

BEGINNING

C# 7 Programming
with Visual Studio® 2017

Benjamin Perkins
Jacob Vibe Hammer

Jon D. Reid

Beginning C# 7 Programming with Visual Studio® 2017

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-45868-5
ISBN: 978-1-119-45872-2 (ebk)
ISBN: 978-1-119-45866-1 (ebk)
Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018933383

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Visual Studio is a registered trademark of Microsoft Corporation. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product
or vendor mentioned in this book.

www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
www.wiley.com

ABOUT THE AUTHORS

BENJAMIN PERKINS (MBA, MCSD, ITIL) is currently employed at Microsoft in Munich, Germany,
as a Senior Escalation Engineer. He has been working professionally in the IT industry for over two
decades. He started computer programming with QBasic at the age of 11 on an Atari 1200XL desk-
top computer. He takes pleasure in the challenges that troubleshooting technical issues has to offer
and savors the rewards of a well-written program. After completing high school he joined the United
States Army. After successfully completing his military service, he attended Texas A&M University
in College Station, Texas, where he received a Bachelor of Business Administration in Management
Information Systems.

His roles in the IT industry have spanned the entire spectrum including programmer, system
architect, technical support engineer, team leader, and mid-level management. While employed at
Hewlett-Packard, he received numerous awards, degrees, and certifications. He has a passion for
technology and customer service and looks forward to troubleshooting and writing more world-
class technical solutions.

“My approach is to write code with support in mind, and to write it once correctly and completely
so we do not have to come back to it again, except to enhance it.”

Benjamin is married to Andrea and has two wonderful children, Lea and Noa.

JACOB VIBE HAMMER helps develop solutions for the health care industry as a Senior Software
Engineer at Systematic in Denmark. He started programming just about the time when he was able
to spell the word “BASIC”—which, incidentally, is the first programming language he ever used.
Since then, he has worked with numerous programming languages and solution architectures;
however, since the turn of the century, he has worked primarily with the .NET platform. Today,
his programming time is spent working primarily with C# and WPF, as well as toying with NoSQL
databases. A Danish citizen, Jacob lives in Aarhus, Denmark, with his wife and two sons.

JON D. REID is a Product Solution Manager for IFS Field Service Management (www.IFSWORLD
.com). He has coauthored a number of books, including Beginning Visual C# 2015, Fast Track C#,
Pro Visual Studio .NET, and many others.

ABOUT THE TECHNICAL EDITOR

JOHN MUELLER is a freelance author and technical editor. He has writing in his blood, having pro-
duced 108 books and more than 600 articles to date. The topics range from networking to artificial
intelligence and from database management to heads-down programming. Some of his current
books include topics such as Python for beginners, Python for data scientists, and Amazon Web
Services. He has also written about algorithms and machine learning. His technical editing skills
have helped more than 70 authors refine the content of their manuscripts. John has provided
technical editing services to a number of computing magazines. Be sure to read John’s blog at
http://blog.johnmuellerbooks.com/.

www.IFSWORLD.com
www.IFSWORLD.com
http://blog.johnmuellerbooks.com/

SENIOR ACQUISITIONS EDITOR
Kenyon Brown

PROJECT EDITOR
Tom Dinse

TECHNICAL EDITOR
John Mueller

PRODUCTION EDITOR
Barath Kumar Rajasekaran

COPY EDITOR
First Edition Publishing Services

PRODUCTION MANAGER
Katie Wisor

MANAGER OF CONTENT ENABLEMENT
AND OPERATIONS
Pete Gaughan

MARKETING MANAGER
Christie Hilbrich

BUSINESS MANAGER
Amy Knies

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
©Ben Clift Williams/EyeEm/Getty Images

CREDITS

ACKNOWLEDGMENTS

It takes a lot of work to get content into a presentable format for students and IT professionals to
read and get value from. The authors indeed have technical knowledge and experiences to share, but
without the technical writers, technical reviewers, developers, editors, publishers, graphic designers,
the list goes on, providing their valuable input, a book of high quality could not be written. The rate
of change occurs too quickly for an individual to perform all these tasks and still publish a book
that is valid before the technology becomes stale. This is why authors worked together with a great
team to get all the components of the book together quickly. It was done to ensure that the most up
to date information gets to the reader while the features are still fresh and current. I would like to
thank Tom Dinse for his great project management and technical review of the content as well as
John Mueller for his technical review and suggestions throughout the process. Lastly, I would like to
thank all the numerous people behind the scenes who helped get this book together.

CONTENTS

INTRODUCTION xxi

ParT I: THE C# LaNGUaGE

CHaPTEr 1: INTrODUCING C# 3

What Is the .NET Framework? 4
What’s in the .NET Framework? 4
.NET Standard and .NET Core 5
Writing Applications Using the .NET Framework and .NET Core 5

CIL and JIT 6
Assemblies 7
Managed Code 7
Garbage Collection 7
Fitting It Together 8
Linking 9

What Is C#? 9
Applications You Can Write with C# 10
C# in this Book 11

Visual Studio 2017 11
Visual Studio 2017 Products 11
Solutions 12

CHaPTEr 2: WrITING a C# PrOGraM 15

The Visual Studio 2017 Development Environment 16
Console Applications 21

The Solution Explorer 24
The Properties Window 25
The Error List Window 25

Desktop Applications 26

CHaPTEr 3: VarIaBLES aND EXPrESSIONS 33

Basic C# Syntax 34
Basic C# Console Application Structure 36
Variables 38

Simple Types 38

viii

CONTENTS

Variable Naming 43
Literal Values 43

Binary Literals and Digit Separators 44
String Literals 45

Expressions 46
Mathematical Operators 47
Assignment Operators 52
Operator Precedence 53
Namespaces 54

CHaPTEr 4: FLOW CONTrOL 59

Boolean Logic 60
Boolean Bitwise and Assignment Operators 62
Operator Precedence Updated 64

Branching 65
The Ternary Operator 65
The if Statement 65

Checking More Conditions Using if Statements 68
The switch Statement 69

Looping 72
do Loops 73
while Loops 75
for Loops 77
Interrupting Loops 78
Infinite Loops 79

CHaPTEr 5: MOrE aBOUT VarIaBLES 83

Type Conversion 84
Implicit Conversions 84
Explicit Conversions 86
Explicit Conversions Using the Convert Commands 88

Complex Variable Types 91
Enumerations 91

Defining Enumerations 92
Structs 96

Defining Structs 96
Arrays 99

Declaring Arrays 99
foreach Loops 102

ix

CONTENTS

Pattern Matching with switch case expression 102
Multidimensional Arrays 106
Arrays of Arrays 108

String Manipulation 109

CHaPTEr 6: FUNCTIONS 117

Defining and Using Functions 118
Return Values 120
Parameters 122

Parameter Matching 124
Parameter Arrays 124
Reference and Value Parameters 126
Out Parameters 129
Tuples 130

Variable Scope 131
Variable Scope in Other Structures 134
Parameters and Return Values versus Global Data 136
Local Functions 137

The Main() Function 138
Struct Functions 141
Overloading Functions 142
Using Delegates 144

CHaPTEr 7: DEBUGGING aND ErrOr HaNDLING 149

Debugging in Visual Studio 150
Debugging in Nonbreak (Normal) Mode 150

Outputting Debugging Information 151
Tracepoints 156
Diagnostics Output Versus Tracepoints 158

Debugging in Break Mode 158
Entering Break Mode 158
Monitoring Variable Content 162
Stepping through Code 164
Immediate and Command Windows 166
The Call Stack Window 167

Error Handling 167
try…catch…finally 168
Throw Expressions 175
Listing and Configuring Exceptions 176

x

CONTENTS

CHaPTEr 8: INTrODUCTION TO OBJECT-OrIENTED
PrOGraMMING 179

What Is Object-Oriented Programming? 180
What Is an Object? 181

Properties and Fields 182
Methods 183

Everything’s an Object 184
The Life Cycle of an Object 184

Constructors 184
Destructors 185

Static and Instance Class Members 185
Static Constructors 185
Static Classes 186

OOP Techniques 186
Interfaces 187

Disposable Objects 188
Inheritance 188
Polymorphism 191

Interface Polymorphism 192
Relationships between Objects 193

Containment 193
Collections 194

Operator Overloading 194
Events 195
Reference Types versus Value Types 195

OOP in Desktop Applications 196

CHaPTEr 9: DEFINING CLaSSES 203

Class Definitions in C# 204
Interface Definitions 206

System.Object 209
Constructors and Destructors 211

Constructor Execution Sequence 212
OOP Tools in Visual Studio 216

The Class View Window 216
The Object Browser 218
Adding Classes 219
Class Diagrams 220

Class Library Projects 222

xi

CONTENTS

Interfaces Versus Abstract Classes 226
Struct Types 228
Shallow Copying Versus Deep Copying 230

CHaPTEr 10: DEFINING CLaSS MEMBErS 233

Member Definitions 234
Defining Fields 234
Defining Methods 235
Defining Properties 236
Tuple Deconstruction 241
Refactoring Members 242
Automatic Properties 243

Additional Class Member Topics 244
Hiding Base Class Methods 244
Calling Overridden or Hidden Base Class Methods 246

The this Keyword 246
Using Nested Type Definitions 247

Interface Implementation 249
Implementing Interfaces in Classes 250

Explicit Interface Member Implementation 251
Additional Property Accessors 252

Partial Class Definitions 252
Partial Method Definitions 253
Example Application 255

Planning the Application 255
The Card Class 255
The Deck Class 255

Writing the Class Library 256
Adding the Suit and Rank Enumerations 257
Adding the Card Class 259
Adding the Deck Class 260

A Client Application for the Class Library 263
The Call Hierarchy Window 265

CHaPTEr 11: COLLECTIONS, COMParISONS,
aND CONVErSIONS 269

Collections 270
Using Collections 271
Defining Collections 276
Indexers 277

xii

CONTENTS

Adding a Cards Collection to CardLib 279
Keyed Collections and IDictionary 282
Iterators 283
Iterators and Collections 288
Deep Copying 289
Adding Deep Copying to CardLib 290

Comparisons 292
Type Comparisons 292

Boxing and Unboxing 292
The is Operator 294

Pattern Matching with the is Operator Pattern Expression 297
Value Comparisons 298

Operator Overloading 298
Adding Operator Overloads to CardLib 302
The IComparable and IComparer Interfaces 308
Sorting Collections 309

Conversions 313
Overloading Conversion Operators 313
The as Operator 315

CHaPTEr 12: GENErICS 319

What Are Generics? 320
Using Generics 321

Nullable Types 321
Operators and Nullable Types 322
The ?? Operator 323
The ?. Operator 324
Working with Nullable Types 325

The System.Collections.Generic Namespace 329
List<T> 330
Sorting and Searching Generic Lists 331
Dictionary<K, V> 337
Modifying CardLib to Use a Generic Collection Class 339

Defining Generic Types 339
Defining Generic Classes 340

The default Keyword 342
Constraining Types 342
Inheriting from Generic Classes 348
Generic Operators 349
Generic Structs 350

Defining Generic Interfaces 350

xiii

CONTENTS

Defining Generic Methods 351
Defining Generic Delegates 352

Variance 353
Covariance 354
Contravariance 354

CHaPTEr 13: aDDITIONaL C# TECHNIQUES 359

The :: Operator and the Global Namespace Qualifier 360
Custom Exceptions 361

Adding Custom Exceptions to CardLib 362
Events 363

What Is an Event? 363
Handling Events 365
Defining Events 368

Multipurpose Event Handlers 371
The EventHandler and Generic EventHandler<T> Types 374
Return Values and Event Handlers 374
Anonymous Methods 375

Expanding and Using CardLib 375
Attributes 384

Reading Attributes 384
Creating Attributes 385

Initializers 386
Object Initializers 387
Collection Initializers 389

Type Inference 392
Anonymous Types 394
Dynamic Lookup 398

The dynamic Type 399
Advanced Method Parameters 402

Optional Parameters 403
Optional Parameter Values 404
The OptionalAttribute Attribute 404
Optional Parameter Order 404

Named Parameters 404
Lambda Expressions 409

Anonymous Methods Recap 409
Lambda Expressions for Anonymous Methods 410
Lambda Expression Parameters 413
Lambda Expression Statement Bodies 414
Lambda Expressions as Delegates and Expression Trees 415
Lambda Expressions and Collections 416

xiv

CONTENTS

ParT II: WINDOWS PrOGraMMING

CHaPTEr 14: BaSIC DESKTOP PrOGraMMING 425

XAML 426
Separation of Concerns 427
XAML in Action 427

Namespaces 428
Code-Behind Files 429

The Playground 429
WPF Controls 430
Properties 432

Dependency Properties 435
Attached Properties 435

Events 436
Handling Events 437
Routed Events 438
Routed Commands 438
Control Types 441

Control Layout 441
Basic Layout Concepts 441

Stack Order 442
Alignment, Margins, Padding, and Dimensions 442
Border 443
Visual Debugging Tools 443

Layout Panels 444
Canvas 444
DockPanel 446
StackPanel 448
WrapPanel 449
Grid 449

The Game Client 452
The About Window 453

Designing the User Interface 453
The Image Control 454
The Label Control 454
The TextBlock Control 454
The Button Control 455

The Options Window 458
The TextBox Control 459
The CheckBox Control 459
The RadioButton Control 460

xv

CONTENTS

The ComboBox Control 461
The TabControl 462
Handling Events in the Options Window 465

Data Binding 467
The DataContext 468
Binding to Local Objects 468
Static Binding to External Objects 469
Dynamic Binding to External Objects 470

Starting a Game with the ListBox Control 472

CHaPTEr 15: aDVaNCED DESKTOP PrOGraMMING 479

Creating and Styling Controls 480
Styles 480
Templates 481
Triggers 483
Animations 484

WPF User Controls 485
Implementing Dependency Properties 486

The Main Window 499
The Menu Control 499
Routed Commands with Menus 499

Putting It All Together 504
Refactoring the Domain Model 504
The ViewModel 511
Completing the Game 519

ParT III: CLOUD aND CrOSS-PLaTFOrM PrOGraMMING

CHaPTEr 16: BaSIC CLOUD PrOGraMMING 533

The Cloud, Cloud Computing, and the Cloud Optimized Stack 534
Cloud Patterns and Best Practices 537
Using Microsoft Azure C# Libraries to Create
a Storage Container 538
Creating an ASP.NET 4.7 Web Site That Uses the
Storage Container 548

CHaPTEr 17: aDVaNCED CLOUD PrOGraMMING
aND DEPLOYMENT 559

Creating an ASP.NET Web API 560
Deploying and Consuming an ASP.NET Web API on
Microsoft Azure 564
Scaling an ASP.NET Web API on Microsoft Azure 572

xvi

CONTENTS

CHaPTEr 18: .NET STaNDarD aND .NET COrE 579

Cross-Platform Basics and Key “Must Know” Terms 581
What Is .NET Standard, and Why Is It Needed? 583

Shared Project, PCL, and .NET Standard 584
Referencing and Targeting Frameworks 587
What is .NET Core? 588

Cross Platform 590
Open Source 591
Optimized for the Cloud 591
Performance 592
Modular Design 593
Self-Contained Deployment Model 595

Building and Packaging a .NET Standard Library 596
Building a .NET Core Application with Visual Studio 602
Porting from .NET Framework to .NET Core 605

Identifying Third-Party Dependencies 605
Understanding Which Features Are Not Available 606
Upgrading the Current .NET Framework Target 606
Choosing the Platforms to Target for the Program 606

CHaPTEr 19: aSP.NET aND aSP.NET COrE 609

Overview of Web Applications 610
Which ASP.NET to Use and Why 611

ASP.NET Web Forms 613
ASP.NET MVC 614
ASP.NET Web API 617
ASP.NET Core 617
ASP.NET Web Site versus ASP.NET Web Application
Project Types 618

File Structure 619
Compiling 619
Deployment 619

Using ASP.NET Web Forms 620
Server Controls 620
Input Validation 621
State Management 622
Authentication and Authorization 623

Creating ASP.NET Core Web Applications 627
IIS and Kestrel 628
Razor Syntax 628

xvii

CONTENTS

Input Validation 629
State Management 630
Authentication and Authorization 631
Dependency Injection 632

ParT IV: DaTa aCCESS

CHaPTEr 20: FILES 641

File Classes for Input and Output 642
The File and Directory Classes 643
The FileInfo Class 644
The DirectoryInfo Class 646
Path Names and Relative Paths 646

Streams 647
Classes for Using Streams 647
The FileStream Object 648

File Position 650
Reading Data 650
Writing Data 653

The StreamWriter Object 655
The StreamReader Object 658

Reading Data 660
Asynchronous File Access 660
Reading and Writing Compressed Files 661

Monitoring the File System 664

CHaPTEr 21: XML aND JSON 673

XML Basics 674
JSON Basics 674
XML Schemas 675
XML Document Object Model 677

The XmlDocument Class 678
The XmlElement Class 678
Changing the Values of Nodes 683

Inserting New Nodes 684
Deleting Nodes 687
Selecting Nodes 689

Converting XML to JSON 689
Searching XML with XPath 691

xviii

CONTENTS

CHaPTEr 22: LINQ 697

LINQ to XML 698
LINQ to XML Functional Constructors 698
Working with XML Fragments 701

LINQ Providers 704
LINQ Query Syntax 705

Declaring a Variable for Results Using the var Keyword 706
Specifying the Data Source: from Clause 707
Specify Condition: where Clause 707
Selecting Items: select Clause 708
Finishing Up: Using the foreach Loop 708
Deferred Query Execution 708

LINQ Method Syntax 709
LINQ Extension Methods 709
Query Syntax versus Method Syntax 709
Lambda Expressions 710

Ordering Query Results 712
Understanding the orderby Clause 713
Querying a Large Data Set 714
Using Aggregate Operators 717
Using the Select Distinct Query 720
Ordering by Multiple Levels 723
Using Group Queries 725
Using Joins 727

CHaPTEr 23: DaTaBaSES 731

Using Databases 731
Installing SQL Server Express 732
Entity Framework 732
A Code First Database 733
But Where Is My Database? 740
Navigating Database Relationships 742
Handling Migrations 749
Creating and Querying XML from an Existing Database 750

ParT V: aDDITIONaL TECHNIQUES

CHaPTEr 24: WINDOWS COMMUNICaTION FOUNDaTION 761

What Is WCF? 762
WCF Concepts 763

WCF Communication Protocols 763
Addresses, Endpoints, and Bindings 764

xix

CONTENTS

Contracts 766
Message Patterns 767
Behaviors 767
Hosting 768

WCF Programming 768
The WCF Test Client 774
Defining WCF Service Contracts 777

Data Contracts 777
Service Contracts 778
Operation Contracts 778
Message Contracts 779
Fault Contracts 779

Self-Hosted WCF Services 784

CHaPTEr 25: UNIVErSaL aPPS 793

Getting Started 794
Windows Universal Apps 795
App Concepts and Design 796

Screen Orientation 796
Menus and Toolbars 796
Tiles and Badges 796
App Lifetime 797
Lock Screen Apps 797

App Development 797
Adaptive Displays 797

Relative Panel 798
Adaptive Triggers 798
FlipView 800

Sandboxed Apps 805
Disk Access 806
Serialization, Streams, and Async Programming 806

Navigation between Pages 810
The CommandBar Control 812
Managing State 814

Common Elements of Windows Store Apps 816
The Windows Store 818

Packaging an App 818
Creating the Package 819

APPENDIX: EXERCISE SOLUTIONS 821

INDEX 865

INTRODUCTION

THE C# LANGUAGE WAS UNVEILED TO THE WORLD when Microsoft announced the first version
of its .NET Framework in July 2000. Since then its popularity has rocketed, and it has arguably
become the language of choice for desktop, web, cloud, and cross-platform developers who use the
.NET Framework. Part of the appeal of C# comes from its clear syntax, which derives from C/C++
but simplifies some things that have previously discouraged some programmers. Despite this sim-
plification, C# has retained the power of C++, and there is now no reason not to move into C#. The
language is not difficult and it’s a great one to learn elementary programming techniques with. This
ease of learning, combined with the capabilities of the .NET Framework, make C# an excellent way
to start your programming career.

The latest release of C# is C# 7 (included with version 4.7 of the .NET Framework), which builds
on the existing successes and adds even more attractive features. The latest release of Visual Studio
(Visual Studio 2017) and the Visual Studio Code 2017 line of development tools also bring many
tweaks and improvements to make your life easier and to dramatically increase your productivity.

This book is intended to teach you about all aspects of C# programming, including the language
itself, desktop, cloud, and cross-platform programming, making use of data sources, and some new
and advanced techniques. You’ll also learn about the capabilities of Visual Studio 2017 and all the
ways that this product can aid your application development.

The book is written in a friendly, mentor-style fashion, with each chapter building on previous ones,
and every effort is made to ease you into advanced techniques painlessly. At no point will techni-
cal terms appear from nowhere to discourage you from continuing; every concept is introduced and
discussed as required. Technical jargon is kept to a minimum, but where it is necessary, it, too, is
properly defined and laid out in context.

The authors of this book are all experts in their field and are all enthusiastic in their passion for
both the C# language and the .NET Framework. Nowhere will you find a group of people better
qualified to take you under their collective wing and nurture your understanding of C# from first
principles to advanced techniques. Along with the fundamental knowledge it provides, this book is
packed full of helpful hints, tips, exercises, and full-fledged example code (available for download on
this book’s web page at www.wrox.com and at https://github.com/benperk/BeginningCSharp7)
that you will find yourself returning to repeatedly as your career progresses.

We pass this knowledge on without begrudging it and hope that you will be able to use it to become
the best programmer you can be. Good luck, and all the best!

www.wrox.com
https://github.com/benperk/BeginningCSharp7

xxii

INTRODUCTION

WHO THIS BOOK IS FOR

This book is for everyone who wants to learn how to program in C# using the .NET Framework. It
is for absolute beginners who want to give programming a try by learning a clean, modern, elegant
programming language. But it is also for people familiar with other programming languages who
want to explore the .NET platform, as well as for existing .NET developers who want to give
Microsoft’s .NET flagship language a try.

WHAT THIS BOOK COVERS

The early chapters cover the language itself, assuming no prior programming experience. If you
have programmed in other languages before, much of the material in these chapters will be familiar.
Many aspects of C# syntax are shared with other languages, and many structures are common to
practically all programming languages (such as looping and branching structures). However, even if
you are an experienced programmer, you will benefit from looking through these chapters to learn
the specifics of how these techniques apply to C#.

If you are new to programming, you should start from the beginning, where you will learn basic
programming concepts and become acquainted with both C# and the .NET platform that underpins
it. If you are new to the .NET Framework but know how to program, you should read Chapter 1
and then skim through the next few chapters before continuing with the application of the C#
language. If you know how to program but haven’t encountered an object-oriented programming
language before, you should read the chapters from Chapter 8 onward.

Alternatively, if you already know the C# language, you might want to concentrate on the chapters
dealing with the most recent .NET Framework and C# language developments, specifically the
chapters on collections, generics, and C# language enhancements (Chapters 11 and 12).

The chapters in this book have been written with a dual purpose in mind: They can be read sequen-
tially to provide a complete tutorial in the C# language, and they can be dipped into as required
reference material.

In addition to the core material, starting with Chapter 3 most chapters also include a selection of
exercises at the end, which you can work through to ensure that you have understood the material.
The exercises range from simple multiple choice or true/false questions to more complex exercises
that require you to modify or build applications. The answers to all the exercises are provided in the
Appendix. You can also find these exercises as part of the wrox.com code downloads on this book’s
page at www.wrox.com.

This book also gives plenty of love and attention to coincide with the release of C# 7 and .NET 4.7.
Every chapter received an overhaul, with less relevant material removed, and new material added.
All of the code has been tested against the latest version of the development tools used, and all of

www.wrox.com

xxiii

INTRODUCTION

the screenshots have been retaken in Windows 10 to provide the most current windows and dialog
boxes. New highlights of this edition include the following:

 ➤ Additional and improved code examples for you to try out

 ➤ Coverage of everything that’s new in C# 7 and .NET 4.7

 ➤ Examples of programming .NET Core and ASP.NET Core for running cross-platform

 ➤ Examples of programming cloud applications and using Azure SDK to create and access
cloud resources

HOW THIS BOOK IS STRUCTURED

This book is divided into six sections:

 ➤ Introduction—Purpose and general outline of the book’s contents

 ➤ The C# Language—Covers all aspects of the C# language, from the fundamentals to object-
oriented techniques

 ➤ Windows Programming—How to write and deploy desktop applications with the Windows
Presentation Foundation library (WPF)

 ➤ Cloud and Cross-Platform Programming—Cloud and cross-platform application develop-
ment and deployment, including the creation and consumption of a Web API

 ➤ Data Access—How to use data in your applications, including data stored in files on your
hard disk, data stored in XML format, and data in databases

 ➤ Additional Techniques—An examination of some extra ways to use C# and the .NET
Framework, including Windows Communication Foundation (WCF) and Universal Windows
Applications

The following sections describe the chapters in the five major parts of this book.

The C# Language (Chapters 1–13)
Chapter 1 introduces you to C# and how it fits into the .NET landscape. You’ll learn the fundamen-
tals of programming in this environment and how Visual Studio 2017 (VS) fits in.

Chapter 2 starts you off with writing C# applications. You’ll look at the syntax of C# and put the
language to use with sample command-line and Windows applications. These examples demonstrate
just how quick and easy it can be to get up and running, and along the way you’ll be introduced to
the Visual Studio development environment and the basic windows and tools that you’ll be using
throughout the book.

xxiv

INTRODUCTION

Next, you’ll learn more about the basics of the C# language. You’ll learn what variables are and
how to manipulate them in Chapter 3. You’ll enhance the structure of your applications with flow
control (looping and branching) in Chapter 4, and you’ll see some more advanced variable types
such as arrays in Chapter 5. In Chapter 6 you’ll start to encapsulate your code in the form of
functions, which makes it much easier to perform repetitive operations and makes your code much
more readable.

By the beginning of Chapter 7 you’ll have a handle on the fundamentals of the C# language, and
you will focus on debugging your applications. This involves looking at outputting trace informa-
tion as your applications are executed, and at how Visual Studio can be used to trap errors and lead
you to solutions for them with its powerful debugging environment.

From Chapter 8 onward you’ll learn about object-oriented programming (OOP), starting with a
look at what this term means and an answer to the eternal question, “What is an object?” OOP
can seem quite difficult at first. The whole of Chapter 8 is devoted to demystifying it and explain-
ing what makes it so great, and you won’t actually deal with much C# code until the very end of
the chapter.

Everything changes in Chapter 9, when you put theory into practice and start using OOP in your C#
applications. This is where the true power of C# lies. You’ll start by looking at how to define classes
and interfaces, and then move on to class members (including fields, properties, and methods) in
Chapter 10. At the end of that chapter you’ll start to assemble a card game application, which is
developed over several chapters and will help to illustrate OOP.

Once you’ve learned how OOP works in C#, Chapter 11 moves on to look at common OOP scenar-
ios, including dealing with collections of objects, and comparing and converting objects. Chapter 12
takes a look at a very useful feature of C# that was introduced in .NET 2.0: generics, which enable
you to create very flexible classes. Next, Chapter 13 continues the discussion of the C# language and
OOP with some additional techniques, notably events, which become very important in, for exam-
ple, Windows programming. Chapter 13 wraps up the fundamentals by focusing on C# language
features that were introduced with versions 3.0, 4, 5, and 6 of the language.

Windows Programming (Chapters 14–15)
Chapter 14 starts by introducing you to what is meant by Windows programming and looks at
how this is achieved in Visual Studio. It focuses on WPF as a tool that enables you to build desktop
applications in a graphical way and assemble advanced applications with the minimum of effort and
time. You’ll start with the basics of WPF programming and build up your knowledge in both this
chapter and Chapter 15, which demonstrates how you can use the wealth of controls supplied by the
.NET Framework in your applications.

Cloud and Cross-Platform Programming (Chapters 16–19)
Chapter 16 starts by describing what cloud programming is and discusses the cloud-optimized
stack. The cloud environment is not identical to the way programs have been traditionally coded, so

xxv

INTRODUCTION

a few cloud programming patterns are discussed and defined. To complete this chapter, you require
an Azure account, which is free, so that you can create an App Service Web App. Then, using the
Azure SDK with C#, you create and access a storage account from an ASP.NET 4.7 web application.

In Chapter 17, you learn how to create and deploy an ASP.NET Web API to the cloud and then con-
sume the Web API from a similar ASP.NET 4.7 web application. The chapter ends discussing two of
the most valuable features in the cloud, scaling and the optimal utilization of hardware resources.

Chapter 18 introduces .NET Standard and .NET Core, which are tools used for targeting any appli-
cation type—for example WPF, Windows, and ASP.NET. An emerging application is one that can
run cross-platform such as on Linux or MacOS. The chapter provides instructions for installing
.NET Core 2.0 and creating and implementing a .NET Standard library.

Chapter 19 describes ASP.NET and its many different types (e.g., ASP.NET Webforms, ASP.NET
MVC, and ASP.NET Core). The exercises in this chapter utilize the .NET Standard library created
in Chapter 18 from both an ASP.NET Webpage and an ASP.NET Core application.

Data Access (Chapters 20–23)
Chapter 20 looks at how your applications can save and retrieve data to disk, both as simple text
files and as more complex representations of data. You’ll also learn how to compress data and how
to monitor and act on file system changes.

In Chapter 21 you’ll learn about the de facto standard for data exchange—namely XML—and a
rapidly emerging format called JSON. By this point in the book, you’ll have touched on XML sev-
eral times in preceding chapters, but this chapter lays out the ground rules and shows you what all
the excitement is about.

The remainder of this part looks at LINQ, which is a query language built in to the latest versions
of the .NET Framework. You start in Chapter 22 with a general introduction to LINQ, and then
you will use LINQ to access a database and other data in Chapter 23.

Additional Techniques (Chapters 24–25)
Chapter 24 is an introduction to Windows Communication Foundation (WCF), which provides you
with the tools you need for enterprise-level programmatic access to information and capabilities
across local networks and the Internet. You will see how you can use WCF to expose complex data
and functionality to web and desktop applications in a platform-independent way.

Chapter 25 shows you how you can create Universal Windows Apps, which are new to Windows.
This chapter builds on the foundation of Chapters 14 and 15 to show you how to create Windows
Apps that can run on all windows platforms.

xxvi

INTRODUCTION

WHAT YOU NEED TO USE THIS BOOK

The code and descriptions of C# and the .NET Framework in this book apply to C# 7 and .NET
4.7. You don’t need anything other than the Framework to understand this aspect of the book, but
many of the examples require a development tool. This book uses Visual Studio Community 2017
as its primary development tool. Use Visual Studio Community 2017 to create Windows, cloud, and
cross-platform applications as well as SQL Server Express for applications that access databases.
Some functionality is available only in Visual Studio 2017, but this won’t stop you from working
through any of the examples in this book.

The source code for the samples is available for download from this book’s page on www.wrox.com
and at https://github.com/benperk/BeginningCSharp7.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

 1. These exercises usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the database.

How It Works

After each Try It Out, the code you’ve typed will be explained in detail.

WARNING Warnings hold important, not-to-be-forgotten information that is
directly relevant to the surrounding text.

NOTE Shaded boxes like this hold notes, tips, hints, tricks, or asides to the
current discussion.

www.wrox.com
https://github.com/benperk/BeginningCSharp7

xxvii

INTRODUCTION

As for styles in the text:

 ➤ We italicize new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show file names, URLs, and code within the text like so:

persistence.properties

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code files that accompany the book. All the source code used in this
book is available for download on this book’s page at www.wrox.com and at https://github.com/
benperk/BeginningCSharp7.

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is
978-1-119-45868-5) to find the code. A complete list of code downloads for all current Wrox books
is available at www.wrox.com/dynamic/books/download.aspx.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, just decompress it with an appropriate
compression tool.

NOTE Because many books have similar titles, you may find it easiest to
search by ISBN; this book’s ISBN is 978-1-119-45868-5.

Alternatively, as just mentioned, you can also go to the main Wrox code down-
load page at www.wrox.com/dynamic/books/download.aspx to see the code
available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

www.wrox.com
https://github.com/benperk/BeginningCSharp7
https://github.com/benperk/BeginningCSharp7
www.wrox.com
www.wrox.com/dynamic/books/download.aspx
www.wrox.com
www.wrox.com/dynamic/books/download.aspx

xxviii

INTRODUCTION

To find the errata page for this book, go to this book’s page at www.wrox.com and click the Errata
link. On this page you can view all errata that has been submitted for this book and posted by Wrox
editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

www.wrox.com
www.wrox.com/contact/techsupport.shtml
www.wrox.com/contact/techsupport.shtml

PART I
The C# Language

 ➤CHAPTER 1: Introducing C#

 ➤CHAPTER 2: Writing a C# Program

 ➤CHAPTER 3: Variables and Expressions

 ➤CHAPTER 4: Flow Control

 ➤CHAPTER 5: More about Variables

 ➤CHAPTER 6: Functions

 ➤CHAPTER 7: Debugging and Error Handling

 ➤CHAPTER 8: Introduction to Object-Oriented Programming

 ➤CHAPTER 9: Defining Classes

 ➤CHAPTER 10: Defining Class Members

 ➤CHAPTER 11: Collections, Comparisons, and Conversions

 ➤CHAPTER 12: Generics

 ➤CHAPTER 13: Additional C# Techniques

Introducing C#
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ What the .NET Framework is

 ➤ What C# is

 ➤ Explore Visual Studio 2017

Welcome to the first chapter of the first section of this book. This section provides you with
the basic knowledge you need to get up and running with the most recent version of C#.
Specifically, this chapter provides an overview of the .NET Framework and C#, including what
these technologies are, the motivation for using them, and how they relate to each other.

It begins with a general discussion of the .NET Framework. This technology contains many
concepts that are tricky to come to grips with initially. This means that the discussion, by
necessity, covers many concepts in a short amount of space. However, a quick look at the
basics is essential to understanding how to program in C#. Later in the book, you revisit many
of the topics covered here, exploring them in more detail.

After that general introduction, the chapter provides a basic description of C# itself, includ-
ing its origins and similarities to C++. Finally, you look at the primary tool used throughout
this book: Visual Studio (VS). Visual Studio 2017 is the latest in a long line of development
environments that Microsoft has produced, and it includes all sorts of features (including full
support for Windows Store, Azure, and cross-platform applications) that you will learn about
throughout this book.

1

4 ❘ CHAPTER 1 IntroducIng c#

WHAT IS THE .NET FRAMEWORK?

The .NET Framework (now at version 4.7) is a revolutionary platform created by Microsoft for
developing applications. The most interesting thing about this statement is how vague and limited
it is—but there are good reasons for this. To begin with, note that it doesn’t actually “develop
applications only on the Windows operating system.” Although the Microsoft release of the .NET
Framework runs on the Windows and Windows Mobile operating systems, it is possible to find
alternative versions that will work on other systems. One example of this is Mono, an open source
version of the .NET Framework (including a C# compiler) that runs on several operating systems,
including various -flavors of Linux and Mac OS; you can read more about it at http://www
.mono-project.com.

Mono is a very important part of the .NET ecosystem, especially for creating client-side applica-
tions with Xamarin. Microsoft has also created a cross platform open source library called .NET
Core (https://github.com/dotnet/core) which they hope will have a positive impact on both the
Mono and .NET Core frameworks. Programmers in both ecosystems can use examples from each
other’s libraries to improve performance, security, and the breadth of language feature offerings—
collaboration is a key characteristic in the open source community.

In addition, the definition of the .NET Framework includes no restriction on the type of applica-
tions that are possible. The .NET Framework enables the creation of desktop applications, Windows
Store (UWP) applications, cloud/web applications, Web APIs, and pretty much anything else you
can think of. Also, it’s worth noting that web, cloud, and Web API applications are, by definition,
multi-platform applications, since any system with a web browser can access them.

The .NET Framework has been designed so that it can be used from any language, including C#
(the subject of this book) as well as C++, F#, JScript, Visual Basic, and even older languages such
as COBOL. For this to work, .NET-specific versions of these languages have also appeared, and
more are being released all the time. For a list of languages, see https://msdn.microsoft.com/
en-us/library/ee822860(v=vs.100).aspx. Not only do these languages have access to the .NET
Framework, but they can also communicate with each other. It is possible for C# developers to make
use of code written by Visual Basic programmers, and vice versa.

All of this provides an extremely high level of versatility and is part of what makes using the .NET
Framework such an attractive prospect.

What’s in the .NET Framework?
The .NET Framework consists primarily of a gigantic library of code that you use from your client-
or server-side languages (such as C#) using object-oriented programming (OOP) techniques. This
library is categorized into different modules—you use portions of it depending on the results you
want to achieve. For example, one module contains the building blocks for Windows applications,
another for network programming, and another for web development. Some modules are divided
into more specific submodules, such as a module for building web services within the module for
web development.

http://www.mono-project.com
http://www.mono-project.com
https://github.com/dotnet/core
https://msdn.microsoft.com/en-us/library/ee822860(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ee822860
https://msdn.microsoft.com/en-us/library/ee822860(v=vs.100).aspx

What Is the .NET Framework? ❘ 5

The intention is for different operating systems to support some or all of these modules, depending
on their characteristics. A smartphone, for example, includes support for all the base .NET func-
tionality, but is unlikely to require some of the more esoteric modules.

Part of the .NET Framework library defines some basic types. A type is a representation of data,
and specifying some of the most fundamental of these (such as “a 32-bit signed integer”) facilitates
interoperability between languages using the .NET Framework. This is called the Common Type
System (CTS).

As well as supplying this library, the .NET Framework also includes the .NET Common Language
Runtime (CLR), which is responsible for the execution of all applications developed using the.NET
library.

.NET Standard and .NET Core
When the .NET Framework was originally created, although it was designed for running on mul-
tiple platforms, there was no industry accepted open-source forking concept. These days, usually on
GitHub, a project can be forked and then customized to run on multiple platforms. For example,
the .NET Compact Framework and the .NET Micro Framework are forks of the .NET Framework,
like .NET Core, which was created as the most optimal solution for cross-platform code develop-
ment. Each of those .NET Framework “flavors” or “verticals” had a specific set of requirements and
objectives that triggered the need to make that fork.

Included in the .NET Framework is a set of Base Class Libraries (BCL) that contain APIs for basic
actions most developers need a program to do. These actions include, for example, file access,
string manipulation, managing streams, storing data in collections, security attributes, and many
others. These fundamental capabilities are often implemented differently within each of the .NET
Framework flavors. This requires a developer to learn, develop, and manage multiple BCLs for each
fork or flavor of their application based on the platform it runs. This is the problem that the .NET
Standard has solved.

The expectation is that shortly, this forking concept will result in many more flavors of the .NET
Framework. This increase will necessitate a standard set of basic programming APIs that works
with each fork and flavor. Without this cross platform base library, the development and support
complexities would prevent the speedy adoption of the forked version. In short, .NET Standard
is a class library that exposes APIs that support any fork or flavor of application using the .NET
Platform.

Writing Applications Using the .NET Framework and .NET
Core

Writing an application using either the .NET Framework or .NET Core means writing code (using
any of the languages that support the Framework) using the .NET code library. In this book you use
Visual Studio for your development. Visual Studio is a powerful, integrated development environ-
ment that supports C# (as well as managed and unmanaged C++, Visual Basic, and some others).

6 ❘ CHAPTER 1 IntroducIng c#

The advantage of this environment is the ease with which .NET features can be integrated into your
code. The code that you create will be entirely C# but use the .NET Framework throughout, and
you’ll make use of the additional tools in Visual Studio where necessary.

In order for C# code to execute, it must be converted into a language that the target operating
-system understands, known as native code. This conversion is called compiling code, an act that
is performed by a compiler. Under the .NET Framework and .NET Core, this is a two-stage process.

CIL and JIT
When you compile code that uses either the .NET Framework or .NET Core library, you don’t
immediately create operating system–specific native code. Instead, you compile your code into
Common Intermediate Language (CIL) code. This code isn’t specific to any operating system (OS)
and isn’t specific to C#. Other .NET languages—Visual Basic .NET or F#, for example—also com-
pile to this language as a first stage. This compilation step is carried out by Visual Studio when you
develop C# applications.

Obviously, more work is necessary to execute an application. That is the job of a just-in-time (JIT)
compiler, which compiles CIL into native code that is specific to the OS and machine architecture
being targeted. Only at this point can the OS execute the application. The just-in-time part of the
name reflects the fact that CIL code is compiled only when it is needed. This compilation can hap-
pen on the fly while your application is running, although luckily this isn’t something that you nor-
mally need to worry about as a developer. Unless you are writing extremely advanced code where
performance is critical, it’s enough to know that this compilation process will churn along merrily in
the background, without interfering.

In the past, it was often necessary to compile your code into several applications, each of which tar-
geted a specific operating system and CPU architecture. Typically, this was a form of optimization
(to get code to run faster on an AMD chipset, for example), but at times it was critical (for applica-
tions to work in both Win9x and WinNT/2000 environments, for example). This is now unnec-
essary because JIT compilers (as their name suggests) use CIL code, which is independent of the
machine, operating system, and CPU. Several JIT compilers exist, each targeting a different archi-
tecture, and the CLR/CoreCLR uses the appropriate one to create the native code required.

The beauty of all this is that it requires a lot less work on your part—in fact, you can forget about
system-dependent details and concentrate on the more interesting functionality of your code.

NOTE As you learn about .NET you might come across references to
Microsoft Intermediate Language (MSIL). MSIL was the original name for
CIL, and many developers still use this terminology today. See https://
en.wikipedia.org/wiki/Common_Intermediate_Language for more informa-
tion about CIL.

https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://en.wikipedia.org/wiki/Common_Intermediate_Language

What Is the .NET Framework? ❘ 7

Assemblies
When you compile an application, the CIL code is stored in an assembly. Assemblies include both
executable application files that you can run directly from Windows without the need for any other
programs (these have an .exe file extension) and libraries (which have a .dll extension) for use by
other applications.

In addition to containing CIL, assemblies also include meta information (that is, information
about the information contained in the assembly, also known as metadata) and optional resources
(additional data used by the CIL, such as sound files and pictures). The meta information enables
assemblies to be fully self-descriptive. You need no other information to use an assembly, meaning
you avoid situations such as failing to add required data to the system registry and so on, which was
often a problem when developing with other platforms.

This means that deploying applications is often as simple as copying the files into a directory on
a remote computer. Because no additional information is required on the target systems, you can
just run an executable file from this directory and, assuming the .NET CLR is installed for .NET
Framework targeted applications, you’re good to go. For .NET Core targeted applications, all mod-
ules required to run the program are included in the deployment package and therefore no addi-
tional configurations are required.

From a .NET Framework perspective, you won’t necessarily want to include everything required to
run an application in one place. You might write some code that performs tasks required by multiple
applications. In situations like that, it is often useful to place the reusable code in a place accessible
to all applications. In the .NET Framework, this is the global assembly cache (GAC). Placing code in
the GAC is simple—you just place the assembly containing the code in the directory containing this
cache.

Managed Code
The role of the CLR/CoreCLR doesn’t end after you have compiled your code to CIL and a JIT
compiler has compiled that to native code. Code written using the .NET Framework and .NET Core
are managed when it is executed (a stage usually referred to as runtime). This means that the CLR/
CoreCLR looks after your applications by managing memory, handling security, allowing cross-
language debugging, and so on. By contrast, applications that do not run under the control of the
CLR/CoreCLR are said to be unmanaged, and certain languages such as C++ can be used to write
such applications, which, for example, access low-level functions of the operating system. However,
in C# you can write only code that runs in a managed environment. You will make use of the man-
aged features of the CLR/CoreCLR and allow .NET itself to handle any interaction with the operat-
ing system.

Garbage Collection
One of the most important features of managed code is the concept of garbage collection. This is the
.NET method of making sure that the memory used by an application is freed up completely when

8 ❘ CHAPTER 1 IntroducIng c#

the application is no longer in use. Prior to .NET this was mostly the responsibility of programmers,
and a few simple errors in code could result in large blocks of memory mysteriously disappearing
as a result of being allocated to the wrong place in memory. That usually meant a progressive slow-
down of your computer, followed by a system crash.

.NET garbage collection works by periodically inspecting the memory of your computer and remov-
ing anything from it that is no longer needed. There is no set time frame for this; it might happen
thousands of times a second, once every few seconds, or whenever, but you can rest assured that it
will happen.

There are some implications for programmers here. Because this work is done for you at an unpre-
dictable time, applications have to be designed with this in mind. Code that requires a lot of
 memory to run should tidy itself up, rather than wait for garbage collection to happen, but that isn’t
as tricky as it sounds.

Fitting It Together
Before moving on, let’s summarize the steps required to create a .NET applica-
tion as discussed previously:

 1. Application code is written using a .NET-compatible language such as
C# (see Figure 1-1).

 2. That code is compiled into CIL, which is stored in an assembly (see
Figure 1-2).

Compilation
C# application

code Assembly

FIGURE 1-2

 3. When this code is executed (either in its own right if it is an executable or when it is
used from other code), it must first be compiled into native code using a JIT compiler
(see Figure 1-3).

JIT Compilation
Assembly

Native Code

FIGURE 1-3

C# code

FIGURE 1-1

What Is C#? ❘ 9

 4. The native code is executed in the context of the managed CLR/CoreCLR, along with any
other running applications or processes, as shown in Figure 1-4.

Native Code

.NET CLR/CoreCLR

System Runtime

Native Code Native Code

FIGURE 1-4

Linking
Note one additional point concerning this process. The C# code that compiles into CIL in step 2
needn’t be contained in a single file. It’s possible to split application code across multiple source-
code files, which are then compiled together into a single assembly. This extremely useful process
is known as linking. It is required because it is far easier to work with several smaller files than
one enormous one. You can separate logically related code into an individual file so that it can be
worked on independently and then practically forgotten about when completed. This also makes it
easy to locate specific pieces of code when you need them and enables teams of developers to divide
the programming burden into manageable chunks, whereby individuals can “check out” pieces of
code to work on without risking damage to otherwise satisfactory sections or sections other people
are working on.

WHAT IS C#?

C#, as mentioned earlier, is one of the languages you can use to create applications that will run
in the .NET CLR/CoreCLR. It is an evolution of the C and C++ languages and has been created
by Microsoft specifically to work with the .NET platform. The C# language has been designed to
incorporate many of the best features from other languages, while clearing up their problems.

Developing applications using C# is simpler than using C++ because the language syntax is simpler.
Still, C# is a powerful language, and there is little you might want to do in C++ that you can’t do in
C#. Having said that, those features of C# that parallel the more advanced features of C++, such as
directly accessing and manipulating system memory, can be carried out only by using code marked
as unsafe. This advanced programmatic technique is potentially dangerous (hence its name) because
it is possible to overwrite system-critical blocks of memory with potentially catastrophic results. For
this reason, and others, this book does not cover that topic.

10 ❘ CHAPTER 1 IntroducIng c#

At times, C# code is slightly more verbose than C++. This is a consequence of C# being a typesafe
language (unlike C++). In layperson’s terms, this means that once some data has been assigned to a
type, it cannot subsequently transform itself into another unrelated type. Consequently, strict rules
must be adhered to when converting between types, which means you will often need to write more
code to carry out the same task in C# than you might write in C++. However, there are benefits to
this—the code is more robust, debugging is simpler, and .NET can always track the type of a piece
of data at any time. In C#, you therefore might not be able to do things such as “take the region of
memory 4 bytes into this data and 10 bytes long and interpret it as X,” but that’s not necessarily a
bad thing.

C# is just one of the languages available for .NET development, but it is certainly the best. It has the
advantage of being the only language designed from the ground up for the .NET Framework and
is the principal language used in versions of .NET that are ported to other operating systems. To
keep languages such as the .NET version of Visual Basic as similar as possible to their predecessors
yet compliant with the CLR/CoreCLR, certain features of the .NET code library are not fully sup-
ported, or at least require unusual syntax.

By contrast, C# can make use of every feature that the .NET Framework code library has to offer,
but not all features have been ported to .NET Core. Also, each new version of .NET has included
additions to the C# language, partly in response to requests from developers, making it even more
powerful.

Applications You Can Write with C#
The .NET Framework has no restrictions on the types of applications that are possible, as discussed
earlier. C# uses the framework and therefore has no restrictions on possible applications. (However,
currently it is possible to write only Console and ASP.NET applications using .NET Core.)
However, here are a few of the more common application types:

 ➤ Desktop applications—Applications, such as Microsoft Office, that have a familiar
Windows look and feel about them. This is made simple by using the Windows Presentation
Foundation (WPF) module of the .NET Framework, which is a library of controls (such as
buttons, toolbars, menus, and so on) that you can use to build a Windows user interface (UI).

 ➤ Windows Store applications—Windows 8 introduced a new type of application, known as a
Windows Store application. This type of application is designed primarily for touch devices,
and it is usually run full-screen, with a minimum of clutter, and an emphasis on simplicity.
You can create these applications in several ways, including using WPF.

 ➤ Cloud/Web applications—The .NET Framework and .NET Core include a powerful system
named ASP.NET, for generating web content dynamically, enabling personalization, security,
and much more. Additionally, these applications can be hosted and accessed in the Cloud, for
example on the Microsoft Azure platform.

 ➤ Web APIs—An ideal framework for building RESTful HTTP services that support a broad
variety of clients, including mobile devices and browsers.

Visual Studio 2017 ❘ 11

 ➤ WCF services—A way to create versatile distributed applications. Using WCF you can
exchange virtually any data over local networks or the Internet, using the same simple syntax
regardless of the language used to create a service or the system on which it resides.

Any of these types might also require some form of database access, which can be achieved using
the ADO.NET (Active Data Objects .NET) section of the .NET Framework, through the Entity
Framework, or through the LINQ (Language Integrated Query) capabilities of C#. For .NET Core
applications requiring database access you would use the Entity Framework Core library. Many
other resources can be drawn on, such as tools for creating networking components, outputting
graphics, performing complex mathematical tasks, and so on.

C# in this Book
The first part of this book deals with the syntax and usage of the C# language without too much
emphasis on the .NET Framework or .NET Core. This is necessary because you can’t use either the
.NET Framework or .NET Core at all without a firm grounding in C# programming. You’ll start
off even simpler, in fact, and leave the more involved topic of OOP until you’ve covered the basics.
These are taught from first principles, assuming no programming knowledge at all.

After that, you’ll be ready to move on to developing more complex (but more useful) applications.
Part II tackles Windows programming, Part III explores cloud and cross-platform programming,
and Part IV examines data access (for ORM database concepts, filesystem, and XML data) and
LINQ. Part V of this book looks at WCF and Windows Store application programming.

VISUAL STUDIO 2017

In this book, you use the Visual Studio 2017 development tool for all of your C# programming,
from simple command-line applications to more complex project types. A development tool, or inte-
grated development environment (IDE), such as Visual Studio isn’t essential for developing C# appli-
cations, but it makes things much easier. You can (if you want to) manipulate C# source code files
in a basic text editor, such as the ubiquitous Notepad application, and compile code into assemblies
using the command-line compiler that is part of the .NET Framework and .NET Core. However,
why do this when you have the power of an IDE to help you?

Visual Studio 2017 Products
Microsoft supplies several versions of Visual Studio, for example:

 ➤ Visual Studio Code

 ➤ Visual Studio Community

 ➤ Visual Studio Professional

 ➤ Visual Studio Enterprise

12 ❘ CHAPTER 1 IntroducIng c#

Visual Studio Code and Community are freely available at https://www.visualstudio.com/
en-us/downloads/download-visual-studio-vs. The Professional and Enterprise version have
additional capabilities, which carry a cost.

The various Visual Studio products enable you to create almost any C# application you might
need. Visual Studio Code is a simple yet robust code editor that runs on Windows, Linux, and iOS.
Visual Studio Community, unlike Visual Studio Code, retains the same look and feel as Visual
Studio Professional and Enterprise. Microsoft offers many of the same features in Visual Studio
Community as exist in the Professional and Enterprise version; however, some notable features are
absent, like deep debugging capabilities and code optimization tools. However, not so many features
are absent that you can’t use Community to work through the chapters of this book. Visual Studio
Community 2017 is the version of the IDE used to work the examples in this book.

Solutions
When you use Visual Studio to develop applications, you do so by creating solutions. A solution, in
Visual Studio terms, is more than just an application. Solutions contain projects, which might be
WPF projects, Cloud/Web Application projects, ASP.NET Core projects, and so on. Because solu-
tions can contain multiple projects, you can group together related code in one place, even if it will
eventually compile to multiple assemblies in various places on your hard disk.

This is very useful because it enables you to work on shared code (which might be placed in the
GAC) at the same time as applications that use this code. Debugging code is a lot easier when only
one development environment is used because you can step through instructions in multiple code
modules.

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs

Visual Studio 2017 ❘ 13

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

.NET Framework and

.NET Core fundamentals
The .NET Framework is Microsoft’s latest development platform, and
is currently in version 4.7. It includes a common type system (CTS) and
common language runtime (CLR/CoreCLR). Both .NET Framework and
.NET Core applications are written using object-oriented programming
(OOP) methodology, and usually contain managed code. Memory man-
agement of managed code is handled by the .NET runtime; this includes
garbage collection.

.NET Framework
applications

Applications written using the .NET Framework are first compiled into
CIL. When an application is executed, the CLR uses a JIT to compile this
CIL into native code as required. Applications are compiled, and different
parts are linked together into assemblies that contain the CIL.

.NET Core applications .NET Core applications work similar to .NET Framework applications;
however, instead of using the CLR it uses CoreCLR.

.NET Standard .NET Standard provides a unified class library which can be targeted
from multiple .NET platforms like the .NET Framework, .NET Core, and
Xamarin.

C# basics C# is one of the languages included in the .NET Framework. It is an
evolution of previous languages such as C++, and can be used to write
any number of applications, including web, cross-platform, and desktop
applications.

Integrated Development
Environments (IDEs)

You can use Visual Studio 2017 to write any type of .NET application
using C#. You can also use the free, but less powerful, Community prod-
uct to create .NET applications in C#. This IDE works with solutions,
which can consist of multiple projects.

Writing a C# Program
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Understanding Visual Studio 2017 basics

 ➤ Writing a simple console application

 ➤ Writing a simple desktop application

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter02 folder and individually named
according to the names throughout the chapter.

Now that you’ve spent some time learning what C# is and how it fits into the .NET
Framework, it’s time to get your hands dirty and write some code. You use Visual Studio
Community 2017 (VS) throughout this book, so the first thing to do is have a look at some of
the basics of this development environment.

Visual Studio is an enormous and complicated product, and it can be daunting to first-time
users, but using it to create basic applications can be surprisingly simple. As you start to use
Visual Studio in this chapter, you will see that you don’t need to know a huge amount about
it to begin playing with C# code. Later in the book you’ll see some of the more complicated
operations that Visual Studio can perform, but for now a basic working knowledge is all that
is required.

After you’ve looked at the IDE, you put together two simple applications. You don’t need to
worry too much about the code in these applications for now; you just want to prove that
things work. By working through the application-creation procedures in these early examples,
they will become second nature before too long.

2

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

16 ❘ CHAPTER 2 Writing a C# Program

You will learn how to create two basic types of applications in this chapter: a console application
and a desktop application.

The first application you create is a simple console application. Console applications don’t use the
graphical windows environment, so you won’t have to worry about buttons, menus, interaction with
the mouse pointer, and so on. Instead, you run the application in a command prompt window and
interact with it in a much simpler way.

The second application is a desktop application, which you create using Windows Presentation
Foundation (WPF). The look and feel of a desktop application is very familiar to Windows users,
and (surprisingly) the application doesn’t require much more effort to create. However, the syntax
of the code required is more complicated, even though in many cases you don’t have to worry about
details.

You use both types of application in Part II, Part III, and Part IV of the book, with more emphasis
on console applications at the beginning. The additional flexibility of desktop applications isn’t
necessary when you are learning the C# language, while the simplicity of console applications
enables you to concentrate on learning the syntax without worrying about the look and feel of the
application.

THE VISUAL STUDIO 2017 DEVELOPMENT ENVIRONMENT

When you begin the installation of Visual Studio Community 2017 you are prompted with a win-
dow similar to Figure 2-1. It provides a list of Workloads, Individual components, and Language
packs to install along with the core editor.

Install the following Workloads and click the Install button.

 ➤ Windows—Universal Windows Platform development

 ➤ Windows—.Net desktop development

 ➤ .NET Framework 4.7 development tools

 ➤ Web & Cloud—ASP.NET and web development

 ➤ Web & Cloud—Azure development

 ➤ Other Toolsets—.NET Core cross-platform development

After installation is complete, when Visual Studio is first loaded, it immediately presents you with
the option to Sign in to Visual Studio using your Microsoft Account. By doing this, your Visual
Studio settings are synced between devices so that you do not have to configure the IDE when using
it on multiple workstations. If you do not have a Microsoft Account, follow the process for the
creation of one and then use it to sign in. If you do not want to sign in, click the “Not now, maybe
later” link, and continue the initial configuration of Visual Studio. We recommend that at some
point you sign in and get a developer license.

The Visual Studio 2017 Development Environment ❘ 17

FIGURE 2-1

If this is the first time you’ve run Visual Studio, you will be presented with a list of preferences
intended for users who have experience with previous releases of this development environment.
The choices you make here affect a number of things, such as the layout of windows, the way that
console windows run, and so on. Therefore, choose Visual C# from the drop-down; otherwise, you
might find that things don’t quite work as described in this book. Note that the options available
vary depending on the options you chose when installing Visual Studio, but as long as you chose to
install C# this option will be available.

If this isn’t the first time that you’ve run Visual Studio, and you chose a different option the first
time, don’t panic. To reset the settings to Visual C#, you simply have to import them. To do this,
select Tools ➪ Import and Export Settings, and choose the Reset All Settings option, shown in
Figure 2-2.

Click Next, and indicate whether you want to save your existing settings before proceeding. If you
have customized things, you might want to do this; otherwise, select No and click Next again. From
the next dialog box, select Visual C#, shown in Figure 2-3. Again, the available options may vary.

18 ❘ CHAPTER 2 Writing a C# Program

FIGURE 2-2

FIGURE 2-3

The Visual Studio 2017 Development Environment ❘ 19

Finally, click Finish, then Close to apply the settings.

The Visual Studio environment layout is completely customizable, but the default is fine here. With
C# Developer Settings selected, it is arranged as shown in Figure 2-4.

FIGURE 2-4

The main window, which contains a helpful Start Page by default when Visual Studio is started, is
where all your code is displayed. This window can contain many documents, each indicated by a
tab, so you can easily switch between several files by clicking their filenames. It also has other func-
tions: It can display GUIs that you are designing for your projects, plain-text files, HTML, and
various tools that are built into Visual Studio. You will come across all of these in the course of this
book.

Above the main window are toolbars and the Visual Studio menu. Several different toolbars can be
placed here, with functionality ranging from saving and loading files to building and running proj-
ects to debugging controls. Again, you are introduced to these as you need to use them.

Here are brief descriptions of each of the main features that you will use the most:

 ➤ The Toolbox window pops up when you click its tab. It provides access to, among other
things, the user interface building blocks for desktop applications. Another tab, Server
Explorer, can also appear here (selectable via the View ➪ Server Explorer menu option) and
includes various additional capabilities, such as Azure subscription details, providing access
to data sources, server settings, services, and more.

20 ❘ CHAPTER 2 Writing a C# Program

 ➤ The Solution Explorer window displays information about the currently loaded solution.
A solution, as you learned in the previous chapter, is Visual Studio terminology for one or
more projects along with their configurations. The Solution Explorer window displays vari-
ous views of the projects in a solution, such as what files they contain and what is contained
in those files.

 ➤ The Team Explorer window displays information about the current Team Foundation Server
or Team Foundation Service connection. This allows you access to source control, bug track-
ing, build automation, and other functionality. However, this is an advanced subject and is
not covered in this book.

 ➤ Just below the Solution Explorer window you can display a Properties window, not shown in
Figure 2-4 because it appears only when you are working on a project (you can also toggle its
display using View ➪ Properties Window). This window provides a more detailed view of the
project’s contents, enabling you to perform additional configuration of individual elements.
For example, you can use this window to change the appearance of a button in a desktop
application.

 ➤ Also not shown in the screenshot is another extremely important window: the Error List
window, which you can display using View ➪ Error List. It shows errors, warnings, and
other project-related information. The window updates continuously, although some infor-
mation appears only when a project is compiled.

This might seem like a lot to take in, but it doesn’t take long to get comfortable. You start by
building the first of your example projects, which involves many of the Visual Studio elements just
described.

NOTE Visual Studio is capable of displaying many other windows, both
informational and functional. Many of these can share screen space with the
windows mentioned here, and you can switch between them using tabs, dock
them elsewhere, or even detach them and place them on other displays if you
have multiple monitors. Several of these windows are used later in the book,
and you’ll probably discover more yourself when you explore the Visual Studio
environment in more detail.

Console Applications ❘ 21

CONSOLE APPLICATIONS

You use console applications regularly in this book, particularly at the beginning, so the following
Try It Out provides a step-by-step guide to creating a simple one.

TRY IT OUT
Creating a Simple Console Application: ConsoleApplication1\
Program.cs

 1. Create a new console application project by selecting File ➪ New ➪ Project, as shown
in Figure 2-5.

FIGURE 2-5

 2. Ensure that the Visual C# node is selected in the left pane of the window that appears, and choose the
Console Application (.NET Framework) project type in the middle pane (see Figure 2-6). Change the
Location text box to C:\BeginningCSharp7\Chapter02 (this directory is created automatically if it
doesn’t already exist). Leave the default text in the Name text box (ConsoleApplication1) and the
other settings as they are (refer to Figure 2-6).

22 ❘ CHAPTER 2 Writing a C# Program

FIGURE 2-6

 3. Click the OK button.

 4. Once the project is initialized, add the following lines of code to the file displayed in the main
window:

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 // Output text to the screen.
 Console.WriteLine("The first app in Beginning Visual C# 2017!");
 Console.ReadKey();
 }
 }
}

 5. Select the Debug ➪ Start Debugging menu item. After a few moments you should see the window
shown in Figure 2-7.

FIGURE 2-7

Console Applications ❘ 23

 6. Press any key to exit the application (you might need to click on the console window to focus on
it first). The display in Figure 2-7 appears only if the Visual C# Developer Settings are applied,
as described earlier in this chapter. For example, with Visual Basic Developer Settings applied,
an empty console window is displayed, and the application output appears in a window labeled
Immediate. In this case, the Console.ReadKey() code also fails, and you see an error. If you expe-
rience this problem, the best solution for working through the examples in this book is to apply the
Visual C# Developer Settings—that way, the results you see match the results shown here.

How It Works

For now, I won’t dissect the code used thus far because the focus here is on how to use the development
tools to get code up and running. Clearly, Visual Studio does a lot of the work for you and makes the
process of compiling and executing code simple. In fact, there are multiple ways to perform even these
basic steps—for instance, you can create a new project by using the menu item mentioned earlier, by
pressing Ctrl+Shift+N, or by clicking the corresponding icon in the toolbar.

Similarly, your code can be compiled and executed in several ways. The process you used in the
example—selecting Debug ➪ Start Debugging—also has a keyboard shortcut (F5) and a toolbar icon.
You can also run code without being in debugging mode using the Debug ➪ Start Without Debugging
menu item (or by pressing Ctrl+F5), or compile your project without running it (with debugging on
or off) using Build ➪ Build Solution or pressing F6. Note that you can execute a project without
debugging or build a project using toolbar icons, although these icons don’t appear on the toolbar by
default. After you have compiled your code, you can also execute it simply by running the .exe file
produced in Windows Explorer, or from the command prompt. To do this, open a command prompt
window, change the directory to C:\ BeginningCSharp7\Chapter02\ConsoleApplication1\
ConsoleApplication1\bin\Debug\, type ConsoleApplication1, and press Enter.

NOTE In future examples, when you see the instructions “create a new con-
sole project” or “execute the code,” you can choose whichever method you
want to perform these steps. Unless otherwise stated, all code should be run
with debugging enabled. In addition, the terms “start,” “execute,” and “run”
are used interchangeably in this book, and discussions following examples
always assume that you have exited the application in the example.

Console applications terminate as soon as they finish execution, which can
mean that you don’t get a chance to see the results if you run them directly
through the IDE. To get around this in the preceding example, the code is told
to wait for a key press before terminating, using the following line:

 Console.ReadKey();

You will see this technique used many times in later examples. Now that
you’ve created a project, you can take a more detailed look at some of the
regions of the development environment.

24 ❘ CHAPTER 2 Writing a C# Program

The Solution Explorer
By default, the Solution Explorer window is docked in the top-right corner of the screen. As with
other windows, you can move it wherever you like, or you can set it to auto-hide by clicking the pin
icon. The Solution Explorer window shares space with another useful window called Class View,
which you can display using View ➪ Class View. Figure 2-8 shows both of these windows with all
nodes expanded (you can toggle between them by clicking on the tabs at the bottom of the window
when the window is docked).

FIGURE 2-8

This Solution Explorer view shows the files that make up the ConsoleApplication1 project. The
file to which you added code, Program.cs, is shown along with another code file, AssemblyInfo
.cs, and several references.

NOTE All C# code files have a .cs file extension.

You don’t have to worry about the AssemblyInfo.cs file for the moment. It contains extra informa-
tion about your project that doesn’t concern you yet.

You can use this window to change what code is displayed in the main window by double-clicking
.cs files; right-clicking them and selecting View Code; or by selecting them and clicking the toolbar
button that appears at the top of the window. You can also perform other operations on files here,

Console Applications ❘ 25

such as renaming them or deleting them from your project. Other file types can also appear here,
such as project resources (resources are files used by the project that might not be C# files, such as
bitmap images and sound files). Again, you can manipulate them through the same interface.

You can also expand code items such as Program.cs to see what is contained. This overview of your
code structure can be a very useful tool; it also enables you to navigate directly to specific parts of
your code file, instead of opening the code file and scrolling to the part you want.

The References entry contains a list of the .NET libraries you are using in your project. You’ll look
at this later; the standard references are fine for now. Class View presents an alternative view of
your project by showing the structure of the code you created. You’ll come back to this later in the
book; for now the Solution Explorer display is appropriate. As you click on files or other icons in
these windows, notice that the contents of the Properties window (shown in Figure 2-9) changes.

FIGURE 2-9

The Properties Window
The Properties window (select View ➪ Properties Window if it isn’t already displayed) shows addi-
tional information about whatever you select in the window above it. For example, the view shown
in Figure 2-9 is displayed when the Program.cs file from the project is selected. This window also
displays information about other selected items, such as user interface components (as shown in the
“Desktop Applications” section of this chapter).

Often, changes you make to entries in the Properties window affect your code directly, adding
lines of code or changing what you have in your files. With some projects, you spend as much time
manipulating things through this window as making manual code changes.

The Error List Window
Currently, the Error List window (View ➪ Error List) isn’t showing anything interesting because
there is nothing wrong with the application. However, this is a very useful window indeed. As a
test, remove the semicolon from one of the lines of code you added in the previous section. After a
moment, you should see a display like the one shown in Figure 2-10.

26 ❘ CHAPTER 2 Writing a C# Program

FIGURE 2-10

In addition, the project will no longer compile.

NOTE In Chapter 3, when you start looking at C# syntax, you will learn that
semicolons are expected throughout your code—at the end of most lines, in
fact.

This window helps you eradicate bugs in your code because it keeps track of what you have to do to
compile projects. If you double-click the error shown here, the cursor jumps to the position of the
error in your source code (the source file containing the error will be opened if it isn’t already open),
so you can fix it quickly. Red wavy lines appear at the positions of errors in the code, so you can
quickly scan the source code to see where problems lie.

The error location is specified as a line number. By default, line numbers aren’t displayed in the
Visual Studio text editor, but that is something well worth turning on. To do so, tick the Line num-
bers check box in the Options dialog box (selected via the Tools ➪ Options menu item). It appears in
the Text Editor ➪ All Languages ➪ General category.

You can also change this setting on a per-language basis through the language-specific settings
pages in the dialog box. Many other useful options can be found through this dialog box, and you
will use several of them later in this book.

DESKTOP APPLICATIONS

It is often easier to demonstrate code by running it as part of a desktop application than through a
console window or via a command prompt. You can do this using user interface building blocks to
piece together a user interface.

The following Try It Out shows just the basics of doing this, and you’ll see how to get a desktop
application up and running without a lot of details about what the application is actually doing.
You’ll use WPF here, which is Microsoft’s recommended technology for creating desktop applica-
tions. Later, you take a detailed look at desktop applications and learn much more about what WPF
is and what it’s capable of.

Desktop Applications ❘ 27

TRY IT OUT
Creating a Simple Windows Application: WpfApplication1\
MainWindow.xaml and WpfApplication1\MainWindow.xaml.cs

 1. Create a new project of type WPF Application in the same location as before (C:\BeginningCSharp7\
Chapter02), with the default name WpfApplication1. If the first project is still open, make sure the
Create New Solution option is selected to start a new solution. These settings are shown in Figure 2-11.

FIGURE 2-11

 2. Click OK to create the project. You should see a new tab that’s split into two panes. The top
pane shows an empty window called MainWindow and the bottom pane shows some text. This
text is actually the code that is used to generate the window, and you’ll see it change as you
modify the UI.

 3. Click the Toolbox tab on the top left of the screen, then double-click the Button entry in the
Common WPF Controls section to add a button to the window.

 4. Double-click the button that has been added to the window.

 5. The C# code in MainWindow.xaml.cs should now be displayed. Modify it as follows (only part of
the code in the file is shown here for brevity):

 private void button_Click(object sender, RoutedEvetnArgs e)
 {
 MessageBox.Show("The first desktop app in the book!");
 }

28 ❘ CHAPTER 2 Writing a C# Program

 6. Run the application.

 7. Click the button presented to open a message dialog box, as shown in Figure 2-12.

FIGURE 2-12

 8. Click OK, and then exit the application by clicking the X in the top-right corner, as is standard for
desktop applications.

How It Works

Again, it is plain that the IDE has done a lot of work for you and made it simple to create a functional
desktop application with little effort. The application you created behaves just like other windows—you
can move it around, resize it, minimize it, and so on. You don’t have to write the code to do that—it
just works. The same is true for the button you added. Simply by double-clicking it, the IDE knew that
you wanted to write code to execute when a user clicked the button in the running application. All you
had to do was provide that code, getting full button-clicking functionality for free.

Of course, desktop applications aren’t limited to plain windows with buttons. Look at the Toolbox
window where you found the Button option and you’ll see a whole host of user interface building
blocks (known as controls), some of which might be familiar. You will use most of these at some point
in the book, and you’ll find that they are all easy to use and save you a lot of time and effort.

Desktop Applications ❘ 29

The code for your application, in MainWindow.xaml.cs, doesn’t look much more complicated than the
code in the previous section, and the same is true for the code in the other files in the Solution Explorer
window. The code in MainWindow.xaml (the split-pane view where you added the button) also looks
pretty straightforward.

This code is written in XAML, which is the language used to define user interfaces in WPF
applications.

Now take a closer look at the button you added to the window. In the top pane of MainWindow.xaml,
click once on the button to select it. When you do so, the Properties window in the bottom-right corner
of the screen shows the properties of the button control (controls have properties much like the files
shown in the last example). Ensure that the application isn’t currently running, scroll down to the
Content property, which is currently set to Button, and change the value to Click Me, as shown in
Figure 2-13.

FIGURE 2-13

The text written on the button in the designer should also reflect this change, as should the XAML
code, as shown in Figure 2-14.

30 ❘ CHAPTER 2 Writing a C# Program

FIGURE 2-14

There are many properties for this button, ranging from simple formatting of the color and size to
more obscure settings such as data binding, which enables you to establish links to data. As briefly
mentioned in the previous example, changing properties often results in direct changes to code, and
this is no exception, as you saw with the XAML code change. However, if you switch back to the code
view of MainWindow.xaml.cs, you won’t see any changes there. This is because WPF applications are

Desktop Applications ❘ 31

capable of keeping the design aspects of your applications (such as the text on a button) separate from
the functionality aspects (such as what happens when you click a button).

NOTE Note that it is also possible to use Windows Forms to create desktop
applications. WPF is a newer technology that is intended to replace Windows
Forms and provides a far more flexible and powerful way to create desktop
applications, which is why this book doesn’t cover Windows Forms.

32 ❘ CHAPTER 2 Writing a C# Program

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Visual Studio
2017 settings

This book requires the C# development settings option, which you choose when you
first run Visual Studio or by resetting the settings.

Console
applications

Console applications are simple command-line applications, used in much of this
book to illustrate techniques. Create a new console application with the Console
Application template that you see when you create a new project in Visual Studio.
To run a project in debug mode, use the Debug ➪ Start Debugging menu item, or
press F5.

IDE windows The project contents are shown in the Solution Explorer window. The properties of
the selected item are shown in the Properties window. Errors are shown in the Error
List window.

Desktop
applications

Desktop applications are applications that have the look and feel of standard
Windows applications, including the familiar icons to maximize, minimize, and close
an application. They are created with the WPF Application template in the New
Project dialog box.

Variables and Expressions
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Understanding basic C# syntax

 ➤ Using variables

 ➤ Using expressions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter03 folder and individually named
according to the names throughout the chapter.

To use C# effectively, it’s important to understand what you’re actually doing when you cre-
ate a computer program. Perhaps the most basic description of a computer program is that
it is a series of operations that manipulate data. This is true even of the most complicated
examples, including vast, multi-featured Windows applications (such as the Microsoft Office
Suite). Although this is often completely hidden from users of applications, it is always going
on behind the scenes.

To illustrate this further, consider the display unit of your computer. What you see onscreen
is often so familiar that it is difficult to imagine it as anything other than a “moving picture.”
In fact, what you see is only a representation of some data, which in its raw form is merely a
stream of 0s and 1s stashed away somewhere in the computer’s memory. Any onscreen action
— moving a mouse pointer, clicking on an icon, typing text into a word processor — results in
the shunting around of data in memory.

Of course, simpler situations show this just as well. When using a calculator application, you
are supplying data as numbers and performing operations on the numbers in much the same
way as you would with paper and pencil — but a lot quicker!

3

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

34 ❘ CHAPTER 3 Variables and expressions

If computer programs are fundamentally performing operations on data, this implies that you need
a way to store that data, and some methods to manipulate it. These two functions are provided by
variables and expressions, respectively, and this chapter explores what that means, both in general
and specific terms.

First, though, you’ll take a look at the basic syntax involved in C# programming, because you need
a context in which you can learn about and use variables and expressions in the C# language.

BASIC C# SYNTAX

The look and feel of C# code is similar to that of C++ and Java. This syntax can look quite con-
fusing at first and it’s a lot less like written English than some other languages. However, as you
immerse yourself in the world of C# programming, you’ll find that the style used is a sensible one,
and it is possible to write very readable code without much effort.

Unlike the compilers of some other languages such as Python, C# compilers ignore additional spac-
ing in code, whether it results from spaces, carriage returns, or tab characters (collectively known as
whitespace characters). This means you have a lot of freedom in the way that you format your code,
although conforming to certain rules can help make your code easier to read.

C# code is made up of a series of statements, each of which is terminated with a semicolon. Because
whitespace is ignored, multiple statements can appear on one line, although for readability it is usual
to add carriage returns after semicolons, to avoid multiple statements on one line. It is perfectly
acceptable (and quite normal), however, to use statements that span several lines of code.

C# is a block-structured language, meaning statements are part of a block of code. These blocks,
which are delimited with curly brackets ({ and }), may contain any number of statements, or none at
all. Note that the curly bracket characters do not need accompanying semicolons.

For example, a simple block of C# code could take the following form:

{
 <code line 1, statement 1>;
 <code line 2, statement 2>
 <code line 3, statement 2>;
}

Here the <code line x, statement y> sections are not actual pieces of C# code; this text is used as
a placeholder where C# statements would go. In this case, the second and third lines of code are part
of the same statement, because there is no semicolon after the second line. Indenting the third line of
code makes it easier to recognize that it is actually a continuation of the second line.

The following simple example uses indentation to clarify the C# itself. This is actually standard
practice, and in fact Visual Studio automatically does this for you by default. In general, each block
of code has its own level of indentation, meaning how far to the right it is. Blocks of code may be
nested inside each other (that is, blocks may contain other blocks), in which case nested blocks will
be indented further:

{
 <code line 1>;

Basic C# Syntax ❘ 35

 {
 <code line 2>;
 <code line 3>;
 }
 <code line 4>;
}

In addition, lines of code that are continuations of previous lines are usually indented further as
well, as in the third line of code in the first code example.

NOTE Look in the Visual Studio Options dialog box (select Tools ➪ Options)
to see the rules that Visual Studio uses for formatting your code. There are
many of these, in subcategories of the Text Editor ➪ C# ➪ Formatting node.
Most of the settings here reflect parts of C# that haven’t been covered yet, but
you might want to return to these settings later if you want to tweak them to
suit your personal style better. For clarity, this book shows all code snippets as
they would be formatted by the default settings.

Of course, this style is by no means mandatory. If you don’t use it, however, you will quickly find
that things can get very confusing as you move through this book!

Comments are something else you often see in C# code. A comment is not, strictly speaking, C#
code at all, but it happily cohabits with it. Comments are self-explanatory: They enable you to add
descriptive text to your code — in plain English (or French, German, Mongolian, and so on) —
which is ignored by the compiler. When you start dealing with lengthy code sections, it’s useful to
add reminders about exactly what you are doing, such as “this line of code asks the user for a num-
ber” or “this code section was written by Bob.”

C# provides two ways of doing this. You can either place markers at the beginning and end of a
comment or you can use a marker that means “everything on the rest of this line is a comment.” The
latter method is an exception to the rule mentioned previously about C# compilers ignoring carriage
returns, but it is a special case.

To indicate comments using the first method, you use /* characters at the start of the comment and
*/ characters at the end. These may occur on a single line, or on different lines, in which case all
lines in between are part of the comment. The only thing you can’t type in the body of a comment is
*/, because that is interpreted as the end marker. For example, the following are okay:

/* This is a comment */
/* And so. . .
 . . . is this! */

The following, however, causes problems:

/* Comments often end with "*/" characters */

Here, the end of the comment (the characters after "*/) will be interpreted as C# code, and errors
will occur.

36 ❘ CHAPTER 3 Variables and expressions

The other commenting approach involves starting a comment with //. After that, you can write
whatever you like — as long as you keep to one line! The following is okay:

// This is a different sort of comment.

The following fails, however, because the second line is interpreted as C# code:

// So is this,
 but this bit isn't.

This sort of commenting is useful to document statements because both can be placed on a single
line:

<A statement>; // Explanation of statement

It was stated earlier that there are two ways of commenting C# code, but there is a third type of
comment in C# — although strictly speaking this is an extension of the // syntax. You can use
single-line comments that start with three / symbols instead of two, like this:

/// A special comment

Under normal circumstances, they are ignored by the compiler — just like other comments — but
you can configure Visual Studio to extract the text after these comments and create a specially for-
matted text file when a project is compiled. You can then use it to create documentation. In order
for this documentation to be created, the comments must follow the rules of XML documentation
as described here https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
xmldoc/xml-documentation-comments — a subject not covered in this book but one that is well
worth learning about if you have some spare time.

A very important point about C# code is that it is case sensitive. Unlike some other languages, you
must enter code using exactly the right case, because using an uppercase letter instead of a lowercase
one will prevent a project from compiling. For example, consider the following line of code, taken
from Chapter 2:

Console.WriteLine("The first app in Beginning C# Programming!");

This code is understood by the C# compiler, as the case of the Console.WriteLine() command is
correct. However, none of the following lines of code work:

console.WriteLine("The first app in Beginning C# Programming!");
CONSOLE.WRITELINE("The first app in Beginning C# Programming!");
Console.Writeline("The first app in Beginning C# Programming!");

Here, the case used is wrong, so the C# compiler won’t know what you want. Luckily, as you will
soon discover, Visual Studio is very helpful when it comes to entering code, and most of the time it
knows (as much as a program can know) what you are trying to do. As you type, it suggests com-
mands that you might like to use, and it tries to correct case problems.

BASIC C# CONSOLE APPLICATION STRUCTURE

Here, you’ll take a closer look at the console application example from Chapter 2
(ConsoleApplication1) and break down the structure a bit. Here’s the code:

using System;
using System.Collections.Generic;

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments

Basic C# Console Application Structure ❘ 37

using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 // Output text to the screen.
 Console.WriteLine("The first app in Beginning C# Programming!");
 Console.ReadKey();
 }
 }
}

You can immediately see that all the syntactic elements discussed in the previous section are present
here — semicolons, curly braces, and comments, along with appropriate indentation.

The most important section of code at the moment is the following:

static void Main(string[] args)
{
 // Output text to the screen.
 Console.WriteLine("The first app in Beginning C# Programming!");
 Console.ReadKey();
}

This is the code that is executed when you run your console application. Well, to be more precise,
the code block enclosed in curly braces is executed. The comment line doesn’t do anything, as men-
tioned earlier; it’s just there for clarity. The other two code lines output some text to the console
window and wait for a response, respectively, although the exact mechanisms of this don’t need to
concern you for now.

Note how to achieve the code outlining functionality shown in the previous chapter, albeit for
a Windows application, since it is such a useful feature. You can do this with the #region and
#endregion keywords, which define the start and end of a region of code that can be expanded and
collapsed. For example, you could modify the generated code for ConsoleApplication1 as follows:

#region Using directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
#endregion

This enables you to collapse this code into a single line and expand it again later should you want to
look at the details. The using statements contained here, and the namespace statement just under-
neath, are explained at the end of this chapter.

38 ❘ CHAPTER 3 Variables and expressions

NOTE Any keyword that starts with a # is actually a preprocessor direc-
tive and not, strictly speaking, a C# keyword. Other than the two described
here, #region and #endregion, these can be quite complicated, and they
have very specialized uses. This is one subject you might like to investigate
yourself after you’ve worked through this book. Read more about them here:
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/
preprocessor-directives/.

