Arduino
Programming with
NET and Sketch

. Agus Kurniawan

www.al lTtelsgks. com

http://www.allitebooks.org

Arduino
Programming with
.NET and Sketch

Agus Kurniawan

Apress-

www.allitebooks.cond

http://www.allitebooks.org

Arduino Programming with .NET and Sketch

Agus Kurniawan
Depok
Indonesia

ISBN-13 (pbk): 978-1-4842-2658-2 ISBN-13 (electronic): 978-1-4842-2659-9
DOI10.1007/978-1-4842-2659-9

Library of Congress Control Number: 2017936052
Copyright © 2017 by Agus Kurniawan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: Jim Markham
Technical Reviewer: Fabio Claudio Ferracchiati
Coordinating Editor: Jessica Vakili
Copy Editor: Larissa Shmailo
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page athttp://www.apress.com/us/services/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484226582. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

www.allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permission
http://www.apress.com/rights-permission
www.apress.com/bulk-sales
http://www.apress.com/ISBN13TK?
http://www.apress.com/ISBN13TK?
http://www.apress.com/source-code
http://www.apress.com/source-code
http://www.allitebooks.org

Contents at a Glance

About the AUthOrccccciieemminissssmmnssssr s ix
About the Technical REVIEWErcuussssmssmssssssssssssssnsnsssssssssssssssnnssssss Xi
Acknowledgementsccucemmmmssnnnmmmsssssnnmsssssssnessssssssesssssnsssssssnnnnss Xiii
Introductionccccviemmmnmisssmnmmnsssnnmnsss s XV
Chapter 1: Introduction to Arduino Boards and Development........ 1
Chapter 2: Interfacing .NET and Arduinocccccunsseennmnssssnnnnsssnnns 21
Chapter 3: Sensing and Actuating..........cccivnnsnemnmmssssennmnssssnnnsnssnns 45
Chapter 4: Windows Remote Arduing.......ccccusseeerrmssssnnssssssssnsssssnns 69
Chapter 5: Building Your Own loT Using Arduino and .NET 109
1T 165
iii

www.allitebooks.cond

http://www.allitebooks.org

Contents

About the AUthOrccccciieemminissssmmnssssr s ix
About the Technical REVIEWErcuussssmssmssssssssssssssnsnsssssssssssssssnnssssss Xi
Acknowledgementsccucemmmmssnnnmmmsssssnnmsssssssnessssssssesssssnsssssssnnnnss Xiii
Introductionccccviemmmnmisssmnmmnsssnnmnsss s XV
Chapter 1: Introduction to Arduino Boards and Development........ 1
Exploring Arduing BOards..........ccoceeeercernersensessesses s ses e e ses s s snnnnns 1
Arduino Boards for BEGINNETS............ccceceererererereneesiresseesesessse s sesesssssesessssenes 2
Arduino Boards for Advanced USEIScccuerrerrernnennncse e ssssessssessssenses 3
Arduino for Internet of TRINGS......ccooieerrrerr s 4
Arduino-Compatible..........ccoceerureererrecrer e 7
Setting up Your Development Environment...........cccocovvvvvvvrcennensensennens 9
Build your First Project: BlinKing.........c.cccccversersnsensensessessesses e 11
Sketch Programming.........ccccceeeernnsensensesses s ses s ssssesssssssssssesssssenns 15
Arduino Programming Using Visual Studio..........cccccevvrrrrrrvrsenrensennn, 15
SUMMANY ...t s a s r e s nn e 19
Chapter 2: Interfacing .NET and Arduinocccccussseennnnssssnnnsssssnns 21
Arduino 1/0 CommuniCationcccccveerirennierr e 21
Serial Communication - UART ... sesss e sessssnns 22

How the Program WOIKS...........coceieniennsesnnese s se s e s sessssssssssssesssneens 25

SPI COMMUNICALIONcveeecirccccrir e a s 26

How the Program WOIKS...........coceieniennsesnnese s se s e s sessssssssssssesssneens 29

\%

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

TWI/I2C COMMUNICALION ... 29
How the Program WOIKS..........cccenninnesiness s sessssessssessssesssssssenes 33
Control Arduino Board from .NETcccoorvrvrrrirrrrerrer e 34
How the Program WOIKS..........ccoueernmrnnmnessssesessesessesessessesesesessesessessssesssssssssssenes 38
Introducing Firmata Protocol..........ccccocvvrvrrrvrvncrrerrerer e 39
11 0] 1T U S 44
Chapter 3: Sensing and Actuating.........ccceunsssemmnnnsssnnnnsssssssesssnnns 45
Overview of Sensing and Actuating in Arduinoccceeeercereeriercenene 45
Exploring Sensor and Actuator DeViCesc.ccevvereserienensessesesesensennas 46
SENSOF DBVICES ...vvveueurrrrrsseerrrsssesessssssssesssessssesesesss s sesssss e s s ssssssssssssssssssnssssssssnssenes 46
How the Program WOIKS..........ccoucernrnnmnessnsesessesessesssss s sesessesessessssessssessssessenes 52
ACTUALON DEVICES.eveueecerrsseeeresssessessssesessssssssessssssssesssssssssssssssssssssssssssssssssnsanns 53
Creating an Arduino Sensing App Using .NET.........cccccrvrrrrrrernerienienne 58
How the Program WOKKS. ..o se s ssessessessessens 60
How the Program WOKKS. ..o se s ssessessessessens 63
Creating an Arduino Actuating App Using .NETcccorererircrcrcenene 65
1T 1110 SR 68
Chapter 4: Windows Remote Arduing........ccuseemmmssssnsnnsssssnsnsssssnnns 69
Setting up Arduino for Windows Remote Arduinocccverververcenenne 70
Building Your First Program for Windows Remote Arduino 71
WIKING ot 71
Arduing Program........cucccrciininsisses e se s e s s s s s ss s e s s s s s sss s s s s 72
NET Application Program...........cccuvrvrnninnnninsinsinsessssssssessessessessessesssssessssssssessenns 73
Adding Windows Remote Arduino Librarycccccvvnvninvnvnsncnsnsncensensensescenns 75
Writing .NET Programcccvvrvnvnnninsnsensesse s s s e sessessesssssssse s 77
TESHING ..ttt ————————— 82

vi

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Control Arduino An@IOG 1/0ceeeveeveerererr e 85
LT o 86
Creating @ UWP PrOJECE........ccovveveererererererereseraeseraeseraesessesesessesessssessssessssassessssenes 87
Arduing Program.........cccceevererereesereesereresesssessesessssessesassessssesssssssssssssssssessssesssssaes 87
Writing the UWP Program..........cccoeererrceressereesereeseresesesessersesessssessessssessssessssenaes 87
L3 11 o 91

Remote Arduino Through I12C BUS..........ccoceerierrcriennscne e 92
Wiring for 12C AppliCationccccvrnencnrncserrs s sssss e seens 93
Creating @ UWP ProjECt.......cccoiicrrnncrcrrnsse st sss s sesessnns 94
Writing UWP Program..........ccconecnensessesese s ssse e ssssesssssssssssssssssesssssnnes 95
TESHNG e ———————————— 99

Windows Remote Arduino Over Bluetooth.............cccovvinncicnnccnne 100
Wiring for WRA With BIUETOOTcovoveeeeeec e 101
Pairing Arduino Bluetooth and COMPULEN ..o 102
Creating @ UWP PrOjECT.......cccooieercrireecsis e s 104
Writing an Arduing Programcooeececensnesesesnssesesssssesessssssssessssssssessssssssnns 105
Writing @ UWP Programooeeceenereenenesenssesesssssssesessssssesessssssssesssssssssssssssssnns 105
TESHING ..t n s 107

1111 1P S 107

Chapter 5: Building Your Own loT Using Arduino and .NET 109

Introduction to Internet of Things and Arduino..........cccceeevevrverrerrennn. 109

Connecting Arduino to Internet Network.........cc.cccoceervresrccvnscrenennens 110
Connecting to @ Wired NEtWOrK.......c.cccevcrerneicnnnse s esessssssess 110
Connecting to @ WiFi NEtWOIKccoviererinncsenernse e sesss e sessssssess 114

Accessing Arduino over a Network from .NET Application.................. 121
WIKING e s s e s s a e a e e ne e anae 122
Building @ SKetCh Program............cccoveevnnnescserseescsesss s sessssssens 124

vii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Building @ UWP Application...........ccovveerienncinssinesiresinesss e sessessssenas 129
TESHNG v ————————————— 133
Windows Remote Arduino (WRA) over WiFi..........ccccoceeveireneniernnsennenns 134
Configure Arduino for WRA oVer WiFi..........ccccovvrnenennnsessssnnsesesesssssesesessssesenenns 134
Building @ UWP ApPlICALION.........ccceeeeerrneerenensesesesesssesssessssesesesssesesessssssesssssass 135
= 140

RF Communication for Arduino...........cocuremmmnnmisensnensnssssssesenenens 141
Configuring XBee IEEE 802.15.4........ccccverervererrererserseserseseseresersssesssssssesessenessenes 143
Building an Arduino SKetCh Program...........ccceeeveververenseresseressessssesesesesesserssenees 145
Building @ UWP Program..........ccccucrvrnenninninninninsis s sessessessesssssessesssssessssssssessesnas 146
TESHING et ——————————— 151
Building a LoRa Network for Arduinoccccceeveerercessessessenses s 152
Location-based Application for Arduingcccceerervrrrcersrsersenennen, 156
Arduino and Cloud SErVer ... 161
Arduing CloUdcvueviirmrnesins i 161
SUMMANY ... e 163
INA@X..eiiieriennie s —————— 165

viii

www.allitebooks.cond

http://www.allitebooks.org

About the Author

Agus Kurniawan is a lecturer, IT consultant, and an author. He has 16 years of experience
in various software and hardware development projects, delivering materials in training
and workshops, and technical writing. He has been awarded the Microsoft Most Valuable
Professional (MVP) award 14 years in a row.

He is currently doing some research and also getting involved in teaching activities
related to networking and security systems at the Faculty of Computer Science,
Universitas Indonesia and Samsung R&D Institute, Indonesia. Currently, he is pursuing a
PhD in computer science at the Freie Universitédt Berlin, Germany. He can be reached on
his blog at http://blog.aguskurniawan.net and on Twitter at @agusk2010.

ix

www.allitebooks.cond

http://blog.aguskurniawan.net/
http://www.allitebooks.org

About the Technical
Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for React Consulting (www.reactconsulting.it). Heis
a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application
Developer for .NET, a Microsoft Certified Professional, and a prolific author and technical
reviewer. Over the past ten years, he’s written articles for Italian and international
magazines and coauthored more than ten books on a variety of computer topics.

xi

www.allitebooks.cond

http://www.reactconsulting.it/
http://www.allitebooks.org

Acknowledgments

We would like to thank Apress for all their help in making this book possible. Specifically,
we would like to thank Natalie Pao and Jessica Vakili, our coordinating editors, for helping
us stay focused and overcoming many obstacles. Without them, this book would not have
been possible.

Special thanks to James Markham, our development editor, and Fabio Claudio
Ferracchiati, our technical reviewer, for all his suggestions during the editorial review
process to help make this a great book.

We would also like to thank the Arduino and .NET communities anywhere in the
world for contributing and making learning Arduino programming easy.

Last, but not least, a thank you to my wife, Ela, and my children, Thariq and Zahra,
for their great support in completing this book.

xiii

Introduction

Arduino is a board development platform with which we can develop an embedded
application with several sensor and actuator devices. Arduino is an open source-based
hardware. There are many Arduino models that you can use to develop. This book is
designed for developers (especially for .NET developers) that want to build Arduino
programs for general and specific purposes.

For the Readers

This book assumes you may have previous programming experience. The book is also
written for someone who may have developed programs using .NET and wants to develop
an embedded program with Arduino boards.

How This Book Is Organized

This book is designed with a step-by-step approach. You will learn how to build Arduino
programs using sketch and .NET, and explore Arduino capabilities such as digital and
analog I/0 processing, serial communication, SPI, and I2C bus.

You will find out how .NET collaborates with sketch programs on Arduino to control
sensor and actuator devices remotely. The Internet of Things (IoT) topic is introduced,
including its implementation. Finally, a cloud server is used to connect to the Arduino
board.

Required Software, Materials, and Equipment

In general, a computer with Windows OS. Windows 10 installed is recommended. You
should install Arduino software and Visual Studio on your computer.

You need several Arduino models to implement our demo. Furthermore, you should
provide several sensor and actuator devices and several network modules such as WiFi,
Bluetooh, GPS, and LoRa.

XV

CHAPTER 1

Introduction to Arduino
Boards and Development -

Arduino is one of the most famous development boards. You can attach sensor and
actuator devices easily into the board. This chapter will explore how to work with Arduino
development and prepare for a development machine. To work on this chapter, you
should have one of the Arduino board models for implementation.

This chapter covers the following topics:

e Exploring Arduino boards.
e Setting up development.

e Building your first project.
e Sketch programming.

¢ Arduino programming using Visual Studio.

Exploring Arduino Boards

Arduino is a board development platform with which we can develop an embedded
application with several sensor and actuator devices. Arduino is an open source-based
hardware. It means we can develop our own Arduino board, but you should not use
the Arduino name because it’s a trademark. Currently Arduino boards are produced by
Arduino LLC (www.arduino.cc) and Arduino SRL (www.arduino.org). Some Arduino
models which are produced by Arduino LLC and Arduino SRL are different.

In general, an Arduino board has several digital and analog I/0 pins, which are used
to sense and actuate with external devices. In addition, Arduino provides UART, SPI,
and 12C protocols. Each Arduino model has unique features and forms. Make sure you
don’t choose the wrong board model. One of the Arduino board samples can be seen in
Figure 1-1.

© Agus Kurniawan 2017 1
A. Kurniawan, Arduino Programming with .NET and Sketch,
DOI 10.1007/978-1-4842-2659-9_1

http://www.arduino.cc/
http://www.arduino.org/

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Figure 1-1. Arduino UNO R3 board

The advantage of an Arduino board is it’s easy to use. You don’t need to solder
electronics components. An Arduino board is ready to use. You just attach sensor and
actuator devices into the board via jumper cables.

In this section, we explore various Arduino boards from Arduino LLC and Arduino
SRL. Each Arduino model has unique features. To optimize Arduino board usage, you
should know and understand what kind of Arduino model it is. I will introduce various
Arduino models based on complexity level and usage range.

Let’s start to explore Arduino boards.

Arduino Boards for Beginners

An Arduino UNO board is a development board which I recommend to anyone who
wants to learn Arduino programming. There are many Arduino shields which are
attached to the board. Furthermore, most tutorials and books use Arduino UNO as an
experimental board. Arduino UNO has completed I/0 protocols, such as digital and
analog I/0, SPI, UART, and 12C/TWI, so you can utilize these I/O pins to work with sensor
and actuator devices. Arduino UNO is easier to find and buy.

You can review the Arduino UNO board on this website: https://www.arduino.cc/
en/Main/ArduinoBoardUno. You can also review Arduino UNO from Arduino SRL on this
site: http://www.arduino.org/products/boards/arduino-uno.

https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno
http://www.arduino.org/products/boards/arduino-uno

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Figure 1-2. Arduino UNO board from Arduino LLC

Arduino Boards for Advanced Users

In some cases you want to optimize your board’s I/O or want to debug your programs.
The Arduino MEGA 2560 board provides more I/0 pins (about 54 I/O pins) and advanced
MCU to accelerate your program. This board runs on the top of MCU Atmega 2560

with an internal flash memory of 256 KB. The Arduino MEGA 2560 board also has two
UARTs. You can review this board on this site: https://www.arduino.cc/en/Main/
ArduinoBoardMega2560. For Arduino MEGA 2560 from Arduino SRL, you can review it

on http://www.arduino.org/products/boards/arduino-mega-2560. You can see the
Arduino MEGA 2560 board in Figure 1-3.

] (e
Grizmm: - 939232¢%

Figure 1-3. Arduino MEGA 2560

https://www.arduino.cc/en/Main/ArduinoBoardMega2560
https://www.arduino.cc/en/Main/ArduinoBoardMega2560
http://www.arduino.org/products/boards/arduino-mega-2560

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Most Arduino boards don’t have a built-in debug chip, so if you want to debug our
program, you should add an additional debug tool. Fortunately, we can use the Arduino
ZERO board (https://www.arduino.cc/en/Main/ArduinoBoardZero) from Arduino LLC
and the Arduino M0 PRO board (http://www.arduino.org/products/boards/arduino-
m0-pro) from Arduino SRL, which are supported for debugging without additional tools.
These boards have Atmel’s Embedded Debugger (EDBG) to be used for debugging.

I suggest you to use these Arduino models if you have concerns about debugging without
additional tools. A form of Arduino Zero board is shown in Figure 1-4.

Figure 1-4. Arduino ZERO

Arduino for Internet of Things

Today the Internet is a common term used to describe how to access data from a remote
site. We can access the data from any device and anywhere. In the context of Arduino,
it’s very useful if our boards can be connected to the Internet. Imagine your boards sense
the physical object and then send it to our smartphone. This happens if our boards are
connected to Internet.

There are many options for Arduino shields for network modules to make our
Arduino boards connect to the Internet. This means you should buy additional modules
to make your boards connect to the Internet. Fortunately, various Arduino board models
have a built-in network module in the board. We explore some Arduino board models
with Internet connectivity capability.

Arduino UNO WiFi is an Arduino UNO board with an additional chip (ESP8266).
This chip can be used to connect existing WiFi networks and also can work as an access
point (AP) node. Arduno UNO WiFi is manufactured by Arduino SRL. You can see the
Arduino UNO WiFi form in Figure 1-5. To obtain more information about Arduino
UNO WiFi, you can review it on this site: http://www.arduino.org/products/boards/
arduino-uno-wifi.

https://www.arduino.cc/en/Main/ArduinoBoardZero
http://www.arduino.org/products/boards/arduino-m0-pro
http://www.arduino.org/products/boards/arduino-m0-pro
http://www.arduino.org/products/boards/arduino-uno-wifi
http://www.arduino.org/products/boards/arduino-uno-wifi

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

- MAUHS ARG ROl
E - e 1

Figure 1-5. Arduino UNO WiFi

Arduino/Genuino MKR1000 is a development board with a ready-for-IoT
scenario which is manufactured by Arduino LLC. The board runs with ATSAMW25
SoC, which consists of SAMD21 Cortex-M0+, WINC1500 WiFi module, and ECC508
CryptoAuthentication. It's designed for IoT connectivity, including accessing the cloud
server. Further information about Arduino/Genuino MKR1000 can be read on
https://www.arduino.cc/en/Main/ArduinoMKR1000. This board size, which is shown
in Figure 1-6, is small.

Figure 1-6. Arduino/Genuino MKR1000

https://www.arduino.cc/en/Main/ArduinoMKR1000

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Most Arduino boards work with an RTOS environment. Arduino YUN combines
MCU and WiFi MCU, which runs OpenWrt Linux (called Linino OS). This board likes a
mini-computer with Linux OS. You can control Arduino MCU ATmega32u4 from Linux.
We also can access Linux API from the Arduino program. The Arduino YUN board
has built-in WiFi and Ethernet modules to solve your IoT cases. Figure 1-7 is a form of
Arduino YUN. You can review and buy this board on this site: http://www.arduino.org/
products/boards/arduino-yun.

Figure 1-7. Arduino YUN

If you're looking for an Arduino with BLE connectivity capability, you can consider
using the Arduino/Genuino 101 board, which is shown in Figure 1-8. This board uses
Intel Curie as MCU, which has a built-in BLE module. You can control this board
through Bluetooth on your smartphone, such as Android and iPhone smartphones.
For further information about Arduino/Genuino 101, I recommend reading this website:
https://www.arduino.cc/en/Main/ArduinoBoard101.

http://www.arduino.org/products/boards/arduino-yun
http://www.arduino.org/products/boards/arduino-yun
https://www.arduino.cc/en/Main/ArduinoBoard101

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Figure 1-8. Arduino/Genuino 101

Arduino-Compatible

In general, the original Arduino board price is expensive. If you have pricing issues on
your Arduino learning process, you could buy an Arduino-compatible board. As we know,
Arduino shares its design and scheme under an open source project. It means we can
build our own Arduino board without using the “Arduino” name for our board. Arduino-
compatible boards usually are manufactured by third-party companies. This section will
go through various Arduino-compatible boards in the market.

SparkFun RedBoard is a kind of Arduino-compatible board which is manufactured
by SparkFun. This board has a form like the Arduino UNO board and uses ATmega328
as MCU with installed Optiboot (UNO) Bootloader. For development, we can use
Arduino IDE to write a Sketch program and then flash the program to the board. If you
are interested in SparkFun RedBoard, you can buy it on https://www.sparkfun.com/
products/12757. You can see SparkFun RedBoard in Figure 1-9.

Figure 1-9. SparkFun RedBoard

https://www.sparkfun.com/products/12757
https://www.sparkfun.com/products/12757

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Really Bare Bones Board (RBBB) is an Arduino-compatible board which is designed
by Modern Device. This board doesn’t provide a serial module so if you want to develop
a Sketch program, you would need a serial tool such as FTDI cable. RBBB board is
displayed in Figure 1-10. For further information about this board, you can review and
buy it on https://moderndevice.com/product/rbbb-kit/.

Figure 1-10. Really Bare Bones Board (RBBB)

Feather is an Arduino development brand from Adafruit. Adafruit Feather 32u4
Adalogger is one of the Feather board models. This board provides a MicroSD module for
storing data. We can develop an Arduino program using Adafruit Feather 32u4 Adalogger.
For further information, you can review and buy this board on https://www.adafruit.
com/products/2795.

Figure 1-11. Adafruit Feather 32u4 Adalogger

In the next section, we will set up our development environment on a computer.
We will use the official application for Arduino development.

https://moderndevice.com/product/rbbb-kit/
https://www.adafruit.com/products/2795
https://www.adafruit.com/products/2795

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Setting up Your Development Environment

The advantage of Arduino development is it’s easier to set up a development environment
because it supports multiple platforms such as Windows, Linux, and Mac. In this book,
we focus on the Windows platform. We also explore .NET technology to access Arduino
boards.

The first thing you should prepare is to install Arduino software. Depending on
what a kind of Arduino module, if you have Arduino boards from Arduino LLC, you
can download Arduino software on https://www.arduino.cc/en/Main/Software.
Otherwise, Arduino boards from SRL can download Arduino software from this site:
http://www.arduino.org/downloads.

After downloading and installing Arduino software, you can run the program. You
can see the Arduino form from Arduino LLC in Figure 1-12.

@ sketch_oct25a | Arduino .. — O X

File Edit Sketch Tools Help

sketch_oct25a

o
~ B

main code here, to run repeatedly:

Arduino/Genuino Zero (Programming Port) on COM3

Figure 1-12. Arduino IDE

https://www.arduino.cc/en/Main/Software
http://www.arduino.org/downloads

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Now you can attach the Arduino board into your computer. If you have Arduino
boards based on ATTiny and ATMega MCUs such as Arduino UNO, you don’t need to
install a driver. Arduino software has installed it for you.

For instance, I attach my Arduino UNO on Windows 10; I obtained that my Arduino
UNO board is recognized as COMS5, shown in Figure 1-13.

& Device Manager = O X
File Action View Help
s m HEmM BV

— Keyboards A
0 Mice and other pointing devices
[Monitors

& Network adapters

K7 Other devices

B Portable Devices

v @ Ports (COM & LPT)
@ Arduino Uno (COMS)

™= Print queues

[Processors

B SD host adapters

[Sensors

i Software devices

iy Sound, video and game controllers
S Storage controllers

Em System devices

§ Universal Serial Bus controllers

Figure 1-13. Arduino UNO is recognized in Device Manager on Windows 10

You also need Visual Studio to develop a .NET application, which accesses Arduino
boards. If you don’t have a Visual Studio license, you can download and install Visual
Studio Express edition on this URL: https://www.visualstudio.com/vs/visual-
studio-express/. For testing, I use Visual Studio 2015 with update 2. It is shown in
Figure 1-14.

10

https://www.visualstudio.com/vs/visual-studio-express/
https://www.visualstudio.com/vs/visual-studio-express/

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

| ege 4 X

Visual Studio

soft Platforms

Figure 1-14. Visual Studio 2015

We learn how to develop a .NET application to control our Arduino boards in the
next chapter. Make sure you have the Visual Studio tool. In the next section, we try to
build a simple Arduino program using Arduino software. We use a built-in LED on an
Arduino board.

Build your First Project: Blinking

When I obtain a new Arduino board, the first thing that I do is to build a simple app:
blinking. This application runs to turn on/off an LED. Most Arduino boards have a
built-in LED which is attached on digital pin 13.

In this section, we learn how to build an Arduino app to turn on/off LED. We can
use a program sample from Arduino software. You can find it by clicking menu File »
Examples » 01.Basic » Blink. After clicking, you should see the program, shown in
Figure 1-15.

