
www.allitebooks.com

http://www.allitebooks.org

Android Sensor Programming By
Example

Take your Android applications to the next level of
interactivity by exploring the wide variety of Android sensors

Varun Nagpal

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Android Sensor Programming By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1270416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78528-550-9

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Varun Nagpal

Copy Editor

Angad Singh

Reviewers

Ahmed Mubarak Al-Haiqi

José Juan Sánchez Hernández

Project Coordinator

Judie Jose

Commissioning Editor

Ashwin Nair

Proofreader

Safis Editing

Acquisition Editor

Tushar Gupta

Indexer

Mariammal Chettiyar

Content Development Editor

Pooja Mhapsekar

Graphics

Abhinash Sahu

Technical Editor

Vivek Arora

Production Coordinator

Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author
Varun Nagpal has been developing mobile apps since 2005 and has developed and
contributed to more than 100 professional apps and games on various platforms, such as
Android, iOS, Blackberry, and J2ME. Android app development has been his main area of
expertise, and he has developed apps for a wide variety of Android devices, such as
Android phones, tablets, watches, smart TVs, Android Auto, and Google Glass.

He moved to Chicago in late 2013, and since then, he has become a seasoned mobile
architect. He has worked in different roles (mobile architect, technical lead, senior
developer, and technical consultant) for a variety of various global clients (Allstate, Verizon,
AT&T, Sydbank Denmark, SiS Taiwan, Chams PLC Nigeria, and Nandos South Africa) in
order to implement their mobile solutions. He has SCJP (Core Java) and SCWD (JSP and
Servlets) certifications from Sun Microsystems and MCP (C#) and MCTS (ASP.NET)
certifications from Microsoft. You can find his blogs on mobile technology and white papers
written by him on his website at h t t p : / / w w w . v a r u n n a g p a l . c o m /.

When he's not working, Varun can be found meditating or playing the flute. He also loves
to develop meditation apps and fun games in his free time. He has developed about 40
meditation apps and games available on Google Play (h t t p s : / / p l a y . g o o g l e . c o m / s t o r e
/ a p p s / d e v e l o p e r ? i d = C r e a t i v e . S o f t w a r e . S t u d i o) and the Apple App Store (h t t p s :
/ / i t u n e s . a p p l e . c o m / u s / a r t i s t / c r e a t i v e - s o f t w a r e - s t u d i o / i d 5 7 4 7 4 5 8 2 4) under
the name of Creative Software Studio, his part-time start-up company (h t t p : / / c r e a t i v e s
o f t w a r e s t u d i o . c o m /).

I would like to thank my wife, Ankita, for supporting me at every step, and I want to
apologize to my one-year-old daughter for not giving her enough time while writing this
book. I would also like to acknowledge my parents for their encouragement. Finally, I want
to thank the editor, each member of the Packt Publishing team, and the technical reviewers
for the effort and enthusiasm they showed while working on this book.

www.allitebooks.com

http://www.varunnagpal.com/
https://play.google.com/store/apps/developer?id=Creative.Software.Studio
https://play.google.com/store/apps/developer?id=Creative.Software.Studio
https://itunes.apple.com/us/artist/creative-software-studio/id574745824
https://itunes.apple.com/us/artist/creative-software-studio/id574745824
http://creativesoftwarestudio.com/
http://creativesoftwarestudio.com/
http://www.allitebooks.org

About the Reviewers
Ahmed Mubarak Al-Haiqi received his PhD (he investigated sensor-based side channels
on Android) and MEng (in computer and communications engineering) degrees from the
National University of Malaysia. Before pursuing his graduate studies, he worked as a
database developer for several years with governmental organizations in Aden, Yemen,
where he completed a BEng and majored in computer engineering and science. He is
currently involved in conducting academic research on mobile security, machine learning,
next generation networking trends, as well as interdisciplinary topics.

José Juan Sánchez Hernández received an MSc degree in computer science from the
University of Almería in 2008. He is a member of the Supercomputing-Algorithms Research
Group at the University of Almería, and he is currently working toward a PhD in the area
of image coding and transmission.

In his spare time, he enjoys designing and developing native mobile apps for Android,
experimenting and making stuff with Arduino and Raspberry Pi, and learning new things.
He is also the cofounder of Android Almería Developers Group and an active member of
HackLab Almería, where he organizes programming talks and hackathons.

He participated as a mentor in the Google Summer of Code 2015 with the P2PSP
organization. You can find out more about him at h t t p : / / j o s e j u a n s a n c h e z . o r g.

www.allitebooks.com

http://josejuansanchez.org
http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.packtpub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Sensor Fundamentals 7
What are sensors? 8

Types of sensors 8
Types of sensor values 9

Motion, position, and environmental sensors 9
Motion sensors 9
Position sensors 12
Environmental sensors 15

Sensors' coordinate system 17
Android Sensor Stack 18

Components of the sensor framework 20
SensorManager 20
SensorEventListener 20
Sensor 21
SensorEvent 21

Sensor's sampling period, power, and battery consumption 22
The reporting modes of sensors 24
Dealing with specific sensor configuration 24

Checking the availability of the sensor at runtime 25
Declaring the sensor as mandatory feature 25

Sensor availability based on the Android API level 26
Best practice for accessing sensors 27
Summary 28

Chapter 2: Playing with Sensors 29
Understanding the sensor framework callbacks 29

Seeing the big picture 30
Time for action – using sensors in the foreground activity 32

What just happened? 34
Time for action – listing the available sensors on a device 35

What just happened? 37
Time for action – knowing individual sensors' capabilities 38

What just happened? 40

www.allitebooks.com

http://www.allitebooks.org

[ii]

Time for action – getting the sensor values and updating the user
interface 41

What just happened? 44
Time for action – processing the sensor values in the background
service 45

The phone handling algorithm 45
What just happened? 48
Summary 48

Chapter 3: The Environmental Sensors – The Weather Utility App 49
The weather utility app's requirements 50
Understanding environmental sensors 51
Time for action – using the temperature sensor 52

What just happened? 53
Getting air pressure from the phone's pressure sensor 54

Time for action – calculating the altitude using the pressure sensor 54
What just happened? 56

Getting relative humidity from the phone's humidity sensor 56
Time for action – calculating the dew point and absolute humidity 57

What just happened? 62
Time for action – comparing the temperature, humidity, and pressure
values from web services to phone sensors 62
Third-party web service – open weather map 62
Using Google Play Services Location API and AsyncTask 64

What just happened? 70
Summary 70

Chapter 4: The Light and Proximity Sensors 71
Understanding the light and proximity sensors 72
The automatic torch light and screen brightness app requirements 73
Time for action – turning the torch light on and off using the proximity
sensor 74

What just happened? 77
Time for action – adjusting the screen brightness using the light
sensor 77

What just happened? 80
Wake locks, wakeup sensors, and the FIFO queue 81

Wakeup and non-wakeup sensors 81
The sensor's hardware FIFO queue 82

Summary 82

www.allitebooks.com

http://www.allitebooks.org

[iii]

Chapter 5: The Motion, Position, and Fingerprint Sensors 83
Understanding motion-based sensors 84

The accelerometer sensor 84
The gyroscope sensor 85
The gravity sensor 86
The linear acceleration sensor 86
The significant motion sensor 86

Understanding position-based sensors 87
The magnetometer sensor 88
The orientation sensor 88

The fingerprint sensor 89
Time for action – shake detection using the accelerometer sensor 90
Time for action – the compass using orientation sensor and orientation
APIs 92
Time for action – using the fingerprint sensor 97
What just happened? 103
Summary 103

Chapter 6: The Step Counter and Detector Sensors – The Pedometer
App 104

The pedometer app's requirements 105
Understanding the step counter and step detector sensors 106

The step counter sensor 106
The step detector sensor 106

Time for action – using the step counter sensor in activity 107
Time for action – maintaining step history with the step detector
sensor 108

What just happened? 116
Understanding the walking, jogging, and running signatures using the
accelerometer sensor's data 117

The walking signature using the accelerometer sensor 117
The jogging or fast walking signature using the accelerometer sensor 119
The running signature using the accelerometer sensor 120
The type of step detection algorithm 121
Making it battery- and CPU-efficient using sensor fusion 122
Scope for improvement 122

Time for action – type of step (walking, jogging, and running)
detection using the accelerometer sensor 123

What just happened? 141

www.allitebooks.com

http://www.allitebooks.org

[iv]

Summary 141
Chapter 7: The Google Fit Platform and APIs – The Fitness Tracker
App 142

The Google Fit platform 143
Google Fitness Store 143
REST APIs 144
Android Fitness APIs 144

Sensors API 145
Recording API 145
History API 145
Sessions API 146
Bluetooth Low Energy API 146
Config API 146

Platform basics 146
Data sources 147
Data types 147
Data point 147
Data set 148

Authorization and permission scopes 148
Registration with the Google developer console 148
Authorization from a user in the application 149
Fitness scopes 150
Installing and running time permissions 151

Fitness tracker app using fitness APIs 151
Fitness tracker application requirements and architecture 152
Time for action – working with live fitness data using the Sensors API 154

What just happened? 161
Time for action – recording fitness data in background using
Recording API 163

What just happened? 167
Time for action – getting history fitness data using the History API 168

What just happened? 175
Asynchronous versus synchronous results callback 176

Summary 176
Index 177

Preface
Welcome to Android Sensor Programming By Example. This book will provide you the skills
required to use sensors in your Android applications. It will walk you through all the
fundamentals of sensors and will provide a thorough understanding of the Android Sensor
Framework. This book will cover a wide variety of sensors available on the Android
Platform. You will learn how to write code for the infrastructure (service, threads, database)
required to process high volumes of sensor data. This book will also teach you how to
connect and use sensors in external devices (such as Android Wear) from the Android app
using the Google Fit platform.

You will learn from many real-world sensor-based applications such, as the Pedometer app
to detect daily steps, the Weather app to detect temperature, altitude, absolute and
humidity, the Driving app to detect risky driving behavior, and the Fitness tracker app to
track heart rate, weight, daily steps, and calories burned.

What this book covers
Chapter 1, Sensor Fundamentals, provides you a thorough understanding of the
fundamentals and framework of Android sensors. It walks you through the different types
of sensors and the sensor coordinate system in detail.

Chapter 2, Playing with Sensors, guides you through various classes, callbacks, and APIs of
the Android Sensor framework. It walks you through a sample application, which provides
a list of available sensors and their values and individual capabilities, such as the range of
values, power consumption, minimum time interval, and so on.

Chapter 3, The Environmental Sensors – The Weather Utility App, explains the usage of
various environment sensors. We develop a weather utility app to compute altitude,
absolute humidity, and dew point using temperature, pressure, and relative humidity
sensors.

Chapter 4, The Light and Proximity Sensors, teaches you how to use proximity and light
sensors. It explains the difference between wakeup and non-wakeup sensors and explains
the concept of the hardware FIFO sensor queue. As a learning exercise, we develop a small
application that turns on/off a flashlight using a proximity sensor, and it also adjusts screen
brightness using a light sensor.

Preface

[2]

Chapter 5, The Motion, Position, and Fingerprint Sensors, explains the working principle of
motion sensors (accelerometer, gyroscope, linear acceleration, gravity, and significant
motion), position sensors (magnetometer and orientation), and the fingerprint sensor. We
learn the implementation of these sensors with the help of three examples. The first
example explains how to use the accelerometer sensor to detect phone shake. The second
example teaches how to use the orientation, magnetometer, and accelerometer sensors to
build a compass, and in the third example, we learn how to use the fingerprint sensor to
authenticate a user.

Chapter 6, The Step Counter and Detector Sensors – The Pedometer App, explains how to use
the step detector and step counter sensors. Through a real-world pedometer application, we
learn how to analyze and process the accelerometer and step detector sensor data to
develop an algorithm for detecting the type of step (walking, jogging, sprinting). We also
look at how to drive the pedometer data matrix (total steps, distance, duration, average
speed, average step frequency, calories burned, and type of step) from the sensor data.

Chapter 7, The Google Fit Platform and APIs – The Fitness Tracker App, introduces you to the
new Google Fit platform. It walks you through the different APIs provided by the Google
Fit platform and explains how to request automated collection and storage of sensor data in
a battery-efficient manner without the app being alive in the background all the time. As a
learning exercise, we develop a fitness tracker application that collects and processes the
fitness sensor data, including the sensor data obtained from remotely connected Android
Wear devices.

Bonus Chapter, Sensor Fusion and Sensor – Based APIs (the Driving Events Detection App),
guides you through the working principle of sensor-based Android APIs (activity
recognition, geo-fence, and fused location) and teaches you various aspects of sensor fusion.
Through a real-world application, you will learn how to use multiple sensors along with
input from sensor-based APIs to detect risky driving behavior. Through the same
application, you will also learn how to develop the infrastructure (service, threads, and
database) required to process high volumes of sensor data in the background for a longer
duration of time. This chapter is available online at the link h t t p s : / / w w w . p a c k t p u b . c o m /
s i t e s / d e f a u l t / f i l e s / d o w n l o a d s / S e n s o r F u s i o n a n d S e n s o r B a s e d A P I s _ T h e D r i v i n g
E v e n t D e t e c t i o n A p p _ O n l i n e C h a p t e r . p d f

https://www.packtpub.com/sites/default/files/downloads/SensorFusionandSensorBasedAPIs_TheDrivingEventDetectionApp_OnlineChapter.pdf
https://www.packtpub.com/sites/default/files/downloads/SensorFusionandSensorBasedAPIs_TheDrivingEventDetectionApp_OnlineChapter.pdf
https://www.packtpub.com/sites/default/files/downloads/SensorFusionandSensorBasedAPIs_TheDrivingEventDetectionApp_OnlineChapter.pdf

Preface

[3]

What you need for this book
You will need a Windows or a Mac system with Android Studio to run the examples in this
book. All the examples are developed using Android Studio, but you can still execute them
on Eclipse with ADT by exporting them to an Eclipse project structure. You are encouraged
to run all the examples in the book on a real Android device as there is no official support
for sensors in the Android emulator. An open source sensor simulator is available, and it
will simulate some of the sensors on the Android emulator in real time. It is available at h t t
p s : / / c o d e . g o o g l e . c o m / p / o p e n i n t e n t s / w i k i / S e n s o r S i m u l a t o r.

Who this book is for
This book is targeted at Android developers who want to thoroughly understand sensors
and write sensor-based applications or want to enhance their existing applications with
additional sensor functionality. A basic knowledge of Android development is required.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Fingerprint sensor APIs require install time permission in the AndroidManifest.xml
file."

A block of code is set as follows:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mSensorManager = (SensorManager)
 getSystemService(Context.SENSOR_SERVICE);
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_SIGNIFICANT_MOTION);

https://code.google.com/p/openintents/wiki/SensorSimulator
https://code.google.com/p/openintents/wiki/SensorSimulator

Preface

[4]

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Sensor Fundamentals

In this chapter, we will understand the fundamentals of sensors and explore what the
sensor world looks like from an Android perspective. We will also look at the classes,
interfaces, and methods provided by the Android platform to access sensors. This chapter
will also focus on the standards and best practices for using Android sensors.

You will learn the following topics in this chapter:

What are sensors?
Different types of sensors and values.
Individual sensor descriptions and their common usage.
How to use sensor coordinate system?
What is Android Sensor Stack?
Understanding the Sensor framework APIs and classes.
Understanding the sensor sampling period, frequency, and reporting mode.
Specific sensor configuration and sensor availability based on the API level.
Best practices to access and use sensors.

Sensor Fundamentals

[8]

What are sensors?
In simple words, sensors measure a particular kind of physical quantity, such as force
acting on device, light falling on a surface, or the temperature in a room. These are
examples of a basic physical quantity that sensors can measure. Most Android phones come
with advance sensors that can measure valuable information such as relative humidity,
atmospheric pressure, magnetic field, steps taken, the rate of rotation of a device on the x, y,
and z axes, proximity to an object, and many more. The majority of the sensors are Micro
Electro Mechanical Sensors (MEMS), which are made on a tiny scale (in micrometers),
usually on a silicon chip, with mechanical and electrical elements integrated together.

The basic working principle behind MEMS is to measure the change in electric signal
originating due to mechanical motion. This change in electric signals is converted to digital
values by electric circuits. The accelerometer and gyroscope are the main examples of
MEMS. Most of the sensors in an Android phone consume minimal battery and processing
power. We will discuss all the important sensors in detail in the coming chapters.

Types of sensors
Sensor can be broadly divided into the following two categories:

Physical Sensors: These are the actual pieces of hardware that are physically
present on the device. They are also known as hardware sensors. Accelerometers,
gyroscopes, and magnetometers are examples of physical sensors.
Synthetic Sensors: These are not physically present on the device, and they are
instead derived from one or more sensors. They are also called virtual, composite,
or software sensors. Gravity, linear acceleration, and step detector are examples
of synthetic sensors.

The Android platform doesn't make any distinction when dealing with physical sensors
and synthetic sensors. The distinction is mostly theoretical to understand the origin of the
sensor values.

Sensor Fundamentals

[9]

Types of sensor values
Sensor values can be broadly divided into the following three categories:

Raw: These values are directly given by the sensor. The operating system simply
passes these values to the apps without adding any correction logic.
Accelerometers, proximity sensors, light sensors, and barometers are sensors that
give raw values.

Calibrated: These values are computed by the operating system by adding extra
correction algorithms, such as drift compensation and removing bias and noise
over the raw values given by sensors. Step detector, step counter, and significant
motion are sensors that give calibrated values by using an accelerometer as their
base sensor. The magnetometer and gyroscope are special kinds of sensor that
give both raw and calibrated values.
Fused: These values are derived from a combination of two or more sensors.
Generally, these values are calculated by leveraging the strength of one sensor to
accommodate the weaknesses of other sensors. Gravity and linear acceleration
give fused values by using the accelerometer and gyroscope.

Motion, position, and environmental sensors
The Android platform supports mainly three broad categories of sensors: the motion,
position, and environment-based sensors. This categorization is done based on the type of
physical quantity detected and measured by the sensors.

Motion sensors
Motion sensors are responsible for measuring any kind of force that could potentially create
motion in the x, y, and z axes of the phone. The motion could be either a linear or angular
movement in any direction. This category includes accelerometers, gravity, gyroscope, and
rotational vector sensors. Most of these sensors will have values in the x, y, and z axes, and
the rotational vector will especially have extra value in the fourth axis, which is the scalar
component of the rotation vector.

Sensor Fundamentals

[10]

The following table summarizes the motion sensor usage, types, and power consumption:

Sensor Type Value Underlying
Sensors

Description Common
Usage

Power
Consumption

Accelerometer Physical Raw Accelerometer This
measures
the
acceleration
force along
the x, y,
and z axes
(including
gravity).
Unit: m/s2

It can be
used to
detect
motion
such as
shakes,
swings,
tilt, and
physical
forces
applied on
the phone.

Low

Gravity Synthetic Fused Accelerometer,
Gyroscope

This
measures
the force of
gravity
along the
x, y, and z
axes. Unit:
m/s2

It can be
used to
detect
when the
phone is
in free fall.

Medium

Linear
Acceleration

Synthetic Fused Accelerometer,
Gyroscope

It measures
the
acceleration
force along
the x, y,
and z axes
(excluding
gravity).
Unit: m/s2

It can be
used to
detect
motion
such as
shakes,
swings,
tilt, and
physical
forces
applied on
phone.

Medium

Sensor Fundamentals

[11]

Gyroscope Physical Raw,
Calibrated

Gyroscope This
measures
the rate of
rotation of
the device
along the
x, y, and z
axes. Unit:
rad/s

It can be
used to
detect
rotation
motions
such as
spin, turn,
and any
angular
movement
of the
phone.

Medium

Step Detector Synthetic Calibrated Accelerometer This detects
walking
steps.

It can be
used to
detect
when a
user starts
walking.

Low

Step Counter Synthetic Calibrated Accelerometer It measures
the number
of steps
taken by
the user
since the
last reboot
while the
sensor was
activated

It keeps
track of
the steps
taken by
the user
per day.

Low

Significant
Motion

Synthetic Calibrated Accelerometer It detects
when there
is
significant
motion on
the phone
because of
walking,
running, or
driving.

It detects a
significant
motion
event.

Low

Sensor Fundamentals

[12]

Rotation
Vector

Synthetic Fused Accelerometer,
Gyroscope,
Magnetometer

This
measures
the rotation
vector
component
along the x
axis (x *
sin(θ/2)), y
axis (y *
sin(θ/2)),
and z axis (z
* sin(θ/2)).
Scalar
component
of the
rotation
vector
((cos(θ/2)).
Unitless.

It can be
used in
3D games
based on
phone
direction.

High

Position sensors
Position sensors are used to measure the physical position of the phone in the world's frame
of reference. For example, you can use the geomagnetic field sensor in combination with the
accelerometer to determine a device's position relative to the magnetic North Pole. You can
use the orientation sensor to determine the device's position in your application's frame of
reference. Position sensors also support values in the x,y, and z axes.

Sensor Fundamentals

[13]

The following table summarizes the position sensor's usage, types, and power
consumption:

Sensor Type Value Underlying
Sensors

Description Common
Usage

Power
Consumption

Magnetometer Physical Raw,
Calibrated

Magnetometer This measures
the
geomagnetic
field strength
along the x, y,
and z axes.
Unit: μT

It can be
used to
create a
compass
and
calculate
true north.

Medium

Orientation
(Deprecated)

Synthetic Fused Accelerometer,
Gyroscope,
Magnetometer

This measures
the Azimuth
(the angle
around the z
axis), Pitch
(the angle
around the x
axis), and Roll
(the angle
around the y
axis). Unit:
Degrees

It can be
used to
detect the
device's
position
and
orientation.

Medium

Proximity Physical Raw Proximity This measures
the distance of
an object
relative to the
view screen of
a device. Unit:
cm

It can be
used to
determine
whether a
handset is
being held
up to a
person's
ear.

Low

Sensor Fundamentals

[14]

Game
Rotation
Vector

Synthetic Fused Accelerometer,
Gyroscope

This measures
the rotation
vector
component
along the x
axis (x *
sin(θ/2)), y axis
(y * sin(θ/2)),
and z axis (z *
sin(θ/2)). It is
the scalar
component of
the rotation
vector
(cos(θ/2)).
Unitless. It is
based only on
the Gyroscope
and
Accelerometer
and does not
use the
Magnetometer.

It can be
used in 3D
games
based on
phone
direction.

Medium

Sensor Fundamentals

[15]

Geomagnetic
Rotation
Vector

Synthetic Fused Accelerometer,
Magnetometer

This measures
the rotation
vector
component
along the x
axis (x *
sin(θ/2)), y axis
(y * sin(θ/2)),
and z axis (z *
sin(θ/2)). It is
the scalar
component of
the rotation
vector
(cos(θ/2)). Unit
less. * It is
based only on
the
Magnetometer
and
Accelerometer
and does not
use the
Gyroscope.

It can be
used in
augmented
reality
apps,
which are
based on
the phone
and
compass
direction.

Medium

Environmental sensors
Environment sensors are responsible for measuring environmental properties, such as
temperature, relative humidity, light, and air pressure near the phone. Unlike motion and
position sensors, which give sensor values multi-dimensional arrays, the environment
sensors report single sensor values.

Sensor Fundamentals

[16]

The following table summarizes the environment sensor's usage, types, and power
consumption:

Sensor Type Value Underlying
Sensors

Description Common
Usage

Power
Consumption

Ambient
Temperature

Physical Raw Thermometer This measures
the ambient air
temperature.
Unit: Degrees
Celsius

It is used for
monitoring
temperatures.

Medium

Light Physical Raw Photometer This measures
the ambient
light level
(illumination).
Unit: lx

It can be used
to dim the
screen
brightness of
the phone.

Low

Barometer Physical Raw Barometer This measures
the ambient air
pressure. Unit:
mPa or mbar

It can be used
to measure
height relative
to sea level.

Medium

Relative
Humidity

Physical Raw Relative
Humidity

This measures
the relative
ambient
humidity in
percentage.
Unit: %

It can be used
for calculating
the dew point,
and absolute
and relative
humidity.

Medium

Sensor Fundamentals

[17]

Sensors' coordinate system
Most of the sensors use the standard 3-axis coordinate system to represent the sensor
values. This coordinate system is similar to the 3-axis coordinate system used to measure
the length, breadth, and height of any 3D object in space, along with the difference of the
frame of reference and the orientation of the 3-axis. As depicted in the following figure, the
origin of this coordinate system lies in the center of the screen. When the device is in its
default orientation (generally the portrait mode), the x axis is in the horizontal direction
with the right-hand side having positive values and the left-hand side having negative
values. Similarly, the y axis is in the vertical direction and the z axis is coming out of the
phone screen. Points above the origin in a vertical direction are positive, and the ones below
the origin in vertical direction are negative for the y axis. Similarly, the points coming out of
the screen are positive, and the points behind the phone screen are negative for the z axis.

Sensor Fundamentals

[18]

This particular x, y, and z axis orientation stands good for all the devices that have their
default orientation as portrait mode, as shown in the previous figure. But for any device,
especially tablets, the orientation of the x and y axes are swapped when their default
orientation is in landscape mode. The z axis' orientation remains the same. So, before
making any assumption about the orientation of an axis, it's always a good practice to
confirm the default mode of the device. In this coordinate system, we always use the
device's frame as a point of reference. The device coordinate system is never changed or
swapped, especially when the phone is moved or rotated in any direction. The OpenGL
(Graphic library) uses the same coordinate system and rules to define its values.

Some position sensors and their methods use a coordinate system that is relative to the
world's frame of reference, as opposed to the device's frame of reference. These sensors and
methods return data that represents the device motion or device position relative to the
earth. The Orientation Sensor, Rotation Vector Sensor, and getOrientation() method use
the world's frame of reference coordinate system, while all the other position, motion, and
environmental sensors use the device's frame of reference coordinate system.

Android Sensor Stack
The following figure represents the layers in the Android Sensor Stack. Each layer in the
sensor stack is responsible for a specific task and communicating with the next layer. The
top-most layer consists of Android Apps, which are the consumers of the data from sensors.
The second layer is the Android SDK layer, through which the android applications can
access the sensors. The Android SDK contains APIs to list the available sensors to register to
a sensor and all the other sensor functionality. The third layer consists of the Android
Framework, which is in charge of linking several applications to a single HAL client. The
framework consists of various components to provide simultaneous access to multiple
applications. It is discussed in detail in the next section. The fourth layer is called HAL
(Sensors' Hardware Abstraction Layer), which provides the interface between the hardware
drivers and the Android framework. It consists of one HAL interface sensor and one HAL
implementation, which we refer to assensors.cpp. The HAL interface is defined by the
Android and AOSP (Android Open Source Project) contributors, and the implementation
is provided by the manufacturer of the device. The Sensor Drivers are the fifth layer of the
stack, and they are responsible for interacting with the physical devices.

Sensor Fundamentals

[19]

In some cases, the HAL implementation and the drivers are the same software entity, while
in other cases, the hardware integrator requests the sensor chip manufacturers to provide
the drivers. The Sensor Hub is the sixth optional layer of the stack. The Sensor Hub
generally consists of a separate, dedicated chip for performing low-level computation at
low power, while the application processor is in the suspended mode. It is generally used
for sensor batching and adding hardware FIFO queue (which is discussed in detail in
the Wake locks, wakeup sensors, and FIFO queue section of Chapter 4, Light and Proximity
Sensors). The final seventh layer consists of the physical hardware sensors. Mostly, they are
made up of the MEMS silicon chip, and they do the real measuring work.

www.allitebooks.com

http://www.allitebooks.org

Sensor Fundamentals

[20]

Components of the sensor framework
Android has provided methods, classes, and interfaces for accessing sensors and their data
that is available on an Android device. These sets of methods, classes, and interfaces are
collectively referred to as the sensor framework and are a part of the android.hardware
package. It consists of four major components: SensorManager, Sensor, SensorEvent,
and SensorEventListener. The entry point to the framework is the SensorManager
class, which allows an app to request sensor information and register to receive sensor data.
When registered, sensor data values are sent to a SensorEventListener interface in the
form of a SensorEvent class that contains information produced from a given sensor. Let's
look at each component in detail.

SensorManager
SensorManager is the class that makes it possible for your app to get access to the sensors.
It creates the instance of the system sensor service, which provides various APIs to access
sensor information on the device. It exposes the methods that list the available and default
sensors on the device. This class also provides several sensor constants that are used to
report sensor accuracy, sampling period, and calibrate sensors. One of the important tasks
of this class is to register and unregister sensor event listeners for accessing a particular
sensor.

SensorEventListener
SensorEventListener is the interface that provides two callbacks to receive the sensor
notification (sensor event). OnSensorChanged() is the first method of the interface, which
is called whenever there is any change in the sensor values. The change in sensor value is
communicated through the SensorEvent object, passed as a parameter to this
method. OnAccuracyChanged() is the second method, which is called whenever there is a
change in the accuracy of sensor values. The sensor object and newly reported accuracy in
integers are sent as parameters to this method. There are four accuracy integer constants
supported by SensorManager. They are as follows:

SENSOR_STATUS_ACCURACY_HIGH

SENSOR_STATUS_ACCURACY_MEDIUM

SENSOR_STATUS_ACCURACY_LOW

SENSOR_STATUS_ACCURACY_UNRELIABLE

Sensor Fundamentals

[21]

Sensor
Sensor is the class that is used to create an instance of a specific sensor. This class provides
various methods that let you determine a sensor's capabilities:

Maximum Range
Minimum Delay
Name
Power
Resolution
Reporting Mode
Type
Vendor
Version
isWakeUp Sensor

We will be discussing each capability and method in detail in the Time for action – knowing
the individual sensor capability section of Chapter 2, Playing with Sensors.

SensorEvent
SensorEvent is a special kind of class that is used by the operating system to report
changes in the sensor values to the listeners. This SensorEvent object contains the
following four elements:

values[]: This is a multidimensional array that holds the sensor values
timestamp: This refers to the time in nanoseconds at which the event happened
accuracy: This is one of the four accuracy integer constants
sensor: This is the sensor type that generated this data

Sensor Fundamentals

[22]

The following class diagram depicts the important methods and variables for the four key
components of the Sensor Framework:

Sensor's sampling period, power, and
battery consumption
When you are registering an event listener, you can suggest a sampling period or delay
between the sensor event values in microseconds. This sampling period is only a signal to
the operating system to send the sensor values at the suggested sampling rate via the
OnSensorChanged() method. The operating system might choose a bigger delay,
depending on the load on the processer, and that's why it is discouraged to build a time-
sensitive logic that relies on the delay between the sensor events.

Sensor Fundamentals

[23]

You can only specify the absolute delay from Android 3.0 (API Level 11) and above. Prior to
this version, you could only use the following four constants supported by the platform:

SENSOR_DELAY_FASTEST: This has a default value of 0 microseconds. It is not
recommended to use this delay, as it increases the CPU cycles by multiple times
and drains the battery much faster.
SENSOR_DELAY_GAME: This has a default value of 20,000 microseconds. It is only
recommended for those games that need the highest degree of precision and
accuracy.
SENSOR_DELAY_UI: This has a default value of 60,000 microseconds and is
recommended for most cases.
SENSOR_DELAY_NORMAL: It has a default value of 200,000 microseconds and is
used for reducing the extra CPU cycles and saving the battery.

It's the choice of the developer to either use the delay constants or specify their own delay
value. Power consumption and the degree of precision are the two important factors to
consider before deciding the right sampling period. The power consumption of any sensor
can be checked via the getPower() method of the sensor object, which returns the power
in mA. Among the physical sensors, the accelerometer is the most power efficient and has
the least battery consumption. The gyroscope and magnetometer come after the
accelerometer with regard to power efficiency and battery consumption.

