

Android
Programming:
The Big Nerd
Ranch Guide
by Bill Phillips, Chris
Stewart and Kristin
Marsicano

Copyright © 2017 Big Nerd Ranch,
LLC.

All rights reserved. Printed in the United
States of America. This publication is
protected by copyright, and permission
must be obtained from the publisher
prior to any prohibited reproduction,
storage in a retrieval system, or
transmission in any form or by any
means, electronic, mechanical,
photocopying, recording, or likewise.
For information regarding permissions,
contact

Big Nerd Ranch, LLC.
200 Arizona Ave NE
Atlanta, GA 30307
(770) 817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is
a trademark of Big Nerd Ranch, Inc.
Exclusive worldwide distribution of the
English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com
The authors and publisher have taken
care in writing and printing this book but
make no expressed or implied warranty
of any kind and assume no responsibility
for errors or omissions. No liability is
assumed for incidental or consequential
damages in connection with or arising
out of the use of the information or

programs contained herein.
Many of the designations used by
manufacturers and sellers to distinguish
their products are claimed as
trademarks. Where those designations
appear in this book, and the publisher
was aware of a trademark claim, the
designations have been printed with
initial capital letters or in all capitals.

ISBN-10 0134706072
ISBN-13 978-0134706078

Third edition, first printing, February
2017
Release E.3.1.1

Dedication

To the record player on my desk.
Thanks for keeping me company
through all this. I promise I’ll get
you a new needle soon.

 — B.P.

To my dad, David, for teaching me
the value of hard work. To my mom,
Lisa, for pushing me to always do
the right thing.

 — C.S.

To my dad, Dave Vadas, for
inspiring and encouraging me to
pursue a career in computing. And
to my mom, Joan Vadas, for cheering
me on through all the ups and downs
(and for reminding me that watching
an episode of The Golden Girls
always makes things better).

 — K.M.

Acknowledgments
With this being our third edition, we find
ourselves used to saying this. It always
needs to be said, though: Books are not
created by authors alone. They are
shepherded into existence by a
community of collaborators, risk-takers,
and other supporters, without whom the
burden of comprehending and writing all
this material would be crippling.

Brian Hardy, who, along with
Bill, had the gusto to bring the
very first edition of this book
into the world. From nothing,

Brian and Bill made something
great.

Our co-instructors and
members of our Android
development team: Andrew
Lunsford, Bolot Kerimbaev,
Brian Gardner, David
Greenhalgh, Josh Skeen, Matt
Compton, Paul Turner, and
Rashad Cureton. (Soon,
Rashad. Soon.) They taught
everything in this book before
it was polished enough to be
presentable and gave us many
invaluable suggestions and
corrections. Most people live
their entire lives without ever
working with such a talented

and entertaining crew. They
make work at Big Nerd Ranch
an everyday joy.

Special thanks to Andrew, who
went through the entire book
and updated all the Android
Studio screenshots. We
appreciate his thoroughness,
attention to detail, and acerbic
wit.
Zack Simon, our fantastically
talented and soft-spoken Big
Nerd Ranch designer.
Unbeknownst to us, Zack went
behind our backs and updated
the nifty cheat sheet you can
find attached to this book. If

you enjoy that sheet, you should
find Zack and tell him so
yourself. But we will also
thank Zack right here: Thanks,
Zack!

Kar Loong Wong, for his work
redesigning the crime list
screen. The more help we get
from Kar, the better the apps in
this book look. Thanks, Kar.
Mark Dalrymple, who
reviewed our constraint layout
coverage for accuracy and
wonderfulness. If you happen
to run into Mark, ask him to
review your constraint layout
coverage. He is so good at

doing that! But if you have
none, ask him to make balloon
animals for you instead.

Thanks to Aaron Hillegass. As
a practical matter, it is not
possible to do this work
without Big Nerd Ranch, the
company Aaron founded.
Thank you.
Our editor, Elizabeth Holaday.
The famous beat author
William S. Burroughs
sometimes wrote by cutting up
his work into little pieces,
throwing them in the air, and
publishing the rearrangement.
Without a strong editor like

Liz, our confusion and
simpleminded excitement may
have caused us to resort to such
techniques. We are thankful that
she was there to impose focus,
precision, and clarity on our
drafts.

Ellie Volckhausen, who
designed our cover.
Anna Bentley, our copyeditor,
and Simone Payment, our
proofreader. Thank you both
for sanding away the remaining
rough edges of this book.

Chris Loper at
IntelligentEnglish.com, who
designed and produced the

print and ebook versions of the
book. His DocBook toolchain
made life much easier, too.

Finally, thanks to our students. There is a
feedback loop between us and our
students: We teach them out of these
materials, and they respond to it. Without
that loop, this book could never have
existed, nor could it be maintained. If
Big Nerd Ranch books are special (and
we hope they are), it is that feedback
loop that makes them so. Thank you.

Table of
Contents
Learning Android

Prerequisites
What’s New in the Third Edition?
How to Use This Book
How This Book Is Organized

Challenges
Are you more curious?

Code Style
Typographical Conventions
Using an eBook
Android Versions

The Necessary Tools
Downloading and Installing
Android Studio
Downloading Earlier SDK
Versions
A Hardware Device

1. Your First Android Application
App Basics
Creating an Android Project
Navigating in Android Studio
Laying Out the UI

The view hierarchy
Widget attributes
Creating string resources
Previewing the layout

From Layout XML to View
Objects

Resources and resource IDs
Wiring Up Widgets

Getting references to
widgets
Setting listeners

Making Toasts
Using code completion

Running on the Emulator
For the More Curious: Android
Build Process

Android build tools
Challenges
Challenge: Customizing the
Toast

2. Android and Model-View-
Controller

Creating a New Class

Generating getters and
setters

Model-View-Controller and
Android

Benefits of MVC
Updating the View Layer
Updating the Controller Layer
Running on a Device

Connecting your device
Configuring your device for
development

Adding an Icon
Adding resources to a
project
Referencing resources in
XML

Challenge: Add a Listener to the

TextView
Challenge: Add a Previous
Button
Challenge: From Button to
ImageButton

3. The Activity Lifecycle
Logging the Activity Lifecycle

Making log messages
Using Logcat
Exploring the activity
lifecycle by example

Rotation and the Activity
Lifecycle

Device configurations and
alternative resources

Saving Data Across Rotation
Overriding

onSaveInstanceState(Bundle)
The Activity Lifecycle, Revisited
For the More Curious: Current
State of Activity Cleanup
For the More Curious: Log
Levels and Methods
Challenge: Preventing Repeat
Answers
Challenge: Graded Quiz

4. Debugging Android Apps
Exceptions and Stack Traces

Diagnosing misbehaviors
Logging stack traces
Setting breakpoints
Using exception breakpoints

Android-Specific Debugging
Using Android Lint

Issues with the R class
Challenge: Exploring the Layout
Inspector
Challenge: Exploring Allocation
Tracking

5. Your Second Activity
Setting Up a Second Activity

Creating a new activity
A new activity subclass
Declaring activities in the
manifest
Adding a cheat button to
QuizActivity

Starting an Activity
Communicating with intents

Passing Data Between Activities
Using intent extras

Getting a result back from a
child activity

How Android Sees Your
Activities
Challenge: Closing Loopholes
for Cheaters

6. Android SDK Versions and
Compatibility

Android SDK Versions
Compatibility and Android
Programming

A sane minimum
Minimum SDK version
Target SDK version
Compile SDK version
Adding code from later APIs
safely

Using the Android Developer
Documentation
Challenge: Reporting the Build
Version
Challenge: Limited Cheats

7. UI Fragments and the Fragment
Manager

The Need for UI Flexibility
Introducing Fragments
Starting CriminalIntent

Creating a new project
Two types of fragments
Adding dependencies in
Android Studio
Creating the Crime class

Hosting a UI Fragment
The fragment lifecycle

Two approaches to hosting
Defining a container view

Creating a UI Fragment
Defining CrimeFragment’s
layout
Creating the CrimeFragment
class

Adding a UI Fragment to the
FragmentManager

Fragment transactions
The FragmentManager and
the fragment lifecycle

Application Architecture with
Fragments

The reason all our activities
will use fragments

For the More Curious:

Fragments and the Support
Library
For the More Curious: Why
Support Fragments Are Superior

8. Displaying Lists with
RecyclerView

Updating CriminalIntent’s Model
Layer

Singletons and centralized
data storage

An Abstract Activity for Hosting
a Fragment

A generic fragment-hosting
layout
An abstract Activity class

RecyclerView, Adapter, and
ViewHolder

ViewHolders and Adapters
Using a RecyclerView
A view to display
Implementing a ViewHolder
and an Adapter

Binding List Items
Responding to Presses
For the More Curious: ListView
and GridView
For the More Curious: Singletons
Challenge: RecyclerView
ViewTypes

9. Creating User Interfaces with
Layouts and Widgets

Using the Graphical Layout Tool
Introducing ConstraintLayout

Using ConstraintLayout

The graphical editor
Making room
Adding widgets
ConstraintLayout’s inner
workings
Editing properties
Making list items dynamic

More on Layout Attributes
Screen pixel densities and
dp and sp
Margins vs padding
Styles, themes, and theme
attributes
Android’s design guidelines

The Graphical Layout Tools and
You
Challenge: Formatting the Date

10. Using Fragment Arguments
Starting an Activity from a
Fragment

Putting an extra
Retrieving an extra
Updating CrimeFragment’s
view with Crime data
The downside to direct
retrieval

Fragment Arguments
Attaching arguments to a
fragment
Retrieving arguments

Reloading the List
Getting Results with Fragments
For the More Curious: Why Use
Fragment Arguments?

Challenge: Efficient
RecyclerView Reloading
Challenge: Improving CrimeLab
Performance

11. Using ViewPager
Creating CrimePagerActivity

ViewPager and
PagerAdapter
Integrating
CrimePagerActivity

FragmentStatePagerAdapter vs
FragmentPagerAdapter
For the More Curious: How
ViewPager Really Works
For the More Curious: Laying
Out Views in Code
Challenge: Restoring

CrimeFragment’s Margins
Challenge: Adding First and Last
Buttons

12. Dialogs
Creating a DialogFragment

Showing a DialogFragment
Setting a dialog’s contents

Passing Data Between Two
Fragments

Passing data to
DatePickerFragment
Returning data to
CrimeFragment

Challenge: More Dialogs
Challenge: A Responsive
DialogFragment

13. The Toolbar

AppCompat
Using the AppCompat library

Menus
Defining a menu in XML
Creating the menu
Responding to menu
selections

Enabling Hierarchical Navigation
How hierarchical navigation
works

An Alternative Action Item
Toggling the action item
title
“Just one more thing...”

For the More Curious: Action Bar
vs Toolbar
Challenge: Deleting Crimes

Challenge: Plural String
Resources
Challenge: An Empty View for
the RecyclerView

14. SQLite Databases
Defining a Schema
Building Your Initial Database

Exploring files using Android
Device Monitor
Debugging database issues

Gutting CrimeLab
Writing to the Database

Using ContentValues
Inserting and updating rows

Reading from the Database
Using a CursorWrapper
Converting to model objects

For the More Curious: More
Databases
For the More Curious: The
Application Context
Challenge: Deleting Crimes

15. Implicit Intents
Adding Buttons
Adding a Suspect to the Model
Layer
Using a Format String
Using Implicit Intents

Parts of an implicit intent
Sending a crime report
Asking Android for a contact
Checking for responding
activities

Challenge: ShareCompat

Challenge: Another Implicit
Intent

16. Taking Pictures with Intents
A Place for Your Photo
File Storage

Using FileProvider
Designating a picture
location

Using a Camera Intent
Firing the intent

Scaling and Displaying Bitmaps
Declaring Features
Challenge: Detail Display
Challenge: Efficient Thumbnail
Load

17. Two-Pane Master-Detail
Interfaces

Adding Layout Flexibility
Modifying
SingleFragmentActivity
Creating a layout with two
fragment containers
Using an alias resource
Creating tablet alternatives

Activity: Fragment Boss
Fragment callback interfaces

For the More Curious: More on
Determining Device Size
Challenge: Adding Swipe to
Dismiss

18. Localization
Localizing Resources

Default resources
Checking string coverage

using Translations Editor
Targeting a region

Configuration Qualifiers
Prioritizing alternative
resources
Multiple qualifiers
Finding the best-matching
resources

Testing Alternative Resources
Challenge: Localizing Dates

19. Accessibility
TalkBack

Explore by Touch
Linear navigation by swiping

Making Non-Text Elements
Readable by TalkBack

Adding content descriptions

Making a widget focusable
Creating a Comparable
Experience

Using labels to provide
context

For the More Curious: Using
Accessibility Scanner
Challenge: Improving the List
Challenge: Providing Enough
Context for Data Entry
Challenge: Announcing Events

20. Data Binding and MVVM
Different Architectures: Why
Bother?
Creating BeatBox

Simple data binding
Importing Assets

Getting At Assets
Wiring Up Assets for Use
Binding to Data

Creating a ViewModel
Binding to a ViewModel
Observable data

Accessing Assets
For the More Curious: More
About Data Binding

Lambda expressions
More syntactic sugar
BindingAdapters

For the More Curious: Why
Assets, Not Resources
For the More Curious: Non-
Assets?

21. Unit Testing and Audio Playback

Creating a SoundPool
Loading Sounds
Playing Sounds
Test Dependencies
Creating a Test Class
Setting Up Your Test

Using mocked dependencies
Writing Tests

Testing object interactions
Data Binding Callbacks
Unloading Sounds
Rotation and Object Continuity

Retaining a fragment
Rotation and retained
fragments

For the More Curious: Whether
to Retain

For the More Curious: Espresso
and Integration Testing
For the More Curious: Mocks
and Testing
Challenge: Playback Speed
Control

22. Styles and Themes
Color Resources
Styles

Style inheritance
Themes

Modifying the theme
Adding Theme Colors
Overriding Theme Attributes

Theme spelunking
Modifying Button Attributes
For the More Curious: More on

Style Inheritance
For the More Curious: Accessing
Theme Attributes

23. XML Drawables
Making Uniform Buttons
Shape Drawables
State List Drawables
Layer List Drawables
For the More Curious: Why
Bother with XML Drawables?
For the More Curious: Mipmap
Images
For the More Curious: 9-Patch
Images
Challenge: Button Themes

24. More About Intents and Tasks
Setting Up NerdLauncher

Resolving an Implicit Intent
Creating Explicit Intents at
Runtime
Tasks and the Back Stack

Switching between tasks
Starting a new task

Using NerdLauncher as a Home
Screen
Challenge: Icons
For the More Curious: Processes
vs Tasks
For the More Curious:
Concurrent Documents

25. HTTP and Background Tasks
Creating PhotoGallery
Networking Basics

Asking permission to

network
Using AsyncTask to Run on a
Background Thread
You and Your Main Thread

Beyond the main thread
Fetching JSON from Flickr

Parsing JSON text
From AsyncTask Back to the
Main Thread
Cleaning Up AsyncTasks
For the More Curious: More on
AsyncTask
For the More Curious:
Alternatives to AsyncTask
Challenge: Gson
Challenge: Paging
Challenge: Dynamically

Adjusting the Number of
Columns

26. Loopers, Handlers, and
HandlerThread

Preparing RecyclerView to
Display Images
Downloading Lots of Small
Things
Communicating with the Main
Thread
Assembling a Background
Thread
Messages and Message
Handlers

Message anatomy
Handler anatomy
Using handlers

Passing handlers
For the More Curious:
AsyncTasks vs Threads
For the More Curious: Solving
the Image Downloading
Problem
For the More Curious:
StrictMode
Challenge: Preloading and
Caching

27. Search
Searching Flickr
Using SearchView

Responding to SearchView
user interactions

Simple Persistence with Shared
Preferences

Polishing Your App
Challenge: Polishing Your App
Some More

28. Background Services
Creating an IntentService
What Services Are For

Safe background networking
Looking for New Results
Delayed Execution with
AlarmManager

Being a good citizen: using
alarms the right way
PendingIntent
Managing alarms with
PendingIntent

Controlling Your Alarm
Notifications

Challenge: Notifications on
Android Wear
For the More Curious: Service
Details

What a service does (and
does not do)
A service’s lifecycle
Non-sticky services
Sticky services
Bound services

For the More Curious:
JobScheduler and JobServices

JobScheduler and the future
of background work

Challenge: Using JobService on
Lollipop
For the More Curious: Sync

Adapters
29. Broadcast Intents

Regular Intents vs Broadcast
Intents
Receiving a System Broadcast:
Waking Up on Boot

Creating and registering a
standalone receiver
Using receivers

Filtering Foreground
Notifications

Sending broadcast intents
Creating and registering a
dynamic receiver
Limiting broadcasts to your
app using private
permissions

Passing and receiving data
with ordered broadcasts

Receivers and Long-Running
Tasks
For the More Curious: Local
Events

Using EventBus
Using RxJava

For the More Curious: Detecting
the Visibility of Your Fragment

30. Browsing the Web and WebView
One Last Bit of Flickr Data
The Easy Way: Implicit Intents
The Harder Way: WebView

Using WebChromeClient to
spruce things up

Proper Rotation with WebView

Dangers of handling
configuration changes

For the More Curious: Injecting
JavaScript Objects
For the More Curious: WebView
Updates
Challenge: Using the Back
Button for Browser History
Challenge: Supporting Non-
HTTP Links

31. Custom Views and Touch Events
Setting Up the DragAndDraw
Project
Creating a Custom View

Creating BoxDrawingView
Handling Touch Events

Tracking across motion

events
Rendering Inside
onDraw(Canvas)
Challenge: Saving State
Challenge: Rotating Boxes

32. Property Animation
Building the Scene
Simple Property Animation

View transformation
properties
Using different interpolators
Color evaluation

Playing Animators Together
For the More Curious: Other
Animation APIs

Legacy animation tools
Transitions

Challenges
33. Locations and Play Services

Locations and Libraries
Google Play Services

Creating Locatr
Play Services and Location
Testing on Emulators

Mock location data
Building Out Locatr
Setting Up Google Play Services

Location permissions
Using Google Play Services
Flickr Geosearch
Getting a Location Fix
Asking for Permission at
Runtime

Checking for permissions

Find and Display an Image
Challenge: Permissions
Rationale
Challenge: Progress

34. Maps
Importing Play Services Maps
Mapping on Android
Getting a Maps API Key
Setting Up Your Map
Getting More Location Data
Working with Your Map

Drawing on the map
For the More Curious: Teams
and API Keys

35. Material Design
Material Surfaces

Elevation and Z values

State list animators
Animation Tools

Circular reveal
Shared element transitions

View Components
Cards
Floating action buttons
Snackbars

More on Material Design
36. Afterword

The Final Challenge
Shameless Plugs
Thank You

Index

Learning
Android
As a beginning Android programmer,
you face a steep learning curve. Learning
Android is like moving to a foreign city.
Even if you speak the language, it will
not feel like home at first. Everyone
around you seems to understand things
that you are missing. Things you already
knew turn out to be dead wrong in this
new context.
Android has a culture. That culture
speaks Java, but knowing Java is not

enough. Getting your head around
Android requires learning many new
ideas and techniques. It helps to have a
guide through unfamiliar territory.
That’s where we come in. At Big Nerd
Ranch, we believe that to be an Android
programmer, you must:

write Android applications

understand what you are
writing

This guide will help you do both. We
have trained thousands of professional
Android programmers using it. We lead
you through writing several Android
applications, introducing concepts and
techniques as needed. When there are

rough spots, or when some things are
tricky or obscure, you will face them
head on, and we will do our best to
explain why things are the way they are.
This approach allows you to put what
you have learned into practice in a
working app right away rather than
learning a lot of theory and then having
to figure out how to apply it all later.
You will come away with the experience
and understanding you need to get going
as an Android developer.

Prerequisites
To use this book, you need to be familiar

with Java, including classes and objects,
interfaces, listeners, packages, inner
classes, anonymous inner classes, and
generic classes.
If these concepts do not ring a bell, you
will be in the weeds by page 2. Start
instead with an introductory Java book
and return to this book afterward. There
are many excellent introductory books
available, so you can choose one based
on your programming experience and
learning style.
If you are comfortable with object-
oriented programming concepts, but your
Java is a little rusty, you will probably
be OK. We will provide some brief
reminders about Java specifics (like
interfaces and anonymous inner classes).

Keep a Java reference handy in case you
need more support as you go through the
book.

What’s New in the
Third Edition?
This third edition adds coverage of a
couple of new tools: constraint layout
(plus its associated editor) and data
binding. New chapters have also been
added on unit testing, accessibility, the
MVVM architectural style, and
localization. Toward the end of the book,
we have added material on the new
runtime permissions system. Finally,
many new challenges and For the More
Curious sections have been added and
many others have been revised

throughout the book.

How to Use This
Book
This book is not a reference book. Its
goal is to get you over the initial hump to
where you can get the most out of the
reference and recipe books available. It
is based on our five-day class at Big
Nerd Ranch. As such, it is meant to be
worked through from the beginning.
Chapters build on each other, and
skipping around is unproductive.
In our classes, students work through
these materials, but they also benefit
from the right environment – a dedicated

classroom, good food and comfortable
board, a group of motivated peers, and
an instructor to answer questions.
As a reader, you want your environment
to be similar. That means getting a good
night’s rest and finding a quiet place to
work. These things can help, too:

Start a reading group with your
friends or coworkers.

Arrange to have blocks of
focused time to work on
chapters.
Participate in the forum for this
book at
forums.bignerdranch.com

Find someone who knows

http://forums.bignerdranch.com

Android to help you out.

How This Book Is
Organized
As you work through this book, you will
write eight Android apps. A couple are
very simple and take only a chapter to
create. Others are more complex. The
longest app spans 13 chapters. All are
designed to teach you important concepts
and techniques and give you direct
experience using them.

GeoQuiz In your first app, you
will explore the
fundamentals of

Android projects,
activities, layouts,
and explicit intents.

CriminalIntent The largest app in
the book,
CriminalIntent lets
you keep a record of
your colleagues’
lapses around the
office. You will
learn to use
fragments, master-
detail interfaces,
list-backed
interfaces, menus,
the camera, implicit
intents, and more.

BeatBox Intimidate your foes
with this app while
you learn more about
fragments, media
playback, MVVM
architecture, data
binding, testing,
themes, and
drawables.

NerdLauncher Building this custom
launcher will give
you insight into the
intent system and
tasks.

PhotoGallery A Flickr client that
downloads and

displays photos from
Flickr’s public feed,
this app will take
you through services,
multithreading,
accessing web
services, and more.

DragAndDraw In this simple
drawing app, you
will learn about
handling touch events
and creating custom
views.

Sunset In this toy app, you
will create a
beautiful

representation of a
sunset over open
water while learning
about animations.

Locatr This app lets you
query Flickr for
pictures around your
current location and
display them on a
map. In it, you will
learn how to use
location services and
maps.

Challenges

Most chapters have a section at the end
with exercises for you to work through.
This is your opportunity to use what you
have learned, explore the documentation,
and do some problem solving on your
own.
We strongly recommend that you do the
challenges. Going off the beaten path and
finding your way will solidify your
learning and give you confidence with
your own projects.
If you get lost, you can always visit
forums.bignerdranch.com for
some assistance.

Are you more curious?

http://forums.bignerdranch.com

There are also sections at the ends of
chapters labeled “For the More
Curious.” These sections offer deeper
explanations or additional information
about topics presented in the chapter.
The information in these sections is not
absolutely essential, but we hope you
will find it interesting and useful.

Code Style
There are two areas where our choices
differ from what you might see
elsewhere in the Android community:

We use anonymous inner classes
for listeners.

This is mostly a matter of
opinion. We find it makes for
cleaner code in the
applications in this book
because it puts the listener’s
method implementations right
where you want to see them. In
high-performance contexts or

large applications, anonymous
inner classes may cause
problems, but for most
circumstances they work fine.

After we introduce fragments in
Chapter 7, we use them for all user
interfaces.

Fragments are not an absolutely
necessary tool, but we find
that, when used correctly, they
are a valuable tool in any
Android developer’s toolkit.
Once you get comfortable with
fragments, they are not that
difficult to work with.
Fragments have clear
advantages over activities that

make them worth the effort,
including flexibility in building
and presenting your user
interfaces.

Typographical
Conventions
All code and XML listings are in a
fixed-width font. Code or XML that you
need to type in is always bold. Code or
XML that should be deleted is struck
through. For example, in the following
method implementation, you are deleting
the call to makeText(…) and adding
the call to checkAnswer(true).
@Override
public void onClick(View v) {
 Toast.makeText(QuizActivity.this,
R.string.incorrect_toast,
 Toast.LENGTH_SHORT).show();
 checkAnswer(true);
}

Using an eBook
If you are reading this book on an
eReader, we want to point out that
reading the code may be tricky at times.
Longer lines of code may wrap to a
second line, depending on your selected
font size.
The longest lines of code in this book
are 86 monospace characters, like this
one.
IceCreamSandwich mySandwich =
IceCream.fromSandwichFactory(vanilla,
chocolate_chips);

You can play with your eReader’s
settings to find the best for viewing long

code lines.
If you are reading on an iPad with
iBooks, we recommend you go to the
Settings app, select iBooks, and set Full
Justification OFF and Auto-hyphenation OFF.
When you get to the point where you are
actually typing in code, we suggest
opening the book on your PC or Mac in
Adobe Digital Editions. (Adobe Digital
Editions is a free eReader application
you can download from
www.adobe.com/​products/​
digitaleditions.) Make the
application window large enough so that
you can see the code with no wrapping
lines. You will also be able to see the
figures in full detail.

http://www.adobe.com/products/digitaleditions

Android Versions
This book teaches Android development
for all widely used versions of Android.
As of this writing, that is Android 4.4
(KitKat) - Android 7.1 (Nougat). While
there is a small amount of market-share
on older versions of Android, we find
that for most developers the amount of
effort required to support those versions
is not worth the reward. For more info
on the support of versions of Android
earlier than 4.4, see earlier editions of
this book. The second edition targeted
Android 4.1 and up, and the first edition
targeted Android 2.3 and up.

As Android releases new versions, the
techniques you learn in this book will
continue to work thanks to Android’s
backward compatibility support (see
Chapter 6 for details). We will keep
track of changes at
forums.bignerdranch.com and
offer notes on using this book with the
latest version.

http://forums.bignerdranch.com

The Necessary
Tools
To get started with this book, you will
need Android Studio. Android Studio is
an integrated development environment
used for Android development that is
based off of the popular IntelliJ IDEA.
An install of Android Studio includes:

Android SDK
the latest version of the
Android SDK

Android SDK tools and platform

tools
tools for debugging and testing
your apps

A system image for the Android
emulator

lets you create and test your
apps on different virtual
devices

As of this writing, Android Studio is
under active development and is
frequently updated. Be aware that you
may find differences between your
version of Android Studio and what you
see in this book. Visit
forums.bignerdranch.com for
help with these differences.

http://forums.bignerdranch.com

Downloading and
Installing Android
Studio
Android Studio is available from
Android’s developer site at
developer.android.com/​sdk/.
If you do not already have it installed,
you will need to install the Java
Development Kit (JDK 8), which you
can download from
www.oracle.com.
If you are still having problems, return to
developer.android.com/​sdk/
for more information.

http://www.oracle.com

Downloading
Earlier SDK
Versions
Android Studio provides the SDK and
the emulator system image from the
latest platform. However, you may want
to test your apps on earlier versions of
Android.
You can get components for each
platform using the Android SDK
Manager. In Android Studio, select Tools
→ Android → SDK Manager. (You will only
see the Tools menu if you have a project

open. If you have not created a project
yet, you can instead access the SDK
Manager from the Android Setup Wizard
screen. Under the Quick Start section,
select Configure → SDK Manager.)
The SDK Manager is shown in Figure 1.

Figure 1 Android SDK Manager

Select and install each version of

Android that you want to test with. Note
that downloading these components may
take a while.
The Android SDK Manager is also how
to get Android’s latest releases, like a
new platform or an update of the tools.

A Hardware Device
The emulator is useful for testing apps.
However, it is no substitute for an actual
Android device when measuring
performance. If you have a hardware
device, we recommend using that device
at times when working through this book.

1
Your First

Android
Application

This first chapter is full of new concepts
and moving parts required to build an
Android application. It is OK if you do
not understand everything by the end of
this chapter. You will be revisiting these
ideas in greater detail as you proceed
through the book.

The application you are going to create
is called GeoQuiz. GeoQuiz tests the
user’s knowledge of geography. The user
presses TRUE or FALSE to answer the
question on screen, and GeoQuiz
provides instant feedback.
Figure 1.1 shows the result of a user
pressing the TRUE button.

Figure 1.1 Do you come from a
land down under?

App Basics
Your GeoQuiz application will consist
of an activity and a layout:

 An activity is an instance of
Activity, a class in the
Android SDK. An activity is
responsible for managing user
interaction with a screen of
information.
You write subclasses of
Activity to implement the
functionality that your app
requires. A simple application
may need only one subclass; a
complex application can have
many.
GeoQuiz is a simple app, so it
will have a single Activity
subclass named
QuizActivity.
QuizActivity will manage

the user interface, or UI, shown
in Figure 1.1.

 A layout defines a set of UI
objects and their positions on
the screen. A layout is made up
of definitions written in XML.
Each definition is used to
create an object that appears on
screen, like a button or some
text.
GeoQuiz will include a layout
file named
activity_quiz.xml. The
XML in this file will define the
UI shown in Figure 1.1.

The relationship between
QuizActivity and

activity_quiz.xml is
diagrammed in Figure 1.2.

Figure 1.2 QuizActivity
manages what
activity_quiz.xml defines

With those ideas in mind, let’s build an
app.

Creating an
Android Project
The first step is to create an Android
project. An Android project contains the
files that make up an application. To
create a new project, first open Android
Studio.
If this is your first time running Android
Studio, you will see the Welcome
dialog, as in Figure 1.3.

Figure 1.3 Welcome to Android
Studio

From the dialog, choose Start a new Android
Studio project. If you do not see the dialog,
you may have created projects before. In
this case, choose File → New → New
Project....
You should see the New Project wizard

(Figure 1.4). In the first screen of the
wizard, enter GeoQuiz as the application
name. For the company domain, enter
android.bignerdranch.com. As you do
this, you will see the generated package
name change to
com.bignerdranch.android.geoquiz. For
the project location, you can use any
location on your filesystem that you
want.

Figure 1.4 Creating a new
application

Notice that the package name uses a
“reverse DNS” convention: The domain
name of your organization is reversed

and suffixed with further identifiers.
This convention keeps package names
unique and distinguishes applications
from each other on a device and on
Google Play.
Click Next. The next screen allows you
to specify details about which devices
you want to support. GeoQuiz will only
support phones, so just check Phone and
Tablet. Select a minimum SDK version of
API 19: Android 4.4 (KitKat) (Figure 1.5).
You will learn about the different
versions of Android in Chapter 6.

Figure 1.5 Specifying device
support

Click Next.
In the next screen, you are prompted to

choose a template for the first screen of
GeoQuiz (Figure 1.6). You want the
most basic template available. Choose
Empty Activity and click Next.
(Android Studio updates regularly, so
your wizard may look slightly different
from what we are showing you. This is
usually not a problem; the choices
should be similar. If your wizard looks
very different, then the tools have
changed more drastically. Do not panic.
Head to this book’s forum at
forums.bignerdranch.com and
we will help you navigate the latest
version.)

http://forums.bignerdranch.com

Figure 1.6 Choosing a type of
activity

In the final dialog of this wizard, name
the activity subclass QuizActivity

(Figure 1.7). Notice the Activity
suffix on the class name. This is not
required, but it is an excellent
convention to follow.

Figure 1.7 Configuring the new
activity

Leave Generate Layout File checked. The
layout name will automatically update to

activity_quiz to reflect the activity’s
new name. The layout name reverses the
order of the activity name, is all
lowercase, and has underscores between
words. This naming style is
recommended for layouts as well as
other resources that you will learn about
later.
If your version of Android Studio has
other options on this screen, leave them
as is. Click Finish. Android Studio will
create and open your new project.

Navigating in
Android Studio
Android Studio opens your project in a
window, as shown in Figure 1.8.
The different panes of the project
window are called tool windows.
The lefthand view is the project tool
window. From here, you can view and
manage the files associated with your
project.
The main view is the editor. To get you
started, Android Studio has opened
QuizActivity.java in the editor.

Figure 1.8 A fresh project
window

You can toggle the visibility of the
various tool windows by clicking on
their names in the strips of tool buttons
on the left, right, and bottom of the
screen. There are keyboard shortcuts for
many of these as well. If you do not see

the tool button strips, click the gray
square button in the lower-left corner of
the main window or choose View → Tool
Buttons.

Laying Out the UI
Open
app/res/layout/activity_quiz.xml
If you see a graphical preview of the
file, select the Text tab at the bottom to
see the backing XML.
Currently, activity_quiz.xml
defines the default activity layout. The
defaults change frequently, but the XML
will look something like Listing 1.1.

Listing 1.1 Default activity
layout (activity_quiz.xml)
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_quiz"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="16dp"
 android:paddingLeft="16dp"
 android:paddingRight="16dp"
 android:paddingTop="16dp"

tools:context="com.bignerdranch.android.geoquiz.QuizActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"/>
</RelativeLayout>

The default activity layout defines two
widgets: a RelativeLayout and a
TextView.
Widgets are the building blocks you use
to compose a UI. A widget can show text
or graphics, interact with the user, or
arrange other widgets on the screen.
Buttons, text input controls, and

checkboxes are all types of widgets.
The Android SDK includes many
widgets that you can configure to get the
appearance and behavior you want.
Every widget is an instance of the View
class or one of its subclasses (such as
TextView or Button).
Figure 1.9 shows how the
RelativeLayout and TextView
defined in Listing 1.1 would appear on
screen.

Figure 1.9 Default widgets as
seen on screen

But these are not the widgets you are
looking for. The interface for
QuizActivity requires five widgets:

a vertical LinearLayout

a TextView
a horizontal LinearLayout

two Buttons

Figure 1.10 shows how these widgets
compose QuizActivity’s interface.

Figure 1.10 Planned widgets
as seen on screen

Now you need to define these widgets in
activity_quiz.xml.
In the project tool window, find the
app/res/layout directory, reveal
its contents, and open
activity_quiz.xml. Make the
changes shown in Listing 1.2. The XML

that you need to delete is struck through,
and the XML that you need to add is in
bold font. This is the pattern we will use
throughout this book.
Do not worry about understanding what
you are typing; you will learn how it
works next. However, do be careful.
Layout XML is not validated, and typos
will cause problems sooner or later.
You will see errors on the three lines
that start with android:text. Ignore
these errors for now; you will fix them
soon.

Listing 1.2 Defining widgets in
XML (activity_quiz.xml)
<RelativeLayout
 android:id="@+id/activity_quiz"

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

android:paddingBottom="@dimen/activity_vertical_margin"

android:paddingLeft="@dimen/activity_horizontal_margin"

android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin"

tools:context="com.bignerdranch.android.geoquiz.QuizActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"/>
</RelativeLayout>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/question_text" />

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/true_button" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/false_button" />

 </LinearLayout>

</LinearLayout>

Compare your XML with the UI shown
in Figure 1.10. Every widget has a
corresponding XML element, and the
name of the element is the type of the

widget.
Each element has a set of XML
attributes. Each attribute is an
instruction about how the widget should
be configured.
To understand how the elements and
attributes work, it helps to look at the
layout from a hierarchical perspective.

The view hierarchy
Your widgets exist in a hierarchy of
View objects called the view hierarchy.
Figure 1.11 shows the view hierarchy
that corresponds to the XML in Listing
1.2.

Figure 1.11 Hierarchical layout
of widgets and attributes

The root element of this layout’s view
hierarchy is a LinearLayout. As the
root element, the LinearLayout must
specify the Android resource XML
namespace at

http://schemas.android.com/apk/res/android

LinearLayout inherits from a
subclass of View named ViewGroup.
A ViewGroup is a widget that contains
and arranges other widgets. You use a
LinearLayout when you want
widgets arranged in a single column or
row. Other ViewGroup subclasses are
FrameLayout, TableLayout, and
RelativeLayout.
When a widget is contained by a
ViewGroup, that widget is said to be a
child of the ViewGroup. The root
LinearLayout has two children: a
TextView and another
LinearLayout. The child
LinearLayout has two Button
children of its own.

Widget attributes
Let’s go over some of the attributes that
you have used to configure your widgets.

android:layout_width and
android:layout_height

The android:layout_width and
android:layout_height attributes are
required for almost every type of
widget. They are typically set to either
match_parent or wrap_content:

match_parent view will be as
big as its parent

wrap_content view will be as
big as its contents
require

(You may see fill_parent in some
places. This deprecated value is
equivalent to match_parent.)
For the root LinearLayout, the value
of both the height and width attributes is
match_parent. The
LinearLayout is the root element,
but it still has a parent – the view that
Android provides for your app’s view
hierarchy to live in.
The other widgets in your layout have
their widths and heights set to
wrap_content. You can see in

Figure 1.10 how this determines their
sizes.
The TextView is slightly larger than
the text it contains due to its
android:padding="24dp" attribute.
This attribute tells the widget to add the
specified amount of space to its contents
when determining its size. You are using
it to get a little breathing room between
the question and the buttons. (Wondering
about the dp units? These are density-
independent pixels, which you will learn
about in Chapter 9.)

android:orientation

The android:orientation attribute on

the two LinearLayout widgets
determines whether their children will
appear vertically or horizontally. The
root LinearLayout is vertical; its
child LinearLayout is horizontal.
The order in which children are defined
determines the order in which they
appear on screen. In a vertical
LinearLayout, the first child defined
will appear topmost. In a horizontal
LinearLayout, the first child defined
will be leftmost. (Unless the device is
set to a language that runs right to left,
such as Arabic or Hebrew. In that case,
the first child will be rightmost.)

android:text

The TextView and Button widgets
have android:text attributes. This
attribute tells the widget what text to
display.
Notice that the values of these attributes
are not literal strings. They are
references to string resources.
A string resource is a string that lives in
a separate XML file called a strings
file. You can give a widget a hardcoded
string, like android:text="True", but
it is usually not a good idea. Placing
strings into a separate file and then
referencing them is better because it
makes localization easy.
The string resources you are referencing
in activity_quiz.xml do not exist

yet. Let’s fix that.

Creating string
resources
Every project includes a default strings
file named strings.xml.
Open res/values/strings.xml.
The template has already added one
string resource for you. Add the three
new strings that your layout requires.

Listing 1.3 Adding string
resources (strings.xml)
<resources>
 <string name="app_name">GeoQuiz</string>
 <string name="question_text">Canberra is the
capital of Australia.</string>
 <string name="true_button">True</string>

 <string name="false_button">False</string>
</resources>

(Depending on your version of Android
Studio, you may have additional strings.
Do not delete them. Deleting them could
cause cascading errors in other files.)
Now, whenever you refer to
@string/false_button in any
XML file in the GeoQuiz project, you
will get the literal string “False” at
runtime.
If you had errors in
activity_quiz.xml about the
missing string resources, they should
now be gone. (If you still have errors,
check both files for typos.)
Although the default strings file is named
strings.xml, you can name a strings

file anything you want. You can also
have multiple strings files in a project.
As long as the file is located in
res/values/, has a resources root
element, and contains child string
elements, your strings will be found and
used.

Previewing the layout
Your layout is now complete, and you
can preview the layout in the graphical
layout tool (Figure 1.12). First, make
sure that your files are error free. Then
return to activity_quiz.xml and
open the preview tool window (if it is
not already open) using the tab to the

right of the editor.

Figure 1.12 Previewing
activity_quiz.xml in
graphical layout tool

From Layout XML
to View Objects
How do XML elements in
activity_quiz.xml become View
objects? The answer starts in the
QuizActivity class.
When you created the GeoQuiz project,
a subclass of Activity named
QuizActivity was created for you.
The class file for QuizActivity is in
the app/java directory of your
project. The java directory is where
the Java code for your project lives.

In the project tool window, reveal the
contents of the app/java directory
and then the contents of the
com.bignerdranch.android.geoquiz
package. Open the
QuizActivity.java file and take a
look at its contents.

Listing 1.4 Default class file for
QuizActivity
(QuizActivity.java)
package com.bignerdranch.android.geoquiz;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class QuizActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);
 }
}

(Wondering what
AppCompatActivity is? It is a
subclass of Android’s Activity class
that provides compatibility support for
older versions of Android. You will
learn much more about
AppCompatActivity in
Chapter 13.)
If you are not seeing all of the import
statements, click the symbol to the left of
the first import statement to reveal the
others.
This file has one Activity method:
onCreate(Bundle).
(If your file has
onCreateOptionsMenu(Menu)
and

onOptionsItemSelected(MenuItem)
methods, ignore them for now. You will
return to menus in detail in Chapter 13.)
The onCreate(Bundle) method is
called when an instance of the activity
subclass is created. When an activity is
created, it needs a UI to manage. To get
the activity its UI, you call the following
Activity method:
 public void setContentView(int layoutResID)

This method inflates a layout and puts it
on screen. When a layout is inflated,
each widget in the layout file is
instantiated as defined by its attributes.
You specify which layout to inflate by
passing in the layout’s resource ID.

Resources and resource
IDs
A layout is a resource. A resource is a
piece of your application that is not code
– things like image files, audio files, and
XML files.
Resources for your project live in a
subdirectory of the app/res directory.
In the project tool window, you can see
that activity_quiz.xml lives in
res/layout/. Your strings file,
which contains string resources, lives in
res/values/.
To access a resource in code, you use its
resource ID. The resource ID for your

layout is R.layout.activity_quiz.
To see the current resource IDs for
GeoQuiz, you must first change your
project view. By default, Android Studio
uses the Android project view
(Figure 1.13). This view hides the true
directory structure of your Android
project so that you can focus on the files
and folders that you need most often.

Figure 1.13 Changing the
project view

Locate the dropdown at the top of the
project tool window and change from
the Android view to the Project view. The
Project view will show you the files and
folders in your project as they actually
are.

To see the resources for GeoQuiz, reveal
the contents of the
app/build/generated/source/r/debug
directory. In this directory, find your
project’s package name and open
R.java within that package. Because
this file is generated by the Android
build process, you should not change it,
as you are subtly warned at the top of the
file.
After making a change to your resources,
you may not see this file instantly update.
Android Studio maintains a hidden
R.java that your code builds against.
The R.java file in Listing 1.5 is the
one that is generated for your app just
before it is installed on a device or
emulator. You will see this file update

when you run your app.

Listing 1.5 Current GeoQuiz
resource IDs (R.java)
/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.bignerdranch.android.geoquiz;

public final class R {
 public static final class anim {
 ...
 }

 ...

 public static final class id {
 ...
 }
 public static final class layout {
 ...
 public static final int
activity_quiz=0x7f030017;
 }
 public static final class mipmap {
 public static final int
ic_launcher=0x7f030000;

 }
 public static final class string {
 ...
 public static final int app_name=0x7f0a0010;
 public static final int
false_button=0x7f0a0012;
 public static final int
question_text=0x7f0a0014;
 public static final int
true_button=0x7f0a0015;
 }
}

The R.java file can be large, and
much of this file is omitted from Listing
1.5.
This is where the
R.layout.activity_quiz comes from
– it is an integer constant named
activity_quiz within the layout
inner class of R.
Your strings also have resource IDs. You
have not yet referred to a string in code,
but if you did, it would look like this:

 setTitle(R.string.app_name);

Android generated a resource ID for the
entire layout and for each string, but it
did not generate IDs for the individual
widgets in activity_quiz.xml.
Not every widget needs a resource ID.
In this chapter, you will only interact
with the two buttons in code, so only
they need resource IDs.
Before generating the resource IDs,
switch back to the Android project view.
Throughout this book, the Android project
view will be used – but feel free to use
the Project version if you prefer.
To generate a resource ID for a widget,
you include an android:id attribute in
the widget’s definition. In
activity_quiz.xml, add an

android:id attribute to each button.

Listing 1.6 Adding IDs to
Buttons (activity_quiz.xml)
<LinearLayout ... >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/question_text" />

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <Button
 android:id="@+id/true_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/true_button" />

 <Button
 android:id="@+id/false_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/false_button" />

 </LinearLayout>

</LinearLayout>

Notice that there is a + sign in the values
for android:id but not in the values for
android:text. This is because you are
creating the IDs and only referencing
the strings.

Wiring Up Widgets
Now that the buttons have resource IDs,
you can access them in
QuizActivity. The first step is to
add two member variables.
Type the following code into
QuizActivity.java. (Do not use
code completion; type it in yourself.)
After you save the file, it will report two
errors.

Listing 1.7 Adding member
variables (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private Button mTrueButton;

 private Button mFalseButton;

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);
 }
}

You will fix the errors in just a second.
First, notice the m prefix on the two
member (instance) variable names. This
prefix is an Android naming convention
that we will follow throughout this book.
Now mouse over the red error
indicators. They report the same
problem: Cannot resolve symbol 'Button'.
These errors are telling you that you
need to import the
android.widget.Button class
into QuizActivity.java. You

could type the following import
statement at the top of the file:
 import android.widget.Button;

Or you can do it the easy way and let
Android Studio do it for you. Just press
Option+Return (or Alt+Enter) to let the
IntelliJ magic under the hood amaze you.
The new import statement now appears
with the others at the top of the file. This
shortcut is generally useful when
something is not correct with your code.
Try it often!
This should get rid of the errors. (If you
still have errors, check for typos in your
code and XML.)
Now you can wire up your button
widgets. This is a two-step process:

get references to the inflated
View objects

set listeners on those objects to
respond to user actions

Getting references to
widgets

In an activity, you can get a reference to
an inflated widget by calling the
following Activity method:
 public View findViewById(int id)

This method accepts a resource ID of a
widget and returns a View object.
In QuizActivity.java, use the
resource IDs of your buttons to retrieve

the inflated objects and assign them to
your member variables. Note that you
must cast the returned View to Button
before assigning it.

Listing 1.8 Getting references
to widgets
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private Button mTrueButton;
 private Button mFalseButton;

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);

 mTrueButton = (Button)
findViewById(R.id.true_button);
 mFalseButton = (Button)
findViewById(R.id.false_button);
 }
}

Setting listeners

Android applications are typically event
driven. Unlike command-line programs
or scripts, event-driven applications
start and then wait for an event, such as
the user pressing a button. (Events can
also be initiated by the OS or another
application, but user-initiated events are
the most obvious.)
When your application is waiting for a
specific event, we say that it is
“listening for” that event. The object that
you create to respond to an event is
called a listener, and the listener
implements a listener interface for that
event.

The Android SDK comes with listener
interfaces for various events, so you do
not have to write your own. In this case,
the event you want to listen for is a
button being pressed (or “clicked”), so
your listener will implement the
View.OnClickListener interface.
Start with the TRUE button. In
QuizActivity.java, add the
following code to
onCreate(Bundle) just after the
variable assignment.

Listing 1.9 Setting a listener
for the TRUE button
(QuizActivity.java)
 @Override
 protected void onCreate(Bundle
savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);

 mTrueButton = (Button)
findViewById(R.id.true_button);
 mTrueButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Does nothing yet, but soon!
 }
 });

 mFalseButton = (Button)
findViewById(R.id.false_button);
 }
}

(If you have a View cannot be resolved to a
type error, try using Option+Return
(Alt+Enter) to import the View class.)
In Listing 1.9, you set a listener to
inform you when the Button known as
mTrueButton has been pressed. The
setOnClickListener(OnClickListener)
method takes a listener as its argument.

In particular, it takes an object that
implements OnClickListener.

Using anonymous inner classes

This listener is implemented as an
anonymous inner class. The syntax is a
little tricky, but it helps to remember that
everything within the outermost set of
parentheses is passed into
setOnClickListener(OnClickListener)
Within these parentheses, you create a
new, nameless class and pass its entire
implementation.
 mTrueButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Does nothing yet, but soon!
 }

 });

All of the listeners in this book will be
implemented as anonymous inner
classes. Doing so puts the
implementations of the listeners’
methods right where you want to see
them. And there is no need for the
overhead of a named class because the
class will be used in one place only.
Because your anonymous class
implements OnClickListener, it must
implement that interface’s sole method,
onClick(View). You have left the
implementation of onClick(View)
empty for now, and the compiler is OK
with that. A listener interface requires
you to implement onClick(View),
but it makes no rules about how you

implement it.
(If your knowledge of anonymous inner
classes, listeners, or interfaces is rusty,
you may want to review some Java
before continuing or at least keep a
reference nearby.)
Set a similar listener for the FALSE button.

Listing 1.10 Setting a listener
for the FALSE button
(QuizActivity.java)
 mTrueButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Does nothing yet, but soon!
 }
 });

 mFalseButton = (Button)
findViewById(R.id.false_button);
 mFalseButton.setOnClickListener(new
View.OnClickListener() {

 @Override
 public void onClick(View v) {
 // Does nothing yet, but soon!
 }
 });
}

Making Toasts
Now to make the buttons fully armed and
operational. You are going to have a
press of each button trigger a pop-up
message called a toast. A toast is a
short message that informs the user of
something but does not require any input
or action. You are going to make toasts
that announce whether the user answered
correctly or incorrectly (Figure 1.14).

Figure 1.14 A toast providing
feedback

First, return to strings.xml and add

the string resources that your toasts will
display.

Listing 1.11 Adding toast
strings (strings.xml)
<resources>
 <string name="app_name">GeoQuiz</string>
 <string name="question_text">Canberra is the
capital of Australia.</string>
 <string name="true_button">True</string>
 <string name="false_button">False</string>
 <string name="correct_toast">Correct!</string>
 <string name="incorrect_toast">Incorrect!
</string>
</resources>

To create a toast, you call the following
method from the Toast class:
 public static Toast makeText(Context context, int
resId, int duration)

The Context parameter is typically an
instance of Activity (Activity is
a subclass of Context). The second

parameter is the resource ID of the string
that the toast should display. The
Context is needed by the Toast
class to be able to find and use the
string’s resource ID. The third parameter
is one of two Toast constants that
specify how long the toast should be
visible.
After you have created a toast, you call
Toast.show() on it to get it on
screen.
In QuizActivity, you are going to
call makeText(…) in each button’s
listener. Instead of typing everything in,
try using Android Studio’s code
completion feature to add these calls.

Using code completion
Code completion can save you a lot of
time, so it is good to become familiar
with it early.
Start typing the code addition shown in
Listing 1.12. When you get to the period
after the Toast class, a pop-up
window will appear with a list of
suggested methods and constants from
the Toast class.
To choose one of the suggestions, use the
up and down arrow keys to select it. (If
you wanted to ignore code completion,
you could just keep typing. It will not
complete anything for you if you do not
press the Tab key, press the Return key,

or click on the pop-up window.)
From the list of suggestions, select
makeText(Context context,
int resID, int duration).
Code completion will add the complete
method call for you.
Fill in the parameters for the
makeText method until you have
added the code shown in Listing 1.12.

Listing 1.12 Making toasts
(QuizActivity.java)
mTrueButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,
 R.string.correct_toast,
 Toast.LENGTH_SHORT).show();
 // Does nothing yet, but soon!
 }
});

mFalseButton = (Button)
findViewById(R.id.false_button);
mFalseButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,
 R.string.incorrect_toast,
 Toast.LENGTH_SHORT).show();
 // Does nothing yet, but soon!
 }
});

In makeText(…), you pass the
instance of QuizActivity as the
Context argument. However, you
cannot simply pass the variable this as
you might expect. At this point in the
code, you are defining the anonymous
class where this refers to the
View.OnClickListener.
Because you used code completion, you
do not have to do anything to import the
Toast class. When you accept a code

completion suggestion, the necessary
classes are imported automatically.
Now, let’s see your new app in action.

Running on the
Emulator
To run an Android application, you need
a device – either a hardware device or a
virtual device. Virtual devices are
powered by the Android emulator,
which ships with the developer tools.
To create an Android virtual device
(AVD), choose Tools → Android → AVD
Manager. When the AVD Manager
appears, click the +Create Virtual Device...
button in the lower-left corner of the
window.

In the dialog that appears, you are
offered many options for configuring a
virtual device. For your first AVD,
choose to emulate a Nexus 5X, as shown
in Figure 1.15. Click Next.

Figure 1.15 Choosing a virtual
device

On the next screen, choose a system
image that your emulator is based on.
For this emulator, select an x86 Nougat
emulator and select Next (Figure 1.16).
(You may need to follow the steps to
download the emulator’s components
before you can click Next.)

Figure 1.16 Choosing a system
image

Finally, you can review and tweak
properties of the emulator. You can also
edit the properties of an existing
emulator later. For now, name your
emulator something that will help you to

identify it later and click Finish
(Figure 1.17).

Figure 1.17 Updating emulator
properties

Once you have an AVD, you can run
GeoQuiz on it. From the Android Studio
toolbar, click the run button (it looks like

a green “play” symbol) or press
Control+R. Android Studio will find the
virtual device you created, start it,
install the application package on it, and
run the app.
Starting up the emulator can take a
while, but eventually your GeoQuiz app
will launch on the AVD that you created.
Press buttons and admire your toasts.
If GeoQuiz crashes when launching or
when you press a button, useful
information will appear in the Logcat
view in the Android DDMS tool
window. (If Logcat did not open
automatically when you ran GeoQuiz,
you can open it by clicking the Android
Monitor button at the bottom of the
Android Studio window.) Look for

exceptions in the log; they will be an
eye-catching red color, as shown in
Figure 1.18.

Figure 1.18 An example
NullPointerException at line
21

Compare your code with the code in the
book to try to find the cause of the
problem. Then try running again. (You
will learn more about Logcat and
debugging in the next two chapters.)
Keep the emulator running – you do not
want to wait for it to launch on every

run.
You can stop the app by pressing the
Back button on the emulator. The Back
button is shaped like a left-pointing
triangle (on older versions of Android, it
looks like an arrow that is making a U-
turn). Then re-run the app from Android
Studio to test changes.
The emulator is useful, but testing on a
real device gives more accurate results.
In Chapter 2, you will run GeoQuiz on a
hardware device. You will also give
GeoQuiz more geography questions with
which to test the user.

For the More
Curious: Android
Build Process
By now, you probably have some
burning questions about how the
Android build process works. You have
already seen that Android Studio builds
your project automatically as you modify
it rather than on command. During the
build process, the Android tools take
your resources, code, and the
AndroidManifest.xml file (which
contains metadata about the application)

and turn them into an .apk file. This
file is then signed with a debug key,
which allows it to run on the emulator.
(To distribute your .apk to the masses,
you have to sign it with a release key.
There is more information about this
process in the Android developer
documentation at
developer.android.com/​
tools/​publishing/​
preparing.html.)
How do the contents of
activity_quiz.xml turn into
View objects in an application? As part
of the build process, aapt (Android Asset
Packaging Tool) compiles layout file
resources into a more compact format.
These compiled resources are packaged

into the .apk file. Then, when
setContentView(…) is called in
the QuizActivity’s
onCreate(Bundle) method, the
QuizActivity uses the
LayoutInflater class to instantiate
each of the View objects as defined in
the layout file (Figure 1.19).

Figure 1.19 Inflating
activity_quiz.xml

(You can also create your view classes
programmatically in the activity instead
of defining them in XML. But there are
benefits to separating your presentation
from the logic of the application. The
main one is taking advantage of

configuration changes built into the
SDK, which you will learn more about
in Chapter 3.)
For more details on how the different
XML attributes work and how views
display themselves on the screen, see
Chapter 9.

Android build tools
All of the builds you have seen so far
have been executed from within Android
Studio. This build is integrated into the
IDE – it invokes standard Android build
tools like aapt, but the build process
itself is managed by Android Studio.
You may, for your own reasons, want to

perform builds from outside of Android
Studio. The easiest way to do this is to
use a command-line build tool. The
modern Android build system uses a tool
called Gradle.
(You will know if this section applies to
you. If it does not, feel free to read along
but do not be concerned if you are not
sure why you might want to do this or if
the commands below do not seem to
work. Coverage of the ins and outs of
using the command line is beyond the
scope of this book.)
To use Gradle from the command line,
navigate to your project’s directory and
run the following command:
$./gradlew tasks

On Windows, your command will look a
little different:
> gradlew.bat tasks

This will show you a list of available
tasks you can execute. The one you want
is called “installDebug”. Make it so
with a command like this:
$./gradlew installDebug

Or, on Windows:
> gradlew.bat installDebug

This will install your app on whatever
device is connected. However, it will
not run the app. For that, you will need
to pull up the launcher and launch the
app by hand.

Challenges
Challenges are exercises at the end of
the chapter for you to do on your own.
Some are easy and provide practice
doing the same thing you have done in
the chapter. Other challenges are harder
and require more problem solving.
We cannot encourage you enough to take
on these challenges. Tackling them
cements what you have learned, builds
confidence in your skills, and bridges
the gap between us teaching you Android
programming and you being able to do
Android programming on your own.

If you get stuck while working on a
challenge, take a break and come back to
try again fresh. If that does not help,
check out the forum for this book at
forums.bignerdranch.com. In
the forum, you can review questions and
solutions that other readers have posted
as well as ask questions and post
solutions of your own.
To protect the integrity of your current
project, we recommend you make a copy
and work on challenges in the new copy.
In your computer’s file explorer,
navigate to the root directory of your
project. Copy the GeoQuiz folder and
Paste a new copy next to the original (on
macOS, use the Duplicate feature). Rename
the new folder GeoQuiz Challenge. Back

http://forums.bignerdranch.com

in Android Studio, select File → Import
Project.... Inside the import window,
navigate to GeoQuiz Challenge and
select OK. The copied project will then
appear in a new window ready for
work.

Challenge:
Customizing the
Toast
In this challenge, you will customize the
toast to show at the top instead of the
bottom of the screen. To change how the
toast is displayed, use the Toast
class’s setGravity method. Use
Gravity.TOP for the gravity value.
Refer to the developer documentation at
developer.android.com/​
reference/​android/​widget/​
Toast.html#setGravity(int,
int, int) for more details.

https://developer.android.com/reference/android/widget/Toast.html#setGravity(int, int, int)

2
Android and
Model-View-

Controller
In this chapter, you are going to upgrade
GeoQuiz to present more than one
question, as shown in Figure 2.1.

Figure 2.1 Next!

To make this happen, you are going to
add a class named Question to the

GeoQuiz project. An instance of this
class will encapsulate a single true-false
question.
Then, you will create an array of
Question objects for
QuizActivity to manage.

Creating a New
Class
In the project tool window, right-click
the com.bignerdranch.android.geoquiz
package and select New → Java Class.
Name the class Question and click OK
(Figure 2.2).

Figure 2.2 Creating the
Question class

In Question.java, add two member
variables and a constructor.

Listing 2.1 Adding to Question

class (Question.java)
public class Question {

 private int mTextResId;
 private boolean mAnswerTrue;

 public Question(int textResId, boolean
answerTrue) {
 mTextResId = textResId;
 mAnswerTrue = answerTrue;
 }
}

The Question class holds two pieces
of data: the question text and the
question answer (true or false).
Why is mTextResId an int and not a
String? The mTextResId variable
will hold the resource ID (always an
int) of a string resource for the
question. You will create the question
string resources in a later section.

These variables need getter and setter
methods. Rather than typing them in
yourself, you can have Android Studio
generate the implementations for you.

Generating getters and
setters
The first step is to configure Android
Studio to recognize the m prefix for
member variables.
Open Android Studio’s preferences
(from the Android Studio menu on Mac and
from File → Settings on Windows). Expand
Editor and then expand Code Style. Select
Java, then choose the Code Generation tab.

In the Naming table, select the Field row
and add m as the name prefix for fields
(Figure 2.3). Then add s as the name
prefix for static fields. (You will not be
using the s prefix in the GeoQuiz
project, but it will be useful in later
projects.)

Figure 2.3 Setting Java code
style preferences

Click OK.
What is the point of setting these
prefixes? Now, when you ask Android
Studio to generate a getter for
mTextResId, it will create

getTextResId() rather than
getMTextResId() and
isAnswerTrue() rather than
isMAnswerTrue().
Back in Question.java, right-click
after the constructor and select Generate...
and then Getter and Setter. Select
mTextResId and mAnswerTrue and
click OK to create a getter and setter for
each variable. The results are shown in
Listing 2.2.

Listing 2.2 Generated getters
and setters (Question.java)
public class Question {

 private int mTextResId;
 private boolean mAnswerTrue;
 ...
 public int getTextResId() {
 return mTextResId;

 }

 public void setTextResId(int textResId) {
 mTextResId = textResId;
 }

 public boolean isAnswerTrue() {
 return mAnswerTrue;
 }

 public void setAnswerTrue(boolean answerTrue) {
 mAnswerTrue = answerTrue;
 }

}

Your Question class is now
complete. In a moment, you will modify
QuizActivity to work with
Question. First, let’s take a look at
how the pieces of GeoQuiz will work
together.
You are going to have QuizActivity
create an array of Question objects. It
will then interact with the TextView
and the three Buttons to display

questions and provide feedback.
Figure 2.4 diagrams these relationships.

Figure 2.4 Object diagram for
GeoQuiz

Model-View-
Controller and
Android
Notice that the objects in Figure 2.4 are
separated into three sections labeled
Model, Controller, and View. Android
applications are designed around an
architecture called Model-View-
Controller, or MVC. In MVC, all objects
in your application must be a model
object, a view object, or a controller
object.

 A model object holds the

application’s data and
“business logic.” Model
classes are typically designed
to model the things your app is
concerned with, such as a user,
a product in a store, a photo on
a server, a television show – or
a true-false question. Model
objects have no knowledge of
the UI; their sole purpose is
holding and managing data.
In Android applications, model
classes are generally custom
classes you create. All of the
model objects in your
application compose its model
layer.
GeoQuiz’s model layer

consists of the Question
class.

 View objects know how to
draw themselves on the screen
and how to respond to user
input, like touches. A simple
rule of thumb is that if you can
see it on screen, then it is a
view.
Android provides a wealth of
configurable view classes. You
can also create custom view
classes. An application’s view
objects make up its view layer.
GeoQuiz’s view layer consists
of the widgets that are inflated
from

activity_quiz.xml.

 Controller objects tie the
view and model objects
together. They contain
“application logic.”
Controllers are designed to
respond to various events
triggered by view objects and
to manage the flow of data to
and from model objects and the
view layer.
In Android, a controller is
typically a subclass of
Activity, Fragment, or
Service. (You will learn
about fragments in Chapter 7
and services in Chapter 28.)

GeoQuiz’s controller layer, at
present, consists solely of
QuizActivity.

Figure 2.5 shows the flow of control
between objects in response to a user
event, like a press of a button. Notice
that model and view objects do not talk
to each other directly; controllers sit
squarely in the middle of everything,
receiving messages from some objects
and dispatching instructions to others.

Figure 2.5 MVC flow with user
input

Benefits of MVC
An application can accumulate features
until it is too complicated to understand.
Separating code into classes helps you
design and understand the application as

a whole; you can think in terms of
classes instead of individual variables
and methods.
Similarly, separating classes into model,
view, and controller layers helps you
design and understand an application;
you can think in terms of layers instead
of individual classes.
Although GeoQuiz is not a complicated
app, you can still see the benefits of
keeping layers separate. In a moment,
you are going to update GeoQuiz’s view
layer to include a NEXT button. When you
do that, you will not need to remember a
single thing about the Question class
you just created.
MVC also makes classes easier to reuse.

A class with restricted responsibilities
is more reusable than one with its
fingers in every pie.
For instance, your model class,
Question, knows nothing about the
widgets used to display a true-false
question. This makes it easy to use
Question throughout your app for
different purposes. For example, if you
wanted to display a list of all the
questions at once, you could use the
same object that you use here to display
just one question at a time.

Updating the View
Layer
Now that you have been introduced to
MVC, you are going to update
GeoQuiz’s view layer to include a NEXT
button.
In Android, objects in the view layer are
typically inflated from XML within a
layout file. The sole layout in GeoQuiz
is defined in activity_quiz.xml.
This layout needs to be updated as
shown in Figure 2.6. (Note that to save
space we are not showing the attributes
of unchanged widgets.)

Figure 2.6 New button!

So the changes you need to make to the
view layer are:

Remove the android:text
attribute from the TextView.
You no longer want a
hardcoded question to be part
of its definition.

Give the TextView an
android:id attribute. This

widget will need a resource ID
so that you can set its text in
QuizActivity’s code.

Add the new Button widget
as a child of the root
LinearLayout.

Return to activity_quiz.xml and
make it happen.

Listing 2.3 New button... and
changes to the text view
(activity_quiz.xml)
<LinearLayout ... >

 <TextView
 android:id="@+id/question_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/question_text" />

 <LinearLayout ... >
 ...
 </LinearLayout>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button" />

</LinearLayout>

You will see a familiar error alerting
you about a missing string resource.
Return to
res/values/strings.xml.
Rename question_text and add a
string for the new button.

Listing 2.4 Updating strings
(strings.xml)
<string name="app_name">GeoQuiz</string>
<string name="question_text">Canberra is the capital
of Australia.</string>
<string name="question_australia">Canberra is the

capital of Australia.</string>
<string name="true_button">True</string>
<string name="false_button">False</string>
<string name="next_button">Next</string>
<string name="correct_toast">Correct!</string>

While you have strings.xml open,
go ahead and add the strings for the rest
of the geography questions that will be
shown to the user.

Listing 2.5 Adding question
strings in advance
(strings.xml)
<string name="question_australia">Canberra is the
capital of Australia.</string>
<string name="question_oceans">The Pacific Ocean is
larger than
 the Atlantic Ocean.</string>
<string name="question_mideast">The Suez Canal
connects the Red Sea
 and the Indian Ocean.</string>
<string name="question_africa">The source of the Nile
River is in Egypt.</string>
<string name="question_americas">The Amazon River is
the longest river
 in the Americas.</string>

<string name="question_asia">Lake Baikal is the
world\'s oldest and deepest
 freshwater lake.</string>
...

Notice that you use the escape sequence
\' in the last value to get an apostrophe
in your string. You can use all the usual
escape sequences in your string
resources, such as \n for a new line.
Return to activity_quiz.xml and
preview your layout changes in the
graphical layout tool.
That is all for now for GeoQuiz’s view
layer. Time to wire everything up in your
controller class, QuizActivity.

Updating the
Controller Layer
In the previous chapter, there was not
much happening in GeoQuiz’s one
controller, QuizActivity. It
displayed the layout defined in
activity_quiz.xml. It set
listeners on two buttons and wired them
to make toasts.
Now that you have multiple questions to
retrieve and display, QuizActivity
will have to work harder to tie
GeoQuiz’s model and view layers
together.

Open QuizActivity.java. Add
variables for the TextView and the
new Button. Also, create an array of
Question objects and an index for the
array.

Listing 2.6 Adding variables
and a Question array
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private Button mTrueButton;
 private Button mFalseButton;
 private Button mNextButton;
 private TextView mQuestionTextView;

 private Question[] mQuestionBank = new Question[]
{
 new Question(R.string.question_australia,
true),
 new Question(R.string.question_oceans, true),
 new Question(R.string.question_mideast,
false),
 new Question(R.string.question_africa,
false),

 new Question(R.string.question_americas,
true),
 new Question(R.string.question_asia, true),
 };

 private int mCurrentIndex = 0;
 ...

Here you call the Question
constructor several times and create an
array of Question objects.
(In a more complex project, this array
would be created and stored elsewhere.
In later apps, you will see better options
for storing model data. For now, we are
keeping it simple and just creating the
array within your controller.)
You are going to use
mQuestionBank,
mCurrentIndex, and the accessor
methods in Question to get a parade

of questions on screen.
First, get a reference for the TextView
and set its text to the question at the
current index.

Listing 2.7 Wiring up the
TextView
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);

 mQuestionTextView = (TextView)
findViewById(R.id.question_text_view);
 int question =
mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);

 mTrueButton = (Button)
findViewById(R.id.true_button);
 ...
 }

}

Save your files and check for any errors.
Then run GeoQuiz. You should see the
first question in the array appear in the
TextView.
Now let’s see about the NEXT button.
First, get a reference to the button. Then
set a View.OnClickListener on it.
This listener will increment the index
and update the TextView’s text.

Listing 2.8 Wiring up the new
button (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 mFalseButton.setOnClickListener(new
View.OnClickListener() {
 ...

 }
 });

 mNextButton = (Button)
findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
 int question =
mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }
 });
 }
}

You now have code in two separate
places that updates the
mQuestionTextView variable. Take
a moment to put this code into a private
method instead, as shown in Listing 2.9.
Then call that method in the
mNextButton’s listener and at the end
of onCreate(Bundle) to initially

set the text in the activity’s view.

Listing 2.9 Encapsulating with
updateQuestion()
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 mQuestionTextView = (TextView)
findViewById(R.id.question_text_view);
 int question =
mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 ...
 mNextButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
 int question =
mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 updateQuestion();
 }
 });

 updateQuestion();
 }

 private void updateQuestion() {
 int question =
mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }
}

Run GeoQuiz and test your new NEXT
button.
Now that you have the questions
behaving appropriately, it is time to turn
to the answers. At the moment, GeoQuiz
thinks that the answer to every question
is “true.” Let’s rectify that. Here again,
you will implement a private method to
encapsulate code rather than writing
similar code in two places.
The method that you are going to add to
QuizActivity is:

 private void checkAnswer(boolean userPressedTrue)

This method will accept a boolean
variable that identifies whether the user
pressed TRUE or FALSE. Then, it will
check the user’s answer against the
answer in the current Question
object. Finally, after determining
whether the user answered correctly, it
will make a Toast that displays the
appropriate message to the user.
In QuizActivity.java, add the
implementation of
checkAnswer(boolean) shown in
Listing 2.10.

Listing 2.10 Adding
checkAnswer(boolean)
(QuizActivity.java)

public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 }

 private void updateQuestion() {
 int question =
mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }

 private void checkAnswer(boolean userPressedTrue)
{
 boolean answerIsTrue =
mQuestionBank[mCurrentIndex].isAnswerTrue();

 int messageResId = 0;

 if (userPressedTrue == answerIsTrue) {
 messageResId = R.string.correct_toast;
 } else {
 messageResId = R.string.incorrect_toast;
 }

 Toast.makeText(this, messageResId,
Toast.LENGTH_SHORT)
 .show();
 }
}

Within the button’s listeners, call
checkAnswer(boolean), as shown
in Listing 2.11.

Listing 2.11 Calling
checkAnswer(boolean)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 mTrueButton = (Button)
findViewById(R.id.true_button);
 mTrueButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,

R.string.correct_toast,

Toast.LENGTH_SHORT).show();
 checkAnswer(true);
 }
 });

 mFalseButton = (Button)
findViewById(R.id.false_button);
 mFalseButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,

R.string.incorrect_toast,

Toast.LENGTH_SHORT).show();
 checkAnswer(false);
 }
 });
 ...
 }
 ...
}

GeoQuiz is ready to run again. Let’s get
it running on a real device.

Running on a
Device
In this section, you will set up your
system, device, and application to get
GeoQuiz running on your hardware
device.

Connecting your device
First, plug the device into your system. If
you are developing on a Mac, your
system should recognize the device right
away. On Windows, you may need to

install the adb (Android Debug Bridge)
driver. If Windows cannot find the adb
driver, then download one from the
device manufacturer’s website.

Configuring your device
for development
To test apps on your device, you need to
enable USB debugging on it.
Developer options is not visible by default.
To enable it, go to Settings → About
Tablet/Phone and press Build Number seven
times. Then you can return to Settings, see
Developer options, and enable USB debugging.
The options vary considerably across

devices. If you are having problems
enabling your device, visit
developer.android.com/​
tools/​device.html for more help.
You can confirm that your device is
recognized by opening the Devices view.
The quickest way to the Devices view is
to select the Android Monitor tool
window near the bottom of Android
Studio. Inside of this window, you will
see a drop-down list of connected
devices (Figure 2.7). You should see
your AVD and your hardware device
listed.

Figure 2.7 Viewing connected
devices

If you are having trouble getting your
device recognized, verify that your
device is turned on and the developer
options are enabled.
If you are still unable to see your device

in the devices view, you can find more
help on the Android developers’ site.
Start at
developer.android.com/​
tools/​device.html. You can also
visit this book’s forum at
forums.bignerdranch.com for
more troubleshooting help.
Run GeoQuiz as before. Android Studio
will offer a choice between running on
the virtual device or the hardware
device plugged into your system. Select
the hardware device and continue.
GeoQuiz will launch on your device.
If Android Studio defaults to your
emulator without offering a choice of
device to run the app on, recheck the
steps above and make sure your device

http://forums.bignerdranch.com

is plugged in. Next, ensure that your run
configuration is correct. To modify the
run configuration, select the app drop-
down list near the top of the window, as
shown in Figure 2.8.

Figure 2.8 Run configurations

Choose Edit Configurations... and you will
be presented with a new window with
details about your run configuration

(Figure 2.9).

Figure 2.9 Run configuration
properties

Select app in the left pane and verify that
Deployment Target Options is set to Open
Select Deployment Target Dialog and that Use
same device for future launches is unchecked.

Select OK and re-run the app. You will
now be presented with a choice of
device to launch the app on.

Adding an Icon
GeoQuiz is now up and running, but the
UI would be spiffier if the NEXT button
also displayed a right-pointing arrow
icon.
You can find such an arrow in the
solutions file for this book, which is a
collection of Android Studio projects
for each chapter of this book. The
solutions are hosted here:

 www.bignerdranch.com/​
solutions/​
AndroidProgramming3e.zip

https://www.bignerdranch.com/solutions/AndroidProgramming3e.zip

Download this file and open the
02_MVC/GeoQuiz/app/src/main/res
directory. Within this directory, locate
the drawable-hdpi, drawable-
mdpi, drawable-xhdpi, and
drawable-xxhdpi directories.
The suffixes on these directory names
refer to the screen pixel density of a
device:

mdpi medium-density screens
(~160dpi)

hdpi high-density screens
(~240dpi)

xhdpi extra-high-density screens
(~320dpi)

xxhdpi extra-extra-high-density
screens (~480dpi)

(There are a few other density
categories that are omitted from the
solutions, including ldpi and xxxhdpi.)
Within each directory, you will find two
image files – arrow_right.png and
arrow_left.png. These files have
been customized for the screen pixel
density specified in the directory’s
name.
You are going to include all the image
files from the solutions in GeoQuiz.
When the app runs, the OS will choose
the best image file for the specific
device running the app. Note that by

duplicating the images multiple times,
you increase the size of your application.
In this case, this is not a problem
because GeoQuiz is a simple app.
If an app runs on a device that has a
screen density not included in any of the
application’s screen density qualifiers,
Android will automatically scale the
available image to the appropriate size
for the device. Thanks to this feature, it
is not necessary to provide images for
all of the pixel density buckets. To
reduce the size of your application, you
can focus on one or a few of the higher
resolution buckets and selectively
optimize for lower resolutions when
Android’s automatic scaling provides an
image with artifacts on those lower

resolution devices.
(You will see alternatives to duplicating
images at different densities, along with
an explanation of the mipmap directory,
in Chapter 23.)

Adding resources to a
project
The next step is to add the image files to
GeoQuiz’s resources.
Make sure the project tool window is
displaying the Project view (select Project
from the dropdown at the top of the
project tools window, as shown in
Figure 1.13 in Chapter 1). Expand the

contents of
GeoQuiz/app/src/main/res.
You will see folders named mipmap-
hdpi and mipmap-xhdpi, for
example, as shown in Figure 2.10.

Figure 2.10 A distinct lack of
drawable directories

Back in the solutions file, select and
copy the four directories that you located

earlier: drawable-hdpi,
drawable-mdpi, drawable-
xhdpi, and drawable-xxhdpi. In
Android Studio, paste the copied
directories into app/src/main/res.
You should now have four density-
qualified directories, each with an
arrow_left.png and
arrow_right.png file, as shown in
Figure 2.11.

Figure 2.11 Arrow icons in
GeoQuiz drawable directories

If you switch the project tools window
back to the Android view, you will see the
newly added drawable files summarized
(as shown in Figure 2.12).

Figure 2.12 Summary of arrow
icons in GeoQuiz drawable
directories

Including images in your app is as
simple as that. Any .png, .jpg, or
.gif file you add to a
res/drawable folder will be
automatically assigned a resource ID.

(Note that filenames must be lowercase
and have no spaces.)
These resource IDs are not qualified by
screen density, so you do not need to
determine the device’s screen density at
runtime. All you have to do is use this
resource ID in your code. When the app
runs, the OS will determine the
appropriate image to display on that
particular device.
You will learn more about how the
Android resource system works starting
in Chapter 3. For now, let’s put that right
arrow to work.

Referencing resources in

XML

You use resource IDs to reference
resources in code. But you want to
configure the NEXT button to display the
arrow in the layout definition. How do
you reference a resource from XML?
Answer: with a slightly different syntax.
Open activity_quiz.xml and add
two attributes to the Button widget
definition.

Listing 2.12 Adding an icon to
the NEXT button
(activity_quiz.xml)
<LinearLayout ... >
 ...
 <LinearLayout ... >
 ...

 </LinearLayout>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp" />

</LinearLayout>

In an XML resource, you refer to another
resource by its resource type and name.
A reference to a string resource begins
with @string/. A reference to a
drawable resource begins with
@drawable/.
You will learn more about naming
resources and working in the res
directory structure starting in Chapter 3.
Run GeoQuiz and admire your button’s
new appearance. Then test it to make

sure it still works as before.
GeoQuiz does, however, have a bug.
While the app is running, press the NEXT
button to show another question. Then
rotate the device. If you are running on
the emulator, click the rotate left or
rotate right button in the floating toolbar
to rotate (Figure 2.13).

Figure 2.13 Control the roll

After you rotate, you will see the first

question again. How did this happen,
and how can you fix it?
The answers to those questions have to
do with the activity lifecycle, which is
the topic of Chapter 3.

Challenge: Add a
Listener to the
TextView
Your NEXT button is nice, but you could
also make it so that a user could press
the TextView itself to see the next
question.
Hint: You can use the
View.OnClickListener listener for the
TextView that you have used with the
Buttons, because TextView also
inherits from View.

Challenge: Add a
Previous Button
Add a button that the user can press to go
back one question. The UI should look
something like Figure 2.14.

Figure 2.14 Now with a
previous button!

This is a great challenge. It requires you
to retrace many of the steps in these two
chapters.

Challenge: From
Button to
ImageButton
Perhaps the UI would look even better if
the next and previous buttons showed
only icons, as in Figure 2.15.

Figure 2.15 Icon-only buttons

To accomplish this challenge, these two
widgets must become ImageButtons
instead of regular Buttons.
ImageButton is a widget that inherits

from ImageView. Button, on the
other hand, inherits from TextView.
Figure 2.16 shows their different
inheritance hierarchies.

Figure 2.16 Inheritance
diagram for ImageButton and
Button

You can replace the text and drawable

attributes on the next button with a single
ImageView attribute:
 <Button ImageButton
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp"
 android:src="@drawable/arrow_right"
 />

Of course, you will need to modify
QuizActivity to work with
ImageButton.
After you have changed these buttons to
ImageButtons, Android Studio will
warn you about a missing
android:contentDescription
attribute. This attribute supports
accessibility for users with vision
impairments. You set the value to a

string, which is read aloud when users
have the appropriate settings applied.
Add an android:contentDescription
attribute to each ImageButton to
complete the challenge.

3
The Activity

Lifecycle
What good is an app that resets itself
when the user rotates the device? At the
end of Chapter 2 you discovered that the
geography question displayed is reset to
the first question every time the device
is rotated, regardless of what question is
displayed prior to rotation. In this
chapter you will address the dreaded –
and very common – “rotation problem.”
To fix it, you will learn the basics of the

activity lifecycle.
Every instance of Activity has a
lifecycle. During this lifecycle, an
activity transitions between four states:
resumed, paused, stopped, and
nonexistent. For each transition, there is
an Activity method that notifies the
activity of the change in its state.
Figure 3.1 shows the activity lifecycle,
states, and methods.

Figure 3.1 Activity state
diagram

Figure 3.1 indicates for each state

whether the activity has an instance in
memory, is visible to the user, or is
active in the foreground (accepting user
input). Table 3.1 summarizes this
information.

Table 3.1 Activity States

State In
memory?

Visible to
user?

In
foreground?

nonexistent no no no

stopped yes no no

paused yes yes/partially* no

resumed yes yes yes

(*Depending on the circumstances, a

paused activity may be fully or partially
visible. This is discussed further in the
section called Exploring the activity
lifecycle by example.)
The resumed state represents the activity
the user is currently interacting with.
Only one activity across all the apps on
the device can be in the resumed state at
any given time.
Subclasses of Activity can take
advantage of the methods named in
Figure 3.1 to get work done at critical
transitions in the activity’s lifecycle.
These methods are often called lifecycle
callbacks.
You are already acquainted with one of
these lifecycle callback methods –

onCreate(Bundle). The OS calls
this method after the activity instance is
created but before it is put on screen.
Typically, an activity overrides
onCreate(Bundle) to prepare the
specifics of its UI:

inflating widgets and putting
them on screen (in the call to
(setContentView(int))

getting references to inflated
widgets
setting listeners on widgets to
handle user interaction

connecting to external model
data

It is important to understand that you
never call onCreate(Bundle) or
any of the other Activity lifecycle
methods yourself. You simply override
the callbacks in your activity subclass.
Then Android calls the lifecycle
callbacks at the appropriate time (in
relation to what the user is doing and
what is happening across the rest of the
system) to notify the activity that its state
is changing.

Logging the
Activity Lifecycle
In this section, you are going to override

lifecycle methods to eavesdrop on
QuizActivity’s lifecycle. Each
implementation will simply log a
message informing you that the method
has been called. This will help you see
how QuizActivity’s state changes
at runtime in relation to what the user is
doing.

Making log messages
In Android, the android.util.Log
class sends log messages to a shared
system-level log. Log has several
methods for logging messages. Here is
the one that you will use most often in
this book:

 public static int d(String tag, String msg)

The d stands for “debug” and refers to
the level of the log message. (There is
more about the Log levels in the final
section of this chapter.) The first
parameter identifies the source of the
message, and the second is the contents
of the message.
The first string is typically a TAG
constant with the class name as its value.
This makes it easy to determine the
source of a particular message.
Open QuizActivity.java and add
a TAG constant to QuizActivity:

Listing 3.1 Adding a TAG
constant (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private static final String TAG = "QuizActivity";
 ...
}

Next, in onCreate(Bundle), call
Log.d(…) to log a message.

Listing 3.2 Adding a log
statement to
onCreate(Bundle)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate(Bundle) called");
 setContentView(R.layout.activity_quiz);
 ...
 }
}

Now override five more methods in
QuizActivity by adding the

following after onCreate(Bundle):

Listing 3.3 Overriding more
lifecycle methods
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 }

 @Override
 public void onStart() {
 super.onStart();
 Log.d(TAG, "onStart() called");
 }

 @Override
 public void onResume() {
 super.onResume();
 Log.d(TAG, "onResume() called");
 }

 @Override
 public void onPause() {
 super.onPause();
 Log.d(TAG, "onPause() called");

 }

 @Override
 public void onStop() {
 super.onStop();
 Log.d(TAG, "onStop() called");
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.d(TAG, "onDestroy() called");
 }
 ...
}

Notice that you call the superclass
implementations before you log your
messages. These superclass calls are
required. Calling the superclass
implementation should be the first line of
each callback method override
implementation.
You may have been wondering about the
@Override annotation. This asks the

compiler to ensure that the class actually
has the method that you want to override.
For example, the compiler would be
able to alert you to the following
misspelled method name:
public class QuizActivity extends AppCompatActivity {

 @Override
 public void onCreat(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 }
 ...
}

The parent AppCompatActivity
class does not have an
onCreat(Bundle) method, so the
compiler will complain. This way you
can fix the typo now rather than waiting
until you run the app and see strange
behavior to discover the error.

Using Logcat
To access the log while the application
is running, you can use Logcat, a log
viewer included in the Android SDK
tools.
When you run GeoQuiz, you should see
Logcat appear at the bottom of Android
Studio, as shown in Figure 3.2. If Logcat
is not visible, select the Android
Monitor tool window near the bottom of
the screen and ensure that the logcat tab is
selected.

Figure 3.2 Android Studio with
Logcat

Run GeoQuiz and messages will start
materializing in Logcat. By default, log
statements that are generated with your
app’s package name are shown. You will
see your own messages along with some

system output.
To make your messages easier to find,
you can filter the output using the TAG
constant. In Logcat, click the dropdown
in the top right of the Logcat pane that
reads Show only selected application. This is
the filter dropdown, which is currently
set to show messages from only your
app. Selecting No Filters will show log
messages generated from all over the
system.
In the filter dropdown, select Edit Filter
Configuration to create a new filter. Name
the filter QuizActivity and enter
QuizActivity in the Log Tag field
(Figure 3.3).

Figure 3.3 Creating a filter in
Logcat

Click OK. Now, only messages tagged
QuizActivity will be visible in
Logcat (Figure 3.4).

Figure 3.4 Launching GeoQuiz
creates, starts, and resumes an
activity

Exploring the activity
lifecycle by example
Three lifecycle methods were called
after GeoQuiz was launched and the
initial instance of QuizActivity was
created: onCreate(Bundle),
onStart(), and onResume()
(Figure 3.4). Your QuizActivity
instance is now in the resumed state (in

memory, visible, and active in the
foreground).
(If you are not seeing the filtered list,
select the QuizActivity filter from Logcat’s
filter dropdown.)
Now let’s have some fun. Press the Back
button on the device and then check
Logcat. Your activity received calls to
onPause(), onStop(), and
onDestroy() (Figure 3.5). Your
QuizActivity instance is now in the
nonexistent state (not in memory and thus
not visible – and certainly not active in
the foreground).

Figure 3.5 Pressing the Back
button destroys the activity

When you pressed the Back button, you
told Android, “I’m done with this
activity, and I won’t need it anymore.”
Android then destroyed your activity’s
view and removed all traces of the
activity from memory. This is Android’s
way of being frugal with your device’s
limited resources.
Launch GeoQuiz again by clicking the
GeoQuiz app icon. Android creates a
new instance of QuizActivity from
scratch and calls onCreate(),

onStart(), and onResume() to
move QuizActivity from
nonexistent to resumed.
Now press the Home button. The home
screen displays and QuizActivity
moves completely out of view. What
state is QuizActivity in now?
Check Logcat for a hint. Your activity
received calls to onPause() and
onStop(), but not onDestroy()
(Figure 3.6).

Figure 3.6 Pressing the Home
button stops the activity

Pressing the Home button means the user

is telling Android, “I’m going to go look
at something else, but I might come back.
I’m not really done with this screen yet.”
Android pauses and ultimately stops
your activity. This means, after pressing
Home, your instance of
QuizActivity hangs out in the
stopped state (in memory, not visible,
and not active in the foreground).
Android does this so it can quickly and
easily restart QuizActivity where
you left off when you come back to
GeoQuiz later.
(This is not the whole story about going
Home. Stopped activities can be
destroyed at the discretion of the OS.
See the section called The Activity
Lifecycle, Revisited for the rest of the

story.)
Go back to GeoQuiz by selecting the
GeoQuiz task card from the overview
screen. To do this, press the Recents
button next to the Home button
(Figure 3.7). (On devices without a
Recents button, long-press the Home
button.)

Figure 3.7 Back, Home, and
Recents buttons

Each card in the overview screen
represents an app the user has interacted
with in the past (Figure 3.8). (The

overview screen is often called the
“Recents screen” or “task manager” by
users. We defer to the developer
documentation, which calls it the
“overview screen.”)

Figure 3.8 Overview screen

Click on the GeoQuiz task card in the
overview screen. QuizActivity
will fill the screen.
A quick look at Logcat shows that your
activity got calls to onStart() and
onResume(). Note that
onCreate() was not called. This is
because QuizActivity was in the
stopped state after the user pressed the
Home button. Because the activity

instance was still in memory, it did not
need to be created. Instead, the activity
only had to be started (moved to the
paused/visible state) and then resumed
(moved to the resumed/foreground
state).
It is also possible for an activity to hang
out in the paused state (fully or partially
visible, but not in the foreground). The
partially visible paused scenario can
occur when a new activity with either a
transparent background or a smaller-
than-screen size is launched on top of
your activity. The fully visible scenario
occurs in multi-window mode (only
available on Android 6.0 Nougat and
higher) when the user interacts with a
window that does not contain your

activity, and yet your activity remains
fully visible in the other window.
As you continue through the book, you
will override the different activity
lifecycle methods to do real things for
your application. When you do, you will
learn more about the uses of each
method.

Rotation and the
Activity Lifecycle
Let’s get back to the bug you found at the
end of Chapter 2. Run GeoQuiz, press
the NEXT button to reveal the second
question, and then rotate the device. (On
the emulator, press Command+Right
Arrow/Ctrl+Right Arrow or click the
rotation icon in the toolbar to rotate.)
After rotating, GeoQuiz will display the
first question again. Check Logcat to see
what has happened. Your output should
look like Figure 3.9.

Figure 3.9 QuizActivity is
dead. Long live QuizActivity!

When you rotated the device, the
instance of QuizActivity that you
were looking at was destroyed, and a
new one was created. Rotate the device
again to witness another round of
destruction and rebirth.
This is the source of your bug. Each time
you rotate the device, the current
QuizActivity instance is
completely destroyed. The value that
was stored in mCurrentIndex in that

instance is wiped from memory. This
means that when you rotate, GeoQuiz
forgets which question you were looking
at. As rotation finishes, Android creates
a new instance of QuizActivity
from scratch. mCurrentIndex is
initialized to 0 in
onCreate(Bundle), and the user
starts over at the first question.
You will fix this bug in a moment. First,
let’s take a closer look at why this
happens.

Device configurations
and alternative
resources

Rotating the device changes the device
configuration. The device
configuration is a set of characteristics
that describe the current state of an
individual device. The characteristics
that make up the configuration include
screen orientation, screen density, screen
size, keyboard type, dock mode,
language, and more.
Typically, applications provide
alternative resources to match device
configurations. You saw an example of
this when you added multiple arrow
icons to your project for different screen
densities.
Screen density is a fixed component of
the device configuration; it cannot
change at runtime. On the other hand,

some components, like screen
orientation, can change at runtime.
(There are other configuration changes
that can occur at runtime, such as
keyboard availability, language, and
multi-window mode.)
When a runtime configuration change
occurs, there may be resources that are a
better match for the new configuration.
So Android destroys the activity, looks
for resources that are the best fit for the
new configuration, and then rebuilds a
new instance of the activity with those
resources. To see this in action, let’s
create an alternative resource for
Android to find and use when the
device’s screen orientation changes to
landscape.

Creating a landscape layout

In the project tool window, right-click
the res directory and select New →
Android resource directory. You should see a
window similar to Figure 3.10 that lists
the resource types and qualifiers for
those types. Select layout in the Resource
type dropdown. Leave the Source set
option set to main.

Figure 3.10 Creating a new
resource directory

Next, you will choose how the layout
resources will be qualified. Select
Orientation in the Available qualifiers list and
click the >> button to move Orientation to
the Chosen qualifiers section.
Finally, ensure that Landscape is selected

in the Screen orientation dropdown, as
shown in Figure 3.11. Verify that the
Directory name now indicates that your
directory is called layout-land. While
this window looks fancy, its purpose is
just to set the name of your directory.
Click OK and Android Studio will create
the res/layout-land/ folder.

Figure 3.11 Creating
res/layout-land

The -land suffix is another example of
a configuration qualifier. Configuration
qualifiers on res subdirectories are
how Android identifies which resources
best match the current device
configuration. You can find the list of

configuration qualifiers that Android
recognizes and the pieces of the device
configuration that they refer to at
developer.android.com/​
guide/​topics/​resources/​
providing-resources.html.
When the device is in landscape
orientation, Android will find and use
resources in the res/layout-land
directory. Otherwise, it will stick with
the default in res/layout/.
However, at the moment there are no
resources in the res/layout-land
directory. Let’s fix that.
Copy the activity_quiz.xml file
from res/layout/ to
res/layout-land/. (If you do not
see res/layout-land/ in the

project tool window, select Project from
the dropdown to switch from the Android
view. Just be sure to switch back to the
Android view when you are done. You can
also copy and paste the file outside of
Android Studio using your favorite file
explorer or terminal app.)
You now have a landscape layout and a
default layout. Keep the filename the
same. The two layout files must have the
same filename so that they can be
referenced with the same resource ID.
Now make some changes to the
landscape layout so that it is different
from the default. Figure 3.12 shows the
changes that you are going to make.

Figure 3.12 An alternative
landscape layout

A FrameLayout will replace the top
LinearLayout. FrameLayout is
the simplest ViewGroup and does not
arrange its children in any particular
manner. In this layout, child views will
be arranged according to their
android:layout_gravity attributes.

This means that the TextView,
LinearLayout, and Button
children of the FrameLayout need
android:layout_gravity attributes.
The Button children of the
LinearLayout will stay exactly the
same.
Open layout-
land/activity_quiz.xml and
make the necessary changes using
Figure 3.12. You can use Listing 3.4 to
check your work.

Listing 3.4 Tweaking the
landscape layout (layout-
land/activity_quiz.xml)
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical" >

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView
 android:id="@+id/question_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:padding="24dp" />

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

android:layout_gravity="center_vertical|center_horizontal"

 android:orientation="horizontal" >
 ...
 </LinearLayout>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|right"
 android:text="@string/next_button"

 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp"
 />

</LinearLayout>
</FrameLayout>

Run GeoQuiz again. Rotate the device to
landscape to see the new layout
(Figure 3.13). Of course, this is not just
a new layout – it is a new
QuizActivity as well.

Figure 3.13 QuizActivity in
landscape orientation

Rotate back to portrait to see the default
layout and yet another new
QuizActivity.

Saving Data Across
Rotation
Android does a great job of providing
alternative resources at the right time.
However, destroying and re-creating
activities on rotation can cause
headaches, such as GeoQuiz’s bug of
reverting back to the first question when
the device is rotated.
To fix this bug, the post-rotation
QuizActivity instance needs to
know the old value of
mCurrentIndex. You need a way to
save this data across a runtime

configuration change, like rotation. One
way to do this is to override the
Activity method:
 protected void onSaveInstanceState(Bundle
outState)

This method is called before
onStop(), except when the user
presses the Back button. (Remember,
pressing Back tells Android the user is
done with the activity, so Android wipes
the activity from memory completely and
does not make any attempt to save data
to re-create it.)
The default implementation of
onSaveInstanceState(Bundle)
directs all of the activity’s views to save
their state as data in the Bundle object.
A Bundle is a structure that maps

string keys to values of certain limited
types.
You have seen this Bundle before. It is
passed into onCreate(Bundle):
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
}

When you override
onCreate(Bundle), you call
onCreate(Bundle) on the activity’s
superclass and pass in the bundle you
just received. In the superclass
implementation, the saved state of the
views is retrieved and used to re-create
the activity’s view hierarchy.

Overriding

onSaveInstanceState(Bundle)

You can override
onSaveInstanceState(Bundle)
to save additional data to the bundle and
then read that data back in
onCreate(Bundle). This is how
you are going to save the value of
mCurrentIndex across rotation.
First, in QuizActivity.java, add
a constant that will be the key for the
key-value pair that will be stored in the
bundle.

Listing 3.5 Adding a key for the
value (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private static final String TAG = "QuizActivity";

 private static final String KEY_INDEX = "index";

 private Button mTrueButton;

Next, override
onSaveInstanceState(Bundle)
to write the value of mCurrentIndex
to the bundle with the constant as its key.

Listing 3.6 Overriding
onSaveInstanceState(…)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onPause() {
 ...
 }

 @Override
 public void onSaveInstanceState(Bundle
savedInstanceState) {

super.onSaveInstanceState(savedInstanceState);
 Log.i(TAG, "onSaveInstanceState");
 savedInstanceState.putInt(KEY_INDEX,
mCurrentIndex);

 }

 @Override
 protected void onStop() {
 ...
 }
 ...
}

Finally, in onCreate(Bundle),
check for this value. If it exists, assign it
to mCurrentIndex.

Listing 3.7 Checking bundle in
onCreate(Bundle)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate(Bundle) called");
 setContentView(R.layout.activity_quiz);

 if (savedInstanceState != null) {
 mCurrentIndex =
savedInstanceState.getInt(KEY_INDEX, 0);

 }
 ...
 }
 ...
}

Run GeoQuiz and press NEXT. No matter
how many device rotations you perform,
the newly minted QuizActivity will
“remember” what question you were on.
Note that the types that you can save to
and restore from a Bundle are
primitive types and classes that
implement the Serializable or
Parcelable interfaces. It is usually a
bad practice to put objects of custom
types into a Bundle, however, because
the data might be stale when you get it
back out. It is a better choice to use
some other kind of storage for the data
and put a primitive identifier into the

Bundle instead.

The Activity
Lifecycle, Revisited
Overriding
onSaveInstanceState(Bundle)
is not just for handling rotation or other
runtime configuration changes. An
activity can also be destroyed by the OS
if the user navigates away for a while
and Android needs to reclaim memory
(e.g., if the user presses Home and then
goes and watches a video or plays a
game).
Practically speaking, the OS will not
reclaim a visible (paused or resumed)

activity. Activities are not marked as
“killable” until onStop() is called
and finishes executing.
Stopped activities are fair game to be
killed, though. Still, not to worry. If an
activity is stopped, that means
onSaveInstanceState(Bundle)
was called. So resolving the data-loss-
across-rotation bug also addresses the
situation where the OS destroys your
nonvisible activity to free up memory.
How does the data you stash in
onSaveInstanceState(Bundle)
survive the activity’s death? When
onSaveInstanceState(Bundle)
is called, the data is saved to the
Bundle object. That Bundle object is
then stuffed into your activity’s activity

record by the OS.
To understand the activity record, let’s
add a stashed state to the activity
lifecycle (Figure 3.14).

Figure 3.14 The complete
activity lifecycle

When your activity is stashed, an
Activity object does not exist, but
the activity record object lives on in the
OS. The OS can reanimate the activity
using the activity record when it needs
to.
Note that your activity can pass into the
stashed state without onDestroy()
being called. You can rely on
onStop() and

onSaveInstanceState(Bundle)
being called (unless something has gone
horribly wrong on the device).
Typically, you override
onSaveInstanceState(Bundle)
to stash small, transient-state data that
belongs to the current activity in your
Bundle. Override onStop() to save
any permanent data, such as things the
user is editing, because your activity
may be killed at any time after this
method returns.
So when does the activity record get
snuffed? When the user presses the Back
button, your activity really gets
destroyed, once and for all. At that point,
your activity record is discarded.
Activity records are also discarded on

reboot.

For the More
Curious: Current
State of Activity
Cleanup
As of this writing, activities themselves
are not individually destroyed in low-
memory situations. Instead, Android
clears an entire app process from
memory, taking any of the app’s in-
memory activities with it. (Each
application gets its own process. You
will learn more about Android
application processes in the section

called For the More Curious:
Processes vs Tasks in Chapter 24.)
Processes containing foreground
(resumed) and/or visible (paused)
activities get higher priority than other
processes. When the OS needs to free up
resources, it will select the lower
priority processes first. Practically
speaking, a process containing a visible
activity will not reclaimed by the OS. If
a foreground process does get
reclaimed, that means something is
horribly wrong with the device (and
your app being killed is probably the
least of the user’s concerns).
If you are overriding
onSaveInstanceState(Bundle)
you should test that your state is being

saved and restored as expected. Rotation
is easy to test. And, luckily, so is the
low-memory situation. Try it out now to
see for yourself.
Find and click on the Settings icon
within the list of applications on the
device. When the Settings screen
appears, click Developer options (you will
need to scroll down until you see the
option you are looking for). On the
Developer options screen you will see many
possible settings. Turn on the setting
labeled Don’t keep activities, as shown in
Figure 3.15.

Figure 3.15 Don’t keep
activities

Now run your app and press the Home
button. Pressing Home causes the
activity to be paused and stopped. Then
the stopped activity will be destroyed,
just as if the Android OS had reclaimed
it for its memory. Restore the app to see
if your state was saved as you expected.
Be sure to turn this setting off when you
are done testing, as it will cause a
performance decrease and some apps
will perform poorly.
Remember that pressing the Back button
instead of the Home button will always
destroy the activity, regardless of
whether you have this development
setting on. Pressing the Back button tells
the OS that the user is done with the
activity.

For the More
Curious: Log Levels
and Methods
When you use the
android.util.Log class to send
log messages, you control not only the
content of a message, but also a level
that specifies how important the message
is. Android supports five log levels,
shown in Table 3.2. Each level has a
corresponding method in the Log class.
Sending output to the log is as simple as
calling the corresponding Log method.

Table 3.2 Log levels and
methods
Log level Method Used for

ERROR Log.e(…) errors

WARNING Log.w(…) warnings

INFO Log.i(…) informational
messages

DEBUG Log.d(…)
debug output
(may be
filtered out)

VERBOSE Log.v(…) development
only

In addition, each of the logging methods

has two signatures: one that takes a TAG
string and a message string and a second
that takes those two arguments plus an
instance of Throwable, which makes
it easy to log information about a
particular exception that your
application might throw. Listing 3.8
shows some sample log method
signatures. You can use regular Java
string concatenation to assemble your
message string or String.format if
you have fancier needs.

Listing 3.8 Different ways of
logging in Android
// Log a message at "debug" log level
Log.d(TAG, "Current question index: " +
mCurrentIndex);

Question question;
try {

 question = mQuestionBank[mCurrentIndex];
} catch (ArrayIndexOutOfBoundsException ex) {
 // Log a message at "error" log level, along with
an exception stack trace
 Log.e(TAG, "Index was out of bounds", ex);
}

Challenge:
Preventing Repeat
Answers
Once a user provides an answer for a
particular question, disable the buttons
for that question to prevent multiple
answers being entered.

Challenge: Graded
Quiz
After the user provides answers for all
of the quiz questions, display a Toast
with a percentage score for the quiz.
Good luck!

4
Debugging

Android Apps
In this chapter, you will find out what to
do when apps get buggy. You will learn
how to use Logcat, Android Lint, and the
debugger that comes with Android
Studio.
To practice debugging, the first step is to
break something. In
QuizActivity.java, comment out
the code in onCreate(Bundle)

where you pull out
mQuestionTextView.

Listing 4.1 Commenting out a
crucial line
(QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate(Bundle) called");
 setContentView(R.layout.activity_quiz);

 if (savedInstanceState != null) {
 mCurrentIndex =
savedInstanceState.getInt(KEY_INDEX, 0);
 }

 // mQuestionTextView =
(TextView)findViewById(R.id.question_text_view);

 mTrueButton =
(Button)findViewById(R.id.true_button);
 mTrueButton.setOnClickListener(new
View.OnClickListener() {
 ...
 });
 ...
}

Run GeoQuiz and see what happens.
Figure 4.1 shows the message that
appears when your app crashes and
burns. Different versions of Android
will have slightly different messages, but
they all mean the same thing.

Figure 4.1 GeoQuiz is about to
E.X.P.L.O.D.E.

Of course, you know what is wrong with
your app, but if you did not, it might help
to look at your app from a new
perspective.

Exceptions and
Stack Traces

Expand the Android Monitor tool
window so that you can see what has
happened. If you scroll up and down in
Logcat, you should eventually find an
expanse of red, as shown in Figure 4.2.
This is a standard AndroidRuntime
exception report.
If you do not see much in Logcat and
cannot find the exception, you may need
to select the No Filters option in the filter
dropdown. On the other hand, if you see
too much in Logcat, you can adjust the
Log Level to Error, which will show only
the most severe log messages. You can
also search for the text “FATAL
EXCEPTION,” which will bring you
straight to the exception that caused the
app to crash.

Figure 4.2 Exception and stack
trace in Logcat

The report tells you the top-level
exception and its stack trace, then the
exception that caused that exception and
its stack trace, and so on until it finds an
exception with no cause.
In most of the code you will write, that

last exception with no cause is the
interesting one. Here the exception
without a cause is a
java.lang.NullPointerException
The line just below this exception is the
first line in its stack trace. This line tells
you the class and method where the
exception occurred as well as what file
and line number the exception occurred
on. Click the blue link, and Android
Studio will take you to that line in your
source code.
The line to which you are taken is the
first use of the mQuestionTextView
variable, inside
updateQuestion(). The name
NullPointerException gives you
a hint to the problem: This variable was

not initialized.
Uncomment the line initializing
mQuestionTextView to fix the bug.
When you encounter runtime exceptions,
remember to look for the last exception
in Logcat and the first line in its stack
trace that refers to code that you have
written. That is where the problem
occurred, and it is the best place to start
looking for answers.
If a crash occurs while a device is not
plugged in, all is not lost. The device
will store the latest lines written to the
log. The length and expiration of the
stored log depends on the device, but
you can usually count on retrieving log
results within 10 minutes. Just plug in

the device and select it in the Devices
view. Logcat will fill itself with the
stored log.

Diagnosing
misbehaviors
Problems with your apps will not
always be crashes. In some cases, they
will be misbehaviors. For example,
suppose that every time you pressed the
NEXT button, nothing happened. That
would be a noncrashing, misbehaving
bug.
In QuizActivity.java, make a
change to the mNextButton listener to
comment out the code that increments

mCurrentIndex.

Listing 4.2 Forgetting a critical
line of code
(QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 mNextButton =
(Button)findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
 updateQuestion();
 }
 });
 ...
}

Run GeoQuiz and press the NEXT button.
You should see no effect.
This bug is trickier than the last bug. It is

not throwing an exception, so fixing the
bug is not a simple matter of making the
exception go away. On top of that, this
misbehavior could be caused in two
different ways: The index might not be
changed, or updateQuestion()
might not be called.
If you had no idea what was causing the
problem, you would need to track down
the culprit. In the next few sections, you
will see two ways to do this: diagnostic
logging of a stack trace and using the
debugger to set a breakpoint.

Logging stack traces
In QuizActivity, add a log

statement to updateQuestion().

Listing 4.3 Exception for fun
and profit
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 private void updateQuestion() {
 Log.d(TAG, "Updating question text", new
Exception());
 int question =
mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }

The Log.d(String, String,
Throwable) version of Log.d logs
the entire stack trace just like the
AndroidRuntime exception you saw
earlier. The stack trace will tell you
where the call to
updateQuestion() was made.

The exception that you pass to
Log.d(String, String,
Throwable) does not have to be a
thrown exception that you caught. You
can create a brand new Exception
and pass it to the method without ever
throwing it, and you will get a report of
where the exception was created.
Run GeoQuiz, press the NEXT button, and
then check the output in Logcat
(Figure 4.3).

Figure 4.3 The results

The top line in the stack trace is the line
where you logged out the Exception.
A few lines after that you can see where
updateQuestion() was called
from within your onClick(View)
implementation. Click the link on this
line, and you will be taken to where you
commented out the line to increment your
question index. But do not get rid of the
bug; you are going to use the debugger to
find it again in a moment.
Logging out stack traces is a powerful
tool, but it is also a verbose one. Leave
a bunch of these hanging around, and
soon Logcat will be an unmanageable
mess. Also, a competitor might steal
your ideas by reading your stack traces
to understand what your code is doing.

On the other hand, sometimes a stack
trace showing what your code does is
exactly what you need. If you are seeking
help with a problem at
stackoverflow.com or
forums.bignerdranch.com, it
often helps to include a stack trace. You
can copy and paste lines directly from
Logcat.
Before continuing, delete the log
statement in QuizActivity.java.

Listing 4.4 Farewell, old friend
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 private void updateQuestion() {
 Log.d(TAG, "Updating question text", new
Exception());
 int question =
mQuestionBank[mCurrentIndex].getTextResId();

http://forums.bignerdranch.com

 mQuestionTextView.setText(question);
 }

Setting breakpoints
Now you will use the debugger that
comes with Android Studio to track
down the same bug. You will set a
breakpoint on updateQuestion()
to see whether it was called. A
breakpoint pauses execution before the
line executes and allows you to examine
line by line what happens next.
In QuizActivity.java, return to
the updateQuestion() method.
Next to the first line of this method, click
the gray bar in the lefthand margin. You
should now see a red circle in the gray

bar like the one shown in Figure 4.4.
This is a breakpoint.

Figure 4.4 A breakpoint

To engage the debugger and trigger your
breakpoint, you need to debug your app
instead of running it. To debug your app,
click the debug button (represented by a
bug), which is next to the run button. You
can also navigate to Run → Debug 'app' in
the menu bar. Your device will report
that it is waiting for the debugger to
attach, and then it will proceed normally.
Once your app is up and running with the
debugger attached, it will pause. Firing

up GeoQuiz called
QuizActivity.onCreate(Bundle)
which called updateQuestion(),
which hit your breakpoint.
In Figure 4.5, you can see that this editor
has opened QuizActivity.java
and highlighted the line with the
breakpoint where execution has paused.

Figure 4.5 Stop right there!

The debug tool window at the bottom of
the screen is now visible. It contains the
Frames and Variables views (Figure 4.6).

Figure 4.6 The debug tool
window

You can use the arrow buttons at the top
of the view to step through your
program. You can see from the stack
trace that updateQuestion() has
been called from inside
onCreate(Bundle). But you are
interested in investigating the NEXT

button’s behavior, so click the resume
program button to continue execution.
Then press the NEXT button in GeoQuiz
to see if your breakpoint is hit and
execution is stopped. (It should be.)
Now that you are stopped at an
interesting point of execution, you can
take a look around. The Variables view
allows you to examine the values of the
objects in your program. You should see
the variables that you have created in
QuizActivity as well as an
additional value: this (the
QuizActivity instance itself).
You could expand the this variable to
see all the variables declared in
QuizActivity’s superclass,
Activity, in Activity’s

superclass, in its super-superclass, and
so on. But for now, focus on the
variables that you created.
You are only interested in one value:
mCurrentIndex. Scroll down in the
variables view until you see
mCurrentIndex. Sure enough, it still
has a value of 0.
This code looks perfectly fine. To
continue your investigation, you need to
step out of this method. Click the step
out button.
Check the editor view. It has now
jumped you over to your
mNextButton’s
OnClickListener, right after
updateQuestion() was called.

Pretty nifty.
You will want to fix this implementation,
but before you make any changes to
code, you should stop debugging your
app. You can do this in two ways: You
can stop the program, or you can simply
disconnect the debugger. To stop the
program, click the stop button shown in
Figure 4.6. Usually it is easier to simply
disconnect the debugger. To do that,
click the close button also labeled in
Figure 4.6.
Now return your OnClickListener
to its former glory.

Listing 4.5 Returning to
normalcy (QuizActivity.java)
@Override

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 mNextButton =
(Button)findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
 updateQuestion();
 }
 });
 ...
}

You have tried out two ways of tracking
down a misbehaving line of code: stack
trace logging and setting a breakpoint in
the debugger. Which is better? Each has
its uses, and one or the other will
probably end up being your favorite.
Logging out stack traces has the
advantage that you can see stack traces
from multiple places in one log. The

downside is that to learn something new
you have to add new log statements,
rebuild, deploy, and navigate through
your app to see what happened. The
debugger is more convenient. If you run
your app with the debugger attached,
then you can set a breakpoint while the
application is still running and poke
around to get information about multiple
issues.

Using exception
breakpoints
As if that were not enough choices, you
can also use the debugger to catch
exceptions. Return to

QuizActivity’s onCreate method
and comment out a line of code that will
cause the app to crash.

Listing 4.6 Making GeoQuiz
crash again
(QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 ...
 // mNextButton = (Button)
findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
 updateQuestion();
 }
 });
 ...
}

Now select Run → View Breakpoints... to
pull up the breakpoints dialog, as shown

in Figure 4.7.

Figure 4.7 Setting an
exception breakpoint

This dialog shows all of your currently
set breakpoints. Remove the breakpoint
you added earlier by highlighting it and
clicking the - button.
The breakpoints dialog also allows you

to set a breakpoint that is triggered when
an exception is thrown, wherever it
might happen. You can limit it to only
uncaught exceptions or apply it to both
caught and uncaught exceptions.
Click the + button to add a new
breakpoint. Choose Java Exception
Breakpoints in the drop-down list. You can
now select the type of exception that you
want to catch. Type in
RuntimeException and choose
RuntimeException (java.lang) from the
suggestions. RuntimeException is
the superclass of
NullPointerException,
ClassCastException, and other
runtime problems, so it makes a nice
catch-all.

Click Done and launch GeoQuiz with the
debugger attached. This time, your
debugger will jump right to the line
where the exception was thrown as soon
as it happens. Exquisite.
Now, this is a fairly big hammer. If you
leave this breakpoint on while
debugging, you can expect it to stop on
some framework code or in other places
you do not expect. So you may want to
turn it off when you are not using it. Go
ahead and remove the breakpoint now by
returning to Run → View Breakpoints....
Undo the change from Listing 4.6 to get
GeoQuiz back to a working state.

Android-Specific
Debugging
Most Android debugging is just like
Java debugging. However, you will run
into issues with Android-specific parts,
such as resources, that the Java compiler
knows nothing about. This is where
Android Lint comes in.

Using Android Lint
Android Lint (or just “Lint”) is a static
analyzer for Android code. A static

analyzer is a program that examines your
code to find defects without running it.
Lint uses its knowledge of the Android
frameworks to look deeper into your
code and find problems that the compiler
cannot. In most cases, Lint’s advice is
worth taking.
In Chapter 6, you will see Lint warn you
about compatibility problems. Lint can
also perform type-checking for objects
that are defined in XML. Make the
following casting mistake in
QuizActivity.

Listing 4.7 A simple mix-up
(QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate(Bundle) called");

 setContentView(R.layout.activity_quiz);
 ...
 mQuestionTextView =
(TextView)findViewById(R.id.question_text_view);

 mTrueButton =
(Button)findViewById(R.id.true_button);
 mTrueButton =
(Button)findViewById(R.id.question_text_view);
 ...
}

Because you used the wrong resource
ID, this code will attempt to cast a
TextView as a Button at runtime.
This will cause an improper cast
exception. The Java compiler sees no
problem with this code, but Lint will
catch this error. You should see Lint
immediately highlight this line of code to
indicate that there is a problem.
You can manually run Lint to see all of
the potential issues in your project,
including those that are not as serious as

the one above. Select Analyze → Inspect
Code... from the menu bar. You will be
asked which parts of your project you
would like to inspect. Choose Whole
project and click OK. Android Studio will
now run Lint as well as a few other
static analyzers on your code.
Once the scan is complete, you will see
a few categories of potential issues in
the inspection tool window. Expand the
Android Lint categories to see Lint’s
information about your project
(Figure 4.8).

Figure 4.8 Lint warnings

You can select an issue in this list to see
more detailed information and its
location in your project.
The Mismatched view type warning in the
Android > Lint > Correctness category is the
one that you created above. Go ahead
and correct the cast in
onCreate(Bundle).

Listing 4.8 Fixing that simple
mix-up (QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate(Bundle) called");
 setContentView(R.layout.activity_quiz);

 mQuestionTextView =
(TextView)findViewById(R.id.question_text_view);

 mTrueButton =
(Button)findViewById(R.id.question_text_view);
 mTrueButton =
(Button)findViewById(R.id.true_button);
 ...
}

Run GeoQuiz once more and confirm
that the app is back to normal.

Issues with the R class

You are familiar with build errors that

occur when you reference resources
before adding them or delete resources
that other files refer to. Usually, resaving
the files once the resource is added or
the references are removed will cause
Android Studio to rebuild without any
fuss.
Sometimes, however, these build errors
will persist or appear seemingly out of
nowhere. If this happens to you, here are
some things you can try:

Recheck the validity of the XML in
your resource files

If your R.java file was not
generated for the last build, you
will see errors in your project
wherever you reference a

resource. Often, this is caused
by a typo in one of your XML
files. Layout XML is not
always validated, so typos in
these files may not be pointedly
brought to your attention.
Finding the typo and resaving
the file should cause R.java
to regenerate.

Clean your project
Select Build → Clean Project.
Android Studio will rebuild
the project from scratch, which
often results in an error-free
build. We can all use a deep
clean every now and then.

Sync your project with Gradle

If you make changes to your
build.gradle file, you
will need to sync those changes
to update your project’s build
settings. Select Tools → Android
→ Sync Project with Gradle Files.
Android Studio will rebuild
the project from scratch with
the correct project settings,
which can help to resolve
issues after changing your
Gradle configuration.

Run Android Lint
Pay close attention to the
warnings from Lint. With this
tool, you will often discover
unexpected issues.

If you are still having problems with
resources (or having different
problems), give the error messages and
your layout files a fresh look. It is easy
to miss mistakes in the heat of the
moment. Check out any Lint errors and
warnings as well. A cool-headed
reconsideration of the error messages
may turn up a bug or typo.
Finally, if you are stuck or having other
issues with Android Studio, check the
archives at stackoverflow.com or
visit the forum for this book at
forums.bignerdranch.com.

http://forums.bignerdranch.com

Challenge:
Exploring the
Layout Inspector
For support debugging layout file issues,
the layout inspector can be used to
interactively inspect how a layout file is
rendered to the screen. To use the layout
inspector, make sure GeoQuiz is running
in the emulator and click on the layout
inspector icon in the left drawer within
the Android Monitor tool window
(Figure 4.9). Once the inspector is
activated, you can explore the properties

of your layout by clicking the elements
within the layout inspector view.

Figure 4.9 The Layout
Inspector button

Challenge:
Exploring
Allocation Tracking
The Allocation Tracker tool creates
detailed reports for the frequency and
number of memory allocation calls in
your program and is useful for
performance-tuning your app. In the
Android Monitor tool window, click the
Allocation Tracker button (Figure 4.10).

Figure 4.10 Starting the
Allocation Tracker

This will begin recording memory
allocations as you interact with your
app. Once you have performed the
interaction you are profiling, click the

button again to stop allocation tracking.
This will display the allocation report
(Figure 4.11).

Figure 4.11 Allocation Tracker
report

The allocation report shows the count of
memory allocation events and the size of

each in bytes in table form and as a
visualization. You can select the report
type at the top of the tool window.

5
Your Second

Activity
In this chapter, you will add a second
activity to GeoQuiz. An activity controls
a screen of information, and this activity
will add a second screen that offers
users a chance to cheat on the current
question by showing the answer.
Figure 5.1 shows the new activity.

Figure 5.1 CheatActivity
offers the chance to peek at the

offers the chance to peek at the
answer

If users choose to view the answer and
then return to the QuizActivity and
answer the question, they will get a new
message, shown in Figure 5.2.

Figure 5.2 QuizActivity
knows if you’ve been cheating

Why is this a good Android
programming exercise? Because you
will learn how to:

Create a new activity and a
new layout for it.

Start an activity from another
activity. Starting an activity
means asking the OS to create

an activity instance and call its
onCreate(Bundle)
method.

Pass data between the parent
(starting) activity and the child
(started) activity.