For now, don’t worry about the other code in the example, because the purpose of these first few
chapters is to explain basic C# syntax, so the exact method of how the application execution gets
to the point where Console.WriteLine() is called is of no concern. Later, the significance of this
additional code is made clear.

VARIABLES

As mentioned earlier, variables are concerned with the storage of data. Essentially, you can think of
variables in computer memory as boxes sitting on a shelf. You can put things in boxes and take them
out again, or you can just look inside a box to see if anything is there. The same goes for variables;
you place data in them and can take it out or look at it, as required.

Although all data in a computer is effectively the same thing (a series of 0s and 1s), variables come
in different flavors, known as types. Using the box analogy again, boxes come in different shapes
and sizes, so some items fit only in certain boxes. The reasoning behind this type system is that dif-
ferent types of data may require different methods of manipulation, and by restricting variables to
individual types you can avoid mixing them up. For example, it wouldn’t make much sense to treat
the series of 0s and 1s that make up a digital picture as an audio file.

To use variables, you must declare them. This means that you have to assign them a name and a
type. After you have declared variables, you can use them as storage units for the type of data that
you declared them to hold.

C# syntax for declaring variables merely specifies the type and variable name:

<type> <name>;

If you try to use a variable that hasn’t been declared, your code won’t compile, but in this case the
compiler tells you exactly what the problem is, so this isn’t really a disastrous error. Trying to use a
variable without assigning it a value also causes an error, but, again, the compiler detects this.

Simple Types
Simple types include types such as numbers and Boolean (true or false) values that make up the
fundamental building blocks for your applications. Unlike complex types, simple types cannot have
children or attributes. Most of the simple types available are numeric, which at first glance seems a
bit strange — surely, you only need one type to store a number?

The reason for the plethora of numeric types is because of the mechanics of storing numbers as a
series of 0s and 1s in the memory of a computer. For integer values, you simply take a number of

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/

Variables ❘ 39

bits (individual digits that can be 0 or 1) and represent your number in binary format. A variable
storing N bits enables you to represent any number between 0 and (2N − 1). Any numbers above this
value are too big to fit into this variable.

For example, suppose you have a variable that can store two bits. The mapping between integers
and the bits representing those integers is therefore as follows:

0 = 00
1 = 01
2 = 10
3 = 11

In order to store more numbers, you need more bits (three bits enable you to store the numbers from
0 to 7, for example).

The inevitable result of this system is that you would need an infinite number of bits to be able to
store every imaginable number, which isn’t going to fit in your trusty PC. Even if there were a quan-
tity of bits you could use for every number, it surely wouldn’t be efficient to use all these bits for a
variable that, for example, was required to store only the numbers between 0 and 10 (because stor-
age would be wasted). Four bits would do the job fine here, enabling you to store many more values
in this range in the same space of memory.

Instead, a number of different integer types can be used to store various ranges of numbers, which
take up differing amounts of memory (up to 64 bits). These types are shown in Table 3-1.

NOTE Each of these types uses one of the standard types defined in the
.NET Framework. As discussed in Chapter 1, this use of standard types is what
enables language interoperability. The names you use for these types in C#
are aliases for the types defined in the framework. Table 3-1 lists the names of
these types as they are referred to in the .NET Framework library.

TABLE 3-1: Integer Types

TYPE ALIAS FOR ALLOWED VALUES

sbyte System.SByte Integer between −128 and 127

byte System.Byte Integer between 0 and 255

short System.Int16 Integer between −32768 and 32767

ushort System.UInt16 Integer between 0 and 65535

int System.Int32 Integer between −2147483648 and 2147483647

uint System.UInt32 Integer between 0 and 4294967295

long System.Int64 Integer between −9223372036854775808 and
9223372036854775807

ulong System.UInt64 Integer between 0 and 18446744073709551615

40 ❘ CHAPTER 3 Variables and expressions

The u characters before some variable names are shorthand for unsigned, meaning that you can’t
store negative numbers in variables of those types, as shown in the Allowed Values column of the
preceding table.

Of course, you also need to store floating-point values, those that aren’t whole numbers. You can
use three floating-point variable types: float, double, and decimal. The first two store floating
points in the form 6m × 2e, where the allowed values for m and e differ for each type. decimal uses
the alternative form 6m × 10e. These three types are shown in Table 3-2, along with their allowed
values of m and e, and these limits in real numeric terms.

TABLE 3-2: Floating-Point Types

TYPE ALIAS FOR MIN M MAX M MIN E MAX E APPROX

MIN VALUE

APPROX

MAX VALUE

float System.Single 0 224 −149 104 1.5 × 10−45 3.4 × 1038

double System.Double 0 253 −1075 970 5.0 × 10−324 1.7 × 10308

decimal System.Decimal 0 296 −28 0 1.0 × 10−28 7.9 × 1028

In addition to numeric types, three other simple types are available (see Table 3-3).

TABLE 3-3: Text and Boolean Types

TYPE ALIAS FOR ALLOWED VALUES

char System.Char Single Unicode character, stored as an integer between 0 and
65535

bool System.Boolean Boolean value, true or false

string System.String A sequence of characters

Note that there is no upper limit on the number of characters making up a string, because it can
use varying amounts of memory.

The Boolean type bool is one of the most commonly used variable types in C#, and indeed simi-
lar types are equally prolific in code in other languages. Having a variable that can be either true
or false has important ramifications when it comes to the flow of logic in an application. As a
simple example, consider how many questions can be answered with true or false (or yes and no).
Performing comparisons between variable values or validating input are just two of the program-
matic uses of Boolean variables that you will examine very soon.

Now that you’ve seen these types, consider a short example that declares and uses them. In the fol-
lowing Try It Out you use some simple code that declares two variables, assigns them values, and
then outputs these values.

Variables ❘ 41

TRY IT OUT Using Simple Type Variables: Ch03Ex01\Program.cs

 1. Create a new console application called Ch03Ex01 and save it in the directory
C:\BeginningCSharp7\Chapter03.

 2. Add the following code to Program.cs:

static void Main(string[] args)
{
 int myInteger;
 string myString;
 myInteger = 17;
 myString = "\"myInteger\" is";
 Console.WriteLine($"{myString} {myInteger}");
 Console.ReadKey();
}

 3. Execute the code. The result is shown in Figure 3-1.

FIGURE 3-1

How It Works

The added code performs three tasks:

 ➤ It declares two variables.

 ➤ It assigns values to those two variables.

 ➤ It outputs the values of the two variables to the console.

Variable declaration occurs in the following code:

 int myInteger;
 string myString;

The first line declares a variable of type int with a name of myInteger, and the second line declares a
variable of type string called myString.

NOTE Variable naming is restricted; you can’t use just any sequence of charac-
ters. You learn about this in the section titled “Variable Naming.”

The next two lines of code assign values:

 myInteger = 17;
 myString = "\"myInteger\" is";

42 ❘ CHAPTER 3 Variables and expressions

Here, you assign two fixed values (known as literal values in code) to your variables using the = assign-
ment operator (the “Expressions” section of this chapter has more details about operators). You assign
the integer value 17 to myInteger, and you assigned the following string (including the quotes) to
myString:

 "myInteger" is

When you assign string literal values in this way, double quotation marks are required to enclose the
string. Therefore, certain characters might cause problems if they are included in the string itself, such
as the double quotation characters, and you must escape some characters by substituting a sequence of
other characters (an escape sequence) that represents the character(s) you want to use. In this example,
you use the sequence \" to escape a double quotation mark:

 myString = "\"myInteger\" is";

If you didn’t use these escape sequences and tried coding this as follows, you would get a compiler
error:

 myString = ""myInteger" is";

Note that assigning string literals is another situation in which you must be careful with line breaks
— the C# compiler rejects string literals that span more than one line. If you want to add a line break,
then use the escape sequence for a newline character in your string, which is \n. For example, consider
the following assignment:

 myString = "This string has a\nline break.";

This string would be displayed on two lines in the console view as follows:

 This string has a
 line break.

All escape sequences consist of the backslash symbol followed by one of a small set of characters (you’ll
see the full set later). Because this symbol is used for this purpose, there is also an escape sequence for
the backslash symbol itself, which is simply two consecutive backslashes (\\).

Getting back to the code, there is one more new line to look at:

 Console.WriteLine($"{myString} {myInteger}");

This is a new feature in C# 6 called String Interpolation and looks similar to the simple method of
writing text to the console that you saw in the first example, but now you are specifying your variables.
It’s too soon to dive into the details of this line of code, but suffice it to say that it is the technique you
will be using in the first part of this book to output text to the console window.

This method of outputting text to the console is what you use to display output from your code in the
examples that follow. Finally, the code includes the line shown in the earlier example for waiting for
user input before terminating:

Console.ReadKey();

Again, the code isn’t dissected now, but you will see it frequently in later examples. For now, under-
stand that it pauses code execution until you press a key.

Variables ❘ 43

Variable Naming
As mentioned in the previous section, you can’t just choose any sequence of characters as a variable
name. This isn’t as worrying as it might sound, however, because you’re still left with a very flexible
naming system.

The basic variable naming rules are as follows:

 ➤ The first character of a variable name must be either a letter, an underscore character(_), or
the at symbol (@).

 ➤ Subsequent characters may be letters, underscore characters, or numbers.

There are also certain keywords that have a specialized meaning to the C# compiler, such as the
using and namespace keywords shown earlier. If you use one of these by mistake, the compiler
complains, however, so don’t worry about it.

For example, the following variable names are fine:

myBigVar
VAR1
_test

These are not, however:

99BottlesOfBeer
namespace
It's-All-Over

Literal Values
The previous Try It Out showed two examples of literal values: an integer (17) and a string
("\"myInteger\" is"). The other variable types also have associated literal values, as shown in
Table 3-4. Many of these involve suffixes, whereby you add a sequence of characters to the end of
the literal value to specify the type desired. Some literals have multiple types, determined at compile
time by the compiler based on their context (also shown in Table 3-4).

TABLE 3-4: Literal Values

TYPE(S) CATEGORY SUFFIX EXAMPLE/ALLOWED VALUES

bool Boolean None True or false

int, uint, long,
ulong

Integer None 100

uint, ulong Integer u or U 100U

long, ulong Integer l or L 100L

ulong Integer ul, uL, Ul, UL, lu, lU, Lu, or LU 100UL

float Real f or F 1.5F

continues

44 ❘ CHAPTER 3 Variables and expressions

TYPE(S) CATEGORY SUFFIX EXAMPLE/ALLOWED VALUES

double Real None, d, or D 1.5

decimal Real m or M 1.5M

char Character None 'a', or escape sequence

string String None "a. . .a", may include
escape sequences

Binary Literals and Digit Separators
No matter how sophisticated or complex programming syntax becomes, computers function in only
2 states, 0 and 1, also known as binary (base 2). If you wanted, you could code all your programs
as a sequence of 0’s and 1’s and then run that program. Although that is neither feasible nor rec-
ommended, by doing so you alleviate the burden from the interpreters of converting the program
from, for example, C#, decimal (base 10), octal (base 8) or hexadecimal (base 16). There is not a
lot of gain or value from doing that, so realize that using binary today is reserved for very specific
scenarios that require it. For example, you might need to pass values to a third-party code package
in binary, hexadecimal, or ASCII form. For the most part, unless those literals are required, you
should code using a programming language like C#.

Deep technical knowledge and historical understandings of nibbles, bits, bytes, characters, words,
bin, hex, octal, and so on is required to deeply understand when, where, how, and why to use these
literals. Instead of going deeper into the historical question of “why” and professional-level discus-
sions of “how,” it’s enough for now to know that, for example, you can use binary literals as an
elegant way to store values as constants for pattern matching and comparison, as well as for imple-
menting bit masks. As shown with the binary vs. hex example in the following code lines, you can
see that the binary numbers are rotated by a single bit from right to left. The hex values have no pat-
tern, which makes it more difficult to quickly determine what the intent of the code might be.

int[] binaryPhases = [0b00110001, 0b01100010, 0b11000100, 0b10001001];
int[] hexPhases = [0x31, 0x62, 0xC4, 0x89];

Now you have some context, and instead of going too deep too fast into pattern matching and bit
masks, the remainder of this section specifically focuses on C# 7’s binary literals and digital separa-
tors. You can read more about binary pattern matching and bit masks on your own to increase your
knowledge after reading this book and gaining more coding experience.

To better understand the C# 7 binary literal feature, take, for example, the following code:

int[] numbers = [1, 2, 4, 8, 16];

In C# 7, the values added to the numbers array can be written directly in binary, as shown here.

int[] numbers = [0b0001, 0b0010, 0b00100, 0b0001000, 0b00010000];

TABLE 3-4 (continued)

Variables ❘ 45

As with hexadecimals where the prefix is 0x, the compiler will recognize any value beginning with
0b as a binary value and process it as such. As you can imagine, binary values for larger numbers
get long and it’s easy to make mistakes when you type them in manually. Take the number 128 for
example, which has a binary value of 10000000—that’s a 1 followed by 7 zeros. This is where digit
separators, also new in C# 7, can help. Take the following code as an example:

int[] numbers = [32, 64, 128];
int[] numbers = [0b0010_0000, 0b0100_0000, 0b1000_0000];

Knowing that you can separate the binary literal into groups of digits helps the readability and
management of the code. Digit separators are not limited only to binary values: they can be used
with decimal, float, and double as well. The following line of code represents the value of Pi using a
separator after every third digit. The primary reason for digit separators is to make the code easier
to read.

public const double Pi = 3.141_592_653_589_793_238_462_643_383_279_502;

String Literals
Earlier in the chapter, you saw a few of the escape sequences you can use in string literals.
Table 3-5 lists these for reference purposes.

TABLE 3-5: Escape Sequences for String Literals

ESCAPE SEQUENCE CHARACTER PRODUCED UNICODE (HEX) VALUE OF CHARACTER

\' Single quotation mark 0x0027

\" Double quotation mark 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert (causes a beep) 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The Unicode Value of Character column of the preceding table shows the hexadecimal values of
the characters as they are found in the Unicode character set. As well as the preceding, you can

46 ❘ CHAPTER 3 Variables and expressions

specify any Unicode character using a Unicode escape sequence. These consist of the standard \
character followed by a u and a four-digit hexadecimal value (for example, the four digits after
the x in Table 3-5).

This means that the following strings are equivalent:

"Benjamin\'s string."
"Benjamin\u0027s string."

Obviously, you have more versatility using Unicode escape sequences.

You can also specify strings verbatim. This means that all characters contained between two double
quotation marks are included in the string, including end-of-line characters and characters that
would otherwise need escaping. The only exception to this is the escape sequence for the double
quotation mark character, which must be specified to avoid ending the string. To do this, place the @
character before the string:

@"Verbatim string literal."

This string could just as easily be specified in the normal way, but the following requires the @
character:

@"A short list:
item 1
item 2"

Verbatim strings are particularly useful in filenames, as these use plenty of backslash characters.
Using normal strings, you’d have to use double backslashes all the way along the string:

"C:\\Temp\\MyDir\\MyFile.doc"

With verbatim string literals you can make this more readable. The following verbatim string is
equivalent to the preceding one:

@"C:\Temp\MyDir\MyFile.doc"

NOTE As shown later in the book, strings are reference types. This contrasts
with the other types you’ve seen in this chapter, which are value types. One
consequence of this is that strings can also be assigned the value null, which
means that the string variable doesn’t reference a string (or anything else, for
that matter).

EXPRESSIONS

C# contains a number of operators for this purpose. By combining operators with variables and lit-
eral values (together referred to as operands when used with operators), you can create expressions,
which are the basic building blocks of computation.

Expressions ❘ 47

The operators available range from the simple to the highly complex, some of which you might never
encounter outside of mathematical applications. The simple ones include all the basic mathematical
operations, such as the + operator to add two operands; the complex ones include manipulations of
variable content via the binary representation of this content. There are also logical operators spe-
cifically for dealing with Boolean values, and assignment operators such as =.

This chapter focuses on the mathematical and assignment operators, leaving the logical ones for the
next chapter, where you examine Boolean logic in the context of controlling program flow.

Operators can be roughly classified into three categories:

 ➤ Unary — Act on single operands

 ➤ Binary — Act on two operands

 ➤ Ternary — Act on three operands

Most operators fall into the binary category, with a few unary ones, and a single ternary one called
the conditional operator (the conditional operator is a logical one and is discussed in Chapter 4,
“Flow Control”). Let’s start by looking at the mathematical operators, which span both the unary
and binary categories.

Mathematical Operators
There are five simple mathematical operators, two of which (+ and -) have both binary and unary
forms. Table 3-6 lists each of these operators, along with a short example of its use and the result
when it’s used with simple numeric types (integer and floating point).

TABLE 3-6: Simple Mathematical Operators

OPERATOR CATEGORY EXAMPLE

EXPRESSION

RESULT

+ Binary var1 = var2 +

var3;
var1 is assigned the value that is the sum of
var2 and var3.

- Binary var1 = var2

- var3;
var1 is assigned the value that is the value of
var3 subtracted from the value of var2.

* Binary var1 = var2 *

var3;
var1 is assigned the value that is the product of
var2 and var3.

/ Binary var1 = var2 /

var3;
var1 is assigned the value that is the result of
dividing var2 by var3.

% Binary var1 = var2 %

var3;
var1 is assigned the value that is the remainder
when var2 is divided by var3.

+ Unary var1 = +var2; var1 is assigned the value of var2.

- Unary var1 = -var2; var1 is assigned the value of var2 multiplied
by -1.

48 ❘ CHAPTER 3 Variables and expressions

NOTE The + (unary) operator is slightly odd, as it has no effect on the result.
It doesn’t force values to be positive, as you might assume — if var2 is -1, then
+var2 is also -1. However, it is a universally recognized operator, and as such
is included. The most useful fact about this operator is shown later in this book
when you look at operator overloading.

The examples use simple numeric types because the result can be unclear when using the other simple
types. What would you expect if you added two Boolean values, for example? In this case, nothing,
because the compiler complains if you try to use + (or any of the other mathematical operators) with
bool variables. Adding char variables is also slightly confusing. Remember that char variables are actu-
ally stored as numbers, so adding two char variables also results in a number (of type int, to be pre-
cise). This is an example of implicit conversion, which you’ll learn a lot more about shortly (along with
explicit conversion), because it also applies to cases where var1, var2, and var3 are of mixed types.

The binary + operator does make sense when used with string type variables. In this case, the table
entry should read as shown in Table 3-7.

TABLE 3-7: The String Concatenation Operator

OPERATOR CATEGORY EXAMPLE

EXPRESSION

RESULT

+ Binary var1 = var2 +
var3;

var1 is assigned the value that is the concatena-
tion of the two strings stored in var2 and var3.

None of the other mathematical operators, however, work with strings.

The other two operators you should look at here are the increment and decrement operators, both of
which are unary operators that can be used in two ways: either immediately before or immediately
after the operand. The results obtained in simple expressions are shown in Table 3-8.

TABLE 3-8: Increment and Decrement Operators

OPERATOR CATEGORY EXAMPLE

EXPRESSION

RESULT

++ Unary var1 = ++var2; var1 is assigned the value of var2 + 1. var2 is
incremented by 1.

-- Unary var1 = --var2; var1 is assigned the value of var2 - 1. var2 is
decremented by 1.

++ Unary var1 = var2++; var1 is assigned the value of var2. var2 is
incremented by 1.

-- Unary var1 = var2--; var1 is assigned the value of var2. var2 is
decremented by 1.

Expressions ❘ 49

These operators always result in a change to the value stored in their operand:

 ➤ ++ always results in its operand being incremented by one.

 ➤ −− always results in its operand being decremented by one.

The differences between the results stored in var1 are a consequence of the fact that the placement
of the operator determines when it takes effect. Placing one of these operators before its oper-
and means that the operand is affected before any other computation takes place. Placing it after
the operand means that the operand is affected after all other computation of the expression is
completed.

This merits another example! Consider this code:

int var1, var2 = 5, var3 = 6;
var1 = var2++ * --var3;

What value will be assigned to var1? Before the expression is evaluated, the -- operator preceding
var3 takes effect, changing its value from 6 to 5. You can ignore the ++ operator that follows var2,
as it won’t take effect until after the calculation is completed, so var1 will be the product of 5 and 5,
or 25.

These simple unary operators come in very handy in a surprising number of situations. They are
really just shorthand for expressions such as this:

var1 = var1 + 1;

This sort of expression has many uses, particularly where looping is concerned, as shown in the next
chapter. The following Try It Out provides an example demonstrating how to use the mathematical
operators, and it introduces a couple of other useful concepts as well. The code prompts you to type
in a string and two numbers and then demonstrates the results of performing some calculations.

TRY IT OUT
Manipulating Variables with Mathematical Operators: Ch03Ex02\
Program.cs

 1. Create a new console application called Ch03Ex02 and save it to the directory
C:\BeginningCSharp7\Chapter03.

 2. Add the following code to Program.cs:

 static void Main(string[] args)
 {
 double firstNumber, secondNumber;
 string userName;
 Console.WriteLine("Enter your name:");
 userName = Console.ReadLine();
 Console.WriteLine($"Welcome {userName}!");
 Console.WriteLine("Now give me a number:");
 firstNumber = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("Now give me another number:");
 secondNumber = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine($"The sum of {firstNumber} and {secondNumber} is " +
 $"{firstNumber + secondNumber}.");

50 ❘ CHAPTER 3 Variables and expressions

 Console.WriteLine($"The result of subtracting {secondNumber} from " +
 $"{firstNumber} is {firstNumber - secondNumber}.");
 Console.WriteLine($"The product of {firstNumber} and {secondNumber} " +
 $"is {firstNumber * secondNumber}.");
 Console.WriteLine($"The result of dividing {firstNumber} by " +
 $"{secondNumber} is {firstNumber / secondNumber}.");
 Console.WriteLine($"The remainder after dividing {firstNumber} by " +
 $"{secondNumber} is {firstNumber % secondNumber}.");
 Console.ReadKey();
 }

 3. Execute the code. The display shown in Figure 3-2 appears.

FIGURE 3-2

 4. Enter your name and press Enter. Figure 3-3 shows the display.

FIGURE 3-3

 5. Enter a number, press Enter, enter another number, and then press Enter again. Figure 3-4 shows
an example result.

FIGURE 3-4

Expressions ❘ 51

How It Works

As well as demonstrating the mathematical operators, this code introduces two important concepts that
you will often come across:

 ➤ User input

 ➤ Type conversion

User input uses a syntax similar to the Console.WriteLine() command you’ve already seen — you use
Console.ReadLine(). This command prompts the user for input, which is stored in a string variable:

 string userName;
 Console.WriteLine("Enter your name:");
 userName = Console.ReadLine();
 Console.WriteLine($"Welcome {userName}!");

This code writes the contents of the assigned variable, userName, straight to the screen.

You also read in two numbers in this example. This is slightly more involved, because the Console
.ReadLine() command generates a string, but you want a number. This introduces the topic of type
conversion, which is covered in more detail in Chapter 5, “More about Variables,” but let’s have a look
at the code used in this example.

First, you declare the variables in which you want to store the number input:

 double firstNumber, secondNumber;

Next, you supply a prompt and use the command Convert.ToDouble() on a string obtained by
Console.ReadLine() to convert the string into a double type. You assign this number to the first-
Number variable you have declared:

 Console.WriteLine("Now give me a number:");
 firstNumber = Convert.ToDouble(Console.ReadLine());

This syntax is remarkably simple, and many other conversions can be performed in a similar way.

The remainder of the code obtains a second number in the same way:

 Console.WriteLine("Now give me another number:");
 secondNumber = Convert.ToDouble(Console.ReadLine());

Next, you output the results of adding, subtracting, multiplying, and dividing the two numbers, in
addition to displaying the remainder after division, using the remainder (%) operator:

 Console.WriteLine($"The sum of {firstNumber} and {secondNumber} is " +
 $"{firstNumber + secondNumber}.");
 Console.WriteLine($"The result of subtracting {secondNumber} from " +
 $"{firstNumber} is {firstNumber - secondNumber}.");
 Console.WriteLine($"The product of {firstNumber} and {secondNumber} " +
 $"is {firstNumber * secondNumber}.");
 Console.WriteLine($"The result of dividing {firstNumber} by " +
 $"{secondNumber} is {firstNumber / secondNumber}.");
 Console.WriteLine($"The remainder after dividing {firstNumber} by " +
 $"{secondNumber} is {firstNumber % secondNumber}.");

52 ❘ CHAPTER 3 Variables and expressions

Note that you are supplying the expressions, firstNumber + secondNumber and so on, as a parameter
to the Console.WriteLine() statement, without using an intermediate variable:

 Console.WriteLine($"The sum of {firstNumber} and {secondNumber} is " +
 $"{firstNumber + secondNumber}.");

This kind of syntax can make your code very readable, and reduce the number of lines of code you
need to write.

Assignment Operators
So far, you’ve been using the simple = assignment operator, and it may come as a surprise that any
other assignment operators exist at all. There are more, however, and they’re quite useful! All of
the assignment operators other than = work in a similar way. Like =, they all result in a value being
assigned to the variable on their left side based on the operands and operators on their right side.

Table 3-9 describes the operators.

TABLE 3-9: Assignment Operators

OPERATOR CATEGORY EXAMPLE

EXPRESSION

RESULT

= Binary var1 = var2; var1 is assigned the value of var2.

+= Binary var1 += var2; var1 is assigned the value that is the sum of var1
and var2.

-= Binary var1 -= var2; var1 is assigned the value that is the value of var2
subtracted from the value of var1.

*= Binary var1 *= var2; var1 is assigned the value that is the product of
var1 and var2.

/= Binary var1 /= var2; var1 is assigned the value that is the result of divid-
ing var1 by var2.

%= Binary var1 %= var2; var1 is assigned the value that is the remainder
when var1 is divided by var2.

As you can see, the additional operators result in var1 being included in the calculation, so code like

var1 += var2;

has exactly the same result as

var1 = var1 + var2;

Expressions ❘ 53

NOTE The += operator can also be used with strings, just like +.

Using these operators, especially when employing long variable names, can make code much easier
to read.

Operator Precedence
When an expression is evaluated, each operator is processed in sequence, but this doesn’t necessarily
mean evaluating these operators from left to right. As a trivial example, consider the following:

var1 = var2 + var3;

Here, the + operator acts before the = operator. There are other situations where operator prece-
dence isn’t so obvious, as shown here:

var1 = var2 + var3 * var4;

In the preceding example, the * operator acts first, followed by the + operator, and finally the =
operator. This is standard mathematical order, and it provides the same result as you would expect
from working out the equivalent algebraic calculation on paper.

Similarly, you can gain control over operator precedence by using parentheses, as shown in this
example:

var1 = (var2 + var3) * var4;

Here, the content of the parentheses is evaluated first, meaning that the + operator acts before the *
operator.

Table 3-10 shows the order of precedence for the operators you’ve encountered so far. Operators of
equal precedence (such as * and /) are evaluated from left to right.

TABLE 3-10: Operator Precedence

PRECEDENCE OPERATORS

Highest ++, -- (used as prefixes); +, - (unary)

*, /, %

+, -

=, *=, /=, %=, +=, -=

Lowest ++, -- (used as postfixes)

54 ❘ CHAPTER 3 Variables and expressions

NOTE You can use parentheses to override this precedence order, as
described previously. In addition, note that ++ and --, when used as postfixes,
only have lowest priority in conceptual terms, as described in Table 3-10. They
don’t operate on the result of, say, an assignment expression, so you can con-
sider them to have a higher priority than all other operators. However, because
they change the value of their operand after expression evaluation, it’s easier
to think of their precedence as shown in Table 3-10.

Namespaces
Before moving on, it’s worthwhile to consider one more important subject — namespaces. These
are the .NET way of providing containers for application code, such that code and its contents
may be uniquely identified. Namespaces are also used as a means of categorizing items in the
.NET Framework. Most of these items are type definitions, such as the simple types in this chapter
(System.Int32 and so on).

C# code, by default, is contained in the global namespace. This means that items contained in this
code are accessible from other code in the global namespace simply by referring to them by name.
You can use the namespace keyword, however, to explicitly define the namespace for a block of
code enclosed in curly brackets. Names in such a namespace must be qualified if they are used
from code outside of this namespace.

A qualified name is one that contains all of its hierarchical information, which basically means
that if you have code in one namespace that needs to use a name defined in a different namespace,
you must include a reference to this namespace. Qualified names use period characters (.) between
namespace levels, as shown here:

namespace LevelOne
{
 // code in LevelOne namespace
 // name "NameOne" defined
}
// code in global namespace

This code defines one namespace, LevelOne, and a name in this namespace, NameOne (no actual
code is shown here to keep the discussion general; instead, a comment appears where the defini-
tion would go). Code written inside the LevelOne namespace can simply refer to this name using
NameOne — no classification is necessary. Code in the global namespace, however, must refer to this
name using the classified name LevelOne.NameOne.

Note one more important point here: The using statement doesn’t in itself give you access to names
in another namespace. Unless the code in a namespace is in some way linked to your project, by
being defined in a source file in the project or being defined in some other code linked to the project,
you won’t have access to the names contained. In addition, if code containing a namespace is linked
to your project, then you have access to the names contained in that code, regardless of whether you
use using. using simply makes it easier for you to access these names, and it can shorten otherwise
lengthy code to make it more readable.

Expressions ❘ 55

Going back to the code in ConsoleApplication1 shown at the beginning of this chapter, the fol-
lowing lines that apply to namespaces appear:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApplication1
{
 ...
}

The five lines that start with the using keyword are used to declare that the System, System
.Collections.Generic, System.Linq, System.Text, and System.Threading.Tasks namespaces
will be used in this C# code and should be accessible from all namespaces in this file without clas-
sification. The System namespace is the root namespace for .NET Framework applications and
contains all the basic functionality you need for console applications. The other four namespaces
are very often used in console applications, so they are there just in case. Additionally, notice that a
namespace is declared for the application code itself, ConsoleApplication1 itself.

 C# 6 introduced the using static keyword. This keyword allows the inclusion of static members
directly into the scope of a C# program. For example, both Try It Out code walkthroughs in this
chapter have used the System.Console.WriteLine() method, which is part of the System
.Console static class. Notice that in these examples it is required to include the Console class com-
bined with the WriteLine() method. When the using static System.Console namespace is
added to the list of included namespaces, accessing the WriteLine() method no longer requires the
preceding static class name.

All code examples requiring the System.Console static class from this point forward include the
using static System.Console keyword.

EXERCISES

 3.1 In the following code, how would you refer to the name great from code in the namespace
fabulous?

namespace fabulous
{
 // code in fabulous namespace
}
namespace super
{
 namespace smashing
 {
 // great name defined
 }
}

56 ❘ CHAPTER 3 Variables and expressions

 3.2 Which of the following is not a legal variable name?

 ➤ myVariableIsGood

 ➤ 99Flake

 ➤ _floor

 ➤ time2GetJiggyWidIt

 ➤ wrox.com

 3.3 Is the string "supercalifragilisticexpialidocious" too big to fit in a string variable? If
so, why?

 3.4 By considering operator precedence, list the steps involved in the computation of the follow-
ing expression:

resultVar += var1 * var2 + var3 % var4 / var5;

 3.5 Write a console application that obtains four int values from the user and displays the prod-
uct. Hint: You may recall that the Convert.ToDouble() command was used to convert the
input from the console to a double; the equivalent command to convert from a string to an
int is Convert.ToInt32().

Answers to the exercises can be found in Appendix.

Expressions ❘ 57

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Basic C# syntax C# is a case-sensitive language, and each line of code is terminated with a semi-
colon. Lines can be indented for ease of reading if they get too long, or to iden-
tify nested blocks. You can include non-compiled comments with // or /* … */
syntax. Blocks of code can be collapsed into regions, also to ease readability.

Variables Variables are chunks of data that have a name and a type. The .NET Framework
defines plenty of simple types, such as numeric and string (text) types for you
to use. Variables must be declared and initialized for you to use them. You can
assign literal values to variables to initialize them, and variables can be declared
and initialized in a single step.

Expressions Expressions are built from operators and operands, where operators perform
operations on operands. There are three types of operators — unary, binary, and
ternary — that operate on 1, 2, and 3 operands, respectively. Mathematical oper-
ators perform operations on numeric values, and assignment operators place the
result of an expression into a variable. Operators have a fixed precedence that
determines the order in which they are processed in an expression.

Namespaces All names defined in a .NET application, including variable names, are contained
in a namespace. Namespaces are hierarchical, and you often have to qualify
names according to the namespace that contains them in order to access them.

Flow Control
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Using Boolean logic

 ➤ Branching code

 ➤ Looping code

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter04 folder and individually named
according to the names throughout the chapter.

All the C# code you’ve seen so far has had one thing in common. In each case, program execu-
tion has proceeded from one line to the next in top-to-bottom order, missing nothing. If all
applications worked like this, then you would be very limited in what you could do. This
chapter describes two methods for controlling program flow—that is, the order of execution of
lines of C# code—branching and looping. Branching executes code conditionally, depending
on the outcome of an evaluation, such as “Execute this code only if the variable myVal is less
than 10.” Looping repeatedly executes the same statements, either a certain number of times
or until a test condition has been reached.

Both techniques involve the use of Boolean logic. In the last chapter, you saw the bool type,
but didn’t actually do much with it. In this chapter, you’ll use it a lot, so the chapter begins by
discussing what is meant by Boolean logic, and then goes on to cover how you can use it in
flow control scenarios.

4

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

60 ❘ CHAPTER 4 Flow Control

BOOLEAN LOGIC

The bool type introduced in the previous chapter can hold one of only two values: true or false.
This type is often used to record the result of some operation, so that you can act on this result. In
particular, bool types are used to store the result of a comparison.

NOTE As a historical aside, it is the work of the mid-nineteenth-century
English mathematician George Boole that forms the basis of Boolean logic.

For instance, consider the situation (mentioned in the chapter introduction) in which you want to
execute code based on whether a variable, myVal, is less than 10. To do this, you need some indica-
tion of whether the statement “myVal is less than 10” is true or false—that is, you need to know
the Boolean result of a comparison.

Boolean comparisons require the use of Boolean comparison operators (also known as relational
operators), which are shown in Table 4-1.

TABLE 4-1: Boolean Comparison Operators

OPERATOR CATEGORY EXAMPLE

EXPRESSION

RESULT

== Binary var1 = var2

== var3;
var1 is assigned the value true if var2 is equal to
var3, or false otherwise.

!= Binary var1 = var2

!= var3;
var1 is assigned the value true if var2 is not equal
to var3, or false otherwise.

< Binary var1 = var2 <

var3;
var1 is assigned the value true if var2 is less than
var3, or false otherwise.

> Binary var1 = var2 >

var3;
var1 is assigned the value true if var2 is greater
than var3, or false otherwise.

<= Binary var1 = var2

<= var3;
var1 is assigned the value true if var2 is less than
or equal to var3, or false otherwise.

>= Binary var1 = var2

>= var3;
var1 is assigned the value true if var2 is greater
than or equal to var3, or false otherwise.

In all cases in Table 4-1, var1 is a bool type variable, whereas the types of var2 and var3 may vary.

You might use operators such as these on numeric values in code:

bool isLessThan10;
isLessThan10 = myVal < 10;

Boolean Logic ❘ 61

The preceding code results in isLessThan10 being assigned the value true if myVal stores a value
less than 10, or false otherwise.

You can also use these comparison operators on other types, such as strings:

bool isBenjamin;
isBenjamin = myString == "Benjamin";

Here, isBenjamin is true only if myString stores the string "Benjamin".

You can also compare variables with Boolean values:

bool isTrue;
isTrue = myBool == true;

Here, however, you are limited to the use of the == and != operators.

NOTE A common code error occurs if you unintentionally assume that
because val1 < val2 is false, val1 > val2 is true. If val1 == val2, both
these statements are false.

The & and | operators also have two similar operators, known as conditional Boolean operators,
shown in Table 4-2.

TABLE 4-2: Conditional Boolean Operators

OPERATOR CATEGORY EXAMPLE

EXPRESSION

RESULT

&& Binary var1 = var2 &&

var3;
var1 is assigned the value true if var2 and var3
are both true, or false otherwise. (Logical AND)

|| Binary var1 = var2 ||

var3;
var1 is assigned the value true if either var2
or var3 (or both) is true, or false otherwise.
(Logical OR)

The result of these operators is exactly the same as & and |, but there is an important difference in
the way this result is obtained, which can result in better performance. Both of these look at the
value of their first operands (var2 in Table 4.2) and, based on the value of this operand, may not
need to process the second operands (var3 in Table 4.2) at all.

If the value of the first operand of the && operator is false, then there is no need to consider the
value of the second operand, because the result will be false regardless. Similarly, the || operator
returns true if its first operand is true, regardless of the value of the second operand.

62 ❘ CHAPTER 4 Flow Control

Boolean Bitwise and Assignment Operators
Boolean comparisons can be combined with assignments by combining Boolean bitwise and
assignment operators. These work in the same way as the mathematical assignment operators that
were introduced in the preceding chapter (+=, *=, and so on). The Boolean versions are shown in
Table 4-3. When expressions use both the assignment (=) and bitwise operators (&, |, and ^), the
binary representation of the compared quantities are used to compute the outcome, instead of the
integer, string, or similar values.

TABLE 4-3: Boolean Assignment Operators

OPERATOR CATEGORY EXAMPLE EXPRESSION RESULT

&= Binary var1 &= var2; var1 is assigned the value that is the result of
var1 & var2.

|= Binary var1 |= var2; var1 is assigned the value that is the result of
var1 | var2.

^= Binary var1 ^= var2; var1 is assigned the value that is the result of
var1 ^ var2.

For example, the equation var1 ^= var2 is similar to var1 = var1 ^ var2 where var1 = true
and var2 = false. When comparing the binary representation of false which is 0000 to true,
which is typically anything other than 0000 (usually 0001), var1 is set to true.

NOTE Note that the &= and |= assignment operators do not make use of the
&& and || conditional Boolean operators; that is, all operands are processed
regardless of the value to the left of the assignment operator.

This Try-It-Out is the first of many that assumes that the “using static System.Console;” and
the “using static System.Convert;” (if required) statements are added to the using section at the
top of the file.

TRY IT OUT Using Boolean Operators: Ch04Ex01\Program.cs

 1. Create a new console application called Ch04Ex01 and save it in the directory
C:\BeginningCSharp7\Chapter04.

 2. Add the following code to Program.cs:

 static void Main(string[] args)
 {
 WriteLine("Enter an integer:");
 int myInt = ToInt32(ReadLine());
 bool isLessThan10 = myInt < 10;

Boolean Logic ❘ 63

 bool isBetween0And5 = (0 <= myInt) && (myInt <= 5);
 WriteLine($"Integer less than 10? {isLessThan10}");
 WriteLine($"Integer between 0 and 5? {isBetween0And5}");
 WriteLine($"Exactly one of the above is true? " +
 $"{isLessThan10 ^ isBetween0And5}");
 ReadKey();
 }

 3. Execute the application and enter an integer when prompted. The result is shown in Figure 4-1.

FIGURE 4-1

How It Works

The first two lines of code prompt for and accept an integer value using techniques you’ve already seen:

 WriteLine("Enter an integer:");
 int myInt = ToInt32(ReadLine());

You use ToInt32()to obtain an integer from the string input, which is simply another conversion
command in the same family as the ToDouble()command used previously. Both the ToInt32() and
ToDouble() methods are part of the System.Convert static class. As discussed in Chapter 3, since
C# 6, it is possible to access the method of a static class directly (in this example System.Convert) by
including the using static System.Convert class to the list of included namespaces. Also note that
there is no check to make certain the user has actually entered an integer. If a value other than an
integer is provided, for example a string, an exception would occur when trying to perform the con-
version. You can handle this using a try{}...catch{} block or by checking if the entered value is an
integer before performing the conversion using the GetType() method. Both approaches are discussed
in later chapters.

Next, two Boolean variables, isLessThan10 and isBetween0And5, are declared and assigned values
with logic that matches the description in their names:

 bool isLessThan10 = myInt < 10;
 bool isBetween0And5 = (0 <= myInt) && (myInt <= 5);

These variables are used in the next three lines of code, the first two of which output their values,
whereas the third performs an operation on them and outputs the result. You work through this code
assuming that the user enters 7, as shown in the screenshot.

The first output is the result of the operation myInt < 10. If myInt is 6, which is less than 10, the result
is true, which is what you see displayed. Values of myInt of 10 or higher result in false.

The second output is a more involved calculation: (0 <= myInt) && (myInt <= 5). It uses two compari-
son operations to determine whether myInt is greater than or equal to 0 and less than or equal to 5,

64 ❘ CHAPTER 4 Flow Control

and a Boolean AND operation on the results obtained. With a value of 6, (0 <= myInt)returns true, and
(myInt <= 5)returns false. The result is then (true) && (false), which is false, as you can see from
the display.

Finally, you perform a logical exclusive OR on the two Boolean variables isLessThan10 and
isBetween0And5. This will return true if one of the values is true and the other false; that is, it
returns true only if myInt is 6, 7, 8, or 9. With a value of 6, as in the example, the result is true.

Operator Precedence Updated
Now that you have a few more operators to consider, Table 3-10: “Operator Precedence” from the
previous chapter should be updated to include them. The new order is shown in Table 4-4.

TABLE 4-4: Operator Precedence (Updated)

PRECEDENCE OPERATORS

Highest ++, −− (used as prefixes); (), +, – (unary), !, ˜

*, /, %

+, –

<<, >>

<, >, <=, >=

==, !=

&

^

|

&&

||

=, *=, /=, %=, +=, −=, <<=, >>=, &=, ^=, |=

Lowest ++, –– (used as suffixes)

This adds quite a few more levels but explicitly defines how expressions such as the following will be
evaluated, where the && operator is processed after the <= and >= operators (in this code var2 is an
int value):

var1 = var2 <= 4 && var2 >= 2;

Branching ❘ 65

It doesn’t hurt to add parentheses to make expressions such as this one clearer. The compiler knows
what order to process operators in, but we humans are prone to forget such things (and you might
want to change the order). Writing the previous expression as

var1 = (var2 <= 4) && (var2 >= 2);

solves this problem by explicitly ordering the computation.

BRANCHING

Branching is the act of controlling which line of code should be executed next. The line to jump to is
controlled by some kind of conditional statement. This conditional statement is based on a compari-
son between a test value and one or more possible values using Boolean logic.

This section describes three branching techniques available in C#:

 ➤ The ternary operator

 ➤ The if statement

 ➤ The switch statement

The Ternary Operator
The simplest way to perform a comparison is to use the ternary (or conditional) operator mentioned
in the last chapter. You’ve already seen unary operators that work on one operand, and binary oper-
ators that work on two operands, so it won’t come as a surprise that this operator works on three
operands. The syntax is as follows:

<test> ? <resultIfTrue>: <resultIfFalse>

Here, <test> is evaluated to obtain a Boolean value, and the result of the operator is either
<result IfTrue> or <resultIfFalse> based on this value.

You might use this as follows to test the value of an int variable called myInteger:

string resultString = (myInteger < 10) ? "Less than 10"
 : "Greater than or equal to 10";

The result of the ternary operator is one of two strings, both of which may be assigned to
resultString. The choice of which string to assign is made by comparing the value of myInteger
to 10. In this case, a value of less than 10 results in the first string being assigned, and a value of
greater than or equal to 10 results in the second string being assigned. For example, if myInteger
is 4, then resultString will be assigned the string Less than 10.

The if Statement
The if statement is a far more versatile and useful way to make decisions. Unlike ?: statements, if
statements don’t have a result (so you can’t use them in assignments); instead, you use the statement
to conditionally execute other statements.

66 ❘ CHAPTER 4 Flow Control

The simplest use of an if statement is as follows, where <test> is evaluated (it must evaluate to a
Boolean value for the code to compile) and the line of code that follows the statement is executed if
<test> evaluates to true:

if (<test>)
 <code executed if <test> is true>;

After this code is executed, or if it isn’t executed due to <test> evaluating to false, program execu-
tion resumes at the next line of code.

You can also specify additional code using the else statement in combination with an if statement.
This statement is executed if <test> evaluates to false:

if (<test>)
 <code executed if <test> is true>;
else
 <code executed if <test> is false>;

Both sections of code can span multiple lines using blocks in braces:

if (<test>)
{
 <code executed if <test> is true>;
}
else
{
 <code executed if <test> is false>;
}

As a quick example, you could rewrite the code from the last section that used the ternary operator:

string resultString = (myInteger < 10) ? "Less than 10"
 : "Greater than or equal to 10";

Because the result of the if statement cannot be assigned to a variable, you have to assign a value to
the variable in a separate step:

string resultString;
if (myInteger < 10)
 resultString = "Less than 10";
else
 resultString = "Greater than or equal to 10";

Code such as this, although more verbose, is far easier to read and understand than the equivalent
ternary form, and enables far more flexibility.

The following Try It Out illustrates the use of the if statement.

TRY IT OUT Using the if Statement: Ch04Ex02\Program.cs

 1. Create a new console application called Ch04Ex02 and save it in the directory
C:\BeginningCSharp7\Chapter04.

 2. Add the following code to Program.cs:

 static void Main(string[] args)
 {
 string comparison;

Branching ❘ 67

 WriteLine("Enter a number:");
 double var1 = ToDouble(ReadLine());
 WriteLine("Enter another number:");
 double var2 = ToDouble(ReadLine());
 if (var1 < var2)
 comparison = "less than";
 else
 {
 if (var1 == var2)
 comparison = "equal to";
 else
 comparison = "greater than";
 }
 WriteLine($"The first number is {comparison} " +
 $"the second number.");
 ReadKey();
 }

 3. Execute the code and enter two numbers at the prompts (see Figure 4-2).

FIGURE 4-2

How It Works

The first section of code is very familiar. It simply obtains two double values from user input:

 string comparison;
 WriteLine("Enter a number:");
 double var1 = ToDouble(ReadLine());
 WriteLine("Enter another number:");
 double var2 = ToDouble(ReadLine());

Next, you assign a string to the string variable comparison based on the values obtained for var1 and
var2. First, you check whether var1 is less than var2:

 if (var1 < var2)
 comparison = "less than";

If this isn’t the case, then var1 is either greater than or equal to var2. In the else section of the first
comparison, you need to nest a second comparison:

 else
 {
 if (var1 == var2)
 comparison = "equal to";

68 ❘ CHAPTER 4 Flow Control

The else section of this second comparison is reached only if var1 is greater than var2:

 else
 comparison = "greater than";
 }

Finally, you write the value of comparison to the console:

 WriteLine("The first number is {0} the second number.",
 comparison);

The nesting used here is just one method of performing these comparisons. You could equally have
written this:

 if (var1 < var2)
 comparison = "less than";
 if (var1 == var2)
 comparison = "equal to";
 if (var1 > var2)
 comparison = "greater than";

The disadvantage to this method is that you are performing three comparisons regardless of the values
of var1 and var2. With the first method, you perform only one comparison if var1 < var2 is true, and
two comparisons otherwise (you also perform the var1 == var2 comparison), resulting in fewer lines of
code being executed. The difference in performance here is slight, but it would be significant in applica-
tions where speed of execution is crucial.

Checking More Conditions Using if Statements
In the preceding example, you checked for three conditions involving the value of var1. This
covered all possible values for this variable. Sometimes, you might want to check for specific
values—for example, if var1 is equal to 1, 2, 3, or 4, and so on. Using code such as the preceding
can result in annoyingly nested code:

if (var1 == 1)
{
 // Do something.
}
else
{
 if (var1 == 2)
 {
 // Do something else.
 }
 else
 {
 if (var1 == 3 || var1 == 4)
 {
 // Do something else.
 }

Branching ❘ 69

 else
 {
 // Do something else.
 }
 }
}

WARNING It’s a common mistake to write conditions such as if (var1 == 3
|| var1 == 4) as if (var1 == 3 || 4). Here, owing to operator precedence,
the == operator is processed first, leaving the || operator to operate on a
Boolean and a numeric operand, which causes an error.

In these situations, consider using a slightly different indentation scheme and contracting the section
of code for the else blocks (that is, using a single line of code after the else blocks, rather than a
block of code). That way, you end up with a structure involving else if statements:

if (var1 == 1)
{
 // Do something.
}
else if (var1 == 2)
{
 // Do something else.
}
else if (var1 == 3 || var1 == 4)
{
 // Do something else.
}
else
{
 // Do something else.
}

These else if statements are really two separate statements, and the code is functionally identical
to the previous code, but much easier to read. When making multiple comparisons such as this, con-
sider using the switch statement as an alternative branching structure.

The switch Statement
The switch statement is similar to the if statement in that it executes code conditionally based on
the value of a test. However, switch enables you to test for multiple values of a test variable in one
go, rather than just a single condition. This test is limited to discrete values, rather than clauses such
as “greater than X,” so its use is slightly different; however, it can be a powerful technique.

The basic structure of a switch statement is as follows:

switch (<testVar>)
{
 case <comparisonVal1>:
 <code to execute if <testVar> == <comparisonVal1> >
 break;

70 ❘ CHAPTER 4 Flow Control

 case <comparisonVal2>:
 <code to execute if <testVar> == <comparisonVal2> >
 break;
 ...
 case <comparisonValN>:
 <code to execute if <testVar> == <comparisonValN> >
 break;
 default:
 <code to execute if <testVar> != comparisonVals>
 break;
}

The value in <testVar> is compared to each of the <comparisonValX> values (specified with case
statements). If there is a match, then the code supplied for this match is executed. If there is no
match, then the code in the default section is executed if this block exists.

On completion of the code in each section, you have an additional command, break. It is illegal for
the flow of execution to reach a second case statement after processing one case block.

NOTE The behavior where the flow of execution is forbidden from flowing
from one case block to the next is one area in which C# differs from C++. In
C++, the processing of case statements is allowed to run from one to another.

The break statement here simply terminates the switch statement, and processing continues on the
statement following the structure.

There are alternative methods for preventing flow from one case statement to the next in C# code.
You can use the return statement, which results in termination of the current function, rather than
just the switch structure (see Chapter 6 for more details about this), or a goto statement. goto
statements (as detailed earlier) work here because case statements actually define labels in C# code.
Here is an example:

switch (<testVar>)
{
 case <comparisonVal1>:
 <code to execute if <testVar> == <comparisonVal1> >
 goto case <comparisonVal2>;
 case <comparisonVal2>:
 <code to execute if <testVar> == <comparisonVal2> >
 break;
 ...

Here’s one exception to the rule that the processing of one case statement can’t run freely into the
next: If you place multiple case statements together (stack them) before a single block of code, then
you are in effect checking for multiple conditions at once. If any of these conditions is met, then the
code is executed. Here’s an example:

switch (<testVar>)
{
 case <comparisonVal1>:
 case <comparisonVal2>:

Branching ❘ 71

 <code to execute if <testVar> == <comparisonVal1> or
 <testVar> == <comparisonVal2> >
 break;
 ...

These conditions also apply to the default statement. There is no rule stipulating that this state-
ment must be the last in the list of comparisons, and you can stack it with case statements if you
want. Adding a breakpoint with break, or return, ensures that a valid execution path exists
through the structure in all cases.

The following Try It Out uses a switch statement to write different strings to the console, depend-
ing on the value you enter for a test string.

TRY IT OUT Using the switch Statement: Ch04Ex03\Program.cs

 1. Create a new console application called Ch04Ex03 and save it to the directory C:\
BeginningCSharp7\Chapter04.

 2. Add the following code to Program.cs:

 static void Main(string[] args)
 {
 const string myName = "benjamin";
 const string niceName = "andrea";
 const string sillyName = "ploppy";
 string name;
 WriteLine("What is your name?");
 name = ReadLine();
 switch (name.ToLower())
 {
 case myName:
 WriteLine("You have the same name as me!");
 break;
 case niceName:
 WriteLine("My, what a nice name you have!");
 break;
 case sillyName:
 WriteLine("That's a very silly name.");
 break;
 }
 WriteLine($"Hello {name}!");
 ReadKey();
 }

 3. Execute the code and enter a name. The result is shown in Figure 4-3.

FIGURE 4-3

72 ❘ CHAPTER 4 Flow Control

How It Works

The code sets up three constant strings, accepts a string from the user, and then writes out text to the
console based on the string entered. Here, the strings are names.

When you compare the name entered (in the variable name) to your constant values, you first force it
into lowercase with name.ToLower(). This is a standard command that works with all string variables,
and it comes in handy when you’re not sure what the user entered. Using this technique, the strings
Benjamin, benJamin, benjamin, and so on all match the test string benjamin.

The switch statement itself attempts to match the string entered with the constant values you have
defined, and, if successful, writes out a personalized message to greet the user. If no match is made, you
offer a generic greeting.

LOOPING

Looping refers to the repeated execution of statements. This technique comes in very handy because
it means that you can repeat operations as many times as you want (thousands, even millions, of
times) without having to write the same code each time.

As a simple example, consider the following code for calculating the amount of money in a bank
account after 10 years, assuming that interest is paid each year and no other money flows into or out
of the account:

double balance = 1000;
double interestRate = 1.05; // 5% interest/year
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;

Writing the same code 10 times seems a bit wasteful, and what if you wanted to change the dura-
tion from 10 years to some other value? You’d have to manually copy the line of code the required
amount of times, which would be a bit of a pain! Luckily, you don’t have to do this. Instead, you can
have a loop that executes the instruction you want the required number of times.

Another important type of loop is one in which you loop until a certain condition is fulfilled. These
loops are slightly simpler than the situation detailed previously (although no less useful), so they’re a
good starting point.

Looping ❘ 73

do Loops
do loops operate as follows. The code you have marked out for looping is executed, a Boolean test
is performed, and the code executes again if this test evaluates to true, and so on. When the test
evaluates to false, the loop exits.

The structure of a do loop is as follows, where <Test> evaluates to a Boolean value:

do
{
 <code to be looped>
} while (<Test>);

NOTE The semicolon after the while statement is required.

For example, you could use the following to write the numbers from 1 to 10 in a column:

int i = 1;
do
{
 WriteLine("{0}", i++);
} while (i <= 10);

Here, you use the suffix version of the ++ operator to increment the value of i after it is written to
the screen, so you need to check for i <= 10 to include 10 in the numbers written to the console.

The following Try It Out uses this for a slightly modified version of the code shown earlier, where
you calculated the balance in an account after 10 years. Here, you use a loop to calculate how many
years it will take to get a specified amount of money in the account, based on a starting amount and
a fixed interest rate.

TRY IT OUT Using do Loops: Ch04Ex04\Program.cs

 1. Create a new console application called Ch04Ex04 and save it to the directory
C:\BeginningCSharp7\Chapter04.

 2. Add the following code to Program.cs:

 static void Main(string[] args)
 {
 double balance, interestRate, targetBalance;
 WriteLine("What is your current balance?");
 balance = ToDouble(ReadLine());
 WriteLine("What is your current annual interest rate (in %)?");
 interestRate = 1 + ToDouble(ReadLine()) / 100.0;
 WriteLine("What balance would you like to have?");
 targetBalance = ToDouble(ReadLine());
 int totalYears = 0;

74 ❘ CHAPTER 4 Flow Control

 do
 {
 balance *= interestRate;
 ++totalYears;
 }
 while (balance < targetBalance);
 WriteLine($"In {totalYears} year{(totalYears == 1 ? "": "s")} " +
 $"you'll have a balance of {balance}.");
 ReadKey();
 }

 3. Execute the code and enter some values. A sample result is shown in Figure 4-4.

FIGURE 4-4

How It Works

This code simply repeats the simple annual calculation of the balance with a fixed interest rate as many
times as is necessary for the balance to satisfy the terminating condition. You keep a count of how
many years have been accounted for by incrementing a counter variable with each loop cycle:

 int totalYears = 0;
 do
 {
 balance *= interestRate;
 ++totalYears;
 }
 while (balance < targetBalance);

You can then use this counter variable as part of the result output:

 WriteLine($"In {totalYears}
 year{(totalYears == 1 ? "": "s")}
 you'll have a balance of {balance}.");

NOTE Perhaps the most common usage of the ?: (ternary) operator is to con-
ditionally format text with the minimum of code. Here, you output an “s” after
“year” if totalYears isn’t equal to 1.

Looping ❘ 75

Unfortunately, this code isn’t perfect. Consider what happens when the target balance is less than the
current balance. The output will be similar to what is shown in Figure 4-5.

FIGURE 4-5

do loops always execute at least once. Sometimes, as in this situation, this isn’t ideal. Of course, you
could add an if statement:

 int totalYears = 0;
 if (balance < targetBalance)
 {
 do
 {
 balance *= interestRate;
 ++totalYears;
 }
 while (balance < targetBalance);
 }
 WriteLine($"In {totalYears} year{(totalYears == 1 ? "": "s")} " +
 $"you'll have a balance of {balance}.");

Clearly, this adds unnecessary complexity. A far better solution is to use a while loop.

while Loops
while loops are very similar to do loops, but they have one important difference: The Boolean
test in a while loop takes place at the start of the loop cycle, not at the end. If the test evaluates to
false, then the loop cycle is never executed. Instead, program execution jumps straight to the code
following the loop.

Here’s how while loops are specified:

while (<Test>)
{
 <code to be looped>
}

They can be used in almost the same way as do loops:

int i = 1;
while (i <= 10)
{
 WriteLine($"{i++}");
}

76 ❘ CHAPTER 4 Flow Control

This code has the same result as the do loop shown earlier; it outputs the numbers 1 to 10 in a col-
umn. The following Try It Out demonstrates how you can modify the last example to use a while
loop.

TRY IT OUT Using while Loops: Ch04Ex05\Program.cs

 1. Create a new console application called Ch04Ex05 and save it to the directory
C:\BeginningCSharp7\Chapter04.

 2. Modify the code as follows (use the code from Ch04Ex04 as a starting point, and remember to
delete the while statement at the end of the original do loop):

 static void Main(string[] args)
 {
 double balance, interestRate, targetBalance;
 WriteLine("What is your current balance?");
 balance = ToDouble(ReadLine());
 WriteLine("What is your current annual interest rate (in %)?");
 interestRate = 1 + ToDouble(ReadLine()) / 100.0;
 WriteLine("What balance would you like to have?");
 targetBalance = ToDouble(ReadLine());
 int totalYears = 0;
 while (balance < targetBalance)
 {
 balance *= interestRate;
 ++totalYears;
 }
 WriteLine($"In {totalYears} year{(totalYears == 1 ? "": "s")} " +
 $"you'll have a balance of {balance}.");
 if (totalYears == 0)
 WriteLine(
 "To be honest, you really didn't need to use this calculator.");
 ReadKey();
 }

 3. Execute the code again, but this time use a target balance that is less than the starting balance, as
shown in Figure 4-6.

FIGURE 4-6

Looping ❘ 77

How It Works

This simple change from a do loop to a while loop has solved the problem in the last example. By mov-
ing the Boolean test to the beginning, you provide for the circumstance where no looping is required,
and you can jump straight to the result.

Of course, other alternatives are possible in this situation. For example, you could check the user input
to ensure that the target balance is greater than the starting balance. In that case, you can place the
user input section in a loop as follows:

 WriteLine("What balance would you like to have?");
 do
 {
 targetBalance = ToDouble(ReadLine());
 if (targetBalance <= balance)
 WriteLine("You must enter an amount greater than " +
 "your current balance!\nPlease enter another value.");
 }
 while (targetBalance <= balance);

This rejects values that don’t make sense, so the output looks like Figure 4-7.

FIGURE 4-7

This validation of user input is an important topic when it comes to application design. It is sometimes
referred to as a range check, and many examples of it appear throughout this book.

for Loops
The last type of loop to look at in this chapter is the for loop. This type of loop executes a set
number of times and maintains its own counter. To define a for loop you need the following
information:

 ➤ A starting value to initialize the counter variable

 ➤ A condition for continuing the loop, involving the counter variable

 ➤ An operation to perform on the counter variable at the end of each loop cycle

78 ❘ CHAPTER 4 Flow Control

For example, if you want a loop with a counter that increments from 1 to 10 in steps of one, then
the starting value is 1; the condition is that the counter is less than or equal to 10; and the operation
to perform at the end of each cycle is to add 1 to the counter.

This information must be placed into the structure of a for loop as follows:

for (<initialization>; <condition>; <operation>)
{
 <code to loop>
}

This works exactly the same way as the following while loop:

<initialization>
while (<condition>)
{
 <code to loop>
 <operation>
}

Earlier, you used do and while loops to write out the numbers from 1 to 10. The code that follows
shows what is required to do this using a for loop:

int i;
for (i = 1; i <= 10; ++i)
{
 WriteLine($"{i}");
}

The counter variable, an integer called i, starts with a value of 1 and is incremented by 1 at the end
of each cycle. During each cycle, the value of i is written to the console.

When the code resumes after the loop, i has a value of 11. That’s because at the end of the cycle
where i is equal to 10, i is incremented to 11. This happens before the condition i <= 10 is pro-
cessed, at which point the loop ends. As with while loops, for loops execute only if the condition
evaluates to true before the first cycle, so the code in the loop doesn’t necessarily run at all.

As a final note, you can declare the counter variable as part of the for statement, rewriting the pre-
ceding code as follows:

for (int i = 1; i <= 10; ++i)
{
 WriteLine($"{i}");
}

If you do this, though, the variable i won’t be accessible from code outside this loop (see the
“Variable Scope” section in Chapter 6).

Interrupting Loops
Sometimes you want finer-grained control over the processing of looping code. C# provides com-
mands to help you here:

 ➤ break—Causes the loop to end immediately

Looping ❘ 79

 ➤ continue—Causes the current loop cycle to end immediately (execution continues with the
next loop cycle)

 ➤ return—Jumps out of the loop and its containing function (see Chapter 6)

The break command simply exits the loop, and execution continues at the first line of code after the
loop, as shown in the following example:

int i = 1;
while (i <= 10)
{
 if (i == 6)
 break;
 WriteLine($"{i++}");
}

This code writes out the numbers from 1 to 5 because the break command causes the loop to exit
when i reaches 6.

continue only stops the current cycle, not the whole loop, as shown here:

int i;
for (i = 1; i <= 10; i++)
{
 if ((i % 2) == 0)
 continue;
 WriteLine(i);
}

In the preceding example, whenever the remainder of i divided by 2 is zero, the continue statement
stops the execution of the current cycle, so only the numbers 1, 3, 5, 7, and 9 are displayed.

Infinite Loops
It is possible, through both coding errors and design, to define loops that never end, so-called infi-
nite loops. As a very simple example, consider the following:

while (true)
{
 // code in loop
}

This can be useful, and you can always exit such loops using code such as break statements or man-
ually by using the Windows Task Manager. However, when this occurs by accident, it can be annoy-
ing. Consider the following loop, which is similar to the for loop in the previous section:

int i = 1;
while (i <= 10)
{
 if ((i % 2) == 0)
 continue;
 WriteLine($"{i++}");
}

80 ❘ CHAPTER 4 Flow Control

Here, i isn’t incremented until the last line of code in the loop, which occurs after the continue
statement. If this continue statement is reached (which it will be when i is 2), the next loop cycle
will be using the same value of i, continuing the loop, testing the same value of i, continuing the
loop, and so on. This will cause the application to freeze. Note that it’s still possible to quit the
frozen application in the normal way, so you won’t have to reboot if this happens.

EXERCISES

 4.1 If you have two integers stored in variables var1 and var2, what Boolean test can you perform
to determine whether one or the other (but not both) is greater than 10?

 4.2 Write an application that includes the logic from Exercise 1, obtains two numbers from the
user, and displays them, but rejects any input where both numbers are greater than 10 and
asks for two new numbers.

 4.3 What is wrong with the following code?

int i;
for (i = 1; i <= 10; i++)
{
 if ((i % 2) = 0)
 continue;
 WriteLine(i);
}

Answers to the exercises can be found in Appendix.

Looping ❘ 81

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Boolean logic Boolean logic involves using Boolean (true or false) values to evaluate condi-
tions. Boolean operators are used to perform comparisons between values and
return Boolean results. Some Boolean operators are also used to perform bitwise
operations on the underlying bit structure of values, and there are some special-
ized bitwise operators too.

Branching You can use Boolean logic to control program flow. The result of an expression that
evaluates to a Boolean value can be used to determine whether a block of code is
executed. You do this with if statements or the ?: (ternary) operator for simple
branching, or the switch statement to check multiple conditions simultaneously.

Looping Looping allows you to execute blocks of code a number of times according to condi-
tions you specify. You can use do and while loops to execute code while a Boolean
expression evaluates to true, and for loops to include a counter in your loop-
ing code. Loops can be interrupted by cycle (with continue) or completely (with
break). Some loops end only if you interrupt them; these are called infinite loops.

More about Variables
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Performing implicit and explicit conversions between types

 ➤ Creating and using enum types

 ➤ Creating and using struct types

 ➤ Creating and using arrays

 ➤ Manipulating string values

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter05 folder and individually named
according to the names throughout the chapter.

Now that you’ve seen a bit more of the C# language, you can go back and tackle some of the
more involved topics concerning variables.

The first subject you look at in this chapter is type conversion, whereby you convert values
from one type into another. You’ve already seen a bit of this, but you look at it formally here.
A grasp of this topic gives you a greater understanding of what happens when you mix types
in expressions (intentionally or unintentionally), as well as tighter control over the way that
data is manipulated. This helps you to streamline your code and avoid nasty surprises.

Then you’ll look at a few more types of variables that you can use:

 ➤ Enumerations—Variable types that have a user-defined discrete set of possible values
that can be used in a human-readable way.

5

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

84 ❘ CHAPTER 5 More about Variables

 ➤ Structs—Composite variable types made up of a user-defined set of other variable types.

 ➤ Arrays—Types that hold multiple variables of one type, allowing index access to the indi-
vidual value.

These are slightly more complex than the simple types you’ve been using up to now, but they can
make your life much easier. Finally, you’ll explore another useful subject concerning strings: basic
string manipulation.

TYPE CONVERSION

Earlier in this book, you saw that all data, regardless of type, is simply a sequence of bits—that is,
a sequence of zeros and ones. The meaning of the variable is determined by the way in which this
data is interpreted. The simplest example of this is the char type. This type represents a character in
the Unicode character set using a number. In fact, the number is stored in exactly the same way as a
ushort—both of them store a number between 0 and 65535.

However, in general, the different types of variables use varying schemes to represent data. This
implies that even if it were possible to place the sequence of bits from one variable into a variable of
a different type (perhaps they use the same amount of storage, or perhaps the target type has enough
storage space to include all the source bits), the results might not be what you expect.

Instead of this one-to-one mapping of bits from one variable into another, you need to use type
conversion on the data. Type conversion takes two forms:

 ➤ Implicit conversion—Conversion from type A to type B is possible in all circumstances, and
the rules for performing the conversion are simple enough for you to trust in the compiler.

 ➤ Explicit conversion—Conversion from type A to type B is possible only in certain circum-
stances or where the rules for conversion are complicated enough to merit additional process-
ing of some kind.

Implicit Conversions
Implicit conversion requires no work on your part and no additional code. Consider the code shown
here:

var1 = var2;

This assignment may involve an implicit conversion if the type of var2 can be implicitly converted
into the type of var1; however, it could just as easily involve two variables with the same type, in
which case no implicit conversion is necessary. For example, the values of ushort and char are
effectively interchangeable, because both store a number between 0 and 65535. You can convert val-
ues between these types implicitly, as demonstrated by the following code:

ushort destinationVar;
char sourceVar = 'a';
destinationVar = sourceVar;
WriteLine($"sourceVar val: {sourceVar}");
WriteLine($"destinationVar val: {destinationVar}");

Type Conversion ❘ 85

Here, the value stored in sourceVar is placed in destinationVar. When you output the variables
with the two WriteLine() commands, you get the following output:

sourceVar val: a
destinationVar val: 97

Even though the two variables store the same information, they are interpreted in different ways
using their type.

There are many implicit conversions of simple types; bool and string have no implicit conversions,
but the numeric types have a few. For reference, Table 5-1 shows the numeric conversions that the
compiler can perform implicitly (remember that chars are stored as numbers, so char counts as a
numeric type).

TABLE 5-1: Implicit Numeric Conversions

TYPE CAN SAFELY BE CONVERTED TO

byte short, ushort, int, uint, long, ulong, float, double, decimal

sbyte short, int, long, float, double, decimal

short int, long, float, double, decimal

ushort int, uint, long, ulong, float, double, decimal

int long, float, double, decimal

uint long, ulong, float, double, decimal

long float, double, decimal

ulong float, double, decimal

float double

char ushort, int, uint, long, ulong, float, double, decimal

Don’t worry—you don’t need to learn this table by heart because it’s actually quite easy to work out
which conversions the compiler can do implicitly. Back in Chapter 3, Tables 3-1, 3-2 and 3-3 showed
the range of possible values for every simple numeric type. The implicit conversion rule for these
types is this: Any type A whose range of possible values completely fits inside the range of possible
values of type B can be implicitly converted into that type.

The reasoning for this is simple. If you try to fit a value into a variable, but that value is outside the
range of values the variable can take, then there will be a problem. For example, a short type vari-
able is capable of storing values up to 32767, and the maximum value allowed into a byte is 255, so
there could be problems if you try to convert a short value into a byte value. If the short holds a
value between 256 and 32767, then it simply won’t fit into a byte.

If you know that the value in your short type variable is less than 255, then you should be able to
convert the value, right? The simple answer is that, of course, you can. The slightly more complex

86 ❘ CHAPTER 5 More about Variables

answer is that, of course, you can, but you must use an explicit conversion. Performing an explicit
conversion is a bit like saying “Okay, I know you’ve warned me about doing this, but I’ll take
responsibility for what happens.”

Explicit Conversions
As the name suggests, an explicit conversion occurs when you explicitly ask the compiler to convert
a value from one data type to another. These conversions require extra code, and the format of this
code may vary, depending on the exact conversion method. Before you look at any of this explicit
conversion code, look at what happens if you don’t add any.

For example, the following modification to the code from the last section attempts to convert a
short value into a byte:

byte destinationVar;
short sourceVar = 7;
destinationVar = sourceVar;
WriteLine($"sourceVar val: {sourceVar}");
WriteLine($"destinationVar val: {destinationVar}");

If you attempt to compile the preceding code, you will receive the following error:

Cannot implicitly convert type 'short' to 'byte'. An explicit conversion exists
(are you missing a cast?)

To get this code to compile, you need to add the code to perform an explicit conversion. The easiest
way to do that in this context is to cast the short variable into a byte (as suggested by the preced-
ing error string). Casting basically means forcing data from one type into another, and it uses the
following simple syntax:

(<destinationType>)<sourceVar>

This will convert the value in <sourceVar> into <destinationType>.

NOTE Casting is only possible in some situations. Types that bear little or no
relation to each other are likely not to have casting conversions defined.

You can, therefore, modify your example using this syntax to force the conversion from a short to
a byte:

byte destinationVar;
short sourceVar = 7;
destinationVar = (byte)sourceVar;
WriteLine($"sourceVar val: {sourceVar}");
WriteLine($"destinationVar val: {destinationVar}");

This results in the following output:

sourceVar val: 7
destinationVar val: 7

Type Conversion ❘ 87

What happens when you try to force a value into an incompatible variable type? For example, you
can’t fit a large integer into a numeric type that’s too small. Modifying your code as follows illus-
trates this:

byte destinationVar;
short sourceVar = 281;
destinationVar = (byte)sourceVar;
WriteLine($"sourceVar val: {sourceVar}");
WriteLine($"destinationVar val: {destinationVar}");

This results in the following:

sourceVar val: 281
destinationVar val: 25

What happened? Well, look at the binary representations of these two numbers, along with the
maximum value that can be stored in a byte, which is 255:

281 = 100011001
 25 = 000011001
255 = 011111111

You can see that the leftmost bit of the source data has been lost. This immediately raises a ques-
tion: How can you tell when this happens? Obviously, there will be times when you will need to
explicitly cast one type into another, and it would be nice to know if any data has been lost along
the way. Not detecting this could cause serious errors—for example, in an accounting application
or an application determining the trajectory of a rocket to the moon.

One way to do this is simply to check the value of the source variable and compare it with the
known limits of the destination variable. Another technique is to force the system to pay special
attention to the conversion at runtime. Attempting to fit a value into a variable when that value
is too big for the type of that variable results in an overflow, and this is the situation you want to
check for.

Two keywords exist for setting what is called the overflow checking context for an expression:
checked and unchecked. You use these in the following way:

checked(<expression>)
unchecked(<expression>)

You can force overflow checking in the last example:

byte destinationVar;
short sourceVar = 281;
destinationVar = checked((byte)sourceVar);
WriteLine($"sourceVar val: {sourceVar}");
WriteLine($"destinationVar val: {destinationVar}");

When this code is executed, it will crash with the error message shown in Figure 5-1 (this was
compiled in a project called OverflowCheck).

88 ❘ CHAPTER 5 More about Variables

FIGURE 5-1

However, if you replace checked with unchecked in this code, you get the result shown earlier, and
no error occurs. That is identical to the default behavior, also shown earlier.

You also can configure your application to behave as if every expression of this type includes the
checked keyword unless that expression explicitly uses the unchecked keyword (in other words,
you can change the default setting for overflow checking). To do this, you modify the properties for
your project by right-clicking on it in the Solution Explorer window and selecting the Properties
option. Click Build on the left side of the window to bring up the Build settings.

The property you want to change is one of the Advanced settings, so click the Advanced button. In
the dialog box that appears, enable the Check for Arithmetic Overflow/Underflow box, as shown
in Figure 5-2. By default, this setting is disabled; enabling it provides the checked behavior detailed
previously. This feature can have some impact on the execution speed of the program; therefore, dis-
able it when it is no longer needed.

Explicit Conversions Using the Convert Commands
The type of explicit conversion you have been using in many of the Try It Out examples in this book
is a bit different from those you have seen so far in this chapter. You have been converting string
values into numbers using commands such as ToDouble(), which is obviously something that won’t
work for every possible string.

If, for example, you try to convert a string like Number into a double value using ToDouble(), you
will see the dialog box shown in Figure 5-3 when you execute the code.

Type Conversion ❘ 89

FIGURE 5-2

FIGURE 5-3

As you can see, the operation fails. For this type of conversion to work, the string supplied must
be a valid representation of a number, and that number must be one that won’t cause an overflow.
A valid representation of a number is one that contains an optional sign (that is, plus or minus), zero
or more digits, an optional period followed by one or more digits, and an optional “e” or “E” fol-
lowed by an optional sign, one or more digits, and nothing else except spaces (before or after this
sequence). Using all of these optional extras, you can recognize strings as complex as -1.2451e-24
as being a number.

90 ❘ CHAPTER 5 More about Variables

The important thing to note about these conversions is that they are always overflow-checked, and
the checked and unchecked keywords and project property settings have no effect.

The next Try It Out is an example that covers many of the conversion types from this section. It
declares and initializes several variables of different types and then converts between them implicitly
and explicitly.

TRY IT OUT Type Conversions in Practice: Ch05Ex01\Program.cs

 1. Create a new console application called Ch05Ex01 and save it in the directory
C:\BeginningCSharp7\Chapter05.

 2. Add the following code to Program.cs: (do not forget to add using static System.Console
and using static System.Convert to the reference list at the top for this program).

static void Main(string[] args)
{
 short shortResult, shortVal = 4;
 int integerVal = 67;
 long longResult;
 float floatVal = 10.5F;
 double doubleResult, doubleVal = 99.999;
 string stringResult, stringVal = "17";
 bool boolVal = true;
 WriteLine("Variable Conversion Examples\n");
 doubleResult = floatVal * shortVal;
 WriteLine($"Implicit, -> double: {floatVal} * {shortVal} -> { doubleResult }");
 shortResult = (short)floatVal;
 WriteLine($"Explicit, -> short: {floatVal} -> {shortResult}");
 stringResult = Convert.ToString(boolVal) +
 Convert.ToString(doubleVal);
 WriteLine($"Explicit, -> string: \"{boolVal}\" + \"{doubleVal}\" -> " +
 $"{stringResult}");
 longResult = integerVal + ToInt64(stringVal);
 WriteLine($"Mixed, -> long: {integerVal} + {stringVal} -> {longResult}");
 ReadKey();
}

 3. Execute the code. The result is shown in Figure 5-4.

FIGURE 5-4

Complex Variable Types ❘ 91

How It Works

This example contains all of the conversion types you’ve seen so far—both in simple assignments, as
in the short code examples in the preceding discussion, and in expressions. You need to consider both
cases because the processing of every non-unary operator may result in type conversions, not just
assignment operators. For example, the following multiplies a short value by a float value:

shortVal * floatVal

In situations such as this, where no explicit conversion is specified, implicit conversion will be used if
possible. In this example, the only implicit conversion that makes sense is to convert the short into a
float (as converting a float into a short requires explicit conversion), so this is the one that will be
used.

However, you can override this behavior should you want, as shown here:

shortVal * (short)floatVal

NOTE Interestingly, multiplying two short values together doesn’t return a
short value. Because the result of this operation is quite likely to exceed 32767
(the maximum value a short can hold), it actually returns an int.

The conversion process can seem complex at first glance, but as long as you
break expressions down into parts by taking the operator precedence order
into account, you should be able to work things out.

COMPLEX VARIABLE TYPES

In addition to all the simple variable types, C# also offers three slightly more complex (but very use-
ful) sorts of variables: enumerations (often referred to as enums), structs (occasionally referred to as
structures), and arrays.

Enumerations
Each of the types you’ve seen so far (with the exception of string) has a clearly defined set of
allowed values. Admittedly, this set is so large in types such as double that it can practically be con-
sidered a continuum, but it is a fixed set nevertheless. The simplest example of this is the bool type,
which can take only one of two values: true or false.

There are many other circumstances in which you might want to have a variable that can take one
of a fixed set of results. For example, you might want to have an orientation type that can store
one of the values north, south, east, or west.

92 ❘ CHAPTER 5 More about Variables

In situations like this, enumerations can be very useful. Enumerations do exactly what you want in
this orientation type: They allow the definition of a type that can take one of a finite set of
values that you supply. What you need to do, then, is create your own enumeration type called
orientation that can take one of the four possible values.

Note that there is an additional step involved here—you don’t just declare a variable of a given type;
you declare and detail a user-defined type and then declare a variable of this new type.

Defining Enumerations
You can use the enum keyword to define enumerations as follows:

enum <typeName>
{
 <value1>,
 <value2>,
 <value3>,
 ...
 <valueN>
}

Next, you can declare variables of this new type as follows:

<typeName> <varName>;

You can assign values using the following:

<varName> = <typeName>.<value>;

Enumerations have an underlying type used for storage. Each of the values that an enumeration type
can take is stored as a value of this underlying type, which by default is int. You can specify a dif-
ferent underlying type by adding the type to the enumeration declaration:

enum <typeName> : <underlyingType>
{
 <value1>,
 <value2>,
 <value3>,
 ...
 <valueN>
}

Enumerations can have underlying types of byte, sbyte, short, ushort, int, uint, long, and
ulong.

By default, each value is assigned a corresponding underlying type value automatically according
to the order in which it is defined, starting from zero. This means that <value1> gets the value 0,
<value2> gets 1, <value3> gets 2, and so on. You can override this assignment by using the =
operator and specifying actual values for each enumeration value:

enum <typeName> : <underlyingType>
{
 <value1> = <actualVal1>,
 <value2> = <actualVal2>,
 <value3> = <actualVal3>,
 ...
 <valueN> = <actualValN>
}

Complex Variable Types ❘ 93

In addition, you can specify identical values for multiple enumeration values by using one value as
the underlying value of another:

enum <typeName> : <underlyingType>
{
 <value1> = <actualVal1>,
 <value2> = <value1>,
 <value3>,
 ...
 <valueN> = <actualValN>
}

Any values left unassigned are given an underlying value automatically, whereby the values used are
in a sequence starting from 1 greater than the last explicitly declared one. In the preceding code, for
example, <value3> will get the value <value1> + 1.

Note that this can cause problems, with values specified after a definition such as <value2> =
<value1> being identical to other values. For example, in the following code <value4> will have the
same value as <value2>:

enum <typeName> : <underlyingType>
{
 <value1> = <actualVal1>,
 <value2>,
 <value3> = <value1>,
 <value4>,
 ...
 <valueN> = <actualValN>
}

Of course, if this is the behavior you want, then this code is fine. Note also that assigning values in a
circular fashion will cause an error:

enum <typeName> : <underlyingType>
{
 <value1> = <value2>,
 <value2> = <value1>
}

The following Try It Out shows an example of all of this. The code defines and then uses an enu-
meration called orientation.

TRY IT OUT Using an Enumeration: Ch05Ex02\Program.cs

 1. Create a new console application called Ch05Ex02 and save it in the directory
C:\BeginningCSharp7\Chapter05.

 2. Add the following code to Program.cs:

using static System.Console;
using static System.Convert;

namespace Ch05Ex02
{
 enum orientation : byte

94 ❘ CHAPTER 5 More about Variables

 {
 north = 1,
 south = 2,
 east = 3,
 west = 4
 }
 class Program
 {
 static void Main(string[] args)
 {
 orientation myDirection = orientation.north;
 WriteLine($"myDirection = {myDirection}");
 ReadKey();
 }
 }
}

 3. Execute the application. You should see the output shown in Figure 5-5.

FIGURE 5-5

 4. Quit the application and modify the code in the Main() method as follows:

 byte directionByte;
 string directionString;
 orientation myDirection = orientation.north;
 WriteLine($"myDirection = {myDirection}");
 directionByte = (byte)myDirection;
 directionString = Convert.ToString(myDirection);
 WriteLine($"byte equivalent = {directionByte}");
 WriteLine($"string equivalent = {directionString}");
 ReadKey();

 5. Execute the application again. The output is shown in Figure 5-6.

FIGURE 5-6

How It Works

This code defines and uses an enumeration type called orientation. The first thing to notice is that
the type definition code is placed in your namespace, Ch05Ex02, but not in the same place as the rest of

Complex Variable Types ❘ 95

your code. That is because definitions are not executed; that is, at runtime you don’t step through the
code in a definition as you do the lines of code in your application. Application execution starts in the
place you’re used to and has access to your new type because it belongs to the same namespace.