You will often hear the terms delay and sampling period being used interchangeably
because they mean the same thing. There is another term called sampling frequency, which
is the inverse of the sampling period (in seconds) and is measured in Hertz (Hz). For
example, if you are using the sampling period of 60,000 microseconds for a sensor, then the
sampling frequency will be 16.66 Hz. This conversion is just a two-step process. First,
convert the time into seconds, as 1 second is 10 to power 6 microseconds, so 60,000
microseconds will be 0.06 seconds. Now, the frequency (the inverse of delay) is 1/0.06 = 16.66
Hz.

Sensor Fundamentals

[24]

The reporting modes of sensors
Sensors can generate events in different ways called reporting modes. Each sensor has a
particular type of reporting mode. The reporting mode is an Integer constant of the Sensor
class, which can be obtained using the getReportingMode() method of the Sensor object.
Knowing the reporting mode of a sensor can help developers write an efficient logic.
Reporting modes can be categorized into following four types:

Continuous: In continuous reporting mode, the sensor events are generated at a
constant rate defined by the sampling period. This sampling period is set at the
time of registering the listener for the sensor. For example, the sensors using the
continuous reporting mode are the accelerometer and gyroscope.
On Change: In the on-change reporting mode, the sensor events are generated
only if the measured values have changed from the last known values. For
example, sensors using the on-change reporting mode are the step counter,
proximity, and heart rate sensors.
One Shot: The one shot reporting mode is based on the fire and forget concept.
They are triggered only once in the entire duration of the event. The significant
motion sensor uses the one shot reporting mode to notify the event. It is only
fired once, when the sensor detects the start of significant motion because of
walking, running, or driving.
Special Trigger: The special trigger is fired on each occurrence of a particular
event. Upon the detection of an event, the sensor values are generated and passed
to the listener. The sampling period is ignored in this case. The step detector
sensor is an example of the special trigger reporting mode, which is fired on
every step taken.

Dealing with specific sensor configuration
There might be some scenarios in which certain features of your application might depend
on a specific sensor, and that sensor is not present on the device. In such cases, a good
option would be to either turn off that dependent feature or not allow the user to install the
application. Let's explore each option in detail.

Sensor Fundamentals

[25]

Checking the availability of the sensor at runtime
If you have a weather utility app, and it uses the pressure sensor on the phone to check the
atmospheric pressure, then it's not a good idea to directly use the sensor. There are many
Android phones that don't have a pressure sensor on them. If such cases are not handled
properly, your application might even crash, which will be a bad user experience.

It's always recommended to check the availability of a sensor before using it in the
application. The following code snippet shows how to check the availability of the sensor:

private SensorManager mSensorManager;
...
mSensorManager=
(SensorManager)getSystemService(Context.SENSOR_SERVICE);
if(mSensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE)!=null){
 // Success! There's a pressure sensor.
}else{
 // Failure! No pressure sensor.
}

Declaring the sensor as mandatory feature
If measuring atmospheric pressure using the phone pressure sensor is the main feature of
your application, then you may not want to support those devices that don't have a
pressure sensor in them. The Android platform supports this functionality by declaring
uses-feature filters in the AndroidManifest.xml file:

<uses-feature android:name="android.hardware.sensor.barometer"
android:required="true" />

This code snippet informs the Android platform that the pressure sensor is required for this
app to function. Google Play uses this uses-feature to filter out those devices that don't
have the pressure sensor in them, and hence your app is only installed on the supported
devices. The sensors that are supported by uses-feature are the accelerometer,
gyroscope, light, barometer (pressure), compass (geomagnetic field), and proximity sensors.

Sensor Fundamentals

[26]

If your application uses a sensor for some feature, but can still run without that sensor by
turning off that feature, then it's advisable to declare the sensor in uses-feature but still
set the required value to false (android:required="false"). This informs the operating
system that your application uses that sensor, but it can still function without it. It's the
developer's responsibility to check the availability of the sensor at runtime.

Sensor availability based on the Android API
level
There is a wide variety of sensors that are supported on Android devices. As Android
evolved over a period of time, new sensors were added, and some old, inefficient sensors
were removed. With the release of newer versions of Android, they got better and more
accurate, and the list of supported sensors got bigger. Most of the apps have to support
older versions of Android to target the wider audience. But at the same time, not all sensors
are supported by older versions of Android. It's a tradeoff between supporting older
versions of Android versus getting to use the latest and more advanced sensors that are
only available in newer versions of Android.

The following table provides the sensor availability list based on the Android version and
API levels. This table illustrates four major platforms to show availability, as the major
changes were made in these four platforms only:

Sensor Android 6.0 (API
Level 23)

Android 4.0
(API Level 14)

Android 2.3
(API Level 9)

Android 2.2
(API Level 8)

Accelerometer Available Available Available Available

Ambient
temperature

Available Available NA NA

Gravity Available Available Available NA

Gyroscope Available Available Available NA

Light Available Available Available Available

Linear acceleration Available Available Available NA

Magnetic field Available Available Available Available

Orientation Deprecated Deprecated Deprecated Deprecated

Pressure Available Available Available NA

Sensor Fundamentals

[27]

Proximity Available Available Available Available

Relative humidity Available Available NA NA

Rotation vector Available Available Available NA

Step Detector Available NA NA NA

Step Counter Available NA NA NA

Temperature Deprecated Deprecated Available Available

Best practice for accessing sensors
Android devices are manufactured by different OEMs (Original Equipment
Manufactures) and come with various configurations. Each OEM is free to support its own
set of sensors, which again come from different vendors. This creates the problem of device
fragmentation. This problem is further complicated by addition and deprecation of sensors
with different Android API levels. The following are some best practices that will help you
deal with this device fragmentation problem and avoid common pitfalls and mistakes:

Before using the sensor coordinate system, confirm the default orientation mode
of the device and check for the orientation of the x and y axes.
Check the availability, range, minimum delay, reporting modes, and resolution of
the sensor before using it.
Before selecting the sampling period of any sensor, check for its power
consumption. Also, keep your application precision and accuracy needs in mind
before deciding the sampling period. It's recommended that you select one of the
constants given by the operating system.
Do not block or do heavy processing on the OnSensorChanged() method. Your
app might miss callbacks or go into ANR (Application Not Responding) mode.
The app might even crash in the worst cases if this callback is blocked.
Every registration of the event listener should be paired with the un-registration
of the same listener. This should be done at the right time and place. (More on
this, in the next chapter).
Avoid using deprecated sensors and any of the deprecated APIs.

Never write any kind of application logic based on the delay between the sensor
events. Always use the timestamp from the sensor event to do your time-related
calculations.

Sensor Fundamentals

[28]

If some sensors are mandatory for your application to function, then use
the uses-feature filter in the Manifest.xml file and change the required value
to true.
Check your application and its sensor behavior on more than one device, as the
sensor values and range may vary with different devices.

Summary
We looked at the important concepts of sensor, their types, values, and common uses. The
best practices discussed in this chapter will save you from common errors and mistakes that
developers make while writing the code for sensors. It is advisable that you give a second
thought to selecting the right sampling period of a sensor, before using them in your code.

This chapter prepared you to dive deep into the Android world of sensors. In the next
chapter, we will take a closer look at the classes, interfaces, and methods for accessing
sensors, and we will also start writing the code for sensors.

2
Playing with Sensors

In this chapter, we will learn how to write our first sensor program. We will also
understand the various callbacks, and how to use these callbacks in the foreground activity
and background service. This chapter will also walk you through a basic algorithm
developed using sensor values.

We will cover the following topics in this chapter:

Understanding various sensor framework callbacks
Using sensors in the foreground activity
Listing the available sensors on a device
Knowing individual sensors' capabilities
Getting the sensor values and updating the user interface
Monitoring sensor values in the background service

Understanding the sensor framework
callbacks
The two most important callbacks of the sensor framework are the onSensorChanged()
and onAccuracyChanged() methods. In order to write efficient sensor code, it's important
to understand when these methods are called, and what processing we can do in them.
These callbacks are methods of the SensorEventListnener interface, which needs to be
implemented in the class where the callbacks are to be received:

Playing with Sensors

[30]

onSensorChanged() is the first callback and has the following syntax:

@Override
 public void onSensorChanged(SensorEvent event) {
 }

Depending on the type of reporting mode of the sensor, this method will be called, either at
regular frequency (Continuous mode) or whenever there is a change in the value of the
sensors from the previously reported value (On the change mode). The
onSensorChanged() method provides the sensor values inside the float value[] array
of the SensorEvent object. These sensor values are different from the previously reported
values. There may be instances where the OS can choose to report sensor values at a
different frequency than specified at the time of the registration of the listener. Generally,
this happens because the OS is heavily loaded and busy with performing some other, more
important, processing tasks:

onAccuracyChanged() is the second callback and has the following syntax:

@Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }

Whenever the OS chooses to change (increase or decrease) the accuracy of the sensor values,
it informs your listener using this callback. In this method call, it sends the new accuracy
value (Integer) and the sensor object for which the accuracy has changed. Generally, this
change in accuracy happens rarely; only when the OS goes into battery-saver mode or gets
involved with important heavy-processing tasks. When the OS gets busy, it reduces the
accuracy, and when the OS becomes free, it increases the accuracy.

Seeing the big picture
The following sequence diagram explains the logical steps required by your application to
get the values from the sensors:

The first step is to instantiate the SensorManager class from the system sensor1.
service.
The second step is to obtain the required Sensor class object from2.
SensorManager.
The third step is to create the SensorEventListener interface for your3.
application. We can implement the SensorEventListener interface in activity,
service, or any other class, and the chosen one will receive the sensor callbacks.

Playing with Sensors

[31]

The fourth step is to register the SensorEventListener with4.
the SensorManager class.

In the fifth step, after successful registration, your app will start receiving5.
the SensorEvent objects in the onSensorChanged() method callback
of SensorEventListener.
In the sixth and last step, your app should unregister the SensorEventListener6.
interface with the SensorManager class when it doesn't require the sensor data
any more.

Playing with Sensors

[32]

Time for action – using sensors in the
foreground activity
In this section, we will explore how to use sensors in the activity. This is the most basic and
straightforward way of using sensors. Also, it's the most efficient way if your sensor
functionality only ties to that activity:

The first step is to implement our activity with the SensorEventListener1.
interface so that our activity can receive SensorEvent through
the onSensorChanged() method. The following code snippet shows the
necessary import statements and the class declaration:

 import android.app.Activity;
 import android.content.Context;
 import android.hardware.Sensor;
 import android.hardware.SensorEvent;
 import android.hardware.SensorEventListener;
 import android.hardware.SensorManager;
 import android.os.Bundle;

 public class SensorActivity extends Activity implements
 SensorEventListener{

Now, we will create the instance of SensorManager from the system sensor2.
service. The system gives your application a shared instance of SensorManager.
The next step is to create the Sensor object from SensorManager. For our
example, we will create the object of gyroscope. There might be multiple types of
gyroscope sensors on the device, but we need the default type for our use, which
is why we use getDefaultSensor() to obtain the default sensor type. We also
have to make sure that the Sensor object is not null, meaning that the sensor is
actually present on the device:

 private SensorManager mSensorManager;
 private Sensor mSensor;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mSensorManager =
 (SensorManager)this.getSystemService
 (Context.SENSOR_SERVICE);

 if(mSensorManager.getDefaultSensor

Playing with Sensors

[33]

 (Sensor.TYPE_GYROSCOPE)!= null){
 mSensor =
 mSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
 }
 }

After the creation of the Sensor object and SensorManager, it's time to register3.
the listener for the callbacks. The registration of the listener is done using
the registerListener() method of SensorManager, which accepts the objects
of the SensorEventListener interface, the Sensor class, and the sampling
period. As a best practice, we should register the listener in the onResume()
method, and unregister it in the onPause() method. By doing this, every time
your app goes into the foreground, it will start getting the sensor values, and
whenever the app goes into the background, it will stop receiving the sensor
values. This will avoid the wastage of the sensor callbacks and hence will save
CPU cycles and battery. We also make the Sensor and SensorManager null in
the onDestroy() method as a best practice for garbage collection:

 @Override
 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(this, mSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }

 @Override
 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(this);
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 mSensorManager = null;
 mSensor = null;
 }

Playing with Sensors

[34]

Now, let's talk about the callbacks, where your app will receive the sensor values.4.
The onSensorChanged() method is the main callback of
the SenorEventListener interface, which passes the sensor values in the form
of the SensorEvent object. The onAccuracyChanged() method is the second
method that gets called whenever there is a change in the accuracy of the sensor
values:

 @Override
 public void onSensorChanged(SensorEvent event) {
 //event.values[] (do something with sensor values)
 //event.timestamp (do something with timestamp)
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int
 accuracy)
 {
 //Do something with changed accuracy
 //This method is mandatory to defined
 }

What just happened?
We just created our first activity with SenorManager and Sensor objects. We also
registered and unregistered listeners. In the coming sections, we will learn how to use
sensor callbacks to process the sensor values. This type of code structure is suggested when
your sensor scope is limited to one activity only.

Playing with Sensors

[35]

Time for action – listing the available
sensors on a device
There are multiple sensors available on a device. In this section, we will learn how to get
a list of all the available sensors. We will be populating the names of the available sensors in
a list and will be displaying it on the screen using ListView.

The following code block shows the declarations required by the activity. We1.
don't need the SensorEventListener interface, as we will not be dealing with
the values of the sensor. We declare ListView, ListAdapter,
and SensorManager, along with the list of Sensor Objects to populate the list:

 public class SensorListActivity extends Activity
 implements OnItemClickListener{

 private SensorManager mSensorManager;
 private ListView mSensorListView;
 private ListAdapter mListAdapter;
 private List<Sensor> mSensorsList;

In the onCreate() method, we instantiate our SensorManager, ListView,2.
and ListAdaptorobjects. We will also set the item click listener on
our ListView and populate the sensor list using the getSensorList() method
of SensorManager, which gives all the available sensors on the device:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mSensorManager =
 (SensorManager)this.getSystemService
 (Context.SENSOR_SERVICE);

 mSensorsList =
 mSensorManager.getSensorList(Sensor.TYPE_ALL);
 mSensorListView =
 (ListView)findViewById(R.id.session_list);
 mListAdapter = new ListAdapter();
 mSensorListView.setAdapter(mListAdapter);
 mSensorListView.setOnItemClickListener(this);
 }

Playing with Sensors

[36]

Now, in the sensor list, we have all the available sensor objects. We will use the3.
same sensor list to inflate our individual ListView items. The sensor object has
a getName() method, which gives the official name of the sensor. We will use the
same name to show in our list items. The following ListAdapter
implementation shows how we use the sensor object list to get the total count and
inflate the individual items from the getName() method:

 private class ListAdapter extends BaseAdapter{

 private TextView mSensorName;

 @Override
 public int getCount() {
 return mSensorsList.size();
 }

 @Override
 public Object getItem(int position) {
 return mSensorsList.get(position).getName();
 }

 @Override
 public long getItemId(int position) {
 return position;
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {

 if(convertView==null){
 convertView =
 getLayoutInflater().inflate(R.layout.list_rows,
 parent, false);
 }

 mSensorName =
 (TextView)convertView.findViewById(R.id.sensor_name);
 mSensorName.setText(mSensorsList.get(position)
 .getName());
 return convertView;
 }
 }

Playing with Sensors

[37]

The following code block shows the onItemClick listener for ListView, which4.
we will use for our next example. From this, we take the user to a
new SensorCapabilityActivity, which will show all the individual sensor
details. We pass the sensor type to the next activity so that it can identify the right
sensor type:

 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position,long id) {
 Intent intent = new Intent(getApplicationContext(),
 SensorCapabilityActivity.class);
 intent.putExtra(getResources()
 .getResourceName(R.string.sensor_type),
 mSensorsList.get(position).getType());
 startActivity(intent);
 }

What just happened?
We populated ListView with all the available sensor names on the device. We also used
the getSensorList() method to get all the sensors, and the getName() method to get the
official names of the sensors. You will get different names on different devices, depending
on the device's OEM implementation. Here is a screenshot of the layout file showing the
available sensors on the Nexus 5P device:

Playing with Sensors

[38]

Time for action – knowing individual
sensors' capabilities
Android phones are manufactured by different OEMs, which use different vendors to get
their sensors. It is very much possible that two different Android phones have different
gyroscope sensors, which will have different ranges and other properties. Before
developing a universal logic based on sensors, it's important to keep in mind sensor's
individual properties and capabilities, which may vary from device to device. In this
section, we will explore the common methods for finding out the properties and capabilities
of a sensor:

We will show the sensor properties in the individual TextView on the screen. In1.
the following code snippet, the TextView, Sensor,
and SensorManager variables are declared:

 public class SensorCapabilityActivity extends Activity {

 private SensorManager mSensorManager;
 private int mSensorType;
 private Sensor mSensor;
 private TextView mSensorNameTextView;
 private TextView mSensorMaximumRangeTextView;
 private TextView mSensorMinDelayTextView;
 private TextView mSensorPowerTextView;
 private TextView mSensorResolutionTextView;
 private TextView mSensorVendorTextView;
 private TextView mSensorVersionTextView;

In the OnCreated() method, we instantiate the TextView, Sensor,2.
and SensorManager objects. We use the following sensor methods
(getName(), getMaximumRange(), getMinDelay(), getPower(), getResolut
ion(), getVendor(), and getVersion()) of the Sensor object to get sensor
properties and show the values in their respective TextView. We receive the
sensor type through the getIntExtra() API of intent from the
previous SensorListActivity:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.capability_layout);
 Intent intent = getIntent();

Playing with Sensors

[39]

 mSensorType = intent.getIntExtra(getResources()
 .getResourceName(R.string.sensor_type), 0);
 mSensorManager = (SensorManager)this.getSystemService
 (Context.SENSOR_SERVICE);
 mSensor =
 mSensorManager.getDefaultSensor(mSensorType);
 mSensorNameTextView = (TextView)findViewById
 (R.id.sensor_name);
 mSensorMaximumRangeTextView = (TextView)findViewById
 (R.id.sensor_range);
 mSensorMinDelayTextView = (TextView)findViewById
 (R.id.sensor_mindelay);
 mSensorPowerTextView = (TextView)findViewById
 (R.id.sensor_power);
 mSensorResolutionTextView = (TextView)findViewById
 (R.id.sensor_resolution);
 mSensorVendorTextView = (TextView)findViewById
 (R.id.sensor_vendor);
 mSensorVersionTextView = (TextView)findViewById
 (R.id.sensor_version);
 mSensorNameTextView.setText(mSensor.getName());
 mSensorMaximumRangeTextView.setText(String.valueOf
 (mSensor.getMaximumRange()));
 mSensorMinDelayTextView.setText(String.valueOf
 (mSensor.getMinDelay()));
 mSensorPowerTextView.setText(String.valueOf
 (mSensor.getPower()));
 mSensorResolutionTextView.setText(String.valueOf
 (mSensor.getResolution()));
 mSensorVendorTextView.setText(String.valueOf
 (mSensor.getVendor()));
 mSensorVersionTextView.setText(String.valueOf
 (mSensor.getVersion()));
 }

www.allitebooks.com

http://www.allitebooks.org

Playing with Sensors

[40]

After knowing all the sensor properties, we would like to play with the sensor3.
values. The following onClickSensorValues() method takes us to the new
activity, which will get the values of the sensor, whose properties are shown in
this activity. This onClickSensorValues() method is a custom method,which
is attached to the button on the screen using the XML onClick tag. We pass the
sensor type to the next activity so that it can identify the right sensor type:

 public void onClickSensorValues(View v)
 {
 Intent intent = new Intent(getApplicationContext(),
 SensorValuesActivity.class);
 intent.putExtra(getResources().getResourceName
 (R.string.sen sor_type), mSensorType);
 startActivity(intent);
 }

What just happened?
We used the sensor methods (getName(), getMaximumRange(), getMinDelay(),
 getPower(), getResolution(), getVendor(), getVersion()) of the Sensor object
and displayed the values on the screen. The following screenshot shows the layout file,
showing the capabilities of an accelerometer sensor. These values play an important role
when you are developing a universal logic, which should work with all types of sensors on
different devices:

Playing with Sensors

[41]

Time for action – getting the sensor values
and updating the user interface
Now, let's deal with the most important aspect of sensors, that is, playing with the sensor
values. We have created a common activity and screen that can fit a vast number of values
for all sensor types. Sensors can have varied values such as temperature or pressure; a light
and proximity sensor may have only one value, while sensors such as magnetometer,
accelerometer, gyroscope, linear acceleration, and gravity have the three values in the x, y,
and z axes. There are other sensors that can have more than three values, for example,
rotational vector, geomagnetic rotational vector, game rotational vector, and un-calibrated
gyroscope. All the sensor values are passed in an array called values[], which is part of
the SensorEvent object.

We have created a generic common SensorValuesActivity to display all the1.
values that are coming from the different sensors. We are using the length
of values[]array to determine the number of values given by the sensors. For
the declaration, we define a maximum of eight TextView, but we will use the
same number of TextView as the number of values for that sensor. We also
display the time at which the sensor value was generated and the accuracy given
by SensorManager. We get the sensor type from the previous activity example
in the form of the intent integer value. The following code snippet shows the
declaration and initiation of the variables (TextView, time, accuracy, sensor
type, Sensor, and SensorManager):

 public class SensorValuesActivity extends Activity
 implements SensorEventListener{

 private SensorManager mSensorManager;
 private int mSensorType;
 private Sensor mSensor;
 private TextView mEventValue_0;
 private TextView mEventValue_1;
 private TextView mEventValue_2;
 private TextView mEventValue_3;
 private TextView mEventValue_4;
 private TextView mEventValue_5;
 private TextView mEventValue_6;
 private TextView mTime;
 private TextView mAccuracy;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Playing with Sensors

[42]

 setContentView(R.layout.values_layout);
 Intent intent = getIntent();
 mSensorType =
 intent.getIntExtra(getResources().getResourceName
 (R.string.sensor_type), 0);
 mSensorManager =
 (SensorManager)this.getSystemService
 (Context.SENSOR_SERVICE);
 mSensor =
 mSensorManager.getDefaultSensor(mSensorType;
 mEventValue_0 =
 (TextView)findViewById(R.id.event0);
 mEventValue_1 = (TextView)findViewById(R.id.event1);
 mEventValue_2 = (TextView)findViewById(R.id.event2);
 mEventValue_3 = (TextView)findViewById(R.id.event3);
 mEventValue_4 = (TextView)findViewById(R.id.event4);
 mEventValue_5 = (TextView)findViewById(R.id.event5);
 mEventValue_6 = (TextView)findViewById(R.id.event6);
 mTime = (TextView)findViewById(R.id.time);
 mAccuracy = (TextView)findViewById(R.id.accuracy);
 }

As a best practice, we register and unregister the listener for the sensors in2.
the onResume() and onPause() methods, so that we only get the values when
the activity is in the foreground:

 @Override
 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(this, mSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }

 @Override
 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(this);
 }

Playing with Sensors

[43]

We use the same onSensorChange() method to display the sensor values3.
coming from different types of sensor. The length of the values[] array is used
to determine the number of values for that sensor, and it is also used in setting
these sensor values into the same number of TextView. We also display the time
and accuracy given by the SensorEvent object on the screen. In the following
code, we set the first value[0] without checking, because we are sure that
the SensorEvent object value's array will have at least one value:

 @Override
 public void onSensorChanged(SensorEvent event) {
 mEventValue_0.setText(String.valueOf
 (event.values[0]));
 mAccuracy.setText(String.valueOf(event.accuracy));
 mTime.setText(String.valueOf(event.timestamp));
 if(event.values.length>1) {
 mEventValue_1.setText(String.valueOf
 (event.values[1]));
 } if(event.values.length>2) {
 mEventValue_2.setText(String.valueOf
 (event.values[2]));
 } if(event.values.length>3) {
 mEventValue_3.setText(String.valueOf
 (event.values[3]));
 } if(event.values.length>4) {
 mEventValue_4.setText(String.valueOf
 (event.values[4]));
 } if(event.values.length>5) {
 mEventValue_5.setText(String.valueOf
 (event.values[5]));
 } if(event.values.length>6) {
 mEventValue_6.setText(String.valueOf
 (event.values[6]));
 }
 }

Playing with Sensors

[44]

What just happened?
We created a common activity to display the different sensors' values on the screen. We
used the length of the values[] array to get the total number of sensor values and to
dynamically set the values in TextView. When displaying the sensor values on the UI
screen, we should keep in mind the delay between the sensor callbacks. If the delay is very
small, that is, 20,000 microseconds or less, then on lower processor devices, the activity UI
thread might not be able to update all the sensor values with such a high frequency. Here is
a screenshot of the magnetometer values. The first three values are un-calibrated and the
next three values are calibrated:

Playing with Sensors

[45]

Time for action – processing the sensor
values in the background service
There will be cases where your app needs to listen and process the sensor values in the
background. Such cases cannot be handled using the activity code structure. We need to use
the Android service to handle background sensor processing. Let's discuss the background
processing scenario with an example.

The phone handling algorithm
In our example, we will be playing a small MP3 sound when somebody picks up or handles
the phone. We will call this event the phone handling event, and we will use the Android
background service to continuously process the gyroscope sensor values to detect this
phone-handling event. The gyroscope gives the rate of rotation of the phone in each x, y,
and z axis. When your phone is kept still, there is no, or a very low rate of rotation reported
as a value by gyroscope, but when the phone is picked up or handled, the value of rate of
rotation goes very high. We will use this logic to define our phone handling event. To
consider the rotation in all three axes, we would take the square of the x, y, and z axes,
values and then do a square root of it. This would give the magnitude of the vector
representing the rate of rotation, and it should be good for our phone handling event
detection. If this computed value crosses a particular threshold (in our case, 2.5), then we
will call this event a phone handling event”. The gyroscope sensor values are reported in
radians per second. The threshold of 2.5 is obtained from experimental data. Any
movement of the phone by hand always registers a value of more than 2.5 radians per
second:

We will start by creating the service and initializing the required variables. Our1.
service implements the SensorEventListener interface so that it can receive
the sensor callbacks. The following is the declaration code for our service class:

 public class SensorService extends Service implements
 SensorEventListener{

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private MediaPlayer mMediaPlayer;
 private boolean isPlaying = false;
 private float mThreshold = 2.5f;

Playing with Sensors

[46]

We will be using the service onCreate() method to initialize our2.
variables. SensorManager and the Sensor object are initialized in the
conventional way, as in the activity. We also initialized the MediaPlayer object
with a small MP3 sound, which will be played when the phone-handling event
triggers. We have used a combination of OnCompletionListener
on MediaPlayer and a Boolean isPlaying to make sure that a new instance of
MP3 is not played until the previous instance of MP3 has finished playing. When
the MP3 has finished playing, we change the isPlaying Boolean to false, and
while it's playing, we change isPlaying to true. We only trigger the event when
the isPlaying Boolean is true. The MP3 sound file (mario.mp3) is placed in the
raw folder created inside the res folder of the project structure:

 @Override
 public void onCreate() {
 super.onCreate();
 mSensorManager =
 (SensorManager)this.getSystemService
 (Context.SENSOR_SERVICE);
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_GYROSCOPE);
 mMediaPlayer = MediaPlayer.create
 (getApplicationContext(), R.raw.mario);
 mMediaPlayer.setOnCompletionListener
 (new OnCompletionListener(){
 @Override
 public void onCompletion(MediaPlayer mp) {
 isPlaying = false;
 }
 });
 }

Registering and unregistering listeners is done at different places in the service3.
when compared with activity. In the service, we register the listener in
the onStartCommand() method, which is the time when the OS actually starts
the service in the background. Similarly, we unregister the listener in
the onDestroy() method when the OS kills the service:

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 mSensorManager.registerListener(this, mSensor,
 SensorManager.SENSOR_DELAY_UI);
 return Service.START_NOT_STICKY;
 }

Playing with Sensors

[47]

 @Override
 public void onDestroy() {
 super.onDestroy();
 mSensorManager.unregisterListener(this);
 }

The core logic of the phone-handling algorithm is written in4.
the onSensorChanged() method. For each sensor value of the gyroscope, we
apply this basic algorithm. We calculate the square of each x, y, and z axis value
by using the standard math power function, and then after summing up the three
values, we calculate the square root of the summation. The Math.pow()
and Math.sqrt() methods are standard Java methods that are part of the
Android math libraries. The value obtained after this calculation is compared
with our threshold value, and if it exceeds the threshold, then the MP3 is played
and we consider this event as a phone handling event. We only play the MP3 if
it's not already being played. We do this extra check by maintaining the state of
the isPlaying Boolean variable. This check is necessary because the sensor
values are being processed at a very high frequency, and there is a very high
chance of crossing the threshold value again before the old MP3 has completed
playing:

 @Override
 public void onSensorChanged(SensorEvent event) {
 double rateOfRotation =
 Math.sqrt(Math.pow(event.values[0],2) +
 Math.pow(event.values[1], 2) +
 Math.pow(event.values[2], 2));
 if(rateOfRotation>mThreshold){
 if(!isPlaying){
 mMediaPlayer.start();
 isPlaying = true;
 }
 }
 }

Playing with Sensors

[48]

What just happened?
We just created a basic sensor algorithm to detect the phone handling event by processing
the gyroscope values in the background service. As a best practice, it's suggested that you
don't not block the onSensorChanged() method. In our onSensorChanged() method
callback, we are just doing very simple calculations that will be completed before the next
callback arrives. If you have any doubt in about whether it's a simple calculation or a
complex one, then the best way is to log the time before and after the calculation, and
compare it with the time interval between the callbacks.

Summary
We looked at the sensor initialization cycle, important callbacks, and common ways of
using the sensors in an activity and a background service. It is advisable to look at the
sensors' properties and capabilities before writing a universal logic that will work with all
types of sensor on different devices. We also learned about the sensor processing in the
background and developed our first sensor algorithm.

In the next chapter, we will extend our understanding by developing a real-world
application with the use of different types of sensor. We will also take a closer look at how
we can use the sensor values to derive some more useful data.

3
The Environmental Sensors –

The Weather Utility App
In this chapter, we will learn how to make use of different types of sensors in our weather
utility application. We will also look at how the temperature, relative humidity, and
pressure sensor values can be extended to get more useful data such as the altitude, dew
point, and absolute humidity. We will explore an alternate source for getting the
temperature, relative humidity, and pressure values to compensate for the unavailability of
any environment sensor on the phone.

The things you will learn in the this chapter are as follows:

Understanding the requirements for the weather utility app
Understanding environmental sensors (temperature, humidity, and pressure)
How to use the temperature sensor of the phone
Getting pressure sensor values and calculating the altitude using them
Getting the relative humidity from the phone sensor and calculating the dew
point and absolute humidity using the relative humidity and temperature sensor.
Comparing the temperature, relative humidity, and pressure values from Web
services to phone sensors.

The Environmental Sensors – The Weather Utility App

[50]

The weather utility app's requirements
Today's Android phones come with environment sensors in them. We will be using the
same environment sensors to develop a weather utility app as a part of this chapter. Our
app will make use of some additional inputs from external web services combined with our
environment sensor's data to drive some more meaningful information, such as dew point,
absolute humidity, and altitude. We will also compare weather data obtained from
environment sensors to weather data obtained from an external web service. The following
are high-level requirements for weather utility apps. The source code of this weather utility
app can be found in GitHub under the author's account name and on the support page
for the book:

Get the outside temperature using the phone's temperature sensor.1.
Get the air pressure using the phone's pressure sensor.2.
Calculate the altitude using the phone's pressure sensor.3.
Get the relative humidity using the phone's humidity sensor.4.
Calculate the dew point and absolute humidity using the temperature and5.
relative humidity sensors in the phone.
Using the current phone location, get all the weather data (temperature, pressure,6.
and relative humidity) from the web service (h t t p : / / o p e n w e a t h e r m a p . o r g / a p
i).
Compare the phone environment sensor's data to weather data obtained from7.
The Web service.

http://openweathermap.org/api
http://openweathermap.org/api

The Environmental Sensors – The Weather Utility App

[51]

Understanding environmental sensors
Environment-based sensors measure environmental conditions (temperature, humidity,
and pressure) around the phone and report values only in one dimension (only one value in
the values[] array). Temperature and humidity sensors have an on-change reporting
mode, that is, they will report values whenever there is a change in values from the last
reported values, whereas the pressure sensor has a continuous reporting mode; that is, it
will report values continuously as per the suggested time interval. Environmental sensors
are hardware-based and are only available if a device manufacturer has built them into a
device. Because of this, it's particularly important that you verify, at runtime, that an
environment sensor exists before you attempt to acquire data from it. Also, unlike motion
sensors and position sensors, which often require high-pass or low-pass filtering,
environment sensors do not typically require any data filtering or data processing:

The temperature sensor: This measures the ambient air temperature around the
phone in degrees Celsius. The string type constant for this sensor
is TYPE_AMBIENT_TEMPERATURE. There is another type of temperature sensor
found on Android devices that measures the device temperature. This device
temperature has been deprecated from Android 4.0 (API Level 14) and the string
type constant for this sensor is TYPE_TEMPERATURE. It's recommended that you
not use this device temperature, as some phone manufacturers might not support
it.

