
www.allitebooks.com

http://www.allitebooks.org

Arduino BLINK Blueprints

Get the most out of your Arduino to develop exciting
and creative LED-based projects

Samarth Shah

Utsav Shah

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Arduino BLINK Blueprints

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1240516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-418-2

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Samarth Shah

Utsav Shah

Reviewer
Timothy Gorbunov

Commissioning Editor
Nadeem Bagban

Acquisition Editors
Ruchita Bhansali

Prachi Bisht

Content Development Editor
Merint Mathew

Technical Editor
Pramod Kumavat

Copy Editor
Safis Editing

Project Coordinator
Francina Pinto

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Samarth Shah is a software engineer by profession and maker by heart. He leads
maker activities at Pune Makers and heads Infosys Robotics Club. He loves building
creative/innovative prototypes using the latest hardware/sensors (Raspberry Pi,
Arduino, Kinect, Leap Motion, and many more) and software. He has given talks
at various national and international conferences. He has authored a book on
Raspberry Pi entitled Learning Raspberry Pi, Packt Publishing. During the day, he
works on various data visualization techniques and UI frameworks. At night, he
does blogging, reading, writing, and many more things. You can read more about
him at http://samarthshah.com.

Utsav Shah is an instrumentation engineer who loves to work on the latest
hardware as well as software technologies. He has been featured on India's leading
website http://yourstory.in and Ahmedabad Mirror (Times Group) for his
research work on "Converting sign language into speech" using a Leap Motion
controller. Apart from his regular work at Infosys Limited, he manages activities
of Infosys Robotics Club. In his leisure time, he loves to read books and work on
cutting-edge technologies.

We would like to thank our parents Pareshbhai and Sandhyaben for
their constant encouragement and continuous support.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Timothy Gorbunov was born in the USA. At a young age, he fell in love with
building and constructing things just like his dad. Tim became very good at Origami
and started to sell it at elementary school. As he grew up, Tim leaned more towards
electronics because it fascinated him more than any other hobby. Creating circuits
that buzzed or flashed was one of Tim's favorite things to do. As time went by, he
started exploring more advanced electronics and programming, and from that point
on, he became more and more knowledgeable in electronics. He got hired to help
create cymatic light shows at Cymaspace. There, he helped start Audiolux devices,
a company that specializes in sound reactive technologies, by helping design their
products. Tim does many other things other than electronics, such as fishing and
hiking, but most importantly Tim believes in God. Tim spends a lot of time studying
the Bible, praying, and going to church. He wants everyone to find the truth, the
fact that Jesus Christ died for every person here on earth to bring redemption from
their sins and give everlasting life with him in heaven. Tim also reviewed another
book, Arduino by Example, Packt Publishing, in which he gained valuable experience
in reviewing.

I thank opportunities such as this one for which I can use what I
know to help bring books to life. I thank many people in my life
who have allowed me to start my interest in this field as well as
the Internet for being such a great resource for answering many
of questions.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Arduino and LEDs	 1

Arduino boards	 1
Different Arduino boards	 2
How to choose an Arduino board for your project	 3
Arduino UNO	 5

Arduino IDE	 7
Installing Arduino IDE	 7

On Windows	 7
On Linux	 8
On Mac	 8

Understanding Arduino IDE	 8
Before you start	 9

Power supply	 9
Verifying connection	 10

"Hello World"	 11
Using serial communication	 13

Serial write	 13
Serial read	 14

The world of LED	 16
Summary	 17

Chapter 2: Project 1 – LED Night Lamp	 19
Introduction to breadboard	 19

Structure of a breadboard	 20
Using a breadboard	 20

Controlling multiple LEDs	 21
Simple traffic light controller	 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

LED fading	 23
Pulse width modulation (PWM)	 23
Using PWM on Arduino	 24

Creating a mood lamp	 25
Using an RGB LED	 26
Why do RGB LEDs change color?	 26
Designing a mood lamp	 27

Developing an LED night lamp	 31
Introduction to switch	 31
Pixar lamp	 32

Summary	 35
Chapter 3: Project 2 – Remote Controlled TV Backlight	 37

Introduction to IR LEDs	 37
What is IR LED?	 38
Applications of IR LED / IR communication	 38

IR sensors	 38
Working mechanism	 38
Programming a basic IR sensor	 39
How to receive data from a TV remote	 41

LED strips	 45
Controlling an LED strip with Arduino	 46

Summary	 55
Chapter 4: Project 3 – LED Cube	 57

Getting started with soldering	 57
What you will need	 57
Safety tips	 58

Designing an LED cube	 59
Required components	 59
Principle behind the design	 60
Construction	 61
Mistakes to avoid	 64
Fixing to the board	 65

Programming a 4*4*4 LED cube	 68
Summary	 71

Chapter 5: Sound Visualization and LED Christmas Tree	 73
Introduction to sound visualization	 74

How to visualize the sound	 74
What is FFT (fast fourier transform)	 75

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Sound visualization using Arduino	 76
Developing an LED Christmas tree	 85
Summary	 90

Chapter 6: Persistence of Vision	 91
Creating your own Persistence of Vision	 91
Programming an LED array	 93
Different types of motors	 94

DC motors	 95
Servo motors	 95
Stepper motors	 95
Different applications of motors	 96

Controlling a DC motor using Arduino	 96
Synchronizing an LED array with a motor	 100
Bringing your efforts to life	 103

Using your hands for rotation	 103
Using two different Arduinos or external motors	 104
Use existing real-life devices	 104

Summary	 105
Chapter 7: Troubleshooting and Advanced Resources	 107

Troubleshooting	 107
Can't upload program	 107
LED is dim	 109

Resources – advanced users	 109
Projects	 109

Twitter Mood Light	 109
Secret knock detecting door-lock	 110
LED biking jacket	 110
Twitter-enabled coffee pot	 110

Useful resources	 111
Hackaday	 111
The Arduino blog	 111
The Make magazine	 111
Bildr	 111
Instructables	 112
Tronixstuff	 112
Adafruit	 112
All About Circuits	 112
Hackerspaces	 112
The Arduino forum	 113

Summary	 113
Index	 115

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
Arduino is an open source prototyping platform based on easy-to-use hardware and
software. Arduino has been used in thousands of different projects and applications
by a wide range of programmers and artists, and their contributions have added up
to an incredible amount of accessible knowledge that can be of great help to novices
and experts alike.

This book will be your companion to bring out the creative genius in you. As
 you progress through the book, you will learn how to develop various projects
with Arduino.

What this book covers
Chapter 1, Getting Started with Arduino and LEDs, introduces you to different
Arduino boards followed by installation instructions for the Arduino IDE. You will
write a "Hello World" program using the Arduino IDE and will learn about serial
communication.

Chapter 2, Project 1 – LED Night Lamp, presents you with some cool stuff of
controlling LEDs and will show you how to control different LEDs with an
artistic approach.

Chapter 3, Project 2 – Remote Controlled TV Backlight, teaches you the basics of IR LEDs
and the basics of IR communication. Once you have learnt about programming IR
sensor, you will use an IR sensor to control the TV backlight using a remote.

Chapter 4, Project 3 – LED Cube, introduces you to soldering in detail. You will also
understand how to create a 4*4*4 LED Cube using the Arduino UNO board.

Chapter 5, Sound Visualization and LED Christmas Tree, shows you how to visualize
sound using Arduino and then we will develop an LED Christmas tree.

Preface

[vi]

Chapter 6, Persistence of Vision, helps us create an even more intensive experience by
moving LEDs using motors. You will create a Persistence of Vision wand using an
LED array and a motor.

Chapter 7, Troubleshooting and Advanced Resources, starts with common
troubleshooting techniques. The second and last part of the chapter discusses
resources that will be useful if you want to do advanced stuff with Arduino.

What you need for this book
All you need is an Arduino IDE and the enthusiasm to work on interesting projects.

Who this book is for
Anyone with basic computer knowledge should be able to get the most out of
this book. Although familiarity with some of the electronics would be helpful,
it is not a must.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If you have downloaded "Windows ZIP file for non admin install", extract it and
you will find arduino.exe."

A block of code is set as follows:

// the setup function runs once when you press reset or power the
board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Make
sure you have selected Arduino UNO under the Tools | Board section."

Preface

[vii]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Preface

[viii]

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Arduino-BLINK-Blueprints. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/ArduinoBLINKBlueprints_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Arduino-BLINK-Blueprints
https://github.com/PacktPublishing/Arduino-BLINK-Blueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ArduinoBLINKBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArduinoBLINKBlueprints_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with Arduino
and LEDs

Welcome to the exciting world of physical computing! Today, hobbyists and
experts all over the world use Arduino to make interactive objects and to create
cool prototypes. In this chapter, you will get introduced to different Arduino
boards, followed by installation instructions for Arduino IDE. You will write a "Hello
World" program using Arduino IDE and will learn about serial communication. By
the end of this chapter, you will have a basic knowledge of Arduino and its IDE,
which will be helpful in the remaining chapters of the book. In this chapter, we will
cover the following:

•	 Arduino boards
•	 Arduino IDE
•	 Before you start
•	 "Hello World"
•	 Using serial communication
•	 The world of LED

Arduino boards
Arduino was originally created for artists and designers as an easy and quick
prototyping tool. Designers were able to create sophisticated designs and artworks
even without having knowledge of electronics and programming. So it is understood
that the first few steps of learning Arduino are very easy. In this section, you will get
introduced to different Arduino boards and learn how to choose an Arduino board
for your project and some information on the Arduino UNO board, which you will
be using throughout this book.

Getting Started with Arduino and LEDs

[2]

Different Arduino boards
Beginners often get confused when they discover Arduino projects. When looking
for Arduino, they hear and read such terms as Uno, Zero, and Lilypad. The thing
is, there is no such thing as "Arduino". In 2006, the Arduino team designed and
developed a microcontroller board and released it under an open source license.
Over the years, the team has improved upon the design and released several
versions of the boards. These versions mostly had Italian names. There are numbers
of boards that the team has designed over the past 10 years:

Chapter 1

[3]

The Arduino team didn't just improve on design, they invented new designs for
specific use cases in mind. For example, they developed Arduino Lilypad to embed
a board into textiles. It can be used to build interactive T-shirts. The following table
shows the capability of different Arduino boards. Arduino boards may differ in their
appearance, but they have a lot in common. You can use the same tools and libraries
to program:

Name Processor Dimension Voltage Flash(kB) Digital
I/O(PWM)
pins

Analog
input
pins

Arduino
Lilypad

ATmega168V 51 mm outer
diameter

2.7-5.5 V 16 14(6) 6

Arduino
YUN

Atmega32U4 68.6 mm ×
53.3 mm

5 V 32 14(6) 12

Arduino
Mega

ATmega2560 101.6 mm ×
53.3 mm

5 V 256 54(15) 16

Arduino
Due

ATSAM3X8E 101.6 mm ×
53.3 mm

3.3 V 512 54(12) 12

Arduino
Zero

ATSAMD21G18A 68.6 mm ×
53.3 mm

3.3 V 256 14(12) 6

Arduino
UNO

ATmega328P 68.6 mm ×
53.3 mm

5 V 32 14(6) 6

As Arduino boards' design and schematics are open source, anyone can use and
change the original board design and can create their own version of an Arduino-
compatible board. Because of that, you can find countless Arduino clones on the
web which can be programmed using the same tools and libraries used for original
Arduino boards.

How to choose an Arduino board for your
project
With so many options available, it becomes challenging for a person to decide which
Arduino board to use for a project. The Arduino family is huge, and it is impossible
to read about each and every board and decide upon which board to use for a
particular project.

Getting Started with Arduino and LEDs

[4]

The following flowchart simplifies the process by providing a decision tree for
widely-used Arduino boards and the most common use cases/applications:

If you are not sure what you will build and what hardware capabilities are required,
start building your prototype using Arduino UNO. Arduino UNO has the best
documentation and best support. It is also the most compatible of all Arduino
boards. Most of the existing libraries and shields are compatible with Arduino UNO.
And finally, most of the code that has been written on earlier versions of Arduino
boards will also work with Arduino UNO.

Chapter 1

[5]

Arduino shields are modular circuit boards that can be plugged on top
of the Arduino PCB, extending its capabilities. Want to connect your
Arduino to the Internet? There is a shield for that. There are hundreds
of shields available online, which makes Arduino more than just a
development board.

Throughout this book, we will use the Arduino UNO board.

Arduino UNO
"UNO" means one in Italian, and it was chosen to mark the release of Arduino IDE
v1.0. It is the first in a series of USB Arduino boards. As mentioned before, it is one
of the most widely used boards in the Arduino Family:

Getting Started with Arduino and LEDs

[6]

In this section you will get introduced to different components of the Arduino UNO
board.

•	 A: USB plug: Every Arduino board needs a way to be connected to a power
source. The Arduino UNO can be powered from a USB cable coming from
your computer. The USB connection is also how you will load code onto your
Arduino board.

•	 B: Reset button: Pushing it will temporarily connect the reset pin to ground
and restart any code that is loaded on the Arduino board.

•	 C: AREF: This stands for Analog Reference. In this book, you are not going
to use this pin. It is sometimes used to set an external reference voltage
(between 0 and 5) as the upper limit for the analog input pins.

•	 D: GND: Digital ground.
•	 E: Pin 0 to Pin 13: The area of pins under the DIGITAL label are digital

pins. These pins can be used for both digital input (like telling if a button is
pushed) and digital output (like powering an LED). Next to some of the pins
(3, 5, 6, 9, 10, and 11) there is a tilde (~) sign, which means those pins can also
act as pulse width modulation apart from normal digital pins. PWM (pulse
width modulation) is a technique for getting an analogue signal with digital
means by controlling on and off duration of the signal.

•	 F: ON: This is a power LED indicator. This LED should light up whenever
you plug your Arduino into a power source. If the LED doesn't turn ON,
there is something wrong with your Arduino board.

•	 G: In-circuit serial programmer: You will use these pins very rarely.
Mostly, hardware manufacturers use these pins for debugging purposes.
Also, these pins are used to program Arduino using other Arduino or other
microcontrollers.

•	 H: Main IC: This is an ATmega 328 microcontroller. Think of it as the brain
of your Arduino board.

•	 I: Pin A0 to Pin A5: The area of pins under the Analog In label are Analog
In pins. These pins can read the signal from an analog sensor (like a
temperature sensor) and convert it into a digital value that can be read by
Arduino software and can be used for further processing.

•	 J: Vin: Voltage In. Arduino can be supplied with power from a DC jack,
the USB connector, or Vin pin. While supplying with Vin, you can give up
to 12 V. The in-built regulator in Arduino will take care of regulating voltage
to 5 V.

•	 K: GND: Ground pin.

Chapter 1

[7]

•	 L: 5 V: Power pin which supplies 5 volts.
•	 M: 3.3 V: Power pin which supplies 3.3 volts.
•	 N: External power supply: Once you have uploaded your code to Arduino

you don't need a computer just to draw power. You can use an external
power supply and can use Arduino as a standalone device.

•	 O: Voltage regulator: The voltage regulator is not actually something you
can interact with on Arduino. It controls the amount of voltage that is let into
the Arduino board.

•	 P: Tx Rx LEDs: Tx is short for transmit, RX is short for receive. In electronics,
TxRX are used to indicate the pins responsible for serial communication.
These LEDs will give nice visual indications whenever our Arduino is
receiving or transmitting data.

Arduino IDE
As, initially, Arduino was initially designed for artists and designers, the Arduino
team has tried to develop Arduino software (IDE) as simply as possible without
compromising on the power of the tool. Before you run your "Hello World" program,
you need to install Arduino IDE on your computer.

Installing Arduino IDE
Arduino IDE is supported on all major operating systems, initially Windows, Mac,
and Linux.

On Windows
1.	 Go to https://www.arduino.cc/en/Main/Software.
2.	 Download "Windows Installer" or "Windows ZIP file for non admin install".
3.	 If you have downloaded "Windows Installer", double click on it and it will be

installed.
4.	 If you have downloaded "Windows ZIP file for non admin install", extract

it and you will find arduino.exe. Double click on it to get started with the
Arduino IDE.

https://www.arduino.cc/en/Main/Software

Getting Started with Arduino and LEDs

[8]

On Linux
1.	 Go to https://www.arduino.cc/en/Main/Software.
2.	 Download "Linux 32 bits" or "Linux 64 bits" depending on your OS type.
3.	 Extract it and run the Arduino executables to get started with the Arduino

IDE.

