewByTd-{R—id- Fon— —view)
mTrueButton =

(Button) findViewById(R.id. true_button) ;

}

Run GeoQuiz once more and confirm

that the app 1s back to normal.

Issues with the R class

You are familiar with build errors that

occur when you reference resources
before adding them or delete resources
that other files refer to. Usually, resaving
the files once the resource is added or
the references are removed will cause
Android Studio to rebuild without any
fuss.

Sometimes, however, these build errors
will persist or appear seemingly out of
nowhere. If this happens to you, here are
some things you can try:

Recheck the validity of the XML in
your resource files

If your R. java file was not
generated for the last build, you
will see errors in your project
wherever you reference a

resource. Often, this 1s caused
by a typo in one of your XML
files. Layout XML is not
always validated, so typos in
these files may not be pointedly
brought to your attention.
Finding the typo and resaving
the file should cause R. java
to regenerate.

Clean your project

Select Buid — Clean Project.
Android Studio will rebuild
the project from scratch, which
often results in an error-free
build. We can all use a deep
clean every now and then.

Sync your project with Gradle

If you make changes to your
build.gradle file, you
will need to sync those changes
to update your project’s build
settings. Select Tools — Android
— Sync Project with Gradle Fies.
Android Studio will rebuild
the project from scratch with
the correct project settings,
which can help to resolve
issues after changing your
Gradle configuration.

Run Android Lint

Pay close attention to the
warnings from Lint. With this
tool, you will often discover
unexpected 1ssues.

If you are still having problems with
resources (or having different
problems), give the error messages and
your layout files a fresh look. It is easy
to miss mistakes in the heat of the
moment. Check out any Lint errors and
warnings as well. A cool-headed
reconsideration of the error messages
may turn up a bug or typo.

Finally, if you are stuck or having other
1ssues with Android Studio, check the
archives at stackoverflow.com or
visit the forum for this book at
forums.bignerdranch.com.

http://forums.bignerdranch.com

Challenge:
Exploring the
Layout Inspector

For support debugging layout file issues,
the layout inspector can be used to
interactively inspect how a layout file is
rendered to the screen. To use the layout
inspector, make sure GeoQuiz is running
in the emulator and click on the layout
inspector icon in the left drawer within
the Android Monitor tool window
(Figure 4.9). Once the inspector is
activated, you can explore the properties

of your layout by clicking the elements
within the layout inspector view.

Figure 4.9 The Layout
Inspector button

Layout Inspector

ulator Nexus_5X_API_23 Android 6.0, APl 23 5&; com.bignerdranch.an

10 .857 18446-18446/7 I/art: Not late-enabling -Xcheck:j
1@ .094 18446-18446/com.bignerdranch.android.geoquiz W/S
10 .896 18446-18446/com.bignerdranch.android.geoquiz I/I
10: .829 18446-18446/com.bignerdranch.android.geoquiz W/S
1e: .879 18446-18446/com.bignerdranch.android.geoquiz D/(
-] 3 29-26 10: .918 18446-18446/com.bignerdranch.android.geoquiz D/Q
@9-26 10: .918 18446-18446/com.bignerdranch.android.geoquiz D/(
? {j 09-26 10: .927 18446-18574/com.bignerdranch.android.geoquiz D/C
2 =)
3
5 |G
o
3 #
r 2
. @9-26 10:18:43.984 18446-18574/com.bignerdranch.android.geoquiz I/C
- @9-26 10:19:80.872 18446-1B452/com.bignerdranch.android.geoquiz D/D
g @9-26 10:20:23.947 18446-18452/com.bignerdranch.android.geoquiz D/D
[
o~
P.4:Run 2 TODO & 6:Android Monitor [E Terminal & 0: Messages

[Gradle build finished in 8s 565ms (28 minutes ago)

Challenge:
Exploring
Allocation Tracking

The Allocation Tracker tool creates
detailed reports for the frequency and
number of memory allocation calls in
your program and is useful for
performance-tuning your app. In the
Android Monitor tool window, click the
Allocation Tracker button (Figure 4.10).

Figure 4.10 Starting the
Allocation Tracker

Start/Stop Allocation Tracking

Android Monitor

#8 Emulator Nexus_SX_API_23 Android 6.0, AP 23 "J com.bignerdranch.android.geoquiz (18446)

®1 ik logeat. Monitors -»*

a
MMemory I ™ [@ s ?
&
17.47 M8 1
o
8.00 MB.
@
0.00 MB-
2 1h 10m 40s 1h 10m 45s 1h 10m 50s. 1h 10m 555 1h 11m Os 1h 11mSs. 1h 11m 10s
i cry nwe:?
100.00%
80.00%
w00%
1h 10m 40s 1h 10m 45 1h 10m 50s 1h 10m 555 1h 11m 0s 1h 1ImSs 1h 11m 10s
M Network 11 - ?
5.00KB/s.
4.00KB/s
2.00KB/s
0.
& Th 10m 40s 1h 10m 455 1h 10m S0 Th 10m 555 1h 11m Os Th 1m 5. Th 1Im 10s
o i cru - ?
H 17.00ms
0.
P, 4:Run 2 TODO | W 6:Android Monitor Terminal [0: Messages.

[***Received REAL (23 minutes ago)

This will begin recording memory
allocations as you interact with your
app. Once you have performed the
interaction you are profiling, click the

button again to stop allocation tracking.
This will display the allocation report

(Figure 4.11).

Figure 4.11 Allocation Tracker

VAR gy,

LLRLR

The allocation report shows the count of
memory allocation events and the size of

each in bytes in table form and as a
visualization. You can select the report
type at the top of the tool window.

5
Your Second
Activity

In this chapter, you will add a second
activity to GeoQuiz. An activity controls
a screen of information, and this activity
will add a second screen that offers
users a chance to cheat on the current
question by showing the answer.

Figure 5.1 shows the new activity.

Figure 5.1 CheatActivity
offers the chance ta neek at the

wEE s e wiEw wEreEErw e ww o = s == ==

answer
W4 R 7:00

GeoQuiz

Are you sure you want to do this?

SHOW ANSWER

If users choose to view the answer and
then return to the QuizActivity and
answer the question, they will get a new
message, shown in Figure 5.2.

Figure 5.2 QuizActivity
knows if you've been cheating

¥ d i 7:00
GeoQuiz

Canberra is the capital of Australia

TRUE FALSE
CHEAT!

NEXT)

Cheating is wrong.

Why is this a good Android
programming exercise? Because you
will learn how to:

e Create a new activity and a
new layout for it.

e Start an activity from another
activity. Starting an activity
means asking the OS to create

an activity instance and call its
onCreate (Bundle)
method.

e Pass data between the parent
(starting) activity and the child
(started) activity.

Setting Up a
Second Activity

There is a lot to do in this chapter.
Fortunately, some of the grunt work can
be done for you by Android Studio’s
New Activity wizard.

Before you invoke the magic, open

strings.xml and add all the strings
you will need for this chapter.

Listing 5.1 Adding strings
(strings.xml)

<string name="incorrect toast">Incorrect!
</string> B

<string name="warning_ text">Are you sure you want
to do this?</string>

<string name="show_answer_button">Show
Answer</string>

<string name="cheat_button">Cheat!</string>

<string name="judgment toast">Cheating is wrong.
</string>

</resources>

Creating a new activity

Creating an activity typically involves

touching at least three files: the Java
class file, an XML layout, and the
application manifest. If you touch those
files in the wrong ways, Android can get
mad. To ensure that you do it right, you
can use Android Studio’s New Activity
wizard.

Launch the New Activity wizard by
right-clicking on your
com.bignerdranch.android.ge
package in the project tool window.
Choose New — Activity — Empty Activity, as

shown in Figure 5.3.

Figure 5.3 The New Activity

wizard menu

src) Exman) Ejava) B3 com) B bgnereranch | B3 android
Projectfies | > R
¥
3 3
El manifests
> java
o hinorddcanch andienid nonaix
>
X
« 0 Copy 8C
Copy Path 0%C
g > GGradles Copyas Plain Text
H Copy Reference Xt
S ot Paste
Find Usages F7
Find in Path... o%F
Replace in Path o
Analyze
Refactor
beveq B app| Add 10 Favorites
s ochugper SOV Imase Thumonails onT
Il @rand Reformat Code ~
. Optimize Imports ~xo
Delete... =S
P Run ‘Tests in ‘com bignerdranch.and. ~aR
£ Debug Tests in ‘com.bignerdranch.and... ~aD

I3 Run ests in ‘com.bignerdranch.and...' with Coverage
7 Create Tests in ‘com.bignerdranch.android.geoquiz".

Local History »
(5 Synchronize 'geoquiz

© Java Class
& Android resource file
Android resource directory
File
Package

5l C++ Class
8 C/C++ Source File
3 C/C++ Header File
 Image Asset

Vector Asset

I singleton

Edit File Templates...
AIDL

Activity

Android Auto

" Ul Component
i Wear
Widget
F XML
4 Resource Bundle

>
>

>
>
>
>
>
»
»
>

Gallery...
Always On Wear A

= Android TV Activity

= Basic Activity

= Act 20)

= Fullscreen Activity

Reg

res minsdk >= 20)

7 Scrolling Activity.

You should then see a dialog like

Figure 5.4. Set Activity Name to
CheatActivity. This is the name of
your Activity subclass. Layout Name
will be automatically set to

activity cheat. This will be the

base name of the layout file the wizard
creates.

Figure 5.4 The New Empty
Activity wizard

®e New Android Activity

@™ Configure Activity

y
H Androld Studio

Creates a new empty activity

Activity Name: CheatActivity
Cerman e
Layout Name: activity_cheat

Launcher Activity

Backwards Compatibility (AppCompat)

Package name: com.bianerdranch.android.aeoauiz d

Cancel Previous Next | Finish |

The defaults for the remaining fields are

fine, but take care to ensure that the
package name is what you expect. This
determines where
CheatActivity.java will live on
the filesystem. Click the Finish button to
make the magic happen.

Now it is time to make the Ul look good.
The screenshot at the beginning of the
chapter shows you what
CheatActivity’s view should look
like. Figure 5.5 shows the widget
definitions.

Figure 5.5 Diagram of layout
for CheatActivity

LinearLayout
id. con/apk/res/android"

TEee
gegs
-3

tools: text="Answer’

Openactivity cheat.xml from
the 1ayout directory and switch to the
Text view.

Try creating the XML for the layout
using Figure 5.5 as a guide. Replace the
sample layout with a new
LinearLayout and so on down the
tree. After Chapter 9, we will only show
layout diagrams like Figure 5.5 instead

of long passages of XML, so it is a good
idea to start using them now to create
your layout XML. You can check your
work against Listing 5.2.

Listing 5.2 Filling out the
second activity’s layout
(activity cheat.xml)

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/andr

xmlns:tools="http://schemas.android.com/tools"
android:layout width="match_parent"
android:layout height="match parent"
android:orientation="vertical"
android:gravity="center"

tools:context="com.bignerdranch.android.geoquiz.Cheata

<TextView
android:layout width="wrap_ content"
android:layout height="wrap_content"
android:padding="24dp"
android:text="@string/warning_ text"/>

<TextView
android:id="@+id/answer_text_view"
android:layout width="wrap content"
android:layout height="wrap_content"
android:padding="24dp"
tools: text="Answer"/>

<Button
android:id="@+id/show_answer_button"
android:layout width="wrap content"
android:layout height="wrap_content"
android:text="@string/show_answer_button"/>

</LinearLayout>

Notice the special XML namespace for
tools and the tools:text attribute on
the TextView widget where the
answer will appear. This namespace
allows you to override any attribute on a
widget for the purpose of displaying it
differently in the Android Studio
preview. Because TextView has a
text attribute, you can provide a literal

dummy value for it to help you know
what it will look like at runtime. The
value “Answer” will never show up in
the real app. Handy!

You will not be creating a landscape
alternative for

activity cheat.xml, but there is
a way to preview how the default layout
will appear in landscape.

In the preview tool window, find the
button in the toolbar above the preview
pane that looks like a device with
curved arrows. Click this button to
change the orientation of the preview

(Figure 5.6).

Figure 5.6 Previewing
activity cheat.xml in

landscape

Preview

@ (,)1) Nexus 5X~ 624~ OAppTheme @Languagev E EE

§ (=) Switch to Landscape O%®@HE W Q2

"] Portrait
[Landscape

Ul Mode b
mghm

The default layout works well enough in
both orientations, so let’s move on to
fleshing out the activity subclass.

%~ -1

A new activity subclass

In the project tool window, find the
com.bignerdranch.android.geoquiz Java
package and open the
CheatActivity class, whichis in
the CheatActivity. java file.

This class already includes a basic
implementation of

onCreate (Bundle) that passes the
resource ID of the layout defined in
activity cheat.xml to
setContentView(..).

CheatActivity will eventually do
more in its onCreate (Bundle)
method. For now, let’s take a look at
another thing the New Activity wizard
did for you: declaring
CheatActivity in the application’s
manifest.

Declaring activities in
the manifest

The manifest is an XML file containing
metadata that describes your application
to the Android OS. The file is always
named AndroidManifest.xml, and
itlives inthe app/manifests
directory of your project.

In the project tool window, find and
open AndroidManifest.xml. You
can also use Android Studio’s Quick
Open dialog by pressing
Command-+Shift+O (Ctrl+Shift+N) and
starting to type the filename. Once it has
guessed the right file, press Return to

open it.

Every activity in an application must be
declared in the manifest so that the OS
can access it.

When you used the New Project wizard
to create QuizActivity, the wizard
declared the activity for you. Likewise,
the New Activity wizard declared

CheatActivity by adding the XML

highlighted in Listing 5.3.

Listing 5.3 Declaring
CheatActivity in the manifest

(AndroidManifest.xml)

<manifest
xmlns:android="http://schemas.android.com/apk/res/andr

package="com.bignerdranch.android.geoquiz" >

<application

android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app name"
android:supportsRtl="true"
android:theme="@style/AppTheme">

<activity android:name=".QuizActivity">
<intent-filter>
<action
android:name="android.intent.action.MAIN"/>
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".CheatActivity">
</activity>

</application>

</manifest>

The android:name attribute is required,
and the dot at the start of this attribute’s
value tells the OS that this activity’s
class is in the package specified in the
package attribute in the manifest
element at the top of the file.

You will sometimes see a fully qualified
android:name attribute, like
android:name="com.bignerdranch.al
The long-form notation is identical to the
version in Listing 5.3.

There are many interesting things in the
manifest, but, for now, let’s stay focused
on getting CheatActivity up and
running. You will learn about the
different parts of the manifest in later
chapters.

Adding a cheat button
to QuizActivity

The plan is for the user to press a button
inQuizActivity to get an instance

of CheatActivity onscreen. So you
need new buttons in
layout/activity quiz.xml and
layout-

land/activity quiz.xml.

In the default layout, add the new button
as a direct child of the root
LinearLayout. Its definition should
come right before the NEXT button.

Listing 5.4 Adding a cheat
button to the default layout
(layout/activity quiz.xml)

</LinearLayout>

<Button
android:id="@+id/cheat_button"
android:layout width="wrap_ content"
android:layout height="wrap_content"
android:text="@string/cheat button"/>

<Button
android:id="@+id/next button"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/next button"
android:drawableRight="@drawable/arrow right"
android:drawablePadding="4dp"/>

</LinearLayout>

In the landscape layout, have the new
button appear at the bottom and center of
the root FrameLayout.

Listing 5.5 Adding a cheat
button to the landscape layout
(Layout-

land/activity quiz.xml)

</LinearLayout>

<Button
android:id="@+id/cheat button"
android:layout width="wrap_ content"
android:layout height="wrap_content"

android:layout gravity="bottom|center horizontal"

android:text="@string/cheat button" />
<Button

android:id="@+id/next button"
android:layout width="wrap_ content"
android:layout_height="wrap_ content"
android:layout gravity="bottom|right"
android:text="@string/next button"
android:drawableRight="@drawable/arrow right"
android:drawablePadding="4dp" />

</FrameLayout>

Reopen QuizActivity.java. Add
a variable, get a reference, and set a
View.OnClickListener stub for
the CHEAT! button.

Listing 5.6 Wiring up the cheat
button (QuizActivity. java)

public class QuizActivity extends AppCompatActivity {
private Button mNextButton;
private Button mCheatButton;

private TextView mQuestionTextView;

@Override

protected void onCreate (Bundle
savedInstanceState) {

mNextButton = (Button)
findvViewById(R.id.next button);
mNextButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick(View v) {
mCurrentIndex = (mCurrentIndex + 1)
mQuestionBank.length;
updateQuestion () ;
}
});

mCheatButton =
(Button) findViewById (R.id.cheat_button) ;
mCheatButton.setOnClickListener (new
View.OnClickListener() {
QOverride
public void onClick (View v) {
// Start CheatActivity

})

updateQuestion () ;

}

Now you can get to the business of
starting CheatActivity.

Starting an Activity

The simplest way one activity can start
another is with the startActivity
method:

public void startActivity(Intent intent)

You might guess that
startActivity (Intent) isa
static method that you call on the
Activity subclass that you want to
start. But it is not. When an activity calls
startActivity (Intent), this
call 1s sent to the OS.

In particular, it is sent to a part of the OS
called the ActivityManager. The

ActivityManager then creates the
Activity instance and calls its
onCreate (Bundle) method, as
shown in Figure 5.7.

Figure 5.7 Starting an activity

Your Application ‘ Android OS

1
' startActivity(Intent) |
L}

¥ v I ¥

How does the ActivityManager
know which Activity to start? That
information is in the Intent parameter.

Communicating with
intents

An intent is an object that a component
can use to communicate with the OS.
The only components you have seen so
far are activities, but there are also
services, broadcast receivers, and
content providers.

Intents are multipurpose communication
tools, and the Intent class provides
different constructors depending on what
you are using the intent to do.

In this case, you are using an intent to
tell the ActivityManager which
activity to start, so you will use this

constructor:

public Intent (Context packageContext, Class<?>
cls)

The Class argument specifies the
activity class that the
ActivityManager should start. The
Context argument tells the
ActivityManager which
application package the activity class
can be found in (Figure 5.8).

Figure 5.8 The intent: telling
ActivityManager what to do

GeoQuiz | Android OS

- ; |
startActivity(Intent)

-

Intent i
component=CheatActivity

]

\ —

Intent -

CheatActivity | <&~ () i
|

1 |

v v
|

Within mCheatButton’s listener,
create an Intent that includes the
CheatActivity class. Then pass the
intent into

startActivity (Intent) (Listing
3.7).

Listing 5.7 Starting

CheatActivity
(QuizActivity.java)

mCheatButton =
(Button) findViewById(R.id.cheat button);
mCheatButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v) {
// Start CheatActivity
Intent intent = new Intent(QuizActivity.this,
CheatActivity.class);
startActivity(intent) ;
}
}) i

Before starting the activity, the
ActivityManager checks the
package’s manifest for a declaration
with the same name as the specified
Class. If it finds a declaration, it starts
the activity, and all is well. If it does
not, you get a nasty
ActivityNotFoundException, which
will crash your app. This is why all of

your activities must be declared in the
manifest.

Run GeoQuiz. Press the CHEAT! button,
and an instance of your new activity will
appear on screen. Now press the Back
button. This will destroy the
CheatActivity and return you to the
QuizActivity.

Explicit and implicit intents

When you create an Intent with a
Context and a Class object, you are
creating an explicit intent. You use
explicit intents to start activities within
your application.

It may seem strange that two activities

within your application must
communicate via the
ActivityManager, which is outside
of your application. However, this
pattern makes it easy for an activity in
one application to work with an activity
in another application.

When an activity in your application
wants to start an activity in another
application, you create an implicit
intent. You will use implicit intents in

Chapter 15.

Passing Data
Between Activities

Now that you have a QuizActivity
and a CheatActivity, you can think
about passing data between them.
Figure 5.9 shows what data you will
pass between the two activities.

Figure 5.9 The conversation
between QuizActivity and
CheatActivity

whether the answer is "True"

QuizActivity | | CheatActivity |

whether the user cheated

The QuizActivity will inform the
CheatActivity of the answer to the
current question when the
CheatActivity is started.

When the user presses the Back button to
return to the QuizActivity, the
CheatActivity will be destroyed.

In its last gasp, it will send data to the
QuizActivity about whether the
user cheated.

You will start with passing data from
QuizActivity to
CheatActivity.

Using intent extras

To inform the CheatActivity of the
answer to the current question, you will
pass it the value of

mQuestionBank [mCurrentIndex] .isAnswerTrue ()

You will send this value as an extra on
the Intent that is passed into
startActivity (Intent).

Extras are arbitrary data that the calling
activity can include with an intent. You
can think of them like constructor
arguments, even though you cannot use a
custom constructor with an activity
subclass. (Android creates activity
instances and is responsible for their
lifecycle.) The OS forwards the intent to
the recipient activity, which can then
access the extras and retrieve the data,
as shown in Figure 5.10.

Figure 5.10 Intent extras:
communicating with other
activities

GeoQuiz } Android OS

ActivityManager
| 1
i
]

Intent

component=CheatActivity |
extra=EXTRA_ANSWER_IS_TRUE [~ '

|
™ startActivity(Intent)
1 -

I
(intent) :
ey] 41 |
' ' | i
An extra is structured as a key-value
pair, like the one you used to save out
the value of mCurrentIndex in

QuizActivity.onSaveInstance

To add an extra to an intent, you use
Intent.putExtra(..).In
particular, you will be calling:

public Intent putExtra(String name, boolean
value)

Intent.putExtra(..) comes in
many flavors, but it always has two
arguments. The first argument is always
a String key, and the second argument
is the value, whose type will vary. It
returns the Intent itself, so you can
chain multiple calls if you need to.

InCheatActivity.java, add a key
for the extra.

Listing 5.8 Adding an extra
constant
(CheatActivity. java)

public class CheatActivity extends AppCompatActivity
{

private static final String EXTRA ANSWER IS_TRUE

"com.bignerdranch.android.geoquiz.answer_is_true";

An activity may be started from several
different places, so you should define
keys for extras on the activities that
retrieve and use them. Using your
package name as a qualifier for your
extra, as shown in Listing 5.8, prevents
name collisions with extras from other

apps.

Now you could return to
QuizActivity and put the extra on
the intent, but there is a better approach.
There is no reason for
QuizActivity, or any other code in
your app, to know the implementation
details of what CheatActivity
expects as extras on its Intent.

Instead, you can encapsulate that work
into a newIntent (..) method.

Create this method in
CheatActivity now.

Listing 5.9 A newlIntent(..)
method for CheatActivity
(CheatActivity. java)

public class CheatActivity extends AppCompatActivity
{

private static final String EXTRA ANSWER IS _TRUE

"com.bignerdranch.android.geoquiz.answer is true";

public static Intent newlIntent (Context
packageContext, boolean answerIsTrue) ({
Intent intent = new Intent (packageContext,
CheatActivity.class);
intent.putExtra (EXTRA ANSWER IS TRUE,
answerIsTrue) ;
return intent;

}

This static method allows you to create
an Intent properly configured with
the extras CheatActivity will need.
The answerIsTrue argument, a
boolean, 1s put into the intent with a
private name using the

EXTRA ANSWER IS TRUE constant. You
will extract this value momentarily.
Using a newIntent (..) method like
this for your activity subclasses will
make it easy for other code to properly
configure their launching intents.

Speaking of other code, use this new
method in QuizActivity’s cheat
button listener now.

Listing 5.10 Launching
CheatActivity with an extra

(QuizActivity.java)

mCheatButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick(View v) {
// Start CheatActivity
£ . _ T owizhctivity—tiiss-
€heatActivity—~class)
boolean answerIsTrue =
mQuestionBank [mCurrentIndex] .isAnswerTrue () ;
Intent intent =
CheatActivity.newIntent (QuizActivity. this,
answerIsTrue) ;
startActivity (intent);
}
}) i

You only need one extra, but you can put
multiple extras on an Intent if you
need to. If you do, add more arguments
to your newIntent (..) method to stay
consistent with the pattern.

To retrieve the value from the extra, you
will use:

public boolean getBooleanExtra (String name,

boolean defaultValue)

The first argument is the name of the
extra. The second argument of
getBooleanExtra (..) is a default
answer 1f the key is not found.

In CheatActivity, retrieve the
value from the extra in

onCreate (Bundle) and store itina
member variable.

Listing 5.11 Using an extra
(CheatActivity. java)

public class CheatActivity extends AppCompatActivity
{

private static final String EXTRA ANSWER IS TRUE

"com.bignerdranch.android.geoquiz.answer_is_ true";
private boolean mAnswerIsTrue;

@Override

protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity cheat);

mAnswerIsTrue =

getIntent () .getBooleanExtra (EXTRA_ANSWER IS_TRUE,
false) ;

}
-
Note that Activity.getIntent ()
always returns the Intent that started
the activity. This is what you sent when

calling startActivity (Intent).

Finally, wire up the answer TextView
and the SHOW ANSWER button to use the
retrieved value.

Listing 5.12 Enabling cheating
(CheatActivity.java)

public class CheatActivity extends AppCompatActivity
{

private boolean mAnswerIsTrue;

private TextView mAnswerTextView;

private Button mShowAnswerButton;

@Override

protected void onCreate (Bundle
savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity cheat);

mAnswerIsTrue =
getIntent () .getBooleanExtra (EXTRA ANSWER IS TRUE,
false);

mAnswerTextView = (TextView)
findViewById (R.id.answer_text view);

mShowAnswerButton = (Button)
findViewById (R.id.show_answer_button) ;
mShowAnswerButton.setOnClickListener (new
View.OnClickListener () {
@QOverride
public void onClick (View v) {
if (mAnswerIsTrue) {

mAnswerTextView.setText (R.string. true_button) ;
} else {

mAnswerTextView.setText (R.string.false_button);
}

})

}

This code is pretty straightforward. You
set the TextView’s text using
TextView.setText (int).
TextView.setText (..) has many
variations, and here you use the one that
accepts the resource ID of a string
resource.

Run GeoQuiz. Press CHEAT! to get to
CheatActivity. Then press SHOW
ANSWER to reveal the answer to the
current question.

Getting a result back
from a child activity

At this point, the user can cheat with

impunity. Let’s fix that by having the
CheatActivity tell the
QuizActivity whether the user
chose to view the answer.

When you want to hear back from the
child activity, you call the following
Activity method:

public void startActivityForResult (Intent intent,
int requestCode)

The first parameter is the same intent as
before. The second parameter is the
request code. The request code is a
user-defined integer that is sent to the
child activity and then received back by
the parent. It is used when an activity
starts more than one type of child
activity and needs to know who is
reporting back. QuizActivity will

only ever start one type of child activity,
but using a constant for the request code
is a best practice that will set you up
well for future changes.

In QuizActivity, modify
mCheatButton’s listener to call
startActivityForResult (Inte
int).

Listing 5.13 Calling
startActivityForResult(...)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
private static final String TAG = "QuizActivity";
private static final String KEY INDEX = "index";
private static final int REQUEST CODE_CHEAT = 0;
éé;erride
protected void onCreate (Bundle

savedInstanceState) {

mCheatButton.setOnClickListener (new

View.OnClickListener () {
@Override
public void onClick(View v) {
// Start CheatActivity
boolean answerIsTrue =
mQuestionBank [mCurrentIndex] .isAnswerTrue () ;
Intent intent =
CheatActivity.newIntent (QuizActivity.this,

answerIsTrue) ;
Staz dICtI' iI— ti (I- IItEIIt’ ’
startActivityForResult(intent,
REQUEST CODE_CHEAT) ;
}
}) i

Setting a result

There are two methods you can call in
the child activity to send data back to the
parent:

public final void setResult (int resultCode)
public final void setResult(int resultCode,
Intent data)

Typically, the result code is one of two

predefined constants:
Activity.RESULT OK OF
Activity.RESULT CANCELED. (You can
use another constant,

RESULT FIRST USER, as an offset when
defining your own result codes.)

Setting result codes 1s useful when the
parent needs to take different action
depending on how the child activity
finished.

For example, if a child activity had an
OK button and a Cancel button, the child
activity would set a different result code
depending on which button was pressed.
Then the parent activity would take a
different action depending on the result
code.