Setting Up a
Second Activity
There is a lot to do in this chapter.
Fortunately, some of the grunt work can
be done for you by Android Studio’s
New Activity wizard.
Before you invoke the magic, open

strings.xml and add all the strings
you will need for this chapter.

Listing 5.1 Adding strings
(strings.xml)
<resources>
 ...
 <string name="incorrect_toast">Incorrect!
</string>
 <string name="warning_text">Are you sure you want
to do this?</string>
 <string name="show_answer_button">Show
Answer</string>
 <string name="cheat_button">Cheat!</string>
 <string name="judgment_toast">Cheating is wrong.
</string>

</resources>

Creating a new activity

Creating an activity typically involves

touching at least three files: the Java
class file, an XML layout, and the
application manifest. If you touch those
files in the wrong ways, Android can get
mad. To ensure that you do it right, you
can use Android Studio’s New Activity
wizard.
Launch the New Activity wizard by
right-clicking on your
com.bignerdranch.android.geoquiz
package in the project tool window.
Choose New → Activity → Empty Activity, as
shown in Figure 5.3.

Figure 5.3 The New Activity
wizard menu

You should then see a dialog like
Figure 5.4. Set Activity Name to
CheatActivity. This is the name of
your Activity subclass. Layout Name
will be automatically set to
activity_cheat. This will be the

base name of the layout file the wizard
creates.

Figure 5.4 The New Empty
Activity wizard

The defaults for the remaining fields are

fine, but take care to ensure that the
package name is what you expect. This
determines where
CheatActivity.java will live on
the filesystem. Click the Finish button to
make the magic happen.
Now it is time to make the UI look good.
The screenshot at the beginning of the
chapter shows you what
CheatActivity’s view should look
like. Figure 5.5 shows the widget
definitions.

Figure 5.5 Diagram of layout
for CheatActivity

Open activity_cheat.xml from
the layout directory and switch to the
Text view.
Try creating the XML for the layout
using Figure 5.5 as a guide. Replace the
sample layout with a new
LinearLayout and so on down the
tree. After Chapter 9, we will only show
layout diagrams like Figure 5.5 instead

of long passages of XML, so it is a good
idea to start using them now to create
your layout XML. You can check your
work against Listing 5.2.

Listing 5.2 Filling out the
second activity’s layout
(activity_cheat.xml)
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:gravity="center"

tools:context="com.bignerdranch.android.geoquiz.CheatActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/warning_text"/>

 <TextView
 android:id="@+id/answer_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 tools:text="Answer"/>

 <Button
 android:id="@+id/show_answer_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/show_answer_button"/>

</LinearLayout>

Notice the special XML namespace for
tools and the tools:text attribute on
the TextView widget where the
answer will appear. This namespace
allows you to override any attribute on a
widget for the purpose of displaying it
differently in the Android Studio
preview. Because TextView has a
text attribute, you can provide a literal

dummy value for it to help you know
what it will look like at runtime. The
value “Answer” will never show up in
the real app. Handy!
You will not be creating a landscape
alternative for
activity_cheat.xml, but there is
a way to preview how the default layout
will appear in landscape.
In the preview tool window, find the
button in the toolbar above the preview
pane that looks like a device with
curved arrows. Click this button to
change the orientation of the preview
(Figure 5.6).

Figure 5.6 Previewing
activity_cheat.xml in
landscape

The default layout works well enough in
both orientations, so let’s move on to
fleshing out the activity subclass.

A new activity subclass

In the project tool window, find the
com.bignerdranch.android.geoquiz Java
package and open the
CheatActivity class, which is in
the CheatActivity.java file.
This class already includes a basic
implementation of
onCreate(Bundle) that passes the
resource ID of the layout defined in
activity_cheat.xml to
setContentView(…).
CheatActivity will eventually do
more in its onCreate(Bundle)
method. For now, let’s take a look at
another thing the New Activity wizard
did for you: declaring
CheatActivity in the application’s
manifest.

Declaring activities in
the manifest
The manifest is an XML file containing
metadata that describes your application
to the Android OS. The file is always
named AndroidManifest.xml, and
it lives in the app/manifests
directory of your project.
In the project tool window, find and
open AndroidManifest.xml. You
can also use Android Studio’s Quick
Open dialog by pressing
Command+Shift+O (Ctrl+Shift+N) and
starting to type the filename. Once it has
guessed the right file, press Return to

open it.
Every activity in an application must be
declared in the manifest so that the OS
can access it.
When you used the New Project wizard
to create QuizActivity, the wizard
declared the activity for you. Likewise,
the New Activity wizard declared
CheatActivity by adding the XML
highlighted in Listing 5.3.

Listing 5.3 Declaring
CheatActivity in the manifest
(AndroidManifest.xml)
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.bignerdranch.android.geoquiz" >

 <application

 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">

 <activity android:name=".QuizActivity">
 <intent-filter>
 <action
android:name="android.intent.action.MAIN"/>

 <category
android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <activity android:name=".CheatActivity">
 </activity>
 </application>

</manifest>

The android:name attribute is required,
and the dot at the start of this attribute’s
value tells the OS that this activity’s
class is in the package specified in the
package attribute in the manifest
element at the top of the file.

You will sometimes see a fully qualified
android:name attribute, like
android:name="com.bignerdranch.android.geoquiz.CheatActivity"

The long-form notation is identical to the
version in Listing 5.3.
There are many interesting things in the
manifest, but, for now, let’s stay focused
on getting CheatActivity up and
running. You will learn about the
different parts of the manifest in later
chapters.

Adding a cheat button
to QuizActivity
The plan is for the user to press a button
in QuizActivity to get an instance

of CheatActivity on screen. So you
need new buttons in
layout/activity_quiz.xml and
layout-
land/activity_quiz.xml.
In the default layout, add the new button
as a direct child of the root
LinearLayout. Its definition should
come right before the NEXT button.

Listing 5.4 Adding a cheat
button to the default layout
(layout/activity_quiz.xml)
 ...
 </LinearLayout>

 <Button
 android:id="@+id/cheat_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/cheat_button"/>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp"/>

</LinearLayout>

In the landscape layout, have the new
button appear at the bottom and center of
the root FrameLayout.

Listing 5.5 Adding a cheat
button to the landscape layout
(layout-
land/activity_quiz.xml)
 ...
 </LinearLayout>

 <Button
 android:id="@+id/cheat_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

android:layout_gravity="bottom|center_horizontal"
 android:text="@string/cheat_button" />

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|right"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp" />

</FrameLayout>

Reopen QuizActivity.java. Add
a variable, get a reference, and set a
View.OnClickListener stub for
the CHEAT! button.

Listing 5.6 Wiring up the cheat
button (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...
 private Button mNextButton;
 private Button mCheatButton;
 private TextView mQuestionTextView;
 ...
 @Override

 protected void onCreate(Bundle
savedInstanceState) {
 ...
 mNextButton = (Button)
findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
 updateQuestion();
 }
 });

 mCheatButton =
(Button)findViewById(R.id.cheat_button);
 mCheatButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Start CheatActivity
 }
 });

 updateQuestion();
 }
 ...
}

Now you can get to the business of
starting CheatActivity.

Starting an Activity
The simplest way one activity can start
another is with the startActivity
method:
 public void startActivity(Intent intent)

You might guess that
startActivity(Intent) is a
static method that you call on the
Activity subclass that you want to
start. But it is not. When an activity calls
startActivity(Intent), this
call is sent to the OS.
In particular, it is sent to a part of the OS
called the ActivityManager. The

ActivityManager then creates the
Activity instance and calls its
onCreate(Bundle) method, as
shown in Figure 5.7.

Figure 5.7 Starting an activity

How does the ActivityManager
know which Activity to start? That
information is in the Intent parameter.

Communicating with
intents
An intent is an object that a component
can use to communicate with the OS.
The only components you have seen so
far are activities, but there are also
services, broadcast receivers, and
content providers.
Intents are multipurpose communication
tools, and the Intent class provides
different constructors depending on what
you are using the intent to do.
In this case, you are using an intent to
tell the ActivityManager which
activity to start, so you will use this

constructor:
 public Intent(Context packageContext, Class<?>
cls)

The Class argument specifies the
activity class that the
ActivityManager should start. The
Context argument tells the
ActivityManager which
application package the activity class
can be found in (Figure 5.8).

Figure 5.8 The intent: telling
ActivityManager what to do

Within mCheatButton’s listener,
create an Intent that includes the
CheatActivity class. Then pass the
intent into
startActivity(Intent) (Listing
5.7).

Listing 5.7 Starting

CheatActivity
(QuizActivity.java)
mCheatButton =
(Button)findViewById(R.id.cheat_button);
mCheatButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Start CheatActivity
 Intent intent = new Intent(QuizActivity.this,
CheatActivity.class);
 startActivity(intent);
 }
});

Before starting the activity, the
ActivityManager checks the
package’s manifest for a declaration
with the same name as the specified
Class. If it finds a declaration, it starts
the activity, and all is well. If it does
not, you get a nasty
ActivityNotFoundException, which
will crash your app. This is why all of

your activities must be declared in the
manifest.
Run GeoQuiz. Press the CHEAT! button,
and an instance of your new activity will
appear on screen. Now press the Back
button. This will destroy the
CheatActivity and return you to the
QuizActivity.

Explicit and implicit intents

When you create an Intent with a
Context and a Class object, you are
creating an explicit intent. You use
explicit intents to start activities within
your application.
It may seem strange that two activities

within your application must
communicate via the
ActivityManager, which is outside
of your application. However, this
pattern makes it easy for an activity in
one application to work with an activity
in another application.
When an activity in your application
wants to start an activity in another
application, you create an implicit
intent. You will use implicit intents in
Chapter 15.

Passing Data
Between Activities
Now that you have a QuizActivity
and a CheatActivity, you can think
about passing data between them.
Figure 5.9 shows what data you will
pass between the two activities.

Figure 5.9 The conversation
between QuizActivity and
CheatActivity

The QuizActivity will inform the
CheatActivity of the answer to the
current question when the
CheatActivity is started.
When the user presses the Back button to
return to the QuizActivity, the
CheatActivity will be destroyed.

In its last gasp, it will send data to the
QuizActivity about whether the
user cheated.
You will start with passing data from
QuizActivity to
CheatActivity.

Using intent extras
To inform the CheatActivity of the
answer to the current question, you will
pass it the value of
 mQuestionBank[mCurrentIndex].isAnswerTrue()

You will send this value as an extra on
the Intent that is passed into
startActivity(Intent).

Extras are arbitrary data that the calling
activity can include with an intent. You
can think of them like constructor
arguments, even though you cannot use a
custom constructor with an activity
subclass. (Android creates activity
instances and is responsible for their
lifecycle.) The OS forwards the intent to
the recipient activity, which can then
access the extras and retrieve the data,
as shown in Figure 5.10.

Figure 5.10 Intent extras:
communicating with other
activities

An extra is structured as a key-value
pair, like the one you used to save out
the value of mCurrentIndex in
QuizActivity.onSaveInstanceState(Bundle)

To add an extra to an intent, you use
Intent.putExtra(…). In
particular, you will be calling:

 public Intent putExtra(String name, boolean
value)

Intent.putExtra(…) comes in
many flavors, but it always has two
arguments. The first argument is always
a String key, and the second argument
is the value, whose type will vary. It
returns the Intent itself, so you can
chain multiple calls if you need to.
In CheatActivity.java, add a key
for the extra.

Listing 5.8 Adding an extra
constant
(CheatActivity.java)
public class CheatActivity extends AppCompatActivity
{

 private static final String EXTRA_ANSWER_IS_TRUE
=

"com.bignerdranch.android.geoquiz.answer_is_true";
 ...

An activity may be started from several
different places, so you should define
keys for extras on the activities that
retrieve and use them. Using your
package name as a qualifier for your
extra, as shown in Listing 5.8, prevents
name collisions with extras from other
apps.
Now you could return to
QuizActivity and put the extra on
the intent, but there is a better approach.
There is no reason for
QuizActivity, or any other code in
your app, to know the implementation
details of what CheatActivity
expects as extras on its Intent.

Instead, you can encapsulate that work
into a newIntent(…) method.
Create this method in
CheatActivity now.

Listing 5.9 A newIntent(…)
method for CheatActivity
(CheatActivity.java)
public class CheatActivity extends AppCompatActivity
{

 private static final String EXTRA_ANSWER_IS_TRUE
=

"com.bignerdranch.android.geoquiz.answer_is_true";

 public static Intent newIntent(Context
packageContext, boolean answerIsTrue) {
 Intent intent = new Intent(packageContext,
CheatActivity.class);
 intent.putExtra(EXTRA_ANSWER_IS_TRUE,
answerIsTrue);
 return intent;
 }
 ...

This static method allows you to create
an Intent properly configured with
the extras CheatActivity will need.
The answerIsTrue argument, a
boolean, is put into the intent with a
private name using the
EXTRA_ANSWER_IS_TRUE constant. You
will extract this value momentarily.
Using a newIntent(…) method like
this for your activity subclasses will
make it easy for other code to properly
configure their launching intents.
Speaking of other code, use this new
method in QuizActivity’s cheat
button listener now.

Listing 5.10 Launching
CheatActivity with an extra

(QuizActivity.java)
mCheatButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Start CheatActivity
 Intent intent = new Intent(QuizActivity.this,
CheatActivity.class);
 boolean answerIsTrue =
mQuestionBank[mCurrentIndex].isAnswerTrue();
 Intent intent =
CheatActivity.newIntent(QuizActivity.this,
answerIsTrue);
 startActivity(intent);
 }
});

You only need one extra, but you can put
multiple extras on an Intent if you
need to. If you do, add more arguments
to your newIntent(…) method to stay
consistent with the pattern.
To retrieve the value from the extra, you
will use:
 public boolean getBooleanExtra(String name,

boolean defaultValue)

The first argument is the name of the
extra. The second argument of
getBooleanExtra(…) is a default
answer if the key is not found.
In CheatActivity, retrieve the
value from the extra in
onCreate(Bundle) and store it in a
member variable.

Listing 5.11 Using an extra
(CheatActivity.java)
public class CheatActivity extends AppCompatActivity
{

 private static final String EXTRA_ANSWER_IS_TRUE
=

"com.bignerdranch.android.geoquiz.answer_is_true";

 private boolean mAnswerIsTrue;
 ...
 @Override

 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_cheat);

 mAnswerIsTrue =
getIntent().getBooleanExtra(EXTRA_ANSWER_IS_TRUE,
false);
 }
 ...
}

Note that Activity.getIntent()
always returns the Intent that started
the activity. This is what you sent when
calling startActivity(Intent).
Finally, wire up the answer TextView
and the SHOW ANSWER button to use the
retrieved value.

Listing 5.12 Enabling cheating
(CheatActivity.java)
public class CheatActivity extends AppCompatActivity
{
 ...

 private boolean mAnswerIsTrue;

 private TextView mAnswerTextView;
 private Button mShowAnswerButton;
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_cheat);

 mAnswerIsTrue =
getIntent().getBooleanExtra(EXTRA_ANSWER_IS_TRUE,
false);

 mAnswerTextView = (TextView)
findViewById(R.id.answer_text_view);

 mShowAnswerButton = (Button)
findViewById(R.id.show_answer_button);
 mShowAnswerButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (mAnswerIsTrue) {

mAnswerTextView.setText(R.string.true_button);
 } else {

mAnswerTextView.setText(R.string.false_button);
 }
 }
 });
 }

}

This code is pretty straightforward. You
set the TextView’s text using
TextView.setText(int).
TextView.setText(…) has many
variations, and here you use the one that
accepts the resource ID of a string
resource.
Run GeoQuiz. Press CHEAT! to get to
CheatActivity. Then press SHOW
ANSWER to reveal the answer to the
current question.

Getting a result back
from a child activity

At this point, the user can cheat with

impunity. Let’s fix that by having the
CheatActivity tell the
QuizActivity whether the user
chose to view the answer.
When you want to hear back from the
child activity, you call the following
Activity method:
 public void startActivityForResult(Intent intent,
int requestCode)

The first parameter is the same intent as
before. The second parameter is the
request code. The request code is a
user-defined integer that is sent to the
child activity and then received back by
the parent. It is used when an activity
starts more than one type of child
activity and needs to know who is
reporting back. QuizActivity will

only ever start one type of child activity,
but using a constant for the request code
is a best practice that will set you up
well for future changes.
In QuizActivity, modify
mCheatButton’s listener to call
startActivityForResult(Intent,
int).

Listing 5.13 Calling
startActivityForResult(…)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private static final String TAG = "QuizActivity";
 private static final String KEY_INDEX = "index";
 private static final int REQUEST_CODE_CHEAT = 0;
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 mCheatButton.setOnClickListener(new

View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Start CheatActivity
 boolean answerIsTrue =
mQuestionBank[mCurrentIndex].isAnswerTrue();
 Intent intent =
CheatActivity.newIntent(QuizActivity.this,

answerIsTrue);
 startActivity(intent);
 startActivityForResult(intent,
REQUEST_CODE_CHEAT);
 }
 });

Setting a result

There are two methods you can call in
the child activity to send data back to the
parent:
 public final void setResult(int resultCode)
 public final void setResult(int resultCode,
Intent data)

Typically, the result code is one of two

predefined constants:
Activity.RESULT_OK or
Activity.RESULT_CANCELED. (You can
use another constant,
RESULT_FIRST_USER, as an offset when
defining your own result codes.)
Setting result codes is useful when the
parent needs to take different action
depending on how the child activity
finished.
For example, if a child activity had an
OK button and a Cancel button, the child
activity would set a different result code
depending on which button was pressed.
Then the parent activity would take a
different action depending on the result
code.

Calling setResult(…) is not
required of the child activity. If you do
not need to distinguish between results
or receive arbitrary data on an intent,
then you can let the OS send a default
result code. A result code is always
returned to the parent if the child activity
was started with
startActivityForResult(…). If
setResult(…) is not called, then
when the user presses the Back button,
the parent will receive
Activity.RESULT_CANCELED.

Sending back an intent

In this implementation, you are
interested in passing some specific data

back to QuizActivity. So you are
going to create an Intent, put an extra
on it, and then call
Activity.setResult(int,
Intent) to get that data into
QuizActivity’s hands.
In CheatActivity, add a constant
for the extra’s key and a private method
that does this work. Then call this
method in the SHOW ANSWER button’s
listener.

Listing 5.14 Setting a result
(CheatActivity.java)
public class CheatActivity extends AppCompatActivity
{

 private static final String EXTRA_ANSWER_IS_TRUE
=

"com.bignerdranch.android.geoquiz.answer_is_true";

 private static final String EXTRA_ANSWER_SHOWN =

"com.bignerdranch.android.geoquiz.answer_shown";
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 mShowAnswerButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (mAnswerIsTrue) {

mAnswerTextView.setText(R.string.true_button);
 } else {

mAnswerTextView.setText(R.string.false_button);
 }
 setAnswerShownResult(true);
 }
 });
 }

 private void setAnswerShownResult(boolean
isAnswerShown) {
 Intent data = new Intent();
 data.putExtra(EXTRA_ANSWER_SHOWN,
isAnswerShown);
 setResult(RESULT_OK, data);
 }
}

When the user presses the SHOW ANSWER

button, the CheatActivity packages
up the result code and the intent in the
call to setResult(int,
Intent).
Then, when the user presses the Back
button to return to the QuizActivity,
the ActivityManager calls the
following method on the parent activity:
 protected void onActivityResult(int requestCode,
int resultCode, Intent data)

The parameters are the original request
code from QuizActivity and the
result code and intent passed into
setResult(int, Intent).
Figure 5.11 shows this sequence of
interactions.

Figure 5.11 Sequence diagram
for GeoQuiz

The final step is to override
onActivityResult(int, int,
Intent) in QuizActivity to
handle the result. However, because the

contents of the result Intent are also
an implementation detail of
CheatActivity, add another method
to help decode the extra into something
QuizActivity can use.

Listing 5.15 Decoding the
result intent
(CheatActivity.java)
public static Intent newIntent(Context
packageContext, boolean answerIsTrue) {
 Intent intent = new Intent(packageContext,
CheatActivity.class);
 intent.putExtra(EXTRA_ANSWER_IS_TRUE,
answerIsTrue);
 return intent;
}

public static boolean wasAnswerShown(Intent result) {
 return result.getBooleanExtra(EXTRA_ANSWER_SHOWN,
false);
}

@Override
protected void onCreate(Bundle savedInstanceState) {
 ...

}

Handling a result

In QuizActivity.java, add a new
member variable to hold the value that
CheatActivity is passing back.
Then override
onActivityResult(…) to retrieve
it, checking the request code and result
code to be sure they are what you
expect. This, again, is a best practice to
make future maintenance easier.

Listing 5.16 Implementing
onActivityResult(…)
(QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...

 private int mCurrentIndex = 0;
 private boolean mIsCheater;
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 }

 @Override
 protected void onActivityResult(int requestCode,
int resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_CODE_CHEAT) {
 if (data == null) {
 return;
 }
 mIsCheater =
CheatActivity.wasAnswerShown(data);
 }
 }
 ...
}

Finally, modify the
checkAnswer(boolean) method in
QuizActivity to check whether the
user cheated and to respond

appropriately.

Listing 5.17 Changing toast
message based on value of
mIsCheater
(QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
 ...
 mNextButton =
(Button)findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) %
mQuestionBank.length;
 mIsCheater = false;
 updateQuestion();
 }
 });
 ...
}
...
private void checkAnswer(boolean userPressedTrue) {
 boolean answerIsTrue =
mQuestionBank[mCurrentIndex].isAnswerTrue();

 int messageResId = 0;

 if (mIsCheater) {
 messageResId = R.string.judgment_toast;
 } else {
 if (userPressedTrue == answerIsTrue) {
 messageResId = R.string.correct_toast;
 } else {
 messageResId = R.string.incorrect_toast;
 }
 }

 Toast.makeText(this, messageResId,
Toast.LENGTH_SHORT)
 .show();
}

Run GeoQuiz. Cheat and see what
happens.

How Android Sees
Your Activities
Let’s look at what is going on OS-wise
as you move between activities. First,
when you click on the GeoQuiz app in
the launcher, the OS does not start the
application; it starts an activity in the
application. More specifically, it starts
the application’s launcher activity. For
GeoQuiz, QuizActivity is the
launcher activity.
When the New Project wizard created
the GeoQuiz application and
QuizActivity, it made

QuizActivity the launcher activity
by default. Launcher activity status is
specified in the manifest by the intent-
filter element in QuizActivity’s
declaration (Listing 5.18).

Listing 5.18 QuizActivity
declared as launcher activity
(AndroidManifest.xml)
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"

 ... >

 <application
 ... >

 <activity android:name=".QuizActivity">
 <intent-filter>
 <action
android:name="android.intent.action.MAIN"/>
 <category
android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <activity android:name=".CheatActivity">
 </activity>
 </application>

</manifest>

After the instance of QuizActivity
is on screen, the user can press the
CHEAT! button. When this happens, an
instance of CheatActivity is started
– on top of the QuizActivity. These
activities exist in a stack (Figure 5.12).
Pressing the Back button in
CheatActivity pops this instance
off the stack, and the QuizActivity
resumes its position at the top, as shown
in Figure 5.12.

Figure 5.12 GeoQuiz’s back
stack

A call to Activity.finish() in
CheatActivity would also pop the
CheatActivity off the stack.
If you run GeoQuiz and press Back from
the QuizActivity, the
QuizActivity will be popped off
the stack and you will return to the last

screen you were viewing before running
GeoQuiz (Figure 5.13).

Figure 5.13 Looking at the
home screen

If you started GeoQuiz from the launcher
application, pressing the Back button
from QuizActivity will return you
to the launcher (Figure 5.14).

Figure 5.14 Running GeoQuiz
from launcher

Pressing the Back button from the
launcher will return you to the screen
you were looking at before you opened
the launcher.
What you are seeing here is that the
ActivityManager maintains a back
stack and that this back stack is not just

for your application’s activities.
Activities for all applications share the
back stack, which is one reason the
ActivityManager is involved in
starting your activities and lives with the
OS and not your application. The stack
represents the use of the OS and device
as a whole rather than the use of a single
application.
(Wondering about the Up button? We
will discuss how to implement and
configure this button in Chapter 13.)

Challenge: Closing
Loopholes for
Cheaters
Cheaters never win. Unless, of course,
they persistently circumvent your
anticheating measures. Which they
probably will. Because they are
cheaters.
GeoQuiz has a few major loopholes. For
this challenge, you will busy yourself
with closing them. Here are the
loopholes in order, from easiest to
hardest to close:

Users can rotate
CheatActivity after they
cheat to clear out the cheating
result.

Once they get back from
CheatActivity, users can
rotate QuizActivity to
clear out mIsCheater.
Users can press NEXT until the
question they cheated on comes
back around.

Good luck!

6
Android SDK
Versions and
Compatibility

Now that you have gotten your feet wet
with GeoQuiz, let’s review some
background material about the different
versions of Android. The information in
this chapter is important to have under
your belt as you continue with the book
and develop more complex and realistic
apps.

Android SDK
Versions
Table 6.1 shows the SDK versions, the
associated versions of the Android
firmware, and the percentage of devices
running them as of December 2016.

Table 6.1 Android API levels,
firmware versions, and percent
of devices in use

API
level Codename

Device
firmware
version

% of
devices
in use

24 Nougat 7.0 0.4

23 Marshmallow 6.0 26.3
22

Lollipop
5.1 23.2

21 5.0 10.8
19 KitKat 4.4 24.0
18

Jelly Bean
4.3 1.9

17 4.2 6.4
16 4.1 4.5

15
Ice Cream
Sandwich

(ICS)

4.0.3,
4.0.4 1.2

10 Gingerbread 2.3.3 -
2.3.7 1.2

8 Froyo 2.2 0.1

(Note that versions of Android with less
than 0.1% distribution are omitted from

this table.)
Each “codenamed” release is followed
by incremental releases. For instance,
Ice Cream Sandwich was initially
released as Android 4.0 (API level 14).
It was almost immediately replaced with
incremental releases culminating in
Android 4.0.3 and 4.0.4 (API level 15).
The percentage of devices using each
version changes constantly, of course,
but the figures do reveal an important
trend: Android devices running older
versions are not immediately upgraded
or replaced when a newer version is
available. As of December 2016, more
than 15% of devices are still running
Jelly Bean or an earlier version.
Android 4.3 (the last Jelly Bean update)

was released in October 2013.
(If you are curious, the data in Table 6.1
is kept current at
developer.android.com/​
about/​dashboards/​
index.html.)
Why do so many devices still run older
versions of Android? Most of it has to
do with heavy competition among
Android device manufacturers and US
carriers. Carriers want features and
phones that no other network has.
Device manufacturers feel this pressure,
too – all of their phones are based on the
same OS, but they want to stand out from
the competition. The combination of
pressures from the market and the
carriers means that there is a

bewildering array of devices with
proprietary, one-off modifications of
Android.
A device with a proprietary version of
Android is not able to run a new version
of Android released by Google. Instead,
it must wait for a compatible proprietary
upgrade. That upgrade might not be
available until months after Google
releases its version, if it is ever
available at all. Manufacturers often
choose to spend resources on newer
devices rather than keeping older ones
up to date.

Compatibility and
Android
Programming
The delay in upgrades combined with
regular new releases makes
compatibility an important issue in
Android programming. To reach a broad
market, Android developers must create
apps that perform well on devices
running KitKat, Lollipop, Marshmallow,
Nougat, and any more recent versions of
Android, as well as on different device
form factors.

Targeting different sizes of devices is
easier than you might think. Phone
screens are a variety of sizes, but the
Android layout system does a good job
at adapting. Tablets require more work,
but you can use configuration qualifiers
to do the job (as you will see in
Chapter 17). However, for Android TV
and Android Wear devices (both of
which also run Android), the differences
in UI are large enough that you need to
rethink the user interaction patterns and
design of your app.

A sane minimum
The oldest version of Android that the

exercises in this book support is API
level 19 (KitKat). There are references
to legacy versions of Android, but the
focus is on what we consider to be
modern versions (API level 19+). With
the distribution of Gingerbread, Ice
Cream Sandwich, and Jelly Bean
dropping month by month, the amount of
work required to support those older
versions eclipses the value they can
provide.
Incremental releases cause little
problem with backward compatibility.
Major versions can be a different story.
The work required to support only 5.x
devices is not terribly significant. If you
also need to support 4.x devices, you
will have to spend time working through

the differences in those versions.
Luckily, Google has provided libraries
to ease the pain. You will learn about
these libraries in later chapters.
One of the biggest changes for Android
developers came with the release of
Honeycomb, Android 3.0. This release
was a major shift in the platform that
introduced a new UI and new
architectural components. Honeycomb
was released only for tablets, so it was
not until Ice Cream Sandwich that these
new developments were widely
available. Since then, new releases have
been more incremental for developers.
Android has provided help for
maintaining backward compatibility.
There are also third-party libraries that

can help. But maintaining compatibility
does complicate learning Android
programming.
When you created the GeoQuiz project,
you set a minimum SDK version within
the New Project wizard, as shown in
Figure 6.1. (Note that Android uses the
terms “SDK version” and “API level”
interchangeably.)

Figure 6.1 Remember me?

In addition to the minimum supported
version, you can also set the target
version and the build version. Let’s
explain the default choices and see how
to change them.

All of these properties are set in the
build.gradle file in your app
module. The build version lives
exclusively in this file. The minimum
SDK version and target SDK version are
set in the build.gradle file, but are
used to overwrite or set values in your
AndroidManifest.xml.
Open the build.gradle file that
exists in your app module. Notice the
values for compileSdkVersion,
minSdkVersion, and
targetSdkVersion.

Listing 6.1 Examining the build
configuration
(app/build.gradle)
compileSdkVersion 25
buildToolsVersion "25.0.0"

defaultConfig {
 applicationId "com.bignerdranch.android.geoquiz"
 minSdkVersion 19
 targetSdkVersion 25
 ...
}

Minimum SDK version
The minSdkVersion value is a hard
floor below which the OS should refuse
to install the app.
By setting this version to API level 19
(KitKat), you give Android permission
to install GeoQuiz on devices running
KitKat or higher. Android will refuse to
install GeoQuiz on a device running, say,
Jelly Bean.
Looking again at Table 6.1, you can see

why API level 19 is a good choice for a
minimum SDK version: It allows your
app to be installed on more than 80% of
devices in use.

Target SDK version
The targetSdkVersion value tells
Android which API level your app is
designed to run on. Most often this will
be the latest Android release.
When would you lower the target SDK?
New SDK releases can change how your
app appears on a device or even how the
OS behaves behind the scenes. If you
have already designed an app, you
should confirm that it works as expected

on new releases. Check the
documentation at
developer.android.com/​
reference/​android/​os/​
Build.VERSION_CODES.html to
see where problems might arise. Then
you can modify your app to work with
the new behavior or lower the target
SDK.
Not increasing the target SDK when a
new version of Android is released
ensures that your app will still run with
the appearance and behavior of the
targeted version on which it worked
well. This option exists for
compatibility with newer versions of
Android, as changes in subsequent
releases are ignored until the

targetSdkVersion is increased.

Compile SDK version
The last SDK setting is labeled
compileSdkVersion in Listing 6.1. This
setting is not used to update the
AndroidManifest.xml file.
Whereas the minimum and target SDK
versions are placed in the manifest when
you build your app to advertise those
values to the OS, the compile SDK
version is private information between
you and the compiler.
Android’s features are exposed through
the classes and methods in the SDK. The
compile SDK version, or build target,

specifies which version to use when
building your own code. When Android
Studio is looking to find the classes and
methods you refer to in your imports, the
build target determines which SDK
version it checks against.
The best choice for a build target is the
latest API level (currently 25, Nougat).
However, you can change the build
target of an existing application if you
need to. For instance, you might want to
update the build target when a new
version of Android is released so that
you can make use of the new methods
and classes it introduces.
You can modify the minimum SDK
version, target SDK version, and
compile SDK version in your

build.gradle file, but note that
modification of this file requires that you
sync your project with the Gradle
changes before they will be reflected. To
do this, select Tools → Android → Sync
Project with Gradle Files. This will trigger a
fresh build of your project with the
updated values.

Adding code from later
APIs safely
The difference between GeoQuiz’s
minimum SDK version and build SDK
version leaves you with a compatibility
gap to manage. For example, what
happens if you call code from an SDK

version that is later than the minimum
SDK of KitKat (API level 19)? When
your app is installed and run on a KitKat
device, it will crash.
This used to be a testing nightmare.
However, thanks to improvements in
Android Lint, potential problems caused
by calling newer code on older devices
can be caught at compile time. If you use
code from a higher version than your
minimum SDK, Android Lint will report
build errors.
Right now, all of GeoQuiz’s simple code
was introduced in API level 19 or
earlier. Let’s add some code from API
level 21 (Lollipop) and see what
happens.

Open CheatActivity.java. In the
OnClickListener for the SHOW
ANSWER button, add the following code to
present a fancy circular animation while
hiding the button.

Listing 6.2 Adding activity
animation code
(CheatActivity.java)
mShowAnswerButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (mAnswerIsTrue) {

mAnswerTextView.setText(R.string.true_button);
 } else {

mAnswerTextView.setText(R.string.false_button);
 }
 setAnswerShownResult(true);

 int cx = mShowAnswerButton.getWidth() / 2;
 int cy = mShowAnswerButton.getHeight() / 2;
 float radius = mShowAnswerButton.getWidth();
 Animator anim = ViewAnimationUtils

.createCircularReveal(mShowAnswerButton, cx, cy,
radius, 0);
 anim.addListener(new
AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator
animation) {
 super.onAnimationEnd(animation);

mShowAnswerButton.setVisibility(View.INVISIBLE);
 }
 });
 anim.start();
 }
});

The createCircularReveal(…)
method creates an Animator from a
few parameters. First, you specify the
View that will be hidden or shown
based on the animation. Next, you set a
center position for the animation as well
as the start radius and end radius of the
animation. You are hiding the SHOW
ANSWER button, so the radius moves from

the width of the button to 0.
Before the newly created animation is
started, you set a listener that allows you
to know when the animation is complete.
Once complete, you will show the
answer and hide the button.
Finally, the animation is started and the
circular reveal animation will begin.
(You will learn much more about
animation in Chapter 32.)
The ViewAnimationUtils class
and its
createCircularReveal(…)
method were both added to the Android
SDK in API level 21, so this code
would crash on a device running a lower
version than that.

After you enter the code in Listing 6.2,
Android Lint should immediately present
you with a warning that the code is not
safe on your minimum SDK version. If
you do not see a warning, you can
manually trigger Lint by selecting Analyze
→ Inspect Code.... Because your build
SDK version is API level 21, the
compiler itself has no problem with this
code. Android Lint, on the other hand,
knows about your minimum SDK
version and will complain loudly.
The error messages read something like
Call requires API level 21 (Current min is 19).
You can still run the code with this
warning, but Lint knows it is not safe.
How do you get rid of these errors? One
option is to raise the minimum SDK

version to 21. However, raising the
minimum SDK version is not really
dealing with this compatibility problem
as much as ducking it. If your app cannot
be installed on API level 19 and older
devices, then you no longer have a
compatibility problem.
A better option is to wrap the higher API
code in a conditional statement that
checks the device’s version of Android.

Listing 6.3 Checking the
device’s build version first
(CheatActivity.java)
mShowAnswerButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (mAnswerIsTrue) {

mAnswerTextView.setText(R.string.true_button);

 } else {

mAnswerTextView.setText(R.string.false_button);
 }
 setAnswerShownResult(true);

 if (Build.VERSION.SDK_INT >=
Build.VERSION_CODES.LOLLIPOP) {
 int cx = mShowAnswerButton.getWidth() /
2;
 int cy = mShowAnswerButton.getHeight() /
2;
 float radius =
mShowAnswerButton.getWidth();
 Animator anim = ViewAnimationUtils

.createCircularReveal(mShowAnswerButton, cx, cy,
radius, 0);
 anim.addListener(new
AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator
animation) {
 super.onAnimationEnd(animation);

mShowAnswerButton.setVisibility(View.INVISIBLE);
 }
 });
 anim.start();
 } else {

mShowAnswerButton.setVisibility(View.INVISIBLE);
 }
 }
});

The Build.VERSION.SDK_INT
constant is the device’s version of
Android. You then compare that version
with the constant that stands for the
Lollipop release. (Version codes are
listed at http://​
developer.android.com/​
reference/​android/​os/​
Build.VERSION_CODES.html.)
Now your circular reveal code will only
be called when the app is running on a
device with API level 21 or higher. You
have made your code safe for API level
19, and Android Lint should now be
content.
Run GeoQuiz on a Lollipop or higher
device, cheat on a question, and check
out your new animation.

http://developer.android.com/reference/android/os/Build.VERSION_CODES.html

You can also run GeoQuiz on a KitKat
device (virtual or otherwise). It will not
have the circular animation, but you can
confirm that the app still runs safely.

Using the Android
Developer
Documentation
Android Lint errors will tell you what
API level your incompatible code is
from. But you can also find out which
API level particular classes and methods
belong to in Android’s developer
documentation.
It is a good idea to get comfortable using
the developer documentation right away.
There is far too much in the Android
SDKs to keep in your head, and, with

new versions appearing regularly, you
will need to learn what is new and how
to use it.
The Android developer documentation
is an excellent and voluminous source of
information. The main page of the
documentation is
developer.android.com. It is
split into three parts: Design, Develop, and
Distribute. It is all worth perusing when
you get a chance. The Design section of
the documentation includes patterns and
principles for the UI design of your
apps. The Develop section contains
documentation and training. The Distribute
section shows you how to prepare and
publish your apps on Google Play or
through open distribution.

The Develop section is further divided
into six areas:

Training Beginning and advanced
developer training modules,
including downloadable
sample code

API
Guides

Topic-based descriptions of
app components, features,
and best practices

Reference Searchable, linked
documentation of every
class, method, interface,
attribute constant, etc. in the
SDK

Samples Sample code demonstrating
some examples of how to
use the APIs

Android
Studio

Information about the
Android Studio IDE

Android
NDK

Descriptions and links
about the Native
Development Kit, which
allows you to write code in
C and C++

Google
Services

Information about Google’s
proprietary APIs, including
Google Maps and Google
Cloud Messaging

You do not have to be online to have
access to the documentation. In the SDK
Manager, download the documentation
for a particular Android version, then
navigate on your filesystem to where you
have downloaded the SDKs. There is a
docs directory that contains the
complete documentation.
To determine what API level
ViewAnimationUtils belongs to,
search for this class using the search bar
at the top right of the browser. You will
see results from a few different
categories. Make sure that you select a
result that is from the reference section
(there is a filter on the left).
Select the first result and you will be
sent to the ViewAnimationUtils

class reference page shown in
Figure 6.2. At the top of this page are
links to its different sections.

Figure
6.2 ViewAnimationUtils
reference page

Scroll down, find the
createCircularReveal(…)
method, and click on the method name to
see a description. To the right of the
method signature, you can see that
createCircularReveal(…) was
introduced in API level 21.
If you want to see which
ViewAnimationUtils methods are
available in, say, API level 19, you can
filter the reference by API level. On the
lefthand side of the page where the
classes are indexed by package, find
where it says API level: 21. Click the
adjacent control and select 19 from the
list. In most cases, everything that
Android has introduced after API level
19 will be grayed out. In this case,

ViewAnimationUtils was
introduced in API level 21, so you will
see a warning indicating that this entire
class is not available at all on API level
19.
The API level filter is much more useful
for a class that is available at the API
level that you are using. Search for the
reference page on the Activity class
in the documentation. Change the API
level filter back down to API level 19
and notice that many methods have been
added since that API, such as
onEnterAnimationComplete,
which is an addition to the SDK in
Lollipop that allows you to provide
interesting transitions between activities.
As you continue through this book, visit

the developer documentation often. You
will certainly need the documentation to
tackle the challenge exercises, but also
consider exploring it whenever you get
curious about particular classes,
methods, or other topics. Android is
constantly updating and improving the
documentation, so there is always
something new to learn.

Challenge:
Reporting the
Build Version
Add a TextView widget to the
GeoQuiz layout that reports to the user
what API level the device is running.
Figure 6.3 shows what the final result
should look like.

Figure 6.3 Finished challenge

You cannot set this TextView’s text in
the layout because you will not know the
device’s build version until runtime.

Find the TextView method for setting
text in the TextView reference page in
Android’s documentation. You are
looking for a method that accepts a
single argument – a string (or a
CharSequence).
Use other XML attributes listed in the
TextView reference to adjust the size
or typeface of the text.

Challenge: Limited
Cheats
Allow the user to cheat a maximum of
three times. Keep track of the user’s
cheat occurrences and display the
number of remaining cheat tokens below
the cheat button. If no tokens remain,
disable the cheat button.

7
UI Fragments

and the
Fragment
Manager

In this chapter, you will start building an
application named CriminalIntent.
CriminalIntent records the details of
“office crimes” – things like leaving
dirty dishes in the breakroom sink or

walking away from an empty shared
printer after documents have printed.
With CriminalIntent, you can make a
record of a crime including a title, a
date, and a photo. You can also identify
a suspect from your contacts and lodge a
complaint via email, Twitter, Facebook,
or another app. After documenting and
reporting a crime, you can proceed with
your work free of resentment and ready
to focus on the business at hand.
CriminalIntent is a complex app that will
take 13 chapters to complete. It will
have a list-detail interface: The main
screen will display a list of recorded
crimes, and users will be able to add
new crimes or select an existing crime to
view and edit its details (Figure 7.1).

Figure 7.1 CriminalIntent, a
list-detail app

The Need for UI

Flexibility
You might imagine that a list-detail
application consists of two activities:
one managing the list and the other
managing the detail view. Clicking a
crime in the list would start an instance
of the detail activity. Pressing the Back
button would destroy the detail activity
and return you to the list, where you
could select another crime.
That would work, but what if you
wanted more sophisticated presentation
and navigation between screens?

Imagine that your user is
running CriminalIntent on a
tablet. Tablets and some larger

phones have screens large
enough to show the list and
detail at the same time – at
least in landscape orientation
(Figure 7.2).

Figure 7.2 Ideal list-
detail interface for
phone and tablet

Imagine the user is viewing a
crime on a phone and wants to
see the next crime in the list. It
would be better if the user

could swipe to see the next
crime without having to return
to the list. Each swipe should
update the detail view with
information for the next crime.

What these scenarios have in common is
UI flexibility: the ability to compose and
recompose an activity’s view at runtime
depending on what the user or the device
requires.
Activities were not built to provide this
flexibility. An activity’s views may
change at runtime, but the code to control
those views must live inside the activity.
As a result, activities are tightly coupled
to the particular screen being used.

Introducing
Fragments
You can get around the letter of the
Android law by moving the app’s UI
management from the activity to one or
more fragments.
A fragment is a controller object that an
activity can deputize to perform tasks.
Most commonly, the task is managing a
UI. The UI can be an entire screen or just
one part of the screen.
A fragment managing a UI is known as a
UI fragment. A UI fragment has a view

of its own that is inflated from a layout
file. The fragment’s view contains the
interesting UI elements that the user
wants to see and interact with.
The activity’s view contains a spot
where the fragment’s view will be
inserted. In fact, while in this chapter the
activity will host a single fragment, an
activity can have several spots for the
views of several fragments.
You can use the fragment(s) associated
with the activity to compose and
recompose the screen as your app and
users require. The activity’s view
technically stays the same throughout its
lifetime, and no laws of Android are
violated.

Let’s see how this would work in a list-
detail application to display the list and
detail together. You would compose the
activity’s view from a list fragment and
a detail fragment. The detail view would
show the details of the selected list item.
Selecting another item should display a
new detail view. This is easy with
fragments; the activity will replace the
detail fragment with another detail
fragment (Figure 7.3). No activities need
to die for this major view change to
happen.

Figure 7.3 Detail fragment is
swapped out

Using UI fragments separates the UI of
your app into building blocks, which is
useful for more than just list-detail
applications. Working with individual
blocks, it is easy to build tab interfaces,
tack on animated sidebars, and more.
Achieving this UI flexibility comes at a
cost: more complexity, more moving
parts, and more code. You will reap the
benefits of using fragments in Chapter 11

and Chapter 17. The complexity,
however, starts now.

Starting
CriminalIntent
In this chapter, you are going to start on
the detail part of CriminalIntent.
Figure 7.4 shows you what
CriminalIntent will look like at the end
of this chapter.

Figure 7.4 CriminalIntent at
the end of this chapter

The screen shown in Figure 7.4 will be
managed by a UI fragment named
CrimeFragment. An instance of

CrimeFragment will be hosted by an
activity named CrimeActivity.
For now, think of hosting as the activity
providing a spot in its view hierarchy
where the fragment can place its view
(Figure 7.5). A fragment is incapable of
getting a view on screen itself. Only
when it is placed in an activity’s
hierarchy will its view appear.

Figure 7.5 CrimeActivity
hosting a CrimeFragment

CriminalIntent will be a large project,
and one way to keep your head wrapped
around a project is with an object
diagram. Figure 7.6 gives you the big
picture of CriminalIntent. You do not

have to memorize these objects and their
relationships, but it is good to have an
idea of where you are heading before
you start.
You can see that CrimeFragment
will do the sort of work that your
activities did in GeoQuiz: create and
manage the UI and interact with the
model objects.

Figure 7.6 Object diagram for
CriminalIntent (for this
chapter)

Three of the classes shown in Figure 7.6
are classes that you will write: Crime,
CrimeFragment, and
CrimeActivity.
An instance of Crime will represent a
single office crime. In this chapter, a

crime will have a title, an ID, a date, and
a boolean that indicates whether the
crime has been solved. The title is a
descriptive name, like “Toxic sink
dump” or “Someone stole my yogurt!”
The ID will uniquely identify an instance
of Crime.
For this chapter, you will keep things
very simple and use a single instance of
Crime. CrimeFragment will have a
member variable (mCrime) to hold this
isolated incident.
CrimeActivity’s view will consist
of a FrameLayout that defines the
spot where the CrimeFragment’s
view will appear.
CrimeFragment’s view will consist

of a LinearLayout with a few child
views inside of it, including an
EditText, a Button, and a
CheckBox. CrimeFragment will
have member variables for each of these
views and will set listeners on them to
update the model layer when there are
changes.

Creating a new project
Enough talk; time to build a new app.
Create a new Android application (File
→ New Project...). Name the application
CriminalIntent and make sure the
company domain is
android.bignerdranch.com, as shown

in Figure 7.7.

Figure 7.7 Creating the
CriminalIntent application

Click Next and specify a minimum SDK
of API 19: Android 4.4. Also ensure that

only the Phone and Tablet application type
is checked.
Click Next again to select the type of
activity to add. Choose Empty Activity and
continue along in the wizard.
In the final step of the New Project
wizard, name the activity
CrimeActivity and click Finish
(Figure 7.8).

Figure 7.8 Creating
CrimeActivity

Two types of fragments

Fragments were introduced in API level
11 along with the first Android tablets
and the sudden need for UI flexibility.
You must choose which implementation
of fragments that you want use: native
fragments or support fragments.
The native implementation of fragments
is built into the device that the user runs
your app on. If you support many
different versions of Android, each of
those Android versions could have a
slightly different implementation of
fragments (for example, a bug could be
fixed in one version and not the versions
prior to it). The support implementation
of fragments is built into a library that
you include in your application. This
means that each device you run your app

on will depend on the same
implementation of fragments no matter
the Android version.
In CriminalIntent, you will use the
support implementation of fragments.
Detailed reasoning for this decision is
laid out at the end of the chapter in the
section called For the More Curious:
Why Support Fragments Are Superior.

Adding dependencies in
Android Studio
You will use the implementation of
fragments that comes with the
AppCompat library. The AppCompat
library is one of Google’s many

compatibility libraries that you will use
throughout this book. You will learn
much more about the AppCompat library
in Chapter 13.
To use the AppCompat library, it must be
included in your list of dependencies.
Your project comes with two
build.gradle files, one for the
project as a whole and one for your app
module. Open the build.gradle file
located in your app module.

Listing 7.1 Gradle
dependencies
(app/build.gradle)
apply plugin: 'com.android.application'

android {
 ...
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 ...
 compile 'com.android.support:appcompat-v7:25.0.1'
 ...
}

In the current dependencies section of
your build.gradle file, you should
see something similar to Listing 7.1 that
specifies that the project depends on all
of the .jar files in its libs directory.
You will also see dependencies for other
libraries that are automatically included
when projects are created with Android
Studio, most likely including the
AppCompat library.
Gradle allows for the specification of
dependencies that you have not copied
into your project. When your app is
compiled, Gradle will find, download,

and include the dependencies for you.
All you have to do is specify an exact
string incantation and Gradle will do the
rest.
If you do not have the AppCompat
library listed in your dependencies,
Android Studio has a tool to help you
add the library and come up with this
string incantation. Navigate to the
project structure for your project (File →
Project Structure...).
Select the app module on the left and the
Dependencies tab in the app module. The
dependencies for the app module are
listed here (Figure 7.9).

Figure 7.9 App dependencies

(You may have additional dependencies
specified. If you do, do not remove
them.)
You should see the AppCompat
dependency listed. If you do not, add it
with the + button and choose Library

dependency. Choose the appcompat-v7
library from the list and click OK
(Figure 7.10).

Figure 7.10 A collection of
dependencies

Navigate back to the editor window
showing app/build.gradle, and
you should now see AppCompat
included, as shown in Listing 7.1.
(If you modify this file manually, outside
of the project structure window, you will

need to sync your project with the
Gradle file to reflect any updates that
you have made. This sync asks Gradle to
update the build based on your changes
by either downloading or removing
dependencies. Changes within the
project structure window will trigger
this sync automatically. To manually
perform this sync, navigate to Tools →
Android → Sync Project with Gradle Files.)
The dependency string compile
'com.android.support:appcompat-
v7:25.0.0' uses the Maven coordinates
format groupId:artifactId:version.
(Maven is a dependency management
tool. You can learn more about it at
maven.apache.org/.)
The groupId is the unique identifier for

a set of libraries available on the Maven
repository. Often the library’s base
package name is used as the groupId,
which is com.android.support for the
AppCompat library.
The artifactId is the name of a
specific library within the package. In
this case, the name of the library you are
referring to is appcompat-v7.
Last but not least, the version
represents the revision number of the
library. CriminalIntent depends on the
25.0.0 version of the appcompat-v7
library. Version 25.0.0 is the latest
version as of this writing, but any
version newer than that should also
work for this project. In fact, it is a good
idea to use the latest version of the

support library so that you can use
newer APIs and receive the latest bug
fixes. If Android Studio added a newer
version of the library for you, do not roll
it back to the version shown above.
Now that the AppCompat library is a
dependency in the project, make sure
that your project uses it. In the project
tool window, find and open
CrimeActivity.java. Verify that
CrimeActivity’s superclass is
AppCompatActivity.

Listing 7.2 Tweaking template
code (CrimeActivity.java)
public class CrimeActivity extends AppCompatActivity
{

 @Override
 protected void onCreate(Bundle

savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime);
 }

}

Before proceeding with
CrimeActivity, let’s create the
model layer for CriminalIntent by
writing the Crime class.

Creating the Crime class
In the project tool window, right-click
the
com.bignerdranch.android.criminalintent
package and select New → Java Class.
Name the class Crime and click OK.
In Crime.java, add fields to

represent the crime’s ID, title, date, and
status and a constructor that initializes
the ID and date fields (Listing 7.3).

Listing 7.3 Adding to Crime
class (Crime.java)
public class Crime {

 private UUID mId;
 private String mTitle;
 private Date mDate;
 private boolean mSolved;

 public Crime() {
 mId = UUID.randomUUID();
 mDate = new Date();
 }
}

UUID is a Java utility class included in
the Android framework. It provides an
easy way to generate universally unique
ID values. In the constructor you
generate a random unique ID by calling

UUID.randomUUID().
Android Studio may find two classes
with the name Date. Use the
Option+Return (or Alt+Enter) shortcut to
manually import the class. When asked
which version of the Date class to
import, choose the java.util.Date
version.
Initializing the Date variable using the
default Date constructor sets mDate to
the current date. This will be the default
date for a crime.
Next, you want to generate a getter for
the read-only mId and both a getter and
setter for mTitle, mDate, and
mSolved. Right-click after the
constructor and select Generate... → Getter

and select the mId variable. Then,
generate the getter and setter for
mTitle, mDate, and mSolved by
repeating the process, but selecting Getter
and Setter in the Generate... menu.

Listing 7.4 Generated getters
and setters (Crime.java)
public class Crime {

 private UUID mId;
 private String mTitle;
 private Date mDate;
 private boolean mSolved;

 public Crime() {
 mId = UUID.randomUUID();
 mDate = new Date();
 }

 public UUID getId() {
 return mId;
 }

 public String getTitle() {
 return mTitle;
 }

 public void setTitle(String title) {
 mTitle = title;
 }

 public Date getDate() {
 return mDate;
 }

 public void setDate(Date date) {
 mDate = date;
 }

 public boolean isSolved() {
 return mSolved;
 }

 public void setSolved(boolean solved) {
 mSolved = solved;
 }
}

That is all you need for the Crime class
and for CriminalIntent’s model layer in
this chapter.
At this point, you have created the model
layer and an activity that is capable of
hosting a support fragment. Now you
will get into the details of how the

activity performs its duties as host.

Hosting a UI
Fragment
To host a UI fragment, an activity must:

define a spot in its layout for
the fragment’s view

manage the lifecycle of the
fragment instance

The fragment lifecycle

Figure 7.11 shows the fragment
lifecycle. It is similar to the activity

lifecycle: It has stopped, paused, and
resumed states, and it has methods you
can override to get things done at critical
points – many of which correspond to
activity lifecycle methods.

Figure 7.11 Fragment lifecycle
diagram

The correspondence is important.
Because a fragment works on behalf of
an activity, its state should reflect the
activity’s state. Thus, it needs
corresponding lifecycle methods to
handle the activity’s work.
One critical difference between the
fragment lifecycle and the activity
lifecycle is that fragment lifecycle
methods are called by the hosting
activity, not the OS. The OS knows
nothing about the fragments that an
activity is using to manage things.
Fragments are the activity’s internal
business.
You will see more of the fragment
lifecycle methods as you continue
building CriminalIntent.

Two approaches to
hosting
You have two options when it comes to
hosting a UI fragment in an activity:

add the fragment to the
activity’s layout

add the fragment in the
activity’s code

The first approach is known as using a
layout fragment. It is straightforward
but inflexible. If you add the fragment to
the activity’s layout, you hardwire the
fragment and its view to the activity’s

view and cannot swap out that fragment
during the activity’s lifetime.
The second approach, adding the
fragment to the activity’s code, is more
complex – but it is the only way to have
control at runtime over your fragments.
You determine when the fragment is
added to the activity and what happens
to it after that. You can remove the
fragment, replace it with another, and
then add the first fragment back again.
Thus, to achieve real UI flexibility you
must add your fragment in code. This is
the approach you will use for
CrimeActivity’s hosting of a
CrimeFragment. The code details
will come later in the chapter. First, you
are going to define CrimeActivity’s

layout.

Defining a container
view
You will be adding a UI fragment in the
hosting activity’s code, but you still need
to make a spot for the fragment’s view in
the activity’s view hierarchy. In
CrimeActivity’s layout, this spot
will be the FrameLayout shown in
Figure 7.12.

Figure 7.12 Fragment-hosting
layout for CrimeActivity

This FrameLayout will be the
container view for a
CrimeFragment. Notice that the
container view is completely generic; it
does not name the CrimeFragment
class. You can and will use this same
layout to host other fragments.
Locate CrimeActivity’s layout at
res/layout/activity_crime.xml
Open this file and replace the default

layout with the FrameLayout
diagrammed in Figure 7.12. Your XML
should match Listing 7.5.

Listing 7.5 Creating the
fragment container layout
(activity_crime.xml)
<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Note that while
activity_crime.xml consists
solely of a container view for a single
fragment, an activity’s layout can be
more complex and define multiple
container views as well as widgets of its
own.

You can preview your layout file or run
CriminalIntent to check your code. You
will see an empty FrameLayout
below a toolbar containing the text
CriminalIntent (Figure 7.13). (If the
preview window does not render the
screen correctly, or you see errors, build
the project by selecting Build → Rebuild
Project. If that still does not work
correctly, run the app on your emulator
or device. As of this writing, the
preview window can be finicky.)

Figure 7.13 An empty
FrameLayout

The FrameLayout is empty because
the CrimeActivity is not yet hosting

a fragment. Later, you will write code
that puts a fragment’s view inside this
FrameLayout. But first, you need to
create a fragment.
(The toolbar at the top of your app is
included automatically because of the
way you configured your activity. You
will learn more about the toolbar in
Chapter 13.)

Creating a UI
Fragment
The steps to create a UI fragment are the
same as those you followed to create an
activity:

compose a UI by defining
widgets in a layout file

create the class and set its
view to be the layout that you
defined
wire up the widgets inflated
from the layout in code

Defining
CrimeFragment’s layout

CrimeFragment’s view will display
the information contained within an
instance of Crime.
First, define the strings that the user will
see in res/values/strings.xml.

Listing 7.6 Adding strings
(res/values/strings.xml)
<resources>
 <string name="app_name">CriminalIntent</string>
 <string name="crime_title_hint">Enter a title for
the crime.</string>
 <string name="crime_title_label">Title</string>
 <string
name="crime_details_label">Details</string>
 <string name="crime_solved_label">Solved</string>
</resources>

Next, you will define the UI. The layout
for CrimeFragment will consist of a
vertical LinearLayout that contains
two TextViews, an EditText, a
Button, and a Checkbox.
To create a layout file, right-click the
res/layout folder in the project tool
window and select New → Layout resource
file. Name this file
fragment_crime.xml and enter
LinearLayout as the root element.
Click OK and Android Studio will
generate the file for you.
When the file opens, navigate to the
XML. The wizard has added the
LinearLayout for you. Add the
widgets that make up the fragment’s
layout to fragment_crime.xml.

Listing 7.7 Layout file for
fragment’s view
(fragment_crime.xml)
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="16dp"
 android:orientation="vertical">

 <TextView
 style="?android:listSeparatorTextViewStyle"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_title_label"/>

 <EditText
 android:id="@+id/crime_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/crime_title_hint"/>

 <TextView
 style="?android:listSeparatorTextViewStyle"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_details_label"/>

 <Button
 android:id="@+id/crime_date"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox
 android:id="@+id/crime_solved"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_solved_label"/>

</LinearLayout>

Check the Design view to see a preview
of your fragment’s view (Figure 7.14).

Figure 7.14 Previewing
updated crime fragment layout

(The updated
fragment_crime.xml code
includes new syntax related to view
style: <style="?
android:listSeparatorTextViewStyle"

Fear not. You will learn the meaning
behind this syntax in the section called
Styles, themes, and theme attributes in
Chapter 9.)

Creating the
CrimeFragment class
Right-click the
com.bignerdranch.android.criminalintent
package and select New → Java Class.
Name the class CrimeFragment and

click OK to generate the class.
Now, turn this class into a fragment.
Update CrimeFragment to subclass
the Fragment class.

Listing 7.8 Subclassing the
Fragment class
(CrimeFragment.java)
public class CrimeFragment extends Fragment {

}

As you subclass the Fragment class,
you will notice that Android Studio finds
two classes with the Fragment name.
You will see Fragment
(android.app) and Fragment
(android.support.v4.app).
The android.app Fragment is the

version of fragments built into the
Android OS. You will use the support
library version, so be sure to select the
android.support.v4.app version of the
Fragment class when you see the
dialog, as shown in Figure 7.15.

Figure 7.15 Choosing the
support library’s Fragment
class

Your code should match Listing 7.9.

Listing 7.9 Supporting the
Fragment import

(CrimeFragment.java)
package com.bignerdranch.android.criminalintent;

import android.support.v4.app.Fragment;

public class CrimeFragment extends Fragment {

}

If you do not see this dialog or the wrong
fragment class was imported, you can
manually import the correct class. If you
have an import for
android.app.Fragment, remove
that line of code. Import the correct
Fragment class with the
Option+Return (or Alt+Enter) shortcut.
Be sure to select the support version of
the Fragment class.

Implementing fragment

lifecycle methods

CrimeFragment is a controller that
interacts with model and view objects.
Its job is to present the details of a
specific crime and update those details
as the user changes them.
In GeoQuiz, your activities did most of
their controller work in activity lifecycle
methods. In CriminalIntent, this work
will be done by fragments in fragment
lifecycle methods. Many of these
methods correspond to the Activity
methods you already know, such as
onCreate(Bundle).
In CrimeFragment.java, add a
member variable for the Crime

instance and an implementation of
Fragment.onCreate(Bundle).
Android Studio can provide some
assistance when overriding methods. As
you define the onCreate(Bundle)
method, type the first few characters of
the method name where you want to
place the method. Android Studio will
provide a list of suggestions, as shown
in Figure 7.16.

Figure 7.16 Overriding the
onCreate(Bundle) method

Press Return to select the
onCreate(Bundle) method, and
Android Studio will create the method
declaration for you. Update your code to
create a new Crime, matching Listing
7.10.

Listing 7.10 Overriding
Fragment.onCreate(Bundle)

(CrimeFragment.java)
public class CrimeFragment extends Fragment {
 private Crime mCrime;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mCrime = new Crime();
 }
}

There are a couple of things to notice in
this implementation. First,
Fragment.onCreate(Bundle) is
a public method, whereas
Activity.onCreate(Bundle) is
protected.
Fragment.onCreate(Bundle)
and other Fragment lifecycle methods
must be public, because they will be
called by whatever activity is hosting the
fragment.

Second, similar to an activity, a fragment
has a bundle to which it saves and
retrieves its state. You can override
Fragment.onSaveInstanceState(Bundle)
for your own purposes just as you can
override
Activity.onSaveInstanceState(Bundle)

Also, note what does not happen in
Fragment.onCreate(Bundle):
You do not inflate the fragment’s view.
You configure the fragment instance in
Fragment.onCreate(Bundle),
but you create and configure the
fragment’s view in another fragment
lifecycle method:
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState)

This method is where you inflate the
layout for the fragment’s view and return
the inflated View to the hosting activity.
The LayoutInflater and
ViewGroup parameters are necessary
to inflate the layout. The Bundle will
contain data that this method can use to
re-create the view from a saved state.
In CrimeFragment.java, add an
implementation of
onCreateView(…) that inflates
fragment_crime.xml. You can use
the same trick from Figure 7.16 to fill
out the method declaration.

Listing 7.11 Overriding
onCreateView(…)
(CrimeFragment.java)

public class CrimeFragment extends Fragment {
 private Crime mCrime;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mCrime = new Crime();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_crime, container,
false);
 return v;
 }
}

Within onCreateView(…), you
explicitly inflate the fragment’s view by
calling
LayoutInflater.inflate(…)
and passing in the layout resource ID.
The second parameter is your view’s
parent, which is usually needed to

configure the widgets properly. The third
parameter tells the layout inflater
whether to add the inflated view to the
view’s parent. You pass in false
because you will add the view in the
activity’s code.

Wiring widgets in a fragment

You are now going to hook up the
EditText, Checkbox, and Button
in your fragment. The
onCreateView(…) method is the
place to wire up these widgets.
Start with the EditText. After the
view is inflated, get a reference to the
EditText and add a listener.

Listing 7.12 Wiring up the
EditText widget
(CrimeFragment.java)
public class CrimeFragment extends Fragment {
 private Crime mCrime;
 private EditText mTitleField;
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_crime, container,
false);

 mTitleField = (EditText)
v.findViewById(R.id.crime_title);
 mTitleField.addTextChangedListener(new
TextWatcher() {
 @Override
 public void beforeTextChanged(
 CharSequence s, int start, int count,
int after) {
 // This space intentionally left
blank
 }

 @Override
 public void onTextChanged(

 CharSequence s, int start, int
before, int count) {
 mCrime.setTitle(s.toString());
 }

 @Override
 public void afterTextChanged(Editable s)
{
 // This one too
 }
 });

 return v;
 }
}

Getting references in
Fragment.onCreateView(…)
works nearly the same as in
Activity.onCreate(Bundle).
The only difference is that you call
View.findViewById(int) on the
fragment’s view. The
Activity.findViewById(int)
method that you used before is a
convenience method that calls

View.findViewById(int) behind
the scenes. The Fragment class does
not have a corresponding convenience
method, so you have to call the real
thing.
Setting listeners in a fragment works
exactly the same as in an activity. In
Listing 7.12, you create an anonymous
class that implements the verbose
TextWatcher interface. TextWatcher
has three methods, but you only care
about one: onTextChanged(…).
In onTextChanged(…), you call
toString() on the CharSequence
that is the user’s input. This method
returns a string, which you then use to set
the Crime’s title.

Next, connect the Button to display the
date of the crime, as shown in Listing
7.13.

Listing 7.13 Setting Button
text (CrimeFragment.java)
public class CrimeFragment extends Fragment {
 private Crime mCrime;
 private EditText mTitleField;
 private Button mDateButton;
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_crime, container,
false);
 ...
 mDateButton = (Button)
v.findViewById(R.id.crime_date);

mDateButton.setText(mCrime.getDate().toString());
 mDateButton.setEnabled(false);

 return v;
 }
}

Disabling the button ensures that it will
not respond in any way to the user
pressing it. It also changes its
appearance to advertise its disabled
state. In Chapter 12, you will enable the
button and allow the user to choose the
date of the crime.
Moving on to the CheckBox, get a
reference and set a listener that will
update the mSolved field of the
Crime, as shown in Listing 7.14.

Listing 7.14 Listening for
CheckBox changes
(CrimeFragment.java)
public class CrimeFragment extends Fragment {
 private Crime mCrime;
 private EditText mTitleField;
 private Button mDateButton;
 private CheckBox mSolvedCheckBox;

 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_crime, container,
false);
 ...
 mSolvedCheckBox =
(CheckBox)v.findViewById(R.id.crime_solved);

mSolvedCheckBox.setOnCheckedChangeListener(new
OnCheckedChangeListener() {
 @Override
 public void
onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 mCrime.setSolved(isChecked);
 }
 });

 return v;
 }
}

After typing in the code as above, click
on OnCheckedChangeListener:
 mSolvedCheckBox.setOnCheckedChangeListener(new
OnCheckedChangeListener()

and use the Option+Return (Alt+Enter)
shortcut to add the necessary import
statement. You will be presented with
two options. Choose the
android.widget.CompoundButton
version.
Depending on which version of Android
Studio you are using, the autocomplete
feature may insert
CompoundButton.OnCheckedChangeListener()
instead of leaving the code as
OnCheckedChangeListener(). Either
implementation is fine. But to remain
consistent with the solution presented in
this book, click on CompoundButton and
hit Option+Return (Alt+Enter).
Select the option to Add on demand static
import for 'android.widget.CompoundButton'

(Figure 7.17). This will update the code
so it matches Listing 7.14.

Figure 7.17 Adding on demand
static import

Your code for CrimeFragment is
now complete. It would be great if you
could run CriminalIntent now and play
with the code you have written. But you
cannot. Fragments cannot put their views
on screen on their own. To realize your
efforts, you first have to add a
CrimeFragment to
CrimeActivity.

Adding a UI
Fragment to the
FragmentManager
When the Fragment class was
introduced in Honeycomb, the
Activity class was changed to
include a piece called the
FragmentManager. The
FragmentManager is responsible
for managing your fragments and adding
their views to the activity’s view
hierarchy (Figure 7.18).
The FragmentManager handles two

things: a list of fragments and a back
stack of fragment transactions (which
you will learn about shortly).

Figure 7.18 The
FragmentManager

For CriminalIntent, you will only be
concerned with the

FragmentManager’s list of
fragments.
To add a fragment to an activity in code,
you make explicit calls to the activity’s
FragmentManager. The first step is
to get the FragmentManager itself.
Do so in onCreate(Bundle) in
CrimeActivity.java.

Listing 7.15 Getting the
FragmentManager
(CrimeActivity.java)
public class CrimeActivity extends AppCompatActivity
{

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime);

 FragmentManager fm =
getSupportFragmentManager();

 }
}

If you see an error after adding this line
of code, check the import statements to
make sure that the support version of the
FragmentManager class was
imported.
You call
getSupportFragmentManager()
because you are using the support library
and the AppCompatActivity class.
If you were not interested in using the
support library, then you would subclass
Activity and call
getFragmentManager().

Fragment transactions

Now that you have the
FragmentManager, add the
following code to give it a fragment to
manage. (We will step through this code
afterward. Just get it in for now.)

Listing 7.16 Adding a
CrimeFragment
(CrimeActivity.java)
public class CrimeActivity extends AppCompatActivity
{

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime);

 FragmentManager fm =
getSupportFragmentManager();
 Fragment fragment =
fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()

 .add(R.id.fragment_container,
fragment)
 .commit();
 }
 }
}

The best place to start understanding the
code you just added is not at the
beginning. Instead, find the add(…)
operation and the code around it. This
code creates and commits a fragment
transaction.
 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container,
fragment)
 .commit();

Fragment transactions are used to add,
remove, attach, detach, or replace
fragments in the fragment list. They are
the heart of how you use fragments to

compose and recompose screens at
runtime. The FragmentManager
maintains a back stack of fragment
transactions that you can navigate.
The
FragmentManager.beginTransaction()
method creates and returns an instance of
FragmentTransaction. The
FragmentTransaction class uses
a fluent interface – methods that
configure FragmentTransaction
return a FragmentTransaction
instead of void, which allows you to
chain them together. So the code
highlighted above says, “Create a new
fragment transaction, include one add
operation in it, and then commit it.”
The add(…) method is the meat of the

transaction. It has two parameters: a
container view ID and the newly created
CrimeFragment. The container view
ID should look familiar. It is the
resource ID of the FrameLayout that
you defined in
activity_crime.xml.
A container view ID serves two
purposes:

It tells the
FragmentManager where
in the activity’s view the
fragment’s view should appear.

It is used as a unique identifier
for a fragment in the
FragmentManager’s list.

When you need to retrieve the
CrimeFragment from the
FragmentManager, you ask for it by
container view ID:
 FragmentManager fm =
getSupportFragmentManager();
 Fragment fragment =
fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container,
fragment)
 .commit();
 }

It may seem odd that the
FragmentManager identifies the
CrimeFragment using the resource
ID of a FrameLayout. But identifying
a UI fragment by the resource ID of its
container view is built into how the
FragmentManager operates. If you

are adding multiple fragments to an
activity, you would typically create
separate containers with separate IDs
for each of those fragments.
Now we can summarize the code you
added in Listing 7.16 from start to finish.
First, you ask the FragmentManager
for the fragment with a container view
ID of R.id.fragment_container. If
this fragment is already in the list, the
FragmentManager will return it.
Why would a fragment already be in the
list? The call to
CrimeActivity.onCreate(Bundle)
could be in response to
CrimeActivity being re-created
after being destroyed on rotation or to

reclaim memory. When an activity is
destroyed, its FragmentManager
saves out its list of fragments. When the
activity is re-created, the new
FragmentManager retrieves the list
and re-creates the listed fragments to
make everything as it was before.
On the other hand, if there is no fragment
with the given container view ID, then
fragment will be null. In this case,
you create a new CrimeFragment
and a new fragment transaction that adds
the fragment to the list.
CrimeActivity is now hosting a
CrimeFragment. Run CriminalIntent
to prove it. You should see the view
defined in fragment_crime.xml,
as shown in Figure 7.19.

Figure 7.19 CrimeFragment’s
view hosted by CrimeActivity

The FragmentManager
and the fragment
lifecycle

Now that you know about the
FragmentManager, let’s take
another look at the fragment lifecycle
(Figure 7.20).

Figure 7.20 The fragment
lifecycle, again

The FragmentManager of an activity
is responsible for calling the lifecycle
methods of the fragments in its list. The
onAttach(Context),
onCreate(Bundle), and

onCreateView(…) methods are
called when you add the fragment to the
FragmentManager.
The
onActivityCreated(Bundle)
method is called after the hosting
activity’s onCreate(Bundle)
method has executed. You are adding the
CrimeFragment in
CrimeActivity.onCreate(Bundle)
so this method will be called after the
fragment has been added.
What happens if you add a fragment
while the activity is already resumed? In
that case, the FragmentManager
immediately walks the fragment through
whatever steps are necessary to get it
caught up to the activity’s state. For

example, as a fragment is added to an
activity that is already resumed, that
fragment gets calls to
onAttach(Context),
onCreate(Bundle),
onCreateView(…),
onActivityCreated(Bundle),
onStart(), and then onResume().
Once the fragment’s state is caught up to
the activity’s state, the hosting activity’s
FragmentManager will call further
lifecycle methods around the same time
it receives the corresponding calls from
the OS to keep the fragment’s state
aligned with that of the activity.

Application
Architecture with
Fragments
Designing your app with fragments the
right way is supremely important. Many
developers, after first learning about
fragments, try to use them for every
reusable component in their application.
This is the wrong way to use fragments.
Fragments are intended to encapsulate
major components in a reusable way. A
major component in this case would be
on the level of an entire screen of your

application. If you have a significant
number of fragments on screen at once,
your code will be littered with fragment
transactions and unclear responsibility.
A better architectural solution for reuse
with smaller components is to extract
them into a custom view (a class that
subclasses View or one of its
subclasses).
Use fragments responsibly. A good rule
of thumb is to have no more than two or
three fragments on the screen at a time
(Figure 7.21).

Figure 7.21 Less is more

The reason all our
activities will use
fragments
From here on, all of the apps in this

book will use fragments – no matter how
simple. This may seem like overkill.
Many of the examples you will see in
following chapters could be written
without fragments. The UIs could be
created and managed from activities, and
doing so might even be less code.
However, we believe it is better for you
to become comfortable with the pattern
you will most likely use in real life.
You might think it would be better to
begin a simple app without fragments
and add them later, when (or if)
necessary. There is an idea in Extreme
Programming methodology called
YAGNI. YAGNI stands for “You Aren’t
Gonna Need It,” and it urges you not to
write code if you think you might need it

later. Why? Because YAGNI. It is
tempting to say “YAGNI” to fragments.
Unfortunately, adding fragments later can
be a minefield. Changing an activity to
an activity hosting a UI fragment is not
difficult, but there are swarms of
annoying gotchas. Keeping some
interfaces managed by activities and
having others managed by fragments only
makes things worse because you have to
keep track of this meaningless
distinction. It is far easier to write your
code using fragments from the beginning
and not worry about the pain and
annoyance of reworking it later, or
having to remember which style of
controller you are using in each part of
your application.

Therefore, when it comes to fragments,
we have a different principle: AUF, or
“Always Use Fragments.” You can kill a
lot of brain cells deciding whether to use
a fragment or an activity, and it is just
not worth it. AUF!

For the More
Curious:
Fragments and the
Support Library
In this chapter, you included the
AppCompat library so that you can use
support fragments. AppCompat on its
own does not include a support fragment
implementation. The AppCompat library
depends on the support-v4 library,
which is where the support fragment
implementation lives.

Google provides many different support
libraries, including support-v4,
appcompat-v7, recyclerview-v7, and
many more. The support-v4 library is
typically referred to as the support
library. This was the first support library
Google provided to developers. Over
time, more and more tools have been
added to this library, and it became a
grab bag of things with no real focus. At
that point, Google decided to develop a
suite of support libraries rather than a
single library.
The support library (support-v4)
contains the support implementation of
fragments that you used in this chapter.
For example, this is where you will find
the source of

android.support.v4.app.Fragment
The support library also includes an
Activity subclass:
FragmentActivity. To use support
fragments, your activities must subclass
FragmentActivity.
As shown in Figure 7.22,
AppCompatActivity is a subclass
of this FragmentActivity class,
which is how you were able to use
support fragments in this chapter. If you
were using support fragments without the
AppCompat library, you would include
the support-v4 dependency in your
project and you would subclass
FragmentActivity in each of your
activity classes instead of
AppCompatActivity.

Figure 7.22 AppCompatActivity
class hierarchy

If all of this sounds confusing, that is
because it is. But not to worry – most
Android developers use these libraries
as you did in this chapter: using the
AppCompat library rather than the
support library directly. You will learn
more about the features of the

AppCompat library in Chapter 13.

For the More
Curious: Why
Support Fragments
Are Superior
This book uses the support library
implementation of fragments over the
implementation built into the Android
OS, which may seem like an unusual
choice. After all, the support library
implementation of fragments was
initially created so that developers could
use fragments on old versions of
Android that do not support the API.

Today, most developers can exclusively
work with versions of Android that
include support for fragments natively.
We still prefer support fragments. Why?
Support fragments are superior because
you can update the version of the support
library in your application and ship a
new version of your app at any time.
New releases of the support library
come out multiple times a year. When a
new feature is added to the fragment
API, that feature is also added to the
support library fragment API along with
any available bug fixes. To use this new
goodness, just update the version of the
support library in your application.
As an example, official support for
fragment nesting (hosting a fragment in a

fragment) was added in Android 4.2. If
you are using the Android OS
implementation of fragments and
supporting Android 4.0 and newer, you
cannot use this API on all devices that
your app supports. If you are using the
support library, you can update the
version of the library in your app and
nest fragments until you run out of
memory on the device.
There are no significant downsides to
using the support library’s fragments.
The implementation of fragments is
nearly identical in the support library as
it is in the OS. The only real downside
is that you have to include the support
library in your project, and it has a
nonzero size. However, it is currently

under a megabyte – and you will likely
use the support library for some of its
other features as well.
We take a practical approach in this
book and in our own application
development. The support library is
king.
If you are strong-willed and do not
believe in the advice above, you can use
the fragment implementation built into
the Android OS.
To use standard library fragments, you
would make three changes to the project:

Subclass the standard library
Activity class
(android.app.Activity)
instead of

FragmentActivity or
AppCompatActivity.
Activities have support for
fragments out of the box on API
level 11 or higher.

Subclass
android.app.Fragment
instead of
android.support.v4.app.Fragment

To get the
FragmentManager, call
getFragmentManager()
instead of
getSupportFragmentManager()

8
Displaying Lists

with
RecyclerView

CriminalIntent’s model layer currently
consists of a single instance of Crime.
In this chapter, you will update
CriminalIntent to work with a list of
crimes. The list will display each
Crime’s title and date, as shown in
Figure 8.1.

Figure 8.1 A list of crimes

Figure 8.2 shows the overall plan for
CriminalIntent in this chapter.

Figure 8.2 CriminalIntent with
a list of crimes

In the model layer, you have a new

object, CrimeLab, that will be a
centralized data stash for Crime
objects.
Displaying a list of crimes requires a
new activity and a new fragment in
CriminalIntent’s controller layer:
CrimeListActivity and
CrimeListFragment.
(Where are CrimeActivity and
CrimeFragment in Figure 8.2? They
are part of the detail view, so we are not
showing them here. In Chapter 10, you
will connect the list and the detail parts
of CriminalIntent.)
In Figure 8.2, you can also see the view
objects associated with
CrimeListActivity and

CrimeListFragment. The activity’s
view will consist of a fragment-
containing FrameLayout. The
fragment’s view will consist of a
RecyclerView. You will learn more
about the RecyclerView class later
in the chapter.

Updating
CriminalIntent’s
Model Layer
The first step is to upgrade
CriminalIntent’s model layer from a
single Crime object to a List of

Crime objects.

Singletons and
centralized data storage
You are going to store the List of
crimes in a singleton. A singleton is a
class that allows only one instance of
itself to be created.
A singleton exists as long as the
application stays in memory, so storing
the list in a singleton will keep the crime
data available throughout any lifecycle
changes in your activities and fragments.
Be careful with singleton classes, as
they will be destroyed when Android
removes your application from memory.

The CrimeLab singleton is not a
solution for long-term storage of data,
but it does allow the app to have one
owner of the crime data and provides a
way to easily pass that data between
controller classes. (You will learn more
about long-term data storage in
Chapter 14.)
(See the For the More Curious section at
the end of this chapter for more about
singleton classes.)
To create a singleton, you create a class
with a private constructor and a get()
method. If the instance already exists,
then get() simply returns the instance.
If the instance does not exist yet, then
get() will call the constructor to
create it.

Right-click the
com.bignerdranch.android.criminalintent
package and choose New → Java Class.
Name this class CrimeLab and click
OK.
In CrimeLab.java, implement
CrimeLab as a singleton with a private
constructor and a get() method.

Listing 8.1 Setting up the
singleton (CrimeLab.java)
public class CrimeLab {
 private static CrimeLab sCrimeLab;

 public static CrimeLab get(Context context) {
 if (sCrimeLab == null) {
 sCrimeLab = new CrimeLab(context);
 }
 return sCrimeLab;
 }

 private CrimeLab(Context context) {

 }
}

There are a few interesting things in this
CrimeLab implementation. First,
notice the s prefix on the sCrimeLab
variable. You are using this Android
convention to make it clear that
sCrimeLab is a static variable.
Also, notice the private constructor on
the CrimeLab. Other classes will not
be able to create a CrimeLab,
bypassing the get() method.
Finally, in the get() method on
CrimeLab, you pass in a Context
object. You will make use of this
Context object in Chapter 14.
Let’s give CrimeLab some Crime
objects to store. In CrimeLab’s

constructor, create an empty List of
Crimes. Also, add two methods: a
getCrimes() method that returns the
List and a getCrime(UUID) that
returns the Crime with the given ID.

Listing 8.2 Setting up the List
of Crime objects
(CrimeLab.java)
public class CrimeLab {
 private static CrimeLab sCrimeLab;

 private List<Crime> mCrimes;

 public static CrimeLab get(Context context) {
 ...
 }

 private CrimeLab(Context context) {
 mCrimes = new ArrayList<>();
 }

 public List<Crime> getCrimes() {
 return mCrimes;
 }

 public Crime getCrime(UUID id) {
 for (Crime crime : mCrimes) {
 if (crime.getId().equals(id)) {
 return crime;
 }
 }

 return null;
 }
}

List<E> is an interface that supports an
ordered list of objects of a given type. It
defines methods for retrieving, adding,
and deleting elements. A commonly used
implementation of List is
ArrayList, which uses a regular Java
array to store the list elements.
Because mCrimes holds an
ArrayList – and ArrayList is
also a List – both ArrayList and
List are valid types for mCrimes. In
situations like this, we recommend using

the interface type for the variable
declaration: List. That way, if you ever
need to use a different kind of List
implementation – like LinkedList,
for example – you can do so easily.
The mCrimes instantiation line uses
diamond notation, <>, which was
introduced in Java 7. This shorthand
notation tells the compiler to infer the
type of items the List will contain
based on the generic argument passed in
the variable declaration. Here, the
compiler will infer that the
ArrayList contains Crimes because
the variable declaration private
List<Crime> mCrimes; specifies
Crime for the generic argument. (The
more verbose equivalent, which

developers were required to use prior to
Java 7, is mCrimes = new
ArrayList<Crime>();.)
Eventually, the List will contain user-
created Crimes that can be saved and
reloaded. For now, populate the List
with 100 boring Crime objects.

Listing 8.3 Generating crimes
(CrimeLab.java)
private CrimeLab(Context context) {
 mCrimes = new ArrayList<>();
 for (int i = 0; i < 100; i++) {
 Crime crime = new Crime();
 crime.setTitle("Crime #" + i);
 crime.setSolved(i % 2 == 0); // Every other
one
 mCrimes.add(crime);
 }
}

Now you have a fully loaded model
layer with 100 crimes.

An Abstract
Activity for Hosting
a Fragment
In a moment, you will create the
CrimeListActivity class that will
host a CrimeListFragment. First,
you are going to set up a view for
CrimeListActivity.

A generic fragment-
hosting layout

For CrimeListActivity, you can
simply reuse the layout defined in
activity_crime.xml (which is
copied in Listing 8.4). This layout
provides a FrameLayout as a
container view for a fragment, which is
then named in the activity’s code.

Listing
8.4 activity_crime.xml is
already generic
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

Because activity_crime.xml
does not name a particular fragment, you

can use it for any activity hosting a
single fragment. Rename it
activity_fragment.xml to
reflect its larger scope.
In the project tool window, right-click
res/layout/activity_crime.xml
(Be sure to right-click
activity_crime.xml and not
fragment_crime.xml.)
From the context menu, select Refactor →
Rename.... Rename this layout
activity_fragment.xml and
click Refactor.
When you rename a resource, the
references to it should be updated
automatically. If you see an error in
CrimeActivity.java, then you

need to manually update the reference in
CrimeActivity, as shown in Listing
8.5.

Listing 8.5 Updating layout file
for CrimeActivity
(CrimeActivity.java)
public class CrimeActivity extends AppCompatActivity
{
 /** Called when the activity is first created. */
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime);
 setContentView(R.layout.activity_fragment);

 FragmentManager fm =
getSupportFragmentManager();
 Fragment fragment =
fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container,
fragment)
 .commit();

 }
 }
}

An abstract Activity
class
To create the CrimeListActivity
class, you could reuse
CrimeActivity’s code. Look back
at the code you wrote for
CrimeActivity (which is copied in
Listing 8.6). It is simple and almost
generic. In fact, the only nongeneric code
is the instantiation of the
CrimeFragment before it is added to
the FragmentManager.

Listing 8.6 CrimeActivity is

almost generic
(CrimeActivity.java)
public class CrimeActivity extends AppCompatActivity
{
 /** Called when the activity is first created. */
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment);

 FragmentManager fm =
getSupportFragmentManager();
 Fragment fragment =
fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container,
fragment)
 .commit();
 }
 }
}

Nearly every activity you will create in
this book will require the same code. To
avoid typing it again and again, you are

going to stash it in an abstract class.
Right-click on the
com.bignerdranch.android.criminalintent
package, select New → Java Class, and
name the new class
SingleFragmentActivity. Make
this class a subclass of
AppCompatActivity and make it an
abstract class. Your generated file
should look like this:

Listing 8.7 Creating an abstract
Activity
(SingleFragmentActivity.java
public abstract class SingleFragmentActivity extends
AppCompatActivity {

}

Now, add the following code to

SingleFragmentActivity.java
Except for the highlighted portions, it is
identical to your old CrimeActivity
code.

Listing 8.8 Adding a generic
superclass
(SingleFragmentActivity.java
public abstract class SingleFragmentActivity extends
AppCompatActivity {

 protected abstract Fragment createFragment();

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment);

 FragmentManager fm =
getSupportFragmentManager();
 Fragment fragment =
fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = createFragment();

 fm.beginTransaction()
 .add(R.id.fragment_container,
fragment)
 .commit();
 }
 }
}

In this code, you set the activity’s view
to be inflated from
activity_fragment.xml. Then
you look for the fragment in the
FragmentManager in that container,
creating and adding it if it does not exist.
The only difference between the code in
Listing 8.8 and the code in
CrimeActivity is an abstract
method named createFragment()
that you use to instantiate the fragment.
Subclasses of
SingleFragmentActivity will
implement this method to return an

instance of the fragment that the activity
is hosting.

Using an abstract class

Try it out with CrimeActivity.
Change CrimeActivity’s superclass
to SingleFragmentActivity,
remove the implementation of
onCreate(Bundle), and implement
the createFragment() method as
shown in Listing 8.9.

Listing 8.9 Cleaning up
CrimeActivity
(CrimeActivity.java)
public class CrimeActivity extends AppCompatActivity
SingleFragmentActivity {
 /** Called when the activity is first created. */

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment);

 FragmentManager fm =
getSupportFragmentManager();
 Fragment fragment =
fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container,
fragment)
 .commit();
 }
 }

 @Override
 protected Fragment createFragment() {
 return new CrimeFragment();
 }
}

Creating the new controllers

Now, you will create the two new

controller classes:
CrimeListActivity and
CrimeListFragment.
Right-click on the
com.bignerdranch.android.criminalintent
package, select New → Java Class, and
name the class
CrimeListActivity.
Modify the new
CrimeListActivity class to also
subclass
SingleFragmentActivity and
implement the createFragment()
method.

Listing 8.10 Implementing
CrimeListActivity
(CrimeListActivity.java)

public class CrimeListActivity extends
SingleFragmentActivity {

 @Override
 protected Fragment createFragment() {
 return new CrimeListFragment();
 }
}

If you have other methods in your
CrimeListActivity, such as
onCreate, remove them. Let
SingleFragmentActivity do its
job and keep CrimeListActivity
simple.
The CrimeListFragment class has
not yet been created. Let’s remedy that.
Right-click on the
com.bignerdranch.android.criminalintent
package again, select New → Java Class,
and name the class
CrimeListFragment.

Listing 8.11 Implementing
CrimeListFragment
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 // Nothing yet

}

For now, CrimeListFragment will
be an empty shell of a fragment. You
will work with this fragment later in the
chapter.
Now your activity code is nice and tidy.
And SingleFragmentActivity
will save you a lot of typing and time as
you proceed through the book.

Declaring CrimeListActivity

Now that you have created
CrimeListActivity, you must
declare it in the manifest. In addition,
you want the list of crimes to be the first
screen that the user sees when
CriminalIntent is launched, so
CrimeListActivity should be the
launcher activity.
In the manifest, declare
CrimeListActivity and move the
launcher intent filter from
CrimeActivity’s declaration to
CrimeListActivity’s declaration.

Listing 8.12 Declaring
CrimeListActivity as the
launcher activity
(AndroidManifest.xml)

<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity android:name=".CrimeListActivity">
 <intent-filter>
 <action
android:name="android.intent.action.MAIN" />
 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".CrimeActivity">
 <intent-filter>
 <action
android:name="android.intent.action.MAIN" />
 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

</application>

CrimeListActivity is now the
launcher activity. Run CriminalIntent and
you will see CrimeListActivity’s
FrameLayout hosting an empty
CrimeListFragment, as shown in

Figure 8.3.

Figure 8.3 Blank
CrimeListActivity screen

RecyclerView,
Adapter, and
ViewHolder
Now, you want
CrimeListFragment to display a
list of crimes to the user. To do this, you
will use a RecyclerView.
RecyclerView is a subclass of
ViewGroup. It displays a list of child
View objects, one for each item in your
list of items. Depending on the
complexity of what you need to display,
these child Views can be complex or

very simple.
For your first implementation, each item
in the list will display the title and date
of a Crime. The View object on each
row will be a LinearLayout
containing two TextViews, as shown
in Figure 8.4.

Figure 8.4 A RecyclerView
with child Views

Figure 8.4 shows 12 rows of Views.
Later you will be able to run
CriminalIntent and swipe to scroll

through 100 Views to see all of your
Crimes. Does that mean that you have
100 View objects in memory? Thanks to
your RecyclerView, no.
Creating a View for every item in the
list all at once could easily become
unworkable. As you can imagine, a list
can have far more than 100 items, and
your list items can be much more
involved than your simple
implementation here. Also, a Crime
only needs a View when it is onscreen,
so there is no need to have 100 Views
ready and waiting. It would make far
more sense to create view objects only
as you need them.
RecyclerView does just that. Instead
of creating 100 Views, it creates 12 –

enough to fill the screen. When a view is
scrolled off the screen,
RecyclerView reuses it rather than
throwing it away. In short, it lives up to
its name: It recycles views over and
over.

ViewHolders and
Adapters
The RecyclerView’s only
responsibilities are recycling
TextViews and positioning them
onscreen. To get the TextViews in the
first place, it works with two classes
that you will build in a moment: an
Adapter subclass and a

ViewHolder subclass.
The ViewHolder’s job is small, so
let’s talk about it first. The
ViewHolder does one thing: It holds
on to a View (Figure 8.5).

Figure 8.5 The lowly
ViewHolder

A small job, but that is what
ViewHolders do. A typical
ViewHolder subclass looks like this:

Listing 8.13 A typical
ViewHolder subclass
public class ListRow extends RecyclerView.ViewHolder
{
 public ImageView mThumbnail;

 public ListRow(View view) {
 super(view);

 mThumbnail = (ImageView)
view.findViewById(R.id.thumbnail);
 }
}

You can then create a ListRow and
access both mThumbnail, which you
created yourself, and itemView, a
field that your superclass
RecyclerView.ViewHolder
assigns for you. The itemView field is

your ViewHolder’s reason for
existing: It holds a reference to the entire
View you passed into super(view).

Listing 8.14 Typical usage of a
ViewHolder
ListRow row = new
ListRow(inflater.inflate(R.layout.list_row, parent,
false));
View view = row.itemView;
ImageView thumbnailView = row.mThumbnail;

A RecyclerView never creates
Views by themselves. It always creates
ViewHolders, which bring their
itemViews along for the ride
(Figure 8.6).

Figure 8.6 A RecyclerView
with its ViewHolders

When the View is simple,
ViewHolder has few responsibilities.
For more complicated Views, the
ViewHolder makes wiring up the
different parts of itemView to a
Crime simpler and more efficient. You
will see how this works later on in this

chapter, when you build a complex
View yourself.

Adapters

Figure 8.6 is somewhat simplified.
RecyclerView does not create
ViewHolders itself. Instead, it asks an
adapter. An adapter is a controller
object that sits between the
RecyclerView and the data set that
the RecyclerView should display.
The adapter is responsible for:

creating the necessary
ViewHolders

binding ViewHolders to

data from the model layer

To build an adapter, you first define a
subclass of
RecyclerView.Adapter. Your
adapter subclass will wrap the list of
crimes you get from CrimeLab.
When the RecyclerView needs a
view object to display, it will have a
conversation with its adapter. Figure 8.7
shows an example of a conversation that
a RecyclerView might initiate.

Figure 8.7 A scintillating
RecyclerView-Adapter
conversation

First, the RecyclerView asks how
many objects are in the list by calling the

adapter’s getItemCount() method.
Then the RecyclerView calls the
adapter’s
onCreateViewHolder(ViewGroup,
int) method to create a new
ViewHolder, along with its juicy
payload: a View to display.
Finally, the RecyclerView calls
onBindViewHolder(ViewHolder,
int). The RecyclerView will pass
a ViewHolder into this method along
with the position. The adapter will look
up the model data for that position and
bind it to the ViewHolder’s View. To
bind it, the adapter fills in the View to
reflect the data in the model object.
After this process is complete,

RecyclerView will place a list item
on the screen. Note that
onCreateViewHolder(ViewGroup,
int) will happen a lot less often than
onBindViewHolder(ViewHolder,
int). Once enough ViewHolders
have been created, RecyclerView
stops calling
onCreateViewHolder(…). Instead,
it saves time and memory by recycling
old ViewHolders.

Using a RecyclerView
Enough talk; time for the implementation.
The RecyclerView class lives in one
of Google’s many support libraries. The

first step to using a RecyclerView is
to add the RecyclerView library as a
dependency.
Navigate to your project structure
window with File → Project Structure....
Select the app module on the left, then the
Dependencies tab. Use the + button and
choose Library dependency to add a
dependency.
Find and select the recyclerview-v7 library
and click OK to add the library as a
dependency, as shown in Figure 8.8.

Figure 8.8 Adding the
RecyclerView dependency

Your RecyclerView will live in
CrimeListFragment’s layout file.
First, you must create the layout file.
Right-click on the res/layout
directory and select New → Layout
resource file. Name the file
fragment_crime_list and click
OK to create the file.
Open the new

fragment_crime_list file and
modify the root view to be a
RecyclerView and to give it an ID
attribute.

Listing 8.15 Adding
RecyclerView to a layout file
(fragment_crime_list.xml)
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

</LinearLayout>
<android.support.v7.widget.RecyclerView

xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/crime_recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

Now that CrimeListFragment’s

view is set up, hook up the view to the
fragment. Modify
CrimeListFragment to use this
layout file and to find the
RecyclerView in the layout file, as
shown in Listing 8.16.

Listing 8.16 Setting up the
view for CrimeListFragment
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 // Nothing yet
 private RecyclerView mCrimeRecyclerView;

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View view =
inflater.inflate(R.layout.fragment_crime_list,
container, false);

 mCrimeRecyclerView = (RecyclerView) view

.findViewById(R.id.crime_recycler_view);
 mCrimeRecyclerView.setLayoutManager(new
LinearLayoutManager(getActivity()));

 return view;
 }

}

Note that as soon as you create your
RecyclerView, you give it another
object called a LayoutManager.
RecyclerView requires a
LayoutManager to work. If you
forget to give it one, it will crash.
RecyclerView does not position
items on the screen itself. It delegates
that job to the LayoutManager. The
LayoutManager positions every item
and also defines how scrolling works.
So if RecyclerView tries to do those
things when the LayoutManager is

not there, the RecyclerView will
immediately fall over and die.
There are a few built-in
LayoutManagers to choose from,
and you can find more as third-party
libraries. You are using the
LinearLayoutManager, which
will position the items in the list
vertically. Later on in this book, you will
use GridLayoutManager to arrange
items in a grid instead.
Run the app. You should again see a
blank screen, but now you are looking at
an empty RecyclerView. You will
not see any Crimes represented on the
screen until the Adapter and
ViewHolder implementations are
defined.

A view to display
Each item displayed on the
RecyclerView will have its own
view hierarchy, exactly the way
CrimeFragment has a view
hierarchy for the entire screen. You
create a new layout for a list item view
the same way you do for the view of an
activity or a fragment. In the project tool
window, right-click the res/layout
directory and choose New → Layout
resource file. In the dialog that appears,
name the file list_item_crime and
click OK.
Update your layout file to add the two

TextViews as shown in Figure 8.9.

Figure 8.9 Updating the list
item layout file
(list_item_crime.xml)

Take a look at the design preview, and
you will see that you have created
exactly one row of the completed
product. In a moment, you will see how
RecyclerView will create those

rows for you.

Implementing a
ViewHolder and an
Adapter
The next job is to define the
ViewHolder that will inflate and own
your layout. Define it as an inner class in
CrimeListFragment.

Listing 8.17 The beginnings of
a ViewHolder
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {
 ...
 private class CrimeHolder extends
RecyclerView.ViewHolder {
 public CrimeHolder(LayoutInflater inflater,

ViewGroup parent) {

super(inflater.inflate(R.layout.list_item_crime,
parent, false));
 }
 }
}

In CrimeHolder’s constructor, you
inflate list_item_crime.xml.
Immediately you pass it into
super(…), ViewHolder’s
constructor. The base ViewHolder
class will then hold on to the
fragment_crime_list.xml view
hierarchy. If you need that view
hierarchy, you can find it in
ViewHolder’s itemView field.
CrimeHolder is all skin and bones
right now. Later in the chapter,
CrimeHolder will beef up as you
give it more work to do.

With the ViewHolder defined, create
the adapter.

Listing 8.18 The beginnings of
an adapter
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {
 ...
 private class CrimeAdapter extends
RecyclerView.Adapter<CrimeHolder> {

 private List<Crime> mCrimes;

 public CrimeAdapter(List<Crime> crimes) {
 mCrimes = crimes;
 }
 }
}

(The code in Listing 8.18 will not
compile. You will fix this in a moment.)
When the RecyclerView needs to
display a new ViewHolder or connect
a Crime object to an existing

ViewHolder, it will ask this adapter
for help by calling a method on it. The
RecyclerView itself will not know
anything about the Crime object, but the
Adapter will know all of Crime’s
intimate and personal details.
Next, implement three method overrides
in CrimeAdapter. (You can
automatically generate these overrides
by putting your cursor on top of
extends, keying in Option-Return
(Alt+Enter), selecting Implement methods,
and clicking OK. Then you only need to
fill in the bodies.)

Listing 8.19 Filling out
CrimeAdapter
(CrimeListFragment.java)

 private class CrimeAdapter extends
RecyclerView.Adapter<CrimeHolder> {
 ...
 @Override
 public CrimeHolder
onCreateViewHolder(ViewGroup parent, int viewType) {
 LayoutInflater layoutInflater =
LayoutInflater.from(getActivity());

 return new CrimeHolder(layoutInflater,
parent);
 }

 @Override
 public void onBindViewHolder(CrimeHolder
holder, int position) {

 }

 @Override
 public int getItemCount() {
 return mCrimes.size();
 }
 }

onCreateViewHolder is called by
the RecyclerView when it needs a
new ViewHolder to display an item
with. In this method, you create a
LayoutInflater and use it to

construct a new CrimeHolder.
Your adapter must have an override for
onBindViewHolder(…), but for
now you can leave it empty. In a
moment, you will return to it.
Now that you have an Adapter,
connect it to your RecyclerView.
Implement a method called updateUI
that sets up CrimeListFragment’s
UI. For now it will create a
CrimeAdapter and set it on the
RecyclerView.

Listing 8.20 Setting an
Adapter
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 private RecyclerView mCrimeRecyclerView;

 private CrimeAdapter mAdapter;

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 View view =
inflater.inflate(R.layout.fragment_crime_list,
container, false);

 mCrimeRecyclerView = (RecyclerView) view

.findViewById(R.id.crime_recycler_view);
 mCrimeRecyclerView.setLayoutManager(new
LinearLayoutManager(getActivity()));

 updateUI();

 return view;
 }

 private void updateUI() {
 CrimeLab crimeLab =
CrimeLab.get(getActivity());
 List<Crime> crimes = crimeLab.getCrimes();

 mAdapter = new CrimeAdapter(crimes);
 mCrimeRecyclerView.setAdapter(mAdapter);
 }
 ...
}

In later chapters, you will add more to

updateUI() as configuring your UI
gets more involved.
Run CriminalIntent and scroll through
your new RecyclerView, which
should look like Figure 8.10.

Figure 8.10 A beautiful list of…
beautiful, beautiful beautifuls

Hmm. Looking a little repetitive there,
Mr. RecyclerView. Swipe or drag
down, and you will see even more
identical views scroll across your
screen.
In the screenshot above, there are 11
rows, which means that
onCreateViewHolder(…) was
called 11 times. If you scroll down, a

few more CrimeHolders may be
created, but at a certain point
RecyclerView will stop creating
new CrimeHolders. Instead, it will
recycle old CrimeHolders as they
scroll off the top of the screen.
RecyclerView, you were named
well indeed.
For the moment, every row is identical.
In your next step, you will fill each
CrimeHolder with fresh information
as it is recycled by binding to it.

Binding List Items
Binding is taking Java code (like model
data in a Crime, or click listeners) and
hooking it up to a widget. So far, in all
the exercises up until this point in the
book, you bound each and every time
you inflated a view. This meant there
was no need to split that work into its
own method. However, now that views
are being recycled, it pays to have
creation in one place and binding in
another.
All the code that will do the real work
of binding will go inside your

CrimeHolder. That work starts with
pulling out all the widgets you are
interested in. This only needs to happen
one time, so write this code in your
constructor.

Listing 8.21 Pulling out views
in the constructor
(CrimeListFragment.java)
private class CrimeHolder extends
RecyclerView.ViewHolder {

 private TextView mTitleTextView;
 private TextView mDateTextView;

 public CrimeHolder(LayoutInflater inflater,
ViewGroup parent) {

super(inflater.inflate(R.layout.list_item_crime,
parent, false));

 mTitleTextView = (TextView)
itemView.findViewById(R.id.crime_title);
 mDateTextView = (TextView)
itemView.findViewById(R.id.crime_date);
 }

}

Your CrimeHolder will also need a
bind(Crime) method. This will be
called each time a new Crime should
be displayed in your CrimeHolder.
First, add bind(Crime).

Listing 8.22 Writing a
bind(Crime) method
(CrimeListFragment.java)
private class CrimeHolder extends
RecyclerView.ViewHolder {

 private Crime mCrime;
 ...
 public void bind(Crime crime) {
 mCrime = crime;
 mTitleTextView.setText(mCrime.getTitle());

mDateTextView.setText(mCrime.getDate().toString());
 }
}

When given a Crime, CrimeHolder

will now update the title TextView
and date TextView to reflect the state
of the Crime.
Next, call your newly minted
bind(Crime) method each time the
RecyclerView requests that a given
CrimeHolder be bound to a
particular crime.

Listing 8.23 Calling the
bind(Crime) method
(CrimeListFragment.java)
private class CrimeAdapter extends
RecyclerView.Adapter<CrimeHolder> {
 ...
 @Override
 public void onBindViewHolder(CrimeHolder holder,
int position) {
 Crime crime = mCrimes.get(position);
 holder.bind(crime);
 }
 ...
}

Run CriminalIntent one more time, and
every visible CrimeHolder should
now display a distinct Crime
(Figure 8.11).

Figure 8.11 All right, all right,
all right

When you fling the view up, the
scrolling animation should feel as
smooth as warm butter. This effect is a
direct result of keeping
onBindViewHolder(…) small and
efficient, doing only the minimum
amount of work necessary.
Take heed: Always be efficient in your
onBindViewHolder(…).
Otherwise, your scroll animation could

feel as chunky as cold Parmesan cheese.

Responding to
Presses
As icing on the RecyclerView cake,
CriminalIntent should also respond to a
press on these list items. In Chapter 10,
you will launch the detail view for a
Crime when the user presses on that
Crime in the list. For now, show a
Toast when the user takes action on a
Crime.
As you may have noticed,
RecyclerView, while powerful and
capable, has precious few real
responsibilities. (May it be an example

to us all.) The same goes here: Handling
touch events is mostly up to you. If you
need them, RecyclerView can
forward along raw touch events. But
most of the time this is not necessary.
Instead, you can handle them like you
normally do: by setting an
OnClickListener. Since each
View has an associated ViewHolder,
you can make your ViewHolder the
OnClickListener for its View.
Modify the CrimeHolder to handle
presses for the entire row.

Listing 8.24 Detecting presses
in CrimeHolder
(CrimeListFragment.java)
private class CrimeHolder extends

RecyclerView.ViewHolder
 implements View.OnClickListener {
 ...
 public CrimeHolder(LayoutInflater inflater,
ViewGroup parent) {

super(inflater.inflate(R.layout.list_item_crime,
parent, false));
 itemView.setOnClickListener(this);
 ...
 }
 ...
 @Override
 public void onClick(View view) {
 Toast.makeText(getActivity(),
 mCrime.getTitle() + " clicked!",
Toast.LENGTH_SHORT)
 .show();
 }
}

In Listing 8.24, the CrimeHolder
itself is implementing the
OnClickListener interface. On the
itemView, which is the View for the
entire row, the CrimeHolder is set as
the receiver of click events.
Run CriminalIntent and press on an item

in the list. You should see a Toast
indicating that the item was clicked.

For the More
Curious: ListView
and GridView
The core Android OS includes
ListView, GridView, and
Adapter classes. Until the release of
Android 5.0, these were the preferred
ways to create lists or grids of items.
The API for these components is very
similar to that of a RecyclerView.
The ListView or GridView class is
responsible for scrolling a collection of
items, but it does not know much about

each of those items. The Adapter is
responsible for creating each of the
Views in the list. However, ListView
and GridView do not enforce that you
use the ViewHolder pattern (though
you can – and should – use it).
These old implementations are replaced
by the RecyclerView implementation
because of the complexity required to
alter the behavior of a ListView or
GridView.
Creating a horizontally scrolling
ListView, for example, is not
included in the ListView API and
requires a lot of work. Creating custom
layout and scrolling behavior with a
RecyclerView is still a lot of work,
but RecyclerView was built to be

extended, so it is not quite so bad.
Another key feature of
RecyclerView is the animation of
items in the list. Animating the addition
or removal of items in a ListView or
GridView is a complex and error-
prone task. RecyclerView makes this
much easier, includes a few built-in
animations, and allows for easy
customization of these animations.
For example, if you found out that the
crime at position 0 moved to position 5,
you could animate that change like so:
mRecyclerView.getAdapter().notifyItemMoved(0, 5);

For the More
Curious: Singletons
The singleton pattern, as used in the
CrimeLab, is very common in
Android. Singletons get a bad rap
because they can be misused in a way
that makes an app hard to maintain.
Singletons are often used in Android
because they outlive a single fragment or
activity. A singleton will still exist
across rotation and will exist as you
move between activities and fragments
in your application.

Singletons make a convenient owner of
your model objects. Imagine a more
complex CriminalIntent application that
had many activities and fragments
modifying crimes. When one controller
modifies a crime, how would you make
sure that updated crime was sent over to
the other controllers? If the CrimeLab
is the owner of crimes and all
modifications to crimes pass through it,
propagating changes is much easier. As
you transition between controllers, you
can pass the crime ID as an identifier for
a particular crime and have each
controller pull the full crime object from
the CrimeLab using that ID.
However, singletons do have a few
downsides. For example, while they

allow for an easy place to stash data
with a longer lifetime than a controller,
singletons do have a lifetime. Singletons
will be destroyed, along with all of their
instance variables, as Android reclaims
memory at some point after you switch
out of an application. Singletons are not
a long-term storage solution. (Writing
the files to disk or sending them to a web
server is.)
Singletons can also make your code hard
to unit test. There is not a great way to
replace the CrimeLab instance in this
chapter with a mock version of itself
because the code is calling a static
method directly on the CrimeLab
object. In practice, Android developers
usually solve this problem using a tool

called a dependency injector. This tool
allows for objects to be shared as
singletons, while still making it possible
to replace them when needed.
Singletons also have the potential to be
misused. The temptation is to use
singletons for everything because they
are convenient – you can get to them
wherever you are, and store whatever
information you need to get at later. But
when you do that, you are avoiding
answering important questions: Where is
this data used? Where is this method
important?
A singleton does not answer those
questions. So whoever comes after you
will open up your singleton and find
something that looks like somebody’s

disorganized junk drawer. Batteries, zip
ties, old photographs? What is all this
here for? Make sure that anything in your
singleton is truly global and has a strong
reason for being there.
On balance, however, singletons are a
key component of a well-architected
Android app – when used correctly.

Challenge:
RecyclerView
ViewTypes
For this advanced challenge, you will
create two types of rows in your
RecyclerView: a normal row and a
row for more serious crimes. To
implement this, you will work with the
view type feature available in
RecyclerView.Adapter. Add a
new property, mRequiresPolice, to
the Crime object and use it to
determine which view to load on the

CrimeAdapter by implementing the
getItemViewType(int) method
(developer.android.com/​
reference/​android/​support/​
v7/​widget/​
RecyclerView.Adapter.html#getItemViewType(int)

In the
onCreateViewHolder(ViewGroup,
int) method, you will also need to add
logic that returns a different
ViewHolder based on the new
viewType value returned by
getItemViewType(int). Use the
original layout for crimes that do not
require police intervention and a new
layout with a streamlined interface
containing a button that says “contact
police” for crimes that do.

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html#getItemViewType(int)

9
Creating User

Interfaces with
Layouts and

Widgets
In this chapter, you will learn more
about layouts and widgets while adding
some style to your list items in the
RecyclerView. You will also learn
about a new tool called

ConstraintLayout. Figure 9.1
shows what CrimeListFragment’s
view will look like once you chisel
down your existing app to build up your
masterpiece.

Figure 9.1 CriminalIntent, now
with beautiful pictures

Before you dive in to
ConstraintLayout, you must do a
little legwork. You will need a copy of
that fancy handcuff image from
Figure 9.1 in your project. Navigate to
the solutions file and open the
09_LayoutsAndWidgets/CriminalIntent/app/src/main/res
directory. Copy each density version of
ic_solved.png into the appropriate

drawable folder in your project. For
information on how to access the
solutions files, refer back to the section
called Adding an Icon in Chapter 2.

Using the
Graphical Layout
Tool
So far, you have created layouts by
typing XML. In this section, you will use
Android Studio’s graphical layout tool.
Open list_item_crime.xml and
select the Design tab at the bottom of the
file.

In the middle of the graphical layout tool
is the preview you have already seen.
Just to the right of the preview is the
blueprint. The blueprint view is like the
preview but shows an outline of each of
your views. This can be useful when you
need to see how big each view is, not
just what it is displaying.
On the lefthand side of the screen is the
palette. This view contains all the
widgets you could wish for, organized
by category (Figure 9.2).

Figure 9.2 Views in the
graphical layout tool

The component tree is in the bottom left.
The tree shows how the widgets are
organized in the layout.
On the right side of the screen is the
properties view. In this view, you can
view and edit the attributes of the widget
selected in the component tree.

Introducing
ConstraintLayout
With ConstraintLayout, instead of
using nested layouts you add a series of
constraints to your layout. A constraint
is like a rubber band. It pulls two things
toward each other. So, for example, you
can attach a constraint from the right
edge of an ImageView to the right
edge of its parent (the
ConstraintLayout itself), as
shown in Figure 9.3. The constraint will
hold the ImageView to the right.

Figure 9.3 ImageView with a
constraint on the right edge

You can create a constraint from all four
edges of your ImageView (left, top,
right, and bottom). If you have opposing
constraints, they will equal out and your
ImageView will be right in the center
of the two constraints (Figure 9.4).

Figure 9.4 ImageView with
opposing constraints

So that is the big picture: To place views
where you want them to go in a
ConstraintLayout, you give them
constraints instead of dragging them
around the screen.
What about sizing widgets? For that, you
have three options: Let the widget
decide (your old friend wrap_content),
decide for yourself, or let your widget
expand to fit your constraints.
With all those tools, you can achieve a

great many layouts with a single
ConstraintLayout, no nesting
required. As you go through this chapter,
you will see how to use constraints with
list_item_crime.

Using ConstraintLayout
Now, convert
list_item_crime.xml to use a
ConstraintLayout. Right-click on
your root LinearLayout in the
component tree and select Convert
LinearLayout to ConstraintLayout (Figure 9.5).

Figure 9.5 Converting the root
view to a ConstraintLayout

Android Studio will ask you in a pop-up
how aggressive you would like this
conversion process to be (Figure 9.6).
Since list_item_crime is a simple
layout file, there is not much that
Android Studio can optimize. Leave the

default values checked and select OK.

Figure 9.6 Converting with the
default configuration

Finally, you will be asked to add the
constraint layout dependency to your
project (Figure 9.7).
ConstraintLayout lives in a
library, like RecyclerView. To use
the tool, you must add a dependency to
your Gradle file. Or, you can select OK

on this dialog and Android Studio will
do it for you.

Figure 9.7 Adding the
ConstraintLayout dependency

If you peep your
app/build.gradle file, you will
see that the dependency has been added:

Listing 9.1 ConstraintLayout
project dependency
(app/build.gradle)

dependencies {
 ...
 compile
'com.android.support.constraint:constraint-
layout:1.0.0-beta4'
}

Your LinearLayout has now been
converted to a ConstraintLayout.

The graphical editor
Look to the toolbar near the top of the
preview and you will find a few editing
controls (Figure 9.8).

Figure 9.8 Constraint controls

Show
Constraints

Show Constraints will
reveal the constraints
that are set up in the
preview and blueprint
views. You will find
this option helpful at
times and unhelpful at
others. If you have many

constraints, this button
will trigger an
overwhelming amount
of information.

Toggle
Autoconnect

When autoconnect is
enabled, constraints
will be automatically
configured as you drag
views into the preview.
Android Studio will
guess the constraints
that you want a view to
have and make those
connections on demand.

Clear All
Constraints

Clear All Constraints will
remove all existing

constraints in this layout
file. You will use this
option soon.

Infer
Constraints

This option is similar to
autoconnect in that
Android Studio will
automatically create
constraints for you, but
it is only triggered
when you select this
option. Autoconnect is
active anytime you add
a view to your layout
file.

When you converted
list_item_crime to use
ConstraintLayout, Android

Studio automatically added the
constraints it thinks will replicate the
behavior of your old layout. However, to
learn how constraints work you are
going to start from scratch.
Select the ConstraintLayout view in the
component tree, then choose the Clear All
Constraints option from Figure 9.8. You
will immediately see a red warning flag
with the number 4 at the top right of the
screen. Click on it to see what that is all
about (Figure 9.9).

Figure 9.9 ConstraintLayout
warnings

When views do not have enough
constraints, ConstraintLayout
cannot know exactly where to put them.
Your TextViews have no constraints at

all, so they each have a warning that
says they will not appear in the right
place at runtime.
As you go through the chapter, you will
add those constraints back to fix those
warnings. In your own work, keep an
eye on that warning indicator to avoid
unexpected behavior at runtime.

Making room
You need to make some room. Your two
TextViews are taking up the entire
area, which will make it hard to wire up
anything else. Time to shrink those two
widgets.
Select crime_title in the component tree

and look at the properties view on the
right (Figure 9.10).

Figure 9.10 Title TextView’s
properties

The vertical and horizontal sizes of your
TextView are governed by the height
setting and width setting, respectively.
These can be set to one of three view

size settings (Figure 9.11), each of
which corresponds to a value for
layout_width or layout_height.

Figure 9.11 Three view size
settings

Table 9.1 View size setting
types

Setting
type Setting value Usage

fixed Xdp

Specifies an
explicit size
(that will not
change) for the
view. The size
is specified in
dp units.
(More on dp
units later in
this chapter.)

wrap
content wrap_content

Assigns the
view its
“desired” size.
For a
TextView,
this means that
the size will be

just big enough
to show its
contents.

any
size 0dp

Allows the
view to stretch
to meet the
specified
constraints.

Both crime_title and
crime_date are set to a large fixed
width, which is why they are taking up
the whole screen. Adjust the width and
height of both of these widgets. With
crime_title still selected in the component
tree, click the width setting until it
cycles around to the wrap content
setting. If necessary, adjust the height

setting until the height is also set to wrap
content (Figure 9.12).

Figure 9.12 Adjusting the title
width and height

Repeat the process with the crime_date
widget to set its width and height. Now,
the two widgets overlap but are much
smaller (Figure 9.13).

Figure 9.13 Overlapping
TextViews

Adding widgets

With your other widgets out of the way,
you can add the handcuffs image to your
layout. Add an ImageView to your
layout file. In the palette, find
ImageView (Figure 9.14). Drag it into
your component tree as a child of
ConstraintLayout, just underneath
crime_date.

Figure 9.14 Finding the
ImageView

In the pop-up, choose ic_solved as
the resource for the ImageView
(Figure 9.15). This image will be used
to indicate which crimes have been
solved.

Figure 9.15 Choosing the
ImageView’s resource

The ImageView is now a part of your
layout, but it has no constraints. So
while the graphical editor gives it a
position, that position does not really

mean anything.
Time to add some constraints. Click on
your ImageView in the preview or in
the component tree. You will see dots on
each side of the ImageView
(Figure 9.16). Each of these dots
represents a constraint handle.

Figure 9.16 ImageView’s
constraint handles

You want the ImageView to be
anchored in the right side of the view. To
accomplish this, you need to create
constraints from the top, right, and
bottom edges of the ImageView.

First, you are going to set a constraint
between the top of the ImageView and
the top of the ConstraintLayout.
The top of the ConstraintLayout
is a little difficult to see, but it is just
under the blue CriminalIntent toolbar. In the
preview, drag the top constraint handle
from the ImageView to the top of the
ConstraintLayout – you will need
to drag to the right somewhat, because
the image is at the top of the constraint
layout. Watch for the constraint handle to
turn green and a pop-up reading Release to
Create Top Constraint to appear
(Figure 9.17), and release the mouse.