On Mac
1.	 Go to https://www.arduino.cc/en/Main/Software.
2.	 Download "Mac OS X 10.7 Lion or newer".
3.	 Extract it and run the Arduino executables to get started with the Arduino

IDE.

Understanding Arduino IDE
If you have used IDEs such as Visual Studio, XCode, and Eclipse before, you'd better
lower your expectations, because Arduino IDE is very simple. It mainly consists of
an editor, a compiler, a loader, and a serial monitor. It has no advanced features such
as a debugger or code completion:

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software

Chapter 1

[9]

Let's look into each button separately:

•	 A: Verify button: This will compile the program that's currently in the
editor. It does not only verify the program syntactically. It also turns it
into a representation suitable for the Arduino board.

•	 B: Upload button: This will compile and upload the current program to the
connected Arduino Board.

•	 C: New button: This creates a new program by opening a new editor
window.

•	 D: Open button: With this button, you can open an existing program from
the file system.

•	 E: Save button: This saves the current program.
•	 F: Serial monitor: Arduino can communicate with a computer via a serial

connection. Clicking the Serial Monitor button opens a serial monitor window
that allows you to watch the data sent by Arduino and also to send data back.
You will learn more about it in the Using serial communication section.

•	 G: Editor window: This is where you will write the code.
•	 H: Error console: This is where you will see all the error messages of

your code.
•	 I: Status bar: This will show the connected Arduino board name along with

the COM port number.

Before you start
After getting some understanding of Arduino UNO and IDE, there are a couple of
things that you need to know before you dive into the world of Arduino.

Power supply
As mentioned in the Arduino UNO section, there are two ways you can power
up your Arduino UNO. One is by using a USB cable connected to your computer
and the second one is by a 12 V external power supply. Please make sure that you
don't use a power supply greater than 20 volts as you will overpower and thereby
destroy your Arduino Board. The recommended voltage for most Arduino models
is between 6 and 12 volts.

Getting Started with Arduino and LEDs

[10]

Verifying connection
This is the last step before you write your "Hello World" program with your
Arduino:

1.	 Make sure you have selected Arduino UNO under the Tools | Board
section. If you have some other Arduino board, make sure you select that
board:

2.	 Select the COM port from Tools | Port, to which your Arduino UNO board
is connected. In the following image it is COM13, but it will vary from
computer to computer:

Chapter 1

[11]

"Hello World"
You must be aware of "Hello World" programs from computer science, where you
write a piece of code which will display "Hello World". In electronics hardware
board space, "Hello World" refers to blinking an LED by writing a simple program.

The resistor will block the flow of current in both directions. A diode is a
two-terminal electronics component that has low resistance in one direction
and high resistance in the other direction. Diodes are mostly made up of silicon.
LEDs are the most commonly used diodes in any electronics circuit. LED stands for
light emitting diode, so it emits light when sufficient voltage is provided across the
LED anode and cathode.

Getting Started with Arduino and LEDs

[12]

The longer lead of the LED is the anode and the other end is the cathode. The color
of the light depends on the semiconductor material used in the LED, as shown in the
following diagram:

Connect the longer lead of the LED to pin 13 and shorter lead of the LED to GND
(ground pin) and write the following code in a new editor window:

// the setup function runs once when you press reset or power the
board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage
level)
 delay(1000); // wait for a second(1000 millisecond)
 digitalWrite(13, LOW); // turn the LED off by making the voltage
LOW
 delay(1000); // wait for a second(1000 millisecond)
}

You will notice from the preceding code that there are two important functions in
each program. The first one is setup, which runs only once when you power up the
board or press the reset button. The second function is loop, which runs over and
over forever.

In the setup function, you should write a code that needs to be executed once, like
defining a variable, initializing a port as INPUT or OUTPUT. In the preceding code,
digital pin 13 is defined as OUTPUT. In the loop function, the first line will put the
HIGH voltage on pin 13, which will turn on the LED connected to pin 13.

Chapter 1

[13]

The "Hello World" program will turn the LED on for one second and turn off the
LED for one second. The delay(1000) function will induce a delay of one second
and after that, digitalWrite(13, LOW) will put the low voltage on pin 13, which
will turn off the LED. Again, before you turn the LED on, you need to wait for one
second by putting delay(1000) at the end of the code.

Using serial communication
Serial communication is used for communication between the Arduino board and
a computer or other devices. All Arduino boards have at least one serial port which
is also known as a UART. Serial data transfer is when we transfer data one bit at
a time, one right after the other. Information is passed back and forth between the
computer and Arduino by, essentially, setting a pin to high or low. Just like we used
that technique to turn an LED on and off, we can also send data. One side sets the
pin and the other reads it.

In this section, you will see two examples. In the first example, Arduino will send
data to the computer using serial communication, while in the second example, by
sending a command (serial) from the computer, you can control the functionality
of the Arduino board.

Serial write
In this example, the Arduino board will communicate with the computer using the
serial port, which can be viewed on your machine using the Serial Monitor.

Write the following code to your Arduino editor:

void setup() // run once, when the sketch starts
{
 Serial.begin(9600); // set up Serial library at 9600 bps

 Serial.println("Hello world!"); // prints hello with ending line
break
}

void loop() // run over and over again
{
 // do nothing!
}

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Arduino and LEDs

[14]

Even if you have nothing in the setup or loop procedures, Arduino
requires them to be there. That way it knows you really mean to do
nothing, as opposed to forgetting to include them!

Serial.begin sets up Arduino with the transfer rate we want, in this case 9600 bits
per second. Serial.println sends data from Arduino to the computer.

Once you compile and upload it to your connected Arduino board, open Serial
Monitor from the Arduino IDE. You should be able to see the Hello world! text
being sent from the Arduino board:

If you have trouble locating Serial Monitor, check the Understanding
Arduino IDE section of this chapter.

Serial read
In the previous example, serial library was used to send a command from Arduino
to your computer. In this example, you will send a command from the computer,
and Arduino will do a certain operation (turn on/off LED) based on the command
received:

int inByte; // Stores incoming command

void setup() {

Chapter 1

[15]

Serial.begin(9600);
pinMode(13, OUTPUT); // LED pin
Serial.println("Ready"); // Ready to receive commands
}
void loop() {
 if(Serial.available() > 0) { // A byte is ready to receive
 inByte = Serial.read();
 if(inByte == 'o') { // byte is 'o'
 digitalWrite(13, HIGH);
 Serial.println("LED is ON");
 }
 else
 {
 // byte isn't 'o'
 digitalWrite(13, LOW);
 Serial.println("LED is OFF");
 }
 }
}

The inByte function will store the incoming serial byte. From the previous example,
you should be familiar with the commands written in the setup function. In the loop
function, first you need to know when a byte is available to be read. The Serial.
available() function returns the number of bytes that are available to be read.
If it is greater than 0, Serial.read() will read the byte and store it in an inByte
variable. Let's say you want to turn on the LED when the letter 'o' is available. For
that you will be using the if condition, and you will check whether the received byte
is 'o' or not. If it is 'o', turn on the LED by setting pin 13 to HIGH. Arduino will also
send an LED is ON message to the computer, which can be viewed in Serial Monitor:

Getting Started with Arduino and LEDs

[16]

If it is any other character, then turn off the LED by setting pin 13 to LOW. Arduino
will also send an LED is OFF message to the computer, which can be viewed in
Serial Monitor:

The world of LED
LED stands for light emitting diode, so it emits light when sufficient voltage is
provided across the LED anode and cathode. Today's LEDs are available in many
different types, shapes, and sizes – a direct result of the tremendous improvements in
semiconductor technology over recent years. These advancements have led to better
illumination, longer service life, and lower power consumption. They've also led to
more difficult decision making, as there are so many types of LED to choose from.

LEDs can be categorized into miniature, high power, and application-specific LEDs:

•	 Miniature LEDs: These LEDs are extremely small and usually available in
a single color/shape. They can be used as indicators on devices such as cell
phones, calculators, and remote controls.

•	 High power LEDs: Often referred to as high output LEDs, these are a direct
result of improved diode technology. They offer a much higher lumen output
than standard LEDs. Typically, these LEDs are used in car headlights.

Chapter 1

[17]

•	 Application-specific LEDs: As the name suggests, there are many LEDs that
fall under this category. These are flash LEDs, RGB LEDs, seven segment
display, LED lamps, and LED bars.

Summary
In this chapter, an overview of different Arduino boards was covered, with a
detailed explanation of an Arduino UNO board. Arduino IDE was explained, with
installation instructions for Windows, Mac, and Linux machines. "Hello World" and
a serial communication Arduino sketch were developed.

In the next chapter, we will develop an LED mood lamp and you will learn some
artistic stuff apart from programming LEDs.

[19]

Project 1 – LED Night Lamp
In Chapter 1, Getting Started with Arduino and LEDs, you learned about the "Hello
World" of physical computing. Now, as you have basic knowledge of Arduino and
its IDE, we can go ahead with some cool stuff to do with controlling LEDs. The
following topics will be covered in this chapter:

•	 Introduction to breadboard
•	 Controlling multiple LEDs
•	 LED fading
•	 Creating a mood lamp
•	 Developing an LED night lamp

By the end of this chapter, you will be able to control different LEDs in an artistic
approach.

Introduction to breadboard
Prototyping is the process of testing out an idea by creating a preliminary model
from which other products can be developed or formed. The breadboard is one of the
most fundamental pieces for prototyping electronics circuits. As it does not require
any soldering, it is also referred to as a "solderless board".

Project 1 – LED Night Lamp

[20]

Structure of a breadboard
Almost all modern breadboards are made up of plastic. A modern breadboard
consists of a perforated block of plastic with numerous metal clips under the
perforations. The breadboard has strips of metal underneath the board and holes on
top of the board. In the following image, you can see the structure of the breadboard:

The main structure of the breadboard is made up of a main central area, which is a
block of two sets of columns, where each column is made up of many rows. All of
these rows are connected on a row-by-row basis.

Using a breadboard
The breadboard has many strips of copper beneath the board that connects the holes
as shown (short circuited or same potential). The upper blue lines are not connected
with the lower ones. In the case of electronic circuits, a power supply is required
at various pins. So instead of making many connections with a power supply, one
can give a power supply to one of the holes on the breadboard and can get a power
supply from its outer holes:

Chapter 2

[21]

Multiple breadboards can be connected together to form larger prototyping board
experimenting areas. If you want to use any chip/IC (integrated circuit), you can
place it with one side on the upper block and the other side on the lower block of the
breadboard. It will be very easy for us to understand the breadboard, as we will be
using the breadboard extensively for all our projects.

Controlling multiple LEDs
In the embedded world, controlling a single LED is "Hello World" code, which we
learned in first chapter. Now, as we are familiar with the concepts of LED, we can
start to control multiple LEDs with Arduino. Here, we will start by making a simple
traffic light module.

Simple traffic light controller
As we all know, a traffic light is made up of three LEDs: red, yellow, and green. To
make this project, we need red, green, and yellow LEDs, strip wires, and a few 255 Ω
resistors.

In the previous chapter, in our "Hello World" program, we connected an LED
directly with pin 13. Here, we will connect red, yellow, and green LEDs with pins 9,
10, and 11 respectively. In the case of pin 13, it has an in-built pull up resistor. Pull
up resistors are used to limit the current supplied to an LED. We can't give current of
more than a few mA to LEDs. But, with pin 13, current is itself limited in Arduino by
the internal pull up resistor. If we want to connect to pins other than 13, we need to
add resistors in the circuit.

Project 1 – LED Night Lamp

[22]

Connect the longer head of the red LED to pin 9 and the shorter head to the resistor
and then the resistor to ground. Make a similar connection with the yellow and green
LEDs to pins 10 and 11 respectively.

Once you have made the connection, write the following code in the editor window
of Arduino IDE:

// Initializing LEDs for using it in the code.
// Initializing outside any function so global variable can be
accessed throughout the code

int redLed = 9;
int yellowLed = 10;
int greenLed = 11;

// the setup function runs once when you press reset or power the
board
void setup() {
 // initialize digital pin for red, yellow and green led as an
output.
 pinMode(redLed, OUTPUT);
 pinMode(yellowLed, OUTPUT);
 pinMode(greenLed, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(redLed, HIGH); // Making red led high
 digitalWrite(yellowLed, LOW); // Making yellow led low
 digitalWrite(greenLed, LOW); // Making green led low
 delay(10000); // Wait for 10 seconds (10000
milliseconds)
 digitalWrite(redLed, LOW);
 // Making red led low
 digitalWrite(yellowLed, LOW); // Making yellow led low
 digitalWrite(greenLed, HIGH); // Making green led high
 delay(10000); // Wait for 10 seconds (10000
milliseconds)
 digitalWrite(redLed, LOW); // Making red led low
 digitalWrite(yellowLed, HIGH); // Making yellow led high
 digitalWrite(greenLed, LOW); // Making green led low
 delay(3000); // Wait for 3 seconds 3000
milliseconds)
}

Chapter 2

[23]

In the preceding code, you can see that it is much the same as the "Hello World"
program, except here we are controlling multiple LEDs. Here, we are initializing the
variables as integers and using that same variable throughout the code. So, in the
future, if we need to change an Arduino pin, we just have to make a change at one
place, instead of making changes at multiple places in the code. It is a good practice to
use variables instead of directly using pin numbers in the code. In the setup function,
we are setting pins as OUTPUT. If we don't initialize the port to either INPUT or
OUTPUT, a port might be in an indefinite state. So, it will give random output.

We have completed the code for one direction of our traffic light. Similarly, you can
create your code for the other remaining directions.

LED fading
You can fade out and fade in the light of an LED using Arduino's analogWrite(pin,
value) function. Before we get into using the analogWrite() function, we will
understand the concept behind the analogWrite() function. To create an analog
signal, Arduino uses a technique called Pulse width modulation (PWM).

Pulse width modulation (PWM)
PWM is a technique for getting an analog signal using digital means. By varying
the duty cycle (duty cycle is the percentage of a period, when a signal is active.),
we can mimic an "average" analog voltage. As you can see in the following image,
when we want medium voltage, we will keep the duty cycle as 50%. Similarly, if we
want to achieve low voltage and high voltage, we will keep the duty cycle as 10%
and 90% respectively. In this application, PWM is the process to control the power
sent to the LED:

Project 1 – LED Night Lamp

[24]

Using PWM on Arduino
Arduino UNO has 14 digital I/O pins. As mentioned in Chapter 1, Getting Started
with Arduino and LEDs, we can use six pins (3, 5, 6, 9, 10, and 11) as PWM pins. These
pins are controlled by on-chip timers, which toggle the pins automatically at a rate of
about 490 Hz. As discussed earlier, we will be using the analogWrite() function.

In the following figure, the analogWrite() function takes the pin number and
pin value as its parameter. Here, as you can see in the image, the pin value can be
between 0 and 255, with the duty cycle mapped to 0% and 100%:

Connect the anode (longer head) of the LED to pin 11 (PWM pin) through a 220 Ω
resistor and the cathode (shorter head) to ground, and write the following code in
your editor window:

int led = 11; // the pin that the LED is attached to
int brightness = 0; // how bright the LED is
int steps = 5; // how many points to fade the LED by

void setup() {
 pinMode(led, OUTPUT);
}

Chapter 2

[25]

void loop() {
 // Setting brightness of LED:
 analogWrite(led, brightness);

 // change the brightness for next time through the loop:
 brightness = brightness + steps;

 // When brightness value reaches either 0 or 255, reverse direction
of fading
 if (brightness == 0 || brightness == 255) {
 steps = -steps ;
 }
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
}

We are using pin 11(PWM pin) for fading the LED. We are storing the brightness
of the LED in variable brightness. Initially, we are setting 0 brightness to the LED.
When the loop function runs again, we are incrementing the value by steps of 5.
As in the analogWrite() function, we can set the value between 0 and 255. Once
brightness reaches maximum, we are decrementing the value. Similarly, once
brightness reaches 0, we start incrementing brightness in steps of 1. To see the
dimming effect, we are putting a delay of 30 milliseconds at the end of the code.

Creating a mood lamp
Lighting is one of the biggest opportunities for homeowners to effectively influence
the ambience of their home, whether for comfort and convenience or to set the mood
for guests. In this section, we will make a simple yet effective mood lamp using our
own Arduino. We will be using an RGB LED for creating our mood lamp. An RGB
(red, green, and blue) LED has all three LEDs in one single package, so we don't need
to use three different LEDs for getting different colors. Also, by mixing the values,
we can simulate many colors using some sophisticated programming. It is said that,
we can produce 16.7 million different colors.