Calling setResult(..) is not
required of the child activity. If you do
not need to distinguish between results
or receive arbitrary data on an intent,
then you can let the OS send a default
result code. A result code is always
returned to the parent if the child activity
was started with
startActivityForResult(..).If
setResult(...) is not called, then
when the user presses the Back button,
the parent will receive
Activity.RESULT CANCELED.

Sending back an intent

In this implementation, you are
interested in passing some specific data

back to QuizActivity. So youare
going to create an Intent, put an extra
on it, and then call
Activity.setResult (int,
Intent) to get that data into
QuizActivity’s hands.

In CheatActivity, add a constant
for the extra’s key and a private method
that does this work. Then call this
method in the SHOW ANSWER button’s
listener.

Listing 5.14 Setting a result
(CheatActivity.java)

public class CheatActivity extends AppCompatActivity
{

private static final String EXTRA ANSWER IS TRUE

"com.bignerdranch.android.geoquiz.answer_is_true";

private static final String EXTRA ANSWER_ SHOWN =
"com.bignerdranch.android.geoquiz.answer_ shown";

@Override
protected void onCreate (Bundle
savedInstanceState) {

mShowAnswerButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v) {
if (mAnswerIsTrue) {

mAnswerTextView.setText (R.string.true button);
} else {

mAnswerTextView.setText (R.string.false button);
}

setAnswerShownResult (true) ;

private void setAnswerShownResult (boolean
isAnswerShown) {
Intent data = new Intent();
data.putExtra (EXTRA_ANSWER SHOWN,
isAnswerShown) ;
setResult (RESULT OK, data);

}

When the user presses the SHOW ANSWER

button, the CheatActivity packages
up the result code and the intent in the
call to setResult (int,

Intent).

Then, when the user presses the Back
button to return to the QuizActivity,
the ActivityManager calls the
following method on the parent activity:

protected void onActivityResult (int requestCode,
int resultCode, Intent data)

The parameters are the original request
code from QuizActivity and the
result code and intent passed into
setResult (int, Intent).

Figure 5.11 shows this sequence of
interactions.

Figure 5.11 Sequence diagram
for GeoQuiz

GeoQuiz Android OS

QuizActivity [ActivityManager
User presses Cheat! button, | i
onClick(View) called
— startActivityForf 1t, int) —
i

Intent

|
component=CheatActivity ——
extra=EXTRA_ANSWER_IS_TRUE !

requelecde:O/
d
]
'
'
;
|
i

‘/L {ntent
CheatActivity

User presses Show Answer l
setResult(int) is called
|

i
aarprosses Back resultCode=RESULT_OK

H
H

H

button H
I :
extra=EXTRA_ANSWER_SHOWN \

(requestCode, resultCode, Intent)

I
I
I
i

onActivityResult(int, int, Intent)/

The final step 1s to override
onActivityResult (int, int,
Intent) inQuizActivity to
handle the result. However, because the

contents of the result Intent are also
an implementation detail of
CheatActivity, add another method
to help decode the extra into something
QuizActivity canuse.

Listing 5.15 Decoding the
result intent
(CheatActivity.java)

public static Intent newIntent (Context
packageContext, boolean answerIsTrue) {

Intent intent = new Intent (packageContext,
CheatActivity.class);

intent.putExtra (EXTRA_ANSWER IS TRUE,
answerIsTrue) ;

return intent;

}

public static boolean wasAnswerShown (Intent result) {
return result.getBooleanExtra (EXTRA_ANSWER SHOWN,

false) ;

}

@Override
protected void onCreate (Bundle savedInstanceState) {

Handling a result

InQuizActivity.java, add a new
member variable to hold the value that
CheatActivity is passing back.
Then override
onActivityResult(..) to retrieve
it, checking the request code and result
code to be sure they are what you
expect. This, again, is a best practice to
make future maintenance easier.

Listing 5.16 Implementing
onActivityResult(...)

(QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

private int mCurrentIndex = 0;

private boolean mIsCheater;

@Override

protected void onCreate (Bundle
savedInstanceState) {

}

@QOverride
protected void onActivityResult(int requestCode,
int resultCode, Intent data) {
if (resultCode !'= Activity.RESULT OK) {
return;

}

if (requestCode == REQUEST CODE_CHEAT) {
if (data == null) {
return;

}

mIsCheater =
CheatActivity.wasAnswerShown (data) ;
}

}
.
Finally, modify the
checkAnswer (boolean) method in
QuizActivity to check whether the

user cheated and to respond

appropriately.

Listing 5.17 Changing toast
message based on value of
mIsCheater
(QuizActivity. java)

@Override
protected void onCreate (Bundle savedInstanceState) {

mNextButton =
(Button) findViewById (R.id.next button);
mNextButton.setOnClickListener (new
View.OnClickListener () {

@Override
public void onClick (View v) {
mCurrentIndex = (mCurrentIndex + 1) %

mQuestionBank.length;
mIsCheater = false;
updateQuestion();

}
private void checkAnswer (boolean userPressedTrue) {
boolean answerIsTrue =

mQuestionBank [mCurrentIndex] .isAnswerTrue () ;

int messageResId = 0;

if (mIsCheater) {
messageResId = R.string.judgment toast;

} else {
if (userPressedTrue == answerIsTrue) {
messageResId = R.string.correct toast;
} else {

messageResId = R.string.incorrect toast;

}

Toast.makeText (this, messageResId,
Toast.LENGTH_SHORT)
.show () ;
}

Run GeoQuiz. Cheat and see what
happens.

How Android Sees
Your Activities

Let’s look at what is going on OS-wise
as you move between activities. First,
when you click on the GeoQuiz app in
the launcher, the OS does not start the
application; it starts an activity in the
application. More specifically, it starts
the application’s launcher activity. For
GeoQuiz, QuizActivity is the
launcher activity.

When the New Project wizard created

the GeoQuiz application and
QuizActivity, it made

QuizActivity the launcher activity
by default. Launcher activity status is
specified in the manifest by the intent-
filter element in QuizActivity’s
declaration (Listing 5.18).

Listing 5.18 QuizActivity
declared as launcher activity
(AndroidManifest.xml)

<manifest
xmlns:android="http://schemas.android.com/apk/res/andr

. >

<application
.>

<activity android:name=".QuizActivity">
<intent-filter>
<action
android:name="android.intent.action.MAIN"/>
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<activity android:name=".CheatActivity">
</activity>
</application>

</manifest>

After the instance of QuizActivity
is on screen, the user can press the
CHEAT! button. When this happens, an
instance of CheatActivity is started
—on top of the QuizActivity. These
activities exist in a stack (Figure 5.12).

Pressing the Back button in
CheatActivity pops this instance
off the stack, and the QuizActivity
resumes its position at the top, as shown

in Figure 5.12.

Figure 5.12 GeoQuiz’s back
stack

Acall to Activity.finish() in
CheatActivity would also pop the
CheatActivity off the stack.

If you run GeoQuiz and press Back from
the QuizActivity, the
QuizActivity will be popped off
the stack and you will return to the last

screen you were viewing before running
GeoQuiz (Figure 5.13).

Figure 5.13 Looking at the
home screen

If you started GeoQuiz from the launcher
application, pressing the Back button
from QuizActivity will return you
to the launcher (Figure 5.14).

Figure 5.14 Running GeoQuiz
from launcher

Pressing the Back button from the
launcher will return you to the screen
you were looking at before you opened
the launcher.

What you are seeing here is that the
ActivityManager maintains a back
stack and that this back stack is not just

for your application’s activities.
Activities for all applications share the
back stack, which is one reason the
ActivityManager is involved in
starting your activities and lives with the
OS and not your application. The stack
represents the use of the OS and device
as a whole rather than the use of a single
application.

(Wondering about the Up button? We
will discuss how to implement and
configure this button in Chapter 13.)

Challenge: Closing
Loopholes for
Cheaters

Cheaters never win. Unless, of course,
they persistently circumvent your
anticheating measures. Which they
probably will. Because they are
cheaters.

GeoQuiz has a few major loopholes. For
this challenge, you will busy yourself
with closing them. Here are the
loopholes in order, from easiest to
hardest to close:

e Users can rotate
CheatActivity after they
cheat to clear out the cheating
result.

e Once they get back from
CheatActivity, users can
rotate QuizActivity to
clear out mIsCheater.

e Users can press NEXT until the
question they cheated on comes
back around.

Good luck!

6

Android SDK

Versions and
Compatibility

Now that you have gotten your feet wet
with GeoQuiz, let’s review some
background material about the different
versions of Android. The information in
this chapter is important to have under
your belt as you continue with the book
and develop more complex and realistic

apps.

Android SDK
Versions

Table 6.1 shows the SDK versions, the
associated versions of the Android
firmware, and the percentage of devices
running them as of December 2016.

Table 6.1 Android API levels,
firmware versions, and percent
of devices in use

Device % of
Codename |firmware ||devices
version || in use

API
leve

24| Nougat | 70 | 04
|

23 ||Marshma110w|| 6.0 || 26.3
22 | e || 23.2
21 | Lollipop [50 | 108
19 Kitkat | 44 || 24.0
[18 | 43 | 19
El Jelly Bean 4.2 | 6.4
[16 | | 41 || 4.5
Ice C
q Sl RTES R
(ICS)
Gingerbread 2'3'7_ | 1.2
8 | Froyo [22 | o1

(Note that versions of Android with less
than 0.1% distribution are omitted from

this table.)

Each “codenamed” release is followed
by incremental releases. For instance,
Ice Cream Sandwich was initially
released as Android 4.0 (API level 14).
It was almost immediately replaced with
incremental releases culminating in
Android 4.0.3 and 4.0.4 (API level 15).

The percentage of devices using each
version changes constantly, of course,
but the figures do reveal an important
trend: Android devices running older
versions are not immediately upgraded
or replaced when a newer version is
available. As of December 2016, more
than 15% of devices are still running
Jelly Bean or an earlier version.
Android 4.3 (the last Jelly Bean update)

was released in October 2013.

(If you are curious, the data in Table 6.1
is kept current at
developer.android.com/
about/dashboards/
index.html.)

Why do so many devices still run older
versions of Android? Most of it has to
do with heavy competition among
Android device manufacturers and US
carriers. Carriers want features and
phones that no other network has.
Device manufacturers feel this pressure,
too — all of their phones are based on the
same OS, but they want to stand out from
the competition. The combination of
pressures from the market and the
carriers means that there 1s a

bewildering array of devices with
proprietary, one-off modifications of
Android.

A device with a proprietary version of
Android is not able to run a new version
of Android released by Google. Instead,
it must wait for a compatible proprietary
upgrade. That upgrade might not be
available until months after Google
releases its version, if it 1s ever
available at all. Manufacturers often
choose to spend resources on newer
devices rather than keeping older ones
up to date.

Compatibility and
Android
Programming

The delay in upgrades combined with
regular new releases makes
compatibility an important issue in
Android programming. To reach a broad
market, Android developers must create
apps that perform well on devices
running KitKat, Lollipop, Marshmallow,
Nougat, and any more recent versions of
Android, as well as on different device
form factors.

Targeting different sizes of devices is
easier than you might think. Phone
screens are a variety of sizes, but the
Android layout system does a good job
at adapting. Tablets require more work,
but you can use configuration qualifiers
to do the job (as you will see in
Chapter 17). However, for Android TV
and Android Wear devices (both of
which also run Android), the differences
in Ul are large enough that you need to
rethink the user interaction patterns and
design of your app.

A sane minimum

The oldest version of Android that the

exercises in this book support is API
level 19 (KitKat). There are references
to legacy versions of Android, but the
focus is on what we consider to be
modern versions (API level 19+). With
the distribution of Gingerbread, Ice
Cream Sandwich, and Jelly Bean
dropping month by month, the amount of
work required to support those older
versions eclipses the value they can
provide.

Incremental releases cause little
problem with backward compatibility.
Major versions can be a different story.
The work required to support only 5.x
devices is not terribly significant. If you
also need to support 4.x devices, you
will have to spend time working through

the differences in those versions.
Luckily, Google has provided libraries
to ease the pain. You will learn about
these libraries in later chapters.

One of the biggest changes for Android
developers came with the release of
Honeycomb, Android 3.0. This release
was a major shift in the platform that
introduced a new Ul and new
architectural components. Honeycomb
was released only for tablets, so it was
not until Ice Cream Sandwich that these
new developments were widely
available. Since then, new releases have
been more incremental for developers.

Android has provided help for
maintaining backward compatibility.
There are also third-party libraries that

can help. But maintaining compatibility
does complicate learning Android
programming.

When you created the GeoQuiz project,
you set a minimum SDK version within
the New Project wizard, as shown in
Figure 6.1. (Note that Android uses the
terms “SDK version” and “API level”
interchangeably.)

Figure 6.1 Remember me?

[] [] Create New Project

N Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SDKs

Phone and Tablet
Minimum SDK API 19: Android 4.4 (KitKat) <)
Lower API levels target more devices, but have fewer features available.

By targeting API 19 and later, your app will run on approximately 73.9% of the devices
that are active on the Google Play Store.

Help me choose
Wear

Minimum SDK APl 21: Android 5.0 (Lollipop) 1<}
v
Minimum SDK API 21: Android 5.0 (Lollipop) |-}

Android Auto
Cancel Previous | (NCTCIN Finish

In addition to the minimum supported
version, you can also set the target
version and the build version. Let’s
explain the default choices and see how
to change them.

All of these properties are set in the
build.gradle file in your app
module. The build version lives
exclusively in this file. The minimum
SDK version and target SDK version are
setinthe build.gradle file, but are
used to overwrite or set values in your
AndroidManifest.xml.

Open the build.gradle file that
exists in your app module. Notice the
values for compileSdkvVersion,
minSdeersion,and
targetSdkVersion.

Listing 6.1 Examining the build
configuration
(app/build.gradle)

compileSdkVersion 25
buildToolsVersion "25.0.0"

defaultConfig {
applicationId "com.bignerdranch.android.geoquiz"
minSdkVersion 19
targetSdkVersion 25

Minimum SDK version

The minsdkversion value 1s a hard
floor below which the OS should refuse
to install the app.

By setting this version to API level 19
(KitKat), you give Android permission
to install GeoQuiz on devices running
KitKat or higher. Android will refuse to
install GeoQuiz on a device running, say,
Jelly Bean.

Looking again at Table 6.1, you can see

why API level 19 is a good choice for a
minimum SDK version: It allows your
app to be installed on more than 80% of
devices in use.

Target SDK version

The targetsdkversion value tells
Android which API level your app is
designed to run on. Most often this will
be the latest Android release.

When would you lower the target SDK?
New SDK releases can change how your
app appears on a device or even how the
OS behaves behind the scenes. If you
have already designed an app, you
should confirm that it works as expected

on new releases. Check the
documentation at
developer.android.com/
reference/android/os/
Build.VERSION CODES.html to
see where problems might arise. Then
you can modify your app to work with
the new behavior or lower the target
SDK.

Not increasing the target SDK when a
new version of Android is released
ensures that your app will still run with
the appearance and behavior of the
targeted version on which it worked
well. This option exists for
compatibility with newer versions of
Android, as changes in subsequent
releases are ignored until the

targetSdkVersion 1S increased.

Compile SDK version

The last SDK setting is labeled
compieSdkVersion in Listing 6.1. This
setting is not used to update the
AndroidManifest.xml file.
Whereas the minimum and target SDK
versions are placed in the manifest when
you build your app to advertise those
values to the OS, the compile SDK
version is private information between
you and the compiler.

Android’s features are exposed through
the classes and methods in the SDK. The

compile SDK version, or build target,

specifies which version to use when
building your own code. When Android
Studio is looking to find the classes and
methods you refer to in your imports, the
build target determines which SDK
version it checks against.

The best choice for a build target is the
latest API level (currently 25, Nougat).
However, you can change the build
target of an existing application if you
need to. For instance, you might want to
update the build target when a new
version of Android is released so that
you can make use of the new methods
and classes it introduces.

You can modify the minimum SDK
version, target SDK version, and
compile SDK version in your

build.gradle file, but note that
modification of this file requires that you
sync your project with the Gradle
changes before they will be reflected. To
do this, select Tools — Android — Sync
Project with Gradle Files. This will trigger a
fresh build of your project with the
updated values.

Adding code from later
APIs safely

The difference between GeoQuiz’s
minimum SDK version and build SDK
version leaves you with a compatibility
gap to manage. For example, what
happens if you call code from an SDK

version that is later than the minimum
SDK of KitKat (API level 19)? When
your app is installed and run on a KitKat
device, it will crash.

This used to be a testing nightmare.
However, thanks to improvements in
Android Lint, potential problems caused
by calling newer code on older devices
can be caught at compile time. If you use
code from a higher version than your
minimum SDK, Android Lint will report
build errors.

Right now, all of GeoQuiz’s simple code
was introduced in API level 19 or
earlier. Let’s add some code from API
level 21 (Lollipop) and see what
happens.

Open CheatActivity. java. Inthe
OnClickListener for the SHOW
ANSWER button, add the following code to
present a fancy circular animation while
hiding the button.

Listing 6.2 Adding activity
animation code
(CheatActivity.java)

mShowAnswerButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v) {
if (mAnswerIsTrue) {

mAnswerTextView.setText (R.string.true_button);
} else {

mAnswerTextView.setText (R.string.false button);

}

setAnswerShownResult (true) ;

int cx = mShowAnswerButton.getWidth() / 2;
int cy = mShowAnswerButton.getHeight() / 2;
float radius = mShowAnswerButton.getWidth() ;
Animator anim = ViewAnimationUtils

.createCircularReveal (mShowAnswerButton, cx, cy,
radius, 0);
anim.addListener (new

AnimatorListenerAdapter () {

@Override

public void onAnimationEnd (Animator
animation) {

super.onAnimationEnd (animation) ;

mShowAnswerButton.setVisibility (View.INVISIBLE) ;
}
I

anim.start();

});

The createCircularReveal (...)
method creates an Animator froma
few parameters. First, you specify the
View that will be hidden or shown
based on the animation. Next, you set a
center position for the animation as well
as the start radius and end radius of the
animation. You are hiding the SHOw
ANSWER button, so the radius moves from

the width of the button to 0.

Before the newly created animation is
started, you set a listener that allows you
to know when the animation is complete.
Once complete, you will show the
answer and hide the button.

Finally, the animation is started and the
circular reveal animation will begin.
(You will learn much more about
animation in Chapter 32.)

The ViewAnimationUtils class
and its
createCircularReveal (..)
method were both added to the Android
SDK in API level 21, so this code
would crash on a device running a lower
version than that.

After you enter the code in Listing 6.2,
Android Lint should immediately present
you with a warning that the code is not
safe on your minimum SDK version. If
you do not see a warning, you can
manually trigger Lint by selecting Analyze
— Inspect Code.... Because your build
SDK version is API level 21, the
compiler itself has no problem with this
code. Android Lint, on the other hand,
knows about your minimum SDK
version and will complain loudly.

The error messages read something like
Call requires API level 21 (Current min is 19).
You can still run the code with this
warning, but Lint knows it 1s not safe.

How do you get rid of these errors? One
option is to raise the minimum SDK

version to 21. However, raising the
minimum SDK version is not really
dealing with this compatibility problem
as much as ducking it. If your app cannot
be installed on API level 19 and older
devices, then you no longer have a
compatibility problem.

A better option is to wrap the higher API
code 1n a conditional statement that
checks the device’s version of Android.

Listing 6.3 Checking the
device’s build version first
(CheatActivity. java)
mShowAnswerButton.setOnClickListener (new
View.OnClickListener () {

@Override

public void onClick(View v) {

if (mAnswerIsTrue) {

mAnswerTextView.setText (R.string.true_button);

} else {

mAnswerTextView.setText (R.string.false button);
}

setAnswerShownResult (true);

if (Build.VERSION.SDK_INT >=

Build.VERSION_CODES.LOLLIPOP) {

int cx = mShowAnswerButton.getWidth() /
2;

int cy = mShowAnswerButton.getHeight () /
2;

float radius =
mShowAnswerButton.getWidth () ;

Animator anim = ViewAnimationUtils

.createCircularReveal (mShowAnswerButton, cx, cy,
radius, 0);
anim.addListener (new

AnimatorListenerAdapter () {

@Override

public void onAnimationEnd (Animator
animation) {

super.onAnimationEnd (animation) ;

mShowAnswerButton.setVisibility (View.INVISIBLE) ;
}
}):

anim.start();
} else {

mShowAnswerButton.setVisibility (View.INVISIBLE) ;
}

});

The Build.VERSION. SDK INT
constant 1s the device’s version of
Android. You then compare that version
with the constant that stands for the
Lollipop release. (Version codes are
listed at http: //
developer.android.com/
reference/android/os/
Build.VERSION CODES.html.)

Now your circular reveal code will only
be called when the app is running on a
device with API level 21 or higher. You
have made your code safe for API level
19, and Android Lint should now be
content.

Run GeoQuiz on a Lollipop or higher
device, cheat on a question, and check
out your new animation.

http://developer.android.com/reference/android/os/Build.VERSION_CODES.html

You can also run GeoQuiz on a KitKat
device (virtual or otherwise). It will not
have the circular animation, but you can
confirm that the app still runs safely.

Using the Android
Developer
Documentation

Android Lint errors will tell you what
API level your incompatible code is
from. But you can also find out which
API level particular classes and methods
belong to in Android’s developer
documentation.

It is a good idea to get comfortable using
the developer documentation right away:.
There is far too much in the Android
SDKs to keep in your head, and, with

new versions appearing regularly, you
will need to learn what is new and how
to use it.

The Android developer documentation
is an excellent and voluminous source of
information. The main page of the
documentation is
developer.android.com. Itis
split into three parts: Design, Develop, and
Distribute. It is all worth perusing when
you get a chance. The Design section of
the documentation includes patterns and
principles for the Ul design of your
apps. The Develop section contains
documentation and training. The Distribute
section shows you how to prepare and
publish your apps on Google Play or
through open distribution.

The Develop section is further divided
Into Six areas:

Training

API
Guides

Reference

Beginning and advanced
developer training modules,
including downloadable
sample code

Topic-based descriptions of
app components, features,
and best practices

Searchable, linked
documentation of every
class, method, interface,

attribute constant, etc. in the
SDK

Samples

Android
Studio

Android
NDK

Google
Services

Sample code demonstrating
some examples of how to
use the APIs

Information about the
Android Studio IDE

Descriptions and links
about the Native
Development Kit, which
allows you to write code in
C and C++

Information about Google’s
proprietary APIs, including
Google Maps and Google
Cloud Messaging

You do not have to be online to have
access to the documentation. In the SDK
Manager, download the documentation
for a particular Android version, then
navigate on your filesystem to where you
have downloaded the SDKs. There is a
docs directory that contains the
complete documentation.

To determine what API level
ViewAnimationUtils belongs to,
search for this class using the search bar
at the top right of the browser. You will
see results from a few different
categories. Make sure that you select a
result that is from the reference section
(there is a filter on the left).

Select the first result and you will be
sent to the ViewAnimationUtils

class reference page shown in

Figure 6.2. At the top of this page are

links to 1ts different sections.

Figure

6.2 ViewAnimationUtils

reference page

" Developers ~ Design

Training APIGuides Refere

Android APl APl level:21

android test

android test mock

android.test suitebuilder
android test suitebuilder.annotat

android.text method

android text util

android.view.accessibility
Andoid view animation

ScaleGestureDetector
ScaleGestureDetector.Simple0ns
SoundEffectConstants

Surface

Touct
VelocityTracker

View

View AccessibilityDelegate
View.BaseSavedState

View. DragShadowBuilder
View.MeasureSpec

Use Tree Navigation Fel

Develop Distribute.

ce Tools GoogleServices Samples

publicfina class

ViewAnimationUtils

extends Object

java fang Object
iandroid view ViewAnmationUtls

Class Overview

Defines common utilties for working with View's animations.

Summary

Public Methods:
static Animator

Returns an Animator which can animate a clipping circle

Methods | Inherited Methods | [Expand Al
‘Added in AP lavel 21

createCircularReveal (View view, int centerX, int centerY, float startRadius, float endRadius)

Inherited Methods

» From class javalang Object

Public Methods

public static Animator createCircularReveal (View view, int centerX, int centerY, float startRadius, float

Scroll down, find the
createCircularReveal (..)
method, and click on the method name to
see a description. To the right of the
method signature, you can see that
createCircularReveal (..) was
introduced in API level 21.

If you want to see which
ViewAnimationUtils methods are
available in, say, API level 19, you can
filter the reference by API level. On the
lefthand side of the page where the
classes are indexed by package, find
where it says API level: 21. Click the
adjacent control and select 19 from the
list. In most cases, everything that
Android has introduced after API level
19 will be grayed out. In this case,

ViewAnimationUtils was
introduced in API level 21, so you will
see a warning indicating that this entire
class is not available at all on API level
19.

The API level filter is much more useful
for a class that is available at the API
level that you are using. Search for the
reference page on the Activity class
in the documentation. Change the API
level filter back down to API level 19
and notice that many methods have been
added since that API, such as
onEnterAnimationComplete,
which is an addition to the SDK in
Lollipop that allows you to provide
interesting transitions between activities.

As you continue through this book, visit

the developer documentation often. You
will certainly need the documentation to
tackle the challenge exercises, but also
consider exploring it whenever you get
curious about particular classes,
methods, or other topics. Android is
constantly updating and improving the
documentation, so there is always
something new to learn.

Challenge:
Reporting the
Build Version

Add a TextView widget to the
GeoQuiz layout that reports to the user
what API level the device is running.
Figure 6.3 shows what the final result
should look like.

Figure 6.3 Finished challenge

¥ d A 7:00

GeoQuiz

SHOW AMSWER

APl Level 25

You cannot set this TextView’s text in
the layout because you will not know the
device’s build version until runtime.

Find the TextView method for setting
text in the TextView reference page in
Android’s documentation. You are
looking for a method that accepts a
single argument — a string (or a
CharSequence).

Use other XML attributes listed in the
TextView reference to adjust the size
or typeface of the text.

Challenge: Limited
Cheats

Allow the user to cheat a maximum of
three times. Keep track of the user’s
cheat occurrences and display the
number of remaining cheat tokens below
the cheat button. If no tokens remain,
disable the cheat button.

7

UI Fragments
and the
Fragment
Manager

In this chapter, you will start building an
application named Criminallntent.
CriminalIntent records the details of
“office crimes” — things like leaving
dirty dishes in the breakroom sink or

walking away from an empty shared
printer after documents have printed.

With Criminallntent, you can make a
record of a crime including a title, a
date, and a photo. You can also identify
a suspect from your contacts and lodge a
complaint via email, Twitter, Facebook,
or another app. After documenting and
reporting a crime, you can proceed with
your work free of resentment and ready
to focus on the business at hand.

Criminallntent is a complex app that will
take 13 chapters to complete. It will
have a list-detail interface: The main
screen will display a list of recorded
crimes, and users will be able to add
new crimes or select an existing crime to
view and edit its details (Figure 7.1).

Figure 7.1 Criminallntent, a

list-detail app

P4 l700

Criminallntent +

SHOW SUBTITLE

Scooter stolen while going to the restroom

Sun May 29 15:50:01 EDT 2016

Paper clip Ponzi scheme

Tue Jun 28

6:04 EOT 2016

Instagram photos at beach on sick day
Thu Sep 08 10:09:09 EDT 2016
Fragment fraud

Wed Nov 30 22:18:27 EST 2016

Popcorn left unattended, microwave on

fire O.Q

11 EST 2016

=

DETAILS

[Solved

Criminalintent

TITLE

Scooter stolen while going to the
restroom

SUN MAY 29 15:50:01 EDT 2016

CHOOSE SUSPECT

SEND CRIME REPORT

The Need for Ul

Flexibility

You might imagine that a list-detail
application consists of two activities:
one managing the list and the other
managing the detail view. Clicking a
crime in the list would start an instance
of the detail activity. Pressing the Back
button would destroy the detail activity
and return you to the list, where you
could select another crime.

That would work, but what if you
wanted more sophisticated presentation
and navigation between screens?

e Imagine that your user is
running Criminallntent on a
tablet. Tablets and some larger

phones have screens large
enough to show the list and
detail at the same time — at
least in landscape orientation

(Figure 7.2).

Figure 7.2 Ideal list-
detail interface for
phone and tablet

Phone Tablet

List Detail List Detail

Imagine the user is viewing a
crime on a phone and wants to
see the next crime in the list. It
would be better if the user

could swipe to see the next
crime without having to return
to the list. Each swipe should
update the detail view with
information for the next crime.