The humidity sensor: This measures the ambient relative humidity around the
phone as a percentage. It is also referred to as relative humidity.
The pressure sensor: It measures ambient air pressure around the phone in mbar
(which is also equal to hPa). It is also called a barometer.

There are two more sensors that come under the category of environmental sensors. The
first sensor is the device temperature sensor; it measure the temperature of the device in
Celsius. This sensor has been deprecated from Android 4.0 (API Level 14). The second
sensor is the light sensor, which measures the light illumination in lux. We will discuss the
light sensor in the next chapter.

The Environmental Sensors – The Weather Utility App

[52]

Time for action – using the temperature
sensor
In this section, we will get the ambient temperature from the phone temperature sensor and
will show it in the foreground activity. Before accessing the value for ambient temperature,
we will also check the availability of the temperature sensor on the device.

We created a TemperatureActivity and implemented it with1.
the SensorEventListener interface so that it receives the ambient temperature
values. We are also checking if the ambient temperature is available on the device
and are maintaining the availability state using the isSensorPresent Boolean
variable. If the temperature sensor is not present, then we show the relevant
message using TextView. The following code snippet shows the necessary steps:

 public class TemperatureActivity extends Activity
 implements SensorEventListener{

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private boolean isSensorPresent;
 private TextView mTemperatureValue;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mSensorManager =
 (SensorManager)this.getSystemService
 (Context.SENSOR_SERVICE);
 mTemperatureValue =
 (TextView)findViewById(R.id.temperaturetext);

 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_AMBIENT_TEMPERATURE) != null) {
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_AMBIENT_TEMPERATURE);
 isSensorPresent = true;
 } else {
 mTemperatureValue.setText("Ambient Temperature
 Sensor is not available!");
 isSensorPresent = false;
 }
 }

The Environmental Sensors – The Weather Utility App

[53]

We only register and unregister the listener if the temperature sensor is present2.
on the device; we do this using the isSensorPresent Boolean variable state. If
the temperature sensor is present, then we set the value of ambient temperature
in TextView inside the onSensorChanged() method callback:

 @Override
 protected void onResume() {
 super.onResume();
 if(isSensorPresent) {
 mSensorManager.registerListener(this, mSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
 }
 @Override
 protected void onPause() {
 super.onPause();
 if(isSensorPresent) {
 mSensorManager.unregisterListener(this);
 }
 }
 @Override
 public void onSensorChanged(SensorEvent event) {
 mTemperatureValue.setText("Temperature in degree
 Celsius is " + event.values[0]);
 }

What just happened?
We created temperature activity with the SenorManager and Sensor objects. We also
registered and unregistered listeners, depending on the availability of the temperature
sensor. After receiving the temperature value in the onSensorChanged() method, we
updated TextView with this value.

The Environmental Sensors – The Weather Utility App

[54]

Getting air pressure from the phone's
pressure sensor
The procedure to get values from the phone's pressure sensor is exactly the same as the
previous example showing getting values from temperature sensors. The only difference is
the sensor type. To get values from the pressure sensor, we have to specify the sensor type
as TYPE_PRESSURE. All other best practices (initiating SensorManager, the Sensor object,
and registering and unregistering the listener and sensor callback) remain the same as they
were in the previous temperature sensor example.

Time for action – calculating the altitude using
the pressure sensor
Once we have atmospheric pressure from the phone's pressure sensor, we can calculate the
altitude of the phone using the getAltitude(float p0, float p1) method of
the SensorManager class. The first parameter of the altitude API is the atmospheric
pressure at sea level, and the second parameter is the atmospheric pressure of the current
location, which can be obtained from the phone's pressure sensor. To get a more accurate
altitude value, the exact atmospheric pressure at sea level should be obtained from any
third-party service such as an airport database.

If the exact atmospheric pressure at sea level is not available, then in its place we can use the
standard atmospheric pressure given by the SensorManager
class, PRESSURE_STANDARD_ATMOSPHERE. This will give a good approximate altitude
value. In this section, we will walk you through the steps of calculating the altitude using
the phone's pressure sensor:

We created a PressureAltitudeActivity and followed the usual steps1.
showing getting values from the sensor, which are implementing
the SensorEventListener interface, initiating the SensorManager
and Sensor object, and checking the availability of sensors. The following code
snippet shows the necessary steps:

 public class PressureAltitudeActivity extends Activity
 implements SensorEventListener{
 private SensorManager mSensorManager;
 private Sensor mSensor;
 private boolean isSensorPresent;
 private TextView mPressureValue;
 private TextView mAltitudeValue;

The Environmental Sensors – The Weather Utility App

[55]

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.pressurealtitude_layout);
 mPressureValue =
 (TextView)findViewById(R.id.pressuretext);
 mAltitudeValue =
 (TextView)findViewById(R.id.altitudetext);
 mSensorManager = (SensorManager)
 this.getSystemService(Context.SENSOR_SERVICE);
 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_PRESSURE) != null) {
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_PRESSURE);
 isSensorPresent = true;
 } else {
 isSensorPresent = false;
 mPressureValue.setText("Pressure Sensor is not
 available!");
 mAltitudeValue.setText("Cannot calculate
 altitude, as pressure Sensor is not available!");
 }
 }

After the registering and unregistering of the listener, we calculate altitude using2.
the SensorManager.getAltitude(pressure01,pressure02) method, in
which we pass the standard air pressure as a first argument, after which we pass
the current air pressure obtained from the phone's pressure sensor as a second
argument. This gives us the altitude of that particular place:

 @Override
 protected void onResume() {
 super.onResume();
 if(isSensorPresent) {
 mSensorManager.registerListener(this, mSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
 }

 @Override
 protected void onPause() {
 super.onPause();
 if(isSensorPresent) {
 mSensorManager.unregisterListener(this);
 }
 }

The Environmental Sensors – The Weather Utility App

[56]

 @Override
 public void onSensorChanged(SensorEvent event) {
 float pressure = event.values[0];
 mPressureValue.setText("Pressure in mbar is " +
 pressure);
 float altitude = SensorManager.getAltitude
 (SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 pressure);
 mAltitudeValue.setText("Current altitude is " +
 altitude);
 }

What just happened?
We just calculated the altitude of a particular place using the air pressure of that place and
the standard sea-level air pressure. We did this using the
SensorManager.getAltitude(pressure01,pressure02) method. We can increase the
accuracy of the altitude calculation by supplying the exact sea-level air pressure instead of
using the standard sea-level air pressure given by SensorManager. The exact sea-level air
pressure can be obtained from many online web services, such as h t t p : / / w w w . w o r l d w e a t
h e r o n l i n e . c o m / a p i / m a r i n e - w e a t h e r - a p i . a s p x.

Getting relative humidity from the phone's
humidity sensor
Getting values from the phone's relative humidity sensor is a very similar process to getting
values from the temperature or pressure sensors. The only difference is in specifying the
sensor type. To get the values from the relative humidity sensor, we have to specify the
sensor type as TYPE_RELATIVE_HUMIDITY. All the other standard practices
 (initiating SensorManager, the Sensor object, and registering and unregistering the
listener and the sensor callback) remain the same. Another point to note is that humidity
and relative humidity are used interchangeably; they both refer to the same value.

http://www.worldweatheronline.com/api/marine-weather-api.aspx
http://www.worldweatheronline.com/api/marine-weather-api.aspx

The Environmental Sensors – The Weather Utility App

[57]

Time for action – calculating the dew point and
absolute humidity
We can use the phone's relative humidity and temperature sensor to calculate the dew point
and absolute humidity. Before calculating, let's look at the definition and formula of the
dew point and absolute humidity.

Dew Point: The dew point is the temperature at which a given volume of air
must be cooled, at constant barometric pressure, for water vapor to condense into
water. The following equation shows how you can calculate the dew point using
the temperature and relative humidity. The derivation and analysis of this
formula are beyond the scope this book:

Let's look at what each term represents:

Td is the dew point temperature in degrees C
Tc is the current temperature in degrees C from the phone' sensor
Rh is the actual relative humidity as a percentage (%) from the phone's sensor
m is 17.62 (the mass constant)
Tn is 243.12 (the temperature constant)

Absolute Humidity: The absolute humidity is the mass of water vapor in a given
volume of dry air. Absolute humidity is measured in grams/cubic meters. The
following equation shows how you can calculate absolute humidity using
temperature and relative humidity. The derivation and analysis of this formula
are also beyond the scope of this book:

The Environmental Sensors – The Weather Utility App

[58]

Let's look at what each term represents:

Dv is the absolute humidity in grams/meter3

Tc is the current temperature in degrees C from the phone's sensor
Rh is the actual relative humidity as a percentage (%) from the phone's sensor
m is 17.62 (the mass constant)
Tn is 243.12 (the temperature constant)
A is 6.112 hPa (the pressure constant)
K is 273.15 (the Kelvin constant)
Ta is 216.7 (the temperature constant)

Let's look at the implementation of these formulae to calculate the dew point and absolute
humidity using the phone's temperature and relative humidity sensors.

We have created a HumidityActivity and followed the standard steps of1.
getting values from the sensor, which are implementing
the SensorEventListener interface, and initiating the SensorManager
and Sensor Objects for relative humidity and temperature sensors. Both the
relative humidity and temperature sensors are mandatory for calculating the dew
point and absolute humidity; if they are not present, then we show the user the
appropriate message. The following code snippet demonstrates the necessary
steps:

 public class HumidityActivity extends Activity
 implements SensorEventListener {

 private SensorManager mSensorManager;
 private Sensor mHumiditySensor;
 private Sensor mTemperatureSensor;
 private boolean isHumiditySensorPresent;
 private boolean isTemperatureSensorPresent;
 private TextView mRelativeHumidityValue;
 private TextView mAbsoluteHumidityValue;
 private TextView mDewPointValue;
 private float mLastKnownRelativeHumidity = 0;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.humidity_layout);
 mRelativeHumidityValue =
 (TextView)findViewById(R.id.relativehumiditytext);
 mAbsoluteHumidityValue =

The Environmental Sensors – The Weather Utility App

[59]

 (TextView)findViewById(R.id.absolutehumiditytext);
 mDewPointValue =
 (TextView)findViewById(R.id.dewpointtext);
 mSensorManager = (SensorManager)
 this.getSystemService(Context.SENSOR_SERVICE);

 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_RELATIVE_HUMIDITY) != null) {
 mHumiditySensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_RELATIVE_HUMIDITY);
 isHumiditySensorPresent = true;
 }
 else {
 mRelativeHumidityValue.setText("Relative Humidity
 Sensor is not available!");
 mAbsoluteHumidityValue.setText("Cannot calculate
 Absolute Humidity, as relative humidity sensor is
 not available!");
 mDewPointValue.setText("Cannot calculate Dew
 Point, as relative humidity sensor is not
 available!");
 isHumiditySensorPresent = false;
 }

 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_AMBIENT_TEMPERATURE) != null) {
 mTemperatureSensor =
 mSensorManager.getDefaultSensor
 (Sensor.TYPE_AMBIENT_TEMPERATURE);
 isTemperatureSensorPresent = true;
 } else {
 mAbsoluteHumidityValue.setText("Cannot calculate
 Absolute Humidity, as temperature sensor is not
 available!");
 mDewPointValue.setText("Cannot calculate Dew
 Point, as temperature sensor is not available!");
 isTemperatureSensorPresent = false;
 }
 }

The Environmental Sensors – The Weather Utility App

[60]

We first register and unregister the listeners in the onResume() and onPause()2.
methods. We are using the same activity as a listener for both the temperature
and relative humidity sensors, and that's why we will get both the sensor values
in the same onSensorChanged() callback. For every sensor event value, we
have to check what kind of sensor value it contains, which can be done using
the sensor.getType()method on the sensor event value. We show the relative
humidity value in TextView and store it in the lastKnownRelativeHumidity
float variable. Once we get the temperature value from the sensor, we pass
the lastKnownRelativeHumidity value and the temperature value to
the calculateDewPoint(float temperature, float relativeHumidity)
and calculateAbsoluteHumidity(float temperature, float
relativeHumidity) methods. These methods implement the dew point and
absolute humidity formulae discussed previously using the standard Math
functions:

 @Override
 public void onSensorChanged(SensorEvent event) {
 if(event.sensor.getType() ==
 Sensor.TYPE_RELATIVE_HUMIDITY) {
 mRelativeHumidityValue.setText("Relative Humidity
 in % is " + event.values[0]);
 mLastKnownRelativeHumidity = event.values[0];
 } else
 if(event.sensor.getType() ==
 Sensor.TYPE_AMBIENT_TEMPERATURE) {
 if(mLastKnownRelativeHumidity !=0) {
 float temperature = event.values[0];
 float absoluteHumidity =
 calculateAbsoluteHumidity(temperature,
 mLastKnownRelativeHumidity);
 mAbsoluteHumidityValue.setText("The absolute
 humidity at temperature: " + temperature + " is: "
 + absoluteHumidity);
 float dewPoint = calculateDewPoint(temperature,
 mLastKnownRelativeHumidity);
 mDewPointValue.setText("The dew point at
 temperature: " + temperature + " is: " +
 dewPoint);
 }
 }
 }

 /* Meaning of the constants
 Dv: Absolute humidity in grams/meter3
 m: Mass constant

The Environmental Sensors – The Weather Utility App

[61]

 Tn: Temperature constant
 Ta: Temperature constant
 Rh: Actual relative humidity in percent (%) from phone's
 sensor
 Tc: Current temperature in degrees C from phone' sensor
 A: Pressure constant in hP
 K: Temperature constant for converting to kelvin
 */
 public float calculateAbsoluteHumidity(float
 temperature, float relativeHumidity)
 {
 float Dv = 0;
 float m = 17.62f;
 float Tn = 243.12f;
 float Ta = 216.7f;
 float Rh = relativeHumidity;
 float Tc = temperature;
 float A = 6.112f;
 float K = 273.15f;
 Dv = (float) (Ta * (Rh/100) * A *
 Math.exp(m*Tc/(Tn+Tc)) / (K + Tc));
 return Dv;
 }

 /* Meaning of the constants
 Td: Dew point temperature in degrees Celsius
 m: Mass constant
 Tn: Temperature constant
 Rh: Actual relative humidity in percent (%) from phone's
 sensor
 Tc: Current temperature in degrees C from phone' sensor
 */
 public float calculateDewPoint(float temperature, float
 relativeHumidity)
 {
 float Td = 0;
 float m = 17.62f;
 float Tn = 243.12f;
 float Rh = relativeHumidity;
 float Tc = temperature;

 Td = (float) (Tn * ((Math.log(Rh/100) +
 m*Tc/(Tn+Tc))/(m - (Math.log(Rh/100) +
 m*Tc/(Tn+Tc)))));
 return Td;
 }

The Environmental Sensors – The Weather Utility App

[62]

What just happened?
We just calculated the dew point and absolute humidity from the temperature and relative
humidity values using the standard equations. More details on the constants and equation
used in our implementation can be found at h t t p : / / g o o . g l / O r s F y P and also in the
source code bundle for this chapter, which is available on the support page for the book.

Time for action – comparing the temperature,
humidity, and pressure values from web services
to phone sensors
In previous sections, we have got the phone's sensor values for temperature, relative
humidity, and pressure. There are a lot of Android devices that may not have all three
sensors in them, so we want to look at an alternative way to get the temperature, relative
humidity, and pressure values using the current location from the phone via a third-party
web service. Using the alternative way, we can compare the accuracy of our phone sensor
values and it will also compensate for the non-availability of any environmental sensor for
our weather utility application.

Third-party web service – open weather map
We will be using a third-party web service from the open weather map. This provides a
basic free web service to get the temperature, pressure, and relative humidity values for a
particular location. This is a GET RESTful web service, in which we pass the current
location co-ordinates in the form of latitude and longitude parameters. It accepts the
latitude and longitude in the URL parameters and returns a JSON response containing all
the weather information for that particular location. We also have to append units and the
app ID in the URL:

The following is a sample request for this web service. It accepts four parameters:1.
the latitude and longitude of the current location, units (metric or imperial), and
the App ID, which can be generated by registering with an open weather map
website (h t t p : / / a p i . o p e n w e a t h e r m a p . o r g / d a t a / 2 . 5 / w e a t h e r ? l a t = 4 2 . 0 7
1 6 3 5 & l o n = - 8 8 . 0 4 8 6 2 9 4 & u n i t s = m e t r i c & A P P I D = 5 b c c 1 0 c e a f f a 8 3 d f b 7 7 0 5 6 b

5 4 7 0 b 1 e 4 6).

http://goo.gl/OrsFyP
http://api.openweathermap.org/data/2.5/weather?lat=42.071635&lon=-88.0486294&units=metric&APPID=5bcc10ceaffa83dfb77056b5470b1e46
http://api.openweathermap.org/data/2.5/weather?lat=42.071635&lon=-88.0486294&units=metric&APPID=5bcc10ceaffa83dfb77056b5470b1e46
http://api.openweathermap.org/data/2.5/weather?lat=42.071635&lon=-88.0486294&units=metric&APPID=5bcc10ceaffa83dfb77056b5470b1e46

The Environmental Sensors – The Weather Utility App

[63]

The following is the sample JSON response for the preceding request:2.

 {
 "coord": {
 "lon": -88.05,
 "lat": 42.07
 },
 "sys": {
 "message": 0.5879,
 "country": "US",
 "sunrise": 1432462993,
 "sunset": 1432516496
 },
 "weather": [
 {
 "id": 804,
 "main": "Clouds",
 "description": "overcast clouds",
 "icon": "04d"
 }
],
 "base": "stations",
 "main": {
 "temp": 22.99,
 "temp_min": 22.99,
 "temp_max": 22.99,
 "pressure": 1006.18,
 "sea_level": 1033.55,
 "grnd_level": 1006.18,
 "humidity": 45
 },
 "wind": {
 "speed": 3.11,
 "deg": 128.501
 },
 "clouds": {
 "all": 92
 },
 "dt": 1432485188,
 "id": 4905211,
 "name": "Palatine",
 "cod": 200
 }

The Environmental Sensors – The Weather Utility App

[64]

We will be using the temp, pressure, and humidity values from the JSON response
from this web service. Further details of the web service API, request parameters, and
response fields can be found at the following link: h t t p : / / o p e n w e a t h e r m a p . o r g / c u r r e n
t.

Using Google Play Services Location API and
AsyncTask
To get the current location of the phone, we will be using the Google Play services location
API. Details can be found in the official documentation at h t t p s : / / d e v e l o p e r . a n d r o i d .
c o m / t r a i n i n g / l o c a t i o n / r e t r i e v e - c u r r e n t . h t m l. We will also explain the Google
Play Services Location API with examples in the bonus chapter, Sensor Fusion and Sensors-
Based API – The Driving Event Detection App.

We will be implementing the web service call inside the WeatherAsyncTask class, which is
extended from the AsyncTask class. AsyncTask is a utility class provided by the Android
framework that allows you to perform background operations and publish the results on
the UI thread without having to manipulate threads and handlers. Once we obtain the
current location using the Google Play services location API, we will be calling
the openweathermap web service inside the WeatherAsyncTask.

Let's look at the stepwise implementation of the whole process:

We created a CompareSensorActivity and followed the standard steps for the1.
sensor initiation cycle, which comprises implementing
the SensorEventListener interface, initiating the SensorManager and Sensor
objects, and checking the availability of individual sensors. We also
initialized TextView to show the values from the phone's sensors and web
service. We implemented the ConnectionCallbacks
and OnConnectionFailedListener interfaces to get the callbacks from the
Google play services location API:

 public class CompareSensorActivity extends Activity
 implements SensorEventListener, ConnectionCallbacks,
 OnConnectionFailedListener{

 private SensorManager mSensorManager;
 private Sensor mHumiditySensor;
 private Sensor mTemperatureSensor;
 private Sensor mPressureSensor;
 private boolean isHumiditySensorPresent;

http://openweathermap.org/current
http://openweathermap.org/current
https://developer.android.com/training/location/retrieve-current.html
https://developer.android.com/training/location/retrieve-current.html

The Environmental Sensors – The Weather Utility App

[65]

 private boolean isTemperatureSensorPresent;
 private boolean isPressureSensorPresent;
 private TextView mRelativeHumiditySensorValue;
 private TextView mPressureSensorValue;
 private TextView mTemperatureSensorValue;
 private TextView mRelativeHumidityWSValue;
 private TextView mPressureWSValue;
 private TextView mTemperatureWSValue;
 protected GoogleApiClient mGoogleApiClient;
 protected Location mLastLocation;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.comparesensor_layout);

 mRelativeHumiditySensorValue =
 (TextView)findViewById(R.id.relativehumiditytext);
 mTemperatureSensorValue =
 (TextView)findViewById(R.id.temperaturetext);
 mPressureSensorValue =
 (TextView)findViewById(R.id.pressuretext);
 mRelativeHumidityWSValue =
 (TextView)findViewById(R.id.relativehumiditywstext);
 mPressureWSValue =
 (TextView)findViewById(R.id.pressurewstext);
 mTemperatureWSValue =
 (TextView)findViewById(R.id.temperaturewstext);
 mSensorManager = (SensorManager)
 this.getSystemService(Context.SENSOR_SERVICE);
 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_RELATIVE_HUMIDITY) != null) {
 mHumiditySensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_RELATIVE_HUMIDITY);
 isHumiditySensorPresent = true;
 } else {
 mRelativeHumiditySensorValue.setText("Relative
 Humidity Sensor is not available!");
 isHumiditySensorPresent = false;
 }
 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_AMBIENT_TEMPERATURE) != null) {
 mTemperatureSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_AMBIENT_TEMPERATURE);
 isTemperatureSensorPresent = true;
 } else {
 isTemperatureSensorPresent = false;

The Environmental Sensors – The Weather Utility App

[66]

 mTemperatureSensorValue.setText("Temperature
 Sensor is not available!");
 }
 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_PRESSURE) != null) {
 mPressureSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_PRESSURE);
 isPressureSensorPresent = true;
 } else {
 isPressureSensorPresent = false;
 mPressureSensorValue.setText("Pressure Sensor is
 not available!");
 }
 buildGoogleClient();
 }

To get the last known current location, we create the Google API Client object2.
and initialize Google Play services listeners. We request to connect with Google
services in the onStart() method and disconnect in the onStop() method.
Once the Google services are connected, we get the onConnected(Bundle
connectionHint) callback. We use this callback to get the last known location
from the FusedLocationAPI. After obtaining the location, we create a new
object of WeatherAsyncTask and start its execution by passing the current
location object into it. As a standard practice, we register and unregister the
listener for sensors in the onResume() and onPause() methods:

 public void buildGoogleClient()
 {
 mGoogleApiClient = new
 GoogleApiClient.Builder(this).
 addConnectionCallbacks(this).
 addOnConnectionFailedListener(this).
 addApi(LocationServices.API).build();
 }

 @Override
 public void onConnected(Bundle connectionHint) {
 mLastLocation =
 LocationServices.FusedLocationApi.getLastLocation
 (mGoogleApiClient);
 new WeatherAsyncTask().execute(mLastLocation);
 }

 @Override
 protected void onStart() {
 super.onStart();

The Environmental Sensors – The Weather Utility App

[67]

 mGoogleApiClient.connect();
 }

 @Override
 protected void onStop() {
 super.onStop();
 if (mGoogleApiClient.isConnected()) {
 mGoogleApiClient.disconnect();
 }
 }

We use the onSensorChanged() method to display phone sensor values3.
in TextView coming from different types of sensors. We created
the WeatherAsyncTask class and extended it from AsyncTask to give it
lightweight thread functionality. In the doInBackground(object...params)
method of this class, which is executed in the background thread, we hit the Web
service to get temperature, pressure, and relative humidity values. As a first step
to hitting the web service, we create the web service request by appending the
latitude and longitude in URL parameters, which are obtained by
the FusedLocationAPI. We also add the app id and unit type as metrics in the
URL parameters. The app id values can be obtained from the open weather map
website after registering with them. As a second step, with the complete URL
parameters, we hit the Web service using the HttpURLConnection object. In the
third step, we parse the JSON response and extract the temperature, pressure,
and humidity values using the JSONObject class in temporary variables. Once
parsing is successful, we display the temperature, pressure, and humidity values
from the web service in TextView in the onPostExecute(String result)
method, which is executed after completing the processing of
the doInBackground(object...params) method:

 @Override
 public void onSensorChanged(SensorEvent event) {
 if(event.sensor.getType() ==
 Sensor.TYPE_RELATIVE_HUMIDITY) {
 mRelativeHumiditySensorValue.setText("Relative
 Humidity from Phone Sensor in % is " +
 event.values[0]);
 } else if(event.sensor.getType() ==
 Sensor.TYPE_AMBIENT_TEMPERATURE) {
 mTemperatureSensorValue.setText("Temperature from
 Phone Sensor in degree Celsius is " +
 event.values[0]);
 } else if(event.sensor.getType() ==
 Sensor.TYPE_PRESSURE) {
 mPressureSensorValue.setText("Pressure from Phone

The Environmental Sensors – The Weather Utility App

[68]

 Sensor in mbar is " + event.values[0]);
 }
 }

 public class WeatherAsyncTask extends
 AsyncTask<Object, Void, String>{

 private float mTemperature;
 private float mPressure;
 private float mRelativeHumidity;
 private String mUrlString =
 "http://api.openweathermap.org/data/2.5/weather?";
 private Location mLastKnownLocation;
 private boolean isResponseSuccessful = false;
 private String AppId =
 "5bcc10ceaffa83dfb77056b5470b1e46";//Replace with
 your own AppId

 @Override
 protected void onPostExecute(String result) {
 super.onPostExecute(result);
 if(isResponseSuccessful)
 {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mRelativeHumidityWSValue.setText("Relative
 humidity from Web service in % is " +
 mRelativeHumidity);
 mPressureWSValue.setText("Pressure from Web
 service in mbar is " + mPressure);
 mTemperatureWSValue.setText("Temperature
 from Web service in Celsius is " +
 mTemperature);
 }
 });
 }
 }

 @Override
 protected String doInBackground(Object... params) {
 mLastKnownLocation = (Location)params[0];
 String urlparams = mUrlString +
 "lat="+mLastKnownLocation.getLatitude()
 +"&lon="+mLastKnownLocation.getLongitude()
 +"&units=metric&APPID="+AppId;
 try {
 URL url = new URL(urlparams);

The Environmental Sensors – The Weather Utility App

[69]

 HttpURLConnection mHttpURLConnection =
 (HttpURLConnection) url.openConnection();
 mHttpURLConnection.setRequestMethod("GET");
 mHttpURLConnection.connect();
 BufferedReader mBufferedReader = new
 BufferedReader(new InputStreamReader
 (mHttpURLConnection.getInputStream()));
 String inputLine;
 StringBuffer response = new StringBuffer();
 while ((inputLine = mBufferedReader.readLine())
 != null)
 {
 response.append(inputLine);
 }
 mBufferedReader.close();
 mHttpURLConnection.disconnect();
 JSONObject responseObject = new
 JSONObject(response.toString());
 if(!responseObject.isNull("main"))
 {
 JSONObject mainJsonObject =
 responseObject.getJSONObject("main");
 mTemperature = (float)
 mainJsonObject.getDouble("temp");
 mPressure = (float)
 mainJsonObject.getDouble("pressure");
 mRelativeHumidity = (float)
 mainJsonObject.getDouble("humidity");
 isResponseSuccessful = true;
 }
 } catch (Exception e) {
 }
 return null;
 }
 }

The Environmental Sensors – The Weather Utility App

[70]

What just happened?
We first obtained the temperature, pressure, and humidity values from the phone's sensor
using the standard sensors initialization cycle. Then, we got the same temperature,
pressure, and humidity values from the openweathermap web service using the current
location from the FusedLocationAPI of the Google Play services. We used the AsyncTask
utility to hit the openweathermap web service, and we parsed the JSON response using
the JSONObject class. Comparing the temperature, pressure, and humidity values from
the openweathermap web service to the phone's sensor gives us a fair idea of the phone
sensor's accuracy. Also, the web service's values may compensate for any non-availability of
any of the weather-related sensors in the phone. The following screenshot shows the layout
file displaying a comparison of the sensor's values with the web service's values on the
Nexus 5P device:

Summary
In this chapter, we learned how to use various environment sensors. We also derived of
altitude, absolute humidity, and dew point values using the temperature, pressure, and
relative humidity sensors. We also looked at alternate sources (the openweathermap web
service) to obtain the temperature, relative humidity, and pressure values to compensate for
the non-availability of any environment sensor on the phone.

In the next chapter, we will learn how to use light and proximity sensors, and we will look
at how they can be used in real-world applications.

4
The Light and Proximity

Sensors
In this chapter, we will learn about proximity and light sensors, and we will develop a small
application using them. We will also learn about the concepts of wake locks and wakeup
and non-wakeup sensors. We will understand the hardware sensor FIFO queue and what
happens to sensors when the application processor goes into suspended mode.

You will learn the following things in this chapter:

Understanding the light and proximity sensors.
Understanding requirements for the automatic torchlight and screen brightness
app.
How to use the proximity sensor in the phone and turn phone's flashlight off and
on.
How to use the phone's light sensor and adjust the screen brightness.
What are wake locks and how should we use them?
What are wakeup and non-wakeup sensors, and what is the hardware FIFO
sensor queue?

The Light and Proximity Sensors

[72]

Understanding the light and proximity
sensors
The light sensor is a part of the environmental sensors, and the proximity sensor is a part of
the positional sensors for Android. Both light and proximity sensors can be found in almost
every Android device today. The light sensor is responsible for measuring the illuminance
in lux. Illuminance is the amount of light striking a surface. It is also known as incident
light, where the “incident” is the beam of light actually landing on the surface.

The proximity sensor measures the proximity of any object near the screen. There are two
types of proximity sensor found on Android devices.

The first type of the proximity sensor provides the absolute distance in
centimetres between the object and the phone. There are very few phones which
support this type of proximity sensor.
The second type of sensor gives only two values in form of integers, which
represents the proximity of the object from the phone. When the object is near,
then the value is 0, while when the object is far, then the value is the maximum
range of the proximity sensor, which generally lies between 5 to 20 centimeters.
For example, the Samsung Galaxy S5 has the far value of 8, while the LG Nexus 5
has the far value of 5.

The Light and Proximity Sensors

[73]

Most Android devices have the same hardware, which works for both light and proximity
sensors, but Android still treats them as logically separate sensors. It depends on whether
the individual OEMs (Original Equipment Manufactures) have a single hardware or two
separate hardware to support both the logical sensors.

The light and proximity sensor is generally located on the top right-hand section of the
phone, a few millimetres to the right of the earpiece. You have to look very carefully to spot
the sensor as it's barely visible because of its small size. Generally, it's a pair of small black
holes covered under the screen. Some OEMs might choose a different location for the light
and proximity sensor, but mostly it will be on the top edge of the phone. For example,
Samsung Galaxy S devices have them on the right-hand side of the earpiece, while HTC
Android devices have them on the left-hand side of the earpiece.