Project 1 – LED Night Lamp

[26]

Using an RGB LED
An RGB LED is simply three LEDs crammed into a single package. An RGB LED has
four pins. Out of these four pins, one pin is the cathode (ground). As an RGB LED
has all other three pins shorted with each other, it is also called a common anode
RGB LED:

Here, the longer head is the cathode, which is connected with ground, and the other
three pins are connected with the power supply. Be sure to use a current-limiting
resistor to protect the LED from burning out. Here, we will mix colors as we mix
paint on a palette or mix audio with a mixing board. But to get a different color, we
will have to write a different analog voltage to the pins of the LED.

Why do RGB LEDs change color?
As your eye has three types of light interceptor (red, green, and blue), you can mix
any color you like by varying the quantities of red, green, and blue light. Your eyes
and brain process the amounts of red, green, and blue, and convert them into a color
of the spectrum:

Chapter 2

[27]

If we set the brightness of all our LEDs the same, the overall color of the light will
be white. If we turn off the red LED, then only the green and blue LEDs will be
on, which will make a cyan color. We can control the brightness of all three LEDs,
making it possible to make any color. Also, the three different LEDs inside a single
RGB LED might have different voltage and current levels; you can find out about
them in a datasheet. For example, a red LED typically needs 2 V, while green and
blue LEDs may drop up to 3-4 V.

Designing a mood lamp
Now, we are all set to use our RGB LED in our mood lamp. We will start by
designing the circuit for our mood lamp. In our mood lamp, we will make a smooth
transition between multiple colors.

For that, we will need following components:

•	 An RGB LED
•	 270 Ω resistors (for limiting the current supplied to the LED)
•	 A breadboard

As we did earlier, we need one pin to control one LED. Here, our RGB LED consists
of three LEDs. So, we need three different control pins to control three LEDs.
Similarly, three current-limiting resistors are required for each LED. Usually, this
resistor's value can be between 100 Ω and 1000 Ω. If we use a resistor with a value
higher than 1000 Ω, minimal current will flow through the circuit, resulting in
negligible light emission from our LED. So, it is advisable to use a resistor having
suitable resistance. Usually, a resistor of 220 Ω or 470 Ω is preferred as a current-
limiting resistor.

Project 1 – LED Night Lamp

[28]

As discussed in the earlier section, we want to control the voltage applied to each
pin, so we will have to use PWM pins (3, 5, 6, 9, 10, and 11). The following schematic
controls the red LED from pin 11, the blue LED from pin 10, and the green LED from
pin 9. Hook the following circuit using resistors, the breadboard, and your RGB LED:

Once you have made the connection, write the following code in the editor window
of Arduino IDE:

int redLed = 11;
int blueLed = 10;
int greenLed = 9;

void setup()
{
 pinMode(redLed, OUTPUT);
 pinMode(blueLed, OUTPUT);
 pinMode(greenLed, OUTPUT);
}
void loop()
{
 setColor(255, 0, 0); // Red
 delay(500);

Chapter 2

[29]

 setColor(255, 0, 255); // Magenta
 delay(500);
 setColor(0, 0, 255); // Blue
 delay(500);
 setColor(0, 255, 255); // Cyan
 delay(500);
 setColor(0, 255, 0); // Green
 delay(500);
 setColor(255, 255, 0); // Yellow
 delay(500);
 setColor(255, 255, 255); // White
 delay(500);
}
void setColor(int red, int green, int blue)
{
 // For common anode LED, we need to subtract value from 255.
 red = 255 - red;
 green = 255 - green;
 blue = 255 - blue;
 analogWrite(redLed, red);
 analogWrite(greenLed, green);
 analogWrite(blueLed, blue);
}

We are using very simple code for changing the color of the LED at every one second
interval. Here, we are setting the color every second. So, this code won't give you a
smooth transition between colors. But with this code, you will be able to run the RGB
LED. Now we will modify this code to smoothly transition between colors. For a
smooth transition between colors, we will use the following code:

int redLed = 11;
int greenLed = 10;
int blueLed = 9;

int redValue = 0;
int greenValue = 0;
int blueValue = 0;

void setup(){
 randomSeed(analogRead(0));
}

void loop() {
 redValue = random(0,256); // Randomly generate 1 to 255
 greenValue = random(0,256); // Randomly generate 1 to 255
 blueValue = random(0,256); // Randomly generate 1 to 255

Project 1 – LED Night Lamp

[30]

 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);

// Incrementing all the values one by one after setting the random
values.
 for(redValue = 0; redValue < 255; redValue++){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(greenValue = 0; greenValue < 255; greenValue++){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(blueValue = 0; blueValue < 255; blueValue++){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }

 //Decrementing all the values one by one for turning off all the
LEDs.
 for(redValue = 255; redValue > 0; redValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(greenValue = 255; greenValue > 0; greenValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(blueValue = 255; blueValue > 0; blueValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
}

Chapter 2

[31]

We want our mood lamp to repeat the same sequence of colors again and again. So,
we are using the randomSeed() function. The randomSeed() function initializes
the pseudo random number generator, which will start at an arbitrary point and
will repeat in the same sequence again and again. This sequence is very long and
random, but will always be the same. Here, pin 0 is unconnected. So, when we
start our sequence using analogRead(0), it will give some random number, which
is useful in initializing the random number generator with a pretty fair random
number. The random(min,max) function generates the random number between
min and max values provided as parameters. In the analogWrite() function, the
number should be between 0 and 255. So, we are setting min and max as 0 and
255 respectively. We are setting the random value to redPulse, greenPulse, and
bluePulse, which we are setting to the pins. Once a random number is generated,
we increment or decrement the value generated with a step of 1, which will smooth
the transition between colors.

Now we are all set to use this as mood lamp in our home. But before that we need to
design the outer body of our lamp. We can use white paper (folded in a cube shape)
to put around our RGB LED. White paper acts as a diffuser, which will make sure
that the light is mixed together. Alternatively, you can use anything which diffuses
light and make things looks beautiful! If you want to make the smaller version of the
mood lamp, make a hole in a ping pong ball. Extend the RGB LED with jump wires
and put that LED in the ball and you are ready to make your home look beautiful.

Developing an LED night lamp
So now we have developed our mood lamp, but it will turn on only when we connect
a power supply to Arduino. It won't turn on or off depending on the darkness of
the environment. Also, to turn it off, we have to disconnect our power supply from
Arduino. In this section, we will learn how to use switches with Arduino.

Introduction to switch
Switches are one of the most elementary and easy-to-overlook components. Switches
do only one thing: either they open a circuit or short circuit. Mainly, there are two
types of switches:

•	 Momentary switches: Momentary switches are those switches which
require continuous actuation—like a keyboard switch and reset button
on the Arduino board

•	 Maintained switches: Maintained switches are those switches which,
once actuated, remain actuated—like a wall switch.

Project 1 – LED Night Lamp

[32]

Normally, all the switches are NO (normally opened) type switches. So, when the
switch is actuated, it closes the path and acts as a perfect piece of conducting wire.
Apart from this, based on their working, many switches are out there in the world,
such as toggle, rotary, DIP, rocker, membrane, and so on.

Here, we will use a normal push button switch with four pins:

In our push button switch, contacts A-D and B-C are short. We will connect our
circuit between A and C. So, whenever you press the switch, the circuit will be
complete and current will flow through the circuit. We will read the input from the
button using the digitalRead() function. We will connect one pin (pin A) to the
5 V, and the other pin (pin C) to Arduino's digital input pin (pin 2). So whenever the
key is pressed, it will send a 5 V signal to pin 2.

Pixar lamp
We will add a few more things in the mood lamp we discussed to make it more
robust and easy to use. Along with the switch, we will add some kind of light-
sensing circuit to make it automatic. We will use a Light Dependent Resistor (LDR)
for sensing the light and controlling the lamp.

Basically, LDR is a resistor whose resistance changes as the light intensity changes.
Mostly, the resistance of LDRs drops as light increases. For getting the value changes
as per the light levels, we need to connect our LDR as per the following circuit:

Chapter 2

[33]

Here, we are using a voltage divider circuit for measuring the light intensity change.
As light intensity changes, the resistance of the LDR changes, which in turn changes
the voltage across the resistor. We can read the voltage from any analog pin using
analogRead().

Once you have connected the circuit as shown, write the following code in the editor:

int LDR = 0; //will be getting input from pin A0
int LDRValue = 0;
int light_sensitivity = 400; //This is the approx value of light
surrounding your LDR
int LED = 13;

void setup()
{
 Serial.begin(9600); //start the serial monitor with 9600
buad
 pinMode(LED, OUTPUT);

}

void loop()
{
 LDRValue = analogRead(LDR); //Read the LDR's value through LDR
pin A0
 Serial.println(LDRValue); //Print the LDR values to serial
monitor

 if (LDRValue < light_sensitivity)
 {
 digitalWrite(LED, HIGH);
 }
 else
 {
 digitalWrite(LED, LOW);
 }
 delay(50); //Delay before LDR value is read again
}

In the preceding code, we are reading the value from our LDR at pin analog A0.
Whenever the value read from pin A0 is below a certain threshold value, we are
turning on the LED. So whenever the light (lux value) around the LDR drops,
then the set value, it will turn on the LED, or in our case, the mood lamp.

www.allitebooks.com

http://www.allitebooks.org

Project 1 – LED Night Lamp

[34]

Similarly, we will add a switch in our mood lamp to make it fully functional as a
pixar lamp.

Connect one pin of the push button at 5 V and the other pin to digital pin 2. We will
turn on the lamp only, and only when the room is dark and the switch is on. So we
will make the following changes in the previous code.

In the setup function, initialize pin 2 as input, and in the loop add the following
code:

buttonState = digitalRead(pushSwitch); //pushSwitch is initialized as
2.
If (buttonState == HIGH){

//Turn on the lamp
}
Else {
//Turn off the lamp.
//Turn off all LEDs one by one for smoothly turning off the lamp.
 for(redValue = 255; redValue > 0; redValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(greenValue = 255; greenValue > 0; greenValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(blueValue = 255; blueValue > 0; blueValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
}

So, now we have incorporated an LDR and switch in our lamp to use it as a normal
lamp.

Chapter 2

[35]

Summary
In this chapter, we started with using a breadboard. Programming multiple LEDs
was explained by developing a model traffic light controller. A mood lamp with RGB
LED and a Pixar lamp with a sensing part were developed by the end of this chapter.

In the next chapter, a remote-controlled TV backlight will be developed, where you
will learn how to make communication between Arduino and a TV remote.

[37]

Project 2 – Remote
Controlled TV Backlight

In the previous chapter, Project 1 – LED Night Lamp, we dived into the amazing world
of LEDs. We created some cool projects using different types of LEDs. Now, we
will use another type of LED – an IR (Infrared) LED. In this chapter, we will start by
learning the basics of IR LEDs and the basics of IR communication. Once you have
learned about programming the IR sensor, we will use it to control a TV backlight
using a remote. In this chapter, you will learn about the following:

•	 Introduction to and the workings of an IR LED
•	 Programming an IR sensor
•	 How to control an LED array
•	 Developing a remote controlled TV backlight

Introduction to IR LEDs
In the world of wireless technology, IR (infrared) is one of the most common,
inexpensive, and easy to use modes of communication. You might have always
wondered how a TV remote works. A TV remote uses IR LEDs to send out the
signal. As the wavelength of light emitted from the IR LED is longer than the visible
light, one can't see it with the naked eye. But, if you look through the camera of
your mobile or any other camera, you can see the light beaming when you press any
key on the remote. Let's first understand what an IR LED is and what the different
applications of an IR LED are.

Project 2 – Remote Controlled TV Backlight

[38]

What is IR LED?
An IR (infrared) LED, also known as an IR (infrared) transmitter, transmits infrared
waves in the range of 875 nm to 950 nm. Usually, IR LEDs are made up of gallium
arsenide or aluminum gallium arsenide. The working principle of an IR LED is the
same as we mentioned in the previous chapters. The longer lead of the LED is the
anode and the shorter one is the cathode, as shown here:

Applications of IR LED / IR communication
Apart from using IR communication in TV remote controls, there are a number of
other applications that use IR communication. Infrared light can also be used to
transfer data between electronic devices. Although infrared light is invisible to the
eye, digital cameras and other sensors can see this light, so infrared light can be used
for many security systems and night vision technology. Apart from technical uses,
the U.S. Food and Drug Administration Department has approved several products
with IR LEDs for use in some medical and cosmetic procedures.

IR sensors
We have learned the basics of IR communication and IR LEDs, so now we will move
on to making our own IR sensor.

There are various types of IR sensors, depending upon the application. Proximity
sensors, obstruction sensors, and contrast sensors (used in line follower robot) are
a few examples which use IR sensors.

Working mechanism
An IR sensor consists of an IR LED (which works as a transmitter) and a photodiode
(which works as a receiver) pair. The IR LED emits IR radiation, which, on receiving
at the photodiode dictates the output of the sensor.

Chapter 3

[39]

There are different types of use cases for an IR sensor. For example, if we held an IR
LED directly in front of the photodiode, such that almost all the radiation reaches
the photodiode, this can be used as burglar alarm. So, when anyone interrupts the
line of sight between the IR LED and the photodiode, this will break the continuous
radiation coming from the IR LED, and we can program it to raise an alarm. This
type of mechanism is also called a direct incidence, as we are not using any reflective
surface in between the transmitter and receiver.

Another use case is with indirect incidence, in which we use physics' law of
absorption. This means, when light is directed at a black surface, the black surface
will actually absorb the light. Similarly, when IR radiation is directed at a black
surface, the surface will absorb the IR radiation. But, when it is directed toward a
white surface, the surface will reflect the IR radiation. Based on the amount of light
received back from the surface, we can detect, if robot is following a line or not.
So, the absorption principle can be used for line follower robot:

As you can see in the preceding image, whenever any obstacle is detected in the path
of the IR, some of the IR radiation is reflected back, which, on receipt of the IR waves,
gives the output. This type of setup is also useful for detecting any object/obstacle in
the path.

Programming a basic IR sensor
After understanding the basic workings of a simple IR sensor, we will learn how to
program this sensor.

Project 2 – Remote Controlled TV Backlight

[40]

Based on the principle of direct incidence, we will develop a simple burglar alarm.

Once you have connected the circuit as shown in the following diagram, upload the
following code to Arduino:

int IRTransmitter = 8;
int IRReceiver = A0; //IR Receiver is connected to pin 5

int buzzer = 9; // Buzzer is connected with pin 9.
int output = 0; // Variable to store the value from the IR sensor
int ambientLight = 500;

void setup()
{
 pinMode(IRReceiver,INPUT);
 pinMode(IRTransmitter,OUTPUT);
 pinMode(buzzer,OUTPUT);
 digitalWrite(IRTransmitter,HIGH);
}

Chapter 3

[41]

void loop()
{
 output = analogRead(IRReceiver);
 // If anything comes in between the IR Transmitter and IR receiver
 // IR receiver will not give the output. Make an alarm.
 if (output < ambientLight)
 {
 makeAlarm(50);
 }
}
void makeAlarm(unsigned char time)
{
 analogWrite(buzzer,170);
 delay(time);
 analogWrite(buzzer,0);
 delay(time);
}

In the preceding code, we are continuously making the IR transmitter ON. So, the IR
receiver/photodiode will continuously receive an IR signal. Whenever any person
tries to break into the house or safe, the IR signal will get interrupted, which in
turn will lower the voltage drop across the IR receiver and an alarm will be raised.
Here, based on the conditions around you, you will have to change the value of the
ambientLight variable in the code.

How to receive data from a TV remote
As we discussed earlier, a TV remote has an IR LED, which transmits IR light with
a 38 kHz frequency. So, whenever that radiation is detected at the receiver part of
the TV (the control circuit of the TV), we need to filter that signal.

As you can see in the following image, when a signal is actually transmitted from the
TV remote, it will look like a series of waves:

Project 2 – Remote Controlled TV Backlight

[42]

For filtering the actual signal from a TV remote from ambient noise, we will use
TSOP38238 IC. TSOP38238 looks like a transistor, but actually this device combines
an IR sensitive photocell, a 38 kHz band pass filter, and an automatic gain controller.
Here, the IR sensitive photocell works as an IR receiver (photodiode), and the 38 kHz
band pass filter is required to smooth the received modulated signal.

After passing through the 38 kHz band pass filter, the output signal will look as
shown in the following, which is much cleaner and easier to read:

Also, TSOP38238 is covered in the lead package epoxy frame, which acts as an IR
filter. So, the disturbance light (DC light from a tungsten bulb, or a modulated signal
from fluorescent lamps) does not reach the photodiode. This demodulated signal
can be directly decoded by any microprocessor (in our case, Arduino). Because of
this, apart from preamplifier, it ignores all other IR light unless it is modulated at a
specific frequency (38 kHz).