11

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

-
@

File Edit Sketch Tools Help

// the setup function runs once when you press reset or power the b

tialize digital pin LED_BUILTIN as an output.

ode(LED_BUILTIN, OUTPUT);

// the loop function runs over and over again forever
id loop() {
talWri

ite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is th
1000); // wait for a second
d ite(LED BUILTIN, LOW); // turn the LED off by making - V¥
< >

Arduino/Genuine Une on COMS

Figure 1-15. Blink program on Arduino software

In general, you should use the following code:

void setup() {
// initialize digital pin 13 as an output.
pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever
void loop() {
digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

12

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

You may see value 13 is replaced by LED_BUILTIN, which is shown in the following code:

void setup() {
// initialize digital pin 13 as an output.
pinMode(LED BUILTIN, OUTPUT);

// the loop function runs over and over again forever
void loop() {
digitalWrite(LED BUILTIN, HICH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

Save this program. To compile the program, you can click the Verify icon. Before
uploading the program into an Arduino board, you should configure your IDE. Change
the Arduino board target by clicking menu Tools » Board (Figure 1-16). Then, you also
need to set a serial port of the attached Arduino board by clicking menu Tools » Port.

& Blink | Arduino 1.6.12 - O X
File Edit Sketch Toocls Help

0 0 BEA Auto Format Ctrl+T

Archive Sketch

Blink
Fix Encoding & Reload
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WIiFi101 Firmware Updater
ArduBlock

Board: “Arduino/Genuino Uno”
Port: "COMS5 (Arduino/Genuino Uno)”
Get Board Info

Programmer: "AVRISP mkil"
Burn Bootloader

Arduino/Genuine Uno on COMS

Figure 1-16. Configure board target and port
13

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

After it’s configured, you can compile and upload the program. Click the Upload
icon. You can see Verify and Upload icons in Figure 1-17.

@ sketch_oct25a | Arduino .. — O X

File Edit Sketch Toq

upload program
to a board

ge here, to run once:

to compile
program

void loop() {

// put your main code here, to run repeatedly:

1

Figure 1-17. Compile and upload program on Arduino software

If you succeed, you should see a built-in LED is blinking. For instance, Arduino UNO
has a built-in LED which is shown in Figure 1-18.

Figure 1-18. Blinking LED on Arduino UNO

14

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Sketch Programming

To develop an Arduino app, you should know Sketch programming. In general, Sketch
program uses C/C++ syntax. If you have experience in C/C++, you should be able to write
an Arduino program easily.

The thing that you should know is to understand a sketch programming model.
A sketch program uses two functions to run an Arduino program. The following is a
sketch program in general.

setup() {
// do something

}

Loop(){
// do something

}

On setup() function, the sketch program will execute once. However, loop() function
is a function which is executed continually.

If you can build your own functions, then put them in either setup() function or
loop() function. For instance, I created foo() and perform() functions and executed them
on my Sketch program as follows.

setup() { // do something
foo(); Yloop(){ // do something
perform();}foo() {

}

perform() {
}

We also need to know some APIs in Sketch program. I recommend you read these
on the official website. You can read it on https://www.arduino.cc/en/Reference/
HomePage from Arduino LLC. Arduino SRL provides the reference website in http://www.
arduino.org/learning/reference.

Arduino Programming Using Visual Studio

If you love Visual Studio as a development tool, you can use this tool to develop an
Arduino program. We can use Visual Micro as an add-on tool for Visual Studio. You can
download it on http://www.visualmicro.com. After it’s installed, you should see new
project templates, which are shown in Figure 1-19. To work with Visual Micro, you still
need to install Arduino software.

15

https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Reference/HomePage
http://www.arduino.org/learning/reference
http://www.arduino.org/learning/reference
http://www.visualmicro.com/

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

New Project ? kS

MNET Framewc
W Ardu

W Ardu

Wy Blink Led Example Visual C++

Figure 1-19. Arduino project template on Visual Studio 2015

Now you can bring your Sketch program into Visual Studio. You can write Sketch
program into Visual Studio. For instance, we can write Sketch program by selecting Blink
Led Example from Visual C++ » Visual Micro.

After it’s selected, we can see a blinking Sketch program in Visual Studio editor
(see Figure 1-20). You should find xxx.ino file where xxx is a Sketch file.

16

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

-

Parsing included files.. (533. n18
Figure 1-20. Sketch program in Visual Studio 2015 editor

Before you build and upload sketch, you should configure an Arduino board target.
You should see a list of Arduino board model. You can see it in Figure 1-21. Select your
Arduino board model from the list.

Figure 1-21. Select Arduino board model for board target

17

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

You also need to configure a serial port for Arduino. You can see its configuration on a
menu which is shown in Figure 1-22. Build and upload menus also can found on that toolbar.

BlinkMic/ 20 ® X

% Blinkha

Build and
upload

Serial port

of Arduino

Figure 1-22. Menu for selecting serial port, building, and uploading

Save your sketch. Then, try to build and upload the program. The program will run
on an Arduino board. Visual Studio debugger also runs. You can see it in Figure 1-23.

B

ik Aicro i e 24

rales)

§ Opening port
Port open

Connect | Dtr | Ris | Auto-Scoll - 115200 -

Millis is currentty 24078,

Figure 1-23. Running and debugging Arduino sketch on Visual Studio

18

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 1 " INTRODUCTION TO ARDUINO BOARDS AND DEVELOPMENT

Summary

We have explored various Arduino models and tried to build a simple Arduino program
using Arduino software. We also built an Arduino program using Visual Studio and then
deployed it into an Arduino board.

You can now practice developing Arduino programs with sketch. In the next chapter,
we build an interface program to communicate between a .NET application and Arduino
boards.

19

CHAPTER 2

Interfacing .NET and Arduino/

.NET is a complete technology to solve your business cases, including hardware
programming. In this chapter, we will learn how to control Arduino boards from a .NET
application. Several Arduino I/O communication models are introduced, so our .NET
application can control Arduino boards. The last topic is to learn Firmata protocol, one of
the protocols to communicate between an Arduino board and a computer.

This chapter covers the following topics:

e Arduino I/O Communication
e Controlling Arduino from .NET

e Introduction to Firmata protocol

Arduino 1/0 Communication

Arduino boards usually provide I/O pins so we attach our sensor or actuator devices into
the board. Each Arduino board has an I/0 layout so you should check it. For instance,
Arduino UNO can be described for I/0 layout, as shown in Figure 2-1. This layout is taken
from the PigHixxx website, http://www.pighixxx.com/test/portfolio-items/uno/.

© Agus Kurniawan 2017 21
A. Kurniawan, Arduino Programming with .NET and Sketch,
DOI 10.1007/978-1-4842-2659-9_2

http://www.pighixxx.com/test/portfolio-items/uno/

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

ATMEGA 82U/16U2 TCSP
ST ;|
BT e [SCLK
oW T Pl - 1 1--wrm P0G o1 | M)

The drput aitage 1o the board when (20 *
£t 15 running from external power. 4O EEIF———o
Mot U8 bus power.

twdw NINOND NG

NI 907N

Figure 2-1. Arduino UNO I/0 layout

To access an external resource from Arduino I/0, we should deal with protocol
format. In general, Arduino boards have the following three communication models:

e serial communication
e SPI communication
e TWI/I2C communication

We use these communication models to communicate with a .NET application. Each
communication will be explained on the next section. Sketch will be used to describe how
these I/0 communication work.

Let's explore!

Serial Communication - UART

Serial communication—sometimes it's called UART (Universal Asynchronous Receiver
Transmitter)—is an old communication model. In the serial communication method, we
send one bit at time, sequentially, over a communication channel. If you have 32 bits of
data, the data will send one by one bit. A speed of data sending is depending on a serial
speed, called baudrate.

Most Arduino boards have serial communication capability via UART pins. For
instance, Arduino UNO has UART pins on digital pin 0 and 1.

22

CHAPTER 2 " INTERFACING .NET AND ARDUINO

In the Sketch program, we can use the Serial library (https://www.arduino.cc/en/
Reference/Serial) to communicate UART pins on Arduino boards. Serial.print() and
Serial.read() functions are used to write and read data on Arduino UART.

For testing, we build a Sketch to write data on Arduino UART. I used Arduino UNO.
This program will write data to serial port on Arduino. For testing, we write sequential
numbers into a serial port. Then, we listen to incoming messages from serial port using
Serial Monitor, a tool from Arduino software.

Now you can open Arduino IDE and write the following code.

int led = 13;

int val = 10;

void setup() {
pinMode(led, OUTPUT);
Serial.begin(9600);

}

void loop() {
digitalWrite(led,HIGH);
Serial.print("val=");
Serial.println(val);
delay(1000);

digitalWrite(led,LOW);
val++;
if(val>50)

val = 10;

I'll explain how this sketch works after this next step. Save this program as
“SerialDemo.”

Compile and upload sketch into an Arduino board. To see program output on Serial
1/0, we can use a Serial Monitor. This tool is available from Arduino software. Just click
menu Tools » Serial Monitor. See Figure 2-2.

23

https://www.arduino.cc/en/Reference/Serial
https://www.arduino.cc/en/Reference/Serial

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

& SerialDemo | Arduino 1.6.12 — O X

Serial.begin($

val++;
if(val>50)
val = 10;

File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WIiFi101 Firmware Updater
ArduBlock

Board: "Arduino/Genuino Uno"
Port: "COMS5 (Arduino/Genuino Uno)"
Get Board Info

Programmer: "AVRISP mkll*
Burn Bootloader

Arduino/Genuino Uno on COMS

Figure 2-2. Open Serial Monitor tool on Arduino IDE

After opening the Serial Monitor tool, you should see a dialog, shown in Figure 2-3.
Change baudrate to 9600 because our program uses baudrate 9600 to communicate with

Arduino serial.

24

CHAPTER 2 " INTERFACING .NET AND ARDUINO

€ COMS (Arduino/Genuino Uno) - O g

Send

val=10
val=1l1l
val=12
val=13
val=14
val=15
val=16
val=17

Autoscroll Both NL&CR

Figure 2-3. Program output on Serial Monitor tool

You should see “value=xx.” xx is a sequential number which is generated from our
Sketch program.

How the Program Works

Now I'll explain how the previous program works. First, we initialize our serial port with
baudrate 9600. We also use a built-in LED on pin 13. This happens on setup() function.

int led = 13;

int val = 10;

void setup() {
pinMode(led, OUTPUT);
Serial.begin(9600);

}

Then, we send the message “value = xx” to serial output. xx is a sequential number
starting from 10 to 50. We perform it on loop() function. To write data to serial output, we
call Serial.print() and Serial.println() functions.

void loop() {
digitalWrite(led,HIGH);
Serial.print("val=");
Serial.println(val);
delay(1000);
25

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

digitalWrite(led,LOW);

val++;
if(val>50)
val = 10;

This is a simple program. However, you can do more practice using Serial library
from Sketch program. For instance, you send sensor data such as temperature and
humidity to serial port.

SPI Communication

Since UART does not use a clock to control transmitter and receiver, messages may get
problems in communication. We get a problem in UART when we want to attach more
devices into UART bus. SPI protocol is designed to work with several devices in serial bus.
Serial Peripheral Interface (SPI) uses master and slave clock to determine which
device will communicate. SPI usually is implemented in three pins: SCK for clock, MOSI
for Master Out Slave In, and MISO for Master In Slave Out. SS (Slave Select) signals are
used for the master to control many slave devices. The Arduino UNO board, for instance,
has SPI pins on 10 (SS), 11 (MOSI), 12 (MISO), and 13 (SCK).
There are many options for sensor and actuator devices which use SPI protocol.
For instance, SparkFun Triple Axis Accelerometer Breakout from SparkFun (https://
www . sparkfun.com/products/11446). This breakout uses IC ADXL362 to manage the
accelerometer sensor. You can see this breakout in Figure 2-4.

Figure 2-4. SparkFun Triple Axis Accelerometer Breakout from SparkFun

To test our Arduino with SPI protocol, we can connect MOSI and MISO pins using a
jumper cable. We connect digital pin 11 to digital pin 12, as shown in Figure 2-5.

26

https://www.sparkfun.com/products/11446
https://www.sparkfun.com/products/11446

CHAPTER 2 " INTERFACING .NET AND ARDUINO

A o um Fmmu
[t

PIGITAL (PUM=~) © &

fritzing
Figure 2-5. Connecting MISO and MISO pins

Now we start to build the Arduino program. In this case, we send data over SPI and
wait for incoming data from SPI. This program is an SPI loopback in which input and
output SPI pins are connected. We can use the SPI library (https://www.arduino.cc/en/
Reference/SPI) to access the SPI protocol. In the SPI library, we can use SPI.transfer()
function to send and receive data. The program will send random numbers to SPI. Open
Arduino IDE and write the following code.

#include <SPI.h>

byte sendData,recvData;

void setup() {
SPI.begin();
Serial.begin(9600);

}

// source:
// http://forum.arduino.cc/index.php?topic=197633.0
byte randomDigit() {
unsigned long t = micros();
byte r = (t % 10) + 1;
for (byte i = 1; 1 <= 4; i++) {
t /= 10;
r *= ((t % 10) + 1);

27

https://www.arduino.cc/en/Reference/SPI
https://www.arduino.cc/en/Reference/SPI

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

T %= 11;

}

return (r - 1);

}

void loop() {

sendData
recvData

randomDigit();
SPI.transfer(sendData);

Serial.print("Send=");
Serial.println(sendData,DEC);
Serial.print("Recv=");
Serial.println(recvData,DEC);

delay(800);

Save this sketch as “SPIDemo.”
Now you can compile and upload the Sketch program into Arduino UNO. Open a
Serial Monitor tool to see the program output. Don't forget to change baudrate to 9600. A

sample of the program can be seen in Figure 2-6.

€ COMS (Arduino/Genuino Uno)

Recv=2
Send=3
Recv=3
Send=4
Recv=4
Send=5
Recv=

Send=2
Recv=2
Send=0
Recv=0
Send=7
Recv=7
Send=3
Recv=3

Send

W

Autoscroll

Figure 2-6. Program output for SPI Sketch program

28

Both NL& CR ~ |9600 baud v

CHAPTER 2 " INTERFACING .NET AND ARDUINO

How the Program Works

To access the SPI library, we call SPI.begin() function into setup() function. To work
with the SPI library, we need to include the SPL.h header file in your program. In general,
this header file is already installed in Arduino software.

#include <SPI.h>

byte sendData,recvData;

void setup() {
SPI.begin();
Serial.begin(9600);

In loop() function, we perform to send a random number via SPI. This random
number is generated by calling randomDigit () function. We can use the SPI.transfer()
function to send and retrieve data on the SPI bus. Finally, we display data which is sent
and received on the serial port so we can monitor it via Serial Monitor tool.

void loop() {
sendData = randomDigit();
recvData = SPI.transfer(sendData);

Serial.print("Send=");
Serial.println(sendData,DEC);
Serial.print("Recv=");
Serial.println(recvData,DEC);
delay(800);

You have learned how to access SPI by implementing an SPI loopback scenario. If
you want to get more advanced practice, I recommend you use sensor or actuator devices
based on SPI protocol. Please remember that each sensor/actuator device has specific
commands over SPI to interact with Arduino boards. You should check them on their
datasheet documents.

TWI/I2C Communication

As we know, SPI protocol needs four pins to communicate among devices. This is one
drawback in SPI protocol. SPI only allows one master on the bus with multiple slave
devices. On the other hand, 12C (Inter-Integrated Circuit)/ TWI (Two-Wire Interface) is
also a synchronous protocol which needs two pins to communicate among devices. 12C
protocol has multi-master devices which talk to multi-slave devices.

12C protocols have two wires: SDA and SCL. Arduino boards usually have an I2C bus.
For instance, Arduino UNO has I2C on pins A4 (SDA) and A5 (SCL). Please check your
Arduino model to see the I12C pinout. We can access 12C using the Wire library (https://
www.arduino.cc/en/Reference/Wire).

29

https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/en/Reference/Wire

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

There are many devices which use I2C to be attached to Arduino boards. One 12C
sensor device is SparkFun Humidity and Temperature Sensor Breakout from SparkFun
(https://www.sparkfun.com/products/13763). This breakout uses IC Si7021 to sense
humidity and temperature. The sensor data can be accessed using I2C protocol. You can
see this breakout in Figure 2-7.

e Si7021

Figure 2-7. SparkFun Humidity and Temperature Sensor Breakout from SparkFun

Another module is the PCF8591 AD/DA module. It's not an expensive module.
You can find it on http://www.electrodragon.com/product/pcf8591-adc-dac-
adda-analog-digital-converter-module/. Ebay and Chinese websites also sell this
module. The advantage of this module is that the module provides three sample inputs:
Thermistor, Photocell, and Potentiometer. Figure 2-8 is a form of the PCF8591 AD/DA
module. In this case, I use it for I2C testing on an Arduino UNO board.

| AD/DAMIIR

|
L

[~

Piiii

}

OUT INO IN1 IN2 IN3

?CCGND SCL SDA 3
ol
L :'
LI A B A N

L

o
L&)

Figure 2-8. PCF8591 AD/DA module

30

https://www.sparkfun.com/products/13763
http://www.electrodragon.com/product/pcf8591-adc-dac-adda-analog-digital-converter-module/
http://www.electrodragon.com/product/pcf8591-adc-dac-adda-analog-digital-converter-module/

CHAPTER 2 " INTERFACING .NET AND ARDUINO

For an I2C demo on an Arduino board, we use a PCF8591 AD/DA module. We will
access Thermistor, Photocell, and Potentiometer through I2C protocol using Sketch
program.

For wiring implementation, you can connect the PCF8591 AD/DA module to an
Arduino UNO board as follows:

e Connect SDA pin to Arduino SDA pin (A4).
e Connect SCL pin to Arduino SCL pin (A5).
e Connect GND pin to Arduino GND.

e Connect VCC pin to Arduino VCC 3.3V.

You can see my wiring in Figure 2-9.

Figure 2-9. Wiring PCF8591 AD/DA module and Arduino UNO

We can use the Wire library to access the 12C bus. The PCF8591 AD/DA module
runs on address (0x90>>1) or 0x48. We pass this address to the Wire library. Based on
a document from the PCF8591 AD/DA module, Thermistor runs on channel 0x00,
Photocell on 0x01, and Potentiometer on 0x03.

Now open Arduino IDE and write this code:

#include "Wire.h"

#define PCF8591 (0x90 >> 1) // I2C bus address
#define PCF8591 ADC_CHO 0x00 // thermistor

#define PCF8591 ADC_CH1 0x01 // photo-voltaic cell
#define PCF8591 ADC CH2 0x02

#define PCF8591 ADC (CH3 0x03 // potentiometer

byte ADC1, ADC2, ADC3;

31

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

void setup()

Wire.begin();
Serial.begin(9600);

}
void loop()

// read thermistor
Wire.beginTransmission(PCF8591);
Wire.write(PCF8591_ADC_CHO);
Wire.endTransmission();
Wire.requestFrom(PCF8591, 2);
ADC1=Wire.read();
ADC1=Wire.read();

Serial.print("Thermistor=");
Serial.println(ADC1);

// read photo-voltaic cell
Wire.beginTransmission(PCF8591);
Wire.write(PCF8591_ADC_CH1);
Wire.endTransmission();
Wire.requestFrom(PCF8591, 2);
ADC2=Wire.read();
ADC2=Wire.read();

Serial.print("Photo-voltaic cell=");
Serial.println(ADC2);

// potentiometer
Wire.beginTransmission(PCF8591);
Wire.write(PCF8591_ADC_CH3);
Wire.endTransmission();
Wire.requestFrom(PCF8591, 2);
ADC3=Wire.read();
ADC3=Wire.read();

Serial.print("potentiometer=");
Serial.println(ADC3);

delay(500);

Save this sketch as “I2CSensor.”
Compile and upload the program into the Arduino board. You can see the output
using the Serial Monitor tool. A sample output can be seen in Figure 2-10.

32

CHAPTER 2 " INTERFACING .NET AND ARDUINO

& COMS (Arduino/Genuino Uno) . O %4
| Send

|Thermistor=78
Photo-voltaic cell=118
potentiometers=ll3
|Thermistor=78
|Fhoto-voltaic cell=118
potentiometer=113
Thermistor=78
|Fhoto-voltaic cell=118
|potentiometer=113
|Thermistor=T78
|Photo-voltaic cellw=lls
|potentiometer=113
|Thermiastor=78
|Photo-voltaic cell=118
|potentiometer=113

W

Autoscroll Both NL&CR ~ 9600 baud

Figure 2-10. Program output for I2C Sketch program

How the Program Works

The program requires a Wire library, so you should include a Wire.h header file in our
Sketch program. We also declare 12C addresses and commands for the PCF8591 AD/DA
module.

#include "Wire.h"

#define PCF8591 (0x90 >> 1) // I2C bus address
#define PCF8591_ ADC_CHO 0x00 // thermistor

#define PCF8591 ADC_CH1 0x01 // photo-voltaic cell
#define PCF8591 ADC_CH2 0x02

#define PCF8591 ADC_CH3 0x03 // potentiometer

byte ADC1, ADC2, ADC3;

We activate our Wire library on setup() function by calling Wire.begin() function.
We also need to activate the Serial library in order to send a result of I2C reading by
calling Serial.begin() function.

void setup()
Wire.begin();
Serial.begin(9600);
}
To read Thermistor data from the PCF8591 AD/DA module, you send channel

mode, 0x00, into PCF8591 AD/DA 12C address. Then, you should read two bytes to obtain
Thermistor data.

33

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

Wire.beginTransmission(PCF8591);
Wire.write(PCF8591 ADC_CHO);
Wire.endTransmission();
Wire.requestFrom(PCF8591, 2);
ADC1=Wire.read();
ADC1=Wire.read();

Serial.print("Thermistor=");
Serial.println(ADC1);

We perform the same task to read Photocell, and Potentiometer from PCF8591 AD/
DA I2C. You just pass PCF8591_ADC_CHI and PCF8591_ADC_CH3 values to the module.
Then, wait for incoming two bytes from PCF8591 AD/DA.

Now that we have learned how to work with Arduino I/O communication, let's
continue to control the Arduino board from our .NET application.

Control Arduino Board from .NET

We have learned several Arduino I/O communications using Sketch programming. Now
we continue to access Arduino I/0 from a .NET application.

In this section, I show you a simple communication between a .NET application and
Arduino. I use serial communication. As we know, an Arduino board can be connected
to a computer via Serial USB. We utilize this feature in our program. The idea is to send a
command to Arduino to do something through serial communication protocol.

For testing, we build a .NET application to control three LEDs. We send commands
by sending the message “1” to turn on LED 1, “2” to turn on LED 2, and “3” to turn on LED
3 via serial communication. In .NET, we can use a SerialPort object to access Serial I/O or
UART. First, attach three LEDs into the Arduino board. The following is our wiring:

e Connect LED 1 to digital pin 12.
e Connect LED 2 to digital pin 11.
e Connect LED 3 to digital pin 10.

e Connectall other LED pins (GND pin) to GND pin.
You can see this wiring in Figure 2-11.

34

CHAPTER 2 " INTERFACING .NET AND ARDUINO

L L B LA B L . L L B
LI L B L L L B L
- L B B B B B B L LA
- L L B B B B .. LI
- L L B B B B .. L
. L B R B B . .. LI
- L B - .. L L
LA R L L B L L B B - .. L
L R L B B B R B . .. L
L B O B B B - . . L
L L I L D B - L L L B
LA L L B B L B B R L B L .. . " "0
L A L O - l . - ' '. LA
L L L . ° LA L L

]
fritzing

Figure 2-11. Wiring for LED control program

In order for our Arduino to understand our commands from a .NET application, we
should use a Sketch program to receive commands from a .NET application. Write the
program into Arduino IDE as follows:

int led1 = 12;
int led2 = 11;
int led3 = 10;

void setup() {
pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);
pinMode(led3, OUTPUT);
Serial.begin(9600);

}

35

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

void loop() {
if (Serial.available() > 0) {

char inputData = Serial.read();

if(inputData=="1"){
digitalWrite(led1, HIGH);
digitalWrite(led2, LOW);
digitalWrite(led3, LOW);

}

if(inputData=="2"){
digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
digitalWrite(led3, LOW);

}

if(inputData=="3"){
digitalWrite(led1, LOW);
digitalWrite(led2, LOW);
digitalWrite(led3, HIGH);

}

This program will listen incoming messages from serial port on loop() function. If
we receive data “1’, we turn on LED 1. Otherwise, if we obtain data “2” or “3” on the serial
port of Arduino, we turn on LED 2 or LED 3.

Save this program as “ledcontrol”. After that, you can compile and upload the Sketch
program into the Arduino board.