What these scenarios have in common is
UI flexibility: the ability to compose and
recompose an activity’s view at runtime

depending on what the user or the device
requires.

Activities were not built to provide this
flexibility. An activity’s views may
change at runtime, but the code to control
those views must live inside the activity.
As a result, activities are tightly coupled
to the particular screen being used.

Introducing
Fragments

You can get around the letter of the
Android law by moving the app’s Ul
management from the activity to one or
more fragments.

A fragment 1s a controller object that an
activity can deputize to perform tasks.
Most commonly, the task is managing a
UL The UI can be an entire screen or just
one part of the screen.

A fragment managing a Ul is known as a
Ul fragment. A Ul fragment has a view

of its own that is inflated from a layout
file. The fragment’s view contains the
interesting Ul elements that the user
wants to see and interact with.

The activity’s view contains a spot
where the fragment’s view will be
inserted. In fact, while in this chapter the
activity will host a single fragment, an
activity can have several spots for the
views of several fragments.

You can use the fragment(s) associated
with the activity to compose and
recompose the screen as your app and
users require. The activity’s view
technically stays the same throughout its
lifetime, and no laws of Android are
violated.

Let’s see how this would work in a list-
detail application to display the list and
detail together. You would compose the
activity’s view from a list fragment and
a detail fragment. The detail view would
show the details of the selected list item.

Selecting another item should display a
new detail view. This is easy with
fragments; the activity will replace the
detail fragment with another detail
fragment (Figure 7.3). No activities need
to die for this major view change to
happen.

Figure 7.3 Detail fragmentis
swapped out

i
user presses a different list item...]
p Viewol i View of : B |1 VBRSO of ne
i fragm] detail fragment ! ' fragmi L detail fragment
.. gets a new detail fragment |1
i
Activity's view Activity's view

Using Ul fragments separates the Ul of
your app into building blocks, which is
useful for more than just list-detail
applications. Working with individual
blocks, it is easy to build tab interfaces,
tack on animated sidebars, and more.

Achieving this UI flexibility comes at a
cost: more complexity, more moving
parts, and more code. You will reap the
benefits of using fragments in Chapter 11

and Chapter 17. The complexity,
however, starts now.

Starting
Criminallntent

In this chapter, you are going to start on
the detail part of Criminallntent.

Figure 7.4 shows you what
CriminalIntent will look like at the end
of this chapter.

Figure 7.4 Criminallntent at
the end of this chapter

¥ d A 7:00

Criminalintent

TITLE

Enter a title for the crime.

DETAILS

7] selved

The screen shown in Figure 7.4 will be
managed by a Ul fragment named
CrimeFragment. An instance of

CrimeFragment will be /osted by an
activity named CrimeActivity.

For now, think of hosting as the activity
providing a spot in its view hierarchy
where the fragment can place its view
(Figure 7.5). A fragment is incapable of
getting a view on screen itself. Only
when it is placed in an activity’s
hierarchy will its view appear.

Figure 7.5 CrimeActivity
hosting a CrimeFragment

I
1

CrimeActivity i

1

1

y

CrimeFr

¥
|
1
! <:| activity_crime.xm|
i
1

y

mCrime

onCheckedChanged()

Y

y

CriminalIntent will be a large project,
and one way to keep your head wrapped
around a project is with an object
diagram. Figure 7.6 gives you the big
picture of Criminallntent. You do not

I

! |
A
]

t - : <:I fragment_crime.xml
onTextChanged() : 1
: |
! I

have to memorize these objects and their
relationships, but it is good to have an
idea of where you are heading before
you start.

You can see that CrimeFragment
will do the sort of work that your
activities did in GeoQuiz: create and
manage the Ul and interact with the
model objects.

Figure 7.6 Object diagram for
CriminalIntent (for this
chapter)

Model

Controller

mDateButton

View (Iayout) checkedChangedListener

FrameLayout
(fragmentContainer)

Figure 7.6

itToxt
)

(erims

Three of the classes shown in
are classes that you will write: Crime,
CrimeFragment, and
CrimeActivity.

An instance of Crime will represent a
single office crime. In this chapter, a

crime will have a title, an ID, a date, and
a boolean that indicates whether the
crime has been solved. The title is a
descriptive name, like “Toxic sink
dump” or “Someone stole my yogurt!”
The ID will uniquely identify an instance
of Crime.

For this chapter, you will keep things
very simple and use a single instance of
Crime. CrimeFragment will have a
member variable (mCrime) to hold this
isolated incident.

CrimeActivity’s view will consist
of a FrameLayout that defines the
spot where the CrimeFragment’s
view will appear.

CrimeFragment’s view will consist

ofa LinearLayout with a few child
views inside of it, including an
EditText,aButton,and a
CheckBox. CrimeFragment will
have member variables for each of these
views and will set listeners on them to
update the model layer when there are
changes.

Creating a new project

Enough talk; time to build a new app.
Create a new Android application (Fie
— New Project...). Name the application
CriminalIntent and make sure the
company domain is
android.bignerdranch.com, as shown

n Figure 7.7.

Figure 7.7 Creating the
Criminallntent application

e o Create New Project

H, New Project

Android Studio

Configure your new project

Application name: Criminalintent
‘Company Domain: android.bignerdranch.com
Package name com.bignerdranch android.criminalintent

Include C++ Support

Project location: Users jects/Cl

Click Next and specify a minimum SDK
of API 19: Android 4.4. Also ensure that

only the Phone and Tablet application type
is checked.

Click Next again to select the type of
activity to add. Choose Empty Activity and
continue along in the wizard.

In the final step of the New Project
wizard, name the activity
CrimeActivity and click Finish

(Figure 7.8).

Figure 7.8 Creating
CrimeActivity

Create New Project

R} Customize the Activity

Creates a new empty activity

Activity Name: CrimeActivity
[Generate Layout File
Layout Name: activity_crime

Backwards Compatibility (AppCompat)

Empty Activity

Cancel Previous. Next | Finish |

Two types of fragments

Fragments were introduced in API level
11 along with the first Android tablets
and the sudden need for Ul flexibility.
You must choose which implementation
of fragments that you want use: native
fragments or support fragments.

The native implementation of fragments
is built into the device that the user runs
your app on. If you support many
different versions of Android, each of
those Android versions could have a
slightly different implementation of
fragments (for example, a bug could be
fixed in one version and not the versions
prior to it). The support implementation
of fragments 1s built into a library that
you include in your application. This
means that each device you run your app

on will depend on the same
implementation of fragments no matter
the Android version.

In CriminalIntent, you will use the
support implementation of fragments.
Detailed reasoning for this decision is
laid out at the end of the chapter in the
section called For the More Curious:
Why Support Fragments Are Superior.

Adding dependencies in
Android Studio

You will use the implementation of
fragments that comes with the
AppCompat library. The AppCompat
library is one of Google’s many

compatibility libraries that you will use
throughout this book. You will learn
much more about the AppCompat library

in Chapter 13.

To use the AppCompat library, it must be
included in your list of dependencies.
Your project comes with two
build.gradle files, one for the
project as a whole and one for your app
module. Open the build.gradle file
located in your app module.

Listing 7.1 Gradle
dependencies
(app/build.gradle)

apply plugin: 'com.android.application'
android {

}

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])

compile 'com.android.support:appcompat-v7:25.0.1"'

}

In the current dependencies section of
your build.gradle file, you should
see something similar to Listing 7.1 that
specifies that the project depends on all
ofthe . jar files inits 1ibs directory.
You will also see dependencies for other
libraries that are automatically included
when projects are created with Android
Studio, most likely including the
AppCompat library.

Gradle allows for the specification of
dependencies that you have not copied
into your project. When your app is

compiled, Gradle will find, download,

and include the dependencies for you.
All you have to do is specify an exact
string incantation and Gradle will do the
rest.

If you do not have the AppCompat
library listed in your dependencies,
Android Studio has a tool to help you
add the library and come up with this
string incantation. Navigate to the
project structure for your project (Fie —
Project Structure...).

Select the app module on the left and the
Dependencies tab in the app module. The
dependencies for the app module are
listed here (Figure 7.9).

Figure 7.9 App dependencies

[] L Project Structure
+ - Properties Signing Flavors Build Types | iDependencies.)
SDK Location =
Project
D’ B include=[*jar], dir=libs} Compile
Ag;’“ OPErSENVi- 1 androidTestCompileCcom.android. support.test.espressoespresso-core:2.2.2", {
Pr— m com.android t.constraint:constraint-layout:1.0.0-beta4 Compile
Notifications m junit;junit:4.12 Testcompile ~
Modules
=

Cancel |

(You may have additional dependencies

specified. If you do, do not remove
them.)

You should see the AppCompat
dependency listed. If you do not, add it
with the + button and choose Library

dependency. Choose the appcompat-v7
library from the list and click OK
(Figure 7.10).

Figure 7.10 A collection of
dependencies

L] [] Choose Library Dependency

com.android.support:appcompat-v7:25.0.1

Enter terms for Maven Central search, or fully-qualified coordinates (e.g. com.google.code.gson:gsan:2.2.4)
lcom.android.support:appcompat-v7 (com.android.support:appcompat-v7:25.0.1)

com.hanhuy.android:scala-conversions-appcompat_2.11 (com. hanhuy.android:scala-conversions-appcompat_2...

com.hanhuy. andro‘d‘scala—:onversions—appcampat 2.10 (com. hanhuy,

- CONVErsions- L 2
com.squaret tj:assertj-android-appcompat- v7 (com. sertj: assem andm\d appmmpat -v7:1.1.1)
ccmjakewhan’on rxblndmg rxbmdmg appcompat-v7-kotlin (com.jak ompat-...
com,| -v7 (com.jakewh. v7l.00)

i ing-
com. pkware cmlh andrmdlmlh andmnd appcempal v?(mm pkware lmlh andrmdtmrh andrmd appcompat-..

Cancel Ol

Navigate back to the editor window
showing app/build.gradle, and
you should now see AppCompat
included, as shown in Listing 7.1.

(If you modify this file manually, outside
of the project structure window, you will

need to sync your project with the
Gradle file to reflect any updates that
you have made. This sync asks Gradle to
update the build based on your changes
by either downloading or removing
dependencies. Changes within the
project structure window will trigger
this sync automatically. To manually
perform this sync, navigate to Tools —
Android — Sync Project with Gradke Fies.)

The dependency string compile
'com.android.support:appcompat-
v7:25.0.0" uses the Maven coordinates

format groupId:artifactId:version.
(Maven is a dependency management
tool. You can learn more about it at
maven.apache.org/.)

The group1d is the unique identifier for

a set of libraries available on the Maven
repository. Often the library’s base
package name is used as the group1d,
which iS com.android. support for the
AppCompat library.

The artifactid is the name of a
specific library within the package. In
this case, the name of the library you are
referring to 1s appcompat-v7.

Last but not least, the version
represents the revision number of the
library. CriminalIntent depends on the
25.0.0 version of the appcompat-v7
library. Version 25.0.0 is the latest
version as of this writing, but any
version newer than that should also
work for this project. In fact, it is a good
idea to use the latest version of the

support library so that you can use
newer APIs and receive the latest bug
fixes. If Android Studio added a newer
version of the library for you, do not roll
it back to the version shown above.

Now that the AppCompat library is a
dependency in the project, make sure
that your project uses it. In the project
tool window, find and open
CrimeActivity.java. Verify that
CrimeActivity’s superclass is
AppCompatActivity.

Listing 7.2 Tweaking template
code (CrimeActivity. java)

public class CrimeActivity extends AppCompatActivity
{

@Override
protected void onCreate (Bundle

savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity crime);

}

}

Before proceeding with
CrimeActivity, let’s create the
model layer for Criminallntent by
writing the Crime class.

Creating the Crime class

In the project tool window, right-click
the
com.bignerdranch.android.criminalintent
package and select New — Java Class.
Name the class Crime and click OK.

InCrime. java, add fields to

represent the crime’s ID, title, date, and
status and a constructor that initializes
the ID and date fields (Listing 7.3).

Listing 7.3 Adding to Crime
class (Crime. java)

public class Crime {

private UUID mId;
private String mTitle;
private Date mDate;
private boolean mSolved;

public Crime() {
mId = UUID.randomUUID() ;
mDate = new Date();

}
}

UUID is a Java utility class included in
the Android framework. It provides an
easy way to generate universally unique
ID values. In the constructor you
generate a random unique ID by calling

UUID.randomUUID ().

Android Studio may find two classes
with the name Date. Use the
OptiontReturn (or Alt+Enter) shortcut to
manually import the class. When asked
which version of the Date class to
import, choose the java.util.Date
version.

Initializing the Date variable using the
default Date constructor sets mDate to
the current date. This will be the default
date for a crime.

Next, you want to generate a getter for
the read-only mId and both a getter and
setter for mTitle, mDate, and
mSolved. Right-click after the
constructor and select Generate... — Getter

and select the mId variable. Then,
generate the getter and setter for
mTitle, mDate, and mSolved by
repeating the process, but selecting Getter
and Setter in the Generate... menu.

Listing 7.4 Generated getters
and setters (Crime. java)

public class Crime {

private UUID mId;
private String mTitle;
private Date mDate;
private boolean mSolved;

public Crime () {
mId = UUID.randomUUID() ;
mDate = new Date();

}

public UUID getId() {
return mId;

}

public String getTitle() {
return mTitle;

}

public void setTitle (String title) {
mTitle = title;
}

public Date getDate() {
return mDate;

}

public void setDate (Date date) {
mDate = date;

}

public boolean isSolved() {
return mSolved;

}

public void setSolved(boolean solved) {
mSolved = solved;

}
}

That is all you need for the Crime class
and for Criminallntent’s model layer in
this chapter.

At this point, you have created the model
layer and an activity that is capable of
hosting a support fragment. Now you
will get into the details of how the

activity performs its duties as host.

Hosting a UI
Fragment

To host a UI fragment, an activity must:

e define a spot in its layout for
the fragment’s view

e manage the lifecycle of the
fragment instance

The fragment lifecycle

Figure 7.11 shows the fragment
lifecycle. It is similar to the activity

lifecycle: It has stopped, paused, and
resumed states, and it has methods you
can override to get things done at critical
points — many of which correspond to
activity lifecycle methods.

Figure 7.11 Fragment lifecycle
diagram

Resumed)
" onPause|))
(Paused
onResume|
0 —— (activity/fragment returns l
to foreground)
onStop())
(Stopped Start civity/ t)
onStart) «— (2 ivity; rag’ﬁbeln
ecomes visible
again) onDestroyView()
_/
Created activityCreated(Bundle) l
(activity
shutdown)

onAttach(Context), onCreate(Bundle),
onCreateView(...)
(all called in setContentView()
for layout fragments)

onDestroy(), onDetach()

Launch Death

The correspondence is important.
Because a fragment works on behalf of
an activity, its state should reflect the
activity’s state. Thus, it needs
corresponding lifecycle methods to
handle the activity’s work.

One critical difference between the
fragment lifecycle and the activity
lifecycle is that fragment lifecycle
methods are called by the hosting
activity, not the OS. The OS knows
nothing about the fragments that an
activity is using to manage things.
Fragments are the activity’s internal
business.

You will see more of the fragment
lifecycle methods as you continue
building CriminalIntent.

Two approaches to
hosting

You have two options when it comes to
hosting a UI fragment in an activity:

e add the fragment to the
activity’s layout

e add the fragment in the
activity’s code

The first approach is known as using a
layout fragment. It is straightforward
but inflexible. If you add the fragment to
the activity’s layout, you hardwire the
fragment and its view to the activity’s

view and cannot swap out that fragment
during the activity’s lifetime.

The second approach, adding the
fragment to the activity’s code, is more
complex — but it is the only way to have
control at runtime over your fragments.
You determine when the fragment is
added to the activity and what happens
to it after that. You can remove the
fragment, replace it with another, and
then add the first fragment back again.

Thus, to achieve real Ul flexibility you
must add your fragment in code. This is
the approach you will use for
CrimeActivity’s hosting of a
CrimeFragment. The code details
will come later in the chapter. First, you
are going to define CrimeActivity’s

layout.

Defining a container
view

You will be adding a Ul fragment in the
hosting activity’s code, but you still need
to make a spot for the fragment’s view in
the activity’s view hierarchy. In
CrimeActivity’s layout, this spot
will be the FrameLayout shown in
Figure 7.12.

Figure 7.12 Fragment-hosting
layout for CrimeActivity

FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android: id="@+id/fragment_container"
android: layout_width="match_parent"
android: layout_height="match_parent"

This FrameLayout will be the
container view for a
CrimeFragment. Notice that the
container view is completely generic; it
does not name the CrimeFragment
class. You can and will use this same
layout to host other fragments.

Locate CrimeActivity’s layout at
res/layout/activity crime.x
Open this file and replace the default

layout with the FrameLayout
diagrammed in Figure 7.12. Your XML
should match Listing 7.5.

Listing 7.5 Creating the

fragment container layout

(activity crime.xml)

<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/andr
android:id="@+id/fragment container"

android:layout width="match parent"
android:layout height="match parent" />

Note that while

activity crime.xml consists
solely of a container view for a single
fragment, an activity’s layout can be
more complex and define multiple
container views as well as widgets of its
own.

You can preview your layout file or run
CriminalIntent to check your code. You
will see an empty FrameLayout
below a toolbar containing the text
CriminalIntent (Figure 7.13). (If the
preview window does not render the
screen correctly, or you see errors, build
the project by selecting Buid — Rebuid
Project. If that still does not work
correctly, run the app on your emulator
or device. As of this writing, the
preview window can be finicky.)

Figure 7.13 An empty
FrameLayout

¥4 1l 700

Criminalintent

The FrameLayout is empty because
the CrimeActivity is not yet hosting

a fragment. Later, you will write code
that puts a fragment’s view inside this
FrameLayout. But first, you need to
create a fragment.

(The toolbar at the top of your app is
included automatically because of the
way you configured your activity. You
will learn more about the toolbar in

Chapter 13.)

Creating a Ul
Fragment

The steps to create a Ul fragment are the
same as those you followed to create an
activity:
e compose a Ul by defining
widgets in a layout file

e create the class and set its
view to be the layout that you
defined

e wire up the widgets inflated
from the layout in code

Defining
CrimeFragment’s layout

CrimeFragment’s view will display
the information contained within an
instance of Crime.

First, define the strings that the user will
seeinres/values/strings.xml.

Listing 7.6 Adding strings
(res/values/strings.xml)

<resources>

<string name="app name">CriminalIntent</string>

<string name="crime_title_hint">Enter a title for
the crime.</string>

<string name="crime title label">Title</string>

<string
name="crime details_ label">Details</string>

<string name="crime solved label">Solved</string>
</resources>

Next, you will define the Ul. The layout
for CrimeFragment will consist of a
vertical LinearLayout that contains
two TextViews, an EditText, a
Button, and a Checkbox.

To create a layout file, right-click the
res/layout folder in the project tool
window and select New — Layout resource
fie. Name this file

fragment crime.xml and enter
LinearLayout as the root element.
Click ok and Android Studio will
generate the file for you.

When the file opens, navigate to the
XML. The wizard has added the
LinearLayout for you. Add the
widgets that make up the fragment’s
layout to fragment crime.xml.

Listing 7.7 Layout file for
fragment's view
(fragment crime.xml)

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/andr

android:layout width="match parent"
android:layout height="match parent"
android:layout margin="16dp"
android:orientation="vertical">

<TextView
style="?android:listSeparatorTextViewStyle"
android:layout width="match_ parent"
android:layout height="wrap_content"
android:text="@string/crime_ title_ label"/>

<EditText
android:id="@+id/crime_title"
android:layout width="match parent"
android:layout height="wrap_content"
android:hint="@string/crime_title_ hint"/>

<TextView
style="?android:listSeparatorTextViewStyle"
android:layout width="match_ parent"
android:layout height="wrap_content"
android:text="@string/crime details_ label"/>

<Button

android:
android:
android:

<CheckBox

android:
android:
android:
android:

</LinearLayout>

id="@+id/crime_date"
layout width="match parent"
layout_height="wrap_content"/>

id="@+id/crime_solved"

layout width="match parent"

layout height="wrap_content"
text="@string/crime_solved label"/>

Check the Design view to see a preview
of your fragment’s view (Figure 7.14).

Figure 7.14 Previewing
updated crime fragment layout

Palette & %1~ [E] ©- ONexuss5- m25- @AppTheme : @language- T~
I Widgets EE

[Ab] TextView =n

ok Button c 100 6

= ToggleButton

[|CheckBox

(@ RadioButton

Av CheckedTextView

= Spinner

== ProgressBar (Large)
== ProgressBar

== ProgressBar (Small)
== ProgressBar (Horizon

Criminalintent

TITLE

o SeekBar Enter a title for the crime,
o1 SeekBar (Discrete)

:=/QuickContactBadge | - DEIARS

7 RatingBar

Switch °
pace * O sotved
1 Text Fields (EditText)
Plain Text
L |Password
| Password (Numeric)

00

Component Tree
[|LinearLayout (
[Ab] TextView - i g
[|crime_title (EditT ‘
(88 TextView - "@stri

K crime_date (Butt¢ 3
[|crime_solved (Ck

Design = Text

(The updated

fragment crime.xml code
includes new syntax related to view
style: <style="?
android:listSeparatorTextViewSty.
Fear not. You will learn the meaning
behind this syntax in the section called
Stvles, themes, and theme attributes in

Chapter 9.)

Creating the
CrimeFragment class

Right-click the
com.bignerdranch.android.criminalintent
package and select New — Java Class.
Name the class CrimeFragment and

click OK to generate the class.

Now, turn this class into a fragment.
Update CrimeFragment to subclass
the Fragment class.

Listing 7.8 Subclassing the
Fragment class

(CrimeFragment. java)
public class CrimeFragment extends Fragment {

}

As you subclass the Fragment class,
you will notice that Android Studio finds
two classes with the Fragment name.
You will see Fragment
(android.app) and Fragment
(android. support.v4.app).
The android.app Fragment is the

version of fragments built into the
Android OS. You will use the support
library version, so be sure to select the
android.support.v4.app version of the
Fragment class when you see the
dialog, as shown in Figure 7.15.

Figure 7.15 Choosing the
support library’s Fragment

class

public class CrimeFragment extends Fragment {
}

en
ragmentController
ragmentHostCallback
ragmentManager

ragnentMan g

gl
Frag
Frag
Frag
% FragmentManagerNonCnnfig
Frag
FragmentTrai
k| Q

ra entAt ty

Your code should rnatch Listing 7.9.

Listing 7.9 Supporting the
Fragment import

(CrimeFragment. java)

package com.bignerdranch.android.criminalintent;
import android.support.v4.app.Fragment;
public class CrimeFragment extends Fragment {

}

If you do not see this dialog or the wrong
fragment class was imported, you can
manually import the correct class. If you
have an import for
android.app.Fragment, remove
that line of code. Import the correct
Fragment class with the
Optiont+Return (or Alt+Enter) shortcut.
Be sure to select the support version of
the Fragment class.

Implementing fragment

lifecycle methods

CrimeFragment is a controller that
interacts with model and view objects.
Its job is to present the details of a
specific crime and update those details
as the user changes them.

In GeoQuiz, your activities did most of
their controller work in activity lifecycle
methods. In CriminalIntent, this work
will be done by fragments in fragment
lifecycle methods. Many of these
methods correspond to the Activity
methods you already know, such as
onCreate (Bundle).

InCrimeFragment.java, add a
member variable for the Crime

instance and an implementation of
Fragment.onCreate (Bundle).

Android Studio can provide some
assistance when overriding methods. As
you define the onCreate (Bundle)
method, type the first few characters of
the method name where you want to
place the method. Android Studio will
provide a list of suggestions, as shown

in Figure 7.16.

Figure 7.16 Overriding the
onCreate (Bundle) method

public class CrimeFragment extends Fragment {

private Crime mCrime;

oncre
m s public Animation onCreateAnimation(transit, enter, nex.. Fragment
@® public void onCreate (savedInstanceState) {...} Fragment
m @ public View onCreateView(inflater, container, savedIns.. Fragment
m @] public void onCreateContextMenu(menu, v, menuInfo) Fragment
m @ public void onCreateOptionsMenu(menu, inflater) Fragment
m @] public void onActivityCreated(savedInstanceState) Fragment
m o public void onViewCreated(view, savedInstanceState) Fragmen 7t

Press Return to select the

onCreate (Bundle) method, and
Android Studio will create the method
declaration for you. Update your code to

create a new Crime, matching Listing
7.10.

Listing 7.10 Overriding
Fragment.onCreate (Bundle)

(CrimeFragment. java)

public class CrimeFragment extends Fragment {
private Crime mCrime;

QOverride

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
mCrime = new Crime() ;

}

There are a couple of things to notice in
this implementation. First,
Fragment.onCreate (Bundle) is
a public method, whereas
Activity.onCreate (Bundle) is
protected.

Fragment.onCreate (Bundle)
and other Fragment lifecycle methods
must be public, because they will be
called by whatever activity is hosting the
fragment.

Second, similar to an activity, a fragment
has a bundle to which it saves and
retrieves its state. You can override
Fragment.onSavelnstanceStat
for your own purposes just as you can
override
Activity.onSavelInstanceStat

Also, note what does not happen in
Fragment.onCreate (Bundle):
You do not inflate the fragment’s view.
You configure the fragment instance in
Fragment.onCreate (Bundle),
but you create and configure the
fragment’s view in another fragment
lifecycle method:

public View onCreateView (LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState)

This method is where you inflate the
layout for the fragment’s view and return
the inflated View to the hosting activity.
The LayoutInflater and
ViewGroup parameters are necessary
to inflate the layout. The Bundle will
contain data that this method can use to
re-create the view from a saved state.

InCrimeFragment.java, add an
implementation of

onCreateView (...) that inflates
fragment crime.xml. Youcan use
the same trick from Figure 7.16 to fill
out the method declaration.

Listing 7.11 Overriding
onCreateView(..)

(CrimeFragment. java)

public class CrimeFragment extends Fragment {
private Crime mCrime;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
mCrime = new Crime();

}

@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) ({
View v =
inflater.inflate (R.layout.fragment crime, container,
false) ;
return v;

}
}

Within onCreateView(...), you
explicitly inflate the fragment’s view by
calling
LayoutInflater.inflate(..)
and passing in the layout resource ID.
The second parameter is your view’s
parent, which is usually needed to

configure the widgets properly. The third
parameter tells the layout inflater
whether to add the inflated view to the
view’s parent. You pass in false
because you will add the view in the
activity’s code.

Wiring widgets in a fragment

You are now going to hook up the
EditText, Checkbox, and Button
in your fragment. The
onCreateView (..) method is the
place to wire up these widgets.

Start with the EditText. After the
view is inflated, get a reference to the
EditText and add a listener.

Listing 7.12 Wiring up the
EditText widget
(CrimeFragment. java)

public class CrimeFragment extends Fragment {

private Crime mCrime;

private EditText mTitleField;

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container,

Bundle savedInstanceState) {
View v =

inflater.inflate (R.layout.fragment crime, container,
false);

mTitleField = (EditText)
v.findViewById(R.id.crime_title);
mTitleField.addTextChangedListener (new
TextWatcher () {
QOverride
public void beforeTextChanged (
CharSequence s, int start, int count,
int after) {
// This space intentionally left
blank

QOverride
public void onTextChanged (

CharSequence s, int start, int
before, int count) {
mCrime.setTitle(s.toString()) ;
}

@Override
public void afterTextChanged(Editable s)

// This one too

I
return v;

}

Getting references in
Fragment.onCreateView(..)
works nearly the same as in
Activity.onCreate (Bundle).
The only difference is that you call
View. findViewById (int) onthe
fragment’s view. The
Activity.findViewById(int)
method that you used before is a
convenience method that calls

View.findViewById (int) behind
the scenes. The Fragment class does
not have a corresponding convenience
method, so you have to call the real
thing.

Setting listeners in a fragment works
exactly the same as in an activity. In
Listing 7.12, you create an anonymous
class that implements the verbose
TextWatcher interface. TextWatcher
has three methods, but you only care
about one: onTextChanged(...).

In onTextChanged (...), you call
toString () onthe CharSequence
that 1s the user’s input. This method
returns a string, which you then use to set
the Crime’s title.