The automatic torch light and screen
brightness app requirements
As a learning assignment for this chapter, we will be developing a small application that
will make use of the light and proximity sensor in the phone to turn on and turn off the
flash light and adjust the screen brightness. This app will be running in the foreground
Android activity and will start processing the sensor values on onResume() and will stop
on onPause(). We will have the separate activity for each proximity sensor and light
sensor, and both will work independently. The following are the high-level requirements
for the automatic torch light application:

Create an Android activity to process the proximity sensor values.1.
Whenever any object comes close to the phone (the proximity sensor gives the2.
near value), turn on the flashlight, and whenever that object goes away from the
phone (the proximity sensor gives the far value), then turn off the flashlight.
Create an Android activity to process the light sensor values.3.
Whenever the phone enters any dark area, increase the screen brightness of the4.
phone, and when the phone goes back to a lighted area, decrease the screen
brightness.

The Light and Proximity Sensors

[74]

Time for action – turning the torch light on
and off using the proximity sensor
In this section, we will be learning how to use the proximity sensor to turn the camera flash
light on and off. As discussed earlier, most proximity sensors return the absolute distance in
cm, but some return only the near and far values. The near value is 0 and the far value is the
maximum range of the proximity sensor. There are a lot of common use cases for proximity
sensors, such as to turn off the screen while the user is on a call, or to detect if the phone is
inside the pocket or outside. For our example, we will be turning the camera flashlight on
whenever any object comes near the phone screen and turning it off when the object goes
far from the phone screen. The proximity sensor has on-change reporting mode, the details
of reporting modes are explained in Chapter 1, Sensor Fundamentals. It is fired as soon as
the proximity of the object near the phone changes.

The following code shows how to use the proximity sensor to turn the camera flash light on
or off.

We created a ProximitySensorActivity and followed the standard steps to1.
get values from the sensor, which are implementing the SensorEventListener
interface, initiating the SensorManager and Sensor Objects, and checking the
availability of the sensors. We also declared the Camera, SurfaceTexture,
and Paramters objects required for the camera flashlight to work. We also called
the custom initCameraFlashlight() method from onCreate() to initialize
the required camera objects:

 public class ProximitySensorActivity extends Activity implements
 SensorEventListener{

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private boolean isSensorPresent;
 private float distanceFromPhone;
 private Camera mCamera;
 private SurfaceTexture mPreviewTexture;
 private Camera.Parameters mParameters;
 private boolean isFlashLightOn = false;

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.proximitysensor_layout);
 mSensorManager = (SensorManager)this.getSystemService
 (Context.SENSOR_SERVICE);
 if(mSensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY)

The Light and Proximity Sensors

[75]

 != null) {
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_PROXIMITY);
 isSensorPresent = true;
 } else {
 isSensorPresent = false;
 }

 initCameraFlashLight();
 }

As a best practice, we registered the listener in the onResume() method and un-2.
registered it in the onPause() method. Inside the
custom initCameraFlashlight() method, we initialized
the Camera, SurfaceTexture, and Paramters objects required for turning on
the flashlight. In the onDestroy() method of the activity, we released
the Camera object and set all the initialized object references to null:

 @Override
 protected void onResume() {
 super.onResume();
 if(isSensorPresent) {
 mSensorManager.registerListener(this, mSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
 }

 @Override
 protected void onPause() {
 super.onPause();
 if(isSensorPresent) {
 mSensorManager.unregisterListener(this);
 }
 }

 public void initCameraFlashLight()
 {
 mCamera = Camera.open();
 mParameters = mCamera.getParameters();
 mPreviewTexture = new SurfaceTexture(0);
 try {
 mCamera.setPreviewTexture(mPreviewTexture);
 } catch (IOException ex) {
 Log.e(TAG, ex.getLocalizedMessage());
 Toast.makeText(getApplicationContext(),
 getResources().getText(R.string.error_message),
 Toast.LENGTH_SHORT).show();

The Light and Proximity Sensors

[76]

 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 mSensorManager = null;
 mSensor = null;
 mCamera.release();
 mCamera = null;
 }

After initiating SurfaceTexture, camera, and sensors, we will now write our3.
core logic for the app. In our custom turnTorchLightOn() method, we start the
flash light by setting the flash mode to FLASH_MODE_TORCH for the camera
parameters and starting the camera preview. Similarly, in the
custom turnTorchLightOff() method, we stop the flash light by setting the
flash mode to FLASH_MODE_OFF for the camera parameters and stopping the
camera preview. Now, we call these methods from the onSensorChanged()
method, depending on the distance of any object from the proximity sensor. If the
distance of any object from the phone's proximity sensor is less than the
maximum range of the proximity sensor, then we consider the object to be near
and call the custom turnTorchLighOn() method; however, if the distance is
equal to or greater than the range of the proximity sensor, we consider the object
is far and call the turnTorchLightOff() method. We use the isFlashLightOn
Boolean variable to maintain the on/off states of the flashlight:

 public void turnTorchLightOn()
 {
 mParameters.setFlashMode(Camera.Parameters.FLASH_MODE_TORCH);
 mCamera.setParameters(mParameters);
 mCamera.startPreview();
 isFlashLightOn = true;
 }

 public void turnTorchLightOff()
 {
 mParameters.setFlashMode(mParameters.FLASH_MODE_OFF);
 mCamera.setParameters(mParameters);
 mCamera.stopPreview();
 isFlashLightOn = false;
 }

 public void onSensorChanged(SensorEvent event) {
 distanceFromPhone = event.values[0];

The Light and Proximity Sensors

[77]

 if(distanceFromPhone < mSensor.getMaximumRange()) {
 if(!isFlashLightOn) {
 turnTorchLightOn();
 }
 } else {
 if(isFlashLightOn) {
 turnTorchLightOff();
 }
 }
 }

What just happened?
We used the standard steps for getting values from the proximity sensor and then used
these values to turn on and off the camera flashlight in the phone. If any object comes
within the range of the proximity sensor, it will turn on the flashlight; when the object goes
away from its range, it will turn off the flashlight. You can determine a sensor's maximum
range by using the getMaximumRange() method on the proximity sensor object.

Time for action – adjusting the screen
brightness using the light sensor
One of the most common use cases for the light sensor is to adjust the screen brightness
according to the external lighting conditions. The maximum range of the light sensor might
be different on different Android devices, but most of them support from 0 lux to several
thousand lux. Lux is the standard unit for measuring the luminance of the light falling on a
surface. For our example, we will use a range from 0 to 100 lux, as normal indoor lighting
falls within this range. But for sunlight and strong lights the range can go up to 1,000 lux or
more. In the sample app, we will increase the screen brightness, when the indoor lighting
goes low, and similarly we will decrease the screen brightness when it goes high.

We followed the standard steps to get values from the sensor. We select the1.
sensor type to the TYPE_LIGHT in the getDefaultSensor() method
of SensorManager. We also called the custom initScreenBrightness()
method from onCreate() to initialize the required content resolver and current
window objects:

 public class LightSensorActivity extends Activity implements
 SensorEventListener{

The Light and Proximity Sensors

[78]

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private boolean isSensorPresent;
 private ContentResolver mContentResolver;
 private Window mWindow;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.lightsensor_layout);

 mSensorManager = (SensorManager)this.getSystemService
 (Context.SENSOR_SERVICE);
 if(mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT) != null)
 {
 mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
 isSensorPresent = true;
 } else {
 isSensorPresent = false;
 }
 initScreenBrightness();
 }

As a standard practice, we registered the listener in the onResume() method and2.
un-registered it in the onPause() method. Inside the
custom initScreenBrightness() method, we initialized
the ContentResolver and Window objects. The ContentResolver provides a
handle to the system settings and the Window object provides the access to the
current visible window. In the onDestroy() method of the activity, we change
all the initialized objects references to null:

 @Override
 protected void onResume() {
 super.onResume();
 if(isSensorPresent) {
 mSensorManager.registerListener(this, mSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
 }

 @Override
 protected void onPause() {
 super.onPause();
 if(isSensorPresent) {
 mSensorManager.unregisterListener(this);
 }
 }

The Light and Proximity Sensors

[79]

 public void initScreenBrightness()
 {
 mContentResolver = getContentResolver();
 mWindow = getWindow();
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 mSensorManager = null;
 mSensor = null;
 mContentResolver = null;
 mWindow = null;
 }

As discussed earlier, we will use a light range from 0 to 100 lux for our example.3.
We will be adjusting the brightness for two objects: one for the current visible
window (for which the brightness value lies between 0 and 1), and the second for
the system preference (for which the brightness value lies between 0 and 255). In
order to use the common brightness value for both the objects, we will stick to a
value between 0 and 1, and for system brightness we will scale up by multiplying
it by 255. Since we have to increase the screen brightness, as the outside
lightening goes low and vice versa, we take the inverse of the light sensor values.
Also to keep the range of the brightness value between 0 and 1, we use only light
values between 0 and 100. We pass on the inverse of light values obtained from
the light sensor in the onSensorChanged() method, as an argument to our
custom changeScreenBrightness() method to update the current window
and system screen brightness:

 public void changeScreenBrightness(float brightness)
 {
 //system setting brightness values ranges between 0-255
 //We scale up by multiplying by 255
 //This change brightness for over all system settings
 System.putInt(mContentResolver, System.SCREEN_BRIGHTNESS, (int)
 (brightness*255));
 //screen brightness values ranges between 0 - 1
 //This only changes brightness for the current window
 LayoutParams mLayoutParams = mWindow.getAttributes();
 mLayoutParams.screenBrightness = brightness;
 mWindow.setAttributes(mLayoutParams);
 }

 @Override
 public void onSensorChanged(SensorEvent event) {

The Light and Proximity Sensors

[80]

 float light = event.values[0];
 //We only use light sensor value between 0 - 100
 //Before sending, we take the inverse of the value
 //So that they remain in range of 0 - 1
 if(light>0 && light<100) {
 changeScreenBrightness(1/light);
 }
 }

The app needs to have following three permissions to run the previous two examples:

<uses-permission android:name="android.permission.CAMERA" />

<uses-permission android:name="android.permission.FLASHLIGHT"
/>

<uses-permission
android:name="android.permission.WRITE_SETTINGS" />

The camera permission is required to access the camera object, flashlight permission is
required to turn on and turn off the flashlight, and the write settings permission is required
to change any system settings.

What just happened?
We used light luminance values in lux (coming from the light sensor) to adjust the screen
brightness. When it is very dark (almost no light), then the light sensor provides very low
sensor values. When we send this low light sensor value (the minimum possible value
being 1) to the changeScreenBrightness()method, then it makes the screen the brightest
by taking the inverse (which is again 1) of the light sensor value and scaling up by
multiplying it by 255 (1 * 255 = 255 brightness value). Similarly, under good lighting
conditions, when we send a high sensor value (the maximum possible value being 99 in our
case), then it makes the screen as dim as possible by taking the inverse (1/99=0.01) of the
light sensor value and scaling up by multiplying it by 255 (0.01 * 255 = 2.55 brightness
value). One of the easiest ways to test this app is to cover the light sensor with your hand or
any opaque object. By doing this, you will observe that when you cover the light sensor, the
screen becomes bright, and when you remove the cover, it becomes dim.

The Light and Proximity Sensors

[81]

Wake locks, wakeup sensors, and the FIFO
queue
All Android applications run on a dedicated Application Processor (AP), which is a part of
the main CPU of the phone. This application processor is designed in such a way that it
goes into the suspended mode when the user is not interacting with the phone. In this
suspended mode, it reduces the power consumption by 10 times or more, but this freezes all
the applications in the background. To work around this problem, the Android platform
provides a solution using wake locks. If an application has to perform some important
operation in the background and doesn't want the application processor to go into
suspended mode, then it has to request a wake lock from the system's power service. Once
the important operation is completed, it should release the wake lock. Wake lock can be
obtained using the PowerManager object, which is provided by the system power service.
The newWakeLock() method of PowerManager provides the object of wake lock. This
newWakeLock() method accepts the type of wake lock and string tag for identification
purposes. Once the wake lock object is instantiated, we need to call the acquire() method
of the wake lock object to make it active and the release() method to make it inactive.
The following code snippet shows how to acquire and release a wake lock:

PowerManager pm = (PowerManager)getSystemService(Context.POWER_SERVICE);
mWakeLock = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,"myLock");
mWakeLock.acquire();
 //Do some important work in background.
 mWakeLock.release();

Wakeup and non-wakeup sensors
Android categorizes sensors into two types: wakeup and non-wakeup sensors. If the
application processor has gone into suspended mode, then the wake up sensor will wake
up the application processor from its suspended mode to report the sensor events to the
application. The wakeup sensors ensure that their data is delivered independently of the
state of the AP and before the maximum reporting latency has elapsed. Non-wakeup
sensors do not wake up the AP out of its suspended mode to report data. If the AP is in
suspended mode, the sensor events for the non-wakeup sensors are still collected in their
hardware FIFO queue, but they are not delivered to the application. From the API level 21
(Lollipop) onward, Android platforms support the isWakeUpSensor() method to check
the type of sensor.

The Light and Proximity Sensors

[82]

The sensor's hardware FIFO queue
Non-wakeup sensors might have their own hardware FIFO queue. This FIFO (First In First
Out) queue is used to store the sensor events while the AP is in suspended mode. These
sensor events stored in the FIFO queue are delivered to the application when the AP wakes
up. If the FIFO queue is too small to store all the events generated, then the older events are
dropped to accommodate the newer ones. Some sensors might not have this FIFO queue at
all. We can easily check the existence and size of the FIFO queue by using the
maxFifoEventCount() method on the sensor object. If the value from this method comes
to zero, it means that the FIFO count for that sensor doesn't exit.

If your application is using non-wakeup sensors in the background and performing a
critical operation, and you don't want the AP to go into suspended mode, then you should
use wake lock. But make sure you release the wake lock after the critical operation is done.
Wake lock doesn't allow the application processor to go into suspended mode, but it also
increases the power consumption. So, we have to make sure we release the wake lock after
the critical operation is done; otherwise it will keep on draining the battery.

Summary
In this chapter, we looked at the two new proximity and light sensors and developed a
small app using them. We also learned how to turn on and turn off the flashlight using the
proximity sensor and adjust the screen brightness using the light sensor. We understood
how to wake up the application processor when it's in suspended mode using wake locks.
We looked at the wakeup and non-wake up sensors and their FIFO queues.

In the next chapter, we will learn about motion sensors (accelerometer, gyroscope, linear
acceleration, gravity, and significant motion) and position sensors (magnetometer and
orientation). We will also explore the newly introduced fingerprint sensor.

5
The Motion, Position, and

Fingerprint Sensors
This chapter will introduce you to the motion, position, and fingerprint sensors. We will
learn in detail about all the motion sensors (accelerometer, gyroscope, linear acceleration,
gravity, and significant motion) and position sensors (magnetometer and orientation). As a
learning exercise for the chapter, we will develop three small applications. The first
application will detect a shake using the accelerometer sensor, the second one will tell the
earth's magnetic field direction using the orientation sensor, and the third one will use the
fingerprint sensor to authenticate the user.

The topics covered in this chapter are as follows:

Understanding the motion-based sensors (accelerometer, gyroscope, linear
acceleration, gravity, and significant motion sensors)
Understanding the position-based sensors (magnetometer and orientation
sensors)
Understanding the newly introduced fingerprint sensor and its supporting APIs
How to use the accelerometer sensor to detect the shaking of a phone
How to use the orientation sensor and alternative API to build a compass
How to use the fingerprint sensor to authenticate the user

The Motion, Position, and Fingerprint Sensors

[84]

Understanding motion-based sensors
Motion sensors are responsible for measuring acceleration forces and rotational forces
acting along three axes of the phone. Motion sensors include the accelerometer, the
gyroscope, gravity, linear acceleration, signification motion, the step detector, and the step
counter. The detailed list of motion sensors can be found in Chapter 1, Sensor
Fundamentals. In the next section, we will be discussing these sensors individually in detail.
We will cover the step detector and step counter in the next chapter.

The accelerometer sensor
The accelerometer sensor determines the acceleration along the x, y, and z axes, which is
applied to a phone by measuring the forces acting on the phone. The measured acceleration
includes both the physical acceleration (change of velocity) and the static gravity acting on
the phone all the time. Accelerometer sensors are made up of the Micro Electro Mechanical
System (MEMS), which is an embedded system that integrates electronic and mechanical
components on a very small scale. The general principle of working of the smart phone
accelerometer is based on the displacement of microscopic crystal plates, also called seismic
mass, in the x, y, and z directions over the microscopic crystal base structure, as shown in
the following diagram. When the phone is moved because of any user-generated force, the
seismic mass also moves relative to the base structure located in between the plates of
seismic mass, which produces a change in capacitance. This change in capacitance is
converted to force using electric circuits. Additional algorithms are applied to calibrate the
accelerometer values to compensate for the temperature, bias, and scale. The value reported
by the accelerometer sensor is in SI units (m/s2). When the phone is kept still without any
motion, then the accelerometer sensor shows 9.81m/s2 of gravitational force acting on the
phone, and when the phone is in free fall, it shows zero force acting on the phone.

The Motion, Position, and Fingerprint Sensors

[85]

The gyroscope sensor
The gyroscope sensor reports the rate of rotation of the device around the x, y, and z axes.
The gyroscope sensor works by sensing the change in capacitance between two microscopic
crystal structures due to the effect of rotational forces acting on them. The general principle
of working of the smart phone gyroscope is based on displacement of the microscopic
crystal circular plate also called the proof mass in the x, y and z directions, over the
underlying microscopic crystal base or plate, as shown in the following diagram. When the
user rotates the phone, the proof mass (center plate) moves over the capacitor plates located
underneath the proof mass, which produces a change in capacitance. This change in
capacitance is converted to a rate of rotation using electric circuits. Additional algorithms
are applied to calibrate the gyroscope values to compensate for the temperature, drift, and
scale. There are two types of values given by the gyroscope sensor: calibrated and
uncalibrated. The uncalibrated values are the raw values without the drift compensation
and can be requested from SensorManager by specifying
the TYPE_GYROSCOPE_UNCALIBRATED constant, while the calibrated values can be obtained
by requesting the TYPE_GYROSCOPE constant. For most use cases, we should use the
calibrated gyroscope values, and it is only if we are applying our own calibration
algorithms that we should use un-calibrated values. The values are reported in units of
radians per second (rad/s).

The Motion, Position, and Fingerprint Sensors

[86]

The gravity sensor
The gravity sensor is a software sensor and it reports the force of gravity acting along the x,
y, and z axes. It uses the same accelerometer sensor unit (m/s2) to report values. The gravity
values are computed by removing the user-generated forces acting on the phone. It uses the
accelerometer as its underlying hardware sensor.

The linear acceleration sensor
The linear acceleration sensor is a software sensor and is responsible for reporting the
acceleration force acting on the x, y, and z axes of the phone after excluding the gravity
force. It also uses the same unit (m/s2) to report values that is used by the gravity and
accelerometer sensors. Linear acceleration values are calculated by removing the force of
gravity acting on each axis of the phone. It uses the accelerometer as its underlying
hardware sensor. Conceptually, the accelerometer sensor values are a summation of the
linear acceleration and gravity:

Accelerometer value = Linear Acceleration value + Gravity value.

The significant motion sensor
The signification motion sensor is a software sensor, and it uses the accelerometer as its
underlying hardware sensor. It triggers an event every time a signification motion on the
phone takes place. Walking, biking, or sitting in a moving car are examples of signification
motions. It has a one-shot reporting mode and hence will be disabled automatically once it
is triggered. Further details on reporting modes can be found in Chapter 1, Sensor
Fundamentals. We need to request the significant motion as many times as we want to
trigger it. The way to set up the significant motion sensor is slightly different than other
sensors, which are done using SensorManager. The significant motion event trigger
callback is set using the object of TriggerEventListener. The following is the code
snippet to set up, request, and cancel the signification motion sensor:

public class SigMotionActivity extends Activity{

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private TriggerEventListener mTriggerEventListener;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

The Motion, Position, and Fingerprint Sensors

[87]

 mSensorManager = (SensorManager)
 getSystemService(Context.SENSOR_SERVICE);
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_SIGNIFICANT_MOTION);

 mTriggerEventListener = new TriggerEventListener() {
 @Override
 public void onTrigger(TriggerEvent event) {
 // Take action
 }
 };
 }

 @Override
 protected void onResume() {
 super.onResume();
 mSensorManager.requestTriggerSensor
 (mTriggerEventListener, mSensor);
 }

 @Override
 protected void onPause() {
 super.onPause();
 mSensorManager.cancelTriggerSensor(mTriggerEventListener, mSensor);
 }
}

Understanding position-based sensors
The position sensor lets your app determine the position of a device. There are two major
sensors in this category: the geomagnetic field sensor and the orientation sensor. The
proximity sensor, which measures the proximity of any object to the phone, also comes
under this category. The proximity sensor has already been discussed in the previous
chapter in detail.

The Motion, Position, and Fingerprint Sensors

[88]

The magnetometer sensor
The magnetometer sensor measures the changes in the earth's magnetic field. It provides
the raw magnetic field strength in units of micro tesla (μT). The magnetometer sensor is
based on a miniature Hall effect sensor, which detects the earth's magnetic field along the
three perpendicular x, y, and z axes. The Hall effect sensor measures the magnetic field by
generating a voltage that is proportional to the earth's magnetic field strength and polarity.
This voltage is converted to micro tesla (μT) values using electric circuits. The
magnetometer sensor provides two types of value: calibrated and uncalibrated. The
uncalibrated values are the raw values without the hard iron calibration applied to them,
and they can be requested from SensorManager by specifying
the TYPE_MAGNETIC_FIELD_UNCALIBRATED constant, while the calibrated values can be
obtained by requesting the TYPE_MAGNETIC_FIELD constant. Factory calibration and
temperature compensation are applied to both calibrated and uncalibrated values.

The orientation sensor
The orientation sensor is a software sensor and measures the position of the device relative
to the earth's frame of reference. The orientation sensor drives its data by processing the
raw values of the accelerometer and magnetometer sensors. It provides the position by
giving the azimuth, pitch, and roll angles. One of the most common use cases of the
orientation sensor is to build a magnetic compass on the phone.

Azimuth is defined as the degree of rotation made by the phone around the
z axis. It can be also seen as the angle between the magnetic north and the
phone's y axis. When the phone's y axis is aligned with the earth's magnetic north
direction, then its value is zero degrees. The Azimuth value can vary from 0 to
360 degrees. We will use the azimuth value to create our compass in the next
section.
Pitch is defined as the degree of rotation made by the phone around the x axis. Its
value can vary from 180 to -180 degrees. When the phone's positive z axis rotates
towards the positive y axis, then pitch's value is positive, but if the phone's
positive z axis rotates towards the negative y axis, then pitch's value is negative.
Roll is defined as the degree of rotation made by the phone around the y axis. Its
value can vary from 90 to -90 degrees. When the phone's positive z axis rotates
towards the positive x axis, then roll's value is positive, but if the phone's positive
z axis rotates towards the negative x axis, then roll's value is negative.

The Motion, Position, and Fingerprint Sensors

[89]

Note that since Android 2.2 (API Level 8), the orientation sensor has been deprecated. The
reason for deprecation was accuracy and precision issues, as this sensor is only reliable
when the roll component is 0. Also, this sensor involves heavy processing from the
accelerometer and magnetometer sensors. Instead of using raw values from the orientation
sensor, it is recommended that you use the getRotationMatrix() method in conjunction
with the getOrientation() method of SensorManager to compute the same orientation
values that are given by the orientation sensor. We will see more details on this in the next
section when we develop our compass using both the orientation sensor and alternative
APIs.

The fingerprint sensor
Samsung was the first to introduce the fingerprint sensor in their Android devices, and they
also provided support for it in their Pass SDK. The official support for fingerprint sensors
was provided in the Android platform from Android 6.0 (API Level 23). The fingerprint
sensor is a hardware sensor; generally it is found either at the back of the Android phone, or
at the bottom of the screen. Typically, two types of fingerprint sensor are found today: the
first one is a capacitive sensor, and the second one is an optical sensor. An optical sensor
works by shining a bright light over your fingerprint and taking a digital photograph. This
digital image is compared with the original fingerprint digital image to get the
authentication results. The capacitive sensor is found in most iPhones and Android phones
today. It works by passing a mild electric current through the outer skin of your finger.
When your finger is placed on the surface of the sensor, the ridges in your fingerprints
touch the surface while the hollows between the ridges stand clear of it. The capacitive
sensor captures these varying distances between ridges and hollow places and builds a
digital image of the fingerprint. This digital image is then verified with the original
fingerprint. We will look at the fingerprint APIs and implementation details in the next
section.

www.allitebooks.com

http://www.allitebooks.org

The Motion, Position, and Fingerprint Sensors

[90]

Time for action – shake detection using the
accelerometer sensor
One of the most common use cases of the accelerometer sensor is to detect the shaking of
the phone. Shaking can act as a valuable input for the apps, especially when the phone
screen is off. For example, a lot of music player apps allow you to change the songs just by
shaking the phone. In our example, we will play a small audio MP3 file when the phone
shake is detected using the accelerometer sensor:

As the first step, we create the necessary infrastructure to get the values from the1.
accelerometer sensor. We will create a ShakeDetectionActivity and follow
the standard steps for getting values from a sensor. We will select the sensor type
for TYPE_ACCELEROMETER in the getDefaultSensor() method
of SensorManager and initiate the MediaPlayer object with the audio MP3 file
kept in the raw folder inside the onCreate() method of the activity. As a
standard practice, we will register the listener in onResume()and un-register it in
the onPause() methods:

 public class ShakeDetectionActivity extends Activity implements
 SensorEventListener {

 private SensorManager mSensorManager;
 private Sensor mAccelerometer;
 private float x,y,z,last_x,last_y,last_z;
 private boolean isFirstValue;
 private float shakeThreshold = 3f;
 private MediaPlayer mMediaPlayer;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.shakedetection_layout);
 mSensorManager = (SensorManager)getSystemService
 (SENSOR_SERVICE);
 mAccelerometer = mSensorManager.getDefaultSensor
 (Sensor.TYPE_ACCELEROMETER);
 mMediaPlayer = MediaPlayer.create(getApplicationContext(),
 R.raw.mario);
 }

 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(this, mAccelerometer,
 SensorManager.SENSOR_DELAY_UI);

The Motion, Position, and Fingerprint Sensors

[91]

 }

 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(this, mAccelerometer);
 }
 }

Inside the onSensorChanged() method, we write our core logic to detect shakes.2.
When we shake the phone with our hands, the accelerometer sensor measures the
force acting on the phone. There is a huge variation in the force acting on the
phone during the shake. We measure this variation or change in the acceleration.
If the change in acceleration in any two axes crosses a threshold of 3 m/s2, then we
consider it a shake. The threshold of 3 m/s2 can only be reached by shaking the
phone with the hands. To calculate the change in acceleration, we take the
absolute difference between the current and last known accelerometer values,
and if the absolute difference is greaten than 3m/s2 in any two axes, then we play
the sound:

 @Override
 public void onSensorChanged(SensorEvent event) {

 x = event.values[0];
 y = event.values[1];
 z = event.values[2];
 if(isFirstValue) {
 float deltaX = Math.abs(last_x - x);
 float deltaY = Math.abs(last_y - y);
 float deltaZ = Math.abs(last_z - z);
 // If the values of acceleration have changed on at least two
 axes, then we assume that we are in a shake motion
 if((deltaX > shakeThreshold && deltaY > shakeThreshold)
 || (deltaX > shakeThreshold && deltaZ > shakeThreshold)
 || (deltaY > shakeThreshold && deltaZ > shakeThreshold)) {
 //Don't play sound, if it is already being played
 if(!mMediaPlayer.isPlaying()) {
 //Play the sound, when Phone is Shaking
 mMediaPlayer.start();
 }
 }
 }
 last_x = x;
 last_y = y;
 last_z = z;
 isFirstValue = true;
 }

The Motion, Position, and Fingerprint Sensors

[92]

Time for action – the compass using
orientation sensor and orientation APIs
In our example, we will use the orientation sensor to develop the compass, and since it is a
deprecated sensor, we will also develop it using alternative APIs. From the orientation
sensor, we will directly use its azimuth values to feed into the compass, while for
alternative APIs, we will use the raw accelerometer and magnetometer sensor values to
compute the azimuth values. Let's look at both the implementations in detail:

First, we create the infrastructure to get the values from the orientation,1.
accelerometer, and magnetometer sensors. Inside the onCreate() method
of CompassActivity, we initialize all the three sensors using SensorManager.
We also initiate a layout file for the activity, which consists of a compass image
that has North, South, East, and West marked on it. The compass image will be
rotated to align its north to point toward the Earth's magnetic north. We also
created four float arrays to store the sensor's value in it. As a standard practice,
we registered the listener in onResume() and un-registered it in the onPause()
method:

 public class CompassActivity extends Activity implements
 SensorEventListener {

 private ImageView mCompass;
 private SensorManager mSensorManager;
 private Sensor mAccelerometerSensor, mMagnetometerSensor,
 mOrientationSensor;
 private float[] mLastAccelerometer = new float[3];
 private float[] mLastMagnetometer = new float[3];
 private float[] mRotationMatrix = new float[9];
 private float[] mOrientation = new float[3];
 private boolean mLastAccelerometerSet = false;
 private boolean mLastMagnetometerSet = false;
 private float mCurrentDegree = 0f;
 private boolean useOrientationAPI = false;
 private long lastUpdateTime = 0;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.compass_layout);
 mSensorManager = (SensorManager)getSystemService
 (SENSOR_SERVICE);
 mAccelerometerSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_ACCELEROMETER);

The Motion, Position, and Fingerprint Sensors

[93]

 mMagnetometerSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_MAGNETIC_FIELD);
 mOrientationSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_ORIENTATION);
 mCompass = (ImageView)
 findViewById(R.id.compass);
 }

 protected void onResume() {
 super.onResume();
 if(useOrientationAPI) {
 mSensorManager.registerListener(this, mAccelerometerSensor,
 SensorManager.SENSOR_DELAY_UI);
 mSensorManager.registerListener(this, mMagnetometerSensor,
 SensorManager.SENSOR_DELAY_UI);
 } else{
 mSensorManager.registerListener(this, mOrientationSensor,
 SensorManager.SENSOR_DELAY_UI);
 }
 }

 protected void onPause() {
 super.onPause();
 if(useOrientationAPI) {
 mSensorManager.unregisterListener
 (this, mAccelerometerSensor);
 mSensorManager.unregisterListener(this, mMagnetometerSensor);
 } else {
 mSensorManager.unregisterListener(this, mOrientationSensor);
 }
 }

We used a useOrientationAPI Boolean variable to select the input source for2.
the compass. If the useOrientationAPI Boolean variable is true, then we use
input from the accelerometer and magnetometer sensors and feed it into the
alternative APIs (getRotationMatrix() and getOrientation()) to get the
Earth's magnetic north angle, while if it is false, then we use input from the
orientation sensor to get the earth's magnetic north angle.