The first iteration of the example demonstrates the basic method of creating a variable of your new
type, assigning it a value, and outputting it to the screen. Next, you modify the code to show the con-
version of enumeration values into other types. Note that you must use explicit conversions here. Even
though the underlying type of orientation is byte, you still have to use the (byte) cast to convert the
value of myDirection into a byte type:

directionByte = (byte)myDirection;

The same explicit casting is necessary in the other direction, too, if you want to convert a byte into an
orientation. For example, you could use the following code to convert a byte variable called myByte
into an orientation and assign this value to myDirection:

myDirection = (orientation)myByte;

Of course, you must be careful here because not all permissible values of byte type variables map to
defined orientation values. The orientation type can store other byte values, so you won’t get an
error straight away, but this may break logic later in the application.

To get the string value of an enumeration value you can use Convert.ToString():

directionString = Convert.ToString(myDirection);

Using a (string) cast won’t work because the processing required is more complicated than just plac-
ing the data stored in the enumeration variable into a string variable. Alternatively, you can use the
ToString() command of the variable itself. The following code gives you the same result as using
Convert.ToString():

directionString = myDirection.ToString();

Converting a string to an enumeration value is also possible, except that here the syntax required is
slightly more complex. A special command exists for this sort of conversion, Enum.Parse(), which is
used in the following way:

 (enumerationType)Enum.Parse(typeof(enumerationType), enumerationValueString);

This uses another operator, typeof, which obtains the type of its operand. You could use this for your
orientation type as follows:

string myString = "north";
orientation myDirection = (orientation)Enum.Parse(typeof(orientation),
 myString);

Of course, not all string values will map to an orientation value! If you pass in a value that doesn’t
map to one of your enumeration values, you will get an error. Like everything else in C#, these values
are case sensitive, so you still get an error if your string agrees with a value in everything but case (for
example, if myString is set to North rather than north).

96 ❘ CHAPTER 5 More about Variables

Structs
The struct (short for structure) is just that. That is, structs are data structures composed of several
pieces of data, possibly of different types. They enable you to define your own types of variables
based on this structure. For example, suppose that you want to store the route to a location from
a starting point, where the route consists of a direction and a distance in miles. For simplicity, you
can assume that the direction is one of the compass points (such that it can be represented using the
orientation enumeration from the last section), and that distance in miles can be represented as a
double type.

You could use two separate variables for this using code you’ve seen already:

orientation myDirection;
double myDistance;

There is nothing wrong with using two variables like this, but it is far simpler (especially where mul-
tiple routes are required) to store this information in one place.

Defining Structs
Structs are defined using the struct keyword as follows:

struct <typeName>
{
 <memberDeclarations>
}

The <memberDeclarations> section contains declarations of variables (called the data members of
the struct) in almost the same format as usual. Each member declaration takes the following form:

<accessibility> <type> <name>;

To allow the code that calls the struct to access the struct’s data members, you use the keyword
public for <accessibility>. For example:

struct route
{
 public orientation direction;
 public double distance;
}

Once you have a struct type defined, you use it by defining variables of the new type:

route myRoute;

In addition, you have access to the data members of this composite variable via the period character:

myRoute.direction = orientation.north;
myRoute.distance = 2.5;

This is demonstrated in the following Try It Out, where the orientation enumeration from the last
Try It Out is used with the route struct shown earlier. This struct is then manipulated in code to
give you a feel for how structs work.

Complex Variable Types ❘ 97

TRY IT OUT Using a Struct: Ch05Ex03\Program.cs

 1. Create a new console application called Ch05Ex03 and save it in the directory
C:\BeginningCSharp7\Chapter05.

 2. Add the following code to Program.cs:

 using statis System.Console;
 using static System.Convert;
 namespace Ch05Ex03
{
 enum orientation: byte
 {
 north = 1,
 south = 2,
 east = 3,
 west = 4
 }
 struct route
 {
 public orientation direction;
 public double distance;
 }
 class Program
 {
 static void Main(string[] args)
 {
 route myRoute;
 int myDirection = -1;
 double myDistance;
 WriteLine("1) North\n2) South\n3) East\n4) West");
 do
 {
 WriteLine("Select a direction:");
 myDirection = ToInt32(ReadLine());
 }
 while ((myDirection < 1) || (myDirection > 4));
 WriteLine("Input a distance:");
 myDistance = ToDouble(ReadLine());
 myRoute.direction = (orientation)myDirection;
 myRoute.distance = myDistance;
 WriteLine($"myRoute specifies a direction of {myRoute.direction} " +
 $"and a distance of {myRoute.distance}");
 ReadKey();
 }
 }
}

 3. Execute the code, select a direction by entering a number between 1 and 4, and then enter a
distance. The result is shown in Figure 5-7.

98 ❘ CHAPTER 5 More about Variables

FIGURE 5-7

How It Works

Structs, like enumerations, are declared outside of the main body of the code. You declare your route
struct just inside the namespace declaration, along with the orientation enumeration that it uses:

 enum orientation: byte
 {
 north = 1,
 south = 2,
 east = 3,
 west = 4
 }
 struct route
 {
 public orientation direction;
 public double distance;
 }

The main body of the code follows a structure similar to some of the example code you’ve already seen,
requesting input from the user and displaying it. You perform some simple validation of user input by
placing the direction selection in a do loop, rejecting any input that isn’t an integer between 1 and 4
(with values chosen such that they map onto the enumeration members for easy assignment).

NOTE Input that cannot be interpreted as an integer will result in an error.
You’ll see why this happens, and what to do about it, later in the book.

The interesting point to note is that when you refer to members of route they are treated exactly the
same way that variables of the same type as the members are. The assignment is as follows:

 myRoute.direction = (orientation)myDirection;
 myRoute.distance = myDistance;

You could simply take the input value directly into myRoute.distance with no ill effects as follows:

 myRoute.distance = ToDouble(ReadLine());

The extra step allows for more validation, although none is performed in this code. Any access to mem-
bers of a structure is treated in the same way. Expressions of the form <structVar>.<memberVar> can
be said to evaluate to a variable of the type of <memberVar>.

Complex Variable Types ❘ 99

Arrays
All the types you’ve seen so far have one thing in common: Each of them stores a single value (or a
single set of values in the case of structs). Sometimes, in situations where you want to store a lot of
data, this isn’t very convenient. You may want to store several values of the same type at the same
time, without having to use a different variable for each value.

For example, suppose you want to perform some processing that involves the names of all your
friends. You could use simple string variables as follows:

string friendName1 = "Todd Anthony";
string friendName2 = "Kevin Holton";
string friendName3 = "Shane Laigle";

But this looks like it will require a lot of effort, especially because you need to write different code
to process each variable. You couldn’t, for example, iterate through this list of strings in a loop.

The alternative is to use an array. Arrays are indexed lists of variables stored in a single array type
variable. For example, you might have an array called friendNames that stores the three names
shown in the preceding string variables. You can access individual members of the array by specify-
ing their index in square brackets, as shown here:

friendNames[<index>]

The index is simply an integer, starting with 0 for the first entry, using 1 for the second, and so on.
This means that you can go through the entries using a loop:

int i;
for (i = 0; i < 3; i++)
{
 WriteLine($"Name with index of {i}: {friendNames[i]}");
}

Arrays have a single base type—that is, individual entries in an array are all of the same type. This
friendNames array has a base type of string because it is intended for storing string variables.
Array entries are often referred to as elements.

Declaring Arrays
Arrays are declared in the following way:

<baseType>[] <name>;

Here, <baseType> may be any variable type, including the enumeration and struct types you’ve seen
in this chapter. Arrays must be initialized before you have access to them. You can’t just access or
assign values to the array elements like this:

int[] myIntArray;
myIntArray[10] = 5;

Arrays can be initialized in two ways. You can either specify the complete contents of the array in a
literal form or specify the size of the array and use the new keyword to initialize all array elements.

Specifying an array using literal values simply involves providing a comma-separated list of element
values enclosed in curly braces:

int[] myIntArray = { 5, 9, 10, 2, 99 };

100 ❘ CHAPTER 5 More about Variables

Here, myIntArray has five elements, each with an assigned integer value.

The other method requires the following syntax:

int[] myIntArray = new int[5];

Here, you use the new keyword to explicitly initialize the array, and a constant value to define the
size. This method results in all the array members being assigned a default value, which is 0 for
numeric types. You can also use non-constant variables for this initialization:

int[] myIntArray = new int[arraySize];

In addition, you can combine these two methods of initialization if you want:

int[] myIntArray = new int[5] { 5, 9, 10, 2, 99 };

With this method, the sizes must match. You can’t, for example, write the following:

int[] myIntArray = new int[10] { 5, 9, 10, 2, 99 };

Here, the array is defined as having 10 members, but only five are defined, so compilation will
fail. A side effect of this is that if you define the size using a variable, then that variable must be a
constant:

const int arraySize = 5;
int[] myIntArray = new int[arraySize] { 5, 9, 10, 2, 99 };

If you omit the const keyword, this code will fail.

As with other variable types, there is no need to initialize an array on the same line that you declare
it. The following is perfectly legal:

int[] myIntArray;
myIntArray = new int[5];

In the following Try It Out you create and use an array of strings, using the example from the intro-
duction to this section.

TRY IT OUT Using an Array: Ch05Ex04\Program.cs

 1. Create a new console application called Ch05Ex04 and save it in the directory
C:\BeginningCSharp7\Chapter05.

 2. Add the following code to Program.cs:

static void Main(string[] args)
{
 string[] friendNames = { "Todd Anthony", "Kevin Holton",
 "Shane Laigle" };
 int i;
 WriteLine($"Here are {friendNames.Length} of my friends:");
 for (i = 0; i < friendNames.Length; i++)
 {
 WriteLine(friendNames[i]);
 }
 ReadKey();
}

Complex Variable Types ❘ 101

 3. Execute the code. The result is shown in Figure 5-8.

FIGURE 5-8

How It Works

This code sets up a string array with three values and lists them in the console in a for loop. Note
that you have access to the number of elements in the array using friendNames.Length:

WriteLine($"Here are {friendNames.Length} of my friends:");

This is a handy way to get the size of an array. Outputting values in a for loop is easy to get wrong.
For example, try changing < to <= as follows:

 for (i = 0; i <= friendNames.Length; i++)
 {
 WriteLine(friendNames[i]);
 }

Compiling and executing the preceding code results in the dialog box shown in Figure 5-9.

Here, the code attempted to access friendNames[3]. Remember that array indices start from 0, so the
last element is friendNames[2]. If you attempt to access elements outside of the array size, the code
will fail. It just so happens that there is a more resilient method of accessing all the members of an
array: using foreach loops.

FIGURE 5-9

102 ❘ CHAPTER 5 More about Variables

foreach Loops
A foreach loop enables you to address each element in an array using this simple syntax:

foreach (<baseType> <name> in <array>)
{
 // can use <name> for each element
}

This loop will cycle through each element, placing it in the variable <name> in turn, without danger
of accessing illegal elements. You don’t have to worry about how many elements are in the array,
and you can be sure that you’ll get to use each one in the loop. Using this approach, you can modify
the code in the last example as follows:

static void Main(string[] args)
{
 string[] friendNames = { "Todd Anthony", "Kevin Holton",
 "Shane Laigle" };
 WriteLine($"Here are {friendNames.Length} of my friends:");
 foreach (string friendName in friendNames)
 {
 WriteLine(friendName);
 }
 ReadKey();
}

The output of this code will be exactly the same as that of the previous Try It Out. The main dif-
ference between using this method and a standard for loop is that foreach gives you read-only
access to the array contents, so you can’t change the values of any of the elements. You couldn’t, for
example, do the following:

foreach (string friendName in friendNames)
{
 friendName = "Rupert the bear";
}

If you try this, compilation will fail. If you use a simple for loop, however, you can assign values to
array elements.

Pattern Matching with switch case expression
In Chapter 4, the switch statement was introduced. In that discussion, the switch cases were based
on the value of a specific variable. Recall the following code, where <testVar> is a known type,
for example an integer, a string, or a boolean. An integer, for example, has a numeric value,
and the case would check for a specific value (1, 2, 3, and so on) and then execute some code when
matched.

switch (<testVar>)
{
 case <comparisonVal1>:
 <code to execute if <testVar> == <comparisonVal1> >
 break;
 case <comparisonVal2>:
 <code to execute if <testVar> == <comparisonVal2> >
 break;

Complex Variable Types ❘ 103

 ...
 case <comparisonValN>:
 <code to execute if <testVar> == <comparisonValN> >
 break;
 default:
 <code to execute if <testVar> != comparisonVals>
 break;
}

In C# 7 it is possible to match patterns in a switch case based on the type of variable, for example a
string or integer array. Then, because you know the type, you can access methods and properties
exposed by that type. Take the following switch structure:

switch (<testVar>)
{
 case int value:
 <code to execute if <testVar> is an int >
 break;
 case string s when s.Length == 0:
 <code to execute if <testVar> is a string with a length = 0 >
 break;
 ...
 case null:
 <code to execute if <testVar> == null >
 break;
 default:
 <code to execute if <testVar> != comparisonVals>
 break;
}

Directly after the case keyword is the variable type you want to check for (string, int, and so on).
The value of that type when there is a case match, is placed into the declared variable. For example,
if <testVar> is an integer the value of the integer is stored in the variable called value. Next,
notice the when keyword modifier—introduced with C# 6 and referred to as an expression filter
(discussed further in Chapter 7)—has been applied to the switch case expressions in C#7. The
when keyword modifier lets you expand out or add additional conditions required to execute the
code found within the case statement.

In the following Try It Out, you cover what was just explained in more detail, plus a few additional
concepts.

TRY IT OUT Using an Array: Ch05Ex05\Program.cs

 1. Create a new console application called Ch05Ex05 and save it in the directory
C:\BeginningCSharp7\Chapter05.

 2. Add the following code to Program.cs:

static void Main(string[] args)
{
 string[] friendNames = { "Todd Anthony", "Kevin Holton",
 "Shane Laigle", null, "" };
 foreach (var friendName in friendNames)
 {

104 ❘ CHAPTER 5 More about Variables

 switch (friendName)
 {
 case string t when t.StartsWith("T"):
 WriteLine("This friends name starts with a 'T': " +
 $"{friendName} and is {t.Length - 1} letters long ");
 break;
 case string e when e.Length == 0:
 WriteLine("There is a string in the array with no value");
 break;
 case null:
 WriteLine("There was a 'null' value in the array");
 break;
 case var x:
 WriteLine("This is the var pattern of type: " +
 $"{x.GetType().Name}");
 break;
 default:
 break;
 }
 }

 int sum = 0, total = 0, counter = 0, intValue = 0;
 int?[] myIntArray = new int?[7] { 5, intValue, 9, 10, null, 2, 99 };
 foreach (var integer in myIntArray)
 {
 switch (integer)
 {
 case 0:
 WriteLine($"Integer number '{ total }' has a default value of 0");
 counter++;
 break;
 case int value:
 sum += value;
 WriteLine($"Integer number '{ total }' has a value of {value}");
 counter++;
 break;
 case null:
 WriteLine($"Integer number '{ total }' is null");
 counter++;
 break;
 default:
 break;
 }
 }
 WriteLine($"{total} total integers, {counter} integers with a" +
 $"value other than 0 or null have a sum value of {sum}");
 ReadLine();
 }

 3. After making sure you added using static System.Console;, execute the code. The result is
shown in Figure 5-10.

Complex Variable Types ❘ 105

FIGURE 5-10

How It Works

In this Try It Out there are two foreach loops: one iterates through a string[] array and the other an
int[] array. The foreach loop that processes the string[] array purposely contains a null and an
entry with no value for describing the concept of Pattern Matching in more detail.

string[] friendNames = { "Todd Anthony", "Kevin Holton",
 "Shane Laigle", null, "" };

Within the switch expression there are four cases being checked:

case string t when t.StartsWith("T")

The most obvious difference you see, when comparing non-Pattern Matching switch statements with
this example, is that instead of switching on a specific value, like 1, 2, or “Beginning C# Rocks”, a
type declaration of a string named t is provided directly after case. Once declared, t can be used to
access the value stored in friendName and the methods and properties available from the string type.
Notice that the method StartsWith() exposed via the System.String class is utilized after the when
expression filter. The StartsWith() method accepts one parameter and if the string value contained
in friendName begins with that parameter, in this example "T", then the case is matched and the code
for the case is executed.

The next switch case expression checks for an empty string.

case string e when e.Length == 0

Again, the string declaration named e references the Length property of the System.String class. If
the length is equal to 0, then the code for that case is executed. The following code snippet is a case
expression checking if the value in friendName is null.

case null

106 ❘ CHAPTER 5 More about Variables

Finally, the following code snippet is an example of using the var declaration of x to capture any other
variable type. We know all the elements in this array are strings, but in some other implementation this
could be an array of unknown objects. Then, using the GetType() method of the System.Object class
via x, we can see what type it is.

case var x

This expression raises a key point for the Pattern Matching feature in that the order of the case expres-
sions now matters. Had you placed the case var x expression at the top of the switch, it would catch
all the string or everything in the string[]. But don’t worry, if you do this the compiler will com-
plain and notify you that “the switch case has already been handled by a previous case.” Keep in mind
that now that you have this Pattern Matching capability, the expression filters need to be as precise as
possible and should be unique within the switch statement.

The int[] array has a few points to drill down into as well.

int?[] myIntArray = new int?[7] { 5, intValue, 9, 10, null, 2, 99 };

Firstly, notice that there is a question mark (?) directly after the int declaration. The question mark
lets the compiler know that this int[] array can contain null objects; without it, a compile exception is
displayed. Next, it is common to set an int with a default value of 0 when it is initialized. If you write
a switch case expression where you expect integers it should contain a check for that case specifically
and handle that scenario appropriately.

case 0

If the check for 0 does not exist, then it would fall into the next case.

case int value:
 sum += value;

Adding a value of 0 to the sum doesn’t result in a change in the value, which is what the code would do
without the case 0 expression. Review the code and you see that only integers with a value other than 0
and null are added to the sum and counter. All iterations result in total being incremented by 1. You
wouldn’t know, without coding for it, whether 0 is the actual value or if it was simply a default initializa-
tion added to the array. The case 0 gives you the opportunity to execute code to verify that.

The following code snippet illustrates a case expression checking if the value in value is null:

case null

In addition to the switch case expression pattern, Pattern Matching can be implemented using the is
keyword. This keyword is not introduced until Chapter 11, which is where you learn how to implement
Pattern Matching using is.

Multidimensional Arrays
A multidimensional array is simply one that uses multiple indices to access its elements. For exam-
ple, suppose you want to plot the height of a hill against the position measured. You might specify a
position using two coordinates, x and y. You want to use these two coordinates as indices, such that
an array called hillHeight would store the height at each pair of coordinates. This involves using
multidimensional arrays.

Complex Variable Types ❘ 107

A two-dimensional array such as this is declared as follows:

<baseType>[,] <name>;

Arrays of more dimensions simply require more commas:

<baseType>[,,,] <name>;

This would declare a four-dimensional array. Assigning values also uses a similar syntax, with com-
mas separating sizes. Declaring and initializing the two-dimensional array hillHeight, with a base
type of double, an x size of 3, and a y size of 4 requires the following:

double[,] hillHeight = new double[3,4];

Alternatively, you can use literal values for initial assignment. Here, you use nested blocks of curly
braces, separated by commas:

double[,] hillHeight = { { 1, 2, 3, 4 }, { 2, 3, 4, 5 }, { 3, 4, 5, 6 } };

This array has the same dimensions as the previous one—that is, three rows and four columns. By
providing literal values, these dimensions are defined implicitly.

To access individual elements of a multidimensional array, you simply specify the indices separated
by commas:

hillHeight[2,1]

You can then manipulate this element just as you can other elements. This expression will access
the second element of the third nested array as defined previously (the value will be 4). Remember
that you start counting from 0 and that the first number is the nested array. In other words, the first
number specifies the pair of curly braces, and the second number specifies the element within that
pair of braces. You can represent this array visually, as shown in Figure 5-11.

hillHeight [0,0]

1

hillHeight [1,0]

2

hillHeight [2,0]

3

hillHeight [1,1]

3

hillHeight [1,2]

4

hillHeight [1,3]

5

hillHeight [2,1]

4

hillHeight [2,2]

5

hillHeight [2,3]

6

hillHeight [0,1]

2

hillHeight [0,2

3

hillHeight [0,3]

4

FIGURE 5-11

The foreach loop gives you access to all elements in a multidimensional way, just as with single-
dimensional arrays:

double[,] hillHeight = { { 1, 2, 3, 4 }, { 2, 3, 4, 5 }, { 3, 4, 5, 6 } };
foreach (double height in hillHeight)
{
 WriteLine($"{height}");
}

108 ❘ CHAPTER 5 More about Variables

The order in which the elements are output is the same as the order used to assign literal values.
This sequence is as follows (the element identifiers are shown here rather than the actual values):

hillHeight[0,0]
hillHeight[0,1]
hillHeight[0,2]
hillHeight[0,3]
hillHeight[1,0]
hillHeight[1,1]
hillHeight[1,2]
...

Arrays of Arrays
Multidimensional arrays, as discussed in the last section, are said to be rectangular because each
“row” is the same size. Using the last example, you can have a y coordinate of 0 to 3 for any of the
possible x coordinates.

It is also possible to have jagged arrays, whereby “rows” may be varied sizes. For this, you need an
array in which each element is another array. You could also have arrays of arrays of arrays, or even
more complex situations. However, all this is possible only if the arrays have the same base type.

The syntax for declaring arrays of arrays involves specifying multiple sets of square brackets in the
declaration of the array, as shown here:

int[][] jaggedIntArray;

Unfortunately, initializing arrays such as this isn’t as simple as initializing multidimensional arrays.
You can’t, for example, follow the preceding declaration with this:

jaggedIntArray = new int[3][4];

Even if you could do this, it wouldn’t be that useful because you can achieve the same effect with
simple multidimensional arrays with less effort. Nor can you use code such as this:

jaggedIntArray = { { 1, 2, 3 }, { 1 }, { 1, 2 } };

You have two options. You can initialize the array that contains other arrays (let’s call these sub-
arrays for clarity) and then initialize the sub-arrays in turn:

jaggedIntArray = new int[2][];
jaggedIntArray[0] = new int[3];
jaggedIntArray[1] = new int[4];

Alternatively, you can use a modified form of the preceding literal assignment:

jaggedIntArray = new int[3][] { new int[] { 1, 2, 3 }, new int[] { 1 },
 new int[] { 1, 2 } };

This can be simplified if the array is initialized on the same line as it is declared, as follows:

int[][] jaggedIntArray = { new int[] { 1, 2, 3 }, new int[] { 1 },
 new int[] { 1, 2 } };

String Manipulation ❘ 109

You can use foreach loops with jagged arrays, but you often need to nest these to get to the actual
data. For example, suppose you have the following jagged array that contains 10 arrays, each of
which contains an array of integers that are divisors of an integer between 1 and 10:

int[][] divisors1To10 = { new int[] { 1 },
 new int[] { 1, 2 },
 new int[] { 1, 3 },
 new int[] { 1, 2, 4 },
 new int[] { 1, 5 },
 new int[] { 1, 2, 3, 6 },
 new int[] { 1, 7 },
 new int[] { 1, 2, 4, 8 },
 new int[] { 1, 3, 9 },
 new int[] { 1, 2, 5, 10 } };

The following code will fail:

foreach (int divisor in divisors1To10)
{
 WriteLine(divisor);
}

The failure occurs because the array divisors1To10 contains int[] elements, not int elements.
Instead, you must loop through every sub-array, as well as through the array itself:

foreach (int[] divisorsOfInt in divisors1To10)
{
 foreach(int divisor in divisorsOfInt)
 {
 WriteLine(divisor);
 }
}

As you can see, the syntax for using jagged arrays can quickly become complex! In most cases, it is
easier to use rectangular arrays or a simpler storage method. Nonetheless, there may well be situa-
tions in which you are forced to use this method, and a working knowledge can’t hurt. An example
of this happens when working with XML documents where some elements have sub-children and
other do not.

STRING MANIPULATION

Your use of strings so far has consisted of writing strings to the console, reading strings from the
console, and concatenating strings using the + operator. In the course of programming more inter-
esting applications, you will discover that manipulating strings is something that you end up doing
a lot. Therefore, it is worth spending a few pages looking at some of the more common string-
manipulation techniques available in C#.

110 ❘ CHAPTER 5 More about Variables

To start with, a string type variable can be treated as a read-only array of char variables. This
means that you can access individual characters using syntax like the following:

string myString = "A string";
char myChar = myString[1];

However, you can’t assign individual characters this way. To get a char array that you can write to,
you can use the following code. This uses the ToCharArray() command of the array variable:

string myString = "A string";
char[] myChars = myString.ToCharArray();

Then you can manipulate the char array the standard way. You can also use strings in foreach
loops, as shown here:

foreach (char character in myString)
{
 WriteLine($"{character}");
}

As with arrays, you can also get the number of elements using myString.Length. This gives you the
number of characters in the string:

string myString = ReadLine();
WriteLine($"You typed {myString.Length} characters.");

Other basic string manipulation techniques use commands with a format similar to this <string>
.ToCharArray() command. Two simple, but useful, ones are <string>.ToLower() and <string>
.ToUpper(). These enable strings to be converted into lowercase and uppercase, respectively. To see
why this is useful, consider the situation in which you want to check for a specific response from a
user—for example, the string yes. If you convert the string entered by the user into lowercase, then
you can also check for the strings YES, Yes, yeS, and so on—you saw an example of this in the pre-
vious chapter:

string userResponse = ReadLine();
if (userResponse.ToLower() == "yes")
{
 // Act on response.
}

This command, like the others in this section, doesn’t actually change the string to which it is
applied. Instead, combining this command with a string results in the creation of a new string,
which you can compare to another string (as shown here) or assign to another variable. The other
variable may be the same one that is being operated on:

userResponse = userResponse.ToLower();

This is an important point to remember, because just writing

userResponse.ToLower();

doesn’t actually achieve very much!

There are other things you can do to ease the interpretation of user input. What if the user acciden-
tally put an extra space at the beginning or end of the input? In this case, the preceding code won’t
work. You need to trim the string entered, which you can do using the <string>.Trim() command:

String Manipulation ❘ 111

string userResponse = ReadLine();
userResponse = userResponse.Trim();
if (userResponse.ToLower() == "yes")
{
 // Act on response.
}

The preceding code is also able to detect strings like this:

" YES"
"Yes "

You can also use these commands to remove any other characters, by specifying them in a char
array, for example:

char[] trimChars = {' ', 'e', 's'};
string userResponse = ReadLine();
userResponse = userResponse.ToLower();
userResponse = userResponse.Trim(trimChars);
if (userResponse == "y")
{
 // Act on response.
}

This eliminates any occurrences of spaces, as well as the letters "e" and "s" from the beginning or
end of your string. Providing there aren’t any other characters in the string, this will result in the
detection of strings such as

"Yeeeees"
" y"

and so on.

You can also use the <string>.TrimStart() and <string>.TrimEnd() commands, which will
trim spaces from the beginning and end of a string, respectively. These can also have char arrays
specified.

You can use two other string commands to manipulate the spacing of strings: <string>.PadLeft()
and <string>.PadRight(). They enable you to add spaces to the left or right of a string to force it
to the desired length. You use them as follows:

<string>.PadX(<desiredLength>);

Here is an example:

myString = "Aligned";
myString = myString.PadLeft(10);

This would result in three spaces being added to the left of the word Aligned in myString. These
methods can be helpful when aligning strings in columns, which is particularly useful for position-
ing strings containing numbers.

As with the trimming commands, you can also use these commands in a second way, by supply-
ing the character to pad the string with. This involves a single char, not an array of chars as with
trimming:

myString = "Aligned";
myString = myString.PadLeft(10, '-');

112 ❘ CHAPTER 5 More about Variables

This would add three dashes to the start of myString.

There are many more of these string-manipulation commands, many of which are only useful in
very specific situations. These are discussed as you use them in the forthcoming chapters. Before
moving on, though, it is worth looking at one of the features contained in Visual Studio 2017 that
you may have noticed over the course of the last few chapters, and especially this one. In the follow-
ing Try It Out, you examine auto-completion, whereby the IDE tries to help you out by suggesting
what code you might like to insert.

TRY IT OUT Statement Auto-Completion in Visual Studio: Ch05Ex06\Program.cs

 1. Create a new console application called Ch05Ex06 and save it in the directory
C:\BeginningCSharp7\Chapter05.

 2. Type the following code into Program.cs, exactly as written, noting windows that pop up as you
do so:

static void Main(string[] args)
{
 string myString = "This is a test.";
 char[] separator = {' '};
 string[] myWords;
 myWords = myString.
}

 3. As you type the final period, the window shown in Figure 5-12 appears.

FIGURE 5-12

 4. Without moving the cursor, type sp. The pop-up window changes, and the Tooltip shown in
Figure 5-13 appears.

FIGURE 5-13

 5. Type the following characters: (se. Another pop-up window and Tooltip appears, as shown in
Figure 5-14.

 6. Then, type these two characters:);. The code should look as follows, and the pop-up windows
should disappear:

static void Main(string[] args)
{

String Manipulation ❘ 113

 string myString = "This is a test.";
 char[] separator = {' '};
 string[] myWords;
 myWords = myString.Split(separator);
}

FIGURE 5-14

 7. Add the following code, noting the windows as they pop up: (don’t forget to add using static
System.Console;)

 static void Main(string[] args)
 {
 string myString = "This is a test.";
 char[] separator = {' '};
 string[] myWords;
 myWords = myString.Split(separator);
 foreach (string word in myWords)
 {
 WriteLine($"{word}");
 }
 ReadKey();
 }

 8. Execute the code. The result is shown in Figure 5-15.

FIGURE 5-15

How It Works

Two main aspects of this code are the new string command used and the use of the auto-completion
functionality. The command, <string>.Split(), converts a string into a string array by splitting
it at the points specified. These points take the form of a char array, which in this case is simply popu-
lated by a single element, the space character:

 char[] separator = {' '};

114 ❘ CHAPTER 5 More about Variables

The following code obtains the substrings you get when the string is split at each space—that is, you get
an array of individual words:

 string[] myWords;
 myWords = myString.Split(separator);

Next, you loop through the words in this array using foreach and write each one to the console:

 foreach (string word in myWords)
 {
 WriteLine($"{word}");
 }

NOTE Each word obtained has no spaces, either embedded in the word or at
either end. The separators are removed when you use Split().

EXERCISES

 5.1 Which of the following conversions can’t be performed implicitly?

a. int to short
b. short to int
c. bool to string
d. byte to float

 5.2 Show the code for a color enumeration based on the short type containing the colors of the
rainbow plus black and white. Can this enumeration be based on the byte type?

 5.3 Will the following code compile? Why or why not?

string[] blab = new string[5]
blab[5] = 5th string.

 5.4 Write a console application that accepts a string from the user and outputs a string with the
characters in reverse order.

 5.5 Write a console application that accepts a string and replaces all occurrences of the string no
with yes.

 5.6 Write a console application that places double quotes around each word in a string.

Answers to the exercises can be found in Appendix.

String Manipulation ❘ 115

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Type conversion You can convert values from one type into another, but there are rules that
apply when you do so. Implicit conversion happens automatically, but only
when all possible values of the source value type are available in the target
value type. Explicit conversion is also possible, but you run the risk of values
not being assigned as expected, or even causing errors.

Enumerations Enums, or enumerations, are types that have a discrete set of values, each
of which has a name. Enums are defined with the enum keyword. This makes
them easy to understand in code because they are very readable. Enums have
an underlying numeric type (int by default), and you can use this property
of enum values to convert between enum values and numeric values, or to
identify enum values.

Structs Structs, or structures, are types that contain several different values at the same
time. Structs are defined with the struct keyword. The values contained in a
struct each have a name and a type; there is no requirement that every value
stored in a struct is the same type.

Arrays An array is a collection of values of the same type. Arrays have a fixed size, or
length, which determines how many values they can contain. You can define
multidimensional or jagged arrays to hold different amounts and shapes of
data. You can also iterate through the values in an array with a foreach loop.

Functions
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Defining and using simple functions that don’t accept or return any
data

 ➤ Transferring data to and from functions

 ➤ Working with variable scope

 ➤ Using command-line arguments with the Main() function

 ➤ Supplying functions as members of struct types

 ➤ Using function overloading

 ➤ Using delegates

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter06 folder and individually named
according to the names throughout the chapter.

All the code you have seen so far has taken the form of a single block, perhaps with some
looping to repeat lines of code, and branching to execute statements conditionally. Performing
an operation on your data has meant placing the code required right where you want it to
work.

This kind of code structure is limited. Often, some tasks—such as finding the highest value in
an array, for example—might need to be performed at several points in a program. You can
place identical (or nearly identical) sections of code in your application whenever necessary,

6

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

118 ❘ CHAPTER 6 Functions

but this has its own problems. Changing even one minor detail concerning a common task (to cor-
rect a code error, for example) can require changes to multiple sections of code, which can be spread
throughout the application. Missing one of these can have dramatic consequences and cause the
whole application to fail. In addition, the application can get very lengthy.

The solution to this problem is to use functions. Functions in C# are a means of providing blocks of
code that can be executed at any point in an application.

NOTE Functions of the specific type examined in this chapter are known as
methods, but this term has a very specific meaning in .NET programming
that will only become clear later in this book. Therefore, for now, the term
method will not be used.

For example, you could have a function that calculates the maximum value in an array. You can use
the function from any point in your code, and use the same lines of code in each case. Because you
need to supply this code only once, any changes you make to it will affect this calculation wherever
it is used. The function can be thought of as containing reusable code.

Functions also have the advantage of making your code more readable, as you can use them to
group related code together. This way, your application body can be very short, as the inner work-
ings of the code are separated out. This is similar to the way in which you can collapse regions
of code together in the IDE using the outline view, and it gives your application a more logical
structure.

Functions can also be used to create multipurpose code, enabling them to perform the same opera-
tions on varying data. You can supply a function with information to work with in the form of
arguments, and you can obtain results from functions in the form of return values. In the preceding
example, you could supply an array to search as an argument and obtain the maximum value in
the array as a return value. This means that you can use the same function to work with a different
array each time. A function definition consists of a name, a return type, and a list of parameters that
specify the number and type of arguments that the function requires. The name and parameters of a
function (but not its return type) collectively define the signature of a function.

DEFINING AND USING FUNCTIONS

This section describes how you can add functions to your applications and then use (call) them from
your code. Starting with the basics, you look at simple functions that don’t exchange any data with
code that calls them, and then look at more advanced function usage. The following Try It Out gets
things moving.

TRY IT OUT Defining and Using a Basic Function: Ch06Ex01\Program.cs

 1. Create a new console application called Ch06Ex01 and save it in the directory C:\
BeginningCSharp7\Chapter06.

Defining and Using Functions ❘ 119

 2. Add the following code to Program.cs:

class Program
{
 static void Write()
 {
 WriteLine("Text output from function.");
 }
 static void Main(string[] args)
 {
 Write();
 ReadKey();
 }
}

 3. Execute the code. The result is shown in Figure 6-1.

FIGURE 6-1

How It Works

The following four lines of your code define a function called Write():

 static void Write()
 {
 WriteLine("Text output from function.");
 }

The code contained here simply outputs some text to the console window, but this behavior isn’t that
important at the moment, because the focus here is on the mechanisms behind function definition and use.

The function definition consists of the following:

 ➤ Two keywords: static and void

 ➤ A function name followed by parentheses: Write()

 ➤ A block of code to execute, enclosed in curly braces

NOTE Function names are usually written in PascalCase.

The code that defines the Write() function looks very similar to some of the other code in your
application:

 static void Main(string[] args)
 {
 ...
 }

120 ❘ CHAPTER 6 Functions

That’s because all the code you have written so far (apart from type definitions) has been part of a
function. This function, Main(), is the entry point function for a console application. When a C# appli-
cation is executed, the entry point function it contains is called; and when that function is completed,
the application terminates. All C# executable applications must have an entry point.

The only difference between the Main() function and your Write() function (apart from the lines of
code they contain) is that there is some code inside the parentheses after the function name Main. This
is how you specify parameters, which you see in more detail shortly.

Both Main() and Write() are defined using the static and void keywords. The static keyword
relates to object-oriented concepts, which you come back to later in the book. For now, you only need
to remember that all the functions you use in your applications in this section of the book must use this
keyword.

In contrast, void is much simpler to explain. It’s used to indicate that the function does not return a
value. Later in this chapter, you’ll see the code that you need to use when a function has a return value.

Moving on, the code that calls your function is as follows:

 Write();

You simply type the name of the function followed by empty parentheses. When program execution
reaches this point, the code in the Write() function runs.

NOTE The parentheses used both in the function definition and where the
function is called are mandatory. Try removing them if you like—the code
won’t compile.

Return Values
The simplest way to exchange data with a function is to use a return value. Functions that have
return values evaluate to that value exactly the same way that variables evaluate to the values they
contain when you use them in expressions. Just like variables, return values have a type.

For example, you might have a function called GetString() whose return value is a string. You
could use this in code, such as the following:

string myString;
myString = GetString();

Alternatively, you might have a function called GetVal() that returns a double value, which you
could use in a mathematical expression:

double myVal;
double multiplier = 5.3;
myVal = GetVal() * multiplier;

Defining and Using Functions ❘ 121

When a function returns a value, you have to modify your function in two ways:

 ➤ Specify the type of the return value in the function declaration instead of using the void
keyword.

 ➤ Use the return keyword to end the function execution and transfer the return value to the
calling code.

In code terms, this looks like the following in a console application function of the type you’ve been
looking at:

static <returnType> <FunctionName>()
{
 ...
 return <returnValue>;
}

The only limitation here is that <returnValue> must be a value that either is of type <returnType>
or can be implicitly converted to that type. However, <returnType> can be any type you want,
including the more complicated types you’ve seen. This might be as simple as the following:

static double GetVal()
{
 return 3.2;
}

However, return values are usually the result of some processing carried out by the function; the
preceding could be achieved just as easily using a const variable.

When the return statement is reached, program execution returns to the calling code immediately.
No lines of code after this statement are executed, although this doesn’t mean that return state-
ments can only be placed on the last line of a function body. You can use return earlier in the code,
perhaps after performing some branching logic. Placing return in a for loop, an if block, or any
other structure causes the structure to terminate immediately and the function to terminate:

static double GetVal()
{
 double checkVal;
 // checkVal assigned a value through some logic (not shown here).
 if (checkVal < 5)
 return 4.7;
 return 3.2;
}

Here, one of two values is returned, depending on the value of checkVal. The only restriction in
this case is that a return statement must be processed before reaching the closing } of the function.
The following is illegal:

static double GetVal()
{
 double checkVal;
 // checkVal assigned a value through some logic.
 if (checkVal < 5)
 return 4.7;
}

122 ❘ CHAPTER 6 Functions

If checkVal is >= 5, then no return statement is met, which isn’t allowed. All processing paths must
reach a return statement. In most cases, the compiler detects this and gives you the error “not all
code paths return a value.”

Functions that execute a single line of code can use a feature introduced in C# 6 called expression-
bodied methods. The following function pattern uses a => (lambda arrow) to implement this
feature.

static <returnType> <FunctionName>() => <myVal1 * myVal2>;

For example, a Multiply() function which prior to C# 6 is written like this:

static double Multiply(double myVal1, double myVal2)
{
 return myVal1 * myVal2;
}

Can now be written using the => (lambda arrow). The result of the code written here expresses the
intent of the method in a much simpler and consolidated way.

static double Multiply(double myVal1, double myVal2) => mVal1 * MyVal2;

Parameters
When a function needs to accept parameters, you must specify the following:

 ➤ A list of the parameters accepted by the function in its definition, along with the types of
those parameters

 ➤ A matching list of arguments in each function call

NOTE Note that careful reading of the C# specification shows a subtle dis-
tinction between parameters and arguments. Parameters are defined as part
of a function definition, whereas arguments are passed to a function by call-
ing code. However, these terms are often used interchangeably, and nobody
seems to get too upset about that.

This involves the following code, where you can have any number of parameters, each with a type
and a name:

static <returnType> <FunctionName>(<paramType> <paramName>, ...)
{
 ...
 return <returnValue>;
}

The parameters are separated using commas, and each of these parameters is accessible from code
within the function as a variable. For example, a simple function might take two double parameters
and return their product:

static double Product(double param1, double param2) => param1 * param2;

The following Try It Out provides a more complex example.

Defining and Using Functions ❘ 123

TRY IT OUT Exchanging Data with a Function (Part 1): Ch06Ex02\Program.cs

 1. Create a new console application called Ch06Ex02 and save it in the directory C:\
BeginningCSharp7\Chapter06.

 2. Add the following code to Program.cs:

class Program
{
 static int MaxValue(int[] intArray)
 {
 int maxVal = intArray[0];
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 maxVal = intArray[i];
 }
 return maxVal;
 }
 static void Main(string[] args)
 {
 int[] myArray = { 1, 8, 3, 6, 2, 5, 9, 3, 0, 2 };
 int maxVal = MaxValue(myArray);
 WriteLine($"The maximum value in myArray is {maxVal}");
 ReadKey();
 }
}

 3. Execute the code. The result is shown in Figure 6-2.

FIGURE 6-2

How It Works

This code contains a function that does what the example function at the beginning of this chapter
hoped to do. It accepts an array of integers as a parameter and returns the highest number in the array.
The function definition is as follows:

 static int MaxValue(int[] intArray)
 {
 int maxVal = intArray[0];
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 maxVal = intArray[i];
 }
 return maxVal;
 }

124 ❘ CHAPTER 6 Functions

The function, MaxValue(), has a single parameter defined, an int array called intArray. It also has
a return type of int. The calculation of the maximum value is simple. A local integer variable called
maxVal is initialized to the first value in the array, and then this value is compared with each of the
subsequent elements in the array. If an element contains a higher value than maxVal, then this value
replaces the current value of maxVal. When the loop finishes, maxVal contains the highest value in the
array, and is returned using the return statement.

The code in Main() declares and initializes a simple integer array to use with the MaxValue() function:

 int[] myArray = { 1, 8, 3, 6, 2, 5, 9, 3, 0, 2 };

The call to MaxValue() is used to assign a value to the int variable maxVal:

 int maxVal = MaxValue(myArray);

Next, you write that value to the screen using WriteLine():

 WriteLine($"The maximum value in myArray is {maxVal}");

Parameter Matching
When you call a function, you must supply arguments that match the parameters as specified in the
function definition. This means matching the parameter types, the number of parameters, and the
order of the parameters. For example, the function

static void MyFunction(string myString, double myDouble)
{
 ...
}

can’t be called using the following:

MyFunction(2.6, "Hello");

Here, you are attempting to pass a double value as the first argument, and a string value as the
second argument, which is not the order in which the parameters are defined in the function defini-
tion. The code won’t compile because the parameter type is wrong. In the “Overloading Functions”
section later in this chapter, you’ll learn a useful technique for getting around this problem.

Parameter Arrays
C# enables you to specify one (and only one) special parameter for a function. This parameter,
which must be the last parameter in the function definition, is known as a parameter array.
Parameter arrays enable you to call functions using a variable amount of parameters, and they are
defined using the params keyword.

Parameter arrays can be a useful way to simplify your code because you don’t have to pass arrays
from your calling code. Instead, you pass several arguments of the same type, which are placed in
an array you can use from within your function.

Defining and Using Functions ❘ 125

The following code is required to define a function that uses a parameter array:

static <returnType> <FunctionName>(<p1Type> <p1Name>, ...,
 params <type>[] <name>)
{
 ...
 return <returnValue>;
}

You can call this function using code like the following:

<FunctionName>(<p1>, ..., <val1>, <val2>, ...)

<val1>, <val2>, and so on are values of type <type>, which are used to initialize the <name> array.
The number of arguments that you can specify here is almost limitless; the only restriction is that
they must all be of type <type>. You can even specify no arguments at all.

The following Try It Out defines and uses a function with a params type parameter.

TRY IT OUT Exchanging Data with a Function (Part 2): Ch06Ex03\Program.cs

 1. Create a new console application called Ch06Ex03 and save it in the directory C:\
BeginningCSharp7\Chapter06.

 2. Add the following code to Program.cs:

class Program
{
 static int SumVals(params int[] vals)
 {
 int sum = 0;
 foreach (int val in vals)
 {
 sum += val;
 }
 return sum;
 }
 static void Main(string[] args)
 {
 int sum = SumVals(1, 5, 2, 9, 8);
 WriteLine($"Summed Values = {sum}");
 ReadKey();
 }
}

 3. Execute the code. The result is shown in Figure 6-3.

FIGURE 6-3

126 ❘ CHAPTER 6 Functions

How It Works

The function SumVals() is defined using the params keyword to accept any number of int arguments
(and no others):

 static int SumVals(params int[] vals)
 {
 ...
 }

The code in this function simply iterates through the values in the vals array and adds the values
together, returning the result.

In Main(), you call SumVals() with five integer arguments:

 int sum = SumVals(1, 5, 2, 9, 8);

You could just as easily call this function with none, one, two, or 100 integer arguments—there is no
limit to the number you can specify.

NOTE C# includes alternative ways to specify function parameters, including
a far more readable way to include optional parameters. You will learn about
these methods in Chapter 13, which looks at the C# language.

Reference and Value Parameters
All the functions defined so far in this chapter have had value parameters. That is, when you have
used parameters, you have passed a value into a variable used by the function. Any changes made
to this variable in the function have no effect on the argument specified in the function call. For
example, consider a function that doubles and displays the value of a passed parameter:

static void ShowDouble(int val)
{
 val *= 2;
 WriteLine($"val doubled = {val}");
}

Here, the parameter, val, is doubled in this function. If you call it like this,

int myNumber = 5;
WriteLine($"myNumber = {myNumber}");
ShowDouble(myNumber);
WriteLine($"myNumber = {myNumber}");

then the text output to the console is as follows:

myNumber = 5
val doubled = 10
myNumber = 5

Defining and Using Functions ❘ 127

Calling ShowDouble() with myNumber as an argument doesn’t affect the value of myNumber in
Main(), even though the parameter it is assigned to, val, is doubled.

That’s all very well, but if you want the value of myNumber to change, you have a problem. You
could use a function that returns a new value for myNumber, like this:

static int DoubleNum(int val)
{
 val *= 2;
 return val;
}

You could call this function using the following:

int myNumber = 5;
WriteLine($"myNumber = {myNumber}");
myNumber = DoubleNum(myNumber);
WriteLine($"myNumber = {myNumber}");

However, this code is hardly intuitive and won’t cope with changing the values of multiple variables
used as arguments (as functions have only one return value).

Instead, you want to pass the parameter by reference, which means that the function will work with
exactly the same variable as the one used in the function call, not just a variable that has the same
value. Any changes made to this variable will, therefore, be reflected in the value of the variable used
as an argument. To do this, you simply use the ref keyword to specify the parameter:

static void ShowDouble(ref int val)
{
 val *= 2;
 WriteLine($"val doubled = {val}");
}

Then, specify it again in the function call (this is mandatory):

int myNumber = 5;
WriteLine($"myNumber = {myNumber}");
ShowDouble(ref myNumber);
WriteLine($"myNumber = {myNumber}");

The text output to the console is now as follows:

myNumber = 5
val doubled = 10
myNumber = 10

Note two limitations on the variable used as a ref parameter. First, the function might result in a
change to the value of a reference parameter, so you must use a nonconstant variable in the function
call. The following is therefore illegal:

const int myNumber = 5;
WriteLine($"myNumber = {myNumber}");
ShowDouble(ref myNumber);
WriteLine($"myNumber = {myNumber}");

128 ❘ CHAPTER 6 Functions

Second, you must use an initialized variable. C# doesn’t allow you to assume that a ref parameter
will be initialized in the function that uses it. The following code is also illegal:

int myNumber;
ShowDouble(ref myNumber);
WriteLine("myNumber = {myNumber}");

Up to now you have seen the ref keyword only applied to function parameters, but it is also pos-
sible to apply it to both local variables and returns. Here, myNumberRef references my myNumber,
and changing my myNumberRef results in a change to myNumber. If the value of both myNumber and
myNumberRef were displayed, the value would be 6 for both variables.

int myNumber = 5;
ref int myNumberRef = ref myNumber;
myNumberRef = 6;

It is also possible to use the ref keyword as a return type. Notice in the following code the ref key-
word identifies the return type as ref int, and is also in the code body, which instructs the func-
tion to return ref val.

static ref int ShowDouble(int val)
{
 val *= 2;
 return ref val;
}

If you attempted to compile the previous function you would receive an error. The reason is that you
cannot pass a variable type as a function parameter by reference without prefixing the ref keyword
to the variable declaration. See the following code snippet where the ref keyword is added—that
function would compile and run as expected.

static ref int ShowDouble(ref int val)
{
 val *= 2;
 return ref val;
}

Variables like strings and arrays are reference types and arrays can be returned with the ref
keyword without a parameter declaration.

static ref int ReturnByRef()
{
 int[] array = { 2 };
 return ref array[0];
}

NOTE Although strings are reference types, they are a special case because
they are immutable. That means you cannot change them because a modifica-
tion results in a new string; the old string is deallocated. The C# compiler,
Roslyn, will complain if you attempt to return a string by ref.

Defining and Using Functions ❘ 129

Out Parameters
In addition to passing values by reference, you can specify that a given parameter is an out param-
eter by using the out keyword, which is used in the same way as the ref keyword (as a modifier to
the parameter in the function definition and in the function call). In effect, this gives you almost
exactly the same behavior as a reference parameter, in that the value of the parameter at the end
of the function execution is returned to the variable used in the function call. However, there are
important differences:

 ➤ Whereas it is illegal to use an unassigned variable as a ref parameter, you can use an unas-
signed variable as an out parameter.

 ➤ An out parameter must be treated as an unassigned value by the function that uses it.

This means that while it is permissible in calling code to use an assigned variable as an out param-
eter, the value stored in this variable is lost when the function executes.

As an example, consider an extension to the MaxValue() function shown earlier, which returns the
maximum value of an array. Modify the function slightly so that you obtain the index of the ele-
ment with the maximum value within the array. To keep things simple, obtain just the index of the
first occurrence of this value when there are multiple elements with the maximum value. To do this,
you add an out parameter by modifying the function as follows:

 static int MaxValue(int[] intArray, out int maxIndex)
 {
 int maxVal = intArray[0];
 maxIndex = 0;
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 {
 maxVal = intArray[i];
 maxIndex = i;
 }
 }
 return maxVal;
 }

You might use the function like this:

int[] myArray = { 1, 8, 3, 6, 2, 5, 9, 3, 0, 2 };
WriteLine("The maximum value in myArray is " +
 $"{MaxValue(myArray, out int maxIndex)}");
WriteLine("The first occurrence of this value is " +
 $" at element {maxIndex + 1}");

That results in the following:

The maximum value in myArray is 9
The first occurrence of this value is at element 7

You must use the out keyword in the function call, just as with the ref keyword. Another very use-
ful situation for the out keyword is when parsing data, for example:

if (!int.TryParse(input, out int result))

130 ❘ CHAPTER 6 Functions

{
 return null;
}
return result;

This code checks whether the value stored in the input variable is an int. If it is not of type int,
then the code snippet returns null. If it is of type int, then it returns the integer value via the out
variable declared as result to the calling function.

Tuples
There are numerous techniques for returning multiple values from a function. For example, you
could use the out keyword, structs, or an array, discussed previously, or via a class discussed later
in this chapter. Using the out keyword would achieve the goal of returning multiple values from
a function; however, doing so uses that feature in a way it is not specifically designed to be used.
Remember that the out keyword is intended for passing a parameter by reference without needing
to initialize it first. Structs, arrays, and classes are all valid options but require extra code to create,
initialize, reference, and read. A tuple, on the other hand, is a very elegant approach for achieving
this objective with little overhead.

Because the tuple provides a very convenient and direct approach to return more than a single
value from a function, it’s most useful when a program does not need a struct or more complicated
implementations. Take this simple example of a tuple:

var numbers = (1, 2, 3, 4, 5);

That code creates a tuple named numbers containing members Item1, Item2, Item3, Item4, and
Item5 which are accessible using, for example:

var number = numbers.Item1;

Or, to give the members a specific name, you can specifically identify them:

(int one, int two, int three, int four, int five) nums = (1, 2, 3, 4, 5);
int first = nums.one;

A method declaration would look something like the following:

private static (int max, int min, double average)
 GetMaxMin(IEnumerable<int> numbers)
 {
 return (Enumerable.Max(numbers),
 Enumerable.Min(numbers),
 Enumerable.Average(numbers));
 }

Then running the code from a simple console application using this code:

static void Main(string[] args)
{
 IEnumerable<int> numbers = new int[] { 1, 2, 3, 4, 5, 6 };
 var result = GetMaxMin(numbers);
 WriteLine($"Max number is {result.max}, " +
 $"Min number is {result.min}, " +

Variable Scope ❘ 131

 $"Average is {result.average}");
 ReadLine();
}

results in the output shown in Figure 6-4.

FIGURE 6-4

NOTE In Chapter 10, “Defining Classes Members,” where creating a classes
and members is introduced, you will find an example of the deconstruction of
a tuple. Understanding some basic class principles is required to grasp that
concept completely, so read on and make note of the continuation of tuples in
that chapter.

VARIABLE SCOPE

Throughout the last section, you might have been wondering why exchanging data with functions
is necessary. The reason is that variables in C# are accessible only from localized regions of code. A
given variable is said to have a scope from which it is accessible.

Variable scope is an important subject and one best introduced with an example. The following Try
It Out illustrates a situation in which a variable is defined in one scope, and an attempt to use it is
made in a different scope.

TRY IT OUT Variable Scope: Using the Ch06Ex01\Program.cs

 1. Make the following changes to Ch06Ex01 in Program.cs created previously:

class Program
{
 static void Write()
 {
 WriteLine($"myString = {myString}");
 }
 static void Main(string[] args)
 {
 string myString = "String defined in Main()";
 Write();
 ReadKey();
 }
}

132 ❘ CHAPTER 6 Functions

 2. Compile the code and note the error and warning that appear in the error list:

The name 'myString' does not exist in the current context
The variable 'myString' is assigned but its value is never used

How It Works

What went wrong? Well, the variable myString defined in the main body of your application (the
Main() function) isn’t accessible from the Write() function.

The reason for this inaccessibility is that variables have a scope within which they are valid. This scope
encompasses the code block that they are defined in and any directly nested code blocks. The blocks of
code in functions are separate from the blocks of code from which they are called. Inside Write(), the
name myString is undefined, and the myString variable defined in Main() is out of scope—it can be
used only from within Main().

In fact, you can have a completely separate variable in Write() called myString. Try modifying the
code as follows:

class Program
{
 static void Write()
 {
 string myString = "String defined in Write()";
 WriteLine("Now in Write()");
 WriteLine($"myString = {myString}");
 }
 static void Main(string[] args)
 {
 string myString = "String defined in Main()";
 Write();
 WriteLine("\nNow in Main()");
 WriteLine($"myString = {myString}");
 ReadKey();
 }
}

This code does compile, resulting in the output shown in Figure 6-5.

FIGURE 6-5

The operations performed by this code are as follows:

 ➤ Main() defines and initializes a string variable called myString.

 ➤ Main() transfers control to Write().

Variable Scope ❘ 133

 ➤ Write() defines and initializes a string variable called myString, which is a different variable from
the myString defined in Main().

 ➤ Write() outputs a string to the console containing the value of myString as defined in Write().

 ➤ Write() transfers control back to Main().

 ➤ Main() outputs a string to the console containing the value of myString as defined in Main().

Variables whose scopes cover a single function in this way are known as local variables. It is also pos-
sible to have global variables, whose scopes cover multiple functions. Modify the code as follows:

class Program
{
 static string myString;
 static void Write()
 {
 string myString = "String defined in Write()";
 WriteLine("Now in Write()");
 WriteLine($"Local myString = {myString}");
 WriteLine($"Global myString = {Program.myString}");
 }
 static void Main(string[] args)
 {
 string myString = "String defined in Main()";
 Program.myString = "Global string";
 Write();
 WriteLine("\nNow in Main()");
 WriteLine($"Local myString = {myString}");
 WriteLine($"Global myString = {Program.myString}");
 ReadKey();
 }
}

The result is now as shown in Figure 6-6.

FIGURE 6-6

Here, you have added another variable called myString, this time further up the hierarchy of names in
the code. The variable is defined as follows:

 static string myString;

Again, the static keyword is required. Without going into too much detail, understand that in this
type of console application, you must use either the static or the const keyword for global variables

134 ❘ CHAPTER 6 Functions

of this form. If you want to modify the value of the global variable, you need to use static because
const prohibits the value of the variable from changing.

To differentiate between this variable and the local variables in Main() and Write() with the same
names, you have to classify the variable name using a fully qualified name, as described in Chapter
3. Here, you refer to the global version as Program.myString. This is necessary only when you have
global and local variables with the same name; if there were no local myString variable, you could sim-
ply use myString to refer to the global variable, rather than Program.myString. When you have a local
variable with the same name as a global variable, the global variable is said to be hidden.

The value of the global variable is set in Main() with

 Program.myString = "Global string";

and accessed in Write() with

 WriteLine($"Global myString = {Program.myString}");

You might be wondering why you shouldn’t just use this technique to exchange data with functions,
rather than the parameter passing shown earlier. There are indeed situations where this is an accept-
able way to exchange data, for example if you are writing a single object to be used as a plugin or a
short script for use in a larger project. However, there are many scenarios where it isn’t a good idea.
The most common issue with using global variables has to do with the management of concurrency.
For example, a global variable can be written to and read from numerous methods within a class or
from different threads. Can you be certain that the value in the global variable contains valid data if
numerous threads and methods can write to it? Without some extra synchronization code, the answer
is probably not. Additionally, over time it is possible the actual intent of the global variable is forgotten
and used later for some other reason. Therefore, the choice of whether to use global variables depends
on the intended use of the function in question.

The problem with using global variables is that they are generally unsuitable for “general-purpose”
functions, which can work with whatever data you supply, not just data in a specific global variable.
You look at this in more depth a little later.

Variable Scope in Other Structures
One of the points made in the last section has consequences above and beyond variable scope
between functions: that the scopes of variables encompass the code blocks in which they are defined
and any directly nested code blocks. You can find the code discussed next in the chapter download
in VariableScopeInLoops\Program.cs. This also applies to other code blocks, such as those in
branching and looping structures. Consider the following code:

int i;
for (i = 0; i < 10; i++)
{
 string text = $"Line {Convert.ToString(i)}";
 WriteLine($"{text}");
}
WriteLine($"Last text output in loop: {text}");

Variable Scope ❘ 135

Here, the string variable text is local to the for loop. This code won’t compile because the call
to WriteLine() that occurs outside of this loop attempts to use the variable text, which is out of
scope outside of the loop. Try modifying the code as follows:

int i;
string text;
for (i = 0; i < 10; i++)
{
 text = $"Line {Convert.ToString(i)}";
 WriteLine($"{text}");
}
WriteLine($"Last text output in loop: {text}");

This code will also fail because variables must be declared and initialized before use, and text is
only initialized in the for loop. The value assigned to text is lost when the loop block is exited as it
isn’t initialized outside the block. However, you can make the following change:

int i;
string text = "";
for (i = 0; i < 10; i++)
{
 text = $"Line {Convert.ToString(i)}";
 WriteLine($"{text}");
}
WriteLine($"Last text output in loop: {text}");

This time text is initialized outside of the loop, and you have access to its value. The result of this
simple code is shown in Figure 6-7.

FIGURE 6-7

The last value assigned to text in the loop is accessible from outside the loop. As you can see, this
topic requires a bit of effort to come to grips with. It is not immediately obvious why, in light of the
earlier example, text doesn’t retain the empty string it is assigned before the loop in the code after
the loop.

The explanation for this behavior is related to memory allocation for the text variable, and indeed
any variable. Merely declaring a simple variable type doesn’t result in very much happening. It is
only when values are assigned to the variables that values are allocated a place in memory to be

136 ❘ CHAPTER 6 Functions

stored. When this allocation takes place inside a loop, the value is essentially defined as a local value
and goes out of scope outside of the loop.

Even though the variable itself isn’t localized to the loop, the value it contains is. However, assigning
a value outside of the loop ensures that the value is local to the main code, and is still in scope inside
the loop. This means that the variable doesn’t go out of scope before the main code block is exited,
so you have access to its value outside of the loop.

Luckily for you, the C# compiler detects variable scope problems, and responding to the error
messages it generates certainly helps you to understand the topic of variable scope.

Parameters and Return Values versus Global Data
Let’s take a closer look at exchanging data with functions via global data and via parameters and
return values. To recap, consider the following code:

class Program
{
 static void ShowDouble(ref int val)
 {
 val *= 2;
 WriteLine($"val doubled = {val}");
 }
 static void Main(string[] args)
 {
 int val = 5;
 WriteLine($"val = {val}");
 ShowDouble(ref val);
 WriteLine($"val = {val}");
 }
}

NOTE This code is slightly different from the code shown earlier in this chap-
ter when you used the variable name myNumber in Main(). This illustrates the
fact that local variables can have identical names and yet not interfere with
each other.

Now compare it with this code:

class Program
{
 static int val;
 static void ShowDouble()
 {
 val *= 2;
 WriteLine($"val doubled = {val}");
 }
 static void Main(string[] args)
 {

Variable Scope ❘ 137

 val = 5;
 WriteLine($"val = {val}");
 ShowDouble();
 WriteLine($"val = {val}");
 }
}

The results of these ShowDouble() functions are identical.

There are no hard-and-fast rules for using one technique rather than another, and both techniques
are perfectly valid, but you might want to consider the following guidelines.

To start with, as mentioned when this topic was first introduced, the ShowDouble() version that
uses the global value only uses the global variable val. To use this version, you must use this global
variable. This limits the versatility of the function slightly and means that you must continuously
copy the global variable value into other variables if you intend to store the results. In addition,
global data might be modified by code elsewhere in your application, which could cause unpredict-
able results (values might change without you realizing it until it’s too late).

Of course, it could also be argued that this simplicity actually makes your code more difficult to
understand. Explicitly specifying parameters enables you to see at a glance what is changing. If you
see a call that reads FunctionName(val1, out val2), you instantly know that val1 and val2 are
the important variables to consider and that val2 will be assigned a new value when the function is
completed. Conversely, if this function took no parameters, then you would be unable to make any
assumptions about what data it manipulated.

Feel free to use either technique to exchange data. In general, use parameters rather than global
data; however, there are certainly cases where global data might be more suitable, and it certainly
isn’t an error to use that technique.

Local Functions
As mentioned at the beginning of this chapter where the concept of a function was introduced, the
point was made that the reason for taking code out of the Main(string[] args) function is so that
it can be reused instead of recoded multiple times within the same program. We want to emphasize
that you should abide by that way of thinking when you design and create your programs in most
situations.

Keep in mind that over time, the complexity of a program can significantly increase via an expan-
sion of what it is expected to do. As the capabilities of the program increase, it is likely that many
more functions will be added to to enable them. The more functions a program has, the more dif-
ficult it is for other programmers to make changes such as fixing bugs or adding new features.
Making changes becomes harder not only due to the number of functions, but also because the orig-
inal intent of the functions can get lost. Such functions then could be used for reasons other than
those the original author intended, which can cause serious problems when changes get wrongly
made to them.

If you ever find yourself needing to modify functions you didn’t write, consider a local function
instead. Local functions allow you to declare a function within the context of another function.
Doing this can help readability and speed interpretation of the program’s purpose.

138 ❘ CHAPTER 6 Functions

Take this code for example:

class Program
{
 static void Main(string[] args)
 {
 int myNumber = 5;
 WriteLine($"Main Function = {myNumber}");
 DoubleIt(myNumber);
 ReadLine();

 void DoubleIt(int val)
 {
 val *= 2;
 WriteLine($"Local Function - val = {val}");
 }
 }
}

Notice that the function DoubleIt() exists within the Main(string[] args) function. It can-
not be called from other functions contained in the Program class. The result of this simple code is
shown in Figure 6-8.

FIGURE 6-8

Finally, keep in mind that you can write an asynchronous local function by placing the keyword
async in front of the function declaration. Asynchronous programming is an advanced topic which
is not covered in this book; however, it is important for you to know that the capability exists.

THE MAIN() FUNCTION

Now that you’ve covered most of the simple techniques used in the creation and use of functions, it’s
time to take a closer look at the Main() function.

Earlier, you saw that Main() is the entry point for a C# application and that execution of this func-
tion encompasses the execution of the application. That is, when execution is initiated, the Main()
function executes, and when the Main() function finishes, execution ends.

The Main() Function ❘ 139

The Main() function can return either void or int, and can optionally include a string[] args
parameter, so you can use any of the following versions:

static void Main()
static void Main(string[] args)
static int Main()
static int Main(string[] args)

The third and fourth versions return an int value, which can be used to signify how the application
terminates, and often is used as an indication of an error (although this is by no means mandatory).
In general, returning a value of 0 reflects normal termination (that is, the application has completed
and can terminate safely).

The optional args parameter of Main() provides you with a way to obtain information from outside
the application, specified at runtime. This information takes the form of command-line parameters.

When a console application is executed, any specified command-line parameters are placed in this
args array. You can then use these parameters in your application. The following Try It Out shows
this in action. You can specify any number of command-line arguments, each of which will be out-
put to the console.

TRY IT OUT Command-Line Arguments: Ch06Ex04\Program.cs

 1. Create a new console application called Ch06Ex04 and save it in the directory C:\
BeginningCSharp7\Chapter06.

 2. Add the following code to Program.cs:

class Program
{
 static void Main(string[] args)
 {
 WriteLine($"{args.Length} command line arguments were specified:");
 foreach (string arg in args)
 WriteLine(arg);
 ReadKey();
 }
}

 3. Open the property pages for the project (right-click on the Ch06Ex04 project name in the Solution
Explorer window and select Properties).

 4. Select the Debug page and add any command-line arguments you want to the Command Line
Arguments setting. Figure 6-9 shows an example.

140 ❘ CHAPTER 6 Functions

FIGURE 6-9

 5. Run the application. Figure 6-10 shows the output.

FIGURE 6-10

How It Works

The code used here is very simple:

 WriteLine($"{args.Length} command line arguments were specified:");
 foreach (string arg in args)
 WriteLine(arg);

You’re just using the args parameter as you would any other string array. You’re not doing anything fancy
with the arguments; you’re just writing whatever is specified to the screen. You supplied the arguments via
the project properties in the IDE. This is a handy way to use the same command-line arguments whenever
you run the application from the IDE, rather than type them at a command-line prompt every time. The

Struct Functions ❘ 141

same result can be obtained by opening a command prompt window in the same directory as the project
output (C:\ BeginningCSharp7\Chapter06\Ch06Ex04\Ch06Ex04\bin\Debug) and typing this:

Ch06Ex04 256 myFile.txt "a longer argument"

Each argument is separated from the next by spaces. To supply an argument that includes spaces,
you can enclose it in double quotation marks, which prevents it from being interpreted as multiple
arguments.

STRUCT FUNCTIONS

The last chapter covered struct types for storing multiple data elements in one place. Structs are
actually capable of a lot more than this. For example, they can contain functions as well as data.
That might seem a little strange at first, but it is, in fact, very useful. As a simple example, consider
the following struct:

struct CustomerName
{
 public string firstName, lastName;
}

If you have variables of type CustomerName and you want to output a full name to the console, you
are forced to build the name from its component parts. You might use the following syntax for a
CustomerName variable called myCustomer, for example:

CustomerName myCustomer;
myCustomer.firstName = "John";
myCustomer.lastName = "Franklin";
WriteLine($"{myCustomer.firstName} {myCustomer.lastName}");

By adding functions to structs, you can simplify this by centralizing the processing of common
tasks. For example, you can add a suitable function to the struct type as follows:

struct CustomerName
{
 public string firstName, lastName;
 public string Name() => firstName + " " + lastName;
}

This looks much like any other function you’ve seen in this chapter, except that you haven’t used the
static modifier. The reasons for this will become clear later in the book; for now, it is enough to
know that this keyword isn’t required for struct functions. You can use this function as follows:

CustomerName myCustomer;
myCustomer.firstName = "John";
myCustomer.lastName = "Franklin";
WriteLine(myCustomer.Name());

142 ❘ CHAPTER 6 Functions

This syntax is much simpler, and much easier to understand, than the previous syntax. The Name()
function has direct access to the firstName and lastName struct members. Within the customer-
Name struct, they can be thought of as global.

OVERLOADING FUNCTIONS

Earlier in this chapter, you saw how you must match the signature of a function when you call it.
This implies that you need to have separate functions to operate on different types of variables.
Function overloading provides you with the capability to create multiple functions with the same
name, but each working with different parameter types. For example, earlier you used the following
code, which contains a function called MaxValue():

class Program
{
 static int MaxValue(int[] intArray)
 {
 int maxVal = intArray[0];
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 maxVal = intArray[i];
 }
 return maxVal;
 }
 static void Main(string[] args)
 {
 int[] myArray = { 1, 8, 3, 6, 2, 5, 9, 3, 0, 2 };
 int maxVal = MaxValue(myArray);
 WriteLine("The maximum value in myArray is {maxVal}");
 ReadKey();
 }
}

This function can be used only with arrays of int values. You could provide different
named functions for different parameter types, perhaps renaming the preceding function as
IntArrayMaxValue() and adding functions such as DoubleArrayMaxValue() to work with other
types. Alternatively, you could just add the following function to your code:

 static double MaxValue(double[] doubleArray)
 {
 double maxVal = doubleArray[0];
 for (int i = 1; i < doubleArray.Length; i++)
 {
 if (doubleArray[i] > maxVal)
 maxVal = doubleArray[i];
 }
 return maxVal;
 }

The difference here is that you are using double values. The function name, MaxValue(), is the
same, but (crucially) its signature is different. That’s because the signature of a function, as shown

Overloading Functions ❘ 143

earlier, includes both the name of the function and its parameters. It would be an error to define
two functions with the same signature, but because these two functions have different signatures,
this is fine.

NOTE The return type of a function isn’t part of its signature, so you can’t
define two functions that differ only in return type; they would have identical
signatures.

After adding the preceding code, you have two versions of MaxValue(), which accept int and dou-
ble arrays, returning an int or double maximum, respectively.

The beauty of this type of code is that you don’t have to explicitly specify which of these two func-
tions you want to use. You simply provide an array parameter, and the correct function is executed
depending on the type of parameter used.

Note another aspect of the IntelliSense feature in Visual Studio: When you have the two functions
shown previously in an application and then proceed to type the name of the function, for example,
Main(), the IDE shows you the available overloads for that function. For example, if you type

 double result = MaxValue(

the IDE gives you information about both versions of
MaxValue(), which you can scroll between using the Up
and Down arrow keys, as shown in Figure 6-11.

All aspects of the function signature are included when
overloading functions. You might, for example, have
two different functions that take parameters by value
and by reference, respectively:

static void ShowDouble(ref int val)
{
 ...
}
static void ShowDouble(int val)
{
 ...
}

Deciding which version to use is based purely on whether the function call contains the ref key-
word. The following would call the reference version:

ShowDouble(ref val);

This would call the value version:

ShowDouble(val);

Alternatively, you could have functions that differ in the number of parameters they require, and so on.

FIGURE 6-11

144 ❘ CHAPTER 6 Functions

USING DELEGATES

A delegate is a type that enables you to store references to functions. Although this sounds quite
involved, the mechanism is surprisingly simple. The most important purpose of delegates will
become clear later in the book when you look at events and event handling, but it’s useful to briefly
consider them here. Delegates are declared much like functions, but with no function body and
using the delegate keyword. The delegate declaration specifies a return type and parameter list.

After defining a delegate, you can declare a variable with the type of that delegate. You can then
initialize the variable as a reference to any function that has the same return type and parameter list
as that delegate. Once you have done this, you can call that function by using the delegate variable as
if it were a function.

When you have a variable that refers to a function, you can also perform other operations that
would be otherwise impossible. For example, you can pass a delegate variable to a function as a
parameter, and then that function can use the delegate to call whatever function it refers to, without
knowing which function will be called until runtime. The following Try It Out demonstrates using a
delegate to access one of two functions.

TRY IT OUT Using a Delegate to Call a Function: Ch06Ex05\Program.cs

 1. Create a new console application called Ch06Ex05 and save it in the directory C:\
BeginningCSharp7\Chapter06.

 2. Add the following code to Program.cs:

class Program
{
 delegate double ProcessDelegate(double param1, double param2);
 static double Multiply(double param1, double param2) => param1 * param2;
 static double Divide(double param1, double param2) => param1 / param2;

 static void Main(string[] args)
 {
 ProcessDelegate process;
 WriteLine("Enter 2 numbers separated with a comma:");
 string input = ReadLine();
 int commaPos = input.IndexOf(',');
 double param1 = ToDouble(input.Substring(0, commaPos));
 double param2 = ToDouble(input.Substring(commaPos + 1,
 input.Length - commaPos - 1));
 WriteLine("Enter M to multiply or D to divide:");
 input = ReadLine();
 if (input == "M")
 process = new ProcessDelegate(Multiply);
 else
 process = new ProcessDelegate(Divide);
 WriteLine($"Result: {process(param1, param2)}");
 ReadKey();
 }
}

Using Delegates ❘ 145

 3. Execute the code and enter the values when prompted. Figure 6-12 shows the result.

FIGURE 6-12

How It Works

This code defines a delegate (ProcessDelegate) whose return type and parameters match those of the
two functions (Multiply() and Divide()). Notice that the Multiply() and Divide() functions use
the => (lambda arrow / expression-bodied methods).

static double Multiply(double param1, double param2) => param1 * param2;

The delegate definition is as follows:

 delegate double ProcessDelegate(double param1, double param2);

The delegate keyword specifies that the definition is for a delegate, rather than a function (the
definition appears in the same place that a function definition might). Next, the definition specifies
a double return value and two double parameters. The actual names used are arbitrary; you can
call the delegate type and parameter names whatever you like. This example uses a delegate called
ProcessDelegate and double parameters called param1 and param2.

The code in Main() starts by declaring a variable using the new delegate type:

 static void Main(string[] args)
 {
 ProcessDelegate process;

Next, you have some fairly standard C# code that requests two numbers separated by a comma, and
then places these numbers in two double variables:

 WriteLine("Enter 2 numbers separated with a comma:");
 string input = ReadLine();
 int commaPos = input.IndexOf(',');
 double param1 = ToDouble(input.Substring(0, commaPos));
 double param2 = ToDouble(input.Substring(commaPos + 1,

 input.Length - commaPos - 1));

NOTE For demonstration purposes, no user input validation is included here.
If this were “real” code, you’d spend much more time ensuring that you had
valid values in the local param1 and param2 variables.

146 ❘ CHAPTER 6 Functions

Next, you ask the user to multiply or divide these numbers:

 WriteLine("Enter M to multiply or D to divide:");
 input = ReadLine();

Based on the user’s choice, you initialize the process delegate variable:

 if (input == "M")
 process = new ProcessDelegate(Multiply);
 else
 process = new ProcessDelegate(Divide);

To assign a function reference to a delegate variable, you use slightly odd-looking syntax. Much like
assigning array values, you can use the new keyword to create a new delegate. After this keyword, you
specify the delegate type and supply an argument referring to the function you want to use—namely,
the Multiply() or Divide() function. This argument doesn’t match the parameters of the delegate
type or the target function; it is a syntax unique to delegate assignment. The argument is simply the
name of the function to use, without any parentheses.

In fact, you can use slightly simpler syntax here, if you want:

 if (input == "M")
 process = Multiply;
 else
 process = Divide;

The compiler recognizes that the delegate type of the process variable matches the signature of the two
functions, and automatically initializes a delegate for you. Which syntax you use is up to you, although
some people prefer to use the longhand version, as it is easier to see at a glance what is happening.

Finally, call the chosen function using the delegate. The same syntax works, regardless of which func-
tion the delegate refers to:

 WriteLine($"Result: {process(param1, param2)}");
 ReadKey();
 }

Here, you treat the delegate variable as if it were a function name. Unlike a function, though, you can
also perform additional operations on this variable, such as passing it to a function via a parameter, as
shown in this simple example:

static void ExecuteFunction(ProcessDelegate process)
 => process(2.2, 3.3);

This means that you can control the behavior of functions by passing them function delegates, much
like choosing a “snap-in” to use. For example, you might have a function that sorts a string array
alphabetically. You can use several techniques to sort lists, with varying performance depending on the
characteristics of the list being sorted. By using delegates, you can specify the function to use by passing
a sorting algorithm function delegate to a sorting function.

There are many such uses for delegates, but, as mentioned earlier, their most prolific use is in event
handling, covered in Chapter 13.

Using Delegates ❘ 147

EXERCISES

 6.1 The following two functions have errors. What are they?

static bool Write()
{
 WriteLine("Text output from function.");
}
static void MyFunction(string label, params int[] args, bool showLabel)
{
 if (showLabel)
 WriteLine(label);
 foreach (int i in args)
 WriteLine($"{i}");
}

 6.2 Write an application that uses two command-line arguments to place values into a string and
an integer variable, respectively. Then display those values.

 6.3 Create a delegate and use it to impersonate the ReadLine() function when asking for user
input.

 6.4 Modify the following struct to include a function that returns the total price of an order:

struct order
{
 public string itemName;
 public int unitCount;
 public double unitCost;
}

 6.5 Add another function to the order struct that returns a formatted string as follows (as a
single line of text, where italic entries enclosed in angle brackets are replaced by appropriate
values):

Order Information: <unit count> <item name> items at $<unit cost> each,
total cost $<total cost>

Answers to the exercises can be found in Appendix.

148 ❘ CHAPTER 6 Functions

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Defining functions Functions are defined with a name, zero or more parameters, and a return type.
The name and parameters of a function collectively define the signature of the
function. It is possible to define multiple functions whose signatures are differ-
ent even though their names are the same—this is called function overloading.
Functions can also be defined within struct types.

Return values and
parameters

The return type of a function can be any type, or void if the function does
not return a value. Parameters can also be of any type, and consist of a
comma-separated list of type and name pairs. A variable number of parameters
of a specified type can be specified through a parameter array. Parameters
can be specified as ref or out parameters in order to return values to the
caller. When calling a function, any arguments specified must match the param-
eters in the definition both in type and in order and must include matching ref
and out keywords if these are used in the parameter definition.

Variable scope Variables are scoped according to the block of code where they are defined.
Blocks of code include methods as well as other structures, such as the body of
a loop. It is possible to define multiple, separate variables with the same name
at different scope levels.

Command-line
parameters

The Main() function in a console application can receive command-line param-
eters that are passed to the application when it is executed. When executing
the application, these parameters are specified by arguments separated by
spaces, and longer arguments can be passed in quotes.

Delegates As well as calling functions directly, it is possible to call them through delegates.
Delegates are variables that are defined with a return type and parameter list. A
given delegate type can match any method whose return type and parameters
match the delegate definition.

Debugging and Error Handling
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Debugging methods available in the IDE

 ➤ Error-handling techniques available in C#

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com
/benperk/BeginningCSharp7. The code is in the Chapter07 folder and individually named
according to the names throughout the chapter.

So far, this book has covered all the basics of simple programming in C#. Before you move
on to object-oriented programming in the next part, you need to look at debugging and error
handling in C# code.

Errors in code are something that will always be with you. No matter how good a program-
mer is, problems will always slip through, and part of being a good programmer is realizing
this and being prepared to deal with it. Of course, some problems are minor and don’t affect
the execution of an application, such as a spelling mistake on a button, but glaring errors are
also possible, including those that cause applications to fail completely (usually known as fatal
errors). Fatal errors include simple errors in code that prevent compilation (syntax errors), or
more serious problems that occur only at runtime. Some errors are subtle. Perhaps your appli-
cation fails to add a record to a database because a requested field is missing, or adds a record
with the wrong data in other restricted circumstances. Errors such as these, where application
logic is in some way flawed, are known as semantic errors or logic errors.

Often, you won’t know about these subtle errors until a user complains that something isn’t
working properly. This leaves you with the task of tracing through your code to find out

7

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

150 ❘ CHAPTER 7 Debugging anD error HanDling

what’s happening and fixing it so that it does what it was intended to do. In these situations, the
debugging capabilities of Visual Studio are a fantastic help. The first part of this chapter looks at
some of the techniques available and applies them to some common problems.

Then, you’ll learn the error-handling techniques available in C#. These enable you to take precau-
tions in cases where errors are likely, and to write code that is resilient enough to cope with errors
that might otherwise be fatal. The techniques are part of the C# language, rather than a debugging
feature, but the IDE provides some tools to help you here too.

DEBUGGING IN VISUAL STUDIO

Earlier, you learned that you can execute applications in two ways: with debugging enabled or
without debugging enabled. By default, when you execute an application from Visual Studio (VS),
it executes with debugging enabled. This happens, for example, when you press F5 or click the
green Start arrow in the toolbar. To execute an application without debugging enabled, choose
Debug ➪ Start Without Debugging, or press Ctrl+F5.

Visual Studio allows you to build applications in numerous configurations, including Debug (the
default) and Release. You can switch between these configurations using the Solution Configurations
drop-down menu in the Standard toolbar.

When you build an application in debug configuration and execute it in debug mode, more is going
on than the execution of your code. Debug builds maintain symbolic information about your appli-
cation, so that the IDE knows exactly what is happening as each line of code is executed. Symbolic
information means keeping track of, for example, the names of variables used in uncompiled code,
so they can be matched to the values in the compiled machine code application, which won’t contain
such human-readable information. This information is contained in .pdb files, which you may have
seen in your computer’s Debug directories.

In the release configuration, application code is optimized, and you cannot perform these opera-
tions. However, release builds also run faster; when you have finished developing an application, you
will typically supply users with release builds because they won’t require the symbolic information
that debug builds include.