Figure 9.17 Creating a top
constraint

Be careful to avoid clicking when the
mouse cursor is a corner shape – this
will resize your ImageView instead.
Also, make sure you do not inadvertently
attach the constraint to one of your
TextViews. If you do, click on the
constraint handle to delete the bad
constraint, then try again.
When you let go and set the constraint,

the view will snap into position to
account for the presence of the new
constraint. This is how you move views
around in a ConstraintLayout –
by setting and removing constraints.
Verify that your ImageView has a top
constraint connected to the top of the
ConstraintLayout by hovering
over the ImageView with your mouse.
It should look like Figure 9.18.

Figure 9.18 ImageView with a
top constraint

Do the same for the bottom constraint
handle, dragging it from the
ImageView to the bottom of the root
view, also taking care to avoid attaching
to the TextViews. Again, you will
need to drag the connection toward the
center of the root view and then slightly
down, as shown in Figure 9.19.

Figure 9.19 ImageView
connection in progress

Finally, drag the right constraint handle
from the ImageView to the right side
of the root view. That should set all of
your constraints. Hovering over the
ImageView will show all of them.
Your constraints should look like
Figure 9.20.

Figure 9.20 ImageView’s three
constraints

ConstraintLayout’s inner
workings
Any edits that you make with the
graphical editor are reflected in the
XML behind the scenes. You can still
edit the raw ConstraintLayout

XML, but the graphical editor will often
be easier, because
ConstraintLayout is much more
verbose than other ViewGroups.
Switch to the text view to see what
happened to the XML when you created
the three constraints on your
ImageView.

Listing 9.2 ImageView’s new
XML constraints
(layout/list_item_crime.xml)
<android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-
auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 ...
 <ImageView

 android:id="@+id/imageView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:srcCompat="@drawable/ic_solved"
 android:layout_marginTop="16dp"
 app:layout_constraintTop_toTopOf="parent"

app:layout_constraintBottom_toBottomOf="parent"
 android:layout_marginBottom="16dp"
 android:layout_marginEnd="16dp"

app:layout_constraintRight_toRightOf="parent"/>

</android.support.constraint.ConstraintLayout>

Take a closer look at the top constraint:
app:layout_constraintTop_toTopOf="parent"

This attribute begins with layout_. All
attributes that begin with layout_ are
known as layout parameters. Unlike
other attributes, layout parameters are
directions to that widget’s parent, not
the widget itself. They tell the parent
layout how to arrange the child element
within itself. You have seen a few layout

parameters so far, like layout_width
and layout_height.
The name of the constraint is
constraintTop. This means that this is
the top constraint on your ImageView.
Finally, the attribute ends with
toTopOf="parent". This means that
this constraint is connected to the top
edge of the parent. The parent here is the
ConstraintLayout.
Whew, what a mouthful. Time to leave
the raw XML behind and return to the
graphical editor.

Editing properties

Your ImageView is now positioned
correctly. Next up: Position and size the
title TextView.
First, select crime_date in the component
tree and drag it out of the way
(Figure 9.21). Remember that any
changes you make to the position in the
preview will not be represented when
the app is running. At runtime, only
constraints remain.

Figure 9.21 Get out of here,
date

Now, select crime_title in the component
tree. This will also highlight crime_title in
the preview.
You want crime_title to be at the top left of
your layout, positioned to the left of your
new ImageView. That requires three
constraints:

from the left side of your view

to the left side of the parent,
with a 16dp margin

from the top of your view to the
top of the parent, with a 16dp
margin
from the right of your view to
the left side of the new
ImageView, with an 8dp
margin

Modify your layout so that all of these
constraints are in place. (As of this
writing, finding the right place to click
can be tricky. Try to click inside of the
TextView, and remember that you can
always key Command+Z (Ctrl+Z) to
undo and try again.)

Verify that your constraints look like
Figure 9.22. (The selected widget will
show squiggly lines for any of its
constraints that are stretching.)

Figure 9.22 Title TextView’s
constraints

When you click on the TextView, you
can see that it has an oval area that the
ImageView did not have.
TextViews have this additional
constraint anchor that can be used to

align text. You will not be using it in this
chapter, but now you know what it is.
Now that the constraints are set up, you
can restore the title TextView to its
full glory. Adjust its horizontal view
setting to any size (0dp) to allow the title
TextView to fill all of the space
available within its constraints. Adjust
the vertical view size to wrap_content,
if it is not already, so that the
TextView will be just tall enough to
show the title of the crime. Verify that
your settings match those shown in
Figure 9.23.

Figure 9.23 crime_title view
settings

Now, add constraints to the date
TextView. Select crime_date in the
component tree. You are going to add
three constraints:

from the left side of your view
to the left side of the parent,
with a 16dp margin

from the top of your view to the
bottom of the crime title, with
an 8dp margin
from the right of your view to
the left side of the new
ImageView, with an 8dp
margin

After adding the constraints, adjust the
properties of the TextView. You want

the width of your date TextView to be
Any Size and the height to be Wrap Content,
just like the title TextView. Verify that
your settings match those shown in
Figure 9.24.

Figure 9.24 crime_date view
settings

Your layout in the preview should look
similar to Figure 9.1, at the beginning of
the chapter.
Run CriminalIntent and verify that you
see all three components lined up nicely
in each row of your RecyclerView
(Figure 9.25).

Figure 9.25 Now with three
views per row

Making list items
dynamic

Now that the layout includes the right
constraints, update the ImageView so

that the handcuffs are only shown on
crimes that have been solved.
First, update the ID of your
ImageView. When you added the
ImageView to your
ConstraintLayout, it was given a
default name. That name is not too
descriptive. Select your ImageView in
list_item_crime.xml and, in the
properties view, update the ID attribute
to crime_solved (Figure 9.26). You
will be asked whether Android Studio
should update all usages of the ID; select
Yes.

Figure 9.26 Updating the
image ID

With a proper ID in place, now you will
update your code. Open
CrimeListFragment.java. In
CrimeHolder, add an ImageView
instance variable and toggle its visibility
based on the solved status of your crime.

Listing 9.3 Updating handcuff
visibility
(CrimeListFragment.java)
private class CrimeHolder extends
RecyclerView.ViewHolder

 implements View.OnClickListener {
 ...
 private TextView mDateTextView;
 private ImageView mSolvedImageView;

 public CrimeHolder(LayoutInflater inflater,
ViewGroup parent) {

super(inflater.inflate(R.layout.list_item_crime,
parent, false));
 itemView.setOnClickListener(this);

 mTitleTextView = (TextView)
itemView.findViewById(R.id.crime_title);
 mDateTextView = (TextView)
itemView.findViewById(R.id.crime_date);
 mSolvedImageView = (ImageView)
itemView.findViewById(R.id.crime_solved);
 }

 public void bind(Crime crime) {
 mCrime = crime;
 mTitleTextView.setText(mCrime.getTitle());

mDateTextView.setText(mCrime.getDate().toString());

mSolvedImageView.setVisibility(crime.isSolved() ?
View.VISIBLE : View.GONE);
 }
 ...
}

Run CriminalIntent and verify that the

handcuffs now appear on every other
row.

More on Layout
Attributes
Let’s add a few more tweaks to the
design of list_item_crime.xml
and, in the process, answer some
lingering questions you might have about
widgets and attributes.
Navigate back to the Design view of
list_item_crime.xml. Select
crime_title and adjust some of the attributes
in the properties view.
Click the disclosure arrow next to
textAppearance to reveal a set of text and

font attributes. Update the textColor
attribute to @android:color/black
(Figure 9.27).

Figure 9.27 Updating the title
color

Next, set the textSize attribute to 18sp.
Run CriminalIntent and be amazed at
how much better everything looks with a
fresh coat of paint.

Screen pixel densities
and dp and sp

In list_item_crime.xml, you

have specified attribute values in terms
of sp and dp units. Now it is time to
learn what they are.
Sometimes you need to specify values
for view attributes in terms of specific
sizes (usually in pixels, but sometimes
points, millimeters, or inches). You see
this most commonly with attributes for
text size, margins, and padding. Text size
is the pixel height of the text on the
device’s screen. Margins specify the
distances between views, and padding
specifies the distance between a view’s
outside edges and its content.
As you saw in the section called Adding
an Icon in Chapter 2, Android
automatically scales images to different
screen pixel densities using density-

qualified drawable folders (such as
drawable-xhdpi). But what
happens when your images scale, but
your margins do not? Or when the user
configures a larger-than-default text
size?
To solve these problems, Android
provides density-independent dimension
units that you can use to get the same size
on different screen densities. Android
translates these units into pixels at
runtime, so there is no tricky math for
you to do (Figure 9.28).

Figure 9.28 Dimension units in
action on TextView

px Short for pixel. One pixel
corresponds to one onscreen
pixel, no matter what the
display density is. Because
pixels do not scale

appropriately with device
display density, their use is not
recommended.

dp
(or
dip)

Short for density-independent
pixel and usually pronounced
“dip.” You typically use this
for margins, padding, or
anything else for which you
would otherwise specify size
with a pixel value. One dp is
always 1/160th of an inch on a
device’s screen. You get the
same size regardless of screen
density: When your display is
a higher density, density-
independent pixels will
expand to fill a larger number

of screen pixels.

sp Short for scale-independent
pixel. Scale-independent
pixels are density-independent
pixels that also take into
account the user’s font size
preference. You will almost
always use sp to set display
text size.

pt,
mm,
in

These are scaled units, like
dp, that allow you to specify
interface sizes in points (1/72
of an inch), millimeters, or
inches. However, we do not
recommend using them: Not all
devices are correctly

configured for these units to
scale correctly.

In practice and in this book, you will use
dp and sp almost exclusively. Android
will translate these values into pixels at
runtime.

Margins vs padding
In both GeoQuiz and CriminalIntent, you
have given widgets margin and padding
attributes. Beginning developers
sometimes get confused about these two.
Now that you understand what a layout
parameter is, the difference is easier to
explain.

Margin attributes are layout parameters.
They determine the distance between
widgets. Given that a widget can only
know about itself, margins must be the
responsibility of the widget’s parent.
Padding, on the other hand, is not a
layout parameter. The
android:padding attribute tells the
widget how much bigger than its
contents it should draw itself. For
example, say you wanted the date button
to be spectacularly large without
changing its text size (Figure 9.29).

Figure 9.29 I like big buttons
and I cannot lie...

You could add the following attribute to

the Button.

Listing 9.4 Padding in action
(fragment_crime.xml)
 <Button android:id="@+id/crime_date"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 android:padding="80dp" />

Alas, you should probably remove this
attribute before continuing.

Styles, themes, and
theme attributes

A style is an XML resource that contains
attributes that describe how a widget
should look and behave. For example,

the following is a style resource that
configures a widget with a larger-than-
normal text size:
 <style name="BigTextStyle">
 <item name="android:textSize">20sp</item>
 <item name="android:padding">3dp</item>
 </style>

You can create your own styles (and you
will in Chapter 22). You add them to a
styles file in res/values/ and refer
to them in layouts like this:
@style/my_own_style.
Take another look at the TextView
widgets in fragment_crime.xml;
each has a style attribute that refers to
a style created by Android. This
particular style makes the TextViews
look like list separators and comes from
the app’s theme. A theme is a collection

of styles. Structurally, a theme is itself a
style resource whose attributes point to
other style resources.
Android provides platform themes that
your apps can use. When you created
CriminalIntent, the wizard set up a theme
for the app that is referenced on the
application tag in the manifest.
You can apply a style from the app’s
theme to a widget using a theme
attribute reference. This is what you are
doing in fragment_crime.xml
when you use the value ?
android:listSeparatorTextViewStyle

In a theme attribute reference, you tell
Android’s runtime resource manager,
“Go to the app’s theme and find the

attribute named
listSeparatorTextViewStyle. This
attribute points to another style resource.
Put the value of that resource here.”
Every Android theme will include an
attribute named
listSeparatorTextViewStyle, but its
definition will be different depending on
the overall look and feel of the
particular theme. Using a theme attribute
reference ensures that the TextViews
will have the correct look and feel for
your app.
You will learn more about how styles
and themes work in Chapter 22.

Android’s design

guidelines

Notice that for your margins, Android
Studio defaulted to either a 16dp or a
8dp value. This value follows Android’s
material design guidelines. You can find
all of the Android design guidelines at
developer.android.com/​
design/​index.html.
Your Android apps should follow these
guidelines as closely as possible.
However, you should know that the
guidelines rely heavily on newer
Android SDK functionality that is not
always available or easy to achieve on
older devices. Many of the design
recommendations can be followed using

the AppCompat library, which you have
seen and will read more about in
Chapter 13.

The Graphical
Layout Tools and
You
The graphical layout tools are useful,
especially with ConstraintLayout.
Not everyone is a fan, though. Many
prefer the simplicity and clarity of
working directly with XML, rather than
relying on the IDE.
Do not feel that you have to choose
sides. You can switch between the
graphical editor and directly editing
XML at any time. Feel free to use

whichever tool you prefer to create the
layouts in this book. From now on, we
will show you a diagram rather than the
XML when you need to create a layout.
You can decide for yourself how to
create it – XML, graphical editor, or
some of each.

Challenge:
Formatting the
Date
The Date object is more of a timestamp
than a conventional date. A timestamp is
what you see when you call
toString() on a Date, so that is
what you have on in each of your
RecyclerView rows. While
timestamps make for good
documentation, it might be nicer if the
rows just displayed the date as humans
think of it – like “Jul 22, 2016.” You can

do this with an instance of the
android.text.format.DateFormat
class. The place to start is the reference
page for this class in the Android
documentation.
You can use methods in the
DateFormat class to get a common
format. Or you can prepare your own
format string. For a more advanced
challenge, create a format string that will
display the day of the week as well – for
example, “Friday, Jul 22, 2016.”

10
Using Fragment

Arguments
In this chapter, you will get the list and
the detail parts of CriminalIntent
working together. When a user presses
an item in the list of crimes, a new
CrimeActivity hosting a
CrimeFragment will appear and
display the details for that instance of
Crime (Figure 10.1).

Figure 10.1 Starting
CrimeActivity from
CrimeListActivity

In GeoQuiz, you had one activity
(QuizActivity) start another
activity (CheatActivity). In
CriminalIntent, you are going to start the
CrimeActivity from a fragment. In
particular, you will have
CrimeListFragment start an
instance of CrimeActivity.

Starting an Activity
from a Fragment
Starting an activity from a fragment
works nearly the same as starting an
activity from another activity. You call
the
Fragment.startActivity(Intent)
method, which calls the corresponding
Activity method behind the scenes.
In CrimeListFragment’s
CrimeHolder, begin by replacing the
toast with code that starts an instance of
CrimeActivity.

Listing 10.1 Starting

CrimeActivity
(CrimeListFragment.java)
private class CrimeHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener {
 ...
 @Override
 public void onClick(View view) {
 Toast.makeText(getActivity(),
 mCrime.getTitle() + " clicked!",
Toast.LENGTH_SHORT)
 .show();
 Intent intent = new Intent(getActivity(),
CrimeActivity.class);
 startActivity(intent);
 }
}

Here CrimeListFragment creates
an explicit intent that names the
CrimeActivity class.
CrimeListFragment uses the
getActivity() method to pass its
hosting activity as the Context object
that the Intent constructor requires.

Run CriminalIntent. Press any list item,
and you will see a new
CrimeActivity hosting a
CrimeFragment (Figure 10.2).

Figure 10.2 A blank
CrimeFragment

The CrimeFragment does not yet
display the data for a specific Crime,
because you have not told it which
Crime to display.

Putting an extra

You can tell CrimeFragment which
Crime to display by passing the crime
ID as an Intent extra when

CrimeActivity is started.
Start by creating a newIntent method
in CrimeActivity.

Listing 10.2 Creating a
newIntent method
(CrimeActivity.java)
public class CrimeActivity extends
SingleFragmentActivity {

 public static final String EXTRA_CRIME_ID =

"com.bignerdranch.android.criminalintent.crime_id";

 public static Intent newIntent(Context
packageContext, UUID crimeId) {
 Intent intent = new Intent(packageContext,
CrimeActivity.class);
 intent.putExtra(EXTRA_CRIME_ID, crimeId);
 return intent;
 }
 ...
}

After creating an explicit intent, you call

putExtra(…) and pass in a string key
and the value the key maps to (the
crimeId). In this case, you are calling
putExtra(String,
Serializable) because UUID is a
Serializable object.
Now, update the CrimeHolder to use
the newIntent method while passing
in the crime ID.

Listing 10.3 Stashing and
passing a Crime
(CrimeListFragment.java)
private class CrimeHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener {
 ...
 @Override
 public void onClick(View view) {
 Intent intent = new Intent(getActivity(),
CrimeActivity.class);
 Intent intent =

CrimeActivity.newIntent(getActivity(),
mCrime.getId());
 startActivity(intent);
 }
}

Retrieving an extra
The crime ID is now safely stashed in
the intent that belongs to
CrimeActivity. However, it is the
CrimeFragment class that needs to
retrieve and use that data.
There are two ways a fragment can
access data in its activity’s intent: an
easy, direct shortcut and a complex,
flexible implementation. First, you are
going to try out the shortcut. Then you
will implement the complex and flexible

solution.
In the shortcut, CrimeFragment will
simply use the getActivity()
method to access the
CrimeActivity’s intent directly. In
CrimeFragment.java, retrieve the
extra from CrimeActivity’s intent
and use it to fetch the Crime.

Listing 10.4 Retrieving the
extra and fetching the Crime
(CrimeFragment.java)
public class CrimeFragment extends Fragment {
 ...
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mCrime = new Crime();
 UUID crimeId = (UUID)
getActivity().getIntent()

.getSerializableExtra(CrimeActivity.EXTRA_CRIME_ID);
 mCrime =

CrimeLab.get(getActivity()).getCrime(crimeId);
 }
 ...
}

In Listing 10.4, other than the call to
getActivity(), the code is the
same as if you were retrieving the extra
from the activity’s code. The
getIntent() method returns the
Intent that was used to start
CrimeActivity. You call
getSerializableExtra(String)
on the Intent to pull the UUID out
into a variable.
After you have retrieved the ID, you use
it to fetch the Crime from CrimeLab.

Updating

CrimeFragment’s view
with Crime data

Now that CrimeFragment fetches a
Crime, its view can display that
Crime’s data. Update
onCreateView(…) to display the
Crime’s title and solved status. (The
code for displaying the date is already in
place.)

Listing 10.5 Updating view
objects (CrimeFragment.java)
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mTitleField =
(EditText)v.findViewById(R.id.crime_title);
 mTitleField.setText(mCrime.getTitle());

 mTitleField.addTextChangedListener(new
TextWatcher() {
 ...
 });
 ...
 mSolvedCheckBox =
(CheckBox)v.findViewById(R.id.crime_solved);
 mSolvedCheckBox.setChecked(mCrime.isSolved());
 mSolvedCheckBox.setOnCheckedChangeListener(new
OnCheckedChangeListener() {
 ...
 });
 ...
 return v;
}

Run CriminalIntent. Select Crime #4 and
watch a CrimeFragment instance
with the correct crime data appear
(Figure 10.3).

Figure 10.3 The crime that you
wanted to see

The downside to direct

retrieval

Having the fragment access the intent
that belongs to the hosting activity makes
for simple code. However, it costs you
the encapsulation of your fragment.
CrimeFragment is no longer a
reusable building block because it
expects that it will always be hosted by
an activity whose Intent defines an
extra named
com.bignerdranch.android.criminalintent.crime_id

This may be a reasonable expectation on
CrimeFragment’s part, but it means
that CrimeFragment, as currently
written, cannot be used with just any
activity.

A better solution is to stash the crime ID
someplace that belongs to
CrimeFragment rather than keeping
it in CrimeActivity’s personal
space. The CrimeFragment could
then retrieve this data without relying on
the presence of a particular extra in the
activity’s intent. The “someplace” that
belongs to a fragment is known as its
arguments bundle.

Fragment
Arguments
Every fragment instance can have a
Bundle object attached to it. This
bundle contains key-value pairs that
work just like the intent extras of an
Activity. Each pair is known as an
argument.
To create fragment arguments, you first
create a Bundle object. Next, you use
type-specific “put” methods of Bundle
(similar to those of Intent) to add
arguments to the bundle:
 Bundle args = new Bundle();

 args.putSerializable(ARG_MY_OBJECT, myObject);
 args.putInt(ARG_MY_INT, myInt);
 args.putCharSequence(ARG_MY_STRING, myString);

Attaching arguments to
a fragment
To attach the arguments bundle to a
fragment, you call
Fragment.setArguments(Bundle)
Attaching arguments to a fragment must
be done after the fragment is created but
before it is added to an activity.
To hit this window, Android
programmers follow a convention of
adding a static method named
newInstance() to the Fragment
class. This method creates the fragment

instance and bundles up and sets its
arguments.
When the hosting activity needs an
instance of that fragment, you have it call
the newInstance(…) method rather
than calling the constructor directly. The
activity can pass in any required
parameters to newInstance(…) that
the fragment needs to create its
arguments.
In CrimeFragment, write a
newInstance(UUID) method that
accepts a UUID, creates an arguments
bundle, creates a fragment instance, and
then attaches the arguments to the
fragment.

Listing 10.6 Writing a

newInstance(UUID) method
(CrimeFragment.java)
public class CrimeFragment extends Fragment {

 private static final String ARG_CRIME_ID =
"crime_id";

 private Crime mCrime;
 private EditText mTitleField;
 private Button mDateButton;
 private CheckBox mSolvedCheckbox;

 public static CrimeFragment newInstance(UUID
crimeId) {
 Bundle args = new Bundle();
 args.putSerializable(ARG_CRIME_ID, crimeId);

 CrimeFragment fragment = new CrimeFragment();
 fragment.setArguments(args);
 return fragment;
 }
 ...
}

Now, CrimeActivity should call
CrimeFragment.newInstance(UUID)
when it needs to create a
CrimeFragment. It will pass in the

UUID it retrieved from its extra. Return
to CrimeActivity and, in
createFragment(), retrieve the
extra from CrimeActivity’s intent
and pass it into
CrimeFragment.newInstance(UUID)

You can now also make
EXTRA_CRIME_ID private, because
no other class will access that extra.

Listing 10.7 Using
newInstance(UUID)
(CrimeActivity.java)
public class CrimeActivity extends
SingleFragmentActivity {

 public private static final String EXTRA_CRIME_ID
=

"com.bignerdranch.android.criminalintent.crime_id";
 ...
 @Override

 protected Fragment createFragment() {
 return new CrimeFragment();
 UUID crimeId = (UUID) getIntent()

.getSerializableExtra(EXTRA_CRIME_ID);
 return CrimeFragment.newInstance(crimeId);
 }
}

Notice that the need for independence
does not go both ways.
CrimeActivity has to know plenty
about CrimeFragment, including that
it has a newInstance(UUID)
method. This is fine. Hosting activities
should know the specifics of how to host
their fragments, but fragments should not
have to know specifics about their
activities. At least, not if you want to
maintain the flexibility of independent
fragments.

Retrieving arguments
When a fragment needs to access its
arguments, it calls the Fragment
method getArguments() and then
one of the type-specific “get” methods of
Bundle.
Back in
CrimeFragment.onCreate(…),
replace your shortcut code with
retrieving the UUID from the fragment
arguments.

Listing 10.8 Getting crime ID
from the arguments
(CrimeFragment.java)
@Override
public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 UUID crimeId = (UUID) getActivity().getIntent()

.getSerializableExtra(CrimeActivity.EXTRA_CRIME_ID);
 UUID crimeId = (UUID)
getArguments().getSerializable(ARG_CRIME_ID);
 mCrime =
CrimeLab.get(getActivity()).getCrime(crimeId);

}

Run CriminalIntent. The app will behave
the same, but you should feel all warm
and fuzzy inside for maintaining
CrimeFragment’s independence.
You are also well prepared for the next
chapter, where you will implement more
sophisticated navigation in
CriminalIntent.

Reloading the List
There is one more detail to take care of.
Run CriminalIntent, press a list item, and
then modify that Crime’s details. These
changes are saved to the model, but
when you return to the list, the
RecyclerView is unchanged.
The RecyclerView’s Adapter
needs to be informed that the data has
changed (or may have changed) so that it
can refetch the data and reload the list.
You can work with the
ActivityManager’s back stack to
reload the list at the right moment.

When CrimeListFragment starts
an instance of CrimeActivity, the
CrimeActivity is put on top of the
stack. This pauses and stops the instance
of CrimeListActivity that was
initially on top.
When the user presses the Back button to
return to the list, the CrimeActivity
is popped off the stack and destroyed. At
that point, the CrimeListActivity
is started and resumed (Figure 10.4).

Figure 10.4 CriminalIntent’s
back stack

When the CrimeListActivity is
resumed, it receives a call to
onResume() from the OS. When
CrimeListActivity receives this
call, its FragmentManager calls
onResume() on the fragments that the
activity is currently hosting. In this case,

the only fragment is
CrimeListFragment.
In CrimeListFragment, override
onResume() and trigger a call to
updateUI() to reload the list. Modify
the updateUI() method to call
notifyDataSetChanged() if the
CrimeAdapter is already set up.

Listing 10.9 Reloading the list
in onResume()
(CrimeListFragment.java)
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
}

@Override
public void onResume() {
 super.onResume();
 updateUI();

}

private void updateUI() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 List<Crime> crimes = crimeLab.getCrimes();

 if (mAdapter == null) {
 mAdapter = new CrimeAdapter(crimes);
 mCrimeRecyclerView.setAdapter(mAdapter);
 } else {
 mAdapter.notifyDataSetChanged();
 }
}

Why override onResume() to update
the RecyclerView and not
onStart()? You cannot assume that
your activity will be stopped when
another activity is in front of it. If the
other activity is transparent, your
activity may just be paused. If your
activity is paused and your update code
is in onStart(), then the list will not
be reloaded. In general, onResume()
is the safest place to take action to

update a fragment’s view.
Run CriminalIntent. Select a crime and
change its details. When you return to the
list, you will immediately see your
changes.
You have made progress with
CriminalIntent in the last two chapters.
Let’s take a look at an updated object
diagram (Figure 10.5).

Figure 10.5 Updated object
diagram for CriminalIntent

Getting Results
with Fragments
In this chapter, you did not need a result
back from the started activity. But what
if you did? Your code would look a lot
like it did in GeoQuiz. Instead of using
Activity’s
startActivityForResult(…)
method, you would use
Fragment.startActivityForResult(…)
Instead of overriding
Activity.onActivityResult(…)
you would override
Fragment.onActivityResult(…)

public class CrimeListFragment extends Fragment {

 private static final int REQUEST_CRIME = 1;
 ...
 private class CrimeHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener {
 ...
 @Override
 public void onClick(View view) {
 Intent intent =
CrimeActivity.newIntent(getActivity(),
mCrime.getId());
 startActivityForResult(intent,
REQUEST_CRIME);
 }
 }

 @Override
 public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 if (requestCode == REQUEST_CRIME) {
 // Handle result
 }
 }
 ...
}

Fragment.startActivityForResult(Intent,
int) is similar to the Activity
method with the same name. It includes
some additional code to route the result

to your fragment from its host activity.
Returning results from a fragment is a bit
different. A fragment can receive a result
from an activity, but it cannot have its
own result. Only activities have results.
So while Fragment has its own
startActivityForResult(…)
and onActivityResult(…)
methods, it does not have any
setResult(…) methods.
Instead, you tell the host activity to
return a value. Like this:
public class CrimeFragment extends Fragment {
 ...
 public void returnResult() {
 getActivity().setResult(Activity.RESULT_OK,
null);
 }
}

For the More
Curious: Why Use
Fragment
Arguments?
This all seems so complicated. Why not
just set an instance variable on the
CrimeFragment when it is created?
Because it would not always work.
When the OS re-creates your fragment –
either across a configuration change or
when the user has switched out of your
app and the OS reclaims memory – all of

your instance variables will be lost.
Also, remember that there is no way to
cheat low-memory death, no matter how
hard you try.
If you want something that works in all
cases, you have to persist your
arguments.
One option is to use the saved instance
state mechanism. You can store the crime
ID as a normal instance variable, save
the crime ID in
onSaveInstanceState(Bundle)
and snag it from the Bundle in
onCreate(Bundle). This will work
in all situations.
However, that solution is hard to
maintain. If you revisit this fragment in a

few years and add another argument, you
may not remember to save the argument
in
onSaveInstanceState(Bundle)
Going this route is less explicit.
Android developers prefer the fragment
arguments solution because it is very
explicit and clear in its intentions. In a
few years, you will come back and know
that the crime ID is an argument and is
safely shuttled along to new instances of
this fragment. If you add another
argument, you will know to stash it in the
arguments bundle.

Challenge:
Efficient
RecyclerView
Reloading
The notifyDataSetChanged
method on your Adapter is a handy
way to ask the RecyclerView to
reload all of the items that are currently
visible.
The use of this method in CriminalIntent
is wildly inefficient because at most one
Crime will have changed when

returning to the
CrimeListFragment.
Use the RecyclerView.Adapter’s
notifyItemChanged(int)
method to reload a single item in the list.
Modifying the code to call that method is
easy. The challenge is discovering
which position has changed and
reloading the correct item.

Challenge:
Improving
CrimeLab
Performance
CrimeLab’s get(UUID) method
works, but checking each crime’s ID
against the ID you are looking for one at
a time can be improved upon. Improve
the performance of the lookup, making
sure that CriminalIntent’s existing
behavior remains unchanged as you
refactor.

11
Using

ViewPager
In this chapter, you will create a new
activity to host CrimeFragment. This
activity’s layout will consist of an
instance of ViewPager. Adding a
ViewPager to your UI lets users
navigate between list items by swiping
across the screen to “page” forward or
backward through the crimes
(Figure 11.1).

Figure 11.1 Swiping to page
through crimes

Figure 11.2 shows an updated diagram
for CriminalIntent. The new activity will
be named CrimePagerActivity
and will take the place of
CrimeActivity. Its layout will
consist of a ViewPager.

Figure 11.2 Object diagram for
CrimePagerActivity

The only new objects you need to create
are within the dashed rectangle in the
object diagram:
CrimePagerActivity and
ViewPager. Nothing else in
CriminalIntent needs to change to

implement paging between detail views.
In particular, you will not have to touch
the CrimeFragment class, thanks to
the work you did in Chapter 10 to ensure
CrimeFragment’s independence.
Here are the tasks ahead in this chapter:

create the
CrimePagerActivity
class

define a view hierarchy that
consists of a ViewPager
wire up the ViewPager and
its adapter in
CrimePagerActivity

modify
CrimeHolder.onClick(…)

to start
CrimePagerActivity
instead of CrimeActivity

Creating
CrimePagerActivity
CrimePagerActivity will be a
subclass of AppCompatActivity. It
will create and manage the
ViewPager.
Create a new class named
CrimePagerActivity. Make its
superclass AppCompatActivity
and set up the view for the activity.

Listing 11.1 Setting up
ViewPager
(CrimePagerActivity.java)
public class CrimePagerActivity extends
AppCompatActivity {

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);

setContentView(R.layout.activity_crime_pager);
 }
}

The layout file does not yet exist. Create
a new layout file in res/layout/ and
name it activity_crime_pager.
Make its root view a ViewPager and
give it the attributes shown in
Figure 11.3. Notice that you must use
ViewPager’s full package name
(android.support.v4.view.ViewPager

Figure
11.3 CrimePagerActivity’s
ViewPager
(activity_crime_pager.xml)

You use ViewPager’s full package
name when adding it to the layout file
because the ViewPager class is from
the support library. Unlike Fragment,
ViewPager is only available in the
support library; there is not a “standard”
ViewPager class in a later SDK.

ViewPager and
PagerAdapter
A ViewPager is like a
RecyclerView in some ways. A
RecyclerView requires an
Adapter to provide views. A
ViewPager requires a
PagerAdapter.
However, the conversation between
ViewPager and PagerAdapter is
much more involved than the
conversation between RecyclerView
and Adapter. Luckily, you can use
FragmentStatePagerAdapter, a
subclass of PagerAdapter, to take
care of many of the details.

FragmentStatePagerAdapter
will boil down the conversation to two
simple methods: getCount() and
getItem(int). When your
getItem(int) method is called for a
position in your array of crimes, it will
return a CrimeFragment configured
to display the crime at that position.
In CrimePagerActivity, set the
ViewPager’s pager adapter and
implement its getCount() and
getItem(int) methods.

Listing 11.2 Setting up pager
adapter
(CrimePagerActivity.java)
public class CrimePagerActivity extends
AppCompatActivity {

 private ViewPager mViewPager;
 private List<Crime> mCrimes;

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);

setContentView(R.layout.activity_crime_pager);

 mViewPager = (ViewPager)
findViewById(R.id.crime_view_pager);

 mCrimes = CrimeLab.get(this).getCrimes();
 FragmentManager fragmentManager =
getSupportFragmentManager();
 mViewPager.setAdapter(new
FragmentStatePagerAdapter(fragmentManager) {

 @Override
 public Fragment getItem(int position) {
 Crime crime = mCrimes.get(position);
 return
CrimeFragment.newInstance(crime.getId());
 }

 @Override
 public int getCount() {
 return mCrimes.size();
 }
 });
 }
}

Let’s go through this code. After finding
the ViewPager in the activity’s view,
you get your data set from CrimeLab –
the List of crimes. Next, you get the
activity’s instance of
FragmentManager.
Then you set the adapter to be an
unnamed instance of
FragmentStatePagerAdapter.
Creating the
FragmentStatePagerAdapter
requires the FragmentManager.
Remember that
FragmentStatePagerAdapter is
your agent managing the conversation
with ViewPager. For your agent to do
its job with the fragments that
getItem(int) returns, it needs to be

able to add them to your activity. That is
why it needs your
FragmentManager.
(What exactly is your agent doing? The
short story is that it is adding the
fragments you return to your activity and
helping ViewPager identify the
fragments’ views so that they can be
placed correctly. More details are in the
section called For the More Curious:
How ViewPager Really Works.)
The pager adapter’s two methods are
straightforward. The getCount()
method returns the number of items in the
array list. The getItem(int) method
is where the magic happens. It fetches
the Crime instance for the given
position in the data set. It then uses that

Crime’s ID to create and return a
properly configured CrimeFragment.

Integrating
CrimePagerActivity
Now you can begin the process of
decommissioning CrimeActivity
and putting CrimePagerActivity
in its place.
First, add a newIntent method to
CrimePagerActivity along with
an extra for the crime ID.

Listing 11.3 Creating
newIntent
(CrimePagerActivity.java)

public class CrimePagerActivity extends
AppCompatActivity {
 private static final String EXTRA_CRIME_ID =

"com.bignerdranch.android.criminalintent.crime_id";

 private ViewPager mViewPager;
 private List<Crime> mCrimes;

 public static Intent newIntent(Context
packageContext, UUID crimeId) {
 Intent intent = new Intent(packageContext,
CrimePagerActivity.class);
 intent.putExtra(EXTRA_CRIME_ID, crimeId);
 return intent;
 }

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);

setContentView(R.layout.activity_crime_pager);

 UUID crimeId = (UUID) getIntent()

.getSerializableExtra(EXTRA_CRIME_ID);
 ...
 }
}

Now, you want pressing a list item in
CrimeListFragment to start an

instance of CrimePagerActivity
instead of CrimeActivity.
Return to
CrimeListFragment.java and
modify
CrimeHolder.onClick(View) to
start a CrimePagerActivity.

Listing 11.4 Firing it up
(CrimeListFragment.java)
private class CrimeHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener {
 ...
 @Override
 public void onClick(View view) {
 Intent intent =
CrimeActivity.newIntent(getActivity(),
mCrime.getId());
 Intent intent =
CrimePagerActivity.newIntent(getActivity(),
mCrime.getId());
 startActivity(intent);
 }
}

You also need to add
CrimePagerActivity to the
manifest so that the OS can start it.
While you are in the manifest, remove
CrimeActivity’s declaration. To
accomplish this, you can just rename the
CrimeActivity to
CrimePagerActivity in the
manifest.

Listing 11.5 Adding
CrimePagerActivity to the
manifest
(AndroidManifest.xml)
<manifest ...>
 ...
 <application ...>
 ...
 <activity
 android:name=".CrimeActivity"
 android:name=".CrimePagerActivity">
 </activity>

Finally, to keep your project tidy, delete
CrimeActivity.java from the
project tool window.
Run CriminalIntent. Press Crime #0 to
view its details. Then swipe left and
right to browse the crimes. Notice that
the paging is smooth and there is no
delay in loading. By default,
ViewPager loads the item currently
onscreen plus one neighboring page in
each direction so that the response to a
swipe is immediate. You can tweak how
many neighboring pages are loaded by
calling
setOffscreenPageLimit(int).
Your ViewPager is not yet perfect.
Press the Back button to return to the list
of crimes and press a different item. You

will see the first crime displayed again
instead of the crime that you asked for.
By default, the ViewPager shows the
first item in its PagerAdapter. You
can have it show the crime that was
selected by setting the ViewPager’s
current item to the index of the selected
crime.
At the end of
CrimePagerActivity.onCreate(Bundle)
find the index of the crime to display by
looping through and checking each
crime’s ID. When you find the Crime
instance whose mId matches the
crimeId in the intent extra, set the
current item to the index of that Crime.

Listing 11.6 Setting the initial

pager item
(CrimePagerActivity.java)
public class CrimePagerActivity extends
AppCompatActivity {
 ...
 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 FragmentManager fragmentManager =
getSupportFragmentManager();
 mViewPager.setAdapter(new
FragmentStatePagerAdapter(fragmentManager) {
 ...
 });

 for (int i = 0; i < mCrimes.size(); i++) {
 if
(mCrimes.get(i).getId().equals(crimeId)) {
 mViewPager.setCurrentItem(i);
 break;
 }
 }
 }
}

Run CriminalIntent again. Selecting any
list item should display the details of the
correct Crime. And that is it. Your

ViewPager is now fully armed and
operational.

FragmentStatePagerAdapter
vs
FragmentPagerAdapter
There is another PagerAdapter type
that you can use called
FragmentPagerAdapter.
FragmentPagerAdapter is used
exactly like
FragmentStatePagerAdapter. It
only differs in how it unloads your
fragments when they are no longer
needed.
With

FragmentStatePagerAdapter,
your unneeded fragment is destroyed
(Figure 11.4). A transaction is
committed to completely remove the
fragment from your activity’s
FragmentManager. The “state” in
FragmentStatePagerAdapter
comes from the fact that it will save out
your fragment’s Bundle from
onSaveInstanceState(Bundle)
when it is destroyed. When the user
navigates back, the new fragment will be
restored using that instance state.

Figure
11.4 FragmentStatePagerAdapter
fragment management

FragmentPagerAdapter handles
things differently. When your fragment is
no longer needed,
FragmentPagerAdapter calls

detach(Fragment) on the
transaction, instead of
remove(Fragment). This destroys
the fragment’s view, but leaves the
fragment instance alive in the
FragmentManager. So the fragments
created by
FragmentPagerAdapter are never
destroyed (Figure 11.5).

Figure
11.5 FragmentPagerAdapter’s
fragment management

Which kind of adapter you should use
depends on your application.
FragmentStatePagerAdapter is
generally more frugal with memory.
CriminalIntent is displaying what could
be a long list of crimes, each of which
will eventually include a photo. You do
not want to keep all that information in

memory, so you use
FragmentStatePagerAdapter.
On the other hand, if your interface has a
small, fixed number of fragments,
FragmentPagerAdapter would be
safe and appropriate. The most common
example of this scenario is a tabbed
interface. Some detail views have
enough details to require two screens, so
the details are split across multiple tabs.
Adding a swipeable ViewPager to
this interface makes the app tactile.
Keeping these fragments in memory can
make your controller code easier to
manage. Plus, because this style of
interface usually has only two or three
fragments per activity, there is little
danger of running low on memory.

For the More
Curious: How
ViewPager Really
Works
The ViewPager and
PagerAdapter classes handle many
things for you behind the scenes. This
section will supply more details about
what is going on back there.
A caveat before we get into this
discussion: You do not need to
understand the nitty-gritty details in most

cases.
But, if you need to implement the
PagerAdapter interface yourself,
you will need to know how the
ViewPager-PagerAdapter
relationship differs from an ordinary
RecyclerView-Adapter
relationship.
When would you need to implement the
PagerAdapter interface yourself?
When you want ViewPager to host
something other than Fragments. If
you want to host normal View objects in
a ViewPager, like a few images, you
implement the raw PagerAdapter
interface.
So why is ViewPager not a

RecyclerView?
Using a RecyclerView in this case
would be a lot of work because you
could not use your existing Fragment.
An Adapter expects you to provide a
View instantly. However, your
FragmentManager determines when
your fragment’s view is created, not you.
So when RecyclerView comes
knocking at your Adapter’s door for
your fragment’s view, you will not be
able to create the fragment and provide
its view immediately.
This is the reason ViewPager exists.
Instead of an Adapter, it uses
PagerAdapter. PagerAdapter is
more complicated than Adapter
because it does more of the work of

managing views than Adapter does.
Here are the basics.
Instead of an
onBindViewHolder(…) method that
returns a view holder and its
corresponding view, PagerAdapter
has the following methods:
 public Object instantiateItem(ViewGroup
container, int position)
 public void destroyItem(ViewGroup container, int
position, Object object)
 public abstract boolean isViewFromObject(View
view, Object object)

PagerAdapter.instantiateItem(ViewGroup,
int) tells the pager adapter to create
an item view for a given position and
add it to a container ViewGroup, and
destroyItem(ViewGroup,
int, Object) tells it to destroy that
item. Note that

instantiateItem(ViewGroup,
int) does not say to create the view
right now. The PagerAdapter could
create the view at any time after that.
Once the view has been created,
ViewPager will notice it at some
point. To figure out which item’s view it
is, it calls
isViewFromObject(View,
Object). The Object parameter is
an object received from a call to
instantiateItem(ViewGroup,
int). So if ViewPager calls
instantiateItem(ViewGroup,
5) and receives object A,
isViewFromObject(View, A)
should return true if the View passed
in is for item 5, and false otherwise.

This is a complicated process for the
ViewPager, but it is less complicated
for the PagerAdapter, which only
needs to be able to create views, destroy
views, and identify which object a view
comes from. This loose requirement
gives a PagerAdapter
implementation enough wiggle room to
create and add a new fragment inside
instantiateItem(ViewGroup,
int) and return the fragment as the
Object to keep track of. Then
isViewFromObject(View,
Object) looks like this:
@Override
public boolean isViewFromObject(View view, Object
object) {
 return ((Fragment)object).getView() == view;
}

Implementing all those

PagerAdapter overrides would be a
pain to do every time you needed to use
ViewPager. Thank goodness for
FragmentPagerAdapter and
FragmentStatePagerAdapter.

For the More
Curious: Laying
Out Views in Code
Throughout this book, you have been
creating your views in layout files. It is
also possible to create your views in
code.
In fact, you could have defined your
ViewPager in code without a layout
file at all:
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ViewPager viewPager = new ViewPager(this);
 setContentView(viewPager);
 ...

}

No magic is necessary to create a view:
Just call its constructor, passing in a
Context as the parameter. You can
programmatically create an entire view
hierarchy instead of using layout files.
However, creating views in code should
be avoided, because layout files provide
a few benefits.
One benefit of layout files is that they
help to provide a clear separation
between your controller and view
objects in your app. The view exists in
XML and the controller exists in Java
code. This separation makes your code
easier to maintain by limiting the amount
of changes in your controller when you
change your view and vice versa.

Another benefit to views defined in
XML is that you can use Android’s
resource qualification system to
automatically choose the appropriate
version of that XML file based on the
properties of the device.
As you saw in Chapter 3, this system
makes it easy to change your layout file
depending on the orientation of the
device (as well as other configurations).
So what are the downsides to using
layout files? Well, you do have to go to
the trouble of creating an XML file and
inflating it. If you are creating a single
view, sometimes you may not want to go
to the trouble.
Otherwise, though, there are no

downsides to speak of – the Android
team has never recommended
constructing view hierarchies
programmatically, even back in the old
days when developers had to be even
more conscious of performance than they
are now. Even if you need something as
small as an ID on your view (which is
often necessary, even with a
programmatically created view), it is
simpler to have a layout file.

Challenge:
Restoring
CrimeFragment’s
Margins
You may have noticed that your
CrimeFragment has mysteriously
lost its margins. In
fragment_crime.xml, you
specified a margin of 16dp.
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="16dp"
 android:orientation="vertical">

That margin no longer shows up. So,
what gives? ViewPager’s layout
params do not support margins. Update
fragment_crime.xml and restore
your margins.

Challenge: Adding
First and Last
Buttons
Add two buttons to
CrimePagerActivity that allow
jumping the ViewPager to the first or
last crime instantly. As a bonus, disable
“jump to first” when on the first page
and “jump to last” when on the last page.

12
Dialogs

Dialogs demand attention and input from
the user. They are useful for presenting a
choice or important information. In this
chapter, you will add a dialog in which
users can change the date of a crime.
Pressing the date button in
CrimeFragment will present this
dialog on Lollipop and later
(Figure 12.1).

Figure 12.1 A dialog for
picking the date of a crime

picking the date of a crime

The dialog in Figure 12.1 is an instance
of AlertDialog, a subclass of
Dialog. AlertDialog is the all-
purpose Dialog subclass that you will
use most often.
When Lollipop was released, dialogs
were given a visual makeover.
AlertDialogs on Lollipop
automatically use this new style. On
earlier versions of Android,
AlertDialog will fall back to the
older style, shown on the left in
Figure 12.2.

Figure 12.2 Old vs new

Rather than displaying the crusty old
dialog style, it would be nice to always
show the new dialog style, no matter
which version of Android the user’s

device is on. And you can do just that
with the AppCompat library’s
AlertDialog class. This version of
AlertDialog is very similar to the
one included in the Android OS but, like
other AppCompat classes, is compatible
with earlier versions. To get the benefits
of the AppCompat version, make sure
you import
android.support.v7.app.AlertDialog
when prompted.

Creating a
DialogFragment
When using an AlertDialog, it is a

good idea to wrap it in an instance of
DialogFragment, a subclass of
Fragment. It is possible to display an
AlertDialog without a
DialogFragment, but it is not
recommended. Having the dialog
managed by the FragmentManager
gives you more options for presenting
the dialog.
In addition, a bare AlertDialog will
vanish if the device is rotated. If the
AlertDialog is wrapped in a
fragment, then the dialog will be re-
created and put back onscreen after
rotation.
For CriminalIntent, you are going to
create a DialogFragment subclass
named DatePickerFragment.

Within DatePickerFragment, you
will create and configure an instance of
AlertDialog that displays a
DatePicker widget.
DatePickerFragment will be
hosted by CrimePagerActivity.
Figure 12.3 shows you an overview of
these relationships.

Figure 12.3 Object diagram for
two fragments hosted by
CrimePagerActivity

Your first tasks are:
creating the

DatePickerFragment
class

building an AlertDialog
getting the dialog onscreen via
the FragmentManager

Later in the chapter, you will wire up the
DatePicker and pass the necessary
data between CrimeFragment and
DatePickerFragment.
Before you get started, add the string
resource shown in Listing 12.1.

Listing 12.1 Adding string for
dialog title
(values/strings.xml)
<resources>
 ...

 <string name="crime_solved_label">Solved</string>
 <string name="date_picker_title">Date of crime:
</string>

</resources>

Create a new class named
DatePickerFragment and make its
superclass DialogFragment. Be
sure to choose the support library’s
version of DialogFragment:
android.support.v4.app.DialogFragment

DialogFragment includes the
following method:
 public Dialog onCreateDialog(Bundle
savedInstanceState)

The FragmentManager of the
hosting activity calls this method as part
of putting the DialogFragment
onscreen.

In DatePickerFragment.java,
add an implementation of
onCreateDialog(Bundle) that
builds an AlertDialog with a title
and one OK button. (You will add the
DatePicker widget later.)
Be sure that the version of
AlertDialog that you import is the
AppCompat version:
android.support.v7.app.AlertDialog

Listing 12.2 Creating a
DialogFragment
(DatePickerFragment.java)
public class DatePickerFragment extends
DialogFragment {
 @Override
 public Dialog onCreateDialog(Bundle
savedInstanceState) {
 return new AlertDialog.Builder(getActivity())
 .setTitle(R.string.date_picker_title)

 .setPositiveButton(android.R.string.ok,
null)
 .create();
 }
}

In this implementation, you use the
AlertDialog.Builder class,
which provides a fluent interface for
constructing an AlertDialog
instance.
First, you pass a Context into the
AlertDialog.Builder
constructor, which returns an instance of
AlertDialog.Builder.
Next, you call two
AlertDialog.Builder methods to
configure your dialog:
 public AlertDialog.Builder setTitle(int titleId)
 public AlertDialog.Builder setPositiveButton(int
textId,
 DialogInterface.OnClickListener listener)

The setPositiveButton(…)
method accepts a string resource and an
object that implements
DialogInterface.OnClickListener.
In Listing 12.2, you pass in an Android
constant for OK and null for the listener
parameter. You will implement a listener
later in the chapter.
(A positive button is what the user
should press to accept what the dialog
presents or to take the dialog’s primary
action. There are two other buttons that
you can add to an AlertDialog: a
negative button and a neutral button.
These designations determine the
positions of the buttons in the dialog.)
Finally, you finish building the dialog
with a call to

AlertDialog.Builder.create()
which returns the configured
AlertDialog instance.
There is more that you can do with
AlertDialog and
AlertDialog.Builder, and the
details are well covered in the
developer documentation. For now, let’s
move on to the mechanics of getting your
dialog onscreen.

Showing a
DialogFragment
Like all fragments, instances of
DialogFragment are managed by
the FragmentManager of the hosting

activity.
To get a DialogFragment added to
the FragmentManager and put
onscreen, you can call the following
methods on the fragment instance:
 public void show(FragmentManager manager, String
tag)
 public void show(FragmentTransaction transaction,
String tag)

The string parameter uniquely identifies
the DialogFragment in the
FragmentManager’s list. Whether
you use the FragmentManager or
FragmentTransaction version is
up to you. If you pass in a
FragmentTransaction, you are
responsible for creating and committing
that transaction. If you pass in a
FragmentManager, a transaction

will automatically be created and
committed for you.
Here, you will pass in a
FragmentManager.
In CrimeFragment, add a constant
for the DatePickerFragment’s tag.
Then, in onCreateView(…), remove
the code that disables the date button and
set a View.OnClickListener that
shows a DatePickerFragment
when the date button is pressed.

Listing 12.3 Showing your
DialogFragment
(CrimeFragment.java)
public class CrimeFragment extends Fragment {

 private static final String ARG_CRIME_ID =
"crime_id";
 private static final String DIALOG_DATE =

"DialogDate";
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mDateButton = (Button)
v.findViewById(R.id.crime_date);

mDateButton.setText(mCrime.getDate().toString());
 mDateButton.setEnabled(false);
 mDateButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 FragmentManager manager =
getFragmentManager();
 DatePickerFragment dialog = new
DatePickerFragment();
 dialog.show(manager, DIALOG_DATE);
 }
 });

 mSolvedCheckBox = (CheckBox)
v.findViewById(R.id.crime_solved);
 ...
 return v;
 }
}

Run CriminalIntent and press the date
button to see the dialog (Figure 12.4).

Figure 12.4 An AlertDialog
with a title and a button

Setting a dialog’s
contents
Next, you are going to add a
DatePicker widget to your
AlertDialog using the following
AlertDialog.Builder method:
 public AlertDialog.Builder setView(View view)

This method configures the dialog to
display the passed-in View object
between the dialog’s title and its
button(s).

In the project tool window, create a new
layout resource file named
dialog_date.xml and make its root
element DatePicker. This layout will
consist of a single View object – a
DatePicker – that you will inflate
and pass into setView(…).
Configure the DatePicker as shown
in Figure 12.5.

Figure 12.5 DatePicker layout
(layout/dialog_date.xml)

In
DatePickerFragment.onCreateDialog(Bundle)
inflate this view and then set it on the
dialog.

Listing 12.4 Adding
DatePicker to AlertDialog
(DatePickerFragment.java)
@Override
public Dialog onCreateDialog(Bundle
savedInstanceState) {
 View v = LayoutInflater.from(getActivity())
 .inflate(R.layout.dialog_date, null);

 return new AlertDialog.Builder(getActivity())
 .setView(v)
 .setTitle(R.string.date_picker_title)
 .setPositiveButton(android.R.string.ok, null)
 .create();
}

Run CriminalIntent. Press the date button
to confirm that the dialog now presents a
DatePicker. As long as you are

running Lollipop or later, you will see a
calendar picker (Figure 12.6).

Figure 12.6 DatePicker with a
calendar

The calendar picker in Figure 12.6 was
introduced along with material design.
This version of the DatePicker
widget ignores the calendarViewShown
attribute you set in your layout. If you are
running a previous version of Android,
however, you will see the old spinner-
based DatePicker version that
respects that attribute (Figure 12.7).

Figure 12.7 An AlertDialog
with a DatePicker

Either version works fine. The newer
one sure is pretty, though.
You may be wondering why you went to
the trouble of defining and inflating a
layout when you could have created the
DatePicker object in code, like this:
@Override
public Dialog onCreateDialog(Bundle
savedInstanceState) {
 DatePicker datePicker = new
DatePicker(getActivity());

 return new AlertDialog.Builder(getActivity())
 .setView(datePicker)
 ...
 .create();
}

Using a layout makes modifications easy
if you change your mind about what the
dialog should present. For instance,
what if you wanted a TimePicker
next to the DatePicker in this dialog?

If you are already inflating a layout, you
can simply update the layout file and the
new view will appear.
Also, the selected date in the
DatePicker is automatically
preserved across rotation. (Try it.) How
does this happen? Remember that
Views can save state across
configuration changes, but only if they
have an ID attribute. When you created
the DatePicker in
dialog_date.xml you also asked
the build tools to generate a unique ID
value for that DatePicker.
If you created the DatePicker in
code, you would have to
programmatically set an ID on the

DatePicker for its state saving to
work.
Your dialog is onscreen and looks good.
In the next section, you will wire it up to
present the Crime’s date and allow the
user to change it.

Passing Data
Between Two
Fragments
You have passed data between two
activities, and you have passed data
between two fragment-based activities.
Now you need to pass data between two
fragments that are hosted by the same
activity – CrimeFragment and
DatePickerFragment
(Figure 12.8).

Figure 12.8 Conversation
between CrimeFragment and
DatePickerFragment

To get the Crime’s date to
DatePickerFragment, you are
going to write a
newInstance(Date) method and
make the Date an argument on the
fragment.
To get the new date back to the

CrimeFragment so that it can update
the model layer and its own view, you
will package up the date as an extra on
an Intent and pass this Intent in a
call to
CrimeFragment.onActivityResult(…)
as shown in Figure 12.9.

Figure 12.9 Sequence of
events between CrimeFragment
and DatePickerFragment

It may seem strange to call
Fragment.onActivityResult(…)
given that the hosting activity receives
no call to
Activity.onActivityResult(…)
in this interaction. However, using

onActivityResult(…) to pass
data back from one fragment to another
not only works, but also offers some
flexibility in how you present a dialog
fragment, as you will see later in the
chapter.

Passing data to
DatePickerFragment
To get data into your
DatePickerFragment, you are
going to stash the date in
DatePickerFragment’s arguments
bundle, where the
DatePickerFragment can access
it.

Creating and setting fragment arguments
is typically done in a
newInstance() method that replaces
the fragment constructor. In
DatePickerFragment.java, add
a newInstance(Date) method.

Listing 12.5 Adding a
newInstance(Date) method
(DatePickerFragment.java)
public class DatePickerFragment extends
DialogFragment {

 private static final String ARG_DATE = "date";

 private DatePicker mDatePicker;

 public static DatePickerFragment newInstance(Date
date) {
 Bundle args = new Bundle();
 args.putSerializable(ARG_DATE, date);

 DatePickerFragment fragment = new
DatePickerFragment();
 fragment.setArguments(args);

 return fragment;
 }
 ...
}

In CrimeFragment, remove the call
to the DatePickerFragment
constructor and replace it with a call to
DatePickerFragment.newInstance(Date)

Listing 12.6 Adding call to
newInstance()
(CrimeFragment.java)
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mDateButton =
(Button)v.findViewById(R.id.crime_date);
 mDateButton.setText(mCrime.getDate().toString());
 mDateButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 FragmentManager manager =
getFragmentManager();

 DatePickerFragment dialog = new
DatePickerFragment();
 DatePickerFragment dialog =
DatePickerFragment
 .newInstance(mCrime.getDate());
 dialog.show(manager, DIALOG_DATE);
 }
 });
 ...
 return v;
}

DatePickerFragment needs to
initialize the DatePicker using the
information held in the Date. However,
initializing the DatePicker requires
integers for the month, day, and year.
Date is more of a timestamp and cannot
provide integers like this directly.
To get the integers you need, you must
create a Calendar object and use the
Date to configure the Calendar.
Then you can retrieve the required

information from the Calendar.
In onCreateDialog(Bundle), get
the Date from the arguments and use it
and a Calendar to initialize the
DatePicker.

Listing 12.7 Extracting the
date and initializing
DatePicker
(DatePickerFragment.java)
@Override
public Dialog onCreateDialog(Bundle
savedInstanceState) {
 Date date = (Date)
getArguments().getSerializable(ARG_DATE);

 Calendar calendar = Calendar.getInstance();
 calendar.setTime(date);
 int year = calendar.get(Calendar.YEAR);
 int month = calendar.get(Calendar.MONTH);
 int day = calendar.get(Calendar.DAY_OF_MONTH);

 View v = LayoutInflater.from(getActivity())
 .inflate(R.layout.dialog_date, null);

 mDatePicker = (DatePicker)
v.findViewById(R.id.dialog_date_picker);
 mDatePicker.init(year, month, day, null);

 return new AlertDialog.Builder(getActivity())
 .setView(v)
 .setTitle(R.string.date_picker_title)
 .setPositiveButton(android.R.string.ok,
null)
 .create();
}

Now CrimeFragment is successfully
telling DatePickerFragment what
date to show. You can run CriminalIntent
and make sure that everything works as
before.

Returning data to
CrimeFragment
To have CrimeFragment receive the

date back from
DatePickerFragment, you need a
way to keep track of the relationship
between the two fragments.
With activities, you call
startActivityForResult(…),
and the ActivityManager keeps
track of the parent-child activity
relationship. When the child activity
dies, the ActivityManager knows
which activity should receive the result.

Setting a target fragment

You can create a similar connection by
making CrimeFragment the target
fragment of DatePickerFragment.

This connection is automatically
reestablished after both
CrimeFragment and
DatePickerFragment are
destroyed and re-created by the OS. To
create this relationship, you call the
following Fragment method:
 public void setTargetFragment(Fragment fragment,
int requestCode)

This method accepts the fragment that
will be the target and a request code just
like the one you send in
startActivityForResult(…).
The target fragment can use the request
code later to identify which fragment is
reporting back.
The FragmentManager keeps track
of the target fragment and request code.

You can retrieve them by calling
getTargetFragment() and
getTargetRequestCode() on the
fragment that has set the target.
In CrimeFragment.java, create a
constant for the request code and then
make CrimeFragment the target
fragment of the
DatePickerFragment instance.

Listing 12.8 Setting target
fragment
(CrimeFragment.java)
public class CrimeFragment extends Fragment {

 private static final String ARG_CRIME_ID =
"crime_id";
 private static final String DIALOG_DATE =
"DialogDate";

 private static final int REQUEST_DATE = 0;
 ...

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mDateButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 FragmentManager manager =
getFragmentManager();
 DatePickerFragment dialog =
DatePickerFragment

.newInstance(mCrime.getDate());

dialog.setTargetFragment(CrimeFragment.this,
REQUEST_DATE);
 dialog.show(manager, DIALOG_DATE);
 }
 });
 ...
 return v;
 }
}

Sending data to the target
fragment

Now that you have a connection between
CrimeFragment and
DatePickerFragment, you need to
send the date back to
CrimeFragment. You are going to
put the date on an Intent as an extra.
What method will you use to send this
intent to the target fragment? Oddly
enough, you will have
DatePickerFragment pass it into
CrimeFragment.onActivityResult(int,
int, Intent).
Activity.onActivityResult(…)
is the method that the
ActivityManager calls on the
parent activity after the child activity
dies. When dealing with activities, you
do not call

Activity.onActivityResult(…)
yourself; that is the
ActivityManager’s job. After the
activity has received the call, the
activity’s FragmentManager then
calls
Fragment.onActivityResult(…)
on the appropriate fragment.
When dealing with two fragments hosted
by the same activity, you can borrow
Fragment.onActivityResult(…)
and call it directly on the target fragment
to pass back data. It has exactly what
you need:

a request code that matches the
code passed into
setTargetFragment(…)
to tell the target what is

returning the result

a result code to determine what
action to take
an Intent that can have extra
data

In DatePickerFragment, create a
private method that creates an intent,
puts the date on it as an extra, and then
calls
CrimeFragment.onActivityResult(…)

Listing 12.9 Calling back to
your target
(DatePickerFragment.java)
public class DatePickerFragment extends
DialogFragment {

 public static final String EXTRA_DATE =

"com.bignerdranch.android.criminalintent.date";

 private static final String ARG_DATE = "date";
 ...
 @Override
 public Dialog onCreateDialog(Bundle
savedInstanceState) {
 ...
 }

 private void sendResult(int resultCode, Date
date) {
 if (getTargetFragment() == null) {
 return;
 }

 Intent intent = new Intent();
 intent.putExtra(EXTRA_DATE, date);

 getTargetFragment()

.onActivityResult(getTargetRequestCode(), resultCode,
intent);
 }
}

Now it is time to use this new
sendResult(…) method. When the
user presses the positive button in the
dialog, you want to retrieve the date

from the DatePicker and send the
result back to CrimeFragment. In
onCreateDialog(…), replace the
null parameter of
setPositiveButton(…) with an
implementation of
DialogInterface.OnClickListener
that retrieves the selected date and calls
sendResult(…).

Listing 12.10 Are you OK?
(DatePickerFragment.java)
@Override
public Dialog onCreateDialog(Bundle
savedInstanceState) {
 ...
 return new AlertDialog.Builder(getActivity())
 .setView(v)
 .setTitle(R.string.date_picker_title)
 .setPositiveButton(android.R.string.ok,
null);
 .setPositiveButton(android.R.string.ok,
 new DialogInterface.OnClickListener()
{

 @Override
 public void
onClick(DialogInterface dialog, int which) {
 int year =
mDatePicker.getYear();
 int month =
mDatePicker.getMonth();
 int day =
mDatePicker.getDayOfMonth();
 Date date = new
GregorianCalendar(year, month, day).getTime();

sendResult(Activity.RESULT_OK, date);
 }
 })
 .create();
}

In CrimeFragment, override
onActivityResult(…) to retrieve
the extra, set the date on the Crime, and
refresh the text of the date button.

Listing 12.11 Responding to
the dialog
(CrimeFragment.java)

public class CrimeFragment extends Fragment {
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 Date date = (Date) data

.getSerializableExtra(DatePickerFragment.EXTRA_DATE);
 mCrime.setDate(date);

mDateButton.setText(mCrime.getDate().toString());
 }
 }
}

The code that sets the button’s text is
identical to code you call in
onCreateView(…). To avoid setting
the text in two places, encapsulate this

code in a private updateDate()
method and then call it in
onCreateView(…) and
onActivityResult(…).
You could do this by hand or you can
have Android Studio do it for you.
Highlight the entire line of code that sets
mDateButton’s text.

Listing 12.12 Highlighting date
button update
(CrimeFragment.java)
@Override
public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 Date date = (Date) data

.getSerializableExtra(DatePickerFragment.EXTRA_DATE);

 mCrime.setDate(date);

mDateButton.setText(mCrime.getDate().toString());
 }
}

Right-click and select Refactor → Extract
→ Method... (Figure 12.10).

Figure 12.10 Extracting a
method with Android Studio

Make the method private and name it
updateDate. Click OK and Android
Studio will tell you that it has found one

other place where this line of code was
used. Click Yes to allow Android Studio
to update the other reference, then verify
that your code is now extracted to a
single updateDate() method, as
shown in Listing 12.13.

Listing 12.13 Cleaning up with
updateDate()
(CrimeFragment.java)
public class CrimeFragment extends Fragment {
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_crime, container,
false);
 ...
 mDateButton = (Button)
v.findViewById(R.id.crime_date);
 updateDate();
 ...
 }

 @Override
 public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 Date date = (Date) data

.getSerializableExtra(DatePickerFragment.EXTRA_DATE);
 mCrime.setDate(date);
 updateDate();
 }
 }

 private void updateDate() {

mDateButton.setText(mCrime.getDate().toString());
 }
}

Now the circle is complete. The dates
must flow. He who controls the dates
controls time itself. Run CriminalIntent
to ensure that you can, in fact, control the
dates. Change the date of a Crime and
confirm that the new date appears in
CrimeFragment’s view. Then return

to the list of crimes and check the
Crime’s date to ensure that the model
layer was updated.

More flexibility in presenting a
DialogFragment

Using onActivityResult(…) to
send data back to a target fragment is
especially nice when you are writing an
app that needs lots of input from the user
and more room to ask for it – and you
want the app working well on phones
and tablets.
On a phone, you do not have much
screen real estate, so you would likely
use an activity with a full-screen

fragment to ask the user for input. This
child activity would be started by a
fragment of the parent activity calling
startActivityForResult(…).
On the death of the child activity, the
parent activity would receive a call to
onActivityResult(…), which
would be forwarded to the fragment that
started the child activity (Figure 12.11).

Figure 12.11 Inter-activity
communication on phones

On a tablet, where you have plenty of

room, it is often better to present a
DialogFragment to the user to get
the same input. In this case, you set the
target fragment and call show(…) on
the dialog fragment. When dismissed, the
dialog fragment calls
onActivityResult(…) on its
target (Figure 12.12).

Figure 12.12 Inter-fragment
communication on tablets

The fragment’s
onActivityResult(…) will
always be called, whether the fragment
started an activity or showed a dialog.
So you can use the same code for
different presentations.

When setting things up to use the same
code for a full-screen fragment or a
dialog fragment, you can override
DialogFragment.onCreateView(…)
instead of onCreateDialog(…) to
prepare for both presentations.

Challenge: More
Dialogs
Write another dialog fragment named
TimePickerFragment that allows
the user to select what time of day the
crime occurred using a TimePicker
widget. Add another button to
CrimeFragment to display a
TimePickerFragment.

Challenge: A
Responsive
DialogFragment
For a more involved challenge, modify
the presentation of the
DatePickerFragment.
The first stage of this challenge is to
supply the DatePickerFragment’s
view by overriding
onCreateView(…) instead of
onCreateDialog(Bundle). When
setting up a DialogFragment in this
way, your dialog will not be presented

with the built-in title area and button
area on the top and bottom of the dialog.
You will need to create your own OK
button in dialog_date.xml.
Once DatePickerFragment’s view
is created in onCreateView(…), you
can present DatePickerFragment
as a dialog or embedded in an activity.
For the second stage of this challenge,
create a new subclass of
SingleFragmentActivity and
host DatePickerFragment in that
activity.
When presenting
DatePickerFragment in this way,
you will use the
startActivityForResult(…)
mechanism to pass the date back to

CrimeFragment. In
DatePickerFragment, if the target
fragment does not exist, use the
setResult(int, intent)
method on the hosting activity to send the
date back to the fragment.
For the final step of this challenge,
modify CriminalIntent to present the
DatePickerFragment as a full-
screen activity when running on a phone.
When running on a tablet, present the
DatePickerFragment as a dialog.
You may need to read ahead in
Chapter 17 for details on how to
optimize your app for multiple screen
sizes.

BIG NERD RANCH
CODING BOOTCAMPS

Big Nerd Ranch bootcamps cover a lot
of ground in just days. With our retreat-
style training, we’ll subject you to the
most intensive app development course
you can imagine, and when you finish,

you’ll be part of an elite corps: the few,
the proud, the nerds.

Our distraction-free training gives you
the opportunity to master new skills in
an intensive environment—no meetings,
no phone calls, just learning.

Big Nerd Ranch’s training was
unlike any other class I’ve had. I
learned skills that make me
exceptionally more valuable,
giving me a leg up on the
competition. Since my first Big
Nerd Ranch class, I’ve written
software used in The White
House, held positions at AT&T and
Disney—and ultimately landed at

Apple.

—Josh Paul, Alumnus
We offer classes in iOS, Android,
Front-End Web, Back-End Web, macOS
and Design. Use code BNRGUIDE100
for $100 off a bootcamp of your choice.

www.bignerdranch.com

13
The Toolbar

A key component of any well-designed
Android app is the toolbar. The toolbar
includes actions that the user can take,
provides an additional mechanism for
navigation, and also provides design
consistency and branding.
In this chapter, you will create a menu
for CriminalIntent that will be displayed
in the toolbar. This menu will have an
action item that lets users add a new
crime. You will also enable the Up

button in the toolbar (Figure 13.1).

Figure 13.1 CriminalIntent’s
toolbar

AppCompat
The toolbar component was added to

Android in Android 5.0 (Lollipop).
Prior to Lollipop, the action bar was the
recommended component for navigation
and actions within an app.
The action bar and toolbar are very
similar components. The toolbar builds
on top of the action bar. It has a tweaked
UI and is more flexible in the ways that
you can use it.
CriminalIntent supports API 19 and
newer, which means that you cannot use
the native toolbar on all supported
versions of Android. Luckily, the toolbar
has been back-ported to the AppCompat
library. The AppCompat library allows
you to provide a Lollipop’d toolbar on
any version of Android back to API 9
(Android 2.3).

Using the AppCompat
library
You are already using the AppCompat
library. As of this writing, new projects
come with it automatically. But what if
you need to add the AppCompat library
to a legacy project? AppCompat has a
few requirements that you will need to
know about.
The AppCompat library requires that
you:

add the AppCompat
dependency

use one of the AppCompat

themes

ensure that all activities are a
subclass of
AppCompatActivity

Updating the theme

In Chapter 7 you added the AppCompat
dependency to CriminalIntent. The next
step is to ensure that you are using one of
AppCompat’s themes. The AppCompat
library comes with three themes:

Theme.AppCompat – a dark
theme
Theme.AppCompat.Light
– a light theme

Theme.AppCompat.Light.DarkActionBar
– a light theme with a dark
toolbar

The theme for your application is
specified at the application level and
optionally per activity in your
AndroidManifest.xml. Open
AndroidManifest.xml and look at
the application tag. Notice the
android:theme attribute. You should
see something similar to Listing 13.1.

Listing 13.1 The stock manifest
(AndroidManifest.xml)
<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme" >

The AppTheme is defined in
res/values/styles.xml. Open
this file and ensure that the parent theme
of your AppTheme matches the shaded
portion shown in Listing 13.2. For now,
do not worry about the attributes inside
the theme. You will update those soon.

Listing 13.2 Using an
AppCompat theme
(res/values/styles.xml)
<resources>

 <style name="AppTheme"
parent="Theme.AppCompat.Light.DarkActionBar">
 <!-- Customize your theme here. -->
 <item
name="colorPrimary">@color/colorPrimary</item>
 <item
name="colorPrimaryDark">@color/colorPrimaryDark</item>

 <item
name="colorAccent">@color/colorAccent</item>
 </style>

</resources>

You will learn much more about styles
and themes in Chapter 22.

Using AppCompatActivity

The final requirement to use the
AppCompat library is to ensure that all
of your activities subclass
AppCompatActivity. You have
been using AppCompatActivity
since Chapter 7 for the support fragment
implementation, so no changes are
necessary.
If you have made any updates so far in
this chapter, run CriminalIntent and
ensure that the app does not crash. You

should see something similar to
Figure 13.2.

Figure 13.2 The toolbar

Now it is time to add actions to the
toolbar.

Menus
The top-right area of the toolbar is
reserved for the toolbar’s menu. The
menu consists of action items
(sometimes also referred to as menu
items), which can perform an action on
the current screen or on the app as a
whole. You will add an action item to
allow the user to create a new crime.
Your menu will require a few string
resources. Add them to strings.xml
(Listing 13.3) now. These strings may
seem mysterious at this point, but it is
good to get them taken care of. When you

need them later, they will already be in
place, and you will not have to stop
what you are doing to add them.

Listing 13.3 Adding strings for
menus
(res/values/strings.xml)
<resources>
 ...
 <string name="date_picker_title">Date of crime:
</string>
 <string name="new_crime">New Crime</string>
 <string name="show_subtitle">Show
Subtitle</string>
 <string name="hide_subtitle">Hide
Subtitle</string>
 <string name="subtitle_format">%1$d
crimes</string>

</resources>

Defining a menu in XML

Menus are a type of resource similar to
layouts. You create an XML description
of a menu and place the file in the
res/menu directory of your project.
Android generates a resource ID for the
menu file that you then use to inflate the
menu in code.
In the project tool window, right-click
on the res directory and select New →
Android resource file. Change the Resource
type to Menu, name the menu resource
fragment_crime_list, and click
OK (Figure 13.3).

Figure 13.3 Creating a menu
file

Here, you use the same naming
convention for menu files as you do for
layout files. Android Studio will
generate
res/menu/fragment_crime_list.xml
which has the same name as your
CrimeListFragment’s layout file

but lives in the menu folder. In the new
file, switch to the Text view and add an
item element as shown in Listing 13.4.

Listing 13.4 Creating a menu
resource for
CrimeListFragment
(res/menu/fragment_crime_list.xml
<menu
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-
auto">
 <item
 android:id="@+id/new_crime"
 android:icon="@android:drawable/ic_menu_add"
 android:title="@string/new_crime"
 app:showAsAction="ifRoom|withText"/>
</menu>

The showAsAction attribute refers to
whether the item will appear in the
toolbar itself or in the overflow menu.

You have piped together two values,
ifRoom and withText, so the item’s
icon and text will appear in the toolbar
if there is room. If there is room for the
icon but not the text, then only the icon
will be visible. If there is no room for
either, then the item will be relegated to
the overflow menu.
If you have items in the overflow menu,
those items will be represented by the
three dots on the far-right side of the
toolbar, as shown in Figure 13.4. You
will update your code to add additional
menu items in a moment.

Figure 13.4 Overflow menu in
the toolbar

Other options for showAsAction include
always and never. Using always is not
recommended; it is better to use ifRoom
and let the OS decide. Using never is a
good choice for less-common actions. In
general, you should only put action items
that users will use frequently in the
toolbar to avoid cluttering the screen.

The app namespace

Notice that
fragment_crime_list.xml uses
the xmlns tag to define a new
namespace, app, which is separate from
the usual android namespace
declaration. This app namespace is then
used to specify the showAsAction

attribute.
This unusual namespace declaration
exists for legacy reasons with the
AppCompat library. The action bar APIs
were first added in Android 3.0.
Originally, the AppCompat library was
created to bundle a compatibility
version of the action bar into apps
supporting earlier versions of Android,
so that the action bar would exist on any
device, even those that did not support
the native action bar. On devices running
Android 2.3 or older, menus and their
corresponding XML did exist, but the
android:showAsAction attribute was
only added with the release of the action
bar.
The AppCompat library defines its own

custom showAsAction attribute and
does not look for the native
showAsAction attribute.

Using Android Asset Studio

In the android:icon attribute, the value
@android:drawable/ic_menu_add
references a system icon. A system icon
is one that is found on the device rather
than in your project’s resources.
In a prototype, referencing a system icon
works fine. However, in an app that will
be released, it is better to be sure of
what your user will see instead of
leaving it up to each device. System
icons can change drastically across

devices and OS versions, and some
devices might have system icons that do
not fit with the rest of your app’s design.
One alternative is to create your own
icons from scratch. You will need to
prepare versions for each screen density
and possibly for other device
configurations. For more information,
visit Android’s Icon Design Guidelines
at developer.android.com/​
design/​style/​
iconography.html.
A second alternative is to find system
icons that meet your app’s needs and
copy them directly into your project’s
drawable resources.
System icons can be found in your

Android SDK directory. On a Mac, this
is typically
/Users/user/Library/Android/sdk
On Windows, the default location is
\Users\user\sdk. You can also
verify your SDK location by opening the
project structure window and selecting
the SDK Location option.
In your SDK directory, you will find
Android’s resources, including
ic_menu_add. These resources are
found in /platforms/android-
25/data/res, where 25 represents
the API level of the Android version.
The third and easiest alternative is to use
the Android Asset Studio, which is
included in Android Studio. The Asset
Studio allows you to create and

customize an image to use in the toolbar.
Right-click on your drawable
directory in the project tool window and
select New → Image Asset to bring up the
Asset Studio (Figure 13.5).
Here, you can generate a few types of
icons. In the Icon Type field, choose Action
Bar and Tab Icons. Next, name your asset
ic_menu_add and set the Asset Type
option to Clip Art. Update the Theme to use
HOLO_DARK. Since your toolbar uses a
dark theme, your image should appear as
a light color. These changes are shown
in Figure 13.5; note that while we are
also showing the clip art you are about
to select, your screen will feature the
adorable Android logo.

Figure 13.5 Asset Studio

Select the Clip Art button to pick your clip
art. In the clip art window, choose the

image that looks like a plus sign
(Figure 13.6).

Figure 13.6 Clip art options –
where is that plus sign?

Back on the main screen, click Next to

move to the last step of the wizard. The
Asset Studio will show you a preview
of the work that it will do (Figure 13.7).
Notice that an hdpi, mdpi, xhdpi, and
xxhdpi icon will be created for you. Jim-
dandy.

Figure 13.7 Asset Studio’s
generated files

Select Finish to generate the images. Then,

in your layout file, modify your icon
attribute to reference the new resource in
your project.

Listing 13.5 Referencing a
local resource
(res/menu/fragment_crime_list.xml
<item
 android:id="@+id/new_crime"
 android:icon="@android:drawable/ic_menu_add"
 android:icon="@drawable/ic_menu_add"
 android:title="@string/new_crime"
 app:showAsAction="ifRoom|withText"/>

Creating the menu

In code, menus are managed by
callbacks from the Activity class.
When the menu is needed, Android calls
the Activity method

onCreateOptionsMenu(Menu).
However, your design calls for code to
be implemented in a fragment, not an
activity. Fragment comes with its own
set of menu callbacks, which you will
implement in CrimeListFragment.
The methods for creating the menu and
responding to the selection of an action
item are:
 public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater)
 public boolean onOptionsItemSelected(MenuItem
item)

In CrimeListFragment.java,
override
onCreateOptionsMenu(Menu,
MenuInflater) to inflate the menu
defined in
fragment_crime_list.xml.

Listing 13.6 Inflating a menu
resource
(CrimeListFragment.java)
@Override
public void onResume() {
 super.onResume();
 updateUI();
}

@Override
public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_crime_list,
menu);
}
...

Within this method, you call
MenuInflater.inflate(int,
Menu) and pass in the resource ID of
your menu file. This populates the Menu
instance with the items defined in your
file.

Notice that you call through to the
superclass implementation of
onCreateOptionsMenu(…). This
is not required, but we recommend
calling through as a matter of
convention. That way, any menu
functionality defined by the superclass
will still work. However, it is only a
convention – the base Fragment
implementation of this method does
nothing.
The FragmentManager is
responsible for calling
Fragment.onCreateOptionsMenu(Menu,
MenuInflater) when the activity
receives its
onCreateOptionsMenu(…)
callback from the OS. You must

explicitly tell the FragmentManager
that your fragment should receive a call
to onCreateOptionsMenu(…).
You do this by calling the following
method:
 public void setHasOptionsMenu(boolean hasMenu)

Define
CrimeListFragment.onCreate(Bundle)
and let the FragmentManager know
that CrimeListFragment needs to
receive menu callbacks.

Listing 13.7 Receiving menu
callbacks
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 private RecyclerView mCrimeRecyclerView;
 private CrimeAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,

You can run CriminalIntent now to see
your menu (Figure 13.8).

Figure 13.8 Icon for the New
Crime action item in the toolbar

Where is the action item’s text? Most
phones only have enough room for the
icon in portrait orientation. You can
long-press an icon in the toolbar to
reveal its title (Figure 13.9).

Figure 13.9 Long-pressing an
icon in the toolbar shows the

icon in the toolbar shows the
title

In landscape orientation, there is room in
the toolbar for the icon and the text
(Figure 13.10).

Figure 13.10 Icon and text in
the toolbar

Responding to menu
selections
To respond to the user pressing the New
Crime action item, you need a way to add
a new Crime to your list of crimes. In
CrimeLab.java, add a method to do
this.

Listing 13.8 Adding a new
crime (CrimeLab.java)
...
public void addCrime(Crime c) {
 mCrimes.add(c);
}

public List<Crime> getCrimes() {
 return mCrimes;
}

In this brave new world where you will

be able to add crimes yourself, the 100
programmatically generated crimes are
no longer necessary. Remove the code
that generates these crimes from
CrimeLab.java.

Listing 13.9 Goodbye, random
crimes! (CrimeLab.java)
private CrimeLab(Context context) {
 mCrimes = new ArrayList<>();
 for (int i = 0; i < 100; i++) {
 Crime crime = new Crime();
 crime.setTitle("Crime #" + i);
 crime.setSolved(i % 2 == 0); // Every other
one
 mCrimes.add(crime);
 }
}

When the user presses an action item,
your fragment receives a callback to the
method
onOptionsItemSelected(MenuItem)

This method receives an instance of
MenuItem that describes the user’s
selection.
Although your menu only contains one
action item, menus often have more than
one. You can determine which action
item has been selected by checking the
ID of the MenuItem and then respond
appropriately. This ID corresponds to
the ID you assigned to the MenuItem in
your menu file.
In CrimeListFragment.java,
implement
onOptionsItemSelected(MenuItem)
to respond to selection of the
MenuItem by creating a new Crime,
adding it to CrimeLab, and then
starting an instance of

CrimePagerActivity to edit the
new Crime.

Listing 13.10 Responding to
menu selection
(CrimeListFragment.java)
@Override
public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_crime_list,
menu);
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.new_crime:
 Crime crime = new Crime();

CrimeLab.get(getActivity()).addCrime(crime);
 Intent intent = CrimePagerActivity
 .newIntent(getActivity(),
crime.getId());
 startActivity(intent);
 return true;
 default:
 return super.onOptionsItemSelected(item);

 }
}

Notice that this method returns a
boolean value. Once you have handled
the MenuItem, you should return true
to indicate that no further processing is
necessary. The default case calls the
superclass implementation if the item ID
is not in your implementation.
Run CriminalIntent and try out your new
menu. Add a few crimes and edit them
afterward. (The empty list that you see
before you add any crimes can be
disconcerting. At the end of this chapter
there is a challenge to present a helpful
clue when the list is empty.)

Enabling
Hierarchical
Navigation
So far, CriminalIntent relies heavily on
the Back button to navigate around the
app. Using the Back button is temporal
navigation. It takes you to where you
were last. Hierarchical navigation, on
the other hand, takes you up the app
hierarchy. (It is sometimes called
ancestral navigation.)
In hierarchical navigation, the user
navigates up by pressing the Up button

on the left side of the toolbar.
Enable hierarchical navigation in
CriminalIntent by adding a
parentActivityName attribute in the
AndroidManifest.xml file.

Listing 13.11 Turning on the
Up button
(AndroidManifest.xml)
<activity
 android:name=".CrimePagerActivity"
 android:parentActivityName=".CrimeListActivity">
</activity>

Run the app and create a new crime.
Notice the Up button in the crime detail
screen, as shown in Figure 13.11.
Pressing the Up button will take you up
one level in CriminalIntent’s hierarchy

to CrimeListActivity.

Figure
13.11 CrimePagerActivity’s
Up button

How hierarchical
navigation works

In CriminalIntent, navigating with the
Back button and navigating with the Up
button perform the same task. Pressing
either of those from within the

CrimePagerActivity will take the
user back to the
CrimeListActivity. Even though
they accomplish the same result, behind
the scenes they are doing very different
things. This is important because,
depending on the application, navigating
up may pop the user back multiple
activities in the back stack.
When the user navigates up from
CrimePagerActivity, an intent
like the following is created:
Intent intent = new Intent(this,
CrimeListActivity.class);
intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
startActivity(intent);
finish();

FLAG_ACTIVITY_CLEAR_TOP tells
Android to look for an existing instance

of the activity in the stack, and, if there
is one, pop every other activity off the
stack so that the activity being started
will be top-most (Figure 13.12).

Figure
13.12 FLAG_ACTIVITY_CLEAR_TOP
at work

An Alternative
Action Item
In this section, you will use what you
have learned about menu resources to
add an action item that lets users show
and hide a subtitle displaying the number
of crimes from
CrimeListActivity’s toolbar.
In
res/menu/fragment_crime_list.xml
add an action item that will read SHOW
SUBTITLE and will appear in the toolbar
if there is room. (The all-caps formatting
is courtesy of the toolbar’s inherent

styles; you have seen similar formatting
on buttons.)

Listing 13.12 Adding SHOW
SUBTITLE action item
(res/menu/fragment_crime_list.xml
<menu
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-
auto">
 <item
 android:id="@+id/new_crime"
 android:icon="@android:drawable/ic_menu_add"
 android:title="@string/new_crime"
 app:showAsAction="ifRoom|withText"/>

 <item
 android:id="@+id/show_subtitle"
 android:title="@string/show_subtitle"
 app:showAsAction="ifRoom"/>
</menu>

Create a new method,
updateSubtitle(), that will set the
subtitle of the toolbar to display the

number of crimes.

Listing 13.13 Setting the
toolbar’s subtitle
(CrimeListFragment.java)
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 ...
}

private void updateSubtitle() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 int crimeCount = crimeLab.getCrimes().size();
 String subtitle =
getString(R.string.subtitle_format, crimeCount);

 AppCompatActivity activity = (AppCompatActivity)
getActivity();

activity.getSupportActionBar().setSubtitle(subtitle);
}
 ...

updateSubtitle() first generates
the subtitle string using the
getString(int resId,

Object… formatArgs) method,
which accepts replacement values for
the placeholders in the string resource.
Next, the activity that is hosting the
CrimeListFragment is cast to an
AppCompatActivity. Recall that
because CriminalIntent uses the
AppCompat library, all activities are a
subclass of AppCompatActivity,
which allows you to access the toolbar.
(For legacy reasons, the toolbar is still
referred to as “action bar” in many
places within the AppCompat library.)
Now that updateSubtitle() is
defined, call the method when the user
presses on the new action item.

Listing 13.14 Responding to

SHOW SUBTITLE action item
(CrimeListFragment.java)
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.new_crime:
 ...
 return true;
 case R.id.show_subtitle:
 updateSubtitle();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Run CriminalIntent, press the SHOW
SUBTITLE item, and confirm that you can
see the number of crimes in the subtitle.

Toggling the action item
title

Now the subtitle is visible, but the
action item still reads SHOW SUBTITLE. It
would be better if the action item
toggled its title and function to show or
hide the subtitle.
When
onOptionsItemSelected(MenuItem)
is called, you are given the MenuItem
that the user pressed as a parameter. You
could update the text of the SHOW
SUBTITLE item in this method, but the
subtitle change would be lost as you
rotate the device and the toolbar is re-
created.
A better solution is to update the SHOW
SUBTITLE MenuItem in
onCreateOptionsMenu(…) and
trigger a re-creation of the toolbar when

the user presses on the subtitle item.
This allows you to share the code for
updating the action item in the case that
the user selects an action item or the
toolbar is re-created.
First, add a member variable to keep
track of the subtitle visibility.

Listing 13.15 Keeping subtitle
visibility state
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 private RecyclerView mCrimeRecyclerView;
 private CrimeAdapter mAdapter;
 private boolean mSubtitleVisible;
 ...

Next, modify the subtitle in
onCreateOptionsMenu(…) and
trigger a re-creation of the action items

when the user presses on the SHOW
SUBTITLE action item.

Listing 13.16 Updating a
MenuItem
(CrimeListFragment.java)
@Override
public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_crime_list,
menu);

 MenuItem subtitleItem =
menu.findItem(R.id.show_subtitle);
 if (mSubtitleVisible) {

subtitleItem.setTitle(R.string.hide_subtitle);
 } else {

subtitleItem.setTitle(R.string.show_subtitle);
 }
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.new_crime:
 ...

 case R.id.show_subtitle:
 mSubtitleVisible = !mSubtitleVisible;
 getActivity().invalidateOptionsMenu();
 updateSubtitle();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Finally, respect the mSubtitleVisible
member variable when showing or
hiding the subtitle in the toolbar.

Listing 13.17 Showing or
hiding the subtitle
(CrimeListFragment.java)
private void updateSubtitle() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 int crimeCount = crimeLab.getCrimes().size();
 String subtitle =
getString(R.string.subtitle_format, crimeCount);

 if (!mSubtitleVisible) {
 subtitle = null;
 }

 AppCompatActivity activity = (AppCompatActivity)

getActivity();

activity.getSupportActionBar().setSubtitle(subtitle);
}

Run CriminalIntent and modify the
subtitle visibility in the toolbar. Notice
that the action item text reflects the
existence of the subtitle.

“Just one more thing...”
Programming in Android is often like
being questioned by the TV detective
Columbo. You think you have the angles
covered and are home free. But Android
always turns at the door and says, “Just
one more thing...”
Here, there are actually two more things.

First, when creating a new crime and
then returning to
CrimeListActivity with the Back
button, the number of crimes in the
subtitle will not update to reflect the
new number of crimes. Second, the
visibility of the subtitle is lost across
rotation.
Tackle the update issue first. The
solution to this problem is to update the
subtitle text when returning to
CrimeListActivity. Trigger a call
to updateSubtitle() in
onResume(). Your updateUI()
method is already called in
onResume() and
onCreateView(…). Add a call to
updateSubtitle() to the

updateUI() method.

Listing 13.18 Showing the
most recent state
(CrimeListFragment.java)
private void updateUI() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 List<Crime> crimes = crimeLab.getCrimes();

 if (mAdapter == null) {
 mAdapter = new CrimeAdapter(crimes);
 mCrimeRecyclerView.setAdapter(mAdapter);
 } else {
 mAdapter.notifyDataSetChanged();
 }

 updateSubtitle();
}

Run CriminalIntent, show the subtitle,
create a new crime, and press the Back
button on the device to return to
CrimeListActivity. The number
of crimes in the toolbar will be correct.

Now repeat these steps, but instead of
using the Back button, use the Up button
in the toolbar. The visibility of the
subtitle will be reset. Why does this
happen?
An unfortunate side effect of the way
hierarchical navigation is implemented
in Android is that the activity that you
navigate up to will be completely re-
created from scratch. This means that
any instance variables will be lost, and
it also means that any saved instance
state will be lost as well. This parent
activity is seen as a completely new
activity.
There is not an easy way to ensure that
the subtitle stays visible when navigating
up. One option is to override the

mechanism that navigates up. You could
call finish() on the
CrimePagerActivity to pop back
to the previous activity. This would
work perfectly well in CriminalIntent
but would not work in apps with a more
realistic hierarchy, as this would only
pop back one activity.
Another option is to pass information
about the subtitle visibility as an extra to
CrimePagerActivity when it is
started. Then, override the
getParentActivityIntent()
method in CrimePagerActivity to
add an extra to the intent that is used to
re-create the CrimeListActivity.
This solution requires
CrimePagerActivity to know the

details of how its parent works.
Both of these solutions are less than
ideal, and there is not a great alternative.
For this reason, you are going to let this
issue ride; making the user click SHOW
SUBTITLE is not a terrible burden.
Now that the subtitle always displays the
correct number of crimes, solve the
rotation issue. To fix this problem, save
the mSubtitleVisible instance
variable across rotation with the saved
instance state mechanism.

Listing 13.19 Saving subtitle
visibility
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 private static final String

SAVED_SUBTITLE_VISIBLE = "subtitle";
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 if (savedInstanceState != null) {
 mSubtitleVisible =
savedInstanceState.getBoolean(SAVED_SUBTITLE_VISIBLE);

 }

 updateUI();

 return view;
 }

 @Override
 public void onResume() {
 ...
 }

 @Override
 public void onSaveInstanceState(Bundle outState)
{
 super.onSaveInstanceState(outState);
 outState.putBoolean(SAVED_SUBTITLE_VISIBLE,
mSubtitleVisible);
 }
}

Run CriminalIntent. Show the subtitle

and then rotate. The subtitle should
appear as expected in the re-created
view (Figure 13.13).

For the More
Curious: Action Bar
vs Toolbar

Figure 13.13 Action Bar vs
Toolbar

What is the difference between the
action bar and the toolbar?
The most obvious difference is the
updated visual design of the toolbar. The
toolbar no longer includes an icon on the

left side and decreases some of the
spacing between the action items on the
right side. Another major visual change
is the Up button. In the action bar, this
button was much more subtle and was
just an accessory next to the icon in the
action bar.
Aside from the visual differences, the
main goal of the toolbar is to be more
flexible than the action bar. The action
bar has many constraints. It will always
appear at the top of the screen. There
can only be one action bar. The size of
the action bar is fixed and should not be
changed. The toolbar does not have
these constraints.
In this chapter, you used a toolbar that
was provided by one of the AppCompat

themes. Alternatively, you can manually
include a toolbar as a normal view in
your activity or fragment’s layout file.
You can place this toolbar anywhere you
like and you can even include multiple
toolbars on the screen at the same time.
This flexibility allows for interesting
designs; for example, imagine if each
fragment that you use maintains its own
toolbar. When you host multiple
fragments on the screen at the same time,
each of them can bring along its own
toolbar instead of sharing a single
toolbar at the top of the screen.
Another interesting addition with the
toolbar is the ability to place Views
inside of the toolbar and to also adjust
the height of the toolbar. This allows for

much more flexibility in the way that
your app works.

Challenge:
Deleting Crimes
Once a crime has been created in
CriminalIntent, there is no way to erase
that crime from the official record. For
this challenge, add a new action item to
the CrimeFragment that allows the
user to delete the current crime. Once the
user presses the new delete action item,
be sure to pop the user back to the
previous activity with a call to the
finish() method on the
CrimeFragment’s hosting activity.

Challenge: Plural
String Resources
The subtitle is not grammatically correct
when there is a single crime. 1 crimes just
does not show the right amount of
attention to detail for your taste. For this
challenge, correct this subtitle text.
You could have two different strings and
determine which one to use in code, but
this will quickly fall apart when you
localize your app for different
languages. A better option is to use
plural string resources (sometimes also
called quantity strings).

First, define a plural string in your
strings.xml file.
<plurals name="subtitle_plural">
 <item quantity="one">%1$d crime</item>
 <item quantity="other">%1$d crimes</item>
</plurals>

Then, use the getQuantityString
method to correctly pluralize the string.
int crimeSize = crimeLab.getCrimes().size();
String subtitle = getResources()
 .getQuantityString(R.plurals.subtitle_plural,
crimeSize, crimeSize);

Challenge: An
Empty View for the
RecyclerView
Currently, when CriminalIntent launches
it displays an empty RecyclerView –
a big white void. You should give users
something to interact with when there
are no items in the list.
For this challenge, display a message
like, There are no crimes and add a button
to the view that will trigger the creation
of a new crime.
Use the setVisibility method that

exists on any View class to show and
hide this new placeholder view when
appropriate.

14
SQLite

Databases
Almost every application needs a place
to save data for the long term, longer
than savedInstanceState will
keep it around. Android provides a
place to do this for you: a local
filesystem on your phone or tablet’s
flash memory storage.
Each application on an Android device
has a directory in the device’s sandbox.

Keeping files in the sandbox protects
them from being accessed by other
applications or even the prying eyes of
users (unless the device has been
“rooted,” in which case the user can get
to whatever he or she likes).
Each application’s sandbox directory is
a child of the device’s /data/data
directory named after the application
package. For CriminalIntent, the full path
to the sandbox directory is
/data/data/com.bignerdranch.android.criminalintent

However, most application data is not
stored in plain old files. Here is why:
Say that you had a file with all of your
Crimes written out. To change the title
on a Crime at the beginning of the file,
you would have to read in the entire file

and write out a whole new version. With
a lot of Crimes, that would take a long
time.
This is where SQLite comes in. SQLite
is an open source relational database,
like MySQL or PostgreSQL. Unlike
other databases, though, SQLite stores
its data in simple files, which you can
read and write using the SQLite library.
Android includes this SQLite library in
its standard library, along with some
additional Java helper classes.
This chapter will not cover everything
SQLite. For that, you will want to visit
www.sqlite.org, which has
complete documentation of SQLite itself.
Here you will see how Android’s basic
SQLite helper classes work. These will

http://www.sqlite.org

let you open, read, and write to SQLite
databases in your application sandbox
without necessarily knowing where that
is.

Defining a Schema
Before you create a database, you have
to decide what will be in that database.
CriminalIntent stores a single list of
crimes, so you will define one table
named crimes (Figure 14.1).

Figure 14.1 The crimes table

People do this kind of thing in a lot of
different ways in the programming
world. They are all trying to achieve the
same thing: to DRY up their code. DRY
means “Don’t Repeat Yourself” and
refers to a rule of thumb when writing a
program: If you write something down,
write it down in one authoritative place.
That way, instead of repeating yourself
all over the place, you are always
referring to the one authoritative place
for that information.
Doing this with databases can be
involved. There are even complex tools
called object-relational mappers
(ORMs) that let you use your model
objects (like Crime) as your One True
Definition. In this chapter, you will take

the simpler route of defining a simplified
database schema in Java code that says
what your table is named and what its
columns are.
Start by creating a class to put your
schema in. You will call this class
CrimeDbSchema, but in the Create New
Class dialog, enter
database.CrimeDbSchema. This
will put the CrimeDbSchema.java
file in its own database package, which
you will use to organize all your
database-related code.
Inside CrimeDbSchema, define an
inner class called CrimeTable to
describe your table.

Listing 14.1 Defining

CrimeTable
(CrimeDbSchema.java)
public class CrimeDbSchema {
 public static final class CrimeTable {
 public static final String NAME = "crimes";
 }
}

The CrimeTable class only exists to
define the String constants needed to
describe the moving pieces of your table
definition. The first piece of that
definition is the name of the table in your
database, CrimeTable.NAME.
Next, describe the columns.

Listing 14.2 Defining your
table columns
(CrimeDbSchema.java)
public class CrimeDbSchema {
 public static final class CrimeTable {

 public static final String NAME = "crimes";

 public static final class Cols {
 public static final String UUID = "uuid";
 public static final String TITLE =
"title";
 public static final String DATE = "date";
 public static final String SOLVED =
"solved";
 }
 }
}

With that, you will be able to refer to the
column named “title” in a Java-safe
way: CrimeTable.Cols.TITLE. That
makes it much safer to update your
program if you ever need to change the
name of that column or add additional
data to the table.

Building Your
Initial Database
With your schema defined, you are ready
to create the database itself. Android
provides some low-level methods on
Context to open a database file into
an instance of SQLiteDatabase:
openOrCreateDatabase(…) and
databaseList().
However, in practice you will always
need to follow a few basic steps:

Check to see whether the
database already exists.

If it does not, create it and
create the tables and initial
data it needs.

If it does, open it up and see
what version of your
CrimeDbSchema it has.
(You may want to add or
remove things in future
versions of
CriminalIntent.)
If it is an old version, upgrade
it to a newer version.

Android provides the
SQLiteOpenHelper class to handle
all of this for you. Create a class called
CrimeBaseHelper in your

database package.

Listing 14.3 Creating
CrimeBaseHelper
(CrimeBaseHelper.java)
public class CrimeBaseHelper extends SQLiteOpenHelper
{
 private static final int VERSION = 1;
 private static final String DATABASE_NAME =
"crimeBase.db";

 public CrimeBaseHelper(Context context) {
 super(context, DATABASE_NAME, null, VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {

 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int
oldVersion, int newVersion) {

 }
}

A SQLiteOpenHelper is a class
designed to get rid of the grunt work of
opening a SQLiteDatabase. Use it
inside of CrimeLab to create your
crime database.

Listing 14.4 Opening a
SQLiteDatabase
(CrimeLab.java)
public class CrimeLab {
 private static CrimeLab sCrimeLab;

 private List<Crime> mCrimes;
 private Context mContext;
 private SQLiteDatabase mDatabase;
 ...
 private CrimeLab(Context context) {
 mContext = context.getApplicationContext();
 mDatabase = new CrimeBaseHelper(mContext)
 .getWritableDatabase();
 mCrimes = new ArrayList<>();
 }

(Wondering why the context is stored in
an instance variable? CrimeLab will

use it in Chapter 16.)
When you call
getWritableDatabase() here,
CrimeBaseHelper will do the
following:

Open up
/data/data/com.bignerdranch.android.criminalintent/databases/crimeBase.db
creating a new database file if
it does not already exist.

If this is the first time the
database has been created, call
onCreate(SQLiteDatabase)
then save out the latest version
number.
If this is not the first time,
check the version number in the
database. If the version number

in CrimeBaseHelper is
higher, call
onUpgrade(SQLiteDatabase,
int, int).

The upshot is this: You put your code to
create the initial database in
onCreate(SQLiteDatabase),
your code to handle any upgrades in
onUpgrade(SQLiteDatabase,
int, int), and it just works.
For now, CriminalIntent will only have
one version, so you can ignore
onUpgrade(…). You only need to
create your database tables in
onCreate(SQLiteDatabase). To
do that, you will refer to the
CrimeTable inner class of

CrimeDbSchema.
The import is a two-step process. First,
write the initial part of your SQL
creation code.

Listing 14.5 Writing first part
of onCreate(SQLiteDatabase)
(CrimeBaseHelper.java)
@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("create table " +
CrimeDbSchema.CrimeTable.NAME);
}

Put your cursor on the word
CrimeTable and key in
Option+Return (Alt+Enter). Then select
the first item, Add import for
'com.bignerdranch.android.criminalintent.database.CrimeDbSchema.CrimeTable'
as shown in Figure 14.2.

Figure 14.2 Adding a
CrimeTable import

Android Studio will generate an import
like this for you:
import
com.bignerdranch.android.criminalintent.database.CrimeDbSchema.CrimeTable;

public class CrimeBaseHelper extends SQLiteOpenHelper
{

That will let you refer to the String
constants in
CrimeDbSchema.CrimeTable by
typing in CrimeTable.Cols.UUID,
rather than typing out the entirety of
CrimeDbSchema.CrimeTable.Cols.UUID

Use that to finish filling out your table
definition code.

Listing 14.6 Creating crime
table (CrimeBaseHelper.java)
@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("create table " + CrimeTable.NAME + "
(" +
 " _id integer primary key autoincrement,
" +
 CrimeTable.Cols.UUID + ", " +
 CrimeTable.Cols.TITLE + ", " +
 CrimeTable.Cols.DATE + ", " +
 CrimeTable.Cols.SOLVED +
 ")"
);
}

Creating a table in SQLite requires less
ceremony than in other databases: You
do not have to specify the type of a
column at creation time. It is a good idea
to do that, but here you will save a bit of

labor by doing without it.
Run CriminalIntent, and your database
will be created. If you are running on an
emulator or a rooted device, you can
look at it directly. (Not on an unrooted
device, though – it is saved in private
storage, which is secret.)
As of this writing, the emulator images
for Nougat (API 24 and 25) do not
cooperate with the Android Device
Monitor’s file explorer. To see your
files, you will need to install your app
on an emulator running an older version
of Android. To remind yourself how to
set up an emulator, see the section called
Running on the Emulator in Chapter 1.

Exploring files using
Android Device Monitor
Once you have an emulator running API
23 or earlier, pull up the Android
Device Monitor. Select Tools → Android
→ Android Device Monitor from the main
menu.
If you see a dialog that asks to disable
ADB integration, click Yes (Figure 14.3).

Figure 14.3 Disabling ADB
integration

When the Android Device Monitor
screen appears, click on the File Explorer
tab. To see the database files
CriminalIntent created, look in
/data/data/com.bignerdranch.android.criminalintent/databases/
(Figure 14.4).

Figure 14.4 Your database

(If you try to run the app once you have
disabled ADB integration, you may see
the following error: Instant Run requires
'Tools | Android | Enable ADB integration' to be
enabled. To fix this problem, select Android
Studio → Preferences from the main menu.
In the screen that appears, enter “Instant
Run” in the search box on the top left
(Figure 14.5). Uncheck the top checkbox

that reads Enable Instant Run to hot swap
code/resource changes on deploy (default
enabled). Click the Apply button. Then click
OK to dismiss the dialog.)

Figure 14.5 Disabling Instant
Run

Debugging database
issues

When writing code dealing with a
SQLite database, you will sometimes
need to tweak the layout of the database.
For example, in an upcoming chapter
you will add a suspect for each crime.
This will require an additional column
on the crime table. The “right” way to do
this is to write code in your
SQLiteOpenHelper to bump the
version number, and then update the
tables inside onUpgrade(…).
Well, the “right” way involves a fair
amount of code – code that is ridiculous
to write when you are only trying to get
version 1 or 2 of the database right. In
practice, the best thing to do is destroy
the database and start over, so that
SQLiteOpenHelper.onCreate(…)

is called again.
The easiest way to destroy your
database is to delete the app off your
device. And the easiest way to delete the
app on stock Android is to go to the
application browser and drag
CriminalIntent’s icon up to where it says
Uninstall at the top of screen. (The process
may be different if your version of
Android is different from stock
Android.) Then you will see a screen
similar to the one shown in Figure 14.6.

Figure 14.6 Deleting an app

Remember this trick if you run into any
issues with your database tables in this
chapter.

Gutting CrimeLab
Now that you have a database, your next
step is to change a lot of code inside of
CrimeLab, swapping it to use
mDatabase for storage instead of
mCrimes.
Start out by doing some demolition.
Strip out all the code related to
mCrimes in CrimeLab.

Listing 14.7 Tearing down
some walls (CrimeLab.java)
public class CrimeLab {
 private static CrimeLab sCrimeLab;

 private List<Crime> mCrimes;
 private Context mContext;

 private SQLiteDatabase mDatabase;

 public static CrimeLab get(Context context) {
 ...
 }

 private CrimeLab(Context context) {
 mContext = context.getApplicationContext();
 mDatabase = new CrimeBaseHelper(mContext)
 .getWritableDatabase();
 mCrimes = new ArrayList<>();
 }

 public void addCrime(Crime c) {
 mCrimes.add(c);
 }

 public List<Crime> getCrimes() {
 return mCrimes;
 return new ArrayList<>();
 }

 public Crime getCrime(UUID id) {
 for (Crime crime : mCrimes) {
 if (crime.getId().equals(id)) {
 return crime;
 }
 }
 return null;
 }
}

This will leave CriminalIntent in a state

where it is not really working; you can
see an empty list of crimes, but if you
add a crime it will show an empty
CrimePagerActivity. This is
irritating, but fine for now.

Writing to the
Database
The first step in using your
SQLiteDatabase is to write data to
it. You will need to insert new rows into
the crime table as well as update rows
that are already there when Crimes are
changed.

Using ContentValues
Writes and updates to databases are
done with the assistance of a class

called ContentValues.
ContentValues is a key-value store
class, like Java’s HashMap or the
Bundles you have been using so far.
However, unlike HashMap or
Bundle, it is specifically designed to
store the kinds of data SQLite can hold.
You will be creating ContentValues
instances from Crimes a few times in
CrimeLab. Add a private method to
take care of shuttling a Crime into a
ContentValues. (Remember to use
the same two-step trick from above to
add an import of CrimeTable: When
you get to
CrimeTable.Cols.UUID, type
Option+Return (Alt+Enter) and choose
Add import for

'com.bignerdranch.android.criminalintent.database.CrimeDbSchema.CrimeTable'

Listing 14.8 Creating a
ContentValues
(CrimeLab.java)
 public Crime getCrime(UUID id) {
 return null;
 }

 private static ContentValues
getContentValues(Crime crime) {
 ContentValues values = new ContentValues();
 values.put(CrimeTable.Cols.UUID,
crime.getId().toString());
 values.put(CrimeTable.Cols.TITLE,
crime.getTitle());
 values.put(CrimeTable.Cols.DATE,
crime.getDate().getTime());
 values.put(CrimeTable.Cols.SOLVED,
crime.isSolved() ? 1 : 0);

 return values;
 }
}

For the keys, you use your column
names. These are not arbitrary names;

they specify the columns that you want to
insert or update. If they are misspelled
or typo’d compared to what is in the
database, your insert or update will fail.
Every column is specified here except
for _id, which is automatically created
for you as a unique row ID.

Inserting and updating
rows
Now that you have a
ContentValues, it is time to add
rows to the database. Fill out
addCrime(Crime) with a new
implementation.

Listing 14.9 Inserting a row
(CrimeLab.java)
public void addCrime(Crime c) {
 ContentValues values = getContentValues(c);

 mDatabase.insert(CrimeTable.NAME, null, values);
}

The insert(String, String,
ContentValues) method has two
important arguments and one that is
rarely used. The first argument is the
table you want to insert into – here,
CrimeTable.NAME. The last
argument is the data you want to put in.
And the second argument? The second
argument is called nullColumnHack.
And what does it do?
Well, say that you decided to call

insert(…) with an empty
ContentValues. SQLite does not
allow this, so your insert(…) call
would fail.
If you passed in a value of uuid for
nullColumnHack, though, it would
ignore that empty ContentValues.
Instead, it would pass in a
ContentValues with uuid set to
null. This would allow your
insert(…) to succeed and create a
new row.
Handy? Perhaps someday. Not today,
though. Now you know about it, at least.
Continue applying ContentValues
by writing a method to update rows in
the database.

Listing 14.10 Updating a Crime
(CrimeLab.java)
public Crime getCrime(UUID id) {
 return null;
}

public void updateCrime(Crime crime) {
 String uuidString = crime.getId().toString();
 ContentValues values = getContentValues(crime);

 mDatabase.update(CrimeTable.NAME, values,
 CrimeTable.Cols.UUID + " = ?",
 new String[] { uuidString });
}

private static ContentValues getContentValues(Crime
crime) {

The update(String,
ContentValues, String,
String[]) method starts off similarly
to insert(…) – you pass in the table
name you want to update and the
ContentValues you want to assign
to each row you update. However, the

last bit is different, because now you
have to specify which rows get updated.
You do that by building a where clause
(the third argument) and then specifying
values for the arguments in the where
clause (the final String[] array).
You may be wondering why you are not
putting uuidString directly into the
where clause. That would be a bit
simpler than using ? and passing it in as
a String[], after all.
The answer is that in some cases your
String might itself contain SQL code.
If you put that String directly in your
query, that code could change the
meaning of your query, or even alter
your database. This is called a SQL
injection attack, and it is a bad thing

indeed.
If you use ?, though, your code will do
what you intended: treat it as a String
value, not code. So it is best to be safe
and use ? as a matter of habit, because it
will always do what you intend no
matter what the String contains.
Crime instances get modified in
CrimeFragment and will need to be
written out when CrimeFragment is
done. Add an override to
CrimeFragment.onPause() that
updates CrimeLab’s copy of your
Crime.

Listing 14.11 Pushing updates
(CrimeFragment.java)
@Override

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 UUID crimeId = (UUID)
getArguments().getSerializable(ARG_CRIME_ID);
 mCrime =
CrimeLab.get(getActivity()).getCrime(crimeId);
}

@Override
public void onPause() {
 super.onPause();

 CrimeLab.get(getActivity())
 .updateCrime(mCrime);
}

Sadly, you have no way of verifying that
this code works. That will need to wait
until you can read in the crimes you
updated. To make sure that everything
compiles correctly, run CriminalIntent
one more time before moving on to the
next section. You should see a blank list.

Reading from the
Database
Reading in data from SQLite is done
using the query(…) method.
SQLiteDatabase.query(…) has
quite a lot going on. There are a few
different overloads of this method. The
one you will be using looks like this:
public Cursor query(
 String table,
 String[] columns,
 String where,
 String[] whereArgs,
 String groupBy,
 String having,
 String orderBy,
 String limit)

If you have dealt with SQL before, then

most of these will be familiar to you as
arguments of the select statement. If
you have not, then you only need to
worry about the ones you will be using:
public Cursor query(
 String table,
 String[] columns,
 String where,
 String[] whereArgs,
 String groupBy,
 String having,
 String orderBy,
 String limit)

The table argument is the table to
query. The columns argument names
which columns you want values for and
what order you want to receive them in.
And then where and whereArgs do the
same thing they do in update(…).
Use query(…) in a convenience
method to call this on your

CrimeTable.

Listing 14.12 Querying for
Crimes (CrimeLab.java)
public void updateCrime(Crime crime) {
 ...
}

private Cursor queryCrimes(String whereClause,
String[] whereArgs) {
 Cursor cursor = mDatabase.query(
 CrimeTable.NAME,
 null, // columns - null selects all
columns
 whereClause,
 whereArgs,
 null, // groupBy
 null, // having
 null // orderBy
);

 return cursor;
}

Using a CursorWrapper

A Cursor leaves a lot to be desired as
a way to look at a table. All it does is
give you raw column values. Pulling
data out of a Cursor looks like this:
String uuidString = cursor.getString(
 cursor.getColumnIndex(CrimeTable.Cols.UUID));
String title = cursor.getString(
 cursor.getColumnIndex(CrimeTable.Cols.TITLE));
long date = cursor.getLong(
 cursor.getColumnIndex(CrimeTable.Cols.DATE));
int isSolved = cursor.getInt(
 cursor.getColumnIndex(CrimeTable.Cols.SOLVED));

Every time you pull a Crime out of a
cursor, you need to write this code one
more time. (And that does not include
the code to create a Crime instance
with those values!)
Remember the DRY rule of thumb: Don’t
repeat yourself. Instead of writing this
code each time you need to read data
from a Cursor, you can create your

own Cursor subclass that takes care of
this in one place. The easiest way to
write a Cursor subclass is to use
CursorWrapper. A
CursorWrapper lets you wrap a
Cursor you received from another
place and add new methods on top of it.
Create a new class in the database
package called
CrimeCursorWrapper.

Listing 14.13 Creating
CrimeCursorWrapper
(CrimeCursorWrapper.java)
public class CrimeCursorWrapper extends CursorWrapper
{
 public CrimeCursorWrapper(Cursor cursor) {
 super(cursor);
 }
}

That creates a thin wrapper around a
Cursor. It has all the same methods as
the Cursor it wraps, and calling those
methods does the exact same thing. This
would be pointless, except that it makes
it possible to add new methods that
operate on the underlying Cursor.
Add a getCrime() method that pulls
out relevant column data. (Remember to
use the two-step import trick for
CrimeTable here, as you did earlier.)

Listing 14.14 Adding
getCrime() method
(CrimeCursorWrapper.java)
public class CrimeCursorWrapper extends CursorWrapper
{
 public CrimeCursorWrapper(Cursor cursor) {
 super(cursor);
 }

 public Crime getCrime() {
 String uuidString =
getString(getColumnIndex(CrimeTable.Cols.UUID));
 String title =
getString(getColumnIndex(CrimeTable.Cols.TITLE));
 long date =
getLong(getColumnIndex(CrimeTable.Cols.DATE));
 int isSolved =
getInt(getColumnIndex(CrimeTable.Cols.SOLVED));

 return null;
 }
}

You will need to return a Crime with
an appropriate UUID from this method.
Add another constructor to Crime to do
this.

Listing 14.15 Adding Crime
constructor (Crime.java)
public Crime() {
 this(UUID.randomUUID());
 mId = UUID.randomUUID();
 mDate = new Date();
}

public Crime(UUID id) {
 mId = id;
 mDate = new Date();
}

And then finish up getCrime().

Listing 14.16 Finishing up
getCrime()
(CrimeCursorWrapper.java)
public Crime getCrime() {
 String uuidString =
getString(getColumnIndex(CrimeTable.Cols.UUID));
 String title =
getString(getColumnIndex(CrimeTable.Cols.TITLE));
 long date =
getLong(getColumnIndex(CrimeTable.Cols.DATE));
 int isSolved =
getInt(getColumnIndex(CrimeTable.Cols.SOLVED));

 Crime crime = new
Crime(UUID.fromString(uuidString));
 crime.setTitle(title);
 crime.setDate(new Date(date));
 crime.setSolved(isSolved != 0);

 return crime;
 return null;
}

(Android Studio will ask you to choose
between java.util.Date and
java.sql.Date. Even though you
are dealing with databases,
java.util.Date is the right choice
here.)

Converting to model
objects
With CrimeCursorWrapper,
vending out a List<Crime> from
CrimeLab will be straightforward.
You need to wrap the cursor you get
back from your query in a
CrimeCursorWrapper, then iterate
over it calling getCrime() to pull out

its Crimes.
For the first part, update
queryCrimes(…) to use
CrimeCursorWrapper.

Listing 14.17 Vending cursor
wrapper (CrimeLab.java)
private Cursor queryCrimes(String whereClause,
String[] whereArgs) {
private CrimeCursorWrapper queryCrimes(String
whereClause, String[] whereArgs) {
 Cursor cursor = mDatabase.query(
 CrimeTable.NAME,
 null, // columns - null selects all
columns
 whereClause,
 whereArgs,
 null, // groupBy
 null, // having
 null // orderBy
);

 return cursor;
 return new CrimeCursorWrapper(cursor);
}

Then get getCrimes() into shape.

Add code to query for all crimes, walk
the cursor, and populate a Crime list.

Listing 14.18 Returning crime
list (CrimeLab.java)
public List<Crime> getCrimes() {
 return new ArrayList<>();
 List<Crime> crimes = new ArrayList<>();

 CrimeCursorWrapper cursor = queryCrimes(null,
null);

 try {
 cursor.moveToFirst();
 while (!cursor.isAfterLast()) {
 crimes.add(cursor.getCrime());
 cursor.moveToNext();
 }
 } finally {
 cursor.close();
 }

 return crimes;
}

Database cursors are called cursors
because they always have their finger on

a particular place in a query. So to pull
the data out of a cursor, you move it to
the first element by calling
moveToFirst(), and then read in
row data. Each time you want to
advance to a new row, you call
moveToNext(), until finally
isAfterLast() tells you that your
pointer is off the end of the data set.
The last important thing to do is to call
close() on your Cursor. This bit of
housekeeping is important. If you do not
do it, your Android device will spit out
nasty error logs to berate you. Even
worse, if you make a habit out of it, you
will eventually run out of open file
handles and crash your app. So: Close
your cursors.

CrimeLab.getCrime(UUID) will
look similar to getCrimes(), except
it will only need to pull the first item, if
it is there.

Listing 14.19 Rewriting
getCrime(UUID)
(CrimeLab.java)
public Crime getCrime(UUID id) {
 return null;
 CrimeCursorWrapper cursor = queryCrimes(
 CrimeTable.Cols.UUID + " = ?",
 new String[] { id.toString() }
);

 try {
 if (cursor.getCount() == 0) {
 return null;
 }

 cursor.moveToFirst();
 return cursor.getCrime();
 } finally {
 cursor.close();
 }
}

That completes a few moving pieces:
You can insert crimes, so the
code that adds Crime to
CrimeLab when you press
the New Crime action item now
works.