The Motion, Position, and Fingerprint Sensors

[94]

The rotateUsingOrientationSensor() method accepts the object
of SensorEvent that contains the orientation sensor values and is responsible for
rotating the compass image and keeping it aligned to the earth's magnetic north
direction. It uses the RotateAnimation class to make the rotation animation of
the compass image. The RotateAnimation class is an Android built in animation
utility that can rotate any UI object on the x and y axes. The constructor accepts lot
optional parameters, such as the starting angle of rotation, the end of angle of
rotation, the center of rotation, and so on. The rotation animation is carried only
four times in one second to make the rotation look smooth. The azimuth angle,
which is the first value given by the orientation sensor, is used to align the
direction of the compass image:

 @Override
 public void onSensorChanged(SensorEvent event) {
 if(useOrientationAPI) {
 rotateUsingOrientationAPI(event);
 } else {
 rotateUsingOrientationSensor(event);
 }
 }

 public void rotateUsingOrientationSensor(SensorEvent event){
 //only 4 times in 1 second
 if(System.currentTimeMillis() - lastUpdateTime > 250) {
 float angleInDegress = event.values[0];
 RotateAnimation mRotateAnimation = new RotateAnimation(
 mCurrentDegree, -angleInDegress,
 Animation.RELATIVE_TO_SELF, 0.5f,
 Animation.RELATIVE_TO_SELF, 0.5f);
 //250 milliseconds
 mRotateAnimation.setDuration(250);
 mRotateAnimation.setFillAfter(true);
 mCompass.startAnimation(mRotateAnimation);
 mCurrentDegree = -angleInDegress;
 lastUpdateTime = System.currentTimeMillis();
 }
 }

The Motion, Position, and Fingerprint Sensors

[95]

The rotateUsingOrientationAPI() method is used to rotate the compass3.
using the getRotationMatrix() and getOrientation() APIs. This method
assigns the accelerometer sensor values to the mLastAccelerometer float array
and the magnetometer sensor values to the mLastMagnetometer float array.
Once we have both the accelerometer and magnetometer sensor values, then they
are passed into the getRotationMatrix()API to get the rotation matrix, which
is further passed into the getOrientation() API to get the orientation values.
These orientation values are converted from radians to degrees and then used to
rotate the compass image, as done inside the
rotateUsingOrientationSensor() method. It uses the same
RotateAnimation class to make the rotation animation of the compass image, as
discussed in the previous section:

 public void rotateUsingOrientationAPI(SensorEvent event){
 if (event.sensor == mAccelerometerSensor) {
 System.arraycopy(event.values, 0, mLastAccelerometer, 0,
 event.values.length);
 mLastAccelerometerSet = true;
 } else if (event.sensor == mMagnetometerSensor) {
 System.arraycopy(event.values, 0, mLastMagnetometer, 0,
 event.values.length);
 mLastMagnetometerSet = true;
 }//only 4 times in 1 second
 if (mLastAccelerometerSet && mLastMagnetometerSet &&
 System.currentTimeMillis() - lastUpdateTime > 250)
 {
 SensorManager.getRotationMatrix(mRotationMatrix, null,
 mLastAccelerometer, mLastMagnetometer);
 SensorManager.getOrientation(mRotationMatrix, mOrientation);
 float azimuthInRadians = mOrientation[0];
 float azimuthInDegress = (float)
 (Math.toDegrees(azimuthInRadians)+360)%360;
 RotateAnimation mRotateAnimation = new RotateAnimation(
 mCurrentDegree, -azimuthInDegress,
 Animation.RELATIVE_TO_SELF, 0.5f,
 Animation.RELATIVE_TO_SELF, 0.5f);
 mRotateAnimation.setDuration(250);
 mRotateAnimation.setFillAfter(true);
 mCompass.startAnimation(mRotateAnimation);
 mCurrentDegree = -azimuthInDegress;
 lastUpdateTime = System.currentTimeMillis();
 }
 }

The Motion, Position, and Fingerprint Sensors

[96]

The following is a screenshot of the compass on a Nexus 5P device:

The Motion, Position, and Fingerprint Sensors

[97]

Time for action – using the fingerprint
sensor
In order to support the fingerprint sensor, the Android platform has introduced a new
system service, which is called the Finger Print Service, and it can be accessed using the
instance of FingerprintManager. It provides all the necessary APIs to use the fingerprint
sensor. In the following example, we will use the fingerprint sensor to authenticate the user.
In order to make this example work, the Android device should have a fingerprint sensor,
and it also should have set up or enrolled the user's fingerprint using the security settings.
We also need to use two components of security (Keystore and Cipher) to use the
fingerprint authentication API. Fingerprint sensor APIs require install time permission in
the AndroidManifest.xml file (android.permission.USE_FINGERPRINT) and also
runtime permission before using them. Now, let's look at the implementation details:

Inside the onCreate() method of FingerPrintActivity, we initiated the1.
object of FingerprintManager
using getSystemService(FINGERPRINT_SERVICE).
The checkFingerPrintConditions() method is responsible for checking the
necessary conditions for the Fingerprint sensor to work. This method is invoked
from onCreate() and also from the initiateFingerPrintSensor() method.
We will discuss the checkFingerPrintConditions() method in the next
section:

 public class FingerPrintActivity extends Activity {

 private static final int FINGERPRINT_PERMISSION_REQUEST_CODE = 0;
 private FingerprintManager mFingerprintManager;
 //Alias for our key in the Android Key Store
 private static final String KEY_NAME = "my_key";
 private KeyStore mKeyStore;
 private KeyGenerator mKeyGenerator;
 private Cipher mCipher;
 private CancellationSignal mCancellationSignal;
 private Dialog mFingerPrintDialog;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.fingerprint_layout);
 mFingerprintManager = (FingerprintManager)getSystemService
 (FINGERPRINT_SERVICE);
 //As soon as Activity starts, check for the finger print
 conditions

The Motion, Position, and Fingerprint Sensors

[98]

 checkFingerPrintConditions()
 }

 public void initiateFingerPrintSensor(View v) {
 //Called from Layout button
 checkFingerPrintConditions();
 }

There are three mandatory conditions for the fingerprint sensor to work; they are2.
checked inside the checkFingerPrintConditions() method. The first
condition is to check if the fingerprint sensor hardware is present on the phone,
which is done by the isHardwareDetected() method
of FingerprintManager. The second condition is to check whether the user has
enrolled or set up his fingerprint; this is done by using
the hasEnrolledFingerprints() method. The third and final condition is to
check whether the user has given runtime permission to use the fingerprint
sensor. This is done using the checkSelfPermission() method of
the ContextCompat class. If the user has not given the runtime permission, then
we ask for it using the requestPermissions() method. This will open a
runtime permission dialog, and when the user allows it, we will receive a
callback in the onRequestPermissionsResult() method. Once all the
conditions are satisfied and we have the required permission, we invoke
the showFingerPrintDialog() method, which will initiate the fingerprint
authentication process explained in the next section. If any of the conditions fail,
we show the relevant message using the showAlertDialog() method. This
method simply presents the user with the passed title and message:

 public void checkFingerPrintConditions() {

 if(mFingerprintManager.isHardwareDetected()) {
 if(mFingerprintManager.hasEnrolledFingerprints()) {
 if(ContextCompat.checkSelfPermission(this,
 Manifest.permission.USE_FINGERPRINT)!=
 PackageManager.PERMISSION_GRANTED) {
 //Requesting runtime finger print permission
 requestPermissions(new String[]
 {Manifest.permission.USE_FINGERPRINT},
 FINGERPRINT_PERMISSION_REQUEST_CODE);
 } else {
 //After all 3 conditions are met, then show FingerPrint
 Dialog
 showFingerPrintDialog();
 }
 } else {
 showAlertDialog("Finger Print Not Registered!", "Go to

The Motion, Position, and Fingerprint Sensors

[99]

 'Settings -> Security -> Fingerprint' and register at least
 one fingerprint");
 }
 } else {
 showAlertDialog("Finger Print Sensor Not Found!", "Finger Print
 Sensor could not be found on your phone.");
 }
 }

 @Override
 public void onRequestPermissionsResult(int requestCode, String[]
 permissions, int[] state) {

 //show FingerPrint Dialog, when runtime permission is granted
 if (requestCode == FINGERPRINT_PERMISSION_REQUEST_CODE
 && state[0] == PackageManager.PERMISSION_GRANTED) {

 showFingerPrintDialog();
 }
 }

 public void showAlertDialog(String title, String message){
 new android.app.AlertDialog.Builder(this).setTitle(title)
 .setMessage(message).setIcon(android.R.drawable.ic_dialog_alert)
 .setPositiveButton("Cancel", new DialogInterface
 .OnClickListener()
 {
 public void onClick(DialogInterface dialog, int whichButton)
 {
 dialog.dismiss();
 }})
 .show();
 }

The showFingerPrintDialog() method performs two major tasks: the first3.
task is to initiate the required fingerprint APIs and settings, which is done by
calling the initFingerPrintSettings() method, and the second task is to
show a custom dialog, which asks the user to place their finger on the fingerprint
sensor for authentication. If any of the required APIs or settings fail, then we
show the relevant error message to the user. The initFingerPrintSettings()
method initiates the Keystore, Cipher, and object of the CancellationSignal
class. We will discuss Keystore and Cipher in the next section.

The Motion, Position, and Fingerprint Sensors

[100]

The cancel() method of the CancellationSignal class instructs the
authentication API to stop sensing for the fingerprint. Once all three
(Keystore,Cipher, and CancellationSignal) are initiated successfully, we
invoke the authenticate() method of FingerprintManager. This wakes up
the fingerprint sensor hardware, and it starts sensing for a fingerprint. This is the
time that the user has to place his finger on the fingerprint sensor for
authentication. Generally, the fingerprint sensor declares the authentication result
within a second. The result callback of fingerprint authentication is done through
the object of the FingerprintManager.AuthenticationCallback class, which
is discussed in the last section of this example:

 public void showFingerPrintDialog() {
 //First Initialize the FingerPrint Settings
 if(initFingerPrintSettings())
 {
 //Init Custom FingerPrint Dialog from xml
 mFingerPrintDialog = new Dialog(this);
 View view = LayoutInflater.from(this).inflate
 (R.layout.fingerpring_dialog, null, false);
 mFingerPrintDialog.setContentView(view);
 Button cancel = (Button) view.findViewById(R.id.cancelbutton);
 cancel.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 mCancellationSignal.cancel();
 mFingerPrintDialog.dismiss();
 }
 });

 //Stops the cancelling of the fingerprint dialog
 //by back press or touching accidentally on screen
 mFingerPrintDialog.setCanceledOnTouchOutside(false);
 mFingerPrintDialog.setCancelable(false);
 mFingerPrintDialog.show();
 }
 else
 {
 showAlertDialog("Error!", "Error in initiating Finger Print
 Cipher or Key!");
 }
 }

 public boolean initFingerPrintSettings() {

 //CancellationSignal requests authenticate api to stop scanning
 mCancellationSignal = new CancellationSignal();

The Motion, Position, and Fingerprint Sensors

[101]

 if(initKey() && initCipher()) {
 mFingerprintManager.authenticate(new
 FingerprintManager.CryptoObject(mCipher),
 mCancellationSignal, 0, new AuthenticationListener(), null);
 return true;
 } else {
 return false;
 }
 }

Inside the initCipher() method, we initialize the Cipher instance with the4.
created key in the initkey() method. It returns true if the initialization was
successful and returns false if the lock screen is disabled or reset after the key was
generated, or if a fingerprint got enrolled after the key was generated.
The initkey() method creates a symmetric key in the Android key store, which
can only be used after the user has been authenticated by a fingerprint. The
detailed discussion of Cipher and Keystore belongs to security and is out of the
scope of this book:

 public boolean initKey() {
 try {
 mKeyStore = KeyStore.getInstance("AndroidKeyStore");
 mKeyStore.load(null);
 mKeyGenerator = KeyGenerator.getInstance
 (KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore");
 mKeyGenerator.init(new KeyGenParameterSpec.Builder(KEY_NAME,
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setUserAuthenticationRequired(true)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .build());
 mKeyGenerator.generateKey();
 return true;
 } catch (Exception e) {
 return false;
 }
 }

 public boolean initCipher() {
 try {
 mKeyStore.load(null);
 SecretKey key = (SecretKey) mKeyStore.getKey(KEY_NAME, null);
 mCipher = Cipher.getInstance(KeyProperties.KEY_ALGORITHM_AES +
 "/" + KeyProperties.BLOCK_MODE_CBC + "/" +
 KeyProperties.ENCRYPTION_PADDING_PKCS7);
 mCipher.init(Cipher.ENCRYPT_MODE, key);
 return true;

The Motion, Position, and Fingerprint Sensors

[102]

 } catch (KeyStoreException | CertificateException |
 UnrecoverableKeyException | IOException |
 NoSuchAlgorithmException | InvalidKeyException |
 NoSuchPaddingException e) {
 return false;
 }
 }

The AuthenticationListener class is responsible for passing the result5.
callback from the FingerprintManager authentication API. Once the
authentication is done, the relevant method is called depending on the result of
authentication. If the authentication is successful, which means that the
recognized fingerprint matches with the original enrolled fingerprint, then we
show a success message to the user via the Toast API. In case of failure, which
means that the recognized fingerprint doesn't match the originally enrolled
fingerprint, we show the relevant failure message. In case of error, which means
that there was an error in reading the fingerprint, we show the relevant error
message:

 class AuthenticationListener extends
 FingerprintManager.AuthenticationCallback{

 @Override
 public void onAuthenticationError(int errMsgId, CharSequence
 errString) {

 Toast.makeText(getApplicationContext(), "Authentication
 Error!", Toast.LENGTH_LONG).show();
 }

 @Override
 public void onAuthenticationHelp(int helpMsgId, CharSequence
 helpString) {
 }

 @Override
 public void onAuthenticationFailed() {

 Toast.makeText(getApplicationContext(), "Authentication
 Failed!", Toast.LENGTH_LONG).show();
 }

 @Override
 public void onAuthenticationSucceeded
 (FingerprintManager.AuthenticationResult result) {
 Toast.makeText(getApplicationContext(), "Authentication

The Motion, Position, and Fingerprint Sensors

[103]

 Success!", Toast.LENGTH_LONG).show();
 mFingerPrintDialog.dismiss();
 }
 }

What just happened?
We just created three small applications using three different sensors. The first one detects
physical shakes using the accelerometer sensor, the second one tells the earth's magnetic
direction using the orientation sensor, and the third one uses the fingerprint sensor to
authenticate the user. A few important points to note are that the orientation sensor has
been deprecated, so in place of it we should use the getRotationMatrix()and
getOrientation() APIs to get the orientation values. Fingerprint APIs were introduced
in Android Marshmallow (API Level 23), which uses both runtime and install time
permissions. Thus, to use the fingerprint sensor, we should include both runtime and install
time permissions.

Summary
We learned about all the motion sensors (accelerometer, gyroscope, linear acceleration,
gravity, and significant motion) and position sensors (magnetometer and orientation) in
detail. We also looked at the newly introduced fingerprint sensor and its supporting APIs.

In the next chapter, we will take our understanding of motion sensors (particularly the
accelerometer) to the next level, and we will use the accelerometer sensor to develop an
algorithm to detect walking, jogging, and running activities. We will also learn two new
sensors, that is, the step detector and step counter.

6
The Step Counter and Detector
Sensors – The Pedometer App

This chapter will focus on learning the use of the step detector and step counter sensors. We
will analyze and process the accelerometer data to develop the algorithm for detecting the
types of steps (walking, jogging, and fast running). As a learning exercise, we will develop a
pedometer application and will closely look at the infrastructure (service, threads, and
database) required to process the sensor data in the background for a longer duration of
time. We will also discuss how to combine the step detector sensor with the accelerometer
sensor to achieve battery optimization.

You will learn the following topics in this chapter:

Understanding the requirements for the pedometer app using the step detector
and accelerometer sensors
Understanding the step detector and step counter sensors
How to use the step counter sensor in activity and show the number of steps
taken since the phone's last reboot
How to use the step detector sensor in service and show the number of steps
taken per day using the SQLite database
Understanding the accelerometer sensor's behavior during walking, jogging, and
fast running activities

The Step Counter and Detector Sensors – The Pedometer App

[105]

How to develop an algorithm to detect the types of steps (walking, jogging, and
fast running) using the accelerometer sensor data and also achieve battery
optimization using the sensor fusion between the step detector and accelerometer
sensors
How to derive the pedometer data matrix (total steps, distance, duration, average
speed, average step frequency, calories burned, and type of steps) by using our
steps detected algorithm

The pedometer app's requirements
We will be working on three incremental examples as learning assignments for this chapter.
In the first example, we will be using the step counter sensor to show the number of steps
taken since the phone was powered on in the activity. In our second example, we will go a
little deeper and will discuss how to use the step detector sensor to store the steps
information in the SQLite database from the service, and finally we will show the steps
history along with the dates of using the activity. Our third example will be an evolved
pedometer application that will use the sensor fusion between the step detector and
accelerometer sensors to derive advanced functionality of the app. This evolved pedometer
application will be highly battery optimized and will automatically track the physical
activity (walking, jogging, and fast running) happening in the background. The following is
a list of the high level requirements of this pedometer application:

Create a pedometer application that works in the background and tracks physical1.
activity automatically
The pedometer application should be battery optimized and should go to sleep2.
when there is no physical activity
The pedometer application should be able to differentiate between three physical3.
activity types, that is, normal walking, jogging, or fast walking and fast running
The pedometer application should be able to log (in database), derive, and show4.
(in the user interface) the following data matrix:

The total steps taken (per day)1.
The total distance travelled (per day)2.
The total duration (per day)3.
The average speed (per day)4.
The average step frequency (per day)5.
The calories burned (per day)6.
The type of physical activity (walking, jogging, or fast running)7.

The Step Counter and Detector Sensors – The Pedometer App

[106]

Understanding the step counter and step
detector sensors
The step counter and step detector sensors are very similar to each other and are used to
count the steps. Both the sensors are based on a common hardware sensor that internally
uses the accelerometer, but Android still treats them as logically separate sensors. Both of
these sensors are highly battery optimized and consume very little power. Now, let's look at
each individual sensor in detail.

The step counter sensor
The step counter sensor is used to get the total number of steps taken by the user since the
last reboot (power on) of the phone. When the phone is restarted, the value of the step
counter sensor is reset to zero. In the onSensorChanged() method, the number of steps is
given by event.value[0]; although it's a float value, the fractional part is always zero.
The event timestamp represents the time at which the last step was taken. This sensor is
especially useful for those applications that don't want to run in the background and
maintain the history of steps themselves. This sensor works in the batch and continuous
modes. If we specify 0 or no latency in the SensorManager.registerListener()
method, then it works in continuous mode, otherwise, if we specify any latency, then it
groups the events in batches and reports them at a specified latency. For prolonged usage of
this sensor, it's recommended that you use the batch mode, as it saves power. The step
counter uses on change reporting mode, which means it reports the event as soon as there is
a change in the value.

The step detector sensor
The step detector sensor triggers an event each time a step is taken by the user. The value
reported in the onSensorChanged() method is always one, the fractional part is always
zero, and the event timestamp is the moment that the user's foot hits the ground. The step
detector sensor has very low latency in reporting the steps, which is generally within 1 and
2 seconds. The step detector sensor has lower accuracy and produces more false positives
compared to the step counter sensor. The step counter sensor is more accurate, but it has
more latency in reporting the steps, as it uses extra time after each step to remove any false
positive values. The step detector sensor is recommended for those applications that want
to track the steps in real time and maintain their own history of each and every step with
their timestamp.

The Step Counter and Detector Sensors – The Pedometer App

[107]

Time for action – using the step counter
sensor in activity
In this section, we will learn how to use the step counter sensor with a simple example. The
good thing about the step counter is that, unlike other sensors, your app doesn't need to tell
the sensor when to start counting the steps and when to stop counting them. It
automatically starts counting as soon as the phone is powered on. To use it, we just have to
register the listener with the sensor manager and then unregister it after using it. In the
following example, we will be showing the total number of steps taken by the user since the
last reboot (power on) of the phone in the android activity:

We create a StepsCounterActivity, which implements1.
the SensorEventListener interface so that it can receive the sensor events. We
initiate the SensorManager and Sensor objects of the step counter, and we also
check the sensor availability in the OnCreate() method of the activity. We
register the listener in the onResume() method and unregistered it in
the onPause() method as a standard practice. If we want the app to keep on
counting the steps in the background, then ideally we should use Android
service, and we should not unregister it. We use TextView to display the total
number of steps taken and update the latest value in the onSensorChanged()
method:

 public class StepsCounterActivity extends Activity
 implements SensorEventListener{

 private SensorManager mSensorManager;
 private Sensor mSensor;
 private boolean isSensorPresent;
 private TextView mStepsSinceReboot;

 @Override
 protected void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.stepcounter_layout);
 mStepsSinceReboot = (TextView)findViewById
 (R.id.stepssincereboot);
 mSensorManager = (SensorManager)
 this.getSystemService(Context.SENSOR_SERVICE);
 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_STEP_COUNTER) != null) {
 mSensor = mSensorManager.getDefaultSensor
 (Sensor.TYPE_STEP_COUNTER);
 isSensorPresent = true;

The Step Counter and Detector Sensors – The Pedometer App

[108]

 } else {
 isSensorPresent = false;
 }
 }

 @Override
 protected void onResume() {
 super.onResume();
 if(isSensorPresent) {
 mSensorManager.registerListener(this, mSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
 }

 @Override
 protected void onPause() {
 super.onPause();
 if(isSensorPresent) {
 mSensorManager.unregisterListener(this);
 }
 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 mStepsSinceReboot.setText("Steps since reboot:" +
 String.valueOf(event.values[0]));
 }

Time for action – maintaining step history
with the step detector sensor
The step counter sensor works well when we have to deal with the total number of steps
taken by the user since the last reboot (power on) of the phone. It doesn't cater to our
purpose when we have to maintain the history of each and every step taken by the user.
The step counter sensor may combine some steps and process them together and will only
update with an aggregated count instead of reporting the individual step detail. For such
cases, the step detector sensor is the right choice. In our example, we will be using the step
detector sensor to store the details of each step taken by the user, and we will show the total
number of steps for each day since the application was installed. Our example will consist
of three major components of android, namely, service, the SQLite database, and activity.

The Step Counter and Detector Sensors – The Pedometer App

[109]

The Android service will be used to listen to all the individual step details, using the step
counter sensor, when the app is in the background. All the individual step details will be
stored in the SQLite database, and finally the activity will be used to display the list of the
total number of steps along with dates. Let's look at each component in detail:

The first component of our example is StepsHistoryActivity. We create1.
a ListView in the activity to display the step count along with dates. Inside
the onCreate() method of StepsHistoryActivity, we initiate ListView
and ListAdaptor, which are required to populate the list. Another important
task that we do in the onCreate() method is starting the service
(StepsService.class), which will listen to all the individual steps events. We
also make the call to the getDataForList() method, which is responsible for
fetching the data for ListView. Inside the getDataForList() method, we
initiate the object of the StepsDBHelper class and call
the readStepsEntries() method of the StepsDBHelper class, which returns
an ArrayList of the DateStepsModel objects containing the total number of
steps along with dates after reading from the database:

 public class StepsHistoryActivity extends Activity{

 private ListView mSensorListView;
 private ListAdapter mListAdapter;
 private StepsDBHelper mStepsDBHelper;
 private ArrayList<DateStepsModel> mStepCountList;

 @Override
 protected void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mSensorListView = (ListView)
 findViewById(R.id.steps_list);
 getDataForList();
 mListAdapter = new ListAdapter();
 mSensorListView.setAdapter(mListAdapter);
 Intent stepsIntent = new
 Intent(getApplicationContext(), StepsService.class);
 startService(mStepsIntent);
 }

 public void getDataForList(){
 mStepsDBHelper = new StepsDBHelper(this);
 mStepCountList = mStepsDBHelper.readStepsEntries();
 }

The Step Counter and Detector Sensors – The Pedometer App

[110]

In our example, the DateStepsModel class is used as a POJO (Plain Old Java2.
Object; it's a handy way of grouping logical data together) class to store the total
number of steps and date. We also use the StepsDBHelper class to read and
write the steps data in the database (this is discussed further in the next section).
The ListAdapter class is used to populate the values for ListView, which
internally uses ArrayList of DateStepsModel as a data source. The individual
list item is the string, which is the concatenation of the date and total number of
steps. Both the DateStepsModel class and the ListAdapter class are placed in a
separate package in the code structure:

 public class DateStepsModel {

 public String mDate;
 public int mStepCount;
 }

 public class ListAdapter extends BaseAdapter {

 TextView mDateStepCountText;
 ArrayList<DateStepsModel> mStepCountList;
 Context mContext;
 LayoutInflater mLayoutInflater;
 public ListAdapter(ArrayList<DateStepsModel>
 mStepCountList, Context mContext) {
 this.mStepCountList = mStepCountList;
 this.mContext = mContext;
 this.mLayoutInflater =
 (LayoutInflater)this.mContext.getSystemService
 (Context.LAYOUT_INFLATER_SERVICE);
 }

 @Override
 public int getCount() {

 return mStepCountList.size();
 }

 @Override
 public Object getItem(int position) {

 return mStepCountList.get(position);
 }

 @Override
 public long getItemId(int position) {

The Step Counter and Detector Sensors – The Pedometer App

[111]

 return position;
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {

 if(convertView==null){
 convertView = mLayoutInflater.inflate
 (R.layout.list_rows, parent, false);
 }

 mDateStepCountText =
 (TextView)convertView.findViewById
 (R.id.sensor_name);
 mDateStepCountText.setText
 (mStepCountList.get(position).mDate + " - Total
 Steps: " + String.valueOf(mStepCountList.get
 (position).mStepCount));

 return convertView;
 }

The second component of our example is StepsService, which runs in the3.
background and listens to the step detector sensor until the app is uninstalled. In
normal cases, when not required, you can stop the service
using stopService(new Intent(this,StepsService.class)) and
unregister the SensorEventListener. We initiate the objects
of StepsDBHelper, SensorManager and the step detector sensor inside
the onCreate() method of the service. We only register the listener when the
step detector sensor is available on the device. A point to note here is that we
never unregister the listener because we expect our app to log the step
information indefinitely, all the way until the app is uninstalled. Both the step
detector and step counter sensors are very low on battery consumption and are
highly optimized at the hardware level, so if the app really requires it, it can use
them for longer durations without affecting the battery consumption much. We
get a step detector sensor callback in the onSensorChanged() method whenever
the operating system detects a step, and from it, we call
the createStepsEntry() method of the StepsDBHelper class to store step
information in the database:

 public class StepsService extends Service implements
 SensorEventListener{

 private SensorManager mSensorManager;

The Step Counter and Detector Sensors – The Pedometer App

[112]

 private Sensor mStepDetectorSensor;
 private StepsDBHelper mStepsDBHelper;

 @Override
 public void onCreate() {
 super.onCreate();

 mSensorManager = (SensorManager)
 this.getSystemService(Context.SENSOR_SERVICE);
 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_STEP_DETECTOR) != null)
 {
 mStepDetectorSensor =
 mSensorManager.getDefaultSensor
 (Sensor.TYPE_STEP_DETECTOR);
 mSensorManager.registerListener(this,
 mStepDetectorSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 mStepsDBHelper = new StepsDBHelper(this);
 }
 }

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 return Service.START_STICKY;
 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 mStepsDBHelper.createStepsEntry();
 }

The last component of our example is the SQLite database. We create4.
a StepsDBHelper class and extend it from the SQLiteOpenHelper abstract
utility class provided by the android framework to easily manage the database
operations. In the class, we create a database called StepsDatabase, which is
automatically created on the first object creation of the StepsDBHelper class by
the onCreate() method. This database has one table, StepsSummary, which
consists of the following 3 columns (id, stepcount, and creationdate):

The first column, id, is the unique integer identifier for each row of the table and
is incremented automatically on the creation of every new row

The Step Counter and Detector Sensors – The Pedometer App

[113]

The second column, stepscount, is used to store the total number of steps taken
on each date
The third column, creationdate, is used to store the date in the mm/dd/yyyy
string format

Inside the createStepsEntry() method, we first check if there is any existing
step count with the current date, and if we find one existing, then we read the
existing step count of the current date and update the step count by incrementing
it by 1. If there is no step count with the current date found, then we assume that
it is the first step of the current date and we create a new entry in the table with
the current date and step count value as 1. The createStepsEntry() method is
called from onSensorChanged() from the StepsService class whenever a new
step is detected by the step detector sensor:

 public class StepsDBHelper extends SQLiteOpenHelper
 {

 private static final int DATABASE_VERSION = 1;
 private static final String DATABASE_NAME =
 "StepsDatabase";
 private static final String TABLE_STEPS_SUMMARY =
 "StepsSummary";
 private static final String ID = "id";
 private static final String STEPS_COUNT =
 "stepscount";
 private static final String CREATION_DATE =
 "creationdate";

 private static final String
 CREATE_TABLE_STEPS_SUMMARY = "CREATE TABLE "
 + TABLE_STEPS_SUMMARY + "(" + ID + " INTEGER
 PRIMARY KEY AUTOINCREMENT," +
 CREATION_DATE + " TEXT,"+ STEPS_COUNT + "
 INTEGER"+")";

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(CREATE_TABLE_STEPS_SUMMARY);
 }

 public boolean createStepsEntry() {

 boolean isDateAlreadyPresent = false;
 boolean createSuccessful = false;
 int currentDateStepCounts = 0;
 Calendar mCalendar = Calendar.getInstance();

The Step Counter and Detector Sensors – The Pedometer App

[114]

 String todayDate = String.valueOf(mCalendar
 .get(Calendar.MONTH))+"/" +
 String.valueOf(mCalendar.get
 (Calendar.DAY_OF_MONTH)+1)+"/"+String.valueOf
 (mCalendar.get(Calendar.YEAR));
 String selectQuery = "SELECT " + STEPS_COUNT
 + " FROM " + TABLE_STEPS_SUMMARY + " WHERE "
 + CREATION_DATE +" = '"+ todayDate+"'";
 try {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor c = db.rawQuery(selectQuery, null);
 if (c.moveToFirst()) {
 do {
 isDateAlreadyPresent = true;
 currentDateStepCounts =
 c.getInt((c.getColumnIndex(STEPS_COUNT)));
 } while (c.moveToNext());
 }
 db.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 try {
 SQLiteDatabase db = this.getWritableDatabase();
 ContentValues values = new ContentValues();
 values.put(CREATION_DATE, todayDate);
 if(isDateAlreadyPresent) {
 values.put(STEPS_COUNT,
 ++currentDateStepCounts);
 int row = db.update(TABLE_STEPS_SUMMARY,
 values, CREATION_DATE +" = '"+ todayDate+"'",
 null);
 if(row == 1) {
 createSuccessful = true;
 }
 db.close();
 } else {
 values.put(STEPS_COUNT, 1);
 long row = db.insert(TABLE_STEPS_SUMMARY,
 null, values);
 if(row!=-1) {
 createSuccessful = true;
 }
 db.close();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

The Step Counter and Detector Sensors – The Pedometer App

[115]

 return createSuccessful;
 }

The readStepsEntries() method is called from StepsHistoryActivity to5.
display the total number of steps along with the date in ListView.
The readStepsEntries() method reads all the step counts along with their
dates from the table and fills the ArrayList of DateStepsModel, which is used
as the data source for populating ListView in StepsHistoryActivity:

 public ArrayList<DateStepsModel> readStepsEntries()
 {
 ArrayList<DateStepsModel> mStepCountList = new
 ArrayList<DateStepsModel>();
 String selectQuery = "SELECT * FROM " +
 TABLE_STEPS_SUMMARY;
 try {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor c = db.rawQuery(selectQuery, null);
 if (c.moveToFirst()) {
 do {
 DateStepsModel mDateStepsModel = new
 DateStepsModel();
 mDateStepsModel.mDate = c.getString
 ((c.getColumnIndex(CREATION_DATE)));
 mDateStepsModel.mStepCount = c.getInt
 ((c.getColumnIndex(STEPS_COUNT)));
 mStepCountList.add(mDateStepsModel);
 } while (c.moveToNext());
 }
 db.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return mStepCountList;
 }

The Step Counter and Detector Sensors – The Pedometer App

[116]

The following is the screenshot of the pedometer utility app showing the total number of
steps taken per day, along with the date, since the app was installed on the phone:

What just happened?
We created a small pedometer utility app that maintains the step history along with the
dates using the step detector sensor. We used StepsHistoryActivity to display the list
of the total number of steps along with their dates. StepsService is used to listen to all
the steps detected by the step detector sensor in the background, and finally,
the StepsDBHelper class is used to create and update the total step count for each date
and to read the total step counts along with dates from the database.