This section describes debugging techniques you can use to identify and fix areas of code that don’t
work as expected, a process known as debugging. The techniques are grouped into two sections
according to how they are used. In general, debugging is performed either by interrupting program
execution or by making notes for later analysis. In Visual Studio terms, an application is either
running or in break mode—that is, normal execution is halted. You’ll look at the nonbreak mode
(runtime or normal) techniques first.

Debugging in Nonbreak (Normal) Mode
One of the commands you’ve been using throughout this book is the WriteLine()function, which
outputs text to the console. As you are developing applications, this function comes in handy for
getting extra feedback about operations:

WriteLine("MyFunc() Function is about to be called.");

Debugging in Visual Studio ❘ 151

MyFunc("Do something.");
WriteLine("MyFunc() Function execution completed.");

This code snippet shows how you can get extra information concerning a function called
MyFunc(). This is all very well, but it can make your console output a bit cluttered; and when you
develop other types of applications, such as desktop applications, you won’t have a console to output
information to. As an alternative, you can output text to a separate location—the Output window in
the IDE.

Chapter 2, which describes the Error List window, mentions that other windows can also be dis-
played in the same place. One of these, the Output window, can be very useful for debugging. To
display this window, select View ➪ Output. This window provides information related to compila-
tion and execution of code, including errors encountered during compilation. You can also use this
window, shown in Figure 7-1, to display custom diagnostic information by writing to it directly.

NOTE The Output window contains a drop-down menu from which differ-
ent modes can be selected, including Build, Build Order, and Debug. These
modes display compilation and runtime information, respectively. When you
read “writing to the Output window” in this section, it actually means “writing
to the debug mode view of the Output window.”

FIGURE 7-1

Alternatively, you might want to create a logging file, which has information appended to it when
your application is executed. The techniques for doing this are much the same as those for writing
text to the Output window, although the process requires an understanding of how to access the
filesystem from C# applications. For now, leave that functionality on the back burner because there
is plenty you can do without getting bogged down by file-access techniques.

Outputting Debugging Information
Writing text to the Output window at runtime is easy. You simply replace calls to WriteLine() with
the required call to write text where you want it. There are two commands you can use to do this:

 ➤ Debug.WriteLine()

 ➤ Trace.WriteLine()

152 ❘ CHAPTER 7 Debugging anD error HanDling

These commands function in almost exactly the same way, with one key difference—the first com-
mand works in debug builds only; the latter works for release builds as well. In fact, the Debug
.WriteLine() command won’t even be compiled into a release build; it just disappears, which cer-
tainly has its advantages (the compiled code will be smaller, for one thing).

NOTE Both Debug.WriteLine() and Trace.WriteLine() methods are con-
tained within the System.Diagnostics namespace. The using static direc-
tive can only be used with static classes, for example System.Console, which
includes the WriteLine() method and therefore cannot be used with those
WriteLine()functions.

These functions don’t work exactly like WriteLine(). They work with only a single string param-
eter for the message to output, rather than letting you insert variable values using {X} syntax. This
means you must use an alternative technique to embed variable values in strings—for example, the +
concatenation operator. You can also (optionally) supply a second string parameter, which displays a
category for the output text. This enables you to see at a glance which output messages are displayed
in the Output window, which is useful when similar messages are output from different places in the
application.

The general output of these functions is as follows:

<category>: <message>

For example, the following statement, which has "MyFunc" as the optional category parameter,

Debug.WriteLine("Added 1 to i", "MyFunc");

would result in the following:

MyFunc: Added 1 to i

The next Try It Out demonstrates outputting debugging information in this way.

TRY IT OUT Writing Text to the Output Window: Ch07Ex01\Program.cs

 1. Create a new console application called Ch07Ex01 and save it in the directory C:\
BeginningCSharp7\Chapter07.

 2. Modify the code as follows:

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Threading.Tasks;
 using System.Diagnostics;
 using static System.Console;
 namespace Ch07Ex01
 {
 class Program
 {

Debugging in Visual Studio ❘ 153

 static void Main(string[] args)
 {
 int[] testArray = {4, 7, 4, 2, 7, 3, 7, 8, 3, 9, 1, 9};
 int maxVal = Maxima(testArray, out int[] maxValIndices);
 WriteLine($"Maximum value {maxVal} found at element indices:");
 foreach (int index in maxValIndices)
 {
 WriteLine(index);
 }
 ReadKey();
 }
 static int Maxima(int[] integers, out int[] indices)
 {
 Debug.WriteLine("Maximum value search started.");
 indices = new int[1];
 int maxVal = integers[0];
 indices[0] = 0;
 int count = 1;
 Debug.WriteLine(string.Format(
 $"Maximum value initialized to {maxVal}, at element index 0."));
 for (int i = 1; i < integers.Length; i++)
 {
 Debug.WriteLine(string.Format(
 $"Now looking at element at index {i}."));
 if (integers[i] > maxVal)
 {
 maxVal = integers[i];
 count = 1;
 indices = new int[1];
 indices[0] = i;
 Debug.WriteLine(string.Format(
 $"New maximum found. New value is {maxVal}, at " +
 $"element index {i}."));
 }
 else
 {
 if (integers[i] == maxVal)
 {
 count++;
 int[] oldIndices = indices;
 indices = new int[count];
 oldIndices.CopyTo(indices, 0);
 indices[count - 1] = i;
 Debug.WriteLine(string.Format(
 $"Duplicate maximum found at element index {i}."));
 }
 }
 }
 Trace.WriteLine(string.Format(
 $"Maximum value {maxVal} found, with {count} occurrences."));
 Debug.WriteLine("Maximum value search completed.");
 return maxVal;
 }
 }
 }

154 ❘ CHAPTER 7 Debugging anD error HanDling

 3. Execute the code in debug mode. The result is shown in Figure 7-2.

FIGURE 7-2

 4. Terminate the application and check the contents of the Output window (in debug mode). A trun-
cated version of the output is shown here:

...
Maximum value search started.
Maximum value initialized to 4, at element index 0.
Now looking at element at index 1.
New maximum found. New value is 7, at element index 1.
Now looking at element at index 2.
Now looking at element at index 3.
Now looking at element at index 4.
Duplicate maximum found at element index 4.
Now looking at element at index 5.
Now looking at element at index 6.
Duplicate maximum found at element index 6.
Now looking at element at index 7.
New maximum found. New value is 8, at element index 7.
Now looking at element at index 8.
Now looking at element at index 9.
New maximum found. New value is 9, at element index 9.
Now looking at element at index 10.
Now looking at element at index 11.
Duplicate maximum found at element index 11.
Maximum value 9 found, with 2 occurrences.
Maximum value search completed.
The thread #### has exited with code 0 (0x0).

 5. Change to Release mode using the drop-down menu on the Standard toolbar, as shown in
Figure 7-3.

FIGURE 7-3

 6. Run the program again, this time in release mode, and recheck the Output window when execution
terminates. The output (again truncated) is as follows:

...
Maximum value 9 found, with 2 occurrences.
The thread #### has exited with code 0 (0x0).

Debugging in Visual Studio ❘ 155

How It Works

This application is an expanded version of one shown in Chapter 6, using a function to calculate the
maximum value in an integer array. This version also returns an array of the indices where maximum
values are found in an array, so that the calling code can manipulate these elements.

First, an additional using directive appears at the beginning of the code:

using System.Diagnostics;

This simplifies access to the functions discussed earlier because they are contained in the System
.Diagnostics namespace. Without this using directive, code such as,

Debug.WriteLine("BeginningC#");

would need further qualification, and would have to be rewritten as:

System.Diagnostics.Debug.WriteLine("BeginningC#");

The code in Main() simply initializes a test array of integers called testArray; it also declares another
integer array called maxValIndices to store the index output of Maxima() (the function that performs
the calculation), and then calls this function. Once the function returns, the code simply outputs the
results.

Maxima() is slightly more complicated, but it doesn’t use much code that you haven’t already seen. The
search through the array is performed in a similar way to the MaxVal() function in Chapter 6, but a
record is kept of the indices of maximum values.

Note the function used to keep track of the indices (other than the lines that output debugging informa-
tion). Rather than return an array that would be large enough to store every index in the source array
(needing the same dimensions as the source array), Maxima() returns an array just large enough to
hold the indices found. It does this by continually recreating arrays of different sizes as the search pro-
gresses. This is necessary because arrays can’t be resized once they are created.

The search is initialized by assuming that the first element in the source array (called integers locally)
is the maximum value and that there is only one maximum value in the array. Values can therefore be
set for maxVal (the return value of the function and the maximum value found) and indices, the out
parameter array that stores the indices of the maximum values found. maxVal is assigned the value of
the first element in integers, and indices is assigned a single value, simply 0, which is the index
of the array’s first element. You also store the number of maximum values found in a variable called
count, which enables you to keep track of the indices array.

The main body of the function is a loop that cycles through the values in the integers array, omitting
the first one because it has already been processed. Each value is compared to the current value of max-
Val and ignored if maxVal is greater. If the currently inspected array value is greater than maxVal, then
maxVal and indices are changed to reflect this. If the value is equal to maxVal, then count is incre-
mented, and a new array is substituted for indices. This new array is one element bigger than the old
indices array, containing the new index.

The code for this last piece of functionality is as follows:

 if (integers[i] == maxVal)
 {
 count++;

156 ❘ CHAPTER 7 Debugging anD error HanDling

 int[] oldIndices = indices;
 indices = new int[count];
 oldIndices.CopyTo(indices, 0);
 indices[count - 1] = i;
 Debug.WriteLine(string.Format(
 $"Duplicate maximum found at element index {i}."));
 }

This works by backing up the old indices array into oldIndices, an integer array local to this if
code block. Note that the values in oldIndices are copied into the new indices array using the
<array>.CopyTo() function. This function simply takes a target array and an index to use for the first
element to copy to and pastes all values into the target array.

Throughout the code, various pieces of text are output using the Debug.WriteLine() and Trace
.WriteLine() functions. These functions use the string.Format() function to embed variable values
in strings in the same way as WriteLine(). This is slightly more efficient than using the + concatena-
tion operator.

When you run the application in debug mode, you see a complete record of the steps taken in the loop
that give you the result. In release mode, you see just the result of the calculation, because no calls to
Debug.WriteLine() are made in release builds.

Tracepoints
An alternative to writing information to the Output window is to use tracepoints. These are a feature
of Visual Studio, rather than C#, but they serve the same function as using Debug.WriteLine().
Essentially, they enable you to output debugging information without modifying your code.

To demonstrate tracepoints, you can use them to replace the debugging commands in the previous
example. (See the Ch07Ex01TracePoints file in the downloadable code for this chapter.) The pro-
cess for adding a tracepoint is as follows:

 1. Position the cursor at the line where you want the tracepoint to be inserted, for example Line
31. The tracepoint will be processed before this line of code is executed.

 2. To the left of the line number, click the side bar and a red circle appears. Hover your mouse
pointer over the red circle placed next to the line of code and select the Settings menu item.

 3. Check the Actions checkbox and type the string to be output in the Message text box in the
Log a message section. If you want to output variable values, enclose the variable name in
curly braces.

 4. Click OK. The red circle changes into a red diamond to the left of the line of code containing
a tracepoint, and the highlighting of the line of code itself changes from red to white.

As implied by the title of the dialog box for adding tracepoints and the menu selections required for
them, tracepoints are a form of breakpoint (and can cause application execution to pause, just like a
breakpoint, if desired). You look at breakpoints, which typically serve a more advanced debugging
purpose, a little later in the chapter.

Figure 7-4 shows the tracepoint required for line 31 of Ch07Ex01TracePoints, where line number-
ing applies to the code after the existing Debug.WriteLine() statements have been removed.

Debugging in Visual Studio ❘ 157

FIGURE 7-4

There is another window that you can use to quickly see the tracepoints in an application. To dis-
play this window, select Debug ➪ Windows ➪ Breakpoints from the Visual Studio menu. This is a
general window for displaying breakpoints (tracepoints, as noted earlier, are a form of breakpoint).
You can customize the display to show more tracepoint-specific information by adding the When
Hit column from the Columns drop-down in this window. Figure 7-5 shows the display with this
column configured and all the tracepoints added to Ch07Ex01TracePoints.

FIGURE 7-5

158 ❘ CHAPTER 7 Debugging anD error HanDling

Executing this application in debug mode has the same result as before. You can remove or
temporarily disable tracepoints by right-clicking on them in the code window or via the
Breakpoints window. In the Breakpoints window, the check box to the left of the tracepoint
indicates whether the tracepoint is enabled; disabled tracepoints are unchecked and displayed in
the code window as diamond outlines, rather than solid diamonds.

Diagnostics Output Versus Tracepoints
Now that you have seen two methods of outputting essentially the same information, consider the
pros and cons of each. First, tracepoints have no equivalent to the Trace commands; that is, there
is no way to output information in a release build using tracepoints. This is because tracepoints are
not included in your application. Tracepoints are handled by Visual Studio and, as such, do not exist
in the compiled version of your application. You will see tracepoints doing something only when
your application is running in the Visual Studio debugger.

The chief disadvantage of tracepoints is also their major advantage, which is that they are stored in
Visual Studio. This makes them quick and easy to add to your applications as you need them, but
also makes them all too easy to delete. Deleting a tracepoint is as simple as clicking on the red dia-
mond indicating its position, which can be annoying if you are outputting a complicated string of
information.

One bonus of tracepoints, though, is the additional information that can be easily added, such as
$FUNCTION which adds the current function name to the output message. Although this information
is available to code written using Debug and Trace commands, it is trickier to obtain. In summary,
use these two methods of outputting debug information as follows:

 ➤ Diagnostics output—Use when debug output is something you always want to output from
an application, particularly when the string you want to output is complex, involving several
variables or a lot of information. In addition, Trace commands are often the only option
should you want output during execution of an application built in release mode.

 ➤ Tracepoints—Use these when debugging an application to quickly output important informa-
tion that may help you resolve semantic errors.

Debugging in Break Mode
The rest of the debugging techniques described in this chapter work in break mode. This mode can
be entered in several ways, all of which result in the program pausing in some way.

Entering Break Mode
The simplest way to enter break mode is to click the Pause button in the IDE while an application
is running. This Pause button is found on the Debug toolbar, which you
should add to the toolbars that appear by default in Visual Studio. To do
this, right-click in the toolbar area and select Debug. Figure 7-6 shows the
Debug toolbar that appears.

FIGURE 7-6

Debugging in Visual Studio ❘ 159

The first three buttons on the toolbar allow manual control of breaking. In Figure 7-6, these are
grayed out because they don’t work with a program that isn’t currently executing. The following
sections describe the rest of the buttons as needed.

When an application is running, the toolbar changes to look like Figure 7-7.

The three buttons that were grayed out now enable you to do the following:

 ➤ Pause the application and enter break mode.

 ➤ Stop the application completely (this doesn’t enter break mode; it just quits).

 ➤ Restart the application.

Pausing the application is perhaps the simplest way to enter break mode, but it doesn’t give you fine-
grained control over exactly where to stop. You are likely to stop in a natural pause in the applica-
tion, perhaps where you request user input. You might also be able to enter break mode during a
lengthy operation, or a long loop, but the exact stop point is likely to be fairly random. In general, it
is far better to use breakpoints.

Breakpoints
A breakpoint is a marker in your source code that triggers automatic entry into break mode.
Breakpoints can be configured to do the following:

 ➤ Enter break mode immediately when the breakpoint is reached.

 ➤ Enter break mode when the breakpoint is reached if a Boolean expression evaluates to true.

 ➤ Enter break mode once the breakpoint is reached a set number of times.

 ➤ Enter break mode once the breakpoint is reached and a variable value has changed since the
last time the breakpoint was reached.

These features are available only in debug builds. If you compile a release build, all breakpoints are
ignored.

There are several ways to add breakpoints. To add simple breakpoints that break when a line is
reached, just left-click on the far left of the line of code. Alternatively, you can select the menu item
Debug ➪ Toggle Breakpoint from the menu, or press F9 and the breakpoint is placed on the line of
code which has focus.

A breakpoint appears as a red circle next to the line of code, which is highlighted, as shown in
Figure 7-8.

You can also see information about a file’s breakpoints using the Breakpoints window (you saw
how to enable this window earlier). You can use the Breakpoints window to disable breakpoints, to
delete breakpoints, and to edit the properties of breakpoints. You can also add labels to breakpoints,
which is a handy way to group selected breakpoints. Notice that by removing the tick to the left
of a description, a disabled breakpoint shows up as an unfilled red circle. You can see labels in the
Labels column and filter the items shown in this window by label.

FIGURE 7-7

160 ❘ CHAPTER 7 Debugging anD error HanDling

FIGURE 7-8

The other columns shown in this window, Condition and Hit Count, are only two of the available
ones, but they are the most useful. You can edit these by right-clicking a breakpoint and selecting
Conditions…. Expanding the drop-down box displays the following options:

 ➤ Conditional Expression

 ➤ Hit Count

 ➤ Filter

Selecting Conditions… opens a dialog box in which you can type any Boolean expression, which
may involve any variables in scope at the breakpoint. For example, you could configure a breakpoint
that triggers when it is reached and the value of maxVal is greater than 4 by entering the expression
"maxVal > 4" and selecting the Is true option. You can also check whether the value of this expres-
sion has changed and only trigger the breakpoint then (you might trigger it if maxVal changed from
2 to 6 between breakpoint encounters, for example).

Selecting Hit Count, from the drop-down list opens a dialog box in which you can specify how
many times a breakpoint needs to be hit before it is triggered. A drop-down list offers the following
options:

 ➤ Break always (default value)

 ➤ Break when the hit count is equal to

 ➤ Break when the hit count is a multiple of

 ➤ Break when the hit count is greater than or equal to

The option you choose, combined with the value entered in the text box next to the options, deter-
mines the behavior of the breakpoint. The hit count is useful in long loops, when you might want
to break after, say, the first 5,000 cycles. It would be a pain to break and restart 5,000 times if you
couldn’t do this!

Debugging in Visual Studio ❘ 161

Other Ways to Enter Break Mode
There are two more ways to get into break mode. One is to enter it when an unhandled exception is
thrown. This subject is covered later in this chapter when you look at error handling. The other way
is to break when an assertion is generated.

Assertions are instructions that can interrupt application execution with a user-defined message.
They are often used during application development to test whether things are going smoothly. For
example, at some point in your application you might require a given variable to have a value less
than 10. You can use an assertion to confirm that this is true, interrupting the program if it isn’t.
When the assertion occurs, you have the option to Abort, which terminates the application; Retry,
which causes break mode to be entered; or Ignore, which causes the application to continue as
normal.

As with the debug output functions shown earlier, there are two versions of the assertion function:

 ➤ Debug.Assert()

 ➤ Trace.Assert()

The Debug class is only compiled into debug builds, while Trace exists in release builds.

These functions take three parameters. The first is a Boolean value, whereby a value of false causes
the assertion to trigger. The second and third are string parameters to write information both to a
pop-up dialog box and the Output window. The preceding example would need a function call such
as the following:

Debug.Assert(myVar < 10, "myVar is 10 or greater.",
 "Assertion occurred in Main().");

Assertions are often useful in the initial stages of user adoption of an application. You can distrib-
ute release builds of your application containing Trace.Assert() functions to keep tabs on things.
Should an assertion be triggered, the user will be informed, and this information can be passed on
to you. You can then determine what has gone wrong even if you don’t know how it went wrong.

You might, for example, provide a brief description of the error in the first string, with instructions
as to what to do next as the second string:

Trace.Assert(myVar < 10, "Variable out of bounds.",
 "Please contact vendor with the error code KCW001.");

Should this assertion occur, the user will see the dialog box shown in Figure 7-9.

FIGURE 7-9

162 ❘ CHAPTER 7 Debugging anD error HanDling

Admittedly, this isn’t the most user-friendly dialog box in the world, as it contains a lot of informa-
tion that could confuse users, but if they send you a screenshot of the error, you could quickly track
down the problem.

Now it’s time to look at what you can actually do after application execution is halted and you are
in break mode. In general, you enter break mode to find an error in your code (or to reassure your-
self that things are working properly). Once you are in break mode, you can use various techniques,
all of which enable you to analyze your code and the exact state of the application at the point in its
execution where it is paused.

Monitoring Variable Content
Monitoring variable content is just one example of how Visual Studio helps you a great deal by sim-
plifying things. The easiest way to check the value of a variable is to hover the mouse over its name
in the source code while in break mode. A tooltip showing information about the variable appears,
including the variable’s current value.

You can also highlight entire expressions to get information about their results in the same way. For
more complex values, such as arrays, you can even expand values in the tooltip to see individual
element entries.

It is possible to pin these tooltip windows to the code view, which can be useful if there is a variable
you are particularly interested in. Pinned tooltips persist, so they are available even if you stop and
restart debugging. You can also add comments to pinned tooltips, move them around, and see the
value of the last variable value, even when the application isn’t running.

You may have noticed that when you run an application, the layout of the various windows in the
IDE changes. By default, the following changes are likely to occur at runtime (this behavior may
vary slightly depending on your installation):

 ➤ The Properties window disappears, along with some other windows, probably including the
Solution Explorer window.

 ➤ A diagnostic Tools window opens that displays a Summary, Events, Memory Usage, and
CPU Usage.

 ➤ The Error List window is replaced with two new windows across the bottom of the IDE
window.

 ➤ Several new tabs appear in the new windows.

The new screen layout is shown in Figure 7-10. This may not match your display exactly, and some
of the tabs and windows may not look exactly the same, but the functionality of these windows
as described later will be the same, and this display is customizable via the View and Debug ➪
Windows menus (during break mode), as well as by dragging windows around the screen to reposi-
tion them.

Debugging in Visual Studio ❘ 163

FIGURE 7-10

The new window that appears in the bottom-left corner is particularly useful for debugging. It
enables you to keep tabs on the values of variables in your application when in break mode:

 ➤ Autos—Variables in use in the current and previous statements (Ctrl+D, A)

 ➤ Locals—All variables in scope (Ctrl+D, L)

 ➤ Watch N—Customizable variable and expression display (where N is 1 to 4, found on Debug
➪ Windows ➪ Watch)

All these tabs work in more or less the same way, with various additional features depending on
their specific function. In general, each tab contains a list of variables, with information on each
variable’s name, value, and type. More complex variables, such as arrays, may be further examined
using the + and – tree expansion/contraction symbols to the left of their names, enabling a tree view
of their content. For example, Figure 7-11 shows the Locals tab obtained by placing a breakpoint in
the example code. It shows the expanded view for one of the array variables, maxValIndices.

164 ❘ CHAPTER 7 Debugging anD error HanDling

FIGURE 7-11

You can also edit the content of variables from this view. This effectively bypasses any other vari-
able assignment that might have happened in earlier code. To do this, simply type a new value into
the Value column for the variable you want to edit. You might do this to try out some scenarios that
would otherwise require code changes, for example.

The Watch window enables you to monitor specific variables, or expressions involving specific
variables. To use this window, type the name of a variable or expression into the Name column
and view the results. Note that not all variables in an application are in scope all the time, and
are labeled as such in a Watch window. For example, Figure 7-12 shows a Watch window with a
few sample variables and expressions in it, obtained when a breakpoint just before the end of the
Maxima() function is reached.

FIGURE 7-12

The testArray array is local to Main(), so you don’t see a value here and it is grayed out.

Stepping through Code
So far, you’ve learned how to discover what is going on in your applications at the point where
break mode is entered. Now it’s time to see how you can use the IDE to step through code while
remaining in break mode, which enables you to see the exact results of the code being executed.
This is an extremely valuable technique for those of us who can’t think as fast as computers can.

When Visual Studio enters break mode, a yellow arrow cursor appears to the left of the code view
(which may initially appear inside the red circle of a breakpoint if a breakpoint was used to enter
break mode) next to the line of code that is about to be executed, as shown in Figure 7-13.

Debugging in Visual Studio ❘ 165

FIGURE 7-13

This shows you what point execution has reached when break mode
is entered. At this point, you can execute the program on a line-
by-line basis. To do so, you use some of the Debug toolbar buttons
shown in Figure 7-14.

The sixth, seventh, and eighth icons control program flow in break mode. In order, they are as
follows:

 ➤ Step Into—Execute and move to the next statement to execute.

 ➤ Step Over—Similar to Step Into, but won’t enter nested blocks of code, including functions.

 ➤ Step Out—Run to the end of the code block and resume break mode at the statement that
follows.

To look at every single operation carried out by the application, you can use Step Into to follow the
instructions sequentially. This includes moving inside functions, such as Maxima() in the preceding
example. Clicking this icon when the cursor reaches line 16, which is the call to Maxima(), results
in the cursor moving to the first line inside the Maxima() function. Alternatively, clicking Step Over
when you reach line 16 moves the cursor straight to line 17, without going through the code in
Maxima() (although this code is still executed). If you do step into a function that you aren’t inter-
ested in, you can click Step Out to return to the code that called the function. As you step through
code, the values of variables are likely to change. If you keep an eye on the monitoring windows just
discussed, you can clearly see this happening.

You can also change which line of code will be executed next by right-clicking on a line of code
and selecting Set Next Statement, or by dragging the yellow arrow to a different line of code. This
doesn’t always work, such as when skipping variable initialization. However, it can be very useful
for skipping problematic lines of code to see what will happen, or for repeating the execution of
code by moving the arrow backward.

FIGURE 7-14

166 ❘ CHAPTER 7 Debugging anD error HanDling

In code that has semantic errors, these techniques may be the most useful ones at your disposal.
You can step through code right up to the point where you expect problems to occur, and the errors
will be generated as if you were running the program normally. Or you can cause statements to be
executed more than once by changing the executing code. Along the way, you can watch the data to
see just what is going wrong. Later in this chapter, you’ll step through some code to find out what is
happening in an example application.

Immediate and Command Windows
The Command and Immediate windows (found on the Debug Windows menu) enable you to
execute commands while an application is running. The Command window enables you to per-
form Visual Studio operations manually (such as menu and toolbar operations), and the Immediate
window enables you to execute additional code besides the source code lines being executed, and to
evaluate expressions.

These windows are intrinsically linked. You can even switch between them by entering commands—
immed to move from the Command window to the Immediate window and cmd to move back.

This section concentrates on the Immediate window because the Command window is only really
useful for complex operations. The simplest use of this window is to evaluate expressions, a bit like
a one-shot use of the Watch windows. To do this, type an expression and press Return. The infor-
mation requested will then be displayed. An example is shown in Figure 7-15.

FIGURE 7-15

You can also change variable content here, as demonstrated in Figure 7-16.

FIGURE 7-16

In most cases, you can get the effects you want more easily using the variable monitoring win-
dows shown earlier, but this technique is still handy for tweaking values, and it’s good for testing
expressions.

Error Handling ❘ 167

The Call Stack Window
The final window to look at is the Call Stack window, which shows you the way in which the pro-
gram reached the current location. In simple terms, this means showing the current function along
with the function that called it, the function that called that, and so on (that is, a list of nested func-
tion calls). The exact points where calls are made are also recorded.

In the earlier example, entering break mode when in Maxima(), or moving into this function using
code stepping, reveals the information shown in Figure 7-17.

FIGURE 7-17

If you double-click an entry, you are taken to the appropriate location, enabling you to track the
way code execution has reached the current point. This window is particularly useful when errors
are first detected because you can see what happened immediately before the error. Where errors
occur in commonly used functions, this helps you determine the source of the error.

ERROR HANDLING

The first part of this chapter explained how to find and correct errors during application develop-
ment so that they don’t occur in release-level code. Sometimes, however, you know that errors are
likely to occur and there is no way to be 100 percent sure that they won’t. In those situations, it may
be preferable to anticipate problems and write code that is robust enough to deal with these errors
gracefully, without interrupting execution.

Error handling is the term for all techniques of this nature, and this section looks at exceptions and
how you can deal with them. An exception is an error generated either in your code or in a func-
tion called by your code that occurs at runtime. The definition of error here is more vague than
it has been up until now, because exceptions may be generated manually, in functions and so on.
For example, you might generate an exception in a function if one of its string parameters doesn’t
start with the letter “a.” Strictly speaking, this isn’t an error outside of the context of the function,
although the code that calls the function treats it as an error.

You’ve seen exceptions a few times already in this book. Perhaps the simplest example is attempting
to address an array element that is out of range:

int[] myArray = { 1, 2, 3, 4 };
int myElem = myArray[4];

This outputs the following exception message and then terminates the application:

Index was outside the bounds of the array.

168 ❘ CHAPTER 7 Debugging anD error HanDling

Exceptions are defined in namespaces, and most have names that make their purpose clear. In this
example, the exception generated is called System.IndexOutOfRangeException, which makes
sense because you have supplied an index that is not in the range of indices permissible in myArray.
This message appears, and the application terminates, only when the exception is unhandled. In the
next section, you’ll see exactly what you must do to handle an exception.

try…catch…finally
The C# language includes syntax for structured exception handling (SEH). Three keywords mark
code as being able to handle exceptions, along with instructions specifying what to do when an
exception occurs: try, catch, and finally. Each of these has an associated code block and must be
used in consecutive lines of code. The basic structure is as follows:

try
{
 ...
}
catch (<exceptionType> e) when (filterIsTrue)
{
 <await methodName(e);>
 ...
}
finally
{
 <await methodName;>
 ...
}

Optionally using await within either a catch or finally block was introduced in C# 6. The await
keyword is used to support advanced asynchronous programming techniques that avoid bottlenecks
and can improve the overall performance and responsiveness of an application. Asynchronous pro-
gramming, utilizing the async and await keywords, is not discussed in this book; nevertheless, as
those keywords do simplify the implementation of this programming technique, it is highly recom-
mended to learn about them.

It is also possible, however, to have a try block and a finally block with no catch block, or a
try block with multiple catch blocks. If one or more catch blocks exist, then the finally block is
optional; otherwise, it is mandatory. The usage of the blocks is as follows:

 ➤ try—Contains code that might throw exceptions (“throw” is the C# way of saying “gener-
ate” or “cause” when talking about exceptions).

 ➤ catch—Contains code to execute when exceptions are thrown. catch blocks can respond
only to specific exception types (such as System.IndexOutOfRangeException) using
<exceptionType>, hence the ability to provide multiple catch blocks. It is also possible to
omit this parameter entirely, to get a general catch block that responds to all exceptions. C#

Error Handling ❘ 169

6 introduced a concept called exception filtering that is implemented by adding the when key-
word after the exception type expressions. If that exception type occurs and the filter expres-
sion is true, only then will the code in the catch block execute.

 ➤ finally—Contains code that is always executed, either after the try block if no exception
occurs, after a catch block if an exception is handled, or just before an unhandled exception
moves “up the call stack.” This phrase means that SEH allows you to nest try...catch...
finally blocks inside one another, either directly or because of a call to a function within
a try block. For example, if an exception isn’t handled by any catch blocks in the called
function, it might be handled by a catch block in the calling code. Eventually, if no catch
blocks are matched, then the application will terminate. The fact that the finally block is
processed before this happens is the reason for its existence; otherwise, you might just as well
place code outside of the try...catch...finally structure. This nested functionality is dis-
cussed further in the “Notes on Exception Handling” section a little later, so don’t worry if it
sounds a little confusing.

Here’s the sequence of events that occurs after an exception occurs in code in a try block, also illus-
trated by Figure 7-18.

 ➤ The try block terminates at the point where the exception occurred.

 ➤ If a catch block exists, then a check is made to determine whether the block matches the
type of exception that was thrown. If no catch block exists, then the finally block (which
must be present if there are no catch blocks) executes.

 ➤ If a catch block exists but there is no match, then a check is made for other catch blocks.

 ➤ If a catch block matches the exception type and there is an exception filter that results in
true, the code within it executes and then the finally block is executed (if it is present).

 ➤ If a catch block matches the exception type and there is no exception filter, the code it con-
tains executes, and then the finally block executes if it is present.

 ➤ If no catch blocks match the exception type, then the finally block of code executes if it is
present.

NOTE If two catch blocks exist that handle the same exception type, only the
code within the catch block with an exception filter resulting in true is exe-
cuted. If a catch block also exists handling the same exception type with no
filter exception or a filter exception resulting in false, it is disregarded. Only
one catch block code is executed, and ordering of the catch block does not
affect the execution flow.

170 ❘ CHAPTER 7 Debugging anD error HanDling

Matching
filter?

Filter exists?Matching
catch?

Code exception
within try block

catch
block?

Execute code in
catch block

Execute code in
catch block

finally
block?

END

Execute code in
finally block

Yes Yes Yes Yes

No No

Yes

No

No No

FIGURE 7-18

The following Try It Out demonstrates handling exceptions. It shows throwing and handling them
in several ways, so you can see how things work.

TRY IT OUT Exception Handling: Ch07Ex02\Program.cs

 1. Create a new console application called Ch07Ex02 and save it in the directory C:\
BeginningCSharp7\Chapter07.

 2. Modify the code as follows (the line number comments shown here will help you match up your
code to the discussion afterward, and they are duplicated in the downloadable code for this chapter
for your convenience):

 class Program
 {
 static string[] eTypes = { "none", "simple", "index",
 "nested index", "filter" };

Error Handling ❘ 171

 static void Main(string[] args)
 {
 foreach (string eType in eTypes)
 {
 try
 {
 WriteLine("Main() try block reached."); // Line 21
 WriteLine($"ThrowException(\"{eType}\") called.");
 ThrowException(eType);
 WriteLine("Main() try block continues."); // Line 24
 }
 catch (System.IndexOutOfRangeException e) when (eType == "filter")
 {
 BackgroundColor = ConsoleColor.Red;
 WriteLine("Main() FILTERED System.IndexOutOfRangeException" +
 $"catch block reached. Message:\n\"{e.Message}\"");
 ResetColor();

 }
 catch (System.IndexOutOfRangeException e) // Line 33
 {
 WriteLine("Main() System.IndexOutOfRangeException catch " +
 $"block reached. Message:\n\"{e.Message}\"");
 }
 catch // Line 38
 {
 WriteLine("Main() general catch block reached.");
 }
 finally
 {
 WriteLine("Main() finally block reached.");
 }
 WriteLine();
 }
 ReadKey();
 }
 static void ThrowException(string exceptionType)
 {
 WriteLine($"ThrowException(\"{exceptionType}\") reached.");
 switch (exceptionType)
 {
 case "none":
 WriteLine("Not throwing an exception.");
 break; // Line 57
 case "simple":
 WriteLine("Throwing System.Exception.");
 throw new System.Exception(); // Line 60
 case "index":
 WriteLine("Throwing System.IndexOutOfRangeException.");
 eTypes[5] = "error"; // Line 63
 break;
 case "nested index":

172 ❘ CHAPTER 7 Debugging anD error HanDling

 try // Line 66
 {
 WriteLine("ThrowException(\"nested index\") " +
 "try block reached.");
 WriteLine("ThrowException(\"index\") called.");
 ThrowException("index"); // Line 71
 }
 catch // Line 73
 {
 WriteLine("ThrowException(\"nested index\") general"
 + " catch block reached.");
 throw;
 }
 finally
 {
 WriteLine("ThrowException(\"nested index\") finally"
 + " block reached.");
 }
 break;
 case "filter":
 try // Line 86
 {
 WriteLine("ThrowException(\"filter\") " +
 "try block reached.");
 WriteLine("ThrowException(\"index\") called.");
 ThrowException("index"); // Line 91
 }
 catch // Line 93
 {
 WriteLine("ThrowException(\"filter\") general"
 + " catch block reached.");
 throw;
 }
 break;

 }
 }
 }

NOTE Try commenting out the throw statements on line 76 and 96 to get a
better illustration of the exception filter functionality that was introduced with
C# 6.

 3. Run the application. The result is shown in Figure 7-19.

Error Handling ❘ 173

FIGURE 7-19

How It Works

This application has a try block in Main() that calls a function called ThrowException(). This func-
tion may throw exceptions, depending on the parameter it is called with:

 ➤ ThrowException("none")—Doesn’t throw an exception

 ➤ ThrowException("simple")—Generates a general exception

 ➤ ThrowException("index")—Generates a System.IndexOutOfRangeException exception

 ➤ ThrowException("nested index")—Contains its own try block, which contains code that calls
ThrowException("index") to generate a System.IndexOutOfRangeException exception

 ➤ ThrowException("filter")—Contains its own try block, which contains code that calls
ThrowException("index") to generate a System.IndexOutOfRangeException exception where
the exception filter results in true

Each of these string parameters is held in the global eTypes array, which is iterated through in the
Main() function to call ThrowException() once with each possible parameter. During this iteration,
various messages are written to the console to indicate what is happening. This code gives you an excel-
lent opportunity to use the code-stepping techniques shown earlier in the chapter. By working your way
through the code one line at a time, you can see exactly how code execution progresses.

Add a new breakpoint (with the default properties) to line 21 of the code, which reads as follows:

 WriteLine("Main() try block reached.");

174 ❘ CHAPTER 7 Debugging anD error HanDling

NOTE Code is referred to by line numbers as they appear in the download-
able version of this code. If you have line numbers turned off, remember
that you can turn them back on (select Tools ➪ Options and then change the
Line numbers setting in the Text Editor ➪ C# ➪ General options section).
Comments are included in the preceding code so that you can follow the text
without having the file open in front of you.

Run the application in debug mode. Almost immediately, the program will enter break mode, with
the cursor on line 21. If you select the Locals tab in the variable monitoring window, you should see
that eType is currently "none". Use the Step Into button to process lines 22 and 23, and confirm that
the first lines of text have been written to the console. Next, use the Step Into button to step into the
ThrowException() function on line 23.

Once in the ThrowException() function, the Locals window changes. eType and args are no longer
in scope (they are local to Main()); instead, you see the local exceptionType argument, which is, of
course, "none". Keep pressing Step Into and you’ll reach the switch statement that checks the value of
exceptionType and executes the code that writes out the string Not throwing an exception to the
screen. When you execute the break statement (on line 57), you exit the function and resume process-
ing in Main() at line 24. Because no exception was thrown, the try block continues.

Next, processing continues with the finally block. Click Step Into a few more times to com-
plete the finally block and the first cycle of the foreach loop. The next time you reach line 23,
ThrowException() is called using a different parameter, "simple".

Continue using Step Into through ThrowException(), and you’ll eventually reach line 60:

 throw new System.Exception();

You use the C# throw keyword to generate an exception. This keyword simply needs to be provided
with a new-initialized exception as a parameter, and it will throw that exception. Here, you are using
another exception from the System namespace, System.Exception.

NOTE When you use throw in a case block, no break; statement is necessary.
throw is enough to end execution of the block.

When you process this statement with Step Into, you find yourself at the general catch block starting
on line 38. There was no match with the earlier catch block starting on line 26, so this one is pro-
cessed instead. Stepping through this code takes you through this block, through the finally block,
and back into another loop cycle that calls ThrowException() with a new parameter on line 23. This
time the parameter is "index".

Now ThrowException() generates an exception on line 63:

 eTypes[5] = "error";

Error Handling ❘ 175

The eTypes array is global, so you have access to it here. However, here you are attempting to access
the sixth element in the array (remember that counting starts at 0), which generates a System
.IndexOutOfRangeException exception.

This time there are multiple matched catch blocks in Main(). One has a filter expression of (eType ==
"filter") on line 26, and the other, on line 33, has no filter expression. The value stored in eType is
currently "index" and therefore the filter expression results in false which skips this catch code block.

Stepping into the code takes you to the next catch block, starting at line 33. The WriteLine() call
in this block writes out the message stored in the exception using e.Message (you have access to the
exception through the parameter of the catch block). Again, stepping through takes you through the
finally block (but not the second catch block, as the exception is already handled) and back into the
loop cycle, again calling ThrowException() on line 23.

When you reach the switch structure in ThrowException(), this time you enter a new try block,
starting on line 67. When you reach line 71, you perform a nested call to ThrowException(), this time
with the parameter "index". You can use the Step Over button to skip the lines of code that are
executed here because you’ve been through them already. As before, this call generates a System
.IndexOutOfRangeException exception, but this time it’s handled in the nested try...catch...
finally structure, the one in ThrowException(). This structure has no explicit match for this type of
exception, so the general catch block (starting on line 73) deals with it.

Continue stepping through the code and when you reach the switch structure in the
ThrowException() this time, you enter a new try block starting at line 86. When you reach line 91,
you perform a nested call to ThrowException() same as before. However, this time when the catch
block that handles the System.IndexOutOfRangeException in the Main() checks the filter expres-
sion of (eType == "filter"), the result is true and that catch block is executed instead of the catch
block handling the System.IndexOutOfRangeException without the exception filter.

As with the earlier exception handling, you now step through this catch block and the associated
finally block, and reach the end of the function call, but with one crucial difference. Although an
exception was thrown, it was also handled—by the code in ThrowException(). This means there is no
exception left to handle in Main(), so you go straight to the finally block, at which point the applica-
tion terminates.

Throw Expressions
In the previous Try It Out, throw is used only within code statements where programed actions take
place. It is also possible to use throw in an expression as seen here:

friend ?? throw new ArgumentNullException(paraName: nameof(friend), message:
"null")

This code snippet uses double questions marks (??) called the null-coalescing operator to check
whether the value being assigned is null. If it is null then the ArgumentNullException function is
thrown. If the value is not null, then the value is assigned to the variable.

176 ❘ CHAPTER 7 Debugging anD error HanDling

Listing and Configuring Exceptions
The .NET Framework contains a host of exception types, and you are free to throw and handle any
of these in your own code. The IDE supplies a dialog box for examining and editing the available
exceptions, which can be called up with the Debug ➪ Windows ➪ Exception Settings menu item (or
by pressing Ctrl+D, E). Figure 7-20 shows the Exception Settings dialog box.

FIGURE 7-20

Exceptions are listed by category and .NET library namespace. You can see the exceptions in the
System namespace by expanding the Common Language Runtime Exceptions plus sign. The list
includes the System.IndexOutOfRangeException exception you used earlier.

Each exception may be configured using the check boxes next to the exception type. When checked,
the debugger will (break when) Thrown, causing a break into the debugger even for exceptions that
are handled.

EXERCISES

 7.1 “Using Trace.WriteLine()is preferable to using Debug.WriteLine(), as the Debug version
works only in debug builds.” Do you agree with this statement? If so, why?

 7.2 Provide code for a simple application containing a loop that generates an error after 5,000
cycles. Use a breakpoint to enter break mode just before the error is caused on the 5,000th
cycle. (Note: A simple way to generate an error is to attempt to access a nonexistent array
element, such as myArray[1000]in an array with 100 elements.)

 7.3 “finally code blocks execute only if a catch block isn’t executed.” True or false?

Error Handling ❘ 177

 7.4 Given the enumeration data type orientation defined in the following code, write an appli-
cation that uses structured exception handling (SEH) to cast a byte-type variable into an
orientation-type variable in a safe way. (Note: You can force exceptions to be thrown using
the checked keyword, an example of which is shown here. This code should be used in your
application.)

 enum Orientation : byte
 {
 North = 1,
 South = 2,
 East = 3,
 West = 4
 }
 myDirection = checked((Orientation)myByte);

Answers to these exercises are in Appendix.

178 ❘ CHAPTER 7 Debugging anD error HanDling

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Error types Fatal errors cause your application to fail completely, either at compile time
(syntax errors) or at runtime. Semantic, or logic, errors are more insidious, and
may cause your application to function incorrectly or unpredictably.

Outputting debug-
ging information

You can write code that outputs helpful information to the Output window
to aid debugging in the IDE. You do this with the Debug and Trace family of
functions, where Debug functions are ignored in release builds. For production
applications, you may want to write debugging output to a log file instead.
You can also use tracepoints to output debugging information.

Break mode You can enter break mode (essentially a state where the application is paused)
manually, through breakpoints, through assertions, or when unhandled excep-
tions occur. You can add breakpoints anywhere in your code and you can con-
figure breakpoints to break execution only under specific conditions. When in
break mode, you can inspect the content of variables (with the help of various
debug information windows) and step through code a line at a time to assist
you in determining where the errors are.

Exceptions Exceptions are errors that occur at runtime and that you can trap and process
programmatically to prevent your application from terminating. There are
many types of exceptions that can occur when you call functions or manipulate
variables. You can also generate exceptions with the throw keyword.

Exception handling Exceptions that are not handled in your code will cause the application
to terminate. You handle exceptions with try, catch, and finally code
blocks. try blocks mark out a section of code for which exception handling
is enabled. catch blocks consist of code that is executed only if an exception
occurs, and can match specific types of exceptions. You can include multiple
catch blocks. finally blocks specify code that is executed after exception
handling has occurred, or after the try block finishes if no exception occurs.
You can include only a single finally block, and if you include any catch
blocks, then the finally block is optional.

Introduction to Object-Oriented
Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Understanding object-oriented programming

 ➤ Using OOP techniques

 ➤ Learning how desktop applications rely on OOP

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter08 folder and individually named
according to the names throughout the chapter.

At this point in the book, you’ve covered all the basics of C# syntax and programming, and
have learned how to debug your applications. Already, you can assemble usable console appli-
cations. However, to access the real power of the C# language and the .NET Framework, you
need to make use of object-oriented programming (OOP) techniques. In fact, as you will soon
see, you’ve been using these techniques already, although to keep things simple we haven’t
focused on this.

This chapter steers away from code temporarily and focuses instead on the principles behind
OOP. This leads you back into the C# language because it has a symbiotic relationship with OOP.
All the concepts introduced in this chapter are revisited in later chapters, with illustrative code—
so don’t panic if you don’t grasp everything in the first read-through of this material.

8

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

180 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

To start with, you’ll look at the basics of OOP, which include answering that most fundamental
of questions, “What is an object?” You will quickly find that a lot of terminology related to OOP
can be confusing at first, but plenty of explanations are provided. You will also see that using OOP
requires you to look at programming in a different way.

As well as discussing the general principles of OOP, this chapter looks at an area requiring a thor-
ough understanding of OOP: desktop applications. This type of application relies on the Windows
environment, with features such as menus, buttons, and so on. As such, it provides plenty of scope
for description, and you will be able to observe OOP points effectively in the Windows environment.

WHAT IS OBJECT-ORIENTED PROGRAMMING?

Object-oriented programming seeks to address many of the problems with traditional programming
techniques. The type of programming you have seen so far is known as procedural programming,
which often results in so-called monolithic applications, meaning all functionality is contained in a
few modules of code (often just one). With OOP techniques, you often use many more modules of
code, with each offering specific functionality. Also, each module can be isolated or even completely
independent of the others. This modular method of programming gives you much more versatility
and provides more opportunity for code reuse.

To illustrate this further, imagine that a high-performance application on your computer is a top-
of-the-range race car. Written with traditional programming techniques, this sports car is basically
a single unit. If you want to improve this car, then you have to replace the whole unit by sending it
back to the manufacturer and getting their expert mechanics to upgrade it, or by buying a new one.
If OOP techniques are used, however, you can simply buy a new engine from the manufacturer and
follow their instructions to replace it yourself, rather than taking a hacksaw to the bodywork.

In a more traditional application, the flow of execution is often simple and linear. Applications
are loaded into memory, begin executing at point A, end at point B, and are then unloaded from
memory. Along the way various other entities might be used, such as files on storage media, or the
capabilities of a video card, but the main body of the processing occurs in one place. The code along
the way is generally concerned with manipulating data through various mathematical and logical
means. The methods of manipulation are usually quite simple, using basic types such as integers and
Boolean values to build more complex representations of data.

With OOP, things are rarely so linear. Although the same results are achieved, the way of getting
there is often very different. OOP techniques are firmly rooted in the structure and meaning of data,
and the interaction between that data and other data. This usually means putting more effort into
the design stages of a project, but it has the benefit of extensibility. After an agreement is made as
to the representation of a specific type of data, that agreement can be worked into later versions of
an application, and even entirely new applications. The fact that such an agreement exists can reduce
development time dramatically. This explains how the race car example works. The agreement here is
how the code for the “engine” is structured, such that new code (for a new engine) can be substituted
with ease, rather than requiring a trip back to the manufacturer. It also means that the engine, once
created, can be used for other purposes. You could put it in a different car, or use it to power a sub-
marine, for example.

What Is Object-Oriented Programming? ❘ 181

OOP often simplifies things by providing an agreement about the approach to data representation,
as well as about the structure and usage of more abstract entities. For example, an agreement can be
made not just on the format of data that should be used to send output to a device such as a printer,
but also on the methods of data exchange with that device, including what instructions it under-
stands, and so on. In the race car analogy, the agreement would include how the engine connects to
the fuel tank, how it passes drive power to the wheels, and so on.

As the name of the technology suggests, this is achieved using objects.

What Is an Object?
An object is a building block of an OOP application. This building block encapsulates part of the
application, which can be a process, a chunk of data, or a more abstract entity.

In the simplest sense, an object can be very similar to a struct type such as those shown earlier in the
book, containing members of variable and function types. The variables contained make up the data
stored in the object, and the functions contained allow access to the object’s functionality. Slightly
more complex objects might not maintain any data; instead, they can represent a process by con-
taining only functions. For example, an object representing a printer might be used, which would
have functions enabling control over a printer (so you can print a document, a test page, and so on).

Objects in C# are created from types, just like the variables you’ve seen already. The type of an
object is known by a special name in OOP, its class. You can use class definitions to instantiate
objects, which means creating a real, named instance of a class. The phrases instance of a class and
object mean the same thing here; but class and object mean fundamentally different things.

NOTE The terms class and object are often confused, and it is important to
understand the distinction. It might help to visualize these terms using the
earlier race car analogy. Think of a class as the template for the car, or perhaps
the plans used to build the car. The car itself is an instance of those plans, so it
could be referred to as an object.

In this chapter, you work with classes and objects using Unified Modeling
Language (UML) syntax. UML is designed for modeling applications, from the
objects that build them to the operations they perform to the use cases that are
expected. Here, you use only the basics of this language, which are explained as
you go along. UML is a specialized subject to which entire books are devoted, so
its more complex aspects are not covered here.

Figure 8-1 shows a UML representation of your printer class, called
Printer. The class name is shown in the top section of this box (you
learn about the bottom two sections a little later).

Figure 8-2 shows a UML representation of an instance of this Printer
class called myPrinter.

Printer

FIGURE 8-1

myPrinter : Printer

FIGURE 8-2

182 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

Here, the instance name is shown first in the top section, followed by the name of its class. The two
names are separated by a colon.

Properties and Fields
Properties and fields provide access to the data contained in an object. This object data differentiates
separate objects because it is possible for different objects of the same class to have different values
stored in properties and fields.

The various pieces of data contained in an object together make up the state of that object. Imagine
an object class that represents a cup of coffee, called CupOfCoffee. When you instantiate this class
(that is, create an object of this class), you must provide it with a state for it to be meaningful. In this
case, you might use properties and fields to enable the code that uses this object to set the type of
coffee used, whether the coffee contains milk and/or sugar, whether the coffee is instant, and so on.
A given coffee cup object would then have a given state, such as “Colombian filter coffee with milk
and two sugars.”

Both fields and properties are typed, so you can store information in them as string values, as int
values, and so on. However, properties differ from fields in that they don’t provide direct access to
data. Objects can shield users from the nitty-gritty details of their data, which needn’t be repre-
sented on a one-to-one basis in the properties that exist. If you used a field for the number of sugars
in a CupOfCoffee instance, then users could place whatever values they liked in the field, limited
only by the limits of the type used to store this information. If, for example, you used an int to
store this data, then users could use any value between −2147483648 and 2147483647, as shown
in Chapter 3. Obviously, not all values make sense, particularly the negative ones, and some of the
large positive amounts might require an inordinately large cup. If you use a property for this infor-
mation, you could limit this value to, say, a number between 0 and 2.

In general, it is better to provide properties rather than fields for state access because you have more
control over various behaviors. This choice doesn’t affect code that uses object instances because the
syntax for using properties and fields is the same.

Read/write access to properties can also be clearly defined by an object. Certain properties can be
read-only, allowing you to see what they are but not change them (at least not directly). This is often
a useful technique for reading several pieces of state simultaneously. You might have a read-only
property of the CupOfCoffee class called Description, returning a string representing the state
of an instance of this class (such as the string given earlier) when requested. You might be able to
assemble the same data by interrogating several properties, but a property such as this one might
save you time and effort. You might also have write-only properties that operate in a similar way.

As well as this read/write access for properties, you can also specify a different sort of access per-
mission for both fields and properties, known as accessibility. Accessibility determines which code
can access these members—that is, whether they are available to all code (public), only to code
within the class (private), or should use a more complex scheme (covered in more detail later in the
chapter, when it becomes pertinent). One common practice is to make fields private and provide
access to them via public properties. This means that code within the class has direct access to data
stored in the field while the public property shields external users from this data and prevents them
from placing invalid content there. Public members are said to be exposed by the class.

What Is Object-Oriented Programming? ❘ 183

One way to visualize this is to equate it with variable scope. Private fields
and properties, for example, can be thought of as local to the object that
possesses them, whereas the scope of public fields and properties also
encompasses code external to the object.

In the UML representation of a class, you use the second section to dis-
play properties and fields, as shown in Figure 8-3.

This is a representation of the CupOfCoffee class, with five members
(properties or fields, because no distinction is made in UML) defined as
discussed earlier. Each of the entries contains the following information:

 ➤ Accessibility—A + symbol is used for a public member, a − symbol is used for a private
member. In general, though, private members are not shown in the diagrams in this chapter
because this information is internal to the class. No information is provided as to read/write
access.

 ➤ The member name.

 ➤ The type of the member.

A colon is used to separate the member names and types.

Methods
Method is the term used to refer to functions exposed by objects. These can be called in the same
way as any other function and can use return values and parameters in the same way—you looked
at functions in detail in Chapter 6.

Methods are used to provide access to the object’s functionality. Like fields and properties, they can
be public or private, restricting access to external code as
necessary. They often make use of an object’s state to affect
their operations, and have access to private members, such
as private fields, if required. For example, the CupOfCoffee
class might define a method called AddSugar(), which would
provide a more readable syntax for incrementing the amount
of sugar than setting the corresponding Sugar property.

In UML, class boxes show methods in the third section, as
shown in Figure 8-4.

The syntax here is similar to that for fields and properties,
except that the type shown at the end is the return type, and method parameters are shown. Each
parameter is displayed in UML with one of the following identifiers: return, in, out, or inout.
These are used to signify the direction of data flow, where out and inout roughly correspond to the
use of the C# keywords out and ref described in Chapter 6. in roughly corresponds to the default
C# behavior, where neither the out nor ref keyword is used and return signifies that a value is
passed back to the calling method.

CupOfCoffee

+BeanType : string
+Instant : bool
+Milk : bool
+Sugar : byte
+Description : string

FIGURE 8-3

CupOfCoffee

+BeanType : string
+Instant : bool
+Milk : bool
+Sugar : byte
+Description : string

+AddSugar(in amount : byte) : byte

FIGURE 8-4

184 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

Everything’s an Object
At this point, it’s time to come clean: You have been using objects, properties, and methods through-
out this book. In fact, everything in C# and the .NET Framework is an object! The Main() function
in a console application is a method of a class. Every variable type you’ve looked at is a class. Every
command you have used has been a property or a method, such as <String>.Length, <String>
.ToUpper(), and so on. (The period character here separates the object instance’s name from the
property or method name, and methods are shown with () at the end to differentiate them from
properties.)

Objects really are everywhere, and the syntax to use them is often very simple. It has certainly been
simple enough for you to concentrate on some of the more fundamental aspects of C# up until now.
From this point on, you’ll begin to look at objects in detail. Bear in mind that the concepts intro-
duced here have far-reaching consequences—applying even to that simple little int variable you’ve
been happily playing around with.

The Life Cycle of an Object
Every object has a clearly defined life cycle. Apart from the normal state of “being in use,” this life
cycle includes two important stages:

 ➤ Construction—When an object is first instantiated it needs to be initialized. This initialization
is known as construction and is carried out by a constructor function, often referred to sim-
ply as a constructor for convenience.

 ➤ Destruction—When an object is destroyed, there are often some clean-up tasks to perform,
such as freeing memory. This is the job of a destructor function, also known as a destructor.

Constructors
Basic initialization of an object is automatic. For example, you don’t have to worry about finding the
memory to fit a new object into. However, at times you will want to perform additional tasks dur-
ing an object’s initialization stage, such as initializing the data stored by an object. A constructor is
what you use to do this.

All class definitions contain at least one constructor. These constructors can include a default con-
structor, which is a parameter-less method with the same name as the class itself. A class definition
might also include several constructor methods with parameters, known as nondefault constructors.
These enable code that instantiates an object to do so in many ways, perhaps providing initial values
for data stored in the object.

In C#, constructors are called using the new keyword. For example, you could instantiate a
CupOfCoffee object using its default constructor in the following way:

CupOfCoffee myCup = new CupOfCoffee();

Objects can also be instantiated using nondefault constructors. For example, the CupOfCoffee class
might have a nondefault constructor that uses a parameter to set the bean type at instantiation:

CupOfCoffee myCup = new CupOfCoffee("Blue Mountain");

What Is Object-Oriented Programming? ❘ 185

Constructors, like fields, properties, and methods, can be public or private. Code external to a class
can’t instantiate an object using a private constructor; it must use a public constructor. In this way,
you can, for example, force users of your classes to use a nondefault constructor (by making the
default constructor private).

Some classes have no public constructors, meaning it is impossible for external code to instantiate
them (they are said to be noncreatable). However, that doesn’t make them completely useless, as you
will see shortly.

Destructors
Destructors are used by the .NET Framework to clean up after objects. In general, you don’t have
to provide code for a destructor method; instead, the default operation does the work for you.
However, you can provide specific instructions if anything important needs to be done before the
object instance is deleted.

For example, when a variable goes out of scope, it may not be accessible from your code; however, it
might still exist somewhere in your computer’s memory. Only when the .NET runtime performs its
garbage collection clean-up is the instance completely destroyed.

Static and Instance Class Members
As well as having members such as properties, methods, and fields that are specific to object
instances, it is also possible to have static (also known as shared, particularly to our Visual Basic
brethren) members, which can be methods, properties, or fields. Static members are shared between
instances of a class, so they can be thought of as global for objects of a given class. Static properties
and fields enable you to access data that is independent of any object instances, and static methods
enable you to execute commands related to the class type but not specific to object instances. When
using static members, in fact, you don’t even need to instantiate an object.

For example, the Console.WriteLine() and Convert.ToString() methods you have been using
are static. At no point do you need to instantiate the Console or Convert classes (indeed, if you try,
you’ll find that you can’t, as the constructors of these classes
aren’t publicly accessible, as discussed earlier). If you include the
using static System.Console; declaration at the beginning
of your program, Console. is not required and you can call
WriteLine() directly.

There are many situations such as these where static proper-
ties and methods can be used to good effect. For example, you
might use a static property to keep track of how many instances
of a class have been created. In UML syntax, static members of
classes appear with underlining, as shown in Figure 8-5.

Static Constructors
When using static members in a class, you might want to initialize these members beforehand. You
can supply a static member with an initial value as part of its declaration, but sometimes you might
want to perform a more complex initialization, or perhaps perform some operations before assign-
ing values or allowing static methods to execute.

MyClass

+InstanceProperty : int
+StaticProperty : int

+InstanceMethod() : void
+StaticMethod() : void

FIGURE 8-5

186 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

You can use a static constructor to perform initialization tasks of this type. A class can have a single
static constructor, which must have no access modifiers and cannot have any parameters. A static
constructor can never be called directly; instead, it is executed when one of the following occurs:

 ➤ An instance of the class containing the static constructor is created.

 ➤ A static member of the class containing the static constructor is accessed.

In both cases, the static constructor is called first, before the class is instantiated or static members
accessed. No matter how many instances of a class are created, its static constructor will be called
only once. To differentiate between static constructors and the constructors described earlier in this
chapter, all nonstatic constructors are also known as instance constructors.

Static Classes
Often, you will want to use classes that contain only static members and cannot be used to instanti-
ate objects (such as Console). A shorthand way to do this, rather than make the constructors of the
class private, is to use a static class. A static class can contain only static members and can’t have
instance constructors, since by implication it can never be instantiated. Static classes can, however,
have a static constructor, as described in the preceding section.

NOTE If you are completely new to OOP, you might like to take a break
before embarking on the remainder of this chapter. It is important to fully
grasp the fundamentals before learning about the more complicated aspects
of this methodology.

OOP TECHNIQUES

Now that you know the basics, and what objects are and how they work, you can spend some time
looking at some of the other features of objects. This section covers all of the following:

 ➤ Interfaces

 ➤ Inheritance

 ➤ Polymorphism

 ➤ Relationships between objects

 ➤ Operator overloading

 ➤ Events

 ➤ Reference versus value types

OOP Techniques ❘ 187

Interfaces
An interface is a collection of public instance (that is, nonstatic) methods and properties that are
grouped together to encapsulate specific functionality. After an interface has been defined, you can
implement it in a class. This means that the class will then support all of the properties and mem-
bers specified by the interface.

Interfaces cannot exist on their own. You can’t “instantiate an interface” as you can a class. In addi-
tion, interfaces cannot contain any code that implements its members; it just defines the members.
The implementation must come from classes that implement the interface.

In the earlier coffee example, you might group together many of the more general-purpose proper-
ties and methods into an interface, such as AddSugar(), Milk, Sugar, and Instant. You could call
this interface something like IHotDrink (interface names are normally prefixed with a capital I).
You could use this interface on other objects, perhaps those of a CupOfTea class. You could there-
fore treat these objects in a similar way, and they can still have their own individual properties
(BeanType for CupOfCoffee and LeafType for CupOfTea, for example).

Interfaces implemented on objects in UML are shown using lollipop syntax (the line connected
to the circle). In Figure 8-6, members of IHotDrink are split into a separate box using class-like
syntax.

«Interface»
IHotDrink

+Instant : bool
+Milk : bool
+Sugar : byte
+Description : string

+BeanType : string

IHotDrink

+AddSugar(in amount : byte) : byte

CupOfCoffee

+LeafType : string

IHotDrinkCupOfTea

FIGURE 8-6

A class can support multiple interfaces, and multiple classes can support the same interface. The
concept of an interface, therefore, makes life easier for users and other developers. For example, you
might have some code that uses an object with a certain interface. Provided that you don’t use other
properties and methods of this object, it is possible to replace one object with another (code using
the IHotDrink interface shown earlier could work with both CupOfCoffee and CupOfTea instances,
for example). In addition, the developer of the object itself could supply you with an updated version
of an object, and as long as it supports an interface already in use, it would be easy to use this new
version in your code.

188 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

Once an interface is published—that is, it has been made available to other developers or end
users—it is good practice not to change it. One way of thinking about this is to imagine the inter-
face as a contract between class creators and class consumers. You are effectively saying, “Every
class that supports interface X will support these methods and properties.” If the interface changes
later, perhaps due to an upgrade of the underlying code, this could cause consumers of that interface
to run it incorrectly, or even fail. Instead, you should create a new interface that extends the old one,
perhaps including a version number, such as X2. This has become the standard way of doing things,
and you are likely to come across numbered interfaces frequently.

Disposable Objects
One interface of particular interest is IDisposable. An object that supports the IDisposable
interface must implement the Dispose() method—that is, it must provide code for this method.
This method can be called when an object is no longer needed (just before it goes out of scope, for
example) and should be used to free up any critical resources that might otherwise linger until the
destructor method is called on garbage collection. This gives you more control over the resources
used by your objects.

C# enables you to use a structure that makes excellent use of this method. The using keyword
enables you to initialize an object that uses critical resources in a code block, where Dispose() is
automatically called at the end of the code block:

<ClassName> <VariableName> = new <ClassName>();
...
using (<VariableName>)
{
 ...
}

Alternatively, you can instantiate the object <VariableName> as part of the using statement:

using (<ClassName> <VariableName> = new <ClassName>())
{
 ...
}

In both cases, the variable <VariableName> will be usable within the using code block and will
be disposed of automatically at the end (that is, Dispose() is called when the code block finishes
executing).

Inheritance
Inheritance is one of the most important features of OOP. Any class may inherit from another,
which means that it will have all the members of the class from which it inherits. In OOP terminol-
ogy, the class being inherited from (derived from) is the parent class (also known as the base class).
Classes in C# can derive only from a single base class directly, although of course that base class can
have a base class of its own, and so on.

Inheritance enables you to extend or create more specific classes from a single, more generic base
class. For example, consider a class that represents a farm animal (as used by ace octogenarian

OOP Techniques ❘ 189

developer Old MacDonald in his livestock application). This class might be called Animal and
possess methods such as EatFood() or Breed(). You could create a derived class called Cow,
which would support all of these methods but might also supply its own, such as Moo() and
SupplyMilk(). You could also create another derived class, Chicken, with Cluck() and LayEgg()
methods.

In UML, you indicate inheritance using arrows, as shown in Figure 8-7.

Animal

+EatFood()
+Breed()

Chicken

+Cluck()
+LayEgg()

Cow

+Moo()
+SupplyMilk()

FIGURE 8-7

NOTE In Figure 8-7, the member return types are omitted for clarity.

When using inheritance from a base class, the question of member accessibility becomes an impor-
tant one. Private members of the base class are not accessible from a derived class, but public
members are. However, public members are accessible to both the derived class and external code.
Therefore, if you could use only these two levels of accessibility, you couldn’t have a member that
was accessible both by the base class and the derived class but not external code.

To get around this, there is a third type of accessibility, protected, in which only derived classes
have access to a member. As far as external code is aware, this is identical to a private member—it
doesn’t have access in either case.

As well as defining the protection level of a member, you can also define an inheritance behavior
for it. Members of a base class can be virtual, which means that the member can be overridden by
the class that inherits it. Therefore, the derived class can provide an alternative implementation
for the member. This alternative implementation doesn’t delete the original code, which is still acces-
sible from within the class, but it does shield it from external code. If no alternative is supplied, then
any external code that uses the member through the derived class automatically uses the base class
implementation of the member.

190 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

NOTE In UML, public members are denoted by a +. Other values are – (pri-
vate), # (protected), italics (virtual).

NOTE Virtual members cannot be private because that would cause a paradox—
it is impossible to say that a member can be overridden by a derived class at the
same time you say that it is inaccessible from the derived class.

In the animals example, you could make EatFood() virtual and provide a new implementation
for it on any derived class—for example, just on the Cow class, as shown in Figure 8-8. This dis-
plays the EatFood() method on the Animal and Cow classes to signify that they have their own
implementations.

Base classes may also be defined as abstract classes. An abstract class can’t be instantiated directly;
to use it you need to inherit from it. Abstract classes can have abstract members, which have no
implementation in the base class, so an implementation must be supplied in the derived class. If
Animal were an abstract class, then the UML would look as shown in Figure 8-9.

NOTE Abstract class names are shown in italics (or with a dashed line for their
boxes).

Animal

+EatFood()
+Breed()

Chicken

+Cluck()
+LayEgg()

Cow

+Moo()
+SupplyMilk()
+EatFood()

FIGURE 8-8

In Figure 8-9, both EatFood()and Breed()are shown in the derived classes Chicken and Cow,
implying that these methods are either abstract (and, therefore, must be overridden in derived

OOP Techniques ❘ 191

classes) or virtual (and, in this case, have been overridden in Chicken and Cow). Of course, abstract
base classes can provide implementation of members, which is very common. The fact that you can’t
instantiate an abstract class doesn’t mean you can’t encapsulate functionality in it.

Animal

+EatFood()
+Breed()

Chicken

+Cluck()
+LayEgg()
+EatFood()
+Breed()

Cow

+Moo()
+SupplyMilk()
+EatFood()
+Breed()

FIGURE 8-9

Finally, a class may be sealed. A sealed class cannot be used as a base class, so no derived classes are
possible.

C# provides a common base class for all objects called object (which is an alias for the System
.Object class in the .NET Framework). You take a closer look at this class in Chapter 9.

NOTE Interfaces, described earlier in this chapter, can also inherit from other
interfaces. Unlike classes, interfaces can inherit from multiple base interfaces
(in the same way that classes can support multiple interfaces).

Polymorphism
One consequence of inheritance is that classes deriving from a base class have an overlap in the
methods and properties that they expose. Because of this, it is often possible to treat objects instan-
tiated from classes with a base type in common using identical syntax. For example, if a base class
called Animal has a method called EatFood(), then the syntax for calling this method from the
derived classes Cow and Chicken will be similar:

Cow myCow = new Cow();
Chicken myChicken = new Chicken();
myCow.EatFood();
myChicken.EatFood();

192 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

Polymorphism takes this a step further. You can assign a variable that is of a derived type to a vari-
able of one of the base types, as shown here:

Animal myAnimal = myCow;

No casting is required for this. You can then call methods of the base class through this variable:

myAnimal.EatFood();

This results in the implementation of EatFood() in the derived class being called. Note that you
can’t call methods defined on the derived class in the same way. The following code won’t work:

myAnimal.Moo();

However, you can cast a base type variable into a derived class variable and call the method of the
derived class that way:

Cow myNewCow = (Cow)myAnimal;
myNewCow.Moo();

This casting causes an exception to be raised if the type of the original variable was anything other
than Cow or a class derived from Cow. There are ways to determine the type of an object, which
you’ll learn in the next chapter.

Polymorphism is an extremely useful technique for performing tasks with a minimum of code on
different objects descending from a single class. It isn’t just classes sharing the same parent class that
can make use of polymorphism. It is also possible to treat, say, a child and a grandchild class in the
same way, as long as there is a common class in their inheritance hierarchy.

As a further note here, remember that in C# all classes derive from the base class object at the
root of their inheritance hierarchies. It is therefore possible to treat all objects as instances of the
class object. This is how WriteLine() can process an almost infinite number of parameter com-
binations when building strings. Every parameter after the first is treated as an object instance,
allowing output from any object to be written to the screen. To do this, the method ToString() (a
member of object) is called. You can override this method to provide an implementation suitable
for your class, or simply use the default, which returns the class name (qualified according to any
namespaces it is in).

Interface Polymorphism
Although you can’t instantiate interfaces in the same way as objects, you can have a variable of an
interface type. You can then use the variable to access methods and properties exposed by this inter-
face on objects that support it.

For example, suppose that instead of an Animal base class being used to supply the EatFood()
method, you place this EatFood() method on an interface called IConsume. The Cow and Chicken
classes could both support this interface, the only difference being that they are forced to provide an
implementation for EatFood() because interfaces contain no implementation. You can then access
this method using code such as the following:

Cow myCow = new Cow();
Chicken myChicken = new Chicken();
IConsume consumeInterface;
consumeInterface = myCow;

OOP Techniques ❘ 193

consumeInterface.EatFood();
consumeInterface = myChicken;
consumeInterface.EatFood();

This provides a simple way for multiple objects to be called in the same manner, and it doesn’t
rely on a common base class. For example, this interface could be implemented by a class called
VenusFlyTrap that derives from Vegetable instead of Animal:

VenusFlyTrap myVenusFlyTrap = new VenusFlyTrap();
IConsume consumeInterface;
consumeInterface = myVenusFlyTrap;
consumeInterface.EatFood();

In the preceding code snippets, calling consumeInterface.EatFood() results in the EatFood()
method of the Cow, Chicken, or VenusFlyTrap class being called, depending on which instance has
been assigned to the interface type variable.

Note here that derived classes inherit the interfaces supported by their base classes. In the first of
the preceding examples, it might be that either Animal supports IConsume or that both Cow and
Chicken support IConsume. Remember that classes with a base class in common do not necessarily
have interfaces in common, and vice versa.

Relationships between Objects
Inheritance is a simple relationship between objects that results in a base class being completely
exposed by a derived class, where the derived class can also have some access to the inner work-
ings of its base class (through protected members). There are other situations in which relationships
between objects become important.

This section takes a brief look at the following

 ➤ Containment—One class contains another. This is similar to inheritance but allows the con-
taining class to control access to members of the contained class and even perform additional
processing before using members of a contained class.

 ➤ Collections—One class acts as a container for multiple instances of another class. This is
similar to having arrays of objects, but collections have additional functionality, including
indexing, sorting, resizing, and more.

Containment
Containment is simple to achieve by using a member field to hold an object instance. This member
field might be public, in which case users of the container object have access to its exposed methods
and properties, much like with inheritance. However, you won’t have access to the internals of the
class via the derived class, as you would with inheritance.

Alternatively, you can make the contained member object a private member. If you do this, then
none of its members will be accessible directly by users, even if they are public. Instead, you can
provide access to these members using members of the containing class. This means that you have
complete control over which members of the contained class to expose, if any, and you can perform
additional processing in the containing class members before accessing the contained class members.

194 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

For example, a Cow class might contain an Udder class with the
public method Milk(). The Cow object could call this method as
required, perhaps as part of its SupplyMilk() method, but these
details will not be apparent (or important) to users of the Cow
object.

Contained classes can be visualized in UML using an associa-
tion line. For simple containment, you label the ends of the lines
with 1s, showing a one-to-one relationship (one Cow instance
will contain one Udder instance). You can also show the con-
tained Udder class instance as a private field of the Cow class for
clarity (see Figure 8-10).

Collections
Chapter 5 described how you can use arrays to store multiple variables of the same type. This also
works for objects (remember, the variable types you have been using are really objects, so this is no
real surprise). Here’s an example:

Animal[] animals = new Animal[5];

A collection is basically an array with bells and whistles. Collections are implemented as classes in
much the same way as other objects. They are often named in the plural form of the objects they
store—for example, a class called Animals might contain a collection of Animal objects.

The main difference from arrays is that collections usually imple-
ment additional functionality, such as Add() and Remove()
methods to add and remove items to and from the collection.
There is also usually an Item property that returns an object
based on its index. More often than not this property is imple-
mented in such a way as to allow more sophisticated access. For
example, it would be possible to design Animals so that a given
Animal object could be accessed by its name.

In UML you can visualize this as shown in Figure 8-11. Members
are not included in Figure 8-11 because it’s the relationship that
is being illustrated. The numbers on the ends of the connecting
lines show that one Animals object will contain zero or more
Animal objects. You take a more detailed look at collections in
Chapter 11.

Operator Overloading
Earlier in the book, you saw how operators can be used to manipulate simple variable types. There
are times when it is logical to use operators with objects instantiated from your own classes. This is
possible because classes can contain instructions regarding how operators should be treated.

For example, you might add a new property to the Animal class called Weight. You could then com-
pare animal weights using the following:

if (cowA.Weight > cowB.Weight)
{

Cow

+Moo()
+SupplyMilk()

–containedUdder : Udder

+Milk()

Udder
1

1

FIGURE 8-10

Animal

Animal

0..*

1

FIGURE 8-11

OOP Techniques ❘ 195

 ...
}

Using operator overloading, you can provide logic that uses the Weight property implicitly in your
code, so that you can write code such as the following:

if (cowA > cowB)
{
 ...
}

Here, the greater-than operator (>) has been overloaded. An overloaded operator is one for which
you have written the code to perform the operation involved—this code is added to the class defi-
nition of one of the classes that it operates on. In the preceding example, you are using two Cow
objects, so the operator overload definition is contained in the Cow class. You can also overload
operators to work with different classes in the same way, where one (or both) of the class definitions
contains the code to achieve this.

You can only overload existing C# operators in this way; you can’t create new ones. However, you
can provide implementations for both unary (single operand) and binary (two operands) usages of
operators such as + or >. You see how to do this in C# in Chapter 13.

Events
Objects can raise (and consume) events as part of their processing. Events are important occur-
rences that you can act on in other parts of code, similar to (but more powerful than) exceptions.
You might, for example, want some specific code to execute when an Animal object is added to an
Animals collection, where that code isn’t part of either the Animals class or the code that calls the
Add() method. To do this, you need to add an event handler to your code, which is a special kind
of function that is called when the event occurs. You also need to configure this handler to listen for
the event you are interested in.

You can create event-driven applications, which are far more prolific than you might think. For
example, bear in mind that Windows-based applications are entirely dependent on events. Every
button click or scroll bar drag you perform is achieved through event handling, as the events are
triggered by the mouse or keyboard.

Later in this chapter you will see how this works in Windows applications, and there is a more in-
depth discussion of events in Chapter 13.

Reference Types versus Value Types
Data in C# is stored in a variable in one of two ways, depending on the type of the variable. This
type will fall into one of two categories: reference or value. The difference is as follows:

 ➤ Value types store themselves and their content in one place in memory (called the stack).

 ➤ Reference types hold a reference to somewhere else in memory (called the heap) where con-
tent is stored.

In fact, you don’t have to worry about this too much when using C#. So far, you’ve used string
variables (which are reference types) and other simple variables (most of which are value types, such
as int) in pretty much the same way.

196 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

One key difference between value types and reference types is that value types always contain a
value, whereas reference types can be null, reflecting the fact that they contain no value. It is, how-
ever, possible to create a value type that behaves like a reference type in this respect (that is, it can
be null) by using nullable types. These are described in Chapter 12 when you look at the advanced
technique of generic types (which include nullable types).

The only simple types that are reference types are string and object, although arrays are implic-
itly reference types as well. Every class you create will be a reference type, which is why this is
stressed here.

OOP IN DESKTOP APPLICATIONS

In Chapter 2, you created a simple desktop application in C# using Windows Presentation
Foundation (WPF). WPF desktop applications are heavily dependent on OOP techniques, and this
section takes a look at this to illustrate some of the points made in this chapter. The following Try It
Out enables you to work through a simple example.

TRY IT OUT Objects in Action: Ch08Ex01

 1. Create a new WPF application called Ch08Ex01 and save it in the directory
C:\BeginningCSharp7\Chapter08.

 2. Add a new Button control using the Toolbox, and position it in the center of MainWindow, as
shown in Figure 8-12.

FIGURE 8-12

OOP in Desktop Applications ❘ 197

 3. Double-click on the button to add code for a mouse click. Modify the code that appears as follows:

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 ((Button)sender).Content = "Clicked!";
 Button newButton = new Button();
 newButton.Content = "New Button! ";
 newButton.Margin = new Thickness(10, 10, 200, 200);
 newButton.Click += newButton_Click;
 ((Grid)((Button)sender).Parent).Children.Add(newButton);
 }
 private void newButton_Click(object sender, RoutedEventArgs e)
 {
 ((Button)sender).Content = "Clicked!!";
 }

 4. Run the application. The window is shown in Figure 8-13.

FIGURE 8-13

 5. Click the button marked Button. The display changes (see Figure 8-14).

FIGURE 8-14

198 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

 6. Click the button marked New Button! The display changes (see Figure 8-15).

FIGURE 8-15

How It Works

By adding just a few lines of code you’ve created a desktop application that does something, while at
the same time illustrating some OOP techniques in C#. The phrase “everything’s an object” is even
more true when it comes to desktop applications. From the form that runs to the controls on the form,
you need to use OOP techniques all the time. This example highlights some of the concepts you looked
at earlier in this chapter to show how everything fits together.

The first thing you do in this application is add a new button to the MainWindow window. The button
is an object; it’s an instance of a class called Button, and the window is an instance of a class called
MainWindow, which is derived from a class called Window. Next, by double-clicking the button, you add
an event handler to listen for the Click event that the Button class exposes. The event handler is added
to the code for the MainWindow object that encapsulates your application, as a private method:

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 }

The code uses the C# keyword private as a qualifier. Don’t worry too much about that for now; the
next chapter explains the C# code required for the OOP techniques covered in this chapter.

The first line of code you add changes the text on the button that is clicked. This makes use of poly-
morphism, described earlier in the chapter. The Button object representing the button that you click is
sent to the event handler as an object parameter, which you cast into a Button type (this is possible
because the Button object inherits from System.Object, which is the .NET class that object is an
alias for). You then change the Content property of the object to change the text displayed:

 ((Button)sender).Content = "Clicked!";

OOP in Desktop Applications ❘ 199

Next, you create a new Button object with the new keyword (note that namespaces are set up in this
project to enable this simple syntax; otherwise, you need to use the fully qualified name of this object,
System.Windows.Controls.Button):

 Button newButton = new Button();

You also set the Content and Margin properties of the newly created Button object to suitable val-
ues for displaying the button. Note that the Margin property is of type Thickness, so you create a
Thickness object using a non-default constructor before assigning it to the property:

 newButton.Content = "New Button!";
 newButton.Margin = new Thickness(10, 10, 200, 200);

Elsewhere in the code a new event handler is added, which you use to respond to the Click event gener-
ated by the new button:

 private void newButton_Click(object sender, RoutedEventArgs e)
 {
 ((Button)sender).Content = "Clicked!!";
 }

You register the event handler as a listener for the Click event, using overloaded operator syntax:

 newButton.Click += newButton_Click;

Finally, you add the new button to the window. To do this, you find the parent of the existing button
(using its Parent property), cast it to the correct type (which is Grid), and use the Add() method of the
Grid.Children property to add the button, passing the button as a method parameter:

 ((Grid)((Button)sender).Parent).Children.Add(newButton);

This code looks more complicated than it actually is. Once you get the hang of the way that WPF rep-
resents the content of a window through a hierarchy of controls (including buttons and containers), this
sort of thing will become second nature.

This short example used almost all of the techniques introduced in this chapter. As you can see, OOP
programming needn’t be complicated—it just requires a different point of view to get right.

EXERCISES

 8.1 Which of the following are real levels of accessibility in OOP?

 a. Friend

 b. Public

 c. Secure

 d. Private

 e. Protected

 f. Loose

 g. Wildcard

200 ❘ CHAPTER 8 IntroductIon to object-orIented ProgrammIng

 8.2 “You must call the destructor of an object manually or it will waste memory.” True or false?

 8.3 Do you need to create an object to call a static method of its class?

 8.4 Draw a UML diagram similar to the ones shown in this chapter for the following classes and
interface:

 ➤ An abstract class called HotDrink that has the methods Drink, AddMilk, and AddSugar, and
the properties Milk and Sugar

 ➤ An interface called ICup that has the methods Refill and Wash, and the properties Color
and Volume

 ➤ A class called CupOfCoffee that derives from HotDrink, supports the ICup interface, and has
the additional property BeanType

 ➤ A class called CupOfTea that derives from HotDrink, supports the ICup interface, and has the
additional property LeafType

 8.5 Write some code for a function that will accept either of the two cup objects in the preceding
example as a parameter. The function should call the AddMilk, Drink, and Wash methods for
any cup object it is passed.

Answers to the exercises can be found in Appendix.