You can successfully query the
database, so
CrimePagerActivity can
see all the Crimes in
CrimeLab, too.
CrimeLab.getCrime(UUID)
works, too, so each
CrimeFragment displayed
in CrimePagerActivity
is showing the real Crime.

Now you should be able to press New
Crime and see the new Crime displayed
in CrimePagerActivity. Run
CriminalIntent and verify that you can do
this. If you cannot, double-check your
implementations from this chapter so far.

Refreshing model data

You are not quite done. Your crimes are
persistently stored to the database, but
the persistent data is not read back in. So
if you press the Back button after editing
your new Crime, it will not show up in
CrimeListActivity.
This is because CrimeLab now works
a little differently. Before, there was

only one List<Crime> and one
object for each Crime: the one in the
List<Crime>. That was because
mCrimes was the only authority for
which Crimes your app knew about.
Things have changed now. mCrimes is
gone. So the List<Crime> returned
by getCrimes() is a snapshot of the
Crimes at one point in time. To refresh
CrimeListActivity, you need to
update that snapshot.
Most of the moving pieces to do this are
already in place.
CrimeListActivity already calls
updateUI() to refresh other parts of
its interface. All you need to do is have
it refresh its view of CrimeLab, too.

First, add a
setCrimes(List<Crime>)
method to CrimeAdapter to swap out
the crimes it displays.

Listing 14.20 Adding
setCrimes(List<Crime>)
(CrimeListFragment.java)
private class CrimeAdapter extends
RecyclerView.Adapter<CrimeHolder> {
 ...
 @Override
 public int getItemCount() {
 return mCrimes.size();
 }

 public void setCrimes(List<Crime> crimes) {
 mCrimes = crimes;
 }
}

Then call
setCrimes(List<Crime>) in
updateUI().

Listing 14.21 Calling
setCrimes(List<>)
(CrimeListFragment.java)
private void updateUI() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 List<Crime> crimes = crimeLab.getCrimes();

 if (mAdapter == null) {
 mAdapter = new CrimeAdapter(crimes);
 mCrimeRecyclerView.setAdapter(mAdapter);
 } else {
 mAdapter.setCrimes(crimes);
 mAdapter.notifyDataSetChanged();
 }

 updateSubtitle();
}

Now everything should work correctly.
Run CriminalIntent and verify that you
can add a crime, press the Back button,
and see that crime in
CrimeListActivity.
This is also a good time to test that calls

to updateCrime(Crime) in
CrimeFragment work, too. Press a
Crime and edit its title inside
CrimePagerActivity. Press the
Back button and make sure that the new
title is reflected in the list.

For the More
Curious: More
Databases
For the sake of space and simplicity, we
do not go into all the details you might
see in a professional app’s application
database here. There is a reason people
resort to tools like ORMs: This stuff can
get complicated.
For a more substantial application, you
will want to look into adding the
following to your database and your
description of it:

Data types on columns.
Technically, SQLite does not
have typed columns, so you can
get by without them. Giving
SQLite hints is kinder, though.

Indexes. Queries against
columns with appropriate
indexes are much faster than
columns without them.
Foreign keys. Your database
here only has one table, but
associated data would need
foreign key constraints, too.

There are also deeper performance
considerations to dive into. Your app
creates a new list of all-new Crime

objects every time you query the
database. A high-performance app
would optimize this by recycling
instances of Crime or by treating them
like an in-memory object store (like you
did before this chapter). That ends up
being quite a bit more code, so this is
another problem ORMs often try to
solve.

For the More
Curious: The
Application
Context
Earlier in this chapter, you used the
application context in the constructor of
the CrimeLab.
private CrimeLab(Context context) {
 mContext = context.getApplicationContext();
 ...
}

What makes the application context
special? When should you use the
application context over an activity as a

context?
It is important to think about the lifetime
of each of these objects. If any of your
activities exist, Android will have also
created an application object. Activities
come and go as the user navigates
through your application, but the
application object will still exist. It has
a much longer lifetime than any one
activity.
The CrimeLab is a singleton, which
means that once it is created, it will not
be destroyed until your entire
application process is destroyed. Also,
the CrimeLab maintains a reference to
its mContext object. If you store an
activity as the mContext object, that
activity will never be cleaned up by the

garbage collector because the
CrimeLab has a reference to it. Even if
the user has navigated away from that
activity, it will never be cleaned up.
To avoid this wasteful situation, you use
the application context so that your
activities can come and go and the
CrimeLab can maintain a reference to
a Context object. Always think about
the lifetime of your activities as you
keep a reference to them.

Challenge:
Deleting Crimes
If you added a Delete Crime action item
earlier, this challenge builds off of that
by adding the ability to delete crimes
from your database by calling a
deleteCrime(Crime) method on
CrimeLab, which will call
mDatabase.delete(…) to finish
the job.
And if you do not have a Delete Crime?
Well, go ahead and add it! Add an action
item to CrimeFragment’s toolbar
that calls

CrimeLab.deleteCrime(Crime)
and finish()es its Activity.

15
Implicit Intents

In Android, you can start an activity in
another application on the device using
an implicit intent. In an explicit intent,
you specify the class of the activity to
start, and the OS will start it. In an
implicit intent, you describe the job that
you need done, and the OS will start an
activity in an appropriate application for
you.
In CriminalIntent, you will use implicit
intents to enable picking a suspect for a

Crime from the user’s list of contacts
and sending a text-based report of a
crime. The user will choose a suspect
from whatever contacts app is installed
on the device and will be offered a
choice of apps to send the crime report
(Figure 15.1).

Figure 15.1 Opening contacts
app and text-sending app

Using implicit intents to harness other

applications is far easier than writing
your own implementations for common
tasks. Users also appreciate being able
to use apps they already know and like
in conjunction with your app.
Before you can create these implicit
intents, there is some setup to do in
CriminalIntent:

add CHOOSE SUSPECT and SEND
CRIME REPORT buttons to
CrimeFragment’s layouts

add an mSuspect field to the
Crime class that will hold the
name of a suspect
create a crime report using a
set of format resource strings

Adding Buttons
You are going to start by updating
CrimeFragment’s layout to include
new buttons for accusation and tattling:
namely, a suspect button and a report
button. First, add the strings that these
buttons will display.

Listing 15.1 Adding button
strings (strings.xml)
 <string name="subtitle_format">%1$d
crimes</string>
 <string name="crime_suspect_text">Choose
Suspect</string>
 <string name="crime_report_text">Send Crime
Report</string>
</resources>

In
layout/fragment_crime.xml,

add two button widgets, as shown in
Figure 15.2. Notice that in this diagram
we are not showing all of the
LinearLayout’s children so that you
can focus on the new and interesting
parts of the diagram on the right.

Figure 15.2 Adding suspect
and crime report buttons
(layout/fragment_crime.xml)

At this point, you can preview the

updated layout or run CriminalIntent to
confirm that your new buttons are in
place.

Adding a Suspect
to the Model Layer
Next, open Crime.java and add a
new member variable to give Crime a
field that will hold the name of a
suspect.

Listing 15.2 Adding suspect
field (Crime.java)
public class Crime {
 ...
 private boolean mSolved;
 private String mSuspect;

 public Crime() {
 this(UUID.randomUUID());
 }
 ...
 public void setSolved(boolean solved) {

 mSolved = solved;
 }

 public String getSuspect() {
 return mSuspect;
 }

 public void setSuspect(String suspect) {
 mSuspect = suspect;
 }
}

Now you need to add an additional field
to your crime database. First, add a
suspect column to CrimeDbSchema.

Listing 15.3 Adding suspect
column (CrimeDbSchema.java)
public class CrimeDbSchema {
 public static final class CrimeTable {
 public static final String NAME = "crimes";

 public static final class Cols {
 public static final String UUID = "uuid";
 public static final String TITLE =
"title";
 public static final String DATE = "date";
 public static final String SOLVED =
"solved";

 public static final String SUSPECT =
"suspect";
 }
 }
}

Add the column in
CrimeBaseHelper, also. (Notice
that the new code begins with a
quotation mark and comma after
CrimeTable.Cols.SOLVED +.)

Listing 15.4 Adding suspect
column again
(CrimeBaseHelper.java)
@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("create table " + CrimeTable.NAME + "
(" +
 " _id integer primary key autoincrement,
" +
 CrimeTable.Cols.UUID + ", " +
 CrimeTable.Cols.TITLE + ", " +
 CrimeTable.Cols.DATE + ", " +
 CrimeTable.Cols.SOLVED + ", " +
 CrimeTable.Cols.SUSPECT +

 ")"
);
}

Next, write to the new column in
CrimeLab.getContentValues(Crime)

Listing 15.5 Writing to suspect
column (CrimeLab.java)
 private static ContentValues
getContentValues(Crime crime) {
 ContentValues values = new ContentValues();
 values.put(CrimeTable.Cols.UUID,
crime.getId().toString());
 values.put(CrimeTable.Cols.TITLE,
crime.getTitle());
 values.put(CrimeTable.Cols.DATE,
crime.getDate().getTime());
 values.put(CrimeTable.Cols.SOLVED,
crime.isSolved() ? 1 : 0);
 values.put(CrimeTable.Cols.SUSPECT,
crime.getSuspect());

 return values;
 }
}

Now read from it in
CrimeCursorWrapper.

Listing 15.6 Reading from
suspect column
(CrimeCursorWrapper.java)
 public Crime getCrime() {
 String uuidString =
getString(getColumnIndex(CrimeTable.Cols.UUID));
 String title =
getString(getColumnIndex(CrimeTable.Cols.TITLE));
 long date =
getLong(getColumnIndex(CrimeTable.Cols.DATE));
 int isSolved =
getInt(getColumnIndex(CrimeTable.Cols.SOLVED));
 String suspect =
getString(getColumnIndex(CrimeTable.Cols.SUSPECT));

 Crime crime = new
Crime(UUID.fromString(uuidString));
 crime.setTitle(title);
 crime.setDate(new Date(date));
 crime.setSolved(isSolved != 0);
 crime.setSuspect(suspect);

 return crime;
 }
}

If CriminalIntent is already installed on
your device, your existing database will

not have the suspect column, and your
new
onCreate(SQLiteDatabase)
will not be run to add the new column,
either. As we said earlier, the easiest
solution is to wipe out your old database
in favor of a new one. (This happens a
lot in app development.)
First, uninstall the CriminalIntent app by
opening the app launcher screen and
dragging the CriminalIntent icon to the
top of the screen. All your sandbox
storage will get blown away, along with
the out-of-date database schema, as part
of the uninstall process. Next, run
CriminalIntent from Android Studio. A
new database will be created with the
new column as part of the app

installation process.

Using a Format
String
The last preliminary step is to create a
template crime report that can be
configured with the specific crime’s
details. Because you will not know a
crime’s details until runtime, you must
use a format string with placeholders
that can be replaced at runtime. Here is
the format string you will use:
<string name="crime_report">%1$s! The crime was
discovered on %2$s. %3$s, and %4$s

%1$s, %2$s, etc. are placeholders that
expect string arguments. In code, you

will call getString(…) and pass in
the format string and four other strings in
the order in which they should replace
the placeholders.
First, in strings.xml, add the strings
shown in Listing 15.7.

Listing 15.7 Adding string
resources (strings.xml)
 <string name="crime_suspect_text">Choose
Suspect</string>
 <string name="crime_report_text">Send Crime
Report</string>
 <string name="crime_report">%1$s!
 The crime was discovered on %2$s. %3$s, and
%4$s
 </string>
 <string name="crime_report_solved">The case is
solved</string>
 <string name="crime_report_unsolved">The case is
not solved</string>
 <string name="crime_report_no_suspect">there is
no suspect.</string>
 <string name="crime_report_suspect">the suspect
is %s.</string>

 <string
name="crime_report_subject">CriminalIntent Crime
Report</string>
 <string name="send_report">Send crime report
via</string>
</resources>

In CrimeFragment.java, add a
method that creates four strings and then
pieces them together and returns a
complete report.

Listing 15.8 Adding
getCrimeReport() method
(CrimeFragment.java)
 private void updateDate() {

mDateButton.setText(mCrime.getDate().toString());
 }

 private String getCrimeReport() {
 String solvedString = null;
 if (mCrime.isSolved()) {
 solvedString =
getString(R.string.crime_report_solved);
 } else {

 solvedString =
getString(R.string.crime_report_unsolved);
 }

 String dateFormat = "EEE, MMM dd";
 String dateString =
DateFormat.format(dateFormat,

mCrime.getDate()).toString();

 String suspect = mCrime.getSuspect();
 if (suspect == null) {
 suspect =
getString(R.string.crime_report_no_suspect);
 } else {
 suspect =
getString(R.string.crime_report_suspect, suspect);
 }

 String report =
getString(R.string.crime_report,
 mCrime.getTitle(), dateString,
solvedString, suspect);

 return report;
 }
}

(Note that there are two DateFormat
classes:
android.text.format.DateFormat

and java.text.DateFormat. Use
android.text.format.DateFormat

Now the preliminaries are complete, and
you can turn to implicit intents.

Using Implicit
Intents
An Intent is an object that describes
to the OS something that you want it to
do. With the explicit intents that you
have created thus far, you explicitly
name the activity that you want the OS to
start, like:
Intent intent = new Intent(getActivity(),
CrimePagerActivity.class);
intent.putExtra(EXTRA_CRIME_ID, crimeId);
startActivity(intent);

With an implicit intent, you describe to
the OS the job that you want done. The
OS then starts the activity that has

advertised itself as capable of doing that
job. If the OS finds more than one
capable activity, then the user is offered
a choice.

Parts of an implicit
intent
Here are the critical parts of an intent
that you can use to define the job you
want done:

the action that you are trying to
perform

These are typically constants
from the Intent class. If you
want to view a URL, you can

use Intent.ACTION_VIEW for
your action. To send something,
you use Intent.ACTION_SEND.

the location of any data
This can be something outside
the device, like the URL of a
web page, but it can also be a
URI to a file or a content URI
pointing to a record in a
ContentProvider.

the type of data that the action is for
This is a MIME type, like
text/html or audio/mpeg3. If
an intent includes a location for
data, then the type can usually
be inferred from that data.

optional categories
If the action is used to describe
what to do, the category
usually describes where, when,
or how you are trying to use an
activity. Android uses the
category
android.intent.category.LAUNCHER
to indicate that an activity
should be displayed in the top-
level app launcher. The
android.intent.category.INFO
category, on the other hand,
indicates an activity that shows
information about a package to
the user but should not show up
in the launcher.

A simple implicit intent for viewing a
website would include an action of
Intent.ACTION_VIEW and a data Uri
that is the URL of a website.
Based on this information, the OS will
launch the appropriate activity of an
appropriate application. (If it finds more
than one candidate, the user gets a
choice.)
An activity would advertise itself as an
appropriate activity for ACTION_VIEW
via an intent filter in the manifest. If you
wanted to write a browser app, for
instance, you would include the
following intent filter in the declaration
of the activity that should respond to
ACTION_VIEW:
<activity

 android:name=".BrowserActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action
android:name="android.intent.action.VIEW" />
 <category
android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http"
android:host="www.bignerdranch.com" />
 </intent-filter>
</activity>

To respond to implicit intents, a
DEFAULT category must be set explicitly
in an intent filter. The action element in
the intent filter tells the OS that the
activity is capable of performing the job,
and the DEFAULT category tells the OS
that this activity should be considered
for the job when the OS is asking for
volunteers. This DEFAULT category is
implicitly added to every implicit intent.
(In Chapter 24, you will see that this is
not the case when Android is not asking

for a volunteer.)
Implicit intents can also include extras,
just like explicit intents. Any extras on
an implicit intent, however, are not used
by the OS to find an appropriate activity.
Note that the action and data parts of an
intent can also be used in conjunction
with an explicit intent. That would be the
equivalent of telling a particular activity
to do something specific.

Sending a crime report
Let’s see how this works by creating an
implicit intent to send a crime report in
CriminalIntent. The job you want done is
sending plain text; the crime report is a

string. So the implicit intent’s action will
be ACTION_SEND. It will not point to
any data or have any categories, but it
will specify a type of text/plain.
In
CrimeFragment.onCreateView(…)
get a reference to the SEND CRIME REPORT
button and set a listener on it. Within the
listener’s implementation, create an
implicit intent and pass it into
startActivity(Intent).

Listing 15.9 Sending a crime
report (CrimeFragment.java)
private Crime mCrime;
private EditText mTitleField;
private Button mDateButton;
private CheckBox mSolvedCheckbox;
private Button mReportButton;
...
public View onCreateView(LayoutInflater inflater,

ViewGroup container,
 Bundle savedInstanceState) {
 ...

 mReportButton = (Button)
v.findViewById(R.id.crime_report);
 mReportButton.setOnClickListener(new
View.OnClickListener() {
 public void onClick(View v) {
 Intent i = new
Intent(Intent.ACTION_SEND);
 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_TEXT,
getCrimeReport());
 i.putExtra(Intent.EXTRA_SUBJECT,

getString(R.string.crime_report_subject));
 startActivity(i);
 }
 });

 return v;
}

Here you use the Intent constructor
that accepts a string that is a constant
defining the action. There are other
constructors that you can use depending
on what kind of implicit intent you need

to create. You can find them all on the
Intent reference page in the
documentation. There is no constructor
that accepts a type, so you set it
explicitly.
You include the text of the report and the
string for the subject of the report as
extras. Note that these extras use
constants defined in the Intent class.
Any activity responding to this intent
will know these constants and what to
do with the associated values.
Run CriminalIntent and press the SEND
CRIME REPORT button. Because this intent
will likely match many activities on the
device, you will probably see a list of
activities presented in a chooser
(Figure 15.3).

Figure 15.3 Activities
volunteering to send your
crime report

If you are offered a choice, make a
selection. You will see your crime
report loaded into the app that you
chose. All you have to do is address and
send it.
If, on the other hand, you do not see a
chooser, that means one of two things.
Either you have already set a default app
for an identical implicit intent, or your
device has only a single activity that can
respond to this intent.
Often, it is best to go with the user’s
default app for an action. In

CriminalIntent, however, you always
want the user to have a choice for
ACTION_SEND. Today a user might
want to be discreet and email the crime
report, but tomorrow he or she may
prefer public shaming via Twitter.
You can create a chooser to be shown
every time an implicit intent is used to
start an activity. After you create your
implicit intent as before, you call the
following Intent method and pass in
the implicit intent and a string for the
chooser’s title:
 public static Intent createChooser(Intent target,
String title)

Then you pass the intent returned from
createChooser(…) into
startActivity(…).

In CrimeFragment.java, create a
chooser to display the activities that
respond to your implicit intent.

Listing 15.10 Using a chooser
(CrimeFragment.java)
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mReportButton.setOnClickListener(new
View.OnClickListener() {
 public void onClick(View v) {
 Intent i = new
Intent(Intent.ACTION_SEND);
 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_TEXT,
getCrimeReport());
 i.putExtra(Intent.EXTRA_SUBJECT,

getString(R.string.crime_report_subject));
 i = Intent.createChooser(i,
getString(R.string.send_report));
 startActivity(i);
 }

Run CriminalIntent and press the SEND
CRIME REPORT button. As long as you

have more than one activity that can
handle your intent, you will be offered a
list to choose from (Figure 15.4).

Figure 15.4 Sending text with
a chooser

Asking Android for a
contact

Now you are going to create another
implicit intent that enables users to
choose a suspect from their contacts.
This implicit intent will have an action
and a location where the relevant data
can be found. The action will be
Intent.ACTION_PICK. The data for

contacts is at
ContactsContract.Contacts.CONTENT_URI

In short, you are asking Android to help
pick an item in the contacts database.
You expect a result back from the started
activity, so you will pass the intent via
startActivityForResult(…)
along with a request code. In
CrimeFragment.java, add a
constant for the request code and a
member variable for the button.

Listing 15.11 Adding field for
suspect button
(CrimeFragment.java)
private static final int REQUEST_DATE = 0;
private static final int REQUEST_CONTACT = 1;
...
private Button mSuspectButton;
private Button mReportButton;

At the end of onCreateView(…), get
a reference to the button and set a
listener on it. Within the listener’s
implementation, create the implicit intent
and pass it into
startActivityForResult(…).
Also, once a suspect is assigned, show
the name on the suspect button.

Listing 15.12 Sending an
implicit intent
(CrimeFragment.java)
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 final Intent pickContact = new
Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 mSuspectButton = (Button)
v.findViewById(R.id.crime_suspect);
 mSuspectButton.setOnClickListener(new
View.OnClickListener() {

 public void onClick(View v) {
 startActivityForResult(pickContact,
REQUEST_CONTACT);
 }
 });

 if (mCrime.getSuspect() != null) {
 mSuspectButton.setText(mCrime.getSuspect());
 }

 return v;
}

You will be using pickContact one
more time in a bit, which is why you put
it outside mSuspectButton’s
OnClickListener.
Run CriminalIntent and press the CHOOSE
SUSPECT button. You should see a list of
contacts (Figure 15.5).

Figure 15.5 A list of possible
suspects

If you have a different contacts app
installed, your screen will look
different. Again, this is one of the
benefits of implicit intents. You do not
have to know the name of the contacts
application to use it from your app.
Users can install whatever app they like
best, and the OS will find and launch it.

Getting the data from the
contact list

Now you need to get a result back from
the contacts application. Contacts
information is shared by many
applications, so Android provides an in-
depth API for working with contacts
information through a

ContentProvider. Instances of this
class wrap databases and make it
available to other applications. You can
access a ContentProvider through
a ContentResolver.
Because you started the activity for a
result with ACTION_PICK, you will
receive an intent via
onActivityResult(…). This intent
includes a data URI. The URI is a
locator that points at the single contact
the user picked.
In CrimeFragment.java, retrieve a
contact’s name from the contacts
application in your
onActivityResult(…)
implementation in CrimeFragment.

Listing 15.13 Pulling contact
name out
(CrimeFragment.java)
@Override
public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 ...
 updateDate();

 } else if (requestCode == REQUEST_CONTACT && data
!= null) {
 Uri contactUri = data.getData();
 // Specify which fields you want your query
to return
 // values for
 String[] queryFields = new String[] {

ContactsContract.Contacts.DISPLAY_NAME
 };
 // Perform your query - the contactUri is
like a "where"
 // clause here
 Cursor c = getActivity().getContentResolver()
 .query(contactUri, queryFields, null,
null, null);

 try {
 // Double-check that you actually got
results
 if (c.getCount() == 0) {
 return;
 }

 // Pull out the first column of the first
row of data -
 // that is your suspect's name
 c.moveToFirst();
 String suspect = c.getString(0);
 mCrime.setSuspect(suspect);
 mSuspectButton.setText(suspect);
 } finally {
 c.close();
 }
 }
}

In Listing 15.13, you create a query that
asks for all the display names of the
contacts in the returned data. Then you
query the contacts database and get a
Cursor object to work with. Because
you know that the cursor only contains
one item, you move to the first item and

get it as a string. This string will be the
name of the suspect, and you use it to set
the Crime’s suspect and the text of the
CHOOSE SUSPECT button.
(The contacts database is a large topic in
itself. We will not cover it here. If you
would like to know more, read the
Contacts Provider API guide at
developer.android.com/​
guide/​topics/​providers/​
contacts-provider.html.)
Go ahead and run your app. Some
devices may not have a contacts app for
you to use. If that is the case, use an
emulator to test this code.

Contacts permissions

How are you getting permission to read
from the contacts database? The contacts
app is extending its permissions to you.
The contacts app has full permissions to
the contacts database. When the contacts
app returns a data URI in an Intent to
the parent activity, it also adds the flag
Intent.FLAG_GRANT_READ_URI_PERMISSION

This flag signals to Android that the
parent activity in CriminalIntent should
be allowed to use this data one time.
This works well because you do not
really need access to the entire contacts
database. You only need access to one
contact inside that database.

Checking for responding

activities

The first implicit intent you created in
this chapter will always be responded to
in some way – there may be no way to
send a report, but the chooser will still
display properly. However, that is not
the case for the second example: Some
devices or users may not have a contacts
app, and if the OS cannot find a matching
activity, then the app will crash.
The fix is to check with part of the OS
called the PackageManager first. Do
this in onCreateView(…).

Listing 15.14 Guarding against
no contacts app
(CrimeFragment.java)

public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 if (mCrime.getSuspect() != null) {
 mSuspectButton.setText(mCrime.getSuspect());
 }

 PackageManager packageManager =
getActivity().getPackageManager();
 if (packageManager.resolveActivity(pickContact,
 PackageManager.MATCH_DEFAULT_ONLY) ==
null) {
 mSuspectButton.setEnabled(false);
 }

 return v;
}

PackageManager knows about all
the components installed on your
Android device, including all of its
activities. (You will run into the other
components later on in this book.) By
calling
resolveActivity(Intent,
int), you ask it to find an activity that

matches the Intent you gave it. The
MATCH_DEFAULT_ONLY flag restricts
this search to activities with the
CATEGORY_DEFAULT flag, just like
startActivity(Intent) does.
If this search is successful, it will return
an instance of ResolveInfo telling
you all about which activity it found. On
the other hand, if the search returns
null, the game is up – no contacts app.
So you disable the useless suspect
button.
If you would like to verify that your
filter works, but do not have a device
without a contacts application,
temporarily add an additional category
to your intent. This category does
nothing, but it will prevent any contacts

applications from matching your intent.

Listing 15.15 Adding dummy
code to verify filter
(CrimeFragment.java)
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 final Intent pickContact = new
Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 pickContact.addCategory(Intent.CATEGORY_HOME);
 mSuspectButton = (Button)
v.findViewById(R.id.crime_suspect);
 mSuspectButton.setOnClickListener(new
View.OnClickListener() {
 ...
 });

Run CriminalIntent again, and you
should see the suspect button disabled
(Figure 15.6).

Figure 15.6 Disabled suspect
button

button

Delete the dummy code once you are
done verifying this behavior.

Listing 15.16 Deleting dummy
code (CrimeFragment.java)
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 final Intent pickContact = new
Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 pickContact.addCategory(Intent.CATEGORY_HOME);
 mSuspectButton = (Button)
v.findViewById(R.id.crime_suspect);
 mSuspectButton.setOnClickListener(new
View.OnClickListener() {
 ...
 });

Challenge:
ShareCompat
Your first challenge is an easy one.
Android’s support library provides a
class called ShareCompat with an
inner class called IntentBuilder.
ShareCompat.IntentBuilder
makes it a bit easier to build the exact
kind of Intent you used for your
report button.
So your first challenge is this: In
mReportButton’s
OnClickListener, use
ShareCompat.IntentBuilder to

build your Intent instead of doing it
by hand.

Challenge: Another
Implicit Intent
Instead of sending a crime report, an
angry user may prefer a phone
confrontation with the suspect. Add a
new button that calls the named suspect.
You will need the phone number out of
the contacts database. This will require
you to query another table in the
ContactsContract database called
CommonDataKinds.Phone. Check
out the documentation for
ContactsContract and
ContactsContract.CommonDataKinds.Phone

for more information on how to query
for this information.
A couple of tips: To query for additional
data, you can use the
android.permission.READ_CONTACTS
permission. With that permission in
hand, you can read the
ContactsContract.Contacts._ID
to get a contact ID on your original
query. You can then use that ID to query
the CommonDataKinds.Phone
table.
Once you have the phone number, you
can create an implicit intent with a
telephone URI:
 Uri number = Uri.parse("tel:5551234");

The action can be

Intent.ACTION_DIAL or
Intent.ACTION_CALL. What is the
difference? ACTION_CALL pulls up the
phone app and immediately calls the
number sent in the intent; ACTION_DIAL
just dials the number and waits for the
user to initiate the call.
We recommend using ACTION_DIAL. It is
the kinder, gentler option. ACTION_CALL
may be restricted and will definitely
require a permission. Your user may
also appreciate the chance to cool down
before pressing the Call button.

16
Taking Pictures

with Intents
Now that you know how to work with
implicit intents, you can document your
crimes in even more detail. With a
picture of the crime, you can share the
gory details with everyone.
Taking a picture will involve a couple of
new tools, used in combination with a
tool you recently got to know: the
implicit intent. An implicit intent can be

used to start up the user’s favorite
camera application and receive a new
picture from it.
An implicit intent can get you a picture,
but where do you put it? And once the
picture comes in, how do you display it?
In this chapter, you will answer both of
those questions.

A Place for Your
Photo
The first step is to build out a place for
your photo to live. You will need two
new View objects: an ImageView to
display the photo and a Button to

press to take a new photo (Figure 16.1).

Figure 16.1 New UI

Dedicating an entire row to a thumbnail
and a button would make your app look
clunky and unprofessional. You do not
want that, so you will arrange things
nicely.
Add new views to
fragment_crime.xml to build out
this new area. Start with the lefthand
side, adding an ImageView for the
picture and an ImageButton to take a
picture (Figure 16.2).

Figure 16.2 Camera view
layout
(res/layout/fragment_crime.xml

Then continue with the righthand side,
moving your title TextView and
EditText into a new
LinearLayout child to the
LinearLayout you built in

Figure 16.2 (Figure 16.3).

Figure 16.3 Title layout
(res/layout/fragment_crime.xml

Run CriminalIntent, and you should see
your new UI looking just like
Figure 16.1.
Looks great. Now, to respond to presses
on your ImageButton and to control

the content of your ImageView, you
need instance variables referring to each
of them. Call findViewById(int)
as usual on your inflated
fragment_crime.xml to find your
new views and wire them up.

Listing 16.1 Adding instance
variables
(CrimeFragment.java)
private Button mSuspectButton;
private Button mReportButton;
private ImageButton mPhotoButton;
private ImageView mPhotoView;
...
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 PackageManager packageManager =
getActivity().getPackageManager();
 if (packageManager.resolveActivity(pickContact,
 PackageManager.MATCH_DEFAULT_ONLY) ==
null) {

 mSuspectButton.setEnabled(false);
 }

 mPhotoButton = (ImageButton)
v.findViewById(R.id.crime_camera);
 mPhotoView = (ImageView)
v.findViewById(R.id.crime_photo);

 return v;
}

And with that, you are done with the UI
for the time being. (You will wire those
buttons up in a minute or two.)

File Storage
Your photo needs more than a place on
the screen. Full-size pictures are too
large to stick inside a SQLite database,
much less an Intent. They will need a
place to live on your device’s
filesystem.
Luckily, you have a place to stash these
files: your private storage. Recall that
you used your private storage to save
your SQLite database. With methods like
Context.getFileStreamPath(String)
and Context.getFilesDir(), you
can do the same thing with regular files,

too (which will live in a subfolder
adjacent to the databases subfolder
your SQLite database lives in).
These are the basic file and directory
methods in the Context class:

File getFilesDir()
returns a handle to the
directory for private
application files

FileInputStream
openFileInput(String
name)

opens an existing file for input
(relative to the files directory)

FileOutputStream
openFileOutput(String

name, int mode)

opens a file for output,
possibly creating it (relative to
the files directory)

File getDir(String name,
int mode)

gets (and possibly creates) a
subdirectory within the files
directory

String[] fileList()
gets a list of file names in the
main files directory, such as for
use with
openFileInput(String)

File getCacheDir()

returns a handle to a directory
you can use specifically for
storing cache files; you should
take care to keep this directory
tidy and use as little space as
possible

There is a catch, though. Because these
files are private, only your own
application can read or write to them.
As long as no other app needs to access
those files, these methods are sufficient.
However, they are not sufficient if
another application needs to write to
your files. This is the case for
CriminalIntent: The external camera app
will need to save the picture it takes as a
file in your app. In those cases, these

methods do not go far enough: While
there is a
Context.MODE_WORLD_READABLE
flag you can pass into
openFileOutput(String,
int), it is deprecated and not
completely reliable in its effects on
newer devices. Once upon a time you
could also transfer files using publicly
accessible external storage, but this has
been locked down in recent versions of
Android for security reasons.
If you need to share or receive files with
other apps (files like stored pictures),
you need to expose those files through a
ContentProvider. A
ContentProvider allows you to
expose content URIs to other apps. They

can then download from or write to
those content URIs. Either way, you are
in control and always have the option to
deny those reads or writes if you so
choose.

Using FileProvider
When all you need to do is receive a file
from another application, implementing
an entire ContentProvider is
overkill. Fortunately, Google has
provided a convenience class called
FileProvider that takes care of
everything except the configuration
work.
The first step is to declare

FileProvider as a
ContentProvider hooked up to a
specific authority. This is done by
adding a content provider declaration to
your AndroidManifest.xml.

Listing 16.2 Adding a
FileProvider declaration
(AndroidManifest.xml)
<activity
 android:name=".CrimePagerActivity"
 android:parentActivityName=".CrimeListActivity">
</activity>
<provider

android:name="android.support.v4.content.FileProvider"

android:authorities="com.bignerdranch.android.criminalintent.fileprovider"

 android:exported="false"
 android:grantUriPermissions="true">
</provider>

The authority is a location – a place that
files will be saved to. By hooking up
FileProvider to your authority, you
give other apps a target for their
requests. By adding the
exported="false" attribute, you keep
anyone from using your provider except
you or anyone you grant permission to.
And by adding the
grantUriPermissions attribute, you
add the ability to grant other apps
permission to write to URIs on this
authority when you send them out in an
intent. (Keep an eye out for this later.)
Now that you have told Android where
your FileProvider is, you also need
to tell your FileProvider which
files it is exposing. This bit of

configuration is done with an extra XML
resource file. Right-click your
app/res folder in the project tool
window and select New → Android resource
file. For Resource type, select XML, and then
enter files for the name.
Crack open xml/files.xml, switch
to the Text tab, and replace its contents
with the following:

Listing 16.3 Filling out the
paths description
(res/xml/files.xml)
<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">

</PreferenceScreen>
<paths>
 <files-path name="crime_photos" path="."/>
</paths>

This XML file is a description that says,
“Map the root path of my private storage
as crime_photos.” You will not use the
crime_photos name –
FileProvider uses that internally.
Now hook up files.xml to your
FileProvider by adding a meta-
data tag in your
AndroidManifest.xml.

Listing 16.4 Hooking up the
paths description
(AndroidManifest.xml)
<provider

android:name="android.support.v4.content.FileProvider"

android:authorities="com.bignerdranch.android.criminalintent.fileprovider"

 android:exported="false"
 android:grantUriPermissions="true">

 <meta-data

android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/files"/>
</provider>

Designating a picture
location
Time to give your pictures a place to
live locally. First, add a method to
Crime to get a well-known filename.

Listing 16.5 Adding the
filename-derived property
(Crime.java)
 public void setSuspect(String suspect) {
 mSuspect = suspect;
 }

 public String getPhotoFilename() {
 return "IMG_" + getId().toString() + ".jpg";

 }
}

Crime.getPhotoFilename()
will not know what folder the photo will
be stored in. However, the filename will
be unique, since it is based on the
Crime’s ID.
Next, find where the photos should live.
CrimeLab is responsible for
everything related to persisting data in
CriminalIntent, so it is a natural owner
for this idea. Add a
getPhotoFile(Crime) method to
CrimeLab that provides a complete
local filepath for Crime’s image.

Listing 16.6 Finding photo file
location (CrimeLab.java)
public class CrimeLab {

 ...
 public Crime getCrime(UUID id) {
 ...
 }

 public File getPhotoFile(Crime crime) {
 File filesDir = mContext.getFilesDir();
 return new File(filesDir,
crime.getPhotoFilename());
 }

 public void updateCrime(Crime crime) {
 ...
 }

This code does not create any files on
the filesystem. It only returns File
objects that point to the right locations.
Later on, you will use FileProvider
to expose these paths as URIs.

Using a Camera
Intent
The next step is to actually take the
picture. This is the easy part: You get to
use an implicit intent again.
Start by stashing the location of the
photo file. (You will use it a few more
times, so this will save a bit of work.)

Listing 16.7 Grabbing photo
file location
(CrimeFragment.java)
private Crime mCrime;
private File mPhotoFile;
private EditText mTitleField;

...
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 UUID crimeId = (UUID)
getArguments().getSerializable(ARG_CRIME_ID);
 mCrime =
CrimeLab.get(getActivity()).getCrime(crimeId);
 mPhotoFile =
CrimeLab.get(getActivity()).getPhotoFile(mCrime);
}

Next you will hook up the camera button
to actually take the picture. The camera
intent is defined in MediaStore,
Android’s lord and master of all things
media related. You will send an intent
with an action of
MediaStore.ACTION_IMAGE_CAPTURE
and Android will fire up a camera
activity and take a picture for you.
But hold that thought for one minute.

Firing the intent
Now you are ready to fire the camera
intent. The action you want is called
ACTION_IMAGE_CAPTURE, and it is
defined in the MediaStore class.
MediaStore defines the public
interfaces used in Android for
interacting with common media –
images, videos, and music. This includes
the image capture intent, which fires up
the camera.
By default, ACTION_IMAGE_CAPTURE
will dutifully fire up the camera
application and take a picture, but it will
not be a full-resolution picture. Instead,
it will take a small-resolution thumbnail

picture and stick it inside the Intent
object returned in
onActivityResult(…).
For a full-resolution output, you need to
tell it where to save the image on the
filesystem. This can be done by passing
a Uri pointing to where you want to
save the file in
MediaStore.EXTRA_OUTPUT. This
Uri will point at a location serviced by
FileProvider.
Write an implicit intent to ask for a new
picture to be taken into the location
saved in mPhotoFile. Add code to
ensure that the button is disabled if there
is no camera app or if there is no
location at which to save the photo. (To
determine whether there is a camera app

available, you will query
PackageManager for activities that
respond to your camera implicit intent.
Querying the PackageManager is
discussed in more detail in the section
called Checking for responding
activities in Chapter 15.)

Listing 16.8 Firing a camera
intent (CrimeFragment.java)
private static final int REQUEST_DATE = 0;
private static final int REQUEST_CONTACT = 1;
private static final int REQUEST_PHOTO= 2;
...
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mPhotoButton = (ImageButton)
v.findViewById(R.id.crime_camera);
 final Intent captureImage = new
Intent(MediaStore.ACTION_IMAGE_CAPTURE);

 boolean canTakePhoto = mPhotoFile != null &&

captureImage.resolveActivity(packageManager) != null;
 mPhotoButton.setEnabled(canTakePhoto);

 mPhotoButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Uri uri =
FileProvider.getUriForFile(getActivity(),

"com.bignerdranch.android.criminalintent.fileprovider",

 mPhotoFile);

captureImage.putExtra(MediaStore.EXTRA_OUTPUT, uri);

 List<ResolveInfo> cameraActivities =
getActivity()

.getPackageManager().queryIntentActivities(captureImage,

PackageManager.MATCH_DEFAULT_ONLY);

 for (ResolveInfo activity :
cameraActivities) {

getActivity().grantUriPermission(activity.activityInfo.packageName,

 uri,
Intent.FLAG_GRANT_WRITE_URI_PERMISSION);
 }

 startActivityForResult(captureImage,
REQUEST_PHOTO);
 }
 });

 mPhotoView = (ImageView)
v.findViewById(R.id.crime_photo);

 return v;
}

Calling
FileProvider.getUriForFile(…)
translates your local filepath into a Uri
the camera app can see. To actually
write to it, though, you need to grant the
camera app permission. To do this, you
grant the
Intent.FLAG_GRANT_WRITE_URI_PERMISSION
flag to every activity your
cameraImage intent can resolve to.
That grants them all a write permission
specifically for this one Uri. Adding
the android:grantUriPermissions

attribute in your provider declaration
was necessary to open this bit of
functionality. Later, you will revoke this
permission to close up that gap in your
armor again.
Run CriminalIntent and press the camera
button to run your camera app
(Figure 16.4).

Figure 16.4 [Insert your
camera app here]

Scaling and
Displaying Bitmaps
With that, you are successfully taking
pictures. Your image will be saved to a
file on the filesystem for you to use.
Your next step will be to take this file,
load it up, and show it to the user. To do
this, you need to load it into a
reasonably sized Bitmap object. To get
a Bitmap from a file, all you need to
do is use the BitmapFactory class:
 Bitmap bitmap =
BitmapFactory.decodeFile(mPhotoFile.getPath());

There has to be a catch, though, right?

Otherwise we would have put that in
bold, you would have typed it in, and
you would be done.
Here is the catch: When we say
“reasonably sized,” we mean it. A
Bitmap is a simple object that stores
literal pixel data. That means that even if
the original file was compressed, there
is no compression in the Bitmap itself.
So a 16-megapixel, 24-bit camera image
– which might only be a 5 MB JPG –
would blow up to 48 MB loaded into a
Bitmap object (!).
You can get around this, but it does mean
that you will need to scale the bitmap
down by hand. You will first scan the
file to see how big it is, next figure out
how much you need to scale it by to fit it

in a given area, and finally reread the
file to create a scaled-down Bitmap
object.
Create a new class called
PictureUtils.java for your new
method and add a static method to it
called
getScaledBitmap(String,
int, int).

Listing 16.9 Creating
getScaledBitmap(…)
(PictureUtils.java)
public class PictureUtils {
 public static Bitmap getScaledBitmap(String path,
int destWidth, int destHeight) {
 // Read in the dimensions of the image on
disk
 BitmapFactory.Options options = new
BitmapFactory.Options();
 options.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(path, options);

 float srcWidth = options.outWidth;
 float srcHeight = options.outHeight;

 // Figure out how much to scale down by
 int inSampleSize = 1;
 if (srcHeight > destHeight || srcWidth >
destWidth) {
 float heightScale = srcHeight /
destHeight;
 float widthScale = srcWidth / destWidth;

 inSampleSize = Math.round(heightScale >
widthScale ? heightScale :
 widthScale);
 }

 options = new BitmapFactory.Options();
 options.inSampleSize = inSampleSize;

 // Read in and create final bitmap
 return BitmapFactory.decodeFile(path,
options);
 }
}

The key parameter above is
inSampleSize. This determines how
big each “sample” should be for each
pixel – a sample size of 1 has one final

horizontal pixel for each horizontal pixel
in the original file, and a sample size of
2 has one horizontal pixel for every two
horizontal pixels in the original file. So
when inSampleSize is 2, the image
has a quarter of the number of pixels of
the original.
One more bit of bad news: When your
fragment initially starts up, you will not
know how big PhotoView is. Until a
layout pass happens, views do not have
dimensions onscreen. The first layout
pass happens after onCreate(…),
onStart(), and onResume()
initially run, which is why PhotoView
does not know how big it is.
There are two solutions to this problem:
Either you wait until a layout pass

happens, or you use a conservative
estimate. The conservative estimate
approach is less efficient, but more
straightforward. Write another static
method called
getScaledBitmap(String,
Activity) to scale a Bitmap for a
particular Activity’s size.

Listing 16.10 Writing
conservative scale method
(PictureUtils.java)
public class PictureUtils {
 public static Bitmap getScaledBitmap(String path,
Activity activity) {
 Point size = new Point();

activity.getWindowManager().getDefaultDisplay()
 .getSize(size);

 return getScaledBitmap(path, size.x, size.y);
 }

This method checks to see how big the
screen is and then scales the image down
to that size. The ImageView you load
into will always be smaller than this
size, so this is a very conservative
estimate.
Next, to load this Bitmap into your
ImageView, add a method to
CrimeFragment to update
mPhotoView.

Listing 16.11 Updating
mPhotoView
(CrimeFragment.java)
 private String getCrimeReport() {
 ...
 }

 private void updatePhotoView() {
 if (mPhotoFile == null ||
!mPhotoFile.exists()) {

 mPhotoView.setImageDrawable(null);
 } else {
 Bitmap bitmap =
PictureUtils.getScaledBitmap(
 mPhotoFile.getPath(),
getActivity());
 mPhotoView.setImageBitmap(bitmap);
 }
 }
}

Then call that method from inside
onCreateView(…) and
onActivityResult(…).

Listing 16.12 Calling
updatePhotoView()
(CrimeFragment.java)
 mPhotoButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 ...
 startActivityForResult(captureImage,
REQUEST_PHOTO);
 }
 });

 mPhotoView = (ImageView)
v.findViewById(R.id.crime_photo);
 updatePhotoView();

 return v;
}

@Override
public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 ...
 } else if (requestCode == REQUEST_CONTACT && data
!= null) {
 ...
 } else if (requestCode == REQUEST_PHOTO) {
 Uri uri =
FileProvider.getUriForFile(getActivity(),

"com.bignerdranch.android.criminalintent.fileprovider",

 mPhotoFile);

 getActivity().revokeUriPermission(uri,

Intent.FLAG_GRANT_WRITE_URI_PERMISSION);

 updatePhotoView();
 }
}

Now that the camera is done writing to
your file, you can revoke the permission,
closing off access to your file again. Run
CriminalIntent again, and you should see
your image displayed in the thumbnail
view.

Declaring Features
Your camera implementation works
great now. One more task remains: Tell
potential users about it. When your app
uses a feature like the camera – or near-
field communication, or any other
feature that may vary from device to
device – it is strongly recommended that
you tell Android about it. This allows
other apps (like the Google Play Store)
to refuse to install your app if it uses a
feature the device does not support.
To declare that you use the camera, add
a <uses-feature> tag to your

AndroidManifest.xml.

Listing 16.13 Adding uses-
feature tag
(AndroidManifest.xml)
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.bignerdranch.android.criminalintent"
>

 <uses-feature
android:name="android.hardware.camera"
 android:required="false"
 />

You include the optional attribute
android:required here. Why? By
default, declaring that you use a feature
means that your app will not work
correctly without that feature. This is not
the case for CriminalIntent. You call
resolveActivity(…) to check for

a working camera app, then gracefully
disable the camera button if you do not
find one.
Passing in
android:required="false" handles
this situation correctly. You tell Android
that your app can work fine without the
camera, but that some parts will be
disabled as a result.

Challenge: Detail
Display
While you can certainly see the image
you display here, you cannot see it very
well. For this first challenge, create a
new DialogFragment that displays
a zoomed-in version of your crime scene
photo. When you press on the thumbnail,
it should pull up the zoomed-in
DialogFragment.

Challenge:
Efficient Thumbnail
Load
In this chapter, you had to use a crude
estimate of the size you should scale
down to. This is not ideal, but it works
and is quick to implement.
With the out-of-the-box APIs, you can
use a tool called
ViewTreeObserver, an object that
you can get from any view in your
Activity’s hierarchy:
 ViewTreeObserver observer =
mImageView.getViewTreeObserver();

You can register a variety of listeners on
a ViewTreeObserver, including
OnGlobalLayoutListener. This
listener fires an event whenever a layout
pass happens.
For this challenge, adjust your code so
that it uses the dimensions of
mPhotoView when they are valid and
waits until a layout pass before initially
calling updatePhotoView().

17
Two-Pane

Master-Detail
Interfaces

In this chapter, you will create a tablet
interface for CriminalIntent that allows
users to see and interact with the list of
crimes and the details of an individual
crime at the same time. Figure 17.1
shows this list-detail interface, which is
also commonly referred to as a master-
detail interface.

Figure 17.1 Master and detail
sharing the spotlight

You will need a tablet device or AVD
for testing in this chapter. To create a
tablet AVD, select Tools → Android → AVD
Manager. Click + Create Virtual Device... and
select the Tablet category on the left.
Select your favorite hardware profile

(Figure 17.2), click Next, and choose an
API level of at least 21.

Figure 17.2 Device selections
for a tablet AVD

Adding Layout

Flexibility
On a phone, you want
CrimeListActivity to inflate a
single-pane layout, as it currently does.
On a tablet, you want it to inflate a two-
pane layout that is capable of displaying
the master and detail views at the same
time.
In the two-pane layout,
CrimeListActivity will host both
a CrimeListFragment and a
CrimeFragment, as shown in
Figure 17.3.

Figure 17.3 Different types of
layouts

To make this happen, you are going to:
modify
SingleFragmentActivity
so that the layout that gets
inflated is not hardcoded

create a new layout that
consists of two fragment

containers

modify
CrimeListActivity so
that it will inflate a single-
container layout on phones and
a two-container layout on
tablets

Modifying
SingleFragmentActivity

CrimeListActivity is a subclass
of SingleFragmentActivity.
Currently,
SingleFragmentActivity is set
up to always inflate
activity_fragment.xml. To

make SingleFragmentActivity
more flexible, you are going to enable a
subclass to provide its own resource ID
for the layout instead.
In
SingleFragmentActivity.java
add a protected method that returns the
ID of the layout that the activity will
inflate.

Listing 17.1 Making
SingleFragmentActivity
flexible
(SingleFragmentActivity.java
public abstract class SingleFragmentActivity extends
AppCompatActivity {

 protected abstract Fragment createFragment();

 @LayoutRes
 protected int getLayoutResId() {

 return R.layout.activity_fragment;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment);
 setContentView(getLayoutResId());

 FragmentManager fm =
getSupportFragmentManager();
 ...
 }
}

The default implementation of
SingleFragmentActivity will
work the same as before, but now its
subclasses can choose to override
getLayoutResId() to return a
layout other than
activity_fragment.xml. You
annotate getLayoutResId() with
@LayoutRes to tell Android Studio that
any implementation of this method

should return a valid layout resource ID.

Creating a layout with
two fragment
containers
In the project tool window, right-click
res/layout/ and create a new
Android XML file. Ensure that the
resource type is Layout, name the file
activity_twopane.xml, and give
it a LinearLayout root element.
Use Figure 17.4 to write the XML for the
two-pane layout.

Figure 17.4 A layout with two
fragment containers
(layout/activity_twopane.xml

Note that the first FrameLayout has a
fragment_container layout ID, so the
code in
SingleFragmentActivity.onCreate(…)
can work as before. When the activity is
created, the fragment that is returned in
createFragment() will appear in

the lefthand pane.
Test this layout in
CrimeListActivity by overriding
getLayoutResId() to return
R.layout.activity_twopane.

Listing 17.2 Changing to two-
pane layout file
(CrimeListActivity.java)
public class CrimeListActivity extends
SingleFragmentActivity {

 @Override
 protected Fragment createFragment() {
 return new CrimeListFragment();
 }

 @Override
 protected int getLayoutResId() {
 return R.layout.activity_twopane;
 }
}

Run CriminalIntent on a tablet device

and confirm that you have two panes
(Figure 17.5). (You will need to add a
crime to see the panes.) Note that the
larger detail pane is empty and that
pressing a list item will not display the
crime’s details. You will hook up the
detail container later in the chapter.

Figure 17.5 Two-pane layout
on a tablet

As currently written,
CrimeListActivity will also
inflate the two-pane interface when
running on a phone. In the next section,
you will fix that using an alias resource.

Using an alias resource
An alias resource is a resource that
points to another resource. Alias
resources live in res/values/ and,
by convention, are defined in a
refs.xml file.
Your next job will be to have
CrimeListActivity show a
different layout file depending on
whether it is on a tablet or a phone. You
do this the same way you show a
different layout for landscape and
portrait: by using a resource qualifier.
Doing that with files in res/layout
works, but it has some drawbacks. Each
layout file has to contain a complete

copy of the layout you want to show.
This can result in a lot of redundancy. If
you wanted an
activity_masterdetail.xml
layout file, you would have to copy all
of activity_fragment.xml into
res/layout/activity_masterdetail.xml
and all of activity_twopane.xml
into res/layout-
sw600dp/activity_masterdetail.xml
(You will see what sw600dp does in a
moment.)
Instead of doing that, you will use an
alias resource. In this section, you will
create an alias resource that points to the
activity_fragment.xml layout
on phones and the
activity_twopane.xml layout on

tablets.
In the project tool window, right-click
the res/values directory and create
a new values resource file. Name the
file refs.xml and check that the
directory is values. It should have no
qualifiers. Click OK. Then add the item
shown in Listing 17.3.

Listing 17.3 Creating a default
alias resource value
(res/values/refs.xml)
<resources>

 <item name="activity_masterdetail"
type="layout">@layout/activity_fragment</item>

</resources>

This resource’s value is a reference to
the single-pane layout. It also has a

resource ID:
R.layout.activity_masterdetail.
Note that the alias’s type attribute is
what determines the inner class of the
ID. Even though the alias itself is in
res/values/, its ID is in R.layout.
You can now use this resource ID in
place of
R.layout.activity_fragment. Make
that change in CrimeListActivity.

Listing 17.4 Switching layout
again
(CrimeListActivity.java)
@Override
protected int getLayoutResId() {
 return R.layout.activity_twopane;masterdetail;
}

Run CriminalIntent to confirm that your

alias is working properly.
CrimeListActivity should inflate
the single-pane layout again.

Creating tablet
alternatives
Because your alias is in
res/values/, it is the default alias.
So, by default, CrimeListActivity
inflates the single-pane layout.
Now you are going to create an
alternative resource so that the
activity_masterdetail alias will
point to activity_twopane.xml
on larger devices.

In the project tool window, right-click
res/values/ and create a new
values resource file. As before, name the
file refs.xml and check that its
directory is values. But this time,
select Smallest Screen Width under Available
qualifiers and click the >> button to move
it over to the right (Figure 17.6).

Figure 17.6 Adding a qualifier

This qualifier is a bit different. It asks
you to specify a value for the smallest
screen width. Enter 600 here, and click
OK. Once your new resource file opens,
add the activity_masterdetail alias
to this file, too, pointing at a different
layout file.

Listing 17.5 Alternative alias
for larger devices
(res/values-
sw600dp/refs.xml)
<resources>

 <item name="activity_masterdetail"
type="layout">@layout/activity_twopane</item>

</resources>

Let’s explain what you are doing here.
Your goal is to have logic that works

like this:
For devices that are under a
specified size, use
activity_fragment.xml

For devices that are over a
specified size, use
activity_twopane.xml.

Android does not provide a way to use a
resource only when a device is under a
particular size, but it does provide the
next best thing. The -sw600dp
configuration qualifier lets you provide
resources only when a device is above a
certain size. The sw stands for “smallest
width,” but refers to the screen’s
smallest dimension, and thus is
independent of the device’s current

orientation.
With a -sw600dp qualifier, you are
saying, “Use this resource on any device
whose smallest dimension is 600dp or
greater.” This is a good rule of thumb for
specifying a tablet-sized screen.
What about the other part, where you
want to use
activity_fragment.xml on
smaller devices? Smaller devices will
not match your -sw600dp resource, so
the default will be used:
activity_fragment.xml.
Run CriminalIntent on a phone and on a
tablet. Confirm that the single- and two-
pane layouts appear where you expect
them.

Activity: Fragment
Boss
Now that your layouts are behaving
properly, you can turn to adding a
CrimeFragment to the detail
fragment container when
CrimeListActivity is sporting a
two-pane layout.
You might think to simply write an
alternative implementation of
CrimeHolder.onClick(View)
for tablets. Instead of starting a new
CrimePagerActivity, this
onClick(View) would get

CrimeListActivity’s
FragmentManager and commit a
fragment transaction that adds a
CrimeFragment to the detail
fragment container.
The code in your
CrimeListFragment.CrimeHolder
would look like this:
public void onClick(View view) {
 // Stick a new CrimeFragment in the activity's
layout
 Fragment fragment =
CrimeFragment.newInstance(mCrime.getId());
 FragmentManager fm =
getActivity().getSupportFragmentManager();
 fm.beginTransaction()
 .add(R.id.detail_fragment_container,
fragment)
 .commit();
}

This works, but it is not how stylish
Android programmers do things.
Fragments are intended to be standalone,

composable units. If you write a
fragment that adds fragments to the
activity’s FragmentManager, then
that fragment is making assumptions
about how the hosting activity works,
and your fragment is no longer a
standalone, composable unit.
For example, in the code above,
CrimeListFragment adds a
CrimeFragment to
CrimeListActivity and assumes
that CrimeListActivity has a
detail_fragment_container in its
layout. This is business that should be
handled by CrimeListFragment’s
hosting activity instead of
CrimeListFragment.
To maintain the independence of your

fragments, you will delegate work back
to the hosting activity by defining
callback interfaces in your fragments.
The hosting activities will implement
these interfaces to perform fragment-
bossing duties and layout-dependent
behavior.

Fragment callback
interfaces
To delegate functionality back to the
hosting activity, a fragment typically
defines a callback interface named
Callbacks. This interface defines work
that the fragment needs done by its boss,
the hosting activity. Any activity that

will host the fragment must implement
this interface.
With a callback interface, a fragment is
able to call methods on its hosting
activity without having to know anything
about which activity is hosting it.

Implementing
CrimeListFragment.Callbacks

To implement a Callbacks interface,
you first define a member variable that
holds an object that implements
Callbacks. Then you cast the hosting
activity to Callbacks and assign it to
that variable.
You assign the context in the Fragment

lifecycle method:
 public void onAttach(Context context)

This method is called when a fragment is
attached to an activity, whether it was
retained or not. Remember, Activity
is a subclass of Context, so
onAttach passes a Context as a
parameter, which is more flexible.
Ensure that you use the
onAttach(Context) signature for
onAttach and not the deprecated
onAttach(Activity) method,
which may be removed in future
versions of the API.
Similarly, you will set the variable to
null in the corresponding waning
lifecycle method:
 public void onDetach()

You set the variable to null here
because afterward you cannot access the
activity or count on the activity
continuing to exist.
In CrimeListFragment.java, add
a Callbacks interface to
CrimeListFragment. Also add an
mCallbacks variable and override
onAttach(Context) and
onDetach() to set and unset it.

Listing 17.6 Adding callback
interface
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {
 ...
 private boolean mSubtitleVisible;
 private Callbacks mCallbacks;

 /**

 * Required interface for hosting activities
 */
 public interface Callbacks {
 void onCrimeSelected(Crime crime);
 }

 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 mCallbacks = (Callbacks) context;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);
 }
 ...
 @Override
 public void onSaveInstanceState(Bundle outState)
{
 super.onSaveInstanceState(outState);
 outState.putBoolean(SAVED_SUBTITLE_VISIBLE,
mSubtitleVisible);
 }

 @Override
 public void onDetach() {
 super.onDetach();
 mCallbacks = null;
 }
}

Now CrimeListFragment has a
way to call methods on its hosting
activity. It does not matter which activity
is doing the hosting. As long as the
activity implements
CrimeListFragment.Callbacks
everything in CrimeListFragment
can work the same.
Note that CrimeListFragment
performs an unchecked cast of its
activity to
CrimeListFragment.Callbacks
This means that the hosting activity must
implement
CrimeListFragment.Callbacks
That is not a bad dependency to have,
but it is important to document it.
Next, in CrimeListActivity,

implement
CrimeListFragment.Callbacks
Leave onCrimeSelected(Crime)
empty for now.

Listing 17.7 Implementing
callbacks
(CrimeListActivity.java)
public class CrimeListActivity extends
SingleFragmentActivity
 implements CrimeListFragment.Callbacks {

 @Override
 protected Fragment createFragment() {
 return new CrimeListFragment();
 }

 @Override
 protected int getLayoutResId() {
 return R.layout.activity_masterdetail;
 }

 @Override
 public void onCrimeSelected(Crime crime) {
 }
}

Eventually, CrimeListFragment
will call this method in
CrimeHolder.onClick(…) and
also when the user chooses to create a
new crime. First, let’s figure out
CrimeListActivity.onCrimeSelected(Crime)
implementation.
When onCrimeSelected(Crime)
is called, CrimeListActivity
needs to do one of two things:

if using the phone interface,
start a new
CrimePagerActivity

if using the tablet interface, put
a CrimeFragment in
detail_fragment_container

To determine which interface was
inflated, you could check for a certain
layout ID. But it is better to check
whether the layout has a
detail_fragment_container.
Checking a layout’s capabilities is a
more precise test of what you need.
Filenames can change, and you do not
really care what file the layout was
inflated from; you just need to know
whether it has a
detail_fragment_container to put
your CrimeFragment in.
If the layout does have a
detail_fragment_container, then
you are going to create a fragment
transaction that removes the existing
CrimeFragment from

detail_fragment_container (if there
is one in there) and adds the
CrimeFragment that you want to see.
In CrimeListActivity.java,
implement
onCrimeSelected(Crime) to
handle the selection of a crime in either
interface.

Listing 17.8 Conditional
CrimeFragment startup
(CrimeListActivity.java)
@Override
public void onCrimeSelected(Crime crime) {
 if (findViewById(R.id.detail_fragment_container)
== null) {
 Intent intent =
CrimePagerActivity.newIntent(this, crime.getId());
 startActivity(intent);
 } else {
 Fragment newDetail =
CrimeFragment.newInstance(crime.getId());

getSupportFragmentManager().beginTransaction()

.replace(R.id.detail_fragment_container, newDetail)
 .commit();
 }
}

Finally, in CrimeListFragment,
you are going to call
onCrimeSelected(Crime) in the
places where you currently start a new
CrimePagerActivity.
In CrimeListFragment.java,
modify
onOptionsItemSelected(MenuItem)
and
CrimeHolder.onClick(View) to
call
Callbacks.onCrimeSelected(Crime)

Listing 17.9 Calling all
callbacks!
(CrimeListFragment.java)
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.new_crime:
 Crime crime = new Crime();

CrimeLab.get(getActivity()).addCrime(crime);
 Intent intent = CrimePagerActivity
 .newIntent(getActivity(),
crime.getId());
 startActivity(intent);
 updateUI();
 mCallbacks.onCrimeSelected(crime);
 return true;
 ...
 }
}
...
private class CrimeHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener {
 ...
 @Override
 public void onClick(View view) {
 Intent intent =
CrimePagerActivity.newIntent(getActivity(),
mCrime.getId());

 startActivity(intent);
 mCallbacks.onCrimeSelected(mCrime);
 }
}

When you call back in
onOptionsItemSelected(MenuItem)
you also reload the list immediately
upon adding a new crime. This is
necessary because, on tablets, the list
will remain visible after adding a new
crime. Before, you were guaranteed that
the detail screen would appear in front
of it.
Run CriminalIntent on a tablet. Create a
new crime, and a CrimeFragment
will be added and shown in the
detail_fragment_container. Then
view an old crime to see the
CrimeFragment being swapped out

for a new one (Figure 17.7).

Figure 17.7 Master and detail
now wired up

Looks great! One small problem, though:
If you make changes to a crime, the list
will not update to reflect them. Right
now, you only reload the list
immediately after adding a crime and in

CrimeListFragment.onResume()
But on a tablet,
CrimeListFragment stays visible
alongside the CrimeFragment. The
CrimeListFragment is not paused
when the CrimeFragment appears,
so it is never resumed. Thus, the list is
not reloaded.
You can fix this problem with another
callback interface – this one in
CrimeFragment.

Implementing
CrimeFragment.Callbacks

CrimeFragment will define the
following interface:

public interface Callbacks {
 void onCrimeUpdated(Crime crime);
}

For CrimeFragment to push updates
to a peer Fragment, it will need to do
two things. First, since CriminalIntent’s
single source of truth is its SQLite
database, it will need to save its Crime
to CrimeLab. Then
CrimeFragment will call
onCrimeUpdated(Crime) on its
hosting activity.
CrimeListActivity will
implement
onCrimeUpdated(Crime) to
reload CrimeListFragment’s list,
which will pull the latest data from the
database and display it.
Before you start with

CrimeFragment’s interface, change
the visibility of
CrimeListFragment.updateUI()
so that it can be called from
CrimeListActivity.

Listing 17.10 Changing
updateUI()’s visibility
(CrimeListFragment.java)
private public void updateUI() {
 ...
}

Then, in CrimeFragment.java,
add the callback interface along with an
mCallbacks variable and
implementations of onAttach(…) and
onDetach().

Listing 17.11 Adding

CrimeFragment callbacks
(CrimeFragment.java)
private ImageButton mPhotoButton;
private ImageView mPhotoView;
private Callbacks mCallbacks;

/**
 * Required interface for hosting activities
 */
public interface Callbacks {
 void onCrimeUpdated(Crime crime);
}

public static CrimeFragment newInstance(UUID crimeId)
{
 ...
}

@Override
public void onAttach(Context context) {
 super.onAttach(context);
 mCallbacks = (Callbacks) context;
}

@Override
public void onCreate(Bundle savedInstanceState) {
 ...
}

@Override
public void onPause() {

 ...
}

@Override
public void onDetach() {
 super.onDetach();
 mCallbacks = null;
}

Now implement
CrimeFragment.Callbacks in
CrimeListActivity to reload the
list in onCrimeUpdated(Crime).

Listing 17.12 Refreshing crime
list (CrimeListActivity.java)
public class CrimeListActivity extends
SingleFragmentActivity
 implements CrimeListFragment.Callbacks,
CrimeFragment.Callbacks {
 ...
 public void onCrimeUpdated(Crime crime) {
 CrimeListFragment listFragment =
(CrimeListFragment)
 getSupportFragmentManager()

.findFragmentById(R.id.fragment_container);
 listFragment.updateUI();

 }
}

CrimeFragment.Callbacks must
be implemented in all activities that host
CrimeFragment. So provide an
empty implementation in
CrimePagerActivity, too.

Listing 17.13 Providing empty
callbacks implementation
(CrimePagerActivity.java)
public class CrimePagerActivity extends
AppCompatActivity
 implements CrimeFragment.Callbacks {
 ...
 @Override
 public void onCrimeUpdated(Crime crime) {

 }
}

CrimeFragment will be doing a
Time Warp two-step a lot internally:

Jump to the left, save mCrime to
CrimeLab. Step to the right, call
mCallbacks.onCrimeUpdated(Crime)
Add a method to make it more
convenient to do this jig.

Listing 17.14 Adding
updateCrime() method
(CrimeFragment.java)
@Override
public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 ...
}

private void updateCrime() {
 CrimeLab.get(getActivity()).updateCrime(mCrime);
 mCallbacks.onCrimeUpdated(mCrime);
}

private void updateDate() {
 mDateButton.setText(mCrime.getDate().toString());
}

Then add calls in

CrimeFragment.java to
updateCrime() when a Crime’s
title or solved status has changed.

Listing 17.15 Calling
onCrimeUpdated(Crime)
(CrimeFragment.java)
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mTitleField.addTextChangedListener(new
TextWatcher() {
 ...
 @Override
 public void onTextChanged(CharSequence s, int
start, int before, int count) {
 mCrime.setTitle(s.toString());
 updateCrime();
 }
 ...
 });
 ...
 mSolvedCheckbox.setOnCheckedChangeListener(new
OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(CompoundButton

buttonView,
 boolean isChecked) {
 mCrime.setSolved(isChecked);
 updateCrime();
 }
 });
 ...
}

You also need to call
updateCrime() in
onActivityResult(…), where the
Crime’s date, photo, and suspect can be
changed. Currently, the photo and
suspect do not appear in the list item’s
view, but CrimeFragment should
still be neighborly and report those
updates.

Listing 17.16 Calling
updateCrime() again
(CrimeFragment.java)
@Override

public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 ...
 if (requestCode == REQUEST_DATE) {
 Date date = (Date) data

.getSerializableExtra(DatePickerFragment.EXTRA_DATE);
 mCrime.setDate(date);
 updateCrime();
 updateDate();
 } else if (requestCode == REQUEST_CONTACT && data
!= null) {
 ...
 try {
 ...
 String suspect = c.getString(0);
 mCrime.setSuspect(suspect);
 updateCrime();
 mSuspectButton.setText(suspect);
 } finally {
 c.close();
 }
 } else if (requestCode == REQUEST_PHOTO) {
 ...
 getActivity().revokeUriPermission(uri,

Intent.FLAG_GRANT_WRITE_URI_PERMISSION);

 updateCrime();
 updatePhotoView();
 }
}

Run CriminalIntent on a tablet and

confirm that your RecyclerView
updates when changes are made in
CrimeFragment. Then run it on a
phone to confirm that the app works as
before.
With that, you have an app that works on
both tablets and phones.

For the More
Curious: More on
Determining
Device Size
Before Android 3.2, the screen size
qualifier was used to provide alternative
resources based the size of a device.
Screen size is a qualifier that groups
different devices into four broad
categories – small, normal, large, and
xlarge.
Table 17.1 shows the minimum screen

sizes for each qualifier.

Table 17.1 Screen size
qualifiers
Name Minimum screen size
small 320x426dp
normal 320x470dp
large 480x640dp
xlarge 720x960dp

Screen size qualifiers were deprecated
in Android 3.2 in favor of qualifiers that
allow you to test for the dimensions of
the device. Table 17.2 shows these new
qualifiers.

Table 17.2 Discrete screen
dimension qualifiers

Qualifier
format Description

wXXXdp
available width: width is
greater than or equal to XXX
dp

hXXXdp
available height: height
greater than or equal to XXX
dp

swXXXdp

smallest width: width or
height (whichever is
smaller) greater than or
equal to XXX dp

Let’s say that you wanted to specify a
layout that would only be used if the
display were at least 300dp wide. In that
case, you could use an available width

qualifier and put your layout file in
res/layout-w300dp (the “w” is
for “width”). You can do the same thing
for height by using an “h” (for “height”).
However, the height and width may
swap depending on the orientation of the
device. To detect a particular size of
screen, you can use sw, which stands for
smallest width. This specifies the
smallest dimension of your screen.
Depending on the device’s orientation,
this can be either width or height. If the
screen is 1024x800, then sw is 800. If
the screen is 800x1024, sw is still 800.

Challenge: Adding
Swipe to Dismiss
For this challenge, you will add swipe-
to-dismiss functionality to enhance
CriminalIntent’s RecyclerView user
experience. Implementing swipe to
dismiss will allow a user to delete a
crime with a single swipe to the right.
To get swipe to dismiss set up with
CrimeFragment’s
RecyclerView, wire up an
ItemTouchHelper
(developer.android.com/​
reference/​android/​support/​

https://developer.android.com/reference/android/support/v7/widget/helper/ItemTouchHelper.html

v7/​widget/​helper/​
ItemTouchHelper.html).
ItemTouchHelper provides a
swipe-to-dismiss implementation and is
included with the RecyclerView
support library.

18
Localization

Knowing CriminalIntent is going to be a
wildly popular app, you have decided to
make it accessible to a larger audience.
Your first step is to localize all of the
user-facing text so your app can be read
in Spanish or English.
Localization is the process of providing
the appropriate resources for your app
based on the user’s language setting. In
this chapter you will provide a Spanish
version of strings.xml. When a

device’s language is set to Spanish,
Android will automatically find and use
the Spanish strings at runtime
(Figure 18.1).

Figure 18.1 IntentoCriminal

Localizing
Resources
Language settings are part of the
device’s configuration. (See the section
called Device configurations and
alternative resources in Chapter 3 for
an overview of device configuration.)
Android provides qualifiers for different

languages, just as it does for screen
orientation, screen size, and other
configuration factors. This makes
localization straightforward: You create
resource subdirectories with the desired
language configuration qualifier and put
the alternative resources in them. The
Android resource system does the rest.
In your CriminalIntent project, create a
new values resource file (as you did in
Chapter 17): In the project tool window,
right-click res/values/ and select
New → Values resource file. Enter strings
for the File name. Leave the Source set
option set to main. Make sure Directory
name is set to values. Select Locale in the
Available qualifiers list and click the >>
button to move Locale to the Chosen qualifiers

section. Select es: Spanish in the Language
list. Any Region will be automatically
selected in the Specific Region Only list –
which is just what you want, so leave
that selection be.
The resulting New Resource File window
should look similar to Figure 18.2.

Figure 18.2 Adding a qualified
strings resource file

Note that Android Studio automatically

changes the Directory name field to
values-es. The language
configuration qualifiers are taken from
ISO 639-1 codes, and each consists of
two characters. For Spanish, the
qualifier is -es.
Click OK. The new strings.xml file
will be listed under res/values,
with (es) after its name. The strings
files are grouped together in the project
tool window’s Android view
(Figure 18.3).

Figure 18.3 Viewing new
strings.xml in Android view

However, if you explore the directory
structure, you will see that your project
now contains an additional values
directory: res/values-es. The
newly generated strings.xml is
located inside of this new directory
(Figure 18.4).

Figure 18.4 Viewing new
strings.xml in Project view

Now it is time to make the magic
happen. Add Spanish versions of all
your strings to res/values-
es/strings.xml. (If you do not
wish to type these strings in, copy the
contents from the solution file. You can
find the URL in the section called

Adding an Icon in Chapter 2.)

Listing 18.1 Adding Spanish
alternative of string resources
(res/values-es/strings.xml)
<resources>
 <string name="app_name">IntentoCriminal</string>
 <string name="crime_title_hint">Introduzca un
título para el crimen.</string>
 <string name="crime_title_label">Título</string>
 <string
name="crime_details_label">Detalles</string>
 <string
name="crime_solved_label">Solucionado</string>
 <string name="date_picker_title">Fecha del
crimen:</string>
 <string name="new_crime">Crimen Nuevo</string>
 <string name="show_subtitle">Mostrar
Subtítulos</string>
 <string name="hide_subtitle">Esconder
Subtítulos</string>
 <string name="subtitle_format">%1$s
crímenes</string>
 <string name="crime_suspect_text">Elegir
Sospechoso</string>
 <string name="crime_report_text">Enviar el
Informe del Crimen</string>
 <string name="crime_report">%1$s!

 El crimen fue descubierto el %2$s. %3$s, y
%4$s
 </string>
 <string name="crime_report_solved">El caso está
resuelto</string>
 <string name="crime_report_unsolved">El caso no
está resuelto</string>
 <string name="crime_report_no_suspect">no hay
sospechoso.</string>
 <string name="crime_report_suspect">el/la
sospechoso/a es %s.</string>
 <string
name="crime_report_subject">IntentoCriminal Informe
del Crimen</string>
 <string name="send_report">Enviar el informe del
crimen a través de</string>
</resources>

That is all you have to do to provide
localized string resources for your app.
To confirm, change your device’s
settings to Spanish by opening Settings
and finding the language settings.
Depending on your version of Android,
these settings will be labeled Language
and input, Language and Keyboard, or

something similar.
When you get to a list of language
options, choose a setting for Español. The
region (España or Estados Unidos) will not
matter, because the qualification -es
matches both. (Note that on newer
versions of Android, users can select
multiple languages and assign a priority
order. If you are on a newer device,
make sure Español appears first in your
language settings list.)
Run CriminalIntent and bask in the glory
of your newly localized app. When you
are done basking, return your device’s
language setting to English. Look for
Ajustes or Configuración (Settings) in the
launcher and find the setting that
includes Idioma (Language).

Default resources
The configuration qualifier for English is
-en. In a fit of localization, you might
think to rename your existing values
directory to values-en/. This is not
a good idea, but pretend for a moment
you did just that: Your hypothetical
update means your app now has an
English strings.xml in values-
en and a Spanish strings.xml in
values-es.
Your newly updated app will build just
fine. It will also run just fine on devices
with the language set to Spanish or
English. But what happens if the user’s

device language is set to Italian? Bad
things. Very bad things. At runtime
Android will not find string resources
that match the current configuration. The
severity of the resulting bad behavior
depends on where the resource ID for a
given string is being referenced.
If an unmatched string resource is
referenced in your XML layout file, the
app will display the resource ID of the
resource (rather than a meaningful string
you have defined). To see this behavior
in action, comment out the
crime_title_label entry from
values/strings.xml. (You can
easily comment out a single line by
clicking on the line and then pressing
Command+/ [Ctrl+/].)

Listing 18.2 Commenting out
English crime_title_label
(res/values/strings.xml)
<resources>
 <string name="app_name">IntentoCriminal</string>
 <string name="crime_title_hint">Introduzca un
título para el crimen.</string>
 <!--<string
name="crime_title_label">Title</string>-->
 ...

(Recall that crime_title_label is
referenced in
fragment_crime.xml:)
<TextView
 style="?android:listSeparatorTextViewStyle"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_title_label" />

Run CriminalIntent on a device with the
language set to English. The app
displays the resource ID for
crime_title_label instead of the

TITLE text (Figure 18.5).

Figure 18.5 Referencing
missing English version of title
string from XML

Even worse, if an unmatched string
resource is referenced in your Java
code, the app will crash. To see this in
action, comment out
crime_report_subject in the English
values/strings.xml.

Listing 18.3 Commenting out
English crime_report_subject
(res/values/strings.xml)
<string name="crime_report_no_suspect">there is no
suspect.</string>
<string name="crime_report_suspect">the suspect is
%s.</string>

<!--<string
name="crime_report_subject">CriminalIntent Crime
Report</string>-->

(Recall that crime_report_subject is
referenced by the crime report button’s
click listener in
CrimeFragment.java:)
mReportButton.setOnClickListener(new
View.OnClickListener() {
 public void onClick(View v) {
 Intent i = new
Intent(Intent.ACTION_SEND);
 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_TEXT,
getCrimeReport());
 i.putExtra(Intent.EXTRA_SUBJECT,

getString(R.string.crime_report_subject));
 i = Intent.createChooser(i,
getString(R.string.send_report));
 startActivity(i);
 }
 });

Run the app and press SEND CRIME REPORT
to see the crash (Figure 18.6).

Figure 18.6 Missing English

Figure 18.6 Missing English
version of subject string

The moral of the story is this: Provide a
default resource for each of your
resources. Resources in unqualified
resource directories are your default
resources. Default resources will be
used if no match for the current device
configuration is found. Your app will
misbehave if Android looks for a
resource and cannot find one that
matches the device configuration.
(Leave crime_title_label and
crime_report_subject commented out
for now. You will be reminded to
uncomment both in a bit.)

Screen density works
differently

The exception to providing default
resources is for screen density. A
project’s drawable directories are
typically qualified for screen density
with -mdpi, -xxhdpi, etc., as you
have seen. However, Android’s decision
about which drawable resource to use is
not a simple matter of matching the
device’s screen density or defaulting to
an unqualified directory if there is no
match.
The choice is based on a combination of
screen size and density, and Android
may choose a drawable from a directory

that is qualified with a lower or higher
density than the device and then scale the
drawable. There are more details in the
docs at
developer.android.com/​
guide/​practices/​
screens_support.html, but the
important point is that putting default
drawable resources in
res/drawable/ is not necessary.

Checking string
coverage using
Translations Editor
As the number of languages you support
grows, making sure you provide a

http://developer.android.com/guide/practices/screens_support.html

version of each string for each language
becomes more difficult. Luckily,
Android Studio provides a handy
Translations Editor to see all of your
translations in one place. To launch the
Translations Editor, right-click on one of
the strings.xml files in the project
tool window and select Open Translations
Editor. The Translations Editor displays
all of the app’s strings and the
translation status for each of the
languages your app currently provides
any qualified string values for. Since
crime_title_label and
crime_report_subject are
commented out, you will see those field
names in red (Figure 18.7).

Figure 18.7 Using the
Translations Editor to check
your string coverage

(Now it is time to uncomment both
crime_title_label and
crime_report_subject before moving
on. You can uncomment out a single line
by clicking on the line and then pressing
Command+/ [Ctrl+/] again.)

Targeting a region
You can qualify a resource directory
with a language-plus-region qualifier
that targets resources even more
specifically. For instance, the qualifier
for Spanish spoken in Spain is -es-
rES, where the r denotes a region
qualifier and ES is the ISO 3166-1-
alpha-2 code for Spain. Configuration
qualifiers are not case sensitive, but it is
good to follow Android’s convention
here: Use a lowercase language code
and an uppercase region code prefixed
with a lowercase r.
Note that a language-region qualifier,
such as -es-rES, may look like two

distinct configuration qualifiers that have
been combined, but it is just one. The
region is not a valid qualifier on its own.
Figure 18.8 shows the locale resource
resolution strategy and how it differs
based on the device’s Android version.

Figure 18.8 Locale resolution
(pre- and post-Nougat)

A resource qualified with both a locale

and region has two opportunities for
matching a user’s locale. An exact match
occurs when both the language and
region qualifiers match the user’s locale.
If no exact match is found, the system
will strip off the region qualifier and
look for an exact match for the language
only.
On devices running pre-Nougat versions
of Android, if no language match is
found, the default (unqualified resource)
is used. Nougat has enhanced locale
support, with more locales and the
ability to select more than one locale in
the device’s settings. The system also
uses a more intelligent resource
resolution strategy for locale with the
aim of showing the correct language as

often as possible, even if the app does
not provide an exact region match or a
nonqualified language match. If no exact
match is found on a device running
Nougat, and no language-only match is
found, the system will look for a
resource qualified with the same
language but a different region and will
use the best match of resources that meet
those criteria.
Consider an example. Suppose you set
the language on your device to Spanish
and your region to Chile (Figure 18.9).
An app on your device contains Spanish
strings.xml files tailored for Spain
and Mexico (in values-es-rES and
values-es-rMX). The default
values directory contains an English

strings.xml. If your device is
running pre-Nougat Android, you will
see the English contents of the default
values directory. But if your device is
running Nougat, you will have a better
experience: You will see the contents of
values-es-rMX/strings.xml –
which means you will see Spanish,
though not tailored to Chile.

Figure 18.9 Locale resolution
example (pre- and post-
Nougat)

This example is a bit contrived. But it
highlights an important point: Provide
strings in as general a context as
possible, using language-only qualified
directories as much as possible and
region-qualified directories only when

necessary. Rather than maintaining all
Spanish user-facing strings in three
region-qualified directories, the example
app above would be better off storing
the Spanish strings in a language-only
qualified values-es directory and
providing region-qualified strings only
for words and phrases that are different
in the different regional dialects. This
not only makes maintaining the strings
files easier for the programmer, but it
also helps the system resolve the
resources on both pre-Nougat devices
and Nougat devices by providing a
language-only match.

Testing custom locales

Different devices and different versions
of Android know about and support
different locales. It is possible, then, that
you may want to provide strings or other
resources for a locale that is not
available on your test device. If this is
the case, not to worry. You can use the
Custom Locale tool on the emulator to
create and apply a locale that is not
actually supported by the system image.
The emulator will then simulate a
runtime configuration that includes that
language/region combination, allowing
you to test how your app behaves in that
configuration.
The emulator comes packaged with the
Custom Locale tool. On your emulator,
open the App Launcher screen. Click on

the icon labeled Custom Locale. Once
launched, the Custom Locale tool allows
you to browse existing locales, add new
custom locales, and apply a custom
locale for testing (Figure 18.10).

Figure 18.10 Custom Locale
tool

Note that if you apply a custom locale
that is not supported by the system
image, the system UI will still display
the default language. Your app, however,
will resolve resources based on the
custom locale you chose.

Configuration
Qualifiers
You have now seen and used several
configuration qualifiers for providing
alternative resources: language (e.g.,
values-es/), screen orientation (e.g.,
layout-land/), screen density (e.g.,
drawable-mdpi/), and screen size
(e.g., layout-sw600dp).
The device configurations for which
Android provides configuration
qualifiers to target resources are:

1. mobile country code (MCC),

optionally followed by mobile
network code (MNC)

2. language code, optionally
followed by region code

3. layout direction

4. smallest width

5. available width

6. available height

7. screen size

8. screen aspect

9. round screen (API level 23 and
above)

10. screen orientation

11. UI mode

12. night mode

13. screen density (dpi)

14. touchscreen type

15. keyboard availability

16. primary text input method

17. navigation key availability

18. primary non-touch navigation
method

19. API level

You can find descriptions of these
characteristics and examples of specific
configuration qualifiers at

developer.android.com/​
guide/​topics/​resources/​
providing-
resources.html#AlternativeResources

Not all qualifiers are supported by
earlier versions of Android. Luckily the
system implicitly adds a platform
version qualifier to qualifiers that were
introduced after Android 1.0. So if, for
example, you use the round qualifier,
Android will automatically include the
v23 qualifier, because round screen
qualifiers were added in API level 23.
This means you do not have to worry
about problems on older devices when
you introduce resources qualified for
newer devices.

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Prioritizing alternative
resources
Given the many types of configuration
qualifiers for targeting resources, there
may be times when the device
configuration will match more than one
alternative resource. When this happens,
qualifiers are given precedence in the
order shown in the list above.
To see this prioritizing in action, let’s
add another alternative resource to
CriminalIntent – a longer English
version of the crime_title_hint string
resource – to be displayed when the
current configuration’s width is at least
600dp. The crime_title_hint

resource is displayed in the crime title
edit text before the user enters any text.
When CriminalIntent is running on a
screen that is at least 600dp (e.g., on a
tablet, or perhaps in landscape mode on
a smaller device), this change will
display a more descriptive, engaging
hint for the title field.
Create a new string resource file and
place it in a new values-w600dp
directory (-w600dp will match any
device where the current available
screen width is 600dp or more, meaning
a device may match when in landscape
mode but not in portrait mode). Follow
the same steps from the section called
Localizing Resources to create the
values resource file, but select Screen

Width in the Available qualifiers list and click
the >> button to move Screen Width to the
Chosen qualifiers section. For the rest of the
fields, enter the values shown in
Figure 18.11.

Figure 18.11 Adding strings for
a wider screen

Add a longer value for
crime_title_hint to values-
w600dp/strings.xml.

Listing 18.4 Creating
alternative string resource for
wider screen (values-
w600dp/strings.xml)
<resources>
 <string name="crime_title_hint">
 Enter a meaningful, memorable title for the
crime.
 </string>
</resources>

The only string resource you want to be
different on wider screens is
crime_title_hint. That is why
crime_title_hint is the only string
you specified in values-w600dp.
Alternatives for string resources (and
other values resources) are provided
on a per-string basis, so you do not need
to duplicate strings when they are the
same. Those duplicated strings would

only end up being a maintenance hassle
down the road.
Now you have three versions of
crime_title_hint: a default version in
values/strings.xml, a Spanish
alternative in values-
es/strings.xml, and a wide-screen
alternative in values-
w600dp/strings.xml.
With your device’s language set to
Spanish, run CriminalIntent and rotate to
landscape (Figure 18.12). The Spanish
language alternative has precedence, so
you see the string from values-
es/strings.xml instead of
values-w600dp/strings.xml.

Figure 18.12 Android
prioritizes language over
available screen width

If you like, you can change your settings
back to English and run again to confirm
that the alternative wide-screen string
appears as expected.

Multiple qualifiers
You may have noticed that the New
Resource File dialog has many available
qualifiers. You can put more than one
qualifier on a resource directory. When
using multiple qualifiers on directories,
you must put them in the order of their
precedence. Thus, values-es-
w600dp is a valid directory name, but
values-w600dp-es is not. (When
you use the New Resource File dialog, it
correctly configures the directory name
for you.)
Create a directory for a wide-screen
Spanish string. It should be named
values-es-w600dp and have a file

named strings.xml. Add a string
resource for crime_title_hint to
values-es-
w600dp/strings.xml (Listing
18.5).

Listing 18.5 Creating a wide-
screen Spanish string resource
(values-es-
w600dp/strings.xml)
<resources>
 <string name="crime_title_hint">
 Introduzca un título significativo y
memorable para el crimen.
 </string>
</resources>

With your language set to Spanish, run
CriminalIntent to confirm your new
alternative resource appears on cue
(Figure 18.13).

Figure 18.13 Spanish wide-
screen string resource

Finding the best-
matching resources
Let’s walk through how Android
determined which version of

crime_title_hint to display in this
run. First, consider the four alternatives
for the string resource named
crime_title_hint and an example
device configuration for a Nexus 5x set
to Spanish language and with an
available screen width greater than
600dp:

Device
configuration

App values for
crime_title_hint

Language:
es

(Spanish)
values

Available
height: values-

es

411dp

Available
width:
731dp

values-
es-
w600dp

(etc.) values-
w600dp

Ruling out incompatible
directories

The first step that Android takes to find
the best resource is to rule out any
resource directory that is incompatible
with the current configuration.

None of the four choices is incompatible
with the current configuration. (If you
rotated the device to portrait, the
available width would become 411dp,
and the resource directories values-
w600dp/ and values-es-
w600dp/ would be incompatible and
thus ruled out.)

Stepping through the
precedence table

After the incompatible resource
directories have been ruled out, Android
starts working through the precedence
table shown in the section called
Configuration Qualifiers, starting with
the highest priority qualifier: MCC. If

there is a resource directory with an
MCC qualifier, then all resource
directories that do not have an MCC
qualifier are ruled out. If there is still
more than one matching directory, then
Android considers the next-highest
precedence qualifier and continues until
only one directory remains.
In our example, no directories contain an
MCC qualifier, so no directories are
ruled out, and Android moves down the
list to the language qualifier. Two
directories (values-es/ and
values-es-w600dp/) contain
language qualifiers. One directory
(values-w600dp/) does not and is
ruled out:

Device
Configuration

App values for
crime_title_hint

Language:
es

(Spanish)
values

Available
height:
411dp

values-
es

Available
width:
731dp

values-
es-
w600dp

values-
w600dp

(not

(etc.) language
specific)

Because there are multiple values still in
the running, Android keeps stepping
down the qualifier list. When it reaches
available width, it finds one directory
with an available width qualifier and
two without. It rules out values and
values-es/, leaving only values-
es-w600dp/:

Device
Configuration

App values for
crime_title_hint

Language:
es

values

(not width

(Spanish) specific)

Available
height:
411dp

values-

es (not
width
specific)

Available
width:
731dp

values-
es-
w600dp

(best
match)

(etc.)

values-
w600dp

(not
language

specific)

Thus, Android uses the resource in
values-es-w600dp/.

Testing Alternative
Resources
It is important to test your app on
different device configurations to see
how your layouts and other resources
look on those configurations. You can
test on devices both real and virtual. You
can also use the graphical layout tool.
The graphical layout tool has many
options for previewing how a layout
will appear in different configurations.
You can preview the layout on different
screen sizes, device types, API levels,
languages, and more.

To see these options, open
fragment_crime.xml in the
graphical layout tool. Then try some of
the settings in the toolbar shown in
Figure 18.14.

Figure 18.14 Using graphical
layout tool to preview various
device configurations

You can ensure that you have included
all of the necessary default resources by
setting a device to a language that you
have not localized any resources for.
Run your app and put it through its
paces. Visit all of the views and rotate
them. If the app crashes, check Logcat
for a “Resource not found” message to

track down the missing default resource.
Be on the lookout for non-crashing
errors, such as the problem of resource
IDs displaying instead of strings that we
discussed earlier in this chapter.
Before continuing to the next chapter,
you may want to change your device’s
language back to English.
Congratulations! Now your
CriminalIntent app can be enjoyed fully
in both Spanish and English. Crimes will
be logged. Cases will be solved. And all
in the comfort of your user’s native
language (so long as that is either
Spanish or English). Adding support for
more languages is simply a matter of
adding additional qualified strings files.

Challenge:
Localizing Dates
You may have noticed that, regardless of
the device’s locale, the dates displayed
in CriminalIntent are always formatted
in the default US style, with the month
before the day. Take your localization a
step further by formatting the dates
according to the locale configuration. It
is easier than you might think.
Check out the developer documentation
on the DateFormat class, which is
provided as part of the Android
framework. DateFormat provides a

date-time formatter that will take into
consideration the current locale. You can
control the output further by using
configuration constants built into
DateFormat.

19
Accessibility

In this chapter you will make
CriminalIntent more accessible. An
accessible app is usable by anyone,
regardless of any impairments in vision,
mobility, or hearing. These impairments
may be permanent, but they could also
be temporary or situational: Dilated eyes
after an eye exam can make focusing
difficult. Greasy hands while cooking
may mean you do not want to touch the
screen. And if you are at a loud concert,
the music drowns out any sounds made

by your device. The more accessible an
app is, the more pleasant it is to use for
everyone.
Making an app fully accessible is a tall
order. But that is no excuse not to try. In
this chapter, you will take some steps to
make CriminalIntent more usable for
people with a visual impairment. This is
a good place to begin learning about
accessibility issues and accessible app
design.
The changes you make in this chapter
will not alter the appearance of the app.
Instead, the changes will make your app
easier to explore with TalkBack.

TalkBack
TalkBack is an Android screen reader
made by Google. It speaks out the
contents of a screen based on what the
user is doing.
TalkBack works because it is an
accessibility service, which is a special
component that can read information
from the screen (no matter which app
you are using). Anyone can write their
own accessibility service, but TalkBack
is the most popular.
To use TalkBack, you need an Android
device. (Unfortunately, the emulator
does not have TalkBack.) Make sure the

device’s sound output is not muted – but
you may want to grab headphones,
because once TalkBack is enabled the
device will do a lot of “talking.”
To enable TalkBack, launch Settings and
press Accessibility. Press on TalkBack under
the Services heading. Then press the
switch near the top right of the screen to
turn TalkBack on (Figure 19.1).

Figure 19.1 TalkBack settings
screen

Android presents a dialog asking for
permission to access certain
information, such as observing the user’s
actions, and to alter certain settings, such
as turning on Explore by Touch

(Figure 19.2). Press OK.

Figure 19.2 Giving TalkBack
permission

The label to the left of the toggle switch
at the top of the screen now says On. (If
this is your first time using TalkBack on
the device, you will be brought through a
tutorial at this point.) Exit the menu by
pressing the Up button in the toolbar.
You will notice something different right
away. A green outline appears around
the Up button (Figure 19.3) and the
device speaks: “Navigate Up button.
Double-tap to activate.”

Figure 19.3 TalkBack enabled

(Although “press” is the usual

terminology for Android devices,
TalkBack uses “tap.” Also, TalkBack
uses double-taps, which are not
commonly used in Android.)
The green outline indicates which UI
element has accessibility focus. Only
one UI element can have accessibility
focus at a time. When a UI element
receives focus, TalkBack will provide
information about that element.
When TalkBack is enabled, a single
press (or “tap”) gives an element
accessibility focus. Double-tapping
anywhere on the screen activates the
element. So double-tapping when the Up
button has focus navigates up, double-
tapping when a checkbox has focus
toggles its check state, etc. (Also, if your

device locks, you can unlock it by
pressing the lock icon and then double-
tapping anywhere on the screen.)

Explore by Touch
By turning TalkBack on, you have also
enabled TalkBack’s Explore by Touch
mode. This means the device will speak
information about the item immediately
after it is pressed. (This assumes that the
item pressed specifies information
TalkBack can read, which you will learn
more about shortly.)
Leave the Up button selected with
accessibility focus. Double-tap
anywhere on the screen. The device

returns you to the Accessibility menu and
TalkBack announces information about
what is showing: “Accessibility.”
Android framework widgets, such as
Toolbar, RecyclerView,
ListView, and Button, have basic
TalkBack support built in. You should
use framework widgets as much as
possible so you can leverage the
accessibility work that has already been
done for those widgets. It is possible to
properly respond to accessibility events
for custom widgets, but that is beyond
the scope of this book.
To scroll the list, hold two fingers on the
screen and drag them up or down.
Depending on the length of the list, you
will hear tones that change as you scroll.

These tones are earcons, sounds used to
give meta information about the
interaction.

Linear navigation by
swiping
Imagine what it must be like to explore
an app by touch for the first time. You
would not know where things are
located. What if the only way to learn
what was on the screen was to press all
around until you landed on an element
that TalkBack could read? You might end
up pressing on the same thing multiple
times and, worse, you might miss
elements altogether.

Luckily, there is a way to explore the UI
linearly, and in fact this is the more
common way to use TalkBack: Swiping
right moves accessibility focus to the
next item on the screen. Swiping left
moves accessibility focus to the
previous item on the screen. This allows
the user to walk through each item on the
screen in a linear fashion, rather than
trial-and-error poking around in hopes
of landing on something meaningful.
Try it out for yourself. Launch
CriminalIntent and go to the crime list
screen. Press on the toolbar title to give
it accessibility focus. The device reads
out, “CriminalIntent” (Figure 19.4).

Figure 19.4 Title selected

Now swipe right. Accessibility focus

moves to the new crime button in the
toolbar. TalkBack announces, “New
crime. Double-tap to activate. Double-
tap and hold to long-press.” For
framework widgets, such as menu items
and buttons, TalkBack will read the
visible text content displayed on the
widget by default. The new crime menu
item, however, is just an icon and does
not have any visible text. In this case,
TalkBack looks for other information
that it has available. You specified a
title in your menu XML, and that is
what TalkBack reads to the user.
TalkBack will also provide details about
actions the user can take on the widget
and sometimes information about what
kind of widget it is.

Figure 19.5 New crime button
selected

Swipe right again, and TalkBack reads

information about the SHOW SUBTITLE
menu button. Swipe right a third time;
accessibility focus moves to the first
crime in the list. Swipe left, and focus
moves back to the SHOW SUBTITLE menu
button. Android does its best to move
accessibility focus in an order that
makes sense.

Making Non-Text
Elements Readable
by TalkBack
Now, press the new crime button in the
toolbar. This gives accessibility focus to
the new crime option, and TalkBack
announces the button’s name and options
again. With the new crime button
selected, double-tap anywhere on the
screen to launch the crime details
screen.

Adding content

descriptions

On the crime details screen, press the
image capture button to give it
accessibility focus (Figure 19.6).
TalkBack announces, “Button unlabeled.
Double-tap to activate.” (You may get
slightly different results depending on
the version of Android you are using.)

Figure 19.6 Image capture
button selected

The camera button does not display any
text, so TalkBack describes the button as
well as it can. While this is TalkBack’s
best effort, the information is not very
helpful to a user with a vision
impairment.
Luckily, this problem is very easy to fix.
You are going to specify details for
TalkBack to read by adding a content
description to the ImageButton. A
content description is a piece of text that
describes the widget and is read by
TalkBack. (While you are at it, you are
going to add a content description for the
ImageView that displays the selected
picture, too.)
You can set a widget’s content
description in the XML layout file by

setting a value for the attribute
android:contentDescription. That
is what you are going to do next. You can
also set it in your UI setup code, using
someView.setContentDescription(someString)
which you will do later in this chapter.
The text you set should be meaningful
without being overly wordy. Remember,
TalkBack users will be listening to the
audio, which is linear. They can speed
up the pace of TalkBack’s speech output,
but even so you want to avoid adding
extraneous information and wasting
users’ time. For example, if you are
setting the description for a framework
widget, avoid including information
about what kind of widget it is (e.g., a
button), because TalkBack already

knows and includes that information.
First, some housekeeping. Add the
following strings to the unqualified
strings.xml.

Listing 19.1 Adding content
description strings
(res/values/strings.xml)
<resources>
 ...
 <string
name="crime_details_label">Details</string>
 <string name="crime_solved_label">Solved</string>
 <string
name="crime_photo_button_description">Take photo of
crime scene</string>
 <string name="crime_photo_no_image_description">
 Crime scene photo (not set)
 </string>
 <string
name="crime_photo_image_description">Crime scene
photo (set)</string>
 ...
</resources>

Next, open
res/layout/fragment_crime.xml
and set the content description for both
the ImageButton and ImageView.

Listing 19.2 Setting content
descriptions for ImageView and
ImageButton
(res/layout/fragment_crime.xml
<ImageView
 android:id="@+id/crime_photo"
 android:layout_width="80dp"
 android:layout_height="80dp"
 android:background="@android:color/darker_gray"
 android:cropToPadding="true"
 android:scaleType="centerInside"

android:contentDescription="@string/crime_photo_no_image_description"
 />

<ImageButton
 android:id="@+id/crime_camera"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:src="@android:drawable/ic_menu_camera"

android:contentDescription="@string/crime_photo_button_description"
 />

Run CriminalIntent and press the camera
button. TalkBack helpfully announces,
“Take photo of crime scene button.
Double-tap to activate.” This spoken
information is much more helpful than
“button unlabeled.”
Next, press the crime scene image
(which at the moment is just the gray
placeholder). You might expect the
accessibility focus to move to the
ImageView, but the green border
appears around the entire fragment and
TalkBack announces overview
information about the fragment instead of
about the ImageView. What gives?

Making a widget
focusable
The problem is that the ImageView is
not registered to receive focus. Some
widgets, such as Buttons and
CheckBoxes, are focusable by default.
Other widgets, such as TextViews and
ImageViews, are not. You can make a
view focusable by setting its
android:focusable attribute to true
or by adding a click listener.
Make the crime photo’s ImageView
focusable by explicitly setting
focusable to true in the layout XML.

Listing 19.3 Making the crime

photo ImageView focusable
(res/layout/fragment_crime.xml
<ImageView
 android:id="@+id/crime_photo"
 ...

android:contentDescription="@string/crime_photo_no_image_description"

 android:focusable="true" />

Run CriminalIntent again and press on
the crime photo. The ImageView now
accepts focus and TalkBack announces,
“Crime scene photo (not set)”
(Figure 19.7).

Figure 19.7 Focusable
ImageView

Creating a
Comparable
Experience
You should specify a content description
for any UI widget that provides
information to the user but does not use
text to do it (such as an image). If there
is a widget that does not provide any
value other than decoration, you should
explicitly tell TalkBack to ignore it by
setting its content description to null.
You might think, “If a user cannot see,
why does he or she need to know

whether there is an image?” But you
should not make assumptions about your
users. More importantly, you should
make sure a user with a visual
impairment gets the same amount of
information and functionality as a user
without one. The overall experience and
flow may be different, but all users
should be able to get the same
functionality from the app.
Good accessibility design is not about
reading out every single thing on the
screen. Instead, it focuses on
comparable experiences. Which
information and context are important?
Right now, the user experience related to
the crime photo is limited. TalkBack
will always announce that the image is

not set, even if an image is indeed set.
To see this for yourself, press the camera
button and then double-tap anywhere on
the screen to activate it. The camera app
launches and TalkBack announces,
“Camera.” Capture a photo by pressing
on the shutter button and then double-
tapping anywhere on the screen.
Accept the photo. (The steps will be
different depending on which camera
app you are using, but remember that you
will need to press to select a button and
then double-tap anywhere to activate it.)
The crime details screen will appear
with the updated photo. Press the photo
to give it accessibility focus. TalkBack
announces, “Crime scene photo (not
set).”

To provide more relevant information to
TalkBack users, dynamically set the
content description of the ImageView
in updatePhotoView().

Listing 19.4 Dynamically
setting content description
(CrimeFragment.java)
public class CrimeFragment extends Fragment {
 ...
 private void updatePhotoView() {
 if (mPhotoFile == null ||
!mPhotoFile.exists()) {
 mPhotoView.setImageDrawable(null);
 mPhotoView.setContentDescription(

getString(R.string.crime_photo_no_image_description));

 } else {
 ...
 mPhotoView.setImageBitmap(bitmap);
 mPhotoView.setContentDescription(

getString(R.string.crime_photo_image_description));
 }
 }
}

Now, whenever the photo view is
updated, updatePhotoView() will
update the content description. If
mPhotoFile is empty, it will set the
content description to indicate that there
is no photo. Otherwise, it will set the
content description to indicate that a
photo is present.
Run CriminalIntent. View the crime
detail screen for the crime you just
added a photo to. Press on the photo of
the crime scene (Figure 19.8). TalkBack
proudly announces, “Crime scene photo
(set).”

Figure 19.8 Focusable
ImageView with dynamic
description

description

Using labels to provide

context

Before moving on, give your new crime
a title. Press on the title EditText
box. TalkBack announces, “Edit box.
Enter a title for the crime” (Figure 19.9).

Figure 19.9 EditText hint

By default, TalkBack announces

whatever content is in the EditText.
Because you have not entered a title, this
means TalkBack reads the value you
specified for android:hint. So you do
not need to (and should not) specify a
content description for your
EditText.
However, there is a problem. To see it
for yourself, enter the title “Sticker
vandalism.” Then press on the
EditText. TalkBack announces, “Edit
box. Sticker vandalism” (Figure 19.10).

Figure 19.10 EditText with
crime title

The problem is that TalkBack users lose
context about what the EditText
represents once they enter a title. Sighted
users can see that the EditText is for
the title because of the TextView
above it that serves as a label. Given
that crime data is pretty simple,
TalkBack users could probably infer
what the EditText is for based on its
contents. But this means you are making
TalkBack users do more work than non-
TalkBack users.
You can easily provide the same context
for TalkBack users by indicating the
relationship between the TextView
and EditText. Do this by adding an
android:labelFor attribute to the label
in your layout file.

Listing 19.5 Setting label for
EditText
(res/layout/fragment_crime.xml
<TextView
 style="?android:listSeparatorTextViewStyle"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_title_label"
 android:labelFor="@+id/crime_title"/>

The android:labelFor attribute tells
TalkBack that the TextView serves as
a label to the view specified by the ID
value. labelFor is defined on the View
class, so you can associate any view as
the label for any other view. Note that
you must use the @+id syntax here
because you are referring to an ID that
has not been defined at that point in the
file. You could now remove the + from
the android:id="@+id/crime_title"

line in the EditText’s definition, but
it is not necessary to do so.
Run your app and press on the title
EditText. TalkBack now announces,
“Edit box. Sticker vandalism, for title.”
Congratulations on making your app
more accessible. One of the most
common reasons developers cite for not
making their apps more accessible is
lack of awareness about the topic. You
are now aware and can see how easy it
is to make your apps more usable to
TalkBack users. And, as a bonus,
improving your app’s TalkBack support
means it will also be more likely to
support other accessibility services,
such as BrailleBack.

Designing and implementing an
accessible app may seem overwhelming.
People make entire careers out of being
accessibility engineers. But rather than
forgoing accessibility altogether because
you fear you will not do it right, start
with the basics: Make sure every
meaningful piece of content is reachable
and readable by TalkBack. Make sure
TalkBack users get enough context to
understand what is going on in your app
– without having to listen to extraneous
information that wastes their time. And,
most importantly, listen to your users and
learn from them.
With that, you have reached the end of
your time with CriminalIntent. In 13
chapters, you have created a complex

application that uses fragments, talks to
other apps, takes pictures, stores data,
and even speaks Spanish. Why not
celebrate with a piece of cake?
Just be sure to clean up after yourself.
You never know who might be watching.

For the More
Curious: Using
Accessibility
Scanner
In this chapter you focused on making
your app more accessible to people
using TalkBack. But this is not the whole
story. Accommodating visual
impairments is just one subset of
accessibility.
Testing your application for accessibility
should really involve user tests by

people who actually use accessibility
services on a regular basis. But even if
this is not possible, you should still do
your best to make your app accessible.
Google’s Accessibility Scanner analyzes
apps and evaluates how accessible they
are. It provides suggestions based on its
findings. Try it out on CriminalIntent.
Begin by following the simple
instructions at play.google.com/​
store/​apps/​details?
id=com.google.android.apps.accessibility.auditor
to install the app on your device.
Once you have Accessibility Scanner
installed and running and you see the
blue check mark icon hovering over your
screen, the real fun can begin. Launch

CriminalIntent from the app launcher
screen or overview screen, leaving the
check mark alone. Once CriminalIntent
appears, make sure it is displaying the
crime details screen (Figure 19.11).

Figure 19.11 Launching
CriminalIntent for analysis

Press the check mark, and the
Accessibility Scanner will go to work.
You will see a progress spinner while
the analysis happens. Once the analysis
is complete, a window showing
suggestions will appear (Figure 19.12).

Figure 19.12 Accessibility
Scanner results summary

The ImageView, EditText, and
CheckBox have outlines around them.
This indicates that the scanner found
potential accessibility problems with
those widgets. Press on the EditText
to view accessibility suggestions for that
widget (Figure 19.13).

Figure 19.13 Accessibility
Scanner EditText
recommendations

Accessibility Scanner has three
suggestions. The first relates to the size
of the EditText. The recommended
minimum size for all touch targets is
48dp. The EditText’s height is
smaller, which you can easily fix by

specifying an android:minHeight
attribute for the widget.
The second issue relates to its label. The
scanner points out that the information
provided by the title TextView and the
EditText may be redundant, since the
EditText refers to the TextView.
However, redundancy is not a problem
here, so you can ignore this
recommendation.
The final suggestion is about the contrast
between the text color and its
background color. There are tools
available online to estimate the contrast
ratio of two colors based on their
luminosity. There are also sites, like
randoma11y.com, that list color
combinations that meet accessibility

standards for contrast. What are those
standards? The World Wide Web
Consortium, an international community
that develops open standards for web
design, recommends a ratio of at least
4.5:1 for text that is 18 point or smaller.
The ratio of the colors in
CriminalIntent’s EditText is 3.52. To
fix this, you can adjust the values of its
android:textColor and
android:background attributes.
You can learn more about each of
Accessibility Scanner’s
recommendations by pressing the down
arrow to drill into the details and then
pressing Learn More.

Challenge:
Improving the List
On the crime list screen, TalkBack reads
the title and date of each item. However,
it does not indicate whether the crime is
solved. Fix this problem by giving the
handcuff icon a content description.
Note that the readout is a bit lengthy,
given the date format, and the solved
status is read at the very end – or not at
all, if the crime is not solved. To take
this challenge one step further, instead of
adding a content description on the icon
in XML, add a dynamic content

description to each visible item in the
recycler view. In the description,
summarize the data the user sees in the
row.

Challenge:
Providing Enough
Context for Data
Entry
The date button and CHOOSE SUSPECT
button both suffer from a similar
problem as your original title
EditText: Users, whether using
TalkBack or not, are not explicitly told
what the button with the date on it is for.
Similarly, once users select a contact as
the suspect, they are no longer told or
shown what the button represents. Users

can probably infer the meaning of the
buttons and the text on those buttons, but
should they have to?
This is one of the nuances of UI design.
It is up to you (or your design team) to
figure out what makes the most sense for
your application – to balance simplicity
of the interface with ease of use.
For this challenge, update the
implementation of the details screen so
that users do not lose context about what
the data they have chosen means. This
could be as simple as adding labels for
each field, as you did for the title
EditText. Or it could be more
involved; perhaps you want to rework
the details screen altogether. The choice
is yours. Go forth and make your app

more accessible so everyone can enjoy
ratting out misbehaving coworkers.

Challenge:
Announcing Events
By adding dynamic content descriptions
to the crime scene photo ImageView,
you improved the crime scene photo
experience. But the onus is on the
TalkBack user to press on the
ImageView to check its status. A
sighted user has the benefit of seeing the
image change (or not) when returning
from the camera app.
You can provide a similar experience
via TalkBack by announcing what
happened as a result of the camera app

closing. Read up on the
View.announceForAccessibility(…)
method in the documentation and use it
in CriminalIntent at the appropriate time.
You might consider making the
announcement in
onActivityResult(…). If you do,
there will be some timing issues related
to the activity lifecycle. You can get
around these by delaying the
announcement for a small amount of time
by posting a Runnable (which you
will learn more about in Chapter 26). It
might look something like this:
mSomeView.postDelayed(new Runnable() {
 @Override
 public void run() {
 // Code for making announcement goes here
 }
}, SOME_DURATION_IN_MILLIS);

You could avoid using a Runnable by
instead using some other mechanism for
knowing when to announce the change.
For example, you might consider making
the announcement in onResume()
instead – though you would then need to
keep track of whether the user has just
returned from the camera app.

20
Data Binding

and MVVM
In GeoQuiz and CriminalIntent, you used
the standard Android tools to build out
your app: a model you built with Java
objects, the view hierarchy, and
controller objects – activities and
fragments. And in those projects, this
MVC architecture was good.
In this project, you will learn how to use
a tool called data binding. Data binding

is just a tool – it has no opinions about
how you use it. We have opinions,
though, so we will be showing you how
we like to use data binding: to
implement an architecture called Model-
View-ViewModel, or MVVM. In
addition, you will see how to use the
assets system to store a sound file.
This chapter also starts a new
application, BeatBox (Figure 20.1).
BeatBox is not a box for musical beats.
It is a box that helps you beat people up.
It does not help with the easy part,
though: the part where you wave your
arms around dangerously, bruising and
hurting another human being. It helps
with the hard part: yelling in a manner
calculated to frighten your opponent into

submission.

Figure 20.1 BeatBox at the end
of this chapter

Different
Architectures: Why
Bother?
Every app you have written so far has
used a simple version of MVC. And, so
far – if we have done our job well –
every app has made sense to you. So
why change? What is the problem?
MVC as written in this book works just

fine for small, simple apps. It is easy to
add new features and easy to think about
the moving pieces of the app. It creates a
solid foundation for development, gets
your app up and running quickly, and
works well in the early phases of a
project.
The problem arises when your program
grows larger than what we show in this
book, as all programs do. Large
fragments and activities are difficult to
build on top of and difficult to
understand. New features and bug fixes
take longer. At some point, those
controllers must be broken down into
smaller pieces.
How do you do that? You figure out the
different jobs your big controller classes

are doing, and you give each job its own
class. Instead of one big class, you have
instances of a few classes doing the job
as a team.
How do you determine what those
different jobs are, then? The answer to
that question is the definition of your
architecture. People use descriptions
like “Model-View-Controller” and
“Model-View-Presenter” to describe at
a high level the ways they answer this
question. But answering this question is
always your responsibility, so your
architecture is always uniquely yours.
BeatBox is designed with an MVVM
architecture. We are fans of MVVM
because it does a great job of lifting a lot
of boring controller code out into the

layout file, where you can easily see
which parts of your interface are
dynamic. At the same time, it pulls the
non-boring dynamic controller code into
a ViewModel class, where it can be
more easily tested and verified.
How large each view model should be
is always a judgment call. If your view
model grows too large, you can break it
down further. Your architecture is yours,
not ours.

Creating BeatBox
Time to get started. The first step is to
create your BeatBox app. In Android
Studio, select File → New Project... to
create a new project. Call it BeatBox
and give it a company domain of
android.bignerdranch.com. Use API
19 for your minimum SDK and start with
one Empty Activity called
BeatBoxActivity. Leave the
defaults as they are.
You will be using RecyclerView
again, so open your project preferences
and add the
com.android.support:recyclerview-

v7 dependency.
Now, let’s build out the basics of the
app. The main screen will show a grid
of buttons, each of which will play a
sound. So, you will need two layout
files: one for the grid and one for the
buttons.
Create your layout file for the
RecyclerView first. You will not
need
res/layout/activity_beat_box.xml
so go ahead and rename it
fragment_beat_box.xml.
Open the newly renamed
fragment_beat_box.xml. Delete
the existing contents of the file. Then fill
it up like so:

Listing 20.1 Reworking main
layout file
(res/layout/fragment_beat_box.xml
<android.support.v7.widget.RecyclerView

xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Now create a new Fragment called
BeatBoxFragment in
com.bignerdranch.android.beatbox.

Listing 20.2 Creating
BeatBoxFragment
(BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {
 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }
}

For now, leave it empty.
Next, create the BeatBoxActivity
your new fragment should go in. You
will use the same
SingleFragmentActivity
architecture you used in CriminalIntent.
First, use your favorite file explorer or
terminal application to copy
SingleFragmentActivity.java
from CriminalIntent into
BeatBox/app/src/main/java/com/bignerdranch/android/beatbox/
and then copy
activity_fragment.xml into
BeatBox/app/src/main/res/layout/
(You can pull these files out of your own
CriminalIntent folder or from the
solutions. For information on how to
access the solutions files, refer back to

the section called Adding an Icon in
Chapter 2.)
Next, delete everything in the body of
BeatBoxActivity, change it to a
subclass of
SingleFragmentActivity, and
override createFragment(), like
so:

Listing 20.3 Filling out
BeatBoxActivity
(BeatBoxActivity.java)
public class BeatBoxActivity extends
SingleFragmentActivity {
 @Override
 protected Fragment createFragment() {
 return BeatBoxFragment.newInstance();
 }
}

Simple data binding
The next job is to inflate
fragment_beat_box.xml and
hook up its RecyclerView. This is a
job that you have done before. But this
time, you will use data binding to speed
up your work.
Start by enabling data binding in your
app’s build.gradle file.

Listing 20.4 Enabling data
binding (app/build.gradle)
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner
"android.support.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false

 proguardFiles
getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
 dataBinding {
 enabled = true
 }
}

dependencies {

This turns on the IDE integration that
will allow you to access the classes data
binding will generate for you and
integrate that class generation into your
build.
To use data binding within a particular
layout file, you have to change it into a
data binding layout file. The way you do
that is by wrapping the entire XML file
in a <layout> tag.

Listing 20.5 Wrapping it up
(res/layout/fragment_beat_box.xml
<layout

xmlns:android="http://schemas.android.com/apk/res/android">

 <android.support.v7.widget.RecyclerView

xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</layout>

The <layout> tag is your signal to the
data binding tool that it should get to
work on your layout file. Once it is
done, it will generate a binding class for
you. By default, this class is named after
your layout file, but instead of using
snake_case, it is switched to
CamelCase naming style.

Your fragment_beat_box.xml
file has already generated a binding
class, called
FragmentBeatBoxBinding. This
class is what you will use for data
binding: Instead of inflating a view
hierarchy with a LayoutInflater,
you will inflate an instance of
FragmentBeatBoxBinding.
FragmentBeatBoxBinding will
hold on to the view hierarchy for you in
a getter called getRoot(). In addition
to that, it holds on to named references
for each view you tagged with an
android:id in your layout file.
So your
FragmentBeatBoxBinding class
has two references: getRoot(),

which refers to the entire layout, and
recyclerView, which refers to just
your RecyclerView (Figure 20.2).

Figure 20.2 Your binding class

Your layout only has one view, of
course, so both references point at the
same view: your RecyclerView.
Now to use this binding class. Override
onCreateView(…) in
BeatBoxFragment and use
DataBindingUtil to inflate an
instance of
FragmentBeatBoxBinding
(Listing 20.6). (You will need to import
FragmentBeatBoxBinding like
any other class. If Android Studio cannot
find FragmentBeatBoxBinding,
this means it was not autogenerated for
some reason. Force Android Studio to
generate the class by selecting Build →
Rebuild Project. If the class is not generated
after forcing the project to rebuild,

restart Android Studio.)

Listing 20.6 Inflating a binding
class (BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {
 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {

 FragmentBeatBoxBinding binding =
DataBindingUtil
 .inflate(inflater,
R.layout.fragment_beat_box, container, false);

 return binding.getRoot();
 }
}

With your binding created, you can now
get at your RecyclerView and
configure it.

Listing 20.7 Configuring
RecyclerView
(BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {
 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 FragmentBeatBoxBinding binding =
DataBindingUtil
 .inflate(inflater,
R.layout.fragment_beat_box, container, false);

 binding.recyclerView.setLayoutManager(new
GridLayoutManager(getActivity(),

3));

 return binding.getRoot();
 }
}

This is what we call simple data binding
– using data binding to automatically

pull out views for you, instead of writing
findViewById(…). Later, you will
see more advanced uses of data binding.
For now, though, you will continue
wiring up your RecyclerView.
Next, create the layout for the buttons,
res/layout/list_item_sound.xml
You will be using data binding here, as
well, so add a layout tag surrounding
your layout file.

Listing 20.8 Creating sound
layout
(res/layout/list_item_sound.xml
<layout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">
 <Button
 android:layout_width="match_parent"

 android:layout_height="120dp"
 tools:text="Sound name"/>
</layout>

Next, create a SoundHolder wired up
to list_item_sound.xml.

Listing 20.9 Creating
SoundHolder
(BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {
 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 ...
 }

 private class SoundHolder extends
RecyclerView.ViewHolder {
 private ListItemSoundBinding mBinding;

 private SoundHolder(ListItemSoundBinding
binding) {

 super(binding.getRoot());
 mBinding = binding;
 }
 }
}

Your SoundHolder expects the
binding class you just implicitly created:
ListItemSoundBinding.
Next, create an Adapter hooked up to
SoundHolder. (If you put your cursor
on RecyclerView.Adapter before
typing in any of the methods below and
hit Option+Return [Alt+Enter], Android
Studio will enter most of this code for
you.)