The next step is to write a .NET application using Visual Studio. Create a Console
Application project from Visual Studio. On the Program.cs file, we write a program to
access the Serial port and send the message “1’;, “2” and “3” These inputs come from the
user. Using Console.ReadlLine(), we can get input data from the Terminal. Then, send it
to the Serial port. Write this program:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.IO.Ports;

namespace DotnetBlinking

{

class Program

{

static bool running = true;

36

CHAPTER 2 " INTERFACING .NET AND ARDUINO

static void Main(string[] args)
{
try
{
SerialPort serialPort = new SerialPort("COM5");
serialPort.BaudRate = 9600;

Console.CancelKeyPress += delegate (object sender,
ConsoleCancelEventArgs e)
{

e.Cancel = true;

running = false;

};

serialPort.Open();
Console.Writeline("Press 1, 2, 3 to turn on LED 1, 2, 3 and
then press ENTER");
Console.WriteLine("Press CTRL+C to exit");
while (running)
{
Console.Write(">> ");
string data = Console.ReadLine();
if(!string.IsNullOrEmpty(data))

serialPort.Write(data);
Console.WriteLine("Sent to Arduino: {0}", data);
}
}

serialPort.Close();

}

catch (Exception err)

Console.WritelLine(err);
}
Console.WritelLine("Program exit. Press ENTER to close.");
Console.ReadlLine();

Save this program. Run this program from Visual Studio. Please change your Arduino
port before running the program. You should get a Terminal. Try to fill “1” to turn on LED
1 or “2” to turn on LED 2. A sample of program output can be seen in Figure 2-12. If you
get a problem due to security, you can probably run this program at Administrator level.

37

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

B | file:///D:/mybooks/apress/arduino_dotnet/codes/DotnetArduino/DotnetBlinki... = a X
Press 1, 2, 3 to turn on LED 1, 2, 3 and then press ENTER ~
Press CTRL+C to exit
> 2
Sent to Arduino: 2
»> 3
Sent to Arduino: 3
»> 1
Sent to Arduino: 1
»> 3
Sent to Arduino: 3
»> 1
Sent to Arduino: 1
>> 4
Sent to Arduino: 4
>>

Figure 2-12. Program output for LED control app

How the Program Works

How does this .NET application work? The idea of the application is a simple approach. We
open a serial port of Arduino. Then, the application is waiting for input data from the user.

Console.CancelKeyPress += delegate (object sender, ConsoleCancelEventArgs e)
{

e.Cancel = true;

running = false;
1

serialPort.Open();

Once the data is received, the application passes it to a serial port using serialPort.
Write() method. We implement the infinity loop using while() syntax. This looping
will be stopped if the user presses CTRL+C keys, which our program is listening to via a
Console.CancelKeyPress event.

while (running)

{
Console.Write(">> ");
string data = Console.ReadLine();
if(!string.IsNullOrEmpty(data))
{
serialPort.Write(data);
Console.WritelLine("Sent to Arduino: {0}", data);
}
}

38

CHAPTER 2 " INTERFACING .NET AND ARDUINO

That is how our application works. You can probably make experiments by applying
Windows Forms. Please remember locked access, since our .NET application tries to
perform blocking on waiting for input from the user.

Introducing Firmata Protocol

Firmata is a protocol for communicating with microcontrollers from software on a
computer. Basically, we have implemented the same approach on the previous section.
However, Firmata protocol provides a more general model to communicate between
the Arduino board and the computer. For further information about Firmata protocol, I
suggest you to read this website: https://github.com/firmata/protocol.

In order for Arduino to understand our commands from the computer, we should
run the Firmata program in the Arduino boards. You can find this program in Arduino
IDE, by clicking menu File » Examples » Firmata » StandardFirmata.

& sketch_nov06a | Arduino 1.6.12 - a
File Edit Sketch Tools Help
Ctri+N
Open... Ctrl+0
Open Recent »
Sketchbook 20 Bt
Examples 3

Close w Eus'l-:r.1 Exar
Save ctrl 01.Basics

SaveAs. Ctr+ShiftsS 02 Digital
03.Analog
Page Setup Ctrl+Shift+P 04.Communication
Print Ctrl+P 05.Control
Preferences Ctrl+Comma 06.Sensors
07.Display
Quit Ctrl+Q 08.Strings
09.USB
10.StarterKit_BasicKit
11.ArduinolSP

Examples for any bo
Bridge

Figure 2-13. Adding Firmata Sketh program

vww . allitebooks.con

»§
Ethernet / >

Firmata 3 AllinputsFirmata
G5M b AnalogFirmata
LiquidCrystal k| EchoString

sD 3 OldStandardFirmata
Servo 3 ServoFirmata
SpacebrewYun | SimpleAnalogFirmata
Stepper 3 SimpleDigitalFirmata
Temboo \ StandardFirmata
TFT 3 StandardFirmataBLE

39

https://github.com/firmata/protocol
http://www.allitebooks.org

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

After it’s clicked, you can see the Sketch program for Firmata in Arduino IDE. You
can see it in Figure 2-14. You can configure the Arduino target and its port before flashing
to the Arduino board. If flashing sketch is done, your Arduino board is ready for receiving
commands via Firmata protocol.

& StandardFirmata | Arduino 1.6.12 — O X
File Edit Sketch Tools Help
e e

StandardFirmata

~
#include <Servo.h>
ne I2C_WRITE B0000000O
= I2C_READ B00001000
= I2C_READ CONTINUQUSLY B00010000
I2C_STOP_READING B00011000
e I2C_READ WRITE_MODE MASK B00011000
e I2C_10BIT_ADDRESS_MODE MASK B00100000
> I2C_END_TX MASK B01000000
I2C_STOP_IX 1
I2C_RESTART_IX 1] v
< >

Arduino/Genuine Uno on COMS

Figure 2-14. Sketch program for standard Firmata

To access Arduino via Firmata protocol, we should send commands based on
Firmata protocol. However, we can use several Firmata client libraries, which community
people created. You can check them on https://github.com/firmata/arduino. Since
we use .NET to communicate with an Arduino board, we use a Firmata client for a .NET
platform.

40

https://github.com/firmata/arduino

CHAPTER 2 " INTERFACING .NET AND ARDUINO

I use SolidSoils4Arduino for Firmata client in .NET. This library is supported for
Standard Firmata 2.4. You download this library on https://github.com/SolidSoils/
Arduino. Then, open it using Visual Studio and compile the project with your current
.NET framework version. A project list of SolidSoils4Arduino can be seen in Figure 2-15.

P - & X

Agus Kurniawan

% Solution "Solid.Arduino’ (5 projects)
B Solution ltems
c=| Solid.Arduino
g Solid.Arduino.IntegrationTest

c=| Solid.Arduino.Run
& Solid.Arduino.Test

b

b

b

P [# Solid.Arduino.Monitor

b

b

b [@ Documentation (incompatible)

Figure 2-15. Project solution from SolidArduino

After it’s compiled, you can get an *.DLL file on a Solid.Arduino project. It will be
used in our project. This scenario can be implemented if you separate the application
or probably change the .NET version with a specific target. Otherwise, you can add this
project into your .NET application project by adding a project reference.

In this scenario, we build a Console application to reduce a complexity GUI of the
.NET application. Now create a new project in Visual Studio. Select “Console Application”
for your project type. For instance, my project name is “FirmataApp’, which is shown in
Figure 2-16.

41

https://github.com/SolidSoils/Arduino
https://github.com/SolidSoils/Arduino

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

Reference Manager - FirmataApp ? *

Name

Solid.Arduino.dil

4 Browse

Recent

Browse...

Figure 2-16. Add SolidSoils4Arduino (SolidArduino.dll) into our project

Furthermore, we add a Solid.Arduino library project into your project. You can add it
via Reference Manager.

In this scenario, we use the same wiring from the previous section. We use three
LEDs and try to control these LEDs from .NET.

After you've created a project in Visual Studio, you can modify Program.cs. First, we
instantiate our SerialConnection and ArduinoSession object. Change the Arduino port
based on your configuration.

To access digital output in Arduino, we set digital the pin mode using the
SetDigitalPinMode() method. We can turn on/off the LED using the SetDigitalPin()
method.

For a demo, we build an application to turn on/off three LEDs sequentially. Now
write the following codes in a Program.cs file:

using System;

using System.Threading;
using Solid.Arduino;

using Solid.Arduino.Firmata;

namespace FirmataApp

{

class Program

{

static bool running = true;
static void Main(string[] args)

{

try
{

42

CHAPTER 2 " INTERFACING .NET AND ARDUINO

var connection = new SerialConnection("COM5",
SerialBaudRate.Bps 57600);

var session = new ArduinoSession(connection, timeOut: 250);

Console.CancelKeyPress += delegate (object sender,
ConsoleCancelEventArgs e)
{

e.Cancel = true;

running = false;

};
IFirmataProtocol firmata = (IFirmataProtocol)session;

int led1 = 12;
int led2 = 11;
int led3 = 10;

firmata.SetDigitalPinMode(led1, PinMode.DigitalOutput);
firmata.SetDigitalPinMode(led2, PinMode.DigitalOutput);
firmata.SetDigitalPinMode(led3, PinMode.DigitalOutput);

while (running)

{
// led 1
Console.WriteLine("Turn on LED 1");
firmata.SetDigitalPin(led1, true);
firmata.SetDigitalPin(led2, false);
firmata.SetDigitalPin(led3, false);
Thread.Sleep(1000); // sleep

// led 2

Console.WriteLine("Turn on LED 2");
firmata.SetDigitalPin(led1, false);
firmata.SetDigitalPin(led2, true);
firmata.SetDigitalPin(led3, false);
Thread.Sleep(1000);

// led 3
Console.WriteLine("Turn on LED 3");
firmata.SetDigitalPin(led1, false);
firmata.SetDigitalPin(led2, false);
firmata.SetDigitalPin(led3, true);
Thread.Sleep(1000);
}
// turn off LEDs
firmata.SetDigitalPin(led1, false);
firmata.SetDigitalPin(led2, false);
firmata.SetDigitalPin(led3, false);

connection.Close();

43

CHAPTER 2 ' INTERFACING .NET AND ARDUINO

catch (Exception err)

Console.WritelLine(err);

}

Console.WriteLine("Program exit. Press ENTER to close.");
Console.ReadLine();

Save the program. Then, run the program. You should see three blinking LEDs. In
Terminal, you also see messages, shown in Figure 2-17 as a sample.

B ' filey///D:y/mybooks/apress/arduino_dotnet/codes/DotnetArduino/FirmataApp/... e a X

[y
>

Turn on LED
[Turn on LED
[Turn on LED
Turn on LED
Turn on LED
[Turn on LED
[Turn on LED
Turn on LED
[Turn on LED
Program exit. Press ENTER to close.

Wk = WA W R

Figure 2-17. Program output for controlling LEDs from .NET app

You can build your own .NET application with a specific problem to control the Arduino
board over the Firmata protocol. You can utilize the SolidSoils4Arduino library to control the
Arduino board over the Firmata protocol. For instance, you send a command to the Arduino
board to open a door after a .NET application receives a message order. Moreover, you can
build a Windows Forms and a WPF application to communicate with Arduino boards.

Summary

We learned various Arduino I/0 communications and tried to build Sketch programs to
access those. Furthermore, we learned how to control Arduino from a .NET Application. This
application sends a specific command to Arduino through Arduino I/O communication.

In the last section, we continued to use a Firmata protocol, one of the protocols to
communicate to Arduino from the application, to control our Arduino from the NET
application. In the next chapter, we will learn how to sense and actuate on Arduino boards.

44

CHAPTER 3

Sensing and Actuating

Sensing and actuating are common activities in an embedded control system. These
involve external devices such as sensors and actuators. In this chapter, we learn several
sensor and actuator devices on Arduino boards using a Sketch program and then they will
be used by a .NET application.

This chapter covers the following topics:

e Overview of sensing and actuating in Arduino
e Exploring sensor and actuator devices
e Creating an Arduino sensing app using .NET

e (Creating an Arduino actuating app using .NET

Overview of Sensing and Actuating in Arduino

Sensing is a process of converting from physical object to digital data. For instance,
sensing temperature. A sensor device can sense its environment temperature and then

it convert to digital form. Actuating is a process in which an MCU sends digital data to

an actuator device to perform something, such as an LED and motor. Figure 3-1 shows
the process of both. To capture and convert physical object to digital form, Arduino uses
sensor devices such as a camera to measure temperature and humidity. After obtaining
the digital form of a physical object, we can perform a computation based on your
scenario. On the other hand, if you want to make Arduino do something, you can perform
an actuating process using actuator devices such as a servo motor and a relay module.

]

Sensing —

Physical objects Physical objects
i /

Figure 3-1. Sensing and actuating on Arduino board

© Agus Kurniawan 2017 45
A. Kurniawan, Arduino Programming with .NET and Sketch,
DOI 10.1007/978-1-4842-2659-9_3

CHAPTER 3 ' SENSING AND ACTUATING

Arduino is a development board which is designed to be attached to sensor and
actuator devices through its I/O pins or Arduino shield module. These external devices,
which are connected to an Arduino board, can be accessed via I/O protocols which we
already learned in the previous chapter.

Arduino can sense and actuate simultaneously. For instance, Arduino senses
temperature and humidity. If the measurement result is achieved in a certain threshold,
Arduino can perform something via actuator devices, such as turning on a relay module
or a servo motor.

In the next section, we explore sensor and actuator devices as an example, so we use
those devices in our demo.

Exploring Sensor and Actuator Devices

In this section, we'll review various sensors and actuators and then see how to use them
from an Arduino board using Sketch. These devices can be attached to an Arduino board,
but some of those devices need an additional treatment such as command codes, data
length, and maximum voltage, in order for Arduino to communicate with these devices.
You should check their datasheet from manufacturer.

Sensor Devices

Sensor devices usually convert from physical objects to digital form. There are many
sensor devices whose sensing features you can integrate with Arduino boards. A sample
of a sensor device list is found on the SparkFun website, in their electronics online store:
https://www.sparkfun.com/categories/23.

In general, each sensor device has one feature to sense the physical object, for
instance, acceleration, temperature, and humidity. However, some sensor devices
have more than one sensing feature, for example, the DHT22 module (https://
www . adafruit.com/products/385 from Adafruit, and https://www. sparkfun.com/
products/10167 from SparkFun). This sensor module can sense temperature and
humidity in a single module. This module is easy to use with Arduino boards. You can see
a form of the DHT22 module in Figure 3-2.

46

https://www.sparkfun.com/categories/23
https://www.adafruit.com/products/385
https://www.adafruit.com/products/385
https://www.sparkfun.com/products/10167
https://www.sparkfun.com/products/10167

CHAPTER 3 © SENSING AND ACTUATING

Figure 3-2. DHT22 module

Another sensor device is SparkFun Electret Microphone Breakout from SparkFun
(https://www.sparkfun.com/products/12758). This module can convert sound to
analog form. We can attach this sensor to Arduino analog pins. You can see a SparkFun
Electret Microphone Breakout in Figure 3-3.

Figure 3-3. SparkFun Electret Microphone Breakout from SparkFun

In the next section, we will build an Arduino program so you can understand how
Arduino senses through sensor devices.

47

https://www.sparkfun.com/products/12758

CHAPTER 3 ' SENSING AND ACTUATING

Accessing and Testing the Sensor

To understand how to work with sensing in Arduino, we'll build a simple Sketch program
to access a sensor device. In this case, we use a DHT22 module to sense temperature and
humidity. The DHT22 module layout can be described in Figure 3-4.

4
DHT22 pins ~. &5
1 vee ~ .
2 DATA . Ve N
3 NC gl ol Iy
Sl
4 GND v, N
1, ¢
2 4
Yia

Figure 3-4. DHT22 module layout

You can see a DHT22 layout in Figure 3-4. We can connect DHT22 to our Arduino
board. The following is our wiring:

e DHT22 pin 1 to Arduino VCC 3.3V
e DHT22 pin 2 to Arduino digital pin 8
e DHT22 pin GND to Arduino GND

You can see the wiring implementation in Figure 3-5. You can connect this sensor
to an Arduino board through jumper cables. For another approach, you can use a
breadboard as a medium to which an Arduino board and sensor devices are connected.

48

CHAPTER 3 © SENSING AND ACTUATING

fritzing

Figure 3-5. Wiring for DHT22 module and Arduino board

The next step is to build a Sketch program. To access DHT22, we can use the DHT
sensor library from Adafruit. It can be installed from Arduino IDE. Click menu Sketch
» Include Library » Manage Libraries. After it’s clicked, you should see a dialog which
shows a list of Arduino libraries. Find and install the DHT sensor library. You can
see it in Figure 3-6. Make sure your computer is connected to the Internet to install an
additional library.

49

CHAPTER 3 ' SENSING AND ACTUATING

& Library Manager

Type All ~ | Topic All ~ | |dht
DHT sensor library by Adafruit
Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors
Mgrg info

Version 1.3.0 v Install

SimpleDHT Winlin

Arduino Temp & Humidity Sensors for DHT11 etc. Simple C++ code with lots of comments, strictly follow the standard DHT
protocol, supports 0.5HZ or 1HZ sampling rate.

More info

Figure 3-6. Install DHT sensor library from Adafruit

For testing, we write a program to read temperature and humidity from the DHT2
module. After it’s sensed, we print sensor data to a UART port. Now open Arduino IDE
and configure it for your Arduino board model and port. Write the following code:

#include "DHT.h"

// define DHT22
#define DHTTYPE DHT22
// define pin on DHT22
#define DHTPIN 8

DHT dht(DHTPIN, DHTTYPE);

void setup() {
Serial.begin(9600);
dht.begin();

}

void loop() {
delay(2000);

// Reading temperature or humidity takes about 250 milliseconds!

// Sensor readings may also be up to 2 seconds (its a very slow sensor)
float h = dht.readHumidity();

// Read temperature as Celsius (the default)

float t = dht.readTemperature();

50

~

2

CHAPTER 3 ' SENSING AND ACTUATING

// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t)) {
Serial.println("Failed to read from DHT sensor!");
return;

}

// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);

Serial.print("Humidity: ");
Serial.print(h);
Serial.print(" %\t");
Serial.print("Temperature: ");
Serial.print(t);
Serial.print(" *C\t");
Serial.print("Heat index: ");
Serial.print(hic);
Serial.println(" *C ");

Save this program as “ArduinoDHT".

Then, you can compile and upload the program into the Arduino board. To see our
program output, you can run the Serial Monitor tool. A sample of the program output can
be seen in Figure 3-7.

€ COMS (Arduino/Genuino Uno) — O X

| Send
Humidity: 63.40 % Temperature: 29.10 *C Heat index: 31.7€ *C
Humidity: €64.70 % Temperature: 29.00 *C Heat index: 31.79 *C
Humidicy: €4.60 % Temperature: 29.00 *C Heat index: 31.77 *C
Humidity: €4.60 % Temperature: 29.00 *C Heat index: 31.77 *C

[“] Autoscroll Both NL& CR v~ 9600 baud

Figure 3-7. Program output for DHT22

51

CHAPTER 3 ' SENSING AND ACTUATING

How the Program Works

We declare our DHT object and passing DHT module type and data pin via digital pin 8.
This needs a DHT.h header file to work with a DHT object.

#tinclude "DHT.h"

// define DHT22
#define DHTTYPE DHT22
// define pin on DHT22
#define DHTPIN 8

DHT dht(DHTPIN, DHTTYPE);

We activate our DHT and Serial libraries on setup() function by calling begin()
function from these libraries.

void setup() {
Serial.begin(9600);
dht.begin();

}

In loop() function from the Sketch program, we read temperature, humidity, and a
heatindex using a DHT library. All DHT functions are already available for you.

float h = dht.readHumidity();
// Read temperature as Celsius (the default)
float t = dht.readTemperature();

// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t)) {
Serial.println("Failed to read from DHT sensor!");
return;

}

// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);

After reading sensor data from a DHT module, we display these data on a serial port
so we can see that data using a Serial Monitor tool.

Serial.print("Humidity: ");
Serial.print(h);
Serial.print(" %\t");
Serial.print("Temperature: ");
Serial.print(t);
Serial.print(" *C\t");
Serial.print("Heat index: ");
Serial.print(hic);
Serial.println(" *C ");

52

CHAPTER 3 © SENSING AND ACTUATING

That's it; now you can build your own demo with several sensor devices. In the next
section, we will explore actuator devices and interact with them from Arduino boards.

Actuator Devices

Arduino can actuate to perform something such as blinking LEDs, generating sounds,
and moving motors. This task usually has the objective of informing and to giving
notification to users or systems so they can take a response.

One of the actuator devices is an RGB LED. It can display a certain color by
combining the three colors: Red, Green and Blue. The RGB LED could have two forms:
common anode (https://www.sparkfun.com/products/10820) and common cathode
(https://www.sparkfun.com/products/9264). You can see a sample form of an RGB LED
in Figure 3-8.

Figure 3-8. RGB LED with common anode form

Another actuator device is servo. There are many models for servo which can be
used in our Arduino boards. You can find a servo device easily in your local or online
shop, for instance, SparkFun (https://www.sparkfun.com/products/11965). Figure 3-9
shows a servo motor from SparkFun which can be applied in Arduino boards.

53

https://www.sparkfun.com/products/10820
https://www.sparkfun.com/products/9264
https://www.sparkfun.com/products/11965

CHAPTER 3 ' SENSING AND ACTUATING

Figure 3-9. Servo motor

Accessing and Testing the Actuator

As I explained in the previous section, the actuator is a device on which Arduino does
perform something. To illustrate how to work with an actuator device, I show you how to
use one of the cheapest actuators, RGB LED. RGB LED is a useful actuator which is used
to display an indicator, for instance, while Arduino is computing something. Arduino can
send an indicator of this state by displaying a specific color on an RGB LED.

In general, RGB LED pin layout can be described, as shown in Figure 3-10, as follows:

54

Pin 1is ared pin.

Pin 2 is VCC or GND. It depends on the RGB mode: RGB common
anode or RGB common cathode.

Pin 3 is a green pin.

Pin 4 is a blue pin.

CHAPTER 3 © SENSING AND ACTUATING

4

3
2

Figure 3-10. RGB LED pin layout

An RGB LED can work if we attach this device to PMW (Pulse Width Modulation)
pins. In general, PWM pins on an Arduino board is identified by a (~) sign on digital pins.
You can check these pins on Arduino's datasheet; for instance, Arduino UNO (https://
www.arduino.cc/en/Main/ArduinoBoardUno) has PWM pinson 3, 5, 6,9, 10, and 11. For
testing, I use an Arduino UNO board. I use PWM pinson 9, 10, and 11. An RGB LED is
attached to Arduino with the following wiring:

e Pin 1 (red pin) is connected to Arduino digital pin 9.

e Pin 2 (common pin) is connected to Arduino VCC 3.3V or GND.
e Pin 1 (green pin) is connected to Arduino digital pin 10.

e Pin 1 (blue pin) is connected to Arduino digital pin 11.

You can see this wiring in Figure 3-11.

55

https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno

CHAPTER 3 ' SENSING AND ACTUATING

fritzing

Figure 3-11. Wiring RGB LED and Arduino UNO

We continue to write a Sketch program. We will build a program to display several
colors on an RGB LED. The idea of the program to display several colors is combining
red, green, and blue values to an RGB LED. You can make your own experiment to display
a specific color. In this program, we construct several colors such as Red, Green, Blue,
Yellow, Purple, and Aqua. Now you can open an Arduino IDE and write the following code:

int redPin = 9;
int greenPin = 10;
int bluePin = 11;

void setup()

{
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);
Serial.begin(9600);

56

CHAPTER 3 ' SENSING AND ACTUATING

void loop()
{

setColor(0, 255, 255); // red
Serial.println("red");
delay(1000);

setColor(255, 0, 255); // green
Serial.println("green");
delay(1000);

setColor(255, 255, 0); // blue
Serial.println("blue");
delay(1000);

setColor(0, 0, 255); // yellow
Serial.println("yellow");
delay(1000);

setColor(80, 255, 80); // purple
Serial.println("purple");
delay(1000);

setColor(255, 0, 0); // aqua
Serial.println("aqua");
delay(1000);

}

void setColor(int red, int green, int blue)
{
analoghrite(redPin, red);
analogWrite(greenPin, green);
analoghrite(bluePin, blue);

}

As you see from the code above, we set a specific color by calling the setColor()
function, which sets color values on red, green, and blue parameters. We use the
analoghrite() function to write a PWM value on Arduino.

Save this program as “RGBLed” Then, compile and upload the program into your
Arduino board. You should see the RGB LED displaying several colors. You can also see
the program output using a Serial Monitor, as shown in Figure 3-12.

57

CHAPTER 3 ' SENSING AND ACTUATING

€ COMS (Arduino/Genuino Uno) — O X

| Send
DIUT
yellow
purple
agua
red
green
blue
yellow
purple
aqua
red
green
blue

W

Autoscroll BothNL& CR v 9600 baud v

Figure 3-12. Program output for RGB app

Creating an Arduino Sensing App Using .NET

In the previous section, we learned how to access sensor and actuator devices from
Arduino boards using Sketch. In this section, we explore how to access sensor devices
from a .NET application through Arduino. We have learned communication models
between an Arduino board and a computer. It is important because we can use these
communication models to retrieve sensor data or perform tasks via actuator devices.