The Step Counter and Detector Sensors – The Pedometer App

[117]

Understanding the walking, jogging, and
running signatures using the accelerometer
sensor's data
The step counter and step detector sensors are really useful, but they fail to provide
advanced information on steps, such as what the type of step was (running, jogging, or
walking), and what the duration of each step was. For developing an advanced pedometer
app or a health and fitness app, the duration and type of step is valuable information. As a
learning exercise, we will develop our own algorithm to detect the type of step and the
duration of each step. We will use the accelerometer sensor for our algorithm. The
accelerometer sensor is the best sensor that can detect motion and acceleration acting on the
phone during the walking process. The first step in developing the algorithm is to
understand how a step looks on the accelerometer sensor. In the following section, we will
be looking at the different signatures of walking, jogging, and running, as seen on the
accelerometer sensor's data.

The walking signature using the accelerometer
sensor
The accelerometer sensor gives the acceleration acting on the device, in the x, y, and z axes
of the phone, and these acceleration values consists of two components: first is the gravity
acting on each of the x, y, and z axes, and second is the acceleration produced by any user-
generated motion acting on each of the x, y, and z axes. When a person is walking with the
phone in his pocket, then both the gravity and user-generated acceleration values constantly
change on the x, y, and z axes because of the walking motion and because of the change in
the orientation of the phone with respect to the earth's frame of reference. We will be using
the length of vector (Sqrt(x*x+y*y+z*z)), which is independent of the device's orientation, to
track the walking motion. This length of vector, which is the square root of the sum of the
squares of the acceleration acting on each axis, includes the standard 9.8 m/s2 of
gravitational acceleration on the phone. Now, let's look at the following graph, which
shows the length of vector, that is, Sqrt(x*x+y*y+z*z), on the y axis, and the time in hours,
minutes, seconds, and milliseconds on the x axis on the graph. This is when the phone is
kept still on a table:

The Step Counter and Detector Sensors – The Pedometer App

[118]

A point to note is that when the phone is kept still on a table, we only see the standard 9.8
m/s2 of gravitational acceleration acting on the phone. Now, let's see what a normal walking
signature looks like. The following graph shows the time on the x axis in hours, minutes,
seconds, and milliseconds on the graph, while on the y axis, we have the length of vector.
This is while the person is walking at a normal pace:

The Step Counter and Detector Sensors – The Pedometer App

[119]

The preceding graph was plotted for 10 seconds of data, in which the user walked 10 steps,
keeping his phone in the pocket of his pants. The following are a few important
observations about the graph:

All the individual steps generates a similar pattern, which repeats itself for each
step
The common pattern consists of a few high peaks followed by a few troughs

Most of the time, the highest peak is registered when the foot hits on the ground
The repeatable pattern, which can be used to separate one step from another, is
that every step has one highest peak followed by one lowest trough
One possible way to identify all the individual steps is the count all the highest
peaks, each of which is followed by one lowest trough

The jogging or fast walking signature using the
accelerometer sensor
Now, let's look at the following graph of a user who is walking fast or jogging with his
phone in the pocket of his pants:

The Step Counter and Detector Sensors – The Pedometer App

[120]

This graph looks very similar to the normal walking graphs, except for the following few
differences:

The highest peak value for normal walking reaches close to 20, while the highest
peak for jogging or fast walking crosses 25.
In the same time duration (that is, 10 seconds), the 11 highest peaks (steps) are
noted. The time interval between each jogging step is shorter than ones in
between the normal walking steps.

The running signature using the accelerometer
sensor
Let's further analyze the graph of a user who is running with his phone in his pocket:

The Step Counter and Detector Sensors – The Pedometer App

[121]

Now, let's analyze the differences of this running graph from the jogging and walking
graphs. In this graph we see fewer peaks. Otherwise, it looks very similar to the normal
walking graphs, except for the following few differences:

The highest peak value for running crosses 30, while the highest peak for normal
walking reaches close to 20, and the highest peak for jogging or fast walking
doesn't cross 25.
The time interval between running steps is shorter than the intervals between
normal walking or jogging steps.

Every time we repeat the walking, jogging, and running tests and plot the data on graphs,
we might get some variations in the pattern and values for the length of vector. There are
many factors that can affect these patterns and length of vector, such as in which pocket the
phone is kept (shirt pocket versus pant pocket), what kind of clothes you are wearing (loose
or tight), what kind of shoes you are wearing (soft sole or hard sole), and so on. One
common thing that doesn't change is the repetitive pattern of steps. Every step can be easily
identified with its one highest peak point followed by its lowest trough.

The type of step detection algorithm
Now, we will use our analysis from the previous section to develop an algorithm to detect
the type of steps (walking, jogging, or running). We observed, from the accelerometer data
plotted on graphs, that every type of step (walking, jogging, and running) has a unique
signature pattern. Every step registers a high variation in acceleration when the foot hits the
ground. This high variation in acceleration is recorded as the highest peak in the graph
when the length of vector is plotted against the time. This highest peak is followed by the
lowest trough in the graph, and a pair comprising highest peak and lowest trough
corresponds to a complete step. We will be extending the same logic in our algorithm to
count the total number of steps. We will be identifying all the highest peaks, which are
followed by lowest troughs, to get the total number of steps taken by the user. The
difference in the magnitude of their highest peak values will help us differentiate between
the types of steps. After experimentation with this algorithm, we found that the relative
difference between peak values of running steps versus jogging steps is close to 5, and
similarly, the relative difference between peak values of jogging steps versus walking steps
is also approximately 5. We will be using this relative difference between the peaks to
identify the type of step (walking, jogging, and running). The difference in peak values
might vary depending on a lot of factors such as the ground, shoes, location of the phone,
and so on.

The Step Counter and Detector Sensors – The Pedometer App

[122]

Making it battery- and CPU-efficient using sensor
fusion
The type of step detection algorithm using the accelerometer sensor has one major
drawback. In order to work efficiently, it has to process the accelerometer sensor data all the
time at the highest frequency, even when the phone is not in motion. This would consume a
lot of battery and would keep the CPU engaged in sensor data processing forever. This
shortcoming of algorithm can be resolved with the help of the step detector sensor. The step
detector sensor is very low on battery consumption and is highly optimized on the
hardware level. We will only start processing the accelerometer sensor data when we detect
a step from the step detector sensor, and we will stop processing the accelerometer sensor
data 20 seconds after the last step was detected. By combining two sensors, we will be able
to process the accelerometer sensor data only when the user has actually taken steps, and
this will make the algorithm highly battery- and CPU-efficient.

Scope for improvement
The whole purpose of this exercise is to learn and understand how the sensor's data can be
used to develop algorithms, and how we can further improve them by adding more sensors
(sensor fusion). That's why we have kept the algorithm simple and basic. The same type of
step detection algorithm can be developed using various approaches. We can further
improve the accuracy of the algorithm by adding advanced signal processing, digital
filtering, and machine learning algorithms. The discussion and implementation of these
advanced techniques are out of the scope of this book.

The Step Counter and Detector Sensors – The Pedometer App

[123]

Time for action – type of step (walking,
jogging, and running) detection using the
accelerometer sensor
This section is dedicated to the implementation of the type of step detection algorithm
discussed in the previous section. Our implementation for the algorithm will consist of four
major components of android: first is android service, which will stay in the background,
second is a set of two threads using the ScheduledExecutorService, and third is the
activity to show the pedometer application data. The last component is the SQLite database
to store the steps' information. The following is the high-level class diagram of the
application; we will discuss each class in detail in their own sections. Now, let's explore the
first component in detail:

The first component of the algorithm is the StepsTrackerService service,1.
which will remain in the background and provide a container for execution.
Inside this service, we create
the StepDetectorListener and AccelerometerListener classes and
implement them with the SensorEventListener interface so that they can
receive the sensor events. In the onCreate() method of the service, we
initiate SensorManager and the step detector sensor object after checking its
availability. We register the StepDetectorListener with SensorManager as
soon as the service is created. As discussed earlier, in order to make the algorithm
battery and CPU efficient, we will only register the accelerometer listener and
start processing the data when any step is detected using the step detector sensor.

The Step Counter and Detector Sensors – The Pedometer App

[124]

Hence, we only create the accelerometer Sensor object in the onCreate()
method and wait for any step detection before creating the object of
the AccelerometerListener and registering it with the SensorManager. We
also create the object of the StepsTrackerDBHelper class, which is our SQLite
database utility for handling all the database operations:

 public class StepsTrackerService extends Service{

 private SensorManager mSensorManager;
 private Sensor mStepDetectorSensor;
 private Sensor mAccelerometerSensor;
 private AccelerometerListener
 mAccelerometerListener;
 private StepDetectorListener mStepDetectorListener;
 StepsTrackerDBHelper mStepsTrackerDBHelper;

 @Override
 public void onCreate() {
 super.onCreate();

 mSensorManager = (SensorManager)
 this.getSystemService(Context.SENSOR_SERVICE);
 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_STEP_DETECTOR) != null)
 {
 mStepDetectorSensor =
 mSensorManager.getDefaultSensor
 (Sensor.TYPE_STEP_DETECTOR);
 mStepDetectorListener = new
 StepDetectorListener();
 mSensorManager.registerListener
 (mStepDetectorListener, mStepDetectorSensor,
 SensorManager.SENSOR_DELAY_FASTEST);
 }
 if(mSensorManager.getDefaultSensor
 (Sensor.TYPE_ACCELEROMETER) != null)
 {
 mAccelerometerSensor =
 mSensorManager.getDefaultSensor
 (Sensor.TYPE_ACCELEROMETER);
 }
 mStepsTrackerDBHelper = new
 StepsTrackerDBHelper(this);
 }

The Step Counter and Detector Sensors – The Pedometer App

[125]

The second component that plays an important part in developing the algorithm2.
is a set of two threads using the ScheduledExecutorService. It is the system
level Android thread executor service that provides the required number of
threads from its available pool of threads for execution. We initiate the object of
the ScheduledExecutorService with only two threads, using
the Executors.newScheduledThreadPool(2) method, and we use it to
schedule the execution of our two threads. The ScheduledFuture class instance
is used to store the reference of the scheduled thread obtained by scheduling it
using the ScheduledExecutorService.schedule()method.

The ScheduledFuture instance will also be used to cancel the execution of a
scheduled thread using the ScheduledFuture.cancel() method. For the step
detection algorithm, we use two threads: first is
the UnregisterAcceleromterTask thread, which implements the runnable
interface and is responsible for unregistering the accelerometer sensor, and second
is ProcessDataTask, which also implements the runnable interface and is used
to process the accelerometer data periodically. We use
the mScheduledUnregisterAccelerometerTask instance of
the ScheduledFuture class to store the reference of scheduled execution of
the UnregisterAcceleromterTask thread, and similarly, we store the reference
of the scheduled execution of the ProcessDataTask thread
in mScheduledProcessDataTask, which is also the instance of
the ScheduledFuture class.

As the first part to the logic, we want to only register the accelerometer listener
and start processing the accelerometer data when we detect any steps and this is
achieved inside the onSensorChanged() method of
the StepDetectorListener class, where we create the object
of AccelerometerListener and register it with SensorManager. We only
register AccelerometerListener if it is has not been registered earlier, and we
check this by using a Boolean variable called isAccelerometerRegistered.
When the AccelerometerListener is registered, we make it true and when
it unregisters inside the run() method UnregisterAcceleromterTask thread,
we make it false.

The Step Counter and Detector Sensors – The Pedometer App

[126]

Before registering, we also make sure that the mAccelerometerSensor is not
null, that is, the accelerometer sensor is present on the device. Now, the second
part of the logic is to unregister the accelerometer listener and stop processing the
accelerometer data when no steps have been detected for the last 20 seconds. This
is achieved by scheduling the execution of a new instance of
the UnregisterAcceleromterTask thread after 20 seconds every time that a
new step is detected, and cancelling the last scheduled execution of instance of
the UnregisterAcceleromterTask thread, if present. This keeps on
postponing the un-registration of the accelerometer listener until no step is
detected for the last 20 seconds.

We use the isScheduleUnregistered Boolean variable to check whether there
is any old scheduled execution instances of
the UnregisterAcceleromterTask thread pending for execution; if yes, then
we cancel its execution using the cancel() method of
the mScheduledUnregisterAccelerometerTask. As soon as
the UnregisterAcceleromterTask thread is scheduled for future execution,
we make the isScheduleUnregistered Boolean variable true, and after the
successful execution of the UnregisterAcceleromterTask thread, we make it
false. Inside the run() method of the UnregisterAcceleromterTask thread,
we also stop the processing of accelerometer data by stopping the execution of
the ProcessDataTask thread using the cancel() method
of mScheduledProcessDataTask, which stores its scheduled execution
reference:

 ScheduledExecutorService mScheduledExecutorService =
 Executors.newScheduledThreadPool(2);
 private ScheduledFuture
 mScheduledUnregisterAccelerometerTask;
 private ScheduledFuture mScheduledProcessDataTask;
 private UnregisterAcceleromterTask
 mUnregisterAcceleromterTask;
 private ProcessDataTask mProcessDataTask;
 private boolean isScheduleUnregistered = false;
 private boolean isAccelerometerRegistered = false;

 class StepDetectorListener implements
 SensorEventListener{

 @Override
 public void onSensorChanged(SensorEvent event) {

 if(!isAccelerometerRegistered &&
 mAccelerometerSensor!=null)

The Step Counter and Detector Sensors – The Pedometer App

[127]

 {
 mAccelerometerListener = new
 AccelerometerListener();
 mSensorManager.registerListener
 (mAccelerometerListener, mAccelerometerSensor,
 SensorManager.SENSOR_DELAY_FASTEST);
 isAccelerometerRegistered = true;
 }
 if(isScheduleUnregistered)
 {
 mScheduledUnregisterAccelerometerTask
 .cancel(true);
 }
 mUnregisterAcceleromterTask = new
 UnregisterAcceleromterTask();
 mScheduledUnregisterAccelerometerTask =
 mScheduledExecutorService.schedule
 (mUnregisterAcceleromterTask, 20000,
 TimeUnit.MILLISECONDS);
 isScheduleUnregistered = true;
 }
 }

 class UnregisterAcceleromterTask implements Runnable
 {

 @Override
 public void run() {
 isAccelerometerRegistered = false;
 mSensorManager.unregisterListener
 (mAccelerometerListener);
 isScheduleUnregistered = false;
 mScheduledProcessDataTask.cancel(false);
 }
 }

We create an AccelerometerData (POJO) class to hold the accelerometer data3.
together. It has the float x, y, and z variables to hold the acceleration values on
the x, y, and z axes. A double value holds the square root of the sum of the
squares of the acceleration acting on all the three axes, and long time is used for
storing the timestamp of the event. The Boolean variable isTruePeak is initiated
to true and is helpful in finding the peak values corresponding to each step.
(More on this in the next section). We create four instances of ArrayList on
the AccelerometerData objects to process the accelerometer data.

The Step Counter and Detector Sensors – The Pedometer App

[128]

Each of them will be discussed as we use them. In the
AccelerometerListener constructor, we schedule the periodic execution of
the ProcessDataTask thread to execute every 10 seconds with an initial delay of
10 seconds using the scheduleWithFixedDelay() method
of ScheduledExecutorService. The ProcessDataTask thread contains all the
logic needed to process the raw accelerometer data and find the type of steps
through it. Going back to AccelerometerListener, it's only responsible for two
tasks: the first is scheduling the period execution of the ProcessDataTask
thread, and the second is collecting the raw accelerometer data in
the onSensorChanged() method and storing it in mAccelerometerDataList,
which is the ArrayList of the AccelerometerData objects.

Now, let's discuss the ProcessDataTask thread in detail, which executes every
10 seconds and processes the last 10 seconds of accelerometer data, which is
stored in the mAccelerometerDataList. Inside the run() method of
the ProcessDataTask thread, the first task we do is copy all the elements of
the mAccelerometerDataList into a new ArrayList
of AccelerometerData objects called mRawDataList. After coping, we empty
the mAccelerometerDataList by calling its clear() method. This is done to
avoid the concurrent access of mAccelerometerDataList from
the OnSensorChanged() method of AccelerometerListener, which tries to
add values to it, and from the ProcessDataTask thread's run() method, which
reads values from it.

After this step, we calculate the square root of the sum of the squares of the
acceleration on the x, y, and z axes and store it in the double value variable using
a for loop, and we also update the SensorEvent timestamp to the current epoch
timestamp in milliseconds in the same loop. By default, the timestamp of
any SensorEvent is the time in nanoseconds from the system's boot time and not
the epoch time (also called the Unix timestamp). A simple way to convert it to
epoch time is to first divide the SensorEvent timestamp by 1,000,000 (to convert
from nanoseconds to milliseconds) and then add the offset value. The offset value
is the time in milliseconds from the start of the epoch time until the phone boot up
time, and this can be calculated by subtracting
the SystemClock.elapsedtime() from System.currentTimeMillis(). The
remaining steps are discussed in the next section:

 class AccelerometerData {
 public double value;
 public float x;
 public float y;
 public float z;

The Step Counter and Detector Sensors – The Pedometer App

[129]

 public long time;
 public boolean isTruePeak = true;
 }

 private long timeOffsetValue;
 ArrayList<AccelerometerData> mAccelerometerDataList
 = new ArrayList<AccelerometerData>();
 ArrayList<AccelerometerData> mRawDataList = new
 ArrayList<AccelerometerData>();
 ArrayList<AccelerometerData>
 mAboveThresholdValuesList = new
 ArrayList<AccelerometerData>();
 ArrayList<AccelerometerData> mHighestPeakList
 = new ArrayList<AccelerometerData>();

 class AccelerometerListener implements
 SensorEventListener{

 public AccelerometerListener()
 {
 mProcessDataTask = new ProcessDataTask();
 mScheduledProcessDataTask =
 mScheduledExecutorService.scheduleWithFixedDelay
 (mProcessDataTask, 10000, 10000,
 TimeUnit.MILLISECONDS);
 }

 @Override
 public void onSensorChanged(SensorEvent event) {

 AccelerometerData mAccelerometerData = new
 AccelerometerData();
 mAccelerometerData.x = event.values[0];
 mAccelerometerData.y = event.values[1];
 mAccelerometerData.z = event.values[2];
 mAccelerometerData.time = event.timestamp;
 mAccelerometerDataList.add(mAccelerometerData);
 }
 }

 class ProcessDataTask implements Runnable {

 @Override
 public void run() {
 //Copy accelerometer data from main sensor array
 in separate array for processing
 mRawDataList.addAll(mAccelerometerDataList);
 mAccelerometerDataList.clear();

The Step Counter and Detector Sensors – The Pedometer App

[130]

 //Calculating the magnitude (Square root of sum of
 squares of x, y, z) & converting time from nano
 seconds from boot time to epoc time
 timeOffsetValue = System.currentTimeMillis() -
 SystemClock.elapsedRealtime();
 int dataSize = mRawDataList.size();

 for (int i = 0; i < dataSize; i++) {

 mRawDataList.get(i).value =
 Math.sqrt(Math.pow(mRawDataList.get(i).x, 2) +
 Math.pow(mRawDataList.get(i).y, 2) +
 Math.pow(mRawDataList.get(i).z, 2));
 mRawDataList.get(i).time =
 (mRawDataList.get(i).time/1000000L) +
 timeOffsetValue;
 }

 //Calculating the High Peaks
 findHighPeaks();
 //Remove high peaks close to each other which are
 within range of 0.4 seconds
 removeClosePeaks();
 //Find the type of step (Running, jogging,
 walking) & store in Database
 findStepTypeAndStoreInDB();

 mRawDataList.clear();
 mAboveThresholdValuesList.clear();
 mHighestPeakList.clear();
 }

Until now, we have just been preparing the infrastructure required to write the4.
step detection algorithm. In this section, we will write the core logic of the
algorithm. As derived in the analysis of the step detection algorithm, we have to
count the highest peaks above the walking threshold value, which corresponds to
the highest acceleration registered on the accelerometer sensor when an
individual step hits the ground. We can easily observe in the following graph that
for every individual step, there is a corresponding highest peak, which is coupled
with a lowest trough value. The algorithm simply boils down to counting the
unique highest peak values (marked with a green circle), which are above the
threshold value (plotted with the orange line), and coupling them with the lowest
trough values (marked with a red circle).

The Step Counter and Detector Sensors – The Pedometer App

[131]

In the algorithm, we also have to deal with the false positive values (marked with
a yellow circle). These false positive values are registered very close to the highest
peak values.

The first step in the algorithm is to find all the values that are above the walking
threshold value and store them in mAboveThresholdValuesListArrayList of
the AccelerometerData objects. We do this inside a for loop using the if
condition, which is executed over the entire 10 seconds of accelerometer data stored
in mRawDataList. The second step in the algorithm is to find all the potential highest
peak values from the preceding threshold values. This is achieved by only adding
above the threshold values in the mAboveThresholdValuesList until any value
lower than the threshold value is received. As soon as any value lower than the
threshold is found, we take the values collected thus far in
the mAboveThresholdValuesList and sort them to find the highest potential peak
among the values collected until that point that are above the threshold.

We use a custom DataSorter collection comparator class to sort
the mAboveThresholdValuesList values. Now, this highest potential peak found
among the above threshold values could be either a false positive (marked with a
yellow circle in the figure), or a true highest peak value (marked with a green circle)
corresponding to one step. We save this highest potential peak value in a
separate mHighestPeakListArrayList. Before moving to the next group of above-
threshold values, we clear all the data from
the mAboveThresholdValuesListArrayList. After executing the for loop over the
entire mRawDataList, we will get all the highest potential peaks, which consist of both
false positive peak values (marked with the yellow circle in the figure) and the true
highest peak values (marked with the green circle) in the mHighestPeakList.

The Step Counter and Detector Sensors – The Pedometer App

[132]

Now, the third step of the algorithm is to filter out the false positive peak values from
the true highest peak values. We know from the analysis of the data that these false
positive values are pretty close to the true highest peak values, and also, their
magnitude is less than the true highest peak's magnitude. We use the same logic in
for loop to filter out the false positive values. We assume, by default, that all the
values collected in the mHighestPeakList are true peaks. We do this using the
Boolean variable, isTruePeak, in the AccelerometerData model class and
initializing it to true. Inside for loop, we check the time difference between the two
consecutive values; if the time difference is less than 0.4 seconds, then we assume that
they are pretty close to each other and one of them is a false positive, and after this, we
further compare their magnitude of length of vector, and whichever is smaller, we
mark that value as a false positive.

After executing the for loop over the entire mHighestPeakList, we are able to filter
out all the false positive values that have a lower magnitude and are near the highest
peak values by setting their isTruePeak Boolean variable to false. Now, the final
step in the algorithm is to detect the type of steps and save it in the database. This is
done using a for loop over the mHighestPeakList inside
the findStepTypeAndStoreInDB() method. Each type of step (running, jogging, and
walking) is assigned a peak constant threshold value, which we have derived from the
experimental data. For our algorithm, we are using the running peak value as 30,
jogging peak value as 25, and walking peak value as 15. We execute a for loop only on
those values of the mHighestPeakList that have the isTruePeak Boolean value
as true. We categorize the elements of the mHighestPeakList by comparing the
magnitude (length of vector) with the peak values of running, jogging, and walking,
and also, we use the mStepsTrackerDBHelper.createStepsEntry() method to
save the type and time of the step in the SQLite database:

public void findHighPeaks(){
 //Calculating the High Peaks
 boolean isAboveMeanLastValueTrue = false;
 int dataSize = mRawDataList.size();
 for (int i = 0; i < dataSize; i++)
 {
 if(mRawDataList.get(i).value > WALKINGPEAK)
 {
 mAboveThresholdValuesList.add
 (mRawDataList.get(i));
 isAboveMeanLastValueTrue = false;
 }
 else
 {
 if(!isAboveMeanLastValueTrue &&

The Step Counter and Detector Sensors – The Pedometer App

[133]

 mAboveThresholdValuesList.size()>0)
 {
 Collections.sort(mAboveThresholdValuesList,
 new DataSorter());
 mHighestPeakList.add(mAboveThresholdValuesList
 .get(mAboveThresholdValuesList.size()-1));
 mAboveThresholdValuesList.clear();
 }
 isAboveMeanLastValueTrue = true;
 }
 }
 }

 public void removeClosePeaks()
 {
 int dataSize = mHighestPeakList.size();
 for (int i = 0; i < dataSize-1; i++) {

 if(mHighestPeakList.get(i).isTruePeak)
 {
 if(mHighestPeakList.get(i+1).time -
 mHighestPeakList.get(i).time < 400)
 {
 if(mHighestPeakList.get(i+1).value >
 mHighestPeakList.get(i).value)
 {
 mHighestPeakList.get(i).isTruePeak = false;
 }
 else
 {
 mHighestPeakList.get(i+1).isTruePeak = false;
 }
 }
 }
 }
 }

 public void findStepTypeAndStoreInDB()
 {
 int size = mHighestPeakList.size();
 for (int i = 0; i < size; i++)
 {
 if(mHighestPeakList.get(i).isTruePeak)
 {
 if(mHighestPeakList.get(i).value > RUNNINGPEAK)
 {
 mStepsTrackerDBHelper.createStepsEntry
 (mHighestPeakList.get(i).time, RUNNING);

The Step Counter and Detector Sensors – The Pedometer App

[134]

 }
 else
 {
 if(mHighestPeakList.get(i).value > JOGGINGPEAK)
 {
 mStepsTrackerDBHelper.createStepsEntry
 (mHighestPeakList.get(i).time, JOGGING);
 }
 else
 {
 mStepsTrackerDBHelper.createStepsEntry
 (mHighestPeakList.get(i).time, WALKING);
 }
 }
 }
 }
 }

 public class DataSorter implements
 Comparator<AccelerometerData>{

 public int compare(AccelerometerData obj1,
 AccelerometerData obj2){
 int returnVal = 0;

 if(obj1.value < obj2.value){
 returnVal = -1;
 }else if(obj1.value > obj2.value){
 returnVal = 1;
 }
 return returnVal;
 }
 }

We create a StepsTrackerDBHelper class to handle all the database operations5.
and extend it from the Android SQLite built in the SQLiteOpenHelper utility
class, which provides access to the database. Inside the class, we create a database
called StepsTrackerDatabase, and it has only one table
StepsTrackerSummary, which consists of the following four columns
(id, steptype, steptime, and stepdate):

The first column, id, is the unique integer identifier for each row of the table and
is incremented automatically on the creation of every new row.
The second column, steptype, is used to store the type of step (running, jogging,
or walking).

The Step Counter and Detector Sensors – The Pedometer App

[135]

The third column is steptime, which is used to store the time in milliseconds.

The fourth column is stepdate, which is used to store the date in
the mm/dd/yyyy string format.

This class has a createStepsEntry() method that saves every step's information (the
type, time, and date of every step) in a new row of the table. This method is called
from StepTrackerService every time a new step is processed. There is another
method of this class called getStepsByDate(), which is responsible for reading the
total count of each type of step taken on a particular date, provided as the input
parameter. This getStepsByDate()is called from
the CustomAlgoResultsActivity, to display the pedometer data matrix. More on
this in the next section:

public class StepsTrackerDBHelper extends SQLiteOpenHelper
{
 private static final String DATABASE_NAME =
 "StepsTrackerDatabase";
 private static final String TABLE_STEPS_SUMMARY =
 "StepsTrackerSummary";
 private static final String ID = "id";
 private static final String STEP_TYPE = "steptype";
 private static final String STEP_TIME = "steptime";//time is
 in milliseconds Epoch Time
 private static final String STEP_DATE = "stepdate";//Date
 format is mm/dd/yyyy

 private static final String CREATE_TABLE_STEPS_SUMMARY =
 "CREATE TABLE " + TABLE_STEPS_SUMMARY + "(" + ID + " INTEGER
 PRIMARY KEY AUTOINCREMENT," + STEP_DATE + " TEXT,"+
 STEP_TIME + " INTEGER,"+ STEP_TYPE + " TEXT"+")";

 public boolean createStepsEntry(long timeStamp, int
 stepType)
 {

 boolean createSuccessful = false;
 Calendar mCalendar = Calendar.getInstance();
 String todayDate =
 String.valueOf(mCalendar.get(Calendar.MONTH)+1)+"/" +
 String.valueOf(mCalendar.get(Calendar.DAY_OF_MONTH))+"/" +
 String.valueOf(mCalendar.get(Calendar.YEAR));
 try {
 SQLiteDatabase db = this.getWritableDatabase();
 ContentValues values = new ContentValues();
 values.put(STEP_TIME, timeStamp);

The Step Counter and Detector Sensors – The Pedometer App

[136]

 values.put(STEP_DATE, todayDate);
 values.put(STEP_TYPE, stepType);
 long row = db.insert(TABLE_STEPS_SUMMARY, null, values);
 if(row!=-1)
 {
 createSuccessful = true;
 }
 db.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 return createSuccessful;
 }

 public int [] getStepsByDate(String date)
 {
 int stepType[] = new int[3];
 String selectQuery = "SELECT " + STEP_TYPE + " FROM " +
 TABLE_STEPS_SUMMARY +" WHERE " + STEP_DATE +" = '"+
 date + "'";
 try {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor c = db.rawQuery(selectQuery, null);
 if (c.moveToFirst()) {
 do {
 switch(c.getInt((c.getColumnIndex(STEP_TYPE))))
 {
 case WALKING: ++stepType[0];
 break;
 case JOGGING: ++stepType[1];
 break;
 case RUNNING: ++stepType[2];
 break;
 }
 } while (c.moveToNext());
 }
 db.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return stepType;
 }

}

The Step Counter and Detector Sensors – The Pedometer App

[137]

The last component of our application is to derive and display the pedometer6.
data matrix (total steps, distance, duration, average speed, average step
frequency, calories burned, and type of steps) on the user interface. We do this
inside the CustomAlgoResultsActivity class. In the onCreate() method of
the activity, we initiate seven instances of TextView to display the seven data
matrix points (total steps, distance, duration, average speed, average step
frequency, calorie burned, and type of steps). We also initiate the object of
the StepsTrackerDBHelper class, which is used to read the steps' data from the
database. The calculateDataMatrix() method, which is called from
the onCreate() method and is responsible for calculating the data matrix and
assigning the values to respective TextView on the user interface. Now, let's
discuss how we can calculate each data point in the data matrix.