Listing 20.10 Creating
SoundAdapter
(BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {

 ...
 private class SoundHolder extends
RecyclerView.ViewHolder {
 ...
 }

 private class SoundAdapter extends
RecyclerView.Adapter<SoundHolder> {
 @Override
 public SoundHolder
onCreateViewHolder(ViewGroup parent, int viewType) {
 LayoutInflater inflater =
LayoutInflater.from(getActivity());
 ListItemSoundBinding binding =
DataBindingUtil
 .inflate(inflater,
R.layout.list_item_sound, parent, false);
 return new SoundHolder(binding);
 }

 @Override
 public void onBindViewHolder(SoundHolder
holder, int position) {

 }

 @Override
 public int getItemCount() {
 return 0;
 }
 }
}

Now wire up SoundAdapter in
onCreateView(…).

Listing 20.11 Wiring up
SoundAdapter
(BeatBoxFragment.java)
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 FragmentBeatBoxBinding binding = DataBindingUtil
 .inflate(inflater,
R.layout.fragment_beat_box, container, false);

 binding.recyclerView.setLayoutManager(new
GridLayoutManager(getActivity(), 3));
 binding.recyclerView.setAdapter(new
SoundAdapter());

 return binding.getRoot();
}

Importing Assets
Now to add the sound files to your
project and read them in at runtime.
Rather than use the resources system for
this job, you will use raw assets. You
can think of assets as stripped down
resources: They are packaged into your
APK like resources, but without any of
the configuration system tooling that
goes on top of resources.
In some ways, that is good. Because
there is no configuration system, you can
name assets whatever you want and
organize them with your own folder

structure. In other ways, though, it is
bad. Without a configuration system, you
cannot automatically respond to changes
in pixel density, language, or orientation,
nor can you automatically use the assets
in layout files or other resources.
Usually resources are the better deal.
However, in cases where you only
access files programmatically, assets
can come out ahead. Most games use
assets for graphics and sound, for
example – and so will BeatBox.
Your first step will be to import your
assets. Create an assets folder inside
your project by right-clicking on your
app module and selecting New → Folder →
Assets Folder. Leave the Change Folder
Location checkbox unchecked, and leave

the Target Source Set set to main
(Figure 20.3).

Figure 20.3 Creating the assets
folder

Click Finish to create your assets folder.

Next, right-click on assets to create a
subfolder for your sounds by selecting
New → Directory. Enter
sample_sounds for the directory
name (Figure 20.4).

Figure 20.4 Creating the
sample_sounds folder

Everything inside of the assets folder
is deployed with your app. For the sake
of convenience and organization, you
created a subfolder called
sample_sounds. Unlike with

resources, a subfolder is not required.
You include it to organize your sounds.
So where can you find the sounds? You
will be using a Creative Commons-
licensed sound set we initially found
provided by the user plagasul at
www.freesound.org/​people/​
plagasul/​packs/​3/. We have put
them in a zip file for you at the following
location:

 www.bignerdranch.com/​
solutions/​
sample_sounds.zip

Download the zip file and unzip its
contents into
assets/sample_sounds

http://www.freesound.org/people/plagasul/packs/3/
https://www.bignerdranch.com/solutions/sample_sounds.zip

(Figure 20.5).

Figure 20.5 Imported assets

(Make sure only .wav files are in there,
by the way – not the .zip file you got
them from.)
Build your app to make sure everything
is hunky-dory. The next step will be to
list those assets and show them to the
user.

Getting At Assets
BeatBox will end up doing a lot of work
related to asset management: finding
assets, keeping track of them, and
eventually playing them as sounds. To
manage all this, create a new class
called BeatBox in
com.bignerdranch.android.beatbox.
Go ahead and add a couple of constants:
one for logging and one to remember
which folder you saved your wrestling
grunts in.

Listing 20.12 New BeatBox
class (BeatBox.java)

public class BeatBox {
 private static final String TAG = "BeatBox";

 private static final String SOUNDS_FOLDER =
"sample_sounds";
}

Assets are accessed using the
AssetManager class. You can get an
AssetManager from any Context.
Since BeatBox will need one, give it a
constructor that takes in a Context as
a dependency, pulls out an
AssetManager, and stashes it away.

Listing 20.13 Stashing an
AssetManager for safekeeping
(BeatBox.java)
public class BeatBox {
 private static final String TAG = "BeatBox";

 private static final String SOUNDS_FOLDER =
"sample_sounds";

 private AssetManager mAssets;

 public BeatBox(Context context) {
 mAssets = context.getAssets();
 }
}

When getting at assets, in general you do
not need to worry about which
Context you are using. In every
situation you are likely to encounter in
practice, every Context’s
AssetManager will be wired up to
the same set of assets.
To get a listing of what you have in your
assets, you can use the
list(String) method. Write a
method called loadSounds() that
looks in your assets with
list(String).

Listing 20.14 Looking at assets
(BeatBox.java)
public BeatBox(Context context) {
 mAssets = context.getAssets();
 loadSounds();
}

private void loadSounds() {
 String[] soundNames;
 try {
 soundNames = mAssets.list(SOUNDS_FOLDER);
 Log.i(TAG, "Found " + soundNames.length + "
sounds");
 } catch (IOException ioe) {
 Log.e(TAG, "Could not list assets", ioe);
 return;
 }
}

AssetManager.list(String)
lists filenames contained in the folder
path you pass in. By passing in your
sounds folder, you should see every
.wav file you put in there.
To verify that this is working correctly,

create an instance of BeatBox in
BeatBoxFragment.

Listing 20.15 Creating BeatBox
instance
(BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {

 private BeatBox mBeatBox;

 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mBeatBox = new BeatBox(getActivity());
 }
 ...
}

Run your app and you should see some
log output telling you how many sound
files were found. We provided 22 .wav

files, so if you used our files, you should
see:
…1823-1823/com.bignerdranch.android.beatbox
I/BeatBox: Found 22 sounds

Wiring Up Assets
for Use
Now that you have your asset filenames,
you should present them to the user.
Eventually, you will want the files to be
played, so it makes sense to have an
object responsible for keeping track of
the filename, the name the user should
see, and any other information related to
that sound.
Create a Sound class to hold all of this.
(Remember to let Android Studio
generate your getters.)

Listing 20.16 Creating Sound
object (Sound.java)
public class Sound {
 private String mAssetPath;
 private String mName;

 public Sound(String assetPath) {
 mAssetPath = assetPath;
 String[] components = assetPath.split("/");
 String filename =
components[components.length - 1];
 mName = filename.replace(".wav", "");
 }

 public String getAssetPath() {
 return mAssetPath;
 }

 public String getName() {
 return mName;
 }
}

In the constructor, you do a little work to
make a presentable name for your sound.
First, you split off the filename using

String.split(String). Once
you have done that, you use
String.replace(String,
String) to strip off the file extension,
too.
Next, build up a list of Sounds in
BeatBox.loadSounds().

Listing 20.17 Creating Sounds
(BeatBox.java)
public class BeatBox {
 ...
 private AssetManager mAssets;
 private List<Sound> mSounds = new ArrayList<>();

 public BeatBox(Context context) {
 ...
 }

 private void loadSounds() {
 String[] soundNames;
 try {
 ...
 } catch (IOException ioe) {
 ...

 }

 for (String filename : soundNames) {
 String assetPath = SOUNDS_FOLDER + "/" +
filename;
 Sound sound = new Sound(assetPath);
 mSounds.add(sound);
 }
 }

 public List<Sound> getSounds() {
 return mSounds;
 }
}

Then wire up SoundAdapter to a
List of Sounds.

Listing 20.18 Hooking up to
Sound list
(BeatBoxFragment.java)
private class SoundAdapter extends
RecyclerView.Adapter<SoundHolder> {
 private List<Sound> mSounds;

 public SoundAdapter(List<Sound> sounds) {
 mSounds = sounds;
 }

 ...
 @Override
 public void onBindViewHolder(SoundHolder
soundHolder, int position) {
 }

 @Override
 public int getItemCount() {
 return 0;
 return mSounds.size();
 }
}

And then pass in BeatBox’s sounds in
onCreateView(…).

Listing 20.19 Passing in Sounds
to adapter
(BeatBoxFragment.java)
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 FragmentBeatBoxBinding binding = DataBindingUtil
 .inflate(inflater,
R.layout.fragment_beat_box, container, false);

 binding.recyclerView.setLayoutManager(new
GridLayoutManager(getActivity(), 3));

 binding.recyclerView.setAdapter(new
SoundAdapter());
 binding.recyclerView.setAdapter(new
SoundAdapter(mBeatBox.getSounds()));

 return binding.getRoot();
}

With that, you should see a grid of
buttons when you run BeatBox
(Figure 20.6).

Figure 20.6 Empty buttons

To populate the buttons with titles, you
will use some additional tools from your
new data binding utility belt.

Binding to Data
With data binding, you can declare data
objects within your layout file:
<layout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">
 <data>
 <variable
 name="crime"

type="com.bignerdranch.android.criminalintent.Crime"/>

 </data>
 ...
</layout>

And then use values from those objects
directly in your layout file by using the
binding mustache operator – @{}:

<CheckBox

android:id="@+id/list_item_crime_solved_check_box"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:checked="@{crime.isSolved()}"
 android:padding="4dp"/>

In an object diagram, that would look
like Figure 20.7:

Figure 20.7 The ties that bind

Your goal right now is to put the sound
names on their buttons. The most direct
way to do that using data binding is to
bind directly to a Sound object in
list_item_sound.xml, like
Figure 20.8:

Figure 20.8 Direct hookup

However, this causes some architectural
issues. To see why, look at it from an
MVC perspective (Figure 20.9).

Figure 20.9 Broken MVC

The guiding principle behind any
architecture is the Single Responsibility
Principle. It says that each class you
make should have exactly one
responsibility. MVC gave you an idea of

what those responsibilities should be:
The model represents how your app
works, the controller decides how to
display your app, and the view displays
it on the screen the way you want it to
look.
Using data binding as shown in
Figure 20.8 would break this division of
responsibilities, because the Sound
model object would likely end up
deciding how things are displayed. This
would quickly make your app a mess, as
Sound.java would become littered
with both kinds of code: code that
represents how your app works and
code that decides how things are
displayed.
Instead of muddying up the

responsibility of Sound, you will
introduce a new object called a view
model to use with data binding. This
view model will take on the
responsibility of deciding how things are
displayed (Figure 20.10).

Figure 20.10 Model-View-
ViewModel

This architecture is called MVVM. Most
of the work your controller classes once
did at runtime to format data for display

will go in the view model. Wiring
widgets up with that data will be
handled directly in the layout file using
data binding to that view model. The
controller (your activity or fragment)
will be in charge of things like
initializing the binding and the view
model and creating the link between the
two.

Creating a ViewModel
Let’s create your view model. Create a
new class called SoundViewModel
and give it two properties: a Sound for
it to use and a BeatBox to (eventually)
play that sound with.

Listing 20.20 Creating
SoundViewModel
(SoundViewModel.java)
public class SoundViewModel {
 private Sound mSound;
 private BeatBox mBeatBox;

 public SoundViewModel(BeatBox beatBox) {
 mBeatBox = beatBox;
 }

 public Sound getSound() {
 return mSound;
 }

 public void setSound(Sound sound) {
 mSound = sound;
 }
}

These properties are the interface your
adapter will use. For the layout file, you
will want an additional method to get the
title that the button should display. Add
it now to SoundViewModel.

Listing 20.21 Adding binding
methods
(SoundViewModel.java)
public class SoundViewModel {
 private Sound mSound;
 private BeatBox mBeatBox;

 public SoundViewModel(BeatBox beatBox) {
 mBeatBox = beatBox;
 }

 public String getTitle() {
 return mSound.getName();
 }

 public Sound getSound() {
 return mSound;

Binding to a ViewModel

Now to integrate the view model into
your layout file. The first step is to
declare a property on your layout file,

like so:

Listing 20.22 Declaring the
view model property
(list_item_sound.xml)
<layout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">
 <data>
 <variable
 name="viewModel"

type="com.bignerdranch.android.beatbox.SoundViewModel"/>

 </data>
 <Button

This defines a property named
viewModel on your binding class,
including a getter and setter. Within your
binding class, you can use viewModel in
binding expressions.

Listing 20.23 Binding your
button title
(list_item_sound.xml)
<layout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">
 <data>
 <variable
 name="viewModel"

type="com.bignerdranch.android.beatbox.SoundViewModel"/>

 </data>
 <Button
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:text="@{viewModel.title}"
 tools:text="Sound name"/>
</layout>

Within the binding mustache, you can
write simple Java expressions, including
chained method calls, math, and anything
else you want to include. You also get

some “syntactic sugar” – conveniences
to save you typing. For example,
viewModel.title above is shorthand
for viewModel.getTitle(). Data
binding knows how to translate your
property reference into the appropriate
method call.
The last step is to hook up your view
model. Create a SoundViewModel
and attach it to your binding class. Then
add a binding method to your
SoundHolder.

Listing 20.24 Hooking up the
view model
(BeatBoxFragment.java)
private class SoundHolder extends
RecyclerView.ViewHolder {
 private ListItemSoundBinding mBinding;

 private SoundHolder(ListItemSoundBinding binding)
{
 super(binding.getRoot());
 mBinding = binding;
 mBinding.setViewModel(new
SoundViewModel(mBeatBox));
 }

 public void bind(Sound sound) {
 mBinding.getViewModel().setSound(sound);
 mBinding.executePendingBindings();
 }
}

Inside your constructor, you construct
and attach your view model. Then, in
your bind method, you update the data
that view model is working with.
Calling
executePendingBindings() is
not normally necessary. Here, though,
you are updating binding data inside a
RecyclerView, which updates views
at a very high speed. By calling this

method, you force the layout to
immediately update itself, rather than
waiting a millisecond or two. This keeps
your RecyclerView looking spiffy.
Finally, finish hooking up your view
model by implementing
onBindViewHolder(…).

Listing 20.25 Calling
bind(Sound) method
(BeatBoxFragment.java)
 return new SoundHolder(binding);
}

@Override
public void onBindViewHolder(SoundHolder holder, int
position) {
 Sound sound = mSounds.get(position);
 holder.bind(sound);
}

@Override
public int getItemCount() {
 return mSounds.size();

}

Run your app and you will see titles on
all the buttons on your screen
(Figure 20.11).

Figure 20.11 Button titles filled
in

Observable data

All may appear to be well, but darkness
lies hidden in your code. You can see it
if you scroll down (Figure 20.12).

Figure 20.12 Déjà vu

See the item “67_INDIOS2” at the

bottom? It was at the top, too. Scroll up
and down repeatedly, and you will see
other file titles repeatedly appearing in
unexpected, seemingly random places.
This is happening because your layout
has no way of knowing that you updated
SoundViewModel’s Sound inside
SoundHolder.bind(Sound).
Your view model does not talk back to
the layout file, as depicted in
Figure 20.10.
Your next job will be to add this
connection. To do this, your view model
needs to implement data binding’s
Observable interface. This interface
lets your binding class set listeners on
your view model so that it can
automatically receive callbacks when its

fields are modified.
Implementing the whole interface is
possible, but it is also a lot of work. We
do not shy away from hard work here at
Big Nerd Ranch, but we prefer to avoid
it when we can. So we will instead
show you how to do it the smart way,
with data binding’s
BaseObservable class.
Three steps are required with this
method:

1. Subclass BaseObservable
in your view model.

2. Annotate your view model’s
bindable properties with
@Bindable.

3. Call notifyChange() or
notifyPropertyChanged(int)
each time a bindable property’s
value changes.

In SoundViewModel, this is only a
few lines of code. Update
SoundViewModel to be observable.

Listing 20.26 Making view
model observable
(SoundViewModel.java)
public class SoundViewModel extends BaseObservable {
 private Sound mSound;
 private BeatBox mBeatBox;

 public SoundViewModel(BeatBox beatBox) {
 mBeatBox = beatBox;
 }

 @Bindable
 public String getTitle() {
 return mSound.getName();
 }

 public Sound getSound() {
 return mSound;
 }

 public void setSound(Sound sound) {
 mSound = sound;
 notifyChange();
 }
}

When you call notifyChange()
here, it notifies your binding class that
all of the Bindable fields on your
objects have been updated. The binding
class then runs the code inside the
binding mustaches again to repopulate
the view. So now, when
setSound(Sound) is called,
ListItemSoundBinding will be
notified and call
Button.setText(String) as you
specified in
list_item_sound.xml.

Above, we mentioned another method:
notifyPropertyChanged(int).
The
notifyPropertyChanged(int)
method does the same thing as
notifyChange(), except it is more
particular. By writing
notifyChange(), you say, “All of
my bindable properties have changed;
please update everything.” By writing
notifyPropertyChanged(BR.title)
you can instead say, “Only
getTitle()’s value has changed.”
Run BeatBox one more time. This time,
you should see the right thing when you
scroll around (Figure 20.13).

Figure 20.13 All done

Figure 20.13 All done

Accessing Assets
You have finished all the work for this
chapter. You will develop BeatBox to
actually use the content of your assets in
the next chapter.
Before you do, though, let’s discuss a bit
more about how assets work.
Your Sound object has an asset file
path defined on it. Asset file paths will
not work if you try to open them with a
File; you must use them with an
AssetManager:
String assetPath = sound.getAssetPath();
InputStream soundData = mAssets.open(assetPath);

This gives you a standard
InputStream for the data, which you
can use like any other InputStream
in Java.
Some APIs require
FileDescriptors instead. (This is
what you will use with SoundPool in
the next chapter.) If you need that, you
can call
AssetManager.openFd(String)
instead:
String assetPath = sound.getAssetPath();
// AssetFileDescriptors are different from
FileDescriptors,
AssetFileDescriptor assetFd =
mAssets.openFd(assetPath);
// but you get can a regular FileDescriptor easily if
you need to.
FileDescriptor fd = assetFd.getFileDescriptor();

For the More
Curious: More
About Data
Binding
Complete coverage of data binding is
outside the scope of this book. And yet,
reader, we must nevertheless try.

Lambda expressions
You can write short callbacks directly in
your layout file by using lambda

expressions. These are simplified
versions of Java’s lambda expressions:
<Button
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:text="@{viewModel.title}"
 android:onClick="@{(view) ->
viewModel.onButtonClick()}"
 tools:text="Sound name"/>

Like Java 8 lambda expressions, these
are turned into implementations for the
interface you use them for. (In this case,
View.OnClickListener.) Unlike
Java 8 lambda expressions, these
expressions must use this exact syntax:
The parameter must be in parentheses,
and you must have exactly one
expression on the right-hand side.
Also, unlike in Java lambdas, you can
omit the lambda parameters if you are

not using them. So this works fine, too:
 android:onClick="@{() ->
viewModel.onButtonClick()}"

More syntactic sugar
You also get a few additional bits of
handy syntax for data binding.
Particularly handy is the ability to use
backticks for double quotes:
 android:text="@{`File name: ` + viewModel.title}"

Here, `File name` means the same
thing as "File name".
Binding expressions also have a null
coalescing operator:
 android:text="@{`File name: ` + viewModel.title
?? `No file`}"

In the event that title is null, the ??
operator will yield the value "No file"
instead.
In addition, there is automatic null
handling provided for you in data
binding. Even if viewModel is null in the
code above, data binding will provide
appropriate null checks so that it does
not crash the app. Instead of crashing,
the subexpression viewModel.title
will yield "null".

BindingAdapters
By default, data binding interprets a
binding expression as a property
invocation. So the following:

 android:text="@{`File name: ` + viewModel.title
?? `No file`}"

is translated into an invocation of the
setText(String) method.
Sometimes, though, that is not enough,
and you want some custom behavior to
be applied for a particular attribute. In
those cases, you can write a
BindingAdapter:
public class BeatBoxBindingAdapter {
 @BindingAdapter("app:soundName")
 public static void bindAssetSound(Button button,
String assetFileName) {
 ...
 }
}

Simply create a static method in any
class in your project and annotate it with
@BindingAdapter, passing in the name
of the attribute you want to bind as a
parameter. (Yes, this really works.)

Whenever data binding needs to apply
that attribute, it will call your static
method.
You will probably think of one or two
operations you would like to use data
binding with on the standard library
widgets. Many common operations
already have binding adapters defined –
for example,
TextViewBindingAdapter
provides additional attributes for
TextView. You can read these binding
adapters yourself by viewing the source
in Android Studio. So, before you write
your own solution, type
Command+Shift+O (Ctrl+Shift+O) to
search for a class, open up the
associated binding adapters file, and

check to see whether it already exists.

For the More
Curious: Why
Assets, Not
Resources
Technically, you could have used
resources in this chapter instead of
assets. Resources can store sounds.
Stash a file like
79_long_scream.wav in
res/raw, and you can get at it with the
ID R.raw.79_long_scream. With
sounds stored as resources, you can do
all the usual resource things, like having

different sounds for different
orientations, languages, versions of
Android, and so on.
So why did we choose assets? The
biggest reason is that BeatBox has a lot
of sounds: more than 20 different files.
Dealing with them all one by one in the
resources system would have been
cumbersome. Resources do not let you
ship out all your sounds in one folder,
nor do they allow you to give your
resources anything other than a totally
flat structure.
This is exactly what the assets system is
great for. Assets are like a little file
system that ships with your packaged
application. With assets, you can use
whatever folder structure you want.

So with assets, if you want to add a new
sound file, all you have to do is add it to
your sample_sounds folder. Since
they give you this kind of organizational
ability, assets are commonly used for
loading graphics and sound in
applications that have a lot of those
things, like games.

For the More
Curious: Non-
Assets?
AssetManager has methods called
openNonAssetFd(…). You might
reasonably ask why a class dedicated to
assets would concern itself with non-
assets. We might reasonably answer,
“These aren’t the droids you’re looking
for,” so that you might go on believing
that you never heard of
openNonAssetFd(…) in the first
place. There is no reason that we know

of to ever use this method, so there is no
real reason to learn about it. You did buy
our book, though. So we might as well
throw this answer out there for fun:
Earlier we said that Android has two
systems, assets and resources. The
resources system has a nice lookup
system, but some resources are too big
to fit inside that system. So these big
resources – images and raw sound files,
usually – are actually stored in the assets
system. Under the hood, Android opens
these things itself using the
openNonAsset methods, not all of
which are publicly available.
When would you need to use these? As
far as we know, never. And now you
know, too.

21
Unit Testing

and Audio
Playback

One reason MVVM architecture is so
appealing is that it makes a critical
programming practice easier: unit
testing. Unit testing is the practice of
writing small programs that verify the
standalone behavior of each unit of your
main app. Because BeatBox’s units are
each classes, classes are what your unit

tests will test.
In this chapter, you will finally play all
of the .wav files you loaded in the
previous chapter. As you build and
integrate sound playback, you will write
unit tests for your
SoundViewModel’s integration with
BeatBox.
Android’s audio APIs are low level for
the most part, but there is a tool
practically tailor-made for the app you
are writing: SoundPool.
SoundPool can load a large set of
sounds into memory and control the
maximum number of sounds that are
playing back at any one time. So, if your
app’s user gets a bit too excited and
mashes all the buttons at the same time,

it will not break your app or overtax
your phone.
Ready? Time to get started.

Creating a
SoundPool
Your first job is to build out sound
playback inside BeatBox. To do that,
first create a SoundPool object.

Listing 21.1 Creating a
SoundPool (BeatBox.java)
public class BeatBox {
 private static final String TAG = "BeatBox";

 private static final String SOUNDS_FOLDER =
"sample_sounds";

 private static final int MAX_SOUNDS = 5;

 private AssetManager mAssets;
 private List<Sound> mSounds = new ArrayList<>();
 private SoundPool mSoundPool;

 public BeatBox(Context context) {
 mAssets = context.getAssets();
 // This old constructor is deprecated but
needed for compatibility
 mSoundPool = new SoundPool(MAX_SOUNDS,
AudioManager.STREAM_MUSIC, 0);
 loadSounds();
 }
 ...
}

Lollipop introduced a new way of
creating a SoundPool using a
SoundPool.Builder. However,
SoundPool.Builder is not
available on your minimum-supported
API (19), so you are using the older
SoundPool(int, int, int)
constructor instead.
The first parameter specifies how many

sounds can play at any given time. Here,
you pass in 5. If five sounds are playing
and you try to play a sixth one, the
SoundPool will stop playing the
oldest one.
The second parameter determines the
kind of audio stream your SoundPool
will play on. Android has a variety of
different audio streams, each of which
has its own independent volume settings.
This is why turning down the music does
not also turn down your alarms. Check
out the documentation for the AUDIO_*
constants in AudioManager to see the
other options. STREAM_MUSIC will
put you on the same volume setting as
music and games on the device.
And the last parameter? It specifies the

quality for the sample rate converter.
The documentation says it is ignored, so
you just pass in 0.

Loading Sounds
The next thing to do with your
SoundPool is to load it up with
sounds. The main benefit of using a
SoundPool over some other methods
of playing audio is that SoundPool
responds quickly: When you tell it to
play a sound, it will play the sound
immediately, with no lag.
The trade-off for that is that you must
load sounds into your SoundPool
before you play them. Each sound you
load will get its own integer ID. To track
this ID, add an mSoundId field to

Sound and a generated getter and setter
to keep track of it.

Listing 21.2 Adding sound ID
field (Sound.java)
public class Sound {
 private String mAssetPath;
 private String mName;
 private Integer mSoundId;
 ...
 public String getName() {
 return mName;
 }

 public Integer getSoundId() {
 return mSoundId;
 }

 public void setSoundId(Integer soundId) {
 mSoundId = soundId;
 }
}

By making mSoundId an Integer
instead of an int, you make it possible
to say that a Sound has no value set for

mSoundId by assigning it a null
value.
Now to load your sounds. Add a
load(Sound) method to BeatBox to
load a Sound into your SoundPool.

Listing 21.3 Loading sounds
into SoundPool (BeatBox.java)
 private void loadSounds() {
 ...
 }

 private void load(Sound sound) throws IOException
{
 AssetFileDescriptor afd =
mAssets.openFd(sound.getAssetPath());
 int soundId = mSoundPool.load(afd, 1);
 sound.setSoundId(soundId);
 }

 public List<Sound> getSounds() {
 return mSounds;
 }
}

Calling

mSoundPool.load(AssetFileDescriptor,
int) loads a file into your
SoundPool for later playback. To
keep track of the sound and play it back
again (or unload it),
mSoundPool.load(…) returns an
int ID, which you stash in the
mSoundId field you just defined. And
since calling openFd(String)
throws IOException,
load(Sound) throws
IOException, too.
Now load up all your sounds by calling
load(Sound) inside
BeatBox.loadSounds().

Listing 21.4 Loading up all
your sounds (BeatBox.java)

private void loadSounds() {
 ...
 for (String filename : soundNames) {
 try {
 String assetPath = SOUNDS_FOLDER + "/" +
filename;
 Sound sound = new Sound(assetPath);
 load(sound);
 mSounds.add(sound);
 } catch (IOException ioe) {
 Log.e(TAG, "Could not load sound " +
filename, ioe);
 }
 }
}

Run BeatBox to make sure that all the
sounds loaded correctly. If they did not,
you will see red exception logs in
Logcat.

Playing Sounds
BeatBox also needs to be able to play
sounds. Add the play(Sound)
method to BeatBox.

Listing 21.5 Playing sounds
back (BeatBox.java)
public BeatBox(Context context) {
 mAssets = context.getAssets();
 // This old constructor is deprecated but needed
for compatibility
 mSoundPool = new SoundPool(MAX_SOUNDS,
AudioManager.STREAM_MUSIC, 0);
 loadSounds();
}

public void play(Sound sound) {
 Integer soundId = sound.getSoundId();
 if (soundId == null) {
 return;
 }

 mSoundPool.play(soundId, 1.0f, 1.0f, 1, 0, 1.0f);
}

private void loadSounds() {

Before playing your soundId, you
check to make sure it is not null. This
might happen if the Sound failed to
load.
Once you are sure you have a non-null
value, you play the sound by calling
SoundPool.play(int, float,
float, int, int, float).
Those parameters are, respectively: the
sound ID, volume on the left, volume on
the right, priority (which is ignored),
whether the audio should loop, and
playback rate. For full volume and
normal playback rate, you pass in 1.0.
Passing in 0 for the looping value says

“do not loop.” (You can pass in -1 if you
want it to loop forever. We speculate
that this would be incredibly annoying.)
With that method written, you are now
ready to integrate sound playback into
SoundViewModel. You will perform
this integration in a test-first manner –
that is, you will first write a failing unit
test and then implement the integration to
make the test pass.

Test Dependencies
Before you write your test, you will
need to add a couple of tools to your
testing environment: Mockito and
Hamcrest. Mockito is a Java framework
that makes it easy to create simple mock
objects. These mock objects will help
you isolate your tests of
SoundViewModel so that you do not
accidentally test other objects at the
same time.
Hamcrest, on the other hand, is a library
of matchers. Matchers are tools that
make it easy to “match” conditions in

your code and fail if your code does not
match what you expect. You will use
them to verify that your code works as
you expect it to.
You only need these two libraries in
your test builds, so you will add them as
test dependencies. Start by right-clicking
your app module and selecting Open
Module Settings.
Select the Dependencies tab at the top of
the screen, click the + button at the
bottom of the dialog, and choose Library
dependency. Type in “mockito” and press
Return to search (Figure 21.1).

Figure 21.1 Importing Mockito

Select the org.mockito:mockito-core
dependency and click OK. Then repeat
the process for Hamcrest, searching for
hamcrest-junit and selecting
org.hamcrest:hamcrest-junit.
Once you finish, you will see your two
new dependencies appear in the
dependencies list. There is a dropdown
on the right-hand side of the mockito-
core and hamcrest-junit

dependencies. This dropdown allows
you to choose between different
dependency scopes. It only allows you
to specify integration test scope, though,
so you will need to modify your
build.gradle by hand.
Open your app module’s
build.gradle and modify the
dependency directives from compile to
testCompile.

Listing 21.6 Changing scope of
Mockito dependency
(app/build.gradle)
dependencies {
 compile fileTree(include: ['*.jar'], dir: 'libs')

androidTestCompile('com.android.support.test.espresso:espresso-
core:2.2.2', {
 exclude group: 'com.android.support', module:
'support-annotations'

 })
 compile 'com.android.support:appcompat-v7:24.2.0'
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:recyclerview-
v7:24.2.0'
 compile testCompile 'org.mockito:mockito-
core:2.2.1'
 compile testCompile 'org.hamcrest:hamcrest-
junit:2.0.0.0'
}

The testCompile scope means that
these two dependencies will only be
included in test builds of your app. That
way, you do not bloat your APK with
additional unused code.

Creating a Test
Class
The most convenient way to write unit
tests is within a testing framework. The
framework makes it easier to write and
run a suite of tests together and see their
output in Android Studio.
JUnit is almost universally used as a
testing framework on Android and has
convenient integrations into Android
Studio. Your first job is to create a class
for your JUnit tests to live in. To do this,
open up SoundViewModel.java
and key in Command+Shift+T

(Ctrl+Shift+T). Android Studio attempts
to navigate to a test class associated
with the class you are looking at. If there
is no test class (as is the case here), you
are given the option to create a new test
class (Figure 21.2).

Figure 21.2 Trying to open a
test class

Choose Create New Test... to create the
new test class. Select JUnit4 for your
testing library and check the box marked
setUp/@Before. Leave all the other fields

as they are (Figure 21.3).

Figure 21.3 Creating a new
test class

Click OK to continue to the next dialog.
The last step is to choose what kind of
test class you will create. Tests in the
androidTest folder are integration
tests. Integration tests run on an Android
device or emulator. The advantage of
that is that you can test any behavior of
your app at runtime. The downside is
that since they must build and run an
APK on a device, they take forever to
run. (See the section called For the
More Curious: Espresso and
Integration Testing for more about
integration tests.)
Tests in the test folder are unit tests.
Unit tests are run on your local machine,
without any of the Android runtime
available. Leaving out that baggage

makes them quick.
Unit tests are the smallest kind of test
you can write: a test of one component
by itself. They should not need your
entire app or a device to run, and they
should run quickly enough for you to run
them repeatedly as you work. So choose
the test folder for your test class
(Figure 21.4) and click OK.

Figure 21.4 Selecting a
destination directory

Setting Up Your
Test
Now to build out your
SoundViewModel test. Your template
starts out with a single method called
setUp():

Listing 21.7 Your empty test
class
(SoundViewModelTest.java)
public class SoundViewModelTest {
 @Before
 public void setUp() throws Exception {

 }
}

(You can find this class under the source
set labeled “test” inside your app
module.)
A test needs to do the same work for
most objects: Build an instance of the
object to test and create any other
objects that object depends on. Instead
of writing this same code for every test,
JUnit provides an annotation called
@Before. Code written inside a method
marked @Before will be run once before
each test executes. By convention, most
unit test classes have one method marked
@Before named setUp().

Using mocked
dependencies

Inside your setUp() method you will
want to construct an instance of
SoundViewModel to test. To do that,
you will need an instance of BeatBox,
because SoundViewModel takes in a
BeatBox as a constructor argument.
In your app, you create an instance of
BeatBox by… well, creating an
instance of BeatBox:
SoundViewModel viewModel = new SoundViewModel(new
BeatBox());

If you do that in a unit test, though, you
create a problem: If BeatBox is
broken, then tests you write in
SoundViewModel that use BeatBox
might break, too. That is not what you
want. SoundViewModel’s unit tests
should only fail when

SoundViewModel is broken.
The solution is to use a mocked
BeatBox. This mock object will be a
subclass of BeatBox that has all the
same methods as BeatBox – but none
of those methods will do anything. That
way, your test of SoundViewModel
can verify that SoundViewModel
itself is using BeatBox correctly,
without depending at all on how
BeatBox works.
To create a mock object with Mockito,
you call the mock(Class) static
method, passing in the class you want to
mock. Create a mock of BeatBox and a
field to store it in.

Listing 21.8 Creating mock

BeatBox
(SoundViewModelTest.java)
public class SoundViewModelTest {
 private BeatBox mBeatBox;

 @Before
 public void setUp() throws Exception {
 mBeatBox = mock(BeatBox.class);
 }
}

The mock(Class) method will need
to be imported, the same as a class
reference. This method will
automatically create a mocked out
version of BeatBox for you. Pretty
slick.
Now that you have your mock
dependency, you can finish creating
SoundViewModel. Create your
SoundViewModel and a Sound for
it to use. (Sound is a simple data object

with no behavior to break, so it is safe
not to mock it.)

Listing 21.9 Creating a
SoundViewModel test subject
(SoundViewModelTest.java)
public class SoundViewModelTest {
 private BeatBox mBeatBox;
 private Sound mSound;
 private SoundViewModel mSubject;

 @Before
 public void setUp() throws Exception {
 mBeatBox = mock(BeatBox.class);
 mSound = new Sound("assetPath");
 mSubject = new SoundViewModel(mBeatBox);
 mSubject.setSound(mSound);
 }
}

Anywhere else in this book, you would
have named your SoundViewModel
mSoundViewModel. Here, though,
you have named it mSubject. This is a

convention we like to use in our tests at
Big Nerd Ranch for two reasons:

It makes it clear that
mSubject is the object under
test (and the other objects are
not).

If any methods on
SoundViewModel are ever
moved to a different class (say,
BeatBoxSoundViewModel
the test methods can be cut and
pasted over without renaming
mSoundViewModel to
mBeatBoxSoundViewModel

Writing Tests
Now that your setUp() method is
written, you are ready to write your
tests. A test is a method in your test class
annotated with @Test.
Start by writing a test that asserts
existing behavior in
SoundViewModel: The
getTitle() property is connected to
the Sound’s getName() property.
Write a method that tests this.

Listing 21.10 Testing the title
property
(SoundViewModelTest.java)

@Before
public void setUp() throws Exception {
 mBeatBox = mock(BeatBox.class);
 mSound = new Sound("assetPath");
 mSubject = new SoundViewModel(mBeatBox);
 mSubject.setSound(mSound);
}

@Test
public void exposesSoundNameAsTitle() {
 assertThat(mSubject.getTitle(),
is(mSound.getName()));
}

Two methods will show up red: the
assertThat(…) method and the
is(…) method. Key in Option+Return
(Alt+Enter) on assertThat(…) and
select Static import method..., then
MatcherAssert.assertThat(…)
from hamcrest-core-1.3. Do the same
for the is(…) method, selecting Is.is
from hamcrest-core-1.3.
This test uses the is(…) Hamcrest

matcher with JUnit’s assertThat(…)
method. The code reads almost like a
sentence: “Assert that subject’s get title
method is the same value as sound’s get
name method.” If those two methods
returned different values, the test would
fail.
To run all your unit tests, right-click
app/java/com.bignerdranch.android.beatbox
(test) and select Run 'Tests in 'beatbox''.
A display will pop up (Figure 21.5).

Figure 21.5 Passing tests

By default, the test display only shows

failing tests, since those are the only
tests that are interesting. So this output
means that everything is A-OK – your
tests ran, and they passed.

Testing object
interactions
Now for the real work: building out the
integration between
SoundViewModel and your new
BeatBox.play(Sound) method. A
common way to go about this is to write
a test that shows what you expect a new
method to do before you have written the
method. You are going to write a new
method on SoundViewModel called

onButtonClicked() that calls
BeatBox.play(Sound). Write a
test method that calls
onButtonClicked().

Listing 21.11 Writing test for
onButtonClicked()
(SoundViewModelTest.java)
 @Test
 public void exposesSoundNameAsTitle() {
 assertThat(mSubject.getTitle(),
is(mSound.getName()));
 }

 @Test
 public void callsBeatBoxPlayOnButtonClicked() {
 mSubject.onButtonClicked();
 }
}

That method does not exist yet, so it
shows up in red. Put your cursor over it
and key in Option+Return (Alt+Enter).
Then select Create method 'onButtonClicked'

and the method will be created for you.

Listing 21.12 Creating
onButtonClicked()
(SoundViewModel.java)
 public void setSound(Sound sound) {
 mSound = sound;
 notifyChange();
 }

 public void onButtonClicked() {

 }
}

For now, leave it empty and key in
Command+Shift+T (Ctrl+Shift+T) to
return to SoundViewModelTest.
Your test calls the method, but it should
also verify that the method does what
you say it does: calls
BeatBox.play(Sound). Mockito

can help you do this odd-sounding job.
All Mockito mock objects keep track of
which of their methods have been called
as well as what parameters were passed
in for each call. Mockito’s
verify(Object) method can then
check to see whether those methods
were called the way you expected them
to be called.
Call verify(Object) to ensure that
onButtonClicked() calls
BeatBox.play(Sound) with the
Sound object you hooked up to your
SoundViewModel.

Listing 21.13 Verifying that
BeatBox.play(Sound) is called
(SoundViewModelTest.java)

 assertThat(mSubject.getTitle(),
is(mSound.getName()));
 }

 @Test
 public void callsBeatBoxPlayOnButtonClicked() {
 mSubject.onButtonClicked();

 verify(mBeatBox).play(mSound);
 }
}

The verify(Object) uses a fluent
interface, much like the
AlertDialog.Builder class you
used earlier in this book. It is an
abbreviation for the following code:
verify(mBeatBox);
mBeatBox.play(mSound);

Calling verify(mBeatBox) says, “I
am about to verify that a method was
called on mBeatBox.” The next method
call after that is then interpreted as,
“Verify that this method was called like

this.” So your call to verify(…) here
means, “Verify that the play(…)
method was called on mBeatBox with
mSound as a parameter.”
No such thing has happened, of course.
SoundViewModel.onButtonClicked()
is empty, so
mBeatBox.play(Sound) has not
been called. This means that your test
should fail. Because you are writing the
test first, that is a good thing – if your
test does not fail at first, it must not be
testing anything.
Run your test to see it fail. You can
follow the same steps from earlier, or
key in Command+R (Ctrl+R) to repeat
the last “Run” command you performed.
The result is shown in Figure 21.6.

Figure 21.6 Failing test output

The output says that your test expected a
call to mBeatBox.play(Sound)
but did not receive it:
Wanted but not invoked:
beatBox.play(
 com.bignerdranch.android.beatbox.Sound@64cd705f
);
-> at
….callsBeatBoxPlayOnButtonClicked(SoundViewModelTest.java:28)

Actually, there were zero interactions with this
mock.

Under the hood, verify(Object)
made an assertion, just like
assertThat(…) did. When that

assertion failed, it caused the test to fail
and logged out this output describing
what went wrong.
Now to fix your test. Implement
onButtonClicked() to do what the
test expects.

Listing 21.14 Implementing
onButtonClicked()
(SoundViewModel.java)
 public void setSound(Sound sound) {
 mSound = sound;
 notifyChange();
 }

 public void onButtonClicked() {
 mBeatBox.play(mSound);
 }
}

Rerun your test. This time you should
see green, indicating that all your tests

passed (Figure 21.7).

Figure 21.7 All green, all good

Data Binding
Callbacks
One last step remains to get your buttons
working: You need to hook up
onButtonClicked() to your button.
Just like you were able to use data
binding to put data into your UI, you can
use it to hook up click listeners and the
like by using lambda expressions. (To
refresh your memory on lambda
expressions, see the section called
Lambda expressions in Chapter 20.)
Add a data binding callback expression

to hook up your button to
SoundViewModel.onButtonClicked()

Listing 21.15 Hooking up your
button (list_item_sound.xml)
<Button
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:onClick="@{() ->
viewModel.onButtonClicked()}"
 android:text="@{viewModel.title}"
 tools:text="Sound name"/>

The next time you run BeatBox, your
buttons should play sounds for you.
However, if you try to run BeatBox with
the green run button now, your tests will
run again. This is because right-clicking
to run the tests changed your run
configuration – the setting that
determines what Android Studio will do
when you click the run button.

To run your BeatBox app, click the run
configuration selector next to the run
button and switch back over to the app
run configuration (Figure 21.8).

Figure 21.8 Changing your run
configuration

Now run BeatBox and click on your
buttons. You should hear your app make
aggressive yelling sounds. Do not be

afraid – this is what BeatBox was meant
to do.

Unloading Sounds
The app works, but to be a good citizen
you should clean up your SoundPool
by calling SoundPool.release()
when you are done with it.

Listing 21.16 Releasing your
SoundPool (BeatBox.java)
public class BeatBox {
 ...
 public void play(Sound sound) {
 ...
 }

 public void release() {
 mSoundPool.release();
 }
 ...
}

Then, add a matching
BeatBox.release() method in
BeatBoxFragment.

Listing 21.17 Releasing your
BeatBox
(BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 ...
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mBeatBox.release();
 }
 ...
}

Run your app again to make sure it

works correctly with your new
release() method. If you play a long
sound and rotate the screen or hit the
Back button, you should now hear the
sound stop.

Rotation and
Object Continuity
Now you are a good citizen, which is
nice. Unfortunately, your app no longer
handles rotation correctly. Try playing
the 69_ohm-loko sound and rotating
the screen: The sound will stop abruptly.
(If it does not, make sure you have built
and run the app with your recent
onDestroy() implementation.)
Here is the problem: On rotation, the
BeatBoxActivity is destroyed. As
this happens, the FragmentManager
destroys your BeatBoxFragment,

too. In doing that, it calls
BeatBoxFragment’s waning
lifecycle methods: onPause(),
onStop(), and onDestroy(). In
BeatBoxFragment.onDestroy()
you call BeatBox.release(),
which releases the SoundPool and
stops sound playback.
You have seen how Activity and
Fragment instances die on rotation
before, and you have solved these issues
using
onSaveInstanceState(Bundle)
However, that solution will not work
this time, because it relies on saving
data out and restoring it using
Parcelable data inside a Bundle.
Parcelable, like Serializable,

is an API for saving an object out to a
stream of bytes. Objects may elect to
implement the Parcelable interface
if they are what we will call “stashable”
here. Objects are stashed in Java by
putting them in a Bundle, by marking
them Serializable so that they can
be serialized, or by implementing the
Parcelable interface. Whichever
way you do it, the same idea applies:
You should not be using any of these
tools unless your object is stashable.
To illustrate what we mean by
“stashable,” imagine watching a
television program with a friend. You
could write down the channel you are
watching, the volume level, and even the
TV you are watching the program on.

Once you do that, even if a fire alarm
goes off and the power goes out, you can
look at what you wrote down and get
back to watching TV just like you were
before.
So the configuration of your TV
watching time is stashable. The time you
spend watching TV is not, though: Once
the fire alarm goes off and the power
goes out, that session is gone. You can
return and create a new session just like
it, but you will experience an
interruption no matter what you do. So
the session is not stashable.
Some parts of BeatBox are stashable –
everything contained in Sound, for
example. But SoundPool is more like
your TV watching session. Yes, you can

create a new SoundPool that has all
the same sounds as an older one. You
can even start playing again right where
you left off. But you will always
experience a brief interruption, no matter
what you do. That means that
SoundPool is not stashable.
Non-stashability tends to be contagious.
If a non-stashable object is critical to
another object’s mission, that other
object is probably not stashable, either.
Here, BeatBox has the same mission
as SoundPool: to play back sounds.
Therefore, ipso facto, Q.E.D.:
BeatBox is not stashable. (Sorry.)
The regular savedInstanceState
mechanism preserves stashable data for
you, but BeatBox is not stashable. You

need your BeatBox instance to be
continuously available as your
Activity is created and destroyed.
What to do?

Retaining a fragment
Fortunately, fragments have a feature that
you can use to keep the BeatBox
instance alive across a configuration
change: retainInstance. Within your
override of
BeatBoxFragment.onCreate(…)
set a property on the fragment.

Listing 21.18 Calling
setRetainInstance(true)

(BeatBoxFragment.java)
 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);

 mBeatBox = new BeatBox(getActivity());
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {

By default, the retainInstance property of
a fragment is false. This means it is not
retained, but is destroyed and re-created
on rotation along with the activity that
hosts it. Calling
setRetainInstance(true) retains the
fragment. When a fragment is retained,

the fragment is not destroyed with the
activity. Instead, it is preserved and
passed along intact to the new activity.
When you retain a fragment, you can
count on all of its instance variables
(like mBeatBox) to keep the same
values. When you reach for them, they
are simply there.
Run BeatBox again. Play the 69_ohm-
loko sound, rotate the device, and
confirm that playback continues
unimpeded.

Rotation and retained
fragments

Let’s take a closer look at how retained
fragments work. Retained fragments take
advantage of the fact that a fragment’s
view can be destroyed and re-created
without having to destroy the fragment
itself.
During a configuration change, the
FragmentManager first destroys the
views of the fragments in its list.
Fragment views always get destroyed
and re-created on a configuration change
for the same reasons that activity views
are destroyed and re-created: If you
have a new configuration, then you might
need new resources. Just in case better
matching resources are now available,
you rebuild the view from scratch.
Next, the FragmentManager checks

the retainInstance property of each
fragment. If it is false, which it is by
default, then the FragmentManager
destroys the fragment instance. The
fragment and its view will be re-created
by the new FragmentManager of the
new activity “on the other side”
(Figure 21.9).

Figure 21.9 Default rotation
with a UI fragment

On the other hand, if retainInstance is

true, then the fragment’s view is
destroyed but the fragment itself is not.
When the new activity is created, the
new FragmentManager finds the
retained fragment and re-creates its view
(Figure 21.10).

Figure 21.10 Rotation with a
retained UI fragment

A retained fragment is not destroyed, but

it is detached from the dying activity.
This puts the fragment in a retained
state. The fragment still exists, but it is
not hosted by any activity
(Figure 21.11).

Figure 21.11 Fragment
lifecycle

The retained state is only entered into
when two conditions are met:

setRetainInstance(true)
has been called on the fragment

the hosting activity is being
destroyed for a configuration
change (typically rotation)

A fragment is only in the retained state

for an extremely brief interval – the time
between being detached from the old
activity and being reattached to the new
activity that is immediately created.

For the More
Curious: Whether
to Retain
Retained fragments: pretty nifty, right?
Yes! They are indeed nifty. They appear
to solve all the problems that pop up
from activities and fragments being
destroyed on rotation. When the device
configuration changes, you get the most
appropriate resources by creating a
brand-new view, and you have an easy
way to retain data and objects.
You may wonder why you would not

retain every fragment or why fragments
are not retained by default. In general,
we do not recommend using this
mechanism unless you absolutely need
to, for a couple of reasons.
The first reason is simply that retained
fragments are more complicated than
unretained fragments. When something
goes wrong with them, it takes longer to
get to the bottom of what went wrong.
Programs are always more complicated
than you want them to be, so if you can
get by without this complication, you are
better off.
The other reason is that fragments that
handle rotation using saved instance
state handle all lifecycle situations, but
retained fragments only handle the case

when an activity is destroyed for a
configuration change. If your activity is
destroyed because the OS needs to
reclaim memory, then all your retained
fragments are destroyed, too, which may
mean that you lose some data.

For the More
Curious: Espresso
and Integration
Testing
You may recall that
SoundViewModelTest from earlier
was a unit test. Your other option was to
create an integration test. So: What is an
integration test?
In a unit test, the item under test is an
individual class. In an integration, the
item under test is your whole app. They

are usually written screen by screen. For
example, you might test that when the
BeatBoxActivity screen is fired
up, the first button displays the name of
the first file from sample_sounds:
65_cjipie.
Integration tests should pass when the
app does what you expect, not when the
app is implemented how you expect.
Changing the name of a button ID does
not affect what the application does, but
if you write an integration test that says,
“Call
findViewById(R.id.button)
and make sure the button it finds is
displaying the right text,” that test will
break. So instead of using standard
Android framework tools like

findViewById(int), integration
tests are most often written with a UI
testing framework that makes it easier to
say things like, “Make sure there is a
button with the text I expect on the
screen somewhere.”
Espresso is a UI testing framework from
Google for testing Android apps. You
can include it by adding
com.android.support.test.espresso:espresso-
core as an androidTestCompile
artifact in your app/build.gradle
file.
Once you have Espresso included as a
dependency, you can use it to make
assertions about an activity you have
fired up to test. Here is an example test
showing how to assert that a view exists

on the screen with the first
sample_sounds test file name:
@RunWith(AndroidJUnit4.class)
public class BeatBoxActivityTest {
 @Rule
 public ActivityTestRule<BeatBoxActivity>
mActivityRule =
 new ActivityTestRule<>
(BeatBoxActivity.class);

 @Test
 public void showsFirstFileName() {
 onView(withText("65_cjipie"))
 .check(matches(anything()));
 }
}

A couple of annotations get this code up
and running. The
@RunWith(AndroidJUnit4.class)
annotation up top specifies that this is an
Android instrumentation test that might
want to work with activities and other
Android runtime toys. After that, the
@Rule annotation on mActivityRule

signals to JUnit that it should fire up an
instance of BeatBoxActivity
before running each test.
With that setup done, you can make
assertions about BeatBoxActivity
in your test. In
showsFirstFileName(), the line
onView(withText("65_cjipie"))
finds a view with the text "65_cjipie"
on it to perform a test operation on. The
call to
check(matches(anything()))
after that then asserts that the view exists
– if there is no view with that text, the
check will fail. The check(…) method
is Espresso’s way to make
assertThat(…)-type assertions
about views.

Often you will want to click on a view,
then make an assertion to verify the
result of your click. You can also use
Espresso to click on views or otherwise
interact with them:
onView(withText("65_cjipie"))
 .perform(click());

When you interact with a view, Espresso
will wait until your application is idle
before continuing your test. Espresso has
built in ways of detecting when your UI
is done updating, but if you need
Espresso to wait longer, you can use a
subclass of IdlingResource to
signal to Espresso that your app has not
settled down quite yet.
For more information about how to use
Espresso to manipulate the UI and test it,

see the Espresso documentation at
google.github.io/​android-
testing-support-library/​
docs/​espresso.
Integration tests and unit tests each serve
different purposes. Most people prefer
to start with unit tests because they run
quickly enough to be run mindlessly,
making it easy to establish a habit.
Integration tests take long enough that
they cannot be run as frequently. Each
gives you a distinct, important view of
the health of your app, though, so the
best shops do both kinds of tests.

https://google.github.io/android-testing-support-library/docs/espresso/

For the More
Curious: Mocks and
Testing
Mocking has a much different role in
integration testing than it does in unit
testing. Mock objects exist to isolate the
component under test by pretending to be
other unrelated components. Unit tests
test an individual class; each class will
have its own distinct dependencies, so
each test class has a different set of
mock objects. Since the mock objects
are different in each test class, and the

behavior rarely matters, mock
frameworks that make it easy to create
simple mock objects (like Mockito) are
a great fit for unit tests.
Integration tests, on the other hand, are
meant to test the entire app as a single
piece. Instead of isolating pieces of the
app from each other, you use mocks to
isolate the app from anything external it
might interact with – for example, by
providing a web service with fake data
and responses. In BeatBox, you would
provide a fake SoundPool that could
tell you when a particular sound file was
played. Because the mocks are larger
and shared among many tests, and
because it is more common to implement
mock behavior, it is better to avoid

automatic mocking frameworks for
integration tests and instead manually
write mock objects.
In either case, the same rule applies:
Mock out the entities at the boundary of
the component under test. This focuses
the scope of your test and keeps it from
breaking except when the component
itself is broken.

Challenge:
Playback Speed
Control
In this challenge, you will add playback
speed control to BeatBox to greatly
expand the user’s repertoire of possible
sounds (Figure 21.12). Within
BeatBoxFragment, wire up a
SeekBar (check out the docs at
developer.android.com/​
reference/​android/​widget/​
SeekBar.html) to control the rate
value SoundPool’s play(int,
float, float, int, int,

https://developer.android.com/reference/android/widget/SeekBar.html

float) method accepts.

Figure 21.12 BeatBox with
playback speed control

22
Styles and

Themes
Now that BeatBox sounds intimidating,
it is time to make it look intimidating,
too.
So far, BeatBox sticks with the default
UI styles. The buttons are stock. The
colors are stock. The app does not stand
out. It does not have its own brand.
We can restyle it. We have the
technology.

Figure 22.1 shows the better, stronger,
faster – or at least more stylish –
BeatBox.

Figure 22.1 A themed BeatBox

Color Resources
Begin by defining a few colors that you
will use throughout the chapter. Edit
your colors.xml file in
res/values to match Listing 22.1.

Listing 22.1 Defining a few
colors
(res/values/colors.xml)
<resources>

 <color name="colorPrimary">#3F51B5</color>
 <color name="colorPrimaryDark">#303F9F</color>
 <color name="colorAccent">#FF4081</color>

 <color name="red">#F44336</color>
 <color name="dark_red">#C3352B</color>
 <color name="gray">#607D8B</color>
 <color name="soothing_blue">#0083BF</color>
 <color name="dark_blue">#005A8A</color>
</resources>

Color resources are a convenient way to
specify color values in one place that
you reference throughout your
application.

Styles
Now, update the buttons in BeatBox with
a style. A style is a set of attributes that
you can apply to a widget.
Navigate to
res/values/styles.xml and add
a style named BeatBoxButton.
(When you created BeatBox, your new
project should have come with a built-in
styles.xml file. If your project did
not, create the file.)

Listing 22.2 Adding a style
(res/values/styles.xml)
<resources>

 <style name="AppTheme"
parent="Theme.AppCompat.Light.DarkActionBar">
 <item
name="colorPrimary">@color/colorPrimary</item>
 <item
name="colorPrimaryDark">@color/colorPrimaryDark</item>

 <item
name="colorAccent">@color/colorAccent</item>
 </style>

 <style name="BeatBoxButton">
 <item
name="android:background">@color/dark_blue</item>
 </style>

</resources>

Here, you create a style called
BeatBoxButton. This style defines a
single attribute,
android:background, and sets it
to a dark blue color. You can apply this
style to as many widgets as you like and
then update the attributes of all of those
widgets in this one place.

Now that the style is defined, apply
BeatBoxButton to your buttons in
BeatBox.

Listing 22.3 Using a style
(res/layout/list_item_sound.xml
<Button
 style="@style/BeatBoxButton"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:onClick="@{() ->
viewModel.onButtonClicked()}"
 android:text="@{viewModel.title}"
 tools:text="Sound name"/>

Run BeatBox and you will see that all of
your buttons now have a dark blue
background color (Figure 22.2).

Figure 22.2 BeatBox with
button styles

You can create a style for any set of

attributes that you want to reuse in your
application. Pretty handy.

Style inheritance
Styles also support inheritance: A style
can inherit and override attributes from
another style.
Create a new style called
BeatBoxButton.Strong that
inherits from BeatBoxButton and
also bolds the text.

Listing 22.4 Inheriting from
BeatBoxButton
(res/values/styles.xml)
<style name="BeatBoxButton">
 <item

name="android:background">@color/dark_blue</item>
</style>

<style name="BeatBoxButton.Strong">
 <item name="android:textStyle">bold</item>
</style>

(While you could have added the
android:textStyle attribute to the
BeatBoxButton style directly, you
created BeatBoxButton.Strong to
demonstrate style inheritance.)
The naming convention here is a little
strange. When you name your style
BeatBoxButton.Strong, you are
saying that your theme inherits attributes
from BeatBoxButton.
There is also an alternative inheritance
naming style. You can specify a
parent when declaring the style:

<style name="BeatBoxButton">
 <item
name="android:background">@color/dark_blue</item>
</style>

<style name="StrongBeatBoxButton"
parent="@style/BeatBoxButton">
 <item name="android:textStyle">bold</item>
</style>

Stick with the
BeatBoxButton.Strong style in
BeatBox.
Update list_item_sound.xml to
use your newer, stronger style.

Listing 22.5 Using a bolder
style
(res/layout/list_item_sound.xml
<Button
 style="@style/BeatBoxButton.Strong"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:onClick="@{() ->
viewModel.onButtonClicked()}"
 android:text="@{viewModel.title}"

 tools:text="Sound name"/>

Run BeatBox and verify that your button
text is indeed bold, as in Figure 22.3.

Figure 22.3 A bolder BeatBox

Themes
Styles are cool. They allow you to
define a set of attributes in one place and
then apply them to as many widgets as
you want. The downside of styles is that
you have to apply them to each and
every widget, one at a time. What if you
had a more complex app with lots of
buttons in lots of layouts? Adding your
BeatBoxButton style to them all could
be a huge task.
That is where themes come in. Themes
take styles a step further: They allow
you to define a set of attributes in one

place, like a style – but then those
attributes are automatically applied
throughout your app. Theme attributes
can store a reference to concrete
resources, such as colors, and they can
also store a reference to styles. In a
theme, you can say, for example, “I want
all buttons to use this style.” And then
you do not need to find every button
widget and tell it to use the theme.

Modifying the theme
When you created BeatBox, it was given
a default theme. Navigate to
AndroidManifest.xml and look at
the theme attribute on the

application tag.

Listing 22.6 BeatBox’s theme
(AndroidManifest.xml)
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.bignerdranch.android.beatbox" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 ...
 </application>

 </manifest>

The theme attribute is pointing to a
theme called AppTheme. AppTheme
was declared in the styles.xml file
that you modified earlier.
As you can see, a theme is also a style.
But themes specify different attributes

than a style does (as you will see in a
moment). Themes are also given
superpowers by being declared in the
manifest. This is what causes the theme
to be applied across the entire app
automatically.
Navigate to the definition of the
AppTheme theme by Command-
clicking (Ctrl-clicking) on
@style/AppTheme. Android Studio will
take you to
res/values/styles.xml.

Listing 22.7 BeatBox’s
AppTheme
(res/values/styles.xml)
<resources>

 <style name="AppTheme"
parent="Theme.AppCompat.Light.DarkActionBar">

 ...
 </style>

 <style name="BeatBoxButton">
 <item
name="android:background">@color/dark_blue</item>
 </style>
 ...
</resources>

(As of this writing, when new projects
are created in Android Studio, they are
given an AppCompat theme. If you do
not have an AppCompat theme in your
solution, follow the instructions from
Chapter 13 to convert BeatBox to use the
AppCompat library.)
AppTheme is inheriting attributes from
Theme.AppCompat.Light.DarkActionBar
Within AppTheme, you can add or
override additional values from the
parent theme.

The AppCompat library comes with
three main themes:

Theme.AppCompat – a dark
theme

Theme.AppCompat.Light
– a light theme
Theme.AppCompat.Light.DarkActionBar
– a light theme with a dark
toolbar

Change the parent theme to
Theme.AppCompat to give BeatBox
a dark theme as its base.

Listing 22.8 Changing to a dark
theme
(res/values/styles.xml)

<resources>

 <style name="AppTheme"
parent="Theme.AppCompat.Light.DarkActionBar">

 </style>
 ...
</resources>

Run BeatBox to see your new dark
theme (Figure 22.4).

Figure 22.4 A dark BeatBox

Adding Theme
Colors
With the base theme squared away, it is
time to customize the attributes of
BeatBox’s AppTheme.
In the styles.xml file, you will see
three attributes. Update them to match
Listing 22.9.

Listing 22.9 Setting theme
attributes
(res/values/styles.xml)
<style name="AppTheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/colorPrimary
red</item>

 <item
name="colorPrimaryDark">@color/colorPrimaryDark
dark_red</item>
 <item name="colorAccent">@color/colorAccent
gray</item>
</style>

These theme attributes look similar to
the style attributes that you set up earlier,
but they specify different properties.
Style attributes specify properties for an
individual widget, such as the
textStyle that you used to bold the
button text. Theme attributes have a
larger scope: They are properties that
are set on the theme that any widget can
access. For example, the toolbar will
look at the colorPrimary attribute
on the theme to set its background color.
These three attributes have a large
impact. The colorPrimary attribute

is the primary color for your app’s
brand. This color will be used as the
toolbar’s background and in a few other
places.
colorPrimaryDark is used to color
the status bar, which shows up at the top
of the screen. Typically
colorPrimaryDark will be a
slightly darker version of your
colorPrimary color. Status bar
theming is a feature that was added to
Android in Lollipop. Keep in mind that
the status bar will be black on older
devices (no matter what the theme
specifies). Figure 22.5 shows the effect
of these two theme attributes on
BeatBox.

Figure 22.5 BeatBox with
AppCompat color attributes

Finally, you set colorAccent to a
gray color. colorAccent should
contrast with your colorPrimary
attribute; it is used to tint some widgets,
such as an EditText.
You will not see the colorAccent

attribute affect BeatBox because
Buttons do not support tinting. You
still specify colorAccent because it
is a good idea to think about these three
color attributes together. These colors
should mesh, and the default
colorAccent attribute from your
parent theme may clash with the other
colors that you specified. This sets you
up well for any future additions.
Run BeatBox to see the new colors in
action. Your app should look like
Figure 22.5.

Overriding Theme
Attributes
Now that the colors are worked out, it is
time to dive in and see what theme
attributes exist that you can override. Be
warned, theme spelunking is tough.
There is little to no documentation about
which attributes exist, which ones you
can override yourself, and even what the
attributes do. You are going off the map
here. It is a good thing you brought along
your guide (this book).
Your first goal is to change the
background color of BeatBox by altering

the theme. While you could navigate to
res/layout/fragment_beat_box.xml
and manually set the
android:background attribute on
your RecyclerView – and then repeat
the process in every other fragment and
activity layout file that might exist – this
would be wasteful. Wasteful of your
time, obviously, but also wasteful of app
effort.
The theme is always setting a
background color. By setting another
color on top of that, you are doing extra
work. You are also writing code that is
hard to maintain by duplicating the
background attribute throughout the app.

Theme spelunking
Instead, you want to override the
background color attribute on your
theme. To discover the name of this
attribute, take a look at how this attribute
is set by your parent theme:
Theme.AppCompat.
You might be thinking, “How will I
know which attribute to override if I
don’t know its name?” You will not. You
will read the names of the attributes and
you will think, “That sounds right.” Then
you will override that attribute, run the
app, and hope that you chose wisely.
What you want to do is search through
the ancestors of your theme. To do this,

you will keep on navigating up to one
parent after another until you find a
suitable attribute.
Open your styles.xml file and
Command-click (Ctrl-click) on
Theme.AppCompat. Let’s see how
deep the rabbit hole goes.
(If you are unable to navigate through
your theme attributes directly in Android
Studio, or you want to do this outside of
Android Studio, you can find Android’s
theme sources in the directory your-
SDK-
directory/platforms/android-
24/data/res/values
directory.)
At the time of this writing, you are

brought to a very large file with a focus
on this line:
<style name="Theme.AppCompat"
parent="Base.Theme.AppCompat" />

The theme, Theme.AppCompat,
inherits attributes from
Base.Theme.AppCompat.
Interestingly, Theme.AppCompat
does not override any attributes itself. It
just points to its parent.
Command-click on
Base.Theme.AppCompat. Android
Studio will tell you that this theme is
resource qualified. There are a few
different versions of this theme
depending on the version of Android that
you are on.
Choose the values/values.xml

version and you will be brought to
Base.Theme.AppCompat’s
definition (Figure 22.6).

Figure 22.6 Choosing the
parent

(You chose the unqualified version
because BeatBox supports API level 19
and higher. If you had chosen the v21
version, you might have come across
features that were added in API level
21.)
<style name="Base.Theme.AppCompat"
parent="Base.V7.Theme.AppCompat">
</style>

Base.Theme.AppCompat is another

theme that exists only for its name and
does not override any attributes.
Continue along to its parent theme:
Base.V7.Theme.AppCompat.
<style name="Base.V7.Theme.AppCompat"
parent="Platform.AppCompat">
 <item name="windowNoTitle">false</item>
 <item name="windowActionBar">true</item>
 <item name="windowActionBarOverlay">false</item>
 ...
</style>

You are getting closer. Scan through the
list of attributes in
Base.V7.Theme.AppCompat.
You will not see an attribute that seems
to change the background color.
Navigate to Platform.AppCompat.
You will see that this is resource
qualified. Again, choose the
values/values.xml version.

<style name="Platform.AppCompat"
parent="android:Theme">
 <item name="android:windowNoTitle">true</item>

 <!-- Window colors -->
 <item
name="android:colorForeground">@color/foreground_material_dark</item>

 <item
name="android:colorForegroundInverse">@color/

foreground_material_light</item>
 ...
</style>

Finally, here you see that the parent of
the Platform.AppCompat theme is
android:Theme.
Notice that the parent theme is not
referenced just as Theme. Instead it has
the android namespace in front of it.
You can think of the AppCompat library
as something that lives within your own
app. When you build your project, you
include the AppCompat library and it

brings along a bunch of Java and XML
files. Those files are just like the files
that you wrote yourself. If you want to
refer to something in the AppCompat
library, you do it directly. You would
just write Theme.AppCompat,
because those files exist in your app.
Themes that exist in the Android OS,
like Theme, have to be declared with
the namespace that points to their
location. The AppCompat library uses
android:Theme because the theme
exists in the Android OS.
You have finally arrived. Here you see
many more attributes that you can
override in your theme. You can of
course navigate to
Platform.AppCompat’s parent,

Theme, but this is not necessary. You
will find the attribute you need in this
theme.
Right near the top,
windowBackground is declared. It
seems likely that this attribute is the
background for the theme.
<style name="Platform.AppCompat"
parent="android:Theme">
 <item name="android:windowNoTitle">true</item>

 <!-- Window colors -->
 <item
name="android:colorForeground">@color/foreground_material_dark</item>

 <item
name="android:colorForegroundInverse">@color/

foreground_material_light</item>
 <item
name="android:colorBackground">@color/background_material_dark</item>

 <item
name="android:colorBackgroundCacheHint">@color/

abc_background_cache_hint_selector_material_dark</item>

 <item
name="android:disabledAlpha">@dimen/abc_disabled_alpha_material_dark</item>

 <item
name="android:backgroundDimAmount">0.6</item>
 <item
name="android:windowBackground">@color/background_material_dark</item>

 ...
</style>

This is the attribute that you want to
override in BeatBox. Navigate back to
your styles.xml file and override
the windowBackground attribute.

Listing 22.10 Setting the
window background
(res/values/styles.xml)
<style name="AppTheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/red</item>
 <item
name="colorPrimaryDark">@color/dark_red</item>
 <item name="colorAccent">@color/gray</item>

 <item
name="android:windowBackground">@color/soothing_blue</item>

</style>

Notice that you must use the android
namespace when overriding this
attribute, because
windowBackground is declared in
the Android OS.
Run BeatBox, scroll down to the bottom
of your recycler view, and verify that the
background (where it is not covered
with a button) is a soothing blue, as in
Figure 22.7.

Figure 22.7 BeatBox with a
themed background

The steps that you just went through to
find the windowBackground
attribute are the same steps that every

Android developer takes when
modifying an app’s theme. You will not
find much documentation on these
attributes. Most people go straight to the
source to see what is available.
To recap, you navigated through the
following themes:

Theme.AppCompat

Base.Theme.AppCompat

Base.V7.Theme.AppCompat

Platform.AppCompat

You navigated through the theme
hierarchy until you arrived at
AppCompat’s root theme. As you
become more familiar with your theme

options, you may opt to skip ahead to the
appropriate theme in the future. But it is
nice to follow the hierarchy so you can
see your theme’s roots.
Be aware that this theme hierarchy may
change over time. But the task of
walking the hierarchy will not. You
follow your theme hierarchy until you
find the attribute that you want to
override.

Modifying Button
Attributes
Earlier you customized the buttons in
BeatBox by manually setting a style
attribute in the
res/layout/list_item_sound.xml
file. If you have a more complex app,
with buttons throughout many fragments,
setting a style attribute on each and
every button does not scale well. You
can take your theme a step further by
defining a style in your theme for every
button in your app.
Before adding a button style to your

theme, remove the style attribute from
your
res/layout/list_item_sound.xml
file.

Listing 22.11 Be gone! We
have a better way
(res/layout/list_item_sound.xml
<Button
 style="@style/BeatBoxButton.Strong"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:onClick="@{() ->
viewModel.onButtonClicked()}"
 android:text="@{viewModel.title}"
 tools:text="Sound name"/>

Run BeatBox again and verify that your
buttons are back to the old, bland look.
Go theme spelunking again. This time,
you are looking for buttonStyle.
You will find it in

Base.V7.Theme.AppCompat.
<style name="Base.V7.Theme.AppCompat"
parent="Platform.AppCompat">
 ...
 <!-- Button styles -->
 <item
name="buttonStyle">@style/Widget.AppCompat.Button</item>

 <item
name="buttonStyleSmall">@style/Widget.AppCompat.Button.Small</item>

 ...
</style>

buttonStyle specifies the style of
any normal button within your app.
The buttonStyle attribute points to
a style resource rather than a value.
When you updated the
windowBackground attribute, you
passed in a value: the color. In this case,
buttonStyle should point to a style.
Navigate to
Widget.AppCompat.Button to

see the button style.
<style name="Widget.AppCompat.Button"
parent="Base.Widget.AppCompat.Button"/>

Widget.AppCompat.Button does
not define any attributes itself. Navigate
to its parent to see the goods. You will
find that there are two versions of the
base style. Choose the
values/values.xml version.
<style name="Base.Widget.AppCompat.Button"
parent="android:Widget">
 <item
name="android:background">@drawable/abc_btn_default_mtrl_shape</item>

 <item name="android:textAppearance">?
android:attr/textAppearanceButton</item>
 <item name="android:minHeight">48dip</item>
 <item name="android:minWidth">88dip</item>
 <item name="android:focusable">true</item>
 <item name="android:clickable">true</item>
 <item
name="android:gravity">center_vertical|center_horizontal</item>

</style>

Every Button that you use in BeatBox
is given these attributes.
Duplicate what happens in Android’s
own theme in BeatBox. Change the
parent of BeatBoxButton to inherit
from the existing button style. Also,
remove your
BeatBoxButton.Strong style
from earlier.

Listing 22.12 Creating a button
style
(res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/red</item>
 <item
name="colorPrimaryDark">@color/dark_red</item>
 <item name="colorAccent">@color/gray</item>

 <item

name="android:windowBackground">@color/soothing_blue</item>

 </style>

 <style name="BeatBoxButton"
parent="Widget.AppCompat.Button">
 <item
name="android:background">@color/dark_blue</item>
 </style>

 <style name="BeatBoxButton.Strong">
 <item name="android:textStyle">bold</item>
 </style>

</resources>

You specified a parent of
Widget.AppCompat.Button. You
want your button to inherit all of the
properties that a normal button would
receive and then selectively modify
attributes.
If you do not specify a parent theme for
BeatBoxButton, you will notice that
your buttons devolve into something that

does not look like a button at all.
Properties you expect to see, such as the
text centered in the button, will be lost.
Now that you have fully defined
BeatBoxButton, it is time to use it.
Look back at the buttonStyle
attribute that you found earlier when
digging through Android’s themes.
Duplicate this attribute in your own
theme.

Listing 22.13 Using the
BeatBoxButton style
(res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/red</item>
 <item
name="colorPrimaryDark">@color/dark_red</item>
 <item name="colorAccent">@color/gray</item>

 <item
name="android:windowBackground">@color/soothing_blue</item>

 <item
name="buttonStyle">@style/BeatBoxButton</item>
 </style>

 <style name="BeatBoxButton"
parent="Widget.AppCompat.Button">
 <item
name="android:background">@color/dark_blue</item>
 </style>

</resources>

Notice that you do not use the android:
prefix when defining buttonStyle.
This is because the buttonStyle
attribute that you are overriding is
implemented in the AppCompat library.
You are now overriding the
buttonStyle attribute and
substituting your own style:
BeatBoxButton.

Run BeatBox and notice that all of your
buttons are dark blue (Figure 22.8). You
changed the look of every normal button
in BeatBox without modifying any layout
files directly. Behold the power of theme
attributes in Android!

Figure 22.8 The completely
themed BeatBox

It sure would be nice if the buttons were
more clearly buttons. In the next chapter,
you will fix this issue and make those
buttons really shine.

For the More
Curious: More on
Style Inheritance
The description of style inheritance
earlier in the chapter does not explain
the full story. You may have noticed a
switch in inheritance style as you were
exploring the theme hierarchy. The
AppCompat themes used the name of the
theme to indicate inheritance until you
arrive at the Platform.AppCompat
theme.
<style name="Platform.AppCompat"
parent="android:Theme">

...
</style>

Here, the inheritance naming style
changes to the more explicit parent
attribute style. Why?
Specifying the parent theme in the theme
name only works for themes that exist in
the same package. So you will see the
Android OS themes use the theme-name
inheritance style most of the time, and
you will see the AppCompat library do
the same. But once the AppCompat
library crosses over to a parent outside
of itself, the explicit parent attribute
is used.
In your own applications, it is a good
idea to follow the same convention.
Specify your theme parent in the name of

your theme if you are inheriting from one
of your own themes. If you inherit from a
style or theme in the Android OS,
explicitly specify the parent attribute.

For the More
Curious: Accessing
Theme Attributes
Once attributes are declared in your
theme, you can access them in XML or in
code.
To access a theme attribute in XML, you
use the notation that you saw on the
listSeparatorTextViewStyle
attribute in Chapter 7. When referencing
a concrete value in XML, such as a
color, you use the @ notation.
@color/gray points to a specific

resource.
When referencing a resource in the
theme, you use the ? notation:
<Button
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/list_item_sound_button"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:background="?attr/colorAccent"
 tools:text="Sound name"/>

The ? notation says to use the resource
that the colorAccent attribute on
your theme points to. In your case, this
would be the gray color that you defined
in your colors.xml file.
You can also use theme attributes in
code, although it is much more verbose.
Resources.Theme theme = getActivity().getTheme();
int[] attrsToFetch = { R.attr.colorAccent };
TypedArray a =

theme.obtainStyledAttributes(R.style.AppTheme,
attrsToFetch);
int accentColor = a.getInt(0, 0);
a.recycle();

On the Theme object, you ask to resolve
the attribute R.attr.colorAccent that
is defined in your AppTheme:
R.style.AppTheme. This call returns a
TypedArray, which holds your data.
On the TypedArray, you ask for an
int value to pull out the accent color.
From here, you can use that color to
change the background of a button, for
example.
The toolbar and buttons in BeatBox are
doing exactly this to style themselves
based on your theme attributes.

23
XML Drawables

Now that BeatBox has been themed, it is
time to do something about those buttons.
Currently, the buttons do not show any
kind of response when you press on
them, and they are just blue boxes. In this
chapter, you will use XML drawables to
take BeatBox to the next level
(Figure 23.1).

Figure 23.1 BeatBox makeover

Android calls anything that is intended to

be drawn to the screen a drawable,
whether it is an abstract shape, a clever
bit of code that subclasses the
Drawable class, or a bitmap image. In
this chapter, you will see state list
drawables, shape drawables, and layer
list drawables. All three are defined in
XML files, so we group them in the
category of XML drawables.

Making Uniform
Buttons
Before creating any XML drawables,
modify list_item_sound.xml.

Listing 23.1 Spacing the
buttons out
(res/layout/list_item_sound.xml
<layout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">
 <data>
 <variable
 name="viewModel"

type="com.bignerdranch.android.beatbox.SoundViewModel"/>

 </data>
 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="8dp">
 <Button
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:layout_gravity="center"
 android:onClick="@{() ->
viewModel.onButtonClicked()}"
 android:text="@{viewModel.title}"
 tools:text="Sound name"/>
 </FrameLayout>

</layout>

You gave each button a width and height
of 100dp so that when the buttons are
circles later on they will not be skewed.
Your recycler view will always show
three columns, no matter what the screen
size is. If there is extra room, the
recycler view will stretch those columns
to fit the device. You do not want the
recycler view to stretch your buttons, so
you wrapped your buttons in a frame
layout. The frame layout will be
stretched and the buttons will not.
Run BeatBox and you will see that your
buttons are all the same size and have
some space between them (Figure 23.2).

Figure 23.2 Spaced-out

Figure 23.2 Spaced-out
buttons

Shape Drawables
Now, make your buttons round with a
ShapeDrawable. Since XML
drawables are not density specific, they
are placed in the default drawable folder
instead of a density-specific one.
In the project tool window, create a new
file in res/drawable called
button_beat_box_normal.xml.
(Why is this one “normal”? Because
soon it will have a not-so-normal
friend.)

Listing 23.2 Making a round
shape drawable

(res/drawable/button_beat_box_normal.xml
<shape
xmlns:android="http://schemas.android.com/apk/res/android"

 android:shape="oval">

 <solid
 android:color="@color/dark_blue"/>

</shape>

This file creates an oval shape drawable
that is filled in with a dark blue color.
There are additional customization
options with shape drawables, including
rectangles, lines, and gradients. Check
out the documentation at
developer.android.com/​
guide/​topics/​resources/​
drawable-resource.html for
details.
Apply button_beat_box_normal

as the background for your buttons.

Listing 23.3 Modifying the
background drawable
(res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat">
 ...
 </style>

 <style name="BeatBoxButton"
parent="android:style/Widget.Holo.Button">
 <item
name="android:background">@color/dark_blue</item>
 <item
name="android:background">@drawable/button_beat_box_normal</item>

 </style>

</resources>

Run BeatBox. Your buttons are now nice
circles (Figure 23.3).

Figure 23.3 Circle buttons

Press a button. You will hear the sound,
but the button will not change its
appearance. It would be better if the
button looked different once it was
pressed.

State List
Drawables
To fix this, first define a new shape
drawable that will be used for the
pressed state of the button.
Create
button_beat_box_pressed.xml
in res/drawable. Make this pressed
drawable the same as the normal version
but with a red background color.

Listing 23.4 Defining a pressed
shape drawable
(res/drawable/button_beat_box_pressed.xml

<shape
xmlns:android="http://schemas.android.com/apk/res/android"

 android:shape="oval">

 <solid
 android:color="@color/red"/>

</shape>

Next, you are going to use this pressed
version when the user presses the button.
To do this, you will make use of a state
list drawable.
A state list drawable is a drawable that
points to other drawables based on the
state of something. A button has a
pressed and an unpressed state. You will
use a state list drawable to specify one
drawable as the background when
pressed and a different drawable when
not pressed.

Define a state list drawable in your
drawable folder.

Listing 23.5 Creating a state
list drawable
(res/drawable/button_beat_box.xml
<selector
xmlns:android="http://schemas.android.com/apk/res/android">

 <item
android:drawable="@drawable/button_beat_box_pressed"
 android:state_pressed="true"/>
 <item
android:drawable="@drawable/button_beat_box_normal"
/>
</selector>

Now, modify your button style to use this
new state list drawable as the button
background.

Listing 23.6 Applying a state
list drawable

(res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat">
 ...
 </style>

 <style name="BeatBoxButton"
parent="android:style/Widget.Holo.Button">
 <item
name="android:background">@drawable/button_beat_box_normal</item>

 <item
name="android:background">@drawable/button_beat_box</item>

 </style>

</resources>

When the button is in the pressed state,
button_beat_box_pressed will
be used as the background. Otherwise,
button_beat_box_normal will
be the background of the button.
Run BeatBox and press a button. The
button’s background changes

(Figure 23.4). Pretty slick, right?

Figure 23.4 BeatBox, now with
a pressed button state

State list drawables are a handy
customization tool. Many other states are
also supported, including disabled,
focused, and activated. Check out the
documentation at
developer.android.com/​
guide/​topics/​resources/​
drawable-
resource.html#StateList for
details.

Layer List
Drawables
BeatBox is looking good. You now have
round buttons and they visually respond
to presses. Time for something a little
more advanced.
Layer list drawables allow you to
combine two XML drawables into one.
Armed with this tool, add a dark ring
around your button when in the pressed
state.

Listing 23.7 Using a layer list
drawable

(res/drawable/button_beat_box_pressed.xml
<layer-list
xmlns:android="http://schemas.android.com/apk/res/android">

 <item>
 <shape
xmlns:android="http://schemas.android.com/apk/res/android"

 android:shape="oval">

 <solid
 android:color="@color/red"/>
 </shape>
 </item>
 <item>
 <shape
 android:shape="oval">

 <stroke
 android:width="4dp"
 android:color="@color/dark_red"/>
 </shape>
 </item>
</layer-list>

You specified two drawables in this
layer list drawable. The first drawable
is a red circle, as it was before this
change. The second drawable will be

drawn on top of the first. In the second
drawable, you specified another oval
with a stroke of 4dp. This will create a
ring of dark red.
These two drawables combine to form
the layer list drawable. You can combine
more than two drawables in a layer list
to make something even more complex.
Run BeatBox and press on a button or
two. You will see a nice ring around the
pressed interface (Figure 23.5). Even
slicker.

Figure 23.5 BeatBox complete

With the layer list drawable addition,
BeatBox is now complete. Remember
how plain BeatBox used to look? You

now have something special and
uniquely identifiable. Making your app a
pleasure to look at makes it fun to use,
and that will pay off in popularity.

For the More
Curious: Why
Bother with XML
Drawables?
You will always want a pressed state for
your buttons, so state list drawables are
a critical component of any Android
app. But what about shape drawables
and layer list drawables? Should you
use them?
XML drawables are flexible. You can
use them for many purposes and you can

easily update them in the future. With a
combination of layer list drawables and
shape drawables, you can create
complex backgrounds without using an
image editor. If you decide to change the
color scheme in BeatBox, updating the
colors in an XML drawable is easy.
In this chapter, you defined your XML
drawables in the drawable directory
with no resource qualifiers for the
screen density. This is because XML
drawables are density independent. With
a standard background that is an image,
you will typically create multiple
versions of that same image in different
densities so that the image will look
crisp on most devices. XML drawables
only need to be defined once and will

look crisp at any screen density.

For the More
Curious: Mipmap
Images
Resource qualifiers and drawables are
handy. When you need an image in your
app, you generate the image in a few
different sizes and add the versions to
your resource-qualified folders:
drawable-mdpi, drawable-
hdpi, etc. Then you reference the image
by name, and Android figures out which
density to use based on the current
device.

However, there is a downside to this
system. The APK file that you release to
the Google Play Store will contain all of
the images in your drawable
directories at each density that you
added to your project – even though
many of them will not be used. That is a
lot of bloat.
To reduce this bloat, you can generate
separate APKs for each screen density.
You would have an mdpi APK of your
app, an hdpi APK, and so on. (For more
info on APK splitting, see the tools
documentation at
developer.android.com/​
studio/​build/​configure-
apk-splits.html.)
But there is one exception. You want to

maintain every density of your launcher
icon.
A launcher on Android is a Home screen
application (you will learn much more
about launchers in Chapter 24). When
you press the Home button on your
device, you are taken to the launcher.
Some newer launchers display app icons
at a larger size than launchers have
traditionally displayed them. To make
the larger icons look nice, these
launchers will take an icon from the next
density bucket up. For example, if your
device is an hdpi device, the launcher
will use the xhdpi icon to represent your
app. But if the xhdpi version has been
stripped from your APK, the launcher
will have to fall back to the lower

resolution version.
Scaled-up low-res icons look fuzzy. You
want your icon to look crisp.
The mipmap directory is Android’s
solution to this problem. When APK
splitting is enabled, mipmaps are not
pruned from the APKs. Otherwise,
mipmaps are identical to drawables.
As of this writing, new projects in
Android Studio are set up to use a
mipmap resource for their launcher icon
(Figure 23.6).

Figure 23.6 Mipmap icons

We recommend putting just your
launcher icon in the various mipmap
directories. All other images belong in
the drawable directories.

For the More
Curious: 9-Patch
Images
Sometimes (or maybe often), you will
fall back to regular old image files for
your button backgrounds. But what
happens to those image files when your
button can be displayed at many different
sizes? If the width of the button is
greater than the width of its background
image, the image just stretches, right? Is
that always going to look good?
Uniformly stretching your background

image will not always look right.
Sometimes you need more control over
how the image will stretch.
In this section, you will convert BeatBox
to use a 9-patch image as the
background for the buttons (more on
what that means in just a moment). This
is not because it is necessarily a better
solution for BeatBox – it is a way for
you to see how a 9-patch works for
those times when you want to use an
image file.
First, modify
list_item_sound.xml to allow
the button size to change based on the
available space.

Listing 23.8 Letting those

buttons stretch
(res/layout/list_item_sound.xml
<layout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">
 <data>
 <variable
 name="viewModel"

type="com.bignerdranch.android.beatbox.SoundViewModel"/>

 </data>
 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="8dp">
 <Button
 android:layout_width="100dp match_parent"
 android:layout_height="100dp
match_parent"
 android:layout_gravity="center"
 android:onClick="@{() ->
viewModel.onButtonClicked()}"
 android:text="@{viewModel.title}"
 tools:text="Sound name"/>
 </FrameLayout>
</layout>

Now the buttons will take up the
available space, leaving an 8dp margin.
The image in Figure 23.7, with a snazzy
folded corner and shadow, will be your
new button background.

Figure 23.7 A new button
background image
(res/drawable-
xxhdpi/ic_button_beat_box_default.png

In the solutions for this chapter (see the
section called Adding an Icon in
Chapter 2), you can find this image along
with a pressed version in the xxhdpi

drawable folder. Copy these two images
into your project’s drawable-
xxhdpi folder and apply them as your
button background by modifying
button_beat_box.xml.

Listing 23.9 Applying the new
button background images
(res/drawable/button_beat_box.xml
<selector
xmlns:android="http://schemas.android.com/apk/res/android">

 <item
android:drawable="@drawable/button_beat_box_pressed"
 <item
android:drawable="@drawable/ic_button_beat_box_pressed"

 android:state_pressed="true"/>
 <item
android:drawable="@drawable/button_beat_box_normal"
 <item
android:drawable="@drawable/ic_button_beat_box_normal"

</selector>

Run BeatBox, and you will see the new
button background (Figure 23.8).

Figure 23.8 BeastBox

Whoa. That looks… bad.
Why does it look like that? Android is
uniformly stretching
ic_button_beat_box_default.png
including the dog-eared edge and the
rounded corners. It would look better if
you could specify which parts of the
image to stretch and which parts not to
stretch. This is where 9-patch images
come in.
A 9-patch image file is specially
formatted so that Android knows which
portions can and cannot be scaled. Done

properly, this ensures that the edges and
corners of your background remain
consistent with the image as it was
created.
Why are they called 9-patches? A 9-
patch breaks your image into a three-by-
three grid – a grid with nine sections, or
patches. The corners of the grid remain
unscaled, the sides are only scaled in
one dimension, and the center is scaled
in both dimensions, as shown in
Figure 23.9.

Figure 23.9 How a 9-patch
scales

A 9-patch image is like a regular PNG

image in everything except two aspects:
Its filename ends with .9.png, and it
has an additional one-pixel border
around the edge. This border is used to
specify the location of the center square
of the 9-patch. Border pixels are drawn
black to indicate the center and
transparent to indicate the edges.
You can create a 9-patch using any
image editor, with the draw9patch
tool provided as part of the Android
SDK, or using Android Studio.
First, convert your two new background
images to 9-patch images by right-
clicking on
ic_button_beat_box_default.png
in the project tool window and selecting
Refactor → Rename... to rename the file to

ic_button_beat_box_default.9.png
(If Android Studio warns you that a
resource with the same name already
exists, click Continue.) Then, repeat the
process to rename the pressed version to
ic_button_beat_box_pressed.9.png

Next, double-click on the default image
in the project tool window to open it in
Android Studio’s built-in 9-patch editor,
as shown in Figure 23.10. (If Android
Studio does not open the editor, try
closing the file and collapsing your
drawable folder in the project tool
window. Then re-open the default
image.)
In the 9-patch editor, first check the Show
patches option to make your patches more
visible. Now, fill in black pixels on the

top and left borders to mark the
stretchable regions of the image
(Figure 23.10). You can also drag the
edges of the colored overlay to match
the figure.

Figure 23.10 Creating a 9-
patch image

The black line at the top of the image
specifies a region to stretch if this image
is stretched horizontally. The line on the
left indicates which pixels to stretch if
the image is stretched vertically.
Repeat the process with the pressed
version. Run BeatBox to see your new
9-patch image in action (Figure 23.11).

Figure 23.11 New and
improved

So the top and left borders of your 9-
patch image indicate the areas of the
image to stretch. What about the bottom
and right borders? You can use them to
define an optional content region for the
9-patch image. The content region is the

area where content (usually text) should
be rendered. If you do not include a
content region, it defaults to be the same
as your stretchable region.
Use the content area to center the text
within the buttons. Go back to
ic_button_beat_box_default.9.png
and add the right and bottom lines as
shown in Figure 23.12. Enable the Show
content setting in the 9-patch editor. This
setting updates the preview to highlight
the areas of the image that will hold your
text.

Figure 23.12 Defining the
content area

Repeat the process for the pressed
version of the image. Be extra sure that
both your images are updated with the
correct content area lines. When 9-patch
images are specified through state list
drawables (as they are in BeatBox), the

content area does not behave as you
might expect. Android will set the
content area as the background is
initialized and will not change the
content area while you press on the
button. That means that the content area
from one of your two images is ignored!
The image that Android will take the
content area from is not defined, so it is
best to make sure that all of your 9-patch
images in a state list drawable have the
same content area.
Run BeatBox to see your nicely centered
text (Figure 23.13).

Figure 23.13 New and more
improved

Try rotating to landscape. The images
are even more stretched, but your button
backgrounds still look good and your
text is still centered.

Challenge: Button
Themes
After completing the 9-patch image
update, you may notice that something is
not quite right with the background of
your buttons. Behind the dog ear, you can
see something that looks like a shadow.
You may also notice that this shadow
only shows up on Android version 21
and newer.
That shadow is part of the elevation that
all buttons receive by default on
Lollipop and newer (21+). As you press
the button, it appears to come closer to

your finger (you will learn more about
this in Chapter 35).
With this dog-eared image, you want to
remove that shadow. Use your new
theme spelunking skills to determine
how that shadow is applied. Is there
some other type of button style that you
can use as your parent for the
BeatBoxButton style?

24
More About
Intents and

Tasks
In this chapter, you will use implicit
intents to create a launcher app to
replace Android’s default launcher app.
Figure 24.1 shows what this app,
NerdLauncher, will look like.

Figure 24.1 NerdLauncher final
product

product

NerdLauncher will display a list of apps
on the device. The user will press a list
item to launch the app.
To get it working correctly, you will
deepen your understanding of intents,
intent filters, and how applications
interact in the Android environment.

Setting Up
NerdLauncher
Create a new Android application
project named NerdLauncher. Select
Phone and Tablet as the form factor and API
19: Android 4.4 (KitKat) as the minimum

SDK. Create an empty activity named
NerdLauncherActivity.
NerdLauncherActivity will host
a single fragment and in turn should be a
subclass of
SingleFragmentActivity. Copy
SingleFragmentActivity.java
and activity_fragment.xml into
NerdLauncher from the CriminalIntent
project.
Open
NerdLauncherActivity.java
and change
NerdLauncherActivity’s
superclass to
SingleFragmentActivity.
Remove the template’s code and
override createFragment() to

return a NerdLauncherFragment.
(Bear with the error caused by the return
line in createFragment(). This
will be fixed in a moment when you
create the NerdLauncherFragment
class.)

Listing 24.1 Another
SingleFragmentActivity
(NerdLauncherActivity.java)
public class NerdLauncherActivity extends
SingleFragmentActivityAppCompatActivity {

 @Override
 protected Fragment createFragment() {
 return NerdLauncherFragment.newInstance();
 }

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 /* Auto-generated template code... */
 }
}

NerdLauncherFragment will
display a list of application names in a
RecyclerView. Add the
RecyclerView library as a dependency,
as you did in Chapter 8.
Rename
layout/activity_nerd_launcher.xml
to
layout/fragment_nerd_launcher.xml
to create a layout for the fragment.
Replace its contents with the
RecyclerView shown in Figure 24.2.

Figure 24.2 Creating
NerdLauncherFragment layout
(layout/fragment_nerd_launcher.xml

Finally, add a new class named
NerdLauncherFragment that
extends from
android.support.v4.app.Fragment
Add a newInstance() method and
override onCreateView(…) to stash
a reference to the RecyclerView
object in a member variable. (You will
hook data up to the RecyclerView in
just a bit.)

Listing 24.2 Basic
NerdLauncherFragment
implementation
(NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {

 private RecyclerView mRecyclerView;

 public static NerdLauncherFragment newInstance()
{
 return new NerdLauncherFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_nerd_launcher,
container, false);
 mRecyclerView = (RecyclerView)
v.findViewById(R.id.app_recycler_view);
 mRecyclerView.setLayoutManager(new
LinearLayoutManager(getActivity()));

 return v;
 }

}

Run your app to make sure everything is
hooked up correctly to this point. If so,
you will be the proud owner of an app
titled NerdLauncher, displaying an
empty RecyclerView (Figure 24.3).

Figure 24.3 NerdLauncher
beginnings

Resolving an
Implicit Intent
NerdLauncher will show the user a list
of launchable apps on the device. (A
launchable app is an app the user can
open by clicking an icon on the Home or
launcher screen.) To do so, it will query
the system (using the
PackageManager) for launchable
main activities. Launchable main
activities are simply activities with
intent filters that include a MAIN action
and a LAUNCHER category. You have seen
this intent filter in the

AndroidManifest.xml file in your
projects:
<intent-filter>
 <action android:name="android.intent.action.MAIN"
/>
 <category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>

In
NerdLauncherFragment.java,
add a method named
setupAdapter() and call that
method from onCreateView(…).
(Ultimately this method will create a
RecyclerView.Adapter instance
and set it on your RecyclerView
object. For now, it will just generate a
list of application data.) Also, create an
implicit intent and get a list of activities
that match the intent from the

PackageManager. Log the number of
activities that the PackageManager
returns.

Listing 24.3 Querying the
PackageManager
(NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {
 private static final String TAG =
"NerdLauncherFragment";

 private RecyclerView mRecyclerView;

 public static NerdLauncherFragment newInstance()
{
 return new NerdLauncherFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 ...
 setupAdapter();
 return v;
 }

 private void setupAdapter() {
 Intent startupIntent = new
Intent(Intent.ACTION_MAIN);

startupIntent.addCategory(Intent.CATEGORY_LAUNCHER);

 PackageManager pm =
getActivity().getPackageManager();
 List<ResolveInfo> activities =
pm.queryIntentActivities(startupIntent, 0);

 Log.i(TAG, "Found " + activities.size() + "
activities.");
 }
}

Run NerdLauncher and check Logcat to
see how many apps the
PackageManager returned. (We got
30 the first time we tried it.)
In CriminalIntent, you used an implicit
intent to send a crime report. You
presented an activity chooser by creating
an implicit intent, wrapping it in a
chooser intent, and sending it to the OS

with startActivity(Intent):
Intent i = new Intent(Intent.ACTION_SEND);
... // Create and put intent extras
i = Intent.createChooser(i,
getString(R.string.send_report));
startActivity(i);

You may be wondering why you are not
using that approach here. The short
explanation is that the MAIN/LAUNCHER
intent filter may or may not match a
MAIN/LAUNCHER implicit intent that is
sent via startActivity(Intent).
startActivity(Intent) does not
mean, “Start an activity matching this
implicit intent.” It means, “Start the
default activity matching this implicit
intent.” When you send an implicit intent
via startActivity(Intent) (or
startActivityForResult(…)),

the OS secretly adds the
Intent.CATEGORY_DEFAULT
category to the intent.
Thus, if you want an intent filter to match
implicit intents sent via
startActivity(Intent), you
must include the DEFAULT category in
that intent filter.
An activity that has the MAIN/LAUNCHER
intent filter is the main entry point for the
app that it belongs to. It only wants the
job of main entry point for that
application. It typically does not care
about being the “default” main entry
point, so it does not have to include the
CATEGORY_DEFAULT category.
Because MAIN/LAUNCHER intent filters

may not include
CATEGORY_DEFAULT, you cannot
reliably match them to an implicit intent
sent via startActivity(Intent).
Instead, you use the intent to query the
PackageManager directly for
activities with the MAIN/LAUNCHER
intent filter.
The next step is to display the labels of
these activities in
NerdLauncherFragment’s
RecyclerView. An activity’s label is
its display name – something the user
should recognize. Given that these
activities are launcher activities, the
label is most likely the application
name.
You can find the labels for the activities,

along with other metadata, in the
ResolveInfo objects that the
PackageManager returned.
First, sort the ResolveInfo objects
returned from the PackageManager
alphabetically by label using the
ResolveInfo.loadLabel(PackageManager)
method.

Listing 24.4 Sorting
alphabetically
(NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {
 ...
 private void setupAdapter() {
 ...
 List<ResolveInfo> activities =
pm.queryIntentActivities(startupIntent, 0);
 Collections.sort(activities, new
Comparator<ResolveInfo>() {
 public int compare(ResolveInfo a,
ResolveInfo b) {
 PackageManager pm =

getActivity().getPackageManager();
 return
String.CASE_INSENSITIVE_ORDER.compare(
 a.loadLabel(pm).toString(),
 b.loadLabel(pm).toString());
 }
 });
 Log.i(TAG, "Found " + activities.size() + "
activities.");
 }
}

Now define a ViewHolder that
displays an activity’s label. Store the
activity’s ResolveInfo in a member
variable (you will use it more than once
later on).

Listing 24.5 ViewHolder
implementation
(NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {
 ...
 private void setupAdapter() {
 ...
 }

 private class ActivityHolder extends
RecyclerView.ViewHolder {
 private ResolveInfo mResolveInfo;
 private TextView mNameTextView;

 public ActivityHolder(View itemView) {
 super(itemView);
 mNameTextView = (TextView) itemView;
 }

 public void bindActivity(ResolveInfo
resolveInfo) {
 mResolveInfo = resolveInfo;
 PackageManager pm =
getActivity().getPackageManager();
 String appName =
mResolveInfo.loadLabel(pm).toString();
 mNameTextView.setText(appName);
 }
 }
}

Next add a
RecyclerView.Adapter
implementation.

Listing
24.6 RecyclerView.Adapter

implementation
(NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {
 ...
 private class ActivityHolder extends
RecyclerView.ViewHolder {
 ...
 }

 private class ActivityAdapter extends
RecyclerView.Adapter<ActivityHolder> {
 private final List<ResolveInfo> mActivities;

 public ActivityAdapter(List<ResolveInfo>
activities) {
 mActivities = activities;
 }

 @Override
 public ActivityHolder
onCreateViewHolder(ViewGroup parent, int viewType) {
 LayoutInflater layoutInflater =
LayoutInflater.from(getActivity());
 View view = layoutInflater

.inflate(android.R.layout.simple_list_item_1, parent,
false);
 return new ActivityHolder(view);
 }

 @Override

 public void onBindViewHolder(ActivityHolder
holder, int position) {
 ResolveInfo resolveInfo =
mActivities.get(position);
 holder.bindActivity(resolveInfo);
 }

 @Override
 public int getItemCount() {
 return mActivities.size();
 }
 }
}

Last, but not least, update
setupAdapter() to create an
instance of ActivityAdapter and
set it as the RecyclerView’s adapter.

Listing 24.7 Setting
RecyclerView’s adapter
(NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {
 ...
 private void setupAdapter() {
 ...
 Log.i(TAG, "Found " + activities.size() + "

activities.");
 mRecyclerView.setAdapter(new
ActivityAdapter(activities));
 }
 ...
}

Run NerdLauncher, and you will see a
RecyclerView populated with
activity labels (Figure 24.4).

Figure 24.4 All your activities
are belong to us

Creating Explicit
Intents at Runtime
You used an implicit intent to gather the
desired activities and present them in a
list. The next step is to start the selected
activity when the user presses its list
item. You will start the activity using an
explicit intent.
To create the explicit intent, you need to
get the activity’s package name and class
name from the ResolveInfo. You can
get this data from a part of the
ResolveInfo called
ActivityInfo. (You can learn what

data is available in different parts of
ResolveInfo from its reference
page: developer.android.com/​
reference/​android/​content/​
pm/​ResolveInfo.html.)
Update ActivityHolder to
implement a click listener. When an
activity in the list is pressed, use the
ActivityInfo for that activity to
create an explicit intent. Then use that
explicit intent to launch the selected
activity.

Listing 24.8 Launching pressed
activity
(NerdLauncherFragment.java)
private class ActivityHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener {

 private ResolveInfo mResolveInfo;
 private TextView mNameTextView;

 public ActivityHolder(View itemView) {
 super(itemView);
 mNameTextView = (TextView) itemView;
 mNameTextView.setOnClickListener(this);
 }

 public void bindActivity(ResolveInfo resolveInfo)
{
 ...
 }

 @Override
 public void onClick(View v) {
 ActivityInfo activityInfo =
mResolveInfo.activityInfo;

 Intent i = new Intent(Intent.ACTION_MAIN)

.setClassName(activityInfo.applicationInfo.packageName,

 activityInfo.name);

 startActivity(i);
 }
}

Notice that in this intent you are sending
an action as part of an explicit intent.
Most apps will behave the same whether

you include the action or not. However,
some may change their behavior. The
same activity can display different
interfaces depending on how it is
started. As a programmer, it is best to
declare your intentions clearly and let
the activities you start do what they will.
In Listing 24.8, you get the package name
and class name from the metadata and
use them to create an explicit intent using
the Intent method:
 public Intent setClassName(String packageName,
String className)

This is different from how you have
created explicit intents in the past.
Before, you used an Intent
constructor that accepts a Context and
a Class object:

 public Intent(Context packageContext, Class<?>
cls)

This constructor uses its parameters to
get what the Intent really needs – a
ComponentName. A
ComponentName is a package name
and a class name stuck together. When
you pass in an Activity and a
Class to create an Intent, the
constructor determines the fully
qualified package name from the
Activity.
You could also create a
ComponentName yourself from the
package and class names and use the
following Intent method to create an
explicit intent:
 public Intent setComponent(ComponentName
component)

However, it is less code to use
setClassName(…), which creates
the component name behind the scenes.
Run NerdLauncher and launch some
apps.

Tasks and the Back
Stack
Android uses tasks to keep track of the
user’s state within each running
application. Each application opened
from Android’s default launcher app gets
its own task. This is the desired
behavior but, unfortunately for your
NerdLauncher, it is not the default
behavior. Before you foray into forcing
applications to launch into their own
tasks, let’s discuss what tasks are and
how they work.
A task is a stack of activities that the

user is concerned with. The activity at
the bottom of the stack is called the base
activity, and whatever activity is on top
is the activity that the user sees. When
you press the Back button, you are
popping the top activity off of this stack.
If you are looking at the base activity
and hit the Back button, it will send you
to the Home screen.
By default, new activities are started in
the current task. In CriminalIntent,
whenever you started a new activity, that
activity was added to the current task (as
shown in Figure 24.5). This was true
even if the activity was not part of the
CriminalIntent application, like when
you started an activity to select a crime
suspect.

Figure 24.5 CriminalIntent
task

The benefit of adding an activity to the
current task is that the user can navigate
back through the task instead of the
application hierarchy (as shown in
Figure 24.6).

Figure 24.6 Pressing the Back
button in CriminalIntent

Switching between
tasks
Using the overview screen, you can
switch between tasks without affecting
each task’s state, as you first saw way
back in Chapter 3. For instance, if you
start entering a new contact and switch
to checking your Twitter feed, you will
have two tasks started. If you switch
back to editing contacts, your place in
both tasks will be saved.
Try out the overview screen on your
device or emulator. First, launch
CriminalIntent from the Home screen or
from your app launcher. (If your device
or emulator no longer has CriminalIntent

installed, open your CriminalIntent
project in Android Studio and run it
from there.) Select a crime from the
crime list. Then push the Home button to
return to the Home screen. Next, launch
BeatBox from the Home screen or from
your app launcher (or, if necessary, from
Android Studio).
Open the overview screen by pressing
the Recents button (Figure 24.7).

Figure 24.7 Overview screen
versions

The overview screen displayed on the
left in Figure 24.7 is what users will see
if they are running KitKat. The overview
screen displayed on the right is what

users running Lollipop or later will see.
In both cases, the entry displayed for
each app (known as a card from
Lollipop forward) represents the task for
each app. A screenshot of the activity at
the top of each task’s back stack is
displayed. Users can press on the
BeatBox or CriminalIntent entry to return
to the app (and to whatever activity they
were interacting with in that app).
Users can clear an app’s task by swiping
on the card entry to remove the card
from the task list. Clearing the task
removes all activities from the
application’s back stack.
Try clearing CriminalIntent’s task, then
relaunching the app. You will see the list
of crimes instead of the crime you were

editing before you cleared the task.

Starting a new task
Sometimes, when you start an activity,
you want the activity added to the
current task. Other times, you want it
started in a new task that is independent
of the activity that started it.
Right now, any activity started from
NerdLauncher is added to
NerdLauncher’s task, as depicted in
Figure 24.8.

Figure 24.8 NerdLauncher’s
task contains CriminalIntent

You can confirm this by clearing all the
tasks displayed in the overview screen.
Then start NerdLauncher and click on
the CriminalIntent entry to launch the
CriminalIntent app. Open the overview
screen again. You will not see
CriminalIntent listed anywhere. When
CrimeListActivity was started, it

was added to NerdLauncher’s task
(Figure 24.9). If you press the
NerdLauncher task, you will be returned
to whatever CriminalIntent screen you
were looking at before starting the
overview screen.

Figure 24.9 CriminalIntent not
in its own task

This will not do. Instead, you want
NerdLauncher to start activities in new
tasks (Figure 24.10). That way each
application opened by pressing an item
in the NerdLauncher list gets its own
task, which will allow users to switch
between running applications via the
overview screen, NerdLauncher, or the

Home screen, as they prefer.

Figure 24.10 Launching
CriminalIntent into its own task

To start a new task when you start a new
activity, add a flag to the intent in
NerdLauncherFragment.java.

Listing 24.9 Adding new task
flag to intent
(NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {
 ...
 private class ActivityHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener {

 ...
 @Override
 public void onClick(View v) {
 ...
 Intent i = new Intent(Intent.ACTION_MAIN)

.setClassName(activityInfo.applicationInfo.packageName,

 activityInfo.name)

.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(i);
 }
 }
 ...
}

Clear the tasks listed in your overview
screen. Run NerdLauncher and start
CriminalIntent. This time, when you pull
up the overview screen you will see a
separate task for CriminalIntent
(Figure 24.11).

Figure 24.11 CriminalIntent
now in its own task

If you start CriminalIntent from
NerdLauncher again, you will not create
a second CriminalIntent task. The
FLAG_ACTIVITY_NEW_TASK flag by
itself creates one task per activity.
CrimeListActivity already has a
task running, so Android will switch to
that task instead of starting a new one.
Try this out. Open the detail screen for
one of the crimes in CriminalIntent. Use
the overview screen to switch to
NerdLauncher. Press on CriminalIntent
in the list. You will be right back where
you were in the CriminalIntent app,
viewing the details for a single crime.

Using
NerdLauncher as a
Home Screen
Who wants to start an app to start other
apps? It would make more sense to offer
NerdLauncher as a replacement for the
device’s Home screen. Open
NerdLauncher’s
AndroidManifest.xml and add to
its main intent filter.

Listing 24.10 Changing
NerdLauncherActivity’s
categories

(AndroidManifest.xml)
<intent-filter>
 <action android:name="android.intent.action.MAIN"
/>
 <category
android:name="android.intent.category.LAUNCHER" />
 <category
android:name="android.intent.category.HOME" />
 <category
android:name="android.intent.category.DEFAULT" />
</intent-filter>

By adding the HOME and DEFAULT
categories,
NerdLauncherActivity is asking
to be offered as an option for the Home
screen. Press the Home button, and
NerdLauncher will be offered as an
option (Figure 24.12).

Figure 24.12 Selecting Home
app

(If you make NerdLauncher the Home
screen, you can easily change it back
later. Launch the Settings app from
NerdLauncher. If you are running
Lollipop or later, go to Settings → Apps.
Select NerdLauncher from the app list. If
you are running a pre-Lollipop version
of Android, go to Settings → Applications →
Manage Applications. Select All to find
NerdLauncher. Once you have selected
NerdLauncher, you should be on the App
Info screen. Scroll down to Launch by
default and press the CLEAR DEFAULTS
button. The next time you press the
Home button, you will be able to select
another default.)

Challenge: Icons
You used
ResolveInfo.loadLabel(PackageManager)
in this chapter to present useful names in
your launcher. ResolveInfo provides
a similar method called loadIcon()
that retrieves an icon to display for each
application. For a small challenge, add
an icon for each application to
NerdLauncher.

For the More
Curious: Processes
vs Tasks
All objects need memory and a virtual
machine to live in. A process is a place
created by the OS for your application’s
objects to live in and for your
application to run.
Processes may own resources managed
by the OS, like memory, network
sockets, and open files. Processes also
have at least one, possibly many, threads
of execution. On Android, your process

will also always have exactly one
virtual machine running.
While there are some obscure
exceptions, in general every application
component in Android is associated with
exactly one process. Your application is
created with its own process, and this is
the default process for all components in
your application.
(You can assign individual components
to different processes, but we
recommend sticking to the default
process. If you think you need something
running in a different process, you can
usually achieve the same ends with
multithreading, which is more
straightforward to program in Android
than using multiple processes.)

Every activity instance lives in exactly
one process and is referenced by exactly
one task. But that is where the
similarities between processes and tasks
end. Tasks contain only activities and
often consist of activities living in
different application processes.
Processes, on the other hand, contain all
running code and objects for a single
application.
It can be easy to confuse processes and
tasks because there is some overlap
between the two ideas and both are often
referred to by an application name. For
instance, when you launched
CriminalIntent from NerdLauncher, the
OS created a CriminalIntent process and
a new task for which

CrimeListActivity was the base
activity. In the overview screen, this task
was labeled CriminalIntent.
The task that an activity is referenced by
can be different from the process it lives
in. For example, consider the
CriminalIntent and contact applications
and walk through the following scenario.
Open CriminalIntent, select a crime from
the list (or add a new crime), and then
press CHOOSE SUSPECT. This launches the
contacts application to choose a contact.
The contact list activity is added to the
CriminalIntent task. This means that
when your user presses the Back button
to navigate between different activities,
he or she may be unknowingly switching
between processes, which is nifty.

However, the contact list activity
instance is actually created in the
memory space of the contacts app’s
process, and it runs on the virtual
machine living in the contacts
application’s process. (The state of the
activity instances and task references of
this scenario are depicted in
Figure 24.13.)

Figure 24.13 Task referencing
multiple processes

To explore the idea of processes versus

tasks further, leave CriminalIntent up and
running on the contact list screen. (Make
sure the contacts app itself is not listed
on the overview screen. If so, clear the
contacts app task.) Press the Home
button. Launch the contacts app from the
Home screen. Select a contact from the
list of contacts (or select to add a new
contact).
When you do this, new contact list
activity and contact details instances
will be created in the contact
application’s process. A new task will
be created for the contacts application,
and that task will reference the new
contact list and contact details activity
instances (as shown in Figure 24.14).

Figure 24.14 Process
referenced by multiple tasks

In this chapter, you created tasks and

switched between them. What about
replacing Android’s default overview
screen, as you are able to do with the
Home screen? Unfortunately, Android
does not provide a way to do this. Also,
you should know that apps advertised on
the Google Play Store as “task killers”
are, in fact, process killers. Such apps
kill a particular process, which means
they may be killing activities referenced
by other applications’ tasks.

For the More
Curious:
Concurrent
Documents
If you are running your apps on a
Lollipop or later device, you may have
noticed some interesting behavior with
respect to CriminalIntent and the
overview screen. When you opt to send
a crime report from CriminalIntent, the
activity for the app you select from the
chooser is added to its own task rather
than to CriminalIntent’s task

(Figure 24.15).

Figure 24.15 Gmail launched
into separate task

On Lollipop forward, the implicit intent
chooser creates a new, separate task for
activities launched with the
android.intent.action.SEND or
action.intent.action.SEND_MULTIPLE
actions. (On older versions of Android,
this does not happen, so Gmail’s
compose activity would have been
added directly to CriminalIntent’s task.)
This behavior uses a notion new in
Lollipop called concurrent documents.
Concurrent documents allow any number
of tasks to be dynamically created for an

app at runtime. Prior to Lollipop, apps
could only have a predefined set of
tasks, each of which had to be named in
the manifest.
A prime example of concurrent
documents in practice is the Google
Drive app. You can open and edit
multiple documents, each of which gets
its own separate task in the overview
screen (Figure 24.16). If you were to
take the same actions in Google Drive
on a pre-Lollipop device, you would
only see one task in the overview
screen. This is because of the
requirement on pre-Lollipop devices to
define an app’s tasks ahead of time in the
manifest. It was not possible pre-
Lollipop to generate a dynamic number

of tasks for a single app.

Figure 24.16 Multiple Google
Drive tasks on Lollipop

You can start multiple “documents”
(tasks) from your own app running on a
Lollipop device by either adding the
Intent.FLAG_ACTIVITY_NEW_DOCUMENT
flag to an intent before calling
startActivity(…) or by setting the
documentLaunchMode on the activity in
the manifest, like so:
<activity
 android:name=".CrimePagerActivity"
 android:label="@string/app_name"
 android:parentActivityName=".CrimeListActivity"
 android:documentLaunchMode="intoExisting" />

Using this approach, only one task per
document will be created (so if you

issue an intent with the same data as an
already existing task, no new task is
created). You can force a new task to
always be created, even if one already
exists for a given document, by either
adding the
Intent.FLAG_ACTIVITY_MULTIPLE_TASK
flag along with the
Intent.FLAG_ACTIVITY_NEW_DOCUMENT
flag before issuing the intent, or by using
always as the value for
documentLaunchMode in your manifest.
To learn more about the overview screen
and changes that were made to it with
the Lollipop release, check out
developer.android.com/​
guide/​components/​
recents.html.

25
HTTP and

Background
Tasks

The apps that dominate the brains of
users are networked apps. Those people
fiddling with their phones instead of
talking to each other at dinner? They are
maniacally checking their newsfeeds,
responding to text messages, or playing
networked games.

To get started with networking in
Android, you are going to create a new
app called PhotoGallery. PhotoGallery
is a client for the photo-sharing site
Flickr. It will fetch and display the most
recent public photos uploaded to Flickr.
Figure 25.1 gives you an idea of what
the app will look like.

Figure 25.1 Complete
PhotoGallery

(We have added a filter to our
PhotoGallery implementation to show
only photos listed on Flickr as having no
known copyright restrictions. Visit
www.flickr.com/​commons/​
usage/ to learn more about

http://www.flickr.com/commons/usage/

unrestricted images. All other photos on
Flickr are the property of the person
who posted them and are subject to
usage restrictions depending on the
license specified by the owner. To read
more about permissions for using third-
party content that you retrieve from
Flickr, visit www.flickr.com/​
creativecommons/.)
You will spend six chapters with
PhotoGallery. It will take two chapters
for you to get the basics of downloading
and parsing JSON and displaying images
up and running. Once that is done, in
subsequent chapters you will add
features that explore search, services,
notifications, broadcast receivers, and
web views.

http://www.flickr.com/creativecommons/

In this chapter, you will learn how to use
Android’s high-level HTTP networking.
Almost all day-to-day programming of
web services these days is based on the
HTTP networking protocol. By the end
of the chapter, you will be fetching,
parsing, and displaying photo captions
from Flickr (Figure 25.2). (Retrieving
and displaying photos will happen in
Chapter 26.)

Figure 25.2 PhotoGallery at the
end of the chapter

Creating
PhotoGallery

Create a new Android application
project. Configure the app as shown in
Figure 25.3.

Figure 25.3 Creating
PhotoGallery

Click Next. When prompted, check Phone

and Tablet as the target form factor and
choose API 19: Android 4.4 (KitKat) from the
Minimum SDK dropdown.
Then have the wizard create an empty
activity named
PhotoGalleryActivity.
PhotoGallery will follow the same
architecture you have been using so far.
PhotoGalleryActivity will be a
SingleFragmentActivity
subclass and its view will be the
container view defined in
activity_fragment.xml. This
activity will host a fragment – in
particular, an instance of
PhotoGalleryFragment, which
you will create shortly.

Copy
SingleFragmentActivity.java
and activity_fragment.xml into
your project from a previous project.
In
PhotoGalleryActivity.java,
set up PhotoGalleryActivity as
a SingleFragmentActivity by
deleting the code that the template
generated and replacing it with an
implementation of
createFragment(). Have
createFragment() return an
instance of
PhotoGalleryFragment. (Bear
with the error that this code will cause
for the moment. It will go away after you
create the PhotoGalleryFragment

class.)

Listing 25.1 Activity setup
(PhotoGalleryActivity.java)
public class PhotoGalleryActivity extends Activity
SingleFragmentActivity {

 @Override
 protected Fragment createFragment() {
 return PhotoGalleryFragment.newInstance();
 }

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 /* Auto-generated template code... */
 }

}

PhotoGallery will display its results in a
RecyclerView, using the built-in
GridLayoutManager to arrange the
items in a grid.
First, add the RecyclerView library as a

dependency, as you did in Chapter 8.
Open the project structure window and
select the app module on the left. Select
the Dependencies tab and click the +
button. Select Library dependency from the
drop-down menu that appears. Find and
select the recyclerview-v7 library and click
OK.
Rename
layout/activity_photo_gallery.xml
to
layout/fragment_photo_gallery.xml
to create a layout for the fragment. Then
replace its contents with the
RecyclerView shown in Figure 25.4.