Sensing data from Arduino is done by creating a Sketch program and then publishing
to Serial communication, SPI, or 12C protocol. However, you also can implement a
Firmata protocol to communicate with an Arduino board.

The new approach which I want to share about sensing is to use JSON as a
message format between Arduino and a computer. The idea is that a computer sends
data to Arduino via a specific protocol, for instance, UART. Then, Arduino will send a
response in JSON, too. This approach is easy to implement. It’s also useful if you want to
communicate with an external server such as RESTful server.

Fortunately, we can use an ArduinoJson library (https://github.com/bblanchon/
ArduinoJson) to generate and parse a JSON message. You can download and install
it manually. Otherwise, you also can install it via Library Manager, which is shown in
Figure 3-13.

58

https://github.com/bblanchon/ArduinoJson
https://github.com/bblanchon/ArduinoJson

CHAPTER 3 ' SENSING AND ACTUATING

@ Library Manager X

Type All ~ | Topic All ~ | |json

Arduinolson by Benoit Blanchon Varsion 5.6.7 INSTALLED ~
An efficient and elegant J5ON library for Arduino. Like this project? Please star it on GitHub!
Mgeg info

Select version s

Json Streaming Parser by Daniel Eichhorn

A very memory efficient library to parse (large) JSON objects on small devices & very memory efficient library to parse (large)
JSON objects on small devices

Mgre info

Close
Figure 3-13. Install ArduinoJson

After installing ArduinoJson, we can build a Sketch program. For a scenario case, I
use a DHT22 module to sense temperature and humidity. Our Sketch program will sense
and then push data to a serial port in JSON format.

In the previous section, we already learned how to access DHT22 using Sketch. In
this program, we will use it again. After obtaining the DHT22 data, we wrap the data into
JSON format using a JsonObject object.

Now open your Arduino IDE and write the following code:

#include "DHT.h"
#include <ArduinoJson.h>

// define DHT22
#define DHTTYPE DHT22
// define pin on DHT22
#define DHTPIN 8

DHT dht(DHTPIN, DHTTYPE);

StaticJsonBuffer<200> jsonBuffer;
JsonObject8 root = jsonBuffer.createObject();

void setup() {
Serial.begin(9600);
dht.begin();

}

59

CHAPTER 3 ' SENSING AND ACTUATING

void loop() {
delay(2000);

// Reading temperature or humidity takes about 250 milliseconds!

// Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
float h = dht.readHumidity();

// Read temperature as Celsius (the default)

float t = dht.readTemperature();

// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t)) {
Serial.println("Failed to read from DHT sensor!");
return;

}

// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);

root["Humidity"] = double with n digits(h, 2);
root["Temperature"] = double with_n_digits(t, 2);
root.printTo(Serial);

Serial.println("");

How the Program Works

We instantiate our JSON using a StaticJsonBuffer object with 200 characters. Then, we
create a JSON object by calling createObject() function.

StaticJsonBuffer<200> jsonBuffer;
JsonObject& root = jsonBuffer.createObject();

In loop() function, we read sensor data through DHT22. We obtain humidity h and
temperature t. Then, we pass these values into JSON data. After that, we pass JSON data
into a serial port so our program, such as a .NET application, reads data.

root["Humidity"] = double_with_n_digits(h, 2);
root["Temperature"] = double with n digits(t, 2);
root.printTo(Serial);

Serial.println("");

Save this program as “DHTJson” Compile and upload this program into the Arduino
board.

The next step is to build a .NET application. In this scenario, [use Json.NET (http://
www . newtonsoft.com/json) to parse JSON data which come from Arduino. You can
install it via Package Manager Console by typing this command:

PM> Install-Package Newtonsoft.Json

60

http://www.newtonsoft.com/json
http://www.newtonsoft.com/json

CHAPTER 3 ' SENSING AND ACTUATING

You can see the installation process in Figure 3-14.

Package Manager Console

otnetDHT . =

ytnetDHT ", targeting *.HETFramew

Figure 3-14. Install Json.NET via Package Manager Console

Using Visual Studio, we build a .NET application. We build a program to read data
from a serial port. Create a new project with Console Application called “DotnetDHT”.
After it’s created, install Json.NET via Package Manager Console. Make sure your
computer is connected to the Internet.

Now create a sensor object by adding a class called “Sensor”. Then, write the
following codes:

using System;

namespace DotnetDHT

{
class Sensor
{
public string Humidity { set; get; }
public string Temperature { set; get; }
}
}

A Sensor object will be used to hold sensor data from Arduino. We parse JSON data and
put it into a Sensor object. We can use JsonConvert.DeserializeObject<Sensor> () to parse
a string to an object. Now you can modify the Program.cs file to read incoming messages from
serial communication and then parse them. The following are codes in the Program.cs file:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.I0.Ports;

using Newtonsoft.Json;
namespace DotnetDHT

61

CHAPTER 3 ' SENSING AND ACTUATING

{
class Program
{
static bool running = true;
static void Main(string[] args)
{
try
{
SerialPort serialPort = new SerialPort("COM5");
serialPort.BaudRate = 9600;
Console.CancelKeyPress += delegate (object sender,
ConsoleCancelEventArgs e)
{
e.Cancel = true;
running = false;
b
serialPort.Open();
while (running)
string data = serialPort.ReadLine();
if (!string.IsNullOrEmpty(data))
Console.WriteLine(data);
if(data.Contains("Humidity") 38 data.
Contains("Temperature"))
{
Sensor s = JsonConvert.DeserializeObject<Sensor
>(data);
Console.WriteLine("Temperature: {0} ~C",
s.Temperature);
Console.WriteLine("Humidity: {0}", s.Humidity);
}
}
}
serialPort.Close();
catch (Exception err)
{
Console.WriteLine(err);
}
Console.WriteLine("Program exit. Press ENTER to close.");
Console.ReadLine();
}
}
}

62

CHAPTER 3 ' SENSING AND ACTUATING

Save the program. Please change the serial port for your Arduino. This program uses
COMS5 since my Arduino was detected as COM5 on Windows. You should change it by
your Arduino serial port. Please read Chapter 1 to check a serial port of an Arduino board.

Now you can compile and run the program from Visual Studio directly. You should
see incoming messages from Arduino. These messages will be parsed and shown in
Terminal for temperature and humidity values.

You can see the sample of program output in Figure 3-15.

B | file;///D:/mybooks/apress/arduino_dotnet/codes/DotnetArduino/DotnetDHT/... = a X

Temperature: 28.20 ~C ~
Humidity: 65.90

{"Humidity":65.88, "Temperature"”:28.20}
Temperature: 28.20 ~C

Humidity: 65.80

28.20}

{"Humidity":66.00, "Temperature”:28.20}
Temperature: 28.20 ~C

Humidity: 66.00

{"Humidity":65.98, "Temperature":28.20}
Temperature: 28.20 ~C

Humidity: 65.90

{"Humidity":65.8@, "Temperature":28.20}
Temperature: 28.20 ~C

Humidity: 65.80

{"Humidity":66.0@, "Temperature":28.20}
Temperature: 28.20 ~C

Humidity: 66.00

{"Humidity":66.00, "Temperature":28.20}
Temperature: 28.20 ~C

Humidity: 66.00

{"Humidity":66.10, "Temperature":28.20}
Temperature: 28.20 ~C

Humidity: 66.10

Figure 3-15. Program output for reading sensor data from Arduino

How the Program Works

The program configures a serial port of Arduino. In this case, I use COM5 for my Arduino.
You should change it with a serial port of Arduino in Windows.

SerialPort serialPort = new SerialPort("COM5");
serialPort.BaudRate = 9600;

63

http://dx.doi.org/10.1007/978-1-4842-2659-9_1

CHAPTER 3 ' SENSING AND ACTUATING

Since our program runs continuously, we need to break our program by pressing
CTRL+C. We utilize CancelKeyPress delete from Console object. If the user presses
CTRL+C, we change running value to false so our looping program will break.

Console.CancelKeyPress += delegate (object sender, ConsoleCancelEventArgs e)
{

e.Cancel = true;

running = false;

};

Next, our program opens a serial port and reads incoming data from a serial
port using ReadLine() method. Then, we display our sensor data to the Terminal.
Since sensor data is JSON format, we should parse JSON data using JsonConvert.
DeserializeObject<>(). We will obtain Sensor data as result of the JSON parser. Finally,
we close our serial port connection by calling Close () method.

serialPort.Open();

while (running)

{
string data = serialPort.Readline();
if (!string.IsNullOrEmpty(data))

Console.WritelLine(data);
if(data.Contains("Humidity") &3 data.Contains("Temperature"))

{
Sensor s = JsonConvert.DeserializeObject<Sensor>(data);
Console.WritelLine("Temperature: {0} ~C", s.Temperature);
Console.WriteLine("Humidity: {0}", s.Humidity);
}
}
}
serialPort.Close();

This is the last of our .NET programs to sense from Arduino. You can do more
practice using another sensor device. Then, a .NET program will read the sensor data.

64

CHAPTER 3 ' SENSING AND ACTUATING

Creating an Arduino Actuating App Using .NET

We have learned to access sensor data from Arduino using .NET. You can get more
practice by trying to work some sensor devices. In this section, we build a .NET
application to actuate via actuator devices.

For testing, I use an RGB LED as an actuator device. We already learned to work with
RGB LED using Sketch. Now we will work with this actuator using .NET. We change the
color in RGB LEDs from our .NET application. Communication between Arduino and a
computer uses Firmata protocol so you should install a Standard Firmata Sketch in your
Arduino board.

Open Visual Studio and create a Windows Form application called “RGBControlApp”.
We build a UI form, which is shown in Figure 3-16.

Figure 3-16. Build Ul application

After creating the project, we should add a SolidSoils4Arduino library (https://
github.com/SolidSoils/Arduino) into our project. It is a Firmata client for NET. We
have learned it in the previous chapter.

In our Windows Form (Form1.cs), we add a SolidSoils4Arduino library by writing
these codes:

using Solid.Arduino;
using Solid.Arduino.Firmata;

65

https://github.com/SolidSoils/Arduino
https://github.com/SolidSoils/Arduino

CHAPTER 3 ' SENSING AND ACTUATING

We declare several variables and set the initialization values from a TrackBar object
on a constructor of Form.

public partial class Formi : Form
{

private int redVal;

private int greenvVal;

private int blueVal;

public Form1()

{
InitializeComponent();
redVal = trackRed.Value;
greenVal = trackGreen.Value;
blueval = trackBlue.Value;

}

While users change color values on TrackBar objects, we should catch this event. We
can use a ValueChanged event. You should catch it for all TrackBar objects. Then, we read
a color value from TrackBar and update our panel color.

private void trackRed ValueChanged(object sender, EventArgs e)
{

redVal = trackRed.Value;

1bRed.Text = redVal.ToString();

UpdateColorPanel();

}

private void trackGreen ValueChanged(object sender, EventArgs e)
{

greenVal = trackGreen.Value;

1bGreen.Text = greenVal.ToString();

UpdateColorPanel();

}

private void trackBlue ValueChanged(object sender, EventArgs e)

{
blueval = trackBlue.Value;

1bBlue.Text = blueVal.ToString();
UpdateColorPanel();

UpdateColorPanel() function updates the panel color by changing BackColor from
panel properties.

66

CHAPTER 3 ' SENSING AND ACTUATING

private void UpdateColorPanel()

{
panelColor.BackColor = Color.FromArgb(redval, greenVal, blueVal);

When users click the Execute button, our program will connect to the Arduino board
and change the color in the RGB LED. Please change the Arduino port. In this case, my
Arduino was detected as COM5. You should change it for your Arduino serial port.

private void btnExecute Click(object sender, EventArgs e)
{
try
{
var connection = new SerialConnection("COM5", SerialBaudRate.
Bps_57600);
var session = new ArduinoSession(connection, timeOut: 250);

IFirmataProtocol firmata = (IFirmataProtocol)session;

int redPin = 9;
int greenPin = 10;
int bluePin = 11;

firmata.SetDigitalPinMode(redPin, PinMode.PwmOutput);
firmata.SetDigitalPinMode(greenPin, PinMode.PwmOutput);
firmata.SetDigitalPinMode(bluePin, PinMode.PwmOutput);

firmata.SetDigitalPin(redPin, redVal);
firmata.SetDigitalPin(greenPin, greenVal);
firmata.SetDigitalPin(bluePin, blueVal);

connection.Close();

}

catch(Exception err)

MessageBox.Show(err.Message);

You can see the program above. When users click the Execute button, the program
will send red, green, and blue values to Arduino via Firmata by calling a SetDigitalPin()
method. Before we call this method, you should declare your pins as PwmOutput by calling
a SetDigitalPinMode() method.

Save the program. Now you can run the program. After running, you can change red,
green and blue values by changing TrackBar. After it’s selected, click the Execute button.
Then, you should see that the RGB LED will be lighting with your chosen color. You can
see my application form in Figure 3-17.

67

CHAPTER 3 ' SENSING AND ACTUATING

a3! RGB LED Control - X

Red 203

Green €5
Blue 255 Execute

Figure 3-17. Running application for RGBControlApp

Summary

We have learned how to access sensor and actuator devices on Arduino using a sketch
program. We use an RGB LED and a DHT22 module as a sample of actuator and sensor.
Furthermore, we built a .NET program to access sensor and actuator devices on Arduino.
In the next chapter, we will learn how to work Windows Remote Arduino (WRA) for a
Universal Windows Application (UWP) platform. This platform can run on Raspberry Pj,
Windows tablet, and Windows desktop.

68

CHAPTER 4

Windows Remote Arduino /

Microsoft is working on IoT development intensively. The main technology from
Microsoft, .NET Microsoft, is being pushed in order to perform with current IoT platforms
such as Arduino and Raspberry Pi. Microsoft released Windows Remote Arduino library
to enable Microsoft Windows Platform (called Universal Windows Platform, or UWP) to
work on an Arduino platform. UWP technology makes our program run on any Windows
platform, such as computer, tablet, smartphone, and IoT boards.

This chapter covers the following topics:

e Setting up Arduino for Windows Remote Arduino

e Building your first program for Windows Remote Arduino
e Controlling Arduino analogI/O

¢ Remoting Arduino through I2C bus

¢ Windows Remote Arduino over Bluetooth

In the previous chapter, we learned how to sense and actuate on Arduino from a
.NET application. We also tried to communicate with Arduino via Firmata protocol. In
this chapter, we will learn how to access an Arduino board from .NET using Windows
Remote Arduino.

Windows Remote Arduino is a library from Microsoft in which a Windows
application-based .NET framework can control an Arduino board through USB and
Bluetooth communication. What I mean in this case by “NET framework” is .NET
framework for Universal Windows Platform. Microsoft has introduced a Universal
Windows Platform (UWP) on Windows 8 or later.

Through Universal Windows Platform (UWP), we can develop a .NET application
which runs on any Windows platform, such as desktop, smartphone, tablet and IoT
boards. Technically, some .NET APIs are cut to generalize application architecture. For
further information about Universal Windows Platform, I suggest you read this website:
https://msdn.microsoft.com/en-us/windows/uwp/get-started/whats-a-uwp.
Figure 4-1 shows how UWP interacts among devices.

© Agus Kurniawan 2017 69
A. Kurniawan, Arduino Programming with .NET and Sketch,
DOI 10.1007/978-1-4842-2659-9_4

https://msdn.microsoft.com/en-us/windows/uwp/get-started/whats-a-uwp

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Computers Tablets SmartPhones loT Devices

\\//

Universal Windows Platform

Figure 4-1. Universal Windows Platform targets

Windows Remote Arduino is designed for Universal Windows Platform, so if you
have Windows tablets such as Microsoft Surface, we can control our Arduino to retrieve
sensor information or to actuate some physical objects surrounding an Arduino board.

UWP technology uses a .NET framework for the base of the program. It means UWP
framework is a subset of .NET framework. Graphical Unit Interface (GUI) on UWP uses
XAML technology. You should be familiar XAML on Windows Presentation Foundation
(WPF), so you don't need to invest more in learning UWP if you have experience in WPE

Setting up Arduino for Windows Remote Arduino

There is no special requirement to work with Windows Remote Arduino. Each Arduino
board should be deployed in a Firmata Sketch program in order for the Arduino board to
communicate with another device.

The thing that you should understand is that Windows Remote Arduino works on the
top of Universal Windows Platform. To develop this app, you should install Windows 8 or
later. Currently, I recommend using Windows 10 for development.

To develop Universal Windows Platform (UWP), we can use Visual Studio 2015 or
later. It has installed UWP project templates. You can see it in Figure 4-2.

70

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Add New Project T X
Framework 4.6.1
.
N,] Blank App (Universal Windows)
Cla {(Universal Win
Windo

Unit Test App (Ur

i]—l_ i]_l_ LA D i

Caded Ul Test Projec

.

&

Figure 4-2. Project templates for Universal Windows Platform (UWP)

Building Your First Program for Windows Remote
Arduino

In this section, we build the first program for Windows Remote Arduino. We develop a
blinking LED application for Universal Windows Platform. In this case, we need three
LEDs. We also need a computer with Windows 10 OS installed. These three LEDs will be
turned on/off manually from the application.

Let’s start!

Wiring
To implement our demo, we should wire our components. Our three LEDs are attached to
Arduino with the following scheme:

e LED lisconnected to Arduino digital pin 12.

e LED lisconnected to Arduino digital pin 11.

e LED lisconnected to Arduino digital pin 10.

You may use a resistor on each LED to protect the LED. Finally, you can see my
wiring in Figure 4-3.

71

CHAPTER 4 © WINDOWS REMOTE ARDUINO

LI A " e e "o e 0w LI O LR
L B B B "o e * o 0 0 L B L B B

Arduing”

fritzing

Figure 4-3. Wiring for blinking LEDs

Arduino Program

In order for our application to communicate with Arduino boards, we need to configure
our boards. Windows Remote Arduino requires an installed Firmata Sketch program in
the Arduino board.

To install Firmata Sketch, you can open Arduino IDE. Then, click menu File »
Examples » Firmata » StandardFirmata. You should see the Firmata Sketch program on
Arduino IDE. After that, you should change baudrate to 57600. You can see it in Figure 4-4.

72

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Help

this if you are using SERIAL MESS

| pm—

}

Arduino/Genuino Uno on COMS

Figure 4-4. Change baudrate on Firmata Sketch

Now you can compile and upload the Firmata Sketch program into your Arduino
board. If it’s done, your board is ready for receiving commands from a .NET application.

.NET Application Program

The next step is to create a project for a Universal Windows Platform target. On Visual
Studio 2015, you can create a new project by selecting “project template” under Windows
» Universal » Blank App (Universal Windows), as shown in Figure 4-5. Give the project a
name: “BlinkingLed”. If you're done, click the OK button.

73

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Add New Project T X
ET Framewor

Blank App (Universal Windows)

L%

.
.

-
Bl
&

Figure 4-5. Add a new Universal Windows project

After creating a project, you will be asked for a target version. Select the latest version
on Target Version. You can see it in Figure 4-6.

New Universal Windows Project X

Choose the target and minimum platform versions that your Universal Windows application will
support.

Target Version Windows 10 Anniversary Edition (10.0; Build 14393) v

Minimum Version Windows 10 (10.0; Build 10586) v

Which version should | choose?

Cancel

Figure 4-6. Select target version for Universal Windows Platform

If you succeed, you should see your project with XAML GUI. You can see the project
file list in Figure 4-7.

74

CHAPTER 4

P - B

Agus Kurniawan ~
l Foel =N CH g

Solution Explorer

faJ Solution ‘DotnetArduino’ (6 projects)

P I Solution Items

4
b

b
b
b

= BlinkingLed (Universal Windows)
M Properties
»-B References
B Assets
I Appxaml
=] BlinkingLed_TemporaryKey.pfx
) MainPage.xaml
k5 Package.appxmanifest
£T projectjson
*| DotnetBlinking
*| DotnetDHT
5| FirmataApp
*| PlotDHTApp
M Properties
»-B References

Tea

Figure 4-7. Project scheme file for Universal Windows app

Adding Windows Remote Arduino Library

WINDOWS REMOTE ARDUINO

To enable our Universal Windows (UWP) application to communicate with Arduino, we
should add Windows Remote Arduino Library. You can click the menu on Visual Studio
2015: Tools » NuGet Package Manager » Package Manager Console. Then, you should
see Package Manager Console on Visual Studio. Make sure you select our project. Then,
type this command:

Install-Package Windows-Remote-Arduino

This task needs Internet communication. You can see the program output in
Figure 4-8.

75

CHAPTER 4 © WINDOWS REMOTE ARDUINO

ckage Manager Console

Figure 4-8. Install Windows Remote Arduino through Package Manager Console

After it's added, you should see this library on project scheme, shown in Figure 4-9.
You should see Windows-Remote-Arduino on the References menu.

P o B X

Agus Kurniawan ~
gl -
[E =2

<> S |-

) projects)
b W Solution Items
4 <= BlinkingLed (Universal Windows)
b M Pr

4 =B References

=8 Universal Windows

‘& Windoy emote-Arduino
B Assets
I Appxaml

&=l BlinkingLed_TemporaryKey.pfx

L) MainPage.xaml
=] Package.appxmanifest
project.json

c=| DotnetBlinking

Figure 4-9. Windows Remote Arduino library on project

76

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Writing .NET Program

We use USB as a communication media to control the Arduino board from the
application. Since our application uses USB, we should enable this capability. The
information about application capabilities can be seen in the Package.appxmanifest file.
If you open this file, you should obtain these configurations:

<Capabilities>
<Capability Name="internetClient" />

</Capabilities>

Now we should have a serial communication capability. You can add the following
bold scripts:

<Capabilities>
<Capability Name="internetClient" />

<DeviceCapability Name="serialcommunication"s
<Device Id="any"»
<Function Type="name:serialPort"/>
</Device>
</DeviceCapability>
</Capabilities>

If you're done, save the file.

The next step is to build the application GUI. We add three CheckBoxes, one
Textblock, and one button component. We design our GUI on the MainPage.xaml file,
which is shown in Figure 4-10.

57 Phone (1920 x 1080) 3

LED 1
O Turn Off All LEDs

[Jen2
[Jeps

Status

Figure 4-10. Design GUI for BlinkingLed application

77

CHAPTER 4 © WINDOWS REMOTE ARDUINO

The following is a summary of the MainPage.xaml file:

<Page
x:Class="BlinkinglLed.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:BlinkinglLed"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<CheckBox x:Name="chkLed1" Content="LED 1" Checked="HandleCheck"
Unchecked="HandleUnchecked" HorizontalAlignment="Left"
Margin="40,20,0,0" VerticalAlignment="Top" Width="85"/>
<CheckBox x:Name="chkLed2" Content="LED 2" Checked="HandleCheck"
Unchecked="HandleUnchecked" HorizontalAlignment="Left"
Margin="40,52,0,0" VerticalAlignment="Top" Width="85"/>
<CheckBox x:Name="chkLed3" Content="LED 3" Checked="HandleCheck"
Unchecked="HandleUnchecked" HorizontalAlignment="Left"
Margin="40,84,0,0" VerticalAlignment="Top" Width="85"/>
<TextBlock x:Name="txtStatus" HorizontalAlignment="Left"
Margin="40,121,0,0" TextWrapping="lWirap" Text="Status"
VerticalAlignment="Top" Width="256"/>
<Button x:Name="btnClose" Content="Turn Off All
LEDs" HorizontalAlignment="Left" Margin="135,30,0,0"
VerticalAlignment="Top" Click="TurnOffLeds"/>

</Grid>

</Page>

You can see on Button XAML which Click event is passed by TurnOffLeds method.
This will be implemented on MainPage.xaml.cs.

Inside MainPage.xaml.cs, we should modify our codes to work with our scenario.
Firstly, we add our required libraries.

using Microsoft.Maker.Serial;
using Microsoft.Maker.RemoteWiring;

We add additional variables in MainPage class.

private UsbSerial connection;
private RemoteDevice arduino;
private const byte LED1 = 12;
private const byte LED2 = 11;
private const byte LED3 = 10;

We initialize Windows Remote Arduino in MainPage constructor. We create
InitWRA() method with the following codes.

78

CHAPTER 4 © WINDOWS REMOTE ARDUINO

public MainPage()
{

this.InitializeComponent();
this.Unloaded += MainPage_Unloaded;

InitWRA();
private void MainPage Unloaded(object sender, RoutedEventArgs e)

{

arduino.Dispose();

}

private void InitWRA()

{
connection = new UsbSerial("VID 2341", "PID 0043");
arduino = new RemoteDevice(connection);
connection.ConnectionEstablished += Connection_ConnectionEstablished;
connection.begin(57600, SerialConfig.SERIAL_8N1);

}

In this code, my Arduino USB is recognized as VID_2341 and PID_0043 parameters
for UsbSerial object. To obtain this data, you should open the property of Arduino USB
which is detected by your computer. Open Device Manager and expand your Arduino
USB. You can see it in Figure 4-11.