Next, connect the Button to display the
date of the crime, as shown in Listing
7.13.

Listing 7.13 Setting Button
text (CrimeFragment. java)

public class CrimeFragment extends Fragment {

private Crime mCrime;

private EditText mTitleField;

private Button mDateButton;

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container,

Bundle savedInstanceState) {
View v =

inflater.inflate (R.layout.fragment crime, container,
false);

mDateButton = (Button)
v.findViewById(R.id.crime_date) ;

mDateButton.setText (mCrime.getDate () .toString()) ;
mDateButton.setEnabled(false) ;

return v;

Disabling the button ensures that it will
not respond in any way to the user
pressing it. It also changes its
appearance to advertise its disabled
state. In Chapter 12, you will enable the
button and allow the user to choose the
date of the crime.

Moving on to the CheckBox, get a
reference and set a listener that will
update the mSolved field of the
Crime, as shown in Listing 7.14.

Listing 7.14 Listening for
CheckBox changes

(CrimeFragment. java)

public class CrimeFragment extends Fragment {
private Crime mCrime;
private EditText mTitleField;
private Button mDateButton;
private CheckBox mSolvedCheckBox;

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View v =
inflater.inflate (R.layout.fragment crime, container,
false);

mSolvedCheckBox =
(CheckBox) v.findViewById (R.id.crime_solved) ;

mSolvedCheckBox.setOnCheckedChangeListener (new
OnCheckedChangeListener () {
@Override
public void
onCheckedChanged (CompoundButton buttonView,
boolean isChecked) {
mCrime.setSolved (isChecked) ;

1N
}
After typing in the code as above, click
on OnCheckedChangeListener:

mSolvedCheckBox.setOnCheckedChangeListener (new
OnCheckedChangeListener ()

and use the OptiontReturn (Alt+Enter)
shortcut to add the necessary import
statement. You will be presented with
two options. Choose the
android.widget.CompoundButt
version.

Depending on which version of Android
Studio you are using, the autocomplete

feature may insert
CompoundButton.OnCheckedChangelLi:
instead of leaving the code as

OnCheckedChangeListener (). Either
implementation is fine. But to remain
consistent with the solution presented in
this book, click on compoundButton and
hit Option+Return (Alt+Enter).

Select the option to Add on demand static
import for 'android. widget. CompoundButton'

(Figure 7.17). This will update the code
so it matches Listing 7.14.

Figure 7.17 Adding on demand
statlc |mport

vedCheckbox = (CheckBox) v u.\et«Bym(R id. ¢/ ved) ;
. set0nCheckedChant g lewcomp undBut ton. inCheckedChan ngeListen 1){

SubLic veid onCheckedChanged (Conpoundsitton button TN e Imponf ‘android.widget. CompoundButton' b
nCrime. setSolved(isChecked); 2 Annotate class ‘CompoundButton’ as @Deprecated

Your code for CrimeFragment is
now complete. It would be great if you
could run CriminalIntent now and play
with the code you have written. But you
cannot. Fragments cannot put their views
on screen on their own. To realize your
efforts, you first have to add a
CrimeFragment to
CrimeActivity.

Adding a Ul
Fragment to the
FragmentManager

When the Fragment class was
introduced in Honeycomb, the
Activity class was changed to
include a piece called the
FragmentManager. The
FragmentManager is responsible
for managing your fragments and adding
their views to the activity’s view

hierarchy (Figure 7.18).
The FragmentManager handles two

things: a list of fragments and a back
stack of fragment transactions (which
you will learn about shortly).

Figure 7.18 The
FragmentManager

Activity

v

FragmentManager

/7 \

Back Stack Fragments

]
]
~L FragmentTransaction ~| Fragment

For Criminallntent, you will only be
concerned with the

FragmentManager'’s list of
fragments.

To add a fragment to an activity in code,
you make explicit calls to the activity’s
FragmentManager. The first step is
to get the FragmentManager itself.
Do so inonCreate (Bundle) in
CrimeActivity.java.

Listing 7.15 Getting the
FragmentManager

(CrimeActivity. java)

public class CrimeActivity extends AppCompatActivity
{

@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity crime);

FragmentManager fm =
getSupportFragmentManager () ;

}
}

If you see an error after adding this line
of code, check the import statements to
make sure that the support version of the
FragmentManager class was
imported.

You call
getSupportFragmentManager ()
because you are using the support library
and the AppCompatActivity class.
If you were not interested in using the
support library, then you would subclass
Activity and call
getFragmentManager ().

Fragment transactions

Now that you have the
FragmentManager, add the
following code to give it a fragment to
manage. (We will step through this code
afterward. Just get it in for now.)

Listing 7.16 Adding a
CrimeFragment

(CrimeActivity. java)

public class CrimeActivity extends AppCompatActivity
{

@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity crime);

FragmentManager fm =
getSupportFragmentManager () ;

Fragment fragment =
fm.findFragmentById(R.id.fragment_container) ;

if (fragment == null) {
fragment = new CrimeFragment() ;
fm.beginTransaction ()

.add(R.id.fragment_container,
fragment)
.commit () ;

}

}

The best place to start understanding the
code you just added is not at the
beginning. Instead, find the add (...)
operation and the code around it. This
code creates and commits a fragment
transaction.

if (fragment == null) {
fragment = new CrimeFragment () ;
fm.beginTransaction ()
.add (R.id.fragment_container,
fragment)
.commit () ;

Fragment transactions are used to add,
remove, attach, detach, or replace
fragments in the fragment list. They are
the heart of how you use fragments to

compose and recompose screens at
runtime. The FragmentManager
maintains a back stack of fragment
transactions that you can navigate.

The

FragmentManager .beginTransa
method creates and returns an instance of
FragmentTransaction. The
FragmentTransaction class uses
a fluent interface — methods that
configure FragmentTransaction
return a FragmentTransaction
instead of void, which allows you to
chain them together. So the code
highlighted above says, “Create a new
fragment transaction, include one add
operation in it, and then commit it.”

The add (...) method is the meat of the

transaction. It has two parameters: a
container view ID and the newly created
CrimeFragment. The container view
ID should look familiar. It is the
resource ID of the FrameLayout that
you defined in

activity crime.xml.

A container view ID serves two
purposes:

o [t tells the
FragmentManager where
in the activity’s view the
fragment’s view should appear.

e [tis used as a unique identifier
for a fragment in the
FragmentManager’s list.

When you need to retrieve the
CrimeFragment from the
FragmentManager, you ask for it by
container view ID:

FragmentManager fm =
getSupportFragmentManager () ;

Fragment fragment =
fm.findFragmentById(R.id.fragment container);

if (fragment == null) {
fragment = new CrimeFragment () ;
fm.beginTransaction ()
.add (R.id.fragment_container,
fragment)
.commit () ;

}

It may seem odd that the
FragmentManager identifies the
CrimeFragment using the resource
ID of a FrameLayout. But identifying
a Ul fragment by the resource ID of its
container view is built into how the
FragmentManager operates. If you

are adding multiple fragments to an
activity, you would typically create
separate containers with separate IDs
for each of those fragments.

Now we can summarize the code you
added in Listing 7.16 from start to finish.

First, you ask the FragmentManager
for the fragment with a container view
ID of r.id. fragment container. If
this fragment 1s already in the list, the
FragmentManager will return it.

Why would a fragment already be in the
list? The call to
CrimeActivity.onCreate (Bund
could be in response to
CrimeActivity being re-created
after being destroyed on rotation or to

reclaim memory. When an activity is
destroyed, its FragmentManager
saves out its list of fragments. When the
activity is re-created, the new
FragmentManager retrieves the list
and re-creates the listed fragments to
make everything as it was before.

On the other hand, if there is no fragment
with the given container view ID, then
fragment will be null. In this case,
you create a new CrimeFragment
and a new fragment transaction that adds
the fragment to the list.

CrimeActivity is now hosting a
CrimeFragment. Run Criminallntent
to prove it. You should see the view
defined in fragment crime.xml,
as shown in Figure 7.19.

Figure 7.19 CrimeFragment'’s
view hosted by CrimeActivity

4 A 7:00
Criminalintent

TITLE

Enter a title for the crime.

DETAILS

[solved

The FragmentManager
and the fragment
lifecycle

Now that you know about the
FragmentManager, let’s take
another look at the fragment lifecycle

(Figure 7.20).

Figure 7.20 The fragment
lifecycle, again

Resumed A
— s E
onPause() P,
(Paused R 0
onResume
-— (activity/fragment returns
to foreground)
onStop())
(Stopped Start civity/ t)
onStart) «—_ (activity, ragmen
becomes visible
again) onDestroyView()
| g
fareatad onActivityCreated(Bundle) ,
(activity
shutdown)
onAttach(Context), onCreate(Bundle),
onCreateView!...) onDestroy(), onDetach()
(all called in setContentView()
for layout fragments)
Launch Death

The FragmentManager of an activity
is responsible for calling the lifecycle
methods of the fragments in its list. The
onAttach (Context),

onCreate (Bundle), and

onCreateView (..) methods are
called when you add the fragment to the
FragmentManager.

The

onActivityCreated (Bundle)
method is called after the hosting
activity’s onCreate (Bundle)
method has executed. You are adding the
CrimeFragment in
CrimeActivity.onCreate (Bund
so this method will be called after the
fragment has been added.

What happens if you add a fragment
while the activity i1s already resumed? In
that case, the FragmentManager
immediately walks the fragment through
whatever steps are necessary to get it
caught up to the activity’s state. For

example, as a fragment is added to an
activity that is already resumed, that
fragment gets calls to

onAttach (Context),

onCreate (Bundle),
onCreateView(..),
onActivityCreated (Bundle),
onStart (), and then onResume ().

Once the fragment’s state is caught up to
the activity’s state, the hosting activity’s
FragmentManager will call further
lifecycle methods around the same time
it receives the corresponding calls from
the OS to keep the fragment’s state
aligned with that of the activity.

Application
Architecture with
Fragments

Designing your app with fragments the
right way 1s supremely important. Many
developers, after first learning about
fragments, try to use them for every
reusable component in their application.
This is the wrong way to use fragments.

Fragments are intended to encapsulate
major components in a reusable way. A
major component in this case would be
on the level of an entire screen of your

application. If you have a significant
number of fragments on screen at once,
your code will be littered with fragment
transactions and unclear responsibility.
A better architectural solution for reuse
with smaller components is to extract
them into a custom view (a class that
subclasses View or one of its
subclasses).

Use fragments responsibly. A good rule
of thumb is to have no more than two or
three fragments on the screen at a time

(Figure 7.21).

Figure 7.21 Less is more

The reason all our
activities will use
fragments

From here on, all of the apps in this

book will use fragments — no matter how
simple. This may seem like overkill.
Many of the examples you will see in
following chapters could be written
without fragments. The Uls could be
created and managed from activities, and
doing so might even be less code.

However, we believe it is better for you
to become comfortable with the pattern
you will most likely use in real life.

You might think 1t would be better to
begin a simple app without fragments
and add them later, when (or if)
necessary. There is an idea in Extreme
Programming methodology called
YAGNI. YAGNI stands for “You Aren’t
Gonna Need It,” and it urges you not to
write code if you think you might need it

later. Why? Because YAGNL. It is
tempting to say “YAGNI” to fragments.

Unfortunately, adding fragments later can
be a minefield. Changing an activity to
an activity hosting a Ul fragment is not
difficult, but there are swarms of
annoying gotchas. Keeping some
interfaces managed by activities and
having others managed by fragments only
makes things worse because you have to
keep track of this meaningless
distinction. It is far easier to write your
code using fragments from the beginning
and not worry about the pain and
annoyance of reworking it later, or
having to remember which style of
controller you are using in each part of
your application.

Therefore, when it comes to fragments,
we have a different principle: AUF, or
“Always Use Fragments.” You can kill a
lot of brain cells deciding whether to use
a fragment or an activity, and it is just
not worth it. AUF!

For the More
Curious:
Fragments and the
Support Library

In this chapter, you included the
AppCompat library so that you can use
support fragments. AppCompat on its
own does not include a support fragment
implementation. The AppCompat library
depends on the support-v4 library,
which is where the support fragment
implementation lives.

Google provides many different support
libraries, including support-v4,
appcompat-v7, recyclerview-v7, and
many more. The support-v4 library is
typically referred to as the support
library. This was the first support library
Google provided to developers. Over
time, more and more tools have been
added to this library, and it became a
grab bag of things with no real focus. At
that point, Google decided to develop a
suite of support libraries rather than a
single library.

The support library (support-v4)
contains the support implementation of
fragments that you used in this chapter.
For example, this is where you will find
the source of

android.support.v4.app.Frag
The support library also includes an
Activity subclass:
FragmentActivity. To use support
fragments, your activities must subclass
FragmentActivity.

As shown in Figure 7.22,
AppCompatActivity is a subclass
of this FragmentActivity class,
which is how you were able to use
support fragments in this chapter. If you
were using support fragments without the
AppCompat library, you would include
the support-v4 dependency in your
project and you would subclass
FragmentActivity in each of your
activity classes instead of
AppCompatActivity.

Figure 7.22 AppCompatActivity
class hierarchy

Activity
Ry i,
’(FragmentActivity | Support Library)
1 i A Atetaaitaiiaiaia - .IJ
’f
AppCompatActivity | AppCompat Library .-

e

If all of this sounds confusing, that is
because it is. But not to worry — most
Android developers use these libraries
as you did in this chapter: using the
AppCompat library rather than the
support library directly. You will learn
more about the features of the

AppCompat library in Chapter 13.

For the More
Curious: Why
Support Fragments
Are Superior

This book uses the support library
implementation of fragments over the
implementation built into the Android
OS, which may seem like an unusual
choice. After all, the support library
implementation of fragments was
initially created so that developers could
use fragments on old versions of
Android that do not support the APL.

Today, most developers can exclusively
work with versions of Android that
include support for fragments natively.

We still prefer support fragments. Why?
Support fragments are superior because
you can update the version of the support
library in your application and ship a
new version of your app at any time.
New releases of the support library
come out multiple times a year. When a
new feature 1s added to the fragment
API, that feature is also added to the
support library fragment API along with
any available bug fixes. To use this new
goodness, just update the version of the
support library in your application.

As an example, official support for
fragment nesting (hosting a fragment in a

fragment) was added in Android 4.2. If
you are using the Android OS
implementation of fragments and
supporting Android 4.0 and newer, you
cannot use this API on all devices that
your app supports. If you are using the
support library, you can update the
version of the library in your app and
nest fragments until you run out of
memory on the device.

There are no significant downsides to
using the support library’s fragments.
The implementation of fragments is
nearly identical in the support library as
it is in the OS. The only real downside
is that you have to include the support
library in your project, and it has a
nonzero size. However, it is currently

under a megabyte — and you will likely
use the support library for some of its
other features as well.

We take a practical approach in this
book and in our own application
development. The support library is
king.

If you are strong-willed and do not
believe in the advice above, you can use

the fragment implementation built into
the Android OS.

To use standard library fragments, you
would make three changes to the project:

e Subclass the standard library
Activity class
(android.app.Activity
instead of

FragmentActivity or
AppCompatActivity.
Activities have support for
fragments out of the box on API
level 11 or higher.

Subclass
android.app.Fragment
instead of
android.support.v4.ap

To get the
FragmentManager, call
getFragmentManager ()
instead of
getSupportFragmentMan

8

Displaying Lists
with
RecyclerView

Criminallntent’s model layer currently
consists of a single instance of Crime.
In this chapter, you will update
CriminalIntent to work with a list of
crimes. The list will display each
Crime’s title and date, as shown in

Figure 8.1.

Figure 8.1 A list of crimes

4 1 700

Criminalintent

Crime #0
Thu New 17 10:06:08 EST 2016

Crime #
Thu Nov 17 10:06:08 EST 2016

Crime #
Thu Nev 17 10:06:08 EST 2016

Crime #
Thu Nov 17 10:06:08 EST 2016

Crime #4
Thu Nov 17 10:06:08 EST 2016

Crime #5
Thu Nev 17 10:06:08 EST 2016

Crime #6
Thu Nev 17 10:06:08 EST 2016

Crime #7
Thu Nov 17 10:06:08 EST 2016

Crime #8
Thu Nev 17 10:06:08 EST 2016

Crime #9
Thu Nev 17 10:06:08 EST 2016

Crime #10
Thu New 17 10:06:08 EST 2016

Figure 8.2 shows the overall plan for
Criminallntent in this chapter.

Figure 8.2 Criminallntent with
a list of crimes

Model
mTitle ArrayList mCrimes
mlid
mDate
mSolved

Controller mCrimes
CrimeListFragment getActivity()
CrimeListActivity
. Y Y
View RecyclerView FrameLayout

In the model layer, you have a new

object, CrimeLab, that will be a
centralized data stash for Crime
objects.

Displaying a list of crimes requires a
new activity and a new fragment in
CriminalIntent’s controller layer:
CrimeListActivity and
CrimeListFragment.

(Where are CrimeActivity and
CrimeFragment in Figure 8.2? They
are part of the detail view, so we are not
showing them here. In Chapter 10, you
will connect the list and the detail parts
of CriminalIntent.)

In Figure 8.2, you can also see the view
objects associated with
CrimeListActivity and

CrimeListFragment. The activity’s
view will consist of a fragment-
containing FrameLayout. The
fragment’s view will consist of a
RecyclerView. You will learn more
about the RecyclerView class later
in the chapter.

Updating
Criminallntent’s
Model Layer

The first step is to upgrade
Criminallntent’s model layer from a
single Crime objectto a List of

Crime objects.

Singletons and
centralized data storage

You are going to store the List of
crimes in a singleton. A singleton is a
class that allows only one instance of
itself to be created.

A singleton exists as long as the
application stays in memory, so storing
the list in a singleton will keep the crime
data available throughout any lifecycle
changes in your activities and fragments.
Be careful with singleton classes, as
they will be destroyed when Android
removes your application from memory.

The CrimeLab singleton is not a
solution for long-term storage of data,
but it does allow the app to have one
owner of the crime data and provides a
way to easily pass that data between
controller classes. (You will learn more
about long-term data storage in

Chapter 14.)

(See the For the More Curious section at
the end of this chapter for more about
singleton classes.)

To create a singleton, you create a class
with a private constructor and a get ()
method. If the instance already exists,
then get () simply returns the instance.
If the instance does not exist yet, then
get () will call the constructor to
create it.

Right-click the
com.bignerdranch.android.criminalintent
package and choose New — Java Class.
Name this class CrimeLab and click
OK.

InCrimeLab. java, implement
CrimeLab as a singleton with a private
constructor and a get () method.

Listing 8.1 Setting up the
singleton (CrimeLab. java)

public class Crimelab {
private static Crimelab sCrimeLab;

public static CrimelLab get(Context context) {
if (sCrimeLab == null) {
sCrimelLab = new CrimeLab (context) ;

}

return sCrimelab;

}

private CrimeLab (Context context) {

}
}

There are a few interesting things in this
CrimeLab implementation. First,
notice the s prefix on the sCrimeLab
variable. You are using this Android
convention to make it clear that
sCrimeLab is a static variable.

Also, notice the private constructor on
the CrimeLab. Other classes will not
be able to create a CrimeLab,
bypassing the get () method.

Finally, in the get () method on
CrimeLab, you pass in a Context
object. You will make use of this
Context object in Chapter 14.

Let’s give CrimeLab some Crime
objects to store. In CrimeLab’s

constructor, create an empty List of
Crimes. Also, add two methods: a
getCrimes () method that returns the
List and a getCrime (UUID) that
returns the Crime with the given ID.

Listing 8.2 Setting up the List
of Crime objects
(CrimeLab. java)

public class Crimelab {
private static Crimelab sCrimeLab;

private List<Crime> mCrimes;
public static CrimelLab get (Context context) {
}

private CrimeLab (Context context) {
mCrimes = new ArrayList<>();
}

public List<Crime> getCrimes () {
return mCrimes;

}

public Crime getCrime (UUID id) {
for (Crime crime : mCrimes) {
if (crime.getId() .equals(id)) {
return crime;
}
}

return null;

}

List<E> 1s an interface that supports an
ordered list of objects of a given type. It
defines methods for retrieving, adding,
and deleting elements. A commonly used
implementation of List is
ArrayList, which uses a regular Java
array to store the list elements.

Because mCrimes holds an
ArrayList —and ArrayList is
also a List —both ArrayList and
List are valid types for mCrimes. In
situations like this, we recommend using

the interface type for the variable
declaration: 1ist. That way, if you ever
need to use a different kind of List
implementation — like LinkedList,
for example — you can do so easily.

The mCrimes instantiation line uses
diamond notation, <>, which was
introduced in Java 7. This shorthand
notation tells the compiler to infer the
type of items the List will contain
based on the generic argument passed in
the variable declaration. Here, the
compiler will infer that the
ArrayList contains Crimes because
the variable declaration private
List<Crime> mCrimes; speciﬁes
Crime for the generic argument. (The
more verbose equivalent, which

developers were required to use prior to
Java 7, ISmCrimes = new
ArrayList<Crime> () ;)

Eventually, the List will contain user-
created Crimes that can be saved and
reloaded. For now, populate the List
with 100 boring Crime objects.

Listing 8.3 Generating crimes
(CrimeLab. java)

private CrimeLab (Context context) {
mCrimes = new ArrayList<>();
for (int i = 0; i < 100; i++) {
Crime crime = new Crime() ;
crime.setTitle ("Crime #" + 1i);
crime.setSolved(i % 2 == 0); // Every other
one
mCrimes.add (crime) ;

}

Now you have a fully loaded model
layer with 100 crimes.

An Abstract
Activity for Hosting
a Fragment

In a moment, you will create the
CrimeListActivity class that will
host a CrimeListFragment. First,
you are going to set up a view for
CrimelListActivity.

A generic fragment-
hosting layout

For CrimeListActivity, youcan
simply reuse the layout defined in
activity crime.xml (whichis
copied in Listing 8.4). This layout
provides a FrameLayout as a
container view for a fragment, which is
then named in the activity’s code.

Listing
8.4 activity crime.xml is
already generic

<?xml version="1.0" encoding="utf-8"?2>
<Framelayout
xmlns:android="http://schemas.android.com/apk/res/andr

android:id="@+id/fragment container"
android:layout width="match parent"

android:layout height="match parent"
/>

Because activity crime.xml
does not name a particular fragment, you

can use it for any activity hosting a
single fragment. Rename it
activity fragment.xml to
reflect its larger scope.

In the project tool window, right-click
res/layout/activity crime.x
(Be sure to right-click

activity crime.xml and not
fragment crime.xml.)

From the context menu, select Refactor —
Rename.... Rename this layout
activity fragment.xml and
click Refactor.

When you rename a resource, the
references to it should be updated
automatically. If you see an error in
CrimeActivity.java, then you

need to manually update the reference in
CrimeActivity, as shown in Listing
8.5.

Listing 8.5 Updating layout file
for CrimeActivity
(CrimeActivity. java)

public class CrimeActivity extends AppCompatActivity
{
/** Called when the activity is first created. */
@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity fragment);

FragmentManager fm =
getSupportFragmentManager () ;

Fragment fragment =
fm.findFragmentById(R.id.fragment container);

if (fragment == null) {
fragment = new CrimeFragment () ;
fm.beginTransaction ()
.add(R.1id.fragment container,
fragment)
.commit () ;

An abstract Activity
class

To create the CrimeListActivity
class, you could reuse
CrimeActivity’s code. Look back
at the code you wrote for
CrimeActivity (whichis copied in
Listing 8.6). It is simple and almost
generic. In fact, the only nongeneric code
is the instantiation of the
CrimeFragment before it is added to
the FragmentManager.

Listing 8.6 CrimeActivity is

almost generic
(CrimeActivity. java)

public class CrimeActivity extends AppCompatActivity
{
/** Called when the activity is first created. */
@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity fragment);

FragmentManager fm =
getSupportFragmentManager () ;

Fragment fragment =
fm.findFragmentById(R.id.fragment container);

if (fragment == null) {
fragment = new CrimeFragment () ;
fm.beginTransaction ()
.add (R.id.fragment container,
fragment)
.commit () ;

}

}

Nearly every activity you will create in
this book will require the same code. To
avoid typing it again and again, you are

going to stash it in an abstract class.

Right-click on the
com.bignerdranch.android.criminalintent
package, select New — Java Class, and
name the new class
SingleFragmentActivity. Make
this class a subclass of
AppCompatActivity and make it an
abstract class. Your generated file
should look like this:

Listing 8.7 Creating an abstract
Activity
(SingleFragmentActivity. jav.

public abstract class SingleFragmentActivity extends
AppCompatActivity {

}

Now, add the following code to

SingleFragmentActivity.java
Except for the highlighted portions, it is
identical to your old CrimeActivity
code.

Listing 8.8 Adding a generic
superclass
(SingleFragmentActivity. jav.

public abstract class SingleFragmentActivity extends
AppCompatActivity {

protected abstract Fragment createFragment() ;

@QOverride
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity fragment);

FragmentManager fm =
getSupportFragmentManager () ;

Fragment fragment =
fm.findFragmentById(R.id.fragment container);

if (fragment == null) {
fragment = createFragment() ;

fm.beginTransaction ()
.add(R.id.fragment_container,
fragment)
.commit () ;
}

}
}

In this code, you set the activity’s view
to be inflated from

activity fragment.xml. Then
you look for the fragment in the
FragmentManager in that container,
creating and adding it if it does not exist.

The only difference between the code in
Listing 8.8 and the code in
CrimeActivity is an abstract
method named createFragment ()
that you use to instantiate the fragment.
Subclasses of
SingleFragmentActivity will
implement this method to return an

instance of the fragment that the activity
is hosting.

Using an abstract class

Try it out with CrimeActivity.
Change CrimeActivity’s superclass
to SingleFragmentActivity,
remove the implementation of
onCreate (Bundle), and implement
the createFragment () method as
shown in Listing 8.9.

Listing 8.9 Cleaning up
CrimeActivity
(CrimeActivity.java)

public class CrimeActivity extends App€ompatActivity

SingleFragmentActivity {

@Override
protected Fragment createFragment() ({
return new CrimeFragment() ;

}

Creating the new controllers

Now, you will create the two new

controller classes:
CrimeListActivity and
CrimelistFragment.

Right-click on the
com.bignerdranch.android.criminalintent
package, select New — Java Class, and
name the class
CrimeListActivity.

Modify the new
CrimeListActivity class to also
subclass
SingleFragmentActivity and
implement the createFragment ()
method.

Listing 8.10 Implementing
CrimeListActivity

(CrimeListActivity.java)

public class CrimeListActivity extends
SingleFragmentActivity {

@Override
protected Fragment createFragment() {
return new CrimeListFragment() ;

}
}

If you have other methods in your
CrimeListActivity, suchas
onCreate, remove them. Let
SingleFragmentActivity do its
job and keep CrimeListActivity
simple.

The CrimeListFragment class has
not yet been created. Let’s remedy that.

Right-click on the
com.bignerdranch.android.criminalintent
package again, select New — Java Class,
and name the class
CrimeListFragment.

Listing 8.11 Implementing
CrimelListFragment

(CrimeListFragment. java)

public class CrimeListFragment extends Fragment ({
// Nothing yet

}

For now, CrimeListFragment will
be an empty shell of a fragment. You
will work with this fragment later in the
chapter.

Now your activity code is nice and tidy.
And SingleFragmentActivity
will save you a lot of typing and time as
you proceed through the book.

Declaring CrimelListActivity

Now that you have created
CrimeListActivity, you must
declare it in the manifest. In addition,
you want the list of crimes to be the first
screen that the user sees when
CriminalIntent is launched, so
CrimeListActivity should be the
launcher activity.

In the manifest, declare
CrimeListActivity and move the
launcher intent filter from
CrimeActivity’s declaration to
CrimeListActivity’s declaration.

Listing 8.12 Declaring
CrimeListActivity as the
launcher activity
(AndroidManifest.xml)

<application
android:allowBackup="true"
android:icon="@mipmap/ic_ launcher™"
android:label="@string/app name"
android:theme="@style/AppTheme" >
<activity android:name=".CrimeListActivity">
<intent-filter>
<action
android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".CrimeActivity">

</activity>

</application>

CrimeListActivity is now the
launcher activity. Run Criminallntent and
you will see CrimeListActivity’s
FrameLayout hosting an empty
CrimeListFragment, as shown in

Figure 8.3.