Figure 25.4 A RecyclerView
(layout/fragment_photo_gallery.xml

Finally, create the
PhotoGalleryFragment class.
Retain the fragment, inflate the layout
you just created, and initialize a member
variable referencing the
RecyclerView.

Listing 25.2 Some skeleton
code
(PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {

 private RecyclerView mPhotoRecyclerView;

 public static PhotoGalleryFragment newInstance()
{
 return new PhotoGalleryFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_photo_gallery,
container, false);

 mPhotoRecyclerView = (RecyclerView)
v.findViewById(R.id.photo_recycler_view);
 mPhotoRecyclerView.setLayoutManager(new
GridLayoutManager(getActivity(), 3));

 return v;
 }
}

(Wondering why you are retaining the

fragment? Hold that thought – we will
explain later in the chapter, in the section
called Cleaning Up AsyncTasks.)
Fire up PhotoGallery to make sure
everything is wired up correctly before
moving on. If all is well, you will be the
proud owner of a blank screen.

Networking Basics
You are going to have one class handle
the networking in PhotoGallery. Create a
new Java class and, since you will be
connecting to Flickr, name this class
FlickrFetchr.
FlickrFetchr will start off small
with only two methods:
getUrlBytes(String) and
getUrlString(String). The
getUrlBytes(String) method
fetches raw data from a URL and returns
it as an array of bytes. The
getUrlString(String) method

converts the result from
getUrlBytes(String) to a
String.
In FlickrFetchr.java, add
implementations for
getUrlBytes(String) and
getUrlString(String) (Listing
25.3).

Listing 25.3 Basic networking
code (FlickrFetchr.java)
public class FlickrFetchr {
 public byte[] getUrlBytes(String urlSpec) throws
IOException {
 URL url = new URL(urlSpec);
 HttpURLConnection connection =
(HttpURLConnection)url.openConnection();

 try {
 ByteArrayOutputStream out = new
ByteArrayOutputStream();
 InputStream in =
connection.getInputStream();

 if (connection.getResponseCode() !=
HttpURLConnection.HTTP_OK) {
 throw new
IOException(connection.getResponseMessage() +
 ": with " +
 urlSpec);
 }

 int bytesRead = 0;
 byte[] buffer = new byte[1024];
 while ((bytesRead = in.read(buffer)) > 0)
{
 out.write(buffer, 0, bytesRead);
 }
 out.close();
 return out.toByteArray();
 } finally {
 connection.disconnect();
 }
 }

 public String getUrlString(String urlSpec) throws
IOException {
 return new String(getUrlBytes(urlSpec));
 }
}

This code creates a URL object from a
string – like, say, https://​
www.bignerdranch.com. Then it

https://www.bignerdranch.com

calls openConnection() to create a
connection object pointed at the URL.
URL.openConnection() returns a
URLConnection, but because you are
connecting to an http URL, you can cast
it to HttpURLConnection. This
gives you HTTP-specific interfaces for
working with request methods, response
codes, streaming methods, and more.
HttpURLConnection represents a
connection, but it will not actually
connect to your endpoint until you call
getInputStream() (or
getOutputStream() for POST
calls). Until then, you cannot get a valid
response code.
Once you create your URL and open a
connection, you call read() repeatedly

until your connection runs out of data.
The InputStream will yield bytes as
they are available. When you are done,
you close it and spit out your
ByteArrayOutputStream’s byte
array.
While getUrlBytes(String) does
the heavy lifting,
getUrlString(String) is what
you will actually use in this chapter. It
converts the bytes fetched by
getUrlBytes(String) into a
String. Right now, it may seem
strange to split this work into two
methods. However, having two methods
will be useful in the next chapter when
you start downloading image data.

Asking permission to
network
One other thing is required to get
networking up and running: You have to
ask permission. Just as users would not
want you secretly taking their pictures,
they also do not want you to secretly
download ASCII pictures of farm
animals.
To ask permission to network, add the
following permission to your
AndroidManifest.xml.

Listing 25.4 Adding
networking permission to
manifest

(AndroidManifest.xml)
<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.bignerdranch.android.photogallery" >

 <uses-permission
android:name="android.permission.INTERNET" />

 <application
 ...
 </application>

</manifest>

When a user tries to download your app,
a dialog showing these permissions is
displayed. The user can then accept or
deny installation.
Android treats the INTERNET permission
as not dangerous, since so many apps
require it. As a result, all you need to do
to use this permission is declare it in

your manifest. More dangerous
permissions (like the one allowing you
to know the device’s location) also
require a runtime request. (You will read
more about those in Chapter 33.)

Using AsyncTask to
Run on a
Background
Thread
The next step is to call and test the
networking code you just added.
However, you cannot simply call
FlickrFetchr.getUrlString(String)
directly in
PhotoGalleryFragment. Instead,
you need to create a background thread
and run your code there.

The easiest way to work with a
background thread is with a utility class
called AsyncTask, which creates a
background thread for you and runs the
code in the doInBackground(…)
method on that thread.
In
PhotoGalleryFragment.java,
add a new inner class called
FetchItemsTask at the bottom of
PhotoGalleryFragment. Override
AsyncTask.doInBackground(…)
to get data from a website and log it.

Listing 25.5 Writing an
AsyncTask, part I
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG =
"PhotoGalleryFragment";

 private RecyclerView mPhotoRecyclerView;
 ...
 private class FetchItemsTask extends
AsyncTask<Void,Void,Void> {
 @Override
 protected Void doInBackground(Void... params)
{
 try {
 String result = new FlickrFetchr()

.getUrlString("https://www.bignerdranch.com");
 Log.i(TAG, "Fetched contents of URL:
" + result);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch URL: ",
ioe);
 }
 return null;
 }
 }
}

Now, in
PhotoGalleryFragment.onCreate(…)
call execute() on a new instance of
FetchItemsTask.

Listing 25.6 Writing an
AsyncTask, part II
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG =
"PhotoGalleryFragment";

 private RecyclerView mPhotoRecyclerView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 new FetchItemsTask().execute();
 }
 ...
}

The call to execute() will start your
AsyncTask, which will then fire up its
background thread and call
doInBackground(…). Run your
code and you should see the amazing Big
Nerd Ranch home page HTML pop up in

Logcat, as shown in Figure 25.5.

Figure 25.5 Big Nerd Ranch
HTML in Logcat

Finding your log statements within the
Logcat window can be tricky. It helps to
search for something specific. In this
case, enter “PhotoGalleryFragment” into
the Logcat search box, as shown.
Now that you have created a background
thread and run some networking code on
it, let’s take a closer look at threads in
Android.

You and Your Main
Thread
Networking does not happen
immediately. A web server may take as
long as a second or two to respond, and
a file download can take even longer
than that. Because networking can take
so long, Android disallows all
networking on the main thread. If you try
to do it, Android will throw a
NetworkOnMainThreadException.
Why? To understand that, you need to
understand what a thread is, what the
main thread is, and what the main thread

does.
A thread is a single sequence of
execution. Code running within a single
thread will execute one step after
another. Every Android app starts life
with a main thread. The main thread,
however, is not a preordained list of
steps. Instead, it sits in an infinite loop
and waits for events initiated by the user
or the system. Then it executes code in
response to those events as they occur
(Figure 25.6).

Figure 25.6 Regular threads vs
the main thread

Imagine that your app is an enormous
shoe store, and that you only have one
employee – The Flash. (Who hasn’t
dreamed of that?) There are a lot of

things to do in a store to keep the
customers happy: arranging the
merchandise, fetching shoes for
customers, wielding the Brannock
device. With The Flash as your
salesperson, everyone is taken care of in
a timely fashion, even though there is
only one guy doing all the work.
For this situation to work, The Flash
cannot spend too much time doing any
one thing. What if a shipment of shoes
goes missing? Someone will have to
spend a lot of time on the phone
straightening it out. Your customers will
get mighty impatient waiting for shoes
while The Flash is on hold.
The Flash is like the main thread in your
application. It runs all the code that

updates the UI. This includes the code
executed in response to different UI-
related events – activity startup, button
presses, and so on. (Because the events
are all related to the UI in some way, the
main thread is sometimes called the UI
thread.)
The event loop keeps the UI code in
sequence. It makes sure that none of
these operations step on each other
while still ensuring that the code is
executed in a timely fashion. So far, all
of the code you have written (except for
the code you just wrote with
AsyncTask) has been executed on the
main thread.

Beyond the main thread
Networking is a lot like a phone call to
your shoe distributor: It takes a long time
compared to other tasks. During that
time, the UI will be completely
unresponsive, which might result in an
application not responding, or ANR.
An ANR occurs when Android’s
watchdog determines that the main
thread has failed to respond to an
important event, like pressing the Back
button. To the user, it looks like
Figure 25.7.

Figure 25.7 Application not
responding

In your store, you would solve the
problem by (naturally) hiring a second
Flash to call the shoe distributor. In
Android, you do something similar – you
create a background thread and access
the network from there.
And what is the easiest way to work
with a background thread? Why,
AsyncTask.
You will get to see other things
AsyncTask can do later this chapter.
Before you do that, you will want to do
some real work with your networking
code.

Fetching JSON
from Flickr
JSON stands for JavaScript Object
Notation, a format that has become
popular in recent years, particularly for
web services. Android includes the
standard org.json package, which has
classes that provide simple access to
creating and parsing JSON text. The
Android developer documentation has
information about org.json, and you can
get more information about JSON as a
format at json.org.
Flickr offers a fine JSON API. All the

details you need are available in the
documentation at www.flickr.com/​
services/​api/. Pull it up in your
favorite web browser and find the list of
Request Formats. You will be using the
simplest – REST. This tells you that the
API endpoint is https://​
api.flickr.com/​services/​
rest/. You can invoke the methods
Flickr provides on this endpoint.
Back on the main page of the API
documentation, find the list of API
Methods. Scroll down to the photos
section, then locate and click on
flickr.photos.getRecent. The documentation
will report that this method “Returns a
list of the latest public photos uploaded
to flickr.” That is exactly what you need

http://www.flickr.com/services/api/
https://api.flickr.com/services/rest/

for PhotoGallery.
The only required parameter for the
getRecent method is an API key. To
get an API key, return to
www.flickr.com/​services/​
api/ and follow the link for API keys.
You will need a Yahoo ID to log in.
Once you are logged in, request a new,
noncommercial API key. This usually
only takes a moment. Your API key will
look something like
4f721bgafa75bf6d2cb9af54f937bb70.
(You do not need the “Secret,” which is
only used when an app will access user-
specific information or images.)
Once you have a key, you have all you
need to make a request to the Flickr web
service. Your GET request URL will

http://www.flickr.com/services/api/

look something like this:
https://​api.flickr.com/​
services/​rest/​?
method=flickr.photos.getRecent&api_key=xxx&format=json&nojsoncallback=1

The Flickr response is in XML format by
default. To get a valid JSON response,
you need to specify values for both the
format and nojsoncallback
parameters. Setting nojsoncallback to
1 tells Flickr to exclude the enclosing
method name and parentheses from the
response it sends back. This is necessary
so that your Java code can more easily
parse the response.
Copy the example URL into your
browser, replacing the “xxx” value
provided for the api_key with your

https://api.flickr.com/services/rest/?method=flickr.photos.getRecent&api_key=xxx&format=json&nojsoncallback=1

actual API key. This will allow you to
see an example of what the response
data will look like, as shown in
Figure 25.8.

Figure 25.8 Example JSON
output

Time to start coding. First, add some
constants to FlickrFetchr.

Listing 25.7 Adding constants
(FlickrFetchr.java)
 public class FlickrFetchr {

 private static final String TAG =
"FlickrFetchr";

 private static final String API_KEY =
"yourApiKeyHere";
 ...
 }

Make sure to replace yourApiKeyHere
with the API key you generated earlier.
Now use the constants to write a method
that builds an appropriate request URL
and fetches its contents.

Listing 25.8 Adding
fetchItems() method
(FlickrFetchr.java)
public class FlickrFetchr {
 ...
 public String getUrlString(String urlSpec) throws
IOException {
 return new String(getUrlBytes(urlSpec));
 }

 public void fetchItems() {

 try {
 String url =
Uri.parse("https://api.flickr.com/services/rest/")
 .buildUpon()
 .appendQueryParameter("method",
"flickr.photos.getRecent")
 .appendQueryParameter("api_key",
API_KEY)
 .appendQueryParameter("format",
"json")

.appendQueryParameter("nojsoncallback", "1")
 .appendQueryParameter("extras",
"url_s")
 .build().toString();
 String jsonString = getUrlString(url);
 Log.i(TAG, "Received JSON: " +
jsonString);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 }
 }
}

Here you use a Uri.Builder to build
the complete URL for your Flickr API
request. Uri.Builder is a
convenience class for creating properly
escaped parameterized URLs.

Uri.Builder.appendQueryParameter(String,
String) will automatically escape
query strings for you.
Notice you added values for the method,
api_key, format, and nojsoncallback
parameters. You also specified one extra
parameter called extras, with a value
of url_s. Specifying the url_s extra
tells Flickr to include the URL for the
small version of the picture if it is
available.
Finally, modify the AsyncTask in
PhotoGalleryFragment to call the
new fetchItems() method.

Listing 25.9 Calling
fetchItems()
(PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {
 ...
 private class FetchItemsTask extends
AsyncTask<Void,Void,Void> {
 @Override
 protected Void doInBackground(Void...
params) {
 try {
 String result = new FlickrFetchr()

.getUrlString("https://www.bignerdranch.com");
 Log.i(TAG, "Fetched contents of
URL: " + result);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch URL: ",
ioe);
 }
 new FlickrFetchr().fetchItems();
 return null;
 }
 }
}

Run PhotoGallery and you should see
rich, fertile Flickr JSON in Logcat, like
Figure 25.9. (It will help to search for
“FlickrFetchr” in the Logcat search
box.)

Figure 25.9 Flickr JSON in
Logcat

Unfortunately the Android Studio Logcat
window does not wrap the output nicely
as of this writing. Scroll to the right to
see more of the extremely long JSON
response string. (Logcat can be finicky.
Do not panic if you do not get results
like ours. Sometimes the connection to
the emulator is not quite right and the log
messages do not get printed out. Usually
it clears up over time, but sometimes you
have to rerun your application or even
restart your emulator.)

Now that you have such fine JSON from
Flickr, what should you do with it? You
do what you do with all data – put it in
one or more model objects. The model
class you are going to create for
PhotoGallery is called GalleryItem.
Figure 25.10 shows an object diagram of
PhotoGallery.

Figure 25.10 Object diagram of
PhotoGallery

Note that Figure 25.10 does not show the
hosting activity so that it can focus on the
fragment and the networking code.
Create the GalleryItem class and
add the following code:

Listing 25.10 Creating model
object class
(GalleryItem.java)
public class GalleryItem {
 private String mCaption;
 private String mId;
 private String mUrl;

 @Override
 public String toString() {
 return mCaption;
 }
}

Have Android Studio generate getters
and setters for mCaption, mId, and
mUrl.
Now that you have made model objects,
it is time to fill them with data from the
JSON you got from Flickr.

Parsing JSON text
The JSON response displayed in your
browser and Logcat window is hard to
read. If you pretty print (format with
white space) the response, it looks
something like Figure 25.11.

Figure 25.11 JSON hierarchy

A JSON object is a set of name-value
pairs enclosed between curly braces, {
}. A JSON array is a comma-separated

list of JSON objects enclosed in square
brackets, []. You can have objects
nested within each other, resulting in a
hierarchy.
The org.json API provides Java
objects corresponding to JSON text,
such as JSONObject and
JSONArray. You can easily parse
JSON text into corresponding Java
objects using the
JSONObject(String) constructor.
Update fetchItems() to do just that.

Listing 25.11 Reading JSON
string into JSONObject
(FlickrFetchr.java)
public class FlickrFetchr {

 private static final String TAG = "FlickrFetchr";

 ...
 public void fetchItems() {
 try {
 ...
 Log.i(TAG, "Received JSON: " +
jsonString);
 JSONObject jsonBody = new
JSONObject(jsonString);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 } catch (JSONException je){
 Log.e(TAG, "Failed to parse JSON", je);
 }
 }
}

The JSONObject constructor parses
the JSON string you passed it, resulting
in an object hierarchy that maps to the
original JSON text. The object hierarchy
for the JSON returned from Flickr is
shown in Figure 25.11.
Here you have a top-level
JSONObject that maps to the
outermost curly braces in the original

JSON text. This top-level object
contains a nested JSONObject named
photos. Within this nested
JSONObject is a JSONArray named
photo. This array contains a collection
of JSONObjects, each representing
metadata for a single photo.
Write a method that pulls out information
for each photo. Make a GalleryItem
for each photo and add it to a List.

Listing 25.12 Parsing Flickr
photos (FlickrFetchr.java)
public class FlickrFetchr {

 private static final String TAG = "FlickrFetchr";
 ...
 public void fetchItems() {
 ...
 }

 private void parseItems(List<GalleryItem> items,

JSONObject jsonBody)
 throws IOException, JSONException {

 JSONObject photosJsonObject =
jsonBody.getJSONObject("photos");
 JSONArray photoJsonArray =
photosJsonObject.getJSONArray("photo");

 for (int i = 0; i < photoJsonArray.length();
i++) {
 JSONObject photoJsonObject =
photoJsonArray.getJSONObject(i);

 GalleryItem item = new GalleryItem();

item.setId(photoJsonObject.getString("id"));

item.setCaption(photoJsonObject.getString("title"));

 if (!photoJsonObject.has("url_s")) {
 continue;
 }

item.setUrl(photoJsonObject.getString("url_s"));
 items.add(item);
 }
 }
}

This code uses convenience methods
such as getJSONObject(String

name) and
getJSONArray(String name) to
navigate the JSONObject hierarchy.
(These methods are also annotated in
Figure 25.11.)
Flickr does not always return a url_s
component for each image. You add a
check here to ignore images that do not
have an image URL.
The parseItems(…) method needs a
List and JSONObject. Update
fetchItems() to call
parseItems(…) and return a List
of GalleryItems.

Listing 25.13 Calling
parseItems(…)
(FlickrFetchr.java)

public void List<GalleryItem> fetchItems() {

 List<GalleryItem> items = new ArrayList<>();

 try {
 String url = ...;
 String jsonString = getUrlString(url);
 Log.i(TAG, "Received JSON: " + jsonString);
 JSONObject jsonBody = new
JSONObject(jsonString);
 parseItems(items, jsonBody);
 } catch (JSONException je) {
 Log.e(TAG, "Failed to parse JSON", je);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 }

 return items;
}

Run PhotoGallery to test your JSON
parsing code. PhotoGallery has no way
of reporting the contents of your List
right now, so you will need to set a
breakpoint and use the debugger if you
want to make sure everything worked
correctly.

From AsyncTask
Back to the Main
Thread
To finish off, let’s switch to the view
layer and get
PhotoGalleryFragment’s
RecyclerView to display some
captions.
First define a ViewHolder as an inner
class.

Listing 25.14 Adding a
ViewHolder implementation

(PhotoGalleryFragment.java)
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 private class PhotoHolder extends
RecyclerView.ViewHolder {
 private TextView mTitleTextView;

 public PhotoHolder(View itemView) {
 super(itemView);

 mTitleTextView = (TextView) itemView;
 }

 public void bindGalleryItem(GalleryItem item)
{
 mTitleTextView.setText(item.toString());
 }
 }

 private class FetchItemsTask extends
AsyncTask<Void,Void,Void> {
 ...
 }
}

Next, add a

RecyclerView.Adapter to
provide PhotoHolders as needed
based on a list of GalleryItems.

Listing 25.15 Adding a
RecyclerView.Adapter
implementation
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG =
"PhotoGalleryFragment";
 ...
 private class PhotoHolder extends
RecyclerView.ViewHolder {
 ...
 }

 private class PhotoAdapter extends
RecyclerView.Adapter<PhotoHolder> {

 private List<GalleryItem> mGalleryItems;

 public PhotoAdapter(List<GalleryItem>
galleryItems) {
 mGalleryItems = galleryItems;
 }

 @Override
 public PhotoHolder
onCreateViewHolder(ViewGroup viewGroup, int viewType)
{
 TextView textView = new
TextView(getActivity());
 return new PhotoHolder(textView);
 }

 @Override
 public void onBindViewHolder(PhotoHolder
photoHolder, int position) {
 GalleryItem galleryItem =
mGalleryItems.get(position);
 photoHolder.bindGalleryItem(galleryItem);
 }

 @Override
 public int getItemCount() {
 return mGalleryItems.size();
 }
 }
 ...
}

Now that you have the appropriate nuts
and bolts in place for RecyclerView,
add code to set up and attach an adapter
when appropriate.

Listing 25.16 Implementing
setupAdapter()
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG =
"PhotoGalleryFragment";

 private RecyclerView mPhotoRecyclerView;
 private List<GalleryItem> mItems = new
ArrayList<>();
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_photo_gallery,
container, false);

 mPhotoRecyclerView = (RecyclerView)
v.findViewById(R.id.photo_recycler_view);
 mPhotoRecyclerView.setLayoutManager(new
GridLayoutManager(getActivity(), 3));

 setupAdapter();

 return v;
 }

 private void setupAdapter() {

 if (isAdded()) {
 mPhotoRecyclerView.setAdapter(new
PhotoAdapter(mItems));
 }
 }
 ...
}

The setupAdapter() method you
just added looks at the current model
state, namely the List of
GalleryItems, and configures the
adapter appropriately on your
RecyclerView. You call
setupAdapter() in
onCreateView(…) so that every
time a new RecyclerView is created,
it is reconfigured with an appropriate
adapter. You also want to call it every
time your set of model objects changes.
Notice that you check to see whether
isAdded() is true before setting the

adapter. This confirms that the fragment
has been attached to an activity, and in
turn that getActivity() will not be
null.
Remember that fragments can exist
unattached to any activity. Before now,
this possibility has not come up because
your method calls have been driven by
callbacks from the framework. In this
scenario, if a fragment is receiving
callbacks, then it definitely is attached to
an activity. No activity, no callbacks.
However, now that you are using an
AsyncTask you are triggering some
callbacks from a background thread.
Thus you cannot assume that the fragment
is attached to an activity. You must check
to make sure that your fragment is still

attached. If it is not, then operations that
rely on that activity (like creating your
PhotoAdapter, which in turn creates
a TextView using the hosting activity
as the context) will fail. This is why, in
your code above, you check that
isAdded() is true before setting the
adapter.
Now you need to call
setupAdapter() after data has been
fetched from Flickr. Your first instinct
might be to call setupAdapter() at
the end of FetchItemsTask’s
doInBackground(…). This is not a
good idea. Remember that you have two
Flashes in the store now – one helping
multiple customers, and one on the
phone with Flickr. What will happen if

the second Flash tries to help customers
after hanging up the phone? Odds are
good that the two Flashes will step on
each other’s toes.
On a computer, this toe-stepping-on
results in objects in memory becoming
corrupted. Because of this, you are not
allowed to update the UI from a
background thread, nor is it safe or
advisable to do so.
What to do? AsyncTask has another
method you can override called
onPostExecute(…).
onPostExecute(…) is run after
doInBackground(…) completes.
More importantly,
onPostExecute(…) is run on the
main thread, not the background thread,

so it is safe to update the UI within it.
Modify FetchItemsTask to update
mItems and call setupAdapter()
after fetching your photos to update the
RecyclerView’s data source.

Listing 25.17 Adding adapter
update code
(PhotoGalleryFragment.java)
private class FetchItemsTask extends
AsyncTask<Void,Void,Void List<GalleryItem>> {
 @Override
 protected Void List<GalleryItem>
doInBackground(Void... params) {

 return new FlickrFetchr().fetchItems();
 return null;
 }

 @Override
 protected void onPostExecute(List<GalleryItem>
items) {
 mItems = items;
 setupAdapter();
 }

}

You made three changes here. First, you
changed the type of the
FetchItemsTask’s third generic
parameter. This parameter is the type of
result produced by your AsyncTask. It
sets the type of value returned by
doInBackground(…) as well as the
type of onPostExecute(…)’s input
parameter.
Second, you modified
doInBackground(…) to return your
list of GalleryItems. By doing this
you fixed your code so that it compiles
properly. You also passed your list of
items off so that it can be used from
within onPostExecute(…).
Finally, you added an implementation of

onPostExecute(…). This method
accepts as input the list you fetched and
returned inside
doInBackground(…), puts it in
mItems, and updates your
RecyclerView’s adapter.
With that, your work for this chapter is
complete. Run PhotoGallery, and you
should see text displayed for each
GalleryItem you downloaded
(similar to Figure 25.2).

Cleaning Up
AsyncTasks
In this chapter, your AsyncTask and
other code was carefully structured so
that you would not have to keep track of
the AsyncTask instance. For example,
you retained the fragment (called
setRetainInstance(true)) so that
rotation does not repeatedly fire off new
AsyncTasks to fetch the JSON data.
However, in other situations you will
need to keep a handle on your
AsyncTasks, even canceling and
rerunning them at times.

For these more complicated uses, you
will want to assign your AsyncTask to
an instance variable. Once you have a
handle on it, you can call
AsyncTask.cancel(boolean).
This method allows you to cancel an
ongoing AsyncTask.
AsyncTask.cancel(boolean)
can work in a more rude or less rude
fashion. If you call cancel(false),
it will be polite and simply set
isCancelled() to true. The
AsyncTask can then check
isCancelled() inside of
doInBackground(…) and elect to
finish prematurely.
If you call cancel(true), however,
it will be impolite and interrupt the

thread doInBackground(…) is on, if
it is currently running.
AsyncTask.cancel(true) is a
more severe way of stopping the
AsyncTask. If you can avoid it, you
should.
When and where should you cancel your
AsyncTask? It depends. First, ask
yourself whether the work the
AsyncTask is doing should stop if the
fragment or activity is destroyed or goes
out of view. If so, you should cancel the
AsyncTask instance in either
onStop(…) (to cancel the task when
the view is no longer visible) or
onDestroy(…) (to cancel the task
when the fragment/activity instance is
destroyed).

What if you want the work the
AsyncTask is doing to survive the life
of the fragment/activity and its view?
You could just let the AsyncTask run
to completion, without canceling.
However, this has potential for memory
leaks (e.g., the Activity instance
being kept alive past when it should
have been destroyed) or problems
related to updating or accessing the UI
when it is in an invalid state. If you have
important work that must be completed
regardless of what the user is doing, it is
better to consider alternative options,
such as launching a Service (which
you will learn more about in
Chapter 28).

For the More
Curious: More on
AsyncTask
In this chapter you saw how to use the
last type parameter on AsyncTask,
which specifies the return type. What
about the other two?
The first type parameter allows you to
specify the type of input parameters you
will pass to execute(), which in turn
dictates the type of input parameters
doInBackground(…) will receive.
You would use it in the following way:

AsyncTask<String,Void,Void> task = new
AsyncTask<String,Void,Void>() {
 public Void doInBackground(String... params) {
 for (String parameter : params) {
 Log.i(TAG, "Received parameter: " +
parameter);
 }

 return null;
 }
};

Input parameters are passed to the
execute(…) method, which takes a
variable number of arguments:
 task.execute("First parameter", "Second
parameter", "Etc.");

Those variable arguments are then
passed on to doInBackground(…).
The second type parameter allows you
to specify the type for sending progress
updates. Here is what the code pieces
look like:
final ProgressBar gestationProgressBar = /* A

determinate progress bar */;
gestationProgressBar.setMax(42); /* Max allowed
gestation period */

AsyncTask<Void,Integer,Void> haveABaby = new
AsyncTask<Void,Integer,Void>() {
 public Void doInBackground(Void... params) {
 while (!babyIsBorn()) {
 Integer weeksPassed =
getNumberOfWeeksPassed();
 publishProgress(weeksPassed);
 patientlyWaitForBaby();
 }
 }

 public void onProgressUpdate(Integer... params) {
 int progress = params[0];
 gestationProgressBar.setProgress(progress);
 }
};

/* Call when you want to execute the AsyncTask */
haveABaby.execute();

Progress updates usually happen in the
middle of an ongoing background
process. The problem is that you cannot
make the necessary UI updates inside
that background process. So
AsyncTask provides

publishProgress(…) and
onProgressUpdate(…).
Here is how it works: You call
publishProgress(…) from
doInBackground(…) in the
background thread. This will make
onProgressUpdate(…) be called
on the UI thread. So you can do your UI
updates in onProgressUpdate(…),
but control them from
doInBackground(…) with
publishProgress(…).

For the More
Curious:
Alternatives to
AsyncTask
If you use an AsyncTask to load data,
you are responsible for managing its
lifecycle during configuration changes,
such as rotation, and stashing its data
somewhere that lives through those
changes. Often, this is simplified by
using setRetainInstance(true)
on a Fragment and storing the data
there, but there are still situations where

you have to intervene – and code you
have to write to ensure that everything
happens correctly. Such situations
include the user pressing the Back button
while the AsyncTask is running, or the
fragment that launched the AsyncTask
getting destroyed during execution by the
OS due to a low-memory situation.
Using a Loader is an alternative
solution that takes some (but not all) of
this responsibility off your hands. A
loader is designed to load some kind of
data (an object) from some source. The
source could be a disk, a database, a
ContentProvider, the network, or
another process.
AsyncTaskLoader is an abstract
Loader that uses an AsyncTask to

move the work of loading data to another
thread. Almost all useful loader classes
you create will be a subclass of
AsyncTaskLoader. The
AsyncTaskLoader will do the job of
fetching the data without blocking the
main thread and delivering the results to
whomever is interested.
Why would you use a loader instead of,
say, an AsyncTask directly? Well, the
most compelling reason is that the
LoaderManager will keep your
component’s loaders alive, along with
their data, between configuration
changes like rotation.
LoaderManager is responsible for
starting, stopping, and maintaining the
lifecycle of any Loaders associated

with your component.
If, after a configuration change, you
initialize a loader that has already
finished loading its data, it can deliver
that data immediately rather than trying
to fetch it again. This works whether
your fragment is retained or not, which
can make your life easier because you
do not have to consider the lifecycle
complications that retained fragments
can introduce.

Challenge: Gson
Deserializing JSON in Java objects, as
you did in Listing 25.12, is a common
task in app development regardless of
the platform. Lots of smart people have
created libraries to simplify the process
of converting JSON text to Java objects
and back again.
One such library is Gson
(github.com/​google/​gson).
Gson maps JSON data to Java objects
for you automatically. This means you do
not need to write any parsing code. For
this reason, Gson is currently our

favorite JSON parsing library.
For this challenge, simplify your JSON
parsing code in FlickrFetchr by
incorporating the Gson library into your
app.

Challenge: Paging
By default, getRecent returns one page
of 100 results. There is an additional
parameter you can use called page that
will let you return page two, three, and
so on.
For this challenge, implement a
RecyclerView.OnScrollListener
that detects when you are at the end of
your results and replaces the current
page with the next page of results. For a
slightly harder challenge, append
subsequent pages to your results.

Challenge:
Dynamically
Adjusting the
Number of
Columns
Currently the number of columns
displayed in the grid is fixed at three.
Update your code to provide a dynamic
number of columns so more columns
appear in landscape and on larger
devices.
A simple approach could involve

providing an integer resource qualified
for different orientations and/or screen
sizes. This is similar to the way you
provided different layouts for different
screen sizes in Chapter 17. Integer
resources should be placed in the
res/values folder(s). Check out the
Android developer documentation for
more details.
Providing qualified resources does not
offer much in the way of granularity. For
a more difficult challenge (and a more
flexible implementation), calculate and
set the number of columns each time the
fragment’s view is created. Calculate the
number of columns based on the current
width of the RecyclerView and some
predetermined constant column width.

There is only one catch: You cannot
calculate the number of columns in
onCreateView() because the
RecyclerView will not be sized yet.
Instead, implement a
ViewTreeObserver.OnGlobalLayoutListener
and put your column calculation code in
onGlobalLayout(). Add the
listener to your RecyclerView using
addOnGlobalLayoutListener()

26
Loopers,

Handlers, and
HandlerThread

Now that you have downloaded and
parsed JSON from Flickr, your next task
is to download and display images. In
this chapter, you will learn how to use
Looper, Handler, and
HandlerThread to dynamically
download and display photos in
PhotoGallery.

Preparing
RecyclerView to
Display Images
The current PhotoHolder in
PhotoGalleryFragment simply
provides TextViews for the
RecyclerView’s
GridLayoutManager to display.
Each TextView displays the caption of
a GalleryItem.
To display photos, you are going to
update PhotoHolder to provide
ImageViews instead. Eventually, each
ImageView will display a photo

downloaded from the mUrl of a
GalleryItem.
Start by creating a new layout file for
your gallery items called
list_item_gallery.xml. This
layout will consist of a single
ImageView (Figure 26.1).

Figure 26.1 Gallery item layout
(res/layout/list_item_gallery.xml

These ImageViews will be managed
by RecyclerView’s

GridLayoutManager, which means
that their width will vary. Their height,
on the other hand, will remain fixed. To
make the most of the ImageView’s
space, you have set its scaleType to
centerCrop. This setting centers the
image and then scales it up so that the
smaller dimension is equal to the view
and the larger one is cropped on both
sides.
Next, update PhotoHolder to hold an
ImageView instead of a TextView.
Replace bindGalleryItem() with
a method to set the ImageView’s
Drawable.

Listing 26.1 Updating
PhotoHolder

(PhotoGalleryFragment.java)
private class PhotoHolder extends
RecyclerView.ViewHolder {
 private TextView mTitleTextView ImageView
mItemImageView;

 public PhotoHolder(View itemView) {
 super(itemView);

 mTitleTextView = (TextView) itemView;
 mItemImageView = (ImageView)
itemView.findViewById(R.id.item_image_view);
 }

 public void bindGalleryItem(GalleryItem item) {
 mTitleTextView.setText(item.toString());
 }

 public void bindDrawable(Drawable drawable) {
 mItemImageView.setImageDrawable(drawable);
 }
}

Previously the PhotoHolder
constructor assumed it would be passed
a TextView directly. The new version
instead expects a view hierarchy that
contains an ImageView with the

resource ID R.id.item_image_view.
Update PhotoAdapter’s
onCreateViewHolder(…) to
inflate the gallery_item file you
created and pass it to PhotoHolder’s
constructor.

Listing 26.2 Updating
PhotoAdapter’s
onCreateViewHolder(…)
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 private class PhotoAdapter extends
RecyclerView.Adapter<PhotoHolder> {
 ...
 @Override
 public PhotoHolder
onCreateViewHolder(ViewGroup viewGroup, int viewType)
{
 TextView textView = new
TextView(getActivity());
 return new PhotoHolder(textView);
 LayoutInflater inflater =

LayoutInflater.from(getActivity());
 View view =
inflater.inflate(R.layout.gallery_item, viewGroup,
false);
 return new PhotoHolder(view);
 }
 ...
 }
 ...
}

Next, you will need a placeholder image
for each ImageView to display until
you download an image to replace it.
Find bill_up_close.png in the
solutions file and put it in
res/drawable. (See the section
called Adding an Icon in Chapter 2 for
more on the solutions.)
Update PhotoAdapter’s
onBindViewHolder(…) to set the
placeholder image as the ImageView’s
Drawable.

Listing 26.3 Binding default
image
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 private class PhotoAdapter extends
RecyclerView.Adapter<PhotoHolder> {
 ...
 @Override
 public void onBindViewHolder(PhotoHolder
photoHolder, int position) {
 GalleryItem galleryItem =
mGalleryItems.get(position);
 photoHolder.bindGalleryItem(galleryItem);
 Drawable placeholder =
getResources().getDrawable(R.drawable.bill_up_close);
 photoHolder.bindDrawable(placeholder);
 }
 ...
 }
 ...
}

Run PhotoGallery, and you should see an
array of close-up Bills, as in
Figure 26.2.

Figure 26.2 A Billsplosion

Figure 26.2 A Billsplosion

Downloading Lots
of Small Things
Currently, PhotoGallery’s networking
works like this:
PhotoGalleryFragment executes
an AsyncTask that retrieves the JSON
from Flickr on a background thread and
parses the JSON into an array of
GalleryItems. Each
GalleryItem now has a URL where
a thumbnail-size photo lives.
The next step is to go and get those
thumbnails. You might think that this
additional networking code could simply

be added to FetchItemsTask’s
doInBackground(…) method. Your
GalleryItem array has 100 URLs to
download from. You would download
the images one after another until you
had all 100. When
onPostExecute(…) executed, they
would be displayed en masse in the
RecyclerView.
However, downloading the thumbnails
all at once causes two problems. The
first is that it could take a while, and the
UI would not be updated until the
downloading was complete. On a slow
connection, users would be staring at a
wall of Bills for a long time.
The second problem is the cost of having
to store the entire set of images. One

hundred thumbnails will fit into memory
easily. But what if it were 1,000? What
if you wanted to implement infinite
scrolling? Eventually, you would run out
of space.
Given these problems, real-world apps
often download images only when they
need to be displayed onscreen.
Downloading on demand puts the
responsibility on the RecyclerView
and its adapter. The adapter triggers the
image downloading as part of its
onBindViewHolder(…)
implementation.
AsyncTask is the easiest way to get a
background thread, but it is ill-suited for
repetitive and long-running work. (You
can read why in the section called For

the More Curious: AsyncTasks vs
Threads at the end of this chapter.)
Instead of using an AsyncTask, you
are going to create a dedicated
background thread. This is the most
common way to implement downloading
on an as-needed basis.

Communicating
with the Main
Thread
Your dedicated thread will download
photos, but how will it work with the
RecyclerView’s adapter to display
them when it cannot directly access the
main thread?
Think back to the shoe store with two
Flashes. Background Flash has wrapped
up his phone call to the distributor. He
needs to tell Main Flash that the shoes
are back in stock. If Main Flash is busy,

Background Flash cannot do this right
away. He would have to wait by the
register to catch Main Flash at a spare
moment. This would work, but it would
not be very efficient.
The better solution is to give each Flash
an inbox. Background Flash writes a
message about the shoes being in stock
and puts it on top of Main Flash’s inbox.
Main Flash does the same thing when he
wants to tell Background Flash that the
stock of shoes has run out.
The inbox idea turns out to be really
handy. The Flash may have something
that needs to be done soon, but not right
at the moment. In that case, he can put a
message in his own inbox and then
handle it when he has time.

In Android, the inbox that threads use is
called a message queue. A thread that
works by using a message queue is
called a message loop; it loops again
and again looking for new messages on
its queue (Figure 26.3).

Figure 26.3 Flash dance

A message loop consists of a thread and
a looper. The Looper is the object that
manages a thread’s message queue.

The main thread is a message loop and
has a looper. Everything your main
thread does is performed by its looper,
which grabs messages off of its message
queue and performs the task they specify.
You are going to create a background
thread that is also a message loop. You
will use a class called
HandlerThread that prepares a
Looper for you.

Assembling a
Background
Thread
Create a new class called
ThumbnailDownloader that
extends HandlerThread. Then give
it a constructor, a stub implementation of
a method called
queueThumbnail(), and an
override of the quit() method that
signals when your thread has quit.
(Toward the end of the chapter, you will
need this bit of information.)

Listing 26.4 Initial thread code
(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends
HandlerThread {
 private static final String TAG =
"ThumbnailDownloader";

 private boolean mHasQuit = false;

 public ThumbnailDownloader() {
 super(TAG);
 }

 @Override
 public boolean quit() {
 mHasQuit = true;
 return super.quit();
 }

 public void queueThumbnail(T target, String url)
{
 Log.i(TAG, "Got a URL: " + url);
 }
}

Notice that you gave the class a single
generic argument, <T>. Your
ThumbnailDownloader’s user,

PhotoGalleryFragment in this
case, will need to use some object to
identify each download and to determine
which UI element to update with the
image once it is downloaded. Rather
than locking the user into a specific type
of object as the identifier, using a
generic makes the implementation more
flexible.
The queueThumbnail() method
expects an object of type T to use as the
identifier for the download and a
String containing the URL to
download. This is the method you will
have PhotoAdapter call in its
onBindViewHolder(…)
implementation.
Open

PhotoGalleryFragment.java.
Give PhotoGalleryFragment a
ThumbnailDownloader member
variable. In onCreate(…), create the
thread and start it. Override
onDestroy() to quit the thread.

Listing 26.5 Creating
ThumbnailDownloader
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG =
"PhotoGalleryFragment";

 private RecyclerView mPhotoRecyclerView;
 private List<GalleryItem> mItems = new
ArrayList<>();
 private ThumbnailDownloader<PhotoHolder>
mThumbnailDownloader;
 ...
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 new FetchItemsTask().execute();

 mThumbnailDownloader = new
ThumbnailDownloader<>();
 mThumbnailDownloader.start();
 mThumbnailDownloader.getLooper();
 Log.i(TAG, "Background thread started");
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mThumbnailDownloader.quit();
 Log.i(TAG, "Background thread destroyed");
 }
 ...
}

You can specify any type for
ThumbnailDownloader’s generic
argument. However, recall that this
argument specifies the type of the object
that will be used as the identifier for

your download. In this case, the
PhotoHolder makes for a convenient
identifier as it is also the target where
the downloaded images will eventually
go.
A couple of safety notes. One: Notice
that you call getLooper() after
calling start() on your
ThumbnailDownloader (you will
learn more about the Looper in a
moment). This is a way to ensure that the
thread’s guts are ready before
proceeding, to obviate a potential
(though rarely occurring) race condition.
Until you call getLooper(), there is
no guarantee that
onLooperPrepared() has been
called, so there is a possibility that calls

to queueThumbnail(…) will fail
due to a null Handler.
Safety note number two: You call
quit() to terminate the thread inside
onDestroy(). This is critical. If you
do not quit your HandlerThreads,
they will never die. Like zombies. Or
rock and roll.
Finally, within
PhotoAdapter.onBindViewHolder(…)
call the thread’s queueThumbnail()
method and pass in the target
PhotoHolder where the image will
ultimately be placed and the
GalleryItem’s URL to download
from.

Listing 26.6 Hooking up

ThumbnailDownloader
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 private class PhotoAdapter extends
RecyclerView.Adapter<PhotoHolder> {
 ...
 @Override
 public void onBindViewHolder(PhotoHolder
photoHolder, int position) {
 GalleryItem galleryItem =
mGalleryItems.get(position);
 Drawable placeholder =
getResources().getDrawable(R.drawable.bill_up_close);
 photoHolder.bindDrawable(placeholder);

mThumbnailDownloader.queueThumbnail(photoHolder,
galleryItem.getUrl());
 }
 ...
 }
 ...
}

Run PhotoGallery and check out Logcat.
When you scroll around the
RecyclerView, you should see lines
in Logcat signaling that

ThumbnailDownloader is getting
each one of your download requests.
Now that you have a HandlerThread
up and running, the next step is to create
a message with the information passed in
to queueThumbnail(), and then put
that message on the
ThumbnailDownloader’s message
queue.

Messages and
Message Handlers
Before you create a message, you need
to understand what a Message is and
the relationship it has with its Handler
(often called its message handler).

Message anatomy
Let’s start by looking closely at
messages. The messages that a Flash
might put in an inbox (its own inbox or
that of another Flash) are not supportive

notes, like, “You run very fast, Flash.”
They are tasks that need to be handled.
A message is an instance of Message
and contains several fields. Three are
relevant to your implementation:

what a user-defined int that
describes the message

obj a user-specified object to
be sent with the message

target the Handler that will
handle the message

The target of a Message is an instance
of Handler. You can think of the name
Handler as being short for “message

handler.” When you create a Message,
it will automatically be attached to a
Handler. And when your Message is
ready to be processed, Handler will
be the object in charge of making it
happen.

Handler anatomy
To do any real work with messages, you
will need an instance of Handler first.
A Handler is not just a target for
processing your Messages. A
Handler is your interface for creating
and posting Messages, too. Take a look
at Figure 26.4.

Figure 26.4 Looper, Handler,
HandlerThread, and Messages

Messages must be posted and

consumed on a Looper, because
Looper owns the inbox of Message
objects. So Handler always has a
reference to its coworker, the Looper.
A Handler is attached to exactly one
Looper, and a Message is attached to
exactly one target Handler, called its
target. A Looper has a whole queue of
Messages. Multiple Messages can
reference the same target Handler
(Figure 26.4).
Multiple Handlers can be attached to
one Looper (Figure 26.5). This means
that your Handler’s Messages may
be living side by side with another
Handler’s messages.

Figure 26.5 Multiple Handlers,
one Looper

Using handlers
Usually, you do not set a message’s

target Handler by hand. It is better to
build the message by calling
Handler.obtainMessage(…).
You pass the other message fields into
this method, and it automatically sets the
target to the Handler object the
method was called on for you.
Handler.obtainMessage(…)
pulls from a common recycling pool to
avoid creating new Message objects,
so it is also more efficient than creating
new instances.
Once you have obtained a Message,
you call sendToTarget() to send
the Message to its Handler. The
Handler will then put the Message
on the end of Looper’s message queue.

In this case, you are going to obtain a
message and send it to its target within
the implementation of
queueThumbnail(). The message’s
what will be a constant defined as
MESSAGE_DOWNLOAD. The message’s
obj will be an object of type T, which
will be used to identify the download. In
this case, obj will be the
PhotoHolder that the adapter passed
in to queueThumbnail().
When the looper pulls a Message from
the queue, it gives the message to the
message’s target Handler to handle.
Typically, the message is handled in the
target’s implementation of
Handler.handleMessage(…).
Figure 26.6 shows the object

relationships involved.

Figure 26.6 Creating a Message
and sending it

In this case, your implementation of
handleMessage(…) will use
FlickrFetchr to download bytes
from the URL and then turn these bytes
into a bitmap.
First, add the constant and member
variables as shown in Listing 26.7.

Listing 26.7 Adding constant
and member variables
(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends
HandlerThread {
 private static final String TAG =
"ThumbnailDownloader";
 private static final int MESSAGE_DOWNLOAD = 0;

 private boolean mHasQuit = false;
 private Handler mRequestHandler;
 private ConcurrentMap<T,String> mRequestMap = new
ConcurrentHashMap<>();
 ...
}

MESSAGE_DOWNLOAD will be used to
identify messages as download requests.
(ThumbnailDownloader will set
this as the what on any new download
messages it creates.)
The newly added mRequestHandler
will store a reference to the Handler

responsible for queueing download
requests as messages onto the
ThumbnailDownloader
background thread. This handler will
also be in charge of processing
download request messages when they
are pulled off the queue.
The mRequestMap variable is a
ConcurrentHashMap, a thread-safe
version of HashMap. Here, using a
download request’s identifying object of
type T as a key, you can store and
retrieve the URL associated with a
particular request. (In this case, the
identifying object is a PhotoHolder,
so the request response can be easily
routed back to the UI element where the
downloaded image should be placed.)

Next, add code to
queueThumbnail(…) to update
mRequestMap and to post a new
message to the background thread’s
message queue.

Listing 26.8 Obtaining and
sending a message
(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends
HandlerThread {
 private static final String TAG =
"ThumbnailDownloader";
 private static final int MESSAGE_DOWNLOAD = 0;

 private boolean mHasQuit = false;
 private Handler mRequestHandler;
 private ConcurrentMap<T,String> mRequestMap = new
ConcurrentHashMap<>();

 public ThumbnailDownloader() {
 super(TAG);
 }

 @Override
 public boolean quit() {
 mHasQuit = true;

 return super.quit();
 }

 public void queueThumbnail(T target, String url)
{
 Log.i(TAG, "Got a URL: " + url);

 if (url == null) {
 mRequestMap.remove(target);
 } else {
 mRequestMap.put(target, url);

mRequestHandler.obtainMessage(MESSAGE_DOWNLOAD,
target)
 .sendToTarget();
 }
 }
}

You obtain a message directly from
mRequestHandler, which
automatically sets the new Message
object’s target field to
mRequestHandler. This means
mRequestHandler will be in charge
of processing the message when it is
pulled off the message queue. The

message’s what field is set to
MESSAGE_DOWNLOAD. Its obj field is
set to the T target value (a
PhotoHolder in this case) that is
passed to queueThumbnail(…).
The new message represents a download
request for the specified T target (a
PhotoHolder from the
RecyclerView). Recall that
PhotoGalleryFragment’s
RecyclerView’s adapter
implementation calls
queueThumbnail(…) from
onBindViewHolder(…), passing
along the PhotoHolder the image is
being downloaded for and the URL
location of the image to download.
Notice that the message itself does not

include the URL. Instead you update
mRequestMap with a mapping
between the request identifier
(PhotoHolder) and the URL for the
request. Later you will pull the URL
from mRequestMap to ensure that you
are always downloading the most
recently requested URL for a given
PhotoHolder instance. (This is
important because ViewHolder
objects in RecyclerViews are
recycled and reused.)
Finally, initialize mRequestHandler
and define what that Handler will do
when downloaded messages are pulled
off the queue and passed to it.

Listing 26.9 Handling a

message
(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends
HandlerThread {
 private static final String TAG =
"ThumbnailDownloader";
 private static final int MESSAGE_DOWNLOAD = 0;

 private boolean mHasQuit = false;
 private Handler mRequestHandler;
 private ConcurrentMap<T,String> mRequestMap = new
ConcurrentHashMap<>();

 public ThumbnailDownloader() {
 super(TAG);
 }

 @Override
 protected void onLooperPrepared() {
 mRequestHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 if (msg.what == MESSAGE_DOWNLOAD) {
 T target = (T) msg.obj;
 Log.i(TAG, "Got a request for
URL: " + mRequestMap.get(target));
 handleRequest(target);
 }
 }
 };
 }

 @Override
 public boolean quit() {
 mHasQuit = true;
 return super.quit();
 }

 public void queueThumbnail(T target, String url)
{
 ...
 }

 private void handleRequest(final T target) {
 try {
 final String url =
mRequestMap.get(target);

 if (url == null) {
 return;
 }

 byte[] bitmapBytes = new
FlickrFetchr().getUrlBytes(url);
 final Bitmap bitmap = BitmapFactory
 .decodeByteArray(bitmapBytes, 0,
bitmapBytes.length);
 Log.i(TAG, "Bitmap created");

 } catch (IOException ioe) {
 Log.e(TAG, "Error downloading image",
ioe);
 }
 }
}

You implemented
Handler.handleMessage(…) in
your Handler subclass within
onLooperPrepared().
HandlerThread.onLooperPrepared()
is called before the Looper checks the
queue for the first time. This makes it a
good place to create your Handler
implementation.
Within
Handler.handleMessage(…),
you check the message type, retrieve the
obj value (which will be of type T and
serves as the identifier for the request),
and then pass it to
handleRequest(…). (Recall that
Handler.handleMessage(…)
will get called when a download

message is pulled off the queue and
ready to be processed.)
The handleRequest() method is a
helper method where the downloading
happens. Here you check for the
existence of a URL. Then you pass the
URL to a new instance of your old friend
FlickrFetchr. In particular, you use
the
FlickrFetchr.getUrlBytes(…)
method that you created with such
foresight in the last chapter.
Finally, you use BitmapFactory to
construct a bitmap with the array of
bytes returned from
getUrlBytes(…).
Run PhotoGallery and check Logcat for

your confirming log statements.
Of course, the request will not be
completely handled until you set the
bitmap on the PhotoHolder that
originally came from PhotoAdapter.
However, this is UI work, so it must be
done on the main thread.
Everything you have seen so far uses
handlers and messages on a single thread
– ThumbnailDownloader putting
messages in
ThumbnailDownloader’s own
inbox. In the next section, you will see
how ThumbnailDownloader can
use a Handler to post requests to a
separate thread (namely, the main
thread).

Passing handlers
So far you are able to schedule work on
the background thread from the main
thread using
ThumbnailDownloader’s
mRequestHandler. This flow is
shown in Figure 26.7.

Figure 26.7 Scheduling work
on ThumbnailDownloader from
the main thread

You can also schedule work on the main
thread from the background thread using
a Handler attached to the main thread.
This flow looks like Figure 26.8.

Figure 26.8 Scheduling work
on the main thread from
ThumbnailDownloader’s thread

The main thread is a message loop with
handlers and a Looper. When you
create a Handler in the main thread, it
will be associated with the main
thread’s Looper. You can then pass that
Handler to another thread. The passed

Handler maintains its loyalty to the
Looper of the thread that created it.
Any messages the Handler is
responsible for will be handled on the
main thread’s queue.
In ThumbnailDownloader.java,
add the mResponseHandler
variable seen above to hold a Handler
passed from the main thread. Then
replace the constructor with one that
accepts a Handler and sets the
variable. Also, add a listener interface
that will be used to communicate the
responses (downloaded images) with the
requester (the main thread).

Listing 26.10 Handling a
message

(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends
HandlerThread {
 private static final String TAG =
"ThumbnailDownloader";
 private static final int MESSAGE_DOWNLOAD = 0;

 private boolean mHasQuit = false;
 private Handler mRequestHandler;
 private ConcurrentMap<T,String> mRequestMap = new
ConcurrentHashMap<>();
 private Handler mResponseHandler;
 private ThumbnailDownloadListener<T>
mThumbnailDownloadListener;

 public interface ThumbnailDownloadListener<T> {
 void onThumbnailDownloaded(T target, Bitmap
thumbnail);
 }

 public void
setThumbnailDownloadListener(ThumbnailDownloadListener<T>
 listener) {
 mThumbnailDownloadListener = listener;
 }

 public ThumbnailDownloader(Handler
responseHandler) {
 super(TAG);
 mResponseHandler = responseHandler;
 }
 ...

}

The onThumbnailDownloaded(…)
method defined in your new
ThumbnailDownloadListener
interface will eventually be called when
an image has been fully downloaded and
is ready to be added to the UI. Using this
listener delegates the responsibility of
what to do with the downloaded image
to a class other than
ThumbnailDownloader (in this
case, to PhotoGalleryFragment).
Doing so separates the downloading task
from the UI updating task (putting the
images into ImageViews), so that
ThumbnailDownloader could be
used for downloading into other kinds of
View objects as needed.

Next, modify
PhotoGalleryFragment to pass a
Handler attached to the main thread to
ThumbnailDownloader. Also, set a
ThumbnailDownloadListener to
handle the downloaded image once it is
complete.

Listing 26.11 Hooking up to
response Handler
(PhotoGalleryFragment.java)
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 new FetchItemsTask().execute();

 Handler responseHandler = new Handler();
 mThumbnailDownloader = new ThumbnailDownloader<>
(responseHandler);

mThumbnailDownloader.setThumbnailDownloadListener(
 new
ThumbnailDownloader.ThumbnailDownloadListener<PhotoHolder>

() {
 @Override
 public void
onThumbnailDownloaded(PhotoHolder photoHolder,
 Bitmap
bitmap) {
 Drawable drawable = new
BitmapDrawable(getResources(), bitmap);
 photoHolder.bindDrawable(drawable);
 }
 }
);
 mThumbnailDownloader.start();
 mThumbnailDownloader.getLooper();
 Log.i(TAG, "Background thread started");
}

Remember that by default, the Handler
will attach itself to the Looper for the
current thread. Because this Handler
is created in onCreate(…), it will be
attached to the main thread’s Looper.
Now ThumbnailDownloader has
access via mResponseHandler to a
Handler that is tied to the main
thread’s Looper. It also has your

ThumbnailDownloadListener to
do the UI work with the returning
Bitmaps. Specifically, the
onThumbnailDownloaded
implementation sets the Drawable of
the originally requested PhotoHolder
to the newly downloaded Bitmap.
You could send a custom Message
back to the main thread requesting to add
the image to the UI, similar to how you
queued a request on the background
thread to download the image. However,
this would require another subclass of
Handler, with an override of
handleMessage(…).
Instead, let’s use another handy
Handler method –
post(Runnable).

Handler.post(Runnable) is a
convenience method for posting
Messages that look like this:
Runnable myRunnable = new Runnable() {
 @Override
 public void run() {
 /* Your code here */
 }
};
Message m = mHandler.obtainMessage();
m.callback = myRunnable;

When a Message has its callback
field set, it is not routed to its target
Handler when pulled off the message
queue. Instead, the run() method of the
Runnable stored in callback is
executed directly.
In
ThumbnailDownloader.handleRequest()
add the following code.

Listing 26.12 Downloading and
displaying images
(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends
HandlerThread {
 ...
 private Handler mResponseHandler;
 private ThumbnailDownloadListener<T>
mThumbnailDownloadListener;
 ...
 private void handleRequest(final T target) {
 try {
 final String url =
mRequestMap.get(target);

 if (url == null) {
 return;
 }

 byte[] bitmapBytes = new
FlickrFetchr().getUrlBytes(url);
 final Bitmap bitmap = BitmapFactory
 .decodeByteArray(bitmapBytes, 0,
bitmapBytes.length);
 Log.i(TAG, "Bitmap created");

 mResponseHandler.post(new Runnable() {
 public void run() {
 if (mRequestMap.get(target) !=
url ||

 mHasQuit) {
 return;
 }

 mRequestMap.remove(target);

mThumbnailDownloadListener.onThumbnailDownloaded(target,
 bitmap);
 }
 });

 } catch (IOException ioe) {
 Log.e(TAG, "Error downloading image",
ioe);
 }
 }
}

Because mResponseHandler is
associated with the main thread’s
Looper, all of the code inside of
run() will be executed on the main
thread.
So what does this code do? First, you
double-check the requestMap. This is
necessary because the RecyclerView

recycles its views. By the time
ThumbnailDownloader finishes
downloading the Bitmap,
RecyclerView may have recycled
the PhotoHolder and requested a
different URL for it. This check ensures
that each PhotoHolder gets the
correct image, even if another request
has been made in the meantime.
Next, you check mHasQuit. If
ThumbnailDownloader has already
quit, it may be unsafe to run any
callbacks.
Finally, you remove the
PhotoHolder-URL mapping from the
requestMap and set the bitmap on the
target PhotoHolder.

Before running PhotoGallery and seeing
your hard-won images, there is one last
danger you need to account for. If the
user rotates the screen,
ThumbnailDownloader may be
hanging on to invalid PhotoHolders.
Bad things will happen if the
corresponding ImageViews get
pressed.
Write a clearQueue() method to
clean all the requests out of your queue.

Listing 26.13 Adding cleanup
method
(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends
HandlerThread {
 ...
 public void queueThumbnail(T target, String url)
{

 ...
 }

 public void clearQueue() {

mRequestHandler.removeMessages(MESSAGE_DOWNLOAD);
 mRequestMap.clear();
 }

 private void handleRequest(final T target) {
 ...
 }
}

Then clean out your downloader in
PhotoGalleryFragment when
your view is destroyed.

Listing 26.14 Calling cleanup
method
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {

 ...
 }

 @Override
 public void onDestroyView() {
 super.onDestroyView();
 mThumbnailDownloader.clearQueue();
 }

 @Override
 public void onDestroy() {
 ...
 }
 ...
}

With that, your work for this chapter is
complete. Run PhotoGallery. Scroll
around to see images dynamically
loading.
PhotoGallery has achieved its basic goal
of displaying images from Flickr. In the
next few chapters, you will add more
functionality, like searching for photos
and opening each photo’s Flickr page in

a web view.

For the More
Curious:
AsyncTasks vs
Threads
Now that you understand Handler and
Looper, AsyncTask may not seem
quite so magical. It is still less work
than what you have done here. So why
not use AsyncTask instead of a
HandlerThread?
There are a few reasons. The most
fundamental one is that AsyncTask is

not designed for it. It is intended for
work that is short-lived and not repeated
too often. Your code in the previous
chapter is a place where AsyncTask
shines. But if you are creating a lot of
AsyncTasks or having them run for a
long time, you are probably using the
wrong class.
A more compelling technical reason is
that in Android 3.2, AsyncTask
changed its implementation in a
significant way. Starting with Android
3.2, AsyncTask does not create a
thread for each instance of
AsyncTask. Instead, it uses something
called an Executor to run background
work for all AsyncTasks on a single
background thread. That means that

AsyncTasks will run one after the
other. A long-running AsyncTask will
hog the thread, preventing other
AsyncTasks from getting any CPU
time.
It is possible to safely run
AsyncTasks in parallel by using a
thread pool executor instead, but we do
not recommend doing so. If you are
considering doing this, it is usually
better to do your own threading, using
Handlers to communicate back to the
main thread when necessary.

For the More
Curious: Solving
the Image
Downloading
Problem
This book is here to teach you about the
tools in the standard Android library. If
you are open to using third-party
libraries, though, there are a few
libraries that can save you a whole lot of
time in various scenarios, including the
image downloading work you

implemented in PhotoGallery.
Admittedly, the solution you
implemented in this chapter is far from
perfect. When you start to need caching,
transformations, and better performance,
it is natural to ask whether someone else
has solved this problem before you. The
answer is yes: Someone has. There are
several libraries available that solve the
image-loading problem. We currently
use Picasso (square.github.io/​
picasso/) for image loading in our
production applications.
Picasso lets you do everything from this
chapter in one line:
private class PhotoHolder extends
RecyclerView.ViewHolder {
 ...
 public void bindGalleryItem(GalleryItem

galleryItem) {
 Picasso.with(getActivity())
 .load(galleryItem.getUrl())

.placeholder(R.drawable.bill_up_close)
 .into(mItemImageView);
 }
 ...
}

The fluent interface requires you specify
a context using with(Context). You
can specify the URL of the image to
download using load(String) and
the ImageView object to load the
result into using into(ImageView).
There are many other configurable
options, such as specifying an image to
display until the requested image is fully
downloaded (using
placeholder(int) or
placeholder(drawable)).
In

PhotoAdapter.onBindViewHolder(…)
you would replace the existing code
with a call through to the new
bindGalleryItem(…) method.
Picasso does all of the work of
ThumbnailDownloader (along with
the
ThumbnailDownloader.ThumbnailDownloadListener<T>
callback) and the image-related work of
FlickrFetchr. This means you can
remove ThumbnailDownloader if
you use Picasso (you will still need
FlickrFetchr for downloading the
JSON data). In addition to simplifying
your code, Picasso supports more
advanced features such as image
transformations and disk caching with
minimal effort on your part.

You can add Picasso to your project as a
library dependency using the project
structure window, just as you have done
for other dependencies (like
RecyclerView).
A downside of Picasso is that it is
intentionally limited so that it can remain
small. As a result, it cannot download
and display animated images. If you
have that need, then check out Google’s
Glide library or Facebook’s Fresco
library. Between the two, Glide has the
smaller footprint, but Fresco has the
edge on performance.

For the More
Curious:
StrictMode
There are some things you simply should
not do in your Android app – mistakes
that lead directly to crashes and security
holes. For example, executing a network
request on the main thread will probably
result in an ANR error in poor network
conditions.
Instead of Android happily allowing you
to invoke a network request on the
application’s main thread, you get a

NetworkOnMainThread exception
and log message instead. This is because
of StrictMode, which noticed your
mistake and helpfully let you know about
it. StrictMode was introduced to help
you detect this and many other
programming mistakes and security
problems in your code.
Without any configuration, networking
on the main thread is guarded against.
StrictMode can also help you detect
other mistakes that could drag down
your application’s performance. To
enable all of StrictMode’s recommended
policies, call
StrictMode.enableDefaults()
(developer.android.com/​
reference/​android/​os/​

https://developer.android.com/reference/android/os/StrictMode.html#enableDefaults()

StrictMode.html#enableDefaults()

Once
StrictMode.enableDefaults()
has been called, you will hear about the
following violations in Logcat:

networking on the main thread

disk reads and writes on the
main thread
activities kept alive beyond
their natural lifecycle (also
known as an “activity leak”)

unclosed SQLite database
cursors

cleartext network traffic not
wrapped in SSL/TLS

For custom control over what happens
when policy violations occur, you can
configure the
ThreadPolicy.Builder and
VmPolicy.Builder classes. You
can specify whether you want an
exception to occur, a dialog to be shown,
or just a log statement to alert you to the
violation.

Challenge:
Preloading and
Caching
Users accept that not everything can be
instantaneous. (Well, most users.) Even
so, programmers strive toward
perfection.
To approach instantaneity, most real-
world apps augment the code you have
here in two ways: adding a caching layer
and preloading images.
A cache is a place to stash a certain
number of Bitmap objects so that they

stick around even when you are done
using them. A cache can only hold so
many items, so you need a strategy to
decide what to keep when your cache
runs out of room. Many caches use a
strategy called LRU, or “least recently
used.” When you are out of room, the
cache gets rid of the least recently used
item.
The Android support library has a class
called LruCache that implements an
LRU strategy. For the first challenge, use
LruCache to add a simple cache to
ThumbnailDownloader. Whenever
you download the Bitmap for a URL,
stick it in the cache. Then, when you are
about to download a new image, check
the cache first to see whether you

already have it around.
Once you have built a cache, you can
preload things into it before you actually
need them. That way, there is no delay
for Bitmaps to download before
displaying them.
Preloading is tricky to implement well,
but it makes a huge difference for the
user. For a second, more difficult
challenge, for every GalleryItem
you display, preload Bitmaps for the
previous 10 and the next 10
GalleryItems.

27
Search

Your next task with PhotoGallery is to
search photos on Flickr. You will learn
how to integrate search into your app
using SearchView. SearchView is
an action view class – a view that can
be embedded right into your Toolbar.
The user will be able to press on the
SearchView, type in a query, and
submit it. Submitting the query will send
the query string to Flickr’s search API
and populate the RecyclerView with

the search results (Figure 27.1). The
query string itself will be persisted to
the filesystem. This means the user’s last
query will be accessible across restarts
of the app and even the device.

Figure 27.1 App preview

Searching Flickr
Let’s begin with the Flickr side of things.
To search Flickr, you call the
flickr.photos.search method.
Here is what a GET request to search
for the text “cat” looks like:
https://api.flickr.com/services/rest/?
method=flickr.photos.search

&api_key=xxx&format=json&nojsoncallback=1&text=cat

The method is set to
flickr.photos.search. A new
parameter, text, is added and set to
whatever string you are searching for
(“cat,” in this case).
While the search request URL differs
from the one you used to request recent
photos, the format of the JSON returned
remains the same. This is good news,
because it means you can use the same
JSON parsing code you already wrote,
regardless of whether you are searching
or getting recent photos.
First, refactor some of your old
FlickrFetchr code to reuse the
parsing code across both scenarios. Start
by adding constants for the reusable

pieces of the URL, as shown in Listing
27.1. Cut the URI-building code from
fetchItems and paste it as the value
for ENDPOINT. However, make sure to
only include the shaded parts. The
constant ENDPOINT should not contain
the method query parameter, and the
build statement should not be converted
to a string using toString().

Listing 27.1 Adding URL
constants
(FlickrFetchr.java)
public class FlickrFetchr {

 private static final String TAG = "FlickrFetchr";

 private static final String API_KEY =
"yourApiKeyHere";
 private static final String FETCH_RECENTS_METHOD
= "flickr.photos.getRecent";
 private static final String SEARCH_METHOD =
"flickr.photos.search";

 private static final Uri ENDPOINT = Uri

.parse("https://api.flickr.com/services/rest/")
 .buildUpon()
 .appendQueryParameter("api_key", API_KEY)
 .appendQueryParameter("format", "json")
 .appendQueryParameter("nojsoncallback",
"1")
 .appendQueryParameter("extras", "url_s")
 .build();
 ...
 public List<GalleryItem> fetchItems() {

 List<GalleryItem> items = new ArrayList<>();

 try {
 String url =
Uri.parse("https://api.flickr.com/services/rest/")
 .buildUpon()
 .appendQueryParameter("method",
"flickr.photos.getRecent")
 .appendQueryParameter("api_key",
API_KEY)
 .appendQueryParameter("format",
"json")

.appendQueryParameter("nojsoncallback", "1")
 .appendQueryParameter("extras",
"url_s")
 .build().toString();
 String jsonString = getUrlString(url);
 ...
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);

 } catch (JSONException je) {
 Log.e(TAG, "Failed to parse JSON", je);
 }

 return items;
 }
 ...
}

(The change you just made will result in
an error in fetchItems(). You can
ignore this error for now, as you are
about to rework fetchItems() into
something new anyway.)
Rename fetchItems() to
downloadGalleryItems(String
url) to reflect its new, more general
purpose. It no longer needs to be public,
either, so change its visibility to
private.

Listing 27.2 Refactoring Flickr

code (FlickrFetchr.java)
public class FlickrFetchr {
 ...
 public List<GalleryItem> fetchItems() {
 private List<GalleryItem>
downloadGalleryItems(String url) {

 List<GalleryItem> items = new ArrayList<>();

 try {
 String jsonString = getUrlString(url);
 Log.i(TAG, "Received JSON: " +
jsonString);
 JSONObject jsonBody = new
JSONObject(jsonString);
 parseItems(items, jsonBody);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 } catch (JSONException je) {
 Log.e(TAG, "Failed to parse JSON", je);
 }

 return items;
 }
 ...
}

The new
downloadGalleryItems(String)
method takes a URL as input, so there is

no need to build the URL inside. Instead,
add a new method to build the URL
based on method and query values.

Listing 27.3 Adding helper
method to build URL
(FlickrFetchr.java)
public class FlickrFetchr {
 ...
 private List<GalleryItem>
downloadGalleryItems(String url) {
 ...
 }

 private String buildUrl(String method, String
query) {
 Uri.Builder uriBuilder = ENDPOINT.buildUpon()
 .appendQueryParameter("method",
method);

 if (method.equals(SEARCH_METHOD)) {
 uriBuilder.appendQueryParameter("text",
query);
 }

 return uriBuilder.build().toString();
 }

 private void parseItems(List<GalleryItem> items,
JSONObject jsonBody)
 throws IOException, JSONException {
 ...
 }
}

The buildUrl(…) method appends
the necessary parameters, just as
fetchItems() used to. But it
dynamically fills in the method
parameter value. Additionally, it
appends a value for the text parameter
only if the value specified for the method
parameter is search.
Now add methods to kick off the
download by building a URL and calling
downloadGalleryItems(String)

Listing 27.4 Adding methods to
get recents and search

(FlickrFetchr.java)
public class FlickrFetchr {
 ...
 public String getUrlString(String urlSpec) throws
IOException {
 return new String(getUrlBytes(urlSpec));
 }

 public List<GalleryItem> fetchRecentPhotos() {
 String url = buildUrl(FETCH_RECENTS_METHOD,
null);
 return downloadGalleryItems(url);
 }

 public List<GalleryItem> searchPhotos(String
query) {
 String url = buildUrl(SEARCH_METHOD, query);
 return downloadGalleryItems(url);
 }

 private List<GalleryItem>
downloadGalleryItems(String url) {
 List<GalleryItem> items = new ArrayList<>();
 ...
 return items;
 }
 ...
}

FlickrFetchr is now equipped to
handle both searching and getting recent

photos. The
fetchRecentPhotos() and
searchPhotos(String) methods
serve as the public interface for getting a
list of GalleryItems from the Flickr
web service.
You need to update your fragment code
to reflect the refactoring you just
completed in FlickrFetchr. Open
PhotoGalleryFragment and
update FetchItemsTask.

Listing 27.5 Hardwiring search
query code
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 private class FetchItemsTask extends
AsyncTask<Void,Void,List<GalleryItem>> {
 @Override

 protected List<GalleryItem>
doInBackground(Void... params) {

 return new FlickrFetchr().fetchItems();
 String query = "robot"; // Just for
testing

 if (query == null) {
 return new
FlickrFetchr().fetchRecentPhotos();
 } else {
 return new
FlickrFetchr().searchPhotos(query);
 }
 }

 @Override
 protected void
onPostExecute(List<GalleryItem> items) {
 mItems = items;
 setupAdapter();
 }
 }
}

If the query string is not null (which for
now is always the case), then
FetchItemsTask will execute a
Flickr search. Otherwise
FetchItemsTask will default to

fetching recent photos, just as it did
before.
Hardcoding the query allows you to test
out your new search code even though
you have not yet provided a way to enter
a query through the UI.
Run PhotoGallery and see what you get.
Hopefully, you will see a cool robot or
two (Figure 27.2).

Figure 27.2 Hardcoded search
results

Using SearchView
Now that FlickrFetchr supports
searching, it is time to add a way for the
user to enter a query and initiate a
search. Do this by adding a
SearchView.
SearchView is an action view – a
view that may be included within the
toolbar. SearchView allows your
entire search interface to live within
your application’s toolbar.
First, confirm that a toolbar (containing
your app title) appears at the top of your
app. If not, follow the steps outlined in

Chapter 13 to add a toolbar to your app.
Next, create a new menu XML file for
PhotoGalleryFragment in
res/menu/fragment_photo_gallery.xml
This file will specify the items that
should appear in the toolbar.

Listing 27.6 Adding menu XML
file
(res/menu/fragment_photo_gallery.xml
<menu
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-
auto">

 <item android:id="@+id/menu_item_search"
 android:title="@string/search"

app:actionViewClass="android.support.v7.widget.SearchView"

 app:showAsAction="ifRoom" />

 <item android:id="@+id/menu_item_clear"

 android:title="@string/clear_search"
 app:showAsAction="never" />
</menu>

You will see a couple of errors in the
new XML, complaining that you have
not yet defined the strings you are
referencing for the android:title
attributes. Ignore those for now. You
will fix them in a bit.
The first item entry in Listing 27.6 tells
the toolbar to display a SearchView
by specifying the value
android.support.v7.widget.SearchView
for the app:actionViewClass attribute.
(Notice the usage of the app namespace
for the showAsAction and
actionViewClass attributes. Refer
back to Chapter 13 if you are unsure of
why this is used.)

SearchView
(android.widget.SearchView)
was originally introduced long ago in
API 11 (Honeycomb 3.0). However,
SearchView was more recently
included as part of the support library
(android.support.v7.widget.SearchView
So which version of SearchView
should you use? You have seen our
answer in the code you just entered: the
support library version. This may seem
strange, as your app’s minimum SDK is
19.
We recommend using the support library
for the same reasons outlined in
Chapter 7. As features get added with
each new release of Android, the
features are often back-ported to the

support library. A prime example is
theming. With the release of API 21
(Lollipop 5.0), the native framework
SearchView supports many options
for customizing the SearchView’s
appearance. The only way to get these
fancy features on earlier versions of
Android (down to API 7) is to use the
support library version of
SearchView.
The second item in Listing 27.6 will add
a Clear Search option. This option will
always display in the overflow menu
because you set app:showAsAction to
never. Later on you will configure this
item so that, when pressed, the user’s
stored query will be erased from the
disk. For now, you can ignore this item.

Now it is time to address the errors in
your menu XML. Open strings.xml
and add the missing strings.

Listing 27.7 Adding search
strings
(res/values/strings.xml)
<resources>
 ...
 <string name="search">Search</string>
 <string name="clear_search">Clear
Search</string>

</resources>

Finally, open
PhotoGalleryFragment. Add a
call to
setHasOptionsMenu(true) in
onCreate(…) to register the fragment
to receive menu callbacks. Override
onCreateOptionsMenu(…) and

inflate the menu XML file you created.
This will add the items listed in your
menu XML to the toolbar.

Listing 27.8 Overriding
onCreateOptionsMenu(…)
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 setHasOptionsMenu(true);
 new FetchItemsTask().execute();
 ...
 }
 ...
 @Override
 public void onDestroy() {
 ...
 }

 @Override
 public void onCreateOptionsMenu(Menu menu,
MenuInflater menuInflater) {
 super.onCreateOptionsMenu(menu,
menuInflater);

menuInflater.inflate(R.menu.fragment_photo_gallery,
menu);
 }

 private void setupAdapter() {
 ...
 }
 ...
}

Fire up PhotoGallery and see what the
SearchView looks like. Pressing the
search icon expands the view to display
a text box where you can enter a query
(Figure 27.3).

Figure 27.3 SearchView
collapsed and expanded

When the SearchView is expanded,
an x icon appears on the right. Pressing
the x icon one time clears out what you
typed. Pressing the x again collapses the

SearchView back to a single search
icon.
If you try submitting a query, it will not
do anything yet. Not to worry. You will
make your SearchView more useful in
just a moment.

Responding to
SearchView user
interactions
When the user submits a query, your app
should execute a search against the
Flickr web service and refresh the
images the user sees with the search
results. Fortunately, the

SearchView.OnQueryTextListener
interface provides a way to receive a
callback when a query is submitted.
Update
onCreateOptionsMenu(…) to add
a SearchView.OnQueryTextListener
to your SearchView.

Listing 27.9 Logging
SearchView.OnQueryTextListener
events
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 @Override
 public void onCreateOptionsMenu(Menu menu,
MenuInflater menuInflater) {
 super.onCreateOptionsMenu(menu,
menuInflater);

menuInflater.inflate(R.menu.fragment_photo_gallery,
menu);

 MenuItem searchItem =
menu.findItem(R.id.menu_item_search);
 final SearchView searchView = (SearchView)
searchItem.getActionView();

 searchView.setOnQueryTextListener(new
SearchView.OnQueryTextListener() {
 @Override
 public boolean onQueryTextSubmit(String
s) {
 Log.d(TAG, "QueryTextSubmit: " + s);
 updateItems();
 return true;
 }

 @Override
 public boolean onQueryTextChange(String
s) {
 Log.d(TAG, "QueryTextChange: " + s);
 return false;
 }
 });
 }

 private void updateItems() {
 new FetchItemsTask().execute();
 }
 ...
}

In onCreateOptionsMenu(…), you
pull the MenuItem representing the

search box from the menu and store it in
searchItem. Then you pull the
SearchView object from
searchItem using the
getActionView() method.
Once you have a reference to the
SearchView, you are able to set a
SearchView.OnQueryTextListener
using the
setOnQueryTextListener(…)
method. You must override two methods
in the
SearchView.OnQueryTextListener
implementation:
onQueryTextSubmit(String)
and
onQueryTextChange(String).
The

onQueryTextChange(String)
callback is executed any time text in the
SearchView text box changes. This
means that it is called every time a
single character changes. You will not
do anything inside this callback for this
app except log the input string.
The
onQueryTextSubmit(String)
callback is executed when the user
submits a query. The query the user
submitted is passed as input. Returning
true signifies to the system that the
search request has been handled. This
callback is where you will launch a
FetchItemsTask to query for new
results. (Right now FetchItemsTask
still has a hardcoded query. You will

refactor FetchItemsTask in a bit so
that it uses a submitted query if there is
one.)
updateItems() does not seem
terribly useful just yet. Later on you will
have several places where you need to
execute FetchItemsTask. The
updateItems() method is a wrapper
for doing just that.
As a last bit of cleanup, replace the line
that creates and executes a
FetchItemsTask with a call to
updateItems() in the
onCreate(…) method.

Listing 27.10 Cleaning up
onCreate(…)
(PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {
 ...
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 setHasOptionsMenu(true);
 new FetchItemsTask().execute();
 updateItems();
 ...
 Log.i(TAG, "Background thread started");
 }
 ...
}

Run your app and submit a query. The
search results will still be based on the
hardcoded query in Listing 27.5, but you
should see the images reload. You
should also see log statements reflecting
the fact that your
SearchView.OnQueryTextListener
callback methods have been executed.
Note that if you use the hardware
keyboard (e.g., from your laptop) to

submit your search query on an emulator,
you will see the search executed two
times, one after the other. It will look
like the images start to load, then load
all over again. This is because there is a
small bug in SearchView. You can
ignore this behavior because it is simply
a side effect of using the emulator and
will not affect your app when it runs on
a real Android device.

Simple Persistence
with Shared
Preferences
The last piece of functionality you need
to add is to actually use the query
entered in the SearchView when the
search request is submitted.
In your app, there will only be one
active query at a time. That query should
be persisted (remembered by the app)
between restarts of the app (even after
the user turns off the device). You will
achieve this by writing the query string

to shared preferences. Any time the user
submits a query, you will first write the
query to shared preferences, overwriting
whatever query was there before. When
a search is executed against Flickr, you
will pull the query string from shared
preferences and use it as the value for
the text parameter.
Shared preferences are files on your
filesystem that you read and edit using
the SharedPreferences class. An
instance of SharedPreferences
acts like a key-value store, much like
Bundle, except that it is backed by
persistent storage. The keys are strings,
and the values are atomic data types. If
you look at them you will see that the
files are simple XML, but

SharedPreferences makes it easy
to ignore that implementation detail.
Shared preferences files are stored in
your application’s sandbox, so you
should not store sensitive information
(like passwords) there.
To get a specific instance of
SharedPreferences, you can use
the
Context.getSharedPreferences(String,
int) method. However, in practice,
you will often not care too much about
the specific instance, just that it is shared
across the entire app. In that case, it is
better to use the
PreferenceManager.getDefaultSharedPreferences(Context)
method, which returns an instance with a
default name and private permissions

(so that the preferences are only
available from within your application).
Add a new class named
QueryPreferences, which will
serve as a convenient interface for
reading and writing the query to and
from shared preferences.

Listing 27.11 Adding class to
manage stored query
(QueryPreferences.java)
public class QueryPreferences {
 private static final String PREF_SEARCH_QUERY =
"searchQuery";

 public static String getStoredQuery(Context
context) {
 return
PreferenceManager.getDefaultSharedPreferences(context)

 .getString(PREF_SEARCH_QUERY, null);
 }

 public static void setStoredQuery(Context
context, String query) {

PreferenceManager.getDefaultSharedPreferences(context)

 .edit()
 .putString(PREF_SEARCH_QUERY, query)
 .apply();
 }
}

PREF_SEARCH_QUERY is used as the key
for the query preference. You will use
this key any time you read or write the
query value.
The getStoredQuery(Context)
method returns the query value stored in
shared preferences. It does so by first
acquiring the default
SharedPreferences for the given
context. (Because
QueryPreferences does not have a
Context of its own, the calling

component will have to pass its context
as input.)
Getting a value you previously stored is
as simple as calling
SharedPreferences.getString(…)
getInt(…), or whichever method is
appropriate for your data type. The
second input to
SharedPreferences.getString(PREF_SEARCH_QUERY,
null) specifies the default return value
that should be used if there is no entry
for the PREF_SEARCH_QUERY key.
The setStoredQuery(Context)
method writes the input query to the
default shared preferences for the given
context. In your code above, you call
SharedPreferences.edit() to
get an instance of

SharedPreferences.Editor.
This is the class you use to stash values
in your SharedPreferences. It
allows you to group sets of changes
together in transactions, much like you
do with FragmentTransaction. If
you have a lot of changes, this will
allow you to group them together into a
single storage write operation.
Once you are done making all of your
changes, you call apply() on your
editor to make them visible to other
users of that SharedPreferences
file. The apply() method makes the
change in memory immediately and then
does the actual file writing on a
background thread.
QueryPreferences is your entire

persistence engine for PhotoGallery.
Now that you have a way to easily store
and access the user’s most recent query,
update PhotoGalleryFragment to
read and write the query as necessary.
First, update the stored query whenever
the user submits a new query.

Listing 27.12 Storing
submitted query in shared
preferences
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 @Override
 public void onCreateOptionsMenu(Menu menu,
MenuInflater menuInflater) {
 ...
 searchView.setOnQueryTextListener(new
SearchView.OnQueryTextListener() {
 @Override
 public boolean onQueryTextSubmit(String
s) {

 Log.d(TAG, "QueryTextSubmit: " + s);

QueryPreferences.setStoredQuery(getActivity(), s);
 updateItems();
 return true;
 }

 @Override
 public boolean onQueryTextChange(String
s) {
 Log.d(TAG, "QueryTextChange: " + s);
 return false;
 }
 });
 }
 ...
}

Next, clear the stored query (set it to
null) whenever the user selects the Clear
Search item from the overflow menu.

Listing 27.13 Clearing stored
query
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 @Override

 public void onCreateOptionsMenu(Menu menu,
MenuInflater menuInflater) {
 ...
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem
item) {
 switch (item.getItemId()) {
 case R.id.menu_item_clear:

QueryPreferences.setStoredQuery(getActivity(), null);
 updateItems();
 return true;
 default:
 return
super.onOptionsItemSelected(item);
 }
 }
 ...
}

Note that you call updateItems()
after you update the stored query, just as
you did in Listing 27.12. This ensures
that the images displayed in the
RecyclerView reflect the most recent
search query.

Last, but not least, update
FetchItemsTask to use the stored
query rather than a hardcoded string.
Add a custom constructor to
FetchItemsTask that accepts a
query string as input and stashes it in a
member variable. In
updateItems(), pull the stored
query from shared preferences and use it
to create a new instance of
FetchItemsTask. All of these
changes are shown in Listing 27.14.

Listing 27.14 Using stored
query in FetchItemsTask
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...
 private void updateItems() {
 String query =

QueryPreferences.getStoredQuery(getActivity());
 new FetchItemsTask(query).execute();
 }
 ...
 private class FetchItemsTask extends
AsyncTask<Void,Void,List<GalleryItem>> {
 private String mQuery;

 public FetchItemsTask(String query) {
 mQuery = query;
 }

 @Override
 protected List<GalleryItem>
doInBackground(Void... params) {
 String query = "robot"; // Just for
testing

 if (querymQuery == null) {
 return new
FlickrFetchr().fetchRecentPhotos();
 } else {
 return new
FlickrFetchr().searchPhotos(querymQuery);
 }
 }

 @Override
 protected void
onPostExecute(List<GalleryItem> items) {
 mItems = items;
 setupAdapter();
 }
 }
}

Search should now work like a charm.
Run PhotoGallery, try searching for
something, and see what you get.

Polishing Your App
For a little bit of polish, pre-populate
the search text box with the saved query
when the user presses on the search icon
to expand the search view.
SearchView’s
View.OnClickListener.onClick()
method is called when the user presses
the search icon. Hook into this callback
and set the SearchView’s query text
when the view is expanded.

Listing 27.15 Pre-populating
SearchView
(PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {
 ...
 @Override
 public void onCreateOptionsMenu(Menu menu,
MenuInflater menuInflater) {
 ...
 searchView.setOnQueryTextListener(new
SearchView.OnQueryTextListener() {
 ...
 });

 searchView.setOnSearchClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 String query =
QueryPreferences.getStoredQuery(getActivity());
 searchView.setQuery(query, false);
 }
 });
 }
 ...
}

Run your app and play around with
submitting a few searches. Revel at the
polish your last bit of code added. Of
course, there is always more polish you
could add….

Challenge:
Polishing Your App
Some More
You may notice that when you submit a
query there is a bit of a lag before the
RecyclerView starts to refresh. For
this challenge, make the response to the
user’s query submission feel more
immediate. As soon as a query is
submitted, hide the soft keyboard and
collapse the SearchView.
As an extra challenge, clear the contents
of the RecyclerView and display a

loading indicator (indeterminate
progress bar) as soon as a query is
submitted. Get rid of the loading
indicator once the JSON data has been
fully downloaded. In other words, the
loading indicator should not show once
your code moves on to downloading
individual images.

28
Background

Services
All the code you have written so far has
been hooked up to an activity, which
means that it is associated with some
screen for the user to look at.
But what if you do not need a screen?
What if you need to do something out of
sight and out of mind, like play music or
check for new blog posts on an RSS
feed? For this, you need a service.

In this chapter, you will add a new
feature to PhotoGallery that will allow
users to poll for new search results in
the background. Whenever a new search
result is available, the user will receive
a notification in the status bar.

Creating an
IntentService
Let’s start by creating your service. In
this chapter, you will use an
IntentService. IntentService
is not the only kind of service, but it is
probably the most common. Create a
subclass of IntentService called

PollService. This will be the
service you use to poll for search
results.

Listing 28.1 Creating
PollService
(PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 public static Intent newIntent(Context context) {
 return new Intent(context,
PollService.class);
 }

 public PollService() {
 super(TAG);
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 Log.i(TAG, "Received an intent: " + intent);
 }
}

This is a very basic IntentService.

What does it do? Well, it is sort of like
an activity. It is a context (Service is
a subclass of Context) and it responds
to intents (as you can see in
onHandleIntent(Intent)). As a
matter of convention – and to be a good
citizen – you added a
newIntent(Context) method. Any
component that wants to start this
service should use
newIntent(Context).
A service’s intents are called
commands. Each command is an
instruction to the service to do
something. Depending on the kind of
service, that command could be serviced
in a variety of ways.
An IntentService service pulls its

commands off of a queue, as shown in
Figure 28.1.

Figure 28.1 How
IntentService services
commands

When it receives its first command, the
IntentService starts, fires up a
background thread, and puts the
command on a queue.
The IntentService then services
each command in sequence, calling
onHandleIntent(Intent) on its
background thread for each command.
New commands that come in go to the
back of the queue. When there are no
commands left in the queue, the service
stops and is destroyed.
This description only applies to
IntentService. Later in the chapter,
we will discuss the broader world of
services and how commands work.
Because services, like activities,

respond to intents, they must also be
declared in your
AndroidManifest.xml. Add an
element for PollService to your
manifest.

Listing 28.2 Adding service to
manifest
(AndroidManifest.xml)
<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.bignerdranch.android.photogallery" >

 <uses-permission
android:name="android.permission.INTERNET" />

 <application
 ... >
 <activity
 android:name=".PhotoGalleryActivity"
 android:label="@string/app_name" >
 ...
 </activity>
 <service android:name=".PollService" />

 </application>

</manifest>

Then add code to start your service
inside PhotoGalleryFragment.

Listing 28.3 Adding service
startup code
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG =
"PhotoGalleryFragment";
 ...
 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 updateItems();

 Intent i =
PollService.newIntent(getActivity());
 getActivity().startService(i);

 Handler responseHandler = new Handler();
 mThumbnailDownloader = new
ThumbnailDownloader<>(responseHandler);
 ...
 }

 ...
}

Fire this up and see what you get. You
should see something like this in Logcat:
02-23 14:25:32.450 2692-
2717/com.bignerdranch.android.photogallery
I/PollService:
 Received an intent: Intent {
cmp=com.bignerdranch.android.photogallery/.PollService
 }

What Services Are
For
OK, we admit it: Looking at those
Logcat statements was boring. But this
code is really exciting! Why? What can
you do with it?
Time to go back to the Land of Make
Believe, where we are no longer
programmers but work in retail shoe
sales with superheroes who do our
bidding.
Your Flash workers can work in two
kinds of places in a store: the front of the

store, where they talk to customers, and
the back of the store, where they do not.
The back of the store may be larger or
smaller, depending on the store.
So far, all of your code has run in
activities. Activities are your Android
app’s storefront. All this code is focused
on a pleasant visual experience for your
user/customer.
Services are the back end of your
Android app. Things can happen there
that the user never needs to know about.
Work can go on there long after the
storefront has closed, when your
activities are long gone.
Enough about stores. What can you do
with a service that you cannot do with an

activity? Well, for one, you can run a
service while the user is occupied
elsewhere.

Safe background
networking
Your service is going to poll Flickr in
the background. To perform networking
in the background safely, some
additional code is required. Android
provides the ability for a user to turn off
networking for backgrounded
applications. If the user has a lot of
power-hungry applications, this can be a
big performance improvement.
This does mean, however, that if you are

doing networking in the background, you
need to verify with the
ConnectivityManager that the
network is available.
Add the code in Listing 28.4 to perform
this check.

Listing 28.4 Checking for
background network
availability
(PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";
 ...
 @Override
 protected void onHandleIntent(Intent intent) {
 if (!isNetworkAvailableAndConnected()) {
 return;
 }

 Log.i(TAG, "Received an intent: " + intent);
 }

 private boolean isNetworkAvailableAndConnected()

{
 ConnectivityManager cm =
 (ConnectivityManager)
getSystemService(CONNECTIVITY_SERVICE);

 boolean isNetworkAvailable =
cm.getActiveNetworkInfo() != null;
 boolean isNetworkConnected =
isNetworkAvailable &&

cm.getActiveNetworkInfo().isConnected();

 return isNetworkConnected;
 }
}

The logic for checking network
availability is in
isNetworkAvailableAndConnected()
Toggling the background data setting to
disallow downloading data in the
background disables the network
entirely for use by background services.
In this case,
ConnectivityManager.getActiveNetworkInfo()

returns null, making it appear to the
background service as though there is no
active network available, even if there
really is.
If the network is available to your
background service, it gets an instance
of android.net.NetworkInfo
representing the current network
connection. The code then checks
whether the current network is fully
connected by calling
NetworkInfo.isConnected().
If the app does not see a network
available, or the device is not fully
connected to a network,
onHandleIntent(Intent) will
return without executing the rest of the
method (and in turn will not try to

download data, once you have added the
code to do so). This is good practice
because your app cannot download any
data if it is not connected to the network.
One more thing. To use
getActiveNetworkInfo(), you
also need to acquire the
ACCESS_NETWORK_STATE permission.
As you have seen, permissions are
managed in your manifest.

Listing 28.5 Acquiring network
state permission
(AndroidManifest.xml)
<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.bignerdranch.android.photogallery" >

 <uses-permission

android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"
 />

 <application
 ... >
 ...
 </application>

</manifest>

Looking for New
Results
Your service will be polling for new
results, so it will need to know what the
last result fetched was. This is a perfect
job for another
SharedPreferences entry.
Update QueryPreferences to store
the ID of the most recently fetched photo.

Listing 28.6 Adding recent ID
preference constant
(QueryPreferences.java)
public class QueryPreferences {

 private static final String PREF_SEARCH_QUERY =
"searchQuery";
 private static final String PREF_LAST_RESULT_ID =
"lastResultId";

 public static String getStoredQuery(Context
context) {
 ...
 }

 public static void setStoredQuery(Context
context, String query) {
 ...
 }

 public static String getLastResultId(Context
context) {
 return
PreferenceManager.getDefaultSharedPreferences(context)

 .getString(PREF_LAST_RESULT_ID,
null);
 }

 public static void setLastResultId(Context
context, String lastResultId) {

PreferenceManager.getDefaultSharedPreferences(context)

 .edit()
 .putString(PREF_LAST_RESULT_ID,
lastResultId)
 .apply();
 }

}

The next step is to fill out your service.
Here is what you need to do:

1. Pull out the current query and
the last result ID from the
default
SharedPreferences.

2. Fetch the latest result set with
FlickrFetchr.

3. If there are results, grab the
first one.

4. Check to see whether it is
different from the last result ID.

5. Store the first result back in
SharedPreferences.

Return to PollService.java and
put this plan into action. Listing 28.7
shows a long swath of code, but it uses
nothing you have not seen before.

Listing 28.7 Checking for new
results (PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";
 ...
 @Override
 protected void onHandleIntent(Intent intent) {
 ...
 Log.i(TAG, "Received an intent: " + intent);
 String query =
QueryPreferences.getStoredQuery(this);
 String lastResultId =
QueryPreferences.getLastResultId(this);
 List<GalleryItem> items;

 if (query == null) {
 items = new
FlickrFetchr().fetchRecentPhotos();
 } else {
 items = new
FlickrFetchr().searchPhotos(query);
 }

 if (items.size() == 0) {
 return;
 }

 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " +
resultId);
 } else {
 Log.i(TAG, "Got a new result: " +
resultId);
 }

 QueryPreferences.setLastResultId(this,
resultId);
 }
 ...
}

See each part we discussed above?
Good.
Run PhotoGallery, and you should see
your app getting new results initially. If
you have a search query selected, you
will probably see stale results when you
subsequently start up the app.

Delayed Execution
with
AlarmManager
To actually use your service in the
background, you will need some way to
make things happen when none of your
activities are running. Say, by making a
timer that goes off every five minutes or
so.
You could do this with a Handler by
calling
Handler.sendMessageDelayed(…)
or Handler.postDelayed(…). But

this solution will probably fail if the
user navigates away from all your
activities. The process will shut down,
and your Handler messages will go
kaput with it.
So instead of Handler, you will use
AlarmManager, a system service that
can send Intents for you.
How do you tell AlarmManager what
intents to send? You use a
PendingIntent. You can use
PendingIntent to package up a
wish: “I want to start PollService.”
You can then send that wish to other
components on the system, like
AlarmManager.
Write a new method called

setServiceAlarm(Context,
boolean) inside PollService that
turns an alarm on and off for you. You
will write it as a static method. That
keeps your alarm code with the other
code in PollService that it is related
to while allowing other components to
invoke it. You will usually want to turn it
on and off from front-end code in a
fragment or other controller.

Listing 28.8 Adding alarm
method (PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 // Set interval to 1 minute
 private static final long POLL_INTERVAL_MS =
TimeUnit.MINUTES.toMillis(1);

 public static Intent newIntent(Context context) {
 return new Intent(context,
PollService.class);

 }

 public static void setServiceAlarm(Context
context, boolean isOn) {
 Intent i = PollService.newIntent(context);
 PendingIntent pi =
PendingIntent.getService(context, 0, i, 0);

 AlarmManager alarmManager = (AlarmManager)

context.getSystemService(Context.ALARM_SERVICE);

 if (isOn) {

alarmManager.setRepeating(AlarmManager.ELAPSED_REALTIME,

 SystemClock.elapsedRealtime(),
POLL_INTERVAL_MS, pi);
 } else {
 alarmManager.cancel(pi);
 pi.cancel();
 }
 }
 ...
}

The first thing you do in your method is
construct your PendingIntent that
starts PollService. You do this by
calling

PendingIntent.getService(…)
which packages up an invocation of
Context.startService(Intent)
It takes in four parameters: a Context
with which to send the intent, a request
code that you can use to distinguish this
PendingIntent from others, the
Intent object to send, and finally a set
of flags that you can use to tweak how
the PendingIntent is created. (You
will use one of these in a moment.)
After that, you need to either set the
alarm or cancel it.
To set the alarm, you call
AlarmManager.setRepeating(…)
This method also takes four parameters:
a constant to describe the time basis for
the alarm (more on that in a moment), the

time at which to start the alarm, the time
interval at which to repeat the alarm, and
finally a PendingIntent to fire
when the alarm goes off.
Because you used
AlarmManager.ELAPSED_REALTIME as
the time basis value, you specified the
start time in terms of elapsed realtime:
SystemClock.elapsedRealtime().
This triggers the alarm to go off when
the specified amount of time has passed.
If you had used AlarmManager.RTC, you
would instead base the start time on
“clock time” (e.g.,
System.currentTimeMillis()). This
would trigger the alarm to go off at a
fixed point in time.
Canceling the alarm is done by calling

AlarmManager.cancel(PendingIntent)
You will also usually want to cancel the
PendingIntent. In a moment, you
will see how canceling the
PendingIntent also helps you track
the status of the alarm.
Add some quick test code to run your
alarm from within
PhotoGalleryFragment.

Listing 28.9 Adding alarm
startup code
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 private static final String TAG =
"PhotoGalleryFragment";
 ...
 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 updateItems();

 Intent i =
PollService.newIntent(getActivity());
 getActivity().startService(i);
 PollService.setServiceAlarm(getActivity(),
true);

 Handler responseHandler = new Handler();
 mThumbnailDownloader = new
ThumbnailDownloader<>(responseHandler);
 ...
 }
 ...
}

Finish typing in this code and run
PhotoGallery. Then immediately hit the
Back button and exit out of the app.
Notice anything in Logcat?
PollService is faithfully chugging
along, running again every 60 seconds.
This is what AlarmManager is
designed to do. Even if your process
gets shut down, AlarmManager will
keep on firing intents to start

PollService again and again. (This
behavior is, of course, extremely
annoying. You may want to uninstall the
app until we get it straightened out.)

Being a good citizen:
using alarms the right
way
How exact do you need your repeating to
be? Repeatedly executing work from
your background service has the
potential to eat up the user’s battery
power and data service allotment.
Furthermore, waking the device from
sleep (spinning up the CPU when the
screen was off to do work on your

behalf) is a costly operation. Luckily,
you can configure your alarm to have a
lighter usage footprint in terms of
interval timing and wake requirements.

Repeating alarms: not so exact

The setRepeating(…) method sets
a repeating alarm, but that repetition is
not exact. In other words, Android
reserves the right to move it around a
little bit. As a result, 60 seconds is the
lowest possible interval time you can set
for stock Android. (Other devices may
elect to make this value higher.)
This is because alarms can really blow a
hole in your phone’s battery

management. Every time an alarm fires,
the device has to wake up and spin up an
application. Many apps need to turn on
the phone’s radio to use the internet like
PhotoGallery does, which results in
even more battery usage.
If it were only your app, the exactness of
the alarm would not matter. After all, if
your alarm wakes up every 15 minutes,
and your app is the only 15-minute alarm
running, then the phone will wake up and
turn on its radio four times an hour no
matter how precise the alarm is.
If it were your app and nine other apps
with exact 15-minute alarms, though,
things change. Because every alarm is
exact, the device needs to wake up for
each one. That means turning on the

radio 40 times an hour instead of four
times.
Inexactness means that Android is
allowed to take the liberty of moving
those alarms around, so that they do not
run exactly every 15 minutes. The result
is that every 15 minutes, your device can
wake up and run all 10 of those 15-
minute alarms at the same time. That
would pull you back down to only four
wake-ups instead of 40, saving all kinds
of battery in the process.
Some apps really do need exact alarms,
of course. If that is your app, then you
must use either
AlarmManager.setWindow(…) or
AlarmManager.setExact(…),
which allow you to set an exact alarm to

occur only once. The repeating part you
have to handle yourself.

Time basis options

Another important decision is which
time basis value to specify. There are
two main options:
AlarmManager.ELAPSED_REALTIME and
AlarmManager.RTC.
AlarmManager.ELAPSED_REALTIME
uses the amount of time that has passed
since the last boot of the device
(including sleep time) as the basis for
interval calculations.
ELAPSED_REALTIME is the best choice
for your alarm in PhotoGallery because

it is based on the relative passage of
time and thus does not depend on clock
time. (Also, the documentation
recommends you use
ELAPSED_REALTIME instead of RTC if at
all possible.)
AlarmManager.RTC uses clock time in
terms of UTC. UTC should only be used
for clock-basis alarms. However, UTC
does not respect locale, whereas the
user’s idea of clock time includes
locale. Clock-basis alarms should
respect locale somehow. This means you
must implement your own locale
handling in conjunction with using the
RTC time basis if you want to set a
clock-time alarm. Otherwise, use
ELAPSED_REALTIME as the time basis.

If you use one of the time basis options
outlined above, your alarm will not fire
if the device is in sleep mode (the screen
is turned off), even if the prescribed
interval has passed. If you need your
alarm to occur on a more precise
interval or time, you can force the alarm
to wake up the device by using one of
the following time basis constants:
AlarmManager.ELAPSED_REALTIME_WAKEUP
and AlarmManager.RTC_WAKEUP.
However, you should avoid using the
wake-up options unless your alarm
absolutely must occur at a specific time.

PendingIntent
Let’s talk a little bit more about

PendingIntent. A
PendingIntent is a token object.
When you get one here by calling
PendingIntent.getService(…)
you say to the OS, “Please remember
that I want to send this intent with
startService(Intent).” Later
on you can call send() on your
PendingIntent token, and the OS
will send the intent you originally
wrapped up in exactly the way you
asked.
The really nice thing about this is that
when you give that PendingIntent
token to someone else and they use it, it
sends that token as your application.
Also, because the PendingIntent
itself lives in the OS, not in the token,

you maintain control of it. If you wanted
to be cruel, you could give someone else
a PendingIntent object and then
immediately cancel it, so that send()
does nothing.
If you request a PendingIntent
twice with the same intent, you will get
the same PendingIntent. You can
use this to test whether a
PendingIntent already exists or to
cancel a previously issued
PendingIntent.

Managing alarms with
PendingIntent
You can only register one alarm for each

PendingIntent. That is how
setServiceAlarm(Context,
boolean) works when isOn is false:
It calls
AlarmManager.cancel(PendingIntent)
to cancel the alarm for your
PendingIntent and then cancels
your PendingIntent.
Because the PendingIntent is also
cleaned up when the alarm is canceled,
you can check whether that
PendingIntent exists to see
whether the alarm is active. This is done
by passing in the
PendingIntent.FLAG_NO_CREATE
flag to
PendingIntent.getService(…)
This flag says that if the

PendingIntent does not already
exist, return null instead of creating it.
Write a new method called
isServiceAlarmOn(Context)
that uses
PendingIntent.FLAG_NO_CREATE
to tell whether the alarm is on.

Listing 28.10 Adding
isServiceAlarmOn() method
(PollService.java)
public class PollService extends IntentService {
 ...
 public static void setServiceAlarm(Context
context, boolean isOn) {
 ...
 }

 public static boolean isServiceAlarmOn(Context
context) {
 Intent i = PollService.newIntent(context);
 PendingIntent pi = PendingIntent
 .getService(context, 0, i,

PendingIntent.FLAG_NO_CREATE);
 return pi != null;
 }
 ...
}

Because this PendingIntent is only
used for setting your alarm, a null
PendingIntent here means that your
alarm is not set.

Controlling Your
Alarm
Now that you can turn your alarm on and
off (as well as tell whether it is on or
off), let’s add an interface to turn this
thing on and off. Add another menu item
to
menu/fragment_photo_gallery.xml

Listing 28.11 Adding service
toggle
(menu/fragment_photo_gallery.xml
<menu
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-

auto">

 <item android:id="@+id/menu_item_search"
 ... />

 <item android:id="@+id/menu_item_clear"
 ... />

 <item android:id="@+id/menu_item_toggle_polling"
 android:title="@string/start_polling"
 app:showAsAction="ifRoom" />
</menu>

Now you need to add a few strings – one
to start polling and one to stop polling.
(You will need a couple of other ones
later, too, for a status bar notification.
Go ahead and add those as well.)

Listing 28.12 Adding polling
strings
(res/values/strings.xml)
<resources>
 ...
 <string name="search">Search</string>
 <string name="clear_search">Clear Search</string>

 <string name="start_polling">Start
polling</string>
 <string name="stop_polling">Stop polling</string>
 <string name="new_pictures_title">New
PhotoGallery Pictures</string>
 <string name="new_pictures_text">You have new
pictures in PhotoGallery.</string>

</resources>

Now delete your old debug code for
starting the alarm and add an
implementation for the menu item.

Listing 28.13 Implementing
toggle menu item
(PhotoGalleryFragment.java)
private static final String TAG =
"PhotoGalleryFragment";
...
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 updateItems();

 PollService.setServiceAlarm(getActivity(), true);

 Handler responseHandler = new Handler();
 ...
}
...
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_clear:

QueryPreferences.setStoredQuery(getActivity(), null);
 updateItems();
 return true;
 case R.id.menu_item_toggle_polling:
 boolean shouldStartAlarm =
!PollService.isServiceAlarmOn(getActivity());

PollService.setServiceAlarm(getActivity(),
shouldStartAlarm);
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

With that, you should be able to toggle
your alarm on and off. However, you
will notice that the menu item for polling
always says Start polling, even if the
polling is currently on. You need to
toggle the menu item title as you did for

SHOW SUBTITLE in the CriminalIntent app
(Chapter 13).
In onCreateOptionsMenu(…),
check whether the alarm is on and
change the text of
menu_item_toggle_polling to show
the appropriate label to the user.

Listing 28.14 Toggling the
menu item
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 private static final String TAG =
"PhotoGalleryFragment";
 ...
 @Override
 public void onCreateOptionsMenu(Menu menu,
MenuInflater menuInflater) {
 super.onCreateOptionsMenu(menu,
menuInflater);

menuInflater.inflate(R.menu.fragment_photo_gallery,
menu);

 MenuItem searchItem =
menu.findItem(R.id.menu_item_search);
 final SearchView searchView = (SearchView)
searchItem.getActionView();

 searchView.setOnQueryTextListener(…);

 searchView.setOnSearchClickListener(…);

 MenuItem toggleItem =
menu.findItem(R.id.menu_item_toggle_polling);
 if
(PollService.isServiceAlarmOn(getActivity())) {

toggleItem.setTitle(R.string.stop_polling);
 } else {

toggleItem.setTitle(R.string.start_polling);
 }
 }
 ...
}

Next, in
onOptionsItemSelected(MenuItem)
tell PhotoGalleryActivity to
update its toolbar options menu.

Listing 28.15 Invalidating your

options menu
(PhotoGalleryFragment.java)
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_clear:
 ...
 case R.id.menu_item_toggle_polling:
 boolean shouldStartAlarm =
!PollService.isServiceAlarmOn(getActivity());

PollService.setServiceAlarm(getActivity(),
shouldStartAlarm);
 getActivity().invalidateOptionsMenu();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

With that, your code to toggle the options
menu contents should work great. And
yet… there is something missing.

Notifications
Your service is now running and doing
its thing in the background. But the user
never knows a thing about it, so it is not
worth much.
When your service needs to
communicate something to the user, the
proper tool is almost always a
notification. Notifications are items that
appear in the notifications drawer,
which the user can access by dragging it
down from the top of the screen.
To post a notification, you first need to
create a Notification object.

Notifications are created by using
a builder object, much like the
AlertDialog that you used in
Chapter 12. At a minimum, your
Notification should have:

ticker text to display in the
status bar when the notification
is first shown on pre-Lollipop
devices (starting with Android
5.0 [Lollipop], ticker text is no
longer displayed in the status
bar but is still relevant for
accessibility services)

an icon to show in the status
bar (appears after the ticker
text goes away on pre-Lollipop
devices)

a view to show in the
notification drawer to
represent the notification itself

a PendingIntent to fire
when the user presses the
notification in the drawer

Once you have created a
Notification object, you can post it
by calling notify(int,
Notification) on the
NotificationManager system
service.
First you need to add some plumbing
code, as shown in Listing 28.16. Open
PhotoGalleryActivity and add a
static newIntent(Context)
method. This method will return an

Intent instance that can be used to
start PhotoGalleryActivity.
(Eventually PollService will call
PhotoGalleryActivity.newIntent(…)
wrap the resulting intent in a
PendingIntent, and set that
PendingIntent on a notification.)

Listing 28.16 Adding
newIntent(…) to
PhotoGalleryActivity
(PhotoGalleryActivity.java)
public class PhotoGalleryActivity extends
SingleFragmentActivity {

 public static Intent newIntent(Context context) {
 return new Intent(context,
PhotoGalleryActivity.class);
 }

 @Override
 protected Fragment createFragment() {
 return PhotoGalleryFragment.newInstance();

 }
}

Make PollService notify the user
that a new result is ready by creating a
Notification and calling
NotificationManager.notify(int,
Notification).

Listing 28.17 Adding a
notification
(PollService.java)
@Override
protected void onHandleIntent(Intent intent) {
 ...
 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " + resultId);
 } else {
 Log.i(TAG, "Got a new result: " + resultId);

 Resources resources = getResources();
 Intent i =
PhotoGalleryActivity.newIntent(this);
 PendingIntent pi =
PendingIntent.getActivity(this, 0, i, 0);

 Notification notification = new
NotificationCompat.Builder(this)

.setTicker(resources.getString(R.string.new_pictures_title))

.setSmallIcon(android.R.drawable.ic_menu_report_image)

.setContentTitle(resources.getString(R.string.new_pictures_title))

.setContentText(resources.getString(R.string.new_pictures_text))

 .setContentIntent(pi)
 .setAutoCancel(true)
 .build();

 NotificationManagerCompat notificationManager
=
 NotificationManagerCompat.from(this);
 notificationManager.notify(0, notification);
 }

 QueryPreferences.setLastResultId(this, resultId);
}

Let’s go over this from top to bottom.
First, you configure the ticker text and
small icon by calling

setTicker(CharSequence) and
setSmallIcon(int). (Note that the
icon resource referenced is provided as
part of the Android framework, denoted
by the package name qualifier android
in
android.R.drawable.ic_menu_report_image

so you do not have to pull the icon image
into your resource folder.)
After that, you configure the appearance
of your Notification in the drawer
itself. It is possible to create a
completely custom look and feel, but it
is easier to use the standard look for a
notification, which features an icon, a
title, and a text area. It will use the value
from setSmallIcon(int) for the
icon. To set the title and text, you call

setContentTitle(CharSequence)
and
setContentText(CharSequence)
respectively.
Next, you must specify what happens
when the user presses your
Notification. Like
AlarmManager, this is done using a
PendingIntent. The
PendingIntent you pass into
setContentIntent(PendingIntent)
will be fired when the user presses your
Notification in the drawer. Calling
setAutoCancel(true) tweaks that
behavior a little bit. With
setAutoCancel(true) set, your
notification will also be deleted from the
notification drawer when the user

presses it.
Finally, you get an instance of
NotificationManagerCompat
from the current context
(NotificationManagerCompat.from(this)
and call
NotificationManagerCompat.notify(…)
to post your notification. The integer
parameter you pass to notify(…) is
an identifier for your notification. It
should be unique across your
application. If you post a second
notification with this same ID, it will
replace the last notification you posted
with that ID. This is how you would
implement a progress bar or other
dynamic visuals.
And that is it. Run your app and turn

polling on. You should eventually see a
notification icon appear in the status bar.
In the notification tray you will see a
notification indicating that new photo
results are available.
After you are satisfied that everything is
working correctly, change your alarm
constant to be something more sensible.
(Using one of AlarmManager’s
predefined interval constants ensures
that your app will get inexact repeating
alarm behavior on pre-KitKat devices.)

Listing 28.18 Changing to a
sensible alarm constant
(PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 // Set interval to 1 minute
 private static final long POLL_INTERVAL_MS =
TimeUnit.MINUTES.toMillis(1);
 private static final long POLL_INTERVAL_MS =
TimeUnit.MINUTES.toMillis(15);
 ...
}

Challenge:
Notifications on
Android Wear
Since you used
NotificationCompat and
NotificationManagerCompat,
your notifications will automatically
appear on an Android Wear device if the
user has it paired with an Android
device running your app. Users who
receive the notification on a Wear
device can swipe left to be presented
with the option to open the app on the

connected handheld device. Pressing
Open on the Wear device will issue the
notification’s pending intent on the
handheld device.
To test this, set up an Android Wear
emulator and pair it with a handheld
device running your app. Details about
how to do this can be found on
developer.android.com.

For the More
Curious: Service
Details
We recommend using
IntentService for most service
tasks. If the IntentService pattern
does not suit your architecture for a
particular app, you will need to
understand more about services to
implement your own. Prepare for an
infobomb, though – there are a lot of
details and ins and outs to using
services.

What a service does
(and does not do)
A service is an application component
that provides lifecycle callbacks, just
like an activity. Those callbacks are
even performed on the main UI thread
for you, just like in an activity.
A service does not run any code on a
background thread out of the box. This is
the #1 reason we recommend
IntentService. Most nontrivial
services will require a background
thread of some kind, and
IntentService automatically
manages the boilerplate code you need
to accomplish that.

Let’s see what lifecycle callbacks a
service has.

A service’s lifecycle
For a service started with
startService(Intent), life is
fairly simple. There are three lifecycle
callbacks.

onCreate(…) – called when
the service is created.

onStartCommand(Intent,
int, int) – called once
each time a component starts
the service with
startService(Intent).
The two integer parameters are

a set of flags and a start ID.
The flags are used to signify
whether this intent delivery is
an attempt to redeliver an intent
or is an attempt to retry a
delivery that never made it to
(or never returned from)
onStartCommand(Intent,
int, int). The start ID
will be different for every call
to
onStartCommand(Intent,
int, int), so it may be
used to distinguish this
command from others.

onDestroy() – called when
the service no longer needs to
be alive.

The onDestroy() callback is called
when the service stops. This can happen
in different ways, depending on what
type of service you have written. The
type of service is determined by the
value returned from
onStartCommand(…), which may be
Service.START_NOT_STICKY,
START_REDELIVER_INTENT, or
START_STICKY.

Non-sticky services
IntentService is a non-sticky
service, so let’s start there. A non-sticky
service stops when the service itself
says it is done. To make your service

non-sticky, return either
START_NOT_STICKY or
START_REDELIVER_INTENT.
You tell Android that you are done by
calling either stopSelf() or
stopSelf(int). The first method,
stopSelf(), is unconditional. It will
always stop your service, no matter how
many times onStartCommand(…)
has been called.
The second method, stopSelf(int),
is conditional. This method takes in the
start ID received in
onStartCommand(…). This method
will only stop your service if this was
the most recent start ID received. (This
is how IntentService works under
the hood.)

So what is the difference between
returning START_NOT_STICKY and
START_REDELIVER_INTENT? The
difference is in how your service
behaves if the system needs to shut it
down before it is done. A
START_NOT_STICKY service will die
and disappear into the void.
START_REDELIVER_INTENT, on the
other hand, will attempt to start up the
service again later, when resources are
less constrained.
Choosing between
START_NOT_STICKY and
START_REDELIVER_INTENT is a
matter of deciding how important that
operation is to your application. If the
service is not critical, choose

START_NOT_STICKY. In
PhotoGallery, your service is being run
repeatedly on an alarm. If one invocation
falls through the cracks, it is not a big
deal, so: START_NOT_STICKY. This
is the default behavior for
IntentService. To switch to using
START_REDELIVER_INTENT, call
IntentService.setIntentRedelivery(true)

Sticky services
A sticky service stays started until
something outside the service tells it to
stop by calling
Context.stopService(Intent)
To make your service sticky, return

START_STICKY.
Once a sticky service is started, it is
“on” until a component calls
Context.stopService(Intent)
If the service needs to be killed for some
reason, it will be restarted again with a
null intent passed into
onStartCommand(…).
A sticky service may be appropriate for
a long-running service, like a music
player, which needs to stick around until
the user tells it to stop. Even then, it is
worth considering an alternative
architecture using non-sticky services.
Sticky service management is
inconvenient, because it is difficult to
tell whether the service is already
started.

Bound services
In addition to all this, it is possible to
bind to a service by using the
bindService(Intent,
ServiceConnection, int)
method. This allows you to call methods
on the service directly.
ServiceConnection is an object
that represents your service binding and
receives all binding callbacks.
In a fragment, your binding code would
look something like this:
private ServiceConnection mServiceConnection = new
ServiceConnection() {
 public void onServiceConnected(ComponentName
className,
 IBinder service) {

 // Used to communicate with the service
 MyBinder binder = (MyBinder)service;
 }

 public void onServiceDisconnected(ComponentName
className) {
 }
};

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Intent i = new Intent(getActivity(),
MyService.class);
 getActivity().bindService(i, mServiceConnection,
0);
}

@Override
public void onDestroy() {
 super.onDestroy();
 getActivity().unbindService(mServiceConnection);
}

On the service’s side, binding introduces
two additional lifecycle callbacks:

onBind(Intent) – called
every time the service is bound
to and returns the IBinder

object received in
ServiceConnection.onServiceConnected(ComponentName,
IBinder)

onUnbind(Intent) –
called when a service’s
binding is terminated

Local service binding

So what does MyBinder look like? If
the service is a local service, then it may
be a simple Java object that lives in your
local process. Usually this is used to
provide a handle to directly call
methods on your service:
private class MyBinder extends IBinder {
 public MyService getService() {
 return MyService.this;
 }

}

@Override
public void onBind(Intent intent) {
 return new MyBinder();
}

This pattern looks exciting. It is the only
place in Android that enables one
Android component to directly talk to
another. However, we do not
recommend it. Since services are
effectively singletons, using them this
way provides no major benefits over
just using a singleton instead.