79

CHAPTER 4 © WINDOWS REMOTE ARDUINO

& Device Manager - O X
File Action View Help
& D HEmB EXE

> =m IDE ATA/ATAPI controllers A

> o» Imaging devices

> I Jungo Connectivity

» &2 Keyboards

> (@ Mice and other pointing devices

> [Monitors

» B Network adapters

> R” Other devices

B Portable Devices
v @@ Ports (COM &LPT)
@ Arduino Uno (COMS) i

> ™ Print queues

»] Processors

> [SD host adapters

» [3 Sensors

B Software devices

> q Sound, video and game controllers

> S Storage controllers

» @ System devices

. i Universal Serial Bus controllers e

Figure 4-11. Arduino UNO is detected as COMS5 on Device Manager tool

Open the property of Arduino USB so you obtain a dialog. Click Details tab. Then,
select Hardware Ids on Property. You should see VID and PID values for your Arduino
USB. You can see them on my Arduino USB, which is shown in Figure 4-12. These values
should be inserted into our program.

80

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Arduino Uno (COMS) Properties X

General Port Settings Driver Details Events
agp rduno Uno COMS) \

Property

Hardware ks o e
Value
USB\VID_2341&PID_00438REV_0001

[ok][coe

Figure 4-12. VID and PID values for Arduino USB

Now we come back to codes on MainPage.xaml.cs. In our method, InitWRA(), we
implement our Connection_ConnectionEstablished event. We also apply our event
Checked and Unchecked on the Checkbox component by implementing HandleCheck ()
and HandleUnchecked() methods. Finally, we apply TurnOffLeds () on Click event from a
button. The following is the implementation.

private void Connection_ConnectionEstablished()

{
arduino.pinMode(LED1, PinMode.OUTPUT);
arduino.pinMode(LED2, PinMode.OUTPUT);
arduino.pinMode(LED3, PinMode.OUTPUT);
txtStatus.Text = "Connected";

}

private void HandleCheck(object sender, RoutedEventArgs e)

{

CheckBox cb = sender as CheckBox;
if (cb.Name == "chklLed1")

{
}

arduino.digitalWrite(LED1, PinState.HIGH);

81

CHAPTER 4 © WINDOWS REMOTE ARDUINO

if (cb.Name == "chkLed2")

{
arduino.digitalWrite(LED2, PinState.HICH);

}
if (cb.Name == "chkLed3")
{

}

arduino.digitalWrite(LED3, PinState.HICH);

}

private void HandleUnchecked(object sender, RoutedEventArgs e)

{

CheckBox cb = sender as CheckBox;
if (cb.Name == "chklLed1")

{
arduino.digitalWrite(LED1, PinState.LOW);

if (cb.Name == "chklLed2")
{
arduino.digitalWrite(LED2, PinState.LOW);

}
if (cb.Name == "chkLed3")
{

}

arduino.digitalWrite(LED3, PinState.LOW);

}

private void TurnOffleds(object sender, RoutedEventArgs e)

{

chkLed1.IsChecked = false;
chkLed2.IsChecked = false;
chkLed3.IsChecked = false;

Save all changes. Our program is ready for testing.

Testing

You can compile our program. Before you run the program, you should deploy the
program to a UWP environment. Right-click on the project and then select Deploy on a
context menu. It is shown in Figure 4-13.

82

CHAPTER 4 © WINDOWS REMOTE ARDUINO

2pendencies

Figure 4-13. Deploy the program

Now you can run the program by clicking a green arrow with Local Machine target.
After it’s clicked, you should see our program dialog, as shown in Figure 4-14.

Figure 4-14. Run the program

For testing, you can turn on LED 1, LED 2, or LED 3 by clicking the checkbox.

83

CHAPTER 4 © WINDOWS REMOTE ARDUINO

5° Phone (1920 x 1080) 300% scale

Connected

Figure 4-15. The program is running

If you checked the checkbox on LED 1 and LED 2, you should see the lighting LED on
LED 1 and LED 2. To turn off all LEDs, you can click the Turn Off All LEDs button.

LED 1
LED 2

[]teo3

Connected

Turn Off All LEDs

Figure 4-16. Turnon LED 1 and LED 2

We have now seen how to access digital I/O on Arduino through Windows Remote
Arduino. In the next section, we continue to access analog I/0 on Arduino.

84

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Control Arduino Analog 1/0

There are Analog Input and Analog Output, called PWM (Pulse Width Modulation)
schemes on Arduino boards. Learning analog I/0 is important because several sensor
and actuator devices work using analog I/0.

In this section, we learn how to work with analog I/0 on Arduino through Windows
Remote Arduino library. For testing, we use RGB LED. We have already worked with it in
Chapter 3. Now we try to access it using Windows Remote Arduino library.

In general, RGB LED has four pins: red, GND/VCC, green, and blue pins. On pin 2, it
could be GND or VCC, depending on what type of RGB LED (anode or cathode LED). You
can see this pin layout in Figure 4-17.

4
3

2

Figure 4-17. RGB LED pinout

85

http://dx.doi.org/10.1007/978-1-4842-2659-9_3

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Wiring
To implement our demo wiring, you do the following wiring:
e Red pin from RGB LED is connected to digital pin 9 Arduino.
e GND/VCC pin from RGB LED is connected to GND/VCC Arduino.
e Green pin from RGB LED is connected to digital pin 10 Arduino.
e Blue pin from RGB LED is connected to digital pin 11 Arduino.

You can see this wiring in Figure 4-18.

LI O T O O O I O O O O O O O O B O I]
U O B B I O O B I DR I I I O O I A I
L B B B B B R B B H L B B B B B B R R B R
L B I B B B R R)C L R B B B B B
L B L B B B R B L B B B B B

O [N

Arduino”

fritzing

Figure 4-18. Wiring for RGB LED project

86

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Creating a UWP Project

You can create a UWP project from Visual Studio. You have learned it in the previous
section. Name the project “RGBDemo”. Then, add Windows Remote Arduino library
through Package Manager Console. After it’s created, you should add additional device
capability on Package.appxmanifest. The bold script is our additional script.

<Capabilities>
<Capability Name="internetClient" />
<DeviceCapability Name="serialcommunication"»
<Device Id="any"»
<Function Type="name:serialPort"/»>
</Device»
</DeviceCapability>
</Capabilities>

Arduino Program

To work with a UWP program, you should install a Firmata Skecth program in Arduino as
in the section. Select StandardFirmata. You will perform this task to build a UWP project
in this chapter. After StandardFirmata is loaded on Arduino IDE, flash the program into
the Arduino board.

Note All Arduino programs related to a UWP application project should be installed and
deployed as StandardFirmata programs into Arduino boards.

Writing the UWP Program

The idea of our program is to control RGB LEDs from a UWP Application. We show a
canvas whose color can be changed by sliding red, green, and blue color controls. We will
use our app GUI, which is shown in Figure 4-19.

87

CHAPTER 4 © WINDOWS REMOTE ARDUINO

MainPagexaml # X Appxamlcs MainPagexaml

&

Figure 4-19. Designing Ul for RGB LED app

We put a canvas for displaying the current color, three slider controls, and one button
to apply changing color. You can see the complete codes for XAML as follows:

<Page
x:Class="RGBDemo.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:RGBDemo"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Slider x:Name="redSlider" HorizontalAlignment="Left"
Margin="153,17,0,0" VerticalAlignment="Top" Width="100" Height="43"
ValueChanged="ChangeRedColox" Maximum="255"/>
<TextBlock x:Name="textBlock" HorizontalAlignment="Left"
Margin="109,24,0,0" TextWrapping="Wrap" Text="Red"
VerticalAlignment="Top"/>
<Slider x:Name="greenSlider" HorizontalAlignment="Left"
Margin="153,52,0,0" VerticalAlignment="Top" Width="100" Height="43"
ValueChanged="ChangeGreenColor" Maximum="255"/>
<TextBlock x:Name="textBlock Copy" HorizontalAlignment="Left"
Margin="109,59,0,0" TextWrapping="Wrap" Text="Green"
VerticalAlignment="Top"/>
<Slider x:Name="blueSlider" HorizontalAlignment="Left"
Margin="153,91,0,0" VerticalAlignment="Top" Width="100" Height="43"
ValueChanged="ChangeBlueColor" Maximum="255"/>

88

CHAPTER 4 © WINDOWS REMOTE ARDUINO

<TextBlock x:Name="textBlock Copy1" HorizontalAlignment="Left"
Margin="109,98,0,0" TextWrapping="Wrap" Text="Blue"
VerticalAlignment="Top"/>

<Button x:Name="button" Content="Change" HorizontalAlignment="Left"
Margin="10,86,0,0" VerticalAlignment="Top" Click="ChangeColor"/»>
<Canvas x:Name="cvColorView" HorizontalAlignment="Left"

Height="65" Margin="10,14,0,0" VerticalAlignment="Top" Width="71"
Background="#FF(81010"/>

</Grid>
</Page>

Inside Slider controls, we catch ValueChanged event by calling ChangeRedColor (),
ChangeGreenColor (), and ChangeBlueColor () methods. We also catch Click event on
button by calling ChangeColor() method. We will implement them in MainPage.xaml.cs
code.

Now we should modify MainPage.xaml.cs. First, we add the required libraries by
typing these libraries:

using Microsoft.Maker.Serial;
using Microsoft.Maker.RemoteWiring;

Then, we add several variables to manage our pins and colors.

private UsbSerial connection;
private RemoteDevice arduino;
private const byte RED = 9;
private const byte GREEN = 10;
private const byte BLUE = 11;
private byte red;

private byte green;

private byte blue;

In constructor, we initialize our WRA library. We set all pins which are used for RGB
LEDs in PWM mode. Change “VID_2341" and “PID_0043" values for your Arduino USB,
which we have learned in the previous section.

public MainPage()
{
this.InitializeComponent();
red = 0;
green = 0;
blue = 0;

this.Unloaded += MainPage_Unloaded;
InitWRA();

89

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 4 © WINDOWS REMOTE ARDUINO

private void MainPage Unloaded(object sender, RoutedEventArgs e)

{

arduino.Dispose();

}

private void InitWRA()

{
connection = new UsbSerial("VID_2341", "PID_0043");
arduino = new RemoteDevice(connection);
connection.ConnectionEstablished += Connection_ConnectionEstablished;
connection.begin(57600, SerialConfig.SERIAL_8N1);

}

private void Connection ConnectionEstablished()

{
System.Diagnostics.Debug.WritelLine("Connected");
arduino.pinMode(RED, PinMode.PWM);
arduino.pinMode (GREEN, PinMode.PWM);
arduino.pinMode(BLUE, PinMode.PWM);

}

In the MainPage.xaml file, we set our events for ValueChanged and Click event for
Button. We can implement as follows:

private void ChangeGreenColor(object sender, RangeBaseValueChangedEventArgs e)

{
red = (byte)redSlider.Value;
UpdatePanel();

}

private void ChangeRedColor(object sender, RangeBaseValueChangedEventArgs e)

{
green = (byte)greenSlider.Value ;

UpdatePanel();

}

private void ChangeBlueColor(object sender, RangeBaseValueChangedEventArgs e)

{
blue = (byte)greenSlider.Value;

UpdatePanel();

90

CHAPTER 4 © WINDOWS REMOTE ARDUINO

private void ChangeColor(object sender, RoutedEventArgs e)
{
// change color on RGB LED
arduino.analoghirite(RED, red);
arduino.analoghirite(CREEN, green);
arduino.analoghrite(BLUE, blue);

}

private void UpdatePanel()

{

cvColorView.Background = new SolidColorBrush(Color.FromArgb(255, (byte)
red, (byte)green, (byte)blue));
}

You can see the codes that we set RGB LED from three color inputs. If done, save all
files.

Testing

You can now compile and run the program. If you get an error while running the
program, you should deploy the program and then run it. You can see the program, as
shown in Figure 4-20.

Figure 4-20. RGB LED app is running

91

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Change the current color by sliding three colors—red, green, and blue—on slider
controls. If it’s done, click Change button to apply the selected color to RGB LED. You can
see the sample of RGB LED output in Figure 4-21.

Figure 4-21. RGB LED is lighting based on selecting red, green, and blue colors

Remote Arduino Through 12C Bus

The I2C (Inter-Integrated Circuit) bus or TWI (Two Wire) Interface is used to
communicate between MCU and several external devices. The I2C bus consists of two
wires: SDA (Serial Data Line) and SCL (Serial Clock Line). Each Arduino board has I2C on
specific pins. You can check I2C pins on the Arduino layout; for instance, Arduino UNO
(based on document https://www.arduino.cc/en/Main/ArduinoBoardUno) has I2C pins
on SDA pin on A4 pin and SCL pin on A5 pin.

In this section, we learn how to access I2C from a .NET application through Windows
Remote Arduino library. For testing, use a PCF8591 AD/DA module which consists of
thermistor, photoresistor, and potentiometer. Since this module uses IC PCF8591, this
module can be accessed on I12C. You can find this module easily in an online store, for
example, eBay and Aliexpress.

92

https://www.arduino.cc/en/Main/ArduinoBoardUno

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Figure 4-22. PCF8591 AD/DA module

Wiring for 12C Application

We can connect a PCF8591 AD/DA module to an Arduino UNO board directly with the
following wiring:

e PCF8591 module VCC is connected to Arduino 3.3V.

e PCF8591 module GND is connected to Arduino GND.

e PCF8591 module SDA is connected to Arduino SDA (A4 pin).
e PCF8591 module SCL is connected to Arduino SCL (A5 pin).

A sample of my hardware wiring can be seen in Figure 4-23. A PCF8591 AD/DA
module is placed into a breadboard. To connect to Arduino, I use jumper cables.

93

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Figure 4-23. Wiring for 12C demo with WRA

Creating a UWP Project

Using Visual Studio 2015, you can create a new project with a Blank App (Universal
Windows) template. After that, install Windows Remote Arduino library. Then, you also
should configure the Package.appxmanifest file to additional capability to access USB.
You can write these bold codes as follows:

<Capabilities>
<Capability Name="internetClient" />
<DeviceCapability Name="serialcommunication"»
<Device Id="any"»
<Function Type="name:serialPort" />
</Device>
</DeviceCapability>
</Capabilities>

Save this program. The next step is to write a .NET program.

Please install a StandardFirmata sketch program into the Arduino board before we
continue our project.

94

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Writing UWP Program

The first step to build a UWP program is to build the application UI. We just put Textblock
to show information about Thermistor, Photo-voltaic and Potentiometer values. You can
see the application Ul in Figure 4-24.

Thermistor:

Photo-voltaic cell:

Potentiometer:

Q20

= -

£

HEtBER

Figure 4-24. Ul for I12C application

The following is an XMAL script for our application UI on the MainPage.xaml file:

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBlock x:Name="textBlock" HorizontalAlignment="Left"
Margin="10,52,0,0" TexthWrapping="Wrap" Text="Thermistor:"
VerticalAlignment="Top"/>
<TextBlock x:Name="textBlocki" HorizontalAlignment="Left"
Margin="10,77,0,0" TextWrapping="Wrap" Text="Photo-voltaic cell:"
VerticalAlignment="Top"/>
<TextBlock x:Name="textBlock2" HorizontalAlignment="Left"
Margin="10,102,0,0" TextWrapping="Wrap" Text="Potentiometer:"
VerticalAlignment="Top" RenderTransformOrigin="-1.593,-0.469"/>
<TextBlock x:Name="txtThexrmistor" HorizontalAlignment="Left"
Margin="163,52,0,0" TextWrapping="Wrap" Text="-"
VerticalAlignment="Top"/>
<TextBlock x:Name="txtPhoto" HorizontalAlignment="Left"
Margin="163,77,0,0" TextWrapping="Wrap" Text="-"
VerticalAlignment="Top"/>

95

CHAPTER 4 © WINDOWS REMOTE ARDUINO

<TextBlock x:Name="txtPot" HorizontalAlignment="Left"
Margin="163,102,0,0" TextWrapping="Wrap" Text="-"
VerticalAlignment="Top"/>

</Grid>

The next step is to modify our codes in MainPage.xaml.cs. First, we add the required
libraries which are used in the application.

using System.Text;

using Windows.ApplicationModel.Core;
using Microsoft.Maker.Serial;

using Microsoft.Maker.RemoteWiring;

Then, we add variables for Arduino processing and the PCF8591 AD/DA module.
We also define the variable, called i2cReading, as Queue collection, which is used
to store reading data from the module. In the reading process, we implement an
asynchronous method, so we use a timer via DispatcherTimer object to read sensor data
in a continuous time.

private UsbSerial connection;

private RemoteDevice arduino;

private const byte NUM_DIGITAL_PINS = 14; // Arduino Uno
private const byte SDA = 4;

private const byte SCL = 5;

private const byte PCF8591 = (0x90 >> 1); // Device address
private const byte PCF8591 ADC_CHO = 0x40; // thermistor
private const byte PCF8591 ADC_CH1 = 0x41; // photo-voltaic cell
private const byte PCF8591 ADC_CH2 = 0x42;

private const byte PCF8591 ADC CH3 = 0x43; // potentiometer
private int index = 0;

private Queue<int> i2cReading = new Queue<int>();

private bool isReading;

private DispatcherTimer timer;

In constructor, we initialize our WRA library. We set all pins which are used for 12C
application. Change “VID_2341" and “PID_0043" values for your Arduino USB, which we
have learned.

public MainPage()

{
this.InitializeComponent();
this.Unloaded += MainPage_Unloaded;

InitWRA();

96

CHAPTER 4 © WINDOWS REMOTE ARDUINO

private void MainPage Unloaded(object sender, RoutedEventArgs e)

{

connection.end();
arduino.Dispose();

}

private void InitWRA()

{
connection = new UsbSerial("VID 2341", "PID 0043");
arduino = new RemoteDevice(connection);
connection.ConnectionEstablished += Connection_ConnectionEstablished;
connection.begin(57600, SerialConfig.SERIAL 8N1);

}

Once the application is connected to USB, we activate our timer to start to read data
from a PCF8591 AD/DA module. I2C data is coming from I2cReplyEvent event after we
call ReadADC() method.

private void Connection ConnectionEstablished()

{

System.Diagnostics.Debug.WriteLine("Connected");
arduino.pinMode(NUM_DIGITAL_PINS + SDA, PinMode.I2C);
arduino.pinMode(NUM DIGITAL PINS + SCL, PinMode.I2C);

index

0;

timer = new DispatcherTimer();

timer.Interval = TimeSpan.FromMilliseconds(2000);
timer.Tick += Timer Tick;

timer.Start();

}

private void I2c_I2cReplyEvent(byte address , byte reg , Windows.Storage.
Streams.DataReader response)
{
byte[] data = new byte[2];
response.ReadBytes(data);
int curr = i2cReading.Dequeue();
UpdateData(curr, data[1]);
System.Diagnostics.Debug.WriteLine("" + Convert.ToString(address) +
+ curr.ToString() + ": " + BitConverter.ToString(data));
isReading = false;

97

CHAPTER 4 © WINDOWS REMOTE ARDUINO

private void Timer Tick(object sender, object e)
{
if (isReading)
return;

isReading = true;
switch (index)
{
case 0:
i2cReading.Enqueue(index);
System.Diagnostics.Debug.WriteLine("PCF8591_ADC_CHO");
ReadADC(PCF8591_ADC_CHo);
break;
case 1:
i2cReading.Enqueue(index);
System.Diagnostics.Debug.WriteLine("PCF8591 ADC CH1");
ReadADC(PCF8591_ADC_CH1);
break;
case 2:
i2cReading.Enqueue(index);
System.Diagnostics.Debug.WriteLine("PCF8591 ADC CH2");
ReadADC(PCF8591_ADC_CH2);
break;

}

index++;
if (index > 2)
index = 0;

The last step is to define ReadADC () methods. In this method, we enable 12C mode
and send data to I2C bus to retrieve data from the module. Each reading result is stored
in Queue object. To update data into UI, we define UpdateData() method. We implement
async method because we work in asynchronous mode so we should perform it for
crossing among threadings.

void ReadADC(byte config)
{

arduino.I2c.enable();
arduino.I2c.I2cReplyEvent += I2c_I2cReplyEvent;

arduino.I2c.beginTransmission(PCF8591);
arduino.I2c.write(config);
arduino.I2c.endTransmission();

arduino.I2c.requestFrom(PCF8591, 2);

98

CHAPTER 4 © WINDOWS REMOTE ARDUINO

private async void UpdateData(int index, byte value)

{
await CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(Windows.
UI.Core.CoreDispatcherPriority.Normal,
() =>
{
switch (index)
{
case 0:
txtThermistor.Text = Convert.ToString(value);
break;
case 1:
txtPhoto.Text = Convert.ToString(value);
break;
case 2:
txtPot.Text = Convert.ToString(value);
break;
}
1;
}
Save all codes.
Testing

Now you can compile the program. First, deploy the program and then run it. You should see
information for Thermistor, Photo-voltaic and Potentiometer. You can see it in Figure 4-25.

12CDemo

Thermistor:
Photo-voltaic cell:
Potentiometer:

UpdateData(

Figure 4-25. 12C application is running

99

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Windows Remote Arduino Over Bluetooth

In the previous section, we access Arduino through Windows Remote Arduino over USB
cable. In this section, we learn to access Arduino over Bluetooth. In order to work with
Windows Remote Arduino over Bluetooth, we need two Bluetooth devices for Arduino
and the computer. For the Arduino board, you can use any serial Bluetooth module, such
as SparkFun Bluetooth Mate Silver. You can review and buy this Bluetooth module on
https://www.sparkfun.com/products/12576. The form of SparkFun Bluetooth Mate
Silver can be seen in Figure 4-26.

Figure 4-26. SparkFun Bluetooth Mate Silver

For a demo, I use a cheap serial Bluetooth: HC-06. This module is available in online
stores such as eBay, Aliexpress, and Banggood. You can see it in Figure 4-27. Bluetooth
HC-06 module has four pins: Tx, Rx, VCC, and GND.

100

https://www.sparkfun.com/products/12576

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Figure 4-27. HC-06 Bluetooth module

On the computer side, we need a Bluetooth device which is compatible with the
Bluetooth module from Arduino. Several computers usually have built-in Bluetooth 4.0,
so you can use that. For testing, I use an external Bluetooth 4.0 USB module. You can
checkiton https://www.adafruit.com/product/1327. Just plug it into your computer.
Then, the computer should recognize it.

In this section, we will use the same demo like the first demo in this chapter: lighting
LEDs through UWP application. This demo will use a Bluetooth module to communicate
between an Arduino board and a computer.

For testing, I use HC-06 Bluetooth for Arduino and Bluetooth 4.0 USB (CSR) for my
computer. We will control LEDs to be turned on/off. Bluetooth communication between
Arduino and the computer is done using Windows Remote Arduino.

Wiring for WRA with Bluetooth

Now you can connect Bluetooth and LEDs to an Arduino board. In general, Bluetooth
HC-06 has four pins: Tx, Rx, VCC, and GND. So, in our wiring, it is implemented as
follows:

e HC-06 Tx pin is connected to Arduino Rx pin (digital pin 0).
e HC-06 Rx pin is connected to Arduino Tx pin (digital pin 1).
e HC-06 VCC pin is connected to Arduino 3.3V pin.

e HC-06 GND pin is connected to Arduino GND pin.

e LED1,LED 2, and LED 3 are connected to Arduino digital pin 12,
11 and 10.

You can see my wiring implementation, as shown in Figure 4-28.

101

https://www.adafruit.com/product/1327

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Figure 4-28. Wiring for HC-06, LED and Arduino Uno

Pairing Arduino Bluetooth and Computer

The next step is to pair Arduino Bluetooth to computer Bluetooth so they can
communicate with each other. After the Arduino board is turned on, the Arduino
Bluetooth module (HC-06) will broadcast Bluetooth signals. On the computer side, we
should turn on the Bluetooth device, too.

On Windows 10, we can see a Manage Bluetooth device dialog in Settings. You
should see our Arduino Bluetooth on this dashboard. You can see my HC-06 Bluetooth,
which is recognized in my Windows 10 Desktop in Figure 4-29.

102

TR e 3

Settings

& Home

I Find a setting

| % Bluetooth
0 Mouse & touchpad
& Typing
() AutoPlay

B wuse

CHAPTER 4 © WINDOWS REMOTE ARDUINO

= o X

Manage Bluetooth devices
Bluetooth
@ on
Your PC is searching for and can be discovered by Bluetooth
devices.

HC-06

Ready to pair

Related settings

More Bluetooth options

Send or receive files via Bluetooth

Figure 4-29. Pair Bluetooth device on Windows 10 desktop

You can pair HC-06 Bluetooth with computer Bluetooth. The default key for pairing
HC-06 is 1234. After it’s paired, you should see Arduino Bluetooth in Device Manager.
For instance, my HC-06 is recognized as HC-06 on Device Manager, which is shown in

Figure 4-30.