OOP in Desktop Applications ❘ 201

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Objects and classes Objects are the building blocks of OOP applications. Classes are type defini-
tions that are used to instantiate objects. Objects can contain data and/or
expose operations that other code can use. Data can be made available to
external code through properties, and operations can be made available
to external code through methods. Both properties and methods are referred
to as class members. Properties can allow read access, write access, or both.
Class members can be public (available to all code), or private (available only to
code inside the class definition). In .NET, everything is an object.

Object life cycle An object is instantiated by calling one of its constructors. When an object
is no longer needed, it is destroyed by executing its destructor. To clean up
after an object, it is often necessary to manually dispose of it.

Static and instance
members

Instance members are available only on object instances of a class. Static
members are available only through the class definition directly, and are not
associated with an instance.

Interfaces Interfaces are a collection of public properties and methods that can be imple-
mented on a class. An instance-typed variable can be assigned a value of any
object whose class definition implements that interface. Only the interface-
defined members are then available through the variable.

Inheritance Inheritance is the mechanism through which one class definition can derive
from another. A class inherits members from its parent, of which it can have
only one. Child classes cannot access private members in its parent, but it is
possible to define protected members that are available only within a class or
classes that derive from that class. Child classes can override members that
are defined as virtual in a parent class. All classes have an inheritance chain
that ends in System.Object, which has the alias object in C#.

Polymorphism All objects instantiated from a derived class can be treated as if they were
instances of a parent class.

Object relation-
ships and features

Objects can contain other objects, and can also represent collections of other
objects. To manipulate objects in expressions, you often need to define how
operators work with objects, through operator overloading. Objects can
expose events that are triggered due to some internal process, and client
code can respond to events by providing event handlers.

Defining Classes
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Defining classes and interfaces in C#

 ➤ Using the keywords that control accessibility and inheritance

 ➤ Discovering the System.Object class and its role in class definitions

 ➤ Using some helpful tools provided by Visual Studio (VS)

 ➤ Defining class libraries

 ➤ Knowing the differences and similarities between interfaces and
abstract classes

 ➤ Exploring struct types

 ➤ Understanding important object copying considerations

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter09 folder and individually named
according to the names throughout the chapter.

In Chapter 8, you looked at the features of object-oriented programming (OOP). In this chap-
ter, you put theory into practice and define classes in C#. You won’t go so far as to define class
members in this chapter, but you will concentrate on the class definitions themselves.

9

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

204 ❘ CHAPTER 9 Defining Classes

To begin, you explore the basic class definition syntax, the keywords you can use to determine class
accessibility and more, and the way in which you can specify inheritance. You also look at interface
definitions because they are similar to class definitions in many ways.

The rest of the chapter covers various related topics that apply when defining classes in C#.

CLASS DEFINITIONS IN C#

C# uses the class keyword to define classes:

class MyClass
{
 // Class members.
}

This code defines a class called MyClass. Once you have defined a class, you are free to instantiate
it anywhere else in your project that has access to the definition. By default, classes are declared as
internal, meaning that only code in the current project will have access to them. You can specify this
explicitly using the internal access modifier keyword as follows (although you don’t have to):

internal class MyClass
{
 // Class members.
}

Alternatively, you can specify that the class is public and should also be accessible to code in other
projects. To do so, you use the public keyword:

public class MyClass
{
 // Class members.
}

In addition to these two access modifier keywords, you can also specify that the class is either
abstract (cannot be instantiated, only inherited, and can have abstract members) or sealed (cannot
be inherited). To do this, you use one of the two mutually exclusive keywords, abstract or sealed.
An abstract class is declared as follows:

public abstract class MyClass
{
 // Class members, may be abstract.
}

Here, MyClass is a public abstract class, while internal abstract classes are also possible.

Sealed classes are declared as follows:

public sealed class MyClass
{
 // Class members.
}

As with abstract classes, sealed classes can be public or internal.

Class Definitions in C# ❘ 205

Inheritance can also be specified in the class definition. You simply put a colon after the class name,
followed by the base class name:

public class MyClass : MyBase
{
 // Class members.
}

Only one base class is permitted in C# class definitions; and if you inherit from an abstract class,
you must implement all the abstract members inherited (unless the derived class is also abstract).

The compiler does not allow a derived class to be more accessible than its base class. This means
that an internal class can inherit from a public base, but a public class can’t inherit from an internal
base. This code is legal:

public class MyBase
{
 // Class members.
}
internal class MyClass : MyBase
{
 // Class members.
}

The following code won’t compile:

internal class MyBase
{
 // Class members.
}
public class MyClass : MyBase
{
 // Class members.
}

If no base class is used, the class inherits only from the base class System.Object (which has the
alias object in C#). Ultimately, all classes have System.Object at the root of their inheritance hier-
archy. You will take a closer look at this fundamental class a little later.

In addition to specifying base classes in this way, you can also specify interfaces supported after
the colon character. If a base class is specified, it must be the first thing after the colon, with inter-
faces specified afterward. If no base class is specified, you specify the interfaces immediately after
the colon. Commas must be used to separate the base class name (if there is one) and the interface
names from one another.

For example, you could add an interface to MyClass as follows:

public class MyClass : IMyInterface
{
 // Class members.
}

All interface members must be implemented in any class that supports the interface, although you
can provide an “empty” implementation (with no functional code) if you don’t want to do anything

206 ❘ CHAPTER 9 Defining Classes

with a given interface member, and you can implement interface members as abstract in abstract
classes.

The following declaration is invalid because the base class MyBase isn’t the first entry in the inheri-
tance list:

public class MyClass : IMyInterface, MyBase
{
 // Class members.
}

The correct way to specify a base class and an interface is as follows:

public class MyClass : MyBase, IMyInterface
{
 // Class members.
}

Remember that multiple interfaces are possible, so the following is also valid:

public class MyClass : MyBase, IMyInterface, IMySecondInterface
{
 // Class members.
}

Table 9-1 shows the allowed access modifier combinations for class definitions.

TABLE 9-1: Access Modifiers for Class Definitions

MODIFIER DESCRIPTION

none or internal Class is accessible only from within the current project.

public Class is accessible from anywhere.

abstract or internal
abstract

Class is accessible only from within the current project, and cannot be
instantiated, only derived from.

public abstract Class is accessible from anywhere, and cannot be instantiated, only
derived from.

sealed or internal
sealed

Class is accessible only from within the current project, and cannot be
derived from, only instantiated.

public sealed Class is accessible from anywhere, and cannot be derived from, only
instantiated.

Interface Definitions
Interfaces are declared in a similar way to classes, but using the interface keyword, rather than
class:

interface IMyInterface
{
 // Interface members.
}

Class Definitions in C# ❘ 207

The access modifier keywords public and internal are used in the same way; and as with classes,
interfaces are defined as internal by default. To make an interface publicly accessible, you must use
the public keyword:

public interface IMyInterface
{
 // Interface members.
}

The keywords abstract and sealed are not allowed because neither modifier makes sense in the
context of interfaces (they contain no implementation, so they can’t be instantiated directly, and
they must be inheritable to be useful).

Interface inheritance is also specified in a similar way to class inheritance. The main difference here
is that multiple base interfaces can be used, as shown here:

public interface IMyInterface : IMyBaseInterface, IMyBaseInterface2
{
 // Interface members.
}

Interfaces are not classes, and thus do not inherit from System.Object. However, the members of
System.Object are available via an interface type variable, purely for convenience. In addition, as
already discussed, it is impossible to instantiate an interface in the same way as a class. The follow-
ing Try It Out provides an example of some class definitions, along with some code that uses them.

TRY IT OUT Defining Classes: Ch09Ex01\Program.cs

 1. Create a new console application called Ch09Ex01 and save it in the directory C:\
BeginningCSharp7\Chapter09.

 2. Modify the code in Program.cs as follows:

using static System.Console;
namespace Ch09Ex01
{
 public abstract class MyBase {}
 internal class MyClass : MyBase {}
 public interface IMyBaseInterface {}
 internal interface IMyBaseInterface2 {}
 internal interface IMyInterface : IMyBaseInterface, IMyBaseInterface2 {}
 internal sealed class MyComplexClass : MyClass, IMyInterface {}
 class Program
 {
 static void Main(string[] args)
 {
 MyComplexClass myObj = new MyComplexClass();
 WriteLine(myObj.ToString());
 ReadKey();
 }
 }
}

208 ❘ CHAPTER 9 Defining Classes

 3. Execute the project. Figure 9-1 shows the output.

FIGURE 9-1

How It Works

This project defines classes and interfaces in the inheritance hierarchy shown in Figure 9-2.

System.Object

MyClass

MyComplexClass«Interface»
IMyInterface

«Interface»
IMyBaseInterface2

«Interface»
IMyBaseInterface

MyBase

Program

-Main(in args : string[])

IMyInterface

FIGURE 9-2

Program is included because it is a class defined in the same way as the other classes, even though it
isn’t part of the main class hierarchy. The Main() method possessed by this class is the entry point for
your application.

MyBase and IMyBaseInterface are public definitions, so they are available from other projects. The
other classes and interfaces are internal, and only available in this project.

System.Object ❘ 209

The code in Main() calls the ToString() method of myObj, an instance of MyComplexClass:

 MyComplexClass myObj = new MyComplexClass();
 WriteLine(myObj.ToString());

ToString() is one of the methods inherited from System.Object (not shown in the diagram because
members of this class are omitted for clarity) and simply returns the class name of the object as a string,
qualified by any relevant namespaces.

This example doesn’t do a lot, but you will return to it later in this chapter, where it is used to demon-
strate several key concepts and techniques.

SYSTEM.OBJECT

Because all classes inherit from System.Object, all classes have access to the protected and public
members of this class. Therefore, it is worthwhile to take a look at what is available there. System
.Object contains the methods described in Table 9-2.

TABLE 9-2: Methods of System.Object

METHOD RETURN TYPE VIRTUAL STATIC DESCRIPTION

Object() N/A No No Constructor for the System
.Object type. Automatically
called by constructors of
derived types.

~Object() (also known as
Finalize()—see the next
section)

N/A No No Destructor for the System
.Object type. Automatically
called by destructors of
derived types; cannot be
called manually.

Equals(object) bool Yes No Compares the object for which
this method is called with
another object and returns
true if they are equal. The
default implementation checks
whether the object parameter
refers to the same object
(because objects are reference
types). This method can be
overridden if you want to
compare objects in a different
way, for example, to compare
the state of two objects.

continues

210 ❘ CHAPTER 9 Defining Classes

METHOD RETURN TYPE VIRTUAL STATIC DESCRIPTION

Equals(object, object) bool No Yes Compares the two objects
passed to it and checks
whether they are equal. This
check is performed using the
Equals(object) method.
If both objects are null
references, then this method
returns true.

ReferenceEquals(object,
object)

bool No Yes Compares the two objects
passed to it and checks
whether they are references
to the same instance.

ToString() string Yes No Returns a string correspond-
ing to the object instance. By
default, this is the qualified
name of the class type, but
this can be overridden to
provide an implementation
appropriate to the class type.

MemberwiseClone() object No No Copies the object by creat-
ing a new object instance and
copying members. This mem-
ber copying does not result
in new instances of these
members. Any reference type
members of the new object
refer to the same objects as
the original class. This method
is protected, so it can be used
only from within the class or
from derived classes.

GetType() System

.Type
No No Returns the type of the object

in the form of a System.Type
object.

GetHashCode() int Yes No Used as a hash function for
objects where this is required.
A hash function returns a value
identifying the object state in
some compressed form.

TABLE 9-2 (continued)

Constructors and Destructors ❘ 211

These are the basic methods that must be supported by object types in the .NET Framework,
although you might never use some of them (or you might use them only in special circumstances,
such as GetHashCode()).

GetType() is helpful when you are using polymorphism because it enables you to perform different
operations with objects depending on their type, rather than the same operation for all objects, as
is often the case. For example, if you have a function that accepts an object type parameter (mean-
ing you can pass it just about anything), you might perform additional tasks if certain objects are
encountered. Using a combination of GetType() and typeof (a C# operator that converts a class
name into a System.Type object), you can perform comparisons such as the following:

if (myObj.GetType() == typeof(MyComplexClass))
{
 // myObj is an instance of the class MyComplexClass.
}

The System.Type object returned is capable of a lot more than that, but only this is covered here.
It can also be very useful to override the ToString() method, particularly in situations where
the contents of an object can be easily represented with a single human-readable string. You see
these System.Object methods repeatedly in subsequent chapters, so you’ll learn more details as
necessary.

CONSTRUCTORS AND DESTRUCTORS

When you define a class in C#, it’s often unnecessary to define associated constructors and destruc-
tors because the compiler adds them for you when you build your code if you don’t supply them.
However, you can provide your own, if required, which enables you to initialize and clean up after
your objects, respectively.

You can add a simple constructor to a class using the following syntax:

class MyClass
{
 public MyClass()
 {
 // Constructor code.
 }
}

This constructor has the same name as the class that contains it, has no parameters (making it the
default constructor for the class), and is public so that objects of the class can be instantiated using
this constructor (refer to Chapter 8 for more information about this).

You can also use a private default constructor, commonly utilized for classes that contain only static
members. Setting the constructor to private means that instances of this class cannot be created
using this constructor (it is non-creatable—again, see the discussion in Chapter 8):

class MyClass
{
 private MyClass()
 {

212 ❘ CHAPTER 9 Defining Classes

 // Constructor code.
 }
}

Finally, you can add nondefault constructors to your class in a similar way, simply by providing
parameters:

class MyClass
{
 public MyClass()
 {
 // Default constructor code.
 }
 public MyClass(int myInt)
 {
 // Nondefault constructor code (uses myInt).
 }
}

You can supply an unlimited number of constructors (until you run out of memory or out of distinct
sets of parameters, so maybe “almost unlimited” is more appropriate).

Destructors are declared using a slightly different syntax. The destructor used in .NET (and sup-
plied by the System.Object class) is called Finalize(), but this isn’t the name you use to declare a
destructor. Instead of overriding Finalize(), you use the following:

class MyClass
{
 ~MyClass()
 {
 // Destructor body.
 }
}

Thus, the destructor of a class is declared by the class name (just as the constructor is), with the
tilde (~) prefix. The code in the destructor is executed when garbage collection occurs, enabling you
to free resources. After the destructor is called, implicit calls to the destructors of base classes also
occur, including a call to Finalize() in the System.Object root class. This technique enables the
.NET Framework to ensure that this occurs because overriding Finalize() would mean that base
class calls would need to be explicitly performed, which is potentially dangerous (you learn how to
call base class methods in the next chapter).

Constructor Execution Sequence
If you perform multiple tasks in the constructors of a class, it can be handy to have this code in
one place, which has the same benefits as splitting code into functions, as shown in Chapter 6. You
could do this using a method (see Chapter 10), but C# provides a nice alternative. You can configure
any constructor to call any other constructor before it executes its own code.

First, though, you need to take a closer look at what happens by default when you instantiate a class
instance. Apart from facilitating the centralization of initialization code, as noted previously, this
is worth knowing about in its own right. During development, objects often don’t behave quite as
you expect them to due to errors during constructor calling—usually a base class somewhere in the
inheritance hierarchy of your class that you are not instantiating correctly, or information that is not

Constructors and Destructors ❘ 213

being properly supplied to base class constructors. Understanding what happens during this phase of
an object’s lifecycle can make it much easier to solve this sort of problem.

For a derived class to be instantiated, its base class must be instantiated. For this base class to be
instantiated, its own base class must be instantiated, and so on all the way back to System.Object
(the root of all classes). As a result, whatever constructor you use to instantiate a class, System
.Object.Object() is always called first.

Regardless of which constructor you use in a derived class (the default constructor or a nondefault
constructor), unless you specify otherwise, the default constructor for the base class is used. (You’ll
see how to change this behavior shortly.) Here’s a short example illustrating the sequence of execu-
tion. Consider the following object hierarchy:

public class MyBaseClass
{
 public MyBaseClass()
 {
 }
 public MyBaseClass(int i)
 {
 }
}
public class MyDerivedClass : MyBaseClass
{
 public MyDerivedClass()
 {
 }
 public MyDerivedClass(int i)
 {
 }
 public MyDerivedClass(int i, int j)
 {
 }
}

You could instantiate MyDerivedClass as follows:

MyDerivedClass myObj = new MyDerivedClass();

In this case, the following sequence of events will occur:

 ➤ The System.Object.Object() constructor will execute.

 ➤ The MyBaseClass.MyBaseClass() constructor will execute.

 ➤ The MyDerivedClass.MyDerivedClass() constructor will execute.

Alternatively, you could use the following:

MyDerivedClass myObj = new MyDerivedClass(4);

The sequence is as follows:

 ➤ The System.Object.Object() constructor will execute.

 ➤ The MyBaseClass.MyBaseClass() constructor will execute.

 ➤ The MyDerivedClass.MyDerivedClass(int i) constructor will execute.

214 ❘ CHAPTER 9 Defining Classes

Finally, you could use this:

MyDerivedClass myObj = new MyDerivedClass(4, 8);

The result is the following sequence:

 ➤ The System.Object.Object() constructor will execute.

 ➤ The MyBaseClass.MyBaseClass() constructor will execute.

 ➤ The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

This system works fine most of the time, but sometimes you will want a little more control over the
events that occur. For example, in the last instantiation example, you might want to have the follow-
ing sequence:

 ➤ The System.Object.Object() constructor will execute.

 ➤ The MyBaseClass.MyBaseClass(int i) constructor will execute.

 ➤ The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

Using this sequence, you could place the code that uses the int i parameter in MyBaseClass(int
i), which means that the MyDerivedClass(int i, int j) constructor would have less work to
do—it would only need to process the int j parameter. (This assumes that the int i parameter has
an identical meaning in both scenarios, which might not always be the case; but in practice, with
this kind of arrangement, it usually is.) C# allows you to specify this kind of behavior if you want.

To do this, you can use a constructor initializer, which consists of code placed after a colon in the
method definition. For example, you could specify the base class constructor to use in the definition
of the constructor in your derived class, as follows:

public class MyDerivedClass : MyBaseClass
{
 ...
 public MyDerivedClass(int i, int j) : base(i)
 {
 }
}

The base keyword directs the .NET instantiation process to use the base class constructor, which
has the specified parameters. Here, you are using a single int parameter (the value of which is the
value passed to the MyDerivedClass constructor as the parameter i), so MyBaseClass(int i) will
be used. Doing this means that MyBaseClass will not be called, giving you the sequence of events
listed prior to this example—exactly what you want here.

You can also use this keyword to specify literal values for base class constructors, perhaps using the
default constructor of MyDerivedClass to call a nondefault constructor of MyBaseClass:

public class MyDerivedClass : MyBaseClass
{
 public MyDerivedClass() : base(5)
 {
 }
 ...
}

Constructors and Destructors ❘ 215

This gives you the following sequence:

 ➤ The System.Object.Object() constructor will execute.

 ➤ The MyBaseClass.MyBaseClass(int i) constructor will execute.

 ➤ The MyDerivedClass.MyDerivedClass() constructor will execute.

As well as this base keyword, you can use one more keyword as a constructor initializer: this. This
keyword instructs the .NET instantiation process to use a nondefault constructor on the current
class before the specified constructor is called:

public class MyDerivedClass : MyBaseClass
{
 public MyDerivedClass() : this(5, 6)
 {
 }
 ...
 public MyDerivedClass(int i, int j) : base(i)
 {
 }
}

Here, using the MyDerivedClass.MyDerivedClass() constructor gives you the following sequence:

 ➤ The System.Object.Object() constructor will execute.

 ➤ The MyBaseClass.MyBaseClass(int i) constructor will execute.

 ➤ The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

 ➤ The MyDerivedClass.MyDerivedClass() constructor will execute.

The only limitation here is that you can specify only a single constructor using a constructor initial-
izer. However, as demonstrated in the last example, this isn’t much of a limitation, because you can
still construct sophisticated execution sequences.

NOTE If you don’t specify a constructor initializer for a constructor, the com-
piler adds one for you: base(). This results in the default behavior described
earlier in this section.

Be careful not to accidentally create a circular reference when defining constructors. For example,
consider this code:

public class MyBaseClass
{
 public MyBaseClass() : this(5)
 {
 }
 public MyBaseClass(int i) : this()
 {
 }
}

216 ❘ CHAPTER 9 Defining Classes

Using either one of these constructors requires the other to execute first, which in turn requires the
other to execute first, and so on. This code will compile, but if you try to instantiate MyBaseClass
you will receive a SystemOverflowException.

OOP TOOLS IN VISUAL STUDIO

Because OOP is such a fundamental aspect of the .NET Framework, several tools are provided by
Visual Studio to aid development of OOP applications. This section describes some of these.

The Class View Window
In Chapter 2, you saw that the Solution Explorer window shares space with a window called Class
View. This window shows you the class hierarchy of your application and enables you to see at a
glance the characteristics of the classes you use. Figure 9-3 shows a view of the example project in
the previous Try It Out.

The window is divided into two main sections; the bottom section shows members of types. Note
that Figure 9-3 shows the display when all items in the Class View Settings drop-down, at the top
of the Class View window, are checked.

FIGURE 9-3

OOP Tools in Visual Studio ❘ 217

Many symbols can be used here, including the ones shown in Table 9-3.

TABLE 9-3: Class View Icons

ICON MEANING ICON MEANING ICON MEANING

Project Property Event

Namespace Field Delegate

Class Struct Assembly

Interface Enumeration

Method Enumeration
item

Some of these are used for type definitions other than classes, such as enumerations and struct
types.

Some of the entries can have other symbols placed below them, signifying their access level (no
symbol appears for public entries). These are listed in Table 9-4.

TABLE 9-4: Additional Class View Icons

ICON MEANING ICON MEANING ICON MEANING

Private Protected Internal

No symbols are used to denote abstract, sealed, or virtual entries.

As well as being able to look at this information here, you can also access the relevant code for
many of these items. Double-clicking on an item, or right-clicking and selecting Go To Definition,
takes you straight to the code in your project that defines the item, if it is available. If the code isn’t
available, such as code in an inaccessible base type (for example, System.Object), you instead
have the option to select Browse Definition, which will take you to the Object Browser view
(described in the next section).

One other entry that appears in Figure 9-3 is Project References. This enables you to see which
assemblies are referenced by your projects, which in this case includes (among others) the core .NET
types in mscorlib and System, data access types in System.Data, and XML manipulation types
in System.Xml. The references here can be expanded, showing you the namespaces and types con-
tained within these assemblies.

You can find occurrences of types and members in your code by right-clicking on an item and select-
ing Find All References; a list of search results displays in the Find Symbol Results window, which
appears at the bottom of the screen as a tabbed window in the Error List display area. You can also

218 ❘ CHAPTER 9 Defining Classes

rename items using the Class View window. If you do this, you’re given the option to rename refer-
ences to the item wherever it occurs in your code. This means you have no excuse for spelling mis-
takes in class names because you can change them as often as you like!

In addition, you can navigate through your code with a view called Call Hierarchy, which is acces-
sible from the Class View window through the View Call Hierarchy right-click menu option. This
functionality is extremely useful for looking at how class members interact with each other, and
you’ll look at it in the next chapter.

The Object Browser
The Object Browser is an expanded version of the Class View window, enabling you to view
other classes available to your project, and even external classes. It is entered either automatically
(for example, in the situation noted in the last section) or manually via View ➪ Object Browser.
The view appears in the main window, and you can browse it in the same way as the Class View
window.

This window provides the same information as Class View but also shows you more of the .NET
types. When an item is selected, you also get information about it in a third window, as shown in
Figure 9-4.

FIGURE 9-4

OOP Tools in Visual Studio ❘ 219

Here, the ReadKey() method of the Console class has been selected. (Console is found in the
System namespace in the mscorlib assembly.) The information window in the bottom-right cor-
ner shows you the method signature, the class to which the method belongs, and a summary of the
method function. This information can be useful when you are exploring the .NET types, or if you
are just refreshing your memory about what a particular class can do.

Additionally, you can make use of this information window in types that you create. Make the fol-
lowing change to the code created previously in Ch09Ex01:

 /// <summary>
 /// This class contains my program!
 /// </summary>
 class Program
 {
 static void Main(string[] args)
 {
 MyComplexClass myObj = new MyComplexClass();
 WriteLine(myObj.ToString());
 ReadKey();
 }
 }

Return to the Object Browser and navigate to the Program class in project Ch09Ex01. The sum-
mary is reflected in the information window. This is an example of XML documentation, a subject
not covered in this book but well worth learning about when you have a spare moment.

NOTE If you made this code change manually, then you noticed that simply
typing the three slashes (///) causes the IDE to add most of the rest of the
code for you. It automatically analyzes the code to which you are applying XML
documentation and builds the basic XML documentation—more evidence,
should you need any, that Visual Studio is a great tool to work with!

Adding Classes
Visual Studio contains tools that can speed up some common tasks, and some of these are applicable
to OOP. One of these tools, the Add New Item Wizard, enables you to add new classes to your proj-
ect with a minimum amount of typing.

This tool is accessible through the Project ➪ Add New Item… menu item or by right-clicking on
your project in the Solution Explorer window and selecting the appropriate item. Either way, a dia-
log box appears, enabling you to choose the item to add. To add a class, select the Class item in the
templates window, as shown in Figure 9-5, provide a filename for the file that will contain the class,
and click Add. The class created is named according to the filename you provided.

220 ❘ CHAPTER 9 Defining Classes

FIGURE 9-5

In the Try It Out earlier in this chapter, you added class definitions manually to your Program.cs
file. Often, keeping classes in separate files makes it easier to keep track of your classes. Entering the
information in the Add New Item dialog box when the Ch09Ex01 project is open results in the fol-
lowing code being generated in MyNewClass.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Ch09Ex01
{
 class MyNewClass
 {
 }
}

This class, MyNewClass, is defined in the same namespace as your entry point class, Program, so you
can use it from code just as if it were defined in the same file. As shown in the code, the class gener-
ated for you contains no constructor. Recall that if a class definition doesn’t include a constructor,
then the compiler adds a default constructor when you compile your code.

Class Diagrams
One powerful feature of Visual Studio that you haven’t looked at yet is the capability to gener-
ate class diagrams from code and use them to modify projects. The class diagram editor in Visual

OOP Tools in Visual Studio ❘ 221

Studio enables you to generate UML-like diagrams of your code with ease. You’ll see this in action
in the following Try It Out when you generate a class diagram for the Ch09Ex01 project you created
earlier.

NOTE Class Designer is an optional component that is not installed by
default. To complete the next Try It Out, you need to install it. If you do not
see the View Class Diagram option or you cannot add a new Class Diagram,
you need to run the Visual Studio installer again and install “Class Designer.”

TRY IT OUT Generating a Class Diagram

 1. Open the Ch09Ex01 project created earlier in this chapter.

 2. In the Solution Explorer window, right-click the Ch09Ex01 project and then select View ➪ View
Class Diagram menu item.

 3. A class diagram appears, called ClassDiagram1.cd.

 4. Right-click MyBase and select Show Base Type from the context menu.

 5. Move the objects in the drawing around by dragging them to achieve a more pleasing layout.
At this point, the diagram should look a little like Figure 9-6.

FIGURE 9-6

222 ❘ CHAPTER 9 Defining Classes

How It Works

With very little effort, you have created a class diagram not unlike the UML diagram presented in
Figure 9-2 (without the color, of course). The following features are evident:

 ➤ Classes are shown including their name and type.

 ➤ Interfaces are shown including their name and type.

 ➤ Inheritance is shown with arrows with white heads (and in some cases, text inside class boxes).

 ➤ Classes implementing interfaces have lollipops.

 ➤ Abstract classes are shown with a dotted outline and italicized name.

 ➤ Sealed classes are shown with a thick black outline.

Clicking on an object shows you additional information in a Class Details window at the bottom of the
screen (right-click an object and select Class Details if this window doesn’t appear). Here, you can see
(and modify) class members. You can also modify class details in the Properties window.

From the Toolbox, you can add new items such as classes, interfaces, and enums to the diagram, and
define relationships between objects in the diagram. When you do this, the code for the new items is
automatically generated for you.

CLASS LIBRARY PROJECTS

As well as placing classes in separate files within your project, you can also place them in completely
separate projects. A project that contains nothing but classes (along with other relevant type defini-
tions, but no entry point) is called a class library.

Class library projects compile into .dll assemblies, and you can access their contents by adding
references to them from other projects (which might be part of the same solution, but don’t have to
be). This extends the encapsulation that objects provide because class libraries can be revised and
updated without touching the projects that use them. That means you can easily upgrade services
provided by classes (which might affect multiple consumer applications).

The following Try It Out provides an example of a class library project and a separate project that
makes use of the classes that it contains.

TRY IT OUT Using a Class Library: Ch09ClassLib and Ch09Ex02\Program.cs

 1. Create a new project of type Class Library called Ch09ClassLib and save it in the directory C:\
BeginningCSharp7\Chapter09, as shown in Figure 9-7.

 2. Rename the file Class1.cs to MyExternalClass.cs (by right-clicking on the file in the Solution
Explorer window and selecting Rename). Click Yes on the dialog box that appears.

Class Library Projects ❘ 223

 3. The code in MyExternalClass.cs automatically changes to reflect the class name change:

 public class MyExternalClass
 {
 }

 4. Add a new class to the project, using the filename MyInternalClass.cs.

 5. Modify the code to make the class MyInternalClass explicitly internal:

 internal class MyInternalClass
 {
 }

 6. Compile the project (this project has no entry point, so you can’t run it as normal—instead, you
can build it by selecting Build ➪ Build Solution).

FIGURE 9-7

 7. Create a new console application project called Ch09Ex02 and save it in the directory C:\
BeginningCSharp7\Chapter09.

 8. Select Project ➪ Add Reference…, or select the same option after right-clicking References in the
Solution Explorer window.

 9. Click the Browse option, then the Browse button. Navigate to C:\BeginningCSharp7\
Chapter09\Ch09ClassLib\bin\Debug\, double-click on Ch09ClassLib.dll, then click the OK
button.

224 ❘ CHAPTER 9 Defining Classes

 10. When the operation completes, confirm that a reference was added in the Solution Explorer
window, as shown in Figure 9-8.

FIGURE 9-8

 11. Open the Object Browser window and examine the new reference to see what objects it contains
(see Figure 9-9).

FIGURE 9-9

 12. Modify the code in Program.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;

Class Library Projects ❘ 225

using System.Text;
using System.Threading.Tasks;
using static System.Console;
using Ch09ClassLib;
namespace Ch09Ex02
{
 class Program
 {
 static void Main(string[] args)
 {
 MyExternalClass myObj = new MyExternalClass();
 WriteLine(myObj.ToString());
 ReadKey();
 }
 }
}

 13. Run the application. The result is shown in Figure 9-10.

FIGURE 9-10

How It Works

This example created two projects: a class library project and a console application project. The class
library project, Ch09ClassLib, contains two classes: MyExternalClass, which is publicly accessible,
and MyInternalClass, which is internally accessible. Note that this class was implicitly internal by
default when you created it, as it had no access modifier. It is good practice to be explicit about acces-
sibility, though, because it makes your code more readable, which is why you add the internal key-
word. The console application project, Ch09Ex02, contains simple code that makes use of the class
library project.

NOTE When an application uses classes defined in an external library, you can
call that application a client application of the library. Code that uses a class
that you define is often similarly referred to as client code.

To use the classes in Ch09ClassLib, you added a reference to Ch09ClassLib.dll to the console applica-
tion. For the purposes of this example, you simply point at the output file for the class library, although
it would be just as easy to copy this file to a location local to Ch09Ex02, enabling you to continue
development of the class library without affecting the console application. To replace the old assembly
version with the new one, simply copy the newly generated DLL file over the old one.

After adding the reference, you took a look at the available classes using the Object Browser. Because
the MyInternalClass is internal, you can’t see it in this display—it isn’t accessible to external projects.
However, MyExternalClass is accessible, and it’s the one you use in the console application.

226 ❘ CHAPTER 9 Defining Classes

You could replace the code in the console application with code attempting to use the internal class as
follows:

 static void Main(string[] args)
 {
 MyInternalClass myObj = new MyInternalClass();
 WriteLine(myObj.ToString());
 ReadKey();
 }

If you attempt to compile this code, you receive the following compilation error:

'Ch09ClassLib.MyInternalClass'
 is inaccessible due to its protection level

This technique of making use of classes in external assemblies is key to programming with C# and the
.NET Framework. It is, in fact, exactly what you are doing when you use any of the classes in the .NET
Framework because they are treated in the same way.

INTERFACES VERSUS ABSTRACT CLASSES

This chapter has demonstrated how you can create both interfaces and abstract classes (without
members for now—you get to them in Chapter 10). The two types are similar in a number of ways,
so it would be useful to know how to determine when you should use one technique or the other.

First the similarities: Both abstract classes and interfaces can contain members that can be inherited
by a derived class. Neither interfaces nor abstract classes can be directly instantiated, but it is pos-
sible to declare variables of these types. If you do, you can use polymorphism to assign objects that
inherit from these types to variables of these types. In both cases, you can then use the members of
these types through these variables, although you don’t have direct access to the other members of
the derived object.

Now the differences: Derived classes can only inherit from a single base class, which means that
only a single abstract class can be inherited directly (although it is possible for a chain of inheritance
to include multiple abstract classes). Conversely, classes can use as many interfaces as they want, but
this doesn’t make a massive difference—similar results can be achieved either way. It’s just that the
interface way of doing things is slightly different.

Abstract classes can possess both abstract members (these have no code body and must be imple-
mented in the derived class unless the derived class is itself abstract) and non-abstract members
(these possess a code body and can be virtual so that they can be overridden in the derived class).
Interface members, conversely, must be implemented on the class that uses the interface—they do
not possess code bodies. Moreover, interface members are by definition public (because they are
intended for external use), but members of abstract classes can also be private (as long as they aren’t
abstract), protected, internal, or protected internal (where protected internal members are accessible
only from code within the application or from a derived class). In addition, interfaces can’t contain
fields, constructors, destructors, static members, or constants.

Interfaces Versus Abstract Classes ❘ 227

NOTE Abstract classes are intended for use as the base class for families of
objects that share certain central characteristics, such as a common purpose
and structure. Interfaces are intended for use by classes that might differ on a
far more fundamental level but can still do some of the same things.

For example, consider a family of objects representing trains. The base class, Train, contains the
core definition of a train, such as wheel gauge and engine type (which could be steam, diesel, and so
on). However, this class is abstract because there is no such thing as a “generic” train. To create an
“actual” train, you add characteristics specific to that train. For example, you derive classes such as
PassengerTrain, FreightTrain, and 424DoubleBogey, as shown in Figure 9-11.

Train

PassengerTrain FreightTrain 424DoubleBogey

FIGURE 9-11

A family of car objects might be defined in the same way, with an abstract base class of Car and
derived classes such as Compact, SUV, and PickUp. Car and Train might even derive from a common
base class, such as Vehicle. This is shown in Figure 9-12.

Vehicle

Car

Compact SUV Pickup PassengerTrain FreightTrain 424DoubleBogey

Train

FIGURE 9-12

228 ❘ CHAPTER 9 Defining Classes

Some of the classes lower in the hierarchy can share characteristics because of their purpose, not just
because of what they are derived from. For example, PassengerTrain, Compact, SUV, and Pickup
are all capable of carrying passengers, so they might possess an IPassengerCarrier interface.
FreightTrain and Pickup can carry heavy loads, so they might both have an IHeavyLoadCarrier
interface as well. This is illustrated in Figure 9-13.

Vehicle

Car

Compact SUV Pickup PassengerTrain FreightTrain 424DoubleBogey

«Interface»
IHeavyLoadCarrier

«Interface»
IPassengerCarrier

Train

FIGURE 9-13

By breaking down an object system in this way before going about assigning specifics, you can
clearly see which situations should use abstract classes rather than interfaces, and vice versa. The
result of this example couldn’t be achieved using only interfaces or only abstract inheritance.

STRUCT TYPES

Chapter 8 noted that structs and classes are very similar but that structs are value types and classes
are reference types. What does this actually mean to you? Well, the easiest way of looking at this is
with an example, such as the following Try It Out.

TRY IT OUT Classes versus Structs: Ch09Ex03\Program.cs

 1. Create a new console application project called Ch09Ex03 and save it in the directory C:\
BeginningCSharp7\Chapter09.

 2. Modify the code as follows:

namespace Ch09Ex03
{

Struct Types ❘ 229

 class MyClass
 {
 public int val;
 }
 struct myStruct
 {
 public int val;
 }
 class Program
 {
 static void Main(string[] args)
 {
 MyClass objectA = new MyClass();
 MyClass objectB = objectA;
 objectA.val = 10;
 objectB.val = 20;
 myStruct structA = new myStruct();
 myStruct structB = structA;
 structA.val = 30;
 structB.val = 40;
 WriteLine($"objectA.val = {objectA.val}");
 WriteLine($"objectB.val = {objectB.val}");
 WriteLine($"structA.val = {structA.val}");
 WriteLine($"structB.val = {structB.val}");
 ReadKey();
 }
 }
}

 3. Run the application. Figure 9-14 shows the output.

FIGURE 9-14

How It Works

This application contains two type definitions: one for a struct called myStruct, which has a single
public int field called val, and one for a class called MyClass that contains an identical field (you look
at class members such as fields in Chapter 10; for now, just understand that the syntax is the same
here). Next, you perform the same operations on instances of both types:

 1. Declare a variable of the type.

 2. Create a new instance of the type in this variable.

 3. Declare a second variable of the type.

 4. Assign the first variable to the second variable.

230 ❘ CHAPTER 9 Defining Classes

 5. Assign a value to the val field in the instance in the first variable.

 6. Assign a value to the val field in the instance in the second variable.

 7. Display the values of the val fields for both variables.

Although you are performing the same operations on variables of both types, the outcome is different.
When you display the values of the val field, both object types have the same value, whereas the struct
types have different values. What has happened?

Objects are reference types. When you assign an object to a variable you are actually assigning that
variable with a pointer to the object to which it refers. A pointer, in real code terms, is an address in
memory. In this case, the address is the point in memory where the object is found. When you assign
the first object reference to the second variable of type MyClass with the following line, you are actu-
ally copying this address:

 MyClass objectB = objectA;

This means that both variables contain pointers to the same object.

Structs are value types. Instead of the variable holding a pointer to the struct, the variable contains the
struct itself. When you assign the first struct to the second variable of type myStruct with the following
line, you are actually copying all the information from one struct to the other:

 myStruct structB = structA;

You saw behavior like this earlier in this book for simple variable types such as int. The upshot is that
the two struct type variables contain different structs. The entire technique of using pointers is hid-
den from you in managed C# code, making your code much simpler. It is possible to access lower-level
operations such as pointer manipulation in C# using unsafe code, but that is an advanced topic not
covered here.

SHALLOW COPYING VERSUS DEEP COPYING

Copying objects from one variable to another by value instead of by reference (that is, copying them
in the same way as structs) can be quite complex. Because a single object can contain references to
many other objects, such as field members and so on, a lot of processing can be involved. Simply
copying each member from one object to another might not work because some of these members
might be reference types in their own right.

The .NET Framework takes this into account. You can create a simple copy of an object where
each member is copied to the new object by using the method MemberwiseClone(), inherited from
System.Object. This is a protected method, but it would be easy to define a public method on an
object that called this method. This copying method is known as a shallow copy, in that it doesn’t
take reference type members into account. This means that reference members in the new object
refer to the same objects as equivalent members in the source object, which isn’t ideal in many cases.
If you want to create new instances of the members in question by copying the values across (rather
than the references), you need to perform a deep copy.

Shallow Copying Versus Deep Copying ❘ 231

There is an interface you can implement that enables you to deep copy in a standard way:
ICloneable. If you use this interface, then you must implement the single method it contains,
Clone(). This method returns a value of type System.Object. You can use whatever processing
you want to obtain this object, by implementing the method body however you choose. That means
you can implement a deep copy if you want to, although the exact behavior isn’t mandatory, so you
could perform a shallow copy if desired. There are no rules or restrictions on what you actually
return from this method, so many people recommend avoiding it. Instead, they recommend imple-
menting your own deep-copy method. You take a closer look at this interface in Chapter 11.

EXERCISES

 9.1 What is wrong with the following code?

 public sealed class MyClass
 {
 // Class members.
 }
 public class myDerivedClass : MyClass
 {
 // Class members.
 }

 9.2 How would you define a non-creatable class?

 9.3 Why are non-creatable classes still useful? How do you make use of their capabilities?

 9.4 Write code in a class library project called Vehicles that implements the Vehicle family of
objects discussed earlier in this chapter. There are nine objects and two interfaces that
require implementation.

 9.5 Create a console application project, Traffic, that references Vehicles.dll (created in
Question 4). Include a function called AddPassenger that accepts any object with the
IPassengerCarrier interface. To prove that the code works, call this function using instances
of each object that supports this interface, calling the ToString method inherited from
System.Object on each one and writing the result to the screen.

Answers to the exercises can be found in Appendix.

232 ❘ CHAPTER 9 Defining Classes

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Class and
interface
definitions

Classes are defined with the class keyword, and interfaces with the interface
keyword. You can use the public and internal keywords to define class and
interface accessibility, and classes can be defined as abstract or sealed to
control inheritance. Parent classes and interfaces are specified in a comma-
separated list after a colon following the class or interface name. Only a single
parent class can be specified in a class definition, and it must be the first item in
the list.

Constructors and
destructors

Classes come ready-equipped with a default constructor and destructor imple-
mentation, and you rarely have to provide your own destructor. You can define
constructors with an accessibility, the name of the class, and any required
parameters. Constructors of base classes are executed before those of derived
classes, and you can control the execution sequence within a class with the
this and base constructor initializer keywords.

Class libraries You can create class library projects that only contain class definitions. These
projects cannot be executed directly; they must be accessed through client
code in an executable application. Visual Studio provides various tools for
creating, modifying, and examining classes.

Class families Classes can be grouped into families that exhibit common behavior or that
share common characteristics. You can do this by inheriting from a shared base
class (which can be abstract), or by implementing interfaces.

Struct definitions A struct is defined in a very similar way to a class, but remember that structs are
value types whereas classes are reference types.

Copying objects When you make a copy of an object, you must be careful to copy any objects
that it might contain, rather than simply copying the references to those
objects. Copying references is referred to as shallow copying, whereas a full
copy is referred to as a deep copy. You can use the ICloneable interface as a
framework for providing deep-copy capabilities in a class definition.

Defining Class Members
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Defining class members

 ➤ Controlling class member inheritance

 ➤ Defining nested classes

 ➤ Implementing interfaces

 ➤ Using partial class definitions

 ➤ Using the Call Hierarchy window

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com
/benperk/BeginningCSharp7. The code is in the Chapter10 folder and individually named
according to the names throughout the chapter.

This chapter continues exploring class definitions in C# by looking at how you define field,
property, and method class members. You start by examining the code required for each of
these types, and learn how to generate the structure of this code. You also learn how to mod-
ify members quickly by editing their properties.

After covering the basics of member definition, you’ll learn some advanced techniques involv-
ing members: hiding base class members, calling overridden base class members, nested type
definitions, and partial class definitions.

Finally, you put theory into practice by creating a class library that you can build on and use
in later chapters.

10

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

234 ❘ CHAPTER 10 Defining Class MeMbers

MEMBER DEFINITIONS

Within a class definition, you provide definitions for all members of the class, including fields, meth-
ods, and properties. All members have their own accessibility levels, defined in all cases by one of
the following keywords:

 ➤ public—Members are accessible from any code.

 ➤ private—Members are accessible only from code that is part of the class (the default if no
keyword is used).

 ➤ internal—Members are accessible only from code within the assembly (project) where they
are defined.

 ➤ protected—Members are accessible only from code that is part of either the class or a
derived class.

The last two of these can be combined, so protected internal members are also possible. These
are only accessible from code-derived classes within the project (more accurately, the assembly).

Fields, methods, and properties can also be declared using the keyword static, which means
that they are static members owned by the class, rather than by object instances, as discussed in
Chapter 8.

Defining Fields
Fields are defined using standard variable declaration format (with optional initialization), along
with the modifiers discussed previously:

class MyClass
{
 public int MyInt;
}

NOTE Public fields in the .NET Framework are named using PascalCasing,
rather than camelCasing, and that’s the casing methodology used here. That’s
why the field in this example is called MyInt instead of myInt. This is only a
suggested casing scheme, but it makes a lot of sense. There is no recommen-
dation for private fields, which are usually named using camelCasing.

Fields can also use the keyword readonly, meaning the field can be assigned a value only during
constructor execution or by initial assignment:

class MyClass
{
 public readonly int MyInt = 17;
}

As noted in the chapter introduction, fields can be declared as static using the static keyword:

class MyClass
{

Member Definitions ❘ 235

 public static int MyInt;
}

Static fields are accessed via the class that defines them (MyClass.MyInt in the preceding example),
not through object instances of that class. You can use the keyword const to create a constant
value. const members are static by definition, so you don’t need to use the static modifier (in fact,
it is an error to do so).

Defining Methods
Methods use standard function format, along with accessibility and optional static modifiers, as
shown in this example:

class MyClass
{
 public string GetString() => "Here is a string.";
}

NOTE Like public fields, public methods in the .NET Framework are named
using PascalCasing.

Remember that if you use the static keyword, then this method is accessible only through the
class, not the object instance. You can also use the following keywords with method definitions:

 ➤ virtual—The method can be overridden.

 ➤ abstract—The method must be overridden in non-abstract derived classes (only permitted
in abstract classes).

 ➤ override—The method overrides a base class method (it must be used if a method is being
overridden).

 ➤ extern—The method definition is found elsewhere.

Here’s an example of a method override:

public class MyBaseClass
{
 public virtual void DoSomething()
 {
 // Base implementation.
 }
}
public class MyDerivedClass : MyBaseClass
{
 public override void DoSomething()
 {
 // Derived class implementation, overrides base implementation.
 }
}

236 ❘ CHAPTER 10 Defining Class MeMbers

If override is used, then sealed can also be used to specify that no further modifications can be
made to this method in derived classes—that is, the method can’t be overridden by derived classes.
Here is an example:

public class MyDerivedClass : MyBaseClass
{
 public override sealed void DoSomething()
 {
 // Derived class implementation, overrides base implementation.
 }
}

Using extern enables you to provide the implementation of a method externally to the project, but
this is an advanced topic not covered here.

Defining Properties
Properties are defined in a similar way to fields, but there’s more to them. Properties, as already
discussed, are more involved than fields in that they can perform additional processing before
modifying state—and, indeed, might not modify state at all. They achieve this by possessing two
function-like blocks: one for getting the value of the property and one for setting the value of the
property.

These blocks, also known as accessors, are defined using get and set keywords respectively, and
can be used to control the access level of the property. You can omit one or the other of these
blocks to create read-only or write-only properties (where omitting the get block gives you write-
only access, and omitting the set block gives you read-only access). Of course, that only applies to
external code because code elsewhere within the class will have access to the same data that these
code blocks have. You can also include accessibility modifiers on accessors—making a get block
public while the set block is protected, for example. You must include at least one of these blocks
to obtain a valid property (and, let’s face it, a property you can’t read or change wouldn’t be very
useful).

The basic structure of a property consists of the standard access modifying keyword (public, pri-
vate, and so on), followed by a type name, the property name, and one or both of the get and set
blocks that contain the property processing:

public int MyIntProp
{
 get
 {
 // Property get code.
 }
 set
 {
 // Property set code.
 }
}

Member Definitions ❘ 237

NOTE Public properties in .NET are also named using PascalCasing, rather
than camelCasing; as with fields and methods, PascalCasing is used here.

The first line of the definition is the bit that is very similar to a field definition. The difference is that
there is no semicolon at the end of the line; instead, you have a code block containing nested get
and set blocks.

get blocks must have a return value of the type of the property. Simple properties are often associ-
ated with a single private field controlling access to that field, in which case the get block can return
the field’s value directly:

// Field used by property.
private int myInt;
// Property.
public int MyIntProp
{
 get { return myInt; }
 set { // Property set code. }
}

Code external to the class cannot access this myInt field directly due to its accessibility level (it is
private). Instead, external code must use the property to access the field. The set function assigns a
value to the field similarly. Here, you can use the keyword value to refer to the value received from
the user of the property:

// Field used by property.
private int myInt;
// Property.
public int MyIntProp
{
 get { return myInt; }
 set { myInt = value; }
}

value equates to a value of the same type as the property, so if the property uses the same type as
the field, then you never have to worry about casting in situations like this. To provide a default
value in case the integer allows null, this expression-bodied member function pattern works well:

private int? myInt;
public int? MyIntProp
{
 get { return myInt; }
 set { myInt = value ?? 0; }
}

This simple property does little more than shield direct access to the myInt field. The real power of
properties is apparent when you exert a little more control over the proceedings. For example, you
might implement your set block as follows:

 set
 {

238 ❘ CHAPTER 10 Defining Class MeMbers

 if (value >= 0 && value <= 10)
 myInt = value;
 }

Here, you modify myInt only if the value assigned to the property is between 0 and 10. In situations
like this, you have an important design choice to make. What should you do if an invalid value is
used? You have four options:

 ➤ Do nothing (as in the preceding code).

 ➤ Assign a default value to the field.

 ➤ Continue as if nothing went wrong but log the event for future analysis.

 ➤ Throw an exception.

In general, the last two options are preferable. Deciding between them depends on how the class will
be used and how much control should be assigned to the users of the class. Exception throwing gives
users a fair amount of control and lets them know what is going on so that they can respond appro-
priately. You can use one of the standard exceptions in the System namespace for this:

 set
 {
 if (value >= 0 && value <= 10)
 myInt = value;
 else
 throw (new ArgumentOutOfRangeException("MyIntProp", value,
 "MyIntProp must be assigned a value between 0 and 10."));
 }

The exception created using throw can be handled using try...catch...finally logic in the
implementing code that uses the property, as you saw in Chapter 7.

Logging data, perhaps to a text file or the Event Log, can be useful, such as in production code
where problems really shouldn’t occur. It enables developers to check on performance and perhaps
debug existing code if necessary.

Properties can use the virtual, override, and abstract keywords just like methods, something
that isn’t possible with fields. Finally, as mentioned earlier, accessors can have their own accessibili-
ties, as shown here:

// Field used by property.
private int myInt;
// Property.
public int MyIntProp
{
 get { return myInt; }
 protected set { myInt = value; }
}

Here, only code within the class or derived classes can use the set accessor.

The accessibilities that are permitted for accessors depend on the accessibility of the property, and it
is forbidden to make an accessor more accessible than the property to which it belongs. This means
that a private property cannot contain any accessibility modifiers for its accessors, whereas public
properties can use all modifiers on their accessors.

Member Definitions ❘ 239

C# 6 introduced a feature called expression based properties. Similar to the expression based
method discussed previously in Chapter 6, this feature reduces the extent of the property to a single
line of code. For example, properties that return a one-line mathematical computation on a value
can use the lambda arrow followed by the equation.

// Field used by property.
private int myDoubledInt = 5;
// Property.

public int MyDoubledIntProp => (myDoubledInt * 2);

The following Try It Out enables you to experiment with defining and using fields, methods, and
properties.

TRY IT OUT Using Fields, Methods, and Properties: Ch10Ex01

 1. Create a new console application called Ch10Ex01 and save it in the directory C:\
BeginningCSharp7\Chapter10.

 2. Add a new class called MyClass, using the Add Class shortcut, which will cause the new class to be
defined in a new file called MyClass.cs.

 3. Modify the code in MyClass.cs as follows:

 public class MyClass
 {
 public readonly string Name;
 private int intVal;
 public int Val
 {
 get { return intVal; }
 set {
 if (value >= 0 && value <= 10)
 intVal = value;
 else
 throw (new ArgumentOutOfRangeException("Val", value,
 "Val must be assigned a value between 0 and 10."));
 }
 }
 public override string ToString() => "Name: " + Name + "\nVal: " + Val;
 private MyClass() : this("Default Name") { }
 public MyClass(string newName)
 {
 Name = newName;
 intVal = 0;
 }
 private int myDoubledInt = 5;
 public int myDoubledIntProp => (myDoubledInt * 2);
 }

 4. Modify the code in Program.cs as follows:

 using static System.Console;
 static void Main(string[] args)
 {
 WriteLine("Creating object myObj...");

240 ❘ CHAPTER 10 Defining Class MeMbers

 MyClass myObj = new MyClass("My Object");
 WriteLine("myObj created.");
 for (int i = -1; i <= 0; i++)
 {
 try
 {
 WriteLine($"\nAttempting to assign {i} to myObj.Val...");
 myObj.Val = i;
 WriteLine($"Value {myObj.Val} assigned to myObj.Val.");
 }
 catch (Exception e)
 {
 WriteLine($"Exception {e.GetType().FullName} thrown.");
 WriteLine($"Message:\n\"{e.Message}\"");
 }
 }
 WriteLine("\nOutputting myObj.ToString()...");
 WriteLine(myObj.ToString());
 WriteLine("myObj.ToString() Output.");
 WriteLine("\nmyDoubledIntProp = 5...");
 WriteLine($"Getting myDoubledIntProp of 5 is {myObj.myDoubledIntProp}");
 ReadKey();
 }

 5. Run the application. The result is shown in Figure 10-1.

FIGURE 10-1

How It Works

The code in Main() creates and uses an instance of the MyClass class defined in MyClass.cs. The code
must instantiate this class by using a nondefault constructor because the default constructor of MyClass
is private:

 private MyClass() : this("Default Name") {}

Member Definitions ❘ 241

Using this("Default Name") ensures that Name gets a value if this constructor is ever called, which is
possible if this class is used to derive a new class. This is necessary because not assigning a value to the
Name field could be a source of errors later.

The nondefault constructor used assigns values to the readonly field Name (you can only do this by
assignment in the field declaration or in a constructor) and the private field intVal.

Next, Main() attempts two assignments to the Val property of myObj (the instance of MyClass). A
for loop is used to assign the values −1 and 0 in two cycles, and a try...catch structure is used to
check for any exception thrown. When −1 is assigned to the property, an exception of type System
.ArgumentOutOfRangeException is thrown, and code in the catch block outputs information about
the exception to the console window. In the next loop cycle, the value 0 is successfully assigned to the
Val property, and through that property to the private intVal field.

Use the overridden ToString() method to output a formatted string representing the contents of the
object:

 public override string ToString() => "Name: " + Name + "\nVal: " + Val;

This method must be declared using the override keyword, because it is overriding the virtual
ToString() method of the base System.Object class. The code here uses the property Val directly,
rather than the private field intVal. There is no reason why you shouldn’t use properties from within
classes in this way, although there may be a small performance hit (so small that you are unlikely to
notice it). Of course, using the property also gives you the validation inherent in property use, which
may be beneficial for code within the class as well.

Finally, you created and set a read-only property called myDoubledInt in MyClass.cs to 5. By using
the expression based property feature to return the value multiplied by 2:

public int MyDoubledIntProp => (myDoubledInt * 2);

when property is accessed using myObj.myDoubledIntProp the output is 2 times 5 which is 10, as
expected.

Tuple Deconstruction
In Chapter 6 you learned about tuples, which are useful for returning multiple results from a func-
tion. When using more complex objects like a class, structure, or array is unnecessary, using a
tuple is a valid approach for handling this situation. Here is a simple example of a tuple:

var numbers = (1, 2, 3, 4, 5);

Defining a function that return multiple results:

private static (int max, int min, double average)
 GetMaxMin(IEnumerable<int> numbers) {...}

When your code consumes the GetMaxMin() function, the result must be parsed by the code to dis-
play the results. (Review Chapter 6 again if you need a refresh on that specific approach.) Writing
code to parse out the result is not required, however, if you implement tuple deconstruction. Tuple

242 ❘ CHAPTER 10 Defining Class MeMbers

deconstruction is achieved by adding a function named Deconstruct() to any class which you want
to support this feature. Examine, for example, the following class:

public class Location
{
 public Location(double latitude, double longitude)
 => (Latitude, Longitude) = (latitude, longitude);

 public double Latitude { get; }
 public double Longitude { get; }

 public void Deconstruct(out double latitude, out double longitude)
 => (latitude, longitude) = (Latitude, Longitude);
}

The Location class implements an expression-bodied constructer that accepts two variables of type
double (latitude and longitude) that are used to set the values of the properties Latitude and
Longitude. The Deconstruct() function has two out parameters: out double latitude and
out double longitude. The expression then sets the two out parameters equal to the Latitude
and Longitude properties populated when the Location class is initialized. You can then access the
fields by assigning a tuple to Location:

var location = new Location(48.137154, 11.576124);
(double latitude, double longitude) = location;

It is then possible to reference the results directly without having the parse through the result.

Refactoring Members
One technique that comes in handy when adding properties is the capability to generate a property
from a field. This is an example of refactoring, which simply means modifying your code using a
tool, rather than by hand. This can be accomplished by right-clicking a member in a class diagram
or in code view.

For example, if the MyClass class contained this field:

public string myString;

you could right-click on the field and select Quick Actions and
Refactorings…. (Ctrl+.) That would bring up the dialog box
shown in Figure 10-2.

Accepting the default options modifies the code for MyClass as
follows:

public string myString;
public string MyString
{
 get => myString;
 set => myString = value;
}
private string myString;

FIGURE 10-2

Member Definitions ❘ 243

Here, the accessibility of the myString field has been changed to private, and a public property
called MyString has been created and automatically linked to myString. Clearly, reducing the time
required to monotonously create properties for fields is a big plus!

Automatic Properties
Properties are the preferred way to access the state of an object because they shield external code
from the implementation of data storage within the object. They also give you greater control over
how internal data is accessed, as you have seen several times in this chapter’s code. However, you’ll
typically define properties in a very standard way—that is, you will have a private member that is
accessed directly through a public property. The code for this is almost invariably similar to the
code in the previous section, which was autogenerated by the Visual Studio refactoring tool.

Refactoring certainly speeds things up when it comes to typing, but C# has another trick up its
sleeve: automatic properties. With an automatic property, you declare a property with a simplified
syntax and the C# compiler fills in the blanks for you. Specifically, the compiler declares a private
field that is used for storage, and uses that field in the get and set blocks of your property—with-
out you having to worry about the details.

Use the following code structure to define an automatic property:

public int MyIntProp
{
 get;
 set;
}

You can even define an automatic property on a single line of code to save space, without making
the property much less readable:

public int MyIntProp { get; set; }

You define the accessibility, type, and name of the property in the usual way, but you don’t provide
any implementation for the get or set block. Instead, the compiler provides the implementations of
these blocks (and the underlying field).

TIP You can create an automatically implemented property template by using
the prop code snippet within Visual Studio. Type in “prop” then press the TAB
key twice and the following, public int MyProperty {get; set;} is created
for you.

When you use an automatic property, you only have access to its data through the property, not
through its underlying private field. This is because you can’t access the private field without
 knowing its name, which is defined during compilation. However, that’s not really a limitation
because using the property name directly is fine. The only limitation of automatic properties is that
they must include both a get and a set accessor—you cannot define read- or write-only properties

244 ❘ CHAPTER 10 Defining Class MeMbers

in this way. However, you can change the accessibility of these accessors. For example, this means
you can create an externally read-only property as follows:

public int MyIntProp { get; private set; }

Here you can access the value of MyIntProp only from code in the class definition.

C# 6 introduced two new concepts pertaining to automatic properties referred to as getter-only
auto-properties and initializers for auto-properties. Prior to C# 6, automatic properties required
 setters, which limited the utilization of immutable data types. The simple definition of an immutable
data type is that it does not change state once it is created, the most famous immutable type being
System.String. There are many benefits for using immutable data types, such as the simplification
of concurrent programming and the synchronization of threads.

Concurrent programming and synchronization of threads are advanced topics and not discussed
further in this book; however, it is important to know about the getter-only auto-properties. They
are created by using the following syntax, notice that a setter is no longer required:

public int MyIntProp { get; }

The initialization feature for auto-properties is implemented by the following which is similar to the
way fields are declared:

public int MyIntProp { get; } = 9;

ADDITIONAL CLASS MEMBER TOPICS

Now you’re ready to look at some more advanced member topics. This section tackles the following:

 ➤ Hiding base class methods

 ➤ Calling overridden or hidden base class methods

 ➤ Using nested type definitions

Hiding Base Class Methods
When you inherit a (non-abstract) member from a base class, you also inherit an implementation. If
the inherited member is virtual, then you can override this implementation with the override key-
word. Regardless of whether the inherited member is virtual, you can, if you want, hide the imple-
mentation. This is useful when, for example, a public inherited member doesn’t work quite as you
want it to.

You can do this simply by using code such as the following:

public class MyBaseClass
{
 public void DoSomething()
 {
 // Base implementation.
 }
}

Additional Class Member Topics ❘ 245

public class MyDerivedClass : MyBaseClass
{
 public void DoSomething()
 {
 // Derived class implementation, hides base implementation.
 }
}

Although this code works fine, it generates a warning that you are hiding a base class member. That
warning gives you the chance to correct it if you have accidentally hidden a member that you want
to use. If you really do want to hide the member, you can use the new keyword to explicitly indicate
that this is what you want to do:

public class MyDerivedClass : MyBaseClass
{
 new public void DoSomething()
 {
 // Derived class implementation, hides base implementation.
 }
}

This works in exactly the same way but won’t show a warning. At this point, it’s worthwhile to note
the difference between hiding and overriding base class members. Consider the following code:

public class MyBaseClass
{
 public virtual void DoSomething() => WriteLine("Base imp");
}
public class MyDerivedClass : MyBaseClass
{
 public override void DoSomething() => WriteLine("Derived imp");
}

Here, the overriding method replaces the implementation in the base class, such that the following
code uses the new version even though it does so through the base class type (using polymorphism):

MyDerivedClass myObj = new MyDerivedClass();
MyBaseClass myBaseObj;
myBaseObj = myObj;
myBaseObj.DoSomething();

This results in the following output:

Derived imp

Alternatively, you could hide the base class method:

public class MyBaseClass
{
 public virtual void DoSomething() => WriteLine("Base imp");
}
public class MyDerivedClass : MyBaseClass
{
 new public void DoSomething() => WriteLine("Derived imp");
}

246 ❘ CHAPTER 10 Defining Class MeMbers

The base class method needn’t be virtual for this to work, but the effect is exactly the same and the
preceding code only requires changes to one line. The result for a virtual or nonvirtual base class
method is as follows:

Base imp

Although the base implementation is hidden, you still have access to it through the base class.

Calling Overridden or Hidden Base Class Methods
Whether you override or hide a member, you still have access to the base class member from the
derived class. There are many situations in which this can be useful, such as the following:

 ➤ When you want to hide an inherited public member from users of a derived class but still
want access to its functionality from within the class

 ➤ When you want to add to the implementation of an inherited virtual member rather than
simply replace it with a new overridden implementation

To achieve this, you use the base keyword, which refers to the implementation of the base class con-
tained within a derived class (in a similar way to its use in controlling constructors, as shown in the
last chapter):

public class MyBaseClass
{
 public virtual void DoSomething()
 {
 // Base implementation.
 }
}
public class MyDerivedClass : MyBaseClass
{
 public override void DoSomething()
 {
 // Derived class implementation, extends base class implementation.
 base.DoSomething();
 // More derived class implementation.
 }
}

This code executes the version of DoSomething() contained in MyBaseClass, the base class of
MyDerivedClass, from within the version of DoSomething() contained in MyDerivedClass. As
base works using object instances, it is an error to use it from within a static member.

The this Keyword
As well as using base in the last chapter, you also used the this keyword. As with base, this can
be used from within class members, and, like base, this refers to an object instance, although it
is the current object instance (which means you can’t use this keyword in static members because
static members are not part of an object instance).

Additional Class Member Topics ❘ 247

The most useful function of the this keyword is the capability to pass a reference to the current
object instance to a method, as shown in this example:

 public void doSomething()
 {
 MyTargetClass myObj = new MyTargetClass();
 myObj.DoSomethingWith(this);
 }

Here, the MyTargetClass instance that is instantiated (myObj) has a method called
DoSomethingWith(), which takes a single parameter of a type compatible with the class containing
the preceding method. This parameter type might be of this class type, a class type from which this
class derives, an interface implemented by the class, or (of course) System.Object.

Another common use of the this keyword is to use it to qualify local type members, for example:

public class MyClass
{
 private int someData;
 public int SomeData => this.someData;
}

Many developers like this syntax, which can be used with any member type, as it is clear at a glance
that you are referring to a member rather than a local variable.

Using Nested Type Definitions
You can define types such as classes in namespaces, and you can also define them inside other
classes. Then you can use the full range of accessibility modifiers for the definition, rather than just
public and internal, and you can use the new keyword to hide a type definition inherited from
a base class. For example, the following code defining MyClass also defines a nested class called
MyNestedClass:

public class MyClass
{
 public class MyNestedClass
 {
 public int NestedClassField;
 }
}

To instantiate MyNestedClass from outside MyClass, you must qualify the name, as shown here:

MyClass.MyNestedClass myObj = new MyClass.MyNestedClass();

However, you might not be able to do this, for example if the nested class is declared as private.
One reason for the existence of this feature is to define classes that are private to the containing
class so that no other code in the namespace has access to them. Another reason is that nested
classes have access to private and protected members of their containing class. The next Try it Out
 examines this feature.

248 ❘ CHAPTER 10 Defining Class MeMbers

TRY IT OUT Using Nested Classes: Ch10Ex02

 1. Create a new console application called Ch10Ex02 and save it in the directory C:\
BeginningCSharp7\Chapter10.

 2. Modify the code in Program.cs as follows:

using static System.Console;
namespace Ch10Ex02
{
 public class ClassA
 {
 private int state = -1;
 public int State => state;
 public class ClassB
 {
 public void SetPrivateState(ClassA target, int newState)
 {
 target.state = newState;
 }
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 ClassA myObject = new ClassA();
 WriteLine($"myObject.State = {myObject.State}");
 ClassA.ClassB myOtherObject = new ClassA.ClassB();
 myOtherObject.SetPrivateState(myObject, 999);
 WriteLine($"myObject.State = {myObject.State}");
 ReadKey();
 }
 }
}

 3. Run the application. The result is shown in Figure 10-3.

FIGURE 10-3

How It Works

The code in Main() creates and uses an instance of ClassA, which has a read-only property called
State. Next, the code creates an instance of the nested class ClassA.ClassB. This class has access to
the backing field for ClassA.State, which is the ClassA.state field, even though the field is private.
Because of this, the nested class method SetPrivateState() can change the value of the read-only
State property of ClassA.

Interface Implementation ❘ 249

It is important to reiterate that this is possible only because ClassB is defined as a nested class of
ClassA. If you were to move the definition of ClassB outside of ClassA, then the code wouldn’t com-
pile due to this error:

'Ch10Ex02.ClassA.state' is inaccessible due to its protection level.

Being able to expose the internal state of your classes to nested classes can be extremely useful in some
circumstances. However, most of the time it’s enough simply to manipulate the internal state through
methods that your class exposes.

INTERFACE IMPLEMENTATION

This section takes a closer look at how you go about defining and implementing interfaces. In the
last chapter, you learned that interfaces are defined in a similar way as classes, using code such as
the following:

interface IMyInterface
{
 // Interface members.
}

Interface members are defined like class members except for a few important differences:

 ➤ No access modifiers (public, private, protected, or internal) are allowed—all interface
members are implicitly public.

 ➤ Interface members can’t contain code bodies.

 ➤ Interfaces can’t define field members.

 ➤ Interface members can’t be defined using the keywords static, virtual, abstract, or
sealed.

 ➤ Type definition members are forbidden.

You can, however, define members using the new keyword if you want to hide members inherited
from base interfaces:

interface IMyBaseInterface
{
 void DoSomething();
}
interface IMyDerivedInterface : IMyBaseInterface
{
 new void DoSomething();
}

This works exactly the same way as hiding inherited class members.

250 ❘ CHAPTER 10 Defining Class MeMbers

Properties defined in interfaces define either or both of the access blocks—get and set—which are
permitted for the property, as shown here:

interface IMyInterface
{
 int MyInt { get; set; }
}

Here the int property MyInt has both get and set accessors. Either of these can be omitted for a
property with more restricted access.

NOTE This syntax is similar to automatic properties, but remember that auto-
matic properties are defined for classes, not interfaces, and that automatic
properties must have both get and set accessors.

Interfaces do not specify how the property data should be stored. Interfaces cannot specify fields, for
example, that might be used to store property data. Finally, interfaces, like classes, can be defined as
members of classes (but not as members of other interfaces because interfaces cannot contain type
definitions).

Implementing Interfaces in Classes
A class that implements an interface must contain implementations for all members of that interface,
which must match the signatures specified (including matching the specified get and set blocks),
and must be public, as shown here:

public interface IMyInterface
{
 void DoSomething();
 void DoSomethingElse();
}
public class MyClass : IMyInterface
{
 public void DoSomething() {}
 public void DoSomethingElse() {}
}

It is possible to implement interface members using the keyword virtual or abstract, but not
static or const. Interface members can also be implemented on base classes:

public interface IMyInterface
{
 void DoSomething();
 void DoSomethingElse();
}
public class MyBaseClass
{
 public void DoSomething() {}
}

Interface Implementation ❘ 251

public class MyDerivedClass : MyBaseClass, IMyInterface
{
 public void DoSomethingElse() {}
}

Inheriting from a base class that implements a given interface means that the interface is implicitly
supported by the derived class. Here’s an example:

public interface IMyInterface
{
 void DoSomething();
 void DoSomethingElse();
}
public class MyBaseClass : IMyInterface
{
 public virtual void DoSomething() {}
 public virtual void DoSomethingElse() {}
}
public class MyDerivedClass : MyBaseClass
{
 public override void DoSomething() {}
}

Clearly, it is useful to define implementations in base classes as virtual so that derived classes can
replace the implementation, rather than hide it. If you were to hide a base class member using the
new keyword, rather than override it in this way, the method IMyInterface.DoSomething() would
always refer to the base class version even if the derived class were being accessed via the interface.

Explicit Interface Member Implementation
Interface members can also be implemented explicitly by a class. If you do that, the member can
only be accessed through the interface, not the class. Implicit members, which you used in the code
in the last section, can be accessed either way.

For example, if the class MyClass implemented the DoSomething() method of IMyInterface
implicitly, as in the preceding example, then the following code would be valid:

MyClass myObj = new MyClass();
myObj.DoSomething();

This would also be valid:

MyClass myObj = new MyClass();
IMyInterface myInt = myObj;
myInt.DoSomething();

Alternatively, if MyDerivedClass implements DoSomething() explicitly, then only the latter tech-
nique is permitted. The code for doing that is as follows:

public class MyClass : IMyInterface
{
 void IMyInterface.DoSomething() {}
 public void DoSomethingElse() {}
}

252 ❘ CHAPTER 10 Defining Class MeMbers

Here, DoSomething() is implemented explicitly, and DoSomethingElse() implicitly. Only the latter
is accessible directly through an object instance of MyClass.

Additional Property Accessors
Earlier you learned that if you implement an interface with a property, you must implement match-
ing get/set accessors. That isn’t strictly true—it is possible to add a get block to a property in
a class in which the interface defining that property only contains a set block, and vice versa.
However, this is possible only if you implement the interface implicitly. Also, in most cases you will
want to add the accessor with an accessibility modifier that is more restrictive than the accessibility
modifier on the accessor defined in the interface. Because the accessor defined by the interface is, by
definition, public, this means that you would add nonpublic accessors. Here’s an example:

public interface IMyInterface
{
 int MyIntProperty { get; }
}
public class MyBaseClass : IMyInterface
{
 public int MyIntProperty { get; protected set; }
}

If you define the additional accessor as public, then code with access to the class implementing the
interface can access it. However, code that has access only to the interface won’t be able to access it.

PARTIAL CLASS DEFINITIONS

When you create classes with a lot of members of one type or another, the code can get quite con-
fusing, and code files can get very long. One technique that can help is to use code outlining. By
defining regions in code, you can collapse and expand sections to make the code easier to read. For
example, you might have a class defined as follows:

public class MyClass
{
 #region Fields
 private int myInt;
 #endregion
 #region Constructor
 public MyClass() { myInt = 99; }
 #endregion
 #region Properties
 public int MyInt
 {
 get { return myInt; }
 set { myInt = value; }
 }
 #endregion
 #region Methods
 public void DoSomething()

Partial Method Definitions ❘ 253

 {
 // Do something..
 }
 #endregion
}

Here, you can expand and contract fields, properties, the constructor, and methods for the class,
enabling you to focus only on what you are interested in. It is even possible to nest regions this way,
so some regions are visible only when the region that contains them is expanded.

An alternative to using regions is to use partial class definitions. Put simply, you use partial class
definitions to split the definition of a class across multiple files. You can, for example, put the fields,
properties, and constructor in one file, and the methods in another. To do that, you just use the
partial keyword with the class in each file that contains part of the definition, as follows:

public partial class MyClass { ...}

If you use partial class definitions, the partial keyword must appear in this position in every file
containing part of the definition.

For example, a WPF window in a class called MainWindow has code stored in both MainWindow
.xaml.cs and MainWindow.g.i.cs (visible if Show All Files is selected in the Solution Explorer win-
dow if you drill down into obj\Debug folder). This enables you to concentrate on the functionality of
your forms, without worrying about your code being cluttered with information that doesn’t really
interest you.

One final note about partial classes: Interfaces applied to one partial class part apply to the whole
class, meaning that the definition,

public partial class MyClass : IMyInterface1 { ... }
public partial class MyClass : IMyInterface2 { ... }

is equivalent to:

public class MyClass : IMyInterface1, IMyInterface2 { ... }

Partial class definitions can include a base class in a single partial class definition, or more than one
partial class definition. If a base class is specified in more than one definition, though, it must be the
same base class; recall that classes in C# can inherit only from a single base class.

PARTIAL METHOD DEFINITIONS

Partial classes can also define partial methods. Partial methods are defined in one partial class defi-
nition without a method body, and implemented in another partial class definition. In both places,
the partial keyword is used:

public partial class MyClass
{
 partial void MyPartialMethod();
}

254 ❘ CHAPTER 10 Defining Class MeMbers

public partial class MyClass
{
 partial void MyPartialMethod()
 {
 // Method implementation
 }
}

Partial methods can also be static, but they are always private and can’t have a return value. Any
parameters they use can’t be out parameters, although they can be ref parameters. They also can’t
use the virtual, abstract, override, new, sealed, or extern modifiers.

Given these limitations, it is not immediately obvious what purpose partial methods fulfill. In fact,
they are important when it comes to code compilation, rather than usage. Consider the following
code:

public partial class MyClass
{
 partial void DoSomethingElse();
 public void DoSomething()
 {
 WriteLine("DoSomething() execution started.");
 DoSomethingElse();
 WriteLine("DoSomething() execution finished.");
 }
}
public partial class MyClass
{
 partial void DoSomethingElse() =>
 WriteLine("DoSomethingElse() called.");
}

Here, the partial method DoSomethingElse() is defined and called in the first partial class defini-
tion, and implemented in the second. The output, when DoSomething() is called from a console
application, is what you might expect:

DoSomething() execution started.
DoSomethingElse() called.
DoSomething() execution finished.

If you were to remove the second partial class definition or partial method implementation entirely
(or comment out the code), the output would be as follows:

DoSomething() execution started.
DoSomething() execution finished.

You might assume that what is happening here is that when the call to DoSomethingElse() is made,
the runtime discovers that the method has no implementation and therefore continues executing the
next line of code. What actually happens is a little subtler. When you compile code that contains
a partial method definition without an implementation, the compiler actually removes the method
entirely. It also removes any calls to the method. When you execute the code, no check is made for
an implementation because there is no call to check. This results in a slight—but nevertheless
significant—improvement in performance.

Example Application ❘ 255

As with partial classes, partial methods are useful when it comes to customizing autogenerated
or designer-created code. The designer may declare partial methods that you can choose to imple-
ment or not depending on the situation. If you don’t implement them, you incur no performance hit
because effectively the method does not exist in the compiled code.

Consider at this point why partial methods can’t have a return type. If you can answer that to your
own satisfaction, you can be sure that you fully understand this topic—so that is left as an exercise
for you.

EXAMPLE APPLICATION

To illustrate some of the techniques you’ve been using so far, in this section you’ll develop a class
module that you can build on and make use of in subsequent chapters. The class module contains
two classes:

 ➤ Card—Representing a standard playing card, with a suit of club, diamond, heart, or spade,
and a rank that lies between ace and king

 ➤ Deck—Representing a full deck of 52 cards, with access to cards by position in the deck and
the capability to shuffle the deck

You’ll also develop a simple client to ensure that things are working, but you won’t use the deck in a
full card game application—yet.

Planning the Application
The class library for this application, Ch10CardLib, will contain your classes. Before you get down
to any code, though, you should plan the required structure and functionality of your classes.

The Card Class
The Card class is basically a container for two read-only fields: suit and rank. The reason for mak-
ing the fields read-only is that it doesn’t make sense to have a “blank” card, and cards shouldn’t be
able to change once they have been created. To facilitate this, you’ll make the default constructor
private, and provide an alternative constructor that builds a card from a supplied
suit and rank.

Other than that, the Card class will override the ToString() method of System
.Object, so that you can easily obtain a human-readable string representing the
card. To make things a little simpler, you’ll provide enumerations for the two
fields suit and rank.

The Card class is shown in Figure 10-4.

The Deck Class
The Deck class will maintain 52 Card objects. You can use a simple array type for this. The array
won’t be directly accessible because access to the Card object is achieved through a GetCard()

Card
+suit
+rank
+ToString()

FIGURE 10-4

256 ❘ CHAPTER 10 Defining Class MeMbers

method, which returns the Card object with the given index. This class should also expose a
Shuffle() method to rearrange the cards in the array. The Deck class is shown in Figure 10-5.

Card
0...*

1

+suit
+rank

+ToString()

Deck

+GetCard()
+Desk()
+Shuffle()

–cards : Card[]

FIGURE 10-5

Writing the Class Library
For the purposes of this example, it is assumed that you are familiar enough with the IDE to bypass
the standard Try It Out format, so the steps aren’t listed explicitly, as they are the same steps you’ve
used many times. The important thing here is a detailed look at the code. Nonetheless, several
pointers are included to ensure that you don’t run into any problems along the way.

Both your classes and your enumerations will be contained in a class library project called
Ch10CardLib. This project will contain four .cs files: Card.cs, which contains the Card class
definition, Deck.cs, which contains the Deck class definition, and the Suit.cs and Rank.cs files
 containing enumerations.

You can put together a lot of this code using the Visual Studio class diagram tool.

NOTE If you’d prefer not to use the class diagram tool, don’t worry. Each of
the following sections also includes the code generated by the class diagram,
so you’ll be able to follow along just fine.

To get started, you need to do the following:

 1. Create a new class library project called Ch10CardLib and save it in the directory C:\
BeginningCSharp7\Chapter10.

 2. Remove Class1.cs from the project.

Example Application ❘ 257

 3. Open the class diagram for the project using the Solution Explorer window (right-click the
project and then click View ➪ View Class Diagram). The class diagram should be blank to
start with because the project contains no classes. This creates a file named ClassDiagram1
.cd in the project for later use.

Adding the Suit and Rank Enumerations
With the ClassDiagram1.cd file opened, add an enumeration to the class diagram by dragging
an Enum from the Toolbox into the diagram, and then filling in the New Enum dialog box that
appears. For example, for the Suit enumeration, fill out the dialog box as shown in Figure 10-6.

FIGURE 10-6

Next, add the members of the enumeration using the Class Details window (right-click on the just
added Suit Enum ➪ Class Details within the ClassDiagram1.cd file). Figure 10-7 shows the values
that are required.

FIGURE 10-7

Add the Rank enumeration from the Toolbox in the same way. The values required are shown in
Figure 10-8.

258 ❘ CHAPTER 10 Defining Class MeMbers

NOTE The value entry for the first member, Ace, is set to 1 so that the underly-
ing storage of the Enum matches the rank of the card, such that Six is stored as
6, for example.

FIGURE 10-8

You can find the code generated for these two enumerations in the code files, Suit.cs and Rank.cs.
First, you can find the full code for this example in Ch10CardLib Suit.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Ch10CardLib
{
 public enum Suit
 {
 Club,
 Diamond,
 Heart,
 Spade,
 }
}

And you can find the full code for this example in Ch10CardLib Rank.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Ch10CardLib
{
 public enum Rank
 {
 Ace = 1,
 Deuce,
 Three,

Example Application ❘ 259

 Four,
 Five,
 Six,
 Seven,
 Eight,
 Nine,
 Ten,
 Jack,
 Queen,
 King,
 }
}

Alternatively, you can add this code manually by adding Suit.cs and Rank.cs code files and then
entering the code. Note that the extra commas added by the code generator after the last enumera-
tion member do not prevent compilation and do not result in an additional “empty” member being
created—although they are a little messy.

Adding the Card Class
To add the Card class, you’ll use a mix of the class designer and code editor. Adding a class in
the class designer is much like adding an enumeration—you drag the appropriate entry from the
Toolbox into the diagram. In this case, you drag a Class into the diagram and name the new class
Card.

Use the Class Details window to add the fields rank and suit, and then use the Properties window
to set the Constant Kind of the field to readonly. You also need to add two constructors—a
private default constructor, and a public constructor that takes two parameters, newSuit and
newRank, of types Suit and Rank, respectively. Finally, you override ToString(), which requires
you to change the Inheritance Modifier in the Properties window to override.

Figure 10-9 shows the Class Details window and the Card class with all the information entered.
(You can find this code in Ch10CardLib\Card.cs.)

FIGURE 10-9

260 ❘ CHAPTER 10 Defining Class MeMbers

Next, modify the code for the class in Card.cs as follows (or add the code shown to a new class
called Card in the Ch10CardLib namespace):

public class Card
{
 public readonly Suit suit;
 public readonly Rank rank;
 public Card(Suit newSuit, Rank newRank)
 {
 suit = newSuit;
 rank = newRank;
 }
 private Card() {}
 public override string ToString() => "The " + rank + " of " + suit + "s";
}

The overridden ToString() method writes the string representation of the enumeration value stored
to the returned string, and the nondefault constructor initializes the values of the suit and rank
fields.