This IC is as simple as an IC can get with its three pins. There are two power pins
and one pin for the output signal:

Chapter 3

[43]

TSOP38238 can be powered with a supply from 2.5 V to 5.5 V, which makes it
suitable for all types of application. Also, it can receive signals from almost all
types of remotes.

To start with, we will control a single LED using an IR remote. For that, we will be
using the IRRemote library, available at https://github.com/z3t0/Arduino-
IRremote. Once you have downloaded and extracted the code in the libraries folder
of Arduino, you will be able to see the examples in the Arduino IDE. We need to
record the value of all the buttons for future use.

Connect the first pin of TSOP38238 to pin 11 of Arduino, the second pin to the
ground pin of Arduino, and the third pin to the 5 V pin of Arduino. Connect
Arduino over USB and try to compile the following code:

#include <IRremote.h>
const int IR_RECEIVER = 11;
IRrecv receiver(IR_RECEIVER);
decode_results buttonPressed;
void setup()
{
 Serial.begin(9600);
 receiver.enableIRIn(); // Start the receiver
}

void loop()
{
 if (receiver.decode(&buttonPressed))
 {
 Serial.println(buttonPressed.value); //Printing values coming from
the IR Remote
 receiver.resume(); // Receive the next value
 }
 delay(100);
}

In the latest version of Arduino, the IRremote.h library is already
installed in the RobotIRremote folder. But, you won't have all
the examples available from the downloaded library. So, delete the
RobotIRremote library and try to compile the code again.

Once you have deleted the duplicate file, you should be able to successfully compile
the code. After uploading the preceding code, open the serial monitor. As we want
to control a single LED using a remote, we will have to know the value of the button
pressed. So, try noting down the values of all the buttons one after the other.

https://github.com/z3t0/Arduino-IRremote
https://github.com/z3t0/Arduino-IRremote

Project 2 – Remote Controlled TV Backlight

[44]

For example, digit 1 has 54,528 codes for a certain remote. You might have to check for
the remote that you have. We will now control the LED by using the IR remote. Along
with the IR receiver, we will connect one LED, as shown in the following circuit:

Update the code for controlling the LED, based on your readings from the previous
exercise:

#include <IRremote.h>
const int IR_RECEIVER = 11;
IRrecv receiver(IR_RECEIVER);
decode_results buttonPressed;
long int buttonValue = 0;
const long int buttonOne = 54528; //Update value one according to your
readings
const long int buttonTwo = 54572; //Update value two according to your
readings

int LEDpin = 9;

void setup()
{
 Serial.begin(9600);
 receiver.enableIRIn(); // Start the receiver
 pinMode(LEDpin,OUTPUT);
}

void loop()
{

Chapter 3

[45]

 if (receiver.decode(&buttonPressed))
 {
 buttonValue = buttonPressed.value;
 Serial.println(buttonValue);
 switch (buttonValue){
 case buttonOne:
 digitalWrite(LEDpin,HIGH);
 break;
 case buttonTwo:
 digitalWrite(LEDpin,LOW);
 break;
 default:
 Serial.println("Waiting for input. ");
 }
 receiver.resume(); // Receive the next value
 }
 delay(100);
}

Now you will be able to control a single LED using the IR remote. In a similar way,
you can control anything that you want to control using an IR remote. At the end of
this chapter, we want to control a TV backlight using an IR remote. We will develop
a TV backlight using an LED strip. So, we will now learn about how to control an
LED array.

LED strips
LED strips are flexible circuit boards with full color LEDs soldered on them. There
are two basic types of LED strip: the "analog" and "digital" kinds. Analog strips have
all the LEDs connected in parallel. So, they act as one huge tri-color LED. In case of
an analog LED strip, we can't set the color/brightness of each LED. So, they are easy
to use and inexpensive. Digital LED strips work in a different way. To use the LED,
we have to send digital code corresponding to each LED in the case of a digital LED
strip. As they provide more modularity, they are quite expensive. Also, digital LED
strips are difficult to use compared to analog LED strips:

Project 2 – Remote Controlled TV Backlight

[46]

Internally, RGB LEDs are connected to each other in parallel. One section of the strip
contains all three LEDs, connected in parallel. A complete LED strip is made up of a
number of parallel RGB LEDs connected in series. Connection in one block/section is
as shown in the following figure:

As one section contains multiple LEDs, it requires more current to run. It can't run on
the current provided from Arduino. In case of full white, each segment will require
approximately 60 mA of current per block/section. So to run the complete LED
strip, we may require current of up to 1.2 A per meter. For running an LED strip,
an external power supply of 12 V is required.

Controlling an LED strip with Arduino
As we know, we can draw maximum current up to 300 mA if we put all the I/O
pins together. But, as we require a higher current, we will have to use an external
power supply. Now here comes the tricky part. We will use Arduino to control the
LED strip, and for a power supply, we will use external power. For connecting the
LED strip with Arduino, we will use MOSFET to limit the current drawn to and
from Arduino.

Here, we will use N-channel MOSFET, which is very inexpensive and works with
3.3 V to 5 V logic. These FETs can switch over 60 A and 30 V.

Chapter 3

[47]

Connecting to the strip is relatively easy. We need to solder the wires to the four
pins/copper pads of our LED strip. One can use heat shrink for providing insulation,
abrasion resistance, and environmental protection.

To use our LED strip with Arduino, we will require some resistors as well, to limit
the current:

Connect the power transistor with the resistor in between the PWM output pin and
the base. In case of NPN transistors, pin 1 is the base. Pin 2 is the collector and pin 3
is the emitter. Now, for power supply to Arduino and the LED strip, connect a 9 -12
V power supply to the Arduino, so that Vin supplies the high voltage to the LED.

Project 2 – Remote Controlled TV Backlight

[48]

At the end of the wiring connection, make sure to connect the ground of the supply
to that of Arduino/MOSFETs. Connect the Arduino output pin to the base of the
MOSFET (pin 1) with a 100-220 Ω resistor in between. Connect pin 2 of the MOSFET
to the LED strip's input pin and connect pin 3 of the MOSFET to the ground.

Check all the connections and write the following code in the editor window of
Arduino. Here, we are using pins 5, 6, and 3 of Arduino to control the LED strip's
red, green, and blue LEDs respectively:

int redLed = 5;
int greenLed = 6;
int blueLed = 3;

int redValue = 0;
int greenValue = 0;
int blueValue = 0;

void setup(){
 randomSeed(analogRead(0));
}

void loop() {
 redValue = random(0,256); // Randomly generate 1 to 255
 greenValue = random(0,256); // Randomly generate 1 to 255
 blueValue = random(0,256); // Randomly generate 1 to 255

 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);

// Incrementing all the values one by one after setting the random
values.
 for(redValue = 0; redValue < 255; redValue++){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(greenValue = 0; greenValue < 255; greenValue++){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);

Chapter 3

[49]

 delay(10);
 }
 for(blueValue = 0; blueValue < 255; blueValue++){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }

 //Decrementing all the values one by one for turning off all the
LEDs.
 for(redValue = 255; redValue > 0; redValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(greenValue = 255; greenValue > 0; greenValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
 for(blueValue = 255; blueValue > 0; blueValue--){
 analogWrite(redLed,redValue);
 analogWrite(greenLed,greenValue);
 analogWrite(blueLed,blueValue);
 delay(10);
 }
}

If everything is in place, you should be able to see the LED strip getting on and
changing its color.

Now we have learned about all the things required to control the TV backlight using
IR remote, so we will integrate all the things that we learned in this chapter:

•	 How IR works
•	 How to read values from an IR remote
•	 How to control an LED strip

We want to control the brightness of the LED strip as well. We will use the power
button to turn the backlight off and on. With volume plus and volume minus, we
will increase and decrease the brightness of the backlight.

Project 2 – Remote Controlled TV Backlight

[50]

As we did earlier in the chapter, connect TSOP38238 to pin 11, 5 V, and ground pin
of Arduino. Once you have done all the connections, upload the following code on
Arduino:

#include <IRremote.h>
const int IR_RECEIVER = 11; // Connect output pin of TSOP38238 to pin
11
IRrecv receiver(IR_RECEIVER);
decode_results buttonPressed;
long int buttonValue = 0;

// Mention the codes, you get from previous exercise
const long int POWER_BUTTON = 54572; // Power button to turn on or off
the backlight
const long int PLUS_BUTTON = 54536; // Increase brightness of the LED
Strip
const long int MINUS_BUTTON = 54608; // Decrease brightness of the LED
strip
const long int CHANGE_COLOR = 54584; // Decrease brightness of the LED
strip

const int FADE_AMOUNT = 5; // For fast increasing/decreasing
brightness increase this value
boolean isOn = false;

int redLed = 5;
int greenLed = 6;
int blueLed = 3;

int redValue = 0;
int greenValue = 0;
int blueValue = 0;

int colors[3];

// Power up the LED strip with random color
void powerUp(int *colors)
{
 redValue = random(0, 256); // Randomly generate 1 to 255
 greenValue = random(0, 256); // Randomly generate 1 to 255
 blueValue = random(0, 256); // Randomly generate 1 to 255

 analogWrite(redLed, redValue);
 analogWrite(greenLed, greenValue);

Chapter 3

[51]

 analogWrite(blueLed, blueValue);

 colors[0] = redValue;
 colors[1] = greenValue;
 colors[2] = blueValue;
}

// Turn off the LED
void powerDown(int *colors)
{
 redValue = colors[0];
 greenValue = colors[1];
 blueValue = colors[2];

 //Decrementing all the values one by one for turning off all the
LEDs.
 for (; redValue > 0; redValue--) {
 analogWrite(redLed, redValue);
 delay(10);
 }
 for (; greenValue > 0; greenValue--) {
 analogWrite(greenLed, greenValue);
 delay(10);
 }
 for (; blueValue > 0; blueValue--) {
 analogWrite(blueLed, blueValue);
 delay(10);
 }
 colors[0] = redValue;
 colors[1] = greenValue;
 colors[2] = blueValue;
}

void increaseBrightness(int *colors)
{
 redValue = colors[0];
 greenValue = colors[1];
 blueValue = colors[2];

 redValue += FADE_AMOUNT;
 greenValue += FADE_AMOUNT;
 blueValue += FADE_AMOUNT;

 if (redValue >= 255) {

Project 2 – Remote Controlled TV Backlight

[52]

 redValue = 255;
 }

 if (greenValue >= 255) {
 greenValue = 255;
 }

 if (blueValue >= 255) {
 blueValue = 255;
 }
 analogWrite(redLed, redValue);
 analogWrite(greenLed, greenValue);
 analogWrite(blueLed, blueValue);

 colors[0] = redValue;
 colors[1] = greenValue;
 colors[2] = blueValue;
}

void decreaseBrightness(int *colors)
{
 redValue = colors[0];
 greenValue = colors[1];

 blueValue = colors[2];

 redValue -= FADE_AMOUNT;
 greenValue -= FADE_AMOUNT;
 blueValue -= FADE_AMOUNT;

 if (redValue <= 5) {
 redValue = 0;
 }

 if (greenValue <= 5) {
 greenValue = 0;
 }

 if (blueValue <= 5) {
 blueValue = 0;
 }
 analogWrite(redLed, redValue);
 analogWrite(greenLed, greenValue);

Chapter 3

[53]

 analogWrite(blueLed, blueValue);

 colors[0] = redValue;
 colors[1] = greenValue;
 colors[2] = blueValue;
}

// Randomly generates a color and make a smooth transition to that
color
void changeColor(int *colors)
{
 int newRedValue = random(0, 256); // Randomly generate 1 to 255
 int newGreenValue = random(0, 256); // Randomly generate 1 to 255
 int newBlueValue = random(0, 256); // Randomly generate 1 to 255

 redValue = colors[0];
 greenValue = colors[1];
 blueValue = colors[2];

 if (newRedValue > redValue) {
 for (; redValue >= newRedValue; redValue++) {
 analogWrite(redLed, redValue);
 delay(10);
 }
 }
 else {
 for (; redValue <= newRedValue; redValue--) {
 analogWrite(redLed, redValue);
 delay(10);
 }
 }

 if (newGreenValue > greenValue) {
 for (; greenValue >= newGreenValue; greenValue++) {
 analogWrite(greenLed, greenValue);
 delay(10);
 }
 }
 else {
 for (; greenValue <= newGreenValue; greenValue--) {
 analogWrite(greenLed, greenValue);
 delay(10);
 }
 }

Project 2 – Remote Controlled TV Backlight

[54]

 if (newBlueValue > blueValue) {
 for (; blueValue >= newBlueValue; blueValue++) {
 analogWrite(blueLed, blueValue);
 delay(10);
 }
 }
 else {
 for (; blueValue <= newBlueValue; blueValue--) {
 analogWrite(blueLed, blueValue);
 delay(10);
 }
 }

 colors[0] = redValue;
 colors[1] = greenValue;
 colors[2] = blueValue;
}

void setup() {
 Serial.begin(9600);
 receiver.enableIRIn(); // Start the receiver

 randomSeed(analogRead(0));

 pinMode(redLed, OUTPUT);
 pinMode(greenLed, OUTPUT);
 pinMode(blueLed, OUTPUT);
}

void loop() {

 if (receiver.decode(&buttonPressed))
 {
 buttonValue = buttonPressed.value;
 Serial.println(buttonValue);
 switch (buttonValue) {
 case POWER_BUTTON:
 if (!isOn) {
 powerUp(colors);
 isOn = true;
 }
 else {
 powerDown(colors);

Chapter 3

[55]

 isOn = false;
 }
 break;
 case PLUS_BUTTON:
 decreaseBrightness(colors);
 break;
 case MINUS_BUTTON:
 increaseBrightness(colors);
 break;
 case CHANGE_COLOR:
 changeColor(colors);
 break;
 default:
 Serial.println("Waiting for input. ");
 }
 receiver.resume(); // Receive the next value
 }
 delay(100);
}

In the preceding code, we are using the power button to turn the backlight on and
off, and the volume up and down buttons to increase and decrease the brightness
respectively. I have used the up arrow button to change the color of the strip. You
can add more features to this project by configuring it in the switch case block.

Summary
In this chapter, we started with the basics of IR LEDs and IR communication. After
that, we learnt about programming IR sensors and their applications. By the end of
this chapter, we learnt about controlling an LED strip, and we completed our chapter
by developing a remote controlled TV backlight.

In the coming chapters, we will start into the more advanced stuff of developing an
LED cube, sound visualization, and persistence of vision.

[57]

Project 3 – LED Cube
If you have successfully implemented the last two projects, you will have noticed
that there is very little or no soldering involved. However, I would say you haven't
worked on electronics if you haven't done some intense soldering and burnt your
hands. In this chapter, you will get introduced to soldering in detail. You will also
understand how to create a 4*4*4 LED cube using an Arduino UNO board. You will
learn about the following:

•	 Introduction to soldering
•	 Designing an LED cube
•	 Programming a 4*4*4 LED cube

Getting started with soldering
Soldering is the process of making a sound electrical and mechanical joint between
certain metals by joining them with a soft solder. This is an alloy of lead and tin with
a low melting point. The joint is heated to the correct temperature by a soldering
iron. Effective soldering requires good heat transfer from the iron to the components
to be soldered. The longer heat is applied, the greater the risk of heat damage to the
wire or component, so it's important to get the job wrapped up quickly.

What you will need
Before you proceed further with the next section of the chapter, make sure you have
the following items with you and have got yourself familiarized with the tools:

•	 Soldering iron
•	 Basic stand
•	 Solder desoldering pump
•	 Cardboard

Project 3 – LED Cube

[58]

The following image is for your quick reference so that you will get a rough idea
of soldering tools. One thing to remember is that soldering tools vary from place to
place, so don't worry if your tools don't look exactly the same. An important thing
to note at the beginner level is that your soldering skills are highly dependent on the
kind of soldering tools you are using, so make sure you buy the best soldering tools
available in your country:

Go to any electronics components store and ask for a soldering kit.
They will give you all the necessary components needed for soldering.
Alternatively, you can order electronics components from a few online
stores as well.

Safety tips
Soldering poses a few different dangers, so, to stay as safe as possible, always follow
these soldering safety tips:

•	 Never touch the element or tip of the soldering iron. They are very hot (about
400 degree Celsius) and will give you a nasty burn.

•	 Take great care to avoid touching the mains flex with the tip of the iron.