103

CHAPTER 4 © WINDOWS REMOTE ARDUINO

& Device Manager - O X

File Action View Help

e mEHEHm P XS

v A AKU P
iy Audio inputs and outputs
3 Batteries
v 6 Bluetooth
9 Generic Bluetooth Radio
€ HC-06
e Microsoft Bluetooth Enumerator
9 Microsoft Bluetooth LE Enumerator
v [Computer
8 ACPI x64-based PC
s Disk drives
= Oeneric SD16G SD Card
- 3T1000LM024 HN-M101MEB
@ Display adapters
B8 NVIDIA GeForce GT 650M
8 NVIDIA GeForce GT 650M
v g Human Interface Devices
¥ VUSB Input Device
== |DE ATA/ATAPI controllers v

<

{

L4

Figure 4-30. Paired Bluetooth HC-06 is shown in Device Manager

Creating a UWP Project

Using Visual Studio 2015, you can create a new project with a Blank App (Universal
Windows) template. For instance, the project name is “BlinkingLedBL’ After that,
install Windows Remote Arduino library. Then, you also should configure the Package.
appxmanifest file to additional capability to access Bluetooth USB. You can write these
bold codes as follows:

<Capabilities>
<Capability Name="internetClient" />
<DeviceCapability Name="bluetooth.rfcomm"»
<Device Id="any"»
<Function Type="name:serialPort" />
</Device»
</DeviceCapability>
</Capabilities>

Save this program. The next step is to write an Arduino and a .NET program.

104

CHAPTER 4 © WINDOWS REMOTE ARDUINO

Writing an Arduino Program

To work with a UWP program, you should install a Firmata Skecth program in Arduino.
Select StandardFirmata. Then, flash the Firmata Sketch program into the Arduino board.
Before you perform flashing Firmata Sketch, you should plug out the Bluetooth module
from Arduino. Since the Bluetooth module uses Arduino UART, we can’t upload the
program to an Arduino board. After completing flashing, you could plug in the Bluetooth
module again to an Arduino board.

Writing a UWP Program

Basically, we develop BlinkingLedBL like BlinkingLed, but this program uses Bluetooth
for communicating between the Arduino board and the computer.

Build your application Ul like the BlinkingLed application. Then, we modify the
MainPage.xaml.cs file. We just replace Class type for connection variable. We declare
connection variable as BluetoothSerial.

public sealed partial class MainPage : Page
{
private BluetoothSerial connection;
private RemoteDevice arduino;
private const byte LED1 = 12;
private const byte LED2 = 11;

In InitWRA() method, we modify for instantiating the BluetoothSerial object by
passing a paired Bluetooth device name. You should change baudrate too. In this case,
my Bluetooth device uses baudrate 9600.

private void InitWRA()

{
connection = new BluetoothSerial(“"Dev B"); // HC-06
arduino = new RemoteDevice(connection);

connection.ConnectionEstablished += Connection_ConnectionEstablished;
connection.ConnectionFailed += Connection_ConnectionFailed;
connection.Connectionlost += Connection_Connectionlost;
connection.begin(9600, 0);

You can see that the BluetoothSerial object needs a Bluetooth serial name. For
instance, my HC-06 module is recognized with the name “Dev B How to get this name?
First, open the Property of the paired Bluetooth on the computer. A sample of a paired
Bluetooth is shown in Figure 4-31.

105

CHAPTER 4 © WINDOWS REMOTE ARDUINO

0

Options COM Ports Hardware

Discovery
Allow Bluetooth devices to find this PC

/. Bluetooth devices will see the name of this PC.

Notifications

Alert me when a new Bluetooth device wants to connect

Show the Bluetooth icon in the notification area

Restore Defaults
OK Cancel Apply

Figure 4-31. Property of paired Bluetooth on Windows 10

Click COM Ports property. You should see a paired Bluetooth. It shows COM
incoming and outgoing. It can be seen in Figure 4-32. You can see “Dev B” for COM
outgoing, which is used in our application.

106

CHAPTER 4 © WINDOWS REMOTE ARDUINO

9 Bluetooth Settings X
Options COM Ports Hardware
This PC is using the COM (serial) ports listed below. To

determine whether you need a COM port, read the
documentation that came with your Bluetooth device.

Port Direction MName
COM3 Incoming HC-06

COM4 Outgoing HC-06 ‘Dev B Mg

Add... Remave

s || oy

Figure 4-32. COM ports for paired Bluetooth

Testing

Now you can test the program after it'’s compiled and deployed. You can turn on LEDs
with checking the box. You should see the lighting LED.

Summary

In this chapter, we learned how to build Windows Remote Arduino (WRA) programs on
Windows Universal Platform. We started from controlling digital and analog I/O until
accessing Arduino over 12C bus. We also learned how to configure WRA over Bluetooth,
so we can control Arduino from a UWP programs-based Bluetooth stack. In the next
chapter, we will explore how our Arduino interacts with a Cloud server.

107

CHAPTER 5

Building Your Own loT Using
Arduino and .NET

In general, Internet of Things (IoT) boards have limited storage to store your sensor data.
We can’t keep the sensor data in local storage. In this chapter, we learn how to publish
our sensor data so the data can be consumed by another system. We propose web server,
custom server, and cloud server to store your data and the publish it, starting with how
to connect your Arduino board to an Internet network and doing sensing and publishing
data. Several techniques to communicate with servers are introduced with several
communication protocols. We will also learn how to interact between a .NET application
and Arduino to communicate over a network.

In this chapter we'll explore the following topics:

e Introduction to Internet of Things and Arduino

e Connecting Arduino to Internet network

e Accessing Arduino over network from .NET application
e Windows Remote Arduino (WRA) over WiFi

e RF communication for Arduino

e Building LoRa network for Arduino

e Location-based application for Arduino

e Arduino and cloud server

Introduction to Internet of Things and Arduino

IoT is a recent famous technology. We build boards which are connected to an Internet
network. Each board has its own purpose to connect a network. Arduino, by default, does
not provide network capabilities. Otherwise, several Arduino board types such as Arduino
MKR1000, Arduino UNO WiFi, and Arduino YUN have network capabilities. These boards
can communicate with others over a network. You can see the illustration of how Arduino
connects to a network in Figure 5-1.

© Agus Kurniawan 2017 109
A. Kurniawan, Arduino Programming with .NET and Sketch,
DOI 10.1007/978-1-4842-2659-9_5

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

‘-\"‘-ﬁ
e W
& &)

Network/WiFi
Shield

Figure 5-1. Communication for Arduino boards

In this chapter, I don’t go into detail about IoT. You can read about a concept and
architecture of IoT and how to build them. What we learn in this chapter is to explore how
an Arduino board connects to another system over a network.

Network stacks such as wired and wireless networks can be used by Arduino boards.
If an Arduino board doesn’t have network capabilities, you can attach Arduino boards to
a computer or mini-computer, such as Raspberry Pj, to be a gateway. This computer will
be used to send and receive data from another system.

In the next section, we'll learn how Arduino connects to an Internet network and
then send data to a network system.

Connecting Arduino to Internet Network

By default, Arduino boards don’t have connectivity capability. However, some Arduino
board models such as Arduino YUN, Arduino MKR1000, Arduino 101, and Arduino UNO
WiFi have connectivity capability. As another approach to connect to an Internet network,
we can use additional Arduino shields to enable our board to connect to an external
network. In this section, we explore how an Arduino board connects to a network.

Connecting to a Wired Network

We can connect our Arduino board to a network through Ethernet. To apply this
capability, we can add Ethernet shield, for instance, Arduino Ethernet shield 2 with PoE,
which is shown in Figure 5-2. This shield is manufactured by Arduino SRL. You can find
this shield in your local electronics store. You can buy it on the official website, http://
www.arduino.org/products/shields/arduino-ethernet-shield-2. You also can buy
the cheaper shield from a Chinese manufacturer.

110

http://www.arduino.org/products/shields/arduino-ethernet-shield-2
http://www.arduino.org/products/shields/arduino-ethernet-shield-2

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Figure 5-2. Arduino ETHERNET shield 2 WITH PoE

An Ethernet shield is easy to use. You just attach this shield on an Arduino board.

You can also find this shield on the official website or buy an Ethernet shield from a
Chinese manufacturer with low pricing. I have an Arduino Ethernet shield which is
attached on Arduino UNO. You can see it in Figure 5-3.

Figure 5-3. Arduino UNO and Ethernet shield

111

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

For testing, we use a sample Sketch from Arduino: WebServer. You can find it from
Arduino IDE on menu File » Examples » Ethernet » WebServer. After it’s selected, you
should should obtain the following Sketch:

#tinclude <SPI.h>
#include <Ethernet.h>

// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
OxDE, OxAD, OxBE, OxEF, OxFE, OxED
15
//IPAddress ip(192, 168, 1, 177);

// Initialize the Ethernet server library

// with the IP address and port you want to use
// (port 80 is default for HTTP):
EthernetServer server(80);

void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
5 // wait for serial port to connect. Needed for native USB port only

}

// start the Ethernet connection and the server:
Ethernet.begin(mac);

server.begin();

Serial.print("server is at ");
Serial.println(Ethernet.localIP());

}

void loop() {
// listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.println("new client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char ¢ = client.read();
Serial.write(c);
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == "\n' && currentLineIsBlank) {

112

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connection: close"); // the connection will be
closed after completion of the response
client.println("Refresh: 5"); // refresh the page automatically
every 5 sec
client.println();
client.println("<!DOCTYPE HTML>");
client.println("<html>");
// output the value of each analog input pin
for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
int sensorReading = analogRead(analogChannel);
client.print("analog input ");
client.print(analogChannel);
client.print(" is ");
client.print(sensorReading);
client.println("
");

client.printIn("</html>");
break;

}

if (c == "\n") {
// you're starting a new line
currentLineIsBlank = true;

} else if (c !'= "\r") {
// you've gotten a character on the current line
currentlLineIsBlank = false;

}

}
}

// give the web browser time to receive the data
delay(1);

// close the connection:

client.stop();

Serial.println("client disconnected");

Save this program. Try to compile and upload the Sketch program to an Arduino
board. Make sure your Ethernet shield is connected to a network cable.

By default, the program runs as DHCP client to retrieve an IP Address. Your network
should have a DHCP server in the network. You can use a router which is connected to a
network.

After running the program, open Serial Monitor to see the IP address of your
Arduino. You can see my IP Address from my Arduino UNO, as shown in Figure 5-4.

113

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

@ COMS (Arduino/Genuino Uno) - a X
| Send
server is at 192.168.0.6 ~
v
Autoscroll Both NL& CR ~ 9600 baud

Figure 5-4. Display IP Address on Serial Monitor tool

After you know the IP Address from your Arduino board, you can open a browser and
navigate to the IP Address of Arduino. If you succeed, you should see information about
analog input on A0...A5. You can see the sample output in Figure 5-5.

B8 192.168.06 X == =] X
< O 192.168.0.6 3 = 4 O
analog input 0 is 270

analog input | is 267

analog input 2 is 262
analog input 3 is 260
analog input 4 is 264
analog input 5 is 271

Figure 5-5. Analog information from Arduino over browser

Connecting to a WiFi Network

Connecting an Arduino board to a wired network makes your board unable to move
anywhere because the board should be connected to a network through a cable. If you
want your Arduino board to be placed in any certain area, you can consider connecting
your Arduino board to a WiFi network.

As I explained, by default, Arduino board does not have a WiFi module. We should
add a WiFi Shield (for instance, Arduino Yun Shield), which is shown in Figure 5-6.
We also could use Arduino MKR1000 to connect the existing WiFi network. Arduino
MKR1000 has a built-in WiFi module. You can review this board on this site: https://
www.arduino.cc/en/Main/ArduinoMKR1000.

114

https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Figure 5-6. Arduino Yiin Shield

You can also use Arduino boards such as Arduino YUN and Arduino MKR1000, which
are ready for WiFi connection. You can use Arduino Yun Shield for an Arduino board
(https://www.arduino.cc/en/Main/ArduinoYunShield), as shown in Figure 5-6. For
testing, I use Arduino MKR1000 to show how an Arduino board connects to the existing
WiFi hotshop.

In order for Arduino MKR1000 to work with Arduino software, we should install
Arduino SAMD Boards. You can open Boards Manager and search “Arduino SAMD
Boards”. If it's found, you can install it. You can see it in Figure 5-7. Make sure your
computer is already connected to an Internet network.

& Boards Manager X
Type All v | | Filter your search...

G S UG [O PR SO DR T O P YT SO A I e

Boards included in this package: -~
Arduino Due.

Qnling help

More info

Arduino SAMD Boards (32-bits ARM Cortex-M0+) by Arduino version 1.6.8 INSTALLED
Boards included in this package:

Arduino/Genuino Zero, Arduino/Genuino MKR1000.

Online help

More info

Select version ~ = Instal Remove

| Intel i586 Boards by Intel version 1.6.7+1.0 INSTALLED
Boards included in this package:
Galileo.
More info

Figure 5-7. Enable Arduino software for Arduino MKR1000

115

https://www.arduino.cc/en/Main/ArduinoYunShield

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

After it’s installed, you can connect Arduino MKR1000 to your computer. You can see
my Arduino MKR100 connected to my computer, as shown in Figure 5-8.

Figure 5-8. Connect Arduino MKR1000 to a computer

After Arduino MKR1000 is connected to a computer with Windows OS, you can see
the board will be recognized as COMx. My Arduino MKR1000 board is detected as COM?7,
which is shown in Figure 5-9.

116

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

& Device Manager = O X

File Action View Help
s mHm B

> <% Imaging devices ~
> ¥ Jungo Connectivity
» B2 Keyboards
> ' Mice and other pointing devices
» Bl Monitors
> P Network adapters
. R7 Other devices
> B Portable Devices
v i@ Ports (COM & LPT)
@ Arduino MKR1000 (COM7)

» & POS Remote Device
» ™ Print queues
>] Processors
> [SD host adapters
> [Sensors
» B Software devices

ij Sound, video and game controllers
> S Storage controllers
> @ System devices

§ Universal Serial Bus controllers v

Figure 5-9. Arduino MKR1000 is recognized as COM?7 in Device Manager

The next step is to start to build a program. In order to access a WiFi network, we

need a WiFi library for the Arduino MKR1000 board. We can use WiFil01 library. You can

install WiFi101 library from Library Manager. Find and install WiFi101 library. You can

see this library in Figure 5-10.

117

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

@ Library Manager X

Type All ~ Topic All | | wifi

‘Enables network connection (local and Internet) using the Arduino WiFi shield. With this library you can instantiate Servers,
Clients and send/receive UDP packets through WIFi. The shield can connect either to cpen or encrypted networks (WEP, WPA).
The IF add can be assigned ically or through a DHCP. The library can alse manage DNS.

Mora info

'WiFil01 by Arduino Version 0.11.0 INSTALLED

Network driver for ATMEL WINC1500 module (used on Arduino/Genuino Wifi Shield 101 and MKR1000 boards) This library
implemants a network driver for devices based on the ATMEL WINC1500 wifi module

Mora info

Select version ~ Install

T
Adafruit CC3000 Library &y Adafrut
Library code for Adafruit's CC3000 WiFi breakouts. The CC3000 allows an Arduine to connect to & WiFi network and access the
internet. See more at: https://learn.adafruit.com/adafruit-cc3000-wifif

More info
Arduino-Websocket-Fast by Davide Monari (KULeuven)
Websocket client library (fast data sending). The library can wrap around a generic Arduino Client() class or similar interface et

Close

Figure 5-10. Install WiFi101 library for Arduino MKR1000

We build a Sketch program to make the Arduino MKR1000 board connect to an
existing WiFi network. For instance, we connect to a WiFi hotspot with WPA security. For
testing, we can use a program sample from Arduino Software, ConnectWithWPA.

After loading the Sketch program for ConnectWithWPA, you can modify values on
ssid and pass for WiFi SSID and WiFi key. You can see the following Sketch program:

#include <SPI.h>
#tinclude <WiFi101.h>

char ssid[] = "wifi"; // your network SSID (name)
char pass[] = "wifi_key"; // your network password
int status WL_IDLE_STATUS; // the Wifi radio's status

void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}

// check for the presence of the shield:

if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("WiFi shield not present");
// don't continue:
while (true);

}

118

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

// attempt to connect to Wifi network:

while (status != WL_CONNECTED) {
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network:
status = WiFi.begin(ssid, pass);

// wait 10 seconds for connection:
delay(10000);

}

// you're connected now, so print out the data:
Serial.print("You're connected to the network");
printCurrentNet();

printWifiData();

}

void loop() {
// check the network connection once every 10 seconds:
delay(10000);
printCurrentNet();

}

void printWifiData() {
// print your WiFi shield's IP address:
IPAddress ip = WiFi.locallIP();
Serial.print("IP Address: ");
Serial.println(ip);
Serial.println(ip);

// print your MAC address:
byte mac[6];
WiFi.macAddress(mac);
Serial.print("MAC address: ");
Serial.print(mac[5], HEX);
Serial.print(":");
Serial.print(mac[4], HEX);
Serial.print(":");
Serial.print(mac[3], HEX);
Serial.print(":");
Serial.print(mac[2], HEX);
Serial.print(":");
Serial.print(mac[1], HEX);
Serial.print(":");
Serial.println(mac[0], HEX);

119

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

void printCurrentNet() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());

// print the MAC address of the router you're attached to:
byte bssid[6];
WiFi.BSSID(bssid);
Serial.print("BSSID: ");
Serial.print(bssid[5], HEX);
Serial.print(":");
Serial.print(bssid[4], HEX);
Serial.print(":");
Serial.print(bssid[3], HEX);
Serial.print(":");
Serial.print(bssid[2], HEX);
Serial.print(":");
Serial.print(bssid[1], HEX);
Serial.print(":");
Serial.println(bssid[0], HEX);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.println(rssi);

// print the encryption type:

byte encryption = WiFi.encryptionType();
Serial.print("Encryption Type:");
Serial.println(encryption, HEX);
Serial.println();

Save the program. Now you can compile and upload the program to Arduino
MKR1000. Open the Serial Monitor tool to see the IP Address of Arduino MKR1000. You
can see my board output sample in Figure 5-11.

120

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

€ COMS (Arduino/Genuino MKR1000) == O X
| Send
.Atte:@ting to connect to WPA 55ID: b003fe ~

You're connected to the networkSSID: b003fé6
BSSID: 6€0:2:92:66:5F:D2
signal strength (RSSI):-72

Encryption Type:2

IP Address: 192.168.0.10
192.166.0.10

MAC address: F8:F0:5:F5:D2:2
55ID: bO003fé

W

Autoscroll Both NL& CR | 9600 baud v

Figure 5-11. Program output on Serial Monitor

If you have problems on Arduino MKR1000, you may update the WiFi module on
Arduino MKR1000. You can follow this instruction to update the Arduino MKR1000
firmware: https://www.arduino.cc/en/Tutorial/FirmwareUpdater.

Accessing Arduino over a Network from .NET
Application

In the previous section, we have learned how to make our Arduino boards connect to
an existing network through Ethernet and a WiFi module. Now we try to build a .NET
application to access Arduino boards over air.

Our scenario is to build a .NET application (UWP app) to control LED through
WiFi. We use Arduino MKR1000 as a development board. To build our lab, we need the
following devices:

e Arduino MKR1000
e Three LEDs
e Computer with installed Windows and Visual Studio 2015 or later

We will turn on/off LEDs through WiFi from a UWP application. We apply HTTP GET
to turn on/off our LEDs. You can see our HTTP GET URL mapping for demo in Table 5-1.
We implement this URL mapping to our demo.

121

https://www.arduino.cc/en/Tutorial/FirmwareUpdater

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Table 5-1. HTTP Get requests for turning on/off LEDs

URL Note

http://<arduino IP>/gpiol/1 Turn on LED 1
http://<arduino IP>/gpiol/0 Turn off LED 1
http://<arduino IP>/gpio2/1 Turn on LED 2
http://<arduino IP>/gpio2/0 Turn off LED 2
http://<arduino IP>/gpio3/1 Turn on LED 3
http://<arduino IP>/gpio3/0 Turn off LED 3

To implement our program, we will build a sketch program and a UWP application.
We need a sketch program in order to interact with an external application such as a UWP
application. The sketch program will listen for incoming commands (HTTP GET) to be
executed. Furthermore, a UWP application is a client app which sends commands to
Arduino to perform something.

Let’s start to develop.

Wiring
The following is the demo wiring:
e LED 1is connected to digital pin 5 of Arduino MKR1000.
e LED 2is connected to digital pin 4 of Arduino MKR1000.
e LED 3is connected to digital pin 3 of Arduino MKR1000.
e ANILED GND pins are connected to GND pin on the board.

If you're worrying about your LEDs, you can put a resistor on each LED to prevent a
high voltage. You can see the wiring in Figure 5-12.

122

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

L B
L I
LI

® IYONINGYY

fritzing
Figure 5-12. Wiring for LEDs and Arduino MKR1000

You can see my wiring implementation, as shown in Figure 5-13. Three LEDs are
attached to an Arduino MKR1000 board.

123

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Figure 5-13. Wiring implementation for LEDs and MKR1000

Building a Sketch Program

We build a Sketch program in order to receive commands to turn on/off LEDs based
on URL mapping, which is described in Table 5-1. You can write the scripts in Arduino
software:

#include <WiFi101.h>

int led1l = 5;
int led2 = 4;
int led3 = 3;

const char* ssid = "ssid";
const char* password = "ssid key";
int status = WL_IDLE_STATUS;

WiFiServer server(80);
void setup() {

Serial.begin(9600);
delay(10);

124

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

// prepare GPIO5

pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);
pinMode(led3, OUTPUT);
digitalWrite(led1, 0);
digitalWrite(led2, 0);
digitalWrite(led3, 0);

// Connect to WiFi network
while (status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
status = WiFi.begin(ssid, password);

// wait 10 seconds for connection:
delay(10000);

Serial.println("");
Serial.println("WiFi connected");

// Start the server
server.begin();
Serial.println("Server started");

// Print the IP address
char ips[24];
IPAddress ip = WiFi.locallIP();
sprintf(ips, "%d.%d.%d.%d", ip[o], ip[1], ip[2], ip[3]);
Serial.println(ips);
}

void loop() {
// Check if a client has connected
WiFiClient client = server.available();
if (!client) {
return;

}

// Wait until the client sends some data
Serial.println("new client");
while(!client.available()){

delay(1);

// Read the first line of the request
String req = client.readStringUntil('\r');
Serial.println(req);

client.flush();

125

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

// Match the request

int vali = 0;

int val2 = 0;

int val3 = 0;

int ledreq = 0;

if (req.index0f("/gpio1/0") != -1) {
vall = 0;
ledreq = 1;

}

else if (req.indexOf("/gpio1/1") != -1) {
vall = 1;
ledreq = 1;

}

else if (req.indexOf("/gpio2/0") != -1) {
val2 = 0;
ledreq = 2;

}

else if (req.index0f("/gpio2/1") != -1) {
val2 = 1;
ledreq =

}

else if (req.indexOf("/gpio3/0") != -1) {
val3 = 0;
ledreq = 3;

}

else if (req.indexOf("/gpio3/1") != -1) {
val3 = 1;
ledreq =

}

else {
Serial.println("invalid request");
client.stop();
return;

}

// Set GPIO2 according to the request
if(ledreg==1)

digitalWrite(led1, vali);
if(ledreg==2)

digitalWrite(led2, val2);
if(ledreg==3)

digitalWrite(led3, val3);

25

3;

client.flush();
// Prepare the response

String s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE
HTML>\r\n<html>\r\n";

126

CHAPTER 5

if(ledreg==1) {

s += "LED1 is ";

s += (val1)? "ON": "OFF";
telse if(ledreq==2) {

s += "LED2 is ";

s += (val2)? "ON": "OFF";
telse if(ledreg==3) {

s += "LED3 is ";

s += (val3)? "ON": "OFF";
}

s += "</html>\n";

// Send the response to the client
client.print(s);

delay(1);

client.stop();

Serial.println("Client disonnected");

BUILDING YOUR OWN 10T USING ARDUINO AND .NET

You should change ssid and ssid_key for SSID and SSID key. Save these scripts as
“IoTDemo”. Try to compile and upload a Sketch program to Arduino MKR1000. If it’s
done, you can open a Serial Monitor tool to see the IP Address of Arduino MKR1000. You
can see my IP Address of the board in Figure 5-14.

& com9
|

Server started
192.16€.0.10

Autoscroll

Send

W

BothNL& CR ~ 9600 baud

Figure 5-14. Serial monitor tool shows IP Address for Arduino MKR1000

127

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Now you can test by opening a browser. Navigate to http://<server>/gpiol/1 to turn
on LED 1. You should change <server> to the IP Address of Arduino MKR1000.