Remote service binding

Binding is more useful for remote
services, because they give applications
in other processes the ability to invoke

methods on your service. Creating a
remote service binder is an advanced
topic and beyond the scope of this book.
Check out the AIDL guide in the Android
documentation or the Messenger class
for more details.

For the More
Curious:
JobScheduler and
JobServices
In this chapter, you saw how to use
AlarmManager, an
IntentService, and
PendingIntents to put together a
periodically executing background task.
In doing that, you had to do a few things
manually:

schedule a periodic task

check whether that periodic
task was currently running

check whether the network was
currently up

You had to stitch a few different APIs
together by hand to create one
functioning background worker that you
could start and stop. It worked, but it
was a lot of work.
In Android Lollipop (API 21), a new
API was introduced called
JobScheduler that can implement
these kinds of tasks on its own. It is also
capable of more: For example, it can
avoid starting up your service at all if
the network is unavailable. It can
implement a “back off and retry” policy

if your request fails or restrict network
access on a metered connection. You can
also restrict updates so that they only
occur while the device is charging. Even
where these are possible with
AlarmManager and
IntentService, it is not easy.
JobScheduler allows you to define
services to run particular jobs and then
schedule them to run only when
particular conditions apply. Here is how
it works: First, you create a subclass of
JobService to handle your job. A
JobService has two methods to
override:
onStartJob(JobParameters)
and
onStopJob(JobParameters).

(Do not enter this code anywhere. It is
only a sample for purposes of this
discussion.)
public class PollService extends JobService {
 @Override
 public boolean onStartJob(JobParameters params) {
 return false;
 }

 @Override
 public boolean onStopJob(JobParameters params) {
 return false;
 }
}

When Android is ready to run your job,
your service will be started and you will
receive a call to onStartJob(…) on
your main thread. Returning false from
this method means, “I went ahead and
did everything this job needs, so it is
complete.” Returning true means, “Got
it. I am working on this job now, but I
am not done yet.”

IntentService created a
background thread for you, so you did
not have to worry about threading. In
JobService, though, you must
implement your own threading. You
might do that with an AsyncTask:
private PollTask mCurrentTask;

@Override
public boolean onStartJob(JobParameters params) {
 mCurrentTask = new PollTask();
 mCurrentTask.execute(params);
 return true;
}

private class PollTask extends
AsyncTask<JobParameters,Void,Void> {
 @Override
 protected Void doInBackground(JobParameters...
params) {
 JobParameters jobParams = params[0];

 // Poll Flickr for new images

 jobFinished(jobParams, false);
 return null;
 }
}

When you are done with your job, you
call
jobFinished(JobParameters,
boolean) to say that you are done.
Passing in true for the second
parameter means that you were not able
to get the job done this time and it should
be rescheduled for the future.
While your job is running, you may
receive a call to the
onStopJob(JobParameters)
callback. This means that your job needs
to be interrupted. This can happen when,
for example, you only want your job to
run when a WiFi connection is
available. If the phone moves out of
WiFi range while your job is still
running, you will get a call to

onStopJob(…), which is your cue to
drop everything immediately.
@Override
public boolean onStopJob(JobParameters params) {
 if (mCurrentTask != null) {
 mCurrentTask.cancel(true);
 }
 return true;
}

When onStopJob(…) is called, your
service is about to be shut down. No
waiting is allowed: You must stop your
work immediately. Returning true here
means that your job should be
rescheduled to run again in the future.
Returning false means, “Okay, I was
done anyway. Do not reschedule me.”
When you register your service in the
manifest, you must export it and add a
permission:

<service
 android:name=".PollService"

android:permission="android.permission.BIND_JOB_SERVICE"

 android:exported="true"/>

Exporting it exposes it to the world at
large, but adding the permission restricts
it back down so that only
JobScheduler can run it.
Once you have created a JobService,
kicking it off is a snap. You can use
JobScheduler to check on whether
your job has been scheduled.
final int JOB_ID = 1;

JobScheduler scheduler = (JobScheduler)

context.getSystemService(Context.JOB_SCHEDULER_SERVICE);

boolean hasBeenScheduled = false;
for (JobInfo jobInfo : scheduler.getAllPendingJobs())
{
 if (jobInfo.getId() == JOB_ID) {
 hasBeenScheduled = true;

 }
}

If your job has not been scheduled, you
can create a new JobInfo that says
when you want your job to run. Hmm,
when should PollService run? How
about something like this:
final int JOB_ID = 1;

JobScheduler scheduler = (JobScheduler)

context.getSystemService(Context.JOB_SCHEDULER_SERVICE);

JobInfo jobInfo = new JobInfo.Builder(
 JOB_ID, new ComponentName(context,
PollService.class))

.setRequiredNetworkType(JobInfo.NETWORK_TYPE_UNMETERED)

 .setPeriodic(1000 * 60 * 15)
 .setPersisted(true)
 .build();
scheduler.schedule(jobInfo);

This schedules your job to run every 15
minutes, but only on WiFi or another

unmetered network. Calling
setPersisted(true) also makes
your job persisted so that it will survive
a reboot. Check out the reference
documentation to see all the other ways
you can configure a JobInfo.

JobScheduler and the
future of background
work
In this chapter, we showed you how to
implement background work without
JobScheduler. Because
JobScheduler is only available on
Lollipop and later, and there is no
support library version available, the

AlarmManager-based solution shown
in this chapter is the only approach from
the standard libraries that will work
across all the versions of Android that
PhotoGallery supports.
It is important to note, though, that
AlarmManager’s days of performing
this kind of work are probably
numbered. One of the highest priority
goals for Android platform engineers in
recent years has been improving power
efficiency. To do this, they have sought
greater control on scheduling when apps
use the radio, WiFi, and other tools that
can run through a battery quickly.
This is why AlarmManager’s
commands have changed meaning over
the years: Android knows that

developers use AlarmManager to
schedule background work, so those
APIs have been loosened and tweaked to
try to make your app play nicely with
others.
At its heart, though, AlarmManager is
a bad API for this purpose. It tells
Android nothing about what you are
doing – you could be using the GPS
radio or you could be updating the look
of an app widget on your user’s Home
screen. Android does not know, so it
must treat all alarms identically. That
keeps Android from making intelligent
choices about power consumption.
This pressure means that as soon as
JobScheduler is an option for most
apps, AlarmManager will fall out of

favor. So while JobScheduler is not
a compatible option today, we strongly
recommend switching your applications
to use it as soon as you determine it is
feasible.
If you want to do something today
instead of planning an API switch in the
future, you can use a third-party
compatibility library instead. As of this
writing, Evernote’s android-job
library is the best option. You can find it
at github.com/​evernote/​
android-job.

Challenge: Using
JobService on
Lollipop
For an additional challenge, create a
second implementation of
PollService that subclasses
JobService and is run using
JobScheduler. In your
PollService startup code, check to
see whether you are on Lollipop. If so,
use JobScheduler to schedule your
JobService. Otherwise, fall back on
your old AlarmManager

implementation.

For the More
Curious: Sync
Adapters
Yet another way to set up a regularly
polling web service is to use a sync
adapter. Sync adapters are not adapters
like you have seen before. Instead, their
sole purpose is to sync data with a data
source (uploading, downloading, or
both). Unlike JobScheduler, sync
adapters have been around for a while,
so you do not have to worry about which
version of Android you are running.

Like JobScheduler, sync adapters
can be used as a replacement for the
AlarmManager setup that you have in
PhotoGallery. Syncs from multiple
applications are grouped together by
default, without you having to set flags a
certain way. Furthermore, you do not
have to worry about resetting the sync
alarm across reboots because sync
adapters handle this for you.
Sync adapters also integrate nicely with
the OS from a user perspective. You can
expose your app as a sync-able account
that the user can manage through the
Settings → Accounts menu. This is where
users manage accounts for other apps
that use sync adapters, such as Google’s
suite of apps (Figure 28.2).

Figure 28.2 Accounts settings

While using a sync adapter makes
correct usage of scheduling repeating
network work easier – and allows you to
get rid of the alarm management and
pending intent code – a sync adapter
does require a bunch more code. First, a
sync adapter does not do any of your
web requests for you, so you still have

to write that code (e.g.,
FlickrFetchr). Second, it requires
a content provider implementation to
wrap the data, account, and authenticator
classes to represent an account on a
remote server (even if the server does
not require authentication), as well as a
sync adapter and sync service
implementation. It also requires working
knowledge of bound services.
So if your application already uses a
ContentProvider for its data layer
and requires account authentication,
using a sync adapter is a good option for
you to consider. It is a big advantage that
sync adapters integrate with the UI
provided by the OS, too.
JobScheduler does not do that. If

none of those considerations apply, the
extra code required might not be worth
it.
The online developer docs provide a
tutorial on using sync adapters at
developer.android.com/​
training/​sync-adapters/​
index.html. Check it out to learn
more.

29
Broadcast

Intents
In this chapter you will polish
PhotoGallery in two big ways. First, you
will make the app poll for new search
results and notify the user if new results
are found, even if the user has not
opened the application since booting the
device. Second, you will ensure that
notifications about new results are
posted only if the user is not interacting
with the app. (It is annoying and

redundant to both get a notification and
see the results update in the screen when
you are actively viewing an app.)
In making these updates, you will learn
how to listen for broadcast intents from
the system and how to handle such
intents using a broadcast receiver. You
will also dynamically send and receive
broadcast intents within your app at
runtime. Finally, you will use ordered
broadcasts to determine whether your
application is currently running in the
foreground.

Regular Intents vs
Broadcast Intents

Things are happening all the time on an
Android device. WiFi is going in and out
of range, packages are getting installed,
and phone calls and text messages are
coming and going.
When many components on the system
need to know that some event has
occurred, Android uses a broadcast
intent to tell everyone about it.
Broadcast intents work similarly to the
intents you already know and love,
except that they can be received by
multiple components, called broadcast
receivers, at the same time
(Figure 29.1).

Figure 29.1 Regular intents vs
broadcast intents

Activities and services should respond
to implicit intents whenever they are
used as part of a public API. When they
are not part of a public API, explicit
intents are almost always sufficient.
Broadcast intents, on the other hand,
only exist to send information to more
than one listener. So while broadcast
receivers can respond to explicit intents,

they are rarely, if ever, used this way,
because explicit intents can only have
one receiver.

Receiving a
System Broadcast:
Waking Up on Boot
PhotoGallery’s background alarm
works, but it is not perfect. If the user
reboots the device, the alarm will be
forgotten.
Apps that perform an ongoing process
for the user generally need to wake
themselves up after the device is booted.
You can detect when boot is completed
by listening for a broadcast intent with
the BOOT_COMPLETED action. The system

sends out a BOOT_COMPLETED broadcast
intent whenever the device is turned on.
You can listen for it by creating and
registering a standalone broadcast
receiver that filters for the appropriate
action.

Creating and registering
a standalone receiver
A standalone receiver is a broadcast
receiver that is declared in the manifest.
Such a receiver can be activated even if
your app process is dead. (Later you
will learn about dynamic receivers,
which can instead be tied to the lifecycle
of a visible app component, like a

fragment or activity.)
Just like services and activities,
broadcast receivers must be registered
with the system to do anything useful. If
the receiver is not registered with the
system, the system will not send any
intents its way and, in turn, the
receiver’s onReceive(…) will not
get executed as desired.
Before you can register your broadcast
receiver, you have to write it. Create a
new Java class called
StartupReceiver that is a subclass
of
android.content.BroadcastReceiver

Listing 29.1 Your first
broadcast receiver

(StartupReceiver.java)
public class StartupReceiver extends
BroadcastReceiver{
 private static final String TAG =
"StartupReceiver";

 @Override
 public void onReceive(Context context, Intent
intent) {
 Log.i(TAG, "Received broadcast intent: " +
intent.getAction());
 }
}

A broadcast receiver is a component that
receives intents, just like a service or an
activity. When an intent is issued to
StartupReceiver, its
onReceive(…) method will be
called.
Next, open AndroidManifest.xml
and hook up StartupReceiver as a
standalone receiver:

Listing 29.2 Adding your
receiver to the manifest
(AndroidManifest.xml)
<manifest ...>

 <uses-permission
android:name="android.permission.INTERNET"/>
 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"/>

 <uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED"
 />

 <application
 ...>
 <activity
 android:name=".PhotoGalleryActivity"
 android:label="@string/app_name">
 ...
 </activity>
 <service android:name=".PollService"/>

 <receiver android:name=".StartupReceiver">
 <intent-filter>
 <action
android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>
 </application>

</manifest>

Registering a standalone receiver to
respond to an implicit intent works just
like registering an activity to do the
same. You use the receiver tag with
appropriate intent-filters.
StartupReceiver will be listening
for the BOOT_COMPLETED action. This
action also requires a permission, so you
include an appropriate uses-
permission tag as well.
With your broadcast receiver declared
in your manifest, it will wake up any
time a matching broadcast intent is sent –
even if your app is not currently running.
Upon waking up, the ephemeral
broadcast receiver’s

onReceive(Context, Intent)
method will be run, and then it will die,
as shown in Figure 29.2.

Figure 29.2 Receiving
BOOT_COMPLETED

Time to verify that
StartupReceiver’s
onReceive(…) is executed when the
device boots up. First, run PhotoGallery
to install the most recent version on your

device.
Next, shut down your device. If you are
using a physical device, power it all the
way off. If you are using an emulator, the
easiest way to shut it down is to quit out
of the emulator by closing the emulator
window.
Turn the device back on. If you are using
a physical device, use the power button.
If you are using an emulator, either rerun
your application or start the device using
the AVD Manager. Make sure you are
using the same emulator image you just
shut down.
Now, open the Android Device Monitor
by selecting Tools → Android → Android
Device Monitor.

Click on your device in Android Device
Monitor’s Devices tab. (If you do not see
the device listed, try unplugging and
replugging your USB device or
restarting the emulator.)
Search the Logcat results within the
Android Device Monitor window for
your log statement (Figure 29.3).

Figure 29.3 Searching Logcat
output

You should see a Logcat statement
showing that your receiver ran.
However, if you check your device in
the Devices tab, you will probably not see
a process for PhotoGallery. Your
process came to life just long enough to
run your broadcast receiver, and then it

died again.
(Testing that the receiver executed can
be unreliable when you are using Logcat
output, especially if you are using an
emulator. If you do not see the log
statement the first time through the
instructions above, try a few more times.
Worst case, continue through the rest of
the exercise. Once you get to the part
where you hook up notifications, you
will have a more reliable way to check
whether the receiver is working.)

Using receivers
The fact that broadcast receivers live
such short lives restricts the things you

can do with them. You cannot use any
asynchronous APIs, for example, or
register any listeners, because your
receiver will not be alive any longer
than the call to
onReceive(Context, Intent).
Also, because
onReceive(Context, Intent)
runs on your main thread, you cannot do
any heavy lifting inside it. That means no
networking or heavy work with
permanent storage.
But this does not make receivers useless.
They are invaluable for all kinds of little
plumbing code, such as starting an
activity or service (so long as you do not
expect a result back) or resetting a
recurring alarm when the system finishes

rebooting (as you will do in this
exercise).
Your receiver will need to know
whether the alarm should be on or off.
Add a preference constant and
convenience methods to
QueryPreferences to store this
information in shared preferences.

Listing 29.3 Adding alarm
status preference
(QueryPreferences.java)
public class QueryPreferences {

 private static final String PREF_SEARCH_QUERY =
"searchQuery";
 private static final String PREF_LAST_RESULT_ID =
"lastResultId";
 private static final String PREF_IS_ALARM_ON =
"isAlarmOn";
 ...
 public static void setLastResultId(Context
context, String lastResultId) {

 ...
 }

 public static boolean isAlarmOn(Context context)
{
 return
PreferenceManager.getDefaultSharedPreferences(context)

 .getBoolean(PREF_IS_ALARM_ON, false);
 }

 public static void setAlarmOn(Context context,
boolean isOn) {

PreferenceManager.getDefaultSharedPreferences(context)

 .edit()
 .putBoolean(PREF_IS_ALARM_ON, isOn)
 .apply();
 }
}

Next, update
PollService.setServiceAlarm(…)
to write to shared preferences when the
alarm is set.

Listing 29.4 Writing alarm
status preference when alarm

is set (PollService.java)
public class PollService extends IntentService {
 ...
 public static void setServiceAlarm(Context
context, boolean isOn) {
 ...
 if (isOn) {

alarmManager.setRepeating(AlarmManager.ELAPSED_REALTIME,

 SystemClock.elapsedRealtime(),
POLL_INTERVAL_MS, pi);
 } else {
 alarmManager.cancel(pi);
 pi.cancel();
 }

 QueryPreferences.setAlarmOn(context, isOn);
 }
 ...
}

Then your StartupReceiver can
use it to turn the alarm on at boot.

Listing 29.5 Starting alarm on
boot (StartupReceiver.java)
public class StartupReceiver extends

BroadcastReceiver{
 private static final String TAG =
"StartupReceiver";

 @Override
 public void onReceive(Context context, Intent
intent) {
 Log.i(TAG, "Received broadcast intent: " +
intent.getAction());

 boolean isOn =
QueryPreferences.isAlarmOn(context);
 PollService.setServiceAlarm(context, isOn);
 }
}

Run PhotoGallery again. (You may want
to change
PollService.POLL_INTERVAL_MS back
to a shorter interval, such as 60 seconds,
for testing purposes.) Turn polling on by
pressing START POLLING in the toolbar.
Reboot your device. This time,
background polling should be restarted
after you reboot your phone, tablet, or
emulator.

Filtering
Foreground
Notifications
With that sharp corner filed down a bit,
let’s turn to another imperfection in
PhotoGallery. Your notifications work
great, but they are sent even when the
user already has the application open.
You can fix this problem with broadcast
intents, too. But they will work in a
completely different way.
First, you will send (and receive) your
own custom broadcast intent (and

ultimately will lock it down so it can be
received only by components in your
application). Second, you will register a
receiver for your broadcast dynamically
in code, rather than in the manifest.
Finally, you will send an ordered
broadcast to pass data along a chain of
receivers, ensuring a certain receiver is
run last. (You do not know how to do all
this yet, but you will by the time you are
done.)

Sending broadcast
intents
The first part is straightforward: You
need to send your own broadcast intent.

Specifically, you will send a broadcast
notifying interested components that a
new search results notification is ready
to post. To send a broadcast intent,
create an intent and pass it into
sendBroadcast(Intent). In this
case, you will want it to broadcast an
action you define, so define an action
constant as well.
Add these items in PollService.

Listing 29.6 Sending a
broadcast intent
(PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 private static final long POLL_INTERVAL_MS =
TimeUnit.MINUTES.toMillis(15);

 public static final String

ACTION_SHOW_NOTIFICATION =

"com.bignerdranch.android.photogallery.SHOW_NOTIFICATION";

 ...
 @Override
 protected void onHandleIntent(Intent intent) {
 ...
 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " +
resultId);
 } else {
 ...
 NotificationManagerCompat
notificationManager =

NotificationManagerCompat.from(this);
 notificationManager.notify(0,
notification);

 sendBroadcast(new
Intent(ACTION_SHOW_NOTIFICATION));
 }

 QueryPreferences.setLastResultId(this,
resultId);
 }
 ...
}

Now your app will send out a broadcast
every time new search results are

available.

Creating and registering
a dynamic receiver
Next, you need a receiver for your
ACTION_SHOW_NOTIFICATION broadcast
intent.
You could write a standalone broadcast
receiver, like StartupReceiver,
and register it in the manifest. But that
would not be ideal in this case. Here,
you want PhotoGalleryFragment
to receive the intent only while it is
alive. A standalone receiver declared in
the manifest would always receive the
intent and would need some other way of

knowing that
PhotoGalleryFragment is alive
(which is not easily achieved in
Android).
The solution is to use a dynamic
broadcast receiver. A dynamic receiver
is registered in code, not in the manifest.
You register the receiver by calling
registerReceiver(BroadcastReceiver,
IntentFilter) and unregister it by
calling
unregisterReceiver(BroadcastReceiver)
The receiver itself is typically defined
as an inner instance, like a button-click
listener. However, since you need the
same instance in
registerReceiver(…) and
unregisterReceiver(BroadcastReceiver)

you will need to assign the receiver to
an instance variable.
Create a new abstract class called
VisibleFragment, with
Fragment as its superclass. This class
will be a generic fragment that hides
foreground notifications. (You will write
another fragment like this in Chapter 30.)

Listing 29.7 A receiver of
VisibleFragment’s own
(VisibleFragment.java)
public abstract class VisibleFragment extends
Fragment {
 private static final String TAG =
"VisibleFragment";

 @Override
 public void onStart() {
 super.onStart();
 IntentFilter filter = new
IntentFilter(PollService.ACTION_SHOW_NOTIFICATION);

getActivity().registerReceiver(mOnShowNotification,
filter);
 }

 @Override
 public void onStop() {
 super.onStop();

getActivity().unregisterReceiver(mOnShowNotification);

 }

 private BroadcastReceiver mOnShowNotification =
new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent
intent) {
 Toast.makeText(getActivity(),
 "Got a broadcast:" +
intent.getAction(),
 Toast.LENGTH_LONG)
 .show();
 }
 };
}

Note that to pass in an
IntentFilter, you have to create
one in code. Your IntentFilter

here is identical to the filter specified by
the following XML:
<intent-filter>
 <action
android:name="com.bignerdranch.android.photogallery.SHOW_NOTIFICATION"
 />
</intent-filter>

Any IntentFilter you can express
in XML can also be expressed in code
this way. Just call
addCategory(String),
addAction(String),
addDataPath(String), and so on
to configure your filter.
When you use dynamically registered
broadcast receivers, you must also take
care to clean them up. Typically, if you
register a receiver in a startup lifecycle
method, you call

Context.unregisterReceiver(BroadcastReceiver)
in the corresponding shutdown method.
Here, you register inside onStart()
and unregister inside onStop(). If
instead you registered inside
onCreate(…), you would unregister
inside onDestroy().
(Be careful with onCreate(…) and
onDestroy() in retained fragments,
by the way. getActivity() will
return different values in
onCreate(…) and onDestroy() if
the screen has rotated. If you want to
register/unregister in
Fragment.onCreate(Bundle)
and Fragment.onDestroy(), use
getActivity().getApplicationContext()
instead.)

Next, modify
PhotoGalleryFragment to be a
subclass of your new
VisibleFragment.

Listing 29.8 Making your
fragment visible
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment
VisibleFragment {
 ...
}

Run PhotoGallery and toggle background
polling a couple of times. You will see a
nice toast pop up (Figure 29.4).

Figure 29.4 Proof that your
broadcast exists

Limiting broadcasts to
your app using private
permissions
One issue with a broadcast like this is
that anyone on the system can listen to it
or trigger your receivers. You are
usually not going to want either of those
things to happen.
You can preclude these unauthorized
intrusions into your personal business in
a couple of ways. One way is to declare
in your manifest that the receiver is
internal to your app by adding an
android:exported="false" attribute
to your receiver tag. This will prevent it
from being visible to other applications

on the system.
Another way is to create your own
permission by adding a permission tag
to your AndroidManifest.xml.
This is the approach you will take for
PhotoGallery.
Declare and acquire your own
permission in
AndroidManifest.xml.

Listing 29.9 Adding a private
permission
(AndroidManifest.xml)
<manifest ...>

 <permission
android:name="com.bignerdranch.android.photogallery.PRIVATE

 android:protectionLevel="signature" />

 <uses-permission

android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"
 />
 <uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED"
 />
 <uses-permission
android:name="com.bignerdranch.android.photogallery.PRIVATE
 />
 ...
</manifest>

Notice that you define a custom
permission with a protection level of
signature. You will learn more about
protection levels in just a moment. The
permission itself is a simple string, just
like intent actions, categories, and
system permissions you have used. You
must always acquire a permission to use
it, even when you defined it yourself.
Them’s the rules.
Take note of the shaded constant value

above, by the way. This string needs to
appear in three more places and must be
identical in each place. You would be
wise to copy and paste it rather than
typing it out by hand.
Now, use your permission by defining a
corresponding constant in code and then
passing it into your
sendBroadcast(…) call.

Listing 29.10 Sending with a
permission
(PollService.java)
public class PollService extends IntentService {
 ...
 public static final String
ACTION_SHOW_NOTIFICATION =

"com.bignerdranch.android.photogallery.SHOW_NOTIFICATION";

 public static final String PERM_PRIVATE =

"com.bignerdranch.android.photogallery.PRIVATE";

 public static Intent newIntent(Context context) {
 return new Intent(context,
PollService.class);
 }
 ...
 @Override
 protected void onHandleIntent(Intent intent) {
 ...
 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " +
resultId);
 } else {
 ...
 notificationManager.notify(0,
notification);

 sendBroadcast(new
Intent(ACTION_SHOW_NOTIFICATION), PERM_PRIVATE);
 }

 QueryPreferences.setLastResultId(this,
resultId);
 }
 ...
}

To use your permission, you pass it as a
parameter to sendBroadcast(…).
Using the permission here ensures that

any application must use that same
permission to receive the intent you are
sending.
What about your broadcast receiver?
Someone could create a broadcast intent
to trigger it. You can fix that by passing
in your permission in
registerReceiver(…), too.

Listing 29.11 Setting
permissions on a broadcast
receiver
(VisibleFragment.java)
public abstract class VisibleFragment extends
Fragment {
 ...
 @Override
 public void onStart() {
 super.onStart();
 IntentFilter filter = new
IntentFilter(PollService.ACTION_SHOW_NOTIFICATION);

getActivity().registerReceiver(mOnShowNotification,
filter,
 PollService.PERM_PRIVATE, null);
 }
 ...
}

Now, your app is the only app that can
trigger that receiver.

More about protection levels

Every custom permission has to specify
a value for
android:protectionLevel. Your
permission’s protectionLevel tells
Android how it should be used. In your
case, you used a protectionLevel of
signature.
The signature protection level means
that if another application wants to use

your permission, it has to be signed with
the same key as your application. This is
usually the right choice for permissions
you use internally in your application.
Because other developers do not have
your key, they cannot get access to
anything this permission protects. Plus,
because you do have your own key, you
can use this permission in any other app
you decide to write later.

Table 29.1 Values for
protectionLevel

Value Description
This is for protecting app functionality that will not
do anything dangerous like accessing secure
personal data or finding out where you are on a
map. The user can see the permission before

normal choosing to install the app but is never explicitly
asked to grant it.
android.permission.RECEIVE_BOOT_COMPLETED
uses this permission level, and so does the
permission that lets your app vibrate the user’s
device.

dangerous

This is for everything you would not use
– accessing personal data, accessing hardware that
might be used to spy on the user, or anything else
that could cause real problems.
permission, locations permissions, and contacts
permission all fall under this category.
Marshmallow, dangerous
you call requestPermission(…)
to ask the user to explicitly grant your app
permission. (For more about how that works, see
Chapter 33.)

signature

The system grants this permission if the app is
signed with the same certificate as the declaring
application and denies it otherwise.
permission is granted, the user is not notified.
is for functionality that is internal to an app – as the
developer, because you have the certificate and
only apps signed with the same certificate can use
the permission, you have control over who uses the
permission. You used it here to prevent anyone else
from seeing your broadcasts. If you wanted, you
could write another app that listens to them, too.

signatureOrSystem

This is like signature
permission to all packages in the Android system
image. This is for communicating with apps built
into the system image.
the user is not notified.
need to use it.

Passing and receiving
data with ordered
broadcasts
Time to finally bring this baby home.
The last piece is to ensure that your
dynamically registered receiver always
receives the
PollService.ACTION_SHOW_NOTIFICATION
broadcast before any other receivers and
that it modifies the broadcast to indicate
that the notification should not be posted.
Right now you are sending your own
personal private broadcast, but so far
you only have one-way communication
(Figure 29.5).

Figure 29.5 Regular broadcast
intents

This is because a regular broadcast
intent is conceptually received by
everyone at the same time. In reality,
because onReceive(…) is called on
the main thread, your receivers are not
actually executed concurrently.
However, it is not possible to rely on
their being executed in any particular
order or to know when they have all
completed execution. As a result, it is a
hassle for the broadcast receivers to

communicate with each other or for the
sender of the intent to receive
information from the receivers.
You can implement two-way
communication using an ordered
broadcast intent (Figure 29.6). Ordered
broadcasts allow a sequence of
broadcast receivers to process a
broadcast intent in order. They also
allow the sender of a broadcast to
receive results from the broadcast’s
recipients by passing in a special
broadcast receiver, called the result
receiver.

Figure 29.6 Ordered broadcast
intents

On the receiving side, this looks mostly
the same as a regular broadcast. But you
get an additional tool: a set of methods
used to change the return value of your
receiver. Here, you want to cancel the
notification. This can be communicated
by use of a simple integer result code.
You will use the
setResultCode(int) method to

set the result code to
Activity.RESULT_CANCELED.
Modify VisibleFragment to tell the
sender of SHOW_NOTIFICATION whether
the notification should be posted. This
information will also be sent to any
other broadcast receivers along the
chain.

Listing 29.12 Sending a simple
result back
(VisibleFragment.java)
public abstract class VisibleFragment extends
Fragment {
 private static final String TAG =
"VisibleFragment";
 ...
 private BroadcastReceiver mOnShowNotification =
new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent
intent) {
 Toast.makeText(getActivity(),

 "Got a broadcast:" +
intent.getAction(),
 Toast.LENGTH_LONG)
 .show();
 // If we receive this, we're visible, so
cancel
 // the notification
 Log.i(TAG, "canceling notification");
 setResultCode(Activity.RESULT_CANCELED);
 }
 };
 ...
}

Because all you need to do is signal yes
or no here, you only need the result
code. If you needed to return more
complicated data, you could use
setResultData(String) or
setResultExtras(Bundle). And
if you wanted to set all three values, you
could call setResult(int,
String, Bundle). Once your return
values are set, every subsequent
receiver will be able to see or modify

them.
For those methods to do anything useful,
your broadcast needs to be ordered.
Write a new method to send an ordered
broadcast in PollService. This
method will package up a
Notification invocation and send it
out as a broadcast. Update
onHandleIntent(…) to call your
new method and, in turn, send out an
ordered broadcast instead of posting the
notification directly to the
NotificationManager.

Listing 29.13 Sending an
ordered broadcast
(PollService.java)
public static final String PERM_PRIVATE =

"com.bignerdranch.android.photogallery.PRIVATE";
public static final String REQUEST_CODE =
"REQUEST_CODE";
public static final String NOTIFICATION =
"NOTIFICATION";
...
@Override
protected void onHandleIntent(Intent intent) {
 ...
 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " + resultId);
 } else {
 Log.i(TAG, "Got a new result: " + resultId);
 ...

 Notification notification = ...;

 NotificationManagerCompat notificationManager
=
 NotificationManagerCompat.from(this);
 notificationManager.notify(0, notification);

 sendBroadcast(new
Intent(ACTION_SHOW_NOTIFICATION), PERM_PRIVATE);
 showBackgroundNotification(0, notification);
 }

 QueryPreferences.setLastResultId(this, resultId);
}

private void showBackgroundNotification(int
requestCode, Notification notification) {
 Intent i = new Intent(ACTION_SHOW_NOTIFICATION);

 i.putExtra(REQUEST_CODE, requestCode);
 i.putExtra(NOTIFICATION, notification);
 sendOrderedBroadcast(i, PERM_PRIVATE, null, null,
 Activity.RESULT_OK, null, null);
}

Context.sendOrderedBroadcast(Intent,
String, BroadcastReceiver,
Handler, int, String,
Bundle) has five additional
parameters beyond the ones you used in
sendBroadcast(Intent,
String). They are, in order: a result
receiver, a Handler to run the result
receiver on, and initial values for the
result code, result data, and result extras
for the ordered broadcast.
The result receiver is a special receiver
that runs after all the other recipients of
your ordered broadcast intent. In other
circumstances, you would be able to use

the result receiver to receive the
broadcast and post the notification
object. Here, though, that will not work.
This broadcast intent will often be sent
right before PollService dies. That
means that your broadcast receiver might
be dead, too.
Thus, your final broadcast receiver will
need to be a standalone receiver, and
you will need to enforce that it runs after
the dynamically registered receiver by
different means.
First, create a new
BroadcastReceiver subclass
called NotificationReceiver.
Implement it as follows:

Listing 29.14 Implementing

your result receiver
(NotificationReceiver.java)
public class NotificationReceiver extends
BroadcastReceiver {
 private static final String TAG =
"NotificationReceiver";

 @Override
 public void onReceive(Context c, Intent i) {
 Log.i(TAG, "received result: " +
getResultCode());
 if (getResultCode() != Activity.RESULT_OK) {
 // A foreground activity cancelled the
broadcast
 return;
 }

 int requestCode =
i.getIntExtra(PollService.REQUEST_CODE, 0);
 Notification notification = (Notification)

i.getParcelableExtra(PollService.NOTIFICATION);

 NotificationManagerCompat notificationManager
=
 NotificationManagerCompat.from(c);
 notificationManager.notify(requestCode,
notification);
 }
}

Next, register your new receiver and
assign it a priority. To ensure that
NotificationReceiver receives
the broadcast after your dynamically
registered receiver (so it can check to
see whether it should post the
notification to
NotificationManager), you need
to set a low priority for
NotificationReceiver. Give it a
priority of -999 so that it runs last. This
is the lowest user-defined priority
possible (-1000 and below are
reserved).
Also, since this receiver is only used by
your application, you do not need it to be
externally visible. Set
android:exported="false" to keep

this receiver to yourself.

Listing 29.15 Registering the
notification receiver
(AndroidManifest.xml)
<receiver android:name=".StartupReceiver">
 <intent-filter>
 <action
android:name="android.intent.action.BOOT_COMPLETED"
/>
 </intent-filter>
</receiver>
<receiver android:name=".NotificationReceiver"
 android:exported="false">
 <intent-filter android:priority="-999">
 <action

android:name="com.bignerdranch.android.photogallery.SHOW_NOTIFICATION"
 />
 </intent-filter>
</receiver>

Run PhotoGallery and toggle background
polling a couple of times. You should
see that notifications no longer appear
when you have the app in the foreground.

(If you have not already done so, change
PollService.POLL_INTERVAL_MS to
60 seconds so that you do not have to
wait 15 minutes to verify that
notifications still work in the
background.)

Receivers and
Long-Running
Tasks
So what do you do if you want a
broadcast intent to kick off a longer-
running task than the restrictions of the
main run loop allow?
You have two options. The first is to put
that work into a service instead and start
the service in your broadcast receiver’s
small window of opportunity. This is the
method we recommend. A service can
take as long as it needs to service a

request. It can queue up multiple
requests and service them in order or
otherwise manage requests as it sees fit.
The second is to use the
BroadcastReceiver.goAsync()
method. This method returns a
BroadcastReceiver.PendingResult
object, which can be used to provide a
result at a later time. So you could give
that PendingResult to an
AsyncTask to perform some longer-
running work and then respond to the
broadcast by calling methods on
PendingResult.
There is one downside to using the
goAsync method: It is less flexible.
You still have to service the broadcast
within 10 seconds or so, and you have

fewer architectural options than you do
with a service.
Of course, goAsync() has one huge
advantage: You can set results for
ordered broadcasts with it. If you really
need that, nothing else will do. Just make
sure you do not take too long.

For the More
Curious: Local
Events
Broadcast intents allow you to propagate
information across the system in a global
fashion. What if you want to broadcast
the occurrence of an event within your
app’s process only? Using an event bus
is a great alternative.
An event bus operates on the idea of
having a shared bus, or stream of data,
that components within your application
can subscribe to. When an event is

posted to the bus, subscribed
components will be activated and have
their callback code executed.
EventBus by greenrobot is a third-party
event bus library we use in our Android
applications. Other alternatives to
consider include Square’s Otto, which is
another event bus implementation, or
using RxJava Subjects and
Observables to simulate an event
bus.
Android does provide a local way to
send broadcast intents, called
LocalBroadcastManager. But we
find that the third-party libraries
mentioned here provide a more flexible
and easier-to-use API for broadcasting
local events.

Using EventBus
To use EventBus in your application, you
must add a library dependency to your
project. Once the dependency is set up,
you define a class representing an event
(you can add fields to the event if you
need to pass data along):
public class NewFriendAddedEvent { }

You can post to the bus from just about
anywhere in your app:
EventBus eventBus = EventBus.getDefault();
eventBus.post(new NewFriendAddedEvent());

Other parts of your app can subscribe to
receive events by first registering to
listen on the bus. Often you will register

and unregister activities or fragments in
corresponding lifecycle methods, such
as onStart(…) and onStop(…):
// In some fragment or activity...
private EventBus mEventBus;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mEventBus = EventBus.getDefault();
}

@Override
public void onStart() {
 super.onStart();
 mEventBus.register(this);
}

@Override
public void onStop() {
 super.onStop();
 mEventBus.unregister(this);
}

You specify how a subscriber should
handle an event by implementing a
method with the appropriate event type
as input and adding the @Subscribe

annotation to that method. Using the
@Subscribe annotation with no
parameters means the event will be
processed on the same thread it was sent
from. You could instead use
@Subscribe(threadMode =
ThreadMode.MAIN) to ensure that the
event is processed on the main thread if
it happens to be issued from a
background thread.
// In some registered component, like a fragment or
activity...
@Subscribe(threadMode = ThreadMode.MAIN)
public void onNewFriendAdded(NewFriendAddedEvent
event){
 Friend newFriend = event.getFriend();
 // Update the UI or do something in response to
event...
}

Using RxJava

RxJava can also be used to implement an
event broadcasting mechanism. RxJava
is a library for writing “reactive”-style
Java code. That “reactive” idea is broad
and beyond the scope of what we can
cover here. The short story is that it
allows you to publish and subscribe to
sequences of events and gives you a
broad set of generic tools for
manipulating these event sequences.
So you could create something called a
Subject, which is an object you can
publish events to as well as subscribe to
events on.
Subject<Object, Object> eventBus =
 new SerializedSubject<>(PublishSubject.create());

You can publish events to it:
Friend someNewFriend = ...;

NewFriendAddedEvent event = new
NewFriendAddedEvent(someNewFriend);
eventBus.onNext(event);

and subscribe to events on it:
eventBus.subscribe(new Action1<Object>() {
 @Override
 public void call(Object event) {
 if (event instanceof NewFriendAddedEvent) {
 Friend newFriend =
((NewFriendAddedEvent)event).getFriend();
 // Update the UI
 }
 }
})

The advantage of RxJava’s solution is
that your eventBus is now also an
Observable, RxJava’s representation
of a stream of events. That means that
you get to use all of RxJava’s various
event manipulation tools. If that piques
your interest, check out the wiki on
RxJava’s project page: github.com/​
ReactiveX/​RxJava/​wiki.

For the More
Curious: Detecting
the Visibility of
Your Fragment
When you reflect on your PhotoGallery
implementation, you may notice that you
used the global broadcast mechanism to
broadcast the SHOW_NOTIFICATION
intent. However, you locked the
receiving of that broadcast to items local
to your app progress by using custom
permissions. You may find yourself
asking, “Why am I using a global

mechanism if I am just communicating
things in my own app? Why not a local
mechanism instead?”
This is because you were specifically
trying to solve the problem of knowing
whether PhotoGalleryFragment
was visible. The combination of ordered
broadcasts, standalone receivers, and
dynamically registered receivers you
implemented gets the job done. There is
not a more straightforward way to do
this in Android.
More specifically,
LocalBroadcastManager would
not work for PhotoGallery’s notification
broadcast and visible fragment
detection, for two main reasons.

First, LocalBroadcastManager
does not support ordered broadcasts
(though it does provide a blocking way
to broadcast, namely
sendBroadcastSync(Intent
intent)). This will not work for
PhotoGallery because you need to force
NotificationReceiver to run last
in the chain.
Second,
sendBroadcastSync(Intent
intent) does not support sending and
receiving a broadcast on separate
threads. In PhotoGallery you need to
send the broadcast from a background
thread (in
PollService.onHandleIntent(…)
and receive the intent on the main thread

(by the dynamic receiver that is
registered by
PhotoGalleryFragment on the
main thread in onStart(…)).
As of this writing, the semantics of
LocalBroadcastManager’s thread
delivery are not well documented and, in
our experience, are not intuitive. For
example, if you call
sendBroadcastSync(…) from a
background thread, all pending
broadcasts will get flushed out on that
background thread regardless of whether
they were posted from the main thread.
This is not to say
LocalBroadcastManager is not
useful. It is simply not the right tool for
the problems you solved in this chapter.

30
Browsing the

Web and
WebView

Each photo you get from Flickr has a
page associated with it. In this chapter,
you are going to update PhotoGallery so
that users can press a photo to see its
Flickr page. You will learn two different
ways to integrate web content into your
apps, shown in Figure 30.1. The first
works with the device’s browser app

(left), and the second uses a WebView
to display web content within
PhotoGallery (right).

Figure 30.1 Web content: two
different approaches

One Last Bit of
Flickr Data
For both ways, you need to get the URL
for a photo’s Flickr page. If you look at
the JSON you are currently receiving for
each photo, you can see that the photo
page is not part of those results.
{
 "photos": {
 ...,
 "photo": [
 {
 "id": "9452133594",
 "owner": "44494372@N05",
 "secret": "d6d20af93e",
 "server": "7365",
 "farm": 8,
 "title": "Low and Wisoff at Work",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0,

"url_s":"https://farm8.staticflickr.com/7365/9452133594_d6d20af93e_m.jpg"

 }, ...
]
 },
 "stat": "ok"
}

You might think that you are in for some
more JSON request writing. Fortunately,
that is not the case. If you look at the
“Web Page URLs” section of Flickr’s
documentation at www.flickr.com/​
services/​api/​
misc.urls.html, you will see that
you can create the URL for an individual
photo’s page like so:
 https://www.flickr.com/photos/user-id/photo-id

The photo-id seen here is the same as
the value of the id attribute from your
JSON. You are already stashing that in
mId in GalleryItem. What about

http://www.flickr.com/services/api/misc.urls.html

user-id? If you poke around the
documentation, you will find that the
owner attribute in your JSON is a user
ID. So if you pull out the owner
attribute, you should be able to build the
URL from your photo JSON:
 https://www.flickr.com/photos/owner/id

Update GalleryItem to put this plan
into action.

Listing 30.1 Adding code for
photo page
(GalleryItem.java)
public class GalleryItem {
 private String mCaption;
 private String mId;
 private String mUrl;
 private String mOwner;
 ...
 public void setUrl(String url) {
 mUrl = url;
 }

 public String getOwner() {
 return mOwner;
 }

 public void setOwner(String owner) {
 mOwner = owner;
 }

 public Uri getPhotoPageUri() {
 return
Uri.parse("https://www.flickr.com/photos/")
 .buildUpon()
 .appendPath(mOwner)
 .appendPath(mId)
 .build();
 }

 @Override
 public String toString() {
 return mCaption;
 }
}

Here, you create a new mOwner property
and add a short method called
getPhotoPageUri() to generate
photo page URLs as discussed above.
Now change parseItems(…) to read

in the owner attribute.

Listing 30.2 Reading in owner
attribute (FlickrFetchr.java)
public class FlickrFetchr {
 ...
 private void parseItems(List<GalleryItem> items,
JSONObject jsonBody)
 throws IOException, JSONException {

 JSONObject photosJsonObject =
jsonBody.getJSONObject("photos");
 JSONArray photoJsonArray =
photosJsonObject.getJSONArray("photo");

 for (int i = 0; i < photoJsonArray.length();
i++) {
 JSONObject photoJsonObject =
photoJsonArray.getJSONObject(i);

 GalleryItem item = new GalleryItem();

item.setId(photoJsonObject.getString("id"));

item.setCaption(photoJsonObject.getString("title"));

 if (!photoJsonObject.has("url_s")) {
 continue;
 }

item.setUrl(photoJsonObject.getString("url_s"));

item.setOwner(photoJsonObject.getString("owner"));
 items.add(item);
 }
 }
}

Easy peasy. Now to have fun with your
new photo page URL.

The Easy Way:
Implicit Intents
You will browse to this URL first by
using your old friend the implicit intent.
This intent will start up the browser with
your photo URL.
The first step is to make your app listen
to presses on an item in the
RecyclerView. Update
PhotoGalleryFragment’s
PhotoHolder to implement a click
listener that will fire an implicit intent.

Listing 30.3 Firing implicit

intent when item is pressed
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends
VisibleFragment {
 ...
 private class PhotoHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener {
 private ImageView mItemImageView;
 private GalleryItem mGalleryItem;

 public PhotoHolder(View itemView) {
 super(itemView);

 mItemImageView = (ImageView)
itemView.findViewById(R.id.item_image_view);
 itemView.setOnClickListener(this);
 }

 public void bindDrawable(Drawable drawable) {

mItemImageView.setImageDrawable(drawable);
 }

 public void bindGalleryItem(GalleryItem
galleryItem) {
 mGalleryItem = galleryItem;
 }

 @Override
 public void onClick(View v) {
 Intent i = new Intent(Intent.ACTION_VIEW,

mGalleryItem.getPhotoPageUri());
 startActivity(i);
 }
 }
 ...
}

Next, bind the PhotoHolder to a
GalleryItem in
PhotoAdapter.onBindViewHolder(…)

Listing 30.4 Binding
GalleryItem
(PhotoGalleryFragment.java)
private class PhotoAdapter extends
RecyclerView.Adapter<PhotoHolder> {
 ...
 @Override
 public void onBindViewHolder(PhotoHolder
photoHolder, int position) {
 GalleryItem galleryItem =
mGalleryItems.get(position);
 photoHolder.bindGalleryItem(galleryItem);
 Drawable placeholder =
getResources().getDrawable(R.drawable.bill_up_close);
 photoHolder.bindDrawable(placeholder);

mThumbnailDownloader.queueThumbnail(photoHolder,

galleryItem.getUrl());
 }
 ...
}

That is it. Start up PhotoGallery and
press on a photo. Your browser app
should pop up and load the photo page
for the item you pressed (similar to the
image on the left in Figure 30.1).

The Harder Way:
WebView
Using an implicit intent to display the
photo page is easy and effective. But
what if you do not want your app to open
the browser?
Often, you want to display web content
within your own activities instead of
heading off to the browser. You may
want to display HTML that you generate
yourself, or you may want to lock down
the browser somehow. For apps that
include help documentation, it is
common to implement it as a web page

so that it is easy to update. Opening a
web browser to a help web page does
not look professional, and it prevents
you from customizing behavior or
integrating that web page into your own
UI.
When you want to present web content
within your own UI, you use the
WebView class. We are calling this the
“harder” way here, but it is pretty
darned easy. (Anything is hard compared
to using implicit intents.)
The first step is to create a new activity
and fragment to display the WebView.
Start, as usual, by defining a layout file
and naming it
fragment_photo_page.xml.
Make ConstraintLayout the top-

level layout. In the visual editor, drag a
WebView into the
ConstraintLayout as a child. (You
will find WebView under the Containers
section.)
Once the WebView is added, add a
constraint for every side to its parent.
That gives you the following constraints:

from the top of WebView to
the top of its parent

from the bottom of WebView
to the bottom of its parent
from the left of WebView to
the left of its parent

from the right of WebView to
the right of its parent

Finally, change the height and width to
Any Size and change all the margins to 0.
Oh, and give your WebView an ID:
web_view.
You may be thinking, “That
ConstraintLayout is not useful.”
True enough – for the moment. You will
fill it out later in the chapter with
additional “chrome.”
Next, get the rudiments of your fragment
set up. Create PhotoPageFragment
as a subclass of the
VisibleFragment class you created
in the last chapter. You will need to
inflate your layout file, extract your
WebView from it, and forward along
the URL to display as a fragment
argument.

Listing 30.5 Setting up your
web browser fragment
(PhotoPageFragment.java)
public class PhotoPageFragment extends
VisibleFragment {
 private static final String ARG_URI =
"photo_page_url";

 private Uri mUri;
 private WebView mWebView;

 public static PhotoPageFragment newInstance(Uri
uri) {
 Bundle args = new Bundle();
 args.putParcelable(ARG_URI, uri);

 PhotoPageFragment fragment = new
PhotoPageFragment();
 fragment.setArguments(args);
 return fragment;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mUri = getArguments().getParcelable(ARG_URI);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_photo_page,
container, false);

 mWebView = (WebView)
v.findViewById(R.id.web_view);

 return v;
 }
}

For now, this is just a skeleton. You will
fill it out a bit more in a moment. But
first, create the containing
PhotoPageActivity class using
good old
SingleFragmentActivity.

Listing 30.6 Creating web
activity

(PhotoPageActivity.java)
public class PhotoPageActivity extends
SingleFragmentActivity {

 public static Intent newIntent(Context context,
Uri photoPageUri) {
 Intent i = new Intent(context,
PhotoPageActivity.class);
 i.setData(photoPageUri);
 return i;
 }

 @Override
 protected Fragment createFragment() {
 return
PhotoPageFragment.newInstance(getIntent().getData());
 }
}

Switch up your code in
PhotoGalleryFragment to launch
your new activity instead of the implicit
intent.

Listing 30.7 Switching to
launch your activity

(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends
VisibleFragment {
 ...
 private class PhotoHolder extends
RecyclerView.ViewHolder
 implements View.OnClickListener{
 ...
 @Override
 public void onClick(View v) {
 Intent i = new Intent(Intent.ACTION_VIEW,
mGalleryItem.getPhotoPageUri());
 Intent i = PhotoPageActivity
 .newIntent(getActivity(),
mGalleryItem.getPhotoPageUri());
 startActivity(i);
 }
 }
 ...
}

And, finally, add your new activity to the
manifest.

Listing 30.8 Adding activity to
manifest
(AndroidManifest.xml)

<manifest ... >
 ...
 <application
 ...>
 <activity
 android:name=".PhotoGalleryActivity"
 android:label="@string/app_name" >
 ...
 </activity>

 <activity
 android:name=".PhotoPageActivity" />

 <service android:name=".PollService" />
 ...
 </application>

</manifest>

Run PhotoGallery and press on a
picture. You should see a new empty
activity pop up.
OK, now to get to the meat and actually
make your fragment do something. You
need to do three things to make your
WebView successfully display a Flickr
photo page. The first one is

straightforward – you need to tell it what
URL to load.
The second thing you need to do is
enable JavaScript. By default,
JavaScript is off. You do not always
need to have it on, but for Flickr, you do.
(If you run Android Lint, it gives you a
warning for doing this. It is worried
about cross-site scripting attacks. You
can suppress this Lint warning by
annotating onCreateView(…) with
@SuppressLint("SetJavaScriptEnabled")

Finally, you need to provide a default
implementation of a class called
WebViewClient. WebViewClient
is used to respond to rendering events on
a WebView. We will discuss this class
a bit more after you enter the code.

Listing 30.9 Loading URL into
WebView
(PhotoPageFragment.java)
public class PhotoPageFragment extends
VisibleFragment {
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_photo_page,
container, false);

 mWebView = (WebView)
v.findViewById(R.id.web_view);

mWebView.getSettings().setJavaScriptEnabled(true);
 mWebView.setWebViewClient(new
WebViewClient());
 mWebView.loadUrl(mUri.toString());

 return v;
 }
}

Loading the URL has to be done after

configuring the WebView, so you do
that last. Before that, you turn JavaScript
on by calling getSettings() to get
an instance of WebSettings and then
calling
WebSettings.setJavaScriptEnabled(true)
WebSettings is the first of the three
ways you can modify your WebView. It
has various properties you can set, like
the user agent string and text size.
After that, you add a WebViewClient
to your WebView. To know why, let us
first address what happens without a
WebViewClient.
A new URL can be loaded in a couple of
different ways: The page can tell you to
go to another URL on its own (a
redirect), or you can click on a link.

Without a WebViewClient,
WebView will ask the activity manager
to find an appropriate activity to load the
new URL.
This is not what you want to have
happen. Many sites (including Flickr’s
photo pages) immediately redirect to a
mobile version of the same site when
you load them from a phone browser.
There is not much point to making your
own view of the page if it is going to fire
an implicit intent anyway when that
happens.
If, on the other hand, you provide your
own WebViewClient to your
WebView, the process works
differently. Instead of asking the activity
manager what to do, it asks your

WebViewClient. And in the default
WebViewClient implementation, it
says, “Go load the URL yourself!” And
so the page will appear in your
WebView.
Run PhotoGallery, press an item, and
you should see the item’s photo page
displayed in the WebView (just like the
image on the right in Figure 30.1).

Using WebChromeClient
to spruce things up
Since you are taking the time to create
your own WebView, let’s spruce it up a
bit by adding a progress bar and
updating the toolbar’s subtitle with the

title of the loaded page. Crack open
fragment_photo_page.xml once
again.
Drag in a ProgressBar as a second
child for your ConstraintLayout.
Use the ProgressBar (Horizontal) version of
ProgressBar. Delete the
WebView’s top constraint, and then set
its height to Fixed so that you can easily
work with its constraint handles.
With that done, create the following
additional constraints:

from the ProgressBar to
the top, right, and left of its
parent

from the WebView’s top to the
bottom of the ProgressBar

With that done, change the height of the
WebView back to Any Size, change the
ProgressBar’s height to wrap_content,
and change the ProgressBar’s width
to Any Size.
Finally, select the ProgressBar and
move your attention to the properties
window. Change the visibility to gone
and change the tools visibility to
visible. Rename its ID to
progress_bar.
Your result will look like Figure 30.2.

Figure 30.2 Adding a progress
bar

To hook up the ProgressBar, you
will use the second callback on

WebView: WebChromeClient.
WebViewClient is an interface for
responding to rendering events;
WebChromeClient is an event interface
for reacting to events that should change
elements of chrome around the browser.
This includes JavaScript alerts,
favicons, and of course updates for
loading progress and the title of the
current page.
Hook it up in onCreateView(…).

Listing 30.10 Using
WebChromeClient

(PhotoPageFragment.java)
public class PhotoPageFragment extends
VisibleFragment {
 ...
 private WebView mWebView;
 private ProgressBar mProgressBar;
 ...

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_photo_page,
container, false);

 mProgressBar =
(ProgressBar)v.findViewById(R.id.progress_bar);
 mProgressBar.setMax(100); // WebChromeClient
reports in range 0-100

 mWebView = (WebView)
v.findViewById(R.id.web_view);

mWebView.getSettings().setJavaScriptEnabled(true);
 mWebView.setWebChromeClient(new
WebChromeClient() {
 public void onProgressChanged(WebView
webView, int newProgress) {
 if (newProgress == 100) {

mProgressBar.setVisibility(View.GONE);
 } else {

mProgressBar.setVisibility(View.VISIBLE);

mProgressBar.setProgress(newProgress);
 }
 }

 public void onReceivedTitle(WebView
webView, String title) {
 AppCompatActivity activity =
(AppCompatActivity) getActivity();

activity.getSupportActionBar().setSubtitle(title);
 }
 });
 mWebView.setWebViewClient(new
WebViewClient());
 mWebView.loadUrl(mUri.toString());

 return v;
 }
}

Progress updates and title updates each
have their own callback method,
onProgressChanged(WebView,
int) and
onReceivedTitle(WebView,
String). The progress you receive
from
onProgressChanged(WebView,
int) is an integer from 0 to 100. If it is
100, you know that the page is done

loading, so you hide the
ProgressBar by setting its visibility
to View.GONE.
Run PhotoGallery to test your changes. It
should look like Figure 30.3.

Figure 30.3 Fancy WebView

When you press on a photo,
PhotoPageActivity pops up. A
progress bar displays as the page loads

and a subtitle reflecting the subtitle
received in onReceivedTitle(…)
appears in the toolbar. Once the page is
loaded, the progress bar disappears.

Proper Rotation
with WebView
Try rotating your screen. While it does
work correctly, you will notice that the
WebView has to completely reload the
web page. This is because WebView
has too much data to save it all inside
onSaveInstanceState(…). It has
to start from scratch each time it is re-
created on rotation.
You may think the easiest way to resolve
this problem would be to retain
PhotoPageFragment. However,
this would not work, because WebView

is part of the view hierarchy and is thus
still destroyed and re-created on
rotation.
For some classes like this
(VideoView is another one), the
Android documentation recommends that
you allow the activity to handle the
configuration change itself. This means
that instead of the activity being
destroyed on rotation, it simply moves
its views around to fit the new screen
size. As a result, WebView does not
have to reload all of its data.
To tell PhotoPageActivity to
handle its own darned configuration
changes, make the following tweak to
AndroidManifest.xml.

Listing 30.11 Handling
configuration changes yourself
(AndroidManifest.xml)
<manifest ... >
 ...
 <activity
 android:name=".PhotoPageActivity"

android:configChanges="keyboardHidden|orientation|screenSize"
 />
 ...
</manifest>

This attribute says that if the
configuration changes because the
keyboard was opened or closed, due to
an orientation change, or due to the
screen size changing (which also
happens when switching between
portrait and landscape after Android
3.2), then the activity should handle the
change itself.

And that is it. Try rotating again and
admire how smoothly the change is
handled.

Dangers of handling
configuration changes
That is so easy and works so well that
you are probably wondering why you do
not do this all the time. It seems like it
would make life so much easier.
However, handling configuration
changes on your own is a dangerous
habit.
First, resource qualifier-based
configuration changes no longer work
automatically. You instead have to

manually reload your view when a
configuration change is detected. This
can be more complicated than it sounds.
Second, and more important, allowing
the activity to handle configuration
changes will likely cause you to not
bother with overriding
Activity.onSavedInstanceState(…)
to stash transient UI states. Doing so is
still necessary, even if the activity is
handling configuration changes on its
own, because you still have to worry
about death and re-creation in low-
memory situations. (Remember, the
activity can be destroyed and stashed by
the system at any time if it is not in the
running state, as shown in Figure 3.14 .)

For the More
Curious: Injecting
JavaScript Objects
In this chapter, you have seen how to use
WebViewClient and
WebChromeClient to respond to
specific events that happen in your
WebView. However, it is possible to
do even more than that by injecting
arbitrary JavaScript objects into the
document contained in the WebView
itself. Check out the documentation at
developer.android.com/​
reference/​android/​webkit/​

WebView.html and scroll down to
the
addJavascriptInterface(Object,
String) method. Using this, you can
inject an arbitrary object into the
document with a name you specify:
mWebView.addJavascriptInterface(new Object() {
 @JavascriptInterface
 public void send(String message) {
 Log.i(TAG, "Received message: " + message);
 }
}, "androidObject");

And then invoke it like so:
<input type="button" value="In WebView!"
 onClick="sendToAndroid('In Android land')" />

<script type="text/javascript">
 function sendToAndroid(message) {
 androidObject.send(message);
 }
</script>

There are a couple of tricky parts about
this. The first is that when you call

send(String), the Java method is
not called on the main thread. It is called
on a thread owned by WebView
instead. So if you want to update the
Android UI, you will need to use a
Handler to pass control back over to
the main thread.
The other part is that not many data types
are supported. You have String, the
core primitive types, and that is it.
Anything more sophisticated must be
marshalled through a String, usually
by converting it to JSON before sending
and then parsing it out when receiving.
Starting with API 17 (Jelly Bean 4.2)
and up, only public methods annotated
@JavascriptInterface are exported
to JavaScript. Prior to that, all public

methods in the object hierarchy were
accessible.
Either way, this could be dangerous. You
are letting some potentially strange web
page fiddle with your program. So to be
safe, it is a good idea to make sure you
own the HTML in question – either that,
or be extremely conservative with the
interface you expose.

For the More
Curious: WebView
Updates
WebView underwent a serious overhaul
with the release of KitKat (Android 4.4,
API 19). The new WebView is based
on the Chromium open source project. It
now shares the same rendering engine
used by the Chrome for Android app,
meaning pages should look and behave
more consistently across the two.
(However, WebView does not have all
the features Chrome for Android does.

You can see a table comparing the two at
developer.chrome.com/​
multidevice/​webview/​
overview.)
The move to Chromium meant some
really exciting improvements for
WebView, such as support for new web
standards like HTML5 and CSS3, an
updated JavaScript engine, and
improved performance. From a
development perspective, one of the
most exciting new features is the added
support for remote debugging of
WebView using Chrome DevTools
(which can be enabled by calling
WebView.setWebContentsDebuggingEnabled()

As of Lollipop (Android 5.0), the
Chromium layer of WebView is updated

automatically from the Google Play
Store. Users no longer wait for new
releases of Android to receive security
updates (and new features). This is big
news.
More recently, as of Nougat (Android
7.0), the Chromium layer for WebView
comes directly from the Chrome APK
file, lowering memory and resource
usage. Take solace in knowing that
Google works to keep the WebView
components up to date.

Challenge: Using
the Back Button
for Browser History
You may have noticed that you can
follow other links within the WebView
once you launch
PhotoPageActivity. However, no
matter how many links you follow, the
Back button always brings you
immediately back to
PhotoGalleryActivity. What if
you instead want the Back button to
bring users through their browsing

history within the WebView?
Implement this behavior by overriding
the Back button method
Activity.onBackPressed().
Within that method you can use a
combination of WebView’s browsing
history methods
(WebView.canGoBack() and
WebView.goBack()) to do the right
thing. If there are items in the
WebView’s browsing history, go back
to the previous item. Otherwise, allow
the Back button to behave as normal by
calling through to
super.onBackPressed().

Challenge:
Supporting Non-
HTTP Links
If you poke around within
PhotoPageFragment’s WebView,
you may stumble upon non-HTTP links.
For example, as of this writing, the
photo detail page Flickr provides
displays an Open in App button. Pressing
this button is supposed to launch the
Flickr app if it is installed. If it is not
installed, the Google Play Store should
launch and offer the option to install the

Flickr app.
However, if you press Open in App, the
WebView instead displays error text, as
shown in Figure 30.4.

Figure 30.4 Open in App error

This is because you provided a
WebViewClient that tells the
WebView to always try to load the URI
into itself, even if the URI scheme is not
supported by WebView.
To fix the error, you want non-HTTP
URIs to be handled by the application
that is the best fit for the URI. Before a
URI is loaded, check the scheme. If the
scheme is not HTTP or HTTPS, issue an
Intent.ACTION_VIEW for the URI.

31
Custom Views

and Touch
Events

In this chapter, you will learn how to
handle touch events by writing a custom
subclass of View named
BoxDrawingView. The
BoxDrawingView class will be the
star of a new project named
DragAndDraw and will draw boxes in
response to the user touching the screen

and dragging. The finished product will
look like Figure 31.1.

Figure 31.1 Boxes drawn in
many shapes and sizes

Setting Up the
DragAndDraw
Project
Create a new project named
DragAndDraw. Select API 19 as the
minimum SDK and create an empty
activity. Name the activity
DragAndDrawActivity.

DragAndDrawActivity will be a
subclass of
SingleFragmentActivity that
inflates the usual single-fragment-
containing layout. Copy
SingleFragmentActivity.java
and its activity_fragment.xml
layout file into the DragAndDraw
project.
In DragAndDrawActivity.java,
make DragAndDrawActivity a
SingleFragmentActivity that
creates a DragAndDrawFragment
(a class that you will create next).

Listing 31.1 Modifying the
activity
(DragAndDrawActivity.java)

public class DragAndDrawActivity extends
AppCompatActivity SingleFragmentActivity {

 @Override
 protected Fragment createFragment() {
 return DragAndDrawFragment.newInstance();
 }

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 }
}

To prepare a layout for
DragAndDrawFragment, rename the
activity_drag_and_draw.xml
layout file to
fragment_drag_and_draw.xml.
DragAndDrawFragment’s layout
will eventually consist of a
BoxDrawingView, the custom view
that you are going to write. All of the
drawing and touch-event handling will

be implemented in BoxDrawingView.
Create a new class named
DragAndDrawFragment and make
its superclass
android.support.v4.app.Fragment
Override onCreateView(…) to
inflate
fragment_drag_and_draw.xml.

Listing 31.2 Creating the
fragment
(DragAndDrawFragment.java)
public class DragAndDrawFragment extends Fragment {

 public static DragAndDrawFragment newInstance() {
 return new DragAndDrawFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle

savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_drag_and_draw,
container, false);
 return v;
 }
}

Run DragAndDraw to confirm that your
app is set up properly. It should look
like Figure 31.2.

Figure 31.2 DragAndDraw with
default layout

Creating a Custom
View
Android provides many excellent
standard views and widgets, but
sometimes you need a custom view that
presents visuals that are unique to your
app.
While there are all kinds of custom
views, you can shoehorn them into two
broad categories:

simple A simple view may be
complicated inside; what
makes it “simple” is that

it has no child views. A
simple view will almost
always perform custom
rendering.

composite Composite views are
composed of other view
objects. Composite views
typically manage child
views but do not perform
custom rendering. Instead,
rendering is delegated to
each child view.

There are three steps to follow when
creating a custom view:

1. Pick a superclass. For a simple
custom view, View is a blank

canvas, so it is the most
common choice. For a
composite custom view,
choose an appropriate layout
class, such as FrameLayout.

2. Subclass this class and
override the constructors from
the superclass.

3. Override other key methods to
customize behavior.

Creating
BoxDrawingView

BoxDrawingView will be a simple
view and a direct subclass of View.

Create a new class named
BoxDrawingView and make View
its superclass. In
BoxDrawingView.java, add two
constructors.

Listing 31.3 Initial
implementation for
BoxDrawingView
(BoxDrawingView.java)
public class BoxDrawingView extends View {

 // Used when creating the view in code
 public BoxDrawingView(Context context) {
 this(context, null);
 }

 // Used when inflating the view from XML
 public BoxDrawingView(Context context,
AttributeSet attrs) {
 super(context, attrs);
 }
}

You write two constructors because your
view could be instantiated in code or
from a layout file. Views instantiated
from a layout file receive an instance of
AttributeSet containing the XML
attributes that were specified in XML.
Even if you do not plan on using both
constructors, it is good practice to
include them.
Next, update your
fragment_drag_and_draw.xml
layout file to use your new view.

Listing 31.4 Adding
BoxDrawingView to layout
(fragment_drag_and_draw.xml)
<android.support.constraint.ConstraintLayout
 android:id="@+id/activity_drag_and_draw"

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-
auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

tools:context="com.bignerdranch.android.draganddraw.DragAndDrawActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"

app:layout_constraintBottom_toBottomOf="@+id/activity_drag_and_draw"

app:layout_constraintLeft_toLeftOf="@+id/activity_drag_and_draw"

app:layout_constraintRight_toRightOf="@+id/activity_drag_and_draw"

app:layout_constraintTop_toTopOf="@+id/activity_drag_and_draw"/>

</android.support.constraint.ConstraintLayout>
<com.bignerdranch.android.draganddraw.BoxDrawingView

xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

You must use BoxDrawingView’s
fully qualified class name so that the
layout inflater can find it. The inflater
works through a layout file creating
View instances. If the element name is
an unqualified class name, then the
inflater looks for a class with that name
in the android.view and android.widget
packages. If the class lives somewhere
else, then the layout inflater will not find
it, and your app will crash.
So, for custom classes and other classes
that live outside of android.view and
android.widget, you must always specify
the fully qualified class name.
Run DragAndDraw to confirm that all
the connections are correct. All you will

see is an empty view (Figure 31.3).

Figure 31.3 BoxDrawingView
with no boxes

The next step is to get
BoxDrawingView listening for touch
events and using the information from
them to draw boxes on the screen.

Handling Touch
Events
One way to listen for touch events is to
set a touch event listener using the
following View method:
 public void
setOnTouchListener(View.OnTouchListener l)

This method works the same way as
setOnClickListener(View.OnClickListener)
You provide an implementation of
View.OnTouchListener, and your
listener will be called every time a
touch event happens.
However, because you are subclassing

View, you can take a shortcut and
override this View method instead:
 public boolean onTouchEvent(MotionEvent event)

This method receives an instance of
MotionEvent, a class that describes
the touch event, including its location
and its action. The action describes the
stage of the event:

Action
constants Description

ACTION_DOWN
user’s finger touches
the screen

ACTION_MOVE
user moves finger on
the screen

ACTION_UP
user lifts finger off the
screen

ACTION_CANCEL
a parent view has
intercepted the touch
event

In your implementation of
onTouchEvent(MotionEvent),
you can check the value of the action by
calling the MotionEvent method:
 public final int getAction()

Let’s get to it. In
BoxDrawingView.java, add a log
tag and then an implementation of
onTouchEvent(MotionEvent)
that logs a message for each of the four
different actions.

Listing 31.5 Implementing
BoxDrawingView

(BoxDrawingView.java)
public class BoxDrawingView extends View {
 private static final String TAG =
"BoxDrawingView";
 ...
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 PointF current = new PointF(event.getX(),
event.getY());
 String action = "";

 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 action = "ACTION_DOWN";
 break;
 case MotionEvent.ACTION_MOVE:
 action = "ACTION_MOVE";
 break;
 case MotionEvent.ACTION_UP:
 action = "ACTION_UP";
 break;
 case MotionEvent.ACTION_CANCEL:
 action = "ACTION_CANCEL";
 break;
 }

 Log.i(TAG, action + " at x=" + current.x +
 ", y=" + current.y);

 return true;
 }

}

Notice that you package your X and Y
coordinates in a PointF object. You
want to pass these two values together
as you go through the rest of the chapter.
PointF is a container class provided
by Android that does this for you.
Run DragAndDraw and pull up Logcat.
Touch the screen and drag your finger.
You should see a report of the X and Y
coordinates of every touch action that
BoxDrawingView receives.

Tracking across motion
events
BoxDrawingView is intended to

draw boxes on the screen, not just log
coordinates. There are a few problems
to solve to get there.
First, to define a box, you need two
points: the origin point (where the finger
was initially placed) and the current
point (where the finger currently is).
To define a box, then, requires keeping
track of data from more than one
MotionEvent. You will store this
data in a Box object.
Create a class named Box to represent
the data that defines a single box.

Listing 31.6 Adding Box
(Box.java)
public class Box {
 private PointF mOrigin;

 private PointF mCurrent;

 public Box(PointF origin) {
 mOrigin = origin;
 mCurrent = origin;
 }

 public PointF getCurrent() {
 return mCurrent;
 }

 public void setCurrent(PointF current) {
 mCurrent = current;
 }

 public PointF getOrigin() {
 return mOrigin;
 }
}

When the user touches
BoxDrawingView, a new Box will
be created and added to a list of existing
boxes (Figure 31.4).

Figure 31.4 Objects in
DragAndDraw

Back in BoxDrawingView, use your
new Box object to track your drawing

state.

Listing 31.7 Adding drag
lifecycle methods
(BoxDrawingView.java)
public class BoxDrawingView extends View {
 private static final String TAG =
"BoxDrawingView";

 private Box mCurrentBox;
 private List<Box> mBoxen = new ArrayList<>();
 ...
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 PointF current = new PointF(event.getX(),
event.getY());
 String action = "";

 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 action = "ACTION_DOWN";
 // Reset drawing state
 mCurrentBox = new Box(current);
 mBoxen.add(mCurrentBox);
 break;
 case MotionEvent.ACTION_MOVE:
 action = "ACTION_MOVE";
 if (mCurrentBox != null) {
 mCurrentBox.setCurrent(current);
 invalidate();

 }
 break;
 case MotionEvent.ACTION_UP:
 action = "ACTION_UP";
 mCurrentBox = null;
 break;
 case MotionEvent.ACTION_CANCEL:
 action = "ACTION_CANCEL";
 mCurrentBox = null;
 break;
 }

 Log.i(TAG, action + " at x=" + current.x +
 ", y=" + current.y);

 return true;
 }
}

Any time an ACTION_DOWN motion
event is received, you set mCurrentBox
to be a new Box with its origin as the
event’s location. This new Box is added
to the list of boxes. (In the next section,
when you implement custom drawing,
BoxDrawingView will draw every
Box within this list to the screen.)

As the user’s finger moves around the
screen, you update
mCurrentBox.mCurrent. Then, when
the touch is canceled or when the user’s
finger leaves the screen, you null out
mCurrentBox to end your draw motion.
The Box is complete; it is stored safely
in the list but will no longer be updated
about motion events.
Notice the call to invalidate() in
the case of ACTION_MOVE. This forces
BoxDrawingView to redraw itself so
that the user can see the box while
dragging across the screen. Which brings
you to the next step: drawing the boxes
to the screen.

Rendering Inside
onDraw(Canvas)
When your application is launched, all
of its views are invalid. This means that
they have not drawn anything to the
screen. To fix this situation, Android
calls the top-level View’s draw()
method. This causes that view to draw
itself, which causes its children to draw
themselves. Those children’s children
then draw themselves, and so on down
the hierarchy. When all the views in the
hierarchy have drawn themselves, the
top-level View is no longer invalid.

To hook into this drawing, you override
the following View method:
 protected void onDraw(Canvas canvas)

The call to invalidate() that you
make in response to ACTION_MOVE in
onTouchEvent(MotionEvent)
makes the BoxDrawingView invalid
again. This causes it to redraw itself and
will cause onDraw(Canvas) to be
called again.
Now let’s consider the Canvas
parameter. Canvas and Paint are the
two main drawing classes in Android:

 The Canvas class has all the
drawing operations you
perform. The methods you call
on Canvas determine where

and what you draw – a line, a
circle, a word, or a rectangle.

 The Paint class determines
how these operations are done.
The methods you call on
Paint specify characteristics
– whether shapes are filled,
which font text is drawn in, and
what color lines are.

In BoxDrawingView.java, create
two Paint objects in
BoxDrawingView’s XML
constructor.

Listing 31.8 Creating your
paint (BoxDrawingView.java)
public class BoxDrawingView extends View {
 private static final String TAG =

"BoxDrawingView";

 private Box mCurrentBox;
 private List<Box> mBoxen = new ArrayList<>();
 private Paint mBoxPaint;
 private Paint mBackgroundPaint;
 ...
 // Used when inflating the view from XML
 public BoxDrawingView(Context context,
AttributeSet attrs) {
 super(context, attrs);

 // Paint the boxes a nice semitransparent red
(ARGB)
 mBoxPaint = new Paint();
 mBoxPaint.setColor(0x22ff0000);

 // Paint the background off-white
 mBackgroundPaint = new Paint();
 mBackgroundPaint.setColor(0xfff8efe0);
 }
}

Armed with paint, you can now draw
your boxes to the screen.

Listing 31.9 Overriding
onDraw(Canvas)
(BoxDrawingView.java)

public BoxDrawingView(Context context, AttributeSet
attrs) {
 ...
}

@Override
protected void onDraw(Canvas canvas) {
 // Fill the background
 canvas.drawPaint(mBackgroundPaint);

 for (Box box : mBoxen) {
 float left = Math.min(box.getOrigin().x,
box.getCurrent().x);
 float right = Math.max(box.getOrigin().x,
box.getCurrent().x);
 float top = Math.min(box.getOrigin().y,
box.getCurrent().y);
 float bottom = Math.max(box.getOrigin().y,
box.getCurrent().y);

 canvas.drawRect(left, top, right, bottom,
mBoxPaint);
 }
}

The first part of this code is
straightforward: Using your off-white
background paint, you fill the canvas
with a backdrop for your boxes.

Then, for each box in your list of boxes,
you determine what the left, right, top,
and bottom of the box should be by
looking at the two points for the box.
The left and top values will be the
minimum values, and the bottom and
right will be the maximum values.
After calculating these values, you call
Canvas.drawRect(…) to draw a
red rectangle onto the screen.
Run DragAndDraw and draw some red
rectangles (Figure 31.5).

Figure 31.5 An expression of
programmerly emotion

And that is it. You have now created a
view that captures its own touch events

and performs its own drawing.

Challenge: Saving
State
Figure out how to persist your boxes
across orientation changes from within
your View. This can be done with the
following View methods:
 protected Parcelable onSaveInstanceState()
 protected void onRestoreInstanceState(Parcelable
state)

These methods do not work like
Activity and Fragment’s
onSaveInstanceState(Bundle)
First, they will only be called if your
View has an ID. Second, instead of
taking in a Bundle, they return and

process an object that implements the
Parcelable interface. We recommend
using a Bundle as the Parcelable
instead of implementing a Parcelable
class yourself. (Implementing the
Parcelable interface is complicated. It
is better to avoid doing so when
possible.)
Finally, you must also maintain the saved
state of BoxDrawingView’s parent,
the View class. Save the result of
super.onSaveInstanceState()
in your new Bundle and send that same
result to the super class when calling
super.onRestoreInstanceState(Parcelable)

Challenge:
Rotating Boxes
For a harder challenge, make it so that
you can use a second finger to rotate
your rectangles. To do this, you will
need to handle multiple pointers in your
MotionEvent handling code. You
will also need to rotate your canvas.
When dealing with multiple touches, you
need these extra ideas:

pointer
index

tells you which pointer in the
current set of pointers the
event is for

pointer
ID

gives you a unique ID for a
specific finger in a gesture

The pointer index may change, but the
pointer ID will not.
For more details, check out the
documentation for the following
MotionEvent methods:
 public final int getActionMasked()
 public final int getActionIndex()
 public final int getPointerId(int pointerIndex)
 public final float getX(int pointerIndex)
 public final float getY(int pointerIndex)

Also look at the documentation for the
ACTION_POINTER_UP and
ACTION_POINTER_DOWN constants.

32
Property

Animation
For an app to be functional, all you need
to do is write your code correctly so that
it does not crash. For an app to be a joy
to use, though, you need to give it more
love than that. You need to make it feel
like a real, physical phenomenon playing
out on your phone or tablet’s screen.
Real things move. To make your UI
move, you animate its elements into new

positions.
In this chapter, you will write an app
called Sunset that shows a scene of the
sun in the sky. When you press on the
scene, it will animate the sun down
below the horizon, and the sky will
change colors like a sunset.

Building the Scene
The first step is to build the scene that
will be animated. Create a new project
called Sunset. Make sure that your
minSdkVersion is set to 19 and use the
empty activity template. Name your main
activity SunsetActivity and add
SingleFragmentActivity.java

and activity_fragment.xml to
your project.
Now, build out your scene. A sunset by
the sea should be colorful, so it will
help to name a few colors. Add a
colors.xml file to your
res/values folder, then add the
following values to it:

Listing 32.1 Adding sunset
colors
(res/values/colors.xml)
<resources>
 <color name="colorPrimary">#3F51B5</color>
 <color name="colorPrimaryDark">#303F9F</color>
 <color name="colorAccent">#FF4081</color>

 <color name="bright_sun">#fcfcb7</color>
 <color name="blue_sky">#1e7ac7</color>
 <color name="sunset_sky">#ec8100</color>
 <color name="night_sky">#05192e</color>
 <color name="sea">#224869</color>
</resources>

Rectangular views will make for a fine
impression of the sky and the sea. But
people will not buy a rectangular sun, no
matter how much you argue in favor of
its technical simplicity. So, in the
res/drawable/ folder, add an oval
shape drawable for a circular sun called
sun.xml.

Listing 32.2 Adding sun XML
drawable
(res/drawable/sun.xml)
<shape
xmlns:android="http://schemas.android.com/apk/res/android"

 android:shape="oval">
 <solid android:color="@color/bright_sun" />
</shape>

When you display this oval in a square
view, you will get a circle. People will

nod their heads in approval, and then
think about the real sun up in the sky.
Next, build the entire scene out in a
layout file. This layout will be used in
SunsetFragment, which you will
build in a moment, so name it
fragment_sunset.xml.

Listing 32.3 Setting up the
layout
(res/layout/fragment_sunset.xml
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <FrameLayout
 android:id="@+id/sky"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="0.61"
 android:background="@color/blue_sky">

 <ImageView
 android:id="@+id/sun"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:layout_gravity="center"
 android:src="@drawable/sun" />
 </FrameLayout>

 <View
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="0.39"
 android:background="@color/sea" />
</LinearLayout>

Check out the preview. You should see a
daytime scene of the sun in a blue sky
over a dark blue sea. You may find
yourself thinking about a trip you once
took to the beach or aboard a boat.
Time to finally get this thing up and
running on a device. Create a fragment
called SunsetFragment and add a
newInstance() method. In
onCreateView(…), inflate the

fragment_sunset layout file and
return the resulting view.

Listing 32.4 Creating
SunsetFragment
(SunsetFragment.java)
public class SunsetFragment extends Fragment {

 public static SunsetFragment newInstance() {
 return new SunsetFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View view =
inflater.inflate(R.layout.fragment_sunset, container,
false);

 return view;
 }
}

Now turn SunsetActivity into a
SingleFragmentActivity that

displays your fragment.

Listing 32.5 Displaying
SunsetFragment
(SunsetActivity.java)
public class SunsetActivity extends
SingleFragmentActivity {

 @Override
 protected Fragment createFragment() {
 return SunsetFragment.newInstance();
 }

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 ...
 }
}

Take a moment to run Sunset to make
sure everything is hooked up correctly
before moving on. It should look like
Figure 32.1. Ahhh.

Figure 32.1 Before sunset

Figure 32.1 Before sunset

Simple Property
Animation
Now that you have the scene set up, it is
time to make it do your bidding by
moving parts of it around. You are going
to animate the sun down below the
horizon.
But before you start animating, you will
want a few bits of information handy in
your fragment. Inside of
onCreateView(…), pull out a couple
of views into fields on
SunsetFragment.

Listing 32.6 Pulling out view
references
(SunsetFragment.java)
public class SunsetFragment extends Fragment {

 private View mSceneView;
 private View mSunView;
 private View mSkyView;

 public static SunsetFragment newInstance() {
 return new SunsetFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState)
{
 View view =
inflater.inflate(R.layout.fragment_sunset, container,
false);

 mSceneView = view;
 mSunView = view.findViewById(R.id.sun);
 mSkyView = view.findViewById(R.id.sky);

 return view;
 }
}

Now that you have those, you can write
your code to animate the sun. Here is the
plan: Smoothly move mSunView so
that its top is right at the edge of the top
of the sea. You will do this by
translating the location of the top of
mSunView to the bottom of its parent.
The first step is to find where the
animation should start and end. Write
this first step in a new method called
startAnimation().

Listing 32.7 Getting tops of
views (SunsetFragment.java)
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState)
{
 ...
 }

 private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();
 }

The getTop() method is one of four
methods on View that return the local
layout rect for that view: getTop(),
getBottom(), getRight(), and
getLeft(). A view’s local layout rect
is the position and size of that view in
relation to its parent, as determined
when the view was laid out. It is
possible to change the location of the
view onscreen by modifying these
values, but it is not recommended. They
are reset every time a layout pass
occurs, so they tend not to hold their
value.
In any event, the animation will start

with the top of the view at its current
location. It needs to end with the top at
the bottom of mSunView’s parent,
mSkyView. To get it there, it should be
as far down as mSkyView is tall,
which you find by calling
getHeight(). The getHeight()
method returns the same thing as
getBottom() - getTop().
Now that you know where the animation
should start and end, create and run an
ObjectAnimator to perform it.

Listing 32.8 Creating a sun
animator
(SunsetFragment.java)
private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();

 ObjectAnimator heightAnimator = ObjectAnimator
 .ofFloat(mSunView, "y", sunYStart,
sunYEnd)
 .setDuration(3000);

 heightAnimator.start();
}

Then hook up startAnimation()
so that it is called every time the user
presses anywhere in the scene.

Listing 32.9 Starting animation
on press
(SunsetFragment.java)
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View view =
inflater.inflate(R.layout.fragment_sunset, container,
false);

 mSceneView = view;
 mSunView = view.findViewById(R.id.sun);
 mSkyView = view.findViewById(R.id.sky);

 mSceneView.setOnClickListener(new

View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startAnimation();
 }
 });

 return view;
}

Run Sunset and press anywhere on the
scene to run the animation (Figure 32.2).

Figure 32.2 Setting sun

You should see the sun move below the
horizon.
Here is how it works:
ObjectAnimator is a property
animator. Instead of knowing
specifically about how to move a view
around the screen, a property animator
repeatedly calls property setter methods

with different values.
The following method call creates an
ObjectAnimator:
 ObjectAnimator.ofFloat(mSunView, "y", 0, 1)

When that ObjectAnimator is
started, it will then repeatedly call
mSunView.setY(float) with
values starting at 0 and moving up. Like
this:
mSunView.setY(0);
mSunView.setY(0.02);
mSunView.setY(0.04);
mSunView.setY(0.06);
mSunView.setY(0.08);
...

… and so on, until it finally calls
mSunView.setY(1). This process
of finding values in between a starting
and ending point is called interpolation.

Between each interpolated value, a little
time will pass, which makes it look like
the view is moving.

View transformation
properties
Property animators are great, but with
them alone it would be impossible to
animate a view as easily as you just did.
Modern Android property animation
works in concert with transformation
properties.
Your view has a local layout rect, which
is the position and size it is assigned
from the layout process. You can move
the view around after that by setting

additional properties on the view, called
transformation properties. You have
three properties to rotate the view
(rotation, pivotX, and pivotY, shown
in Figure 32.3), two properties to scale
the view vertically and horizontally
(scaleX and scaleY, shown in
Figure 32.4), and two properties to
move the view around the screen
(translationX and translationY,
shown in Figure 32.5).

Figure 32.3 View rotation

Figure 32.4 View scaling

Figure 32.5 View translation

All of these properties have getters and
setters. For example, if you wanted to
know the current value of
translationX, you would call
getTranslationX(). If you wanted
to set it, you would call

setTranslationX(float).
So what does the y property do? The x
and y properties are conveniences built
on top of local layout coordinates and
the transformation properties. They
allow you to write code that simply
says, “Put this view at this X coordinate
and this Y coordinate.” Under the hood,
these properties will modify
translationX or translationY to put
the view where you want it to be. That
means that a call to
mSunView.setY(50) really means this:
 mSunView.setTranslationY(50 - mSunView.getTop())

Using different
interpolators

Your animation, while pretty, is abrupt.
If the sun was really sitting there
perfectly still in the sky, it would take a
moment for it to accelerate into the
animation you see. To add this sensation
of acceleration, all you need to do is use
a TimeInterpolator.
TimeInterpolator has one role: to
change the way your animation goes
from point A to point B.
Add a line of code to
startAnimation() to make your
sun speed up a bit at the beginning using
an AccelerateInterpolator.

Listing 32.10 Adding
acceleration
(SunsetFragment.java)

private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();

 ObjectAnimator heightAnimator = ObjectAnimator
 .ofFloat(mSunView, "y", sunYStart,
sunYEnd)
 .setDuration(3000);
 heightAnimator.setInterpolator(new
AccelerateInterpolator());

 heightAnimator.start();
}

Run Sunset one more time and press to
see your animation. Your sun should now
start moving slowly and accelerate to a
quicker pace as it moves toward the
horizon.
There are a lot of styles of motion you
might want to use in your app, so there
are a lot of different
TimeInterpolators. To see all the
interpolators that ship with Android,
look at the “Known Indirect Subclasses”

section in the reference documentation
for TimeInterpolator.

Color evaluation
Now that your sun is animating down,
let’s animate the sky to a sunset-y color.
Inside of onCreateView(…), pull all
of the colors you defined in
colors.xml into instance variables.

Listing 32.11 Pulling out
sunset colors
(SunsetFragment.java)
public class SunsetFragment extends Fragment {
 ...
 private View mSkyView;

 private int mBlueSkyColor;
 private int mSunsetSkyColor;

 private int mNightSkyColor;
 ...
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mSkyView = view.findViewById(R.id.sky);

 Resources resources = getResources();
 mBlueSkyColor =
resources.getColor(R.color.blue_sky);
 mSunsetSkyColor =
resources.getColor(R.color.sunset_sky);
 mNightSkyColor =
resources.getColor(R.color.night_sky);

 mSceneView.setOnClickListener(new
View.OnClickListener() {
 ...
 });

 return view;
 }

Now add an additional animation to
startAnimation() to animate the
sky from mBlueSkyColor to
mSunsetSkyColor.

Listing 32.12 Animating sky

colors (SunsetFragment.java)
private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();

 ObjectAnimator heightAnimator = ObjectAnimator
 .ofFloat(mSunView, "y", sunYStart,
sunYEnd)
 .setDuration(3000);
 heightAnimator.setInterpolator(new
AccelerateInterpolator());

 ObjectAnimator sunsetSkyAnimator = ObjectAnimator
 .ofInt(mSkyView, "backgroundColor",
mBlueSkyColor, mSunsetSkyColor)
 .setDuration(3000);

 heightAnimator.start();
 sunsetSkyAnimator.start();
}

This seems like it is headed in the right
direction, but if you run it you will see
that something is amiss. Instead of
moving smoothly from blue to orange,
the colors will kaleidoscope wildly.
The reason this happens is that a color

integer is not a simple number. It is four
smaller numbers schlupped together into
one int. So for ObjectAnimator to
properly evaluate which color is
halfway between blue and orange, it
needs to know how that works.
When ObjectAnimator’s normal
understanding of how to find values
between the start and end is insufficient,
you can provide a subclass of
TypeEvaluator to fix things. A
TypeEvaluator is an object that
tells ObjectAnimator what value is,
say, a quarter of the way between a start
value and end value. Android provides a
subclass of TypeEvaluator called
ArgbEvaluator that will do the trick
here.

Listing 32.13 Providing
ArgbEvaluator
(SunsetFragment.java)
private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();

 ObjectAnimator heightAnimator = ObjectAnimator
 .ofFloat(mSunView, "y", sunYStart,
sunYEnd)
 .setDuration(3000);
 heightAnimator.setInterpolator(new
AccelerateInterpolator());

 ObjectAnimator sunsetSkyAnimator = ObjectAnimator
 .ofInt(mSkyView, "backgroundColor",
mBlueSkyColor, mSunsetSkyColor)
 .setDuration(3000);
 sunsetSkyAnimator.setEvaluator(new
ArgbEvaluator());

 heightAnimator.start();
 sunsetSkyAnimator.start();
}

Run your animation one more time, and
you should see the sky fade to a beautiful
orange color (Figure 32.6).

Figure 32.6 Changing sunset
color

Playing Animators
Together
If all you need to do is kick off a few
animations at the same time, then your
job is simple: Call start() on them
all at the same time. They will all
animate in sync with one another.
For more sophisticated animation
choreography, this will not do the trick.
For example, to complete the illusion of
a sunset, it would be nice to show the
sky turning from orange to a midnight
blue after the sun goes down.

This can be done by using an
AnimatorListener, which tells you
when an animation completes. So you
could write a listener that waits until the
end of the first animation, at which time
you can start the second night sky
animation. This is a huge hassle, though,
and requires a lot of listeners. It is much
easier to use an AnimatorSet.
First, build out the night sky animation
and delete your old animation start code.

Listing 32.14 Building night
animation
(SunsetFragment.java)
private void startAnimation() {
 ...
 sunsetSkyAnimator.setEvaluator(new
ArgbEvaluator());

 ObjectAnimator nightSkyAnimator = ObjectAnimator
 .ofInt(mSkyView, "backgroundColor",
mSunsetSkyColor, mNightSkyColor)
 .setDuration(1500);
 nightSkyAnimator.setEvaluator(new
ArgbEvaluator());

 heightAnimator.start();
 sunsetSkyAnimator.start();

}

And then build and run an
AnimatorSet.

Listing 32.15 Building
animator set
(SunsetFragment.java)
private void startAnimation() {
 ...
 ObjectAnimator nightSkyAnimator = ObjectAnimator
 .ofInt(mSkyView, "backgroundColor",
mSunsetSkyColor, mNightSkyColor)
 .setDuration(1500);
 nightSkyAnimator.setEvaluator(new
ArgbEvaluator());

 AnimatorSet animatorSet = new AnimatorSet();
 animatorSet

 .play(heightAnimator)
 .with(sunsetSkyAnimator)
 .before(nightSkyAnimator);
 animatorSet.start();
}

An AnimatorSet is nothing more than
a set of animations that can be played
together. There are a few ways to build
one, but the easiest way is to use the
play(Animator) method you used
above.
When you call play(Animator),
you get an AnimatorSet.Builder,
which allows you to build a chain of
instructions. The Animator passed
into play(Animator) is the
“subject” of the chain. So the chain of
calls you wrote here could be described
as, “Play heightAnimator with
sunsetSkyAnimator; also, play

heightAnimator before
nightSkyAnimator.” For
complicated AnimatorSets, you may
find it necessary to call
play(Animator) a few times, which
is perfectly fine.
Run your app one more time and savor
the soothing sunset you have created.
Magic.

For the More
Curious: Other
Animation APIs
While property animation is the most
broadly useful tool in the animation
toolbox, it is not the only one. Whether
or not you are using them, it is a good
idea to know about the other tools out
there.

Legacy animation tools
One set of tools is the classes living in

the android.view.animation package.
This should not be confused with the
newer android.animation package,
which was introduced in Honeycomb.
This is the legacy animation framework,
which you should mainly know about so
that you can ignore it. If you see the
word “animaTION” in the class name
instead of “animaTOR”, that is a good
sign that it is a legacy tool you should
ignore.

Transitions
Android 4.4 introduced a new
transitions framework, which enables
fancy transitions between view

hierarchies. For example, you might
define a transition that explodes a small
view in one activity into a zoomed-in
version of that view in another activity.
The basic idea of the transitions
framework is that you can define scenes,
which represent the state of a view
hierarchy at some point, and transitions
between those scenes. Scenes can be
described in layout XML files, and
transitions can be described in animation
XML files.
When an activity is already running, as
in this chapter, the transitions framework
is not that useful. This is where the
property animation framework shines.
However, the property animation
framework is not good at animating a

layout as it is coming onto the screen.
Take CriminalIntent’s crime pictures as
an example. If you were to try to
implement a “zoom” animation to the
zoomed-in dialog of an image, you
would have to figure out where the
original image was and where the new
image would be on the dialog.
ObjectAnimator cannot achieve an
effect like that without a lot of work. In
that case, you would want to use the
transitions framework instead.

Challenges
For the first challenge, add the ability to
reverse the sunset after it is completed,
so your user can press for a sunset, and
then press a second time to get a sunrise.
You will need to build another
AnimatorSet to do this –
AnimatorSets cannot be run in
reverse.
For a second challenge, add a continuing
animation to the sun. Make it pulsate
with heat, or give it a spinning halo of
rays. (You can use the
setRepeatCount(int) method on

ObjectAnimator to make your
animation repeat itself.)
Another good challenge would be to
have a reflection of the sun in the water.
Your final challenge is to add the ability
to press to reverse the sunset scene
while it is still happening. So if your
user presses the scene while the sun is
halfway down, it will go right back up
again seamlessly. Likewise, if your user
presses the scene while transitioning to
night, it will smoothly transition right
back to a sunrise.

33
Locations and
Play Services

In this chapter, you will start writing a
new app called Locatr that performs a
Flickr geosearch. It will ask for runtime
permission to find your current location,
and then it will use that location to look
for pictures nearby (Figure 33.1). Then,
in the next chapter, you will show the
picture on a map.

Figure 33.1 Locatr at the end

Figure 33.1 Locatr at the end
of this chapter

It turns out that this simple job – finding
your current location – is more
interesting than you might expect. It
requires integrating with Google’s set of
libraries that live outside the standard
library set, called Google Play Services.

Locations and
Libraries
To see why, let’s talk a bit about what
your average Android device can see
and what tools Android gives you to see
those things yourself.

Out of the box, Android provides a basic
Location API. This API lets you listen to
location data from a variety of sources.
For most phones, those sources are fine
location points from a GPS radio and
coarse points from cell towers or WiFi
connections. These APIs have been
around for as long as Android itself. You
can find them in the android.location
package.
So the android.location APIs exist.
But they fall short of perfection. Real-
world applications make requests like,
“Use as much battery as you need to get
as much accuracy as possible,” or “I
need a location, but I would rather not
waste my battery life.” Rarely, if ever,
do they need to make a request as

specific as, “Please fire up the GPS
radio and tell me what it says.”
This starts to be a problem when your
devices move around. If you are outside,
GPS is best. If you have no GPS signal,
the cell tower fix may be best. And if
you can find neither of those signals, it
would be nicer to get by with the
accelerometer and gyroscope than with
no location fix at all.
In the past, high-quality apps had to
manually subscribe to all of these
different data sources and switch
between them as appropriate. This was
not straightforward or easy to do right.

Google Play Services

A better API was needed. However, if it
were added to the standard library, it
would take a couple of years for all
developers to be able to use it. This was
annoying, because the OS had everything
that a better API would need: GPS,
coarse location, and so forth.
Fortunately, the standard library is not
the only way Google can get code into
your hands. In addition to the standard
library, it provides Google Play
Services. This is a set of common
services that are installed alongside the
Google Play Store application. To fix the
locations mess, Google shipped a new
locations service in Play Services called
the Fused Location Provider.
Because these libraries live in another

application, you must actually have that
application installed. This means that
only devices with the Google Play Store
app installed and up to date will be able
to use your application. This almost
certainly means that your app will be
distributed through the Play Store, too. If
your app is not available through the
Play Store, you are unfortunately out of
luck and will need to use another
location API.
For this exercise, if you will be testing
on a hardware device, make sure that
you have an up-to-date Google Play
Store app. But what if you are running on
an emulator? Never fear – we will cover
that in a moment.

Creating Locatr
Now to get started. In Android Studio,
create a new project called Locatr.
Create an empty activity and name it
LocatrActivity. As you have for
your other apps, set your minimum SDK
to 19 and copy in
SingleFragmentActivity.java
and activity_fragment.xml.
You will also want some additional
code from PhotoGallery. You will be
querying Flickr again, so having your
old query code will be handy. Open up
your PhotoGallery solution (anything
after Chapter 26 will do), select

FlickrFetchr.java and
GalleryItem.java, and right-click
to copy them. Then paste them into your
Java code area in Locatr.
In a minute, you will get started on
building out your UI. If you are using an
emulator, though, read this next section
so that you can test all the code you are
about to write. If you are not, feel free to
skip ahead to the section called Building
Out Locatr.

Play Services and
Location Testing
on Emulators
If you are using an AVD emulator, you
must first make sure that your emulator
images are up to date.
To do that, open up your SDK Manager
(Tools → Android → SDK Manager). Go
down to the version of Android that you
plan to use for your emulator and ensure
that the Google APIs System Images are
both installed and up to date
(Figure 33.2). If an update is available,

click the button to install the update and
wait until it is ready to go before
continuing.

Figure 33.2 Ensuring your
emulator is up to date

Your AVD emulator also needs to have a
target OS version that supports the

Google APIs. When you create an
emulator, you can identify these target
OS versions because they will say “with
Google APIs” on the right. Choose one
with an API level of 21 or higher and
you will be all set (Figure 33.3).

Figure 33.3 Choosing a Google
APIs image

If you already have a suitable emulator
but you had to update your images
through the SDK earlier, you will need
to restart your emulator for it to work.

Mock location data
On an emulator you will also need some
dummy (or mock) location updates to
work with. Android Studio provides an
Emulator Control panel that lets you
send location points to the emulator.
This works great on the old location
services, but it does nothing on the new
Fused Location Provider. Instead, you
have to publish mock locations
programmatically.
We here at Big Nerd Ranch love to
explain interesting things in minute
detail. After the debacle that was Snipe
Hunting: The Big Nerd Ranch Guide,
though, we prefer to explain useful

things. So instead of making you type out
this mock location code, we have
written it for you in a stand-alone app
called MockWalker. To use it, download
and install the APK at this URL:

 https://​
www.bignerdranch.com/​
solutions/​MockWalker.apk

The easiest way to do that is to open the
browser app in your emulator and type
in the URL (Figure 33.4).

Figure 33.4 Typing in the URL

https://www.bignerdranch.com/solutions/MockWalker.apk

When it is done, press the download
notification item in the toolbar to open

the APK (Figure 33.5).

Figure 33.5 Opening the
download

MockWalker will trigger a mock walk
for you via a service that posts mock
location data to Fused Location
Provider. It will pretend to walk in a
loop around the Kirkwood neighborhood
in Atlanta. While the service is running,
any time Locatr asks Fused Location
Provider for a location fix, it will
receive a location posted by
MockWalker.
Run MockWalker and press Start
(Figure 33.6). Its service will keep
running after you exit the app. (Do not

exit the emulator, however. Leave the
emulator running while you work on
Locatr.) When you no longer need those
mock locations, open MockWalker again
and press the Stop button.

Figure 33.6 Running
MockWalker

If you would like to know how
MockWalker works, you can find its
source code in the solutions folder for
this chapter (see the section called
Adding an Icon in Chapter 2 for more on
the solutions). It uses a few interesting
things: RxJava and a sticky foreground
service to manage the ongoing location
updates. If those sound interesting to

you, check it out.

Building Out Locatr
Time to create your interface. First, add
a string for your search button in
res/values/strings.xml.

Listing 33.1 Adding search
button text
(res/values/strings.xml)
<resources>
 <string name="app_name">Locatr</string>

 <string name="search">Find an image near
you</string>
</resources>

You will be using a fragment, as usual,
so rename activity_locatr.xml
to fragment_locatr.xml. Change

out the insides of its
RelativeLayout to have an
ImageView to display the image you
find (Figure 33.7). (There are padding
attribute values that come from the
template code as of this writing. They
are not important, so feel free to leave
them or delete them.)

Figure 33.7 Locatr’s layout
(res/layout/fragment_locatr.xml

You also need a button to trigger the
search. You can use your toolbar for that.
Create
res/menu/fragment_locatr.xml
and add a menu item to display a

location icon. (Yes, this is the same
filename as
res/layout/fragment_locatr.xml
This is no problem at all: Menu
resources live in a different namespace.)

Listing 33.2 Setting up Locatr’s
menu
(res/menu/fragment_locatr.xml)
<menu
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-
auto">
 <item android:id="@+id/action_locate"

android:icon="@android:drawable/ic_menu_compass"
 android:title="@string/search"
 android:enabled="false"
 app:showAsAction="ifRoom"/>
</menu>

The button is disabled in XML by
default. Later on, you will enable it once

you are connected to Play Services.
Now create a Fragment subclass
called LocatrFragment that hooks
up your layout and pulls out that
ImageView.

Listing 33.3 Creating
LocatrFragment
(LocatrFragment.java)
public class LocatrFragment extends Fragment {
 private ImageView mImageView;

 public static LocatrFragment newInstance() {
 return new LocatrFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_locatr, container,
false);

 mImageView = (ImageView)

v.findViewById(R.id.image);

 return v;
 }
}

Hook up your menu item, too. Pull it out
into its own instance variable so that you
can enable it later on.

Listing 33.4 Adding menu to
fragment
(LocatrFragment.java)
public class LocatrFragment extends Fragment {
 private ImageView mImageView;

 public static LocatrFragment newInstance() {
 return new LocatrFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,

ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_locatr,
menu);
 }
}

Now hook it up in LocatrActivity.
Delete everything inside this class and
replace it, like so:

Listing 33.5 Hooking up Locatr
fragment
(LocatrActivity.java)
public class LocatrActivity extends
SingleFragmentActivity {
 @Override
 protected Fragment createFragment() {
 return LocatrFragment.newInstance();
 }
}

With that, you should be ready to get into
some trouble.

Setting Up Google
Play Services
To get your location using the Fused
Location Provider, you need to use
Google Play Services. To get those up
and running, you will need to add a few
standard bits of boilerplate to your app.
First, you need to add the Google Play
Services library dependency. The
services themselves live in the Play
Store app, but the Play Services library
contains all the code to interface with
them.

Open up your app module’s settings (File
→ Project Structure). Navigate to its
dependencies and add a library
dependency. Type in the following
dependency name:
com.google.android.gms:play-
services-location:10.0.1. (As of
this writing, this dependency will not
show up in search results, so type
carefully.) This is the location portion of
Play Services.
Over time, the version number for this
library will change. If you want to see
what the most up-to-date version is,
search the library dependencies for
play-services. The
com.google.android.gms:play-
services dependency will appear,

along with a version number. This is the
dependency that includes everything in
Play Services. If you want to use the
latest version of the library, you can use
the version number from play-
services for the more limited play-
services-location library, too.
Which version number should you use,
though? In your own practice, it is best
to use the most recent version you
possibly can. But we cannot guarantee
that the code in this book will work the
same for future versions. So for Locatr,
use the version we wrote this code for:
10.0.1.
Next, you need to verify that Play
Services is available. Since the working
parts live in another app on your device,

the Play Services library is not always
guaranteed to be working. The library
makes it easy to verify this. Update your
main activity to perform this check.

Listing 33.6 Adding Play
Services check
(LocatrActivity.java)
public class LocatrActivity extends
SingleFragmentActivity {
 private static final int REQUEST_ERROR = 0;

 @Override
 protected Fragment createFragment() {
 return LocatrFragment.newInstance();
 }

 @Override
 protected void onResume() {
 super.onResume();

 GoogleApiAvailability apiAvailability =
GoogleApiAvailability.getInstance();
 int errorCode =
apiAvailability.isGooglePlayServicesAvailable(this);

 if (errorCode != ConnectionResult.SUCCESS) {

 Dialog errorDialog = apiAvailability
 .getErrorDialog(this, errorCode,
REQUEST_ERROR,
 new
DialogInterface.OnCancelListener() {

 @Override
 public void
onCancel(DialogInterface dialog) {
 // Leave if
services are unavailable.
 finish();
 }
 });

 errorDialog.show();
 }
 }
}

Normally you would not use a bare
Dialog like this. However, in this case
you will receive the same errorCode
every time LocatrActivity starts
up, so the Dialog will always be
displayed correctly.

Location permissions
You will also need some location
permissions for your app to work. There
are two relevant permissions:
android.permission.ACCESS_FINE_LOCATION
and
android.permission.ACCESS_COARSE_LOCATION

Fine location is the GPS radio; coarse
location is derived from cell towers or
WiFi access points.
In this chapter, you will be requesting a
high-accuracy location fix, so you will
definitely need
ACCESS_FINE_LOCATION. But it is also
a good idea to request
ACCESS_COARSE_LOCATION. If the fine

location provider is not available, this
gives you permission to use the coarse
provider as a backup.
Add these permissions to your manifest.
Add an internet permission while you
are at it, so that you can query Flickr.

Listing 33.7 Adding
permissions
(AndroidManifest.xml)
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.bignerdranch.android.locatr" >

 <uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION"
 />
 <uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION"
 />
 <uses-permission

 android:name="android.permission.INTERNET" />
 ...
</manifest>

Both FINE_LOCATION and
COARSE_LOCATION are dangerous
permissions. That means that, unlike
INTERNET, this manifest code is not
enough: You must also make a runtime
request to use these locations.
To handle that, you will need to write
some more permissions code later in this
chapter. For now, though, you will move
on with integrating Google Play
Services.

Using Google Play
Services
To use Play Services, you need to create
a client. That client is an instance of the
GoogleApiClient class. You can
find the documentation for this class
(and all the other Play Services classes
you will be using in these two chapters)
in the Play Services reference section at
developer.android.com/​
reference/​gms-
packages.html.
To create a client, create a
GoogleApiClient.Builder and

configure it. At a minimum, you want to
configure the instance with the specific
APIs you will be using. Then call
build() to create an instance.
Inside your onCreate(Bundle),
create an instance of
GoogleApiClient.Builder and
add the Location Services API to your
instance.

Listing 33.8 Creating
GoogleApiClient
(LocatrFragment.java)
public class LocatrFragment extends Fragment {
 private ImageView mImageView;
 private GoogleApiClient mClient;

 public static LocatrFragment newInstance() {
 return new LocatrFragment();
 }

 @Override

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);

 mClient = new
GoogleApiClient.Builder(getActivity())
 .addApi(LocationServices.API)
 .build();
 }

Once you do that, you need to connect to
the client. Google recommends always
connecting to the client in onStart()
and disconnecting in onStop().
Calling connect() on your client will
change what your menu button can do,
too, so call
invalidateOptionsMenu() to
update its visible state. (You will call it
one more time later, after you are told
you have been connected.)

Listing 33.9 Connecting and

disconnecting
(LocatrFragment.java)
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle savedInstanceState) {
 ...
}

@Override
public void onStart() {
 super.onStart();

 getActivity().invalidateOptionsMenu();
 mClient.connect();
}

@Override
public void onStop() {
 super.onStop();

 mClient.disconnect();
}

@Override
public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater) {

If your client is not connected, your app
will not be able to do anything. So for

the next step, enable or disable the
button depending on whether the client is
connected.

Listing 33.10 Updating the
menu button
(LocatrFragment.java)
@Override
public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_locatr, menu);

 MenuItem searchItem =
menu.findItem(R.id.action_locate);
 searchItem.setEnabled(mClient.isConnected());
}

Then add another call to
getActivity().invalidateOptionsMenu()
to update your menu item when you find
out that you are connected. Connection
state information is passed through two

callback interfaces:
ConnectionCallbacks and
OnConnectionFailedListener.
Hook up a ConnectionCallbacks
listener in onCreate(Bundle) to
invalidate your toolbar when you are
connected.

Listing 33.11 Listening for
connection events
(LocatrFragment.java)
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);

 mClient = new
GoogleApiClient.Builder(getActivity())
 .addApi(LocationServices.API)
 .addConnectionCallbacks(new
GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle
bundle) {

getActivity().invalidateOptionsMenu();
 }

 @Override
 public void onConnectionSuspended(int
i) {

 }
 })
 .build();
}

If you are curious, you can hook up an
OnConnectionFailedListener
and see what it reports. But it is not
necessary.
With that, your Google Play Services
hookup is ready.

Flickr Geosearch
The next step is to add the ability to
search for geographic locations on
Flickr. To do this, you perform a regular
search, but you also provide a latitude
and longitude.
In Android, the location APIs pass
around these location fixes in
Location objects. So write a new
buildUrl(…) override that takes in a
Location object and builds an
appropriate search query.

Listing 33.12 New
buildUrl(Location)

(FlickrFetchr.java)
private String buildUrl(String method, String query)
{
 ...
}

private String buildUrl(Location location) {
 return ENDPOINT.buildUpon()
 .appendQueryParameter("method",
SEARCH_METHOD)
 .appendQueryParameter("lat", "" +
location.getLatitude())
 .appendQueryParameter("lon", "" +
location.getLongitude())
 .build().toString();
}

And now write a matching
searchPhotos(Location)
method.

Listing 33.13 New
searchPhotos(Location)
(FlickrFetchr.java)
public List<GalleryItem> searchPhotos(String query) {
 ...

}

public List<GalleryItem> searchPhotos(Location
location) {
 String url = buildUrl(location);
 return downloadGalleryItems(url);
}

Getting a Location
Fix
Now that you have everything set up, you
are ready to get a location fix. Your
window to the Fused Location Provider
API is a class named, appropriately
enough,
FusedLocationProviderApi.
There is one instance of this class. It is a
singleton object that lives on
LocationServices called
FusedLocationApi.
To get a location fix from this API, you
need to build a location request. Fused

location requests are represented by
LocationRequest objects. Create
one and configure it in a new method
called findImage(). (There are two
LocationRequest classes. Use the
one with the complete name of
com.google.android.gms.location.LocationRequest

Listing 33.14 Building a
location request
(LocatrFragment.java)
 @Override
 public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater) {
 ...
 }

 private void findImage() {
 LocationRequest request =
LocationRequest.create();

request.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);

 request.setNumUpdates(1);

 request.setInterval(0);
 }
}

LocationRequest objects configure
a variety of parameters for your request:

interval – how frequently the
location should be updated

number of updates – how
many times the location should
be updated
priority – how Android should
prioritize battery life against
accuracy to satisfy your request

expiration – whether the
request should expire and, if
so, when

smallest displacement – the

smallest amount the device
must move (in meters) to
trigger a location update

When you first create a
LocationRequest, it will be
configured for accuracy within a city
block, with repeated slow updates until
the end of time. In your code, you change
this to get a single, high-accuracy
location fix by changing the priority and
the number of updates. You also set the
interval to 0 to signify that you would
like a location fix as soon as possible.
The next step is to send off this request
and listen for the Locations that come
back. You do this by adding a
LocationListener. There are two

versions of LocationListener you
can import. Choose
com.google.android.gms.location.LocationListener
Add another method call to
findImage().

Listing 33.15 Sending
LocationRequest
(LocatrFragment.java)
public class LocatrFragment extends Fragment {
 private static final String TAG =
"LocatrFragment";
 ...
 private void findImage() {
 LocationRequest request =
LocationRequest.create();

request.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);

 request.setNumUpdates(1);
 request.setInterval(0);
 LocationServices.FusedLocationApi
 .requestLocationUpdates(mClient,
request, new LocationListener() {
 @Override
 public void

onLocationChanged(Location location) {
 Log.i(TAG, "Got a fix: " +
location);
 }
 });
 }

If this were a longer-lived request, you
would need to hold on to your listener
and call
removeLocationUpdates(…)
later to cancel the request. However,
since you called
setNumUpdates(1), all you need to
do is send this off and forget about it.
(Your call to
requestLocationUpdates(…)
will receive a dramatic red error
indicator. Will this cause problems?
Yes, it will – but leave it as is for now;
you will address those issues in a

moment.)
Finally, to send this off you need to hook
up your search button. Override
onOptionsItemSelected(…) to
call findImage().

Listing 33.16 Hooking up
search button
(LocatrFragment.java)
@Override
public void onCreateOptionsMenu(Menu menu,
MenuInflater inflater) {
 ...
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_locate:
 findImage();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Run your app and press the search
button. Sadly, your dramatic red error
indicator will come due when your app
runs: You will see a message indicating
that Locatr has stopped (Figure 33.8).

Figure 33.8 Permission: denied

If you check Logcat, you will see that a
SecurityException was thrown:
FATAL EXCEPTION: main
Process: com.bignerdranch.android.locatr, PID: 7892
java.lang.SecurityException: Client must have
ACCESS_FINE_LOCATION permission to
request PRIORITY_HIGH_ACCURACY locations.
 at
android.os.Parcel.readException(Parcel.java:1684)
 at
android.os.Parcel.readException(Parcel.java:1637)
 ...
 at com.google.android.gms.location.internal.zzd
 .requestLocationUpdates(Unknown Source)
 at com.bignerdranch.android.locatr.LocatrFragment
 .findImage(LocatrFragment.java:102)
 at com.bignerdranch.android.locatr.LocatrFragment

.onOptionsItemSelected(LocatrFragment.java:89)
 at
android.support.v4.app.Fragment.performOptionsItemSelected(Fragment.java:2212)

 ...
 at java.lang.reflect.Method.invoke(Native Method)
 at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller

 .run(ZygoteInit.java:886)
 at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:776)

For your call to
requestLocationUpdates(…) to
work, you must first ask permission.

Asking for
Permission at
Runtime
Handling permissions at runtime
requires you to do three things:

check to see whether you have
permission before performing
the operation

request permission if you do
not already have it
listen for the response to your
permissions request

Requesting permission means displaying
the system-standard permissions request
UI. If this dialog pops up in a place in
your app where it is clear why you are
asking your user for this permission, then
this is all you need to do.
Sometimes, though, the reason is not
obvious. Users often deny requests that
do not make sense to them, so in those
cases you will need to display a
rationale. So those apps require a fourth
step:

check to see whether you need
to display a rationale to the
user

Since Locatr’s mission is on the obvious
side, you will not implement a rationale

in this exercise – at least, not until the
challenge at the end of this chapter.

Checking for
permissions
Your first step will be to pull your
permissions information into your Java
code. You can do this by adding a
constant array to the top of
LocatrFragment that lists all the
permissions you need.

Listing 33.17 Adding
permissions constants
(LocatrFragment.java)
public class LocatrFragment extends Fragment {
 private static final String TAG =

"LocatrFragment";
 private static final String[]
LOCATION_PERMISSIONS = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,

Manifest.permission.ACCESS_COARSE_LOCATION,
 };

 private ImageView mImageView;
 private GoogleApiClient mClient;

All standard Android permissions are
declared in the
Manifest.permission class for
you to use programmatically. So these
two constants refer to the same string
values you used in your
AndroidManifest.xml. With your
permissions array declared, your next
step is to ask for the permissions you
need.
Permission is granted for dangerous
permissions on the basis of permission

groups, not individual permissions. A
permission group contains several
permissions that deal with the same
kinds of access. For example,
ACCESS_FINE_LOCATION and
ACCESS_COARSE_LOCATION are
both in the LOCATION permission
group.

Table 33.1 Permission groups
Permission
group Permissions

CALENDAR READ_CALENDAR,
WRITE_CALENDAR

CAMERA CAMERA

READ_CONTACTS,

CONTACTS WRITE_CONTACTS,
GET_ACCOUNTS

LOCATION ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

MICROPHONE RECORD_AUDIO

PHONE

READ_PHONE_STATE
CALL_PHONE,
READ_CALL_LOG,
WRITE_CALL_LOG,
ADD_VOICEMAIL, USE_SIP
PROCESS_OUTGOING_CALLS

SENSORS BODY_SENSORS

SMS

SEND_SMS, RECEIVE_SMS
READ_SMS,

RECEIVE_WAP_PUSH
RECEIVE_MMS

STORAGE READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

Once a permission is granted for any
permission within the group, permission
is granted for all permissions in the
group. Since both of your permissions
are in the LOCATION group, you only
need to check whether you have one of
those permissions.
Write a method to check whether you
have access to the first permission in
your LOCATION_PERMISSIONS
array.

Listing 33.18 Writing a

permission check
(LocatrFragment.java)
 private void findImage() {
 ...
 }

 private boolean hasLocationPermission() {
 int result = ContextCompat
 .checkSelfPermission(getActivity(),
LOCATION_PERMISSIONS[0]);
 return result ==
PackageManager.PERMISSION_GRANTED;
 }
}

Because
checkSelfPermission(…) is a
relatively new method on Activity,
introduced in Marshmallow, you use
ContextCompat’s
checkSelfPermission(…)
instead to avoid ugly conditional code. It
will take care of the compatibility
behavior for you.

Next, add a check before calling
findImage() to make sure you have
the permission.

Listing 33.19 Adding a
permission check
(LocatrFragment.java)
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_locate:
 if (hasLocationPermission()) {
 findImage();
 }
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Now to write what should happen when
you do not have location permission. In
that case, you want to call the
requestPermissions(…) method.

Listing 33.20 Requesting
permission
(LocatrFragment.java)
public class LocatrFragment extends Fragment {
 private static final String TAG =
"LocatrFragment";
 private static final String[]
LOCATION_PERMISSIONS = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,

Manifest.permission.ACCESS_COARSE_LOCATION,
 };
 private static final int
REQUEST_LOCATION_PERMISSIONS = 0;
 ...
 @Override
 public boolean onOptionsItemSelected(MenuItem
item) {
 switch (item.getItemId()) {
 case R.id.action_locate:
 if (hasLocationPermission()) {
 findImage();
 } else {

requestPermissions(LOCATION_PERMISSIONS,

REQUEST_LOCATION_PERMISSIONS);
 }
 return true;
 default:
 return

super.onOptionsItemSelected(item);
 }
 }

The requestPermissions(…)
method is an asynchronous request.
When you call it, Android will display
the system permissions dialog with a
message appropriate to the permission
you are requesting.
To respond to the system dialog, you
write a corresponding implementation of
onRequestPermissionsResult(…)
Android will call this callback when the
user presses ALLOW or DENY. Write an
implementation that checks permission
again and calls findImage() if the
permission was granted.