Chapter 4

[59]

•	 Always return the soldering iron to its stand when not in use.
•	 Never put the soldering iron down on your workbench, even for a moment!
•	 Work in a well-ventilated area.
•	 The smoke formed as you melt solder is mostly from the flux and quite

irritating. Avoid breathing it in by keeping your head to the side of, not
above, your work.

•	 Wash your hands after using solder.
•	 Solder contains lead which is a poisonous metal.
•	 Never solder a live circuit (one that is energized).

Designing an LED cube
As mentioned before, the main focus of this chapter is on soldering. In this section,
you will learn how to design an LED cube, which will have intense soldering, and
creative elements like LED control and Arduino programming.

Required components
Before getting into the cube design, make sure you have following components for
this project:

•	 Arduino UNO
•	 64 LEDs: You can use any color LED. Although 64 LEDs are required for this

project, I would recommend you to buy at least 100 LEDs in case some LEDs
get burned during the soldering process.

•	 16 resistors: These must be appropriate to your LEDs. If you are not sure
which resistor to purchase, get 500 Ω/1k Ω resistors.

•	 Connecting wires
•	 A printed circuit board
•	 Thermocol
•	 Soldering iron and solder wire

Project 3 – LED Cube

[60]

Principle behind the design
Before you read this section, make sure you have the listed components or have
already ordered them. This section is the most important part of this chapter as it
explains the key principle behind the project. It gives a complete overview of the
system so that it always stays in the back of your mind and can help identify stuff as
you go along. On the Internet, you will find lots of tutorials on making an LED cube,
however, most of them would use a single output pin for every single LED. If you
use that approach for a 4*4*4 LED cube, you would need 64 pins, which Arduino
UNO doesn't have. One approach would be to use shift registers, which will make
it complicated for beginners and first-timers.

If you look at the Arduino UNO board, you will notice that at max, 20 pins can be
used. So to control all those LEDs in 20 pins, a multiplexing technique will be used. If
you break down a cube into four layers, you will need 16 control pins for referencing
individual LEDs. To enable a particular LED of the cube, all the layers needs to be
activated. So in total, you need 16+4 (20) pins for this project.

There will be a common cathode (negative terminal) for each layer, so all the
negative legs of the LEDs are connected to a single pin for that layer. For the anode
(positive terminal), each LED will be connected to the corresponding layer above
and below. So in total, you will have 16 columns of positive terminals and four layers
of negative terminals. Following are some 3D views of the design, which will help
you better understand it. Red ones are positive terminals and blue ones are negative
terminals:

Source: http://cdn.makeuseof.com/wp-content/uploads/2012/07/structural-diagram1.png

Chapter 4

[61]

Here is another image for your reference:

Source: http://cdn.makeuseof.com/wp-content/uploads/2012/07/cube-wiring-layers-from-top.png

Construction
For the construction, you can either use a full metal structure to give rigidity to the
structure at the cost of simplicity, or the other, simpler option is to overlap all the legs
of the LEDs by about a quarter, which in turn will give the rigidity to the structure that
we require. As shown in the following image, fold the cathode of your LEDs:

Project 3 – LED Cube

[62]

You can choose to bend the cathode to the left or right. Just make
sure that you are consistent across the whole structure and it never
touches the anode.

One of the critical parts of this project is making a structure to hold the LED while
soldering. You can make this kind of structure by making a wooden jig or using a
thermocol sheet. The thermocol sheet option is going to be a bit easier. Here are a
couple of things that you should keep in mind while working on this part:

•	 As mentioned before, it will hold an LED layer so make sure it is accurate
and not too loose.

•	 A quarter of the LED leg should overlap with the adjacent LED. If needed,
use a ruler.

•	 If you are using a wooden jig, make sure your drill is the same size as the
LED. If it is a bit tight, you won't be able to remove the fully soldered layer.

Chapter 4

[63]

Now solder the cathodes of four rows of LEDs. After completing the first four rows,
your structure will look something similar to the following image:

Project 3 – LED Cube

[64]

In the preceding image, only two rows of layers are being displayed. If you are
working with copper LED cables, you would know that structures created using
copper cables won't be that strong. To strengthen the rigidity of the layer, cut and
solder two straight bits of craft wire to either end. Make sure they connect with each
row. That's it. Your first layer is ready.

Before soldering other layers, you should test the layer that you have just created
and correct any errors if you have made any, so that you don't repeat the same
mistake while working on other layers. For that, open Arduino IDE and load the
blink application that you developed in Chapter 1, Getting Started with Arduino LEDs.
For testing each LED, connect the ground pin to the layer frame with the connected
resistor and press the positive lead to each LED.

If everything goes well, each LED will light up. If not, check the connection for that
LED and make sure you haven't missed a solder joint somewhere. If the soldering and
connection are right, replace the LED and test it again. There is a chance that the LEDs
might have heated up if you kept the soldering iron connected to them for long.

Once you have tested the first layer, remove that layer from the wooden/thermocol
jig and repeat the process three more times. Don't forget to test all the four layers of
LEDs with the blink program.

Once you have completed and tested the four layers, you need to join all the vertical
legs together. One of the techniques is to cut the piece of the cardboard.

It will help to keep all the layers at the same height. You will notice that even
after using this there are lots of legs which don't align perfectly. You can use some
crocodile pins to hold them in place. Another option is to get some copper cables and
solder them at those places where the legs are not aligned properly.

Mistakes to avoid
When you are working with electronics, things can become quite tricky sometimes.
Here are a couple of things that you should keep in mind, as most first-timers make
mistakes with this:

•	 If you are using cardboard for getting equal height for the all the layers,
make the cardboard longer on the side, and join the pieces of card outside
of the cube, so when you've completed the layer, you can easily pull out the
card.

•	 A general rule of thumb is the anode of an LED will connect with the anode
of another LED, and similarly, the cathode of an LED will connect with the
cathode of another LED. Don't connect/solder the anode of one LED with the
cathode of another LED.

Chapter 4

[65]

Make sure you test all four layers once you have connected them. The easiest way to
test is to touch only on the uppermost layer. If that works, it means you have a good
connection going through all the layers.

Don't forget to cut extra bits of metal frame and legs before you connect them to the
circuit board or cardboard. An important thing to consider here is to not cut vertical
legs as those need to put into the prototyping board.

Fixing to the board
Before you move into the Arduino part, the last step is to fix this structure on a
prototyping board. If you want to go ahead with a prototyping board, make sure you
place each LED at equal distance, and for holding each LED leg you can use some
crocodile pins.

Personally, I found it a bit difficult, as once you have joined all the four
layers, all the LED legs won't be at an equal distance, so instead I have
used a cardboard sheet and soldered the LEDs on cardboard.

The next step is to connect the LEDs with the resistors. Ideally, you should have the
resistors soldered on a prototyping board.

Project 3 – LED Cube

[66]

If you are using cardboard, as I did, you can use thermocol for
connecting a resistor to an LED.

Once you have connected the resistors with the cube, it will look like the following
image. Please note, I have used thermocol and cardboard for this prototype. If you
are using a wooden base and a prototyping board, your prototype will look much
more polished:

If you didn't plan your resistor placement in advance, here is what you will have
once you have completed all the steps. A better way is to space them equally in a
stepping fashion, so that then you could use one entire side of the cube for all the
final connections to Arduino. Here's the circuit diagram:

Chapter 4

[67]

Finally, connect some connecting wires, which can be plugged into relevant Arduino
pins, and make sure you use long wires for this. You can use a color code for
differentiating between connecting cables:

Project 3 – LED Cube

[68]

If you are having trouble getting different color cables and at the end you feel
like your soldering and connections are going to be a bit messy, cover your cube
internally with a cardboard box, as shown in the following figure:

Programming a 4*4*4 LED cube
Having done the hard part of soldering, let's get into Arduino connection and
programming. Before connecting the positive leads, connect four negative layers
to Arduino analog I/O ports A2 (bottom layer) through A5 (top layer). After that,
16 LED control pins needs to be connected to the Arduino board. Connect the first
14 pins to Arduino digital I/O ports 0 to 13. The remaining pins 15 and 16 need to
be connected to Analog pins A0 and A1. See the following diagram for connection
reference:

Chapter 4

[69]

There are a few things that you should understand before programming your cube:

•	 To address a single LED use a plane (layer) number 0–3, and an LED pin
number 0–15. Turn the plane to LOW output (negative leg) and the LED
pin number to HIGH (positive leg) to activate the LED.

•	 Before activating a single LED, ensure all other planes are off by setting them
to HIGH output. If you don't do this, the whole column of LEDs will light up
instead of a single LED.

Now you are all set to start creating your own programming sequence.

Copy the following code (inspired from http://www.tecnosalva.com/files/
ficheros/ledcube2.ino) and create a new Arduino sketch and upload the code
to your Arduino board:

#include <avr/pgmspace.h> // allows use of PROGMEM to store patterns
in flash

#define CUBESIZE 4
#define PLANESIZE CUBESIZE*CUBESIZE
#define PLANETIME 3333 // time each plane is displayed in us -> 100 Hz
refresh
#define TIMECONST 5 // multiplies DisplayTime to get ms

/*
** Defining pins in array makes it easier to rearrange how cube is
wired
** Adjust numbers here until LEDs flash in order - L to R, T to B
** Note that analog inputs 0-5 are also digital outputs 14-19!
** Pin DigitalOut0 (serial RX) and AnalogIn5 are left open for future
apps
*/

int LEDPin[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
int LEDPinCount = 16;
int PlanePin[] = {16, 17, 18, 19};
int PlanePinCount = 4;

// initialization
void setup()
{
 int pin; // loop counter
 // set up LED pins as output (active HIGH)
 for (pin=0; pin<PLANESIZE; pin++) {
 pinMode(LEDPin[pin], OUTPUT);

http://www.tecnosalva.com/files/ficheros/ledcube2.ino
http://www.tecnosalva.com/files/ficheros/ledcube2.ino

Project 3 – LED Cube

[70]

 }
 // set up plane pins as outputs (active LOW)
 for (pin=0; pin<CUBESIZE; pin++) {
 pinMode(PlanePin[pin], OUTPUT);
 }
}

void loop(){
 loopFor();
}

// the principles of using 4 planes and 16 pins - here we loop over
each, turning on and off in turn
void loopFor()
{
 for(int thisPlane = 0; thisPlane < PlanePinCount; thisPlane++){
 for(int thisPin = 0; thisPin < LEDPinCount; thisPin++){

 planesOff();
 digitalWrite(LEDPin[thisPin],HIGH);
 digitalWrite(PlanePin[thisPlane],LOW);

 delay(50);

 digitalWrite(LEDPin[thisPin],LOW);
 digitalWrite(PlanePin[thisPlane],HIGH);

 }
 }
}

void planesOff(){
 for(int thisPlane = 0; thisPlane < PlanePinCount; thisPlane++){
 digitalWrite(PlanePin[thisPlane],HIGH);
 }
}

You would notice that the preceding code simply lights every LED one by one,
in sequence. We use two for loops for this, iterating over each layer and each
control pin.

That's it! Of course, this is not the only way to control a 4*4*4 LED cube. There are
multiple ways you can control LEDs.

Chapter 4

[71]

Summary
So far in this book, the focus was more on understanding Arduino programming
and less about electronics and soldering. If you reached the end of this chapter, this
means you have learnt the very important skill that is soldering. Having understood
soldering and Arduino programming, you can now bring your own ideas into
reality/prototype. Share your prototype and experience on social media using
hashtag #ArduinoBLINK.

Having gained sound knowledge of Arduino programming and soldering, in the
next chapter you will learn about sound visualization and how to use different
sensors with Arduino.

[73]

Sound Visualization and LED
Christmas Tree

Things get pretty easy once you have understood the basics of Arduino and how
to control the "stuff" with Arduino. In the previous chapters, we have developed
some useful projects using LEDs and light sensors. We also learned soldering in the
previous chapter. In this chapter, we will understand how to visualize sound using
Arduino and then we will develop an LED Christmas tree.

•	 Introduction to sound visualization
•	 Sound visualization using Arduino
•	 Developing a sound controlled Christmas tree

Sound Visualization and LED Christmas Tree

[74]

Introduction to sound visualization
Sound visualization, or music visualization, has been an integral part of the music
industry since the evolution of media players. For example, on your computer, when
you play any music, you can see the visualization in the default media player or VLC
media player, as shown in the following image:

You have noticed that, as the loudness of the music, or the frequency of the sound
changes, the visualization changes. We will use the same principle to visualize
sound using Arduino.

How to visualize the sound
In simple terms, sound/music is nothing but a series of signals with a certain
frequency and a certain amplitude. We can get the value at each point by using
analogRead(). But, this function would be much too slow for sampling audio. So, we
will use the microcontroller's analog-to-digital converter, which automatically takes
repeated analog intervals at precise intervals. We will learn both ways of sampling
audio. There are a number of algorithms available for analyzing the sampled audio.
But, for fast performance, we will use a FFT (Fast Fourier Transform) algorithm.

Chapter 5

[75]

What is FFT (fast fourier transform)
Fast Fourier Transform is one of the basic and most important numerical algorithms
in the field of signal processing. It converts a signal from its time domain (time
domain refers to analysis of a signal with respect to time) to frequency domain.
Frequency domain refers to the analysis of a mathematical function, or here a
signal with respect to frequency.

You can understand the time domain and frequency domain with the following
image:

You can decompose any signal into a bunch of sine waves (of different amplitude,
frequency, and phase). An analogy for this is the images you see on your computer
screen, which are composed of red, green, and blue dots (of different magnitude
and frequency).

FFT decomposes sine waves from an arbitrary signal by multiplying the arbitrary
signal with a sine wave of a specific frequency. As the match is closer, the resulting
summed product value will be higher. Once we have the signal, which is converted
to the frequency domain, it becomes easier to analyze.

Sound Visualization and LED Christmas Tree

[76]

Sound visualization using Arduino
After understanding the basics of sound visualization, we will move on to
implement sound visualization using Arduino. Before we develop our LED
Christmas tree, we will develop sound visualization on an LED matrix.

An LED matrix is a combination of 64 LEDs connected together as shown in the
following circuit. As Arduino doesn't have 64 pins, we can't connect individual
pins to control each LED. Instead, we will use the concept of multiplexing:

With the use of multiplexing, we can control any number of LEDs with Arduino.
For controlling an 8 x 8 LED matrix, we need one multiplexer circuit. We can use the
backpack from adafruit for the multiplexer, or a MAX7219 Dot Matrix MCU Control
for the multiplexer part:

Chapter 5

[77]

So, now we do not need to use a lot of pins to control this LED matrix. Instead,
we require only four pins to control this LED matrix.

You will need the following components for a music-controlled LED matrix:

•	 Analog Mic Sensor
•	 8 x 8 LED matrix with backpack

Connect the mic and LED matrix as shown in the circuit. Connect a 3.3 V pin to the
AREF of Arduino and the mic's Vcc in pin. This is important for making a reference
of 3.3 V to analog input from the mic. Connect the Arduino 5 V pin to the + pin of
the LED matrix. Connect the Arduino analog pin A0 to Mic Output. Connect the
Arduino SDA and SCL pin to the D (data) and C (clock) pin of the backpack. Earlier
versions of Arduino might not have these pins.