Figure 8.3 Blank
CrimeListActivity screen

¥'d 1l 7:00

Criminallntent

RecyclerView,
Adapter, and
ViewHolder

Now, you want
CrimeListFragment to display a
list of crimes to the user. To do this, you
will use a RecyclerView.

RecyclerView is a subclass of
ViewGroup. It displays a list of child
View objects, one for each item in your
list of items. Depending on the
complexity of what you need to display,
these child Views can be complex or

very simple.

For your first implementation, each item
in the list will display the title and date
of a Crime. The View object on each
row will be a LinearLayout
containing two TextViews, as shown

in Figure 8.4.

Figure 8.4 A RecyclerView

with child views

RecyclerView — "1 15,;

Figure 8.4 shows 12 rows of Views.
Later you will be able to run
CriminalIntent and swipe to scroll

through 100 Views to see all of your
Crimes. Does that mean that you have
100 View objects in memory? Thanks to
your RecyclerView, no.

Creating a View for every item in the
list all at once could easily become
unworkable. As you can imagine, a list
can have far more than 100 items, and
your list items can be much more
involved than your simple
implementation here. Also, a Crime
only needs a View when it is onscreen,
so there is no need to have 100 Views
ready and waiting. It would make far
more sense to create view objects only
as you need them.

RecyclerView does just that. Instead
of creating 100 Views, it creates 12 —

enough to fill the screen. When a view is
scrolled off the screen,
RecyclerView reuses it rather than
throwing it away. In short, it lives up to
its name: It recycles views over and
over.

ViewHolders and
Adapters

The RecyclerView’s only
responsibilities are recycling
TextViews and positioning them
onscreen. To get the TextViews in the
first place, it works with two classes
that you will build in a moment: an
Adapter subclass and a

ViewHolder subclass.

The ViewHolder’s job is small, so
let’s talk about it first. The
ViewHolder does one thing: It holds
onto a View (Figure 8.5).

Figure 8.5 The lowly

ViewHolder

ViewHolder

itemView

'

View

A small job, but that is what
ViewHolders do. A typical
ViewHolder subclass looks like this:

Listing 8.13 A typical
ViewHolder subclass

public class ListRow extends RecyclerView.ViewHolder
{

public ImageView mThumbnail;

public ListRow (View view) {
super (view) ;

mThumbnail = (ImageView)
view.findViewById(R.id.thumbnail) ;

}
}

You can then create a ListRow and
access bothmThumbnai 1, which you
created yourself, and itemView, a
field that your superclass
RecyclerView.ViewHolder
assigns for you. The i temview field is

your ViewHolder’s reason for
existing: It holds a reference to the entire
View you passed into super (view).

Listing 8.14 Typical usage of a
ViewHolder

ListRow row = new

ListRow (inflater.inflate(R.layout.list row, parent,
false));

View view = row.itemView;

ImageView thumbnailView = row.mThumbnail;

A RecyclerView never creates
Views by themselves. It always creates
ViewHolders, which bring their
itemViews along for the ride

(Figure 8.6).

Figure 8.6 A RecyclerView
with its ViewHolders

RecyclerView

LN

ViewHolder

ViewHolder

ViewHolder

ViewHolder

itemView

'

itemView

!

|

itemView

'

itemView

!

View

View

View

View

When the View is simple,
ViewHolder has few responsibilities.
For more complicated Views, the
ViewHolder makes wiring up the
different parts of itemvView to a
Crime simpler and more efficient. You
will see how this works later on in this

chapter, when you build a complex
View yourself.

Adapters

Figure 8.6 is somewhat simplified.
RecyclerView does not create
ViewHolders itself. Instead, it asks an
adapter. An adapter is a controller
object that sits between the
RecyclerView and the data set that
the RecyclerView should display.

The adapter is responsible for:

e creating the necessary
ViewHolders

e binding ViewHolders to

data from the model layer

To build an adapter, you first define a
subclass of
RecyclerView.Adapter. Your
adapter subclass will wrap the list of
crimes you get from CrimeLab.

When the RecyclerView needs a
view object to display, it will have a
conversation with its adapter. Figure 8.7
shows an example of a conversation that
a RecyclerView might initiate.

Figure 8.7 A scintillating
RecyclerView-Adapter

conversation

RecyclerView Adapter

: getltemCount(}

100

e

onCreateViewHolder(...)

ViewHolder —

'
-—

: onBindeewHolder(m, 0)

onCreateViewHolder{,..j

ViewHolder
: oanndViewHoIder[..., 1)
; \

First, the RecyclerView asks how
many objects are in the list by calling the

adapter’s getItemCount () method.

Then the RecyclerView calls the
adapter’s

onCreateViewHolder (ViewGrou
int) method to create a new
ViewHolder, along with its juicy
payload: a View to display.

Finally, the RecyclerView calls
onBindViewHolder (ViewHolder
int). The RecyclerView will pass
a ViewHolder into this method along
with the position. The adapter will look
up the model data for that position and
bind it to the ViewHolder’s View. To
bind it, the adapter fills in the View to
reflect the data in the model object.

After this process is complete,

RecyclerView will place a list item
on the screen. Note that
onCreateViewHolder (ViewGrou
int) will happen a lot less often than
onBindViewHolder (ViewHolder
int). Once enough ViewHolders
have been created, RecyclerView
stops calling

onCreateViewHolder (..). Instead,
it saves time and memory by recycling
old ViewHolders.

Using a RecyclerView

Enough talk; time for the implementation.
The RecyclerView class lives in one
of Google’s many support libraries. The

first step to using a RecyclerView is
to add the RecyclerView library as a
dependency.

Navigate to your project structure
window with Fie — Project Structure....
Select the app module on the left, then the
Dependencies tab. Use the + button and
choose Library dependency to add a
dependency.

Find and select the recyclerview-v7 library
and click OK to add the library as a
dependency, as shown in Figure 8.8.

Figure 8.8 Adding the
RecyclerView dependency

@ [] Choose Library Dependency

com.android.support:recyclerview-v7:24.2.0

Enter terms for Maven Central search, or fully-qualified (eg. od

com.klinkerapps:recyclerview (com.klinkerapps:recyclerview:21.0.0)
net.droidlabs.mvvm:recyclerview (net.droidlabs.mvvm:recyclerview:0. D 2)

:24.2.0)
com.github.gabrielemariotti.cards:cardslib-recyclerview (com.github.gabrielemariotti.cards cardslib-recyclerview...
me.tatarka.bindingcollectionadapter:bindingcollectionadapter-recyclerview (me.tatarka.bindingcollectionadapter:...
Jip.wasabeef:recyclerview-animators (jp.wasabeef:recyclerview- anlma(ors 1 2. 2)

com.twotoasters.jazzylistview:library-recyclerview (com.
com.squareup.assertj:assertj-android yclervi 7 (com

Ji ~recyclerview:1.2.1)
asseru assertj-android-recyclerview-v7:1....

Cancel IK

Your RecyclerView will live in
CrimeListFragment’s layout file.
First, you must create the layout file.
Right-click on the res/layout
directory and select New — Layout
resource fie. Name the file

fragment crime 1list and click
OK to create the file.

Open the new

fragment crime list file and
modify the root view to be a
RecyclerView and to give itan ID
attribute.

Listing 8.15 Adding
RecyclerView to a layout file

(fragment crime list.xml)

<android.support.v7.widget.RecyclerView
xmlns:android="http://schemas.android.com/apk/res/andr
android:id="@+id/crime_recycler_view"

android:layout width="match parent"
android:layout_height="match_parent"/>

Now that CrimeListFragment’s

view is set up, hook up the view to the
fragment. Modify
CrimeListFragment to use this
layout file and to find the
RecyclerView in the layout file, as
shown in Listing 8.16.

Listing 8.16 Setting up the
view for CrimeListFragment
(CrimeListFragment. java)
public class CrimeListFragment extends Fragment {

7/ Nothing—vyet

private RecyclerView mCrimeRecyclerView;

@QOverride
public View onCreateView (LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) ({
View view =
inflater.inflate(R.layout.fragment_crime list,
container, false);

mCrimeRecyclerView = (RecyclerView) view

.findViewById(R.id.crime_recycler view) ;
mCrimeRecyclerView. setLayoutManager (new
LinearLayoutManager (getActivity()))

return view;

}

}

Note that as soon as you create your
RecyclerView, you give it another
object called a LayoutManager.
RecyclerView requires a
LayoutManager to work. If you
forget to give it one, it will crash.

RecyclerView does not position
items on the screen itself. It delegates
that job to the LayoutManager. The
LayoutManager positions every item
and also defines how scrolling works.
So if RecyclerView tries to do those
things when the LayoutManager is

not there, the RecyclerView will
immediately fall over and die.

There are a few built-in
LayoutManagers to choose from,
and you can find more as third-party
libraries. You are using the
LinearLayoutManager, which
will position the items in the list
vertically. Later on in this book, you will
use GridLayoutManager to arrange
items in a grid instead.

Run the app. You should again see a
blank screen, but now you are looking at
an empty RecyclerView. You will
not see any Crimes represented on the
screen until the Adapter and

ViewHolder implementations are
defined.

A view to display

Each item displayed on the
RecyclerView will have its own
view hierarchy, exactly the way
CrimeFragment has a view
hierarchy for the entire screen. You
create a new layout for a list item view
the same way you do for the view of an
activity or a fragment. In the project tool
window, right-click the res/layout
directory and choose New — Layout
resource fie. In the dialog that appears,
name the file 1ist item crime and
click Ok.

Update your layout file to add the two

TextViews as shown in Figure 8.9.

Figure 8.9 Updating the list
item layout file
(1ist_item crime.xml)

LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android: layout_width="match_parent"
android: layout_height="wrap_content"
android:orientation="vertical"
android:padding="8dp"

/ ™

TextView TextView
android: id="@+id/crime_title" android:id="@+id/crime_date"
android: layout_width="match_parent" android: layout_width="match_parent"
android: layout_height="wrap_content" android:layout_height="wrap_content"
android:text="Crime Title" android:text="Crime Date"

Take a look at the design preview, and
you will see that you have created
exactly one row of the completed
product. In a moment, you will see how
RecyclerView will create those

rows for you.

Implementing a
ViewHolder and an
Adapter

The next job is to define the
ViewHolder that will inflate and own
your layout. Define it as an inner class in
CrimeListFragment.

Listing 8.17 The beginnings of

a ViewHolder

(CrimeListFragment. java)

public class CrimeListFragment extends Fragment {
l;l'sivate class CrimeHolder extends

RecyclerView.ViewHolder {
public CrimeHolder (LayoutInflater inflater,

ViewGroup parent) {

super (inflater.inflate (R.layout.list item crime,
parent, false));
}

}
}

In CrimeHolder’s constructor, you
inflate 1ist item crime.xml.
Immediately you pass it into

super (..), ViewHolder’s
constructor. The base ViewHolder
class will then hold on to the
fragment crime list.xml view
hierarchy. If you need that view
hierarchy, you can find it in
ViewHolder’s itemView field.

CrimeHolder is all skin and bones
right now. Later in the chapter,
CrimeHolder will beefup as you
give it more work to do.

With the ViewHolder defined, create
the adapter.

Listing 8.18 The beginnings of
an adapter
(CrimeListFragment. java)
public class CrimeListFragment extends Fragment {

private class CrimeAdapter extends
RecyclerView.Adapter<CrimeHolder> {

private List<Crime> mCrimes;

public CrimeAdapter (List<Crime> crimes) {
mCrimes = crimes;

}
}

(The code in Listing 8.18 will not
compile. You will fix this in a moment.)

When the RecyclerView needs to
display a new ViewHolder or connect
a Crime object to an existing

ViewHolder, it will ask this adapter
for help by calling a method on it. The
RecyclerView itself will not know
anything about the Crime object, but the
Adapter will know all of Crime’s
intimate and personal details.

Next, implement three method overrides
in CrimeAdapter. (Youcan
automatically generate these overrides
by putting your cursor on top of
extends, keying in Option-Return
(Alt+Enter), selecting Implement methods,
and clicking OK. Then you only need to
fill in the bodies.)

Listing 8.19 Filling out
CrimeAdapter

(CrimeListFragment. java)

private class CrimeAdapter extends
RecyclerView.Adapter<CrimeHolder> {

@Override
public CrimeHolder
onCreateViewHolder (ViewGroup parent, int viewType) {
LayoutInflater layoutInflater =
LayoutInflater. from(getActivity())

return new CrimeHolder (layoutInflater,
parent) ;

}

@Override
public void onBindViewHolder (CrimeHolder
holder, int position) {

}

@Override
public int getItemCount() {
return mCrimes.size() ;

}
}

onCreateViewHolder is called by
the RecyclerView when it needs a
new ViewHolder to display an item
with. In this method, you create a
LayoutInflater and use it to

construct a new CrimeHolder.

Your adapter must have an override for
onBindViewHolder (...), but for
now you can leave it empty. Ina
moment, you will return to it.

Now that you have an Adapter,
connect it to your RecyclerView.
Implement a method called updateUI
that sets up CrimeListFragment’s
UL For now it will create a
CrimeAdapter and set it on the
RecyclerView.

Listing 8.20 Setting an
Adapter

(CrimeListFragment. java)

public class CrimeListFragment extends Fragment {

private RecyclerView mCrimeRecyclerView;

private CrimeAdapter mAdapter;

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container,

Bundle
savedInstanceState) {
View view =
inflater.inflate (R.layout.fragment crime list,
container, false);

mCrimeRecyclerView = (RecyclerView) view
.findvViewById(R.id.crime_recycler view);
mCrimeRecyclerView.setLayoutManager (new
LinearLayoutManager (getActivity()));
updateUI() ;
return view;
private void updateUI() {
CrimeLab crimeLab =

CrimeLab.get (getActivity())
List<Crime> crimes = crimeLab.getCrimes() ;

mAdapter = new CrimeAdapter (crimes) ;
mCrimeRecyclerView.setAdapter (mAdapter) ;

}

In later chapters, you will add more to

updateUI () as configuring your Ul
gets more involved.

Run CriminalIntent and scroll through
your new RecyclerView, which
should look like Figure 8.10.

Figure 8.10 A beautiful list of...
beautiful, beautiful beautifuls

¥ d A 7:00
Criminalintent

Crime Title
Crime Date

Crime Title
Crime Date

Crime Tille
Crime Date

Crime Title
Crime Date

Crime Title
Crime Date

Crime Title

Hmm. Looking a little repetitive there,
Mr. RecyclerView. Swipe or drag
down, and you will see even more
identical views scroll across your
screen.

In the screenshot above, there are 11
rows, which means that
onCreateViewHolder (..) was
called 11 times. If you scroll down, a

few more CrimeHolders may be
created, but at a certain point
RecyclerView will stop creating
new CrimeHolders. Instead, it will
recycle old CrimeHolders as they
scroll off the top of the screen.
RecyclerView, you were named
well indeed.

For the moment, every row is identical.
In your next step, you will fill each
CrimeHolder with fresh information
as it is recycled by binding to it.

Binding List Items

Binding 1s taking Java code (like model
data in a Crime, or click listeners) and
hooking it up to a widget. So far, in all
the exercises up until this point in the
book, you bound each and every time
you inflated a view. This meant there
was no need to split that work into its
own method. However, now that views
are being recycled, it pays to have
creation in one place and binding in
another.

All the code that will do the real work
of binding will go inside your

CrimeHolder. That work starts with
pulling out all the widgets you are
interested in. This only needs to happen
one time, so write this code in your
constructor.

Listing 8.21 Pulling out views
in the constructor
(CrimeListFragment. java)

private class CrimeHolder extends
RecyclerView.ViewHolder {

private TextView mTitleTextView;
private TextView mDateTextView;

public CrimeHolder (LayoutInflater inflater,
ViewGroup parent) {

super (inflater.inflate (R.layout.list item crime,
parent, false));

mTitleTextView = (TextView)
itemView.findViewById(R.id.crime_title);
mDateTextView = (TextView)
itemView.findViewById(R.id.crime_date);
}

}

Your CrimeHolder will also need a
bind (Crime) method. This will be

called each time a new Crime should
be displayed in your CrimeHolder.

First, add bind (Crime).

Listing 8.22 Writing a
bind (Crime) method
(CrimeListFragment. java)

private class CrimeHolder extends
RecyclerView.ViewHolder {

private Crime mCrime;
public void bind(Crime crime) {
mCrime = crime;

mTitleTextView.setText (mCrime.getTitle())

mDateTextView.setText (mCrime.getDate () .toString()) ;

}
}

When given a Crime, CrimeHolder

will now update the title TextView
and date TextView to reflect the state
of the Crime.

Next, call your newly minted

bind (Crime) method each time the
RecyclerView requests that a given
CrimeHolder be bound to a
particular crime.

Listing 8.23 Calling the
bind (Crime) method

(CrimeListFragment. java)

private class CrimeAdapter extends
RecyclerView.Adapter<CrimeHolder> {
@Override
public void onBindViewHolder (CrimeHolder holder,
int position) {
Crime crime = mCrimes.get(position);
holder.bind(crime) ;

Run CriminalIntent one more time, and
every visible CrimeHolder should
now display a distinct Crime

(Figure 8.11).

Figure 8.11 All right, all right,
all right

4 1 700

Criminalintent

Crime #0
Thu Nov 17 10:06:08 EST 2016

Crime #1
Thu Nev 17 10:06:08 EST 2016

Crime #2
Thu Nev 17 10:06:08 EST 2016

Crime #3
Thu Nov 17 10:06:08 EST 2016

Crime #4
Thu Nov 17 10:06:08 EST 2016

Crime #5
Thu Nov 17 10:06:08 EST 2016

Crime #6

Thu Now .08 EST 2076
Crime #7

Thu Nov 608 E £
Crirr

Thu No :06:08 EST &
Crime #¢

Thu Nov 17 10:06:08 EST 2016
Crim #10

Thu Nov 17 10:06:08 EST 2016

When you fling the view up, the
scrolling animation should feel as
smooth as warm butter. This effect is a
direct result of keeping
onBindViewHolder (..) small and
efficient, doing only the minimum
amount of work necessary.

Take heed: Always be efficient in your
onBindViewHolder(..).
Otherwise, your scroll animation could

feel as chunky as cold Parmesan cheese.

Responding to
Presses

As icing on the RecyclerView cake,
CriminalIntent should also respond to a
press on these list items. In Chapter 10,
you will launch the detail view for a
Crime when the user presses on that
Crime in the list. For now, show a
Toast when the user takes action on a
Crime.

As you may have noticed,
RecyclerView, while powerful and
capable, has precious few real
responsibilities. (May it be an example

to us all.) The same goes here: Handling
touch events 1s mostly up to you. If you
need them, RecyclerView can
forward along raw touch events. But
most of the time this 1s not necessary.

Instead, you can handle them like you
normally do: by setting an
OnClickListener. Since each
View has an associated ViewHolder,
you can make your ViewHolder the
OnClickListener for its View.

Modify the CrimeHolder to handle
presses for the entire row.

Listing 8.24 Detecting presses
in CrimeHolder

(CrimeListFragment. java)

private class CrimeHolder extends

RecyclerView.ViewHolder
implements View.OnClickListener {

public CrimeHolder (LayoutInflater inflater,
ViewGroup parent) {

super (inflater.inflate (R.layout.list item crime,
parent, false));
itemView.setOnClickListener (this) ;

}
QOverride
public void onClick (View view) {
Toast.makeText (getActivity (),
mCrime.getTitle() + " clicked!",
Toast.LENGTH_SHORT)

.show () ;

}
}

In Listing 8.24, the CrimeHolder
itself is implementing the
onClickListener interface. On the
itemView, which is the View for the
entire row, the CrimeHolder is set as
the receiver of click events.

Run CriminalIntent and press on an item

in the list. You should see a Toast
indicating that the item was clicked.

For the More
Curious: ListView
and GridView

The core Android OS includes
ListView, GridView, and
Adapter classes. Until the release of
Android 5.0, these were the preferred
ways to create lists or grids of items.

The API for these components is very
similar to that of a RecyclerView.
The ListView or GridView class is
responsible for scrolling a collection of
1tems, but it does not know much about

each of those items. The Adapter is
responsible for creating each of the
Views in the list. However, ListView
and GridView do not enforce that you
use the ViewHolder pattern (though
you can — and should — use it).

These old implementations are replaced
by the RecyclerView implementation
because of the complexity required to
alter the behavior of a ListView or
GridView.

Creating a horizontally scrolling
ListView, for example, is not
included in the ListView API and
requires a lot of work. Creating custom
layout and scrolling behavior with a
RecyclerView is still a lot of work,
but RecyclerView was built to be

extended, so it is not quite so bad.

Another key feature of
RecyclerView is the animation of
items in the list. Animating the addition
or removal of items in a ListView or
GridView is a complex and error-
prone task. RecyclerView makes this
much easier, includes a few built-in
animations, and allows for easy
customization of these animations.

For example, if you found out that the
crime at position 0 moved to position 5,
you could animate that change like so:

mRecyclerView.getAdapter () .notifyItemMoved (0, 5);

For the More
Curious: Singletons

The singleton pattern, as used in the
CrimelLab, is very common in
Android. Singletons get a bad rap
because they can be misused in a way
that makes an app hard to maintain.

Singletons are often used in Android
because they outlive a single fragment or
activity. A singleton will still exist
across rotation and will exist as you
move between activities and fragments
in your application.

Singletons make a convenient owner of
your model objects. Imagine a more
complex Criminallntent application that
had many activities and fragments
modifying crimes. When one controller
modifies a crime, how would you make
sure that updated crime was sent over to
the other controllers? If the CrimeLab
is the owner of crimes and all
modifications to crimes pass through it,
propagating changes is much easier. As
you transition between controllers, you
can pass the crime ID as an identifier for
a particular crime and have each
controller pull the full crime object from
the CrimeLab using that ID.

However, singletons do have a few
downsides. For example, while they

allow for an easy place to stash data
with a longer lifetime than a controller,
singletons do have a lifetime. Singletons
will be destroyed, along with all of their
instance variables, as Android reclaims
memory at some point after you switch
out of an application. Singletons are not
a long-term storage solution. (Writing
the files to disk or sending them to a web
server is.)

Singletons can also make your code hard
to unit test. There is not a great way to
replace the CrimeLab instance in this
chapter with a mock version of itself
because the code 1s calling a static
method directly on the CrimeLab
object. In practice, Android developers
usually solve this problem using a tool

called a dependency injector. This tool
allows for objects to be shared as
singletons, while still making it possible
to replace them when needed.

Singletons also have the potential to be
misused. The temptation is to use
singletons for everything because they
are convenient — you can get to them
wherever you are, and store whatever
information you need to get at later. But
when you do that, you are avoiding
answering important questions: Where is
this data used? Where is this method

important?

A singleton does not answer those
questions. So whoever comes after you
will open up your singleton and find
something that looks like somebody’s

disorganized junk drawer. Batteries, zip
ties, old photographs? What is all this
here for? Make sure that anything in your
singleton is truly global and has a strong
reason for being there.

On balance, however, singletons are a
key component of a well-architected
Android app — when used correctly.

Challenge:
RecyclerView
ViewTypes

For this advanced challenge, you will
create two types of rows in your
RecyclerView: a normal row and a
row for more serious crimes. To
implement this, you will work with the
view type feature available in
RecyclerView.Adapter. Add a
new property, nRequiresPolice, to
the Crime object and use it to
determine which view to load on the

CrimeAdapter by implementing the
getItemViewType (int) method
(developer.android.com/
reference/android/support/
v7/widget/
RecyclerView.Adapter.html#g

In the

onCreateViewHolder (ViewGrou
int) method, you will also need to add
logic that returns a different
ViewHolder based on the new
viewType value returned by
getItemViewType (int). Use the
original layout for crimes that do not
require police intervention and a new
layout with a streamlined interface
containing a button that says “contact
police” for crimes that do.

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html#getItemViewType(int)

9
Creating User
Interfaces with

Layouts and
Widgets

In this chapter, you will learn more
about layouts and widgets while adding
some style to your list items in the
RecyclerView. You will also learn
about a new tool called

ConstraintLayout. Figure 9.1
shows what CrimeListFragment’s
view will look like once you chisel
down your existing app to build up your
masterpiece.

Figure 9.1 CriminalIntent, now
with beautiful pictures

wd A 7:00
Criminalintent

Crime #0 OO
Thu Nov 17 10:52:28 EST 2016 :
Crime #1

Thu Nov 17 10:52:28 EST 2016

Crime #2 OO

Thu Nov 17 10:52:28 EST 2016

Crime #3
Thu Nov 17 10:52:28 EST 2016

Crime #4 @a

hig Nov 17 10:52:2: me pan
Crime #5
Thu Nov 17 10:52:28 EST 2016
Crime #6 C

QA
Thu Nov 17 10:52:28 EST 2016
Crime #7
Thu Nov 17 10:52:28 EST 2016
. ™

Crime #8 & g
AT £

Before you dive in to
ConstraintLayout, youmustdo a
little legwork. You will need a copy of
that fancy handcuff image from

Figure 9.1 in your project. Navigate to
the solutions file and open the

09 LayoutsAndWidgets/Crimin
directory. Copy each density version of
ic solved.png into the appropriate

drawable folder in your project. For
information on how to access the
solutions files, refer back to the section
called Adding an Icon in Chapter 2.

Using the
Graphical Layout
Tool

So far, you have created layouts by
typing XML. In this section, you will use
Android Studio’s graphical layout tool.

Openlist item crime.xml and
select the Desugn tab at the bottom of the
file.

In the middle of the graphical layout tool
is the preview you have already seen.
Just to the right of the preview is the
blueprint. The blueprint view is like the
preview but shows an outline of each of
your views. This can be useful when you
need to see how big each view is, not
just what it is displaying.

On the lefthand side of the screen is the
palette. This view contains all the
widgets you could wish for, organized

by category (Figure 9.2).

Figure 9.2 Views in the
graphical layout tool

Palette see ot ot

eeeeeee

The component tree is in the bottom left.
The tree shows how the widgets are
organized in the layout.

On the right side of the screen is the
properties view. In this view, you can
view and edit the attributes of the widget
selected in the component tree.

Introducing
ConstraintLayout

With ConstraintLayout, instead of
using nested layouts you add a series of
constraints to your layout. A constraint
is like a rubber band. It pulls two things
toward each other. So, for example, you
can attach a constraint from the right
edge of an ImageView to the right
edge of its parent (the
ConstraintLayout itself), as
shown in Figure 9.3. The constraint will
hold the ImageView to the right.

Figure 9.3 ImagevView with a
constraint on the right edge

IMageView f——-

You can create a constraint from all four
edges of your ImageView (left, top,
right, and bottom). If you have opposing
constraints, they will equal out and your
ImageView will be right in the center
of the two constraints (Figure 9.4).

Figure 9.4 ImageView with
opposing constraints

- ImageView -

So that is the big picture: To place views
where you want them to go in a
ConstraintLayout, you give them
constraints instead of dragging them
around the screen.

What about sizing widgets? For that, you
have three options: Let the widget
decide (your old friend wrap content),
decide for yourself, or let your widget
expand to fit your constraints.

With all those tools, you can achieve a

great many layouts with a single
ConstraintLayout, no nesting
required. As you go through this chapter,
you will see how to use constraints with
list item crime.

Using ConstraintLayout

Now, convert

list item crime.xmltousea
ConstraintLayout. Right-click on
your root LinearLayout in the
component tree and select Convert
LinearLayout to ConstraintLayout (Figure 9.5).

Figure 9.5 Converting the root
view to a ConstraintLayout

Component Tree

| |LinearLayout * "

Focrime il LinearLayout >

[8blcrime_da Select >
g
é ob Cut kX
£ [Copy %®C
N‘ [l Paste £
- Delete = I
5
§ Go to XML B
5 Refactor >
nE i@l Save Screenshot...
o

Design | Text

Convert LinearLayout to ConstraintLayout
L s 4 e

Android Studio will ask you in a pop-up
how aggressive you would like this
conversion process to be (Figure 9.6).
Since 1ist item crime isasimple
layout file, there is not much that
Android Studio can optimize. Leave the

| 0: Messages

default values checked and select OK.

Figure 9.6 Converting with the
default configuration

€] ® Convert to ConstraintLayout

This action will convert your layout into a ConstraintLayout, and attempt to set up constraints
such that your layout looks the way it did before. You may need to go and adjust the constraints
afterwards to ensure that it behaves correctly for different screen sizes.