If you succeed, you should see a response from Arduino MKR1000. For a sample, you
can see a response from my Arduino, which is shown in Figure 5-15.

B 1921680.10 il = m
& S5O | 192168010/p001/1 w| = % O
LED! is ON

Figure 5-15. Response from Arduino on a browser

You can see your lighting LED for LED 1 in Figure 5-16 while you're sending a
command to turn on LED 1.

Figure 5-16. LED 1 is lighting

128

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

If you open Serial Monitor tool from Arduino, you should see the requests on

Arduino MKR1000. You can see it’s a program output, which is shown in Figure 5-17.

& coM9 = a X

| Send
.Se:ve: atarted A-
192.168.0.10

new client |
GET /gpiol/l HITE/1l.1l
Client discnnected

W

Autoscroll Both NL& CR | 9600 baud v

Figure 5-17. Response from Arduino on Serial monitor tool

Building a UWP Application

In this section, we develop a UWP application. This program will work as a “client app”
which sends commands to Arduino to turn on/off LEDs. Our sketch program on Arduino

works as a web server which receives HTTP GET commands.

Create a UWP project with project name “WiFiLed” Then build the following UL You

can see our UI, as shown in Figure 5-18.

129

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Arduino MKR1000 IP Address

Figure 5-18. Design Ul for WiFiLed application

We put TextBox and ToggleSwitch on a UI canvas. You can write the following
scripts to build our UT:

<Page
x:Class="WiFilLed.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:WiFilLed"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBox x:Name="txtIP" HorizontalAlignment="Left"
Margin="32,35,0,0" TextWrapping="Wrap" Text=""
VerticalAlignment="Top" Width="194"/>
<TextBlock x:Name="textBlock" HorizontalAlignment="Left"
Margin="32,10,0,0" TextWrapping="Wrap" Text="Arduino MKR1000 IP
Address" VerticalAlignment="Top"/>
<ToggleSwitch x:Name="toggleLed1" Header="Led 1"
HorizontalAlignment="Left" Margin="32,87,0,0"
VerticalAlignment="Top" Width="94" Toggled="ToggleLed1"/>

130

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

<ToggleSwitch x:Name="toggleLed2" Header="Led 2"
HorizontalAlignment="Left" Margin="32,147,0,0"
VerticalAlignment="Top" Toggled="ToggleLed2"/>

<ToggleSwitch x:Name="toggleLed3" Header="Led 3"
HorizontalAlignment="Left" Margin="32,212,0,0"
VerticalAlignment="Top" Toggled="ToggleLed3"/>

<TextBlock x:Name="txtStatus" HorizontalAlignment="Left"
Margin="32,277,0,0" TextWrapping="Wrap" Text="Ready"
VerticalAlignment="Top" Width="253" FocusVisualPrimaryBrush="#FFD71C
1C" Foreground="#FFEE2121"/>

</Grid>
</Page>

Now we work on MainPage.xaml.cs. First, we add our requirement namespace for
our program.

using Windows.Web.Http;

If you see XAML scripts, we pass a method on a Toggled event. We build three
methods: Toggleled1, ToggleLed2, and TogglelLed3. These methods are to listen to the
LED state. If they're toggled, we turn on the LED. The following is the implementation of
these methods:

private void TogglelLedi(object sender, RoutedEventArgs e)
{
string svr = txtIP.Text;
string url = string.Format("http://{0}/gpio1/0", svr);
int state = 0;

if(toggleLed1.Is0On)
{

url = string.Format("http://{0}/gpio1/1", svr);
state = 1;

}

SendCommand(url);
UpdateStatus(1, state);

}

private void TogglelLed2(object sender, RoutedEventArgs e)
{
string svr = txtIP.Text;
string url = string.Format("http://{0}/gpio2/0", svr);
int state = 0;

131

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

if (togglelLed2.IsOn)
{

url = string.Format("http://{0}/gpio2/1", svr);
state = 1;

}

SendCommand(url);
UpdateStatus(2, state);

}

private void Toggleled3(object sender, RoutedEventArgs e)
{

string svr = txtIP.Text;
string url = string.Format("http://{0}/gpio3/0", svr);
int state = 0;

if (togglelLed3.IsOn)
url = string.Format("http://{0}/gpio3/1", svr);

state = 1;

}

SendCommand (url);
UpdateStatus(3, state);

As you can see, we call each Toggled method SendCommand() to send data to Arduino
MKR1000 and UpdateStatus() to update our UL The following is our implementation:

private void UpdateStatus(int led, int state)

{
if (state == 1)
txtStatus.Text = string.Format("LED {0} is ON", led);
else
txtStatus.Text = string.Format("LED {0} is OFF", led);
}
private async void SendCommand(string url)
{

HttpClient httpClient = new HttpClient();
var headers = httpClient.DefaultRequestHeaders;

Uri requestUri = new Uri(url);
HttpResponseMessage httpResponse = new HttpResponseMessage();

try

{
//Send the GET request

132

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

httpResponse = await httpClient.GetAsync(requestUri,HttpCompletion
Option.ResponseHeadersRead);
httpResponse.EnsureSuccessStatusCode();

}

catch (Exception ex)

System.Diagnostics.Debug.WritelLine(ex.Message);

Save all programs. You can also add additional capabilities on a UWP application.
Add an internetClient feature in our application.

<Capabilities>
<Capability Name="internetClient" />
</Capabilities>

Testing

Save your UWP project. Then, try to compile and run the program. Please fill in the IP Address
of Arduino MKR1000. Now you can turn on/off LEDs by clicking the toggled controls.

@ off

= FRAKR1000 IP Address
192.168.0.10

@D on

Led 2

Figure 5-19. WiFiLed application is running

133

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Windows Remote Arduino (WRA) over WiFi

In Chapter 3, we learned how to work with Windows Remote Arduino (WRA) through
USB and Bluetooth. In this section, we try to build a UWP application to access Arduino
through Windows Remote Arduino over WiFi.

For testing, we use an Arduino MKR1000 board. We will use the same problem from
the previous section: we turn on/off LEDs over WiFi.

Let's start!

Configure Arduino for WRA over WiFi

To enable our Arduino board to be controlled over WiFi, you should deploy a
StandardFirmataWiFi Sketch program into the board. You can find it from menu File »
Examples » Firmata » StandardFirmataWiFi. Then, you should see the sketch program,
as shown in Figure 5-20.

& StandardFirmataWiFi | Arduino 1.6.12 e a x

File Edit Sketch Tools Help

Arduine/Genuine MKR1000 on COMD

Figure 5-20. Sketch program for StandardFirmataWiFi

134

http://dx.doi.org/10.1007/978-1-4842-2659-9_3

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

The next step is to configure WiFi settings for Arduino. We configure it on
wifiConfig.h. Since we use Arduino MKR1000, you should uncomment for WIFI_101. You
should change SSID and SSID key. The default port for server is 3030. You can change it if
you want.

@ StandardFirmataWiFi - wifiConfigh | Ar.. — a X
File Edit Sketch Tools Help

wifiConfigh§

faesine wIFI_101 —

//do not modify the following 11 lines
#if defined(ARD AMD_MKR1000) && !defined(WIFI_101)

tomatically include if compiling for MRK1000

ntSctream.h”

erverStream.h"

Figure 5-21. Configure WiFi for StandardFirmataWiFi sketch

If you finish configuring WiFi settings, you can compile and upload a Sketch program
into Arduino MKR1000. Now your board is ready to receive commands from a UWP
application.

Building a UWP Application

Now you can create a UWP application called “WiFiWRA” using Visual Studio. Install
WRA through Nuget. Read how to deploy it in Chapter 3. We build a UI for a UWP
application, which is shown in Figure 5-22.

135

http://dx.doi.org/10.1007/978-1-4842-2659-9_3

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Not connected

Figure 5-22. Build UI for UWP app

We build the same Ul as in the previous section, but we add a button to connect
Arduino over WiFi. The following are XAML scripts for WiFiWRA application:

<Page
x:Class="WiFikWRA.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:WiFiWRA"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<TextBox x:Name="txtIP" HorizontalAlignment="Left"
Margin="32,35,0,0" TextWrapping="Wrap" Text=""
VerticalAlignment="Top" Width="194"/>
<TextBlock x:Name="textBlock" HorizontalAlignment="Left"
Margin="32,10,0,0" TextWrapping="Wrap" Text="Arduino MKR1000 IP
Address" VerticalAlignment="Top"/>

136

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

<ToggleSwitch x:Name="toggleLed1" Header="Led 1"
HorizontalAlignment="Left" Margin="32,87,0,0"
VerticalAlignment="Top" Width="94" Toggled="ToggleLed1"/>
<ToggleSwitch x:Name="toggleLed2" Header="Led 2"
HorizontalAlignment="Left" Margin="32,147,0,0"
VerticalAlignment="Top" Toggled="ToggleLed2"/>

<ToggleSwitch x:Name="toggleLed3" Header="Led 3"
HorizontalAlignment="Left" Margin="32,212,0,0"
VerticalAlignment="Top" Toggled="ToggleLed3"/>

<TextBlock x:Name="txtStatus" HorizontalAlignment="Left"
Margin="32,277,0,0" TextWrapping="Wrap" Text="Ready"
VerticalAlignment="Top" Width="253" FocusVisualPrimaryBrush="#FFD71C
1C" Foreground="#FFEE2121"/>

<Button x:Name="button" Content="Connect" HorizontalAlignment="Left"
Margin="231,35,0,0" VerticalAlignment="Top"
Click="ConnectToServer"/»>

<TextBlock x:Name="txtServerState" HorizontalAlignment="Left"
Margin="231,72,0,0" TextWirapping="Wrap" Text="Not connected"
VerticalAlignment="Top" FocusVisualPrimaryBrush="#FFCE2E2E"
Foreground="#FFCA1A1A"/>

</Grid>
</Page>

On MainPage.xaml.cs, we add codes to catch a clicked event on button and toggled
controls. First, we add a required namespace.

using Microsoft.Maker.Serial;
using Microsoft.Maker.RemoteWiring;
using Windows.Networking;

We add several variables for three LEDs. Write these codes:

public sealed partial class MainPage : Page

{

private NetworkSerial connection;
private RemoteDevice arduino;

private const byte LED1 = 5;
private const byte LED2 = 4;
private const byte LED3 = 3;

private byte currentled;
private int currentState;

137

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

When the “Connect” button is clicked, we try to connect to Arduino MKR1000 over
WiFi. After it’s connected, we set the pin mode for three LEDs. The following is our code
implementation:

private void ConnectToServer(object sender, RoutedEventArgs e)

{
InitWRA();

private void InitWRA()

{
string svr = txtIP.Text;

connection = new NetworkSerial(new HostName(svr), 3030);
arduino = new RemoteDevice(connection);

arduino.DeviceConnectionlost += Arduino DeviceConnectionLost;

connection.ConnectionEstablished += Connection_ConnectionEstablished;
connection.ConnectionFailed += Connection_ConnectionFailed;

connection.begin(115200, SerialConfig.SERIAL_8N1);

}

private void Arduino DeviceConnectionLost(string message)

{
}

System.Diagnostics.Debug.WriteLine("Device is connection lost");

private void Connection_ConnectionFailed(string message)

{

txtServerState.Text = "Not connected”;

}

private void Connection ConnectionEstablished()

{
txtServerState.Text = "Connected”;
System.Diagnostics.Debug.WritelLine("Connected");
arduino.pinMode(LED1, PinMode.OUTPUT);
arduino.pinMode(LED2, PinMode.OUTPUT);
arduino.pinMode(LED3, PinMode.OUTPUT);

}

On Toggled events, we execute to turn on/off LEDs by calling Execute() and
UpdateStatus() methods.

138

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

private void Toggleledi(object sender, RoutedEventArgs e)

{

}

currentState = 0;

if (toggleled1.IsOn)
currentState = 1;
currentled = 1;

Execute();
UpdateStatus(1, currentState);

private void TogglelLed2(object sender, RoutedEventArgs e)

{

}

currentState = 0;

if (toggleled2.IsOn)
currentState = 1;
currentled = 2;

Execute();
UpdateStatus(2, currentState);

private void TogglelLed3(object sender, RoutedEventArgs e)

{

string svr = txtIP.Text;
currentState = 0;

if (toggleled3.IsOn)
currentState = 1;
currentled = 3;

Execute();
UpdateStatus(3, currentState);

Execute() and UpdateStatus () methods are used to execute turn on/off LEDs and
update UI on a UWP application.

private void UpdateStatus(int led, int state)

{

if (state == 1)

txtStatus.Text = string.Format("LED {0} is ON", led);

else
txtStatus.Text

string.Format("LED {0} is OFF", led);

139

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

private void Execute()

{
if (currentState == 1)
arduino.digitalWrite(currentled, PinState.HIGH);
else
arduino.digitalWrite(currentLed, PinState.LOW);
System.Diagnostics.Debug.WriteLine("Written command to Arduino");
}

Save the program. You also should add capabilities on a UWP application for
accessing the Internet.

<Capabilities>
<Capability Name="internetClient" />
<Capability Name="internetClientServer" />
<Capability Name="privateNetworkClientServer" />
</Capabilities>

Testing

Now you can run the program. Fill in the IP Address of Arduino MKR1000. Then, click the
Connect button. If it’s connected, you can turn on/off LEDs by clicking toggled controls
(Figure 5-23).

.
192.168.0.10 Connect

Connected

Led 1

@ on

Led 2
@ on

led 3

Figure 5-23. Running application for controlling LED over WRA WiFi

140

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

RF Communication for Arduino

RF communication is a classic communication to make each entity exchange data. There
are many RF modules which can be applied to Arduino boards. There are many RF
modules which can work with Arduino boards.

In this section, we explore one of the famous RF modules, XBee IEEE 802.15.4. This
module usually is used for a Wireless Sensor Network (WSN) area. The Arduino board
senses its physical environment and then sends the sensor data to a gateway. You can see
XBee IEEE 802.15.4 in Figure 5-24. You can read about this module on this site: https://
www.digi.com/products/xbee-rf-solutions/modules/xbee-802-15-4.

Figure 5-24. XBee IEEE 802.15.4 from Digi International

To attach an XBee module, you need an XBee shield to Arduino. For instance,
you can use an Arduino Wireless SD Shield (https://www.arduino.cc/en/Main/
ArduinoWirelessShield). You can see this shield in Figure 5-25.

141

https://www.digi.com/products/xbee-rf-solutions/modules/xbee-802-15-4
https://www.digi.com/products/xbee-rf-solutions/modules/xbee-802-15-4
https://www.arduino.cc/en/Main/ArduinoWirelessShield
https://www.arduino.cc/en/Main/ArduinoWirelessShield

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

CERE L EEEEEE
-
th
ol o o e
oh jeh ¢ ob G o
vhjed ¢ 0 00 O O @
DO G OOeeon

HH OB O

oo ne
G oo o6 e

o job o) w0
S W W

deedesmeadleEEd Gguoeneoee

» WIRELESS U YUY e e ee
LAl PROTO %] :
Lol SHIELD ARDUINO £ | g n

Figure 5-25. Arduino Wireless SD Shield

In this section, we build an XBee application on Arduino and a computer. The XBee
Arduino application will send a random number to a computer over an XBee module. For
testing, we build our demo with the following items:

e Arduino board

e XBee shield for Arduino

e Two XBee IEEE 802.15.4 devices
e XBee USB module

As another option, you can use XBee Wireless kit from SparkFun. You can check this
product on this site: https://www. sparkfun.com/products/13197. You can see this kit in
Figure 5-26.

142

https://www.sparkfun.com/products/13197

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Figure 5-26. SparkFun XBee Wireless Kit

Now we try to build RF communication using XBee IEEE 802.15.4 modules on
Arduino. We implement a simple application to send a random number. We need two
XBee modules for demo. One module will work as a sender. Otherwise, it works as a
receiver. In the next sub-section, we will implement our demo.

Configuring XBee IEEE 802.15.4

For demo implementation, I use Arduino UNO with XBee shield and XBee IEEE 802.15.4
module with XBee USB. You can see my demo devices in Figure 5-27.

Figure 5-27. Demo sample for XBee and Arduino

143

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Before you attach an XBee module into an XBee shield, we should configure all XBee
modules. We can use an XCTU application from Digi International. You can download
iton https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu.
Download and install this program.

Run the XCTU program. Attach your XBee module on XBee USB so your computer
detects your modules. Then, add an XBee module into XCTU. You can see it in Figure 5-28.
You should set XBee features, which is shown in Table 5-2. If you're finished, you save by
clicking the Write icon in order to write these values into XBee firmware.

o= XCTU -

XCTU Working modes Tools Help
2 e BEse Jju

@ Radio Modules @ ® - © | 1 radic Configuration [- 0013A200409FCEEQ]
Hame: (%) - p R F o
Function: XBEE 802154 o S Z i Al o, Q[parameter | +1 51
Port: COM12 - 96_N/1/N - AT Read Write Default Update Profile
MAC: oM | R

Product family: X824 Function set: XBEE..154 Firmware version: 10ef

~ Networking & Security
Modify networking settings

¢ CH Chame! c________] 0806
1D PANID 1490
i DH Destinatio..dress High —] o6

i DL Destinatio.ddress Low |1 | 4©6

i MY 16-bit Source Address | 2 14906

i SH Serial Number High 134 e

i SL Serial Number low [(]

i MM MAC Mode 802,154 no ACKs 1] v\ 490

i RR XBee Retries o 1.00~

Figure 5-28. Configure XBee using XCTU

144

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Table 5-2. XBee configuration in XCTU application

XBee Mdoule Features

XBee 1 ID = 3001
MY=1
DL=2
MM=1
AP=0

XBee 2 ID =3001
MY =2
DL=1
MM=1
AP=0

Building an Arduino Sketch Program

Basically, after we configured our XBee IEEE 802.15.4 modules in the previous section,
the modules can communicate with others in transparent mode. It means when a XBee
module broadcasts a message on UART, other XBee modules will receive this message
from UART. From this scenario, we build a Sketch program to send a random number
from Arduino to a computer through XBee IEEE 802.15.4. You can write the following
Sketch program:

long randNumber;

void setup() {
Serial.begin(9600);
randomSeed(analogRead(0));

}

void loop() {
randNumber = random(20, 80);
Serial.println(randNumber);
delay(2000);

Save this program as “XBeeArduino” Compile and upload the program to the
Arduino board.

Now you can attach XBee 1 into an XBee shield and then put the shield into an
Arduino board. Furthermore, XBee 2 is attached into XBee USB and then plugged into a
computer. Using Serial monitor tool, navigate this tool to the serial port to which XBee
USB is attached. You should see an incoming number on the Serial Monitor tool. You can
see it in Figure 5-29. This values comes from Arduino.

145

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

@ com2 =] ¥
| Send
T2 ~
|58
66
63
20
61
47
€5
28
56
36
30
v
[] Autoscralt BothNL&CR ~ 9600 baud ~

Figure 5-29. Program output from XBee on Serial Monitor tool

Building a UWP Program

In this section, we build a UWP program. This program will work as the XBee receiver
which listens to incoming messages from a serial port on the computer. You attach the
XBee module and USB breakout in order to plug into a computer through a USB cable.
We use SerialDevice object to communicate with the serial port.

Now we can create a new project for a UWP template, called “XBeeApp” Then, build a UI,
which is shown in Figure 5-30. We add ListBox and Button. XBee data is displayed in Text.

Mainfagexaml € X

XBee Serial Port List

Connect Disconnect . connected

A value from XBee: -0

Figure 5-30. Ul for XBee UWP application

146

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

The implementation of XAML UI can be written in the following scripts:

<Page
x:Class="XBeeApp.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:XBeeApp"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<ListBox x:Name="listXBee" HorizontalAlignment="Left" Height="100"
Margin="10,45,0,0" VerticalAlignment="Top" Width="285"»
<ListBox.ItemTemplates
<DataTemplate»
<TextBlock Text="{Binding Name}" />
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
<TextBlock x:Name="textBlock" HorizontalAlignment="Left"
Margin="10,20,0,0" TextWrapping="Wrap" Text="XBee Serial Port List"
VerticalAlignment="Top"/>
<Button x:Name="btnConnect" Content="Connect"
HorizontalAlignment="Left" Margin="10,165,0,0"
VerticalAlignment="Top" Click="ConnectToXBee"/>
<Button x:Name="btnDisconnect" Content="Disconnect"
HorizontalAlignment="Left" Margin="90,165,0,0"
VerticalAlignment="Top" Click="Disconnect"/»
<TextBlock x:Name="txtState" HorizontalAlignment="Left"
Margin="188,177,0,0" TextWirapping="Wrap" Text="Not connected"
VerticalAlignment="Top" Foreground="#FFCA1E1E"/>
<TextBlock x:Name="textBlocki" HorizontalAlignment="Left"
Margin="10,225,0,0" TextWrapping="Wrap" Text="A value from XBee:"
VerticalAlignment="Top"/>
<TextBlock x:Name="txtValue" HorizontalAlignment="Left"
Margin="154,225,0,0" TextWrapping="Wrap" Text="-0"
VerticalAlignment="Top"/>

</Grid>
</Page>

On MainPage.xaml.cs, we add codes. First, we add the required namespace as
follows:

using System.Collections.ObjectModel;

using Windows.Devices.Enumeration;
using Windows.Devices.SerialCommunication;

147

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

using Windows.Storage.Streams;
using System.Threading;
using System.Threading.Tasks;

Then, we add variables.

public sealed partial class MainPage : Page

{

private SerialDevice serialPort = null;

private DataReader dataReaderObject = null;

private ObservableCollection<DeviceInformation> 1istUART;
private CancellationTokenSource ReadCancellationTokenSource;

We retrieve a list of serial ports while calling in constructor.

public MainPage()

{
this.InitializeComponent();
1istUART = new ObservableCollection<DeviceInformation>();
GetListOfXBee();
}
private async void GetlListOfXBee()
{
try
{
string ags = SerialDevice.GetDeviceSelector();
var dis = await DeviceInformation.FindAllAsync(ags);
for (int i = 0; 1 < dis.Count; i++)
{
1istUART.Add(dis[i]);
}
listXBee.ItemsSource = 1istUART,;
listXBee.SelectedIndex = -1;
btnConnect.IsEnabled = true;
btnDisconnect.IsEnabled = false;
}
catch (Exception ex)
{
System.Diagnostics.Debug.WritelLine(ex.Message);
}
}

148

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

We connect to XBee USB by clicking the Connect button. If you want to disconnect
from XBee USB, click the Disconnect button. We implement these codes:

private async void

{

ConnectToXBee(object sender, RoutedEventArgs e)

var selection = listXBee.SelectedItems;

if (selection.Count <= 0)

{

txtState.Text = "Select a Serial Port!";

return;

}

DeviceInformation entry = (DeviceInformation)selection[0];

= await SerialDevice.FromIdAsync(entry.Id);

// Configure serial settings

WriteTimeout = TimeSpan.FromMilliseconds(1000);
ReadTimeout = TimeSpan.FromMilliseconds(1000);
BaudRate = 9600;

Parity = SerialParity.None;

StopBits = SerialStopBitCount.One;

DataBits = 8;

Handshake = SerialHandshake.None;

// Create cancellation token
ReadCancellationTokenSource = new CancellationTokenSource();

IsEnabled = false;

btnDisconnect.IsEnabled = true;
txtState.Text = "Connected";

System.Diagnostics.Debug.WritelLine(ex.Message);

IsEnabled = true;

private void Disconnect(object sender, RoutedEventArgs e)

txtState.Text = "Not connected";

try
{
serialPort
serialPort.
serialPort.
serialPort.
serialPort.
serialPort.
serialPort.
serialPort.
btnConnect.
ReadDataXBee();
}
catch (Exception ex)
{
btnConnect.
}
}
{
CloseXBee();
}

149

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Inside clicked event on Connect and Disconnect buttons we call CloseXBee() and
ReadDataXbee() methods. We implement these codes as follows:

private void CloseXBee()

{
try

{

}
catch (Exception){}

CancelReadTask();

if (serialPort != null)

{
}

serialPort = null;

serialPort.Dispose();

btnConnect.IsEnabled = true;
btnDisconnect.IsEnabled = false;

}

private async void ReadDataXBee()

{
try

{
if (serialPort != null)

{

dataReaderObject = new DataReader(serialPort.InputStream);
// keep reading the serial input

while (true)

{

}

await ReadXBeeAsync(ReadCancellationTokenSource.Token);

}
}
catch (Exception ex)
{
CloseXBee();
System.Diagnostics.Debug.WriteLine(ex.Message);
}
finally
{
// Cleanup once complete
if (dataReaderObject != null)
{
dataReaderObject.DetachStream();
dataReaderObject = null;

150

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

}
}
}
private void CancelReadTask()
{
if (ReadCancellationTokenSource != null)
if (!ReadCancellationTokenSource.IsCancellationRequested)
{
ReadCancellationTokenSource.Cancel();
}
}
}

private async Task ReadXBeeAsync(CancellationToken cancellationToken)

{
Task<UInt32> loadAsyncTask;

uint ReadBufferLength = 1024;

// If task cancellation was requested, comply
cancellationToken.ThrowIfCancellationRequested();
dataReaderObject.InputStreamOptions = InputStreamOptions.Partial;
loadAsyncTask = dataReaderObject.LoadAsync(ReadBufferLength).
AsTask(cancellationToken);

UInt32 bytesRead = await loadAsyncTask;
if (bytesRead > 0)

string txt = dataReaderObject.ReadString(bytesRead);
if (txt.IndexOf('\r') != -1)

{
string val = txt.Replace('\r','\0");
val = txt.Replace('\n', '\0');
txtValue.Text = val;
}
}
}
Save this program.
Testing

Now you can run this program. You should see a list of attached serial ports on your
computer. Please select a serial port for XBee. After it’s selected, you should see incoming
data on Text about a number which is sent from Arduino through XBee IEEE 802.15.4. A
sample of the program output can be seen in Figure 5-31.