Sound Visualization and LED Christmas Tree

[78]

Use analog pins 4 and 5 for this purpose instead. Finally, don't forget to connect
Arduino Ground to Mic GND and backpack GND:

Once you have connected the circuit as shown in the diagram, upload the following
code to Arduino:

#include <avr/pgmspace.h>
// Useful for Sound Analysis
#include <ffft.h>
#include <math.h>
// Required for communication with I2C device
#include <Wire.h>
#include <Adafruit_GFX.h>
// Required for Adafruit LED backpack
#include <Adafruit_LEDBackpack.h>

// Microphone connects to Analog Pin 0. ADC Pin 0 for Arduino Uno
#define ADC_INPUT 0

int16_t audio_capture[FFT_N];

Chapter 5

[79]

complex_t fft_buffer[FFT_N];
uint16_t output_spectrum[FFT_N / 2];
volatile byte buffer_position = 0;

byte peakValue[8],dotCount = 0,colCount = 0;
int col[8][10], minAvgLevel[8], maxAvgLevel[8], colDiv[8];

static const uint8_t PROGMEM
// Noise to be removed from each column. Adjust the values as per the
requirements
noiseToDeduct[64] = { 8, 6, 6, 5, 3, 4, 4, 4, 3, 4, 4, 3, 2, 3, 3, 4,
 2, 1, 2, 1, 3, 2, 3, 2, 1, 2, 3, 1, 2, 3, 4, 4,
 3, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4
 },
// Equalizer to remove the noise and neutralize the noise at the bass
end.
equalizer[64] = {
 255, 175, 218, 225, 220, 198, 147, 99, 68, 47, 33, 22, 14, 8, 4,
2,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
},

// We want to fit the output of FFT spectrum to 8 columns.
// All the bins from the output spectrum is not useful.
// we will following bins for the column output.
// Below table contains details about number of bins to take and index
from where it will start
// along with the nin numbers.
column0[] = { 2, 1,
 111, 8
 },
column1[] = { 4, 1,
 19, 186, 38, 2
 },
column2[] = { 5, 2,
 11, 156, 118, 16, 1
 },
column3[] = { 8, 3,
 5, 55, 165, 164, 71, 18, 4, 1
 },
column4[] = { 11, 5,

Sound Visualization and LED Christmas Tree

[80]

 3, 24, 89, 169, 178, 118, 54, 20, 6, 2, 1
 },
column5[] = { 17, 7,
 2, 9, 29, 70, 125, 172, 185, 162, 118, 74,
 41, 21, 10, 5, 2, 1, 1
 },
column6[] = { 25, 11,
 1, 4, 11, 25, 49, 83, 121, 156, 180, 185,
 174, 149, 118, 87, 60, 40, 25, 16, 10, 6,
 4, 2, 1, 1, 1
 },
column7[] = { 37, 16,
 1, 2, 5, 10, 18, 30, 46, 67, 92, 118,
 143, 164, 179, 185, 184, 174, 158, 139, 118, 97,
 77, 60, 45, 34, 25, 18, 13, 9, 7, 5,
 3, 2, 2, 1, 1, 1, 1
 },
// This contains list of all the data bin for all 8 columns
* const binsToUse[] = {
 column0, column1, column2, column3,
 column4, column5, column6, column7
};

Adafruit_BicolorMatrix LEDmatrix = Adafruit_BicolorMatrix();

void setup() {
 uint8_t i, j, nBins, binNum, *outputData;

 memset(peakValue, 0, sizeof(peakValue));
 memset(col , 0, sizeof(col));

 for (i = 0; i < 8; i++) {
 minAvgLevel[i] = 0;
 maxAvgLevel[i] = 512;
 outputData = (uint8_t *)pgm_read_word(&binsToUse[i]);
 nBins = pgm_read_byte(&outputData[0]) + 2;
 binNum = pgm_read_byte(&outputData[1]);
 for (colDiv[i] = 0, j = 2; j < nBins; j++)
 colDiv[i] += pgm_read_byte(&outputData[j]);
 }

 LEDmatrix.begin(0x70);

Chapter 5

[81]

 // Init ADC free-run mode; f = (16MHz/prescaler) / 13 cycles/
conversion
 ADMUX = ADC_INPUT; // Channel sel, right-adj, use AREF pin
 ADCSRA = _BV(ADEN) | // ADC enable
 _BV(ADSC) | // ADC start
 _BV(ADATE) | // Auto trigger
 _BV(ADIE) | // Interrupt enable
 _BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128:1 / 13 = 9615
Hz
 ADCSRB = 0;
 DIDR0 = 1 << ADC_INPUT;
 TIMSK0 = 0;

 sei(); // Enable interrupts
}

void loop() {
 uint8_t i, x, L, *outputData, nBins, binNum, weighting, c;
 uint16_t minLvl, maxLvl;
 int level, y, sum;

 while (ADCSRA & _BV(ADIE)); // Wait for audio sampling to finish

 fft_input(audio_capture, fft_buffer); // Samples -> complex #s
 buffer_position = 0; // Reset sample counter
 ADCSRA |= _BV(ADIE); // Resume sampling interrupt
 fft_execute(fft_buffer); // Process complex data
 fft_output(fft_buffer, output_spectrum); // Complex -> spectrum

 // Remove noise and apply equalizers
 for (x = 0; x < FFT_N / 2; x++) {
 L = pgm_read_byte(&noiseToDeduct[x]);
 output_spectrum[x] = (output_spectrum[x] <= L) ? 0 :
 (((output_spectrum[x] - L) * (256L - pgm_read_
byte(&equalizer[x]))) >> 8);
 }

 // Fill background w/colors, then idle parts of columns will erase
 LEDmatrix.fillRect(0, 0, 8, 3, LED_RED); // Upper section
 LEDmatrix.fillRect(0, 3, 8, 2, LED_YELLOW); // Mid
 LEDmatrix.fillRect(0, 5, 8, 3, LED_GREEN); // Lower section

 // Downsample spectrum output to 8 columns:
 for (x = 0; x < 8; x++) {

Sound Visualization and LED Christmas Tree

[82]

 outputData = (uint8_t *)pgm_read_word(&binsToUse[x]);
 nBins = pgm_read_byte(&outputData[0]) + 2;
 binNum = pgm_read_byte(&outputData[1]);
 for (sum = 0, i = 2; i < nBins; i++)
 sum += output_spectrum[binNum++] * pgm_read_
byte(&outputData[i]); // Weighted
 col[x][colCount] = sum / colDiv[x]; // Average
 minLvl = maxLvl = col[x][0];
 for (i = 1; i < 10; i++) { // Get range of prior 10 frames
 if (col[x][i] < minLvl)
 {
 minLvl = col[x][i];
 }
 else if (col[x][i] > maxLvl)
 {
 maxLvl = col[x][i];
 }
 }
 // minLvl and maxLvl indicate the extents of the FFT output, used
 // for dynamically setting the min and max level of the column.

 if ((maxLvl - minLvl) < 8)
 {
 maxLvl = minLvl + 8;
 }
 minAvgLevel[x] = (minAvgLevel[x] * 7 + minLvl) >> 3; // Dampen
min/max levels
 maxAvgLevel[x] = (maxAvgLevel[x] * 7 + maxLvl) >> 3; // (fake
rolling average)

 // Second fixed-point scale based on dynamic min/max levels:
 level = 10L * (col[x][colCount] - minAvgLevel[x]) /
 (long)(maxAvgLevel[x] - minAvgLevel[x]);

 // Clip output and convert to byte:
 if (level < 0L)
 {
 c = 0;
 }
 else if (level > 10)
 {
 c = 10; // Allow dot to go a couple pixels off top
 }
 else

Chapter 5

[83]

 {
 c = (uint8_t)level;
 }

 if (c > peakValue[x])
 {
 peakValue[x] = c; // Keep dot on top
 }

 if (peakValue[x] <= 0) // No output
 {
 LEDmatrix.drawLine(x, 0, x, 7, LED_OFF);
 continue;
 }
 else if (c < 8) // Partial column?
 {
 LEDmatrix.drawLine(x, 0, x, 7 - c, LED_OFF);
 }

 // The 'peak' dot color varies, but doesn't necessarily match
 // the three screen regions...yellow has a little extra influence.
 y = 8 - peakValue[x];
 if (y < 2)
 {
 LEDmatrix.drawPixel(x, y, LED_RED);
 }
 else if (y < 6)
 {
 LEDmatrix.drawPixel(x, y, LED_YELLOW);
 }
 else
 {
 LEDmatrix.drawPixel(x, y, LED_GREEN);
 }
 }

 LEDmatrix.writeDisplay();

 // Every third frame, make the peak pixels drop by 1:
 if (++dotCount >= 3)
 {
 dotCount = 0;
 for (x = 0; x < 8; x++)
 {

www.allitebooks.com

http://www.allitebooks.org

Sound Visualization and LED Christmas Tree

[84]

 if (peakValue[x] > 0) peakValue[x]--;
 }
 }

 if (++colCount >= 10)
 {
 colCount = 0;
 }
}

ISR(ADC_vect) { // Audio-sampling interrupt
 static const int16_t noiseThreshold = 4;
 int16_t sample = ADC; // values between 0-1023

 audio_capture[buffer_position] =
 ((sample > (512 - noiseThreshold)) &&
 (sample < (512 + noiseThreshold))) ? 0 :
 sample - 512; // Sign-convert for FFT; -512 to +511

 if (++buffer_position >= FFT_N) ADCSRA &= ~_BV(ADIE); // Turn off
the interrupt once buffer is full
}

Let's understand the code in detail. Here, as we discussed earlier, we are using
onboard ADC for sampling the audio. While dealing with sampling/signal
processing, one of the most useful features of Arduino that comes in handy is
interrupts. Before we understand how interrupts work, we need to know about
interrupts.

Interrupts allow certain important tasks to happen in the background and will
interrupt the execution flow when a particular event occurs. In our case, interrupts
are used for sampling the audio. Once the audio is processed with an FFT algorithm
and is rendered on the display, it will again sample the audio.

Although we can't hear all the sounds, there is some background noise present
around us. We have to remove the ambient noise before processing music to render
on the LED matrix. So, we have stored 64 values in the array noiseToDeduct, which
will be deducted from the signal afterwards. If you are getting more noise in the
output, you can adjust the noise by setting the different values in the array.

Apart from the noise, we also need to equalize the sound towards the bass end of
the sound. So, we are storing different values in an array equalizer. After noise
is deducted from the output of the filter, we will normalize the sound/output
spectrum.

Chapter 5

[85]

Also, the output spectrum of FFT will be having much more buckets/samples
then we can use. The bottom-most and several at the top of the spectrum are either
noisy or out of range. So, we will use the FFT spectrum output values stored in the
column0, column1, column2, column3, column4, column5, column6, and column7
array. The array contains the number of the output values to be used and the starting
index of the bins along with their weights. Although these values can be changed as
per our requirements, these values are derived after thorough testing by adafruit.

Two new functions that we have used here are: pgm_read_word and pgm_read_byte.
Both functions are provided by the avr/pgmspace.h library. pgm_read_word is used
for reading a word from the program space with a 16-bit (near) address. Similarly,
pgm_read_byte is used for reading a byte from the program space with a 16-bit
(near) address:

outputData = (uint8_t *)pgm_read_word(&binsToUse[x]);
 nBins = pgm_read_byte(&outputData[0]) + 2;
 binNum = pgm_read_byte(&outputData[1]);

For getting data from the binsToUse array, we used pgm_read_word. While reading
a particular value from outputData, we have used pgm_read_byte.

Here, we are using a 128-bit buffer for storing the sampled audio. Whenever the
buffer is full, it will process the data by passing it to the FFT filter. After the output
spectrum from the FFT, the signal is again down-sampled:

 sum += output_spectrum[binNum++] * pgm_read_
byte(&outputData[i]); // Weighted
 col[x][colCount] = sum / colDiv[x]; // Average

We are finding a weighted average for each column by selecting the bin from the
predefined table initialized at the beginning. After finding the weighted average
for eight columns, we are writing these values to the LED matrix display after
storing the minimum and maximum values of the output spectrum. These dynamic
minimum and maximum values are useful for making the display interesting, even
at a low volume.

After understanding sound visualization using FFT, we will now develop an LED
Christmas tree that syncs its lighting with beats.

Developing an LED Christmas tree
We are now familiar with the concept of sound visualization. We have also learnt
about controlling an LED matrix with music. Now, we will develop an LED
Christmas tree, which will blink the LEDs as per the music beats.

Sound Visualization and LED Christmas Tree

[86]

To develop the basic circuit which responds to the beats, connect the circuit as shown
in the following image:

We will connect the audio input/mic to the analog pin 3 of the Arduino. We have
connected LEDs to pins 5 to 12.

Once you have connected the circuit as mentioned, upload the following code on the
Arduino:

#include <fix_fft.h>

int LEDPins[] = {5, 6, 7, 8, 9, 10, 11, 12};
int x = 0;
char imaginary[128], inputSignal[128];
char outputAverage[14];
int i = 0, inputValue;
#define AUDIOPIN 1

void setup()
{
 for (int i = 0; i < 8; i++)

Chapter 5

[87]

 {
 pinMode(LEDPins[i], OUTPUT);
 }
 Serial.begin(9600);
}

void loop()
{
 for (i = 0; i < 128; i++) {
 inputValue = analogRead(AUDIOPIN);
 inputSignal[i] = inputValue;
 imaginary[i] = 0;
 };
 fix_fft(inputSignal, imaginary, 7, 0);
 for (i = 0; i < 64; i++) {
 inputSignal[i] = sqrt(inputSignal[i] * inputSignal[i] +
imaginary[i] * imaginary[i]); // this gets the absolute value of the
values in the
 //array, so we're only dealing with positive numbers
 };

 // average bars together
 for (i = 0; i < 14; i++) {
 outputAverage[i] = inputSignal[i * 4] + inputSignal[i * 4 + 1] +
inputSignal[i * 4 + 2] + inputSignal[i * 4 + 3]; // average together
 outputAverage[i] = map(outputAverage[i], 0, 30, 0, 9);
 }
 int value = outputAverage[0];//0 for bass
 writetoLED(value);
}

void writetoLED(int mappedSignal)
{
 if (mappedSignal > 8)
 {
 for (int i = 0; i < 8; i++)
 {
 digitalWrite(LEDPins[i], HIGH);
 }
 }
 else if (mappedSignal > 7)
 {
 for (int i = 0; i < 7; i++)
 {

Sound Visualization and LED Christmas Tree

[88]

 digitalWrite(LEDPins[i], HIGH);
 }
 for (int i = 7; i < 8; i++)
 {
 digitalWrite(LEDPins[i], LOW);
 }
 }
 else if (mappedSignal > 6)
 {
 for (int i = 0; i < 6; i++)
 {
 digitalWrite(LEDPins[i], HIGH);
 }
 for (int i = 6; i < 8; i++)
 {
 digitalWrite(LEDPins[i], LOW);
 }
 }
 else if (mappedSignal > 5)
 {
 for (int i = 0; i < 5; i++)
 {
 digitalWrite(LEDPins[i], HIGH);
 }
 for (int i = 5; i < 8; i++)
 {
 digitalWrite(LEDPins[i], LOW);
 }
 }
 else if (mappedSignal > 4)
 {
 for (int i = 0; i < 4; i++)
 {
 digitalWrite(LEDPins[i], HIGH);
 }
 for (int i = 4; i < 8; i++)
 {
 digitalWrite(LEDPins[i], LOW);
 }
 }
 else if (mappedSignal > 3)
 {
 for (int i = 0; i < 3; i++)
 {

Chapter 5

[89]

 digitalWrite(LEDPins[i], HIGH);
 }
 for (int i = 3; i < 8; i++)
 {
 digitalWrite(LEDPins[i], LOW);
 }
 }
 else if (mappedSignal > 2)
 {
 for (int i = 0; i < 2; i++)
 {
 digitalWrite(LEDPins[i], HIGH);
 }
 for (int i = 2; i < 8; i++)
 {
 digitalWrite(LEDPins[i], LOW);
 }
 }
 else if (mappedSignal > 1)
 {
 for (int i = 0; i < 1; i++)
 {
 digitalWrite(LEDPins[i], HIGH);
 }
 for (int i = 1; i < 8; i++)
 {
 digitalWrite(LEDPins[i], LOW);
 }
 }
 else
 {
 for (int i = 0; i < 8; i++)
 {
 digitalWrite(LEDPins[i], LOW);
 }
 }
}

Here, we are directly reading the signal from the mic by using analogRead().
We are taking 128 readings. After taking all the readings, we are processing those
readings using the fix_fft.h library, which is available at http://forum.arduino.
cc/index.php/topic,38153.0.html. After storing both fix_fft.h and fix_fft.
cpp in your machine, you need to import this library in your Arduino code.

http://forum.arduino.cc/index.php/topic,38153.0.html
http://forum.arduino.cc/index.php/topic,38153.0.html

Sound Visualization and LED Christmas Tree

[90]

After getting the output spectrum from the FFT, we are taking the average value of
the output for turning on or off the LEDs based on the average value. As the bass
part most often provides harmonics and rhythmic support, we are using the bass
value for controlling the LEDs. We are getting the bass value as outputAverage[0].
Mapping of the average value from 0 to 9 helps in setting the LEDs to on or off
easily.

For artistic purposes, we will connect multiple LEDs around the Christmas tree
model. So, the Christmas tree will sync its lighting with the beats of the music.

Summary
In this chapter, we started with the basics of sound visualization. After
understanding the FFT algorithm, we move on to visualize the sound with Arduino
using the same on an 8 x 8 dot matrix LED display. At the end of this chapter, we
developed an LED Christmas tree, which syncs its light as per the beats in the music.
In the next chapter, we will move on to develop "persistence of vision".