Y Flatten Layout Hierarchy

When selected, this action will not just convert this layout to ConstraintLayout, it will
recursively remove all other nested layouts in the hierarchy as well such that you end up
with a single, flat layout. This is more efficient.

¥ Don't flatten layouts referenced from other files

If a layout defines an android:id attribute which is looked up from Java code, flattening
out this layout may result in code that no longer compiles. Normally this action won't
include these layouts, but if you want to get to a completely flat hierarchy, you may
want to enable removing these and then updating the code references as necessary
afterwards.

Cancel

Finally, you will be asked to add the
constraint layout dependency to your
project (Figure 9.7).
ConstraintLayout livesina
library, like RecyclerView. To use
the tool, you must add a dependency to
your Gradle file. Or, you can select OK

on this dialog and Android Studio will
do it for you.

Figure 9.7 Adding the
ConstraintLayout dependency

Add Project Dependency

9 This operation requires the library
pe constraint-layout.

Would you like to add this library now?

Cancel

If you peep your
app/build.gradle file, you will
see that the dependency has been added:

Listing 9.1 ConstraintLayout

project dependency
(app/build.gradle)

dependencies {
compile
'com.android.support.constraint:constraint-

layout:1.0.0-betad’
}

Your LinearLayout has now been
converted to a ConstraintLayout.

The graphical editor

Look to the toolbar near the top of the
preview and you will find a few editing

controls (Figure 9.8).

Figure 9.8 Constraint controls

Show Constraints Toggle Autoconnect

Clear All Constraints Infer Constraints

Show Show Constraints will

Constraints reveal the constraints
that are set up in the
preview and blueprint
views. You will find
this option helpful at
times and unhelpful at
others. If you have many

Toggle
Autoconnect

Clear All
Constraints

constraints, this button
will trigger an
overwhelming amount
of information.

When autoconnect is
enabled, constraints
will be automatically
configured as you drag
views into the preview.
Android Studio will
guess the constraints
that you want a view to
have and make those
connections on demand.

Clear All Constraints will
remove all existing

constraints in this layout
file. You will use this
option soon.

Infer This option is similar to
Constraints autoconnect in that
Android Studio will

automatically create
constraints for you, but
it 1s only triggered
when you select this
option. Autoconnect is
active anytime you add

a view to your layout
file.

When you converted
list item crime to use
ConstraintLayout, Android

Studio automatically added the
constraints it thinks will replicate the
behavior of your old layout. However, to
learn how constraints work you are
going to start from scratch.

Select the ConstraintLayout view in the
component tree, then choose the Clear Al
Constraints option from Figure 9.8. You
will immediately see a red warning flag
with the number 4 at the top right of the
screen. Click on it to see what that is all

about (Figure 9.9).

Figure 9.9 ConstraintLayout

warnings

Lint Warnings in Layout

Error: This view is not constrained, it only has designtime positions, so it will jump to (0,0) unless yo

Error: This view is not constrained, it only has designtime positions, so it will jump to (0,0) unless yo

Warning: [I18N] Hardcoded string "Crime Date", should use “@string” resource
Warning: [I18N] Hardcoded string "Crime Title", should use *@string " resource

Applies To:
crime_title at (8,89) dp

e Cale

Issue Explanation:

Message: This view is not constrained, it only has
designtime positions, so it will jump to (@,8) unless you
add constraints

Suggested Fixes:

- Suppress: Add tools:ignore="MissingConstraints"
attribute

Priority: 6 / 10

Category: Correctness

Severity: Error

Explanation: Missing Constraints in ConstraintlLayout.
The layout editor allows you to place widgets anywhere on
the canvas, and it records the current position with
designtime attributes (such as layout_editor_absoluteX.)

Show warnings or error icons on the design surface

When views do not have enough
constraints, ConstraintLayout
cannot know exactly where to put them.
Your TextViews have no constraints at

all, so they each have a warning that
says they will not appear in the right
place at runtime.

As you go through the chapter, you will
add those constraints back to fix those
warnings. In your own work, keep an
eye on that warning indicator to avoid
unexpected behavior at runtime.

Making room

You need to make some room. Your two
TextViews are taking up the entire
area, which will make it hard to wire up
anything else. Time to shrink those two
widgets.

Select crime_tite in the component tree

and look at the properties view on the
right (Figure 9.10).

Figure 9.10 Title TextView's
properties

Properties ol - A |

ID crime_title

==
P .. N

Width Setting Height Setting

layout_width 368dp

layout_height wrap_content
The vertical and horizontal sizes of your
TextView are governed by the height
setting and width setting, respectively.
These can be set to one of three view

size settings (Figure 9.11), each of
which corresponds to a value for
layout width Or layout height.

Figure 9.11 Three view size
settings

Fixed Wrap Content Any Size

I Y i

— — >>> <L A

I A i

b

layout_width | 86dp layout_width | wrap_content layout_width | 0dp

layout_height | 22dp layout_height | wrap_content layout_height | Odp

Table 9.1 View size setting
types

Setting

type Setting value [[Usage

fixed

Xdp

Specifies an
explicit size
(that will not
change) for the
view. The size
1s specified in
dp units.
(More on dp
units later in
this chapter.)

wrap
content

wrap content

Assigns the
view 1ts
“desired” size.
For a
TextView,
this means that
the size will be

just big enough
to show its
contents.

Allows the
view to stretch
0dp to meet the
specified
constraints.

any
size

Bothcrime title and

crime date are setto a large fixed
width, which is why they are taking up
the whole screen. Adjust the width and
height of both of these widgets. With
crime_tite still selected in the component
tree, click the width setting until it
cycles around to the wrap content
setting. If necessary, adjust the height

setting until the height is also set to wrap
content (Figure 9.12).

Figure 9.12 Adjusting the title
width and height

Properties

ID

layout_width

layout_height

4—_. #" _'E.

crime_title

wrap_content

wrap_content

Repeat the process with the crime_date
widget to set its width and height. Now,
the two widgets overlap but are much

smaller (Figure 9.13).

Figure 9.13 Overlapping
TextViewsS

Criminalintent

Adding widgets

With your other widgets out of the way,
you can add the handcuffs image to your
layout. Add an ImageView to your
layout file. In the palette, find
ImageView (Figure 9.14). Drag it into
your component tree as a child of
ConstraintLayout, just underneath
crime date.

Figure 9.14 Finding the
ImageView
[T ITalciivicw

Climages & Media
o] |maQEButt0n

3 VideoView
1Date & Time
810 TimePicker

In the pop-up, choose ic solved as
the resource for the ImageView
(Figure 9.15). This image will be used
to indicate which crimes have been
solved.

Figure 9.15 Choosing the
ImageView's resource

L JON Resources

Q =l B3 Add new resource ¥
Drawable v.Project Name: ic_solved
e @ ic_launcher

¥ android
Halert_dark_frame
Hf!'alertwlight:ﬁframe

e

The ImageView is now a part of your
layout, but it has no constraints. So
while the graphical editor gives ita
position, that position does not really

mean anything.

Time to add some constraints. Click on
your ImageView in the preview or in
the component tree. You will see dots on
each side of the ImageView

(Figure 9.16). Each of these dots
represents a constraint handle.

Figure 9.16 ImageView's
constraint handles

You want the ImageView to be
anchored in the right side of the view. To
accomplish this, you need to create
constraints from the top, right, and
bottom edges of the ImageView.

First, you are going to set a constraint
between the top of the ImageView and
the top of the ConstraintLayout.
The top of the ConstraintLayout
is a little difficult to see, but it is just
under the blue Criminallntent toolbar. In the
preview, drag the top constraint handle
from the ImageView to the top of the
ConstraintLayout — you will need
to drag to the right somewhat, because
the image 1s at the top of the constraint
layout. Watch for the constraint handle to
turn green and a pop-up reading Release to
Create Top Constraint to appear

(Figure 9.17), and release the mouse.

Figure 9.17 Creating a top
constraint

Release to Create
Top Constraint

Be careful to avoid clicking when the
mouse cursor is a corner shape — this
will resize your ImageView instead.
Also, make sure you do not inadvertently
attach the constraint to one of your
TextViews. If you do, click on the
constraint handle to delete the bad
constraint, then try again.

When you let go and set the constraint,

the view will snap into position to
account for the presence of the new
constraint. This 1s how you move views
around ina ConstraintLayout —
by setting and removing constraints.

Verify that your ImageView has a top
constraint connected to the top of the
ConstraintLayout by hovering
over the ImageView with your mouse.
It should look like Figure 9.18.

Figure 9.18 ImagevView with a
top constraint

Criminallntent

Do the same for the bottom constraint
handle, dragging it from the
ImageView to the bottom of the root
view, also taking care to avoid attaching
to the TextViews. Again, you will
need to drag the connection toward the
center of the root view and then slightly
down, as shown in Figure 9.19.

Figure 9.19 ImageView
connection in progress

Criminalintent

Finally, drag the right constraint handle
from the ImageView to the right side
of the root view. That should set all of
your constraints. Hovering over the
ImageView will show all of them.
Your constraints should look like

Figure 9.20.

Figure 9.20 ImageView's three
constraints

Criminallntent

Crime Didhe

ConstraintLayout’s inner
workings

Any edits that you make with the
graphical editor are reflected in the
XML behind the scenes. You can still
edit the raw ConstraintLayout

XML, but the graphical editor will often
be easier, because
ConstraintLayout is much more
verbose than other ViewGroups.

Switch to the text view to see what
happened to the XML when you created
the three constraints on your
ImageView.

- - . ’
Listing 9.2 ImageView’'s hew
XML constraints
(layout/list item crime.xml
<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/andr
xmlns:app="http://schemas.android.com/apk/res-
auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="wrap content">

<ImageView

android:id="@+id/imageView"
android:layout width="wrap content"
android:layout height="wrap content"
app:srcCompat="@drawable/ic_solved"
android:layout marginTop="16dp"
app:layout constraintTop toTopOf="parent"
app:layout constraintBottom toBottomOf="parent"
android:layout marginBottom="16dp"
android:layout marginEnd="16dp"
app:layout constraintRight toRightOf="parent"/>

</android.support.constraint.ConstraintLayout>

Take a closer look at the top constraint:

app:layout constraintTop toTopOf="parent"

This attribute begins with 1ayout . All
attributes that begin with 1ayout are
known as layout parameters. Unlike
other attributes, layout parameters are
directions to that widget’s parent, not
the widget itself. They tell the parent
layout how to arrange the child element
within itself. You have seen a few layout

parameters so far, like 1ayout width
and layout height.

The name of the constraint is
constraintTop. This means that this 1s
the top constraint on your ImageView.

Finally, the attribute ends with
toTopOf="parent". This means that
this constraint is connected to the top
edge of the parent. The parent here is the
ConstraintLayout.

Whew, what a mouthful. Time to leave
the raw XML behind and return to the
graphical editor.

Editing properties

Your ImageView is now positioned
correctly. Next up: Position and size the
title TextView.

First, select crime_date in the component
tree and drag it out of the way

(Figure 9.21). Remember that any
changes you make to the position in the
preview will not be represented when
the app is running. At runtime, only
constraints remain.

Figure 9.21 Get out of here,
date

Criminallntent

Crime Title o
D

Crime Date

Now, select crime_tite in the component
tree. This will also highlight crime_title in
the preview.

You want crime_title to be at the top left of
your layout, positioned to the left of your
new ImageView. That requires three
constraints:

e from the left side of your view

to the left side of the parent,
with a 16dp margin

e from the top of your view to the
top of the parent, with a 16dp
margin

e from the right of your view to
the left side of the new
ImageView, with an 8dp
margin

Modify your layout so that all of these
constraints are in place. (As of this
writing, finding the right place to click
can be tricky. Try to click inside of the
TextView, and remember that you can
always key Command+Z (Ctrl+Z) to
undo and try again.)

Verify that your constraints look like
Figure 9.22. (The selected widget will
show squiggly lines for any of its
constraints that are stretching.)

Figure 9.22 Title TextView's
constraints

Criminallntent

Iy

Crime Title >

Crime Date

When you click on the TextView, you
can see that 1t has an oval area that the
ImageView did not have.
TextViews have this additional
constraint anchor that can be used to

align text. You will not be using it in this
chapter, but now you know what it is.

Now that the constraints are set up, you
can restore the title TextView to its
full glory. Adjust its horizontal view
setting to any size (0dp) to allow the title
TextView to fill all of the space
available within its constraints. Adjust
the vertical view size to wrap content,
if it 1s not already, so that the
TextView will be just tall enough to
show the title of the crime. Verify that
your settings match those shown in

Figure 9.23.

Figure 9.23 crime_ title view

settings
Properties | -
ID crime_title -
16
16 RN
i

layout_width '_ Odp

layout_height " wrap_content

Now, add constraints to the date
TextView. Select crime_date in the
component tree. You are going to add
three constraints:

e from the left side of your view
to the left side of the parent,
with a 16dp margin

e from the top of your view to the
bottom of the crime title, with
an 8dp margin

e from the right of your view to
the left side of the new
ImageView, with an 8dp
margin

After adding the constraints, adjust the
properties of the TextView. You want

the width of your date TextView to be
Any Size and the height to be Wrap Content,

just like the title TextView. Verify that
your settings match those shown in

Figure 9.24.

Figure 9.24 crime_date view

settings
Properties P - T |
ID | crime_date |
ls
¥
16 HAH M1 8
N
@
layout_width Odp

layout_height wrap_content

Your layout in the preview should look
similar to Figure 9.1, at the beginning of
the chapter.

Run CriminalIntent and verify that you
see all three components lined up nicely
in each row of your RecyclerView

(Figure 9.25).

Figure 9.25 Now with three
views per row

Criminallntent

Crime #0
%

Mon Dec 12 14:45:54 EST 2016

Crime #1

Mon Dec 12 14:45:54 EST 2016

Crime #2 Q
O

Mon Dec 12 14:45:54 EST 2016

Frimma #2

s o

Mon Dec 12 14:45:54 EST 2016

Crime #4

Mon Dec 12 14:45:54 EST 2016

Crime #5

Mon Dec 12 14:45:54 EST 2016

Crime #6

Mon Dec 12 14:45:54 EST 2016

Crime #7

Mon Dec 12 14:45:54 EST 2016

Crime #8

Mon Dec 12 14:45:54 EST 2016

Making list items
dynamic

Now that the layout includes the right
constraints, update the ImageView so

that the handcufts are only shown on
crimes that have been solved.

First, update the ID of your
ImageView. When you added the
ImageView to your
ConstraintLayout, it was given a
default name. That name is not too
descriptive. Select your ImageView in
list item crime.xml and, inthe
properties view, update the ID attribute
to crime solved (Figure 9.26). You
will be asked whether Android Studio
should update all usages of the ID; select
Yes.

Figure 9.26 Updating the
image ID

Properties Vgl - 2,
ID [crime_solved| |
| 1e

With a proper ID in place, now you will
update your code. Open
CrimeListFragment.java.In
CrimeHolder, add an ImageView
instance variable and toggle its visibility
based on the solved status of your crime.

Listing 9.3 Updating handcuff
visibility
(CrimeListFragment. java)

private class CrimeHolder extends
RecyclerView.ViewHolder

implements View.OnClickListener ({

private TextView mDateTextView;
private ImageView mSolvedImageView;

public CrimeHolder (LayoutInflater inflater,
ViewGroup parent) {

super (inflater.inflate (R.layout.list item crime,
parent, false));
itemView.setOnClickListener (this);

mTitleTextView = (TextView)
itemView.findViewById(R.id.crime title);
mDateTextView = (TextView)

itemView.findViewById(R.id.crime date);
mSolvedImageView = (ImageView)
itemView.findViewById(R.id.crime_solved) ;
}

public void bind(Crime crime) {
mCrime = crime;
mTitleTextView.setText (mCrime.getTitle());
mDateTextView.setText (mCrime.getDate () .toString());
mSolvedImageView.setVisibility (crime.isSolved() ?
View.VISIBLE : View.GONE) ;

}

}

Run CriminalIntent and verify that the

handcuffs now appear on every other
row.

More on Layout
Attributes

Let’s add a few more tweaks to the
designof l1ist item crime.xml
and, in the process, answer some
lingering questions you might have about
widgets and attributes.

Navigate back to the Design view of

list item crime.xml. Select
crime_tite and adjust some of the attributes
in the properties view.

Click the disclosure arrow next to
textAppearance to reveal a set of text and

font attributes. Update the textColor
attribute to @android:color/black

(Figure 9.27).

Figure 9.27 Updating the title
color

textColor .: @android:color/black

Next, set the textSize attribute to 18sp.
Run CriminalIntent and be amazed at
how much better everything looks with a
fresh coat of paint.

Screen pixel densities
and dp and sp

Inlist item crime.xml, you

have specified attribute values in terms
of sp and dp units. Now it is time to
learn what they are.

Sometimes you need to specify values
for view attributes in terms of specific
sizes (usually in pixels, but sometimes
points, millimeters, or inches). You see
this most commonly with attributes for
text size, margins, and padding. Text size
is the pixel height of the text on the
device’s screen. Margins specify the
distances between views, and padding
specifies the distance between a view’s
outside edges and its content.

As you saw 1n the section called Adding
an Icon in Chapter 2, Android
automatically scales images to different
screen pixel densities using density-

qualified drawable folders (such as
drawable-xhdpi). But what
happens when your images scale, but
your margins do not? Or when the user
configures a larger-than-default text
size?

To solve these problems, Android
provides density-independent dimension
units that you can use to get the same size
on different screen densities. Android
translates these units into pixels at
runtime, so there is no tricky math for

you to do (Figure 9.28).

Figure 9.28 Dimension units in

action on TextView
T T

Text size = 15sp

Text size = 30px Text size = 30px

Text size = 30dp Text size = 30dp
et gt =l Text size = 30sp

Text size = 30px
Text size = 30dp
Text size = 30sp

MDPI HDPI HDPI, large text

px Short for pixel. One pixel
corresponds to one onscreen
pixel, no matter what the
display density is. Because
pixels do not scale

dp
(or

dip)

appropriately with device
display density, their use is not
recommended.

Short for density-independent
pixel and usually pronounced
“dip.” You typically use this
for margins, padding, or
anything else for which you
would otherwise specify size
with a pixel value. One dp is
always 1/160th of an inch on a
device’s screen. You get the
same size regardless of screen
density: When your display is
a higher density, density-
independent pixels will
expand to fill a larger number

Sp

Pt,
mm,
in

of screen pixels.

Short for scale-independent
pixel. Scale-independent
pixels are density-independent
pixels that also take into
account the user’s font size
preference. You will almost
always use sp to set display
text size.

These are scaled units, like
dp, that allow you to specify
interface sizes in points (1/72
of an inch), millimeters, or
inches. However, we do not
recommend using them: Not all
devices are correctly

configured for these units to
scale correctly.

In practice and in this book, you will use
dp and sp almost exclusively. Android
will translate these values into pixels at
runtime.

Margins vs padding

In both GeoQuiz and CriminalIntent, you
have given widgets margin and padding
attributes. Beginning developers
sometimes get confused about these two.
Now that you understand what a layout
parameter is, the difference is easier to
explain.

Margin attributes are layout parameters.
They determine the distance between
widgets. Given that a widget can only
know about itself, margins must be the
responsibility of the widget’s parent.

Padding, on the other hand, is not a
layout parameter. The
android:padding attribute tells the
widget how much bigger than its
contents it should draw itself. For
example, say you wanted the date button
to be spectacularly large without
changing its text size (Figure 9.29).

Figure 9.29 I like big buttons
and I cannot lie...

‘ TITLE \

Enter a title for the crime.

DETAILS

[] solved

You could add the following attribute to

the Button.

Listing 9.4 Padding in action
(fragment crime.xml)

<Button android:id="@+id/crime_date"
android:layout width="match parent"
android:layout height="wrap content"
android:layout marginLeft="16dp"
android:layout marginRight="16dp"
android:padding="80dp" />

Alas, you should probably remove this
attribute before continuing.

Styles, themes, and
theme attributes

A style 1s an XML resource that contains
attributes that describe how a widget
should look and behave. For example,

the following is a style resource that
configures a widget with a larger-than-
normal text size:

<style name="BigTextStyle">
<item name="android:textSize">20sp</item>
<item name="android:padding">3dp</item>
</style>

You can create your own styles (and you
will in Chapter 22). You add themto a
styles file in res/values/ and refer
to them in layouts like this:
@style/my own style.

Take another look at the TextView
widgets in fragment crime.xml;
each has a style attribute that refers to
a style created by Android. This
particular style makes the TextViews
look like list separators and comes from
the app’s theme. A theme is a collection

of styles. Structurally, a theme is itself a
style resource whose attributes point to
other style resources.

Android provides platform themes that
your apps can use. When you created
CriminalIntent, the wizard set up a theme
for the app that is referenced on the
application tagin the manifest.

You can apply a style from the app’s
theme to a widget using a theme
attribute reference. This 1s what you are
doingin fragment crime.xml
when you use the value 2
android:listSeparatorTextViewSty.

In a theme attribute reference, you tell
Android’s runtime resource manager,
“Go to the app’s theme and find the

attribute named
listSeparatorTextViewStyle. This
attribute points to another style resource.
Put the value of that resource here.”

Every Android theme will include an
attribute named
listSeparatorTextViewStyle, butits
definition will be different depending on
the overall look and feel of the
particular theme. Using a theme attribute
reference ensures that the TextViews
will have the correct look and feel for

your app.

You will learn more about how styles
and themes work in Chapter 22.

Android’s design

guidelines

Notice that for your margins, Android
Studio defaulted to either a 16dp or a
g8dp value. This value follows Android’s
material design guidelines. You can find
all of the Android design guidelines at
developer.android.com/
design/index.html.

Your Android apps should follow these
guidelines as closely as possible.
However, you should know that the
guidelines rely heavily on newer
Android SDK functionality that is not
always available or easy to achieve on
older devices. Many of the design
recommendations can be followed using

the AppCompat library, which you have
seen and will read more about in

Chapter 13.

The Graphical
Layout Tools and
You

The graphical layout tools are useful,
especially with ConstraintLayout.
Not everyone is a fan, though. Many
prefer the simplicity and clarity of
working directly with XML, rather than
relying on the IDE.

Do not feel that you have to choose
sides. You can switch between the
graphical editor and directly editing
XML at any time. Feel free to use

whichever tool you prefer to create the
layouts in this book. From now on, we
will show you a diagram rather than the
XML when you need to create a layout.
You can decide for yourself how to
create it — XML, graphical editor, or
some of each.

Challenge:
Formatting the
Date

The Date object is more of a timestamp
than a conventional date. A timestamp is
what you see when you call

toString () onaDate, so thatis
what you have on in each of your
RecyclerView rows. While
timestamps make for good
documentation, it might be nicer if the
rows just displayed the date as humans
think of it — like “Jul 22, 2016.” You can

do this with an instance of the
android. text.format.DateFor
class. The place to start is the reference
page for this class in the Android
documentation.

You can use methods in the
DateFormat class to get a common
format. Or you can prepare your own
format string. For a more advanced
challenge, create a format string that will
display the day of the week as well — for
example, “Friday, Jul 22, 2016.”

10
Using Fragment
Arguments

In this chapter, you will get the list and
the detail parts of CriminalIntent
working together. When a user presses
an item in the list of crimes, a new
CrimeActivity hostinga
CrimeFragment will appear and
display the details for that instance of

Crime (Figure 10.1).

Figure 10.1 Starting
CrimeActivity from

CrimelListActivity
CrimeListActivity sfartAcﬁvity(...)_ T CrimeActivity
\ AT A
| CrimeListFragment | CrimeFragment

In GeoQuiz, you had one activity
(QuizActivity) start another
activity (CheatActivity). In
CriminalIntent, you are going to start the
CrimeActivity froma fragment. In
particular, you will have
CrimelListFragment start an
instance of CrimeActivity.

Starting an Activity
from a Fragment

Starting an activity from a fragment
works nearly the same as starting an
activity from another activity. You call
the

Fragment.startActivity (Inte
method, which calls the corresponding
Activity method behind the scenes.

InCrimeListFragment’s
CrimeHolder, begin by replacing the
toast with code that starts an instance of
CrimeActivity.

Listing 10.1 Starting

CrimeActivity
(CrimeListFragment. java)

private class CrimeHolder extends
RecyclerView.ViewHolder
implements View.OnClickListener {
@Override
public void onClick(View view) {
mErime—getfitie)—+——cIickedt+5—
Foast-HEENGTH_SHORTY
—show{)~
Intent intent = new Intent(getActivity(),
CrimeActivity.class) ;
startActivity (intent) ;

}
}

Here CrimelListFragment creates
an explicit intent that names the
CrimeActivity class.
CrimeListFragment uses the
getActivity () method to pass its
hosting activity as the Context object
that the Intent constructor requires.

Run Criminallntent. Press any list item,
and you will see a new
CrimeActivity hostinga
CrimeFragment (Figure 10.2).

Figure 10.2 A blank

CrimeFragment

w4 1l 7:00
Criminalintent

TITLE

Enter a title for the crime.

DETAILS

[solved

The CrimeFragment does not yet
display the data for a specific Crime,
because you have not told it which
Crime to display.

Putting an extra

You can tell CrimeFragment which
Crime to display by passing the crime
ID as an Intent extra when

CrimeActivity is started.

Start by creating a newIntent method
inCrimeActivity.

Listing 10.2 Creating a
newIntent method
(CrimeActivity. java)

public class CrimeActivity extends
SingleFragmentActivity {

public static final String EXTRA CRIME ID =
"com.bignerdranch.android.criminalintent.crime_id";
public static Intent newIntent (Context
packageContext, UUID crimeId) {
Intent intent = new Intent (packageContext,
CrimeActivity.class);

intent.putExtra (EXTRA_CRIME ID, crimeld);
return intent;

}

After creating an explicit intent, you call

putExtra (..) and pass in a string key
and the value the key maps to (the
crimeId). Inthis case, you are calling
putExtra (String,
Serializable) because UUIDis a
Serializable object.

Now, update the CrimeHolder to use
the newIntent method while passing
in the crime ID.

Listing 10.3 Stashing and
passing a Crime
(CrimeListFragment. java)

private class CrimeHolder extends
RecyclerView.ViewHolder
implements View.OnClickListener {

@Override
public void onClick(View view) {
T X _ T Activi —
ErimeActivity-—ctass)

Intent intent =

CrimeActivity.newIntent (getActivity(),
mCrime.getId());
startActivity (intent);
}
}

Retrieving an extra

The crime ID is now safely stashed in
the intent that belongs to
CrimeActivity. However, it is the
CrimeFragment class that needs to
retrieve and use that data.

There are two ways a fragment can
access data in its activity’s intent: an
easy, direct shortcut and a complex,
flexible implementation. First, you are
going to try out the shortcut. Then you
will implement the complex and flexible

solution.

In the shortcut, CrimeFragment will
simply use the getActivity ()
method to access the
CrimeActivity’s intent directly. In
CrimeFragment.java, retrieve the
extra from CrimeActivity’s intent
and use it to fetch the Crime.

Listing 10.4 Retrieving the
extra and fetching the Crime

(CrimeFragment. java)

public class CrimeFragment extends Fragment {

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
ars _ ars ,
UUID crimelId = (UUID)
getActivity () .getIntent()

.getSerializableExtra (CrimeActivity.EXTRA CRIME ID);
mCrime =

CrimeLab.get (getActivity()) .getCrime (crimeld) ;
}

}

In Listing 10.4, other than the call to
getActivity (), the code is the
same as if you were retrieving the extra
from the activity’s code. The
getIntent () method returns the
Intent that was used to start
CrimeActivity. Youcall
getSerializableExtra (String
on the Intent to pull the UUID out
into a variable.

After you have retrieved the ID, you use
it to fetch the Crime from CrimeLab.

Updating

CrimeFragment'’s view
with Crime data

Now that CrimeFragment fetches a
Crime, its view can display that
Crime’s data. Update
onCreateView (..) to display the
Crime’s title and solved status. (The
code for displaying the date is already in
place.)