The total numbers of steps are calculated by adding all the three types of steps
(running, jogging, and walking) for a particular date. For our example, we use the
current date for all the calculations. We use the getStepsByDate()method of
the StepsTrackerDBHelper class to get the number of each type of step.
 The total number of each type of step is directly given by
the getStepsByDate()method of the StepsTrackerDBHelper class, which
returns the total number of each type of step in an integer array of capacity 3.
The total distance is calculated by adding the distance travelled by all the three
types of steps (running, jogging, and walking). With our experimental data, we
found that walking a single step covers 0.5 meters, jogging a single step covers 1
meter, and running a single step covers close to 1.5 meters. Hence, we multiply
the distance covered by each type of step with their respective numbers to get the
total distance travelled.
The total duration is also calculated by adding the time taken by all the three
types of steps (running, jogging, and walking), and with the experimental sample
data, we found that on average, a single walking step takes 1 second, a single
jogging step takes 0.75 second, and a single running step takes 0.5 second. We
multiply their individual step timings with the number of each type of step and
add them together to get the total duration.
We found that, on average, 1 calorie is burned by walking 20 steps (from various
health resources such as h t t p : / / w w w . l i v e s t r o n g . c o m / a r t i c l e / 3 2 0 1 2 4 - h o w
- m a n y - c a l o r i e s - d o e s - t h e - a v e r a g e - p e r s o n - u s e - p e r - s t e p /). Similarly, 1
calorie is burned by jogging 10 steps, and for running, 1 calorie is burned by
five steps. Now, by multiplying the respective number of each step with the
inverse of each number of steps required to burn 1 calorie, will give us the total
number of calories burned.

http://www.livestrong.com/article/320124-how-many-calories-does-the-average-person-use-per-step/
http://www.livestrong.com/article/320124-how-many-calories-does-the-average-person-use-per-step/

The Step Counter and Detector Sensors – The Pedometer App

[138]

The average speed is calculated by dividing the total distance travelled by the
total duration.
The average step frequency is calculated by dividing the total number of steps
taken by the total duration in minutes:

 public class CustomAlgoResultsActivity extends
 Activity{
 private TextView mTotalStepsTextView;
 private TextView mTotalDistanceTextView;
 private TextView mTotalDurationTextView;
 private TextView mAverageSpeedTextView;
 private TextView mAveragFrequencyTextView;
 private TextView mTotalCalorieBurnedTextView;
 private TextView mPhysicalActivityTypeTextView;
 StepsTrackerDBHelper mStepsTrackerDBHelper;
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.capability_layout);
 mTotalStepsTextView =
 (TextView)findViewById(R.id.total_steps);
 mTotalDistanceTextView =
 (TextView)findViewById(R.id.total_distance);
 mTotalDurationTextView =
 (TextView)findViewById(R.id.total_duration);
 mAverageSpeedTextView =
 (TextView)findViewById(R.id.average_speed);
 mAveragFrequencyTextView =
 (TextView)findViewById(R.id.average_frequency);
 mTotalCalorieBurnedTextView =
 (TextView)findViewById(R.id.calories_burned);
 mPhysicalActivityTypeTextView =
 (TextView)findViewById
 (R.id.physical_activitytype);
 mStepsTrackerDBHelper = new
 StepsTrackerDBHelper(this);
 Intent mStepsAnalysisIntent = new
 Intent(getApplicationContext(),
 StepsTrackerService.class);
 startService(mStepsAnalysisIntent);
 calculateDataMatrix();
 }
 public void calculateDataMatrix()
 {
 Calendar mCalendar = Calendar.getInstance();
 String todayDate =

The Step Counter and Detector Sensors – The Pedometer App

[139]

 String.valueOf(mCalendar.get(Calendar.MONTH))
 +"/" + String.valueOf(mCalendar.get
 (Calendar.DAY_OF_MONTH)+1) +"/"+ String.valueOf
 (mCalendar.get(Calendar.YEAR));
 int stepType[] =
 mStepsTrackerDBHelper.getStepsByDate(todayDate);
 int walkingSteps = stepType[0];
 int joggingSteps = stepType[1];
 int runningSteps = stepType[2];
 //Calculating total steps
 int totalStepTaken = walkingSteps + joggingSteps
 + runningSteps;
 mTotalStepsTextView.setText
 (String.valueOf(totalStepTaken)+ " Steps");
 //Calculating total distance travelled
 float totalDistance = walkingSteps*0.5f +
 joggingSteps * 1.0f + runningSteps * 1.5f;
 mTotalDistanceTextView.setText
 (String.valueOf(totalDistance)+" meters");
 //Calculating total duration
 float totalDuration = walkingSteps*1.0f +
 joggingSteps * 0.75f + runningSteps * 0.5f;
 float hours = totalDuration / 3600;
 float minutes = (totalDuration % 3600) / 60;
 float seconds = totalDuration % 60;
 mTotalDurationTextView.setText
 (String.format("%.0f",hours) + " hrs " +
 String.format("%.0f",minutes) + " mins " +
 String.format("%.0f",seconds)+ " secs");
 //Calculating average speed
 if(totalDistance>0)
 {
 mAverageSpeedTextView.setText
 (String.format("%.2f",
 totalDistance/totalDuration)+" meter per
 seconds");
 }
 else
 {
 mAverageSpeedTextView.setText
 ("0 meter per seconds");
 }
 //Calculating average step frequency
 if(totalStepTaken>0)
 {
 mAveragFrequencyTextView.setText
 (String.format("%.0f",totalStepTaken/minutes)+"
 steps per minute");

The Step Counter and Detector Sensors – The Pedometer App

[140]

 }
 else
 {
 mAveragFrequencyTextView.setText
 ("0 steps per minute");
 }
 //Calculating total calories burned
 float totalCaloriesBurned = walkingSteps * 0.05f
 + joggingSteps * 0.1f + runningSteps * 0.2f;
 mTotalCalorieBurnedTextView.setText
 (String.format("%.0f",totalCaloriesBurned)+"
 Calories");

 //Calculating type of physical activity
 mPhysicalActivityTypeTextView.setText
 (String.valueOf(walkingSteps) + " Walking Steps "
 + "\n"+String.valueOf(joggingSteps) + " Jogging
 Steps " + "\n"+String.valueOf(runningSteps)+ "
 Running Steps");
 }

The following is the screenshot of the pedometer app showing the pedometer data
matrix (total steps, distance, duration, average speed, average step frequency, calories
burned, and type of steps (walking, jogging, running)) active since the app was installed on
the phone:

The Step Counter and Detector Sensors – The Pedometer App

[141]

What just happened?
We did some really interesting developmental work for this pedometer application.
First, we analyzed the accelerometer data to figure out the common pattern in the
signatures of the walking, jogging, and running accelerometer sensor data. After that, we
developed the type of step detection algorithm using this analysis. We also figured out how
to use threads inside the service to process the accelerometer data in the background, and
how to combine the step detector sensor with the accelerometer sensor to achieve battery
optimization. We used our experimental data to derive the pedometer data matrix (total
steps, distance, duration, average speed, average step frequency, calories burned, and type
of steps) using the total number of each type of step detected by our algorithm.

Summary
We learned a lot of new concepts in this chapter, such as the step detector and step
counter sensors. We learned how to develop the algorithm for detecting the types of steps
(walking, jogging, fast running) using the accelerometer sensor data. We also looked at
the infrastructure (service, threads, and database) required to process the sensor data in
the background for a longer duration of time. This knowledge of the required
infrastructure (service, threads, and database) will play an important role in developing
efficient sensor-based applications.

7
The Google Fit Platform and

APIs – The Fitness Tracker App
This chapter will introduce you to new ways of working with sensors. We will learn about
the new Google Fit platform and how it can be used to manage fitness sensor data
efficiently. We will explore the different APIs provided by the Google Fit platform. In this
chapter, we will learn new concepts, such as how we can request the automated collection
and storage of sensor data in a battery-efficient manner, without your app being in the
background all the time. We will also learn how to get data from a remotely connected
device, such as Android Wear. In this chapter, we will mostly deal with fitness sensors and
as a learning exercise, we will develop a fitness tracker application that will collect and
process your fitness data.

The topics you will learn about in this chapter are:

What is the Google Fit platform?
How the Android fitness APIs, Rest APIs and Google Fitness Store fit together
into the Google Fit platform
The details of six Android fitness APIs and the fundamentals of the Android
fitness platform
The user authorization process, required fitness scopes and permissions to use
Android fitness APIs, and how to register your application with the Google
developer console
The implementation of Android fitness APIs inside the fitness tracker application,
which will collect and process your fitness sensor data

The Google Fit Platform and APIs – The Fitness Tracker App

[143]

Getting the list of available fitness data sources on local or remotely connected
devices and getting live fitness data from them
Requesting the automated storage of fitness sensor data in a battery-efficient
manner and retrieving fitness history data for a particular date range

The Google Fit platform
Google Fit is a platform that allows developers to manage user fitness data effectively.
Developers, on behalf of users, can upload, download, and persist their fitness data to a
central repository in the cloud. This fitness data can range from simple height and weight
numbers to individual step information. The fitness data can come from various data
sources, such as fitness apps, Android sensors, Android wear sensors or any other device
that can connect and upload data to the Google Fit platform. The data sources can be
present either locally on the phone or can be in remote devices in the form of any app or
hardware sensors. This fitness data management is done using three key components, as
shown in the following diagram: the first is the Google Fitness Store, which resides in the
cloud; the second are web-based REST APIs; and the third are Android Fitness APIs which
are on the Android devices. Now let's discuss each one of them separately in detail.

The Google Fit Platform and APIs – The Fitness Tracker App

[144]

Google Fitness Store
All user fitness data is stored in the cloud on servers maintained by Google. Both REST
APIs and Android Fitness APIs can manage data that is independently stored inside Google
Fitness Store. If the user upgrades his Android phone, or removes any old fitness app or
devices, then this data is persisted in the Google fitness store. This fitness data can be
accessed from any platform, including Android, iOS or the Web, using one of these two
APIs, but the user has to grant permission to the app before using either of these two APIs.

REST APIs
REST APIs are provided to support platforms other than Android. They can be used in an
iOS native app or any web-based app. They are RESTful-based web services and use JSON
for communications. They use the OAuth 2.0 protocol for authorization from users. REST
APIs allow us to read, write and delete fitness data, but have some limitations when
compared to Android Fitness APIs, such as not being able to discover fitness devices
connected via Bluetooth and read their live sensor data streams. A detailed discussion and
implementation of REST APIs is out of the scope of this book. We will mostly focus on
Android Fitness APIs in this chapter.

Android Fitness APIs
Android Fitness APIs are part of Google Play Services, which comes as a part of the
Android SDK. These APIs provide access to fitness data from two different sources: the first
is a local source, which is any fitness Android app installed on the phone or any local sensor
of the phone, while the second is a remote source, which is any fitness app or sensor
installed on any other device. The Google Fitness platform doesn't differentiate between
local or remote sources; it has its own categorization of data sources, which we will discuss
in the coming sections. Android Fitness APIs can be used in Android applications after
getting the required permissions from the user. They provide access to read, write, and
delete fitness data. It also allows developers to create new fitness data types, scan for new
BLE (Bluetooth Low Energy) fitness devices, and connect to them to get fitness data. There
are six Android Fitness APIs to support this functionality. We will discuss each one of them
in detail.

The Google Fit Platform and APIs – The Fitness Tracker App

[145]

Sensors API
The Sensors API provides a list of available data sources that can provide live data streams.
These data sources can be on a local device or on connected devices. It also allows the
adding and removing of data listeners on a data source to read the live data stream coming
from a sensor. This API is useful when we need to process live sensor fitness data. We will
look at the implementation details in the fitness tracker application discussed in the second
half of the chapter.

Recording API
The Recording API allows your app to request the automated storage of sensor data in a
battery-efficient manner by creating subscriptions. A subscription is a form of request,
which instructs the Recording API to save the data from different types of data sources or
data types. It doesn't matter if your app is active or not; once a data type is subscribed
successfully, it's the responsibility of the Google Fit platform to save the data of the
requested data type until that data type is unsubscribed. The Recording API allows three
major tasks: adding subscriptions, removing subscriptions, and listing active subscriptions.
The data saved using Recording API subscriptions can be read using the History API. This
API is useful when your app needs fitness data continuously in a battery-efficient manner
and doesn't want to stay in the background forever to manage the storage of data.

History API
The History API allows your app to read, write, and delete fitness history data. It supports
the batch importing of data from the fitness history. Through the History API, your app can
read the data generated by any fitness app or sensor, but it can only delete the data
generated by your own app. This API is useful when we need fitness data from any past
date. We will look at the implementation details in the fitness tracker application discussed
in the second half of the chapter.

The Google Fit Platform and APIs – The Fitness Tracker App

[146]

Sessions API
Sessions are time intervals during which users perform any fitness activity, such as a run, a
bike ride, or a game. Sessions help organize data and perform detailed or aggregate queries
for a fitness activity. Sessions consist of a start time, an end time, a user-friendly name, a
description, an activity type, and a unique identifier. Sessions do not contain fitness data
themselves. Sessions can be considered as metadata objects with information that helps you
query data from the fitness store later. The sessions API allows your app to create sessions
in the fitness store using real-time data, or data you previously collected using the sensors
API or from outside Google Fit. The API also allows your app to read, write, and delete the
session data. This API is useful when we need to work with fitness metadata.

Bluetooth Low Energy API
The Bluetooth Low Energy(BLE) API allows your app to scan for any available BLE
devices. Once a BLE device is found, the API also allows your app to claim the device. Once
it's successfully claimed, the device can be used to get data via the Sensor API or Recording
API. This API is useful when your app needs to connect to any new BLE device.

Config API
The Config API allows your app to create your own custom data type for your private app
usage. This custom data type is not available to other apps. It also allows your app to
retrieve shareable data types added by other apps or custom data types added by your app.
This API is useful when there is no existing data type available that fits your needs and you
want to create a new data type.

Platform basics
The following section explains the platform basics and fitness data formats and
terminologies used by the Google Fit platform.

The Google Fit Platform and APIs – The Fitness Tracker App

[147]

Data sources
Data sources represent unique sources of sensor data. They can expose raw data coming
from hardware sensors on local or companion devices, which is categorized as TYPE_RAW.
Data sources also expose derived data, created by transforming or merging other data
sources, which are categorized as TYPE_DERIVED. They hold the metadata regarding the
source, such as which hardware device (device name) or application (package name)
generated the data. Multiple data sources can exist for the same data type, for example for
the heart rate data type, we can have a heart rate sensor in a watch and a heart rate sensor
in a chest wrap that show as two different data sources for one data type.

Data types
A data type defines the representation and format of any fitness data. It consists of a name
and an ordered list of fields, where each field represents a dimension. For example, a data
type for location contains three fields (latitude, longitude, and accuracy), whereas a data
type for weight contains only one field. Certain data types can have corresponding
aggregated data types; AGGREGATE_STEP_COUNT_DELTA is the aggregate data type
of TYPE_STEP_COUNT_DELTA. For certain use cases, aggregated data types are very useful;
for example, in a step counter application, a user would only be interested in knowing the
total number of steps taken per day and not in the details (time) of each step. There are
three kinds of data type:

Public data types: These are the standard data types provided by the Google fit
platform and can be used by every one.

Private custom data types: These are custom data types that are specific to one
app. Only the app that defines the data type can use it. They can be created using
the Config API.
Sharable data types: These are custom data types that are provided by third-
party app developers and are approved by Google. Any app can read sharable
data types, but only whitelisted apps, which are specified by a third-party
developer, can write data of that sharable data type. For example, Nike and
Adidas have made their sharable data types available for read only access. They
can be read using the Config API.

The Google Fit Platform and APIs – The Fitness Tracker App

[148]

Data point
A data point represents a single data point in a data type's stream from a particular data
source. A data point holds a value for each field, a timestamp, and an optional start time. A
single data point can have multiple fields and a single value for each field. A data point can
hold an instantaneous measurement, reading, or inputted observation, as well as averages
or aggregates over a time interval.

Data set
As the name suggests, this represents a set of data points of the same type from a particular
data source covering a specific time interval. It is a grouping of data points based on a
certain date or time range. We use datasets to insert data in, and read data from, the fitness
store.

Authorization and permission scopes
User authorization is required before your application can read or write any fitness sensor
data. User authorization is a two-step process. Step one is the registration of your
application with the Google developer console, which is done outside your application.
Step two is getting authorization from the user by using relevant scopes inside your
application.

Registration with the Google developer console
Every application that needs to access fitness sensor data needs to register with the Google
developer console. The followings steps explain the registration process:

Open the Google developer console in any browser.1.
Create a project from the console and enter your project name, which could be the2.
same or different from your application name.
Find the Fitness API from the APIs and Auth console menu and turn it on. Now3.
Fitness API should appear at the top of your API list.
Go to the Credential console menu and click on Create a new Client ID. This will4.
open a new pop-up window to enter your application details into.
In the pop-up window, select your application type as Android and give the5.
name of your application.

The Google Fit Platform and APIs – The Fitness Tracker App

[149]

Provide the SHA1 fingerprint of your signing certificate in the relevant box of the6.
pop-up window.
Provide the application package name from your manifest file and click on7.
the Create Client ID button to complete the process.

Authorization from a user in the application
After completing the one-time registration with Google developer console, the user consent
has to be taken inside the application. As a first step, we have to select the required scopes
and then we have to connect to Google Play Services. Depending on the number of scopes
set, Google Play Services will prompt the user with an authorization dialog showing the
required permissions. Once the user gives consent, your applications can access the Fitness
APIs. The implementation details are discussed in the fitness tracker application, in the
second half of the chapter. The following is a screenshot of the authorization dialog,
showing the required permissions for the device:

The Google Fit Platform and APIs – The Fitness Tracker App

[150]

Fitness scopes
Scopes are strings that determine what kinds of fitness data an app can access and also
define the level of access to this data. Scopes belong to a particular permissions group. The
following table lists the different types of scope, their type of access, their data types, and
the permissions group that they belong to.

Permission
Group

Scopes Type
of
Access

Data Types

Activity FITNESS_ACTIVITY_READ Read com.google.activity.sample

com.google.activity.segment

com.google.activity.summary

com.google.calories.consumed (deprecated)

com.google.calories.expended

FITNESS_ACTIVITY_READ_WRITE Read
and
write

com.google.cycling.pedaling.cadence

com.google.power.sample

com.google.step_count.cadence

com.google.step_count.delta

com.google.activity.exercise

Body FITNESS_BODY_READ Read com.google.heart_rate.bpm

com.google.heart_rate.summary

FITNESS_BODY_READ_WRITE Read
and
write

com.google.height

com.google.weight

com.google.weight.summary

Location FITNESS_LOCATION_READ Read com.google.cycling.wheel_revolution.cumulative

com.google.cycling.wheel.revolutions

com.google.distance.delta

FITNESS_LOCATION_READ_WRITE Read
and
write

com.google.location.sample

com.google.location.bounding_box

com.google.speed

com.google.speed.summary

Nutrition FITNESS_NUTRITION_READ Read com.google.nutrition.item

FITNESS_NUTRITION_READ_WRITE Read
and
write

com.google.nutrition.summary

The Google Fit Platform and APIs – The Fitness Tracker App

[151]

Installing and running time permissions
If your application is using any of the DataTypes that belong to either the Location or
Body permission groups shown in the preceding table, your application needs to have the
following permissions:

Install time permissions in AndroidManifest.xml: If your application uses a
DataType that belong to either the Location or Body permission groups, then it
needs to have ACCESS_FINE_LOCATION for Location-based data types and
BODY_SENSORS for body-based data types.

Runtime permissions: If your application uses a DataType that belong to either
the Location or Body permission groups and is compiled with SDK version 23
(Marshmallow) or above, then your application needs to get run time permission
for ACCESS_FINE_LOCATION and BODY_SENSORS.

The installation time permissions in AndroidManifest.xml and the run time permissions
are different from the user authorization discussed in the previous section.

Fitness tracker app using fitness APIs
We have covered enough theory, now we will look at the implementation of these fitness
APIs. As a learning exercise for this chapter, we will be developing a fitness tracker
application that will make use of the fitness APIs we discussed so far in this chapter. This
application will capture live fitness data and will also help users to track their fitness
history. Let's explore the features and architecture of the application in detail.

The Google Fit Platform and APIs – The Fitness Tracker App

[152]

Fitness tracker application requirements and
architecture
The following list shows the high-level requirements of the fitness tracker application:

When the application starts for the first time, it should get the following1.
authorizations from the user:

To read their live fitness data with all the read scopes, using the Sensor1.
API.
To record their fitness data with all the read scopes, using Recording2.
API.
To read their fitness history data with all the read scopes, using History3.
API.

The application should list all the available data sources for live data capture2.
using the Sensors API.
The application should capture live data from available data sources. It should3.
also allow adding and removing listeners using the Sensors API.
The application should list all the active subscriptions with their data types using4.
the Recording API.
The application should allow adding and removing of subscriptions for a5.
particular data type using the Recording API.

The application should show the history of available fitness data types from a6.
selected date range to the user using the History API.
The application should show the aggregated history of available fitness data7.
types by individual day, using the buckets filter provided by History API.

The Google Fit Platform and APIs – The Fitness Tracker App

[153]

The following is the class diagram of the fitness tracker application, along with the high-
level functionality of classes:

SensorActivity: This is an instance of Android activity and is responsible for1.
listing the available data sources. It gets authorization from the user to read live
fitness data. It also captures and displays live fitness data by adding a listener for
a particular data type using Sensors API. It also removes a previously added
listener.
SubscriptionActivity: This is an instance of Android activity and is2.
responsible for listing all the active subscriptions. It also allows adding and
removing of subscriptions for a particular data type using the Recording API.
HistoryActivity: This is an instance of Android activity and allows your app3.
to query and aggregate the history of available fitness data types from a selected
date range using History API and shows the results to the user.

The Google Fit Platform and APIs – The Fitness Tracker App

[154]

MainActivity: This is an instance of Android activity and provides the first4.
screen of the application. The sole purpose of this class is to navigate between the
previous three activities.
DataHelper: This is a singleton data utility class that provides human readable5.
strings for all the available data types in the form of ArrayList<String>. It also
provides all the available data types in the form of ArrayList<DataType>.

Time for action – working with live fitness
data using the Sensors API
The Sensors API is provided to work with a live stream of fitness sensor data. It can provide
data from sensors on local or connected devices. The Sensors API is a part of Google play
services and can be connected using the GoogleApiClient class. In SensorActivity,
we first add the required scopes and Sensors API and then connect to Google play services
using an object of the GoogleApiClient class. The steps for connecting to Google play
services via the GoogleApiClient class are explained in the first section of the driving
event detection application of the bonus chapter, Sensor Fusion and Sensors-Based APIs – The
Driving Events Detection App, during the discussion on the activity recognition API. The only
difference in steps is that, instead of adding activity recognition API; we have to add
Sensors API. Now let's look at the individual tasks performed by SensorActivity:

The first task performed by SensorActivity is to get authorization from the1.
user to read live fitness data using the Sensors API. This authorization only has to
be requested the first time. To get authorization, we first create an object of the
GoogleApiClient class in the activity's onCreate() method and then add the
Fitness.SENSORS_API and relevant scopes in the object. To test all the available
data sources, we add all the four possible scopes, but for a real-world application,
we should only add the required scopes, as these scopes are visible to the user in
the authorization system dialog. We also have to add the connection successful
and failed callback listeners in the GoogleApiClient object. After creating
the GoogleApiClient object, we connect it to the Google service library in
activity's onStart() method and disconnect the onStop() method of the
activity. If the user has already provided authorization, it will be connected
successfully and will be notified through the onConnected() method callback.

The Google Fit Platform and APIs – The Fitness Tracker App

[155]

But if the user has not given authorization before, then the connection will fail and
will be notified through the onConnectionFailed() method callback. If the
connection failed because of non-authorization, or any other reason that can be
resolved by Google play services, then the method hasResolution() of
the ConnectionResult object inside the onConnectionFailed()method is
passed as true and we can call the startResolutionForResult()method of
the ConnectionResult object. This will present the user with the authorization
system dialog asking for relevant permissions if the user has not provided these
permissions before. If there is any other reason for the connection to fail, such as
the user doesn't have a fitness account or it is not configured, then it will try to
resolve that. Once the user has given permission, it will notified in
the onActivityResult()method with the same request code that we requested
in the startResolutionForResult()method, and from there we can again try
to connect to Google services:

 public class SensorActivity extends Activity
 implements ConnectionCallbacks,
 OnConnectionFailedListener, OnItemSelectedListener,
 OnItemClickListener{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.livedata_layout);
 mLiveDataText =
 (TextView)findViewById(R.id.livedata);

 setUpSpinnerDropDown();
 setUpListView();

 mClient = new GoogleApiClient.Builder(this)
 .addApi(Fitness.SENSORS_API).addScope(new
 Scope(Scopes.FITNESS_ACTIVITY_READ))
 .addScope(new Scope(Scopes.FITNESS_BODY_READ))
 .addScope(new Scope(Scopes.FITNESS_LOCATION_READ))
 .addScope(new Scope(Scopes.FITNESS_NUTRITION_READ))
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this).build();
 }

 @Override
 public void onConnectionFailed(ConnectionResult
 connectionResult) {

 if(connectionResult.hasResolution()){

The Google Fit Platform and APIs – The Fitness Tracker App

[156]

 try {
 connectionResult.startResolutionForResult
 (SensorActivity.this, REQUEST_OAUTH);
 }catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 }

 @Override
 protected void onActivityResult(intrequestCode,
 intresultCode, Intent data) {
 if (requestCode == REQUEST_OAUTH&&resultCode ==
 RESULT_OK) {
 if (!mClient.isConnecting() &&
 !mClient.isConnected()) {
 mClient.connect();
 }
 }
 }

The second important task performed by SensorActivity is to list all the2.
available data sources for a selected data type. We use the spinner drop-down to
let the user select a particular data type. In
the setUpSpinnerDropDown()method, we set up the spinner and set it on the
selected listener. We get all the human readable string values for all the available
data types from the getDataTypeReadableValues()method of
the DataHelper utility singleton class. After the user has selected a data type
from the spinner drop-down value, we find all its available data sources. In
the onItemSelected() spinner callback, we get the selected item position, and
by using the getDataTypeRawValues() method of the DataHelper utility
class, we get its corresponding DataType object value, which is then passed to
the listDataSources() method to query the available data sources. Inside
the listDataSources() method, we use the findDataSources() method of
the Fitness.SensorsApi class to query all the available data sources.

The Google Fit Platform and APIs – The Fitness Tracker App

[157]

The findDataSources() API requires two parameters: the first is the object
of GoogleApiClient and the second is the object of DataSourcesRequest,
which has a builder syntax shown in the following code snippet.
The DataSourcesRequest API accepts two parameters: the first is the data type,
which is a mandatory parameter, and second is the type of data source
(TYPE_DERIVED and TYPE_RAW), which is an optional parameter. If we don't
specify the type of data sources, then we will receive both types of data source.
The result of the available data sources is received inside the result listener, which
is set by passing the object of ResultCallback<DataSourcesResult> inside
the setResultCallback()method of the findDataSources() API. The result
is received in the form of List<DataSource>, which contains all the
available DataSource objects for that particular data type. Using this list, we
populate our local mDataSourceList, which is the ArrayList of DataSource.
We show the entire list of available data sources in the ListView, which is set up
inside the setUpListView() method and is called from the onCreate() method
of the activity. If no data source is found, then we display the relevant message
in mLiveDataText, which is the object of TextView. We set the item click listener
on the ListView to receive the index of the clicked data source item for which the
data listener will be added (this is explained in the next section). The
implementation details of ListAdapter can be found in the code that comes with
this chapter:

 public void setUpListView() {

 mListView =
 (ListView)findViewById(R.id.datasource_list);
 mListAdapter = new ListAdapter();
 mListView.setOnItemClickListener(this);
 mListView.setAdapter(mListAdapter);
 }

 public void setUpSpinnerDropDown() {

 Spinner spinnerDropDown = (Spinner)
 findViewById(R.id.spinner);
 spinnerDropDown.setOnItemSelectedListener(this);
 ArrayAdapter<String> arrayAdapter = new
 ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 DataHelper.getInstance()
 .getDataTypeReadableValues());
 arrayAdapter.setDropDownViewResource
 (android.R.layout.simple_spinner_dropdown_item);
 spinnerDropDown.setAdapter(arrayAdapter);

The Google Fit Platform and APIs – The Fitness Tracker App

[158]

 }

 public void listDataSources(DataType mDataType)
 {
 Fitness.SensorsApi.findDataSources(mClient, new
 DataSourcesRequest.Builder().setDataTypes(mDataType)
 .setDataSourceTypes(DataSource.TYPE_DERIVED)
 .setDataSourceTypes(DataSource.TYPE_RAW).build())
 .setResultCallback(new
 ResultCallback<DataSourcesResult>() {
 @Override
 public void onResult(DataSourcesResult
 dataSourcesResult) {
 mListAdapter.notifyDataSetChanged();
 if (dataSourcesResult.getDataSources()
 .size() > 0) {
 mDataSourceList.addAll
 (dataSourcesResult.getDataSources());
 mLiveDataText.setText("Please select from
 following data source to get the live data");
 } else {
 mLiveDataText.setText("No data source found
 for selected data type");
 }
 }
 });
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View
 view, int position, long id) {

 if (mClient.isConnected() && position!=0) {
 listDataSources(DataHelper.getInstance()
 .getDataTypeRawValues().get(position));
 if(mDataSourceList.size()>0) {
 mDataSourceList.clear();
 }
 }
 }

The Google Fit Platform and APIs – The Fitness Tracker App

[159]

After getting the available data sources for a particular data type, we can get the3.
live data from the data source. To get the live data from the data source, we have
to add the object of OnDataPointListener. In our example, we first get the
clicked position of the data source item of the ListView inside
the onItemClick() method and, using the position, we get the
corresponding DataSource object from mDataSourceList and pass this object
to the addDataListener()method for adding the listener. Inside
the addDataListener() method, we use the add() method of
the Fitness.SensorsApi class to add the listener and get the live sensor data.
The add() API requires three parameters: the first is the object
of GoogleApiClient and the second is the object of SensorRequest, which has
a builder syntax shown in the following code snippet. The API accepts three
important parameters: the first one is the sampling rate, the second is the
mandatory data type, and the third parameter is the optional data source in
the SensorRequest object. Another parameter accepted by the add() API is the
object of OnDataPointListener, which receives the live data from sensors and
returns it in the form of a single DataPoint object. The DataPoint object
consists of multiple fields and their values. For our example, we iterate over all
the fields and their values using a for loop and show them in
the mLiveDataText label. The add() API also allows us to set the result callback
by passing the object of ResultCallback<Status> inside
the setResultCallback()method of the API. Depending on the status received
in this result callback, we set the relevant message in the mLiveDataText label.
Before adding the data point listener, we check if there is an existing listener
already added by using the isDataListenerAdded Boolean variable inside
the onItemClick() method. If the data point listener has already been added,
then we remove it by calling the removeDataListener() method. Inside
the removeDataListener() method, we remove the existing data point listener
using the remove() method of the Fitness.SensorsApi class. It accepts two
arguments: the first is the object of GoogleApiClient and the second is the
object of the existing data point listener. We set
the isDataListenerAdded Boolean variable back to false after the successful
removal of the listener:

 @Override
 public void onItemClick(AdapterView<?> parent, View
 view, int position, long id) {

 //remove any existing data listener,if previously
 added.
 if(isDataListenerAdded) {

The Google Fit Platform and APIs – The Fitness Tracker App

[160]

 removeDataListener();
 }
 addDataListener(mDataSourceList.get(position));
 }

 public void addDataListener(DataSource mDataSource)
 {
 Fitness.SensorsApi.add(mClient, new
 SensorRequest.Builder().setDataSource(mDataSource)
 .setDataType(mDataSource.getDataType())
 .setSamplingRate(1, TimeUnit.SECONDS)
 .build(), mOnDataPointListener)
 .setResultCallback(new ResultCallback<Status>() {
 @Override
 public void onResult(Status status) {
 if (status.isSuccess()) {
 mLiveDataText.setText("Listener registered
 successfully, waiting for live data");
 isDataListenerAdded = true;
 } else {
 mLiveDataText.setText("Listener registration
 failed");
 }
 }
 });
 }

 OnDataPointListener mOnDataPointListener = new
 OnDataPointListener() {
 @Override
 public void onDataPoint(DataPoint dataPoint) {
 final StringBuilder dataValue = new
 StringBuilder();
 for (Field field :
 dataPoint.getDataType().getFields())
 {
 Value val = dataPoint.getValue(field);
 dataValue.append("Name:" + field.getName() + "
 Value:" + val.toString());
 }

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mLiveDataText.setText(dataValue.toString());
 }
 });
 }

The Google Fit Platform and APIs – The Fitness Tracker App

[161]

 };

 public void removeDataListener()
 {
 Fitness.SensorsApi.remove(mClient,
 mOnDataPointListener).setResultCallback(new
 ResultCallback<Status>() {
 @Override
 public void onResult(Status status) {
 if (status.isSuccess()) {
 isDataListenerAdded = false;
 Log.i(TAG, "Listener was remove
 successfully");
 } else {
 Log.i(TAG, "Listener was not removed");
 }
 }
 });
 }

What just happened?
We created a small utility that lists all the available data sources for a particular selected
data type. For simplicity, we loaded all available names of data types in a spinner drop-
down to select from. Once a data type is selected from the spinner drop-down, we load the
available data sources in a list corresponding to that data type. A data type can have
multiple data sources available from local or connected devices. Once any data source is
clicked on from the list of available data sources, we add its listener and display the live
data coming from that data source in a text field. This utility can be used in any use case
where you have to process live sensor data. There are only a few data types, such as steps or
location-based data types, for which you will find available data sources that provide live
sensor data.