[91]

Persistence of Vision
So far in this book, we have made all things that are stationary in nature—that
is, they can't move. In the final project of this book, we will create an even more
intensive experience by moving LEDs using motors. We will create a Persistence of
Vision wand using an LED array and motor. But, first of all, you will get introduced
to LED arrays and motors. Along with the different type of motors, you will get to
know about their pros and cons. In this chapter, we will cover the following topics:

•	 Persistence of Vision
•	 Programming an LED array
•	 Controlling a motor using Arduino
•	 Synchronizing LED array timing based on the speed of the motor

Creating your own Persistence of Vision
One of the five sensory organs of our body, the eye is a remarkable instrument that
helps us to process light in such a way that our mind can create meaning from it.
Persistence of Vision refers to an optical illusion where multiple different images
blend into a single image in the human mind.

The Persistence of Vision illusion plays a role in keeping the world from going pitch
black every time we blink our eyes. Whenever a retina is hit by light, it keeps an
impression of the light for about a tenth of a second after the light source is removed.
Due to this, the eye can't distinguish between changes that occur faster than this
retention period. This similar phenomenon is used in motion pictures or, as we call
it, "flicks". The motion picture creates an illusion by rapidly sequencing individual
photographs. Usually for motion pictures, the rate of frames per second is 24, which
leads to a flicker-free picture. If frames per second is kept below 16, the mind can
distinguish between the images, which leads to flashing images, or flicker.

Persistence of Vision

[92]

Look at the following image; when you move your hands back and forth as
demonstrated, you will see a flicker at all the positions:

A renowned professor at the University of Central Arkansas quoted this:

"The notion of 'persistence of vision' seems to have been appropriated from
psychology in the first decade of the century, the period during which cinema came
into being. But while most film scholars accepted 'persistence of vision' as the
perceptual basis of the medium and proceeded to theorise about the nature, meaning
and functioning of cinema from that base, perceptual psychologists continued to
question the mechanisms involved in motion perception; and they have achieved
insights that necessitate the re-thinking of many conclusions reached by film
scholars during the past 50 years."

After getting introduced to the concept of Persistence of Vision, let's dive into how
we can make our own PoV. For that we will need the following components:

•	 Arduino
•	 LED array
•	 DC motor
•	 Resistor
•	 L293D motor driver
•	 Wooden material for making the base of the PoV

In the upcoming section, you will learn how to use these components to create your
own Persistence of Vision.

Chapter 6

[93]

Programming an LED array
An LED array is nothing but a few LEDs connected together. Usually, an LED
array comes in sizes of eight LEDs and 16 LEDs. You can control an LED array
directly using the digitalWrite() function. Apart from using the digitalWrite()
function, you can control LEDs directly using port-level communication. On
Arduino, we have three ports: ports B, C, and D:

•	 Port B: Digital pins 8 to 13
•	 Port C: Analog pins
•	 Port D: Digital pins 0 to 7

Each port is controlled by three DDR registers. These registers are defined variables
in Arduino as DDRB, DDRC, and DDRD. Using these variables, we can make the
pins either as input or output in the setup function.

You can use the following syntax to initialize the pins:

DDRy = Bxxxxxxxx

Here, y is the name of the port (B/C/D) and x is the value of the pin that determines
if the pin is input or output. We will use 0 for input and 1 for output. LSB (least
significant byte) is the lowest pin number for that register.

To control pins using this port manipulation, we can use the following syntax:

PORTy = Bxxxxxxxx

Here, y is the name of the port (B/C/D), and make x equal 1 for making a pin HIGH
and 0 for making the pin LOW.

You can use the following code to control the LEDs using port level communication:

void setup()
{
 DDRD = B11111111; // set PORTD (digital 7-0) to outputs
}

void loop()
{
 PORTD = B11110000; // digital 4~7 HIGH, digital 3-0 LOW
 delay(2000);
 PORTD = B00001111; // digital 4~7 LOW, digital 3-0 HIGH
 delay(2000);
}

Persistence of Vision

[94]

There are a few pros and cons for using a port manipulation technique. Following
are the disadvantages of using a port manipulation technique:

•	 The code becomes more difficult to debug and maintain and it takes a lot of
time to understand the code.

•	 The code becomes less portable. If you use digitalWrite() and
digitalRead(), it is much easier to write a code that will run on all
microcontrollers, whereas ports and registers can be different for each kind
of microcontroller.

•	 You might cause unintentional malfunctions with direct port access, as pin
0 is the receive line for the serial port. If you accidently make it input, it may
cause your serial port to stop working.

There are a few advantages that a port manipulation technique has over normal code
practices:

•	 In case of time constraint uses of Arduino, you would need to turn pins on or
off very quickly. Using direct port access, you can save many machine cycles.

•	 Also, if you are running low on program memory, you can use these
techniques to make your code smaller.

Different types of motors
Depending upon your project needs, you can choose from the variety of motors
available in the market. For hobby electronics, you will mostly use either DC motor,
servo motor, or stepper motor. The following image shows all three types of motors.
From left to right, DC motor, servo motor, and stepper motor:

Let's get an overview about all the different types of motors.

Chapter 6

[95]

DC motors
DC (Direct Current) motors are two-wire continuous rotational motors. When power
is supplied to the motor, it will start running and will stop once power is removed.
Most DC motors run at high speed, that is, high RPM (rotations per minute). The
speed of the DC motor is controlled using the PWM technique (as discussed in
Chapter 2, Project 1 – LED Night Lamp). The duty cycle will determine the speed of
the motor. The motor seems to be continuously running as each pulse is very rapid.

Servo motors
Servo motors are self-contained electric devices that rotate or push parts of a machine
with great precision. A servo motor uses closed loop position feedback to control its
motion and final position. Servo motors are intended for use in more specific tasks,
where position needs to be accurate, such as moving a robotic arm. For this purpose,
servo motors are an assembly of a DC motor, control circuit, potentiometer, and a
gearing set.

The angle of rotation is limited to 180 degrees compared to the free run of a normal
DC motor. They usually have three wires consisting of power, ground, and signal.
To run the servo motors, continuous power is required. By giving a signal of proper
value to the signal pin of the servo, one can control the position of the servo motor.

When a servo is given the signal to move, if any external force is applied to change
its position, the servo motor will try to hold on to its position. A servo motor uses
an integrated controller circuit to position itself.

Stepper motors
A stepper motor is a DC motor that moves in discrete steps. A stepper motor utilizes
multiple toothed electromagnets arranged around a central gear to set the position. A
stepper motors require an external control circuit to energize each electromagnet and
make the motor shaft turn.

Stepper motors are available in two types, that is, unipolar and bipolar. Bipolar
motors are the strongest type of stepper motor, having four or eight leads. Unipolar
stepper motors are simpler compared to bipolar motors. Unipolar motors can step
without reversing the direction of the current in the coils, because it is having a
centre tap internally. However, because of the centre tap, unipolar motors have
less torque compared to bipolar motors.

The basic difference between servo motors and stepper motors is the type of motor
and how it is controlled. Stepper motors typically use 50 to 100 pole brushless
motors, while servo motors have only 4 to 12 poles.

Persistence of Vision

[96]

Different applications of motors
This is a very condensed overview of a somewhat complicated field:

•	 DC motors: Used in fans, car wheels, and so on, which need fast and
continuous rotation motors.

•	 Servo motors: Servo motors are usually suited for robotic arms/legs where
fast, high torque, and accurate rotation within a limited angle is required.

•	 Stepper motors: For devices where precise rotation and accurate control is
required, stepper motors are used. Stepper motors have an advantage over
servo motors in positional control because a stepper motor has positional
control due to its nature of rotation by fractional increments.

Controlling a DC motor using Arduino
In this chapter, we will get to know how to control a DC motor with Arduino.

You can also run the DC motor by using the same code as the LED blink. We
can consider the motor as an LED. As discussed earlier, a DC motor is a two-
wired motor. One wire is the positive supply and other is ground. If we connect
the positive terminal of the motor to the positive terminal of the battery, and the
negative terminal of the motor to the negative terminal of the battery, the motor
will run in one direction, and if we reverse the connection, the motor will run in
the reverse direction.

By connecting the motor to two digital pins of the Arduino, we can control the
direction of the motor. In the following basic code, we will run the motor in one
direction for five seconds and then we will reverse the direction of the motor.
Connect pin 3 and pin 4 of the Arduino with the two wires of the motor:

int motorPos = 3;
int motorNeg = 4;

void setup() {
 pinMode(motorPos, OUTPUT);
 pinMode(motorNeg, OUTPUT);
}

void loop() {
 //run the motor in one direction
 digitalWrite(motorPos, HIGH);
 digitalWrite(motorNeg, LOW);
 delay(5000); //Run for 5 seconds
 // Reverse the direction of the motor

Chapter 6

[97]

 digitalWrite(motorPos, LOW);
 digitalWrite(motorNeg, HIGH);
 delay(5000);
}

In the preceding code, we are giving opposite outputs to both pins 3 and 4, which is
useful in defining the direction of the motor.

Although this method of controlling DC motors directly with Arduino seems very
easy, it has its own disadvantages. From the Arduino I/O pin, one can draw the
maximum current of 20 mA. So, if we connect the heave load to Arduino, Arduino
might get busted. For this purpose, we use an L293D chip, which is compatible
with H-bridge connections. H-bridge is a circuit, which can drive the motor in both
directions. Before we connect L293D to Arduino, check out all the pin details in the
following image:

Connect Enable1 and Enable2 with a 5 V constant logic supply. L293D IC is designed
in such a way that the left pins of the IC can be used to control one motor and the
right pins of the IC can be used to control another motor in both directions. For
controlling one motor, give input to pin 2 and 7, which will give output at pin 3 and
pin 7. Pin 8 is the power supply for the motors. Connect a 5 V logic supply to pin 16.

In most cases, a voltage regulator is required as the controller can't handle voltage
more than 5 V. But, Arduino UNO has an in-built voltage regulator. Although you
can give up to 20 V to the Arduino UNO, it is recommended to give input voltage up
to 12 V.

Persistence of Vision

[98]

As you can see in the preceding image, two motors can be controlled with one single
chip, with normal voltage (9 V).

We will connect Arduino UNO as a controller and will connect inputs at pins 3 and
4. We will connect one motor at pins 3 and 4, and the other motor at pins 7 and 8. As
shown in the following image, we can make a simple robot by connecting a caster as
a third wheel after fitting those motors to the chassis:

We will make this robot do a simple repetitive task using this L293D and Arduino.
Connect the Arduino control signal/output to the motors to pins 2, 7, 9, and 15 of
the L293D.

Connect the motor between pins 3 and 6 of L293D. Once you have made the same
connection for the other side of L293D, that is, pins 9 to 15, your circuit will look
like the following image:

Chapter 6

[99]

After checking all the connections once again, upload the following code to Arduino:

int leftMotorPos = 10;
int leftMotorNeg = 9;
int rightMotorPos = 12;
int rightMotorNeg = 13;

void setup()
{
 pinMode(leftMotorPos, OUTPUT);
 pinMode(rightMotorPos, OUTPUT);
 pinMode(leftMotorNeg, OUTPUT);
 pinMode(rightMotorNeg, OUTPUT);
}

void loop()
{
 forward();
 delay(5000);
 right();
 delay(5000);
 left();
 delay(5000);
 reverse();
 delay(5000);
 stopAll();
 delay(5000);
}

void forward() {
 digitalWrite(rightMotorPos, HIGH);
 digitalWrite(leftMotorPos, HIGH);
 digitalWrite(rightMotorNeg, LOW);
 digitalWrite(leftMotorNeg, LOW);
}

void left() {
 digitalWrite(rightMotorPos, HIGH);
 digitalWrite(leftMotorPos, LOW);
 digitalWrite(rightMotorNeg, LOW);
 digitalWrite(leftMotorNeg, LOW);
}

void right() {

Persistence of Vision

[100]

 digitalWrite(rightMotorPos, LOW);
 digitalWrite(leftMotorPos, HIGH);
 digitalWrite(rightMotorNeg, LOW);
 digitalWrite(leftMotorNeg, LOW);
}

void reverse() {
 digitalWrite(rightMotorPos, LOW);
 digitalWrite(leftMotorPos, LOW);
 digitalWrite(rightMotorNeg, HIGH);
 digitalWrite(leftMotorNeg, HIGH);
}

void stopAll() {
 digitalWrite(rightMotorNeg, LOW);
 digitalWrite(leftMotorNeg, LOW);
 digitalWrite(rightMotorPos, LOW);
 digitalWrite(leftMotorPos, LOW);
}

As per the preceding circuit and code, we are not giving input directly to the motors;
rather, we are giving inputs to the L293D, which in turn will provide sufficient
power to run the motors.

Make sure to connect the grounds between Arduino and L293D.
Otherwise, the grounds will be in floating mode and the motor will
run abruptly, that is, the motor might run sometimes and might not
run sometimes.

Another way to control the motor using L293 is to give a signal to an enable pin.
By controlling enable pins' input, you can control the motors. Here, we are giving
control to the motor input and the enable pins are given high input continuously.

Synchronizing an LED array with a motor
In the previous sections of this chapter, we learned about controlling an LED array
and DC motor using Arduino:

Chapter 6

[101]

Once you have connected the circuit as shown in the preceding image, upload the
following code to Arduino. In the following code, we are writing the "Hello world"
of persistence of vision:

int LEDPins[] = {2, 3, 4, 5, 6, 7, 8, 9};
int noOfLEDs = 8;

//data corresponding to the each alphabet and a few characters to be
displayed
byte H[] = {B11111111, B11111111, B00011000, B00011000, B00011000,
B00011000, B11111111, B11111111};
byte E[] = {B00000000, B11111111, B11011011, B11011011, B11011011,
B11011011, B11000011, B11000011};
byte L[] = {B00000000, B11111111, B11111111, B00000011, B00000011,
B00000011, B00000011, B00000011};
byte O[] = {B00000000, B11111111, B11111111, B11000011, B11000011,
B11000011, B11111111, B11111111};
byte fullstop[] = {B00000000, B00000000, B00000000, B00000011,
B00000011, B00000000, B00000000, B00000000};
byte comma[] = {B00000000, B00000000, B00000000, B00000110, B00000101,
B00000000, B00000000, B00000000};

// Customize parameters based on the need
int timeBetweenColumn = 2.2;
int timeBtwnFrame = 20;

Persistence of Vision

[102]

int frame_len = 8;

void setup()
{
 int i;
 pinMode(12, OUTPUT);
 pinMode(13, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(10, INPUT);
 for (i = 0; i < noOfLEDs; i++) {
 pinMode(LEDPins[i], OUTPUT);	 // set each pin as an output
 }
}

void loop()
{
 int b = 0;
 digitalWrite(12, HIGH);
 digitalWrite(13, HIGH);
 digitalWrite(11, HIGH);
 delay(timeBtwnFrame);
 show(H);
 delay(timeBtwnFrame);
 show(E);
 delay(timeBtwnFrame);
 show(L);
 delay(timeBtwnFrame);
 show(L);
 delay(timeBtwnFrame);
 show(O);
 delay(timeBtwnFrame);
}

void show(byte* image)
{
 int a, b, c;

 // go through all data for all columns in each frame.
 for (b = 0; b < frame_len; b++)
 {
 for (c = 0; c < noOfLEDs; c++)
 {
 digitalWrite(LEDPins[c], bitRead(image[b], c));
 }

Chapter 6

[103]

 delay(timeBetweenColumn);
 }
 for (c = 0; c < noOfLEDs; c++)
 {
 digitalWrite(LEDPins[c], LOW);
 }
}

Initially, we are setting pins which need to be turned on, while writing any letters.
Here, we have written code for letters H, E, L, O, period, and comma.

Here, we are using eight LEDs for displaying PoV. Make sure to connect a
resistor between the LED and Arduino. As we have to make the LEDs glow
based on the speed of the motor, we can control that by changing the value of
timeBetweenColumn and timeBtwnFrame variables in the code.

By changing the values of these two variables, you should be able to sync the LEDs
with the motor speed. One more thing that you can do is initialize the variable at a
fixed value, and by using serial communication, change the value of these variables.
Using the SoftwareSerial library, you can easily accomplish this.

Bringing your efforts to life
Once you know how to control motors and LEDs using Arduino, the final step is to
put everything that you have learned so far and make it a standalone product. There
are multiple ways you can achieve this:

•	 The simplest method is to use your hands.
•	 Using two different Arduinos or using external motors
•	 Using existing real-life devices

Using your hands for rotation
Even though you learned about controlling motors and LEDs, if you are doing this
for the first time, you will take some time to understand the synchronization of LEDs
and motors. The easiest way to test Persistence of Vision is to use your hands for
rotation. Before you start rotating the complete setup, make sure you have uploaded
the latest sketch to Arduino, connected some standalone battery/power source, and
firmly fixed your LEDs on some base. As a base, you can use a thermocol sheet or
cardboard, and fix them using some electrical tape.