Listing 10.5 Updating view
objects (CrimeFragment. java)

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container,

Bundle savedInstanceState) {

mTitleField =
(EditText)v.findViewById(R.id.crime title);
mTitleField.setText (mCrime.getTitle()) ;

mTitleField.addTextChangedListener (new
TextWatcher () {

1)
mSolvedCheckBox =
(CheckBox)v.findViewById(R.id.crime_solved);
mSolvedCheckBox.setChecked (mCrime.isSolved()) ;
mSolvedCheckBox.setOnCheckedChangeListener (new
OnCheckedChangelListener () {
}) i
return v;
}
Run Criminallntent. Select Crime #4 and
watch a CrimeFragment instance

with the correct crime data appear
(Figure 10.3).

Figure 10.3 The crime that you

wanted to see
¥4 K 7:00

Criminalintent

Crime #4

DETAILS

Solved

The downside to direct

retrieval

Having the fragment access the intent
that belongs to the hosting activity makes
for simple code. However, it costs you
the encapsulation of your fragment.
CrimeFragment is no longer a
reusable building block because it
expects that it will always be hosted by
an activity whose Intent defines an
extra named
com.bignerdranch.android.cr

This may be a reasonable expectation on
CrimeFragment’s part, but it means
that CrimeFragment, as currently
written, cannot be used with just any
activity.

A better solution is to stash the crime 1D
someplace that belongs to
CrimeFragment rather than keeping
itin CrimeActivity’s personal
space. The CrimeFragment could
then retrieve this data without relying on
the presence of a particular extra in the
activity’s intent. The “someplace” that
belongs to a fragment is known as its
arguments bundle.

Fragment
Arguments

Every fragment instance can have a
Bundle object attached to it. This
bundle contains key-value pairs that
work just like the intent extras of an
Activity. Each pair is known as an
argument.

To create fragment arguments, you first
create a Bundle object. Next, you use
type-specific “put” methods of Bundle
(similar to those of Intent) to add
arguments to the bundle:

Bundle args = new Bundle();

args.putSerializable (ARG_MY OBJECT, myObject);
args.putInt (ARG MY INT, myInt);
args.putCharSequence (ARG MY STRING, myString);

Attaching arguments to
a fragment

To attach the arguments bundle to a
fragment, you call
Fragment.setArguments (Bundl
Attaching arguments to a fragment must
be done after the fragment is created but
before it is added to an activity.

To hit this window, Android
programmers follow a convention of
adding a static method named
newInstance () to the Fragment
class. This method creates the fragment

instance and bundles up and sets its
arguments.

When the hosting activity needs an
instance of that fragment, you have it call
the newInstance (..) method rather
than calling the constructor directly. The
activity can pass in any required
parameters to newInstance (...) that
the fragment needs to create its

arguments.

In CrimeFragment, write a
newInstance (UUID) method that
accepts a UUID, creates an arguments
bundle, creates a fragment instance, and
then attaches the arguments to the
fragment.

Listing 10.6 Writing a

newInstance (UUID) method
(CrimeFragment. java)

public class CrimeFragment extends Fragment {

private static final String ARG _CRIME_ID =
"crime_id";

private Crime mCrime;

private EditText mTitleField;

private Button mDateButton;
private CheckBox mSolvedCheckbox;

public static CrimeFragment newInstance (UUID
crimeId) {
Bundle args = new Bundle();
args.putSerializable (ARG_CRIME_ ID, crimeId);

CrimeFragment fragment = new CrimeFragment() ;
fragment.setArguments (args) ;
return fragment;

}

Now, CrimeActivity should call
CrimeFragment.newInstance (U
when it needs to create a
CrimeFragment. It will pass in the

UUID it retrieved from its extra. Return
to CrimeActivity and, in
createFragment (), retrieve the
extra from CrimeActivity’s intent
and pass it into
CrimeFragment.newInstance (U

You can now also make
EXTRA CRIME ID private, because
no other class will access that extra.

Listing 10.7 Using
newInstance (UUID)
(CrimeActivity. java)

public class CrimeActivity extends
SingleFragmentActivity {

public private static final String EXTRA CRIME ID

"com.bignerdranch.android.criminalintent.crime id";

@Override

protected Fragment createFragment () {
Teturm mew—CrimeFragmernt()s
UUID crimeId = (UUID) getIntent()

.getSerializableExtra (EXTRA CRIME_ID) ;

return CrimeFragment.newInstance (crimeld) ;
}
}

Notice that the need for independence
does not go both ways.
CrimeActivity has to know plenty
about CrimeFragment, including that
it has a newInstance (UUID)
method. This is fine. Hosting activities
should know the specifics of how to host
their fragments, but fragments should not
have to know specifics about their
activities. At least, not if you want to
maintain the flexibility of independent
fragments.

Retrieving arguments

When a fragment needs to access its
arguments, it calls the Fragment
method getArguments () and then
one of the type-specific “get” methods of
Bundle.

Back in
CrimeFragment.onCreate(..),
replace your shortcut code with
retrieving the UUID from the fragment

arguments.

Listing 10.8 Getting crime ID
from the arguments
(CrimeFragment. java)

@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

— i meEd——(UUED) Activd . £ g
_ Serializablef (ErimeActivity BXTRA_CRIMEE5)-

UUID crimeId = (UUID)
getArguments () .getSerializable (ARG_CRIME ID);

mCrime =

CrimelLab.get (getActivity()) .getCrime (crimeld) ;

}

Run CriminalIntent. The app will behave
the same, but you should feel all warm
and fuzzy inside for maintaining
CrimeFragment’s independence.
You are also well prepared for the next
chapter, where you will implement more
sophisticated navigation in
CriminalIntent.

Reloading the List

There is one more detail to take care of.
Run CriminalIntent, press a list item, and
then modify that Crime’s details. These
changes are saved to the model, but
when you return to the list, the
RecyclerView is unchanged.

The RecyclerView’s Adapter
needs to be informed that the data has
changed (or may have changed) so that it
can refetch the data and reload the list.
You can work with the
ActivityManager’s back stack to
reload the list at the right moment.

When CrimeListFragment starts
an instance of CrimeActivity, the
CrimeActivity is put on top of the
stack. This pauses and stops the instance
of CrimeListActivity that was
initially on top.

When the user presses the Back button to
return to the list, the CrimeActivity
is popped off the stack and destroyed. At
that point, the CrimeListActivity

is started and resumed (Figure 10.4).

Figure 10.4 CriminalIlntent’s
back stack

4700

Criminalintent

ccccccc

Press Back

When the CrimeListActivity is
resumed, 1t receives a call to
onResume () from the OS. When
CrimeListActivity receives this
call, its FragmentManager calls
onResume () on the fragments that the
activity is currently hosting. In this case,

the only fragment is
CrimelistFragment.

In CrimeListFragment, override
onResume () and trigger a call to
updateUI () to reload the list. Modify
the updateUI () method to call
notifyDataSetChanged () ifthe
CrimeAdapter is already set up.

Listing 10.9 Reloading the list

in onResume ()
(CrimeListFragment. java)

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container,

Bundle savedInstanceState) {

}

@Override

public void onResume () {
super.onResume () ;
updateUI() ;

}
private void updateUI () {

CrimelLab crimelab = Crimelab.get (getActivity()):;
List<Crime> crimes = crimelab.getCrimes();

if (mAdapter == null) {
mAdapter = new CrimeAdapter (crimes);
mCrimeRecyclerView.setAdapter (mAdapter) ;
} else {
mAdapter.notifyDataSetChanged() ;

}
}

Why override onResume () to update
the RecyclerView and not
onStart () ? You cannot assume that
your activity will be stopped when
another activity is in front of it. If the
other activity is transparent, your
activity may just be paused. If your
activity is paused and your update code
1s inonStart (), then the list will not
be reloaded. In general, onResume ()
is the safest place to take action to

update a fragment’s view.

Run CriminalIntent. Select a crime and
change its details. When you return to the
list, you will immediately see your
changes.

You have made progress with
CriminalIntent in the last two chapters.
Let’s take a look at an updated object

diagram (Figure 10.5).

Figure 10.5 Updated object
diagram for CriminalIntent

Model
H Crime
mTitle =
g e arylict }4———— Cimolab |
mbate o ..
L misSolved PPt
"""""""""""""""""""" getCrimes()
Controller i

CrimeListActivity |—#[CrimeListFragment |

- - - >| CrimeActivity CrimeFragment

crime id extra

Tou

TextView Button_| [CheckBox
TextView
ImageView

FrameLayout FrameLayout

Getting Results
with Fragments

In this chapter, you did not need a result
back from the started activity. But what
if you did? Your code would look a lot
like 1t did in GeoQuiz. Instead of using
Activity’s
startActivityForResult(...)
method, you would use
Fragment.startActivityForRe
Instead of overriding
Activity.onActivityResult(..
you would override
Fragment.onActivityResult(..

public class CrimeListFragment extends Fragment {
private static final int REQUEST CRIME = 1;

private class CrimeHolder extends
RecyclerView.ViewHolder
implements View.OnClickListener ({

@Override
public void onClick (View view) {
Intent intent =
CrimeActivity.newIntent (getActivity(),
mCrime.getId());
startActivityForResult (intent,
REQUEST CRIME) ;
}
}

@Override
public void onActivityResult (int requestCode, int
resultCode, Intent data) {
if (requestCode == REQUEST CRIME) {
// Handle result
}

}

Fragment.startActivityForRe
int) is similar to the Activity
method with the same name. It includes
some additional code to route the result

to your fragment from its host activity.

Returning results from a fragment is a bit
different. A fragment can receive a result
from an activity, but it cannot have its
own result. Only activities have results.
So while Fragment has its own
startActivityForResult(...)
and onActivityResult(...)
methods, it does not have any
setResult (..) methods.

Instead, you tell the host activity to
return a value. Like this:

public class CrimeFragment extends Fragment {

public void returnResult () {
getActivity () .setResult (Activity.RESULT OK,
null);
}
}

For the More
Curious: Why Use
Fragment
Arguments?

This all seems so complicated. Why not
just set an instance variable on the
CrimeFragment when it is created?

Because it would not always work.
When the OS re-creates your fragment —
either across a configuration change or
when the user has switched out of your
app and the OS reclaims memory — all of

your instance variables will be lost.
Also, remember that there is no way to
cheat low-memory death, no matter how
hard you try.

If you want something that works in all
cases, you have to persist your
arguments.

One option is to use the saved instance
state mechanism. You can store the crime
ID as a normal instance variable, save
the crime ID in
onSaveInstanceState (Bundle)
and snag it from the Bundle in
onCreate (Bundle). This will work
1n all situations.

However, that solution is hard to
maintain. If you revisit this fragment in a

few years and add another argument, you
may not remember to save the argument
in

onSaveInstanceState (Bundle)
Going this route is less explicit.

Android developers prefer the fragment
arguments solution because it is very
explicit and clear in its intentions. In a
few years, you will come back and know
that the crime ID is an argument and 1s
safely shuttled along to new instances of
this fragment. If you add another
argument, you will know to stash it in the
arguments bundle.

Challenge:
Efficient
RecyclerView
Reloading

The notifyDataSetChanged
method on your Adapter is a handy
way to ask the RecyclerView to
reload all of the items that are currently
visible.

The use of this method in CriminalIntent
is wildly inefficient because at most one
Crime will have changed when

returning to the
CrimelistFragment.

Use the RecyclerView.Adapter’s
notifyItemChanged (int)
method to reload a single item in the list.
Modifying the code to call that method is
easy. The challenge is discovering
which position has changed and
reloading the correct item.

Challenge:
Improving
CrimelLab
Performance

CrimeLab’s get (UUID) method
works, but checking each crime’s ID
against the ID you are looking for one at
a time can be improved upon. Improve
the performance of the lookup, making
sure that Criminallntent’s existing
behavior remains unchanged as you
refactor.

11
Using
ViewPager

In this chapter, you will create a new
activity to host CrimeFragment. This
activity’s layout will consist of an
instance of ViewPager. Adding a
ViewPager to your Ul lets users
navigate between list items by swiping
across the screen to “page” forward or
backward through the crimes

(Figure 11.1).

Figure 11.1 Swiping to page
through crimes

Criminalintent

Figure 11.2 shows an updated diagram
for CriminalIntent. The new activity will
be named CrimePagerActivity
and will take the place of
CrimeActivity. Its layout will
consist of a ViewPager.

Figure 11.2 Object diagram for
CrimePagerActivity

Model
Crim
ﬁgue —
mDate . ~
misSolved 5,
Controller getGrimes(

GrimeListActivity |—#»{ CrimeListFragment | - - - - - - = - - - - o[
startActivity(..) |
crime id extra

FrameLayout L ViewPager J

The only new objects you need to create
are within the dashed rectangle in the
object diagram:
CrimePagerActivity and
ViewPager. Nothing else in
CriminalIntent needs to change to

implement paging between detail views.
In particular, you will not have to touch
the CrimeFragment class, thanks to
the work you did in Chapter 10 to ensure
CrimeFragment’s independence.

Here are the tasks ahead in this chapter:

e create the
CrimePagerActivity
class

e define a view hierarchy that
consists of a ViewPager

e wire up the ViewPager and
its adapter in
CrimePagerActivity

e modify
CrimeHolder.onClick(..

to start
CrimePagerActivity
instead of CrimeActivity

Creating
CrimePagerActivity

CrimePagerActivity will be a
subclass of AppCompatActivity. It
will create and manage the
ViewPager.

Create a new class named
CrimePagerActivity. Make its
superclass AppCompatActivity
and set up the view for the activity.

Listing 11.1 Setting up
ViewPager
(CrimePagerActivity. java)

public class CrimePagerActivity extends
AppCompatActivity {

@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity crime_ pager) ;

}
}

The layout file does not yet exist. Create
a new layout file in res/layout/ and
name itactivity crime pager.
Make its root view a ViewPager and
give it the attributes shown in

Figure 11.3. Notice that you must use
ViewPager'’s full package name
(android.support.v4d.view.Vie

Figure
11.3 CrimePagerActivity’'s
ViewPager

(activity crime pager.xml)

android.support.v4.view.ViewPager
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/crime_view_pager"
android: layout_width="match_parent"
android: layout_height="match_parent"

You use ViewPager’s full package
name when adding it to the layout file
because the ViewPager class is from
the support library. Unlike Fragment,
ViewPager is only available in the
support library; there is not a “standard”
ViewPager class in a later SDK.

ViewPager and
PagerAdapter

AViewPager is like a
RecyclerView in some ways. A
RecyclerView requires an
Adapter to provide views. A
ViewPager requires a
PagerAdapter.

However, the conversation between
ViewPager and PagerAdapter is
much more involved than the
conversation between RecyclerView
and Adapter. Luckily, you can use
FragmentStatePagerAdapter,a
subclass of PagerAdapter, to take
care of many of the details.

FragmentStatePagerAdapter
will boil down the conversation to two
simple methods: getCount () and
getItem(int). When your
getItem(int) method is called for a
position in your array of crimes, it will
return a CrimeFragment configured
to display the crime at that position.

In CrimePagerActivity, set the
ViewPager’s pager adapter and
implement its getCount () and
getItem(int) methods.

Listing 11.2 Setting up pager
adapter
(CrimePagerActivity. java)

public class CrimePagerActivity extends
AppCompatActivity {

private ViewPager mViewPager;
private List<Crime> mCrimes;

@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity crime pager);

mViewPager = (ViewPager)
findViewById (R.id.crime_view_pager) ;

mCrimes = Crimelab.get (this) .getCrimes() ;

FragmentManager fragmentManager =
getSupportFragmentManager () ;

mViewPager.setAdapter (new
FragmentStatePagerAdapter (fragmentManager) {

QOverride
public Fragment getItem(int position) {
Crime crime = mCrimes.get (position);
return
CrimeFragment.newInstance (crime.getId()) ;

}
QOverride

public int getCount() {
return mCrimes.size();

})

Let’s go through this code. After finding
the ViewPager in the activity’s view,
you get your data set from CrimeLab —
the List of crimes. Next, you get the
activity’s instance of
FragmentManager.

Then you set the adapter to be an
unnamed instance of
FragmentStatePagerAdapter.
Creating the
FragmentStatePagerAdapter
requires the FragmentManager.
Remember that
FragmentStatePagerAdapter is
your agent managing the conversation
with ViewPager. For your agent to do
its job with the fragments that
getItem(int) returns, it needs to be

able to add them to your activity. That is
why it needs your
FragmentManager.

(What exactly is your agent doing? The
short story is that it 1s adding the
fragments you return to your activity and
helping ViewPager identify the
fragments’ views so that they can be
placed correctly. More details are in the
section called For the More Curious:
How ViewPager Really Works.)

The pager adapter’s two methods are
straightforward. The getCount ()
method returns the number of items in the
array list. The getItem (int) method
i1s where the magic happens. It fetches
the Crime instance for the given
position in the data set. It then uses that

Crime’s ID to create and return a
properly configured CrimeFragment.

Integrating
CrimePagerActivity

Now you can begin the process of
decommissioning CrimeActivity
and putting CrimePagerActivity
in its place.

First, add a newIntent method to

CrimePagerActivity along with
an extra for the crime ID.

Listing 11.3 Creating

newlntent
(CrimePagerActivity. java)

public class CrimePagerActivity extends
AppCompatActivity {
private static final String EXTRA CRIME ID =

"com.bignerdranch.android.criminalintent.crime_id";

private ViewPager mViewPager;
private List<Crime> mCrimes;

public static Intent newIntent (Context
packageContext, UUID crimeId) {
Intent intent = new Intent (packageContext,
CrimePagerActivity.class) ;
intent.putExtra (EXTRA_CRIME ID, crimeld);
return intent;

@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity crime pager);
UUID crimeId = (UUID) getIntent()

.getSerializableExtra (EXTRA CRIME_ID) ;

}
}

Now, you want pressing a list item in
CrimeListFragment to start an

instance of CrimePagerActivity
instead of CrimeActivity.

Return to
CrimeListFragment.java and
modify
CrimeHolder.onClick (View) to
start a CrimePagerActivity.

Listing 11.4 Firing it up
(CrimeListFragment. java)

private class CrimeHolder extends
RecyclerView.ViewHolder
implements View.OnClickListener ({
@Override
public void onClick(View view) {

Fnrtenrt—imtent—
€rimeActivity mewintent{getActivity -
mE€rime—getidt))—

Intent intent =
CrimePagerActivity.newIntent (getActivity(),
mCrime.getId());

startActivity (intent);

}

You also need to add
CrimePagerActivity to the
manifest so that the OS can start it.
While you are in the manifest, remove
CrimeActivity’s declaration. To
accomplish this, you can just rename the
CrimeActivity to
CrimePagerActivity inthe
manifest.

Listing 11.5 Adding
CrimePagerActivity to the
manifest
(AndroidManifest.xml)

<manifest ...>
<application ...>

<activity
o —n e i
android:name=".CrimePagerActivity">
</activity>

Finally, to keep your project tidy, delete
CrimeActivity.java fromthe
project tool window.

Run CriminalIntent. Press Crime #0 to
view its details. Then swipe left and
right to browse the crimes. Notice that
the paging is smooth and there is no
delay in loading. By default,
ViewPager loads the item currently
onscreen plus one neighboring page in
each direction so that the response to a
swipe is immediate. You can tweak how
many neighboring pages are loaded by
calling

setOffscreenPagelLimit (int).

Your ViewPager is not yet perfect.
Press the Back button to return to the list
of crimes and press a different item. You

will see the first crime displayed again
instead of the crime that you asked for.

By default, the ViewPager shows the
first item in its PagerAdapter. You
can have it show the crime that was
selected by setting the ViewPager’s
current item to the index of the selected
crime.

At the end of
CrimePagerActivity.onCreate
find the index of the crime to display by
looping through and checking each
crime’s ID. When you find the Crime
instance whose mId matches the
crimeId in the intent extra, set the
current item to the index of that Crime.

Listing 11.6 Setting the initial

pager item
(CrimePagerActivity. java)

public class CrimePagerActivity extends
AppCompatActivity {

@Override

protected void onCreate (Bundle
savedInstanceState) {

FragmentManager fragmentManager =
getSupportFragmentManager () ;

mViewPager.setAdapter (new
FragmentStatePagerAdapter (fragmentManager) {

}) i
for (int i = 0; i < mCrimes.size(); i++) {
if
(mCrimes.get (i) .getId () .equals (crimeId)) {

mViewPager.setCurrentItem(i) ;
break;

}

Run CriminalIntent again. Selecting any
list item should display the details of the
correct Crime. And that is it. Your

ViewPager is now fully armed and
operational.

FragmentStatePage
VS
FragmentPagerAda

There is another PagerAdapter type
that you can use called
FragmentPagerAdapter.
FragmentPagerAdapter is used
exactly like
FragmentStatePagerAdapter. It
only differs in how it unloads your
fragments when they are no longer
needed.

With

FragmentStatePagerAdapter,
your unneeded fragment is destroyed
(Figure 11.4). A transaction is
committed to completely remove the
fragment from your activity’s
FragmentManager. The “state” in
FragmentStatePagerAdapter
comes from the fact that it will save out
your fragment’s Bundle from
onSaveInstanceState (Bundle)
when it is destroyed. When the user
navigates back, the new fragment will be
restored using that instance state.

Figure
11.4 FragmentStatePagerAdap
fragment management

FragmentState |

DamarAdantar

I rayci Auapie! I
T

current item
\d
ltem 1's ltem 2's Item 3's
Fragment Fragment Fragment
v v v
Page Right
FragmentState
PagerAdapter
current item
P tem1's item 2's Item 3's
: Fragment Fragment Fragment

....................... * +
FragmentPagerAdapter handles
things differently. When your fragment is

no longer needed,
FragmentPagerAdapter calls

detach (Fragment) on the
transaction, instead of

remove (Fragment) . This destroys
the fragment’s view, but leaves the
fragment instance alive in the
FragmentManager. So the fragments
created by
FragmentPagerAdapter are never

destroyed (Figure 11.5).

Figure
11.5 FragmentPagerAdapter’s
fragment management

Fragment
PagerAdapter

current item

¥
Item 1's ltem 2's Item 3's
Fragment Fragment Fragment

v e -

¥

T A

Page Right

Fragment
PagerAdapter

current item
Item 1's Item 2's Item 3's
Fragment Fragment Fragment

v v
Which kind of adapter you should use
depends on your application.
FragmentStatePagerAdapter is
generally more frugal with memory.
Criminallntent is displaying what could
be a long list of crimes, each of which
will eventually include a photo. You do
not want to keep all that information in

memory, SO you use
FragmentStatePagerAdapter.

On the other hand, if your interface has a
small, fixed number of fragments,
FragmentPagerAdapter would be
safe and appropriate. The most common
example of this scenario is a tabbed
interface. Some detail views have
enough details to require two screens, so
the details are split across multiple tabs.
Adding a swipeable ViewPager to
this interface makes the app tactile.
Keeping these fragments in memory can
make your controller code easier to
manage. Plus, because this style of
interface usually has only two or three
fragments per activity, there 1s little
danger of running low on memory.

For the More
Curious: How
ViewPager Really
Works

The ViewPager and
PagerAdapter classes handle many
things for you behind the scenes. This
section will supply more details about
what is going on back there.

A caveat before we get into this
discussion: You do not need to
understand the nitty-gritty details in most

Cascs.

But, if you need to implement the
PagerAdapter interface yourself,
you will need to know how the
ViewPager-PagerAdapter
relationship differs from an ordinary
RecyclerView-Adapter
relationship.

When would you need to implement the
PagerAdapter interface yourself?
When you want ViewPager to host
something other than Fragments. If
you want to host normal View objects in
a ViewPager, like a few images, you
implement the raw PagerAdapter
interface.

So why is ViewPager not a

RecyclerView?

Using a RecyclerView in this case
would be a lot of work because you
could not use your existing Fragment.
An Adapter expects you to provide a
View instantly. However, your
FragmentManager determines when
your fragment’s view is created, not you.
So when RecyclerView comes
knocking at your Adapter’s door for
your fragment’s view, you will not be
able to create the fragment and provide
its view immediately.

This is the reason ViewPager exists.
Instead of an Adapter, it uses
PagerAdapter. PagerAdapter is
more complicated than Adapter
because it does more of the work of

managing views than Adapter does.
Here are the basics.

Instead of an

onBindViewHolder (..) method that
returns a view holder and its
corresponding view, PagerAdapter
has the following methods:

public Object instantiateItem(ViewGroup
container, int position)

public void destroyItem(ViewGroup container, int
position, Object object)

public abstract boolean isViewFromObject (View
view, Object object)

PagerAdapter.instantiateIte
int) tells the pager adapter to create
an item view for a given position and
add it to a container ViewGroup, and
destroyItem (ViewGroup,

int, Object) tells it to destroy that
item. Note that

instantiateItem(ViewGroup,
int) does not say to create the view
right now. The PagerAdapter could
create the view at any time after that.

Once the view has been created,
ViewPager will notice it at some
point. To figure out which item’s view it
1s, it calls

isViewFromObject (View,
Object). The Object parameter is
an object received from a call to
instantiateItem(ViewGroup,
int). So ifViewPager calls
instantiateItem(ViewGroup,
5) and receives object A,
isViewFromObject (View, A)
should return t rue if the View passed
in s for item 5, and false otherwise.

This is a complicated process for the
ViewPager, but it is less complicated
for the PagerAdapter, which only
needs to be able to create views, destroy
views, and identify which object a view
comes from. This loose requirement
gives a PagerAdapter
implementation enough wiggle room to
create and add a new fragment inside
instantiateItem(ViewGroup,
int) and return the fragment as the
Object to keep track of. Then
isViewFromObject (View,
Object) looks like this:

@Override
public boolean isViewFromObject (View view, Object
object) {

return ((Fragment)object) .getView() == view;

}

Implementing all those

PagerAdapter overrides would be a
pain to do every time you needed to use
ViewPager. Thank goodness for
FragmentPagerAdapter and
FragmentStatePagerAdapter.

For the More
Curious: Laying
Out Views in Code

Throughout this book, you have been
creating your views in layout files. It is
also possible to create your views in
code.

In fact, you could have defined your
ViewPager in code without a layout
file at all:

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
ViewPager viewPager = new ViewPager (this);
setContentView (viewPager) ;

}

No magic is necessary to create a view:
Just call its constructor, passing in a
Context as the parameter. You can
programmatically create an entire view
hierarchy instead of using layout files.

However, creating views in code should
be avoided, because layout files provide
a few benefits.

One benefit of layout files is that they
help to provide a clear separation
between your controller and view
objects in your app. The view exists in
XML and the controller exists in Java
code. This separation makes your code
easier to maintain by limiting the amount
of changes in your controller when you
change your view and vice versa.

Another benefit to views defined in
XML i1s that you can use Android’s
resource qualification system to
automatically choose the appropriate
version of that XML file based on the
properties of the device.

As you saw in Chapter 3, this system
makes it easy to change your layout file
depending on the orientation of the
device (as well as other configurations).

So what are the downsides to using
layout files? Well, you do have to go to
the trouble of creating an XML file and
inflating it. If you are creating a single
view, sometimes you may not want to go
to the trouble.

Otherwise, though, there are no

downsides to speak of — the Android
team has never recommended
constructing view hierarchies
programmatically, even back in the old
days when developers had to be even
more conscious of performance than they
are now. Even if you need something as
small as an ID on your view (which is
often necessary, even with a
programmatically created view), it is
simpler to have a layout file.

Challenge:
Restoring
CrimeFragment'’s
Margins

You may have noticed that your
CrimeFragment has mysteriously
lost 1ts margins. In

fragment crime.xml, you
specified a margin of 16dp.

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/andr

android:layout width="match parent"
android:layout height="match parent"
android:layout margin="16dp"
android:orientation="vertical">

That margin no longer shows up. So,
what gives? ViewPager’s layout
params do not support margins. Update
fragment crime.xml and restore
your margins.

Challenge: Adding
First and Last
Buttons

Add two buttons to
CrimePagerActivity that allow
jumping the ViewPager to the first or
last crime instantly. As a bonus, disable
“jump to first” when on the first page
and “jump to last” when on the last page.

12
Dialogs

Dialogs demand attention and input from
the user. They are useful for presenting a
choice or important information. In this
chapter, you will add a dialog in which
users can change the date of a crime.
Pressing the date button in
CrimeFragment will present this
dialog on Lollipop and later

(Figure 12.1).

Figure 12.1 A dialog for
picking the date of a crime

4l 700

Date of crime:

2016

Mon, Nov 21

November 2016

i |

The dialog in Figure 12.1 is an instance
of AlertDialog, a subclass of
Dialog.AlertDialogis the all-
purpose Dialog subclass that you will
use most often.