The Google Fit Platform and APIs – The Fitness Tracker App

[162]

Most data sources provide data to the fitness store after processing. An important sensor
that you would expect to provide live data is the heart rate BPM, especially on Android
wear, but most Android wear (such as Moto 360 and LG Watch Urban), don't support the
streaming of heart rate data over Bluetooth; instead they process the heart rate locally on
the watch and upload it later to the Google Fitness Store. There are some chest wrap heart
rate monitor devices, such as the Polar h7 Bluetooth heart rate sensor, that support the live
streaming of heart rate data over Bluetooth. The following is a screenshot from a Nexus 5X
device, showing the available data sources for the data type STEP COUNT DELTA:

The Google Fit Platform and APIs – The Fitness Tracker App

[163]

Time for action – recording fitness data in
background using Recording API
The Recording API allows your app to request automated storage of sensor data in a
battery-efficient manner by creating subscriptions. Once you add a subscription for a data
type, then it's Google Play services' responsibility to start recording the data for the
requested data type in the background. This recorded data is stored in the Google fitness
store and can be queried by History API. The Recording API only decides which data type
to record; everything else is managed by the Google fitness platform. The Recording API is
part of Google play services. The steps for connecting to Google play services via the
GoogleApiClient class are exactly the same as for the Sensors API, discussed in the
previous section. In our example, inside SubscriptionActivity we will perform four
important tasks with subscriptions. First, we will get authorization to read history data
from the fitness store using the History API. Second, we will list all the existing
subscriptions. Third, we will add subscriptions from the spinner drop-down. Finally, we
will delete an already added subscription. Now let's look at the individual tasks performed
by SubscriptionActivity:

The first task performed by SubscriptionActivityis to get authorization from1.
the user to read history fitness data using the History API. This authorization has
to be requested for the first time only. The code and process for getting
authorization is exactly the same as for Sensors API, which we discussed in the
previous section. The only difference is that we have to add RECORDING_API in
place of SENSORS_API in the addApi() method of the GoogleApiClient
class.Even though authorization has already been given in the SensorActivity
class, we still have to get authorization for two reasons: we are using a different
API (History API) and the user might go directly to
SubscriptionActivity instead of going to SensorActivity first. The code
used inSubscriptionActivity can be downloaded from the code bundle for
this chapter:

 public class SubscriptionActivity extends Activity
 implements ConnectionCallbacks,
 OnConnectionFailedListener, OnItemSelectedListener,
 OnItemClickListener {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.subscriptiondata_layout);

 mClient = new GoogleApiClient.Builder(this)

The Google Fit Platform and APIs – The Fitness Tracker App

[164]

 .addApi(Fitness.RECORDING_API)
 .addScope(new Scope(Scopes.FITNESS_ACTIVITY_READ))
 .addScope(new Scope(Scopes.FITNESS_BODY_READ))
 .addScope(new Scope(Scopes.FITNESS_LOCATION_READ))
 .addScope(new
 Scope(Scopes.FITNESS_NUTRITION_READ))
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this).build();
 setUpSpinnerDropDown();
 setUpListView();
 }

The second task performed by SubscriptionActivityis to list all the existing2.
active subscriptions. We show the entire active subscriptions list of the data type
in the ListView, which is set up inside the setUpListView() method (this
method is the same as in the previous SensorActivity class) and is called from
the onCreate() method of the activity. As soon as we get connected to the
Google play services through the GoogleApiClient object, we call
the listExistingSubscription()method to get the list of active
subscriptions. Inside the listExistingSubscription()method, we use
the listSubscriptions() method of Recording API to get the list of all active
subscriptions asynchronously inside the object
of ResultCallback<ListSubscriptionsResult>, which is set using
the setResultCallback() method of the API. We receive a list
of Subscription objects, which contains all the details of the active subscription. To
display the results in the ListView, we only take the data type of the
subscription and add it to the mDataTypeList, which acts a source for
the ListView. We set the item click listener on the ListView to receive the
clicked subscription item index. The implementation details of ListAdapter can
be found in the code that comes with this chapter:

 @Override
 public void onConnected(Bundle bundle) {

 listExistingSubscription();
 }

 public void listExistingSubscription() {

 Fitness.RecordingApi.listSubscriptions(mClient)
 setResultCallback(new
 ResultCallback<ListSubscriptionsResult>() {
 @Override
 public void onResult(ListSubscriptionsResult

The Google Fit Platform and APIs – The Fitness Tracker App

[165]

 listSubscriptionsResult) {
 mDataTypeList.clear();
 for (Subscription sc :
 listSubscriptionsResult.getSubscriptions()) {
 mDataTypeList.add(sc.getDataType());
 }
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mListAdapter.notifyDataSetChanged();
 }
 });
 }
 });
 }

The third important task performed by SubscriptionActivityis to add3.
subscriptions. We can add subscriptions based either on a data source or a data
type. For our example, we add it using a data type. We use the spinner drop-
down to let the user select a particular data type. In the
setUpSpinnerDropDown() method (this method is the same as in the
previous SensorActivity class) we set up the spinner and set its selected
listener. We get all the human readable strings values for all the available data
types from the getDataTypeReadableValues() method of the DataHelper
utility singleton class. After the user has selected a data type from the spinner
drop-down value, we add the subscription for that particular data type. In the
onItemSelected() spinner callback, we get the selected item position and by
using the getDataTypeRawValues() method of the DataHelper utility class,
we get its corresponding DataType object value, which is then passed to the
addSubscription() method for adding a subscription. Inside the
addSubscription()method, we use the subscribe()method of Recording
API to add the subscription. Once the subscription is successfully added, then we
refresh the active subscription list by calling the
listExistingSubscription() method:

 @Override
 public void onItemSelected(AdapterView<?> parent, View
 view, int position, long id) {

 if(position!=0 && mClient.isConnected()) {
 addSubscription(DataHelper.getInstance()
 .getDataTypeRawValues().get(position));
 }
 }

The Google Fit Platform and APIs – The Fitness Tracker App

[166]

 public void addSubscription(DataType mDataType) {
 Fitness.RecordingApi.subscribe(mClient, mDataType)
 .setResultCallback(new ResultCallback<Status>() {
 @Override
 public void onResult(Status status) {
 if (status.isSuccess()) {
 listExistingSubscription();
 } else {
 Log.i(TAG, "There was a problem subscribing.");
 }
 }
 });
 }

The fourth and final task performed by SubscriptionActivityis to remove4.
any active subscriptions. This is done by taking the clicked index of displayed
active subscription data types on ListView inside onItemClick() and sending
the corresponding data type to the removeSubscription() method. Inside the
removeSubscription() method, we use the unsubscribe() method of
Recording API to remove the active subscription. The unsubscribe() API
accepts the object of the GoogleApiClient class and the data type to be
removed. Once the subscription has been removed successfully, we remove the
subscribed data type from mDataTypeList and refresh the ListView:

 @Override
 public void onItemClick(AdapterView<?> parent, View
 view, int position, long id) {

 removeSubscription(mDataTypeList.get(position));
 }

 public void removeSubscription(DataType mDataType) {
 Fitness.RecordingApi.unsubscribe(mClient, mDataType)
 .setResultCallback(new ResultCallback<Status>() {
 @Override
 public void onResult(Status status) {
 if (status.isSuccess()) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mDataTypeList.remove
 (lastRemovedPosition);
 mListAdapter.notifyDataSetChanged();
 }
 });
 } else {

The Google Fit Platform and APIs – The Fitness Tracker App

[167]

 Log.i(TAG, "Failed to unsubscribe ");
 }
 }
 });
 }

What just happened?
In the SubscriptionActivity, we developed a utility that deals with all the operations
(adding, removing, listing) for subscriptions. Subscriptions are really helpful when you
don't want your application to manage the collection and storage of fitness data by staying
in the background forever. All subscribed data is collected and stored in the Google Fitness
Store and can be retrieved using History API, which we will discuss in the next section. The
following is a screenshot from a Nexus 5X device showing the list of active subscriptions:

The Google Fit Platform and APIs – The Fitness Tracker App

[168]

Time for action – getting history fitness data
using the History API
We have seen in the previous section how to request the automated collection of fitness
sensor data, now in this section we will learn how to retrieve all the collected data from the
Google fitness store. The History API not only allows your application to retrieve fitness
sensor data, but it also allows your app to write and delete fitness data. Your application
can only delete the fitness data created by your own app. The History API provides an
efficient way of querying fitness data and also supports the batch importing of data. The
History API is part of Google Play services and follows the same process to connect as
Sensors API or Recording API. In our example, we will focus on how to query the fitness
data between two dates and get fitness data that is aggregated by day. We will let the user
select the data type from the spinner drop-down, and select the start and end dates and the
time picker. Users can also request to aggregate the data by using a check box in the user
interface. Now let's look at the implementation details of the HistoryActivity class.

The first task performed by HistoryActivity is to take the relevant1.
authorization for History API and scopes and connect to Google Play services.
These steps are exactly the same as Sensors API or Recording API, so we will skip
the explanation and move to the next section. The code used
in HistoryActivity can be downloaded from the code bundle for this chapter:

 public class HistoryActivity extends Activity
 implements ConnectionCallbacks,
 OnConnectionFailedListener, OnItemSelectedListener{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.historydata_layout);

 mClient = new GoogleApiClient.Builder(this)
 .addApi(Fitness.HISTORY_API)
 .addScope(new Scope(Scopes.FITNESS_ACTIVITY_READ))
 .addScope(new Scope(Scopes.FITNESS_BODY_READ))
 .addScope(new Scope(Scopes.FITNESS_LOCATION_READ))
 .addScope(new Scope(Scopes.FITNESS_NUTRITION_READ))
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this).build();

 setUpSpinnerDropDown();
 setUpListView();

The Google Fit Platform and APIs – The Fitness Tracker App

[169]

 mAggregateCheckBox =
 (CheckBox)findViewById(R.id.aggregatecheckbox);
 mStartDateText =
 (TextView)findViewById(R.id.startdate);
 mEndDateText = (TextView)findViewById(R.id.enddate);
 mResultsText = (TextView)findViewById(R.id.results);
 }

The second task performed by HistoryActivity is to take input from the user2.
interface for a selected data type, date interval, and aggregate condition. We let
the user select the data type from the spinner drop-down, which is set up inside
the setUpSpinnerDropDown() method. We receive the selected data type from
the spinner drop-down inside the onItemSelected() method. We use
mAggregateCheckBox to get the aggregate by day condition from the user and
assign that value to the isDataAggregated Boolean variable. We use a custom
dialog box to show the date and time picker. We take the start and end date
values, and assign them to mStartDateCalendar and mEndDateCalendar,
which are objects of the Calendar class. Once the user has selected the start date,
end date, and aggregated condition from the user interface, we fire the query
inside an AsyncTask object, which is an operating system-managed background
thread, discussed in the next section. Following the screenshot of the custom date
dialog created by showDateSelectorDialog() method.

 @Override
 public void onItemSelected(AdapterView<?> parent, View
 view, int position, long id) {
 if(position!=0) {
 mSelectedDataType = DataHelper.getInstance()
 .getDataTypeRawValues().get(position);
 }
 }

 public void setStartDate(View v) {
 showDateSelectorDialog(true);
 }

 public void setEndDate(View v) {
 showDateSelectorDialog(false);
 }

 public void showDateSelectorDialog(final boolean
 isStartDate){

 final Dialog dialog = new Dialog(this);
 View view = LayoutInflater.from(this).inflate

The Google Fit Platform and APIs – The Fitness Tracker App

[170]

 (R.layout.date_time_layout, null, false);
 dialog.setContentView(view);
 dialog.setTitle("Select the Date and Time");
 Button submit = (Button)
 view.findViewById(R.id.submit);
 Button cancel = (Button)
 view.findViewById(R.id.cancel);

 final TimePicker timePicker = (TimePicker)
 view.findViewById(R.id.timepicker);
 final DatePicker datePicker = (DatePicker)
 view.findViewById(R.id.datepicker);

 submit.setOnClickListener(new View.OnClickListener()
 {

 @Override
 public void onClick(View arg0) {

 int hour = timePicker.getCurrentHour();
 int min = timePicker.getCurrentMinute();
 int month = datePicker.getMonth();
 int date = datePicker.getDayOfMonth();
 int year = datePicker.getYear();
 Calendar calendar = Calendar.getInstance();
 calendar.set(year, month, date, hour, min);
 if (isStartDate) {
 mStartDateCalendar = calendar;
 mStartDateText.setText(" Start Date: " +
 mSimpleDateFormat.format
 (mStartDateCalendar.getTime()));
 } else {
 mEndDateCalendar = calendar;
 mEndDateText.setText(" End Date: " +
 mSimpleDateFormat.format
 (mEndDateCalendar.getTime()));
 }
 dialog.dismiss();

 if (mStartDateCalendar != null &&
 mEndDateCalendar != null &&
 mClient.isConnected() && !isStartDate) {
 if (mDataPointList.size() > 0) {
 mDataPointList.clear();
 }
 if (mAggregateDataTypeList.size() > 0) {
 mAggregateDataTypeList.clear();
 }

The Google Fit Platform and APIs – The Fitness Tracker App

[171]

 isDataAggregated =
 mAggregateCheckBox.isChecked();
 new ReadFromHistoryTask().execute();
 }
 }
 });
 cancel.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View arg0) {
 dialog.dismiss();
 }
 });
 dialog.show();
 }

The Google Fit Platform and APIs – The Fitness Tracker App

[172]

The third task performed by HistoryActivity is to query the history fitness3.
data and display the results to the user interface. We query the history data inside
the ReadFromHistoryTask class, which is an instance of AsyncTask and is a
form of background thread managed by the Android platform. We create two
different types of queries, the first with the date interval and the aggregation of
data, and the second with only the date interval without aggregation. The first
query with the aggregation of data is written inside the if block controlled by
the isDataAggregated Boolean variable and the second query is written in the
else block. The fitness platform supports two types of DataType, normal and
aggregate. The normal DataType is an individual unit of measurement, while the
aggregate DataType is an accumulation of units for a particular time interval.
Only some of DataType support their corresponding aggregate DataType,
which can be found by using the DataType.getAggregatesForInput()
method. We input the selected DataType in the getAggregatesForInput()
method; if the input DataType supports the aggregate DataType, then the list of
the corresponding aggregate DataType will be returned. If it isn't supported,
then an empty list will be returned. One single DataType can have multiple
corresponding aggregated DataType. We only fire the aggregation query if there
is a corresponding aggregated DataType available for the selected DataType,
otherwise we show the relevant error message in the mResultsText label. The
aggregation query consists of two steps. The first step is to create an object
of DataReadRequest and the second step is to input the DataReadRequest
object to the readData() method of History API. The DataReadRequest object
is created using the builder syntax, which is shown in the following code snippet.
It accepts multiple parameters, such as the start and end time range, the
normal DataType, and its corresponding aggregated DataType. It also accepts
the condition by which the aggregation should take place, which is provided by
the bucketByTime() method. For our example, we will aggregate the data in
buckets of one day. The readData() method of History API can provide you
results in a synchronous call, which is executed using the await() method,
which itself blocks the thread until the request is completed. Inside
the else block of the isDataAggregated Boolean check, we write the simple
query with just the date interval but without the aggregation of data. This query
uses the same DataReadRequest object, which is passed to the readData()
method of History API. The major difference between a simple query and an
aggregated query is that in a simple query, we only input the date range and
selected DataType in the object of DataReadRequest:

 public class ReadFromHistoryTask extends
 AsyncTask<Void, Void, Void> {

The Google Fit Platform and APIs – The Fitness Tracker App

[173]

 protected Void doInBackground(Void... params) {

 long endTime = mEndDateCalendar.getTimeInMillis();
 long startTime =
 mStartDateCalendar.getTimeInMillis();
 DataReadResult dataReadResult = null;
 if(isDataAggregated) {
 mAggregateDataTypeList.addAll(DataType
 .getAggregatesForInput(mSelectedDataType));
 if(mAggregateDataTypeList.size()>0) {
 DataReadRequest readRequest = new
 DataReadRequest.Builder()
 .aggregate(mSelectedDataType,
 mAggregateDataTypeList.get(0))
 .bucketByTime(1, TimeUnit.DAYS)
 .setTimeRange(startTime, endTime,
 TimeUnit.MILLISECONDS).build();
 dataReadResult = Fitness.HistoryApi.readData
 (mClient,readRequest).await();
 } else {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mResultsText.setText("Aggregation of data
 not supported");
 mListAdapter.notifyDataSetChanged();
 }
 });
 }
 } else {
 DataReadRequest readRequest = new
 DataReadRequest.Builder().read(mSelectedDataType)
 .setTimeRange(startTime, endTime,
 TimeUnit.MILLISECONDS).build();
 dataReadResult = Fitness.HistoryApi.readData
 (mClient, readRequest).await();
 }
 if(isDataAggregated) {
 if(mAggregateDataTypeList.size()>0 &&
 dataReadResult!=null) {
 readBucketValues(dataReadResult);
 }
 } else {
 DataSet dataSet =
 dataReadResult.getDataSet(mSelectedDataType);
 readDataSetValues(dataSet, false);
 }
 return null;

The Google Fit Platform and APIs – The Fitness Tracker App

[174]

 }
 }

The fourth task performed by HistoryActivityis to read the results from the4.
aggregated query and update the user interface. The results of the aggregated
query are assigned to the object of DataReadResult, which is passed to the
readBucketValues() method to extract the values and display them in the user
interface. For the aggregated query, we receive the results in the form of buckets,
which are processed inside the readBucketValues() method. The result of the
simple query (without aggregation) with the date range is also assigned to
the DataReadResult object. For the simple date range query, we receive the
results in the form of data sets, which are extracted from the DataReadResult
object and are passed to the readDataSetValues() method for further
processing of the data and to display it in the user interface. All the data is
extracted and added to mDataPointList, which is
the ArrayList of DataPoint. All the extracted data from History API is shown
in the ListView, which is populated using mDataPointList. The
implementation of the ListAdaptor and user interface (XML layout files) is
provided in the code bundle that comes with this chapter and can be downloaded
from the support page for the book. The following is a screenshot from a Nexus
5X device, showing the history of all the steps taken in one month aggregated by
days:

 public void readBucketValues(DataReadResult
 dataReadResult) {
 bucketSize = 0;
 for (Bucket bucket : dataReadResult.getBuckets()) {

 List<DataSet> dataSets = bucket.getDataSets();

 for (DataSet dataSet : dataSets) {

 if(dataSet.getDataPoints().size()>0)
 {
 bucketSize++;
 readDataSetValues(dataSet, true);
 }
 }
 }
 updateUIThread(true);
 }

 public void readDataSetValues(DataSet dataSet, boolean
 isBucketData) {

The Google Fit Platform and APIs – The Fitness Tracker App

[175]

 for (DataPoint mDataPoint : dataSet.getDataPoints()) {
 mDataPointList.add(mDataPoint);
 }

 if(!isBucketData) {
 updateUIThread(isBucketData);
 }
 }

What just happened?
We developed a utility to query history fitness data for a particular selected
DataType within a particular date range. The History API is the most important API of all
the Fitness APIs. It works great in combination with Recording API, where the Recording
API instructs the fitness platform to start collecting the data and, through History API, we
retrieve all the collected data. We can aggregate the data using buckets based on four
conditions: time range, session, activity type, and activity segment. Only one condition can
be applied in a bucket at a time for the aggregation of history data.

The Google Fit Platform and APIs – The Fitness Tracker App

[176]

Asynchronous versus synchronous results
callback
Fitness APIs support two modes of operation, asynchronous and synchronous. The
asynchronous mode is set by using the setResultCallback() method of the APIs that
accept the object of ResultCallback<?>, inside which the result is delivered whenever it's
ready. This asynchronous mode doesn't block the thread. The synchronous mode can be set
by using the await() method of the APIs. This blocks the thread until the values are
returned, so it should never be executed in the main UI thread. Both the
setResultCallback() and await()methods accept a time out as an additional input
parameter, which blocks the thread or returns the results object only until the time out
period has expired.

Summary
In this chapter, we learned new ways of working with fitness sensors using the Google Fit
platform. The Google Fit platform simplifies the whole process of sensor data collection,
storage, and retrieval by taking on most of the responsibility itself. The application has to do
the minimal work of requesting and querying the fitness data. The Google Fit platform has
been developed to deal only with fitness sensor data. It doesn't deal with other sensor data.
The Google Fit platform also does a great job of maintaining and syncing all your fitness
data on multiple devices, so if you use Android Wear and an Android phone, then both of
them track your step counts differently, but at the end of the day you will find that the step
count data is the same on both of them.

In the next bonus chapter, we will explore sensors-based APIs and their use in real-world
applications. We will also discuss new examples of combining two or more sensors' data
together, which is commonly referred to as sensor fusion.

Index

A
absolute humidity 57
accelerometer sensor
 about 84
 battery-efficient, creating 122
 CPU-efficient, creating 122
 improvising 122
 running signature, tracking 120, 121
 type of step detection algorithm 121
 used, for detecting duration of step 117
 used, for detecting type of step 117, 123, 125,

126, 127, 130, 131, 135, 138
 used, for shake detection 90
 used, for tracking fast walking signature 119
 used, for tracking jogging signature 120
 used, for tracking walking signature 117, 118,

119
Android API level
 sensor availability 26
Android Fitness APIs 176
 about 144
 Bluetooth Low Energy (BLE) API 146
 Config API 146
 History API 145
 Recording API 145
 Sensors API 145
 Sessions API 146
Android Open Source Project (AOSP) 18
Android Sensor Stack 18
Application Not Responding (ANR) mode 27
Application Processor (AP) 81
asynchronous mode
 versus synchronous mode 176
AsyncTask class
 using 64, 67, 70
automatic torch light application

 requisites 73
Azimuth 88

B
battery consumption 23
Bluetooth Low Energy (BLE) API 146

C
calibrated values 9
callbacks
 about 29
 onAccuracyChanged() method 29, 30
 onSensorChanged() method 30
 values, obtaining 30
compass
 creating, with orientation sensor 92, 95
components, sensor framework
 about 20
 Sensor class 21
 SensorEvent class 21
 SensorEventListener class 20
 SensorManager class 20
Config API 146
constants and equation
 reference link, for calculation 62
continuous reporting mode 24
coordinate system 17, 18

D
data point 148
data set 148
data sources 147
data types
 about 147
 private custom data types 147
 public data types 147

[178]

 sharable data types 147
device temperature sensor 51
device
 available sensors, listing 35
dew point 57

E
environmental sensors
 about 9, 15, 51
 Ambient Temperature 16
 Barometer 16
 device temperature sensor 51
 humidity sensor 51
 light sensor 16, 51
 pressure sensor 51
 Relative Humidity 16
 temperature sensor 51

F
fingerprint sensor
 about 89
 using 97, 99, 102
First In First Out (FIFO) queue 82
fitness tracker application
 architecture 152
 creating, fitness APIs used 151
 DataHelper class 154
 HistoryActivity class 153
 MainActivity class 154
 requisites 152
 SensorActivity class 153
 SubscriptionActivity class 153
foreground activity
 sensors, using 32, 34
fused values 9

G
Google developer console
 registering 148
Google Fit platform
 about 143
 Android Fitness APIs 144
 data point 148
 data set 148

 data sources 147
 data types 147
 REST APIs 144
Google Fitness Store 144
Google Play Services Location API
 URL 64
 using 64, 70
gravity sensor 86
gyroscope sensor 85

H
Hardware Abstraction Layer (HAL) 18
hardware FIFO queue 82
Hertz(Hz) 23
History API
 about 145
 used, for obtaining fitness data history 168,

169, 172, 174, 175
humidity sensor 51

L
light sensor
 about 51, 72
 used, for adjusting screen brightness 77, 80
linear acceleration sensor 86

M
magnetometer sensor 88
Marine Weather API
 URL 56
Micro Electro Mechanical System (MEMS) 8, 84
motion sensors
 about 9, 84
 accelerometer sensor 10, 84
 gravity sensor 10, 86
 gyroscope sensor 11, 85
 linear acceleration sensor 10, 86
 Rotation Vector 12
 significant motion sensor 86
 Step Counter 11
 Step Detector 11

[179]

N
non-wakeup sensors 81

O
on change reporting mode 24
onAccuracyChanged() method 29, 30
one shot reporting mode 24
onSensorChanged() method 29, 30
open weather map
 URL 62, 64
 used, for comparing phone sensor values 62
orientation sensor
 about 88
 use cases 88
 used, for creating compass 92, 95
Original Equipment Manufactures (OEMs) 27
 about 73

P
pedometer app
 accelerometer sensor, using 117
 requisites 105
 step counter sensor, using 106
 step detector sensor, using 106
permission scopes
 obtaining 148
phone handling event 45
phone sensor values
 comparing, from web services 62
 comparing, with open weather map 62
phone's humidity sensor
 absolute humidity, calculating 57, 58
 dew point, calculating 57, 58
 relative humidity, obtaining 56
phone's pressure sensor
 air pressure, obtaining 54
 altitude, calculating 54
physical sensors 8
pitch 88
Plain Old Java Object (POJO) 110
position sensors
 about 9, 12, 87
 Game Rotation Vector 14
 Geomagnetic Rotation Vector 15

 magnetometer sensor 13, 88
 Orientation (Deprecated) 13
 orientation sensor 88
 Proximity 13
power consumption 23
pressure sensor 51
private custom data types 147
proximity sensor
 about 72
 types 72
 used, for turning torch light on/off 74
public data types 147

R
raw values 9
Recording API
 about 145
 used, for recording fitness data in background

163, 164, 165, 166, 167
reporting modes
 about 24
 continuous 24
 on-change 24
 one shot 24
 special trigger 24
REST APIs 144
roll 88

S
sampling period 22
screen brightness application
 requisites 73
screen brightness
 adjusting, light sensor used 77, 80
seismic mass 84
Sensor class 21
sensor configuration
 dealing with 24
 sensor availability, checking 25
 sensor, declaring as mandatory 25
sensor framework
 components 20
sensor values
 calibrated 9
 fused 9

 obtaining 41
 phone handling example 45
 processing, in background 45
 raw 9
SensorEvent class
 about 21
 accuracy element 21
 sensor element 21
 timestamp element 21
 values[] element 21
SensorEventListner class 20
SensorManager class 20
sensors 8
Sensors API
 about 145
 used, for recording fitness data 154, 155, 156,

159, 161
sensors
 about 8
 best practices, for accessing 27
 capabilities, determining 38
 coordinate system 17, 18
 listing, on device 35
 physical sensors 8
 using, in foreground activity 32, 34
Sessions API 146
shake detection
 with accelerometer sensor 90
sharable data types 147
significant motion sensor 11
 about 86
special trigger reporting mode 24
step counter sensor
 about 106
 using 107
step detector sensor

 about 106
 step history, maintaining 108, 110, 111, 112,

115, 116
synchronous mode
 versus asynchronous mode 176
synthetic sensors 8

T
temperature sensor
 about 51
 using 52
torch light
 turning on/off, proximity sensor used 74

U
user authorization
 fitness scopes 150
 Google developer console, registering 148
 implementing, in application 149
 installation time permissions 151
 obtaining 148
 runtime permissions 151
user interface
 updating, for sensor values 41

W
wake locks 81
wakeup sensors 81
 hardware FIFO queue 82
weather data
 reference link 50
weather utility app
 requisites 50
web services
 phone sensor values, comparing 62

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Sensor Fundamentals
	What are sensors?
	Types of sensors
	Types of sensor values

	Motion, position, and environmental sensors
	Motion sensors
	Position sensors
	Environmental sensors

	Sensors' coordinate system
	Android Sensor Stack

	Components of the sensor framework
	SensorManager
	SensorEventListener
	Sensor
	SensorEvent

	Sensor's sampling period, power, and battery consumption
	The reporting modes of sensors
	Dealing with specific sensor configuration
	Checking the availability of the sensor at runtime
	Declaring the sensor as mandatory feature

	Sensor availability based on the Android API level
	Best practice for accessing sensors
	Summary

	Chapter 2: Playing with Sensors
	Understanding the sensor framework callbacks
	Seeing the big picture

	Time for action – using sensors in the foreground activity
	What just happened?

	Time for action – listing the available sensors on a device
	What just happened?

	Time for action – knowing individual sensors' capabilities
	What just happened?

	Time for action – getting the sensor values and updating the user interface
	What just happened?

	Time for action – processing the sensor values in the background service
	The phone handling algorithm

	What just happened?
	Summary

	Chapter 3: The Environmental Sensors – The Weather Utility App
	The weather utility app's requirements
	Understanding environmental sensors
	Time for action – using the temperature sensor
	What just happened?

	Getting air pressure from the phone's pressure sensor
	Time for action – calculating the altitude using the pressure sensor
	What just happened?

	Getting relative humidity from the phone's humidity sensor
	Time for action – calculating the dew point and absolute humidity
	What just happened?

	Time for action – comparing the temperature, humidity, and pressure values from web services to phone sensors
	Third-party web service – open weather map
	Using Google Play Services Location API and AsyncTask
	What just happened?

	Summary

	Chapter 4: The Light and Proximity Sensors
	Understanding the light and proximity sensors
	The automatic torch light and screen brightness app requirements
	Time for action – turning the torch light on and off using the proximity sensor
	What just happened?

	Time for action – adjusting the screen brightness using the light sensor
	What just happened?

	Wake locks, wakeup sensors, and the FIFO queue
	Wakeup and non-wakeup sensors
	The sensor's hardware FIFO queue

	Summary

	Chapter 5: The Motion, Position, and Fingerprint Sensors
	Understanding motion-based sensors
	The accelerometer sensor
	The gyroscope sensor
	The gravity sensor
	The linear acceleration sensor
	The significant motion sensor

	Understanding position-based sensors
	The magnetometer sensor
	The orientation sensor

	The fingerprint sensor
	Time for action – shake detection using the accelerometer sensor
	Time for action – the compass using orientation sensor and orientation APIs
	Time for action – using the fingerprint sensor
	What just happened?
	Summary

	Chapter 6: The Step Counter and Detector Sensors – The Pedometer App
	The pedometer app's requirements
	Understanding the step counter and step detector sensors
	The step counter sensor
	The step detector sensor

	Time for action – using the step counter sensor in activity
	Time for action – maintaining step history with the step detector sensor
	What just happened?

	Understanding the walking, jogging, and running signatures using the accelerometer sensor's data
	The walking signature using the accelerometer sensor
	The jogging or fast walking signature using the accelerometer sensor
	The running signature using the accelerometer sensor
	The type of step detection algorithm
	Making it battery- and CPU-efficient using sensor fusion
	Scope for improvement

	Time for action – type of step (walking, jogging, and running) detection using the accelerometer sensor
	What just happened?

	Summary

	Chapter 7: The Google Fit Platform and APIs – The Fitness Tracker App
	The Google Fit platform
	Google Fitness Store
	REST APIs
	Android Fitness APIs
	Sensors API
	Recording API
	History API
	Sessions API
	Bluetooth Low Energy API
	Config API

	Platform basics
	Data sources
	Data types
	Data point
	Data set

	Authorization and permission scopes
	Registration with the Google developer console
	Authorization from a user in the application
	Fitness scopes
	Installing and running time permissions

	Fitness tracker app using fitness APIs
	Fitness tracker application requirements and architecture
	Time for action – working with live fitness data using the Sensors API
	What just happened?

	Time for action – recording fitness data in background using Recording API
	What just happened?

	Time for action – getting history fitness data using the History API
	What just happened?
	Asynchronous versus synchronous results callback

	Summary

	Index