Adding the Deck Class
The Deck class needs the following members defined using the class diagram:

 ➤ A private field called cards, of type Card[]

 ➤ A public default constructor

 ➤ A public method called GetCard(), which takes one int parameter called cardNum and
returns an object of type Card

 ➤ A public method called Shuffle(), which takes no parameters and returns void

When these are added, the Class Details window for the Deck class will appear as shown in
Figure 10-10.

FIGURE 10-10

Example Application ❘ 261

To make things clearer in the diagram, you can show the relationships among the members and
types you have added. In the class diagram, right-click on each of the following in turn and select
Show as Association from the menu:

 ➤ cards in Deck

 ➤ suit in Card

 ➤ rank in Card

When you have finished, the diagram should look like Figure 10-11.

FIGURE 10-11

Next, modify the code in Deck.cs (if you aren’t using the class designer, you must add this class first
with the code shown here). You can find this code in Ch10CardLib\Deck.cs. First you implement
the constructor, which simply creates and assigns 52 cards in the cards field. You iterate through
all combinations of the two enumerations, using each to create a card. This results in cards initially
containing an ordered list of cards:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Ch10CardLib
{
 public class Deck
 {
 private Card[] cards;
 public Deck()
 {

262 ❘ CHAPTER 10 Defining Class MeMbers

 cards = new Card[52];
 for (int suitVal = 0; suitVal < 4; suitVal++)
 {
 for (int rankVal = 1; rankVal < 14; rankVal++)
 {
 cards[suitVal * 13 + rankVal -1] = new Card((Suit)suitVal,
 (Rank)rankVal);
 }
 }
 }}}

Next, implement the GetCard() method, which either returns the Card object with the requested
index or throws an exception as shown earlier:

 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 return cards[cardNum];
 else
 throw
 (new System.ArgumentOutOfRangeException("cardNum", cardNum,
 "Value must be between 0 and 51."));
 }

Finally, you implement the Shuffle() method. This method works by creating a temporary card
array and copying cards from the existing cards array into this array at random. The main body
of this function is a loop that counts from 0 to 51. On each cycle, you generate a random number
between 0 and 51, using an instance of the System.Random class from the .NET Framework. Once
instantiated, an object of this class generates a random number between 0 and X, using the method
Next(X). When you have a random number, you simply use that as the index of the Card object in
your temporary array in which to copy a card from the cards array.

To keep a record of assigned cards, you also have an array of bool variables, and assign these to
true as each card is copied. As you are generating random numbers, you check against this array to
see whether you have already copied a card to the location in the temporary array specified by the
random number. If so, you simply generate another.

This isn’t the most efficient way of doing things because many random numbers will be generated
before finding a vacant slot into which a card can be copied. However, it works, it’s very simple, and
C# code executes so quickly you will hardly notice a delay. The code is as follows:

 public void Shuffle()
 {
 Card[] newDeck = new Card[52];
 bool[] assigned = new bool[52];
 Random sourceGen = new Random();
 for (int i = 0; i < 52; i++)
 {
 int destCard = 0;
 bool foundCard = false;
 while (foundCard == false)
 {

Example Application ❘ 263

 destCard = sourceGen.Next(52);
 if (assigned[destCard] == false)
 foundCard = true;
 }
 assigned[destCard] = true;
 newDeck[destCard] = cards[i];
 }
 newDeck.CopyTo(cards, 0);
 }
 }
}

The last line of this method uses the CopyTo() method of the System.Array class (used whenever
you create an array) to copy each of the cards in newDeck back into cards. This means you are using
the same set of Card objects in the same cards object, rather than creating any new instances. If you
had instead used cards = newDeck, then you would be replacing the object instance referred to by
cards with another. This could cause problems if code elsewhere were retaining a reference to the
original cards instance—which wouldn’t be shuffled!

That completes the class library code.

A Client Application for the Class Library
To keep things simple, you can add a client console application to the solution containing the class
library. To do so, simply right-click on the solution in Solution Explorer and select Add ➪ New
Project. The new Console App (.NET Framework) project is called Ch10CardClient.

To use the class library you have created from this new console application project, add a reference
to your Ch10CardLib class library project. You can do that through the Projects tab of the Reference
Manager dialog box (right-click the Ch10CardClient project then Add ➪ Reference ➪ Projects), as
shown in Figure 10-12.

FIGURE 10-12

Select the project and click OK to add the reference.

264 ❘ CHAPTER 10 Defining Class MeMbers

Because this new project is the second one you’ve created, you also need to specify that it is the
startup project for the solution, meaning the one that is executed when you click Run. To do so,
simply right-click on the project name in the Solution Explorer window and select the Set as StartUp
Project menu option.

Next, add the code that uses your new classes. That doesn’t require anything particularly special, so
the following code will do (you can find this code in Ch10CardClient\Program.cs):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static System.Console;
using Ch10CardLib;
namespace Ch10CardClient
{
 class Program
 {
 static void Main(string[] args)
 {
 Deck myDeck = new Deck();
 myDeck.Shuffle();
 for (int i = 0; i < 52; i++)
 {
 Card tempCard = myDeck.GetCard(i);
 Write(tempCard.ToString());
 if (i != 51)
 Write(", ");
 else
 WriteLine();
 }
 ReadKey();
 }
 }
}

Figure 10-13 shows the result you’ll get if you run this application.

FIGURE 10-13

The Call Hierarchy Window ❘ 265

This is a random arrangement of the 52 playing cards in the deck. You’ll continue to develop and
use this class library in later chapters.

THE CALL HIERARCHY WINDOW

Now is a good time to take a quick look at another feature of Visual Studio: the Call Hierarchy
 window. This window enables you to interrogate code to find out where your methods are called
from and how they relate to other methods. The best way to illustrate this is with an example.

Open the example application from the previous section, and open the Deck.cs code file. Find the
Shuffle() method, right-click on it, and select the View Call Hierarchy menu item. The window
that appears is shown in Figure 10-14 (which has some regions expanded).

FIGURE 10-14

Starting from the Shuffle() method, you can drill into the tree view in the window to find all the
code that calls the method, and all the calls that the method makes. For example, the highlighted
method, Next(int), is called from Shuffle(), so it appears in the Calls From ‘Shuffle’ section.
When you click on a call you can see the line of code that makes the call on the right, along with
its location. You can double-click on the location to navigate instantly to the line of code that is
referred to.

This window is very useful when you are debugging or refactoring code, as it enables you to see at a
glance how different pieces of code are related.

266 ❘ CHAPTER 10 Defining Class MeMbers

EXERCISES

 10.1 Write code that defines a base class, MyClass, with the virtual method GetString(). This
method should return the string stored in the protected field myString, accessible through
the write-only public property ContainedString.

 10.2 Derive a class, MyDerivedClass, from MyClass. Override the GetString() method to return
the string from the base class, using the base implementation of the method, but add the
text “(output from derived class)” to the returned string.

 10.3 Partial method definitions must use the void return type. Provide a reason why this is so.

 10.4 Write a class called MyCopyableClass that is capable of returning a copy of itself using the
method GetCopy(). This method should use the MemberwiseClone() method inherited from
System.Object. Add a simple property to the class, and write client code that uses the class
to confirm that everything is working.

 10.5 Write a console client for the Ch10CardLib library that draws five cards at one time from a
shuffled Deck object. If all five cards are the same suit, then the client should display the card
names onscreen along with the text Flush!; otherwise, it should quit after 50 cards with the
text No flush.

Answers to the exercises can be found in Appendix.

The Call Hierarchy Window ❘ 267

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Member definitions You can define field, method, and property members in a class. Fields are
defined with an accessibility, name, and type. Methods are defined with
an accessibility, return type, name, and parameters. Properties are defined
with an accessibility, name, and a get and/or set accessor. Individual prop-
erty accessors can have their own accessibility, which must be less acces-
sible than the property as a whole.

Member hiding and
overrides

Properties and methods can be defined as abstract or virtual in base
classes to define inheritance. Derived classes must implement abstract
 members, and can override virtual members, with the override keyword.
They can also provide new implementations with the new keyword, and
 prevent further overrides of virtual members with the sealed keyword.
Base implementations can be called with the base keyword.

Interface
implementation

A class that implements an interface must implement all of the members
defined by that interface as public. You can implement interfaces implicitly
or explicitly, where explicit implementations are only available through an
 interface reference.

Partial definitions You can split class definitions across multiple code files with the partial
 keyword. You can also create partial methods with the partial keyword.
Partial methods have certain restrictions, including no return value or out
parameters, and are not compiled if no implementation is provided.

Collections, Comparisons,
and Conversions

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Defining and using collections

 ➤ Learning the types of collections that are available

 ➤ Comparing types and using the is operator

 ➤ Comparing values and overloading operators

 ➤ Defining and using conversions

 ➤ Using the as operator

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter11 folder and individually named
according to the names throughout the chapter.

You’ve covered all the basic OOP techniques in C# now, but there are some more advanced
techniques that are worth becoming familiar with. These techniques relate to certain problems
that you must solve regularly when you are writing code. Learning about them will make it
much easier to progress and allow you to concentrate on other, potentially more important
aspects of your applications. In this chapter, you look at the following:

 ➤ Collections—Collections enable you to maintain groups of objects. Unlike arrays,
which you’ve used in earlier chapters, collections can include more advanced

11

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

270 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

functionality, such as controlling access to the objects they contain, searching and sorting,
and more. You’ll learn how to use and create collection classes and learn about some power-
ful techniques for getting the most out of them.

 ➤ Comparisons—When dealing with objects, you often want to make comparisons between
them. This is especially important in collections, because it is how sorting is achieved. You’ll
look at how to compare objects in a number of ways, including operator overloading, and
how to use the IComparable and IComparer interface to sort collections.

 ➤ Conversions—Earlier chapters showed you how to cast objects from one type into another.
In this chapter, you’ll learn how to customize type conversions to suit your needs.

COLLECTIONS

In Chapter 5, you learned how to use arrays to create variable types that contain a number of
objects or values. Arrays, however, have their limitations. The biggest limitation is that once arrays
have been created, they have a fixed size, so you can’t add new items to the end of an existing array
without creating a new one. This often means that the syntax used to manipulate arrays can become
overly complicated. OOP techniques enable you to create classes that perform much of this manipu-
lation internally, simplifying the code that uses lists of items or arrays.

Arrays in C# are implemented as instances of the System.Array class and are just one type of
what are known as collection classes. Collection classes in general are used for maintaining lists
of objects, and they may expose more functionality than simple arrays. Much of this functionality
comes through implementing interfaces from the System.Collections namespace, thus standard-
izing collection syntax. This namespace also contains some other interesting things, such as classes
that implement these interfaces in ways other than System.Array.

Because the collection’s functionality (including basic functions such as accessing collection items
by using [index] syntax) is available through interfaces, you aren’t limited to using basic collec-
tion classes such as System.Array. Instead, you can create your own customized collection classes.
These can be made more specific to the objects you want to enumerate (that is, the objects you want
to maintain collections of). One advantage of doing this, as you will see, is that custom collection
classes can be strongly typed. That is, when you extract items from the collection, you don’t need to
cast them into the correct type. Another advantage is the capability to expose specialized methods.
For example, you can provide a quick way to obtain subsets of items. In the deck of cards example,
you could add a method to obtain all Card items of a particular suit.

Several interfaces in the System.Collections namespace provide basic collection functionality:

 ➤ IEnumerable—Provides the capability to loop through items in a collection

 ➤ ICollection—Provides the capability to obtain the number of items in a collection and copy
items into a simple array type (inherits from IEnumerable)

 ➤ IList—Provides a list of items for a collection along with the capabilities for accessing these
items, and some other basic capabilities related to lists of items (inherits from IEnumerable
and ICollection)

 ➤ IDictionary—Similar to IList, but provides a list of items accessible via a key value, rather
than an index (inherits from IEnumerable and ICollection)

Collections ❘ 271

The System.Array class implements IList, ICollection, and IEnumerable. However, it doesn’t
support some of the more advanced features of IList, and it represents a list of items by using a
fixed size.

Using Collections
One of the classes in the Systems.Collections namespace, System.Collections.ArrayList,
also implements IList, ICollection, and IEnumerable, but does so in a more sophisticated way
than System.Array. Whereas arrays are fixed in size (you can’t add or remove elements), this class
can be used to represent a variable-length list of items. To give you more of a feel for what is pos-
sible with such a highly advanced collection, the following Try It Out uses this class, as well as a
simple array.

TRY IT OUT Arrays versus More Advanced Collections: Ch11Ex01

 1. Create a new console application called Ch11Ex01 and save it in the directory C:\
BeginningCSharp7\Chapter11.

 2. Add three new classes, Animal, Cow, and Chicken, to the project by right-clicking on the project in
the Solution Explorer window and selecting Add ➪ Class for each.

 3. Modify the code in Animal.cs as follows:

namespace Ch11Ex01
{
 public abstract class Animal
 {
 protected string name;
 public string Name
 {
 get { return name; }
 set { name = value; }
 }
 public Animal() => name = "The animal with no name";

 public Animal(string newName)=> name = newName;

 public void Feed() => WriteLine($"{name} has been fed.");
 }
}

 4. Modify the code in Cow.cs as follows:

namespace Ch11Ex01
{
 public class Cow : Animal
 {
 public void Milk() => WriteLine($"{name} has been milked.");
 public Cow(string newName) : base(newName) {}
 }
}

 5. Modify the code in Chicken.cs as follows:

namespace Ch11Ex01
{

272 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

 public class Chicken : Animal
 {
 public void LayEgg() => WriteLine($"{name} has laid an egg.");
 public Chicken(string newName) : base(newName) {}
 }
}

 6. Modify the code in Program.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static System.Console;
namespace Ch11Ex01
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine("Create an Array type collection of Animal " +
 "objects and use it:");
 Animal[] animalArray = new Animal[2];
 Cow myCow1 = new Cow("Lea");
 animalArray[0] = myCow1;
 animalArray[1] = new Chicken("Noa");
 foreach (Animal myAnimal in animalArray)
 {
 WriteLine($"New {myAnimal.ToString()} object added to Array" +
 $" collection, Name = {myAnimal.Name}");
 }
 WriteLine($"Array collection contains {animalArray.Length} objects.");
 animalArray[0].Feed();
 ((Chicken)animalArray[1]).LayEgg();
 WriteLine();
 WriteLine("Create an ArrayList type collection of Animal " +
 "objects and use it:");
 ArrayList animalArrayList = new ArrayList();
 Cow myCow2 = new Cow("Donna");
 animalArrayList.Add(myCow2);
 animalArrayList.Add(new Chicken("Andrea"));
 foreach (Animal myAnimal in animalArrayList)
 {
 WriteLine($"New {myAnimal.ToString()} object added to ArrayList " +
 $" collection, Name = {myAnimal.Name}");
 }
 WriteLine($"ArrayList collection contains {animalArrayList.Count} "
 + "objects.");
 ((Animal)animalArrayList[0]).Feed();
 ((Chicken)animalArrayList[1]).LayEgg();
 WriteLine();
 WriteLine("Additional manipulation of ArrayList:");
 animalArrayList.RemoveAt(0);

Collections ❘ 273

 ((Animal)animalArrayList[0]).Feed();
 animalArrayList.AddRange(animalArray);
 ((Chicken)animalArrayList[2]).LayEgg();
 WriteLine($"The animal called {myCow1.Name} is at " +
 $"index {animalArrayList.IndexOf(myCow1)}.");
 myCow1.Name = "Mary";
 WriteLine("The animal is now " +
 $" called {((Animal)animalArrayList[1]).Name }.");
 ReadKey();
 }
 }
}

 7. Run the application. The result is shown in Figure 11-1.

FIGURE 11-1

How It Works

This example creates two collections of objects: the first uses the System.Array class (that is, a simple
array), and the second uses the System.Collections.ArrayList class. Both collections are of Animal
objects, which are defined in Animal.cs. The Animal class is abstract, so it can’t be instantiated,
although you can have items in your collection that are instances of the Cow and Chicken classes, which
are derived from Animal. You achieve this by using polymorphism, discussed in Chapter 8.

Once created in the Main() method in Program.cs, these arrays are manipulated to show their char-
acteristics and capabilities. Several of the operations performed apply to both Array and ArrayList
collections, although their syntax differs slightly. Some, however, are possible only by using the more
advanced ArrayList type.

You’ll learn the similar operations first, comparing the code and results for both types of collection.
First, collection creation. With simple arrays you must initialize the array with a fixed size in order to
use it. You do this to an array called animalArray by using the standard syntax shown in Chapter 5:

Animal[] animalArray = new Animal[2];

274 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

ArrayList collections, conversely, don’t need a size to be initialized, so you can create your list (called
animalArrayList) as follows:

ArrayList animalArrayList = new ArrayList();

You can use two other constructors with this class. The first copies the contents of an existing collection
to the new instance by specifying the existing collection as a parameter; the other sets the capacity of the
collection, also via a parameter. This capacity, specified as an int value, sets the initial number of items
that can be contained in the collection. This is not an absolute capacity, however, because it is doubled
automatically if the number of items in the collection ever exceeds this value.

With arrays of reference types (such as the Animal and Animal-derived objects), simply initializing the
array with a size doesn’t initialize the items it contains. To use a given entry, that entry needs to be ini-
tialized, which means that you need to assign initialized objects to the items:

Cow myCow1 = new Cow("Lea");
animalArray[0] = myCow1;
animalArray[1] = new Chicken("Noa");

The preceding code does this in two ways: once by assignment using an existing Cow object, and once
by assignment through the creation of a new Chicken object. The main difference here is that the for-
mer method creates a reference to the object in the array—a fact that you make use of later in the code.

With the ArrayList collection, there are no existing items, not even null-referenced ones. This means
you can’t assign new instances to indices in the same way. Instead, you use the Add() method of the
ArrayList object to add new items:

Cow myCow2 = new Cow("Donna");
animalArrayList.Add(myCow2);
animalArrayList.Add(new Chicken("Andrea"));

Apart from the slightly different syntax, you can add new or existing objects to the collection in the
same way. Once you have added items in this way, you can overwrite them by using syntax identical to
that for arrays:

animalArrayList[0] = new Cow("Alma");

You won’t do that in this example, though.

Chapter 5 showed how the foreach structure can be used to iterate through an array. This is possible
because the System.Array class implements the IEnumerable interface, and the only method on this
interface, GetEnumerator(), allows you to loop through items in the collection. You’ll look at this in
more depth a little later in the chapter. In your code, you write out information about each Animal
object in the array:

foreach (Animal myAnimal in animalArray)
{
 WriteLine($"New {myAnimal.ToString()} object added to Array " +
 $"collection, Name = {myAnimal.Name}");
}

The ArrayList object you use also supports the IEnumerable interface and can be used with foreach.
In this case, the syntax is identical:

foreach (Animal myAnimal in animalArrayList)

Collections ❘ 275

{
 WriteLine($"New {myAnimal.ToString()} object added to ArrayList " +
 $"collection, Name = {myAnimal.Name}");
}

Next, you use the array’s Length property to output to the screen the number of items in the array:

WriteLine($"Array collection contains {animalArray.Length} objects.");

You can achieve the same thing with the ArrayList collection, except that you use the Count property
that is part of the ICollection interface:

WriteLine($"ArrayList collection contains {animalArrayList.Count} objects.");

Collections—whether simple arrays or more complex collections—aren’t very useful unless they pro-
vide access to the items that belong to them. Simple arrays are strongly typed—that is, they allow direct
access to the type of the items they contain. This means you can call the methods of the item directly:

animalArray[0].Feed();

The type of the array is the abstract type Animal; therefore, you can’t call methods supplied by derived
classes directly. Instead you must use casting:

((Chicken)animalArray[1]).LayEgg();

The ArrayList collection is a collection of System.Object objects (you have assigned Animal objects
via polymorphism). This means that you must use casting for all items:

((Animal)animalArrayList[0]).Feed();
((Chicken)animalArrayList[1]).LayEgg();

The remainder of the code looks at some of the ArrayList collection’s capabilities that go beyond those
of the Array collection. First, you can remove items by using the Remove() and RemoveAt() methods,
part of the IList interface implementation in the ArrayList class. These methods remove items from
an array based on an item reference or index, respectively. This example uses the latter method to
remove the list’s first item, the Cow object with a Name property of Hayley:

animalArrayList.RemoveAt(0);

Alternatively, you could use

animalArrayList.Remove(myCow2);

because you already have a local reference to this object—you added an existing reference to the
array via Add(), rather than create a new object. Either way, the only item left in the collection is the
Chicken object, which you access as follows:

((Animal)animalArrayList[0]).Feed();

Any modifications to items in the ArrayList object resulting in N items being left in the array will be
executed in such a way as to maintain indices from 0 to N-1. For example, removing the item with the
index 0 results in all other items being shifted one place in the array, so you access the Chicken object
with the index 0, not 1. You no longer have an item with an index of 1 (because you only had two items
in the first place), so an exception would be thrown if you tried the following:

((Animal)animalArrayList[1]).Feed();

276 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

ArrayList collections enable you to add several items at once with the AddRange() method. This
method accepts any object with the ICollection interface, which includes the animalArray array cre-
ated earlier in the code:

animalArrayList.AddRange(animalArray);

To check that this works, you can attempt to access the third item in the collection, which is the second
item in animalArray:

((Chicken)animalArrayList[2]).LayEgg();

The AddRange() method isn’t part of any of the interfaces exposed by ArrayList. This method is
specific to the ArrayList class and demonstrates the fact that you can exhibit customized behavior in
your collection classes, beyond what is required by the interfaces you have looked at. This class exposes
other interesting methods too, such as InsertRange(), for inserting an array of objects at any point in
the list, and methods for tasks such as sorting and reordering the array.

Finally, you make use of the fact that you can have multiple references to the same object. Using the
IndexOf() method (part of the IList interface), you can see that myCow1 (an object originally added to
animalArray) is now not only part of the animalArrayList collection, but also its index:

WriteLine($"The animal called {myCow1.Name} is at index " +
 $"{animalArrayList.IndexOf(myCow1)}.");

As an extension of this, the next two lines of code rename the object via the object reference and
display the new name via the collection reference:

myCow1.Name = "Mary";
WriteLine($"The animal is now called {((Animal)animalArrayList[1]).Name}.");

Defining Collections
Now that you know what is possible using more advanced collection classes, it’s time to learn how
to create your own strongly typed collection. One way of doing this is to implement the required
methods manually, but this can be a time-consuming and complex process. Alternatively, you can
derive your collection from a class, such as System.Collections.CollectionBase, an abstract
class that supplies much of the implementation of a collection for you. This option is strongly
recommended.

The CollectionBase class exposes the interfaces IEnumerable, ICollection, and IList but pro-
vides only some of the required implementation—notably, the Clear() and RemoveAt() methods of
IList and the Count property of ICollection. You need to implement everything else yourself if
you want the functionality provided.

To facilitate this, CollectionBase provides two protected properties that enable access to the
stored objects themselves. You can use List, which gives you access to the items through an IList
interface, and InnerList, which is the ArrayList object used to store items.

For example, the basics of a collection class to store Animal objects could be defined as follows
(you’ll see a fuller implementation shortly):

public class Animals : CollectionBase
{

Collections ❘ 277

 public void Add(Animal newAnimal) => List.Add(newAnimal);

 public void Remove(Animal oldAnimal) => List.Remove(oldAnimal);

 public Animals() {}
}

Here, Add() and Remove() have been implemented as strongly typed methods that use the standard
Add() method of the IList interface used to access the items. The methods exposed will now only
work with Animal classes or classes derived from Animal, unlike the ArrayList implementations
shown earlier, which work with any object.

The CollectionBase class enables you to use the foreach syntax with your derived collections. For
example, you can use code such as this:

WriteLine("Using custom collection class Animals:");
Animals animalCollection = new Animals();
animalCollection.Add(new Cow("Lea"));
foreach (Animal myAnimal in animalCollection)
{
 WriteLine($"New { myAnimal.ToString()} object added to custom " +
 $"collection, Name = {myAnimal.Name}");
}

You can’t, however, do the following:

animalCollection[0].Feed();

To access items via their indices in this way, you need to use an indexer.

Indexers
An indexer is a special kind of property that you can add to a class to provide array-like access. In
fact, you can provide more complex access via an indexer, because you can define and use complex
parameter types with the square bracket syntax as you want. Implementing a simple numeric index
for items, however, is the most common usage.

You can add an indexer to the Animals collection of Animal objects as follows:

 public class Animals : CollectionBase
 {
 ...
 public Animal this[int animalIndex]
 {
 get { return (Animal)List[animalIndex]; }
 Set { List[animalIndex] = value; }
 }
 }

The this keyword is used along with parameters in square brackets, but otherwise the indexer
looks much like any other property. This syntax is logical because you access the indexer by
using the name of the object followed by the index parameter(s) in square brackets (for example,
MyAnimals[0]).

278 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

The indexer code uses an indexer on the List property (that is, on the IList interface that provides
access to the ArrayList in CollectionBase that stores your items):

return (Animal)List[animalIndex];

Explicit casting is necessary here, as the IList.List property returns a System.Object object.
The important point to note here is that you define a type for this indexer. This is the type that will
be obtained when you access an item by using this indexer. This strong typing means that you can
write code such as

animalCollection[0].Feed();

rather than:

((Animal)animalCollection[0]).Feed();

This is another handy feature of strongly typed custom collections. In the following Try It Out, you
expand the previous Try It Out to put this into action.

TRY IT OUT Implementing an Animals Collection: Ch11Ex02

 1. Create a new console application called Ch11Ex02 and save it in the directory C:\
BeginningCSharp7\Chapter11.

 2. Right-click on the project name in the Solution Explorer window and select Add ➪ Existing Item.

 3. Select the Animal.cs, Cow.cs, and Chicken.cs files from the C:\BeginningCSharp7\
Chapter11\Ch11Ex01 directory, and click Add.

 4. Modify the namespace declaration in the three files you added as follows:

namespace Ch11Ex02

 5. Add a new class called Animals.

 6. Modify the code in Animals.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Ch11Ex02
{
 public class Animals : CollectionBase
 {
 public void Add(Animal newAnimal) =>
 List.Add(newAnimal);

 public void Remove(Animal newAnimal) =>
 List.Remove(newAnimal);

 public Animal this[int animalIndex]
 {

Collections ❘ 279

 get { return (Animal)List[animalIndex]; }
 set { List[animalIndex] = value; }
 }
 }
}

 7. Modify Program.cs as follows:

 static void Main(string[] args)
 {
 Animals animalCollection = new Animals();
 animalCollection.Add(new Cow("Donna"));
 animalCollection.Add(new Chicken("Mary"));
 foreach (Animal myAnimal in animalCollection)
 {
 myAnimal.Feed();
 }
 ReadKey();
 }

 8. Execute the application. The result is shown in Figure 11-2.

FIGURE 11-2

How It Works

This example uses code detailed in the last section to implement a strongly typed collection of Animal
objects in a class called Animals. The code in Main() simply instantiates an Animals object called
 animalCollection, adds two items (an instance of Cow and Chicken), and uses a foreach loop to call
the Feed() method that both objects inherit from their base class, Animal.

Adding a Cards Collection to CardLib
In the last chapter, you created a class library project called Ch10CardLib that contained a Card
class representing a playing card, and a Deck class representing a deck of cards—that is, a collection
of Card classes. This collection was implemented as a simple array.

In this chapter, you’ll add a new class to this library, renamed Ch11CardLib. This new class, Cards,
will be a custom collection of Card objects, giving you all the benefits described earlier in this
chapter. Create a new class library called Ch11CardLib in the C:\BeginningCSharp7\Chapter11
directory. Next, delete the autogenerated Class1.cs file; select Project ➪ Add Existing Item; select
the Card.cs, Deck.cs, Suit.cs, and Rank.cs files from the C:\BeginningCSharp7\Chapter10\
Ch10CardLib directory; and add the files to your project. As with the previous version of this

280 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

project, introduced in Chapter 10, these changes are presented without using the standard Try It
Out format. Should you want to jump straight to the code, feel free to open the version of this proj-
ect included in the downloadable code for this chapter.

NOTE Don’t forget that when copying the source files from Ch10CardLib
to Ch11CardLib, you must change the namespace declarations to refer to
Ch11CardLib. This also applies to the Ch10CardClient console application
that you will use for testing.

The downloadable code for this chapter includes a Ch11CardLib folder that contains all the code you
need for the various expansions to the Ch11CardLib project. Because of this, you may notice some
extra code that isn’t included in this example, but this won’t affect how it works at this stage. Often
you will find that code is commented out; however, when you reach the relevant example, you can
uncomment the section you want to experiment with.

If you decide to create this project yourself, add a new class called Cards and modify the code in
Cards.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Ch11CardLib
{
 public class Cards : CollectionBase
 {
 public void Add(Card newCard) => List.Add(newCard);

 public void Remove(Card oldCard) => List.Remove(oldCard);

 public Card this[int cardIndex]
 {
 get { return (Card)List[cardIndex]; }
 set { List[cardIndex] = value; }
 }
 /// <summary>
 /// Utility method for copying card instances into another Cards
 /// instance—used in Deck.Shuffle(). This implementation assumes that
 /// source and target collections are the same size.
 /// </summary>
 public void CopyTo(Cards targetCards)
 {
 for (int index = 0; index < this.Count; index++)
 {
 targetCards[index] = this[index];
 }
 }

Collections ❘ 281

 /// <summary>
 /// Check to see if the Cards collection contains a particular card.
 /// This calls the Contains() method of the ArrayList for the collection,
 /// which you access through the InnerList property.
 /// </summary>
 public bool Contains(Card card) => InnerList.Contains(card);
 }
}

Next, modify Deck.cs to use this new collection, rather than an array:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Ch11CardLib
{
 public class Deck
 {
 private Cards cards = new Cards();
 public Deck()
 {
 // Line of code removed here
 for (int suitVal = 0; suitVal < 4; suitVal++)
 {
 for (int rankVal = 1; rankVal < 14; rankVal++)
 {
 cards.Add(new Card((Suit)suitVal, (Rank)rankVal));
 }
 }
 }
 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 return cards[cardNum];
 else
 throw (new System.ArgumentOutOfRangeException("cardNum", cardNum,
 "Value must be between 0 and 51."));
 }
 public void Shuffle()
 {
 Cards newDeck = new Cards();
 bool[] assigned = new bool[52];
 Random sourceGen = new Random();
 for (int i = 0; i < 52; i++)
 {
 int sourceCard = 0;
 bool foundCard = false;
 while (foundCard == false)
 {
 sourceCard = sourceGen.Next(52);
 if (assigned[sourceCard] == false)
 foundCard = true;
 }

282 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

 assigned[sourceCard] = true;
 newDeck.Add(cards[sourceCard]);
 }
 newDeck.CopyTo(cards);
 }
 }
}

Not many changes are necessary here. Most of them involve changing the shuffling logic to allow for
the fact that cards are added to the beginning of the new Cards collection newDeck from a random
index in cards, rather than to a random index in newDeck from a sequential position in cards.

The client console application for the Ch10CardLib solution, Ch10CardClient, can be used with
this new library with the same result as before, as the method signatures of Deck are unchanged.
Clients of this class library can now make use of the Cards collection class, however, rather than
rely on arrays of Card objects—for example, to define hands of cards in a card game application.

Keyed Collections and IDictionary
Instead of implementing the IList interface, it is also possible for collections to implement the simi-
lar IDictionary interface, which allows items to be indexed via a key value (such as a string name),
rather than an index. This is also achieved using an indexer, although here the indexer parameter
used is a key associated with a stored item, rather than an int index, which can make the collection
a lot more user-friendly.

As with indexed collections, there is a base class you can use to simplify implementation of
the IDictionary interface: DictionaryBase. This class also implements IEnumerable and
ICollection, providing the basic collection-manipulation capabilities that are the same for any
collection.

DictionaryBase, like CollectionBase, implements some (but not all) of the members obtained
through its supported interfaces. Like CollectionBase, the Clear and Count members are imple-
mented, although RemoveAt() isn’t because it’s a method on the IList interface and doesn’t appear
on the IDictionary interface. IDictionary does, however, have a Remove() method, which is one
of the methods you should implement in a custom collection class based on DictionaryBase.

The following code shows an alternative version of the Animals class, this time derived from
DictionaryBase. Implementations are included for Add(), Remove(), and a key-accessed indexer:

public class Animals : DictionaryBase
{
 public void Add(string newID, Animal newAnimal) =>
 Dictionary.Add(newID, newAnimal);

 public void Remove(string animalID) =>
 Dictionary.Remove(animalID);

 public Animals() {}
 public Animal this[string animalID]
 {
 get { return (Animal)Dictionary[animalID]; }
 set { Dictionary[animalID] = value; }
 }
}

Collections ❘ 283

The differences in these members are as follows:

 ➤ Add()—Takes two parameters, a key and a value, to store together. The dictionary collection
has a member called Dictionary inherited from DictionaryBase, which is an IDictionary
interface. This interface has its own Add() method, which takes two object parameters. Your
implementation takes a string value as a key and an Animal object as the data to store along-
side this key.

 ➤ Remove()—Takes a key parameter, rather than an object reference. The item with the key
value specified is removed.

 ➤ Indexer—Uses a string key value, rather than an index, which is used to access the stored
item via the Dictionary inherited member. Again, casting is necessary here.

One other difference between collections based on DictionaryBase and collections based on
CollectionBase is that foreach works slightly differently. The collection from the last sec-
tion allowed you to extract Animal objects directly from the collection. Using foreach with the
DictionaryBase derived class gives you DictionaryEntry structs, another type defined in the
System.Collections namespace. To get to the Animal objects themselves, you must use the Value
member of this struct, or you can use the Key member of the struct to get the associated key. To get
code equivalent to the earlier

foreach (Animal myAnimal in animalCollection)
{
 WriteLine($"New {myAnimal.ToString()} object added to custom " +
 $"collection, Name = {myAnimal.Name}");
}

you need the following:

foreach (DictionaryEntry myEntry in animalCollection)
{
 WriteLine($"New {myEntry.Value.ToString()} object added to " +
 $"custom collection, Name = {((Animal)myEntry.Value).Name}");
}

It is possible to override this behavior so that you can access Animal objects directly through
foreach. There are several ways to do this, the simplest being to implement an iterator.

Iterators
Earlier in this chapter, you saw that the IEnumerable interface enables you to use foreach loops.
It’s often beneficial to use your classes in foreach loops, not just collection classes such as those
shown in previous sections.

However, overriding this behavior, or providing your own custom implementation of it, is not
always simple. To illustrate this, it’s necessary to take a detailed look at foreach loops. The follow-
ing steps show you what actually happens in a foreach loop iterating through a collection called
collectionObject:

 1. collectionObject.GetEnumerator() is called, which returns an IEnumerator reference.
This method is available through implementation of the IEnumerable interface, although
this is optional.

284 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

 2. The MoveNext() method of the returned IEnumerator interface is called.

 3. If MoveNext() returns true, then the Current property of the IEnumerator interface is used
to get a reference to an object, which is used in the foreach loop.

 4. The preceding two steps repeat until MoveNext() returns false, at which point the loop
terminates.

To enable this behavior in your classes, you must override several methods, keep track of indices,
maintain the Current property, and so on. This can be a lot of work to achieve very little.

A simpler alternative is to use an iterator. Effectively, using iterators generates a lot of the code for
you behind the scenes and hooks it all up correctly. Moreover, the syntax for using iterators is much
easier to get a grip on.

A good definition of an iterator is a block of code that supplies all the values to be used in a foreach
block in sequence. Typically, this block of code is a method, although you can also use property
accessors and other blocks of code as iterators. To keep things simple, you’ll just look at methods
here.

Whatever the block of code is, its return type is restricted. Perhaps contrary to expectations, this
return type isn’t the same as the type of object being enumerated. For example, in a class that repre-
sents a collection of Animal objects, the return type of the iterator block can’t be Animal. Two pos-
sible return types are the interface types mentioned earlier, IEnumerable or IEnumerator. You use
these types as follows:

 ➤ To iterate over a class, use a method called GetEnumerator() with a return type of
IEnumerator.

 ➤ To iterate over a class member, such as a method, use IEnumerable.

Within an iterator block, you select the values to be used in the foreach loop by using the yield
keyword. The syntax for doing this is as follows:

yield return <value>;

That information is all you need to build a very simple example, as follows (you can find this code in
SimpleIterators\Program.cs):

 public static IEnumerable SimpleList()
 {
 yield return "string 1";
 yield return "string 2";
 yield return "string 3";
 }
 static void Main(string[] args)
 {
 foreach (string item in SimpleList())
 WriteLine(item);
 ReadKey();
 }

Collections ❘ 285

Here, the static method SimpleList() is the iterator block. Because it is a method, you use a return
type of IEnumerable. SimpleList() uses the yield keyword to supply three values to the foreach
block that uses it, each of which is written to the screen. The result is shown in Figure 11-3.

FIGURE 11-3

Obviously, this iterator isn’t a particularly useful one, but it does show how this works in action and
how simple the implementation can be. Looking at the code, you might wonder how the code knows
to return string type items. In fact, it doesn’t; it returns object type values. As you know, object
is the base class for all types, so you can return anything from the yield statements.

However, the compiler is intelligent enough that you can interpret the returned values as whatever
type you want in the context of the foreach loop. Here, the code asks for string type values, so
those are the values you get to work. Should you change one of the yield lines so that it returns,
say, an integer, you would get a bad cast exception in the foreach loop.

One more thing about iterators. It is possible to interrupt the return of information to the foreach
loop by using the following statement:

yield break;

When this statement is encountered in an iterator, the iterator processing terminates immediately, as
does the foreach loop using it.

Now it’s time for a more complicated—and useful!—example. In this Try It Out, you’ll implement
an iterator that obtains prime numbers.

TRY IT OUT Implementing an Iterator: Ch11Ex03

 1. Create a new console application called Ch11Ex03 and save it in the directory C:\
BeginningCSharp7\Chapter11.

 2. Add a new class called Primes and modify the code in Primes.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Ch11Ex03
{

286 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

 public class Primes
 {
 private long min;
 private long max;
 public Primes() : this(2, 100) {}
 public Primes(long minimum, long maximum)
 {
 if (minimum < 2)
 min = 2;
 else
 min = minimum;
 max = maximum;
 }
 public IEnumerator GetEnumerator()
 {
 for (long possiblePrime = min; possiblePrime <= max; possiblePrime++)
 {
 bool isPrime = true;
 for (long possibleFactor = 2; possibleFactor <=
 (long)Math.Floor(Math.Sqrt(possiblePrime)); possibleFactor++)
 {
 long remainderAfterDivision = possiblePrime % possibleFactor;
 if (remainderAfterDivision == 0)
 {
 isPrime = false;
 break;
 }
 }
 if (isPrime)
 {
 yield return possiblePrime;
 }
 }
 }
 }
}

 3. Modify the code in Program.cs as follows:

 static void Main(string[] args)
 {
 Primes primesFrom2To1000 = new Primes(2, 1000);
 foreach (long i in primesFrom2To1000)
 Write($"{i} ");
 ReadKey();
 }

 4. Execute the application. The result is shown in Figure 11-4.

Collections ❘ 287

FIGURE 11-4

How It Works

This example consists of a class that enables you to enumerate over a collection of prime numbers
between an upper and lower limit. The class that encapsulates the prime numbers uses an iterator to
provide this functionality.

The code for Primes starts off with the basics: two fields to hold the maximum and minimum values
to search between, and constructors to set these values. Note that the minimum value is restricted—it
can’t be less than 2. This makes sense, because 2 is the lowest prime number. The interesting code is all
in the GetEnumerator() method. The method signature fulfills the rules for an iterator block in that it
returns an IEnumerator type:

 public IEnumerator GetEnumerator()
 {

To extract prime numbers between limits, you need to test each number in turn, so you start with a for
loop:

 for (long possiblePrime = min; possiblePrime <= max; possiblePrime++)
 {

Because you don’t know whether a number is prime, you first assume that it is and then check to see
if it isn’t. That means checking whether any number between 2 and the square root of the number to
be tested is a factor. If this is true, then the number isn’t prime, so you move on to the next one. If the
number is indeed prime, then you pass it to the foreach loop using yield:

 bool isPrime = true;
 for (long possibleFactor = 2; possibleFactor <=
 (long)Math.Floor(Math.Sqrt(possiblePrime)); possibleFactor++)
 {
 long remainderAfterDivision = possiblePrime % possibleFactor;
 if (remainderAfterDivision == 0)
 {
 isPrime = false;
 break;
 }

288 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

 }
 if (isPrime)
 {
 yield return possiblePrime;
 }
 }
 }

An interesting fact reveals itself through this code if you set the minimum and maximum limits to
very big numbers. When you execute the application, the results appear one at a time, with pauses in
between, rather than all at once. This is evidence that the iterator code returns results one at a time,
despite the fact that there is no obvious place where the code terminates between yield calls. Behind
the scenes, calling yield does interrupt the code, which resumes when another value is requested—that
is, when the foreach loop using the iterator begins a new cycle.

Iterators and Collections
Earlier you were promised an explanation of how iterators can be used to iterate over the objects
stored in a dictionary-type collection without having to deal with DictionaryItem objects.
In the downloadable code for this chapter, you will find the code for the next project in the
DictionaryAnimals folder. Recall the collection class Animals:

public class Animals : DictionaryBase
{
 public void Add(string newID, Animal newAnimal) =>
 Dictionary.Add(newID, newAnimal);

 public void Remove(string animalID) =>
 Dictionary.Remove(animalID);

 public Animal this[string animalID]
 {
 get { return (Animal)Dictionary[animalID]; }
 set { Dictionary[animalID] = value; }
 }
}

You can add this simple iterator to the code to get the desired behavior:

 public new IEnumerator GetEnumerator()
 {
 foreach (object animal in Dictionary.Values)
 yield return (Animal)animal;
 }

Now you can use the following code to iterate through the Animal objects in the collection:

 foreach (Animal myAnimal in animalCollection)
 {
 WriteLine($"New {myAnimal.ToString()} object added to " +
 $" custom collection, Name = {myAnimal.Name}");
 }

Collections ❘ 289

Deep Copying
Chapter 9 described how you can perform shallow copying with the System.Object
.MemberwiseClone() protected method, by using a method like the GetCopy() one shown here:

public class Cloner
{
 public int Val;
 public Cloner(int newVal) => Val = newVal;
 public object GetCopy() => MemberwiseClone();
}

Suppose you have fields that are reference types, rather than value types (for example, objects):

public class Content
{
 public int Val;
}
public class Cloner
{
 public Content MyContent = new Content();
 public Cloner(int newVal) => MyContent.Val = newVal;
 public object GetCopy() => MemberwiseClone();
}

In this case, the shallow copy obtained though GetCopy() has a field that refers to the same object
as the original object. The following code, which uses this Cloner class, illustrates the consequences
of shallow copying reference types:

Cloner mySource = new Cloner(5);
Cloner myTarget = (Cloner)mySource.GetCopy();
WriteLine($"myTarget.MyContent.Val = {myTarget.MyContent.Val}");
mySource.MyContent.Val = 2;
WriteLine($"myTarget.MyContent.Val = {myTarget.MyContent.Val}");

The fourth line, which assigns a value to mySource.MyContent.Val, the Val public field of the
MyContent public field of the original object, also changes the value of myTarget.MyContent.Val.
That’s because mySource.MyContent refers to the same object instance as myTarget.MyContent.
The output of the preceding code is as follows:

myTarget.MyContent.Val = 5
myTarget.MyContent.Val = 2

To get around this, you need to perform a deep copy. You could just modify the GetCopy() method
used previously to do this, but it is preferable to use the standard .NET Framework way of doing
things: implement the ICloneable interface, which has the single method Clone(). This method
takes no parameters and returns an object type result, giving it a signature identical to the
GetCopy() method used earlier.

To modify the preceding classes, try using the following deep copy code:

public class Content
{
 public int Val;
}

290 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

public class Cloner : ICloneable
{
 public Content MyContent = new Content();
 public Cloner(int newVal) => MyContent.Val = newVal;
 public object Clone()
 {
 Cloner clonedCloner = new Cloner(MyContent.Val);
 return clonedCloner;
 }
}

This created a new Cloner object by using the Val field of the Content object contained in the origi-
nal Cloner object (MyContent). This field is a value type, so no deeper copying is necessary.

Using code similar to that just shown to test the shallow copy—but using Clone() instead of
GetCopy()—gives you the following result:

myTarget.MyContent.Val = 5
myTarget.MyContent.Val = 5

This time, the contained objects are independent. Note that sometimes calls to Clone() are made
recursively, in more complex object systems. For example, if the MyContent field of the Cloner class
also required deep copying, then you might need the following:

public class Cloner : ICloneable
{
 public Content MyContent = new Content();
 ...
 public object Clone()
 {
 Cloner clonedCloner = new Cloner();
 clonedCloner.MyContent = MyContent.Clone();
 return clonedCloner;
 }
}

You’re calling the default constructor here to simplify the syntax of creating a new Cloner object.
For this code to work, you would also need to implement ICloneable on the Content class.

Adding Deep Copying to CardLib
You can put this into practice by implementing the capability to copy Card, Cards, and Deck objects
by using the ICloneable interface. This might be useful in some card games, where you might not
necessarily want two decks with references to the same set of Card objects, although you might con-
ceivably want to set up one deck to have the same card order as another.

Implementing cloning functionality for the Card class in Ch11CardLib is simple because shallow
copying is sufficient (Card contains only value-type data, in the form of fields). Begin by making the
following changes to the class definition:

 public class Card : ICloneable
 {
 public object Clone() => MemberwiseClone();

This implementation of ICloneable is just a shallow copy. There is no rule determining what
should happen in the Clone() method, and this is sufficient for your purposes.

Collections ❘ 291

Next, implement ICloneable on the Cards collection class. This is slightly more complicated
because it involves cloning every Card object in the original collection—so you need to make a deep
copy:

 public class Cards : CollectionBase, ICloneable
 {
 public object Clone()
 {
 Cards newCards = new Cards();
 foreach (Card sourceCard in List)
 {
 newCards.Add((Card)sourceCard.Clone());
 }
 return newCards;
 }

Finally, implement ICloneable on the Deck class. Note a slight problem here: The Deck class in
Ch11CardLib has no way to modify the cards it contains, short of shuffling them. There is no way,
for example, to modify a Deck instance to have a given card order. To get around this, define a new
private constructor for the Deck class that allows a specific Cards collection to be passed in when
the Deck object is instantiated. Here’s the code to implement cloning in this class:

 public class Deck : ICloneable
 {
 public object Clone()
 {
 Deck newDeck = new Deck(cards.Clone() as Cards);
 return newDeck;
 }
 private Deck(Cards newCards) => cards = newCards;

Again, you can test this with some simple client code. As before, place this code within the Main()
method of a client project for testing (you can find this code in Ch11CardClient\Program.cs in the
chapter’s online download):

Deck deck1 = new Deck();
Deck deck2 = (Deck)deck1.Clone();
WriteLine($"The first card in the original deck is: {deck1.GetCard(0)}");
WriteLine($"The first card in the cloned deck is: {deck2.GetCard(0)}");
deck1.Shuffle();
WriteLine("Original deck shuffled.");
WriteLine($"The first card in the original deck is: {deck1.GetCard(0)}");
WriteLine($"The first card in the cloned deck is: {deck2.GetCard(0)}");
ReadKey();

The output will be similar to what is shown in Figure 11-5.

FIGURE 11-5

292 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

COMPARISONS

This section covers two types of comparisons between objects:

 ➤ Type comparisons

 ➤ Value comparisons

Type comparisons—that is, determining what an object is, or what it inherits from—are important
in all areas of C# programming. Often when you pass an object—to a method, for example—what
happens next depends on the type of the object. You’ve seen this in passing in this and earlier chap-
ters, but here you will see some more useful techniques.

Value comparisons are also something you’ve seen a lot of, at least with simple types. When it
comes to comparing values of objects, things get a little more complicated. You have to define what
is meant by a comparison for a start, and what operators such as > mean in the context of your
classes. This is especially important in collections, for which you might want to sort objects accord-
ing to some condition, perhaps alphabetically or according to a more complicated algorithm.

Type Comparisons
When comparing objects, you often need to know their type, which enables you to determine
whether a value comparison is possible. In Chapter 9 you saw the GetType() method, which all
classes inherit from System.Object, and how this method can be used in combination with the
typeof() operator to determine (and take action depending on) object types:

if (myObj.GetType() == typeof(MyComplexClass))
{
 // myObj is an instance of the class MyComplexClass.
}

You’ve also seen how the default implementation of ToString(), also inherited from System
.Object, will get you a string representation of an object’s type. You can compare these strings too,
although that’s a rather messy way to accomplish this.

This section demonstrates a handy shorthand way of doing things: the is operator. This opera-
tor allows for much more readable code and, as you will see, has the advantage of examining
base classes. Before looking at the is operator, though, you need to be aware of what often hap-
pens behind the scenes when dealing with value types (as opposed to reference types): boxing and
unboxing.

Boxing and Unboxing
In Chapter 8, you learned the difference between reference types and value types, which was illus-
trated in Chapter 9 by comparing structs (which are value types) with classes (which are reference
types). Boxing is the act of converting a value type into the System.Object type or to an interface
type that is implemented by the value type. Unboxing is the opposite conversion.

For example, suppose you have the following struct type:

struct MyStruct
{
 public int Val;
}

Comparisons ❘ 293

You can box a struct of this type by placing it into an object-type variable:

MyStruct valType1 = new MyStruct();
valType1.Val = 5;
object refType = valType1;

Here, you create a new variable (valType1) of type MyStruct, assign a value to the Val member of
this struct, and then box it into an object-type variable (refType).

The object created by boxing a variable in this way contains a reference to a copy of the value-type
variable, not a reference to the original value-type variable. You can verify this by modifying the
original struct’s contents and then unboxing the struct contained in the object into a new variable
and examining its contents:

valType1.Val = 6;
MyStruct valType2 = (MyStruct)refType;
WriteLine($"valType2.Val = {valType2.Val}");

This code gives you the following output:

valType2.Val = 5

When you assign a reference type to an object, however, you get a different behavior. You can see
this by changing MyStruct into a class (ignoring the fact that the name of this class isn’t appropriate
now):

class MyStruct
{
 public int Val;
}

With no changes to the client code shown previously (again ignoring the misnamed variables), you
get the following output:

valType2.Val = 6

You can also box value types into interface types, so long as they implement that interface. For
example, suppose the MyStruct type implements the IMyInterface interface as follows:

interface IMyInterface {}
struct MyStruct : IMyInterface
{
 public int Val;
}

You can then box the struct into an IMyInterface type as follows:

MyStruct valType1 = new MyStruct();
IMyInterface refType = valType1;

You can unbox it by using the normal casting syntax:

MyStruct ValType2 = (MyStruct)refType;

As shown in these examples, boxing is performed without your intervention—that is, you don’t have
to write any code to make it possible. Unboxing a value requires an explicit conversion, however,
and requires you to make a cast (boxing is implicit and doesn’t have this requirement).

294 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

You might be wondering why you would actually want to do this. There are two very good rea-
sons why boxing is extremely useful. First, it enables you to use value types in collections (such as
ArrayList) where the items are of type object. Second, it’s the internal mechanism that enables
you to call object methods on value types, such as ints and structs.

It is worth noting that unboxing is necessary before access to the value type contents is possible.

The is Operator
Despite its name, the is operator isn’t a way to determine whether an object is a certain type.
Instead, the is operator enables you to check whether an object either is or can be converted into a
given type. If this is the case, then the operator evaluates to true.

Earlier examples showed a Cow and a Chicken class, both of which inherit from Animal. Using
the is operator to compare objects with the Animal type will return true for objects of all three
of these types, not just Animal. This is something you’d have a hard time achieving with the
GetType() method and typeof() operator shown previously.

The is operator has the following syntax:

<operand> is <type>

The possible results of this expression are as follows:

 ➤ If <type> is a class type, then the result is true if <operand> is of that type, if it inherits
from that type, or if it can be boxed into that type.

 ➤ If <type> is an interface type, then the result is true if <operand> is of that type or it is a
type that implements the interface.

 ➤ If <type> is a value type, then the result is true if <operand> is of that type or it is a type
that can be unboxed into that type.

The following Try It Out shows how this works in practice.

TRY IT OUT Using the is Operator: Ch11Ex04\Program.cs

 1. Create a new console application called Ch11Ex04 in the directory C:\BeginningCSharp7\
Chapter11.

 2. Modify the code in Program.cs as follows:

namespace Ch11Ex04
{
 class Checker
 {
 public void Check(object param1)
 {

Comparisons ❘ 295

 if (param1 is ClassA)
 WriteLine("Variable can be converted to ClassA.");
 else
 WriteLine("Variable can't be converted to ClassA.");
 if (param1 is IMyInterface)
 WriteLine("Variable can be converted to IMyInterface.");
 else
 WriteLine("Variable can't be converted to IMyInterface.");
 if (param1 is MyStruct)
 WriteLine("Variable can be converted to MyStruct.");
 else
 WriteLine("Variable can't be converted to MyStruct.");
 }
 }
 interface IMyInterface {}
 class ClassA : IMyInterface {}
 class ClassB : IMyInterface {}
 class ClassC {}
 class ClassD : ClassA {}
 struct MyStruct : IMyInterface {}
 class Program
 {
 static void Main(string[] args)
 {
 Checker check = new Checker();
 ClassA try1 = new ClassA();
 ClassB try2 = new ClassB();
 ClassC try3 = new ClassC();
 ClassD try4 = new ClassD();
 MyStruct try5 = new MyStruct();
 object try6 = try5;
 WriteLine("Analyzing ClassA type variable:");
 check.Check(try1);
 WriteLine("\nAnalyzing ClassB type variable:");
 check.Check(try2);
 WriteLine("\nAnalyzing ClassC type variable:");
 check.Check(try3);
 WriteLine("\nAnalyzing ClassD type variable:");
 check.Check(try4);
 WriteLine("\nAnalyzing MyStruct type variable:");
 check.Check(try5);
 WriteLine("\nAnalyzing boxed MyStruct type variable:");
 check.Check(try6);
 ReadKey();
 }
 }
}

 3. Execute the code. The result is shown in Figure 11-6.

296 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

FIGURE 11-6

How It Works

This example illustrates the various results possible when using the is operator. Three classes, an inter-
face, and a structure are defined and used as parameters to a method of a class that uses the is opera-
tor to determine whether they can be converted into the ClassA type, the interface type, and the struct
type.

Only the ClassA and ClassD (which inherits from ClassA) types are compatible with ClassA. Types
that don’t inherit from a class are not compatible with that class.

The ClassA, ClassB, and MyStruct types all implement IMyInterface, so these are all compatible
with the IMyInterface type. ClassD inherits from ClassA, so it too is compatible. Therefore, only
ClassC is incompatible.

Finally, only variables of type MyStruct itself and boxed variables of that type are compatible with
MyStruct because you can’t convert reference types to value types (although, of course, you can unbox
previously boxed variables).

Comparisons ❘ 297

Pattern Matching with the is Operator Pattern Expression
Recall from Chapter 4 where the switch statement was introduced and in Chapter 5 where it was
expanded to include cases that support matching based on variable type (string, int, and so on).
Once the type is known you can access its properties and methods to further reduce the matches.

The switch case approach is the more elegant way of pattern matching because the is operator
commonly implements many if…else if… statements. As the scenarios in which you want to pat-
tern match expand, the statements can get deep and long, making the code less legible. If that ever
becomes the case, know that the alternative is the switch case pattern matching feature. However,
for smaller code snippets, the is operator is a very valid and powerful tactic for matching patterns
and filtering your data set. Take the following code for example:

object[] data =
 { 1.6180, null, new Cow("Rual"), new Chicken("Lea"), "none" };

foreach (var item in data)
{
 if (item is 1.6180) WriteLine("The Golden Ratio");
 else if (item is null) WriteLine("The value is null");
 else if (item is Cow co) WriteLine($"The cow is named {co.Name}.");
 else if (item is Chicken ch) WriteLine("The chicken is named" +
 $" {ch.Name} and {ch.RunInCircles()}");
 else if (item is var catcher) WriteLine("Catch all for" +
 $" {catcher.GetType().Name});
}

The objects stored in the data variable consist of several different types. Looping through the
object[] array using a foreach statement, you can check the type of the variable using the is
operator and take an appropriate action when there is a match. The first pattern match is on 1.6180
which is a constant value and is an example of the const pattern, as is the null in the second pattern
match. It is possible to use the == operator to achieve the same outcome when matching constants;
however, the is operator is much easier to understand and is friendlier.

The last two objects in the data variable are of type Cow and Chicken. The type pattern assigns
a new variable of the specified type when there is a pattern match. For example, when Chicken is
matched, a new ch variable is created that contains the Chicken object, allowing the programmer to
access properties and methods contained within the Chicken class (e.g., the property name and the
method RunInCircles()).

Finally, you can use the var pattern to catch all the scenarios that did not match any of the if...
else if... statements higher up in the code path. Then use the catcher variable to get variable
type via the GetType().Name property.

298 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

Value Comparisons
Consider two Person objects representing people, each with an integer Age property. You might
want to compare them to see which person is older. You can simply use the following code:

if (person1.Age > person2.Age)
{
 ...
}

This works fine, but there are alternatives. You might prefer to use syntax such as the following:

if (person1 > person2)
{
 ...
}

This is possible using operator overloading, which you’ll look at in this section. This is a powerful
technique, but it should be used judiciously. In the preceding code, it is not immediately obvious that
ages are being compared—it could be height, weight, IQ, or just general “greatness.”

Another option is to use the IComparable and IComparer interfaces, which enable you to define
how objects will be compared to each other in a standard way. This technique is supported by the
various collection classes in the .NET Framework, making it an excellent way to sort objects in a
collection.

Operator Overloading
Operator overloading enables you to use standard operators, such as +, >, and so on, with classes
that you design. This is called “overloading” because you are supplying your own implementations
for these operators when used with specific parameter types, in much the same way that you over-
load methods by supplying different parameters for methods with the same name.

Operator overloading is useful because you can perform whatever processing you want in the imple-
mentation of the operator overload, which might not be as simple as, for example, +, meaning “add
these two operands together.” Later, you’ll see a good example of this in a further upgrade of the
CardLib library, whereby you’ll provide implementations for comparison operators that compare
two cards to see which would beat the other in a trick (one round of card game play).

Because a trick in many card games depends on the suits of the cards involved, this isn’t as straight-
forward as comparing the numbers on the cards. If the second card laid down is a different suit
from the first, then the first card wins regardless of its rank. You can implement this by considering
the order of the two operands. You can also take a trump suit into account, whereby trumps beat
other suits even if that isn’t the first suit laid down. This means that calculating that card1 > card2
is true (that is, card1 will beat card2 if card1 is laid down first), doesn’t necessarily imply that
card2 > card1 is false. If neither card1 nor card2 are trumps and they belong to different suits,
then both comparisons will be true.

To start with, though, here’s a look at the basic syntax for operator overloading. Operators can be
overloaded by adding operator type members (which must be static) to a class. Some operators have

Comparisons ❘ 299

multiple uses (such as -, which has unary and binary capabilities); therefore, you also specify how
many operands you are dealing with and the types of these operands. In general, you will have oper-
ands that are the same type as the class in which the operator is defined, although it’s possible to
define operators that work on mixed types, as you’ll see shortly.

As an example, consider the simple type AddClass1, defined as follows:

public class AddClass1
{
 public int val;
}

This is just a wrapper around an int value, but it illustrates the principles. With this class, code
such as the following will fail to compile:

AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass1 op2 = new AddClass1();
op2.val = 5;
AddClass1 op3 = op1 + op2;

The error you get informs you that the + operator cannot be applied to operands of the AddClass1
type. This is because you haven’t defined an operation to perform yet. Code such as the following
works, but it won’t give you the result you might want:

AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass1 op2 = new AddClass1();
op2.val = 5;
bool op3 = op1 == op2;

Here, op1 and op2 are compared by using the == binary operator to determine whether they refer
to the same object, not to verify whether their values are equal. op3 will be false in the preceding
code, even though op1.val and op2.val are identical.

To overload the + operator, use the following code:

public class AddClass1
{
 public int val;
 public static AddClass1 operator +(AddClass1 op1, AddClass1 op2)
 {
 AddClass1 returnVal = new AddClass1();
 returnVal.val = op1.val + op2.val;
 return returnVal;
 }
}

As you can see, operator overloads look much like standard static method declarations, except
that they use the keyword operator and the operator itself, rather than a method name. You can
now successfully use the + operator with this class, as in the previous example:

AddClass1 op3 = op1 + op2;

300 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

Overloading all binary operators fits the same pattern. Unary operators look similar but have only
one parameter:

public class AddClass1
{
 public int val;
 public static AddClass1 operator +(AddClass1 op1, AddClass1 op2)
 {
 AddClass1 returnVal = new AddClass1();
 returnVal.val = op1.val + op2.val;
 return returnVal;
 }
 public static AddClass1 operator -(AddClass1 op1)
 {
 AddClass1 returnVal = new AddClass1();
 returnVal.val = -op1.val;
 return returnVal;
 }
}

Both these operators work on operands of the same type as the class and have return values that are
also of that type. Consider, however, the following class definitions:

public class AddClass1
{
 public int val;
 public static AddClass3 operator +(AddClass1 op1, AddClass2 op2)
 {
 AddClass3 returnVal = new AddClass3();
 returnVal.val = op1.val + op2.val;
 return returnVal;
 }
}
public class AddClass2
{
 public int val;
}
public class AddClass3
{
 public int val;
}

This will allow the following code:

AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass2 op2 = new AddClass2();
op2.val = 5;
AddClass3 op3 = op1 + op2;

When appropriate, you can mix types in this way. Note, however, that if you added the same opera-
tor to AddClass2, then the preceding code would fail because it would be ambiguous as to which
operator to use. You should, therefore, take care not to add operators with the same signature to
more than one class.

Comparisons ❘ 301

In addition, if you mix types, then the operands must be supplied in the same order as the param-
eters to the operator overload. If you attempt to use your overloaded operator with the operands in
the wrong order, the operation will fail. For example, you can’t use the operator like,

AddClass3 op3 = op2 + op1;

unless, of course, you supply another overload with the parameters reversed:

public static AddClass3 operator +(AddClass2 op1, AddClass1 op2)
{
 AddClass3 returnVal = new AddClass3();
 returnVal.val = op1.val + op2.val;
 return returnVal;
}

The following operators can be overloaded:

 ➤ Unary operators— +, -, !, ~, ++, --, true, false

 ➤ Binary operators— +, -, *, /, %, &, |, ^, <<, >>

 ➤ Comparison operators— ==, !=, <, >, <=, >=

NOTE If you overload the true and false operators, then you can use classes
in Boolean expressions, such as if(op1){}.

You can’t overload assignment operators, such as +=, but these operators use their simple counter-
parts, such as +, so you don’t have to worry about that. Overloading + means that += will function
as expected. The = assignment operator can’t be overloaded because it has such a fundamental
usage, but this operator is related to the user-defined conversion operators, which you’ll look at in
the next section.

You also can’t overload && and ||, but these operators use the & and | operators to perform their
calculations, so overloading these is enough.

Some operators, such as < and >, must be overloaded in pairs. That is, you can’t overload < unless
you also overload >. In many cases, you can simply call other operators from these to reduce the
code required (and the errors that might occur), as shown in this example:

public class AddClass1
{
 public int val;
 public static bool operator >=(AddClass1 op1, AddClass1 op2)
 => (op1.val >= op2.val);
 public static bool operator <(AddClass1 op1, AddClass1 op2)
 => !(op1 >= op2);
 // Also need implementations for <= and > operators.
}

In more complex operator definitions, this can reduce the lines of code. It also means that you have
less code to change if you later decide to modify the implementation of these operators.

302 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

The same applies to == and !=, but with these operators it is often worth overriding Object
.Equals() and Object.GetHashCode(), because both of these functions can also be used to com-
pare objects. By overriding these methods, you ensure that whatever technique users of the class use,
they get the same result. This isn’t essential, but it’s worth adding for completeness. It requires the
following nonstatic override methods:

public class AddClass1
{
 public int val;
 public static bool operator ==(AddClass1 op1, AddClass1 op2)
 => (op1.val == op2.val);
 public static bool operator !=(AddClass1 op1, AddClass1 op2)
 => !(op1 == op2);
 public override bool Equals(object op1) => val == ((AddClass1)op1).val;
 public override int GetHashCode() => val;
}

GetHashCode() is used to obtain a unique int value for an object instance based on its state. Here,
using val is fine, because it is also an int value.

Note that Equals() uses an object type parameter. You need to use this signature, or you will
be overloading this method, rather than overriding it, and the default implementation will still be
accessible to users of the class. Instead, you must use casting to get the required result. It is often
worth checking the object type using the is operator discussed earlier, in code such as this:

 public override bool Equals(object op1)
 {
 if (op1 is AddClass1)
 {
 return val == ((AddClass1)op1).val;
 }
 else
 {
 throw new ArgumentException(
 "Cannot compare AddClass1 objects with objects of type "
 + op1.GetType().ToString());
 }
 }

In this code, an exception is thrown if the operand passed to Equals is of the wrong type or can-
not be converted into the correct type. Of course, this behavior might not be what you want. You
might want to be able to compare objects of one type with objects of another type, in which case
more branching would be necessary. Alternatively, you might want to restrict comparisons to those
in which both objects are of the same type, which would require the following change to the first if
statement:

 if (op1.GetType() == typeof(AddClass1))

Adding Operator Overloads to CardLib
Now you’ll upgrade your Ch11CardLib project again, adding operator overloading to the Card class.
Again, you can find the code for the classes that follow in the Ch11CardLib folder of this chapter’s
code download. First, though, you’ll add the extra fields to the Card class that allow for trump suits

Comparisons ❘ 303

and an option to place aces high. You make these static, because when they are set, they apply to all
Card objects:

 public class Card
 {
 /// <summary>
 /// Flag for trump usage. If true, trumps are valued higher
 /// than cards of other suits.
 /// </summary>
 public static bool useTrumps = false;
 /// <summary>
 /// Trump suit to use if useTrumps is true.
 /// </summary>
 public static Suit trump = Suit.Club;
 /// <summary>
 /// Flag that determines whether aces are higher than kings or lower
 /// than deuces.
 /// </summary>
 public static bool isAceHigh = true;

These rules apply to all Card objects in every Deck in an application. It’s not possible to have two
decks of cards with cards contained in each that obey different rules. That’s fine for this class
library, however, as you can safely assume that if a single application wants to use separate rules,
then it could maintain these itself, perhaps setting the static members of Card whenever decks are
switched.

Because you have done this, it is worth adding a few more constructors to the Deck class to initialize
decks with distinctive characteristics:

 /// <summary>
 /// Nondefault constructor. Allows aces to be set high.
 /// </summary>
 public Deck(bool isAceHigh) : this()
 {
 Card.isAceHigh = isAceHigh;
 }
 /// <summary>
 /// Nondefault constructor. Allows a trump suit to be used.
 /// </summary>
 public Deck(bool useTrumps, Suit trump) : this()
 {
 Card.useTrumps = useTrumps;
 Card.trump = trump;
 }
 /// <summary>
 /// Nondefault constructor. Allows aces to be set high and a trump suit
 /// to be used.
 /// </summary>
 public Deck(bool isAceHigh, bool useTrumps, Suit trump) : this()
 {
 Card.isAceHigh = isAceHigh;
 Card.useTrumps = useTrumps;
 Card.trump = trump;
 }

304 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

Each of these constructors is defined by using the : this() syntax shown in Chapter 9, so in all
cases the default constructor is called before the nondefault one, initializing the deck.

NOTE The null condition operator (?.) implemented in the == and > opera-
tor overload method is discussed in more detail in Chapter 12. The ?. in the
code segment card1?.suit of the public static bool operator == method
checks whether the card1 object is null before attempting to retrieve the value
stored in suit. This is important when you implement the method in later
chapters.

Now add your operator overloads (and suggested overrides) to the Card class:

 public static bool operator ==(Card card1, Card card2)
 => (card1?.suit == card2?.suit) && (card1?.rank == card2?.rank);
 public static bool operator !=(Card card1, Card card2)
 => !(card1 == card2);
 public override bool Equals(object card) => this == (Card)card;
 public override int GetHashCode()
 => 13 * (int)suit + (int)rank;
 public static bool operator >(Card card1, Card card2)
 {
 if (card1.suit == card2.suit)
 {
 if (isAceHigh)
 {
 if (card1.rank == Rank.Ace)
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return true;
 }
 else
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return (card1.rank > card2?.rank);
 }
 }
 else
 {
 return (card1.rank > card2.rank);
 }
 }
 else
 {
 if (useTrumps && (card2.suit == Card.trump))
 return false;
 else

Comparisons ❘ 305

 return true;
 }
 }
 public static bool operator <(Card card1, Card card2)
 => !(card1 >= card2);
 public static bool operator >=(Card card1, Card card2)
 {
 if (card1.suit == card2.suit)
 {
 if (isAceHigh)
 {
 if (card1.rank == Rank.Ace)
 {
 return true;
 }
 else
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return (card1.rank >= card2.rank);
 }
 }
 else
 {
 return (card1.rank >= card2.rank);
 }
 }
 else
 {
 if (useTrumps && (card2.suit == Card.trump))
 return false;
 else
 return true;
 }
 }
 public static bool operator <=(Card card1, Card card2)
 => !(card1 > card2);

There’s not much to note here, except perhaps the slightly lengthy code for the > and >= overloaded
operators. If you step through the code for >, you can see how it works and why these steps are
necessary.

You are comparing two cards, card1 and card2, where card1 is assumed to be the first one laid
down on the table. As discussed earlier, this becomes important when you are using trump cards,
because a trump will beat a non-trump even if the non-trump has a higher rank. Of course, if the
suits of the two cards are identical, then whether the suit is the trump suit or not is irrelevant, so
this is the first comparison you make:

public static bool operator >(Card card1, Card card2)
{
 if (card1.suit == card2.suit)
 {

306 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

If the static isAceHigh flag is true, then you can’t compare the cards’ ranks directly via their value
in the Rank enumeration, because the rank of ace has a value of 1 in this enumeration, which is less
than that of all other ranks. Instead, use the following steps:

 ➤ If the first card is an ace, then check whether the second card is also an ace. If it is, then the
first card won’t beat the second. If the second card isn’t an ace, then the first card wins:

 if (isAceHigh)
 {
 if (card1.rank == Rank.Ace)
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return true;
 }

 ➤ If the first card isn’t an ace, then you also need to check whether the second one is. If it is,
then the second card wins; otherwise, you can compare the rank values because you know
that aces aren’t an issue:

 else
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return (card1.rank > card2?.rank);
 }
 }

 ➤ If aces aren’t high, then you just compare the rank values:

 else
 {
 return (card1.rank > card2.rank);
 }

The remainder of the code concerns the case where the suits of card1 and card2 are different. Here,
the static useTrumps flag is important. If this flag is true and card2 is of the trump suit, then you
can say definitively that card1 isn’t a trump (because the two cards have different suits); and trumps
always win, so card2 is the higher card:

 else
 {
 if (useTrumps && (card2.suit == Card.trump))
 return false;

If card2 isn’t a trump (or useTrumps is false), then card1 wins, because it was the first card laid
down:

 else
 return true;
 }
}

Comparisons ❘ 307

Only one other operator (>=) uses code similar to this, and the other operators are very simple, so
there’s no need to go into more detail about them.

The following simple client code tests these operators. Simply place it in the Main() method of a
client project to test it, like the client code shown earlier in the CardLib examples (you can find this
code in Ch11CardClient\Program.cs):

Card.isAceHigh = true;
WriteLine("Aces are high.");
Card.useTrumps = true;
Card.trump = Suit.Club;
WriteLine("Clubs are trumps.");
Card card1, card2, card3, card4, card5;
card1 = new Card(Suit.Club, Rank.Five);
card2 = new Card(Suit.Club, Rank.Five);
card3 = new Card(Suit.Club, Rank.Ace);
card4 = new Card(Suit.Heart, Rank.Ten);
card5 = new Card(Suit.Diamond, Rank.Ace);
WriteLine($"{card1.ToString()} == {card2.ToString()} ? {card1 == card2}");
WriteLine($"{card1.ToString()} != {card3.ToString()} ? {card1 != card3}");
WriteLine($"{card1.ToString()}.Equals({card4.ToString()}) ? " +
 $" { card1.Equals(card4)}");
WriteLine($"Card.Equals({card3.ToString()}, {card4.ToString()}) ? " +
 $" { Card.Equals(card3, card4)}");
WriteLine($"{card1.ToString()} > {card2.ToString()} ? {card1 > card2}");
WriteLine($"{card1.ToString()} <= {card3.ToString()} ? {card1 <= card3}");
WriteLine($"{card1.ToString()} > {card4.ToString()} ? {card1 > card4}");
WriteLine($"{card4.ToString()} > {card1.ToString()} ? {card4 > card1}");
WriteLine($"{card5.ToString()} > {card4.ToString()} ? {card5 > card4}");
WriteLine($"{card4.ToString()} > {card5.ToString()} ? {card4 > card5}");
ReadKey();

The results are as shown in Figure 11-7.

FIGURE 11-7

In each case, the operators are applied taking the specified rules into account. This is particularly
apparent in the last four lines of output, demonstrating how trump cards always beat non-trumps.

308 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

The IComparable and IComparer Interfaces
The IComparable and IComparer interfaces are the standard way to compare objects in the .NET
Framework. The difference between the interfaces is as follows:

 ➤ IComparable is implemented in the class of the object to be compared and allows compari-
sons between that object and another object.

 ➤ IComparer is implemented in a separate class, which allows comparisons between any two
objects.

Typically, you give a class default comparison code by using IComparable, and nondefault compari-
sons using other classes.

IComparable exposes the single method CompareTo(), which accepts an object. You could, for
example, implement it in a way that enables you to pass a Person object to it and determine whether
that person is older or younger than the current person. In fact, this method returns an int, so you
could also determine how much older or younger the second person is:

if (person1.CompareTo(person2) == 0)
{
 WriteLine("Same age");
}
else if (person1.CompareTo(person2) > 0)
{
 WriteLine("person 1 is Older");
}
else
{
 WriteLine("person1 is Younger");
}

IComparer exposes the single method Compare(), which accepts two objects and returns an integer
result just like CompareTo(). With an object supporting IComparer, you could use code like the
following:

if (personComparer.Compare(person1, person2) == 0)
{
 WriteLine("Same age");
}
else if (personComparer.Compare(person1, person2) > 0)
{
 WriteLine("person 1 is Older");
}
else
{
 WriteLine("person1 is Younger");
}

In both cases, the parameters supplied to the methods are of the type System.Object. This means
that you can compare one object to another object of any other type, so you usually have to perform
some type comparison before returning a result, and maybe even throw exceptions if the wrong
types are used.

Comparisons ❘ 309

The .NET Framework includes a default implementation of the IComparer interface on a class
called Comparer, found in the System.Collections namespace. This class is capable of per-
forming culture-specific comparisons between simple types, as well as any type that supports the
IComparable interface. You can use it, for example, with the following code:

string firstString = "First String";
string secondString = "Second String";
WriteLine($"Comparing '{firstString}' and '{secondString}', " +
 $"result: {Comparer.Default.Compare(firstString, secondString)}");
int firstNumber = 35;
int secondNumber = 23;
WriteLine($"Comparing '{firstNumber}' and '{ secondNumber }', " +
 $"result: {Comparer.Default.Compare(firstNumber, secondNumber)}");

This uses the Comparer.Default static member to obtain an instance of the Comparer class, and
then uses the Compare() method to compare first two strings, and then two integers.

The result is as follows:

Comparing 'First String' and 'Second String', result: -1
Comparing '35' and '23', result: 1

Because F comes before S in the alphabet, it is deemed “less than” S, so the result of the first com-
parison is −1. Similarly, 35 is greater than 23, hence the result of 1. Note that the results do not indi-
cate the magnitude of the difference.

When using Comparer, you must use types that can be compared. Attempting to compare first-
String with firstNumber, for instance, will generate an exception.

Here are a few more points about the behavior of this class:

 ➤ Objects passed to Comparer.Compare() are checked to determine whether they support
IComparable. If they do, then that implementation is used.

 ➤ Null values are allowed, and are interpreted as being “less than” any other object.

 ➤ Strings are processed according to the current culture. To process strings according to a dif-
ferent culture (or language), the Comparer class must be instantiated using its constructor,
which enables you to pass a System.Globalization.CultureInfo object specifying the cul-
ture to use.

 ➤ Strings are processed in a case-sensitive way. To process them in a non-case-sensitive way,
you need to use the CaseInsensitiveComparer class, which otherwise works exactly the
same.

Sorting Collections
Many collection classes allow sorting, either by default comparisons between objects or by custom
methods. ArrayList is one example. It contains the method Sort(), which can be used without
parameters, in which case default comparisons are used, or it can be passed an IComparer interface
to use to compare pairs of objects.

310 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

When you have an ArrayList filled with simple types, such as integers or strings, the default com-
parer is fine. For your own classes, you must either implement IComparable in your class definition
or create a separate class supporting IComparer to use for comparisons.

Note that some classes in the System.Collections namespace, including CollectionBase, don’t
expose a method for sorting. If you want to sort a collection you have derived from this class, then
you have to do a bit more work and sort the internal List collection yourself.

The following Try It Out shows how to use a default and nondefault comparer to sort a list.

TRY IT OUT Sorting a List: Ch11Ex05

 1. Create a new console application called Ch11Ex05 in the directory C:\BeginningCSharp7\
Chapter11.

 2. Add a new class called Person and modify the code in Person.cs as follows:

namespace Ch11Ex05
{
 public class Person : IComparable
 {
 public string Name;
 public int Age;
 public Person(string name, int age)
 {
 Name = name;
 Age = age;
 }
 public int CompareTo(object obj)
 {
 if (obj is Person)
 {
 Person otherPerson = obj as Person;
 return this.Age - otherPerson.Age;
 }
 else
 {
 throw new ArgumentException(
 "Object to compare to is not a Person object.");
 }
 }
 }
}

 3. Add another new class called PersonComparerName and modify the code as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Ch11Ex05
{

Comparisons ❘ 311

 public class PersonComparerName : IComparer
 {
 public static IComparer Default = new PersonComparerName();
 public int Compare(object x, object y)
 {
 if (x is Person && y is Person)
 {
 return Comparer.Default.Compare(
 ((Person)x).Name, ((Person)y).Name);
 }
 else
 {
 throw new ArgumentException(
 "One or both objects to compare are not Person objects.");
 }
 }
 }
}

 4. Modify the code in Program.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static System.Console;
namespace Ch11Ex05
{
 class Program
 {
 static void Main(string[] args)
 {
 ArrayList list = new ArrayList();
 list.Add(new Person("Rual", 30));
 list.Add(new Person("Donna", 25));
 list.Add(new Person("Mary", 27));
 list.Add(new Person("Ben", 44));
 WriteLine("Unsorted people:");
 for (int i = 0; i < list.Count; i++)
 {
 WriteLine($"{(list[i] as Person).Name } ({(list[i] as Person).Age })");
 }
 WriteLine();
 WriteLine(
 "People sorted with default comparer (by age):");
 list.Sort();
 for (int i = 0; i < list.Count; i++)
 {
 WriteLine($"{(list[i] as Person).Name } ({(list[i] as Person).Age })");
 }
 WriteLine();

312 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

 WriteLine(
 "People sorted with nondefault comparer (by name):");
 list.Sort(PersonComparerName.Default);
 for (int i = 0; i < list.Count; i++)
 {
 WriteLine($"{(list[i] as Person).Name } ({(list[i] as Person).Age })");
 }
 ReadKey();
 }
 }
}

 5. Execute the code. The result is shown in Figure 11-8.

FIGURE 11-8

How It Works

An ArrayList containing Person objects is sorted in two different ways here. By calling the
ArrayList.Sort() method with no parameters, the default comparison is used, which is the
CompareTo() method in the Person class (because this class implements IComparable):

 public int CompareTo(object obj)
 {
 if (obj is Person)
 {
 Person otherPerson = obj as Person;
 return this.Age - otherPerson.Age;
 }
 else
 {
 throw new ArgumentException(
 "Object to compare to is not a Person object.");
 }
 }

Conversions ❘ 313

This method first checks whether its argument can be compared to a Person object—that is, whether
the object can be converted into a Person object. If there is a problem, then an exception is thrown.
Otherwise, the Age properties of the two Person objects are compared.

Next, a nondefault comparison sort is performed using the PersonComparerName class, which imple-
ments IComparer. This class has a public static field for ease of use:

 public static IComparer Default = new PersonComparerName();

This enables you to get an instance using PersonComparerName.Default, just like the Comparer class
shown earlier. The CompareTo() method of this class is as follows:

 public int Compare(object x, object y)
 {
 if (x is Person && y is Person)
 {
 return Comparer.Default.Compare(
 ((Person)x).Name, ((Person)y).Name);
 }
 else
 {
 throw new ArgumentException(
 "One or both objects to compare are not Person objects.");
 }
 }

Again, arguments are first checked to determine whether they are Person objects. If they aren’t, then
an exception is thrown. If they are, then the default Comparer object is used to compare the two string
Name fields of the Person objects.

CONVERSIONS

Thus far, you have used casting whenever you have needed to convert one type into another, but this
isn’t the only way to do things. Just as an int can be converted into a long or a double implicitly
as part of a calculation, you can define how classes you have created can be converted into other
classes (either implicitly or explicitly). To do this, you overload conversion operators, much like
other operators were overloaded earlier in this chapter. You’ll see how in the first part of this sec-
tion. You’ll also see another useful operator, the as operator, which in general is preferable to cast-
ing when using reference types.

Overloading Conversion Operators
As well as overloading mathematical and logical operators, as shown earlier, you can define both
implicit and explicit conversions between types. This is necessary if you want to convert between
types that aren’t related—if there is no inheritance relationship between them and no shared inter-
faces, for example.