Persistence of Vision

[104]

Once you have fixed all the materials, you can rotate your PoV, and you can see your
efforts coming to life, as shown in the following image:

Using two different Arduinos or external
motors
Once you have fixed your Arduino, LEDs, and external battery/power source, you
can use one more Arduino and connect motors for rotating the complete structure.
At first it seems you can control the motors and LEDs using the same Arduino,
however, if you think a little bit more, you will understand why you should not do
this. The reason is because of the rotation of the LED structure and the connecting
wire between motor and Arduino. If you have an external motor, you can use that
and connect the Arduino-LED structure to it.

Use existing real-life devices
Another interesting idea is to use existing real-life devices that you have at your
home. Of course, there are many devices which you can use; we have tested it with
two devices: a bicycle wheel and a table fan, as shown in the following image. There
is no difference in setup compared to the other two methods. In fact, you can use the
same setup/structure as in method 1:

Chapter 6

[105]

Summary
In this final project of this book, you learned about motors and how to control an
LED array. After understanding Persistence of Vision, we developed a Persistence
of Vision display. After developing all the projects in this book, you should be able
to play with different types of LED and make some innovative thing out of them. In
the last chapter, we will learn about some of the problems that you might face while
developing the projects explained in this book.

[107]

Troubleshooting and
Advanced Resources

In this book, you got introduced to Arduino Pi and its capability, you developed
your LED night lamp, remote controlled TV backlight, LED cube, sound
visualization, and finally, persistence of vision. There might have been instances
when you wanted to know more about certain topics or you were stuck in
between. This chapter answers all those questions. In the first section, common
troubleshooting techniques are mentioned. The second and last part of the chapter
has resources that will be useful if you want to do advanced stuff with Arduino:

•	 Troubleshooting
•	 Resources – advanced users

Troubleshooting
This section has answers to some of the common problems that you might face while
working with Arduino.

Can't upload program
Assign the correct serial port: in the Arduino Environment program, go to Tools
| Serial Port, and select the correct serial port. To see what serial port the board is
using, connect the board to your computer with the USB cable. From the Windows
desktop, right-click on My Computer, then Properties | Device Manager | Ports
(COM & LPT). There will be an entry like USB Serial Port (COM13) or Arduino
UNO (COM13).

Troubleshooting and Advanced Resources

[108]

This means serial communication port 13 is the one in use:

On upload, you may get error messages like, "Serial port 'COM13'
already in use". Try quitting any programs that may be using it.

One of the possible reasons could be that you are running multiple Arduino IDEs
on a single machine. Try closing all Arduino IDEs and open the sketch that you
want to upload to your Arduino board. Most of the time it will solve the issue. Even
after re-opening the Arduino IDE, if you get the same error message, unplug your
Arduino and plug it back in. This should solve your issue. In some cases, if you get
the same error message again, restart your computer.

Chapter 7

[109]

LED is dim
This is the most common mistake that beginners make. Sometimes, an LED
connected to an Arduino pin is dim. This is because the Arduino pin connected
to the LED is not declared as OUTPUT and is not getting the full power from the
Arduino board. If you declare the Arduino LED pin as OUTPUT, it will solve the
issue and the LED will glow properly.

You can also refer to the troubleshooting section on the Arduino website. You
can find solutions to other problems at https://www.arduino.cc/en/Guide/
Troubleshooting.

Resources – advanced users
This section contains some advanced projects that I think are interesting and fun to
build. This last section has some handy and useful resources to take your Arduino
journey to the next level.

Projects
Based on all the basic skills of Arduino, LED, and sensor programming that you
have, we believe that the following are four projects that might be interesting for
you to build.

Twitter Mood Light
This is one of the cool projects that I have seen. It is a way to get a glimpse of the
collective human consciousness. It is a way to be alerted with the world's events
as they unfold, or when something big happens. Arduino connects directly to any
wireless network via the WiFly module. It then searches Twitter for tweets with
emotional content and collates the tweets for each emotion. It also does some math,
such that the color of the LED fades to reflect the current world mood. Here are a
few examples:

•	 Red for anger
•	 Yellow for happiness
•	 Pink for love
•	 White for fear
•	 Green for envy
•	 Orange for surprise
•	 Blue for sadness

https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting

Troubleshooting and Advanced Resources

[110]

In this project, after getting tweets from the twitter handle for the user, by using
the sentiment extraction method, you can get to know about the emotion/mood
of the world.

Read more at: http://www.instructables.com/id/Twitter-Mood-Light-The-
Worlds-Mood-in-a-Box/.

Secret knock detecting door-lock
You can now keep your secret hideout hidden from intruders with a lock that will
only open when it hears the secret knock. This wasn't accepted completely at the
beginning, but turned out to be surprisingly accurate at judging knocks. If the
precision is turned all the way up it can even tell people apart, even if they give
the same knock!

Read more at http://www.instructables.com/id/Secret-Knock-Detecting-
Door-Lock/.

LED biking jacket
This is one of the best projects to show your making skills to your friend and the
outside world. This project shows you how to build a jacket with turn signals
that will let people know where you're headed when you're on your bike. It uses
conductive thread and sewable electronics, so your jacket will be soft, wearable,
and washable when you're done.

In this project, you will learn to use another type of Arduino which is designed
specifically to be wearable—LilyPad.

Read more at http://www.instructables.com/id/turn-signal-biking-
jacket/.

Twitter-enabled coffee pot
Tweet-a-pot is the next wave in fancy twitter-enabled devices. This coffee pot enables
you to make a pot of coffee from anywhere that has a cell phone reception, using
Twitter and an Arduino board. The tweet-a-pot is the easy implementation for
remote device control; using a bit of code and some hardware, you can have your
very own Twitter-enabled coffee pot.

Read more at: http://www.instructables.com/id/Tweet-a-Pot-Twitter-
Enabled-Coffee-Pot/.

http://www.instructables.com/id/Twitter-Mood-Light-The-Worlds-Mood-in-a-Box/
http://www.instructables.com/id/Twitter-Mood-Light-The-Worlds-Mood-in-a-Box/
http://www.instructables.com/id/Secret-Knock-Detecting-Door-Lock/
http://www.instructables.com/id/Secret-Knock-Detecting-Door-Lock/
http://www.instructables.com/id/turn-signal-biking-jacket/
http://www.instructables.com/id/turn-signal-biking-jacket/
http://www.instructables.com/id/Tweet-a-Pot-Twitter-Enabled-Coffee-Pot/
http://www.instructables.com/id/Tweet-a-Pot-Twitter-Enabled-Coffee-Pot/

Chapter 7

[111]

Useful resources
In this book, you have learned about Arduino, LEDs, and sensors. If you look at the
world of the maker movement and Arduino, we have only scratched the surface, and
there are so many things that you need to learn. Here are some resources that we
think are useful in taking your skills to the next level.

Hackaday
This is an excellent resource for all sorts of technological wonders. It has lots
of Arduino-related projects and easy to follow guides for most of the projects.
However, this website is not limited to just Arduino; it has various other resources
for almost all DIY technologies. It contains an excellent collection of posts and
information to fuel the imagination.

Refer to http://hackaday.com/.

The Arduino blog
This is a great resource for all Arduino-related news. It features all the latest
Arduino-related hardware, as well as software projects. It is also one of the best
places to keep yourself updated with the work that the Arduino team has been
doing.

Refer to https://blog.arduino.cc/.

The Make magazine
This is a hobbyist magazine that celebrates all kinds of technology. Its blog covers
all kinds of interesting do-it-yourself (DIY) technology and projects for inspiration.
You can find useful Arduino resources/projects under the "Arduino" section of
the website.

Refer to http://blog.makezine.com/.

Bildr
Bildr is an excellent resource that provides in-depth, community-published tutorials.
As well as providing clear tutorials, Bildr also has excellent illustrations, making the
connections easy to follow. Many of the tutorials are Arduino-based and provide all
the code and information on the components that you will need.

Refer to http://bildr.org/.

http://hackaday.com/

Troubleshooting and Advanced Resources

[112]

Instructables
This is a web-based documentation platform that allows people to share their
projects with step-by-step instructions on how to make them. Instructables isn't just
about Arduino or even technology, so you can find a whole world of interesting
material there.

Refer to http://www.instructables.com/.

Tronixstuff
John Boxall's website is a great resource for learning about Arduino. He has dozens
of different Arduino projects and demos on his site.

Refer to http://tronixstuff.com/tutorials/.

Adafruit
Adafruit is an online shop, repository, and forum for all kinds of kits to help you
make your projects work. It is probably one of the best online resources for learning
about Arduino and checking out some cool projects.

Refer to https://learn.adafruit.com/.

All About Circuits
If you are interested in learning more about electronics and circuit design, this might
be the best place for you to learn.

Refer to http://www.allaboutcircuits.com/.

Hackerspaces
Hackerspaces are physical spaces where artists, designers, makers, hackers, coders,
engineers, or anyone else, can meet to learn, socialize, and collaborate on projects. If
you are looking for inspiration and want to meet some awesome people doing some
amazing work, find a hackerspace nearby your area and learn from the masters.

Refer to http://hackerspaces.org/.

Chapter 7

[113]

The Arduino forum
This is a great place to get answers to specific Arduino questions. You often find that
other people are working through the same problems that you are, so with some
thorough searching, you're likely to find the answer to almost any problem.

Refer to http://arduino.cc/forum/.

Summary
This chapter provided solutions for some of the common problems that you might
face while working with Arduino. The last section of the chapter mentioned a few
DIY projects that you might want to pursue with the resources provided.

If you face any issue in any of the projects mentioned in the book, or you notice any
typos/errors in any of the chapters, feel free to mail us at Samarth@outlook.com
and/or Utsav_shah01@outlook.com with the subject as the title of the book.

[115]

Index
Symbol
4*4*4 LED cube

programming 68-70

A
Adafruit

about 112
URL 112

application-specific LED 17
Arduino

troubleshooting 107-109
Arduino blog

about 111
URL 111

Arduino boards
about 1
Arduino UNO 5
different Arduino boards 2, 3
selecting, for project 3, 4

Arduino forum
about 113
URL 113

Arduino IDE
about 7, 8
Editor Window 9
Error console 9
installing 7
installing, on Linux 8
installing, on MAC 8
installing, on Windows 7

New Button 9
Open Button 9
Save Button 9
Serial Monitor 9
Status Bar 9
Upload Button 9
Verify Button 9

Arduino UNO
3.3V 7
5V 7
about 5
AREF 6
components 6
External Power Supply 7
GND 6
in-circuit serial programmer 6
Main IC 6
ON 6
Pin 0 to Pin 13 6
Pin A0 to Pin A5 6
Reset Button 6
Tx Rx LEDs 7
USB plug 6
Vin 6
Voltage Regulator 7

B
Bildr

about 111
URL 111

breadboard
about 19
structure 20
using 20, 21

[116]

C
connection

verifying 10

D
DC motor

about 95
applications 96
controlling, Arduino used 96-100

F
fix_fft.h library

reference 89

H
hack-a-day

about 111
URL 111

hackerspaces
about 112
URL 112

Hello World program 11
high power LED 16

I
Instructables

about 112
URL 112

IR LED
about 37, 38
applications 38

IRRemote library
reference 43

IR sensor
about 38
data, receiving from TV remote 41-45
programming 39, 41
working mechanism 38, 39

L
LED

about 16
application-specific LED 17

high power LED 16
miniature LED 16

LED array
programming 93, 94
synchronizing, with motor 100-103

LED biking-jacket project
about 110
reference 110

LED Christmas tree
developing 85-90

LED cube
board, fixing 65-68
construction 61-64
designing 59
mistakes, to avoid 64
principle, behind design 60, 61
required components 59

LED fading
about 23
PWM, using on Arduino 24, 25

LED night lamp
developing 31

LED strip
about 45, 46
controlling, with Arduino 46-55

Light Dependent Resistor (LDR) 32

M
Make magazine

about 111
URL 111

miniature LED 16
mood lamp, creating

about 25
designing 27-31
LED night lamp, developing 31
maintained switch 31
momentary switch 31
Pixar lamp 32-34
RGB LEDs color, changing 26, 27
RGB LED, using 26
switch 31

motors
applications 96
different types 94
LED array, synchronizing with 100-103

[117]

multiple LEDs
controlling 21

P
Persistence of Vision

creating 91, 92
existing real-life devices, using 104
external motors, using 104
hands, using for rotation 103
implementing 103
two Arduinos, using 104

Pixar lamp 32
power supply 9
projects

about 109
LED biking-jacket 110
Secret-Knock-Detecting-Door-Lock 110
Twitter-Enabled-Coffee-Pot 110
Twitter Mood Light 109, 110

Pulse Width Modulation (PWM) 23

R
resources

about 109-111
Adafruit 112
Arduino blog 111
Arduino forum 113
Bildr 111
hack-a-day 111
hackerspaces 112
Instructables 112
Make magazine 111
Tronixstuff 112

RGB LED
about 26
color, changing 26, 27

S
Secret-Knock-Detecting-Door-Lock project

about 110
reference 110

serial communication
about 13
serial read 14, 15
serial write 13, 14
using 13

servo motors
about 95
applications 96

simple traffic light controller 21-23
soldering

about 57
requisites 57, 58
safety tips 58

sound visualization
about 74
FFT (Fast Fourier Transform) 75
performing 74
performing, Arduino used 76-85

stepper motor
about 95
applications 96

T
Tronixstuff

about 112
URL 112

troubleshooting
Arduino 107-109
reference 109

Twitter-Enabled-Coffee-Pot project
about 110
reference 110

Twitter Mood Light project
about 109
reference 110

types of motors
DC motor 95
overview 94
servo motors 95
stepper motor 95

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Arduino and LEDs
	Arduino boards
	Different Arduino boards
	How to choose an Arduino board for your project
	Arduino UNO

	Arduino IDE
	Installing Arduino IDE
	On Windows
	On Linux
	On Mac

	Understanding Arduino IDE

	Before you start
	Power supply
	Verifying connection

	"Hello World"
	Using serial communication
	Serial write
	Serial read

	The world of LED
	Summary

	Chapter 2: Project 1 – LED Night Lamp
	Introduction to breadboard
	Structure of a breadboard
	Using a breadboard

	Controlling multiple LEDs
	Simple traffic light controller

	LED fading
	Pulse width modulation (PWM)
	Using PWM on Arduino

	Creating a mood lamp
	Using an RGB LED
	Why do RGB LEDs change color?
	Designing a mood lamp

	Developing an LED night lamp
	Introduction to switch
	Pixar lamp

	Summary

	Chapter 3: Project 2 – Remote Controlled TV Backlight
	Introduction to IR LEDs
	What is IR LED?
	Applications of IR LED / IR communication

	IR sensors
	Working mechanism
	Programming a basic IR sensor
	How to receive data from a TV remote

	LED strips
	Controlling an LED strip with Arduino

	Summary

	Chapter 4: Project 3 – LED Cube
	Getting started with soldering
	What you will need
	Safety tips

	Designing an LED cube
	Required components
	Principle behind the design
	Construction
	Mistakes to avoid
	Fixing to the board

	Programming a 4*4*4 LED cube
	Summary

	Chapter 5: Sound Visualization and LED Christmas Tree
	Introduction to sound visualization
	How to visualize the sound
	What is FFT (fast fourier transform)

	Sound visualization using Arduino
	Developing an LED Christmas tree
	Summary

	Chapter 6: Persistence of Vision
	Creating your own Persistence of Vision
	Programming an LED array
	Different types of motors
	DC motors
	Servo motors
	Stepper motors
	Different applications of motors

	Controlling a DC motor using Arduino
	Synchronising an LED array with a motor
	Bringing your efforts to life
	Using your hands for rotation
	Using two different Arduinos or external motors
	Use existing real-life devices

	Summary

	Troubleshooting and Advanced Resources
	Troubleshooting
	Can't upload program
	LED is dim

	Resources – advanced users
	Projects
	Twitter Mood Light
	Secret knock detecting door-lock
	LED biking jacket
	Twitter-enabled coffee pot

	Useful resources
	Hackaday
	The Arduino blog
	The Make magazine
	Bildr
	Instructables
	Tronixstuff
	Adafruit
	All About Circuits
	Hackerspaces
	The Arduino forum

	Summary

	Index