151

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

XBee Serial Port List

Arduino Uno (COMS)

FT232R USB UART

Disconnect ..

Avalue from XBee: 25

Figure 5-31. XBeeApp is running

Building a LoRa Network for Arduino

LoRa is a wireless technology developed to create the low-power, wide-area networks
(LPWANSs) required for machine-to-machine (M2M) and Internet of Things (IoT)
applications. You can learn more about LoRa by visiting this site: https://www.lora-
alliance.org. In this section, we learn how Arduino connects to another device through
LoRa modules.

You can easily find LoRa modules or shields. In this section, we explore LoRa
products from Dragino. Dragino Lora Shield is a long-range transceiver on an Arduino
shield form factor and based on an open source library. You can see a list of Dragino Lora
products on this site: http://www.dragino.com/products/lora.html. You can see a
sample of Dragino LoRa shield for Arduino in Figure 5-32.

152

https://www.lora-alliance.org/
https://www.lora-alliance.org/
http://www.dragino.com/products/lora.html

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Figure 5-32. Dragino LoRa shield for Arduino boards

For testing in this section, I use Arduino Mega 2560 and Arduino Leonardo. I use two
Dragino LoRa shields. You can see my implementation in Figure 5-33. To develop a LoRa
application on Arduino, we can use Radiohead Packet Radio library. You can check it on
this site: http://www.airspayce.com/mikem/arduino/RadioHead/.

Figure 5-33. Demo devices for my implementation

153

http://www.airspayce.com/mikem/arduino/RadioHead/

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

First, we download and extract Radiohead Packet Radio library (http://www.
airspayce.com/mikem/arduino/RadioHead/) for Arduino board. You should ZIP the file.
You can extract this library using Arduino software. Click menu Sketch » Include Library
» Add .ZIP library. Then, navigate to the ZIP file for Radiohead Packet Radio library.

If it’s done, your Radiohead library should be shown in Arduino library. You can
see it in Figure 5-34. Now you restart Arduino software in order to reload all libraries on
Arduino.

® | braries 0 ®

This PC * Documents * Arduing * libraries

ar Quick access

& OneDrive
% This PC
EasyVR
B DIGITAL LI (E: Firmata
o Network LiquidCrystal 12
MCP_91xx
PNSI2 /
RadioHead
RCSwitch
RICZero
Temboo
TinyGPS-master
UsBHost
WiFI0
Windows_Virtual_Shieids_for_Arduino

readme.txt

1 itern selected E

Figure 5-34. Adding RadioHead library on Arduino

Now you can start to write a sketch program. For testing, we use a program sample
from Radiohead. The following are sketch scripts:

#include <SPI.h>
#include <RH RF95.h>

// Singleton instance of the radio driver
RH_RF95 1f95;

void setup()
Serial.begin(9600);
while (!Serial) ; // Wait for serial port to be available

if (1rf9s5.init())
Serial.println("init failed");

154

http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

void loop()
{

Serial.println("Sending to rf95_server");

// Send a message to rf95_server

uint8 _t data[] = "Hello World from Mega256!";
rf95.send(data, sizeof(data));

rf95.waitPacketSent();

// Now wait for a reply

uint8 t buf[RH_RF95_MAX_MESSAGE_LEN];
uint8 t len = sizeof(buf);

if (rf95.waitAvailableTimeout(3000))
{
// Should be a reply message for us now
if (rf95.recv(buf, &len))
{
Serial.print("got reply: ");
Serial.println((char*)buf);
}

else

{
Serial.println("recv failed");
}
}

else

{

Serial.println("No reply, is rf95_server running?");

delay(400);

You can change the value on variable data, for instance, “Hello World from Mega256”
for Arduino Mega 2560 and “Hello World from Leonardo!” for Arduino Leonardo. Save all
programs.

Now you can compile and upload a sketch program to all Arduino boards. You
should run one program for one computer. You can run two LoRa programs with
Radiohead library on one computer. For testing, I run my Arduino Mega 2560 on
Windows and Arduino Leonardo on Mac.

After uploading a sketch program, you can open Serial Monitor. You should see
messages. You can see the program output in Figures 5-35 and 5-36.

155

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

@ COM15 (Arduino/Genuino Mega or Mega 2560) - m] x
Send
got reéiy: Heiio World from Leonara;; ~

Sending to rf95_sezver
got reply: Hello World from Leonardo!
Sending to rf95_server
got reply: Hello World from Leonardo!
Sending to rf95_server
got reply: Helle World from Leonardo!
Sending to rf95_ server
got reply: Hello World from Leonardo!
Sending to rf95_server
got reply: Hello World from Leonardo!
Sending to rf95_server
got reply: Hello World from Leonardo!

(v

Autoscroll Both NL&CR ~ 9600 baud

Figure 5-35. Program output on Arduino Mega 2560

[] [] /devfcu.usbmodem1421 (Arduino Leonardo)
Send

[OOT TepLy: RELI0 WOFLd TTOM Meguzsn?
Sending to rf95_server
got reply: Hello World from Mega2S6!
Sending to rf95_server
got reply: Hello World from Mega2S6!
Sending to rf95_server
got reply: Hello World from Mega256!
Sending to rf95_server
got reply: Hello World from Mega2S6!
Sending to rf95_server
got reply: Hello World from Mega2S6!
Sending to rf95_server
got reply: Hello World from Mega2S6!
Sending to rf95_server

Autoscroll No line ending E 9600 baud
Figure 5-36. Program output on Arduino UNO

What'’s next? After we can communicate among Arduino over a LoRa network, we
develop a UWP application to transfer data over a LoRa network through Arduino. You
can also develop any application by applying a LoRa network.

Location-based Application for Arduino

In some cases you may need information about location; for instance, you want to
retrieve information about temperature and humidity in a certain location. We can solve
this case by implementing a location-based system.

156

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Oneof solution is applying a GPS module on our board. There are many GPS
modules which work with Arduino boards. The famous GPS chip is U-blox
(https://www.u-blox.com/). You can see a GPS module form in Figure 5-37.

Figure 5-37. GPS Module with U-blox device

You can find GPS modules in an online store, such as Aliexpress, eBay, SparkFun
and Adafruit. One GPS module can be seen in Figure 5-37. This module can be used for
Arduino and Raspberry Pi.

This GPS module has five pins: VCC, GND, TX, RX, and PPS. For testing, I attach this
module into Arduino UNO as follows:

e GPSmodule VCCis connected to 5V/ V3.3 Arduino.

¢ GPSmodule GND is connected to GND Arduino.

¢ GPSmodule TX is connected to digital pin 5 Arduino.
e GPSmodule RX is connected to digital pin 11 Arduino.
e GPSmodule PPS is connected to GND Arduino.

You can see my wiring implementation in Figure 5-38.

157

https://www.u-blox.com/

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Figure 5-38. Wiring for GPS module and Arduino

To develop a GPS application for Arduino, we can use TinyGPS library (https://
github.com/mikalhart/TinyGPS). You can download this library and then install it via
Arduino software. If you're finished, you should see TinyGPS in the Arduino library path,
which is shown in Figure 5-39. Restart your Arduino in order to reload all library paths.

B 1 s | libraries - o ®
— Home Share View [2]
L i * ThisPC > Documents * Arduino * libraries w) Search libraries »

Name) Date modified Type Size
A Quick access
Adafrut-PN532
& OneDrive Arduinalson
= This PC DHT _sensor_library
EasyVR
A DIGITAL LIB () Firmata
o Betwork LiquidCrystal_J2C
MCP_9Txx 302PM File folder
PNE32 PM File folder
RCSwitch
RICZero
Temboo /
TinyGPS-master
USEHest
WiFi101
Windows_Virtual_Shields_for_Arduing 2207
1 readme.t 9/8/2013 426 AM 148
16 items [EH=

Figure 5-39. TinyGPS library in Arduino library path

158

https://github.com/mikalhart/TinyGPS
https://github.com/mikalhart/TinyGPS

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Now we create a GPS application on Arduino software. This program will read GPS
data on UART to retrieve the current position. After it’s received, GPS data will be parsed
and the result will be shown in UART. Write the following sketch:

#include <SoftwareSerial.h>
#include <TinyGPS.h>

// D5 >>> Rx, D11 >>> Tx
SoftwareSerial gps(5, 11); // RX, TX
char val;

TinyGPS gps_mod;

void setup() {
Serial.begin(9600);
pinMode(13, OUTPUT);
gps.begin(9600);
Serial.println("GPS On..");
}

void loop() {
bool newData = false;
unsigned long chars;
unsigned short sentences, failed;

// read GPS position every 3 seconds
for (unsigned long start = millis(); millis() - start < 3000;) {
while (gps.available()){
char c = gps.read();
//Serial.println(c);
if (gps_mod.encode(c))
newData = true;
}

}

if (newData) {
float flat, flon;
unsigned long age;

digitalWrite(13, HIGH);

gps mod.f get position(&flat, &flon, &age);

print data("LAT=");

print_num data(flat == TinyGPS::GPS_INVALID F ANGLE ? 0.0 : flat, 6);
print data(" LON=");

print_num data(flon == TinyGPS::GPS_INVALID F ANGLE ? 0.0 : flon, 6);
print_data(" SAT=");

print_num data(gps mod.satellites() == TinyGPS::GPS_INVALID SATELLITES ?
0 : gps_mod.satellites());

print_data(" PREC=");

159

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

print_num_data(gps_mod.hdop() == TinyGPS::GPS_INVALID_HDOP ? 0 :

mod.hdop());

break line();
digitalWrite(13, LOW);
}
}

void print_data(char msg[30]) {
Serial.print(msg);

}

void print _num_data(float msg,int n) {
Serial.print(msg, n);

}

void print_num_data(int msg) {
Serial.print(msg);

}

void break line() {
Serial.println("");

}

Save this program as “GPSArduino”.

gps_

Compile and upload the sketch program into Arduino. Open the Serial Monitor tool
to see GPS data. You can see the sample output in Figure 5-40.

SAT=4 PREC=222
SAT=4 PREC=222
SAT=4 PREC=222
SAT=4 PREC=223
SAT=4 PREC=223

: Autoscroll

Figure 5-40. Running GPS application for Arduino

160

Send

Both NL& CR 9600 baud

~

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

Arduino and Cloud Server

A server that you develop may not have a good performance if there are many requests
from Arduino. Server scalability may not be achieved. Because of this situation, you could
consider using a cloud server. This server is designed to handle many requests.

In this section, we review several cloud servers with which our Arduino can
communicate.

Let's explore!

Arduino Cloud

Arduino cloud is a cloud server from Arduino LLC. You can access Arduino cloud on
https://cloud.arduino.cc/. You need to register to enable accessing this code. You can
see it in Figure 5-41.

[¢] & cloud.arduine.cc - s
- Y
1% My Things 4 arduincbot ¥ B
[examples
4 blackduck » e o
4 KCloud w Y

Figure 5-41. Arduino cloud

Currently, Arduino cloud is supported for Arduino MKR1000, WiFi 101 shield, and
Arduino YUN. You need to register your Arduino board to this cloud. After it’s registered,
you should obtain an ID and password for your board.

After your board is registered, you should add a property to catch your data. For
instance, I add two properties: Humidity and Temperature (see Figure 5-41). Arduino
provides a Sketch sample for sending data. The following is a modified sketch program to
send humidity and temperature to Arduino Cloud. I use an Arduino MKR1000 board. You
can use it or Arduino with a WiFi 101 shield.

161

https://cloud.arduino.cc/

CHAPTER 5 ' BUILDING YOUR OWN 10T USING ARDUINO AND .NET

#include <WiFi101.h>
#include <ArduinoCloud.h>

/171717 Wifi Settings ///////
char ssid[] = "ssid";
char pass[] = "ssid key";

// Arduino Cloud settings and credentials

const char userName[] = "<username>";
const char thingName[] = "<arduino name>";
const char thingId[] = "<board id>";

const char thingPsw[]

"<password>";
WiFiSSLClient sslClient;

// build a new object "KCloud"
ArduinoCloudThing KCloud;

void setup() {
Serial.begin (9600);

// attempt to connect to WiFi network:
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);

while (WiFi.begin(ssid, pass) != WL_CONNECTED) {
// unsuccessful, retry in 4 seconds
Serial.print("failed ... ");
delay(4000);
Serial.print("retrying ... ");

}

Serial.println("connected to wifi");

KCloud.begin(thingName, userName, thingId, thingPsw, sslClient);
KCloud.enableDebug();

// define the properties

KCloud.addProperty("humidity", FLOAT, R);
KCloud.addProperty("temperature”, FLOAT, R);

Serial.println("connected");
randomSeed(analogRead(0));
}

void loop() {
KCloud.poll();

long temp = random(10, 20);
long humidity = random(20, 80);

162

CHAPTER 5 " BUILDING YOUR OWN 10T USING ARDUINO AND .NET

temp = temp + 0.21 * temp;
humidity = humidity + 0.45 * humidity;

KCloud.writeProperty("humidity", String(humidity,2));
KCloud.writeProperty("temperature", String(temp,2));

delay(2000);

Change values for ssid, pass, userName, thingName, thingld, and thingPsw.

If you're done, compile and upload the Sketch program into Arduino. You should see
Humidity and Temperature data on the Arduino Cloud.

You can combine this program with a UWP application to retrieve data from the
Arduino cloud and show it on an application.

Summary

In this chapter, we have learned how our Arduino board connects to the Internet through
a wired and WiFi connection. We built a simple IoT program to turn on/off LEDs which
are attached on an Arduino board from a UWP program. We continued our journey to
learn how to extend a WRA program over WiFi so our UWP program can communicate
with Arduino through WiFi.

Moreover, we explored RF communication for Arduino. We applied XBee and LoRa
modules to communicate with other systems. We also involved a GPS module to detect
current location on an Arduino board.

In the last section, we connected our Arduino board to a Cloud server. We used
Arduino Cloud as sample. Sending data to Arduino Cloud was done using a sketch
program.

To upgrade your skill for Arduino development, you can try to use several sensor and
actuator devices in your projects. Connect them to an external system using connectivity
methods which we have learned. Now you can build your own projects in automation
and IoT.

163

Index

A D
Actuator devices 45 DHT22 module, 46-51
NET DHT sensor library, 49-50
COMS5, 67 DotnetDHT, 61
RGBControlApp, 65 Dragino LoRa shield, 152-153
RGB LED, 53-57, 65
SolidSoils4Arduino, 65, 67 E
Servo, 53-54
Adafruit Feather 32u4 Adalogger, 8 Ethernet shield
Atmel’s Embedded Debugger with PoE, 111
(EDBG), 4 UNO and, 111
WebServer, 112-113
B
BLE, 6 F
Bluetooth Feather board models, 8
WRA over, 100 Firmata protocol
Arduino program, writing, 105 add sketch program, 39
pairing Arduino Bluetooth and SolidArduino, 41
computer, 102-103 SolidSoils4Arduino, 42-44
testing, 107 standard sketch program, 40
UWP program, writing,
105-106 G
UWP project, 104
wiring, 101-102 Genuino 101 boards, 6-7
Genuino MKR1000, 5
C GPS modules
pins, 157
Client app, 129 Serial Monitor tool, 160
Cloud, 161-163 TinyGPS library, 158
COM ports, Bluetooth, 106-107 UART, 159-160
Control analog I/0, WRA, 85 U-blox, 157
Arduino program, 87 Graphical Unit Interface (GUI), 70
testing, 91-92
UWP project, 87 H
wiring, 86
writing UWP program, 87-91 HC-06 Bluetooth module, 100-101, 103
© Agus Kurniawan 2017 165

A. Kurniawan, Arduino Programming with .NET and Sketch,
DOI 10.1007/978-1-4842-2659-9

INDEX

IDE, 9
InitWRA() method, 105
Inter-Integrated Circuit (12C)
PCF8591 AD/DA module, 30-33
SparkFun Humidity and Temperature
Sensor Breakout, 30
wires, 29
WRA through, 92
testing, 99
UWP project, 94
wiring, 93-94
writing UWP program, 95-99
Internet, 4-7
WiFi, 114-121
wired, 110-114
Internet of Things (IoT), 4-7, 109-110
I/0 communication
communication models, 22
12C communication, 29-33
serial communication,
22,24-29
UNO, 21-22

J, K

JSON, 58-59

L

LED blinking
code, 12-13
compile program, 14
IDE configuration, 13
target and port, 13
UNO, 14

Linux OS, 6

LLC, 1,5

LoRa network, 152-156

Master In Slave Out (MISO), 26-27
Master Out Slave In (MOSI), 26-27
Mega 2560, 3, 155-156
MKR1000, 117
COMx, 116
ConnectWithWPA, 118-120
device manager, 117
enable software, 115

166

.NET
demo wiring, 122
HTTP GET URL mapping, 122
LED 1 lighting, 128
LEDs Sketch program, 124-127
response on browser, 128
Serial monitor tool, 127, 129
URL mapping, 121-122, 124
wiring for LEDs, 123-124
Serial Monitor tool, 120
WiFi101 library, 117-118

N

.NET
actuating app, 65, 67-68
application program, 73-74
LEDs, 34
program, 35-36
Visual Studio, 36-37
wiring, 34
sensing app, 58-61, 63-64
writing program, 77-82
Network stacks, 110

(0

Open source-based hardware, 1
OpenWrt Linux, 6

PQ
PCF8591 AD/DA module, 30-33, 92-93,
96-97
Pulse Width Modulation (PMW), 55, 85

R

Radiohead Packet Radio library, 154-155
ReadADC() methods, 98
Really Bare Bones Board (RBBB), 8
RF communication

defined, 141

Wireless SD Shield, 142

XBee IEEE 802.15.4 module,

141-143

RGBControlApp, 65, 68
RGB LED

displays, 54

forms, 53

pin layout, 54-55

INDEX

PMW, 55 U
sketch program, 56-58
wiring, 55-56 U-blox device, 157
Universal Asynchronous Receiver
S Transmitter (UART). See Serial
communication
SAMD Boards, 115 Universal Windows Platform (UWP), 69
Sensor devices, 45 .NET application, 69
DHT22 module, 46-47 program
DHT sensor library, 49-50 control analog I/0, 87-91
pins layout, 48 12C bus, 95-99
program to read temperature and WRA over Bluetooth, 105-106
humidity, 50-52 project
wiring, 48-49 control analog I/0, 87
feature, 46 12C bus, 94
.NET, 58-64 templates, 71
SparkFun Electret Microphone WRA over Bluetooth, 104
Breakout, 47 targets, 70
Serial communication technology, 70
Serial Monitor tool, 23-25 WRA, 70
sketch program, 23 UNO boards
SparkFun Triple Axis Accelerometer beginners, 2-3
Breakout, 26 LLC, 3
SPI communication, 26, 28 R3 board, 2
Serial Monitor tool, 23-25 WiFi, 4-5
Serial Peripheral Interface (SPI) UpdateData() method, 98
library, 27, 29 UWP application, 121-122
MISO and MISO pins, 27 LEDs, 137-139
pins, 26 MKR1000, 132-133
sketch program, 28 testing, 133
Servo, 53-54 Toggled method, 131-132
SolidArduino, 41 UI, 130-131
SolidSoils4Arduino, 42-44 WiFiWRA, 135-137
SparkFun Bluetooth Mate
Silver, 100 V
SparkFun Electret Microphone
Breakout, 47 Visual Micro, 15
SparkFun Humidity and Temperature Visual Studio 2015
Sensor Breakout, 30 editor, 17
SparkFun RedBoard, 7 project templates, 16
SparkFun Triple Axis Accelerometer running and debugging, 18
Breakout, 26 serial port configuration, 18
SRL, 1,4 start page, 11
StandardFirmataWiFi Sketch Visual Micro, 15
program, 134-135
w
T WiFil01 library, 117
TinyGPS library, 158 WiFi network
TurnOffLeds method, 78 MKR1000, 114-121
Two-Wire Interface (TWI). See Inter- SAMD Boards, 115
Integrated Circuit (12C) YUN Shield, 115

167

INDEX

WiFiWRA, 135-137
Windows 10, 10, 70, 71, 102, 103, 106
Windows Presentation Foundation

(WPF), 70

Windows Remote Arduino (WRA), 69
building first program, 71

adding library, 75-76

Arduino program, 72

.NET application program, 73-74
testing, 82-84

wiring, 71

writing .NET program, 77-82

control analog I/0, 85

Arduino program, 87

testing, 91-92

UWP project, 87

wiring, 86

writing UWP program, 87-91

12C bus, through, 92

testing, 99

UWP project, 94

wiring, 93-94

writing UWP program, 95-99

over Bluetooth, 100

168

Arduino program, writing, 105

pairing Arduino Bluetooth and
computer, 102-103

testing, 107

UWP program, writing, 105-106

UWP project, 104

wiring, 101-102

setting up Arduino for, 70
StandardFirmataWiFi Sketch
program, 134-135
testing, 140
UWP application, 135-140
Wired network, 110-114
Wireless SD Shield, 141-142
Wireless Sensor Network
(WSN), 141

X

XAML technology, 70

XBeeApp, 146

XBee IEEE 802.15.4 module, 143
configure, 143-144
sketch program, 145
SparkFun, 142-143
testing, 142, 151-152
UWP program, 146-151
WSN, 141

XCTU application, 144-145

Y

YUN board, 6
Yun Shield, 115

y4

Zero board, 4

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Arduino Boards and Development
	Exploring Arduino Boards
	Arduino Boards for Beginners
	Arduino Boards for Advanced Users
	Arduino for Internet of Things
	Arduino-Compatible

	Setting up Your Development Environment
	Build your First Project: Blinking
	Sketch Programming
	Arduino Programming Using Visual Studio
	Summary

	Chapter 2: Interfacing .NET and Arduino
	Arduino I/O Communication
	Serial Communication - UART
	How the Program Works
	SPI Communication
	How the Program Works
	TWI/I2C Communication
	How the Program Works

	Control Arduino Board from .NET
	How the Program Works

	Introducing Firmata Protocol
	Summary

	Chapter 3: Sensing and Actuating
	Overview of Sensing and Actuating in Arduino
	Exploring Sensor and Actuator Devices
	Sensor Devices
	Accessing and Testing the Sensor

	How the Program Works
	Actuator Devices
	Accessing and Testing the Actuator

	Creating an Arduino Sensing App Using .NET
	How the Program Works
	How the Program Works

	Creating an Arduino Actuating App Using .NET
	Summary

	Chapter 4: Windows Remote Arduino
	Setting up Arduino for Windows Remote Arduino
	Building Your First Program for Windows Remote Arduino
	Wiring
	Arduino Program
	.NET Application Program
	Adding Windows Remote Arduino Library
	Writing .NET Program
	Testing

	Control Arduino Analog I/O
	Wiring
	Creating a UWP Project
	Arduino Program
	Writing the UWP Program
	Testing

	Remote Arduino Through I2C Bus
	Wiring for I2C Application
	Creating a UWP Project
	Writing UWP Program
	Testing

	Windows Remote Arduino Over Bluetooth
	Wiring for WRA with Bluetooth
	Pairing Arduino Bluetooth and Computer
	Creating a UWP Project
	Writing an Arduino Program
	Writing a UWP Program
	Testing

	Summary

	Chapter 5: Building Your Own IoT Using Arduino and .NET
	Introduction to Internet of Things and Arduino
	Connecting Arduino to Internet Network
	Connecting to a Wired Network
	Connecting to a WiFi Network

	Accessing Arduino over a Network from .NET Application
	Wiring
	Building a Sketch Program
	Building a UWP Application
	Testing

	Windows Remote Arduino (WRA) over WiFi
	Configure Arduino for WRA over WiFi
	Building a UWP Application
	Testing

	RF Communication for Arduino
	Configuring XBee IEEE 802.15.4
	Building an Arduino Sketch Program
	Building a UWP Program
	Testing

	Building a LoRa Network for Arduino
	Location-based Application for Arduino
	Arduino and Cloud Server
	Arduino Cloud

	Summary

	Index