314 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

Suppose you define an implicit conversion between ConvClass1 and ConvClass2. This means that
you can write code such as the following:

ConvClass1 op1 = new ConvClass1();
ConvClass2 op2 = op1;

Alternatively, you can define an explicit conversion:

ConvClass1 op1 = new ConvClass1();
ConvClass2 op2 = (ConvClass2)op1;

As an example, consider the following code:

public class ConvClass1
{
 public int val;
 public static implicit operator ConvClass2(ConvClass1 op1)
 {
 ConvClass2 returnVal = new ConvClass2();
 returnVal.val = op1.val;
 return returnVal;
 }
}
public class ConvClass2
{
 public double val;
 public static explicit operator ConvClass1(ConvClass2 op1)
 {
 ConvClass1 returnVal = new ConvClass1();
 checked {returnVal.val = (int)op1.val;};
 return returnVal;
 }
}

Here, ConvClass1 contains an int value and ConvClass2 contains a double value. Because int
values can be converted into double values implicitly, you can define an implicit conversion between
ConvClass1 and ConvClass2. The reverse is not true, however, and you should define the conver-
sion operator between ConvClass2 and ConvClass1 as explicit.

You specify this using the implicit and explicit keywords as shown. With these classes, the
following code is fine:

ConvClass1 op1 = new ConvClass1();
op1.val = 3;
ConvClass2 op2 = op1;

A conversion in the other direction, however, requires the following explicit casting conversion:

ConvClass2 op1 = new ConvClass2();
op1.val = 3e15;
ConvClass1 op2 = (ConvClass1)op1;

Because you have used the checked keyword in your explicit conversion, you will get an exception
in the preceding code, as the val property of op1 is too large to fit into the val property of op2.

Conversions ❘ 315

The as Operator
The as operator converts a type into a specified reference type, using the following syntax:

<operand> as <type>

This is possible only in certain circumstances:

 ➤ If <operand> is of type <type>

 ➤ If <operand> can be implicitly converted to type <type>

 ➤ If <operand> can be boxed into type <type>

If no conversion from <operand> to <type> is possible, then the result of the expression will be
null.

Conversion from a base class to a derived class is possible by using an explicit conversion, but it
won’t always work. Consider the two classes ClassA and ClassD from an earlier example, where
ClassD inherits from ClassA:

 class ClassA : IMyInterface {}
 class ClassD : ClassA {}

The following code uses the as operator to convert from a ClassA instance stored in obj1 into the
ClassD type:

ClassA obj1 = new ClassA();
ClassD obj2 = obj1 as ClassD;

This will result in obj2 being null.

However, it is possible to store ClassD instances in ClassA-type variables by using polymorphism.
The following code illustrates this, using the as operator to convert from a ClassA-type variable
containing a ClassD-type instance into the ClassD type:

ClassD obj1 = new ClassD();
ClassA obj2 = obj1;
ClassD obj3 = obj2 as ClassD;

This time the result is that obj3 ends up containing a reference to the same object as obj1, not null.

This functionality makes the as operator very useful, because the following code (which uses simple
casting) results in an exception being thrown:

ClassA obj1 = new ClassA();
ClassD obj2 = (ClassD)obj1;

The as equivalent of this code results in a null value being assigned to obj2—no exception is
thrown. This means that code such as the following (using two of the classes developed ear-
lier in this chapter, Animal and a class derived from Animal called Cow) is very common in C#
applications:

public void MilkCow(Animal myAnimal)
{
 Cow myCow = myAnimal as Cow;
 if (myCow != null)
 {

316 ❘ CHAPTER 11 ColleCtions, Comparisons, and Conversions

 myCow.Milk();
 }
 else
 {
 WriteLine($"{myAnimal.Name} isn't a cow, and so can't be milked.");
 }
}

This is much simpler than checking for exceptions!

EXERCISES

 11.1 Create a collection class called People that is a collection of the following Person class.
The items in the collection should be accessible via a string indexer that is the name of the
person, identical to the Person.Name property.

public class Person
{
 private string name;
 private int age;
 public string Name
 {
 get { return name; }
 set { name = value; }
 }
 public int Age
 {
 get { return age; }
 set { age = value; }
 }
}

 11.2 Extend the Person class from the preceding exercise so that the >, <, >=, and <= operators
are overloaded, and compare the Age properties of Person instances.

 11.3 Add a GetOldest() method to the People class that returns an array of Person objects with
the greatest Age property (one or more objects, as multiple items can have the same value
for this property), using the overloaded operators defined in Exercise 11.2.

 11.4 Implement the ICloneable interface on the People class to provide deep copying capability.

 11.5 Add an iterator to the People class that enables you to get the ages of all members in a
foreach loop as follows:

foreach (int age in myPeople.Ages)
{
 // Display ages.
}

Answers to the exercises can be found in Appendix.

Conversions ❘ 317

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT DESCRIPTION

Defining
collections

Collections are classes that can contain instances of other classes. You can define
a collection by deriving from CollectionBase, or implement collection inter-
faces such as IEnumerable, ICollection, and IList yourself. Typically, you
will define an indexer for your collection in order to use collection[index]
syntax to access members.

Dictionaries You can also define keyed collections, or dictionaries, whereby each item has
an associated key. In this case, the key can be used to identify an item, rather
than using the item’s index. You can define a dictionary by implementing
IDictionary or by deriving a class from DictionaryBase.

Iterators You can implement an iterator to control how looping code obtains val-
ues in its loop cycles. To iterate over a class, implement a method called
GetEnumerator() with a return type of IEnumerator. To iterate over a class
member, such as a method, use a return type of IEnumerable. In iterator code
blocks, return values with the yield keyword.

Type
comparisons

You can use the GetType() method to obtain the type of an object, or the
typeof() operator to get the type of a class. You can then compare these type
values. You can also use the is operator to determine whether an object is com-
patible with a certain class type.

Value
comparisons

If you want to make classes whose instances can be compared using standard C#
operators, you must overload those operators in the class definition. For other
types of value comparison, you can use classes that implement the IComparable
or IComparer interfaces. These interfaces are particularly useful for sorting
collections.

The as operator You can use the as operator to convert a value to a reference type. If no conver-
sion is possible, the as operator returns a null value.

Generics
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Discovering generics

 ➤ Using generic classes provided by the .NET Framework

 ➤ Defining your own generics

 ➤ Learning how variance works with generics

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter12 folder and individually named
according to the names throughout the chapter.

This chapter begins by looking at what generics are. You learn about generics in fairly abstract
terms at first, because learning the concepts behind generics is crucial to being able to use
them effectively.

Next, you see some of the generic types in the .NET Framework in action. This will help you
understand their functionality and power, as well as the new syntax required in your code.
You’ll then move on to define your own generic types, including generic classes, interfaces,
methods, and delegates. You also learn additional techniques for further customizing generic
types: the default keyword and type constraints.

Finally, you’ll look at covariance and contravariance, two forms of variance that were intro-
duced in C# 4 and that allow greater flexibility when using generic classes.

12

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

320 ❘ CHAPTER 12 Generics

WHAT ARE GENERICS?

To best illustrate what generics are, and why they are so useful, recall the collection classes from
the previous chapter. You saw how basic collections can be contained in classes such as ArrayList,
but that such collections suffer from being untyped. This requires that you cast object items into
whatever type of objects you actually stored in the collection. Because anything that inherits from
System.Object (that is, practically anything) can be stored in an ArrayList, you need to be care-
ful. Assuming that certain types are all that is contained in a collection can lead to exceptions being
thrown, and code logic breaking down. You learned some techniques to deal with this, including the
code required to check the type of an object.

However, you discovered that a much better solution is to use a strongly typed collection class ini-
tially. By deriving from CollectionBase and providing your own methods for adding, removing,
and otherwise accessing members of the collection, you learned how you could restrict collection
members to those derived from a certain base type or supporting a certain interface. This is where
you encounter a problem. Every time you create a new class that needs to be held in a collection, you
must do one of the following:

 ➤ Use a collection class you’ve already made that can contain items of the new type.

 ➤ Create a new collection class that can hold items of the new type, implementing all the
required methods.

Typically, with a new type you need extra functionality, so more often than not, you need a new col-
lection class anyway. Therefore, making collection classes can take up a fair amount of your time!

Generic classes, conversely, make coding a lot simpler. A generic class is built around whatever type,
or types, you supply during instantiation, enabling you to strongly type an object with hardly any
effort at all. In the context of collections, creating a “collection of type T objects” is as simple as say-
ing it aloud—and achievable in a single line of code. Instead of code such as,

CollectionClass items = new CollectionClass();
items.Add(new ItemClass());

you can use this:

CollectionClass<ItemClass> items = new CollectionClass<ItemClass>();
items.Add(new ItemClass());

The angle bracket syntax is the way you pass type parameters to generic types. In the preceding
code, read CollectionClass<ItemClass> as CollectionClass of ItemClass. You will, of course,
examine this syntax in more detail later in the chapter.

There’s more to the subject of generics than just collections, but they are particularly suited to
this area, as you will see later in the chapter when you look at the System.Collections.Generic
namespace. By creating a generic class, you can generate methods that have a signature that can be
strongly typed to any type you want, even catering to the fact that a type can be a value or reference
type, and deal with individual cases as they occur. You can even allow only a subset of types to be
used, by restricting the types used to instantiate a generic class to those that support a given inter-
face or are derived from a certain type. Moreover, you’re not restricted to generic classes—you can

Using Generics ❘ 321

create generic interfaces, generic methods (which can be defined on nongeneric classes), and even
generic delegates. All this adds a great deal of flexibility to your code, and judicious use of generics
can eliminate hours of development time.

NOTE If you are familiar with C++, this is one difference between C++ tem-
plates and C# generic classes. In C++ the compiler detects where you used a
specific type of template—for example, A of B—and compiles the code neces-
sary to create this type. In C# everything happens at runtime.

You’re probably wondering how all this is possible. Usually, when you create a class, it is compiled
into a type that you can then use in your code. You might think that when you create a generic class,
it would have to be compiled into a plethora of types, so that you could instantiate it. Fortunately,
that’s not the case—and given the infinite amount of classes possible in .NET, that’s just as well.
Behind the scenes, the .NET runtime allows generic classes to be dynamically generated as and
when you need them. A given generic class A of B won’t exist until you ask for it by instantiating it.

USING GENERICS

Before you look at how to create your own generic types, it’s worth looking at the ones supplied by
the .NET Framework. These include the types in the System.Collections.Generic namespace,
a namespace that you’ve seen several times in your code because it is included by default in console
applications. You haven’t yet used any of the types in this namespace, but that’s about to change.
This section looks at the types in this namespace and how you can use them to create strongly typed
collections and improve the functionality of your existing collections.

First, though, you’ll look at another simpler generic type that gets around a minor issue with value
types: nullable types.

Nullable Types
In earlier chapters, you saw that one of the ways in which value types (which include most of the
basic types such as int and double as well as all structs) differ from reference types (string and
any class) is that they must contain a value. They can exist in an unassigned state, just after they are
declared and before a value is assigned, but you can’t make use of the value type in that state in any
way. Conversely, reference types can be null.

There are times, and they crop up more often than you might think (particularly when you work
with databases), when it is useful to have a value type that can be null. Generics give you a way to
do this using the System.Nullable<T> type, as shown in this example:

System.Nullable<int> nullableInt;

This code declares a variable called nullableInt, which can have any value that an int variable
can, plus the value null. This enables you to write code such as the following:

nullableInt = null;

322 ❘ CHAPTER 12 Generics

If nullableInt were an int type variable, then the preceding code wouldn’t compile.

The preceding assignment is equivalent to the following:

nullableInt = new System.Nullable<int>();

As with any other variable, you can’t just use it before some kind of initialization, whether to null
(through either syntax shown previously) or by assigning a value.

You can test nullable types to determine whether they are null, just like you test reference types:

if (nullableInt == null)
{
 ...
}

Alternatively, you can use the HasValue property:

if (nullableInt.HasValue)
{
 ...
}

This wouldn’t work for reference types, even one with a HasValue property of its own, because hav-
ing a null-valued reference type variable means that no object exists through which to access this
property, and an exception would be thrown.

You can also look at the value of a nullable type by using the Value property. If HasValue is true,
then you are guaranteed a non-null value for Value; but if HasValue is false—that is, null has
been assigned to the variable—then accessing Value will result in an exception of type System
.InvalidOperationException.

Note that nullable types are so useful that they have resulted in a modification of C# syntax. Rather
than using the syntax shown previously to declare a nullable type variable, you can instead use the
following:

int? nullableInt;

int? is simply a shorthand for System.Nullable<int> but is much more readable. In subsequent
sections, you’ll use this syntax.

Operators and Nullable Types
With simple types, such as int, you can use operators such as +, -, and so on to work with values. With
nullable type equivalents, there is no difference: The values contained in nullable types are implicitly
converted to the required type and the appropriate operators are used. This also applies to structs with
operators that you have supplied:

int? op1 = 5;
int? result = op1 * 2;

Note that here the result variable is also of type int?. The following code will not compile:

int? op1 = 5;
int result = op1 * 2;

Using Generics ❘ 323

To get this to work you must perform an explicit conversion or access the value through the Value
property, which requires code such as,

int? op1 = 5;
int result = (int)op1 * 2;

or:

int? op1 = 5;
int result = op1.Value * 2;

This works fine as long as op1 has a value—if it is null, then you will get an exception of type
System.InvalidOperationException.

This raises the obvious question: What happens when one or both values in an operator evaluation
that involves two nullable values are null, such as op1 in the following code?

int? op1 = null;
int? op2 = 5;
int? result = op1 * op2;

The answer is that for all simple nullable types other than bool?, the result of the operation is null,
which you can interpret as “unable to compute.” For structs you can define your own operators to
deal with this situation (as shown later in this chapter), and for bool? there are operators defined
for & and | that might result in non-null return values. The results in the table make perfect sense
logically—if there is enough information to work out the answer of the computation without need-
ing to know the value of one of the operands, then it doesn’t matter if that operand is null.

The ?? Operator
To further reduce the amount of code you need in order to deal with nullable types, and to make
it easier to deal with variables that can be null, you can use the ?? operator. Known as the null
coalescing operator, it is a binary operator that enables you to supply an alternative value to use for
expressions that might evaluate to null. The operator evaluates to its first operand if the first oper-
and is not null, or to its second operator if the first operand is null. Functionally, the following
two expressions are equivalent:

op1 ?? op2
op1 == null ? op2 : op1

In this code, op1 can be any nullable expression, including a reference type and, importantly, a
nullable type. This means that you can use the ?? operator to provide default values to use if a nullable
type is null, as shown here:

int? op1 = null;
int result = op1 * 2 ?? 5;

Because in this example op1 is null, op1 * 2 will also be null. However, the ?? operator detects
this and assigns the value 5 to result. Importantly, note here that no explicit conversion is required
to put the result in the int type variable result. The ?? operator handles this conversion for you.
Alternatively, you can pass the result of a ?? evaluation into an int? with no problems:

int? result = op1 * 2 ?? 5;

324 ❘ CHAPTER 12 Generics

This behavior makes the ?? operator a versatile one to use when dealing with nullable variables, and
a handy way to supply defaults without using either a block of code in an if structure or the often
confusing ternary operator.

The ?. Operator
This operator, often referred to as the Elvis operator or the null condition operator, helps to over-
come code ambiguity caused by burdensome null checking. For example, if you wanted to get the
count of orders for a given customer, you would need to check for null before setting the count
value:

int count = 0;
if (customer.orders ! = null)
{
 count = customer.orders.Count();
}

If you were to simply write this code and there were no orders existing for the customer (i.e. it’s
null), a System.ArgumentNullException is thrown:

int count = customer.orders.Count();

Using the ?. operator results in the int? count being set to null instead of an exception
happening.

int? count = customer.orders?.Count();

Combining the null coalescing operator ?? discussed in the previous section with the null condition
operator ?. makes it possible to set a default value when the result is null.

int? count = customer.orders?.Count() ?? 0;

Another use of the null conditional operator is to trigger events. Events are discussed in detail in
Chapter 13. The most common way to trigger an event is by using this code pattern:

var onChanged = OnChanged;
if (onChanged != null)
{
 onChanged(this, args);
}

This pattern is not thread safe because someone might unsubscribe the last event handler just after
the null check is done. When that happens, an exception is thrown and the application crashes.
Avoid this by either copying the delegate reference just before you check it, shown in the previous
snippet var onChanged = onChanged; or by using the null condition operator as shown here:

OnChanged?.Invoke(this, args);

NOTE If you utilize operator overload methods (for example, the ==) without
checking for nulls, you receive a System.NullReferenceException.

Using Generics ❘ 325

As mentioned in Chapter 11, use the ?. operator to check for nulls with the == operator overload in
the C:\BeginningCSharp7\Chapter12\Ch12CardLib\Card.cs class to prevent an exception from
being thrown when using the method. For example:

public static bool operator ==(Card card1, Card card2)
 => (card1?.suit == card2?.suit) && (card1?.rank == card2?.rank);

By including the null condition operator in the statement, you are effectively expressing that if the object
to the left is not null, (in this case card1 or card2), then retrieve what is to the right. If the object on the
left is null (i.e. card1 or card2), then terminate the access chain and return null.

Working with Nullable Types
Use the following Try It Out to experiment with a nullable Vector type.

TRY IT OUT Nullable Types: Ch12Ex01

 1. Create a new console application project called Ch12Ex01 and save it in the directory C:\
BeginningCSharp7\Chapter12.

 2. Add a new class called Vector in the file Vector.cs.

 3. Modify the code in Vector.cs as follows:

using static System.Math;
public class Vector
{
 public double? R = null;
 public double? Theta = null;
 public double? ThetaRadians
 {
 // Convert degrees to radians.
 get { return (Theta * Math.PI / 180.0); }
 }
 public Vector(double? r, double? theta)
 {
 // Normalize.
 if (r < 0)
 {
 r = -r;
 theta += 180;
 }
 theta = theta % 360;
 // Assign fields.
 R = r;
 Theta = theta;
 }
 public static Vector operator +(Vector op1, Vector op2)
 {
 try
 {

326 ❘ CHAPTER 12 Generics

 // Get (x, y) coordinates for new vector.
 double newX = op1.R.Value * Sin(op1.ThetaRadians.Value)
 + op2.R.Value * Sin(op2.ThetaRadians.Value);
 double newY = op1.R.Value * Cos(op1.ThetaRadians.Value)
 + op2.R.Value * Cos(op2.ThetaRadians.Value);
 // Convert to (r, theta).
 double newR = Sqrt(newX * newX + newY * newY);
 double newTheta = Atan2(newX, newY) * 180.0 / PI;
 // Return result.
 return new Vector(newR, newTheta);
 }
 catch
 {
 // Return "null" vector.
 return new Vector(null, null);
 }
 }
 public static Vector operator -(Vector op1) => new Vector(-op1.R, op1.Theta);
 public static Vector operator -(Vector op1, Vector op2) => op1 + (-op2);
 public override string ToString()
 {
 // Get string representation of coordinates.
 string rString = R.HasValue ? R.ToString(): "null";
 string thetaString = Theta.HasValue ? Theta.ToString(): "null";
 // Return (r, theta) string.
 return string.Format($"({rString}, {thetaString})");
 }
}

 4. Modify the code in Program.cs as follows:

class Program
{
 static void Main(string[] args)
 {
 Vector v1 = GetVector("vector1");
 Vector v2 = GetVector("vector1");
 WriteLine($"{v1} + {v2} = {v1 + v2}");
 WriteLine($"{v1} - { v2} = {v1 - v2}");
 ReadKey();
 }
 static Vector GetVector(string name)
 {
 WriteLine($"Input {name} magnitude:");
 double? r = GetNullableDouble();
 WriteLine($"Input {name} angle (in degrees):");
 double? theta = GetNullableDouble();
 return new Vector(r, theta);
 }
 static double? GetNullableDouble()
 {
 double? result;

Using Generics ❘ 327

 string userInput = ReadLine();
 try
 {
 result = double.Parse(userInput);
 }
 catch
 {
 result = null;
 }
 return result;
 }
}

 5. Execute the application and enter values for two vectors. The sample output is shown in
Figure 12-1.

FIGURE 12-1

 6. Execute the application again, but this time skip at least one of the four values. The sample output
is shown in Figure 12-2.

FIGURE 12-2

How It Works

This example created a class called Vector that represents a vector with polar coordinates (that is, with
a magnitude and an angle), as shown in Figure 12-3.

328 ❘ CHAPTER 12 Generics

y

x
rθ

FIGURE 12-3

The coordinates r and θ are represented in code by the public fields R and Theta, where Theta is
expressed in degrees. ThetaRadians is supplied to obtain the value of Theta in radians—this is neces-
sary because the Math class uses radians in its static methods. Both R and Theta are of type double?, so
they can be null:

 public class Vector
 {
 public double? R = null;
 public double? Theta = null;
 public double? ThetaRadians
 {
 get
 {
 // Convert degrees to radians.
 return (Theta * PI / 180.0);
 }
 }

The constructor for Vector normalizes the initial values of R and Theta and then assigns the public
fields:

 public Vector(double? r, double? theta)
 {
 // Normalize.
 if (r < 0)
 {
 r = -r;
 theta += 180;
 }
 theta = theta % 360;
 // Assign fields.
 R = r;
 Theta = theta;
 }

The main functionality of the Vector class is to add and subtract vectors using operator overloading,
which requires some fairly basic trigonometry not covered here. You might consider taking a look at
this site http://www.onlinemathlearning.com/basic-trigonometry.html, or search for other
resources on the Internet. The important point about the code is that if an exception is thrown when

http://www.onlinemathlearning.com/basic-trigonometry.html

Using Generics ❘ 329

obtaining the Value property of R or ThetaRadians—that is, if either is null—then a “null” vector
is returned:

 public static Vector operator +(Vector op1, Vector op2)
 {
 try
 {
 // Get (x, y) coordinates for new vector.
 ...
 }
 catch
 {
 // Return "null" vector.
 return new Vector(null, null);
 }
 }

If either of the coordinates making up a vector is null, then the vector is invalid, which is signified here
by a Vector class with null values for both R and Theta. The rest of the code in the Vector class over-
rides the other operators required to extend the addition functionality to include subtraction, and overrides
ToString() to obtain a string representation of a Vector object.

The code in Program.cs tests the Vector class by enabling the user to initialize two vectors, and then
adds and subtracts them to and from one another. Should the user omit a value, it will be interpreted as
null, and the rules mentioned previously apply.

The System.Collections.Generic Namespace
In practically every application used so far in this book, you have seen the following namespaces:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static System.Console;

 ➤ The System namespace contains most of the basic types used in .NET applications.

 ➤ The System.Collections.Generic namespace contains generic types for dealing with
collections, and it is likely to be used often with a using statement.

 ➤ You’ll look at the System.Linq namespace later in this book.

 ➤ The System.Text namespace includes types relating to string processing and encoding.

 ➤ The System.Threading.Tasks namespace contains types that help you to write asynchro-
nous code, which isn’t covered in this book.

 ➤ The using static System.Console declaration is very helpful when writing console
applications. When this is manually added, you do not need to write Console before the
WriteLine() and ReadLine() functions over and over again.

330 ❘ CHAPTER 12 Generics

You’ll now look at all these types, which are guaranteed to make your life easier. They make it pos-
sible for you to create strongly typed collection classes with hardly any effort. For example, Table
12-1 lists two types from the System.Collections.Generic namespace that are covered in this
section. More of the types in this namespace are covered later in this chapter.

TABLE 12-1: Generic Collection Type

TYPE DESCRIPTION

List<T> Collection of type T objects

Dictionary<K, V> Collection of items of type V, associated with keys of type K

This section also describes various interfaces and delegates used with these classes.

List<T>
Rather than derive a class from CollectionBase and implement the required methods as you did in
the last chapter, it can be quicker and easier simply to use the List<T> generic collection type. An
added bonus here is that many of the methods you normally have to implement, such as Add(), are
implemented for you.

Creating a collection of type T objects requires the following code:

List<T> myCollection = new List<T>();

That’s it. You don’t have to define any classes, implement any methods, or do anything else. You
can also set a starting list of items in the collection by passing a List<T> object to the constructor.
List<T> also has an Item property, enabling array-like access:

T itemAtIndex2 = myCollectionOfT[2];

This class supports several other methods, but that’s plenty to get you started. The following Try It
Out demonstrates how to use List<T> in practice.

TRY IT OUT Using List<T>: Ch12Ex02

 1. Create a new console application called Ch12Ex02 and save it in the directory C:\
BeginningCSharp7\Chapter12.

 2. Right-click on the project name in the Solution Explorer window and select the Add ➪ Existing
Item option.

 3. Select the Animal.cs, Cow.cs, and Chicken.cs files from the C:\BeginningCSharp7\
Chapter11\Ch11Ex01\ directory and click Add.

 4. Modify the namespace declaration in the three files you added as follows:

namespace Ch12Ex02

Using Generics ❘ 331

 5. Modify Program.cs as follows:

 static void Main(string[] args)
 {
 List<Animal> animalCollection = new List<Animal>();
 animalCollection.Add(new Cow("Rual"));
 animalCollection.Add(new Chicken("Donna"));
 foreach (Animal myAnimal in animalCollection)
 {
 myAnimal.Feed();
 }
 ReadKey();
 }

 6. Execute the application. The result is exactly the same as the result for Ch11Ex02 in the last
chapter.

How It Works

There are only two differences between this example and Ch11Ex02. The first is that the line of code

 Animals animalCollection = new Animals();

has been replaced with:

 List<Animal> animalCollection = new List<Animal>();

The second, and more crucial, difference is that there is no longer an Animals collection class in the
project. All that hard work you did earlier to create this class was achieved in a single line of code by
using a generic collection class.

An alternative way to get the same result is to leave the code in Program.cs as it was in the last chap-
ter, and use the following definition of Animals:

 public class Animals : List<Animal> {}

Doing this has the advantage that the code in Program.cs is slightly easier to read, plus you can add
members to the Animals class as you see fit.

Sorting and Searching Generic Lists
Sorting a generic list is much the same as sorting any other list. The last chapter described how you
can use the IComparer and IComparable interfaces to compare two objects and thereby sort a list of
that type of object. The only difference here is that you can use the generic interfaces IComparer<T>
and IComparable<T>, which expose slightly different, type-specific methods. Table 12-2 explains
these differences.

332 ❘ CHAPTER 12 Generics

TABLE 12-2: Sorting with Generic Types

GENERIC METHOD NONGENERIC METHOD DIFFERENCE

Int IComparable<T>.

CompareTo(T otherObj)

int IComparable.

CompareTo(object

otherObj)

Strongly typed in generic
versions.

Bool IComparable<T>.

Equals(T otherObj)
N/A Doesn’t exist on a nongeneric

interface; can use inherited
object.Equals() instead.

Int IComparer<T>.

Compare(T objectA, T

objectB)

int IComparer.

Compare(object objectA,

object objectB)

Strongly typed in generic
versions.

Bool IComparer<T>.

Equals(T objectA, T

objectB)

N/A Doesn’t exist on a nongeneric
interface; can use inherited
object.Equals() instead.

Int IComparer<T>.

GetHashCode(T objectA)
N/A Doesn’t exist on a nongeneric

interface; can use inherited
object.GetHashCode()
instead.

To sort a List<T>, you can supply an IComparable<T> interface on the type to be sorted, or supply
an IComparer<T> interface. Alternatively, you can supply a generic delegate as a sorting method.
From the perspective of seeing how the code works, this is far more interesting because implement-
ing the interfaces described here takes no more effort than implementing their nongeneric cousins.

In general terms, all you need to sort a list is a method that compares two objects of type T; and
to search, all you need is a method that checks an object of type T to determine whether it meets
certain criteria. It is a simple matter to define such methods, and to aid you there are two generic
delegate types that you can use:

 ➤ Comparison<T>—A delegate type for a method used for sorting, with the following return
type and parameters:

int method(T objectA, T objectB)

 ➤ Predicate<T>—A delegate type for a method used for searching, with the following return
type and parameters:

bool method(T targetObject)

You can define any number of such methods, and use them to “snap-in” to the searching and sorting
methods of List<T>. The next Try It Out illustrates this technique.

Using Generics ❘ 333

TRY IT OUT Sorting and Searching List<T>: Ch12Ex03

 1. Create a new console application called Ch12Ex03 and save it in the directory C:\
BeginningCSharp7\Chapter12.

 2. Right-click on the project name in the Solution Explorer window and select the Add Existing Item
option.

 3. Select the Vector.cs file from the C:\BeginningCSharp7\Chapter12\Ch12Ex01 directory and
click Add.

 4. Modify the namespace declaration in the file you added as follows:

namespace Ch12Ex03

 5. Add a new class called Vectors.

 6. Modify Vectors.cs as follows:

public class Vectors : List<Vector>
{
 public Vectors()
 {
 }
 public Vectors(IEnumerable<Vector> initialItems)
 {
 foreach (Vector vector in initialItems)
 {
 Add(vector);
 }
 }
 public string Sum()
 {
 StringBuilder sb = new StringBuilder();
 Vector currentPoint = new Vector(0.0, 0.0);
 sb.Append("origin");
 foreach (Vector vector in this)
 {
 sb.AppendFormat($" + {vector}");
 currentPoint += vector;
 }
 sb.AppendFormat($" = {currentPoint}");
 return sb.ToString();
 }
}

 7. Add a new class called VectorDelegates.

 8. Modify VectorDelegates.cs as follows:

public static class VectorDelegates
{
 public static int Compare(Vector x, Vector y)
 {

334 ❘ CHAPTER 12 Generics

 if (x.R > y.R)
 {
 return 1;
 }
 else if (x.R < y.R)
 {
 return -1;
 }
 return 0;
 }
 public static bool TopRightQuadrant(Vector target)
 {
 if (target.Theta >= 0.0 && target.Theta <= 90.0)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
}

 9. Modify Program.cs as follows:

static void Main(string[] args)
{
 Vectors route = new Vectors();
 route.Add(new Vector(2.0, 90.0));
 route.Add(new Vector(1.0, 180.0));
 route.Add(new Vector(0.5, 45.0));
 route.Add(new Vector(2.5, 315.0));
 WriteLine(route.Sum());
 Comparison<Vector> sorter = new Comparison<Vector>(
 VectorDelegates.Compare);
 route.Sort(sorter);
 WriteLine(route.Sum());
 Predicate<Vector> searcher =
 new Predicate<Vector>(VectorDelegates.TopRightQuadrant);
 Vectors topRightQuadrantRoute = new Vectors(route.FindAll(searcher));
 WriteLine(topRightQuadrantRoute.Sum());
 ReadKey();
}

 10. Execute the application. The result is shown in Figure 12-4.

FIGURE 12-4

Using Generics ❘ 335

How It Works

In this example, you created a collection class, Vectors, for the Vector class created in Ch12Ex01. You
could just use a variable of type List<Vector>, but because you want additional functionality you use
a new class, Vectors, and derive from List<Vector>, which enables you to add whatever additional
members you want.

One member, Sum(), returns a string listing each vector in turn, along with the result of summing them
all together (using the overloaded + operator from the original Vector class). Because each vector can
be thought of as a direction and a distance, this effectively constitutes a route with an endpoint:

 public string Sum()
 {
 StringBuilder sb = new StringBuilder();
 Vector currentPoint = new Vector(0.0, 0.0);
 sb.Append("origin");
 foreach (Vector vector in this)
 {
 sb.AppendFormat($" + {vector}");
 currentPoint += vector;
 }
 sb.AppendFormat($" = {currentPoint}");
 return sb.ToString();
 }

This method uses the handy StringBuilder class, found in the System.Text namespace, to build the
response string. This class has members such as Append() and AppendFormat() (used here), which
make it easy to assemble a string—the performance is better than concatenating individual strings. You
use the ToString() method of this class to obtain the resultant string.

You also create two methods to be used as delegates, as static members of VectorDelegates.
Compare() is used for comparison (sorting), and TopRightQuadrant() for searching. You’ll look at
these as you review the code in Program.cs.

The code in Main() starts with the initialization of a Vectors collection, to which are added several
Vector objects (you can find this code in Ch12Ex03\Program.cs):

 Vectors route = new Vectors();
 route.Add(new Vector(2.0, 90.0));
 route.Add(new Vector(1.0, 180.0));
 route.Add(new Vector(0.5, 45.0));
 route.Add(new Vector(2.5, 315.0));

The Vectors.Sum() method is used to write out the items in the collection as noted earlier, this time in
their initial order:

 WriteLine(route.Sum());

Next, you create the first of your delegates, sorter. This delegate is of type Comparison<Vector> and,
therefore, can be assigned a method with the following return type and parameters:

int method(Vector objectA, Vector objectB)

336 ❘ CHAPTER 12 Generics

This matches VectorDelegates.Compare(), which is the method you assign to the delegate:

 Comparison<Vector> sorter = new Comparison<Vector>(
 VectorDelegates.Compare);

Compare() compares the magnitudes of two vectors as follows:

public static int Compare(Vector x, Vector y)
{
 if (x.R > y.R)
 {
 return 1;
 }
 else if (x.R < y.R)
 {
 return -1;
 }
 return 0;
}

This enables you to order the vectors by magnitude:

 route.Sort(sorter);
 WriteLine(route.Sum());

The output of the application gives the result you’d expect—the result of the summation is the same
because the endpoint of following the “vector route” is the same regardless of the order in which you
carry out the individual steps.

Next, you obtain a subset of the vectors in the collection by searching. This uses VectorDelegates
.TopRightQuadrant():

public static bool TopRightQuadrant(Vector target)
{
 if (target.Theta >= 0.0 && target.Theta <= 90.0)
 {
 return true;
 }
 else
 {
 return false;
 }
}

This method returns true if its Vector argument has a value of Theta between 0 and 90 degrees—that
is, if it points up and/or right in a diagram of the sort shown earlier.

In the Main() method, you use this method via a delegate of type Predicate<Vector> as follows:

 Predicate<Vector> searcher =
 new Predicate<Vector>(VectorDelegates.TopRightQuadrant);
 Vectors topRightQuadrantRoute = new Vectors(route.FindAll(searcher));
 WriteLine(topRightQuadrantRoute.Sum());

This requires the constructor defined in Vectors:

 public Vectors(IEnumerable<Vector> initialItems)
 {
 foreach (Vector vector in initialItems)

Using Generics ❘ 337

 {
 Add(vector);
 }
 }

Here, you initialize a new Vectors collection using an interface of IEnumerable<Vector>, which
is necessary because List<Vector>.FindAll() returns a List<Vector> instance, not a Vectors
instance.

The result of the searching is that only a subset of Vector objects is returned, so (again, as you’d
expect) the result of the summation is different. The use of these generic delegate types to sort and
search generic collections can take a little while to get used to, but the result is code that is streamlined
and efficient, and which has a highly logical structure. It is well worth investing the time to learn the
techniques presented in this section.

As an aside to this example, note that the code,

 Comparison<Vector> sorter = new Comparison<Vector>(
 VectorDelegates.Compare);
 route.Sort(sorter);

can be simplified to the following:

 route.Sort(VectorDelegates.Compare);

This removes the necessity to implicitly reference the Comparison<Vector> type. In fact, an instance
of this type is still created, but it is created implicitly. The Sort() method obviously needs an instance of
this type to work, but the compiler realizes this and creates one for you from the method that you supply.
In this situation, the reference to VectorDelegates.Compare() (without the parentheses) is referred to
as a method group. There are many situations in which you can use method groups to implicitly create
 delegates in this way, which can make your code more readable.

Dictionary<K, V>
The Dictionary<K, V> type enables you to define a collection of key-value pairs. Unlike the other
generic collection types you’ve looked at in this chapter, this class requires instantiating two types:
the types for both the key and the value that represents each item in the collection.

Once a Dictionary<K, V> object is instantiated, you can perform much the same operations on it as
you can on a class that inherits from DictionaryBase, but with type-safe methods and properties
already in place. You can, for example, add key-value pairs using a strongly typed Add() method:

Dictionary<string, int> things = new Dictionary<string, int>();
things.Add("Green Things", 29);
things.Add("Blue Things", 94);
things.Add("Yellow Things", 34);
things.Add("Red Things", 52);
things.Add("Brown Things", 27);

Adding key-value pairs without using the Add() method can also be achieved and looks little more
elegant:

Dictionary<string, int> things = new Dictionary<string, int>(){
 {"Green Things", 29},

338 ❘ CHAPTER 12 Generics

 {"Blue Things", 94},
 {"Yellow Things", 34},
 {"Red Things", 52},
 {"Brown Things", 27}
};

Iterate through keys and values in the collection by using the Keys and Values properties:

foreach (string key in things.Keys)
{
 WriteLine(key);
}
foreach (int value in things.Values)
{
 WriteLine(value);
}

In addition, iterate through items in the collection by obtaining each as a KeyValuePair<K, V>
instance, much like you can with the DictionaryEntry objects shown in the last chapter:

foreach (KeyValuePair<string, int> thing in things)
{
 WriteLine($"{thing.Key} = {thing.Value}");
}

One point to note about Dictionary<K, V> is that the key for each item must be unique. Attempting
to add an item with an identical key will cause an ArgumentException exception to be thrown.
Because of this, Dictionary<K, V> allows you to pass an IComparer<K> interface to its constructor.
This might be necessary if you use your own classes as keys and they don’t support an IComparable
or IComparable<K> interface, or if you want to compare objects using a nondefault process. For
instance, in the preceding example, you could use a case-insensitive method to compare string keys:

Dictionary<string, int> things =
 new Dictionary<string, int>(StringComparer.CurrentCultureIgnoreCase);

Now you’ll get an exception if you use keys such as this:

things.Add("Green Things", 29);
things.Add("Green things", 94);

You can also pass an initial capacity (with an int) or a set of items (with an IDictionary<K, V>
interface) to the constructor.

Instead of using the Add()method or the more elegant approach to populate a Dictionary<K, V>
type, consider using index initializers, which supports the initialization of indices inside the object
initializer:

var things = new Dictionary<string, int>()
{
 ["Green Things"] = 29,
 ["Blue Things"] = 94,
 ["Yellow Things"] = 34,
 ["Red Things"] = 52,
 ["Brown Things"] = 27
};

Defining Generic Types ❘ 339

Index initializers can be streamlined as in many cases there is no need for a temporary variable as
shown previously via var things. Using expression-bodied methods, the above example leads to a
cascading effect of simplification and ultimate elegance for the initialization of a Dictionary<K, V>
type.

public Dictionary<string, int>
 SomeThings() => new Dictionary<string, int>
 { ["Green Things"] = 29, ["Blue Things"] = 94 };

Modifying CardLib to Use a Generic Collection Class
One simple modification you can make to the CardLib project you’ve been building over recent
chapters is to change the Cards collection class to use a generic collection class, thus saving many
lines of code. The required modification to the class definition for Cards is as follows (you can find
this code in Ch12CardLib\Cards.cs):

 public class Cards : List<Card>, ICloneable { ... }

You can also remove all the methods of Cards except Clone(), which is required for ICloneable,
and CopyTo(), because the version of CopyTo() supplied by List<Card> works with an array of
Card objects, not a Cards collection. Clone() requires a minor modification because the List<T>
class does not define a List property to use:

public object Clone()
{
 Cards newCards = new Cards();
 foreach (Card sourceCard in this)
 {
 newCards.Add((Card)sourceCard.Clone());
 }
 return newCards;
}

Rather than show the code here for what is a very simple modification, the updated version of
CardLib, called Ch12CardLib, is included in the downloadable code for this chapter, along with the
client code from the last chapter.

DEFINING GENERIC TYPES

You’ve now learned enough about generics to create your own. You’ve seen plenty of code involving
generic types and have had plenty of practice using generic syntax. This section looks at defining the
following:

 ➤ Generic classes

 ➤ Generic interfaces

 ➤ Generic methods

 ➤ Generic delegates

340 ❘ CHAPTER 12 Generics

You’ll also look at the following more advanced techniques for dealing with the issues that come up
when defining generic types:

 ➤ The default keyword

 ➤ Constraining types

 ➤ Inheriting from generic classes

 ➤ Generic operators

Defining Generic Classes
To create a generic class, merely include the angle bracket syntax in the class definition:

class MyGenericClass<T> { ... }

Here, T can be any identifier you like, following the usual C# naming rules, such as not starting
with a number and so on. Typically, though, you can just use T. A generic class can have any number
of type parameters in its definition, separated by commas:

class MyGenericClass<T1, T2, T3> { ... }

Once these types are defined, you can use them in the class definition just like any other type. You
can use them as types for member variables, return types for members such as properties or meth-
ods, and parameter types for method arguments:

class MyGenericClass<T1, T2, T3>
{
 private T1 innerT1Object;
 public MyGenericClass(T1 item)
 {
 innerT1Object = item;
 }
 public T1 InnerT1Object
 {
 get { return innerT1Object; }
 }
}

Here, an object of type T1 can be passed to the constructor, and read-only access is permitted to this
object via the property InnerT1Object. Note that you can make practically no assumptions as to
what the types supplied to the class are. The following code, for example, will not compile:

class MyGenericClass<T1, T2, T3>
{
 private T1 innerT1Object;
 public MyGenericClass()
 {
 innerT1Object = new T1();
 }
 public T1 InnerT1Object
 {
 get { return innerT1Object; }
 }
}

Defining Generic Types ❘ 341

Because you don’t know what T1 is, you can’t use any of its constructors—it might not even have
any, or it might have no publicly accessible default constructor. Without more complicated code
involving the techniques shown later in this section, you can make only the following assumption
about T1: you can treat it as a type that either inherits from or can be boxed into System.Object.

Obviously, this means that you can’t really do anything very interesting with instances of this type,
or any of the other types supplied to the generic class MyGenericClass. Without using reflection,
which is an advanced technique used to examine types at runtime (reflection is discussed in Chapter
13), you’re limited to code that’s no more complicated than the following:

 public string GetAllTypesAsString()
 {
 return "T1 = " + typeof(T1).ToString()
 + ", T2 = " + typeof(T2).ToString()
 + ", T3 = " + typeof(T3).ToString();
 }

There is a bit more that you can do, particularly in terms of collections, because dealing with groups
of objects is a pretty simple process and doesn’t need any assumptions about the object types—
which is one good reason why the generic collection classes you’ve seen in this chapter exist.

Another limitation that you need to be aware of is that using the operator == or != is permitted only
when comparing a value of a type supplied to a generic type to null. That is, the following code
works fine:

 public bool Compare(T1 op1, T1 op2)
 {
 if (op1 != null && op2 != null)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

Here, if T1 is a value type, then it is always assumed to be non-null, so in the preceding code
Compare will always return true. However, attempting to compare the two arguments op1 and op2
fails to compile:

 public bool Compare(T1 op1, T1 op2)
 {
 if (op1 == op2)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

342 ❘ CHAPTER 12 Generics

That’s because this code assumes that T1 supports the == operator. In short, to do anything interest-
ing with generics, you need to know a bit more about the types used in the class.

The default Keyword
One of the most basic things you might want to know about types used to create generic class
instances is whether they are reference types or value types. Without knowing this, you can’t even
assign null values with code such as this:

 public MyGenericClass()
 {
 innerT1Object = null;
 }

If T1 is a value type, then innerT1Object can’t have the value null, so this code won’t compile.
Luckily, this problem has been addressed, resulting in a new use for the default keyword (which
you’ve seen being used in switch structures earlier in the book). This is used as follows:

 public MyGenericClass()
 {
 innerT1Object = default(T1);
 }

The result of this is that innerT1Object is assigned a value of null if it is a reference type, or a
default value if it is a value type. This default value is 0 for numeric types, while structs have each of
their members initialized to 0 or null in the same way. The default keyword gets you a bit further
in terms of doing a little more with the types you are forced to use, but to truly get ahead, you need
to constrain the types that are supplied.

Constraining Types
The types you have used with generic classes until now are known as unbounded types because no
restrictions are placed on what they can be. By constraining types, it is possible to restrict the types
that can be used to instantiate a generic class. There are a number of ways to do this. For example,
it’s possible to restrict a type to one that inherits from a certain type. Referring back to the Animal,
Cow, and Chicken classes used earlier, you could restrict a type to one that was or inherited from
Animal, so this code would be fine:

MyGenericClass<Cow> = new MyGenericClass<Cow>();

The following, however, would fail to compile:

MyGenericClass<string> = new MyGenericClass<string>();

In your class definitions this is achieved using the where keyword:

class MyGenericClass<T> where T : constraint { ... }

Here, constraint defines what the constraint is. You can supply a number of constraints in this way
by separating them with commas:

class MyGenericClass<T> where T : constraint1, constraint2 { ... }

Defining Generic Types ❘ 343

You can define constraints on any or all of the types required by the generic class by using multiple
where statements:

class MyGenericClass<T1, T2> where T1 : constraint1 where T2 : constraint2
{ ... }

Any constraints that you use must appear after the inheritance specifiers:

class MyGenericClass<T1, T2> : MyBaseClass, IMyInterface
 where T1 : constraint1 where T2 : constraint2 { ... }

The available constraints are shown in Table 12-3.

TABLE 12-3: Generic Type Constraints

CONSTRAINT DEFINITION EXAMPLE USAGE

struct Type must be a value type. In a class that requires value types to
function—for example, where a member
 variable of type T being 0 means something

class Type must be a reference type. In a class that requires reference types to
function—for example, where a member
variable of type T being null means something

base-class Type must be, or inherit from,
base-class. You can sup-
ply any class name as this
constraint.

In a class that requires certain baseline func-
tionality inherited from base-class in order to
function

interface Type must be, or implement,
interface.

In a class that requires certain baseline func-
tionality exposed by interface in order to
function

new() Type must have a public,
parameterless constructor.

In a class where you need to be able to instanti-
ate variables of type T, perhaps in a constructor

NOTE If new() is used as a constraint, it must be the last constraint specified
for a type.

It is possible to use one type parameter as a constraint on another through the base-class constraint
as follows:

class MyGenericClass<T1, T2> where T2 : T1 { ... }

Here, T2 must be the same type as T1 or inherit from T1. This is known as a naked type constraint,
meaning that one generic type parameter is used as a constraint on another.

344 ❘ CHAPTER 12 Generics

Circular type constraints, as shown here, are forbidden:

class MyGenericClass<T1, T2> where T2 : T1 where T1 : T2 { ... }

This code will not compile. In the following Try It Out, you’ll define and use a generic class that
uses the Animal family of classes shown in earlier chapters.

TRY IT OUT Defining a Generic Class: Ch12Ex04

 1. Create a new console application called Ch12Ex04 and save it in the directory C:\
BeginningCSharp7\Chapter12.

 2. Right-click on the project name in the Solution Explorer window and select the Add Existing Item
option.

 3. Select the Animal.cs, Cow.cs, and Chicken.cs files from the C:\BegVCSharp\Chapter12\
Ch12Ex02 directory and click Add.

 4. Modify the namespace declaration in the file you have added as follows:

namespace Ch12Ex04

 5. Modify Animal.cs as follows:

 public abstract class Animal
 {
 ...
 public abstract void MakeANoise();
 }

 6. Modify Chicken.cs as follows:

 public class Chicken : Animal
 {
 ...
 public override void MakeANoise()
 {
 WriteLine($"{name} says 'cluck!';");
 }
 }

 7. Modify Cow.cs as follows:

 public class Cow : Animal
 {
 ...
 public override void MakeANoise()
 {
 WriteLine($"{name} says 'moo!'");
 }
 }

 8. Add a new class called SuperCow and modify the code in SuperCow.cs as follows:

 public class SuperCow : Cow
 {
 public void Fly()

Defining Generic Types ❘ 345

 {
 WriteLine($"{name} is flying!");
 }
 public SuperCow(string newName): base(newName)
 {
 }
 public override void MakeANoise()
 {
 WriteLine(
 $"{name} says 'here I come to save the day!'");
 }
 }

 9. Add a new class called Farm and modify the code in Farm.cs as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Ch12Ex04
{
 public class Farm<T> : IEnumerable<T>
 where T : Animal
 {
 private List<T> animals = new List<T>();
 public List<T> Animals
 {
 get { return animals; }
 }
 public IEnumerator<T> GetEnumerator() => animals.GetEnumerator();
 IEnumerator IEnumerable.GetEnumerator() => animals.GetEnumerator();
 public void MakeNoises()
 {
 foreach (T animal in animals)
 {
 animal.MakeANoise();
 }
 }
 public void FeedTheAnimals()
 {
 foreach (T animal in animals)
 {
 animal.Feed();
 }
 }
 public Farm<Cow> GetCows()
 {
 Farm<Cow> cowFarm = new Farm<Cow>();
 foreach (T animal in animals)
 {
 if (animal is Cow)
 {

346 ❘ CHAPTER 12 Generics

 cowFarm.Animals.Add(animal as Cow);
 }
 }
 return cowFarm;
 }
 }
}

 10. Modify Program.cs as follows:

 static void Main(string[] args)
 {
 Farm<Animal> farm = new Farm<Animal>();
 farm.Animals.Add(new Cow("Rual"));
 farm.Animals.Add(new Chicken("Donna"));
 farm.Animals.Add(new Chicken("Mary"));
 farm.Animals.Add(new SuperCow("Ben"));
 farm.MakeNoises();
 Farm<Cow> dairyFarm = farm.GetCows();
 dairyFarm.FeedTheAnimals();
 foreach (Cow cow in dairyFarm)
 {
 if (cow is SuperCow)
 {
 (cow as SuperCow).Fly();
 }
 }
 ReadKey();
 }

 11. Execute the application. The result is shown in Figure 12-5.

FIGURE 12-5

How It Works

In this example, you created a generic class called Farm<T>, which, rather than inheriting from a
generic list class, exposes a generic list class as a public property. The type of this list is determined by
the type parameter T that is passed to Farm<T> and is constrained to be, or inherit from, Animal:

 public class Farm<T> : IEnumerable<T>
 where T : Animal
 {
 private List<T> animals = new List<T>();
 public List<T> Animals
 {

Defining Generic Types ❘ 347

 get { return animals; }
 }

Farm<T> also implements IEnumerable<T>, where T is passed into this generic interface and is therefore
also constrained in the same way. You implement this interface to make it possible to iterate through
the items contained in Farm<T> without needing to explicitly iterate over Farm<T>.Animals. This is
simple to achieve: you simply return the enumerator exposed by Animals, which is a List<T> class that
also implements IEnumerable<T>:

 public IEnumerator<T> GetEnumerator() => animals.GetEnumerator();

Because IEnumerable<T> inherits from IEnumerable, you also need to implement IEnumerable.
GetEnumerator():

 IEnumerator IEnumerable.GetEnumerator() => animals.GetEnumerator();

Next, Farm<T> includes two methods that make use of methods of the abstract Animal class:

 public void MakeNoises()
 {
 foreach (T animal in animals)
 {
 animal.MakeANoise();
 }
 }
 public void FeedTheAnimals()
 {
 foreach (T animal in animals)
 {
 animal.Feed();
 }
 }

Because T is constrained to Animal, this code compiles fine—you are guaranteed to have access to the
MakeANoise() and Feed() methods, whatever type T actually is.

The next method, GetCows(), is more interesting. This method simply extracts all the items in the col-
lection that are of type Cow (or that inherit from Cow, such as the new SuperCow class):

 public Farm<Cow> GetCows()
 {
 Farm<Cow> cowFarm = new Farm<Cow>();
 foreach (T animal in animals)
 {
 if (animal is Cow)
 {
 cowFarm.Animals.Add(animal as Cow);
 }
 }
 return cowFarm;
 }

What is interesting here is that this method seems a bit wasteful. If you wanted other methods of the
same sort, such as GetChickens() and so on, you’d need to implement them explicitly too. In a sys-
tem with many more types, you’d need many more methods. A far better solution is to use a generic
method, which you’ll implement a little later in the chapter.

348 ❘ CHAPTER 12 Generics

The client code in Program.cs simply tests the various methods of Farm and doesn’t contain much
you haven’t already seen, so there’s no need to examine this code in any greater detail—despite the
 flying cow.

Inheriting from Generic Classes
The Farm<T> class in the preceding example, as well as several other classes you’ve seen in this chap-
ter, inherit from a generic type. In the case of Farm<T>, this type was an interface: IEnumerable<T>.
Here, the constraint on T supplied by Farm<T> resulted in an additional constraint on T used in
IEnumerable<T>. This can be a useful technique for constraining otherwise unbounded types.
However, you do need to follow some rules.

First, you can’t “unconstrain” types that are constrained in a type from which you are inheriting. In
other words, a type T that is used in a type you are inheriting from must be constrained at least as
much as it is in that type. For example, the following code is fine:

class SuperFarm<T> : Farm<T>
 where T : SuperCow {}

This works because T is constrained to Animal in Farm<T>, and constraining it to SuperCow is
constraining T to a subset of these values. However, the following won’t compile:

class SuperFarm<T> : Farm<T>
 where T : struct{}

Here, you can say definitively that the type T supplied to SuperFarm<T> cannot be converted into a
T usable by Farm<T>, so the code won’t compile.

Even situations in which the constraint is a superset have the same problem:

class SuperFarm<T> : Farm<T>
 where T : class{}

Even though types such as Animal would be allowed by SuperFarm<T>, other types that satisfy the
class constraint won’t be allowed in Farm<T>. Again, compilation will fail. This rule applies to all
the constraint types shown earlier in this chapter.

Also note that if you inherit from a generic type, then you must supply all the required type infor-
mation, either in the form of other generic type parameters, as shown, or explicitly. This also applies
to nongeneric classes that inherit from generic types, as you’ve seen elsewhere. Here’s an example:

public class Cards : List<Card>, ICloneable{}

This is fine, but attempting the following will fail:

public class Cards : List<T>, ICloneable{}

Here, no information is supplied for T, so no compilation is possible.

Defining Generic Types ❘ 349

NOTE If you supply a parameter to a generic type, as in List<Card>, then you
can refer to the type as closed. Similarly, inheriting from List<T> is inheriting
from an open generic type.

Generic Operators
Operator overrides are implemented in C# just like other methods and can be implemented in
generic classes. For example, you could define the following implicit conversion operator in
Farm<T>:

public static implicit operator List<Animal>(Farm<T> farm)
{
 List<Animal> result = new List<Animal>();
 foreach (T animal in farm)
 {
 result.Add(animal);
 }
 return result;
}

This allows the Animal objects in a Farm<T> to be accessed directly as a List<Animal> should you
require it. This comes in handy if you want to add two Farm<T> instances together, such as with the
following operators:

public static Farm<T> operator +(Farm<T> farm1, List<T> farm2)
{
 Farm<T> result = new Farm<T>();
 foreach (T animal in farm1)
 {
 result.Animals.Add(animal);
 }
 foreach (T animal in farm2)
 {
 if (!result.Animals.Contains(animal))
 {
 result.Animals.Add(animal);
 }
 }
 return result;
}
public static Farm<T> operator +(List<T> farm1, Farm<T> farm2)
 => farm2 + farm1;

You could then add instances of Farm<Animal> and Farm<Cow> as follows:

Farm<Animal> newFarm = farm + dairyFarm;

In this code, dairyFarm (an instance of Farm<Cow>) is implicitly converted into List<Animal>,
which is usable by the overloaded + operator in Farm<T>.

350 ❘ CHAPTER 12 Generics

You might think that this could be achieved simply by using the following:

public static Farm<T> operator +(Farm<T> farm1, Farm<T> farm2){ ... }

However, because Farm<Cow> cannot be converted into Farm<Animal>, the summation will fail. To
take this a step further, you could solve this using the following conversion operator:

public static implicit operator Farm<Animal>(Farm<T> farm)
{
 Farm <Animal> result = new Farm <Animal>();
 foreach (T animal in farm)
 {
 result.Animals.Add(animal);
 }
 return result;
}

With this operator, instances of Farm<T>, such as Farm<Cow>, can be converted into instances of
Farm<Animal>, solving the problem. You can use either of the methods shown, although the latter is
preferable for its simplicity.

Generic Structs
You learned in earlier chapters that structs are essentially the same as classes, barring some minor
differences and the fact that a struct is a value type, not a reference type. Because this is the case,
generic structs can be created in the same way as generic classes, as shown here:

public struct MyStruct<T1, T2>
{
 public T1 item1;
 public T2 item2;
}

Defining Generic Interfaces
You’ve now seen several generic interfaces in use—namely, those in the Systems.Collections.
Generic namespace such as IEnumerable<T> used in the last example. Defining a generic interface
involves the same techniques as defining a generic class:

interface MyFarmingInterface<T>
 where T : Animal
{
 bool AttemptToBreed(T animal1, T animal2);
 T OldestInHerd { get; }
}

Here, the generic parameter T is used as the type of the two arguments of AttemptToBreed() and
the type of the OldestInHerd property.

The same inheritance rules apply as for classes. If you inherit from a base generic interface, you must
obey the rules, such as keeping the constraints of the base interface generic type parameters.

Defining Generic Types ❘ 351

Defining Generic Methods
The previous Try It Out used a method called GetCows(), and in the discussion of the example it
was stated that you could make a more general form of this method using a generic method. In this
section you’ll see how this is possible. A generic method is one in which the return and/or parameter
types are determined by a generic type parameter or parameters:

public T GetDefault<T>() => default(T);

This trivial example uses the default keyword you looked at earlier in the chapter to return a
default value for a type T. This method is called as follows:

int myDefaultInt = GetDefault<int>();

The type parameter T is provided at the time the method is called.

This T is quite separate from the types used to supply generic type parameters to classes. In fact,
generic methods can be implemented by nongeneric classes:

public class Defaulter
{
 public T GetDefault<T>() => default(T);
}

If the class is generic, though, then you must use different identifiers for generic method types. The
following code won’t compile:

public class Defaulter<T>
{
 public T GetDefault<T>() => default(T);
}

The type T used by either the method or the class must be renamed.

Constraints can be used by generic method parameters in the same way that they are for classes, and
in this case you can make use of any class type parameters:

public class Defaulter<T1>
{
 public T2 GetDefault<T2>()
 where T2 : T1
 {
 return default(T2);
 }
}

Here, the type T2 supplied to the method must be the same as, or inherit from, T1 supplied to the
class. This is a common way to constrain generic methods.

In the Farm<T> class shown earlier, you could include the following method (included, but com-
mented out, in the downloadable code for Ch12Ex04):

public Farm<U> GetSpecies<U>() where U : T
{
 Farm<U> speciesFarm = new Farm<U>();

352 ❘ CHAPTER 12 Generics

 foreach (T animal in animals)
 {
 if (animal is U)
 {
 speciesFarm.Animals.Add(animal as U);
 }
 }
 return speciesFarm;
}

This can replace GetCows() and any other methods of the same type. The generic type parameter
used here, U, is constrained by T, which is in turn constrained by the Farm<T> class to Animal. This
enables you to treat instances of T as instances of Animal, should you want to do so.

In the client code for Ch12Ex04, in Program.cs, using this new method requires one modification:

Farm<Cow> dairyFarm = farm.GetSpecies<Cow>();

In a similar vein, you could write:

Farm<Chicken> poultryFarm = farm.GetSpecies<Chicken>();

You can take this same approach with any class that inherits from Animal.

Note here that having generic type parameters on a method changes the signature of the method.
This means you can have several overloads of a method differing only in generic type parameters, as
shown in this example:

public void ProcessT<T>(T op1){ ... }
public void ProcessT<T, U>(T op1){ ... }

Which method should be used is determined by the amount of generic type parameters specified
when the method is called.

Defining Generic Delegates
The last generic type to consider is the generic delegate. You saw these delegates in action earlier in
the chapter when you learned how to sort and search generic lists. You used the Comparison<T> and
Predicate<T> delegates, respectively, for this.

Chapter 6 described how to define delegates using the parameters and return type of a method, the
delegate keyword, and a name for the delegate:

public delegate int MyDelegate(int op1, int op2);

To define a generic delegate, you simply declare and use one or more generic type parameters:

public delegate T1 MyDelegate<T1, T2>(T2 op1, T2 op2) where T1: T2;

As you can see, constraints can be applied here too. You’ll learn a lot more about delegates in the
next chapter, including how you can use them in a common C# programming technique—events.

Variance ❘ 353

VARIANCE

Variance is the collective term for covariance and contravariance, two concepts that were intro-
duced in .NET 4. In fact, they have been around longer than that (they were available in .NET
2.0), but until .NET 4 it was very difficult to implement them, as this required custom compilation
procedures.

The easiest way to grasp what these terms mean is to compare them with polymorphism.
Polymorphism, as you will recall, is what enables you to put objects of a derived type into variables
of a base type, for example:

Cow myCow = new Cow("Ben");
Animal myAnimal = myCow;

Here, an object of type Cow has been placed into a variable of type Animal—which is possible
because Cow derives from Animal.

However, the same cannot be said for interfaces. That is to say, the following code will not work:

IMethaneProducer<Cow> cowMethaneProducer = myCow;
IMethaneProducer<Animal> animalMethaneProducer = cowMethaneProducer;

The first line of code is fine, assuming that Cow supports the interface IMethaneProducer<Cow>.
However, the second line of code presupposes a relationship between the two interface types that
doesn’t exist, so there is no way of converting one into the other. Or is there? There certainly isn’t
a way using the techniques you’ve seen so far in this chapter, as all the type parameters for generic
types have been invariant. However, it is possible to define variant type parameters on generic inter-
faces and generic delegates that cater to exactly the situation illustrated in the previous code.

To make the previous code work, the type parameter T for the IMethaneProducer<T> interface
must be covariant. Having a covariant type parameter effectively sets up an inheritance relationship
between IMethaneProducer<Cow> and IMethaneProducer<Animal>, so that variables of one type
can hold values of the other, just like with polymorphism (although a little more complicated).

To round off this introduction to variance, you need to look at the other kind, contravariance. This
is similar but works in the other direction. Rather than being able to place a generic interface value
into a variable that includes a base type as in covariance, contravariance enables you to place that
interface into a variable that uses a derived type, for example:

IGrassMuncher<Cow> cowGrassMuncher = myCow;
IGrassMuncher<SuperCow> superCowGrassMuncher = cowGrassMuncher;

At first glance this seems a little odd, as you couldn’t do the same with polymorphism.
However, this is a useful technique in certain circumstances, as you will see in the section called
“Contravariance.”

In the next two sections, you look at how to implement variance in generic types and how the .NET
Framework uses variance to make your life easier.

354 ❘ CHAPTER 12 Generics

NOTE All of the code in this section is included in a demo project called
VarianceDemo if you want to work through it as you go along.

Covariance
To define a generic type parameter as covariant, you use the out keyword in the type definition, as
shown in the following example:

public interface IMethaneProducer<out T>{ ... }

For interface definitions, covariant type parameters can be used only as return values of methods or
property get accessors.

A good example of how this is useful is found in the .NET Framework, in the IEnumerable<T>
interface that you’ve used previously. The item type T in this interface is defined as being covariant.
This means that you can put an object that supports, say, IEnumerable<Cow> into a variable of type
IEnumerable<Animal>.

This enables the following code:

static void Main(string[] args)
{
 List<Cow> cows = new List<Cow>();
 cows.Add(new Cow("Rual"));
 cows.Add(new SuperCow("Donna"));
 ListAnimals(cows);
 ReadKey();
}
static void ListAnimals(IEnumerable<Animal> animals)
{
 foreach (Animal animal in animals)
 {
 WriteLine(animal.ToString());
 }
}

Here the cows variable is of type List<Cow>, which supports the IEnumerable<Cow> interface.
This variable can, through covariance, be passed to a method that expects a parameter of type
IEnumerable<Animal>. Recalling what you know about how foreach loops work, you know that
the GetEnumerator() method is used to get an enumerator of IEnumerator<T>, and the Current
property of that enumerator is used to access items. IEnumerator<T> also defines its type parameter
as covariant, which means that it’s okay to use it as the get accessor of a parameter, and everything
works perfectly.

Contravariance
To define a generic type parameter as contravariant, you use the in keyword in the type definition:

public interface IGrassMuncher<in T>{ ... }

Variance ❘ 355

For interface definitions, contravariant type parameters can be used only as method parameters, not
as return types.

Again, the best way to understand this is to look at an example of how contravariance is used in
the .NET Framework. One interface that has a contravariant type parameter, again one that you’ve
already used, is IComparer<T>. You might implement this interface for animals as follows:

public class AnimalNameLengthComparer : IComparer<Animal>
{
 public int Compare(Animal x, Animal y)
 => x.Name.Length.CompareTo(y.Name.Length);
}

This comparer compares animals by name length, so you could use it to sort, for example, an
instance of List<Animal>. However, through contravariance, you can also use it to sort an instance
of List<Cow>, even though the List<Cow>.Sort() method expects an instance of IComparer<Cow>:

List<Cow> cows = new List<Cow>();
cows.Add(new Cow("Rual"));
cows.Add(new SuperCow("Donna"));
cows.Add(new Cow("Mary"));
cows.Add(new Cow("Ben"));
cows.Sort(new AnimalNameLengthComparer());

In most circumstances, contravariance is something that simply happens—and it’s been worked
into the .NET Framework to help with just this sort of operation. The good thing about both types
of variance in .NET 4 and above, though, is that you can now implement them with the techniques
shown in this section whenever you need them.

EXERCISES

 12.1 Which of the following can be generic?

 a. Classes

 b. Methods

 c. Properties

 d. Operator overloads

 e. Structs

 f. Enumerations

 12.2 Extend the Vector class in Ch12Ex01 such that the * operator returns the dot product of two
vectors.

NOTE The dot product of two vectors is defined as the product of their
 magnitudes multiplied by the cosine of the angle between them.

356 ❘ CHAPTER 12 Generics

 12.3 What is wrong with the following code? Fix it.

public class Instantiator<T>
{
 public T instance;
 public Instantiator()
 {
 instance = new T();
 }
}

 12.4 What is wrong with the following code? Fix it.

public class StringGetter<T>
{
 public string GetString<T>(T item) => item.ToString();
}

 12.5 Create a generic class called ShortList<T> that implements IList<T> and consists of a
collection of items with a maximum size. This maximum size should be an integer that can
be supplied to the constructor of ShortList<T> or defaults to 10. The constructor should
also be able to take an initial list of items via an IEnumerable<T> parameter. The class should
function exactly like List<T> but throw an exception of type IndexOutOfRangeException
if an attempt is made to add too many items to the collection, or if the IEnumerable<T>
passed to the constructor contains too many items.

 12.6 Will the following code compile? If not, why not?

public interface IMethaneProducer<out T>
{
 void BelchAt(T target);
}

Answers to the exercises can be found in Appendix.

Variance ❘ 357

 ▸ WHAT YOU HAVE LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Using generic
types

Generic types require one or more type parameters to work. You can use a
generic type as the type of a variable by passing the type parameters you require
when you declare a variable. You do this by enclosing a comma-separated list of
type names in angle brackets.

Nullable types Nullable types are types that can take any value of a specified value type or the
value null. You can use the syntax Nullable<T> or T? to declare a nullable type
variable.

The ?? operator The null coalescing operator returns either the value of its first operand, or, if the
first operand is null, its second operand.

Generic
collections

Generic collections are extremely useful as they come with strong typing built-
in. You can use List<T>, Collection<T>, and Dictionary<K, V> among
other collection types. These also expose generic interfaces. To sort and search
generic collections, you use the IComparer<T> and IComparable<T> interfaces.

Defining generic
classes

You define a generic type much like any other type, with the addition of generic
type parameters where you specify the type name. As with using generic types,
you specify these as a comma-separated list enclosed in angle brackets. You can
use the generic type parameters in your code anywhere you’d use a type name,
for example, in method return values and parameters.

Generic type
parameter
constraints

In order to use generic type parameters more effectively in your generic type
code, you can constrain the types that can be supplied when the type is used.
You can constrain type parameters by base class, supported interface, whether
they must be value or reference types, and whether they support parameterless
constructors. Without such constraints, you must use the default keyword to
instantiate a variable of a generic type.

Other generic
types

As well as classes, you can define generic interfaces, delegates, and methods.

Variance Variance is a concept similar to polymorphism, but applied to type parameters.
It allows you to use one generic type in place of another, where those generic
types vary only in the generic type parameters used. Covariance allows conver-
sion between two types where the target type has a type parameter that is a
base class of the type parameter of the source type. Contravariance allows con-
version where this relationship is inverted. Covariant type parameters are defined
with the out parameter, and can only be used as return types and property get
accessor types. Contravariant type parameters are defined with the in parameter
and can only be used as method parameters.

Additional C# Techniques
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Discovering the :: operator

 ➤ Understanding the global namespace qualifier

 ➤ Creating custom exceptions

 ➤ Using events

 ➤ Using anonymous methods

 ➤ Using C# attributes

 ➤ Working with initializers

 ➤ Using the var type and type inference

 ➤ Working with anonymous types

 ➤ Using the dynamic type

 ➤ Using named and optional method parameters

 ➤ Working with lambda expressions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter13 folder and individually named
according to the names throughout the chapter.

13

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

360 ❘ CHAPTER 13 AdditionAl C# teChniques

In this chapter, you continue exploring the C# language by looking at a few bits and pieces that
haven’t quite fit in elsewhere. Anders Hejlsberg (the inventor of C#) and others at Microsoft con-
tinue to update and refine the language. At the time of this writing, the most recent changes are part
of version 7 of the C# language, which is released as part of the Visual Studio 2017 product line,
along with .NET 4.7. At this point in the book, you might be wondering what else could be needed;
indeed, previous versions of C# lack little in terms of functionality. However, this doesn’t mean that
it isn’t possible to make some aspects of C# programming easier, or that the relationships between
C# and other technologies can’t be streamlined.

You also make some final modifications to the CardLib code that you’ve been building in the last
few chapters, and even use CardLib to create a card game.

THE :: OPERATOR AND THE GLOBAL NAMESPACE
QUALIFIER

The :: operator provides an alternative way to access types in namespaces. This might be necessary if
you want to use a namespace alias and there is ambiguity between the alias and the actual namespace
hierarchy. If that’s the case, then the namespace hierarchy is given priority over the namespace alias.
To see what this means, consider the following code:

using MyNamespaceAlias = MyRootNamespace.MyNestedNamespace;
namespace MyRootNamespace
{
 namespace MyNamespaceAlias
 {
 public class MyClass {}
 }
 namespace MyNestedNamespace
 {
 public class MyClass {}
 }
}

Code in MyRootNamespace might use the following to refer to a class:

MyNamespaceAlias.MyClass

The class referred to by this code is the MyRootNamespace.MyNamespaceAlias.MyClass
class, not the MyRootNamespace.MyNestedNamespace.MyClass class. That is, the namespace
MyRootNamespace.MyNamespaceAlias has hidden the alias defined by the using statement, which
refers to MyRootNamespace.MyNestedNamespace. You can still access the MyRootNamespace
.MyNestedNamespace namespace and the class contained within, but it requires different syntax:

MyNestedNamespace.MyClass

Alternatively, you can use the : : operator:

MyNamespaceAlias::MyClass

Using this operator forces the compiler to use the alias defined by the using statement, and therefore
the code refers to MyRootNamespace.MyNestedNamespace.MyClass.

Custom Exceptions ❘ 361

You can also use the keyword global with the : : operator, which is essentially an alias to the
top-level, root namespace. This can be useful to make it clearer which namespace you are referring
to, as shown here:

global::System.Collections.Generic.List<int>

This is the class you’d expect it to be, the generic List<T> collection class. It definitely isn’t the class
defined with the following code:

namespace MyRootNamespace
{
 namespace System
 {
 namespace Collections
 {
 namespace Generic
 {
 class List<T> {}
 }
 }
 }
}

Of course, you should avoid giving your namespaces names that already exist as .NET namespaces,
although similar problems can arise in large projects, particularly if you are working as part of a
large team. Using the : : operator and the global keyword might be the only way you can access the
types you want.

CUSTOM EXCEPTIONS

Chapter 7 covered exceptions and explained how you can use try…catch…finally blocks to act
on them. You also saw several standard .NET exceptions, including the base class for exceptions,
System.Exception. Sometimes it’s useful to derive your own exception classes from this base class
for use in your applications, instead of using the standard exceptions. This enables you to be more
specific with the information you send to whatever code catches the exception, and it enables catch-
ing code to be more specific about which exceptions it handles. For example, you might add a new
property to your exception class that permits access to some underlying information, making it
possible for the exception’s receiver to make the required changes, or just provide more information
about the exception’s cause.

NOTE Two fundamental exception classes exist in the System namespace
and derive from Exception: ApplicationException and SystemException.
SystemException is used as the base class for exceptions that are predefined
by the .NET Framework. ApplicationException was provided for developers
to derive their own exception classes, but more recent best practice dictates
that you should not derive your exceptions from this class; you should use
Exception instead.

362 ❘ CHAPTER 13 AdditionAl C# teChniques

Adding Custom Exceptions to CardLib
How to use custom exceptions is, once again, best illustrated by upgrading the CardLib project.
The Deck.GetCard() method currently throws a standard .NET exception if an attempt is made
to access a card with an index less than 0 or greater than 51, but you’ll modify that to use a custom
exception.

First, you need to create a new class library project called Ch13CardLib, save it in the
BeginningCSharp7\Chapter13 directory, and copy the classes from Ch12CardLib as before,
changing the namespace to Ch13CardLib as applicable. Next, define the exception. You do this
with a new class defined in a new class file called CardOutOfRangeException.cs, which you can
add to the Ch13CardLib project with Project ➪ Add Class (you can find this code in Ch13CardLib\
CardOutOfRangeException.cs):

 public class CardOutOfRangeException : Exception
 {
 private Cards deckContents;
 public Cards DeckContents
 {
 get { return deckContents; }
 }
 public CardOutOfRangeException(Cards sourceDeckContents)
 : base("There are only 52 cards in the deck.")
 {
 deckContents = sourceDeckContents;
 }
 }

An instance of the Cards class is required for the constructor of this class. It allows access to this
Cards object through a DeckContents property and supplies a suitable error message to the base
Exception constructor so that it is available through the Message property of the class.

Next, add code to throw this exception to Deck.cs, replacing the old standard exception (you can
find this code in Ch13CardLib\Deck.cs):

 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 return cards[cardNum];
 else
 throw new CardOutOfRangeException(cards.Clone() as Cards);
 }

The DeckContents property in the CardOutOfRangeException class is initialized with a deep copy
of the current contents of the Deck object, in the form of a Cards object. This means that you see
the contents at the point where the exception was thrown, so subsequent modification to the deck
contents won’t “lose” this information.

To test this, use the following client code (you can find this code in in Ch13CardClient\
Program.cs):

Deck deck1 = new Deck();
try
{

Events ❘ 363

 Card myCard = deck1.GetCard(60);
}
catch (CardOutOfRangeException e)
{
 WriteLine(e.Message);
 WriteLine(e.DeckContents[0]);
}
ReadKey();

After adding a reference to Ch13CardLib.dll, using static System.Console and using
Ch13CardLib, executing the code results in the output shown in Figure 13-1.

FIGURE 13-1

Here, the catching code has written the exception Message property to the screen. You also
displayed the first card in the Cards object obtained through DeckContents, just to prove that you
can access the Cards collection through your custom exception object.

EVENTS

This section covers one of the most frequently used OOP techniques in .NET: events. You start, as
usual, with the basics—looking at what events actually are. After that, you’ll see some simple events
in action and learn what you can do with them. Then, you learn how you can create and use
events of your own.

In this chapter, you’ll complete your CardLib class library by adding an event. Finally, because this
is the last port of call before arriving at some advanced topics, you’ll have a bit of fun creating a
card game application that uses this class library.

What Is an Event?
Events are similar to exceptions in that they are raised (thrown) by objects, and you can supply code
that acts on them. However, there are several important differences, the most important of which is
that there is no equivalent to the try…catch structure for handling events. Instead, you must sub-
scribe to them. Subscribing to an event means supplying code that will be executed when an event is
raised, in the form of an event handler.

Many handlers can be subscribed to a single event, all of which are called when the event is raised.
This can include event handlers that are part of the class of the object that raises the event, but event
handlers are just as likely to be found in other classes.

Event handlers themselves are simply methods. The only restriction on an event handler method is
that it must match the return type and parameters required by the event. This restriction is part of
the definition of an event and is specified by a delegate.

364 ❘ CHAPTER 13 AdditionAl C# teChniques

NOTE The fact that delegates are used in events is one of the reasons why
delegates are so useful. This is why some space was devoted to them in
Chapter 6. You might want to review that material to refresh your memory
about delegates and how you use them.

The basic sequence of processing is as follows: First, an application creates an object that can raise
an event. For example, suppose an instant messaging application creates an object that represents
a connection to a remote user. That connection object might raise an event when a message arrives
through the connection from the remote user (see Figure 13-2).

ConnectionApplication
Creates

FIGURE 13-2

Next, the application subscribes to the event. Your instant messaging application would do this by
defining a method that could be used with the delegate type specified by the event, passing a refer-
ence to this method to the event. The event handler method might be a method on another object,
such as an object representing a display device to show instant messages when they arrive (see
Figure 13-3).

ConnectionApplication

Display

Subscribes toCreates

FIGURE 13-3

When the event is raised, the subscriber is notified. When an instant message arrives through the
connection object, the event handler method on the display device object is called. Because you
are using a standard method, the object that raises the event can pass any relevant information via
parameters, making events very versatile. In the example case, one parameter might be the text
of the instant message, which the event handler could display on the display device object. This is
shown in Figure 13-4.

Events ❘ 365

ConnectionApplication

Display

Calls

Raises Event

Hi Mum

FIGURE 13-4

Handling Events
As previously discussed, to handle an event you need to subscribe to it by providing an event han-
dler method whose return type and parameters match that of the delegate specified for use with the
event. The following Try It Out uses a simple timer object to raise events, which results in a handler
method being called.

TRY IT OUT Handling Events: Ch13Ex01\Program.cs

 1. Create a new console application called Ch13Ex01 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Modify the code in Program.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Timers;
using static System.Console;
namespace Ch13Ex01
{
 class Program
 {
 static int counter = 0;

 static string displayString =
 "This string will appear one letter at a time. ";
 static void Main(string[] args)
 {
 Timer myTimer = new Timer(100);
 myTimer.Elapsed += new ElapsedEventHandler(WriteChar);
 myTimer.Start();

366 ❘ CHAPTER 13 AdditionAl C# teChniques

 System.Threading.Thread.Sleep(200);
 ReadKey();
 }
 static void WriteChar(object source, ElapsedEventArgs e)
 {
 Write(displayString[counter++ % displayString.Length]);
 }
 }
}

 3. Run the application (once it is running, pressing a key will terminate the application). The result,
after a short period, is shown in Figure 13-5.

FIGURE 13-5

How It Works

The object you are using to raise events is an instance of the System.Timers.Timer class. This object
is initialized with a time period (in milliseconds). When the Timer object is started using its Start()
method, a stream of events is raised, spaced out in time according to the specified time period. Main()
initializes a Timer object with a timer period of 100 milliseconds, so it will raise events 10 times a sec-
ond when started:

 static void Main(string[] args)
 {
 Timer myTimer = new Timer(100);

The Timer object possesses an event called Elapsed, and the event handler required by this event must
match the return type and parameters of the System.Timers.ElapsedEventHandler delegate type,
which is one of the standard delegates defined in the .NET Framework. This delegate specifies the
following return type and parameters:

void <MethodName>(object source, ElapsedEventArgs e);

The Timer object sends a reference to itself in the first parameter and an instance of an
ElapsedEventArgs object in its second parameter. It is safe to ignore these parameters for now; you’ll
take a look at them a little later.

Events ❘ 367

In your code you have a suitable method:

 static void WriteChar(object source, ElapsedEventArgs e)
 {
 Write(displayString[counter++ % displayString.Length]);
 }

This method uses the two static fields of Program, counter and displayString, to display a single
character. Every time the method is called, a different character is displayed.

The next task is to hook this handler up to the event—to subscribe to it. To do this, you use the +=
operator to add a handler to the event in the form of a new delegate instance initialized with your event
handler method:

 static void Main(string[] args)
 {
 Timer myTimer = new Timer(100);
 myTimer.Elapsed += new ElapsedEventHandler(WriteChar);

This command (which uses slightly strange-looking syntax, specific to delegates) adds a handler to the
list that will be called when the Elapsed event is raised. You can add as many handlers as you like to
this list as long as they all meet the criteria required. Each handler is called in turn when the event is
raised.

All that remains for Main() to do is start the timer running:

 myTimer.Start();

You don’t want the application terminating before you have handled any events, so you put the Main()
method on hold. The simplest way to do this is to request user input, as this command won’t finish
processing until the user has pressed a key:

 ReadKey();

Although processing in Main() effectively ceases here, processing in the Timer object continues. When
it raises events it calls the WriteChar() method, which runs concurrently with the ReadLine() state-
ment. The System.Threading.Thread.Sleep(200) statement is included to give the timer the oppor-
tunity to start sending messages to the console application.

Note that the syntax for adding an event handler can be simplified slightly using the method group
concept introduced in the previous chapter, as follows:

 myTimer.Elapsed += WriteChar;

The end result is exactly the same, but you do not have to explicitly specify the delegate type; it is
inferred by the compiler from the context in which you use it. However, many programmers dislike this
syntax because it reduces readability—it is no longer possible to tell at a glance what delegate type you
are using. Feel free to use this syntax if you prefer, but in this chapter all the delegates you use will be
referenced explicitly to make things clearer.

368 ❘ CHAPTER 13 AdditionAl C# teChniques

Defining Events
Now it’s time to define and use your own events. The following Try It Out implements an example
version of the instant messaging scenario introduced earlier in this chapter, creating a Connection
object that raises events that are handled by a Display object.