Listing 33.21 Responding to a

permissions request result
(LocatrFragment.java)
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 ...
}

@Override
public void onRequestPermissionsResult(int
requestCode, String[] permissions,
 int[]
grantResults) {
 switch (requestCode) {
 case REQUEST_LOCATION_PERMISSIONS:
 if (hasLocationPermission()) {
 findImage();
 }
 default:

super.onRequestPermissionsResult(requestCode,
permissions, grantResults);
 }
}

private void findImage() {
 LocationRequest request =
LocationRequest.create();

request.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);

 request.setNumUpdates(1);

The callback to
onRequestPermissionsResult(int,String[],int[])
includes a parameter called
grantResults. If you like, you can
check this parameter to see whether your
permission was granted. Here, you take
a slightly simpler approach: When you
call hasLocationPermission(),
its call to
checkSelfPermission(…) will
also tell you whether you have acquired
the permission. So you can call
hasLocationPermission() one
more time and accomplish the same thing
with less code than it takes to look into
the contents of grantResults.
Run Locatr and press on the menu item
again. This time, you will see the system

permissions dialog pop up
(Figure 33.9).

Figure 33.9 The LOCATION
permission group dialog

If you press ALLOW, then the permission
will be granted until the user uninstalls
the app or turns the permission off. If
you press DENY, then it will be denied
for the moment – the next time you press
the button, the dialog will be shown
again. (For debugging, we prefer to
clear the permissions state by
uninstalling. Uninstalling apps is much
more fun to do on Android than turning
permissions off, so that is how we do it.)
With that done, you can verify that the

location behavior works as you expect.
Remember to have MockWalker running
if you are using an emulator. (If you have
problems with the menu, flip back to
Chapter 13 to integrate the AppCompat
library.) Press the location button and
accept the permission, and you should
see a line something like this logged out:
...D/libEGL: loaded /system/lib/egl/libGLESv2_MRVL.so
...D/GC: <tid=12423> OES20 ===> GC Version : GC Ver
rls_pxa988_KK44_GC13.24
...D/OpenGLRenderer: Enabling debug mode 0
...I/LocatrFragment: Got a fix: Location[fused
33.758998,-84.331796 acc=38 et=...]

This shows you the latitude and
longitude, accuracy, and the estimated
time of the location fix. If you plug your
lat-lon pair into Google Maps, you
should be able to pull up your current
location (Figure 33.10).

Figure 33.10 Our current
location

Find and Display
an Image
Now that you have a location fix, it is
time to use it. Write an async task to find
a GalleryItem near your location
fix, download its associated image, and
display it.
Put this code inside a new inner
AsyncTask called SearchTask.
Start by performing the search, selecting
the first GalleryItem that comes up.

Listing 33.22 Writing
SearchTask

(LocatrFragment.java)
private void findImage() {
 ...
 LocationServices.FusedLocationApi
 .requestLocationUpdates(mClient, request,
new LocationListener() {
 @Override
 public void
onLocationChanged(Location location) {
 Log.i(TAG, "Got a fix: " +
location);
 new
SearchTask().execute(location);
 }
 });
}

private boolean hasLocationPermission() {
 int result = ContextCompat
 .checkSelfPermission(getActivity(),
LOCATION_PERMISSIONS[0]);
 return result ==
PackageManager.PERMISSION_GRANTED;
}

private class SearchTask extends
AsyncTask<Location,Void,Void> {
 private GalleryItem mGalleryItem;

 @Override
 protected Void doInBackground(Location... params)
{
 FlickrFetchr fetchr = new FlickrFetchr();

 List<GalleryItem> items =
fetchr.searchPhotos(params[0]);

 if (items.size() == 0) {
 return null;
 }

 mGalleryItem = items.get(0);

 return null;
 }
}

Saving out the GalleryItem here
accomplishes nothing for now. But it
will save you a bit of typing in the next
chapter.
Next, download that GalleryItem’s
associated image data and decode it.
Then display it on mImageView inside
onPostExecute(Void).

Listing 33.23 Downloading and
displaying image

(LocatrFragment.java)
private class SearchTask extends
AsyncTask<Location,Void,Void> {
 private GalleryItem mGalleryItem;
 private Bitmap mBitmap;

 @Override
 protected Void doInBackground(Location... params)
{
 ...
 mGalleryItem = items.get(0);

 try {
 byte[] bytes =
fetchr.getUrlBytes(mGalleryItem.getUrl());
 mBitmap =
BitmapFactory.decodeByteArray(bytes, 0,
bytes.length);
 } catch (IOException ioe) {
 Log.i(TAG, "Unable to download bitmap",
ioe);
 }
 return null;
 }

 @Override
 protected void onPostExecute(Void result) {
 mImageView.setImageBitmap(mBitmap);
 }
}

With that, you should be able to find a
nearby image on Flickr (Figure 33.11).
Fire up Locatr and press your location
button.

Figure 33.11 The final product

Challenge:
Permissions
Rationale
As mentioned above, the system
permission dialog is not descriptive
enough for many applications. In those
cases, you need to provide the user with
a rationale.
Android has a preferred flow for
displaying this rationale. As of this
writing, it works as follows:

1. The first time the user asks,
show the system dialog.

2. Any time the user asks after
that, show a dialog with your
explanation, then the system
dialog again.

3. If the user requests to deny the
permission forever, never
show the rationale or the
system dialog again.

This may seem a little complicated.
Luckily, Android provides a method to
help you implement it:
ActivityCompat’s
shouldShowRequestPermissionRationale(…)
shouldShowRequestPermissionRationale(…)
will return false before you first
request a permission, true after it has
initially been denied, and then false if

the user chooses to permanently deny the
permission.
For this challenge, implement a rationale
DialogFragment that displays a
short message: “Locatr uses location
data to find images near you on Flickr.”
Use
shouldShowRequestPermissionRationale(…)
to see whether the rationale should be
displayed before calling
requestPermission(…). If the
rationale is displayed, Locatr should
wait until it is dismissed by the user to
call requestPermission(…).
(Hint: You can detect dismissal by
overriding
DialogFragment.onCancel(…).)

Challenge:
Progress
This simple app could use some more
feedback in its interface. There is no
immediate indication when you press the
button that anything has happened.
For this challenge, modify Locatr so that
it responds immediately to a press by
displaying a progress indicator. The
ProgressDialog class can show a
spinning progress indicator that will do
the trick nicely. You will also need to
track when SearchTask is running so
that you can clear away the progress

when that is appropriate.

34
Maps

In this chapter, you will go one step
further with LocatrFragment. In
addition to searching for a nearby image,
you will find its latitude and longitude
and plot it on a map.

Importing Play
Services Maps
Before you get started, you need to

import the mapping library. This is
another Play Services library. Open the
project structure window and add this
dependency to your app module:
com.google.android.gms:play-
services-maps:10.0.1.

Mapping on
Android
As enjoyable as it is to have data that
tells you where your phone is, that data
begs to be represented visually.
Mapping was probably the first truly
killer app for smartphones, which is why
Android has had mapping since day one.
Mapping is big, complicated, and
involves an entire support system of
servers to provide base map data. Most
of Android can stand alone as part of the
Android Open Source Project. Maps,
however, cannot.

So while Android has always had maps,
maps have also always been separate
from the rest of Android’s APIs. The
current version of the Maps API, version
2, lives in Google Play Services along
with the Fused Location Provider. So to
use it, the same requirements apply as
the ones you saw in the section called
Google Play Services in Chapter 33:
You have to either have a device with
the Play Store installed or an emulator
with the Google APIs.
If you are making something with maps
and happen to flip straight to this
chapter, make sure that you have
followed the steps from the previous
chapter before you start:

ensure that your device

supports Play Services

import the appropriate Play
Services library
use
GoogleApiAvailability
at an appropriate entry point to
ensure that an up-to-date Play
Store app is installed

Getting a Maps API
Key
Using the Maps API also requires you to
configure an API key in your manifest.
To do that, you have to create your own
API key. This API key is used to ensure
that your app is authorized to use
Google’s mapping services.
The specifics of how this works can
change from time to time, so we
recommend you visit Google’s
documentation to get over the initial
bump: developers.google.com/​
maps/​documentation/​

android/​start.
As of this writing, those instructions tell
you to start a new project. That is a silly
thing to do when you already have an
entire project’s worth of code. We
instead recommend that you right-click
your
com.bignerdranch.android.locatr
package name and select New → Activity
→ Gallery..., then select Google Maps Activity
to create a new templated maps activity
instead. Use the default name for the new
activity.
When you finish those instructions, you
will have some new code in your app: a
few new manifest entries, a new string in
a new file called
values/google_maps_api.xml,

and a new activity called
MapsActivity. Make sure that you
follow the instructions within
google_maps_api.xml to get a
functional API key. The
google_maps_key string in your
google_maps_api.xml file should
look similar to this, but with a different
value for the key:
<!-- Our signing key (not yours) -->
<string name="google_maps_key"
templateMergeStrategy="preserve"
translatable="false">
 AIzaSyClrnnYZEx0iYmJkIc0K4rdObrXcFkLl-
U</string>

The key is tied to the signing key used to
build the app. Our debug signing key is
different from yours, so our key will not
work for you. (Our apologies if you took
the time to type it out.)

Adding MapsActivity was
necessary to build out the template
XML, but you do not need
MapsActivity itself. You will be
adapting LocatrFragment instead.
So delete MapsActivity from your
app and remove its entry from the
manifest:

Listing 34.1 Removing
MapsActivity’s manifest entry
(AndroidManifest.xml)
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.bignerdranch.android.locatr">
 ...
 <application ...>
 ...
 <meta-data

android:name="com.google.android.geo.API_KEY"
 android:value="@string/google_maps_key"/>

 <activity
 android:name=".MapsActivity"

android:label="@string/title_activity_maps">
 </activity>
 </application>

</manifest>

As of this writing, the template will also
automatically add the
com.google.android.gms:play-
services artifact to your dependencies.
Unfortunately, this artifact is gigantic and
will immediately cause you to blow out
your method limit budget and fail to
build. (Basic Android apps currently
support up to 65,536 methods in an
APK. If you need more than that, you
will need to use multidex, a topic that is
beyond the scope of this book.)
Fix this by removing the services

dependency (but leave play-services-
location and play-services-maps).

Listing 34.2 Removing Play
Services dependency
(app/build.gradle)
dependencies {
 compile fileTree(include: ['*.jar'], dir: 'libs')

androidTestCompile('com.android.support.test.espresso:espresso-
core:2.2.2', {
 exclude group: 'com.android.support', module:
'support-annotations'
 })
 compile 'com.android.support:appcompat-v7:25.0.1'
 compile 'com.google.android.gms:play-services-
location:10.0.1'
 compile 'com.google.android.gms:play-services-
maps:10.0.1'
 compile 'com.google.android.gms:play-
services:10.0.1'
 testCompile 'junit:junit:4.12'
}

With that, you are ready to go.

Setting Up Your
Map
Now that you have the Maps API set up,
you need to create a map. Maps are
displayed, appropriately enough, in a
MapView. MapView is like other
views, mostly, except in one way: For it
to work correctly, you have to forward
all of your lifecycle events, like this:
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mMapView.onCreate(savedInstanceState);
}

This is a huge pain in the neck. It is far

easier to let the SDK do that work for
you instead by using a MapFragment
or, if you are using support library
fragments, SupportMapFragment.
The MapFragment will create and
host a MapView for you, including the
proper lifecycle callback hookups.
Your first step is to wipe out your old UI
entirely and replace it with a
SupportMapFragment. This is not
as painful as it might sound. All you
need to do is switch to using a
SupportMapFragment, delete your
onCreateView(…) method, and
delete everything that uses your
ImageView.

Listing 34.3 Switching to

SupportMapFragment
(LocatrFragment.java)
public class LocatrFragment extends
SupportMapFragment Fragment{
 private static final String TAG =
"LocatrFragment";
 private static final String[]
LOCATION_PERMISSIONS = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,

Manifest.permission.ACCESS_COARSE_LOCATION,
 };
 private static final int
REQUEST_LOCATION_PERMISSIONS = 0;

 private ImageView mImageView;
 private GoogleApiClient mClient;
 ...
 @Override
 public View onCreateView(LayoutInflater inflater,
ViewGroup container,
 Bundle
savedInstanceState) {
 View v =
inflater.inflate(R.layout.fragment_locatr, container,
false);

 mImageView = (ImageView)
v.findViewById(R.id.image);

 return v;

 }
 ...
 private class SearchTask extends
AsyncTask<Location,Void,Void> {
 ...
 @Override
 protected void onPostExecute(Void result) {
 mImageView.setImageBitmap(mBitmap);
 }
 }
}

SupportMapFragment has its own
override of onCreateView(…), so
you should be all set. Run Locatr to see
a map displayed (Figure 34.1).

Figure 34.1 A plain old map

Getting More
Location Data
To actually plot your image on this map,
you need to know where it is. Add an
additional “extra” parameter to your
Flickr API query to fetch a lat-lon pair
back for your GalleryItem.

Listing 34.4 Adding lat-lon to
query (FlickrFetchr.java)
private static final String API_KEY =
"yourApiKeyHere";
private static final String FETCH_RECENTS_METHOD =
"flickr.photos.getRecent";
private static final String SEARCH_METHOD =
"flickr.photos.search";
private static final Uri ENDPOINT = Uri

.parse("https://api.flickr.com/services/rest/")
 .buildUpon()
 .appendQueryParameter("api_key", API_KEY)
 .appendQueryParameter("format", "json")
 .appendQueryParameter("nojsoncallback", "1")
 .appendQueryParameter("extras", "url_s,geo")
 .build();

Now add latitude and longitude to
GalleryItem.

Listing 34.5 Adding lat-lon
properties (GalleryItem.java)
public class GalleryItem {
 private String mCaption;
 private String mId;
 private String mUrl;
 private double mLat;
 private double mLon;
 ...
 public Uri getPhotoPageUri() {
 return
Uri.parse("http://www.flickr.com/photos/")
 .buildUpon()
 .appendPath(mOwner)
 .appendPath(mId)
 .build();
 }

 public double getLat() {

 return mLat;
 }

 public void setLat(double lat) {
 mLat = lat;
 }

 public double getLon() {
 return mLon;
 }

 public void setLon(double lon) {
 mLon = lon;
 }

 @Override
 public String toString() {
 return mCaption;
 }
}

And then pull that data out of your Flickr
JSON response.

Listing 34.6 Pulling data from
Flickr JSON response
(FlickrFetchr.java)
private void parseItems(List<GalleryItem> items,
JSONObject jsonBody)

 throws IOException, JSONException {

 JSONObject photosJsonObject =
jsonBody.getJSONObject("photos");
 JSONArray photoJsonArray =
photosJsonObject.getJSONArray("photo");

 for (int i = 0; i < photoJsonArray.length(); i++)
{
 JSONObject photoJsonObject =
photoJsonArray.getJSONObject(i);

 GalleryItem item = new GalleryItem();
 item.setId(photoJsonObject.getString("id"));

item.setCaption(photoJsonObject.getString("title"));

 if (!photoJsonObject.has("url_s")) {
 continue;
 }

item.setUrl(photoJsonObject.getString("url_s"));

item.setOwner(photoJsonObject.getString("owner"));

item.setLat(photoJsonObject.getDouble("latitude"));

item.setLon(photoJsonObject.getDouble("longitude"));

 items.add(item);
 }
}

Now that you are getting your location
data, add some fields to your main
fragment to store the current state of your
search. Add one field to stash the
Bitmap you will display, one for the
GalleryItem it is associated with,
and one for your current Location.

Listing 34.7 Adding map data
(LocatrFragment.java)
public class LocatrFragment extends
SupportMapFragment {
 ...
 private static final int
REQUEST_LOCATION_PERMISSIONS = 0;
 private Bitmap mMapImage;
 private GalleryItem mMapItem;
 private Location mCurrentLocation;
 ...

Next, save those bits of information out
from within SearchTask.

Listing 34.8 Saving out query
results (LocatrFragment.java)
private class SearchTask extends
AsyncTask<Location,Void,Void> {
 private Bitmap mBitmap;
 private GalleryItem mGalleryItem;
 private Location mLocation;

 @Override
 protected Void doInBackground(Location... params)
{
 mLocation = params[0];
 FlickrFetchr fetchr = new FlickrFetchr();
 ...
 }

 @Override
 protected void onPostExecute(Void result) {
 mMapImage = mBitmap;
 mMapItem = mGalleryItem;
 mCurrentLocation = mLocation;
 }
}

With that, you have the data you need.
Next up: making your map show it.

Working with Your
Map
Your SupportMapFragment creates
a MapView, which is, in turn, a host for
the object that does the real work:
GoogleMap. So your first step is to
acquire a reference to this master object.
Do this by calling
getMapAsync(OnMapReadyCallback)

Listing 34.9 Getting a
GoogleMap
(LocatrFragment.java)
public class LocatrFragment extends
SupportMapFragment {

 ...
 private static final int
REQUEST_LOCATION_PERMISSIONS = 0;

 private GoogleApiClient mClient;
 private GoogleMap mMap;
 private Bitmap mMapImage;
 private GalleryItem mMapItem;
 private Location mCurrentLocation;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);

 mClient = new
GoogleApiClient.Builder(getActivity())
 ...
 .build();

 getMapAsync(new OnMapReadyCallback() {
 @Override
 public void onMapReady(GoogleMap
googleMap) {
 mMap = googleMap;
 }
 });
 }

SupportMapFragment.getMapAsync(…)
does what it says on the tin: It gets a map
object asynchronously. If you call this

from within your
onCreate(Bundle), you will get a
reference to a GoogleMap once it is
created and initialized.
Now that you have a GoogleMap, you
can update the look of that map
according to the current state of
LocatrFragment. The first thing you
will want to do is zoom in on an area of
interest. You will want a margin around
that area of interest. Add a dimension
value for that margin.

Listing 34.10 Adding margin
(res/values/dimens.xml)
<resources>
 <!-- Default screen margins, per the Android
Design guidelines. -->
 <dimen
name="activity_horizontal_margin">16dp</dimen>

 <dimen
name="activity_vertical_margin">16dp</dimen>
 <dimen name="map_inset_margin">100dp</dimen>
</resources>

Now add an updateUI()
implementation to perform the zoom.

Listing 34.11 Zooming in
(LocatrFragment.java)
private boolean hasLocationPermission() {
 ...
}

private void updateUI() {
 if (mMap == null || mMapImage == null) {
 return;
 }

 LatLng itemPoint = new LatLng(mMapItem.getLat(),
mMapItem.getLon());
 LatLng myPoint = new LatLng(
 mCurrentLocation.getLatitude(),
mCurrentLocation.getLongitude());

 LatLngBounds bounds = new LatLngBounds.Builder()
 .include(itemPoint)
 .include(myPoint)

 .build();

 int margin =
getResources().getDimensionPixelSize(R.dimen.map_inset_margin);

 CameraUpdate update =
CameraUpdateFactory.newLatLngBounds(bounds, margin);
 mMap.animateCamera(update);
}

private class SearchTask extends
AsyncTask<Location,Void,Void> {

Here is what you just did. To move your
GoogleMap around, you built a
CameraUpdate.
CameraUpdateFactory has a
variety of static methods to build
different kinds of CameraUpdate
objects that adjust the position, zoom
level, and other properties around what
your map is displaying.
Here, you created an update that points
the camera at a specific

LatLngBounds. You can think of a
LatLngBounds as a rectangle around
a set of points. You can make one
explicitly by saying what the southwest
and northeast corners of it should be.
More often, it is easier to provide a list
of points that you would like this
rectangle to encompass.
LatLngBounds.Builder makes it
easy to do this: Simply create a
LatLngBounds.Builder and call
.include(LatLng) for each point
your LatLngBounds should
encompass (represented by LatLng
objects). When you are done, call
build(), and you get an appropriately
configured LatLngBounds.
With that done, you can update your map

in two ways: with
moveCamera(CameraUpdate) or
animateCamera(CameraUpdate)
Animating is more fun, so naturally that
is what you used above.
Next, hook up your updateUI()
method in two places: when the map is
first received and when your search is
finished.

Listing 34.12 Hooking up
updateUI()
(LocatrFragment.java)
@Override
public void onCreate(Bundle savedInstanceState) {
 ...
 getMapAsync(new OnMapReadyCallback() {
 @Override
 public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;
 updateUI();
 }

 });
}
...
private class SearchTask extends
AsyncTask<Location,Void,Void> {
 ...
 @Override
 protected void onPostExecute(Void result) {
 mMapImage = mBitmap;
 mMapItem = mGalleryItem;
 mCurrentLocation = mLocation;

 updateUI();
 }
}

Run Locatr and press the search button.
You should see your map zoom in on an
area of interest that includes your current
location (Figure 34.2). (Emulator users
will need to have MockWalker running
to get a location fix.)

Figure 34.2 Zoomed-in map

Drawing on the map
Your map is nice, but a little vague. You
know that you are in there somewhere,
and you know that the Flickr photo is in
there somewhere. But where? Let’s add
specificity with some markers.
Drawing on a map is not the same as
drawing on a regular view. It is a little
easier, in fact. Instead of drawing pixels
to the screen, you draw features to a
geographic area. And by “drawing,” we
mean, “build little objects and add them
to your GoogleMap so that it can draw
them for you.”
Actually, that is not quite right, either. It
is, in fact, the GoogleMap object that

makes these objects, not you. Instead,
you create objects that describe what
you want the GoogleMap to create,
called options objects.
Add two markers to your map by
creating MarkerOptions objects and
then calling
mMap.addMarker(MarkerOptions)

Listing 34.13 Adding markers
(LocatrFragment.java)
private void updateUI() {
 ...
 LatLng itemPoint = new LatLng(mMapItem.getLat(),
mMapItem.getLon());
 LatLng myPoint = new LatLng(
 mCurrentLocation.getLatitude(),
mCurrentLocation.getLongitude());

 BitmapDescriptor itemBitmap =
BitmapDescriptorFactory.fromBitmap(mMapImage);
 MarkerOptions itemMarker = new MarkerOptions()
 .position(itemPoint)
 .icon(itemBitmap);

 MarkerOptions myMarker = new MarkerOptions()
 .position(myPoint);

 mMap.clear();
 mMap.addMarker(itemMarker);
 mMap.addMarker(myMarker);

 LatLngBounds bounds = new LatLngBounds.Builder()
 ...
}

When you call
addMarker(MarkerOptions), the
GoogleMap builds a Marker instance
and adds it to the map. If you need to
remove or modify the marker in the
future, you can hold on to this instance.
In this case, you will be clearing the map
every time you update it. As a result, you
do not need to hold on to the Markers.
Run Locatr and press the search button,
and you should see your two markers
show up (Figure 34.3).

Figure 34.3 Geographic
looming

And with that, your little geographic
image finder is complete. You learned
how to use two Play Services APIs, you
tracked your phone’s location, you
registered for one of Google’s many web
services APIs, and you plotted
everything on a map. Perhaps a nap is in
order now that your app’s map is in
order.

For the More
Curious: Teams
and API Keys
When you have more than one person
working on an app with an API key,
debug builds start to be a pain. Your
signing credentials are stored in a
keystore file, which is unique to you. On
a team, everyone will have his or her
own keystore file and credentials. For
new team members to work on the app,
you have to ask them for their SHA1 and
then go update your API key’s

credentials.
Or, at least, that is one option for how to
manage the API key: Manage all of the
signing hashes in your project. If you
want a lot of explicit control over who
is doing what, that may be the right
solution.
But there is another option: Create a
debug keystore specifically for the
project. Start by creating a brand new
debug keystore with Java’s keytool
program.

Listing 34.14 Creating a new
keystore (terminal)
 $ keytool -genkey -v -keystore debug.keystore -
alias androiddebugkey \
 --storepass android -keypass android -keyalg RSA
-validity 14600

You will be asked a series of questions
by keytool. Answer them honestly, as if
no one were watching. (Since this is a
debug key, it is OK to leave the default
value on everything but the name if you
like.)
 $ keytool -genkey -v -keystore debug.keystore -
alias androiddebugkey \
 --storepass android -keypass android -keyalg RSA
-validity 14600
 What is your first and last name?
 [Unknown]: Bill Phillips
 ...

Once you have that debug.keystore
file, move it into your app module’s
folder. Then open up your project
structure, select your app module, and
navigate to the Signing tab. Click the +
button to add a new signing config. Type
debug in the Name field and
debug.keystore for your newly

created keystore (Figure 34.4).

Figure 34.4 Configuring debug
signing key

If you configure your API key to use this
new keystore, then anyone else can use
the same API key by using the same
keystore. Much easier.

Note that if you do this, you need to
exercise some caution about how you
distribute this new
debug.keystore. If you only share
it in a private code repo, you should be
fine. But do not publish this keystore in a
public repo where anybody can get to it,
because that will allow anyone to use
your API key.

35
Material Design

One of the biggest changes to Android in
recent years was the introduction of a
new design style: material design. This
new visual language made a big splash
when it was released with Android 5.0
(Lollipop), and it came accompanied by
a wonderfully exhaustive style guide.
Of course, as developers we are usually
only peripherally concerned with
questions of design. Our job is to get it
done, no matter what “it” is. However,

material design introduces some new
interface concepts in addition to the
design sensibilities. If you familiarize
yourself with them, you will find it much
easier to implement these new designs.
This final chapter is a little different
from previous chapters. You can think of
it as an enormous For The More Curious
section. There is no example app to
work through, and most of this
information is not required reading.
For designers, material design
emphasizes three big ideas:

Material is the metaphor: The
pieces of the app should act
like physical, material objects.

Bold, graphic, and

intentional: App designs
should jump off the page like
they would in a well-designed
magazine or book.

Motion provides meaning: The
app should animate in response
to actions taken by the user.

The only one of these that our book has
nothing to say about is bold, graphic,
and intentional. This is a designer’s
responsibility. If you are designing your
own app, check out the material design
guidelines
(developer.android.com/​
design/​material/​index.html)
to see what they mean by that.
For the material is the metaphor part,

designers need your help to build out the
material surfaces. You will need to
know how to position them in three
dimensions using z-axis properties, and
you will need to know how to use
material widgets such as toolbars,
floating action buttons, and snackbars.
Finally, to live up to the directive that
motion provides meaning, you can learn
a new set of animation tools: state list
animators, animated state list drawables
(yes, you read that right – they are
different from state list animators),
circular reveals, and shared element
transitions. These can be used to add the
visual interest that bold designers crave.

Material Surfaces
As a developer, the single most
important idea you should be familiar
with in material design is the idea of
material surfaces. Designers think of
these as 1dp-thick bits of cardstock.
These bits of cardstock act like
magically changeable bits of paper and
ink: They can grow, they can show
animated pictures, and they can show
changing text (Figure 35.1).

Figure 35.1 An interface with
two material surfaces

However, as magical as they may be,

they still behave like real pieces of
paper. For example, one sheet of paper
cannot move right through another. The
same logic applies when you animate
material surfaces: They cannot animate
through one another.
Instead, surfaces exist and maneuver
around one another in 3-D space. They
can move up toward your finger, or
down and away (Figure 35.2).

Figure 35.2 A material design
in 3-D space

To animate one surface across another,
you move it up and across the other
surface (Figure 35.3).

Figure 35.3 Animating one
surface over another

Elevation and Z values
The most apparent way users will see

the depth in your interface is by seeing
how elements of your app cast shadows
on one another. Some might think that a
perfect world would be one where the
designers worry about drawing those
shadows and we developers go eat
bagels. (Opinions differ on what a
perfect world looks like.)
But doing that with a variety of surfaces
in play – while animating, no less – is
not possible for designers to do by
themselves. Instead, you let Android
take care of drawing the shadows by
giving each of your Views an elevation.
Lollipop introduced a z-axis to the
layout system, allowing you to specify
where a view lives in 3-D space.
Elevation is like the coordinates

assigned to your view in layout: You can
animate your view away from this
position, but this is where it naturally
lives (Figure 35.4).

Figure 35.4 Elevation on the Z
plane

To set the elevation value, you can either
call the
View.setElevation(float)
method or set the value in your layout
file.

Listing 35.1 Setting elevation
on a view in a layout file
<Button
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:elevation="2dp"/>

Because this is intended to be your
baseline Z value, using the XML
attribute is preferred. It is also easier to
use than setElevation(float),
because the elevation attribute is silently
ignored on older versions of Android, so
you do not need to worry about
compatibility.
To change a View’s elevation, you use
the translationZ and Z properties.
These work exactly like translationX,
translationY, X, and Y, which you saw
in Chapter 32.
Z’s value is always elevation plus

translationZ. If you assign a value to
Z, it will do the math to assign the right
value to translationZ (Figure 35.5).

Figure 35.5 Z and translationZ

State list animators

Material applications are often designed
with many animated user interactions.
Press a button on a device running
Lollipop or later to see one example:

The button will animate up on the z-axis
to meet your finger. When you release
your finger, it will animate back down.
To make implementing these animations
easier, Lollipop introduced state list
animators. State list animators are the
animation counterpart to the state list
drawable: Instead of switching out one
drawable for another, they animate the
view into a particular state. To
implement an animation that raises the
button up when you press it, you can
define a state list animator that looks
like this in res/animator:

Listing 35.2 An example state
list animator
<selector
xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:state_pressed="true">
 <objectAnimator
android:propertyName="translationZ"
 android:duration="100"
 android:valueTo="6dp"
 android:valueType="floatType"
 />
 </item>
 <item android:state_pressed="false">
 <objectAnimator
android:propertyName="translationZ"
 android:duration="100"
 android:valueTo="0dp"
 android:valueType="floatType"
 />
 </item>
</selector>

This is great if you need to use a
property animation. If you want to
perform a framed animation, you need to
use another tool: the animated state list
drawable.
The name “animated state list drawable”
is a little confusing. It sounds similar to
“state list animator,” but the purpose is

totally different. Animated state list
drawables allow you to define images
for each state, like a normal state list
drawable, but they also allow you to
define frame animation transitions
between those states.
Back in Chapter 23, you defined a state
list drawable for BeatBox’s sound
buttons. If a sadistic designer (like our
own Kar Loong Wong) wanted to have a
multiframe animation each time the
button was pressed, you could modify
your XML to look like Listing 35.3.
(This version would need to live inside
a res/drawable-21 directory
because this feature is not supported
prior to Lollipop.)

Listing 35.3 An animated state
list drawable
<animated-selector
xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/pressed"

android:drawable="@drawable/button_beat_box_pressed"
 android:state_pressed="true"/>
 <item android:id="@+id/released"

android:drawable="@drawable/button_beat_box_normal"
/>

 <transition
 android:fromId="@id/released"
 android:toId="@id/pressed">
 <animation-list>
 <item android:duration="10"
android:drawable="@drawable/button_frame_1" />
 <item android:duration="10"
android:drawable="@drawable/button_frame_2" />
 <item android:duration="10"
android:drawable="@drawable/button_frame_3" />
 ...
 </animation-list>
 </transition>
</animated-selector>

Here, each item in the selector gets an

ID. You can then define a transition
between different IDs to play a
multiframe animation. If you want to
provide an animation when you release
the button, too, that requires an
additional transition tag.

Animation Tools
Material design introduced many nifty
animations. Some of them can be
achieved quickly. Others require more
work, but Android provides some tools
to help you out.

Circular reveal
The circular reveal animation is used in
material design to look like an ink flood-
fill. A view or piece of content is
progressively revealed outward from a
point of interaction, usually a point

pressed by the user. Figure 35.6 gives
you an idea of what a circular reveal can
bring to the party.

Figure 35.6 Circular reveal
from pressing an item in
BeatBox

You may remember using a simple
version of this way back in Chapter 6,

where you used it to hide a button. Here
we will talk about another, slightly more
involved way to use a circular reveal.
To create a circular reveal animation,
you call the
createCircularReveal(…)
method on ViewAnimationUtils.
This method takes in quite a few
parameters:
 static Animator createCircularReveal(View view,
int centerX, int centerY,
 float
startRadius, float endRadius)

The View passed in is the View you
would like to reveal. In Figure 35.6, this
view is a solid red view that is the same
width and height as the
BeatBoxFragment. If you animate
from a startRadius of 0 to a large

endRadius, this view will start out
being completely transparent and then
slowly be revealed as the circle
expands. The circle’s origin (in terms of
the View’s coordinates) will be
centerX and centerY. This method
returns an Animator, which works
exactly like the Animator you used in
Chapter 32.
The material design guidelines say that
these animations should originate from
the point where the user touched the
screen. So your first step is to find the
screen coordinates of the view that the
user touched, as in Listing 35.4.

Listing 35.4 Finding screen
coordinates in a click listener

@Override
public void onClick(View clickSource) {
 int[] clickCoords = new int[2];

 // Find the location of clickSource on the screen
 clickSource.getLocationOnScreen(clickCoords);

 // Tweak that location so that it points at the
center of the view,
 // not the corner
 clickCoords[0] += clickSource.getWidth() / 2;
 clickCoords[1] += clickSource.getHeight() / 2;

 performRevealAnimation(mViewToReveal,
clickCoords[0], clickCoords[1]);
}

Then you can perform your reveal
animation.

Listing 35.5 Making and
executing a reveal animation
private void performRevealAnimation(View view, int
screenCenterX, int screenCenterY) {
 // Find the center relative to the view that will
be animated
 int[] animatingViewCoords = new int[2];
 view.getLocationOnScreen(animatingViewCoords);
 int centerX = screenCenterX -
animatingViewCoords[0];
 int centerY = screenCenterY -

animatingViewCoords[1];

 // Find the maximum radius
 Point size = new Point();

getActivity().getWindowManager().getDefaultDisplay().getSize(size);

 int maxRadius = size.y;

 if (Build.VERSION.SDK_INT >=
Build.VERSION_CODES.LOLLIPOP) {
 ViewAnimationUtils.createCircularReveal(view,
centerX, centerY, 0, maxRadius)
 .start();
 }
}

Important note: The View must already
be in the layout for this method to work.

Shared element
transitions
Another kind of animation that is new to
material design is the shared element

transition, or hero transition. This
transition is meant for a specific
situation: where two screens display
some of the same things.
Think back to your work on
CriminalIntent. In that application, you
had a thumbnail view of a picture you
took in CrimeDetailFragment. In
one of the challenges, you were asked to
construct another view that zoomed in to
a full-size visual of that picture. Your
solution might have looked something
like Figure 35.7.

Figure 35.7 A zoomed-in
picture view

This is a common interface pattern: You
press one element, and the next view
provides more detail for that element.
A shared element transition is an

animation for any situation where you
are transitioning between two screens
that are displaying some of the same
elements. In this case, both the big image
on the right and the small one on the left
are displaying the same picture. The
picture, in other words, is a shared
element.
Beginning in Lollipop, Android
provides techniques for accomplishing a
transition between activities or between
fragments. Here, we will show you how
it works with activities. The middle of
the animation looks like Figure 35.8.

Figure 35.8 Shared element
transition

For activities, the basic implementation
is a three-step process:

1. Turn on activity transitions.

2. Set transition name values for
each shared element view.

3. Start your next activity with an
ActivityOptions that
will trigger the transition.

First, you have to turn on activity
transitions. If your activity uses the
AppCompat theme used elsewhere in the
book, then you can skip this step.
(AppCompat inherits from the Material
theme, which turns on activity transitions
for you.)
In our example, we gave our activity a

transparent background by using
@android:style/Theme.Translucent.NoTitleBar

This theme does not inherit from the
Material theme, so it does not have
activity transitions turned on. They have
to be turned on manually, which can
happen in either of two ways. One
option is to add a line of code to the
activity, like this:

Listing 35.6 Turning on activity
transitions in code
@Override
public void onCreate(Bundle savedInstanceState) {

getWindow().requestFeature(Window.FEATURE_ACTIVITY_TRANSITIONS);

 super.onCreate(savedInstanceState);
 ...
}

The other way is to tweak the style the

activity uses and set the
android:windowActivityTransitions
attribute to true.

Listing 35.7 Turning on activity
transitions in a style
<resources>
 <style name="TransparentTheme"

parent="@android:style/Theme.Translucent.NoTitleBar">
 <item
name="android:windowActivityTransitions">true</item>
 </style>

</resources>

The next step in the shared element
transition is to tag each shared element
view with a transition name. This is
done in a property on View introduced
in API 21: transitionName. You can
set it in either XML or in code;
depending on the circumstance, one or

the other might be appropriate. In our
case, we set the transition name for the
zoomed-in image by setting
android:transitionName to image in
our layout XML, as in Figure 35.9.

Figure 35.9 Zoomed-in image
layout

Then we defined a static method
startWithTransition(…) to set
the same transition name on a view to
animate from.

Listing 35.8 Starting with
transition method
public static void startWithTransition(Activity
activity, Intent intent,
 View sourceView) {
 ViewCompat.setTransitionName(sourceView,
"image");
 ActivityOptionsCompat options =
ActivityOptionsCompat
 .makeSceneTransitionAnimation(activity,
sourceView, "image");

 activity.startActivity(intent,
options.toBundle());
}

ViewCompat.setTransitionName(View,
String) is there to help out on older
versions of Android, where View will
not have a

setTransitionName(String)
implementation.
In Listing 35.8, you can see the final
step, too: making an
ActivityOptions. The
ActivityOptions tells the OS what
the shared elements are and what
transitionName value to use.
There is a lot more to know about
transitions and shared element
transitions. They can also be used for
fragment transitions, for example. For
more information, check out Google’s
documentation for the transitions
framework at
developer.android.com/​
training/​transitions/​
overview.html.

View Components
The material design guidelines specify a
few kinds of view components that were
new in Lollipop. The Android team
provides implementations of many of
these components. Let’s take a look at a
few of the views you are likely to run
into.

Cards
The first new widget is a frame for other
widgets: cards (Figure 35.10).

Figure 35.10 Cards

Figure 35.10 Cards

A card is a container for other kinds of
content. It is elevated slightly, with a
shadow behind it, and its corners are
slightly rounded.
This is not a design book, so we cannot
provide advice on when and where to
use cards. (See Google’s material design
documentation on the web if you are
curious: www.google.com/​
design/​spec.) We can tell you how
to make them, though: by using
CardView.
CardView is a class provided in its
own v7 support library, much like
RecyclerView. You can include it in
your project by adding a dependency on

http://www.google.com/design/spec

com.android.support:cardview-v7
to your module.
Once you do that, you can use
CardView like any other ViewGroup
in a layout. It is a FrameLayout
subclass, so you can use any of
FrameLayout’s layout params for
CardView’s children.

Listing 35.9 Using CardView in
a layout
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".MainActivity">
 <android.support.v7.widget.CardView
 android:id="@+id/item"
 android:layout_width="match_parent"
 android:layout_height="200dp"
 android:layout_margin="16dp"

 >
 ...
 </android.support.v7.widget.CardView>

</LinearLayout>

Because CardView is a support library
class, it gives you some nice
compatibility features on older devices.
Unlike other widgets, it will always
project a shadow. (On older versions, it
will simply draw its own – not a perfect
shadow, but close enough.) See
CardView’s documentation for other
minor visual differences, if you are
interested.

Floating action buttons

Another component you will often see is

the floating action button, or FAB. You
can see one in Figure 35.11.

Figure 35.11 A floating action
button

An implementation of the floating action
button is available in Google’s design
support library. You can include this
library in your project with this
dependency on your module:
com.android.support:design:24.2.1

Floating action buttons are little more
than a solid-color circle with a custom
circular shadow, provided by an
OutlineProvider. The
FloatingActionButton class, a
subclass of ImageView, takes care of

the circle and shadow for you. Simply
place a FloatingActionButton in
your layout file and set its src attribute
to the image that you want to display in
your button.
While you could place your floating
action button in a FrameLayout, the
design support library also includes the
clever CoordinatorLayout. This
layout is a subclass of FrameLayout
that changes your floating action button’s
position based on the movement of other
components. Now, when you display a
Snackbar (more on that in a moment),
your FAB will move up so that the
Snackbar does not cover it. This will
look like Listing 35.10.

Listing 35.10 Laying out a
floating action button
<android.support.design.widget.CoordinatorLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 [... main content here ...]

<android.support.design.widget.FloatingActionButton
 android:id="@+id/floating_action_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|right"
 android:layout_margin="16dp"
 android:src="@drawable/play"/>
</android.support.design.widget.CoordinatorLayout>

This code will place the button over the
rest of the content in the bottom right,
without interfering with any of it.

Snackbars
Snackbars are a bit more involved than
floating action buttons. They are little
interaction components that appear at the
bottom of the screen (Figure 35.12).

Figure 35.12 A snackbar

Snackbars animate up from the bottom of
the screen. After a certain period of
time, or after another interaction on the
screen, they automatically animate back
down. Snackbars are similar in purpose
to toasts, but unlike toasts they are a part
of your app’s own interface. A toast
appears above your app and will stick
around even if you navigate away. Also,

snackbars let you provide a button so
that the user can take immediate action.
Like floating action buttons, Android
provides an implementation of snackbars
in the design support library.
Snackbars are constructed and
displayed in a similar way as Toasts:

Listing 35.11 Having a
snack(bar)
Snackbar.make(container, R.string.munch,
Snackbar.LENGTH_SHORT).show();

When constructing a Snackbar, pass
in the view where the snackbar will be
displayed, the text to display, and the
length of time that the snackbar should
be visible for. Finally, call show() to
display the snackbar.

Snackbars can optionally provide an
action on the right side. This is handy if
the user performs a destructive action,
like deleting a crime, and you want to
provide a way for the user to undo that
action.

More on Material
Design
In this chapter, we presented what
amounts to a big grab bag of tools.
Those tools are hardly any fun if you let
them sit and gather dust. So keep an eye
out for ways to spiff up your application
with some depth or new animations.
One great place to look for inspiration is
the material design specification itself,
which is full of great ideas:
www.google.com/​design/​
spec/​material-design/​
introduction.html. You can also

http://www.google.com/design/spec/material-design/introduction.html

look in the Google Play Store to see
what other apps are doing and ask
yourself, “How would I do that in my
own app?” You might end up with a
niftier program than what you initially
imagined.

36
Afterword

Congratulations! You are at the end of
this guide. Not everyone has the
discipline to do what you have done –
and learn what you have learned. Take a
moment to give yourself a pat on the
back.
This hard work has paid off: You are
now an Android developer.

The Final

Challenge
We have one last challenge for you:
Become a good Android developer.
Good developers are each good in their
own way, so you must find your own
path from here on out.
Where might you start, then? Here are
some places we recommend:
Write code. Now. You will quickly
forget what you have learned here if you
do not apply it. Contribute to a project
or write a simple application of your
own. Whatever you do, waste no time:
Write code.
Learn. You have learned a little bit

about a lot of things in this book. Did
any of them spark your imagination?
Write some code to play around with
your favorite thing. Find and read more
documentation about it – or an entire
book, if there is one. Also, check out the
Android Developers YouTube channel
(www.youtube.com/​user/​
androiddevelopers) and listen to
the Android Developers Backstage
podcast for Android updates from
Google.
Meet people. Local meetups are a good
place to meet like-minded developers.
Lots of top-notch Android developers
are active on Twitter and Google Plus.
Attend Android conferences to meet
other Android developers (and maybe

http://www.youtube.com/user/androiddevelopers

even us!).
Explore the open source community.
Android development is exploding on
www.github.com. When you find a
cool library, see what other projects its
contributors are committing to. Share
your own code, too – you never know
who will find it useful or interesting. We
find the Android Weekly mailing list to
be a great way to see what is happening
in the Android community
(androidweekly.net).

http://www.github.com

Shameless Plugs
You can find all of us on Twitter. Bill is
@billjings, Chris is @cstew, and
Kristin is @kristinmars.
If you enjoyed this book, check out other
Big Nerd Ranch Guides at
www.bignerdranch.com/​books.
We also have a broad selection of week-
long courses for developers, where we
make it easy to learn this amount of stuff
in only a week of time. And of course, if
you just need someone to write great
code, we do contract programming, too.
For more, go to our website at

http://www.bignerdranch.com/books

www.bignerdranch.com.

http://www.bignerdranch.com

Thank You
Without readers like you, our work
would not exist. Thank you for buying
and reading our book.

Index
A B C D E F G H I J L M N O P Q R S

T U V W X Z

Symbols

9-patch images, For the More Curious: 9-Patch
Images
<> (diamond notation), Singletons and
centralized data storage
?? (null coalescing) operator, More
syntactic sugar
@+id, Resources and resource IDs

@Before annotation, Setting Up Your Test

@Override, Making log messages

@Test annotation, Writing Tests

@{} (binding mustache) operator,
Binding to Data, Binding to a ViewModel

A

aapt (Android Asset Packing tool),
For the More Curious: Android Build Process
accessibility

(see also Accessibility Scanner, Explore

by Touch, TalkBack)
about, Accessibility, Creating a

Comparable Experience
android:contentDescription

attribute, Adding content descriptions

android:focusable attribute,
Making a widget focusable

color contrast and, For the More
Curious: Using Accessibility Scanner

someView.setContentDescription(someString)
method, Creating a Comparable Experience

for touch targets, For the More
Curious: Using Accessibility Scanner

accessibility focus, TalkBack

Accessibility Scanner, For the More Curious:
Using Accessibility Scanner
accessibility services, TalkBack

action bar, toolbar vs, For the More
Curious: Action Bar vs Toolbar
action views, Using SearchView

ACTION_IMAGE_CAPTURE, Firing the
intent
activities

(see also Activity class, fragments)
about, App Basics

abstract fragment-hosting

activity, An abstract Activity class

adding to project, Your Second
Activity

as controllers, Model-View-Controller
and Android

back stack of, How Android Sees Your

Activities, Tasks and the Back Stack

base, Tasks and the Back Stack

child, Your Second Activity, Getting a result
back from a child activity

creating new, Creating a new activity

fragment transactions and,
Activity: Fragment Boss

handling configuration
changes in, Proper Rotation with WebView

hosting fragments, Starting

CriminalIntent, Hosting a UI Fragment

label (display name), Resolving an
Implicit Intent

launcher, How Android Sees Your
Activities

lifecycle and fragments, The
FragmentManager and the fragment lifecycle

lifecycle diagram, The Activity
Lifecycle, Revisited

lifecycle of, The Activity Lifecycle,
Rotation and the Activity Lifecycle, The Activity
Lifecycle, Revisited

managing fragments, Activity:
Fragment Boss

overriding methods, The Activity

Lifecycle, Making log messages

passing data between, Passing
Data Between Activities

record, The Activity Lifecycle, Revisited

rotation and, Rotation and the Activity
Lifecycle

stack of, How Android Sees Your Activities

starting from fragments, Starting

an Activity from a Fragment
starting in current task, Tasks

and the Back Stack
starting in new task, Starting a

new task
states of, The Activity Lifecycle, The

Activity Lifecycle, Revisited
tasks and, Tasks and the Back Stack

UI flexibility and, The Need for UI
Flexibility

Activity class
as Context subclass, Making Toasts

getIntent(), Using intent extras,
Retrieving an extra

lifecycle methods, The Activity
Lifecycle

onActivityResult(…), Sending back
an intent

onCreate(Bundle), The Activity

Lifecycle, Making log messages

onCreateOptionsMenu(Menu),
Creating the menu

onDestroy(), The Activity Lifecycle

onPause(), The Activity Lifecycle

onResume(), The Activity Lifecycle,
Reloading the List

onSaveInstanceState(Bundle),
Saving Data Across Rotation

onStart(), The Activity Lifecycle

onStop(), The Activity Lifecycle

setContentView(…) method,
From Layout XML to View Objects

setResult(…), Setting a result

startActivity(Intent), Starting an
Activity

startActivityForResult(…),
Getting a result back from a child activity

activity record, The Activity Lifecycle, Revisited

ActivityInfo class, Creating Explicit Intents at
Runtime

ActivityManager class
back stack, How Android Sees Your

Activities
starting activities, Starting an

Activity, Communicating with intents, Explicit

and implicit intents, Sending back an intent

ActivityNotFoundException,
Communicating with intents
Adapter class, Adapters

adapters
about, Adapters

implementing, Implementing a
ViewHolder and an Adapter

adb (Android Debug Bridge) driver,
Connecting your device
add(…) method
(FragmentTransaction), Fragment
transactions
addFlags(int) method (Intent),

Starting a new task
AlarmManager class, Delayed Execution with

AlarmManager, Managing alarms with PendingIntent

AlertDialog class
about, Dialogs

wrapping in DialogFragment,
Creating a DialogFragment

AlertDialog.Builder class
about, Creating a DialogFragment

create(), Creating a DialogFragment

setPositiveButton(…), Creating a
DialogFragment

setTitle(int), Creating a
DialogFragment

setView(…), Setting a dialog’s contents

alias resources, Using an alias resource

ancestral navigation, Enabling Hierarchical
Navigation
Android Asset Packing tool (aapt),

For the More Curious: Android Build Process
Android Asset Studio, Using Android Asset
Studio
Android Debug Bridge (adb) driver,
Connecting your device
Android developer documentation,
Using the Android Developer Documentation
Android firmware versions, Android SDK
Versions
Android Lint

as static analyzer, Using Android Lint

compatibility and, Adding code from
later APIs safely

running, Using Android Lint

Android SDK Manager, Downloading Earlier
SDK Versions
Android Studio

adding dependencies in, Adding
dependencies in Android Studio

AppCompat theme, Modifying the

theme
build process, For the More Curious:

Android Build Process
code completion, Using code

completion
code style preferences,

Generating getters and setters
creating new classes, Creating a

New Class
creating new projects, Creating

an Android Project
debugger

(see also debugging)
devices view, Configuring your device

for development
editor, Navigating in Android Studio

Emulator Control, Mock location data

extracting a method with,
Sending data to the target fragment

generating getter and setter

methods, Generating getters and setters

graphical layout tool, Using the

Graphical Layout Tool, Testing Alternative
Resources

installing, Downloading and Installing
Android Studio

preferences, Generating getters and
setters

project tool window, Navigating in
Android Studio

project window, Navigating in Android
Studio

run configurations, Data Binding
Callbacks

tool windows, Navigating in Android
Studio

variables view, Setting breakpoints

Android versions (see SDK versions)
Android Virtual Device Manager,
Running on the Emulator

Android Virtual Devices (AVDs),
creating, Running on the Emulator

Android XML namespace, The view
hierarchy
android.text.format.DateFormat
class, Challenge: Formatting the Date

android.util.Log class (see Log class)
android.view.animation package,
Legacy animation tools
android:background attribute, Styles

android:configChanges attribute,
Proper Rotation with WebView
android:contentDescription
attribute, Challenge: From Button to ImageButton,
Adding content descriptions
android:documentLaunchMode
attribute, For the More Curious: Concurrent
Documents
android:drawablePadding attribute,

Referencing resources in XML
android:drawableRight attribute,
Referencing resources in XML
android:focusable attribute, Making a
widget focusable
android:icon attribute, Using Android Asset
Studio
android:id attribute, Resources and resource
IDs
android:labelFor attribute, Using labels to
provide context
android:layout_gravity attribute,
Creating a landscape layout
android:layout_height attribute,
android:layout_width and android:layout_height
android:layout_margin attribute,
Margins vs padding
android:layout_width attribute,
android:layout_width and android:layout_height
android:name attribute, Declaring
activities in the manifest

android:orientation attribute,
android:orientation
android:padding attribute, Margins vs
padding
android:protectionLevel attribute,
More about protection levels
android:text attribute, android:text

AndroidManifest.xml (see manifest)
animated state list drawables, State
list animators
animation

about, Property Animation

android.view.animation
package, Legacy animation tools

interpolation, Simple Property
Animation

property animation vs
transitions framework, Transitions

running multiple animators,

Playing Animators Together
simple property animation,

Simple Property Animation
transformation properties and

(see transformation properties)
transitions framework, Transitions

translation, Simple Property Animation

animation tools, Animation Tools

AnimatorListener class, Playing Animators
Together
AnimatorSet class, Playing Animators
Together
anonymous inner classes, Code Style,
Setting listeners
API keys

maps, Getting a Maps API Key

when working with teams, For
the More Curious: Teams and API Keys

API levels (see SDK versions)

.apk file, For the More Curious: Android Build

Process, For the More Curious: Mipmap Images

app icon, How hierarchical navigation works

app namespace, The app namespace

app/java directory, From Layout XML to View
Objects
app:showAsAction attribute, Defining a
menu in XML
AppCompat library

about, Adding dependencies in Android
Studio

app namespace, The app namespace

themes in, Modifying the theme

toolbars with, AppCompat

AppCompatActivity class, From Layout
XML to View Objects
appendQueryParameter(…) method
(Uri.Builder), Fetching JSON from Flickr

application architecture, Single

Responsibility Principle, Binding to Data

application context, For the More Curious:
The Application Context
AppTheme theme, Modifying the theme

arguments bundle, The downside to direct
retrieval
ArrayList class, Singletons and centralized data
storage
AssetManager class, Getting At Assets, For
the More Curious: Non-Assets?
assets

accessing, Accessing Assets

importing, Importing Assets

managing, Getting At Assets

presenting to user, Wiring Up Assets
for Use

vs resources, Importing Assets, For
the More Curious: Why Assets, Not Resources

AsyncTask class

cancel(boolean), Cleaning Up
AsyncTasks

doInBackground(…), Using
AsyncTask to Run on a Background Thread

for running on background
thread, Using AsyncTask to Run on a
Background Thread

HandlerThread vs, For the More
Curious: AsyncTasks vs Threads

onPostExecute(…), From AsyncTask
Back to the Main Thread

onProgressUpdate(…), For the
More Curious: More on AsyncTask

publishProgress(…), For the More
Curious: More on AsyncTask

AsyncTaskLoader class, For the More
Curious: Alternatives to AsyncTask
AttributeSet class, Creating BoxDrawingView

audio streams, Creating a SoundPool

auto-completion, Using code completion

AVDs (Android Virtual Devices),
creating, Running on the Emulator

B

Back button, Exploring the activity lifecycle by

example, Tasks and the Back Stack, Challenge: Using
the Back Button for Browser History
back stack, How Android Sees Your Activities

background threads
dedicated, Downloading Lots of Small

Things
updating UI from, From AsyncTask

Back to the Main Thread
using AsyncTask for, Using

AsyncTask to Run on a Background Thread,
Beyond the main thread

BaseObservable class, Observable data

beginTransaction() method
(FragmentTransaction), Fragment
transactions
Bitmap class, Scaling and Displaying Bitmaps

BitmapFactory class, Scaling and Displaying
Bitmaps
bitmaps, scaling and displaying,
Scaling and Displaying Bitmaps
breakpoints

(see also debugging)
exception, Using exception breakpoints

setting, Setting breakpoints

broadcast intents
about, Regular Intents vs Broadcast Intents

ordered, Passing and receiving data with
ordered broadcasts

permissions and, Limiting broadcasts
to your app using private permissions

registered in code, Creating and

registering a dynamic receiver
regular intents vs, Regular Intents

vs Broadcast Intents
sending, Sending broadcast intents

broadcast receivers
about, Regular Intents vs Broadcast Intents

dynamic, Creating and registering a
dynamic receiver

implementing, Creating and
registering a standalone receiver

intent filters and, Regular Intents vs
Broadcast Intents

long-running tasks and,
Receivers and Long-Running Tasks

permissions and, Limiting broadcasts
to your app using private permissions

standalone, Creating and registering a
standalone receiver

uses for, Using receivers

build errors, Issues with the R class

(see also debugging)
build process, For the More Curious: Android
Build Process
build target, Compile SDK version

build.gradle, A sane minimum

Build.VERSION.SDK_INT, Adding code
from later APIs safely
Bundle class

for stashing objects, Rotation and
Object Continuity

for fragment arguments,
Fragment Arguments

in onCreate(Bundle), Saving Data
Across Rotation

in
onSaveInstanceState(Bundle),
Saving Data Across Rotation

putCharSequence(…);, Fragment
Arguments

putInt(…);, Fragment Arguments

putSerializable(…), Fragment
Arguments

Button class
example, Laying Out the UI

vs ImageButton, Challenge: From
Button to ImageButton

inheritance, Challenge: From Button to
ImageButton

buttons
(see also Button class, ImageButton

class)
9-patch images for, For the More

Curious: 9-Patch Images
adding icons to, Referencing

resources in XML
adding IDs, Resources and resource IDs

drawables for, XML Drawables

floating action, Floating action buttons

modifying attributes, Modifying

Button Attributes
positive, negative, and

neutral, Creating a DialogFragment

C

caching, Challenge: Preloading and Caching

Calendar class, Passing data to
DatePickerFragment
Callbacks interface, Fragment callback
interfaces
camera

about, Taking Pictures with Intents

firing intent, Firing the intent

layouts for, A Place for Your Photo

taking pictures with intents,
Using a Camera Intent

CameraUpdate class, Working with Your
Map

cancel(boolean) method
(AsyncTask), Cleaning Up AsyncTasks

cancel(…) method (AlarmManager),
Managing alarms with PendingIntent
Canvas class, Rendering Inside onDraw(Canvas)

cards (view component), Cards

choosers, creating, Sending a crime report

circular reveal animation, Circular reveal

classes, importing, Wiring Up Widgets

close() method, Converting to model objects

code completion, Using code completion

codenames, version, Android SDK Versions

color
for animation, Color evaluation

themes and, Adding Theme Colors

color resources, adding, Color Resources

colorAccent attribute, Adding Theme Colors

colorPrimary attribute, Adding Theme

Colors
colorPrimaryDark attribute, Adding
Theme Colors
colors.xml file, Color Resources

commands (IntentService), Creating an
IntentService
compatibility

Android Lint and, Adding code from
later APIs safely

fragments and, Two types of
fragments

importance of, Code Style, Android
SDK Versions

issues, Compatibility and Android
Programming

minimum SDK version and,
Minimum SDK version

with support libraries, Two types
of fragments

using conditional code for,
Adding code from later APIs safely

wrapping code for, Adding code
from later APIs safely

compile SDK version, Compile SDK version

compileSdkVersion, A sane minimum

ComponentName class, Creating Explicit
Intents at Runtime
components, Communicating with intents

concurrent documents, For the More
Curious: Concurrent Documents
configuration changes, Rotation and
retained fragments
configuration qualifiers

about, Creating a landscape layout

for language, Localizing Resources

listed, Configuration Qualifiers

multiple, Multiple qualifiers

precedence of, Prioritizing alternative
resources

for screen density, Adding an Icon,

Screen density works differently
for screen orientation, Creating a

landscape layout
for screen size, Creating tablet

alternatives, For the More Curious: More on
Determining Device Size

ConnectivityManager class, Safe
background networking
ConstraintLayout class

about, Introducing ConstraintLayout

converting layout to use, Using
ConstraintLayout

constraints
about, Introducing ConstraintLayout

adding in graphical editor,
Adding widgets

in XML, ConstraintLayout’s inner workings

removing, The graphical editor

warnings when insufficient,
The graphical editor

contacts
getting data from, Getting the data

from the contact list
permissions for, Contacts permissions

container view IDs, Fragment transactions

container views, Defining a container view

ContentProvider class, Getting the data
from the contact list
ContentResolver class, Getting the data
from the contact list
ContentValues class, Using ContentValues

Context class
AssetManager, Getting At Assets

basic file and directory
methods in, File Storage

explicit intents and, Communicating
with intents

for opening database files,
Building Your Initial Database

getSharedPreferences(…),
Simple Persistence with Shared Preferences

references to, For the More Curious:
The Application Context

resource IDs and, Making Toasts

Context.MODE_WORLD_READABLE,
File Storage
controller objects, Model-View-Controller and
Android
conventions

class naming, Creating an Android
Project

extra naming, Using intent extras

package naming, Creating an
Android Project

variable naming, Wiring Up Widgets,
Generating getters and setters

create() method
(AlertDialog.Builder), Creating a
DialogFragment

createChooser(…) method (Intent),
Sending a crime report
Cursor class, Using a CursorWrapper,
Converting to model objects
CursorWrapper class, Using a
CursorWrapper

D

data binding
?? (null coalescing) operator

in, More syntactic sugar

@{} operator, Binding to Data, Binding
to a ViewModel

and application architecture,
Binding to Data

and view models, Binding to a
ViewModel

binding adapters, BindingAdapters

binding classes, Simple data binding

enabling, Simple data binding

lambda expressions, Lambda
expressions

observable data, Observable data

/data/data directory, SQLite Databases

database schema, Defining a Schema

databases, SQLite, SQLite Databases

Date class, Passing data to DatePickerFragment

DatePicker class, Setting a dialog’s contents

debug key, For the More Curious: Android Build
Process
debugging

(see also Android Lint)
about, Debugging Android Apps

build errors, Issues with the R class

crash, Exceptions and Stack Traces

crash on unconnected device,

Exceptions and Stack Traces
database issues, Debugging

database issues
misbehaviors, Diagnosing

misbehaviors
online help for, Issues with the R class

R, Issues with the R class

running app with debugger,
Setting breakpoints

stopping debugger, Setting
breakpoints

using breakpoints, Setting
breakpoints

when working with teams, For
the More Curious: Teams and API Keys

DEFAULT (Intent), Using NerdLauncher as a
Home Screen
default resources, Default resources

delayed execution, Delayed Execution with
AlarmManager

density-independent pixel, Screen pixel
densities and dp and sp
dependencies, adding, Adding
dependencies in Android Studio
dependency injectors, For the More
Curious: Singletons
detach(Fragment) method
(FragmentTransaction),
FragmentStatePagerAdapter vs FragmentPagerAdapter
developer documentation, Using the
Android Developer Documentation
device configurations, Device configurations
and alternative resources
devices

configuring language settings,
Localizing Resources

hardware, Running on the Emulator

virtual, Running on the Emulator, Two-
Pane Master-Detail Interfaces

devices view, Configuring your device for

development
Dialog class, Dialogs

DialogFragment class
about, Creating a DialogFragment

onCreateDialog(Bundle),
Creating a DialogFragment

show(…), Showing a DialogFragment

dialogs, Dialogs

diamond notation, Singletons and centralized
data storage
dip (density-independent pixel),
Screen pixel densities and dp and sp
documentation, Using the Android Developer
Documentation
doInBackground(…) method
(AsyncTask), Using AsyncTask to Run on a
Background Thread
dp (density-independent pixel),
Screen pixel densities and dp and sp
draw() method (View), Rendering Inside

onDraw(Canvas)
drawables

9-patch images, For the More
Curious: 9-Patch Images

layer list, Layer List Drawables

referencing, Referencing resources in
XML

shape, Shape Drawables

state list, State List Drawables

XML drawables, XML Drawables

drawing
Canvas, Rendering Inside

onDraw(Canvas)
in onDraw(Canvas), Rendering

Inside onDraw(Canvas)
Paint, Rendering Inside onDraw(Canvas)

E

EditText class, Defining CrimeFragment’s layout

elevation, Elevation and Z values

emulator
creating a virtual device for,

Running on the Emulator
for location testing, Play Services

and Location Testing on Emulators
installing, Downloading Earlier SDK

Versions
rotating, Referencing resources in XML

running on, Running on the Emulator

search queries on, Responding to
SearchView user interactions

for tablets, Two-Pane Master-Detail
Interfaces

Emulator Control (Android Studio),
Mock location data
errors, Wiring Up Widgets

(see also debugging)

escape sequence (in string), Updating
the View Layer
EventBus, For the More Curious: Local Events

exception breakpoints, Using exception
breakpoints
exceptions, Exceptions and Stack Traces,
Logging stack traces
explicit intents

creating, Communicating with intents

creating at runtime, Creating
Explicit Intents at Runtime

implicit intents vs, Implicit Intents

purpose, Explicit and implicit intents

Explore by Touch, Explore by Touch

extras
about, Using intent extras

fragments retrieving from
activity, Retrieving an extra

as key-value pairs, Using intent

extras
naming, Using intent extras

putting, Using intent extras

retrieving, Using intent extras

structure of, Using intent extras

F

File class
getCacheDir(…), File Storage

getDir(…), File Storage

getFilesDir(…), File Storage

FileDescriptor class, Accessing Assets

FileInputStream class, File Storage

fileList(…) method (String), File Storage

FileOutputStream class, File Storage

fill_parent, android:layout_width and
android:layout_height

Flickr
API, Fetching JSON from Flickr

Geosearch, Flickr Geosearch

searching in, Searching Flickr

floating action buttons, Floating action
buttons
FloatingActionButton class, Floating
action buttons
fluent interface, Fragment transactions

fragment arguments, Retrieving an extra,
The downside to direct retrieval, For the More Curious:
Why Use Fragment Arguments?
Fragment class

for asset management, Creating
BeatBox

getActivity(), Starting an Activity from

a Fragment, Retrieving an extra

getArguments(…), Retrieving
arguments

getTargetFragment(), Setting a
target fragment

getTargetRequestCode(),
Setting a target fragment

from native libraries, For the More
Curious: Why Support Fragments Are Superior

newInstance(…), Attaching
arguments to a fragment

onActivityResult(…), Passing Data
Between Two Fragments

onCreate(Bundle), Implementing
fragment lifecycle methods

onCreateOptionsMenu(…),
Creating the menu

onCreateView(…), Implementing
fragment lifecycle methods

onOptionsItemSelected(MenuItem),
Creating the menu, Responding to menu
selections

onSaveInstanceState(Bundle),
Implementing fragment lifecycle methods

setArguments(…), Attaching
arguments to a fragment

setHasOptionsMenu(boolean),
Creating the menu

setRetainInstance(…), Retaining a
fragment

setTargetFragment(…), Setting a
target fragment

SingleFragmentActivity, Creating
BeatBox

startActivityForResult(…),
Getting Results with Fragments

from support library, Two types of

fragments, For the More Curious: Why Support
Fragments Are Superior

fragment transactions, Activity: Fragment

Boss, Implementing CrimeListFragment.Callbacks

(see also FragmentTransaction class)
FragmentManager class

adding fragments to, Adding a UI

Fragment to the FragmentManager
fragment lifecycle and, The

FragmentManager and the fragment lifecycle
onResume(), Reloading the List

responsibilities, Adding a UI Fragment
to the FragmentManager

role in rotation, Rotation and Object

Continuity, Rotation and retained fragments

FragmentPagerAdapter class,
FragmentStatePagerAdapter vs FragmentPagerAdapter
fragments

(see also fragment transactions,
FragmentManager class)

about, Introducing Fragments

accessing extra in activity’s
intent, Retrieving an extra

activities vs, The Need for UI Flexibility

activity lifecycle and, The
FragmentManager and the fragment lifecycle

adding in code, Two approaches to
hosting

adding to FragmentManager,
Adding a UI Fragment to the FragmentManager

adding to layout, Two approaches to
hosting

application architecture with,
Application Architecture with Fragments

arguments of, The downside to direct
retrieval

as composable units, The Need for

UI Flexibility, Activity: Fragment Boss

Callbacks interface, Fragment
callback interfaces

compatibility and, Two types of
fragments

container view IDs, Fragment
transactions

container views for, Defining a

container view, Creating a layout with two

fragment containers
creating, Creating a UI Fragment

creating from support library,
Creating the CrimeFragment class

delegating functionality to
activity, Fragment callback interfaces

hosting, Starting CriminalIntent, Hosting
a UI Fragment

implementing lifecycle
methods, Implementing fragment lifecycle
methods

inflating layouts for, Implementing
fragment lifecycle methods

layout, Two approaches to hosting

lifecycle diagram, The
FragmentManager and the fragment lifecycle

lifecycle methods, The
FragmentManager and the fragment lifecycle

lifecycle of, The fragment lifecycle, The
FragmentManager and the fragment lifecycle

maintaining independence of,
The downside to direct retrieval, Activity:
Fragment Boss

passing data between (same
activity), Passing Data Between Two
Fragments

passing data with fragment
arguments, Passing data to
DatePickerFragment

reasons for, The Need for UI Flexibility,
The reason all our activities will use fragments

retaining, Retaining a fragment

rotation and, Rotation and retained
fragments

setting listeners in, Wiring widgets
in a fragment

starting activities from, Starting
an Activity from a Fragment

support libraries and, Two types of

fragments, For the More Curious: Why Support

Fragments Are Superior
without support library, For the

More Curious: Why Support Fragments Are
Superior

UI flexibility and, The Need for UI
Flexibility

widgets and, Wiring widgets in a
fragment

FragmentStatePagerAdapter class
about, ViewPager and PagerAdapter

getCount(), ViewPager and
PagerAdapter

getItem(int), ViewPager and
PagerAdapter

setOffscreenPageLimit(int),
Integrating CrimePagerActivity

FragmentTransaction class
add(…), Fragment transactions

beginTransaction(), Fragment
transactions

detach(Fragment),
FragmentStatePagerAdapter vs
FragmentPagerAdapter

remove(Fragment),
FragmentStatePagerAdapter vs
FragmentPagerAdapter

FrameLayout class
about, Creating a landscape layout

as container view for
fragments, Defining a container view,
Creating a layout with two fragment containers

Fused Location Provider, Google Play
Services

(see also FusedLocationProviderApi

class)
FusedLocationProviderApi class,
Getting a Location Fix

G

gen directory, Resources and resource IDs

getAction() method (MotionEvent),
Handling Touch Events
getActivity() method (Fragment),
Starting an Activity from a Fragment, Retrieving an
extra
getArguments(…) method
(Fragment), Retrieving arguments

getBooleanExtra(…) method
(Intent), Using intent extras

getBottom() method (View), Simple
Property Animation
getCacheDir(…) method (File), File
Storage
getCount() method
(FragmentStatePagerAdapter),
ViewPager and PagerAdapter
getDefaultSharedPreferences(…)
method (PreferenceManager), Simple

Persistence with Shared Preferences
getDir(String name, int mode)
method, File Storage

getFilesDir(…) method (File), File
Storage
getHeight() method (View), Simple
Property Animation
getInputStream() method
(HttpURLConnection), Networking Basics

getIntent() method (Activity), Using

intent extras, Retrieving an extra

getItem(int) method
(FragmentStatePagerAdapter),
ViewPager and PagerAdapter
getLeft() method (View), Simple Property
Animation
getMapAsync(…) method
(SupportMapFragment), Working with Your
Map

getOutputStream() method
(HttpURLConnection), Networking Basics

getRight() method (View), Simple
Property Animation
getScaledBitmap(…) method, Scaling
and Displaying Bitmaps
getSharedPreferences(…) method
(Context), Simple Persistence with Shared
Preferences
getTargetFragment() method
(Fragment), Setting a target fragment

getTargetRequestCode() method
(Fragment), Setting a target fragment

getter and setter methods,
generating, Generating getters and setters

getTop() method (View), Simple Property
Animation
Google Drive, For the More Curious: Concurrent
Documents

Google Play Services
about, Google Play Services

Maps API from, Importing Play
Services Maps

setting up, Setting Up Google Play
Services

using, Using Google Play Services

GoogleMap class, Working with Your Map

graphical layout tool, Using the Graphical

Layout Tool, Testing Alternative Resources

GridLayoutManager class, Creating
PhotoGallery
GridView class, For the More Curious: ListView
and GridView

H

Handler class, Message anatomy, Passing
handlers

handlers, Message anatomy

HandlerThread class
AsyncTask vs, For the More Curious:

AsyncTasks vs Threads
handling downloads,

Communicating with the Main Thread
hardware devices, Running on the Emulator

-hdpi suffix, Adding an Icon

hero transitions (see shared element

transitions)
hierarchical navigation, Enabling
Hierarchical Navigation
HOME (Intent), Using NerdLauncher as a Home
Screen
Home button, Exploring the activity lifecycle by
example
Home screen, Using NerdLauncher as a Home
Screen
Honeycomb, A sane minimum

HTTP networking, HTTP and Background

Tasks, Networking Basics, Asking permission to

network, Beyond the main thread

HttpURLConnection class
about, Networking Basics

getInputStream(), Networking
Basics

getOutputStream(), Networking
Basics

I

icons, Using Android Asset Studio

ImageButton class, Challenge: From Button
to ImageButton
implicit intents

action, Parts of an implicit intent,
Resolving an Implicit Intent

ACTION_CALL category,
Challenge: Another Implicit Intent

ACTION_DIAL category,
Challenge: Another Implicit Intent

ACTION_PICK category, Asking
Android for a contact

ACTION_SEND category, Sending
a crime report

benefits of using, Implicit Intents

categories, Parts of an implicit intent,
Resolving an Implicit Intent

CATEGORY_DEFAULT, Resolving an
Implicit Intent

data, Parts of an implicit intent

explicit intents vs, Implicit Intents,
Using Implicit Intents

for browsing web content, The
Easy Way: Implicit Intents

parts of, Parts of an implicit intent

sending with AlarmManager,

Delayed Execution with AlarmManager
taking pictures with, Using a

Camera Intent
inflating layouts, From Layout XML to View

Objects, Implementing fragment lifecycle methods

inheritance, Style inheritance, For the More
Curious: More on Style Inheritance
InputStream class

for delivering bytes, Networking
Basics

read(), Networking Basics

inSampleSize, Scaling and Displaying Bitmaps

insert(…) method, Inserting and updating
rows
integration testing

mock objects, For the More Curious:
Mocks and Testing

vs unit testing, Creating a Test Class

Intent class

addFlags(…), Starting a new task

constructors, Communicating with
intents

createChooser(…), Sending a crime
report

getBooleanExtra(…), Using intent
extras

putExtra(…), Using intent extras,
Putting an extra

setClassName(…), Creating Explicit
Intents at Runtime

setComponent(…), Creating Explicit
Intents at Runtime

intent filters
about, How Android Sees Your Activities

BOOT_COMPLETED, Creating and
registering a standalone receiver

explained, Parts of an implicit intent

SHOW_NOTIFICATION, Creating
and registering a dynamic receiver

intent services
processing commands, Creating

an IntentService
purpose, Creating an IntentService

Intent.FLAG_ACTIVITY_NEW_DOCUMENT
class, For the More Curious: Concurrent Documents

intents
(see also broadcast intents, explicit

intents, extras, implicit intents, Intent class)
communicating with,

Communicating with intents
implicit vs explicit, Explicit and

implicit intents, Implicit Intents

permissions and, Contacts
permissions

regular vs broadcast, Regular
Intents vs Broadcast Intents

taking pictures with, Using a
Camera Intent

IntentService class
about, Creating an IntentService

commands, Creating an IntentService

interpolators, Using different interpolators

invalidate() method (View), Tracking
across motion events
isNetworkAvailableAndConnected()
method (ConnectivityManager), Safe
background networking

J

JavaScript Object Notation (JSON),
Fetching JSON from Flickr
JavaScript, enabling, The Harder Way:
WebView
JavaScript, injecting objects, For the
More Curious: Injecting JavaScript Objects
JobScheduler class, For the More Curious:

JobScheduler and JobServices
JobService class, For the More Curious:
JobScheduler and JobServices
JSON (JavaScript Object Notation),
Fetching JSON from Flickr
JSONObject class, Parsing JSON text

L

lambda expressions, Lambda expressions

-land qualifier, Creating a landscape layout

language settings, Localizing Resources

LatLngBounds class, Working with Your Map

launcher activities, How Android Sees Your
Activities
LAUNCHER category, How Android Sees

Your Activities, Resolving an Implicit Intent

layer list drawables, Layer List Drawables

layout attributes
android:background, Styles

android:contentDescription,
Challenge: From Button to ImageButton

android:drawablePadding,
Referencing resources in XML

android:drawableRight,
Referencing resources in XML

android:icon, Using Android Asset
Studio

android:id, Resources and resource IDs

android:layout_gravity, Creating
a landscape layout

android:layout_height,
android:layout_width and android:layout_height

android:layout_margin, Margins
vs padding

android:layout_width,
android:layout_width and android:layout_height

android:orientation,

android:orientation
android:text, android:text

colorAccent, Adding Theme Colors

colorPrimary, Adding Theme Colors

colorPrimaryDark, Adding Theme
Colors

layout constraints (see constraints)
layout fragments, Two approaches to hosting

layout parameters, ConstraintLayout’s inner
workings
LayoutInflater class, For the More Curious:

Android Build Process, Implementing fragment lifecycle
methods
layouts

about, App Basics

alternative, Creating a landscape layout

for asset management, Creating
BeatBox

for cameras, A Place for Your Photo

defining in XML, Laying Out the UI

design documentation, Android’s
design guidelines

inflating, From Layout XML to View

Objects, Implementing fragment lifecycle
methods

landscape, Creating a landscape layout

naming, Creating an Android Project

previewing, Previewing the layout,
Creating a new activity, Testing Alternative
Resources

for property animation, Building
the Scene

root element, The view hierarchy

testing, Testing Alternative Resources

view hierarchy and, The view
hierarchy

-ldpi suffix, Adding an Icon

lifecycle callbacks, The Activity Lifecycle

LinearLayout class, Laying Out the UI, The
view hierarchy
Lint (see Android Lint)
list(String) method, Getting At Assets

list-detail interfaces, UI Fragments and the

Fragment Manager, Using ViewPager, Two-Pane
Master-Detail Interfaces
List<E> interface, Singletons and centralized
data storage
listeners

about, Setting listeners

as interfaces, Setting listeners

setting in fragments, Wiring
widgets in a fragment

setting up, Setting listeners

lists
displaying, Displaying Lists with

RecyclerView
getting item data, Adapters

ListView class, For the More Curious: ListView
and GridView
Loader class, For the More Curious: Alternatives
to AsyncTask
LoaderManager class, For the More
Curious: Alternatives to AsyncTask
loadLabel(PackageManager)
method (ResolveInfo), Resolving an Implicit
Intent
local files, SQLite Databases

local layout rect, Simple Property Animation

LocalBroadcastManager class, For the

More Curious: Local Events, For the More Curious:
Detecting the Visibility of Your Fragment
localization, Localization

location
about, Locations and Play Services

adding GPS permissions for,
Location permissions

with Flickr Geosearch, Flickr
Geosearch

Fused Location Provider, Google
Play Services

testing, Play Services and Location Testing
on Emulators

Location API, Locations and Libraries

LocationListener class, Getting a Location
Fix
LocationRequest class, Getting a Location
Fix
Log class

levels, For the More Curious: Log Levels
and Methods

logging messages, Making log
messages

methods, For the More Curious: Log
Levels and Methods

Log.d(String, String, Throwable)
method, Logging stack traces

Logcat, Using Logcat

(see also logging)
logging

of exceptions, Logging stack traces

Log.d(String, String,
Throwable), Logging stack traces

messages, Making log messages

of stack traces, Logging stack traces

TAG constant, Making log messages

Looper class, Communicating with the Main

Thread, Handler anatomy

LRU (least recently used) caching
strategy, Challenge: Preloading and Caching

LRUCache class, Challenge: Preloading and
Caching

M

m prefix for variable names, Wiring Up

Widgets, Generating getters and setters

MAIN category, How Android Sees Your

Activities, Resolving an Implicit Intent

main thread, You and Your Main Thread

makeText(…) method (Toast), Making
Toasts
manifest

(see also manifest attributes)
about, Declaring activities in the manifest

adding network permissions
to, Asking permission to network

adding service to, Creating an
IntentService

adding uses-permission
INTERNET, Asking permission to network

Android versions in, A sane
minimum

build process and, For the More
Curious: Android Build Process

declaring Activity in, Declaring
activities in the manifest

manifest attributes
android:configChanges, Proper

Rotation with WebView
android:protectionLevel, More

about protection levels
MapFragment class, Setting Up Your Map

maps, Maps

adding markers to, Drawing on the
map

API setup for, Getting a Maps API Key

getting lat-lon data for, Getting
More Location Data

working with, Working with Your Map

Maps API
about, Getting a Maps API Key

key, Getting a Maps API Key

MapView class, Setting Up Your Map

margins, Margins vs padding

master-detail interfaces, UI Fragments

and the Fragment Manager, Using ViewPager, Two-
Pane Master-Detail Interfaces
matchers, for testing, Test Dependencies

match_parent, android:layout_width and
android:layout_height
material design

about, Material Design

animation tools, Animation Tools

material surfaces, Material Surfaces

view components, View
Components

mContext class, For the More Curious: The
Application Context
-mdpi suffix, Adding an Icon

MediaStore class, Using a Camera Intent,

Firing the intent
MediaStore.ACTION_IMAGE_CAPTURE,
Using a Camera Intent
MediaStore.EXTRA_OUTPUT, Firing the
intent
MenuItem class, Responding to menu
selections
menus

(see also toolbar)
about, Menus

app:showAsAction attribute,
Defining a menu in XML

creating, Creating the menu

creating XML file for, Defining a
menu in XML

defining in XML, Defining a menu in
XML

determining selected item,
Responding to menu selections

populating with items, Creating

the menu
as resources, Defining a menu in XML

responding to selections,
Responding to menu selections

Message class, Message anatomy

message handlers, Message anatomy

message loop, Communicating with the Main
Thread
message queue, Communicating with the Main
Thread
messages, Message anatomy

minimum required SDK, A sane minimum

minSdkVersion, A sane minimum

mipmap images, For the More Curious:
Mipmap Images
mock objects, for testing, Test

Dependencies, Using mocked dependencies, For the
More Curious: Mocks and Testing
model layer, Model-View-Controller and Android

model objects, Model-View-Controller and
Android
model objects, from databases,
Converting to model objects
Model-View-Controller

about, Model-View-Controller and Android

benefits, Benefits of MVC

drawbacks, Different Architectures: Why
Bother?

flow of control, Model-View-Controller
and Android

Model-View-ViewModel (MVVM),
Different Architectures: Why Bother?
motion events, handling, Handling Touch
Events
MotionEvent class

about, Handling Touch Events

actions, Handling Touch Events

getAction(), Handling Touch Events

MVC (see Model-View-Controller)
MVVM (Model-View-ViewModel),
Different Architectures: Why Bother?

N

namespace
Android XML, The view hierarchy

app, The app namespace

naming conventions
for static variables, Singletons and

centralized data storage
for style inheritance, Style

inheritance
navigation, Enabling Hierarchical Navigation

network, checking availability of, Safe
background networking
networking (HTTP), HTTP and Background

Tasks, Networking Basics, Beyond the main thread

networking permissions, Asking
permission to network
NetworkOnMainThreadException
class, You and Your Main Thread

newInstance(…) method
(Fragment), Attaching arguments to a fragment

9-patch images, For the More Curious: 9-Patch
Images
Notification class, Notifications

NotificationManager class, Notifications

notifications
on Android Wear devices,

Challenge: Notifications on Android Wear
posting, Notifications

notify(…) method
(NotificationManager), Notifications

null coalescing (??) operator, More
syntactic sugar

NullPointerException, Exceptions and Stack
Traces

O

ObjectAnimator class, Simple Property
Animation
Observable interface, Observable data

onActivityResult(…) method
(Activity), Sending back an intent

onActivityResult(…) method
(Fragment), Passing Data Between Two
Fragments
OnCheckedChangeListener
interface, Wiring widgets in a fragment

onClick(View) method
(onClickListener), Using anonymous inner
classes

OnClickListener interface, Setting
listeners
onCreate(Bundle) method
(Activity), The Activity Lifecycle

onCreate(Bundle) method
(Fragment), Implementing fragment lifecycle
methods
onCreateDialog(Bundle) method
(DialogFragment), Creating a DialogFragment

onCreateOptionsMenu(Menu)
method (Activity), Creating the menu

onCreateOptionsMenu(…) method
(Fragment), Creating the menu

onCreateView(…) method
(Fragment), Implementing fragment lifecycle
methods
onCreateViewHolder(…) method,
Implementing a ViewHolder and an Adapter, Preparing
RecyclerView to Display Images

onDestroy() method (Activity), The
Activity Lifecycle
onDraw(Canvas) method (View),
Rendering Inside onDraw(Canvas)
onOptionsItemSelected(MenuItem)
method (Fragment), Creating the menu,
Responding to menu selections
onPause() method (Activity), The
Activity Lifecycle
onPostExecute(…) method
(AsyncTask), From AsyncTask Back to the Main
Thread
onProgressChanged(…) method
(WebChromeClient), Using
WebChromeClient to spruce things up
onProgressUpdate(…) method
(AsyncTask), For the More Curious: More on
AsyncTask
OnQueryTextListener(…) interface
(SearchView), Responding to SearchView user

interactions
onReceivedTitle(…) method
(WebChromeClient), Using
WebChromeClient to spruce things up
onRestoreStateInstance(Parcelable)
method (View), Challenge: Saving State

onResume() method (Activity), The

Activity Lifecycle, Reloading the List

onResume() method
(FragmentManager), Reloading the List

onSaveInstanceState(Bundle)
method (Activity class, Saving Data Across
Rotation
onSaveInstanceState(Bundle)
method (Fragment), Implementing fragment
lifecycle methods
onSaveStateInstance() method
(View), Challenge: Saving State

onStart() method (Activity), The Activity

Lifecycle
onStop() method (Activity), The Activity
Lifecycle
onTextChanged(…) method
(TextWatcher), Wiring widgets in a fragment

onTouchEvent(MotionEvent)
method (View), Handling Touch Events

OnTouchListener interface (View),
Handling Touch Events
openConnection() method (URL),
Networking Basics
openFileInput(…) method
(FileInputStream), File Storage

openFileOutput(…) method
(FileInputStream), File Storage

openNonAssetFd(…) method, For the
More Curious: Non-Assets?
options objects, Drawing on the map

overflow menu, Defining a menu in XML

@Override, Making log messages

overview screen, Exploring the activity lifecycle

by example, Switching between tasks

P

PackageManager class
about, Checking for responding activities

querying, Firing the intent

resolveActivity(…), Checking for
responding activities

packages, naming, Creating an Android
Project
padding, Margins vs padding

Paint class, Rendering Inside onDraw(Canvas)

Parcelable interface, Rotation and Object

Continuity, Challenge: Saving State

PendingIntent class, PendingIntent

permissions
adding to manifest, Asking

permission to network
location, Location permissions

permission groups, Checking for
permissions

providing rationale, Challenge:
Permissions Rationale

requesting at runtime, Asking for
Permission at Runtime

persistent data, Simple Persistence with
Shared Preferences
photos

designating file location for,
Designating a picture location

scaling and displaying
bitmaps, Scaling and Displaying Bitmaps

taking with intents, Using a Camera
Intent

PhotoView class, Scaling and Displaying

Bitmaps
placeholders (in format strings), Using
a Format String
Play Services (see Google Play Services)
PointF class, Handling Touch Events

post(…) method (Handler), Passing
handlers
preferences (Android Studio),
Generating getters and setters
preloading, Challenge: Preloading and Caching

presses, responding to, Responding to
Presses
processes, For the More Curious: Processes vs
Tasks
progress indicator

hiding, Using WebChromeClient to spruce
things up

updating from background
thread, For the More Curious: More on
AsyncTask

projects
adding resources, Adding resources

to a project
app/java directory, From Layout

XML to View Objects
configuring, Creating an Android Project

creating, Creating an Android Project

gen directory, Resources and resource
IDs

layout, Creating an Android Project

res/layout directory, Resources and
resource IDs

res/menu directory, Defining a
menu in XML

res/values directory, Resources
and resource IDs

setting package name, Creating
an Android Project

setting project name, Creating an
Android Project

property animation (see animation)
protection level values, More about
protection levels
publishProgress(…) method
(AsyncTask), For the More Curious: More on
AsyncTask
putCharSequence(…); method
(Bundle), Fragment Arguments

putExtra(…) method (Intent), Putting
an extra
putInt(…); method (Bundle), Fragment
Arguments
putSerializable(…) method
(Bundle), Fragment Arguments

Q

query(…) method, Reading from the
Database

R

R class, Resources and resource IDs

randomUUID() method, Creating the
Crime class
read() method (InputStream),
Networking Basics
Recents button, Exploring the activity lifecycle
by example
RecyclerView class

about, RecyclerView, Adapter, and
ViewHolder

efficient reloading of, Challenge:
Efficient RecyclerView Reloading

for display grid, Creating PhotoGallery

setOnItemClickListener(…),
The Easy Way: Implicit Intents

vs ListView and GridView, For
the More Curious: ListView and GridView

release key, For the More Curious: Android Build
Process
remove(Fragment) method
(FragmentTransaction),
FragmentStatePagerAdapter vs FragmentPagerAdapter
request code (Activity), Getting a result
back from a child activity
res/layout directory, Resources and resource
IDs
res/menu directory, Defining a menu in XML

res/values directory, Creating string

resources, Resources and resource IDs

resolveActivity(…) method
(PackageManager), Checking for responding

activities, Declaring Features

ResolveInfo class, Resolving an Implicit Intent

resource IDs
+ prefix in, Resources and resource IDs

about, Resources and resource IDs

resources
(see also configuration qualifiers,

drawables, layouts, menus, string resources)
about, Resources and resource IDs

adding, Adding resources to a project

alias, Using an alias resource

alternative, Prioritizing alternative
resources

vs assets, Importing Assets, For the
More Curious: Why Assets, Not Resources

default, Default resources

localizing, Localization

location of, Resources and resource IDs

referencing in XML, Referencing
resources in XML

string, android:text

result code (Activity), Setting a result

retained fragments, Retaining a fragment

retainInstance property (Fragment),
Retaining a fragment, Rotation and retained fragments

rotation
activity lifecycle and, Rotation and

the Activity Lifecycle
saving data across, Saving Data

Across Rotation
with DatePicker, Setting a dialog’s

contents
rows, inserting and updating, Inserting
and updating rows
running on device, Running on a Device

RuntimeException class, Using exception
breakpoints
RxJava, Using RxJava

S

s prefix for variable names, Generating

getters and setters
sandbox, SQLite Databases

savedInstanceState, Rotation and Object
Continuity
scale-independent pixel, Screen pixel
densities and dp and sp
schema, database, Defining a Schema

screen orientation, Creating a landscape
layout
screen pixel density, Adding an Icon, Screen

pixel densities and dp and sp, Screen density works
differently
screen size, determining, For the More
Curious: More on Determining Device Size
SDK versions

(see also compatibility)
build target, Compile SDK version

codenames, Android SDK Versions

installing, Downloading Earlier SDK
Versions

listed, Android SDK Versions

minimum required, A sane
minimum

target, A sane minimum

updating, Downloading Earlier SDK
Versions

search
about, Search

in Flickr, Searching Flickr

integrating into app, Search

user-initiated, Using SearchView

SearchView class
about, Using SearchView

bug, Responding to SearchView user
interactions

OnQueryTextListener(…),
Responding to SearchView user interactions

post-Honeycomb, Using SearchView

responding to user

interactions, Responding to SearchView
user interactions

Serializable class, Rotation and Object
Continuity
services

adding to manifest, Creating an
IntentService

bound, Bound services

lifecycle of, A service’s lifecycle

locally bound, Local service binding

non-sticky, Non-sticky services

notifying user, Notifications

purpose of, Background Services

remotely bound, Remote service
binding

sticky, Sticky services

setArguments(…) method
(Fragment), Attaching arguments to a fragment

setClassName(…) method (Intent),

Creating Explicit Intents at Runtime
setComponent(ComponentName)
method (Intent), Creating Explicit Intents at
Runtime
setContentView(…) method
(Activity), From Layout XML to View Objects

setHasOptionsMenu(boolean)
method (Fragment), Creating the menu

setJavaScriptEnabled(…) method
(WebSettings), The Harder Way: WebView

setOffscreenPageLimit(int) method
(FragmentStatePagerAdapter),
Integrating CrimePagerActivity
setOnClickListener(OnClickListener)
method, Setting listeners

setOnItemClickListener(…) method
(RecyclerView), The Easy Way: Implicit Intents

setOnTouchListener(…) method

(View), Handling Touch Events

setPositiveButton(…) method
(AlertDialog.Builder), Creating a
DialogFragment
setRepeating(…) method
(AlarmManager), Repeating alarms: not so
exact
setResult(…) method (Activity),
Setting a result, Getting Results with Fragments

setRetainInstance(…) method
(Fragment), Retaining a fragment

setTargetFragment(…) method
(Fragment), Setting a target fragment

setter methods, generating, Generating
getters and setters
setText(int) method (TextView),
Using intent extras
setTitle(int) method
(AlertDialog.Builder), Creating a

DialogFragment
setView(…) method
(AlertDialog.Builder), Setting a dialog’s
contents
shape drawables, Shape Drawables

ShapeDrawable class, Shape Drawables

shared element transitions, Shared
element transitions
SharedPreferences class, Simple
Persistence with Shared Preferences
shouldOverrideUrlLoading(…)
method (WebViewClient), The Harder
Way: WebView
show() method (Toast), Making Toasts

show(…) method (DialogFragment),
Showing a DialogFragment
simulator (see emulator)
Single Responsibility Principle, Binding
to Data
SingleFragmentActivity class, Creating

BeatBox
singletons, Singletons and centralized data

storage, For the More Curious: Singletons

snackbars, Snackbars

solutions file, Adding an Icon

SoundPool class
about, Unit Testing and Audio Playback

audio playback, Playing Sounds

creating, Creating a SoundPool

loading sounds into, Loading
Sounds

rotation and object continuity
with, Rotation and Object Continuity

SoundPool.release(), Unloading
Sounds

unloading sounds, Unloading Sounds

SoundPool.release() method, Unloading
Sounds
sp (scale-independent pixel), Screen

pixel densities and dp and sp
SQLite databases

about, SQLite Databases

building, Building Your Initial Database

debugging, Debugging database issues

defining schema for, Defining a
Schema

inserting and updating rows,
Inserting and updating rows

model objects from, Converting to
model objects

reading from, Reading from the
Database

writing to, Writing to the Database

SQLiteDatabase.query(…) method,
Reading from the Database
stack traces

in Logcat, Exceptions and Stack Traces

logging of, Logging stack traces

startActivity(Intent) method
(Activity), Starting an Activity

startActivityForResult(…) method
(Activity), Getting a result back from a child
activity
startActivityForResult(…) method
(Fragment), Getting Results with Fragments

state list animators, State list animators

state list drawables, State List Drawables

STREAM_MUSIC, Creating a SoundPool

string resources
about, android:text

creating, Creating string resources

referencing, Referencing resources in
XML

String.replace(…) method, Wiring Up
Assets for Use
String.split(…) method, Wiring Up Assets
for Use

strings file, android:text, Creating string
resources
strings, format, Using a Format String

strings.xml, Creating string resources

String[] class, File Storage

styles
about, Styles, themes, and theme

attributes, Styles

inheritance, Style inheritance, For the
More Curious: More on Style Inheritance

modifying button attributes,
Modifying Button Attributes

themes and, Styles, themes, and
theme attributes

styles.xml file, Styles

support libraries, Two types of fragments, For

the More Curious: Fragments and the Support Library,
For the More Curious: Why Support Fragments Are
Superior

(see also AppCompat library)
SupportMapFragment class, Setting Up
Your Map
SupportMapFragment.getMapAsync(…)
method, Working with Your Map

-sw600dp suffix, Creating tablet alternatives

sync adapters, For the More Curious: Sync
Adapters
system icons, Using Android Asset Studio

T

tables, creating, Building Your Initial Database

tablets
creating virtual devices for,

Two-Pane Master-Detail Interfaces
user interfaces for, Two-Pane

Master-Detail Interfaces

TAG constant, Making log messages

TalkBack
about, TalkBack

Android widgets’ inherent
support, Explore by Touch

android:hint attribute, Using
labels to provide context

android:labelFor attribute
and, Using labels to provide context

enabling, TalkBack

linear navigation by swiping,
Linear navigation by swiping

non-text elements and, Adding
content descriptions

target fragments, Setting a target fragment

target SDK version, A sane minimum

targetSdkVersion, A sane minimum

tasks

about, Tasks and the Back Stack

and Back button, Tasks and the Back
Stack

vs processes, For the More Curious:
Processes vs Tasks

starting new, Starting a new task

switching between, Switching
between tasks

temporal navigation, Enabling Hierarchical
Navigation
TextView class

and tools:text, Creating a new activity

example, Laying Out the UI

inheritance, Challenge: From Button to
ImageButton

setText(int), Using intent extras

TextWatcher interface, Wiring widgets in a
fragment
theme attribute, Modifying the theme

themes
about, Themes

accessing attributes, For the More
Curious: Accessing Theme Attributes

adding colors to, Adding Theme
Colors

modifying, Modifying the theme

overriding attributes, Overriding
Theme Attributes

styles and, Styles, themes, and theme
attributes

threads
background (see background

threads)
main, You and Your Main Thread

message queue, Communicating with
the Main Thread

processes and, For the More Curious:
Processes vs Tasks

as sequence of execution, You
and Your Main Thread

UI, You and Your Main Thread

TimeInterpolator class, Using different
interpolators
tinting, Adding Theme Colors

Toast class, Making Toasts

toasts, Making Toasts

toolbar
action bar vs, For the More Curious:

Action Bar vs Toolbar
action views in, Using SearchView

app:showAsAction attribute,
Defining a menu in XML

features, The Toolbar

menu, Menus

overflow menu, Defining a menu in
XML

tools:text attribute, Creating a new activity

touch events, handling, Handling Touch
Events
transformation properties

pivotX, View transformation properties

pivotY, View transformation properties

rotation, View transformation properties

scaleX, View transformation properties

scaleY, View transformation properties

translationX, View transformation
properties

translationY, View transformation
properties

translationZ, Elevation and Z values

transitions framework, for
animation, Transitions

TypeEvaluator class, Color evaluation

U

UI fragments (see fragments)
UI thread, You and Your Main Thread

unit testing
@Before annotation, Setting Up

Your Test
@Test annotation, Writing Tests

about, Unit Testing and Audio Playback

Espresso tool, For the More Curious:
Espresso and Integration Testing

Hamcrest tool, Test Dependencies

vs integration testing, Creating a
Test Class

JUnit testing framework,
Creating a Test Class

matchers, Test Dependencies

mock objects, Test Dependencies,
Using mocked dependencies

Mockito tool, Test Dependencies, Using
mocked dependencies

testing frameworks, Creating a Test
Class

testing object interactions,
Testing object interactions

Up button, Enabling Hierarchical Navigation, How
hierarchical navigation works
update(…) method, Inserting and updating
rows
Uri class, Firing the intent

Uri.Builder class, Fetching JSON from Flickr

URL class
for making URL from string,

Networking Basics
openConnection(), Networking

Basics
URLConnection class, Networking Basics

user interfaces
defined by layout, App Basics

for tablets, Two-Pane Master-Detail
Interfaces

laying out, Laying Out the UI

UUID.randomUUID() method, Creating
the Crime class

V

variable names
conventions for, Generating getters

and setters
prefixes for, Generating getters and

setters
variables view, Setting breakpoints

versions (Android SDK) (see SDK

versions)
versions (firmware), Android SDK Versions

View class
(see also views, widgets)
draw(), Rendering Inside onDraw(Canvas)

getBottom(), Simple Property
Animation

getHeight(), Simple Property Animation

getLeft(), Simple Property Animation

getRight(), Simple Property Animation

getTop(), Simple Property Animation

invalidate(), Tracking across motion
events

OnClickListener interface,
Setting listeners

onDraw(Canvas), Rendering Inside
onDraw(Canvas)

onRestoreStateInstance(Parcelable),
Challenge: Saving State

onSaveStateInstance(),
Challenge: Saving State

onTouchEvent(MotionEvent),
Handling Touch Events

setOnTouchListener(…), Handling
Touch Events

subclasses, Laying Out the UI,
Challenge: From Button to ImageButton

view components, View Components

view hierarchy, The view hierarchy

view layer, Model-View-Controller and Android

view models, Binding to Data

view objects, Model-View-Controller and
Android
ViewGroup class, The view hierarchy,
Creating a landscape layout
ViewHolder class, ViewHolders and Adapters,
Implementing a ViewHolder and an Adapter, Resolving
an Implicit Intent
ViewPager class

about, Using ViewPager

internals of, For the More Curious: How
ViewPager Really Works

in support library, Creating
CrimePagerActivity

views
adding in graphical editor,

Adding widgets
creating custom views, Creating a

Custom View
creation by RecyclerView,

RecyclerView, Adapter, and ViewHolder
custom, Creating a Custom View

invalid, Rendering Inside onDraw(Canvas)

laying out in code, For the More
Curious: Laying Out Views in Code

persisting, Challenge: Saving State

simple vs composite, Creating a
Custom View

size settings, Making room

touch events and, Handling Touch
Events

using fully qualified name in
layout, Creating BoxDrawingView

ViewTreeObserver class, Challenge:
Efficient Thumbnail Load
virtual devices (see emulator)

W

web content
browsing via implicit intent,

The Easy Way: Implicit Intents
displaying within an activity,

The Harder Way: WebView
enabling JavaScript, The Harder

Way: WebView
web rendering events, responding
to, The Harder Way: WebView

WebChromeClient interface
about, Using WebChromeClient to spruce

things up
for enhancing appearance of

WebView, Using WebChromeClient to
spruce things up

onProgressChanged(…), Using
WebChromeClient to spruce things up

onReceivedTitle(…), Using
WebChromeClient to spruce things up

WebSettings class, The Harder Way:
WebView
WebView class

for presenting web content,
The Harder Way: WebView

handling rotation, Proper Rotation
with WebView

WebViewClient class, The Harder Way:
WebView
widgets

about, Laying Out the UI

attributes of, Laying Out the UI

Button, Laying Out the UI, Challenge:
From Button to ImageButton

DatePicker, Setting a dialog’s contents

defining in XML, Laying Out the UI

EditText, Defining CrimeFragment’s layout

FrameLayout, Creating a landscape
layout

ImageButton, Challenge: From Button
to ImageButton

LinearLayout, Laying Out the UI, The
view hierarchy

margins, Margins vs padding

padding, Margins vs padding

references, Getting references to
widgets

styles and, Styles

from support library, Creating
CrimePagerActivity

TextView, Laying Out the UI, Creating a
new activity

in view hierarchy, The view
hierarchy

as view layer, Model-View-Controller
and Android

wiring in fragments, Wiring widgets
in a fragment

wiring up, Wiring Up Widgets

wrap_content, android:layout_width and
android:layout_height

X

-xhdpi, -xxhdpi, -xxxhdpi suffixes,
Adding an Icon
XML

Android namespace, The view
hierarchy

referencing resources in,
Referencing resources in XML

XML drawables (see drawables)

Z

Z values, Elevation and Z values

At Big Nerd Ranch, we create
elegant, authentically useful
solutions through best-in-class
development and training.
CLIENT SOLUTIONS
Big Nerd Ranch designs, develops and
deploys applications for clients of all
sizes—from small start-ups to large
corporations. Our in-house engineering
and design teams possess expertise in
iOS, Android and full-stack web
application development.

TEAM TRAINING
For companies with capable
engineering teams, Big Nerd Ranch
can provide on-site corporate training
in iOS, Android, Front-End Web,
Back-End Web, macOS and Design.

Of the top 25 apps in the U.S., 19
are built by companies that
brought in Big Nerd Ranch to train
their developers.

CODING BOOTCAMPS
Big Nerd Ranch offers intensive app
development and design retreats for
individuals. Lodging, food and course
materials are included, and we’ll even
pick you up at the airport!

These courses are not for the faint of
heart. You will learn new skills in
iOS, Android, Front-End Web, Back-
End Web, macOS or Design in days—
not weeks.

www.bignerdranch.com

	Title Page
	Dedication
	Acknowledgments
	Table of Contents
	Learning Android
	Prerequisites
	What’s New in the Third Edition?
	How to Use This Book
	How This Book Is Organized
	Challenges
	Are you more curious?

	Code Style
	Typographical Conventions
	Using an eBook
	Android Versions

	The Necessary Tools
	Downloading and Installing Android Studio
	Downloading Earlier SDK Versions
	A Hardware Device

	1. Your First Android Application
	App Basics
	Creating an Android Project
	Navigating in Android Studio
	Laying Out the UI
	The view hierarchy
	Widget attributes
	android:layout_width and android:layout_height
	android:orientation
	android:text

	Creating string resources
	Previewing the layout

	From Layout XML to View Objects
	Resources and resource IDs

	Wiring Up Widgets
	Getting references to widgets
	Setting listeners
	Using anonymous inner classes

	Making Toasts
	Using code completion

	Running on the Emulator
	For the More Curious: Android Build Process
	Android build tools

	Challenges
	Challenge: Customizing the Toast

	2. Android and Model-View-Controller
	Creating a New Class
	Generating getters and setters

	Model-View-Controller and Android
	Benefits of MVC

	Updating the View Layer
	Updating the Controller Layer
	Running on a Device
	Connecting your device
	Configuring your device for development

	Adding an Icon
	Adding resources to a project
	Referencing resources in XML

	Challenge: Add a Listener to the TextView
	Challenge: Add a Previous Button
	Challenge: From Button to ImageButton

	3. The Activity Lifecycle
	Logging the Activity Lifecycle
	Making log messages
	Using Logcat
	Exploring the activity lifecycle by example

	Rotation and the Activity Lifecycle
	Device configurations and alternative resources
	Creating a landscape layout

	Saving Data Across Rotation
	Overriding onSaveInstanceState(Bundle)

	The Activity Lifecycle, Revisited
	For the More Curious: Current State of Activity Cleanup
	For the More Curious: Log Levels and Methods
	Challenge: Preventing Repeat Answers
	Challenge: Graded Quiz

	4. Debugging Android Apps
	Exceptions and Stack Traces
	Diagnosing misbehaviors
	Logging stack traces
	Setting breakpoints
	Using exception breakpoints

	Android-Specific Debugging
	Using Android Lint
	Issues with the R class

	Challenge: Exploring the Layout Inspector
	Challenge: Exploring Allocation Tracking

	5. Your Second Activity
	Setting Up a Second Activity
	Creating a new activity
	A new activity subclass
	Declaring activities in the manifest
	Adding a cheat button to QuizActivity

	Starting an Activity
	Communicating with intents
	Explicit and implicit intents

	Passing Data Between Activities
	Using intent extras
	Getting a result back from a child activity
	Setting a result
	Sending back an intent
	Handling a result

	How Android Sees Your Activities
	Challenge: Closing Loopholes for Cheaters

	6. Android SDK Versions and Compatibility
	Android SDK Versions
	Compatibility and Android Programming
	A sane minimum
	Minimum SDK version
	Target SDK version
	Compile SDK version
	Adding code from later APIs safely

	Using the Android Developer Documentation
	Challenge: Reporting the Build Version
	Challenge: Limited Cheats

	7. UI Fragments and the Fragment Manager
	The Need for UI Flexibility
	Introducing Fragments
	Starting CriminalIntent
	Creating a new project
	Two types of fragments
	Adding dependencies in Android Studio
	Creating the Crime class

	Hosting a UI Fragment
	The fragment lifecycle
	Two approaches to hosting
	Defining a container view

	Creating a UI Fragment
	Defining CrimeFragment’s layout
	Creating the CrimeFragment class
	Implementing fragment lifecycle methods
	Wiring widgets in a fragment

	Adding a UI Fragment to the FragmentManager
	Fragment transactions
	The FragmentManager and the fragment lifecycle

	Application Architecture with Fragments
	The reason all our activities will use fragments

	For the More Curious: Fragments and the Support Library
	For the More Curious: Why Support Fragments Are Superior

	8. Displaying Lists with RecyclerView
	Updating CriminalIntent’s Model Layer
	Singletons and centralized data storage

	An Abstract Activity for Hosting a Fragment
	A generic fragment-hosting layout
	An abstract Activity class
	Using an abstract class
	Creating the new controllers
	Declaring CrimeListActivity

	RecyclerView, Adapter, and ViewHolder
	ViewHolders and Adapters
	Adapters

	Using a RecyclerView
	A view to display
	Implementing a ViewHolder and an Adapter

	Binding List Items
	Responding to Presses
	For the More Curious: ListView and GridView
	For the More Curious: Singletons
	Challenge: RecyclerView ViewTypes

	9. Creating User Interfaces with Layouts and Widgets
	Using the Graphical Layout Tool
	Introducing ConstraintLayout
	Using ConstraintLayout
	The graphical editor
	Making room
	Adding widgets
	ConstraintLayout’s inner workings
	Editing properties
	Making list items dynamic

	More on Layout Attributes
	Screen pixel densities and dp and sp
	Margins vs padding
	Styles, themes, and theme attributes
	Android’s design guidelines

	The Graphical Layout Tools and You
	Challenge: Formatting the Date

	10. Using Fragment Arguments
	Starting an Activity from a Fragment
	Putting an extra
	Retrieving an extra
	Updating CrimeFragment’s view with Crime data
	The downside to direct retrieval

	Fragment Arguments
	Attaching arguments to a fragment
	Retrieving arguments

	Reloading the List
	Getting Results with Fragments
	For the More Curious: Why Use Fragment Arguments?
	Challenge: Efficient RecyclerView Reloading
	Challenge: Improving CrimeLab Performance

	11. Using ViewPager
	Creating CrimePagerActivity
	ViewPager and PagerAdapter
	Integrating CrimePagerActivity

	FragmentStatePagerAdapter vs FragmentPagerAdapter
	For the More Curious: How ViewPager Really Works
	For the More Curious: Laying Out Views in Code
	Challenge: Restoring CrimeFragment’s Margins
	Challenge: Adding First and Last Buttons

	12. Dialogs
	Creating a DialogFragment
	Showing a DialogFragment
	Setting a dialog’s contents

	Passing Data Between Two Fragments
	Passing data to DatePickerFragment
	Returning data to CrimeFragment
	Setting a target fragment
	Sending data to the target fragment
	More flexibility in presenting a DialogFragment

	Challenge: More Dialogs
	Challenge: A Responsive DialogFragment

	13. The Toolbar
	AppCompat
	Using the AppCompat library
	Updating the theme
	Using AppCompatActivity

	Menus
	Defining a menu in XML
	The app namespace
	Using Android Asset Studio

	Creating the menu
	Responding to menu selections

	Enabling Hierarchical Navigation
	How hierarchical navigation works

	An Alternative Action Item
	Toggling the action item title
	“Just one more thing...”

	For the More Curious: Action Bar vs Toolbar
	Challenge: Deleting Crimes
	Challenge: Plural String Resources
	Challenge: An Empty View for the RecyclerView

	14. SQLite Databases
	Defining a Schema
	Building Your Initial Database
	Exploring files using Android Device Monitor
	Debugging database issues

	Gutting CrimeLab
	Writing to the Database
	Using ContentValues
	Inserting and updating rows

	Reading from the Database
	Using a CursorWrapper
	Converting to model objects
	Refreshing model data

	For the More Curious: More Databases
	For the More Curious: The Application Context
	Challenge: Deleting Crimes

	15. Implicit Intents
	Adding Buttons
	Adding a Suspect to the Model Layer
	Using a Format String
	Using Implicit Intents
	Parts of an implicit intent
	Sending a crime report
	Asking Android for a contact
	Getting the data from the contact list
	Contacts permissions

	Checking for responding activities

	Challenge: ShareCompat
	Challenge: Another Implicit Intent

	16. Taking Pictures with Intents
	A Place for Your Photo
	File Storage
	Using FileProvider
	Designating a picture location

	Using a Camera Intent
	Firing the intent

	Scaling and Displaying Bitmaps
	Declaring Features
	Challenge: Detail Display
	Challenge: Efficient Thumbnail Load

	17. Two-Pane Master-Detail Interfaces
	Adding Layout Flexibility
	Modifying SingleFragmentActivity
	Creating a layout with two fragment containers
	Using an alias resource
	Creating tablet alternatives

	Activity: Fragment Boss
	Fragment callback interfaces
	Implementing CrimeListFragment.Callbacks
	Implementing CrimeFragment.Callbacks

	For the More Curious: More on Determining Device Size
	Challenge: Adding Swipe to Dismiss

	18. Localization
	Localizing Resources
	Default resources
	Screen density works differently

	Checking string coverage using Translations Editor
	Targeting a region
	Testing custom locales

	Configuration Qualifiers
	Prioritizing alternative resources
	Multiple qualifiers
	Finding the best-matching resources
	Ruling out incompatible directories
	Stepping through the precedence table

	Testing Alternative Resources
	Challenge: Localizing Dates

	19. Accessibility
	TalkBack
	Explore by Touch
	Linear navigation by swiping

	Making Non-Text Elements Readable by TalkBack
	Adding content descriptions
	Making a widget focusable

	Creating a Comparable Experience
	Using labels to provide context

	For the More Curious: Using Accessibility Scanner
	Challenge: Improving the List
	Challenge: Providing Enough Context for Data Entry
	Challenge: Announcing Events

	20. Data Binding and MVVM
	Different Architectures: Why Bother?
	Creating BeatBox
	Simple data binding

	Importing Assets
	Getting At Assets
	Wiring Up Assets for Use
	Binding to Data
	Creating a ViewModel
	Binding to a ViewModel
	Observable data

	Accessing Assets
	For the More Curious: More About Data Binding
	Lambda expressions
	More syntactic sugar
	BindingAdapters

	For the More Curious: Why Assets, Not Resources
	For the More Curious: Non-Assets?

	21. Unit Testing and Audio Playback
	Creating a SoundPool
	Loading Sounds
	Playing Sounds
	Test Dependencies
	Creating a Test Class
	Setting Up Your Test
	Using mocked dependencies

	Writing Tests
	Testing object interactions

	Data Binding Callbacks
	Unloading Sounds
	Rotation and Object Continuity
	Retaining a fragment
	Rotation and retained fragments

	For the More Curious: Whether to Retain
	For the More Curious: Espresso and Integration Testing
	For the More Curious: Mocks and Testing
	Challenge: Playback Speed Control

	22. Styles and Themes
	Color Resources
	Styles
	Style inheritance

	Themes
	Modifying the theme

	Adding Theme Colors
	Overriding Theme Attributes
	Theme spelunking

	Modifying Button Attributes
	For the More Curious: More on Style Inheritance
	For the More Curious: Accessing Theme Attributes

	23. XML Drawables
	Making Uniform Buttons
	Shape Drawables
	State List Drawables
	Layer List Drawables
	For the More Curious: Why Bother with XML Drawables?
	For the More Curious: Mipmap Images
	For the More Curious: 9-Patch Images
	Challenge: Button Themes

	24. More About Intents and Tasks
	Setting Up NerdLauncher
	Resolving an Implicit Intent
	Creating Explicit Intents at Runtime
	Tasks and the Back Stack
	Switching between tasks
	Starting a new task

	Using NerdLauncher as a Home Screen
	Challenge: Icons
	For the More Curious: Processes vs Tasks
	For the More Curious: Concurrent Documents

	25. HTTP and Background Tasks
	Creating PhotoGallery
	Networking Basics
	Asking permission to network

	Using AsyncTask to Run on a Background Thread
	You and Your Main Thread
	Beyond the main thread

	Fetching JSON from Flickr
	Parsing JSON text

	From AsyncTask Back to the Main Thread
	Cleaning Up AsyncTasks
	For the More Curious: More on AsyncTask
	For the More Curious: Alternatives to AsyncTask
	Challenge: Gson
	Challenge: Paging
	Challenge: Dynamically Adjusting the Number of Columns

	26. Loopers, Handlers, and HandlerThread
	Preparing RecyclerView to Display Images
	Downloading Lots of Small Things
	Communicating with the Main Thread
	Assembling a Background Thread
	Messages and Message Handlers
	Message anatomy
	Handler anatomy
	Using handlers
	Passing handlers

	For the More Curious: AsyncTasks vs Threads
	For the More Curious: Solving the Image Downloading Problem
	For the More Curious: StrictMode
	Challenge: Preloading and Caching

	27. Search
	Searching Flickr
	Using SearchView
	Responding to SearchView user interactions

	Simple Persistence with Shared Preferences
	Polishing Your App
	Challenge: Polishing Your App Some More

	28. Background Services
	Creating an IntentService
	What Services Are For
	Safe background networking

	Looking for New Results
	Delayed Execution with AlarmManager
	Being a good citizen: using alarms the right way
	Repeating alarms: not so exact
	Time basis options

	PendingIntent
	Managing alarms with PendingIntent

	Controlling Your Alarm
	Notifications
	Challenge: Notifications on Android Wear
	For the More Curious: Service Details
	What a service does (and does not do)
	A service’s lifecycle
	Non-sticky services
	Sticky services
	Bound services
	Local service binding
	Remote service binding

	For the More Curious: JobScheduler and JobServices
	JobScheduler and the future of background work

	Challenge: Using JobService on Lollipop
	For the More Curious: Sync Adapters

	29. Broadcast Intents
	Regular Intents vs Broadcast Intents
	Receiving a System Broadcast: Waking Up on Boot
	Creating and registering a standalone receiver
	Using receivers

	Filtering Foreground Notifications
	Sending broadcast intents
	Creating and registering a dynamic receiver
	Limiting broadcasts to your app using private permissions
	More about protection levels

	Passing and receiving data with ordered broadcasts

	Receivers and Long-Running Tasks
	For the More Curious: Local Events
	Using EventBus
	Using RxJava

	For the More Curious: Detecting the Visibility of Your Fragment

	30. Browsing the Web and WebView
	One Last Bit of Flickr Data
	The Easy Way: Implicit Intents
	The Harder Way: WebView
	Using WebChromeClient to spruce things up

	Proper Rotation with WebView
	Dangers of handling configuration changes

	For the More Curious: Injecting JavaScript Objects
	For the More Curious: WebView Updates
	Challenge: Using the Back Button for Browser History
	Challenge: Supporting Non-HTTP Links

	31. Custom Views and Touch Events
	Setting Up the DragAndDraw Project
	Creating a Custom View
	Creating BoxDrawingView

	Handling Touch Events
	Tracking across motion events

	Rendering Inside onDraw(Canvas)
	Challenge: Saving State
	Challenge: Rotating Boxes

	32. Property Animation
	Building the Scene
	Simple Property Animation
	View transformation properties
	Using different interpolators
	Color evaluation

	Playing Animators Together
	For the More Curious: Other Animation APIs
	Legacy animation tools
	Transitions

	Challenges

	33. Locations and Play Services
	Locations and Libraries
	Google Play Services

	Creating Locatr
	Play Services and Location Testing on Emulators
	Mock location data

	Building Out Locatr
	Setting Up Google Play Services
	Location permissions

	Using Google Play Services
	Flickr Geosearch
	Getting a Location Fix
	Asking for Permission at Runtime
	Checking for permissions

	Find and Display an Image
	Challenge: Permissions Rationale
	Challenge: Progress

	34. Maps
	Importing Play Services Maps
	Mapping on Android
	Getting a Maps API Key
	Setting Up Your Map
	Getting More Location Data
	Working with Your Map
	Drawing on the map

	For the More Curious: Teams and API Keys

	35. Material Design
	Material Surfaces
	Elevation and Z values
	State list animators

	Animation Tools
	Circular reveal
	Shared element transitions

	View Components
	Cards
	Floating action buttons
	Snackbars

	More on Material Design

	36. Afterword
	The Final Challenge
	Shameless Plugs
	Thank You

	Index