When Lollipop was released, dialogs
were given a visual makeover.
AlertDialogs on Lollipop
automatically use this new style. On
earlier versions of Android,
AlertDialog will fall back to the
older style, shown on the left in

Figure 12.2.

Figure 12.2 Old vs new

Report Crime Report Crime

Are you sure you want to report this

Are you sure you want to report A

this crime to HR?

CANCEL REPORT
Cancel Report

Rather than displaying the crusty old
dialog style, it would be nice to always
show the new dialog style, no matter
which version of Android the user’s

device is on. And you can do just that
with the AppCompat library’s
AlertDialog class. This version of
AlertDialog is very similar to the
one included in the Android OS but, like
other AppCompat classes, 1s compatible
with earlier versions. To get the benefits
of the AppCompat version, make sure
you import
android.support.v7.app.Aler
when prompted.

Creating a
DialogFragment

When using anAlertDialog, itis a

good idea to wrap it in an instance of
DialogFragment, a subclass of
Fragment. It is possible to display an
AlertDialog without a
DialogFragment, but it is not
recommended. Having the dialog
managed by the FragmentManager
gives you more options for presenting
the dialog.

In addition, a bare AlertDialog will
vanish if the device is rotated. If the
AlertDialogis wrapped ina
fragment, then the dialog will be re-
created and put back onscreen after
rotation.

For CriminalIntent, you are going to
create a DialogFragment subclass
named DatePickerFragment.

Within DatePickerFragment, you
will create and configure an instance of
AlertDialog that displays a
DatePicker widget.
DatePickerFragment will be
hosted by CrimePagerActivity.

Figure 12.3 shows you an overview of
these relationships.

Figure 12.3 Object diagram for

two fragments hosted by
CrimePagerActivity

Model
Crime
mTitle
mid
mDate
misSolved
[
Controller
CrimePagerActivity
CrimeFragment DatePickerFragment
A\
View AlertDialog
A
[EditText | [CheckBox | [Button

Your first tasks are:

e creating the

DatePickerFragment
class

e buildinganAlertDialog

e getting the dialog onscreen via
the FragmentManager

Later in the chapter, you will wire up the
DatePicker and pass the necessary
data between CrimeFragment and
DatePickerFragment.

Before you get started, add the string
resource shown in Listing 12.1.

Listing 12.1 Adding string for
dialog title
(values/strings.xml)

<resources>

<string name="crime solved label">Solved</string>
<string name="date_ picker_title">Date of crime:
</string>

</resources>

Create a new class named
DatePickerFragment and make its
superclass DialogFragment. Be
sure to choose the support library’s
version of DialogFragment:
android.support.v4.app.Dial

DialogFragment includes the
following method:

public Dialog onCreateDialog (Bundle
savedInstanceState)

The FragmentManager of the
hosting activity calls this method as part
of putting the DialogFragment
onscreen.

InDatePickerFragment. java,
add an implementation of
onCreateDialog (Bundle) that
builds an AlertDialog with a title
and one OK button. (You will add the
DatePicker widget later.)

Be sure that the version of
AlertDialog that you import is the
AppCompat version:
android.support.v7.app.Aler

Listing 12.2 Creating a
DialogFragment

(DatePickerFragment. java)

public class DatePickerFragment extends
DialogFragment {
@Override
public Dialog onCreateDialog (Bundle
savedInstanceState) {
return new AlertDialog.Builder (getActivity())
.setTitle (R.string.date_ picker_title)

.setPositiveButton (android.R.string.ok,
null)
.create() ;

}

In this implementation, you use the
AlertDialog.Builder class,
which provides a fluent interface for
constructing an AlertDialog
instance.

First, you pass a Context into the
AlertDialog.Builder
constructor, which returns an instance of
AlertDialog.Builder.

Next, you call two
AlertDialog.Builder methods to
configure your dialog;

public AlertDialog.Builder setTitle(int titleId)
public AlertDialog.Builder setPositiveButton (int
textId,
DialogInterface.OnClickListener listener)

The setPositiveButton(...)
method accepts a string resource and an
object that implements
DialogInterface.OnClickListener.
In Listing 12.2, you pass in an Android
constant for OK and nul1l for the listener
parameter. You will implement a listener
later in the chapter.

(A positive button is what the user
should press to accept what the dialog
presents or to take the dialog’s primary
action. There are two other buttons that
youcan add to anAlertDialog: a
negative button and a neutral button.
These designations determine the
positions of the buttons in the dialog.)

Finally, you finish building the dialog
with a call to

AlertDialog.Builder.create(
which returns the configured
AlertDialog instance.

There is more that you can do with
AlertDialog and
AlertDialog.Builder, and the
details are well covered in the
developer documentation. For now, let’s
move on to the mechanics of getting your
dialog onscreen.

Showing a
DialogFragment
Like all fragments, instances of

DialogFragment are managed by
the FragmentManager of the hosting

activity.

To geta DialogFragment added to
the FragmentManager and put
onscreen, you can call the following
methods on the fragment instance:

public void show (FragmentManager manager, String
tag)

public void show (FragmentTransaction transaction,
String tag)

The string parameter uniquely identifies
the DialogFragment in the
FragmentManager’s list. Whether
you use the FragmentManager or
FragmentTransaction versionis
up to you. If you pass ina
FragmentTransaction, youare
responsible for creating and committing
that transaction. If you pass in a
FragmentManager, a transaction

will automatically be created and
committed for you.

Here, you will pass ina
FragmentManager.

InCrimeFragment, add a constant
for the DatePickerFragment’s tag.
Then, in onCreateView (..), remove
the code that disables the date button and
seta View.OnClickListener that
shows a DatePickerFragment
when the date button is pressed.

Listing 12.3 Showing your
DialogFragment
(CrimeFragment. java)
public class CrimeFragment extends Fragment {
private static final String ARG CRIME ID =

"crime id";
private static final String DIALOG DATE =

"DialogDate";

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container,

Bundle savedInstanceState)

{

mDateButton (Button)
v.findViewById(R.id.crime date);

mDateButton.setText (mCrime.getDate () .toString());
mbateButtonr—setEmabled(fatse)s
mDateButton.setOnClickListener (new
View.OnClickListener() {
QOverride
public void onClick (View v) {

FragmentManager manager
getFragmentManager () ;

DatePickerFragment dialog = new
DatePickerFragment () ;

dialog.show(manager, DIALOG_DATE) ;
}
I

mSolvedCheckBox = (CheckBox)
v.findViewById(R.id.crime_solved) ;

return v;

}

Run Criminallntent and press the date
button to see the dialog (Figure 12.4).

Figure 12.4 An AlertDialog
with a title and a button

Date of crime:

Setting a dialog’s
contents

Next, you are going to add a
DatePicker widget to your
AlertDialog using the following
AlertDialog.Builder method:

public AlertDialog.Builder setView (View view)

This method configures the dialog to
display the passed-in View object
between the dialog’s title and its
button(s).

In the project tool window, create a new
layout resource file named

dialog date.xml and make its root
element DatePicker. This layout will
consist of a single View object —a
DatePicker — that you will inflate
and pass into setView(...).

Configure the DatePicker as shown
in Figure 12.5.

Figure 12.5 DatePicker layout
(layout/dialog date.xml)

DatePicker
xmlns:android="http://schemas.android.com/apk/res/android"
android: id="@+id/dialog_date_picker"
android: layout_width="wrap_content"
android: layout_height="wrap_content"

android:calendarViewShown=" false"

In
DatePickerFragment.onCreate
inflate this view and then set it on the
dialog.

Listing 12.4 Adding
DatePicker to AlertDialog

(DatePickerFragment. java)

@Override
public Dialog onCreateDialog (Bundle
savedInstanceState) {
View v = LayoutInflater.from(getActivity())
.inflate (R.layout.dialog_date, null);

return new AlertDialog.Builder (getActivity()
.setView (v)
.setTitle(R.string.date picker title)
.setPositiveButton (android.R.string.ok, null)
.create();

}

Run CriminalIntent. Press the date button
to confirm that the dialog now presents a
DatePicker. As long as you are

running Lollipop or later, you will see a
calendar picker (Figure 12.6).

Figure 12.6 DatePicker with a

calendar
¥'d 0l 700

Date of crime:

2016

Mon, Nov 21

November 2016

The calendar picker in Figure 12.6 was
introduced along with material design.
This version of the DatePicker
widget ignores the calendarviewShown
attribute you set in your layout. If you are
running a previous version of Android,
however, you will see the old spinner-
based DatePicker version that
respects that attribute (Figure 12.7).

Figure 12.7 An AlertDialog
with a DatePicker

Date of crime:

Either version works fine. The newer
one sure is pretty, though.

You may be wondering why you went to
the trouble of defining and inflating a

layout when you could have created the
DatePicker object in code, like this:

@Override
public Dialog onCreateDialog (Bundle
savedInstanceState) {

DatePicker datePicker = new
DatePicker (getActivity());

return new AlertDialog.Builder (getActivity())
.setView (datePicker)

.create();

}

Using a layout makes modifications easy
if you change your mind about what the
dialog should present. For instance,
what if you wanted a TimePicker
next to the DatePicker in this dialog?

If you are already inflating a layout, you
can simply update the layout file and the
new view will appear.

Also, the selected date in the
DatePicker is automatically
preserved across rotation. (Try it.) How
does this happen? Remember that
Views can save state across
configuration changes, but only if they
have an ID attribute. When you created
the DatePicker in

dialog date.xml youalso asked
the build tools to generate a unique ID
value for that DatePicker.

If you created the DatePicker in
code, you would have to
programmatically set an ID on the

DatePicker for its state saving to
work.

Your dialog is onscreen and looks good.
In the next section, you will wire it up to
present the Crime’s date and allow the
user to change it.

Passing Data
Between Two
Fragments

You have passed data between two
activities, and you have passed data
between two fragment-based activities.
Now you need to pass data between two
fragments that are hosted by the same
activity — CrimeFragment and
DatePickerFragment

(Figure 12.8).

Figure 12.8 Conversation
between CrimeFragment and
DatePickerFragment

current date

™

CrimeFragment | DatePickerFragment

date that the user picked

To get the Crime’s date to
DatePickerFragment, you are
going to write a

newInstance (Date) method and
make the Date an argument on the
fragment.

To get the new date back to the

CrimeFragment so that it can update
the model layer and its own view, you
will package up the date as an extra on
an Intent and pass this Intent ina
call to
CrimeFragment.onActivityRes
as shown in Figure 12.9.

Figure 12.9 Sequence of
events between CrimeFragment

and DatePickerFragment

| Crime] |CrimeFragment|

mCrime.getDate()
newlnstance(Date)

DatePickerFragment

onActivityResult(...)

i mCrime.setDate(...) |

v v

It may seem strange to call
Fragment.onActivityResult(..
given that the hosting activity receives
no call to

Activity.onActivityResult(..
in this interaction. However, using

onActivityResult(..) to pass
data back from one fragment to another
not only works, but also offers some
flexibility in how you present a dialog
fragment, as you will see later in the
chapter.

Passing data to
DatePickerFragment

To get data into your
DatePickerFragment, you are
going to stash the date in
DatePickerFragment’s arguments
bundle, where the
DatePickerFragment canaccess
it.

Creating and setting fragment arguments
is typically done in a

newInstance () method that replaces
the fragment constructor. In
DatePickerFragment. java, add
a newInstance (Date) method.

Listing 12.5 Adding a
newInstance (Date) method
(DatePickerFragment. java)

public class DatePickerFragment extends
DialogFragment {

private static final String ARG DATE = "date";
private DatePicker mDatePicker;

public static DatePickerFragment newInstance (Date
date) {
Bundle args = new Bundle();
args.putSerializable (ARG_DATE, date);

DatePickerFragment fragment = new
DatePickerFragment () ;
fragment.setArguments (args) ;

return fragment;

}

In CrimeFragment, remove the call
to the DatePickerFragment
constructor and replace it with a call to
DatePickerFragment.newInsta

Listing 12.6 Adding call to

newInstance ()
(CrimeFragment. java)

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container,

Bundle savedInstanceState) {

mDateButton =

(Button)v.findViewById(R.id.crime date);
mDateButton.setText (mCrime.getDate () .toString());

mDateButton.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v)
FragmentManager manager
getFragmentManager () ;

{

. PickerF I _
PatePickerFragment{)~

DatePickerFragment dialog =
DatePickerFragment

.newInstance (mCrime.getDate()) ;
dialog.show (manager, DIALOG DATE) ;
}
}) i

return v;
}
DatePickerFragment needs to
initialize the DatePicker using the
information held in the Date. However,
initializing the DatePicker requires
integers for the month, day, and year.
Date i1s more of a timestamp and cannot
provide integers like this directly.

To get the integers you need, you must
create a Calendar object and use the
Date to configure the Calendar.
Then you can retrieve the required

information from the Calendar.

In onCreateDialog (Bundle), get
the Date from the arguments and use it
and a Calendar to initialize the
DatePicker.

Listing 12.7 Extracting the

date and initializing
DatePicker

(DatePickerFragment. java)

@Override
public Dialog onCreateDialog (Bundle
savedInstanceState) {

Date date = (Date)
getArguments () .getSerializable (ARG_DATE) ;

Calendar calendar = Calendar.getInstance();
calendar.setTime (date) ;

int year = calendar.get(Calendar.YEAR) ;

int month = calendar.get(Calendar.MONTH) ;

int day = calendar.get(Calendar.DAY OF MONTH) ;

View v = LayoutInflater.from(getActivity ()
.inflate(R.layout.dialog_date, null);

mDatePicker = (DatePicker)
v.findViewById(R.id.dialog_date_picker) ;
mDatePicker.init (year, month, day, null);
return new AlertDialog.Builder (getActivity ()
.setView (v)
.setTitle(R.string.date picker title)
.setPositiveButton (android.R.string.ok,
null)
.create();

}

Now CrimeFragment is successfully
telling DatePickerFragment what
date to show. You can run CriminalIntent
and make sure that everything works as
before.

Returning data to
CrimeFragment

To have CrimeFragment receive the

date back from
DatePickerFragment, youneed a
way to keep track of the relationship
between the two fragments.

With activities, you call
startActivityForResult(..),
and the ActivityManager keeps
track of the parent-child activity
relationship. When the child activity
dies, the ActivityManager knows
which activity should receive the result.

Setting a target fragment

You can create a similar connection by
making CrimeFragment the farget
fragment of DatePickerFragment.

This connection is automatically
reestablished after both
CrimeFragment and
DatePickerFragment are
destroyed and re-created by the OS. To
create this relationship, you call the
following Fragment method:

public void setTargetFragment (Fragment fragment,
int requestCode)

This method accepts the fragment that
will be the target and a request code just
like the one you send in
startActivityForResult(..).
The target fragment can use the request
code later to identify which fragment is
reporting back.

The FragmentManager keeps track
of the target fragment and request code.

You can retrieve them by calling
getTargetFragment () and
getTargetRequestCode () onthe
fragment that has set the target.

InCrimeFragment. java, create a
constant for the request code and then
make CrimeFragment the target
fragment of the
DatePickerFragment instance.

Listing 12.8 Setting target
fragment
(CrimeFragment. java)

public class CrimeFragment extends Fragment {

private static final String ARG CRIME ID =
"crime id";

private static final String DIALOG DATE =
"DialogDate";

private static final int REQUEST DATE = 0;

@Override
public View onCreateView (LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState)

{

mDateButton.setOnClickListener (new
View.OnClickListener () {

@Override

public void onClick (View v)

FragmentManager manager

{
getFragmentManager () ;

DatePickerFragment dialog
DatePickerFragment

.newInstance (mCrime.getDate());

dialog.setTargetFragment (CrimeFragment. this,
REQUEST DATE) ;

dialog.show (manager,

DIALOG_DATE) ;
}

});

return v;

Sending data to the target
fragment

Now that you have a connection between
CrimeFragment and
DatePickerFragment, youneed to
send the date back to
CrimeFragment. You are going to
put the date on an Intent as an extra.

What method will you use to send this
intent to the target fragment? Oddly
enough, you will have
DatePickerFragment pass it into
CrimeFragment.onActivityRes
int, Intent).

Activity.onActivityResult(..
is the method that the
ActivityManager calls on the
parent activity after the child activity
dies. When dealing with activities, you
do not call

Activity.onActivityResult(..
yourself; that is the
ActivityManager’s job. After the
activity has received the call, the
activity’s FragmentManager then
calls
Fragment.onActivityResult(..
on the appropriate fragment.

When dealing with two fragments hosted
by the same activity, you can borrow
Fragment.onActivityResult(..
and call it directly on the target fragment
to pass back data. It has exactly what
you need:

e a request code that matches the
code passed into
setTargetFragment(...)
to tell the target what is

returning the result

e aresult code to determine what
action to take

e an Intent that can have extra
data

InDatePickerFragment, create a
private method that creates an intent,
puts the date on it as an extra, and then
calls
CrimeFragment.onActivityRes

Listing 12.9 Calling back to
your target
(DatePickerFragment. java)

public class DatePickerFragment extends
DialogFragment {

public static final String EXTRA DATE =

"com.bignerdranch.android.criminalintent.date";
private static final String ARG DATE = "date";
@Override
public Dialog onCreateDialog (Bundle

savedInstanceState) {

}

private void sendResult(int resultCode, Date

date) {
if (getTargetFragment() == null) {
return;

}

Intent intent = new Intent();
intent.putExtra (EXTRA DATE, date);

getTargetFragment ()

.onActivityResult (getTargetRequestCode (), resultCode,
intent) ;

}
}

Now it is time to use this new
sendResult (..) method. When the
user presses the positive button in the
dialog, you want to retrieve the date

from the DatePicker and send the
result back to CrimeFragment. In
onCreateDialog(...), replace the
null parameter of
setPositiveButton(..) withan
implementation of
DialogInterface.OnClickListener
that retrieves the selected date and calls

sendResult(..).

Listing 12.10 Are you OK?
(DatePickerFragment. java)

@Override
public Dialog onCreateDialog (Bundle
savedInstanceState) {

return new AlertDialog.Builder (getActivity ()
.setView (v)
.setTitle(R.string.date picker title)
—setPosttiveButtonftandrotd—Rstringok;—
mati)ys
.setPositiveButton (android.R.string.ok,
new DialogInterface.OnClickListener ()

@Override
public void
onClick (DialogInterface dialog, int which) {
int year =
mDatePicker.getYear () ;
int month =
mDatePicker.getMonth() ;
int day =
mDatePicker.getDayOfMonth () ;
Date date = new
GregorianCalendar (year, month, day) .getTime();

sendResult (Activity.RESULT OK, date);
}
b

.create();

}

In CrimeFragment, override
onActivityResult(..) toretrieve
the extra, set the date on the Crime, and
refresh the text of the date button.

Listing 12.11 Responding to
the dialog

(CrimeFragment. java)

public class CrimeFragment extends Fragment {

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {

}

@Override
public void onActivityResult(int requestCode, int
resultCode, Intent data) {
if (resultCode !'= Activity.RESULT_ OK) {
return;

}

if (requestCode == REQUEST DATE) ({
Date date = (Date) data

.getSerializableExtra (DatePickerFragment.EXTRA DATE) ;
mCrime.setDate (date) ;

mDateButton.setText (mCrime.getDate () .toString()) ;
}

}
}

The code that sets the button’s text is
identical to code you call in
onCreateView (..). To avoid setting
the text in two places, encapsulate this

code in a private updateDate ()
method and then call it in
onCreateView(..) and
onActivityResult(..).

You could do this by hand or you can
have Android Studio do it for you.
Highlight the entire line of code that sets
mDateButton’s text.

Listing 12.12 Highlighting date
button update
(CrimeFragment. java)

@Override
public void onActivityResult (int requestCode, int
resultCode, Intent data) {

if (resultCode != Activity.RESULT OK) {
return;

}

if (requestCode == REQUEST DATE) {
Date date = (Date) data

.getSerializableExtra (DatePickerFragment.EXTRA DATE) ;

mCrime.setDate (date) ;
mDateButton.setText (mCrime.getDate () .toString());

}
}

Right-click and select Refactor — Extract
— Method... (Figure 12.10).

Figure 12.10 Extracting a
method with Android Studio

&

@ @ Extract Method
Visibility: Name:
private . | updateDate

Declare static (pass fields as params)

Parameters

Type Name

A v

Signature Preview
private void updateDate()

2 Cancel

Make the method private and name it
updateDate. Click OK and Android
Studio will tell you that it has found one

other place where this line of code was
used. Click Yes to allow Android Studio
to update the other reference, then verify
that your code is now extracted to a
single updateDate () method, as
shown in Listing 12.13.

Listing 12.13 Cleaning up with
updateDate ()

(CrimeFragment. java)

public class CrimeFragment extends Fragment {

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View v =
inflater.inflate (R.layout.fragment crime, container,
false);

mDateButton = (Button)
v.findViewById(R.id.crime_date);
updateDate () ;

@Override
public void onActivityResult (int requestCode, int
resultCode, Intent data) {

if (resultCode != Activity.RESULT OK) {
return;

}

if (requestCode == REQUEST DATE) {
Date date = (Date) data

.getSerializableExtra (DatePickerFragment.EXTRA DATE) ;
mCrime.setDate (date);
updateDate () ;
}
private void updateDate() {
mDateButton.setText (mCrime.getDate () .toString());

}
}

Now the circle 1s complete. The dates
must flow. He who controls the dates
controls time itself. Run CriminalIntent
to ensure that you can, in fact, control the
dates. Change the date of a Crime and
confirm that the new date appears in
CrimeFragment’s view. Then return

to the list of crimes and check the
Crime’s date to ensure that the model
layer was updated.

More flexibility in presenting a
DialogFragment

Using onActivityResult(..) to
send data back to a target fragment is
especially nice when you are writing an
app that needs lots of input from the user
and more room to ask for it — and you
want the app working well on phones
and tablets.

On a phone, you do not have much
screen real estate, so you would likely
use an activity with a full-screen

fragment to ask the user for input. This
child activity would be started by a
fragment of the parent activity calling
startActivityForResult(..).
On the death of the child activity, the
parent activity would receive a call to
onActivityResult(..), which
would be forwarded to the fragment that
started the child activity (Figure 12.11).

Figure 12.11 Inter-activity
communication on phones

| startActivityForResut(...)
Fragment A 3 e - Fragment B

: onActivityResult(...) H
Fragment A R ey Fragment B

On a tablet, where you have plenty of

room, it is often better to present a
DialogFragment to the user to get
the same input. In this case, you set the
target fragment and call show (...) on
the dialog fragment. When dismissed, the
dialog fragment calls
onActivityResult(..) onits

target (Figure 12.12).

Figure 12.12 Inter-fragment
communication on tablets

¢~ \
serTargerFrag;menr(.)
/
R P

Fragment A ”

~

Fragment B
(shown as dialog)

-~ Y

£ \
onActivityResull(...)
/

Fragment A ;f

...

Fragment B
(shown as dialog)

The fragment’s
onActivityResult(..) will
always be called, whether the fragment
started an activity or showed a dialog.
So you can use the same code for
different presentations.

When setting things up to use the same
code for a full-screen fragment or a
dialog fragment, you can override
DialogFragment.onCreateView
instead of onCreateDialog(..) to
prepare for both presentations.

Challenge: More
Dialogs

Write another dialog fragment named
TimePickerFragment that allows
the user to select what time of day the
crime occurred using a TimePicker
widget. Add another button to
CrimeFragment to display a
TimePickerFragment.

Challenge: A
Responsive
DialogFragment

For a more involved challenge, modify
the presentation of the
DatePickerFragment.

The first stage of this challenge is to
supply the DatePickerFragment’s
view by overriding

onCreateView (..) instead of
onCreateDialog (Bundle). When
setting up a DialogFragment in this
way, your dialog will not be presented

with the built-in title area and button
area on the top and bottom of the dialog.
You will need to create your own OK
buttonindialog date.xml.

Once DatePickerFragment’s view
is created in onCreateView(...), you
can present DatePickerFragment
as a dialog or embedded in an activity.
For the second stage of this challenge,
create a new subclass of
SingleFragmentActivity and
host DatePickerFragment in that
activity.

When presenting
DatePickerFragment in this way,
you will use the
startActivityForResult(..)
mechanism to pass the date back to

CrimeFragment. In
DatePickerFragment, if the target
fragment does not exist, use the
setResult (int, intent)

method on the hosting activity to send the
date back to the fragment.

For the final step of this challenge,
modify Criminallntent to present the
DatePickerFragment as a full-
screen activity when running on a phone.
When running on a tablet, present the
DatePickerFragment as a dialog.
You may need to read ahead in

Chapter 17 for details on how to
optimize your app for multiple screen
s1zes.

Copt

BIG NERD RANCH
CODING BOOTCAMPS

Big Nerd Ranch bootcamps cover a lot
of ground in just days. With our retreat-
style training, we’ll subject you to the
most intensive app development course
you can imagine, and when you finish,

you’ll be part of an elite corps: the few,
the proud, the nerds.

Our distraction-free training gives you
the opportunity to master new skills in
an intensive environment—no meetings,
no phone calls, just learning.

Big Nerd Ranch’s training was
unlike any other class I've had. |
learned skills that make me
exceptionally more valuable,
giving me a leg up on the
competition. Since my first Big
"Nerd Ranch class, I've written
Software used in The White
House, held positions at AT&T and
Disney—and ultimately landed at

Apple.

—Josh Paul, Alumnus

We offer classes in 10S, Android,

Front-End Web, Back-End Web, macOS
and Design. Use code BNRGUIDE100
for $100 off a bootcamp of your choice.

www.bignerdranch.com

13
The Toolbar

A key component of any well-designed
Android app is the toolbar. The toolbar
includes actions that the user can take,
provides an additional mechanism for
navigation, and also provides design
consistency and branding.

In this chapter, you will create a menu
for CriminalIntent that will be displayed
in the toolbar. This menu will have an
action item that lets users add a new
crime. You will also enable the Up

button in the toolbar (Figure 13.1).

Figure 13.1 Criminallntent’s
toolbar

Action item
toadda
new crime

Up button

AppCompat

The toolbar component was added to

Android in Android 5.0 (Lollipop).
Prior to Lollipop, the action bar was the
recommended component for navigation
and actions within an app.

The action bar and toolbar are very
similar components. The toolbar builds
on top of the action bar. It has a tweaked
Ul and is more flexible in the ways that
you can use it.

CriminalIntent supports API 19 and
newer, which means that you cannot use
the native toolbar on all supported
versions of Android. Luckily, the toolbar
has been back-ported to the AppCompat
library. The AppCompat library allows
you to provide a Lollipop’d toolbar on
any version of Android back to API 9
(Android 2.3).

Using the AppCompat
library

You are already using the AppCompat
library. As of this writing, new projects
come with it automatically. But what if
you need to add the AppCompat library
to a legacy project? AppCompat has a
few requirements that you will need to
know about.

The AppCompat library requires that
you:

e add the AppCompat
dependency

e use one of the AppCompat

themes

e ensure that all activities are a
subclass of
AppCompatActivity

Updating the theme

In Chapter 7 you added the AppCompat
dependency to Criminallntent. The next
step 1s to ensure that you are using one of
AppCompat’s themes. The AppCompat
library comes with three themes:

e Theme.AppCompat — a dark
theme

e Theme.AppCompat.Light
— a light theme

e Theme.AppCompat.Light
— a light theme with a dark
toolbar

The theme for your application is
specified at the application level and
optionally per activity in your
AndroidManifest.xml. Open
AndroidManifest.xml and look at
the application tag. Notice the
android:theme attribute. You should
see something similar to Listing 13.1.

Listing 13.1 The stock manifest
(AndroidManifest.xml)

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app name"
android:supportsRtl="true"
android:theme="@style/AppTheme" >

The AppTheme is defined in
res/values/styles.xml. Open
this file and ensure that the parent theme
of your AppTheme matches the shaded
portion shown in Listing 13.2. For now,
do not worry about the attributes inside
the theme. You will update those soon.

Listing 13.2 Using an
AppCompat theme
(res/values/styles.xml)

<resources>

<style name="AppTheme"
parent="Theme.AppCompat.Light.DarkActionBar">

<!-- Customize your theme here. -->
<item

name="colorPrimary">@color/colorPrimary</item>
<item

name="colorPrimaryDar