TRY IT OUT Defining Events: Ch13Ex02

 1. Create a new console application called Ch13Ex02 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Add a new class called Connection and modify Connection.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Timers;
using static System.Console;
namespace Ch13Ex02
{
 public delegate void MessageHandler(string messageText);
 public class Connection
 {
 public event MessageHandler MessageArrived;
 private Timer pollTimer;
 public Connection()
 {
 pollTimer = new Timer(100);
 pollTimer.Elapsed += new ElapsedEventHandler(CheckForMessage);
 }
 public void Connect() => pollTimer.Start();
 public void Disconnect() => pollTimer.Stop();
 private static Random random = new Random();
 private void CheckForMessage(object source, ElapsedEventArgs e)
 {
 WriteLine("Checking for new messages.");
 if ((random.Next(9) == 0) && (MessageArrived != null))
 {
 MessageArrived("Hello Donna!");
 }
 }
 }
}

 3. Add a new class called Display and modify Display.cs as follows:

using static System.Console;
namespace Ch13Ex02
{
 public class Display
 {
 public void DisplayMessage(string message)
 => WriteLine($"Message arrived: {message}");
 }
}

Events ❘ 369

 4. Modify the code in Program.cs as follows:

 static void Main(string[] args)
 {
 Connection myConnection = new Connection();
 Display myDisplay = new Display();
 myConnection.MessageArrived +=
 new MessageHandler (myDisplay.DisplayMessage);
 myConnection.Connect();
 ReadKey();
 }

 5. Run the application. The result is shown in Figure 13-6.

FIGURE 13-6

How It Works

The Connection class does most of the work in this application. Instances of this class make use of
a Timer object much like the one shown in the first example of this chapter, initializing it in the class
constructor and providing access to its state (enabled or disabled) via Connect() and Disconnect():

 public class Connection
 {
 private Timer pollTimer;
 public Connection()
 {
 pollTimer = new Timer(100);
 pollTimer.Elapsed += new ElapsedEventHandler(CheckForMessage);
 }
 public void Connect() => pollTimer.Start();
 public void Disconnect() => pollTimer.Stop();
 ...
 }

370 ❘ CHAPTER 13 AdditionAl C# teChniques

Also in the constructor, you register an event handler for the Elapsed event, just as you did in the first
example. The handler method, CheckForMessage(), raises an event on average once every 10 times it
is called. You will look at the code for this, but first it would be useful to look at the event definition
itself.

Before you define an event, you must define a delegate type to use with the event—that is, a delegate
type that specifies the return type and parameters to which an event handling method must conform.
You do this using standard delegate syntax, defining it as public inside the Ch13Ex02 namespace to
make the type available to external code:

namespace Ch13Ex02
{
 public delegate void MessageHandler(string messageText);

This delegate type, called MessageHandler here, is a void method that has a single string param-
eter. You can use this parameter to pass an instant message received by the Connection object to the
Display object. Once a delegate has been defined (or a suitable existing delegate has been located), you
can define the event itself, as a member of the Connection class:

 public class Connection
 {
 public event MessageHandler MessageArrived;

You simply name the event (here it is MessageArrived) and declare it by using the event keyword and
specifying the delegate type to use (the MessageHandler delegate type defined earlier). After you have
declared an event in this way, you can raise it simply by calling it by name as if it were a method with the
return type and parameters specified by the delegate. For example, you could raise this event using
the following:

MessageArrived("This is a message.");

If the delegate had been defined without any parameters, then you could simply use the following:

MessageArrived();

Alternatively, you could define more parameters, which would require more code to raise the event. The
CheckForMessage() method looks like this:

 private static Random random = new Random();
 private void CheckForMessage(object source, ElapsedEventArgs e)
 {
 WriteLine("Checking for new messages.");
 if ((random.Next(9) == 0) && (MessageArrived != null))
 {
 MessageArrived("Hello Mami!");
 }
 }

You use an instance of the Random class shown in earlier chapters to generate a random number
between 0 and 9, and raise an event if the number generated is 0, which should happen 10 percent of
the time. This simulates polling the connection to determine whether a message has arrived, which
won’t be the case every time you check. To separate the timer from the instance of Connection, you use
a private static instance of the Random class.

Events ❘ 371

Note that you supply additional logic. You raise an event only if the expression MessageArrived !=
null evaluates to true. This expression, which again uses the delegate syntax in a slightly unusual way,
means “Does the event have any subscribers?” If there are no subscribers, then MessageArrived evalu-
ates to null, and there is no point in raising the event.

The class that will subscribe to the event is called Display and contains the single method,
DisplayMessage(), defined as follows:

 public class Display
 {
 public void DisplayMessage(string message)
 => WriteLine($"Message arrived: {message}");
 }

This method matches the delegate type (and is public, which is a requirement of event han-
dlers in classes other than the class that generates the event), so you can use it to respond to the
MessageArrived event.

All that is left now is for the code in Main() to initialize instances of the Connection and Display
classes, hook them up, and start things going. The code required here is similar to the first example:

 static void Main(string[] args)
 {
 Connection myConnection = new Connection();
 Display myDisplay = new Display();
 myConnection.MessageArrived +=
 new MessageHandler(myDisplay.DisplayMessage);
 myConnection.Connect();
 System.Threading.Thread.Sleep(200);
 ReadKey();
 }

Again, you call ReadKey() to pause the processing of Main() once you have started things moving with
the Connect() method of the Connection object and inserted a short delay.

Multipurpose Event Handlers
The delegate you saw earlier, for the Timer.Elapsed event, contained two parameters that are of a
type often seen in event handlers:

 ➤ object source—A reference to the object that raised the event

 ➤ ElapsedEventArgs e—Parameters sent by the event

The reason the object type parameter is used in this event, and indeed in many other events, is that
you often need to use a single event handler for several identical events generated by different objects
and still tell which object generated the event.

To explain and illustrate this concept, the next Try It Out extends the last example a little.

372 ❘ CHAPTER 13 AdditionAl C# teChniques

TRY IT OUT Using a Multipurpose Event Handler: Ch13Ex03

 1. Create a new console application called Ch13Ex03 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Copy the code across for Program.cs, Connection.cs, and Display.cs from Ch13Ex02, making
sure that you change the namespaces in each file from Ch13Ex02 to Ch13Ex03.

 3. Add a new class called MessageArrivedEventArgs and modify MessageArrivedEventArgs.cs
as follows:

namespace Ch13Ex03
{
 public class MessageArrivedEventArgs : EventArgs
 {
 private string message;
 public string Message
 {
 get { return message; }
 }
 public MessageArrivedEventArgs() =>
 message = "No message sent.";

 public MessageArrivedEventArgs(string newMessage) =>
 message = newMessage;
 }
}

 4. Modify Connection.cs as follows:

namespace Ch13Ex03
{
 // delegate definition removed
 public class Connection
 {
 public event EventHandler<MessageArrivedEventArgs> MessageArrived;
 public string Name { get; set; }
 ...
 private void CheckForMessage(object source, EventArgs e)
 {
 WriteLine("Checking for new messages.");
 if ((random.Next(9) == 0) && (MessageArrived != null))
 {
 MessageArrived(this, new MessageArrivedEventArgs("Hello Mami!"));
 }
 }
 ...
 }
}

 5. Modify Display.cs as follows:

 public void DisplayMessage(object source, MessageArrivedEventArgs e)
 {
 WriteLine($"Message arrived from: {((Connection)source).Name}");
 WriteLine($"Message Text: {e.Message}");
 }

Events ❘ 373

 6. Modify Program.cs as follows:

 static void Main(string[] args)
 {
 Connection myConnection1 = new Connection();
 myConnection1.Name = "First connection.";
 Connection myConnection2 = new Connection();
 myConnection2.Name = "Second connection.";
 Display myDisplay = new Display();
 myConnection1.MessageArrived += myDisplay.DisplayMessage;
 myConnection2.MessageArrived += myDisplay.DisplayMessage;
 myConnection1.Connect();
 myConnection2.Connect();
 System.Threading.Thread.Sleep(200);
 ReadKey();
 }

 7. Run the application. The result is shown in Figure 13-7.

FIGURE 13-7

How It Works

By sending a reference to the object that raises an event as one of the event handler parameters, you can
customize the response of the handler to individual objects. The reference gives you access to the source
object, including its properties.

By sending parameters that are contained in a class that inherits from System.EventArgs (as
ElapsedEventArgs does), you can supply whatever additional information is necessary as parameters
(such as the Message parameter on the MessageArrivedEventArgs class).

In addition, these parameters benefit from polymorphism. You could define a handler for the
MessageArrived event such as this:

 public void DisplayMessage(object source, EventArgs e)
 {

374 ❘ CHAPTER 13 AdditionAl C# teChniques

 WriteLine($"Message arrived from: {((Connection)source).Name}");
 WriteLine($"Message Text: {((MessageArrivedEventArgs)e).Message}");
 }

The application will execute exactly as it did before, but the DisplayMessage() method is now more
versatile (in theory at least—more implementation is needed to make this production quality). This
same handler could work with other events, such as the Timer.Elapsed, although you’d have to modify
the internals of the handler a bit more such that the parameters sent when this event is raised are han-
dled properly. (Casting them to Connection and MessageArrivedEventArgs objects in this way will
cause an exception; you should use the as operator instead and check for null values.)

The EventHandler and Generic EventHandler<T> Types
In most cases, you will follow the pattern outlined in the previous section and use event handlers
with a void return type and two parameters. The first parameter will be of type object and will be
the event source. The second parameter will be of a type that derives from System.EventArgs and
will contain any event arguments. As this is so common, .NET provides two delegate types to make
it easier to define events: EventHandler and EventHandler<T>. Both are delegates that use the stan-
dard event handler pattern. The generic version enables you to specify the type of event argument
you want to use.

In the previous Try It Out, you saw this in action as you used the generic EventHandler<T> delegate
type as follows:

 public class Connection
 {
 public event EventHandler<MessageArrivedEventArgs> MessageArrived;
 ...
 }

This is obviously a good thing to do because it simplifies your code. In general, it is best practice to
use these delegate types whenever you define an event. Note that if you have an event that doesn’t
need event argument data, you can still use the EventHandler delegate type. You can simply pass
EventArgs.Empty as the argument value.

Return Values and Event Handlers
All the event handlers you’ve seen so far have had a return type of void. It is possible to provide a
return type for an event, but this can lead to problems because a given event can result in several
event handlers being called. If all of these handlers return a value, then it can be unclear which value
was actually returned.

The system deals with this by allowing you access to only the last value returned by an event han-
dler. That will be the value returned by the last event handler to subscribe to an event. Although this
functionality might be of use in some situations, it is recommended that you use void type event
handlers, and avoid out type parameters (which would lead to the same ambiguity regarding the
source of the value returned by the parameter).

Expanding and Using CardLib ❘ 375

Anonymous Methods
Instead of defining event handler methods, you can choose to use anonymous methods. An anony-
mous method doesn’t actually exist as a method in the traditional sense—that is, it isn’t a method
on any particular class. Instead, an anonymous method is created purely for use as a target for a
delegate.

To create an anonymous method, you need the following code:

delegate(parameters)
{
 // Anonymous method code.
};

parameters is a list of parameters matching those of the delegate type you are instantiating, as used
by the anonymous method code:

delegate(Connection source, MessageArrivedEventArgs e)
{
 // Anonymous method code matching MessageHandler event in Ch13Ex03.
};

For example, you could use this code to completely bypass the Display.DisplayMessage() method
in Ch13Ex03:

 myConnection1.MessageArrived +=
 delegate(Connection source, MessageArrivedEventArgs e)
 {
 WriteLine($"Message arrived from: {source.Name}");
 WriteLine($"Message Text: {e.Message}");
 };

An interesting point about anonymous methods is that they are effectively local to the code block
that contains them, and they have access to local variables in this scope. If you use such a variable,
then it becomes an outer variable. Outer variables are not disposed of when they go out of scope
as other local variables are; instead, they live on until the anonymous methods that use them are
destroyed. This might be some time later than you expect, so it’s definitely something to be careful
about. If an outer variable takes up a large amount of memory, or if it uses resources that are expen-
sive in other ways (for example, resources that are limited in number), then this could cause memory
or performance problems.

EXPANDING AND USING CARDLIB

Now that you’ve had a look at defining and using events, you can use them in Ch13CardLib. The
event you’ll add to your library will be generated when the last Card object in a Deck object is
obtained by using GetCard, and it will be called LastCardDrawn. The event enables subscribers to
reshuffle the deck automatically, cutting down on the processing necessary by a client. The event
will use the EventHandler delegate type and will pass as its source a reference to the Deck object,

376 ❘ CHAPTER 13 AdditionAl C# teChniques

such that the Shuffle() method will be accessible from wherever the handler is. Add the following
code to Deck.cs (you can find this code in Ch13CardLib\Deck.cs) to define and raise the event:

namespace Ch13CardLib
{
 public class Deck : ICloneable
 {
 public event EventHandler LastCardDrawn;
 ...
 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 {
 if ((cardNum == 51) && (LastCardDrawn != null))
 LastCardDrawn(this, EventArgs.Empty);
 return cards[cardNum];
 }
 else
 throw new CardOutOfRangeException((Cards)cards.Clone());
 }
 ...
 }

This is all the code required to add the event to the Deck class definition.

After spending all this time developing the CardLib library, it would be a shame not to use it. Before
finishing this section on OOP in C# and the .NET Framework, it’s time to have a little fun and write
the basics of a card game application that uses the familiar playing card classes.

As in previous chapters, you’ll add a client console application to the Ch13CardLib solution, add
a reference to the Ch13CardLib project, and make it the startup project. This application will be
called Ch13CardClient.

To begin, you’ll create a new class called Player in a new file in Ch13CardClient, Player.cs. You
can find this code in Ch13CardClient\Player.cs in this chapter’s online download. This class will
contain two automatic properties: Name (a string) and PlayHand (of type Cards). Both proper-
ties have private set accessors, but despite this the PlayHand provides write-access to its contents,
enabling you to modify the cards in the player’s hand.

You’ll also hide the default constructor by making it private, and supply a public nondefault con-
structor that accepts an initial value for the Name property of Player instances.

Finally, you’ll provide a bool type method called HasWon(), which returns true if all the cards in
the player’s hand are the same suit (a simple winning condition, but that doesn’t matter too much).

Here’s the code for Player.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Ch13CardLib;
namespace Ch13CardClient
{

Expanding and Using CardLib ❘ 377

 public class Player
 {
 public string Name { get; private set; }
 public Cards PlayHand { get; private set; }
 private Player() {}
 public Player(string name)
 {
 Name = name;
 PlayHand = new Cards();
 }
 public bool HasWon()
 {
 bool won = true;
 Suit match = PlayHand[0].suit;
 for (int i = 1; i < PlayHand.Count; i++)
 {
 won &= PlayHand[i].suit == match;
 }
 return won;
 }
 }
}

Next, define a class that will handle the card game itself, called Game. This class is found in the file
Game.cs of the Ch13CardClient project. The class has four private member fields:

 ➤ playDeck—A Deck type variable containing the deck of cards to use

 ➤ currentCard—An int value used as a pointer to the next card in the deck to draw

 ➤ players—An array of Player objects representing the players of the game

 ➤ discardedCards—A Cards collection for the cards that have been discarded by players but
not shuffled back into the deck

The default constructor for the class initializes and shuffles the Deck stored in playDeck, sets the
currentCard pointer variable to 0 (the first card in playDeck), and wires up an event handler called
Reshuffle() to the playDeck.LastCardDrawn event. The handler simply shuffles the deck, initial-
izes the discardedCards collection, and resets currentCard to 0, ready to read cards from the new
deck.

The Game class also contains two utility methods: SetPlayers() for setting the players for the
game (as an array of Player objects) and DealHands() for dealing hands to the players (seven cards
each). The allowed number of players is restricted to between two and seven to ensure that there are
enough cards to go around.

Finally, there is a PlayGame() method that contains the game logic itself. You’ll come back to this
method shortly, after you’ve looked at the code in Program.cs. The rest of the code in Game.cs is as
follows (you can find this code in Ch13CardClient\Game.cs):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

378 ❘ CHAPTER 13 AdditionAl C# teChniques

using System.Threading.Tasks;
using Ch13CardLib;
using static System.Console;
namespace Ch13CardClient
{
 public class Game
 {
 private int currentCard;
 private Deck playDeck;
 private Player[] players;
 private Cards discardedCards;
 public Game()
 {
 currentCard = 0;
 playDeck = new Deck(true);
 playDeck.LastCardDrawn += Reshuffle;
 playDeck.Shuffle();
 discardedCards = new Cards();
 }
 private void Reshuffle(object source, EventArgs args)
 {
 WriteLine("Discarded cards reshuffled into deck.");
 ((Deck)source).Shuffle();
 discardedCards.Clear();
 currentCard = 0;
 }
 public void SetPlayers(Player[] newPlayers)
 {
 if (newPlayers.Length > 7)
 throw new ArgumentException(
 "A maximum of 7 players may play this game.");
 if (newPlayers.Length < 2)
 throw new ArgumentException(
 "A minimum of 2 players may play this game.");
 players = newPlayers;
 }
 private void DealHands()
 {
 for (int p = 0; p < players.Length; p++)
 {
 for (int c = 0; c < 7; c++)
 {
 players[p].PlayHand.Add(playDeck.GetCard(currentCard++));
 }
 }
 }
 public int PlayGame()
 {
 // Code to follow.
 }
 }
}

Expanding and Using CardLib ❘ 379

Program.cs contains the Main() method, which initializes and runs the game. This method per-
forms the following steps:

 1. An introduction is displayed.

 2. The user is prompted for a number of players between 2 and 7.

 3. An array of Player objects is set up accordingly.

 4. Each player is prompted for a name, used to initialize one Player object in the array.

 5. A Game object is created, and players are assigned using the SetPlayers() method.

 6. The game is started by using the PlayGame() method.

 7. The int return value of PlayGame() is used to display a winning message (the value returned
is the index of the winning player in the array of Player objects).

The code for this follows, with comments added for clarity (you can find this code in
Ch13CardClient\Program.cs):

 static void Main(string[] args)
 {
 // Display introduction.
 WriteLine("BenjaminCards: a new and exciting card game.");
 WriteLine("To win you must have 7 cards of the same suit in" +
 " your hand.");
 WriteLine();
 // Prompt for number of players.
 bool inputOK = false;
 int choice = -1;
 do
 {
 WriteLine("How many players (2–7)?");
 string input = ReadLine();
 try
 {
 // Attempt to convert input into a valid number of players.
 choice = Convert.ToInt32(input);
 if ((choice >= 2) && (choice <= 7))
 inputOK = true;
 }
 catch
 {
 // Ignore failed conversions, just continue prompting.
 }
 } while (inputOK == false);
 // Initialize array of Player objects.
 Player[] players = new Player[choice];
 // Get player names.
 for (int p = 0; p < players.Length; p++)
 {
 WriteLine($"Player {p + 1}, enter your name:");

380 ❘ CHAPTER 13 AdditionAl C# teChniques

 string playerName = ReadLine();
 players[p] = new Player(playerName);
 }
 // Start game.
 Game newGame = new Game();
 newGame.SetPlayers(players);
 int whoWon = newGame.PlayGame();
 // Display winning player.
 WriteLine($"{players[whoWon].Name} has won the game!");
 ReadKey();
 }

Now you come to PlayGame(), the main body of the application. Space limitations preclude us from
providing a lot of detail about this method, but the code is commented to make it more comprehen-
sible. None of the code is complicated; there’s just quite a bit of it.

Play proceeds with each player viewing his or her cards and an upturned card on the table. They can
either pick up this card or draw a new one from the deck. After drawing a card, each player must
discard one, replacing the card on the table with another one if it has been picked up, or placing the
discarded card on top of the one on the table (also adding the discarded card to the discarded-
Cards collection).

As you consider this code, bear in mind how the Card objects are manipulated. The reason why
these objects are defined as reference types, rather than value types (using a struct), should now be
clear. A given Card object can appear to exist in several places at once because references can be
held by the Deck object, the hand fields of the Player objects, the discardedCards collection, and
the playCard object (the card currently on the table). This makes it easy to keep track of the cards
and is used in particular in the code that draws a new card from the deck. The card is accepted only
if it isn’t in any player’s hand or in the discardedCards collection.

The code is as follows:

 public int PlayGame()
 {
 // Only play if players exist.
 if (players == null)
 return -1;
 // Deal initial hands.
 DealHands();
 // Initialize game vars, including an initial card to place on the
 // table: playCard.
 bool GameWon = false;
 int currentPlayer;
 Card playCard = playDeck.GetCard(currentCard++);
 discardedCards.Add(playCard);
 // Main game loop, continues until GameWon == true.
 do
 {
 // Loop through players in each game round.
 for (currentPlayer = 0; currentPlayer < players.Length;
 currentPlayer++)
 {
 //Write out current player, player hand, and the card on the

Expanding and Using CardLib ❘ 381

 // table.
 WriteLine($"{players[currentPlayer].Name}'s turn.");
 WriteLine("Current hand:");
 foreach (Card card in players[currentPlayer].PlayHand)
 {
 WriteLine(card);
 }
 WriteLine($"Card in play: {playCard}");
 // Prompt player to pick up card on table or draw a new one.
 bool inputOK = false;
 do
 {
 WriteLine("Press T to take card in play or D to draw:");
 string input = ReadLine();
 if (input.ToLower() == "t")
 {
 // Add card from table to player hand.
 WriteLine($"Drawn: {playCard}");
 // Remove from discarded cards if possible (if deck
 // is reshuffled it won't be there any more)
 if (discardedCards.Contains(playCard))
 {
 discardedCards.Remove(playCard);
 }
 players[currentPlayer].PlayHand.Add(playCard);
 inputOK = true;
 }
 if (input.ToLower() == "d")
 {
 // Add new card from deck to player hand.
 Card newCard;
 // Only add card if it isn't already in a player hand
 // or in the discard pile
 bool cardIsAvailable;
 do
 {
 newCard = playDeck.GetCard(currentCard++);
 // Check if card is in discard pile
 cardIsAvailable = !discardedCards.Contains(newCard);
 if (cardIsAvailable)
 {
 // Loop through all player hands to see if newCard
 // is already in a hand.
 foreach (Player testPlayer in players)
 {
 if (testPlayer.PlayHand.Contains(newCard))
 {
 cardIsAvailable = false;
 break;
 }
 }
 }
 } while (!cardIsAvailable);
 // Add the card found to player hand.
 WriteLine($"Drawn: {newCard}");

382 ❘ CHAPTER 13 AdditionAl C# teChniques

 players[currentPlayer].PlayHand.Add(newCard);
 inputOK = true;
 }
 } while (inputOK == false);
 // Display new hand with cards numbered.
 WriteLine("New hand:");
 for (int i = 0; i < players[currentPlayer].PlayHand.Count;
i++)
 {
 WriteLine($"{i + 1}: " +
 $"{ players[currentPlayer].PlayHand[i]}");
 }
 // Prompt player for a card to discard.
 inputOK = false;
 int choice = -1;
 do
 {
 WriteLine("Choose card to discard:");
 string input = ReadLine();
 try
 {
 // Attempt to convert input into a valid card number.
 choice = Convert.ToInt32(input);
 if ((choice > 0) && (choice <= 8))
 inputOK = true;
 }
 catch
 {
 // Ignore failed conversions, just continue prompting.
 }
 } while (inputOK == false);
 // Place reference to removed card in playCard (place the card
 // on the table), then remove card from player hand and add
 // to discarded card pile.
 playCard = players[currentPlayer].PlayHand[choice - 1];
 players[currentPlayer].PlayHand.RemoveAt(choice - 1);
 discardedCards.Add(playCard);
 WriteLine($"Discarding: {playCard}");
 // Space out text for players
 WriteLine();
 // Check to see if player has won the game, and exit the
player
 // loop if so.
 GameWon = players[currentPlayer].HasWon();
 if (GameWon == true)
 break;
 }
 } while (GameWon == false);
 // End game, noting the winning player.
 return currentPlayer;
 }

Figure 13-8 shows a game in progress.

Expanding and Using CardLib ❘ 383

FIGURE 13-8

As a final exercise, have a close look at the code in Player.HasWon(). Can you think of a way that
you could make this code more efficient, perhaps without having to examine every card in the play-
er’s hand every time this method is called?

384 ❘ CHAPTER 13 AdditionAl C# teChniques

ATTRIBUTES

This section takes a brief look at a useful way to provide additional information to code that con-
sumes types that you create: attributes. Attributes give you a way to mark sections of code with
information that can be read externally and used in any number of ways to affect how your types
are used. This is often referred to as decorating the code. You can find the code for this section in
CustomAttributes\Program.cs in this chapter’s online download.

For example, let’s say you create a class with a really simple method. In fact, it’s so simple that you
really aren’t that interested in stepping through it. Unfortunately—and to your considerable annoy-
ance—you keep doing precisely that as you debug the code in your application. In this situation, it’s
possible to add an attribute to the method that tells Visual Studio not to step into the code when you
debug it; instead, Visual Studio should step through it and on to the next statement. The code for
this is as follows:

[DebuggerStepThrough]
public void DullMethod() { ... }

The attribute in this code is [DebuggerStepThrough]. All attributes are added in this way, by
enclosing the name of the attribute in square brackets just before the target to which they apply. You
can add multiple attributes to a single target either by separating them with commas or by enclosing
each one in square brackets.

The attribute used in the preceding code is actually implemented in a class called
DebuggerStepThroughAttribute, and is found in the System.Diagnostics namespace, so you
need a using statement for that namespace if you want to use this attribute. You can refer to this
attribute either by its full name or, as in the code you saw, with an abbreviated name that doesn’t
include the suffix Attribute.

When you add an attribute in this way, the compiler creates an instance of the attribute class and
associates it with the class method. Some attributes are customizable through constructor param-
eters or properties, and these can be specified when you add the attribute, for example:

[DoesInterestingThings(1000, WhatDoesItDo = "voodoo")]
public class DecoratedClass {}

This attribute is passing a value of 1000 to the constructor of DoesInterestingThingsAttribute
and setting the value of a property called WhatDoesItDo to the string "voodoo".

Reading Attributes
In order to read attribute values, you have to use a technique called reflection. This is a fairly
advanced technique that allows you to dynamically inspect type information at runtime, even to
the point where you can create objects and call methods without knowing what those objects are.
This book doesn’t cover this technique in detail, but you do need to know some basics in order to
use attributes. Visit https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-
codedom/reflection for more information about this technique.

Essentially, reflection involves using information stored in Type objects (which you’ve seen in sev-
eral places in this book) along with types in the System.Reflection namespace to work with type

https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection

Attributes ❘ 385

information. You’ve already seen a quick way to get type information from a class with the typeof
operator, and from an object instance using the GetType() method. Using reflection, you can pro-
ceed to interrogate member information from the Type object. You can then obtain attribute infor-
mation from the class or its various members.

The simplest way to do this—and the only way you’ll see in this book—is to use the Type
.GetCustomAttributes() method. This method takes up to two parameters and returns an array
of object instances, each of which is an attribute instance. First, you can optionally pass the type
or types of attributes you are interested in (any other attributes will be ignored). If you omit this
parameter, then all attributes will be returned. Second, you must pass a Boolean value indicating
whether to look just at the class or at the class and all classes that the class derives from.

For example, the following code would list the attributes of a class called DecoratedClass:

Type classType = typeof(DecoratedClass);
object[] customAttributes = classType.GetCustomAttributes(true);
foreach (object customAttribute in customAttributes)
{
 WriteLine($"Attribute of type {customAttribute} found.");
}

Once you have found attributes in this way, you can take whatever action is appropri-
ate for the attribute. This is exactly what Visual Studio does when it encounters the
DebuggerStepThroughAttribute attribute discussed earlier.

Creating Attributes
You can create your own attributes simply by deriving from the System.Attribute class.
Sometimes, you don’t need to do anything else, as no additional information is required if your code
is interested only in the presence or absence of your attribute. However, you can supply nondefault
constructors and/or writeable properties if you want the attribute to be customizable.

You also need to decide two things about your attribute: what type of target it can be applied to
(class, property, and so on) and whether it can be applied more than once to the same target. You
specify this information through an attribute that you apply to your attribute (this has a certain Zen
feeling of correctness to it!) called AttributeUsageAttribute. This attribute has a constructor
parameter of type AttributeTargets, which is an enum that allows you to combine its values with
the | operator. It also has a Boolean property called AllowMultiple that specifies whether the attri-
bute can be applied more than once.

For example, the following code specifies an attribute that can be applied (once) to a class or
property:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple = false)]
class DoesInterestingThingsAttribute : Attribute
{
 public DoesInterestingThingsAttribute(int howManyTimes)
 {
 HowManyTimes = howManyTimes;
 }

386 ❘ CHAPTER 13 AdditionAl C# teChniques

 public string WhatDoesItDo { get; set; }
 public int HowManyTimes { get; private set; }
}

This attribute, DoesInterestingThingsAttribute, can be used as in the earlier code snippet:

[DoesInterestingThings(1000, WhatDoesItDo = "voodoo")]
public class DecoratedClass {}

And by modifying the code in the previous section, you can gain access to the properties of the
attribute:

Type classType = typeof(DecoratedClass);
object[] customAttributes = classType.GetCustomAttributes(true);
foreach (object customAttribute in customAttributes)
{
 WriteLine($"Attribute of type {customAttribute} found.");
 DoesInterestingThingsAttribute interestingAttribute =
 customAttribute as DoesInterestingThingsAttribute;
 if (interestingAttribute != null)
 {
 WriteLine($"This class does {interestingAttribute.WhatDoesItDo} x " +
 $" {interestingAttribute.HowManyTimes}!");
 }
}

Putting everything in this section together and using this code would give you the result shown in
Figure 13-9.

FIGURE 13-9

Attributes can be extremely useful and crop up all over .NET applications—and WPF and
Universal Windows applications in particular. You will encounter them repeatedly throughout the
remainder of this book.

INITIALIZERS

Up to now you have learned to instantiate and initialize objects in various ways. Invariably, that
has required you either to add code to class definitions to enable initialization or to instantiate and
initialize objects with separate statements. You have also learned how to create collection classes of
various types, including generic collection classes. Again, you might have noticed that there was no
easy way to combine the creation of a collection with adding items to the collection.

Object initializers provide a way to simplify your code by enabling you to combine instantiation and
initialization of objects. Collection initializers give you a simple, elegant syntax to create and popu-
late collections in a single step. This section explains how to use both of these features.

Initializers ❘ 387

Object Initializers
Consider the following simple class definition:

public class Animal
{
 public string Name { get; set; }
 public int Age { get; set; }
 public double Weight { get; set; }
}

This class has three properties that are defined using the automatic property syntax shown in
Chapter 10. If you want to instantiate and initialize an object instance of this class, you must exe-
cute several statements:

Animal animal = new Animal();
animal. Name = "Benjamin";
animal. Age = 42;
animal. Weight = 185.4;

This code uses the default, parameterless constructor that is supplied by the C# compiler if you
don’t include a constructor in your class definition. To simplify this initialization, you can supply an
appropriate nondefault constructor:

public class Animal
{
 public Animal(string name, int age, double weight)
 {
 Name = name;
 Age = age;
 Weight = weight;
 }
 ...
}

That enables you to write code that combines instantiation with initialization:

Animal animal = new Animal("Noa", 5, 45.2);

This works fine, although it forces code that uses this class to use this constructor, which would pre-
vent the previous code, which used a parameterless constructor, from working. Often, particularly
when classes must be serializable, it is necessary to provide a parameterless constructor:

public class Animal
{
 public Animal() {}
 ...
}

Now you have a situation where you can instantiate and initialize the Animal class any way you
like. However, you have added several lines of code to the initial class definition that don’t do any-
thing much other than provide the basic plumbing required for this flexibility.

Enter object initializers, which are a way to instantiate and initialize objects without having to add
code (such as the constructors detailed here) to a class. When you instantiate an object, you supply

388 ❘ CHAPTER 13 AdditionAl C# teChniques

values for publicly accessible properties or fields using a name/value pair for each property you want
to initialize. The syntax for this is as follows:

<ClassName> <variableName> = new <ClassName>
{
 <propertyOrField1> = <value1>,
 <propertyOrField2> = <value2>,
 ...
 <propertyOrFieldN> = <valueN>
};

For example, you could rewrite the code shown earlier, which instantiates and initializes an object
of type Animal, as follows:

Animal animal = new Animal
{
 Name = "Lea",
 Age = 11,
 Weight = 30.2
};

Often you can put code like that on a single line without seriously degrading readability.

When you use an object initializer, you don’t have to explicitly call a constructor of the class. If
you omit the constructor parentheses (as in the previous code), the default parameterless construc-
tor is called automatically. This happens before any parameter values are set by the initializer,
which enables you to provide default values for parameters in the default constructor if desired.
Alternatively, you can call a specific constructor. Again, this constructor is called first, so any ini-
tialization of public properties that takes place in the constructor might be overridden by values that
you provide in the initializer. You must have access to the constructor that you use (or the default
one if you aren’t explicit) in order for object initializers to work.

If one of the properties you want to initialize with an object initializer is more complex than the
simple types used in this example, then you might find yourself using a nested object initializer. That
simply means using the exact same syntax you’ve already seen:

Animal animal = new Animal
{
 Name = "Rual",
 Age = "76",
 Weight = 172.7,
 Origin = new Farm
 {
 Name = "Circle Perk Ranch",
 Location = "Ann Road",
 Rating = 15
 }
};

Here, a property called Origin of type Farm (not shown here) is initialized. The code initial-
izes three properties of the Origin property—Name, Location, and Rating—with values of type
string, string, and int, respectively. This initialization uses a nested object initializer.

Note that object initializers are not a replacement for nondefault constructors. The fact that you can
use object initializers to set property and field values when you instantiate an object does not mean

Initializers ❘ 389

that you will always know what state needs initializing. With constructors, you can specify exactly
which values are required for an object to function and then execute code in response to those val-
ues immediately.

Also, in the previous example there is another (admittedly quite subtle) difference between using
a nested object initializer and using constructors. This difference is the order in which objects get
created. With a nested initializer, the top-level object (Animal) gets created first. Next, the nested
object (Farm) is created and assigned to the property Origin. If you used a constructor, you would
reverse this construction order and pass the Fram instance to the constructor of Animal. In this sim-
ple example, there is no practical difference, but in some circumstances, this might be significant.

Collection Initializers
Chapter 5 described how arrays can be initialized with values using the following syntax:

int[] myIntArray = new int[5] { 5, 9, 10, 2, 99 };

This is a quick and easy way to combine the instantiation and initialization of an array. Collection
initializers simply extend this syntax to collections:

List<int> myIntCollection = new List<int> { 5, 9, 10, 2, 99 };

By combining object and collection initializers, it is possible to configure collections with simple and
elegant code. Rather than code like this:

List<Animal> animals = new List<Animal>();
animals.Add(new Animal("Donna", 73, 116));
animals.Add(new Animal("Mary", 49, 132));
animals.Add(new Animal("Andrea", 46, 109.1));

You can use the following:

List<Animal> moreAnimals = new List<Animal>
{
 new Animal
 {
 Name = "Donna",
 Age = 73,
 Weight = 116
 },
 new Animal
 {
 Name = "Mary",
 Age = 49,
 Weight = 132
 },
 new Animal
 {
 Name = "Andrea",
 Age = 46,
 Weight = 109.1
 }
};

390 ❘ CHAPTER 13 AdditionAl C# teChniques

This works very well for types that are primarily used for data representation, and as such, collec-
tion initializers are a great accompaniment to the LINQ technology described later in the book.

The following Try It Out illustrates how you can use object and collection initializers.

TRY IT OUT Using Initializers: Ch13Ex04

 1. Create a new console application called Ch13Ex04 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Right-click on the project name in the Solution Explorer window and select the Add Existing Item
option.

 3. Select the Animal.cs, Cow.cs, Chicken.cs, SuperCow.cs, and Farm.cs files from the C:\
BeginningCSharp7\Chapter12\Ch12Ex04 directory, and click Add.

 4. Modify the namespace declaration in the file you have added as follows:

namespace Ch13Ex04

 5. Remove the constructors from the Cow, Chicken, and SuperCow classes.

 6. Modify the code in Program.cs as follows:

static void Main(string[] args)
{
 Farm<Animal> farm = new Farm<Animal>
 {
 new Cow { Name="Lea" },
 new Chicken { Name="Noa" },
 new Chicken(),
 new SuperCow { Name="Andrea" }
 };
 farm.MakeNoises();
 ReadKey();
}

 7. Build the application. You should receive the build errors shown in Figure 13-10 because there is
no Add(T animal) method definition in the Farm class. It is added in the next step.

FIGURE 13-10

Initializers ❘ 391

 8. Add the following code to Farm.cs:

 public class Farm<T> : IEnumerable<T> where T : Animal
 {
 public void Add(T animal) => animals.Add(animal);
 ...

 9. Run the application. The result is shown in Figure 13-11.

FIGURE 13-11

How It Works

This example combines object and collection initializers to create and populate a collection of objects
in a single step. It uses the farmyard collection of objects that you have seen in previous chapters,
although two modifications are necessary for initializers to be used with these classes.

First, you remove the constructors from the classes derived from the base Animal class. You can remove
these constructors because they set the animal’s Name property, which you will do with object initializ-
ers instead. Alternatively, you could have added default constructors. In either case, when using default
constructors, the Name property is initialized according to the default constructor in the base class,
which has code as follows:

public Animal()
{
 name = "The animal with no name";
}

However, when an object initializer is used with a class that derives from Animal, recall that any prop-
erties set by the initializer are set after the object is instantiated, and therefore after this base class
constructor is executed. If a value for the Name property is supplied as part of an object initializer, it
will override this default value. In the example code, the Name property is set for all but one of the items
added to the collection.

Second, you add an Add() method to the Farm class. This is in response to a series of compiler errors of
the following form:

'Ch13Ex04.Farm<Ch13Ex04.Animal>' does not contain a definition for 'Add'

This error exposes part of the underlying functionality of collection initializers. Behind the scenes, the
compiler calls the Add() method of a collection for each item that you supply in a collection initializer.
The Farm class exposes a collection of Animal objects through a property called Animals. The compiler
cannot guess that this is the property you want to populate (through Animals.Add()), so the code fails.
To correct this problem, you add an Add() method to the class, which is initialized through the object
initializer.

392 ❘ CHAPTER 13 AdditionAl C# teChniques

Alternatively, you could modify the code in the example to provide a nested initializer for the Animals
property as follows:

static void Main(string[] args)
{
 Farm<Animal> farm = new Farm<Animal>
 {
 Animals =
 {
 new Cow { Name="Lea" },
 new Chicken { Name="Noa" },
 new Chicken(),
 new SuperCow { Name="Andrea" }
 }
 };
 farm.MakeNoises();
 ReadKey();
}

With this code, there is no need to provide an Add() method for the Farm class. This alternative tech-
nique is appropriate when you have a class that contains multiple collections. In this case, there is no
obvious candidate for a collection to add to with an Add() method of the containing class.

TYPE INFERENCE

Earlier in this book you saw how C# is a strongly typed language, which means that every variable
has a fixed type and can be used only in code that takes that type into account. In every code exam-
ple you’ve seen so far, you have declared variables in one of two ways:

<type> <varName>;
<type> <varName> = <value>;

The following code shows at a glance what type of variable <varName> is:

int myInt = 5;
WriteLine(myInt);

You can also see that the IDE is aware of the variable type sim-
ply by hovering the mouse pointer over the variable identifier, as
shown in Figure 13-12.

C# 3 introduced the new keyword var, which you can use as an
alternative for type in the preceding code:

var <varName> = <value>;

In this code, the variable <varName> is implicitly typed to the type of <value>. Note that there is no
type called var. In the code:

var myVar = 5;

FIGURE 13-12

Type Inference ❘ 393

myVar is a variable of type int, not of type var. Again, as shown in
Figure 13-13, the IDE is aware of this.

This is an extremely important point. When you use var you are
not declaring a variable with no type, or even a type that can
change. If that were the case, C# would no longer be a strongly
typed language. All you are doing is relying on the compiler to determine the type of the variable.

NOTE The introduction of dynamic types in .NET 4 stretched the definition of
C# being a strongly typed language, as you will see in the section “Dynamic
Lookup” later in this chapter.

If the compiler is unable to determine the type of variable declared using var, then your code will
not compile. Therefore, you can’t declare a variable using var without initializing the variable at the
same time. If you do this, there is no value that the compiler can use to determine the type of the
variable. The following code, therefore, will not compile:

var myVar;

The var keyword can also be used to infer the type of an array through the array initializer:

var myArray = new[] { 4, 5, 2 };

In this code, the type myArray is implicitly int[]. When you implicitly type an array in this way,
the array elements used in the initializer must be one of the following:

 ➤ All the same type

 ➤ All the same reference type or null

 ➤ All elements that can be implicitly converted to a single type

If the last of these rules is applied, then the type that elements can be converted to is referred to as
the best type for the array elements. If there is any ambiguity as to what this best type might be—that
is, if there are two or more types that all the elements can be implicitly converted to—your code
will not compile. Instead, you receive the error indicating that no best type is available, as in the
following code:

var myArray = new[] { 4, "not an int", 2 };

Note also that numeric values are never interpreted as nullable types, so the following code will not
compile:

var myArray = new[] { 4, null, 2 };

You can, however, use a standard array initializer to make this work:

var myArray = new int?[] { 4, null, 2 };

FIGURE 13-13

394 ❘ CHAPTER 13 AdditionAl C# teChniques

A final point: The identifier var is not a forbidden identifier to use for a class name. This means, for
example, that if your code has a class called var in scope (in the same namespace or in a referenced
namespace), then you cannot use implicit typing with the var keyword.

In itself, type inference is not particularly useful because in the code you’ve seen in this section it
only serves to complicate things. Using var makes it more difficult to see at a glance the type of a
given variable. However, as you will see later in this chapter, the concept of inferred types is impor-
tant because it underlies other techniques. The next subject, anonymous types, is one for which
inferred types are essential.

ANONYMOUS TYPES

After programming for a while you might find, especially in database applications, that you spend a
lot of time creating simple, dull classes for data representation. It is not unusual to have families of
classes that do absolutely nothing other than expose properties. The Animal class shown earlier in
this chapter is a perfect example:

public class Animal
{
 public string Name { get; set; }
 public int Age { get; set; }
 public double Weight { get; set; }
}

This class doesn’t do anything—it merely stores structured data. In database or spreadsheet terms,
you could think of this class as representing a row in a table. A collection class that was capable of
holding instances of this class would be a representation of multiple rows in a table or spreadsheet.

This is a perfectly acceptable use of classes, but writing the code for these classes can become
monotonous, and any modifications to the underlying data schema requires you to add, remove, or
modify the code that defines the classes.

Anonymous types are a way to simplify this programming model. The idea behind anonymous
types is that rather than define these simple data storage types, you can instead use the C# compiler
to automatically create types based on the data that you want to store in them.

The preceding Animal type can be instantiated as follows:

Animal animal = new Animal
{
 Name = "Benjamin",
 Age = 42,
 Weight = 185.4
};

Alternatively, you could use an anonymous type, as in the following code:

var animal = new
{
 Name = "Lea",
 Age = 11,
 Weight = 30.2
};

Anonymous Types ❘ 395

There are two differences here. First, the var keyword is used. That’s because anonymous types
do not have an identifier that you can use. Internally they do have an identifier, as you will see in a
moment, but it is not available to you in your code. Second, no type name is specified after the new
keyword. That’s how the compiler knows you want to use an anonymous type.

The IDE detects the anonymous type definition and updates IntelliSense accordingly. With the pre-
ceding declaration, you can see the anonymous type, as shown in Figure 13-14.

FIGURE 13-14

Here, internally, the type of the variable animal is 'a. Obviously, you can’t use this type in your
code—it’s not even a legal identifier name. The ' is simply the symbol used to denote an anonymous
type in IntelliSense. IntelliSense also enables you to inspect the members of the anonymous type, as
shown in Figure 13-15.

FIGURE 13-15

Note that the properties shown here are defined as read-only properties. This means that if you
want to be able to change the values of properties in your data storage objects, you cannot use
anonymous types.

The other members of anonymous types are implemented, as shown in the following Try It Out.

396 ❘ CHAPTER 13 AdditionAl C# teChniques

TRY IT OUT Using Anonymous Types: Ch13Ex05\Program.cs

 1. Create a new console application called Ch13Ex05 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Modify the code in Program.cs as follows:

static void Main(string[] args)
{
 var animals = new[]
 {
 new { Name = "Benjamin", Age = 42, Weight = 185 },
 new { Name = "Benjamin", Age = 42, Weight = 185 },
 new { Name = "Andrea", Age = 46, Weight = 109 }
 };
 WriteLine(animals[0].ToString());
 WriteLine(animals[0].GetHashCode());
 WriteLine(animals[1].GetHashCode());
 WriteLine(animals[2].GetHashCode());
 WriteLine(animals[0].Equals(animals[1]));
 WriteLine(animals[0].Equals(animals[2]));
 WriteLine(animals[0] == animals[1]);
 WriteLine(animals[0] == animals[2]);
 ReadKey();
}

 3. Run the application. The result is shown in Figure 13-16.

FIGURE 13-16

How It Works

In this example, you create an array of anonymous type objects that you then proceed to use to perform
tests of the members supplied by anonymous types. The code to create the array of anonymously typed
objects is as follows:

 var animals = new[]
 {
 new { Name = "Benjamin", Age = 42, Weight = 185 },
 ...
 };

Anonymous Types ❘ 397

This uses an array that is implicitly typed to an anonymous type, using a combination of syntax from
this section and the “Type Inference” section earlier in this chapter. The result is that the animals vari-
able contains three instances of an anonymous type.

The first thing the code does after creating this array is output the result of calling ToString() on the
anonymous type:

 WriteLine(animals[0].ToString());

This results in the following output:

{ Name = Benjamin, Age = 42, Weight = 185 }

The implementation of ToString() in an anonymous type outputs the values of each property defined
for the type.

The code next calls GetHashCode() on each of the array’s three objects:

 WriteLine(animals[0].GetHashCode());
 WriteLine(animals[1].GetHashCode());
 WriteLine(animals[2].GetHashCode());

When implemented, GetHashCode() should return a unique integer for an object based on the object’s
state. The first two objects in the array have the same property values, and therefore the same state.
The result of these calls is the same integer for each of these objects, but a different integer for the third
object. The output is as follows:

1148883016
1148883016
1315536032

Next, the Equals() method is called to compare the first object with the second object, and then to
compare the first object with the third object:

 WriteLine(animals[0].Equals(animals[1]));
 WriteLine(animals[0].Equals(animals[2]));

The result is as follows:

True
False

The implementation of Equals() in anonymous types compares the state of objects. The result is true
where every property of one object contains the same value as the comparable property on another
object.

That is not what happens when you use the == operator, however. The == operator, as shown in previ-
ous chapters, compares object references. The last section of code performs the same comparisons as
the previous section of code but uses == instead of Equals():

 WriteLine(animals[0] == animals[1]);
 WriteLine(animals[0] == animals[2]);

398 ❘ CHAPTER 13 AdditionAl C# teChniques

Each entry in the animals array refers to a different instance of the anonymous type, so the result is
false in both cases. The output is as expected:

False
False

Interestingly, when you create instances of the anonymous types in this example, the compiler notices
that the parameters are the same and creates three instances of the same anonymous type—not three
separate anonymous types. However, this doesn’t mean that when you instantiate an object from an
anonymous type the compiler looks for a type to match it with. Even if you have defined a class else-
where that has matching properties, if you use anonymous type syntax, then an anonymous type will
be created (or reused as in this example).

DYNAMIC LOOKUP

The var keyword, as described earlier, is not in itself a type, and so doesn’t break the “strongly
typed” methodology of C#. From C# 4 onward, though, things have become a little less fixed. C#
4 introduced the concept of dynamic variables, which, as their name suggests, are variables that do
not have a fixed type.

The main motivation for this is that there are many situations where you will want to use C# to
manipulate objects created by another language. This includes interoperability with older technolo-
gies such as the Component Object Model (COM), as well as dealing with dynamic languages such
as JavaScript, Python, and Ruby. Without going into too much implementation detail, using C# to
access methods and properties of objects created by these languages has, in the past, involved awk-
ward syntax. For example, say you had code that obtained an object from JavaScript with a method
called Add() that added two numbers. Without dynamic lookup, your code to call this method
might look something like the following:

ScriptObject jsObj = SomeMethodThatGetsTheObject();
int sum = Convert.ToInt32(jsObj.Invoke("Add", 2, 3));

The ScriptObject type (not covered in depth here) provides a way to access a JavaScript object, but
even this is unable to give you the capability to do the following:

int sum = jsObj.Add(2, 3);

Dynamic lookup changes everything—enabling you to write code just like the preceding. However,
as you will see in the following sections, this power comes at a price.

Another situation in which dynamic lookup can assist you is when you are dealing with a C# object
whose type you do not know. This might sound like an odd situation, but it happens more often
than you might think. It is also an important capability when writing generic code that can deal
with whatever input it receives. The “old” way to deal with this situation is called reflection, which
involves using type information to access types and members. The syntax for using reflection to
access type members such as methods is quite similar to the syntax used to access the JavaScript
object, as shown in the preceding code. In other words, it’s messy.

Under the hood, dynamic lookup is supported by the Dynamic Language Runtime (DLR). This
is part of .NET 4.7, just as the CLR is. An exact description of the DLR and how it makes

Dynamic Lookup ❘ 399

interoperability easier is beyond the scope of this book; here you’re more interested in how to use
it in C#. You can read more about DLD here: https://docs.microsoft.com/en-us/dotnet/
framework/reflection-and-codedom/dynamic-language-runtime-overview.

The dynamic Type
C# 4 introduced the dynamic keyword, which you can use to define variables, as in this example:

dynamic myDynamicVar;

Unlike the var keyword introduced earlier, there really is a dynamic type, so there is no need to ini-
tialize the value of myDynamicVar when it is declared.

NOTE Unusually, the dynamic type exists only at compile time; at runtime, the
System.Object type is used instead. This is a minor implementation detail but
one that is worth remembering, as it might clarify some of the discussion that
follows.

Once you have a dynamic variable, you can proceed to access its members (the code to obtain a
value for the variable is not shown here):

myDynamicVar.DoSomething("With this!");

Regardless of the value that myDynamicVar contains, this code will compile. However, if the
requested member does not exist, you will get an exception when this code is executed, of type
RuntimeBinderException.

In effect, what you are doing with code like this is providing a “recipe” that should be applied at
runtime. The value of myDynamicVar will be examined, and a method called DoSomething() with a
single string parameter will be located and called at the point where it is required.

This is best illustrated with an example.

WARNING The following example is for illustrative purposes only! In general,
you should use dynamic types only when they are your only option—for
example, when you are dealing with non-.NET objects.

TRY IT OUT Using Dynamic Types: Ch13Ex06\Program.cs

 1. Create a new console application called Ch13Ex06 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Modify the code in Program.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview

400 ❘ CHAPTER 13 AdditionAl C# teChniques

using System.Threading.Tasks;
using Microsoft.CSharp.RuntimeBinder;
using static System.Console;
namespace Ch13Ex06
{
 class MyClass1
 {
 public int Add(int var1, int var2) => var1 + var2;
 }
 class MyClass2 {}
 class Program
 {
 static int callCount = 0;
 static dynamic GetValue()
 {
 if (callCount++ == 0)
 {
 return new MyClass1();
 }
 return new MyClass2();
 }
 static void Main(string[] args)
 {
 try
 {
 dynamic firstResult = GetValue();
 dynamic secondResult = GetValue();
 WriteLine($"firstResult is: {firstResult.ToString()}");
 WriteLine($"secondResult is: {secondResult.ToString()}");
 WriteLine($"firstResult call: {firstResult.Add(2, 3)}");
 WriteLine($"secondResult call: {secondResult.Add(2, 3)}");
 }
 catch (RuntimeBinderException ex)
 {
 WriteLine(ex.Message);
 }
 ReadKey();
 }
 }
}

 3. Run the application. The result is shown in Figure 13-17.

FIGURE 13-17

Dynamic Lookup ❘ 401

How It Works

In this example, you use a method that returns one of two types of objects to obtain a dynamic value,
and then attempts to use the object obtained. The code compiles without any trouble, but an exception
is thrown (and handled) when an attempt is made to access a non-existent method.

To begin, you add a using statement for the namespace that contains the RuntimeBinderException
exception:

using Microsoft.CSharp.RuntimeBinder;

Next, you define two classes, MyClass1 and MyClass2, where MyClass1 has an Add() method and
MyClass2 has no members:

 class MyClass1
 {
 public int Add(int var1, int var2) => var1 + var2;
 }
 class MyClass2 { }

You also add a field (callCount) and a method (GetValue()) to the Program class to provide a way to
obtain an instance of one of these classes:

 static int callCount = 0;
 static dynamic GetValue()
 {
 if (callCount++ == 0)
 {
 return new MyClass1();
 }
 return new MyClass2();
 }

A simple call counter is used so that this method returns an instance of MyClass1 the first time it is
called, and instances of MyClass2 thereafter. Note that the dynamic keyword can be used as a return
type for a method.

Next, the code in Main() calls the GetValue() method twice and then attempts to call GetString()
and Add() on both values returned in turn. This code is placed in a try…catch block to trap any
exceptions of type RuntimeBinderException that occur:

 static void Main(string[] args)
 {
 try
 {
 dynamic firstResult = GetValue();
 dynamic secondResult = GetValue();
 WriteLine($"firstResult is: {firstResult.ToString()}");
 WriteLine($"secondResult is: {secondResult.ToString()}");
 WriteLine($"firstResult call: {firstResult.Add(2, 3)}");
 WriteLine($"secondResult call: {secondResult.Add(2, 3)}");
 }

402 ❘ CHAPTER 13 AdditionAl C# teChniques

 catch (RuntimeBinderException ex)
 {
 WriteLine(ex.Message);
 }
 ReadKey();
 }

Sure enough, an exception is thrown when secondResult.Add() is called, as no such method exists on
MyClass2. The exception message tells you exactly that.

The dynamic keyword can also be used in other places where a type name is required, such as for
method parameters. You could rewrite the Add() method as follows:

 public int Add(dynamic var1, dynamic var2) => var1 + var2;

This would have no effect on the result. In this case, at runtime the values passed to var1 and
var2 are inspected to determine whether a compatible operator definition for + exists. In the case
of two int values being passed, such an operator does exist. If incompatible values are used, a
RuntimeBinderException exception is thrown. For example, if you try,

WriteLine("firstResult call: {0}", firstResult.Add("2", 3));

the exception message will be as follows:

Cannot implicitly convert type 'string' to 'int'

The lesson to be learned here is that dynamic types are very powerful, but there’s a warning to learn
too. These sorts of exceptions are entirely avoidable if you use strong typing instead of dynamic typ-
ing. For most C# code that you write, avoid the dynamic keyword. However, if a situation arises
where you need to use it, use it and love it—and spare a thought for those poor programmers of the
past who didn’t have this powerful tool at their disposal.

ADVANCED METHOD PARAMETERS

C# 4 extended what is possible when defining and using method parameters. This is primarily
in response to a specific problem that arises when using interfaces defined externally, such as the
Microsoft Office programming model. Here, certain methods expose a vast number of parameters,
many of which are not required for every call. In the past, this has meant that a way to specify miss-
ing parameters has been necessary, or that a lot of nulls appear in code:

RemoteCall(var1, var2, null, null, null, null, null);

In this code, it is not at all obvious what the null values refer to, or why they have been omitted.

Perhaps, in an ideal world, there would be multiple overloads of this RemoteCall() method, includ-
ing one that only required two parameters as follows:

RemoteCall(var1, var2);

Advanced Method Parameters ❘ 403

However, this would require many more methods with alternative combinations of parameters,
which in itself would cause more problems (more code to maintain, increased code complexity, and
so on).

Languages such as Visual Basic have dealt with this situation in a different way, by allowing named
and optional parameters. From version 4, this became possible in C#, demonstrating one way in
which the evolution of all .NET languages is converging.

In the following sections, you will see how to use these parameter types.

Optional Parameters
Often when you call a method, you pass in the same value for a particular parameter. This can be a
Boolean value, for example, which might control a nonessential part of the method’s operation. To
be more specific, consider the following method definition:

public List<string> GetWords(string sentence, bool capitalizeWords)
{
 ...
}

Regardless of the value passed into the capitalizeWords parameter, this method will return a list
of string values, each of which is a word from the input sentence. Depending on how this method
was used, you might occasionally want to capitalize the list of words returned (perhaps you are for-
matting a heading such as the one for this section, “Optional Parameters”). In most cases, though,
you might not want to do this, so most calls would be as follows:

List<string> words = GetWords(sentence, false);

To make this the “default” behavior, you might declare a second method as follows:

public List<string> GetWords(string sentence) => GetWords(sentence, false);

This method calls into the second method, passing a value of false for capitalizeWords.

There is nothing wrong with doing this, but you can probably imagine how complicated this would
become in a situation where many more parameters were used.

An alternative is to make the capitalizeWords parameter an optional parameter. This involves
defining the parameter as optional in the method definition by providing a default value that will be
used if none is supplied, as follows:

public List<string> GetWords(string sentence, bool capitalizeWords = false)
{
 ...
}

If you were to define a method in this way, then you could supply either one or two parameters,
where the second parameter is required only if you want capitalizeWords to be true.

404 ❘ CHAPTER 13 AdditionAl C# teChniques

Optional Parameter Values
As described in the previous section, a method definition defines an optional parameter with syntax
as follows:

<parameterType> <parameterName> = <defaultValue>

There are restrictions on what you can use for the <defaultValue> default value. Default values
must be literal values, constant values, or default value type values. The following, therefore, will
not compile:

public bool CapitalizationDefault;
public List<string> GetWords(string sentence,
 bool capitalizeWords = CapitalizationDefault)
{
 ...
}

To make this work, the CapitalizationDefault value must be defined as a constant:

public const bool CapitalizationDefault = false;

Whether it makes sense to do this depends on the situation; in most cases you will probably be
better off providing a literal value as in the previous section.

The OptionalAttribute Attribute
As an alternative to the syntax described in the previous sections, you can define optional
parameters using the OptionalAttibute attribute as follows:

[Optional] <parameterType> <parameterName>

This attribute is found in the System.Runtime.InteropServices namespace. Note that if you use
this syntax there is no way to provide a default value for the parameter.

Optional Parameter Order
When you use optional values, they must appear at the end of the list of parameters for a method.
No parameters without default values can appear after any parameters with default values.

The following code, therefore, is illegal:

public List<string> GetWords(bool capitalizeWords = false, string sentence)
{
 ...
}

Here, sentence is a required parameter, and must therefore appear before the optional capital-
izedWords parameter.

Named Parameters
When you use optional parameters, you might find yourself in a situation where a particular method
has several optional parameters. It’s not beyond the realm of the imagination, then, to conceive of
a situation where you want to pass a value to, say, only the third optional parameter. With just the

Advanced Method Parameters ❘ 405

syntax from the previous section there is no way to do this without supplying values for the first and
second optional parameters.

Named parameters enable you to specify whichever parameters you want. This doesn’t require you
to do anything in particular to your method definition; it is a technique that you use when you are
calling a method. The syntax is as follows:

MyMethod(
 <param1Name>: <param1Value>,
 ...
 <paramNName>: <paramNValue>);

The names of parameters are the names of the variables used in the method definition.

You can specify any number of parameters you like in this way, as long as the named parameters
exist, and you can do so in any order. Named parameters can be optional as well.

You can, if you want, use named parameters for only some of the parameters in a method call. This
is particularly useful when you have several optional parameters in a method signature, but some
required parameters. You might specify the required parameters first, then finish off with named
optional parameters. For example:

MyMethod(
 requiredParameter1Value,
 optionalParameter5: optionalParameter5Value);

If you mix named and positional parameters, though, note that you must include all positional
parameters first, before the named parameters. However, you can use a different order if you prefer
as long as you use named parameters throughout, as in this example:

MyMethod(
 optionalParameter5: optionalParameter5Value,
 requiredParameter1: requiredParameter1Value);

If you do this, you must include values for all required parameters.

In the following Try It Out, you will see how you can use named and optional parameters.

TRY IT OUT Using Named and Optional Parameters: Ch13Ex07

 1. Create a new console application called Ch13Ex07 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Add a class called WordProcessor to the project and modify its code as follows:

public static class WordProcessor
{
 public static List<string> GetWords(
 string sentence,
 bool capitalizeWords = false,
 bool reverseOrder = false,
 bool reverseWords = false)
 {
 List<string> words = new List<string>(sentence.Split(' '));
 if (capitalizeWords)

406 ❘ CHAPTER 13 AdditionAl C# teChniques

 words = CapitalizeWords(words);
 if (reverseOrder)
 words = ReverseOrder(words);
 if (reverseWords)
 words = ReverseWords(words);
 return words;
 }
 private static List<string> CapitalizeWords(List<string> words)
 {
 List<string> capitalizedWords = new List<string>();
 foreach (string word in words)
 {
 if (word.Length == 0)
 continue;
 if (word.Length == 1)
 capitalizedWords.Add(
 word[0].ToString().ToUpper());
 else
 capitalizedWords.Add(
 word[0].ToString().ToUpper()
 + word.Substring(1));
 }
 return capitalizedWords;
 }
 private static List<string> ReverseOrder(List<string> words)
 {
 List<string> reversedWords = new List<string>();
 for (int wordIndex = words.Count - 1;
 wordIndex >= 0; wordIndex--)
 reversedWords.Add(words[wordIndex]);
 return reversedWords;
 }
 private static List<string> ReverseWords(List<string> words)
 {
 List<string> reversedWords = new List<string>();
 foreach (string word in words)
 reversedWords.Add(ReverseWord(word));
 return reversedWords;
 }
 private static string ReverseWord(string word)
 {
 StringBuilder sb = new StringBuilder();
 for (int characterIndex = word.Length - 1;
 characterIndex >= 0; characterIndex--)
 sb.Append(word[characterIndex]);
 return sb.ToString();
 }
}

 3. Modify the code in Program.cs as follows:

static void Main(string[] args)
{
 string sentence = "his gaze against the sweeping bars has "
 + "grown so weary";

Advanced Method Parameters ❘ 407

 List<string> words;
 words = WordProcessor.GetWords(sentence);
 WriteLine("Original sentence:");
 foreach (string word in words)
 {
 Write(word);
 Write(' ');
 }
 WriteLine('\n');
 words = WordProcessor.GetWords(
 sentence,
 reverseWords: true,
 capitalizeWords: true);
 WriteLine("Capitalized sentence with reversed words:");
 foreach (string word in words)
 {
 Write(word);
 Write(' ');
 }
 ReadKey();
}

 4. Run the application. The result is shown in Figure 13-18.

FIGURE 13-18

How It Works

In this example, you have created a utility class that performs some simple string manipulation, and
used that class to modify a string. The single public method exposed by the class contains one required
parameter and three optional ones:

 public static List<string> GetWords(
 string sentence,
 bool capitalizeWords = false,
 bool reverseOrder = false,
 bool reverseWords = false)
 {
 ...
 }

This method returns a collection of string values, each of which is a word from the original input.
Depending on which (if any) of the three optional parameters are specified, additional transformations
can be made—on the string collection as a whole or on individual word values.

408 ❘ CHAPTER 13 AdditionAl C# teChniques

NOTE You won’t look at the functionality of the WordProcessor class in any
more depth here; you are free to browse the code at your leisure. Along the
way you might like to think about how this code might be improved. For
example, should the word his be capitalized as His? How would you go about
making that change?

When this method is called, only two of the available optional parameters are used; the third parameter
(reverseOrder) will have its default value of false:

 words = WordProcessor.GetWords(
 sentence,
 reverseWords: true,
 capitalizeWords: true);

Also, note that the two parameters specified are placed in a different order from how they are defined.

As a final point to note, IntelliSense can be quite handy when dealing with methods that have optional
parameters. When entering the code for this Try It Out, you might have noticed the tooltip for the
GetWords() method, shown in Figure 13-19 (you can also see this tooltip by hovering the mouse
pointer over the method call as shown).

FIGURE 13-19

This is a very useful tooltip, as it shows not only the names of available parameters, but also the default
values for optional parameters, so you can tell at a glance if you need to override a particular default.

Lambda Expressions ❘ 409

LAMBDA EXPRESSIONS

Lambda expressions are a construct that you can use to simplify certain aspects of C# program-
ming, in particular when combined with LINQ. They can be difficult to grasp at first, mainly
because they are so flexible in their usage. Lambda expressions are extremely useful when combined
with other C# language features, such as anonymous methods. Without looking at LINQ, a subject
left until later in the book, anonymous methods are the best entry point for examining this subject.
Start with a quick refresher.

Anonymous Methods Recap
Previously in this chapter you learned about anonymous methods—methods that you supply inline,
where a delegate type variable would otherwise be required. When you add an event handler to an
event, the sequence of events is as follows:

 1. Define an event handler method whose return type and parameters match those of the del-
egate required for the event to which you want to subscribe.

 2. Declare a variable of the delegate type used for the event.

 3. Initialize the delegate variable to an instance of the delegate type that refers to the event han-
dler method.

 4. Add the delegate variable to the list of subscribers for the event.

In practice, things are a bit simpler than this because you typically won’t bother with a variable to
store the delegate—you will just use an instance of the delegate when you subscribe to the event.

This was the case when you previously used the following code:

Timer myTimer = new Timer(100);
myTimer.Elapsed += new ElapsedEventHandler(WriteChar);

This code subscribes to the Elapsed event of a Timer object. This event uses the
ElapsedEventHandler delegate type, which is instantiated using a method identifier, WriteChar.
The result here is that when the Timer raises the Elapsed event, the WriteChar() method is
called. The parameters passed to WriteChar() depend on the parameter types defined by the
ElapsedEventHandler delegate and the values passed by the code in Timer that raises the event.

In fact, the C# compiler can achieve the same result with even less code through method group
syntax:

myTimer.Elapsed += WriteChar;

The C# compiler knows the delegate type required by the Elapsed event, so it can fill in the blanks.
However, you should use this syntax with care because it can make it harder to read your code
and know exactly what is happening. When you use an anonymous method, the sequence of events
shown earlier is reduced to a single step:

 1. Use an inline, anonymous method that matches the return type, and the parameters of the
delegate required by an event to subscribe to that event.

410 ❘ CHAPTER 13 AdditionAl C# teChniques

The inline, anonymous method is defined by using the delegate keyword:

myTimer.Elapsed +=
 delegate(object source, ElapsedEventArgs e)
 {
 WriteLine("Event handler called after {0} milliseconds.",
 (source as Timer).Interval);
 };

This code works just as well as using the event handler separately. The main difference is that the
anonymous method used here is effectively hidden from the rest of your code. You cannot, for example,
reuse this event handler elsewhere in your application. In addition, the syntax used here is, for want of
a better description, a little clunky. The delegate keyword is immediately confusing because it is effec-
tively being overloaded—you use it both for anonymous methods and for defining delegate types.

Lambda Expressions for Anonymous Methods
This brings you to lambda expressions. Lambda expressions are a way to simplify the syntax of
anonymous methods. In fact, they are more than that, but this section will keep things simple for
now. Using a lambda expression, you can rewrite the code at the end of the previous section as
follows:

myTimer.Elapsed += (source, e) => WriteLine("Event handler called after " +
 $"{(source as Timer).Interval} milliseconds.");

At first glance, this looks…well, a little baffling (unless you are familiar with so-called functional
programming languages such as Lisp or Haskell, that is). However, if you look closer you can see,
or at least infer, how this works and how it relates to the anonymous method that it replaces. The
lambda expression is made up of three parts:

 ➤ A list of (untyped) parameters in parentheses

 ➤ The => operator

 ➤ A C# statement

The types of the parameters are inferred from the context, using the same logic shown in the sec-
tion “Anonymous Types” earlier in this chapter. The => operator simply separates the parameter list
from the expression body. The expression body is executed when the lambda expression is called.

The compiler takes this lambda expression and creates an anonymous method that works exactly
the same way as the anonymous method in the previous section. In fact, it will be compiled into the
same or similar Common Intermediate Language (CIL) code.

The following Try It Out clarifies what occurs in lambda expressions.

TRY IT OUT Using Simple Lambda Expressions: Ch13Ex08\Program.cs

 1. Create a new console application called Ch13Ex08 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Modify the code in Program.cs as follows:

namespace Ch13Ex08
{

Lambda Expressions ❘ 411

 delegate int TwoIntegerOperationDelegate(int paramA, int paramB);
 class Program
 {
 static void PerformOperations(TwoIntegerOperationDelegate del)
 {
 for (int paramAVal = 1; paramAVal <= 5; paramAVal++)
 {
 for (int paramBVal = 1; paramBVal <= 5; paramBVal++)
 {
 int delegateCallResult = del(paramAVal, paramBVal);
 Write($"f({paramAVal}, " +
 $"{paramBVal})={delegateCallResult}");
 if (paramBVal != 5)
 {
 Write(", ");
 }
 }
 WriteLine();
 }
 }
 static void Main(string[] args)
 {
 WriteLine("f(a, b) = a + b:");
 PerformOperations((paramA, paramB) => paramA + paramB);
 WriteLine();
 WriteLine("f(a, b) = a * b:");
 PerformOperations((paramA, paramB) => paramA * paramB);
 WriteLine();
 WriteLine("f(a, b) = (a - b) % b:");
 PerformOperations((paramA, paramB) => (paramA - paramB)
 % paramB);
 ReadKey();
 }
 }
}

 3. Run the application. The result is shown in Figure 13-20.

FIGURE 13-20

412 ❘ CHAPTER 13 AdditionAl C# teChniques

How It Works

This example uses lambda expressions to generate functions that can be used to return the result of
performing specific processing on two input parameters. Those functions then operate on 25 pairs of
values and output the results to the console.

You start by defining a delegate type called TwoIntegerOperationDelegate to represent a method that
takes two int parameters and returns an int result:

 delegate int TwoIntegerOperationDelegate(int paramA, int paramB);

This delegate type is used later when you define your lambda expressions. These lambda expressions
compile into methods whose return type and parameter types match this delegate type, as you will see
shortly.

Next, you add a method called PerformOperations(), which takes a single parameter of type
TwoIntegerOperationDelegate:

 static void PerformOperations(TwoIntegerOperationDelegate del)
 {

The idea behind this method is that you can pass it a delegate instance (or an anonymous method or
lambda expression, because these constructs compile to delegate instances) and the method will call the
method represented by the delegate instance with an assortment of values:

 for (int paramAVal = 1; paramAVal <= 5; paramAVal++)
 {
 for (int paramBVal = 1; paramBVal <= 5; paramBVal++)
 {
 int delegateCallResult = del(paramAVal, paramBVal);

The parameters and results are then output to the console:

 Write($"f({paramAVal}, " +
 $"{paramBVal})={delegateCallResult}");
 if (paramBVal != 5)
 {
 Write(", ");
 }
 }
 WriteLine();
 }
 }

In the Main() method you create three lambda expressions and use them to call PerformOperations()
in turn. The first of these calls is as follows:

 WriteLine("f(a, b) = a + b:");
 PerformOperations((paramA, paramB) => paramA + paramB);

The lambda expression used here is as follows:

(paramA, paramB) => paramA + paramB

Lambda Expressions ❘ 413

Again, this breaks down into three parts:

 1. A parameter definition section. Here there are two parameters, paramA and paramB. These
parameters are untyped, meaning the compiler can infer the types of these parameters according
to the context. In this case the compiler can determine that the PerformOperations() method
call requires a delegate of type TwoIntegerOperationDelegate. This delegate type has two int
parameters, so by inference both paramA and paramB are typed as int variables.

 2. The => operator. This separates the lambda expression parameters from the lambda expression
body.

 3. The expression body. This specifies a simple operation, which is the summation of paramA and
paramB. Notice that there is no need to specify that this is a return value. The compiler knows that
in order to create a method that can be used with TwoIntegerOperationDelegate, the method
must have a return type of int. Because the operation specified, paramA + paramB, evaluates to an
int, and no additional information is supplied, the compiler infers that the result of this expression
should be the return type of the method.

In longhand then, you can expand the code that uses this lambda expression to the following code that
uses an anonymous method:

 WriteLine("f(a, b) = a + b:");
 PerformOperations(delegate(int paramA, int paramB)
 {
 return paramA + paramB;
 });

The remaining code performs operations using two different lambda expressions in the same way:

 WriteLine();
 WriteLine("f(a, b) = a * b:");
 PerformOperations((paramA, paramB) => paramA * paramB);
 WriteLine();
 WriteLine("f(a, b) = (a - b) % b:");
 PerformOperations((paramA, paramB) => (paramA - paramB)
 % paramB);
 ReadKey();

The last lambda expression involves more calculations but is no more complicated than the
others. The syntax for lambda expressions enables you to perform far more complicated operations,
as you will see shortly.

Lambda Expression Parameters
In the code you have seen so far, the lambda expressions have used type inference to determine the
types of the parameters passed. In fact, this is not mandatory; you can define types if you want. For
example, you could use the following lambda expression:

(int paramA, int paramB) => paramA + paramB

414 ❘ CHAPTER 13 AdditionAl C# teChniques

This has the advantage of making your code more readable, although you lose out in both brevity
and flexibility. You could use the implicitly typed lambda expressions from the previous Try It Out
for delegate types that used other numeric types, such as long variables.

Note that you cannot use implicit and explicit parameter types in the same lambda expression. The
following lambda expressions will not compile because paramA is explicitly typed and paramB is
implicitly typed:

(int paramA, paramB) => paramA + paramB

Parameter lists in lambda expressions always consist of a comma-separated list of either all implic-
itly typed parameters or all explicitly typed parameters. If you have only one implicitly typed
parameter, then you can omit the parentheses; otherwise, they are required as part of the parameter
list, as shown earlier. For example, you could have the following as a single-parameter, implicitly
typed lambda expression:

param1 => param1 * param1

You can also define lambda expressions that have no parameters. This is denoted by using empty
parentheses, ():

() => Math.PI

This could be used where a delegate requiring no parameters but returning a double value is
required.

Lambda Expression Statement Bodies
In all the code that you have seen so far, a single expression has been used in the statement body
of lambda expressions. You have also seen how this single expression has been interpreted as the
return value of the lambda expression, which is, for example, how you can use the expression
paramA + paramB as the statement body for a lambda expression for a delegate with a return type of
int (assuming both paramA and paramB are implicitly or explicitly typed to int values, as they were
in the example code).

An earlier example showed how a delegate with a void return type was less fussy about the code
used in the statement body:

myTimer.Elapsed += (source, e) => WriteLine("Event handler called after " +
 $"{(source as Timer).Interval} milliseconds.");

Here, the statement doesn’t evaluate to anything, so it is simply executed without any return value
being used anywhere.

Given that lambda expressions can be visualized as an extension of the anonymous method syn-
tax, you might not be surprised to learn that you can also include multiple statements as a lambda
expression statement body. To do so, you simply provide a block of code enclosed in curly braces,
much like any other situation in C# where you must supply multiple lines of code:

(param1, param2) =>
{
 // Multiple statements ahoy!
}

Lambda Expressions ❘ 415

If you use a lambda expression in combination with a delegate type that has a non-void return type,
then you must return a value with the return keyword, just like any other method:

(param1, param2) =>
{
 // Multiple statements ahoy!
 return returnValue;
}

For example, earlier you saw how you could rewrite the following code from the Try It Out,

 PerformOperations((paramA, paramB) => paramA + paramB);

as:

 PerformOperations(delegate(int paramA, int paramB)
 {
 return paramA + paramB;
 });

Alternatively, you could rewrite the code as follows:

 PerformOperations((paramA, paramB) =>
 {
 return paramA + paramB;
 });

This is more in keeping with the original code because it maintains implicit typing of the paramA
and paramB parameters.

For the most part, lambda expressions are at their most useful—and certainly their most elegant—when
used with single expressions. To be honest, if you require multiple statements, your code might read
much better if you define a separate, non-anonymous method to use instead of a lambda expression; that
also makes your code more reusable.

Lambda Expressions as Delegates and Expression Trees
You have already seen some of the differences between lambda expressions and anonymous methods
where lambda methods have more flexibility—for example, implicitly typed parameters. At this
point it is worth noting another key difference, although the implications of this will not become
apparent until later in the book when you learn about LINQ.

You can interpret a lambda expression in two ways. The first way, which you have seen throughout
this chapter, is as a delegate. That is, you can assign a lambda expression to a delegate type variable,
as you did in the previous Try It Out.

In general terms, you can represent a lambda expression with up to eight parameters as one of the
following generic types, all defined in the System namespace:

 ➤ Action for lambda expressions with no parameters and a return type of void

 ➤ Action<> for lambda expressions with up to eight parameters and a return type of void

 ➤ Func<> for lambda expressions with up to eight parameters and a return type that is not
void

416 ❘ CHAPTER 13 AdditionAl C# teChniques

Action<> has up to eight generic type parameters, one for each parameter, and Func<> has up to
nine generic type parameters, used for up to eight parameters and the return type. In Func<>, the
return type is always the last in the list.

For example, the following lambda expression, which you saw earlier:

(int paramA, int paramB) => paramA + paramB

This expression can be represented as a delegate of type Func<int, int, int> because it has two
parameters and a return type all of type int. Note that you can use these generic delegate types
instead of defining your own in many circumstances. For example, you can use them instead of the
TwoIntegerOperationDelegate delegate you defined in the previous Try It Out.

The second way to interpret a lambda expression is as an expression tree. An expression tree is an
abstract representation of a lambda expression; and as such, it cannot be executed directly. Instead,
you can use the expression tree to analyze the lambda expression programmatically and perform
actions in response to the lambda expression.

This is, obviously, a complicated subject. However, expression trees are critical to the LINQ func-
tionality you will learn about later in this book. To give a more concrete example, the LINQ frame-
work includes a generic class called Expression<>, which you can use to encapsulate a lambda
expression. One of the ways in which this class is used is to take a lambda expression that you have
written in C# and convert it into an equivalent SQL script representation for executing directly in
a database. When you encounter this functionality later in the book, you will be better equipped to
understand what is going on, as you now have a thorough grounding in the key concepts that the C#
language provides.

Lambda Expressions and Collections
Now that you have learned about the Func<> generic delegate, you can understand some of the
extension methods that the System.Linq namespace provides for array types (which you might
have seen popping up in IntelliSense at various points during your coding). For example, there is an
extension method called Aggregate(), which is defined with three overloads as follows:

public static TSource Aggregate<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, TSource, TSource> func);
public static TAccumulate Aggregate<TSource, TAccumulate>(
 this IEnumerable<TSource> source,
 TAccumulate seed,
 Func<TAccumulate, TSource, TAccumulate> func);
public static TResult Aggregate<TSource, TAccumulate,
 Aggregate<TSource, TAccumulate, TResult>(TResult>(
 this IEnumerable<TSource> source,
 TAccumulate seed,
 Func<TAccumulate, TSource, TAccumulate> func,
 Func<TAccumulate, TResult> resultSelector);

As with the extension method shown earlier, this looks at first glance to be impenetrable, but if you
break it down you can work it out easily enough. The IntelliSense for this function tells you that it
does the following:

Applies an accumulator function over a sequence.

Lambda Expressions ❘ 417

This means that an accumulator function (which you can supply in the form of a lambda expression)
will be applied to each element in a collection from beginning to end. This accumulator function
must have two parameters and one return value. One input is the current element; the other input is
either a seed value, the first value in the collection, or the result of the previous evaluation.

In the simplest of the three overloads, there is only one generic type specification, which can be
inferred from the type of the instance parameter. For example, in the following code the generic
type specification will be int (the accumulator function is left blank for now):

int[] myIntArray = { 2, 6, 3 };
int result = myIntArray.Aggregate(...);

This is equivalent to the following:

int[] myIntArray = { 2, 6, 3 };
int result = myIntArray.Aggregate<int>(...);

The lambda expression that is required here can be deduced from the extension method specifica-
tion. Because the type TSource is int in this code, you must supply a lambda expression for the del-
egate Func<int, int, int>. For example, you could use one you’ve seen before:

int[] myIntArray = { 2, 6, 3 };
int result = myIntArray.Aggregate((paramA, paramB) => paramA + paramB);

This call results in the lambda expression being called twice, first with paramA = 2 and paramB = 6,
and once with paramA = 8 (the result of the first calculation) and paramB = 3. The result assigned to
the variable result will be the int value 11—the summation of all the elements in the array.

The other two overloads of the Aggregate() extension method are similar, but enable you to per-
form slightly more complicated processing. This is illustrated in the following short Try It Out.

TRY IT OUT Using Lambda Expressions with Collections: Ch13Ex09\Program.cs

 1. Create a new console application called Ch13Ex09 and save it in the directory C:\
BeginningCSharp7\Chapter13.

 2. Modify the code in Program.cs as follows:

static void Main(string[] args)
{
 string[] people = { "Donna", "Mary", "Andrea" };
 WriteLine(people.Aggregate(
 (a, b) => a + " " + b));
 WriteLine(people.Aggregate<string, int>(
 0,
 (a, b) => a + b.Length));
 WriteLine(people.Aggregate<string, string, string>(
 "Some people:",
 (a, b) => a + " " + b,
 a => a));
 WriteLine(people.Aggregate<string, string, int>(
 "Some people:",
 (a, b) => a + " " + b,
 a => a.Length));
 ReadKey();
}

418 ❘ CHAPTER 13 AdditionAl C# teChniques

 3. Run the application. The result is shown in Figure 13-21.

FIGURE 13-21

How It Works

In this example, you experimented with each of the overloads of the Aggregate() extension method,
using a string array with three elements as source data.

First, a simple concatenation is performed:

 WriteLine(people.Aggregate((a, b) => a + " " + b));

The first pair of elements is concatenated into a string using simple syntax. After this first concatena-
tion, the result is passed back into the lambda expression along with the third element in the array,
in much the same way as you saw int values being summed earlier. The result is a concatenation of
the entire array, with spaces separating entries. You can achieve this effect in a simpler way using the
string.Join() method, but the remainder of the overloads illustrated in this example provide addi-
tional functionality that string.Join() doesn’t.

The second overload of the Aggregate() function, which has the two generic type parameters TSource
and TAccumulate, is used. In this case the lambda expression must be of the form Func<TAccumulate,
TSource, TAccumulate>. In addition, a seed value of type TAccumulate must be specified. This seed
value is used in the first call to the lambda expression, along with the first array element. Subsequent
calls take the accumulator result of previous calls to the expression. The code used is as follows:

 WriteLine(people.Aggregate<string, int>(
 0,
 (a, b) => a + b.Length));

The accumulator (and, by implication, the return value) is of type int. The accumulator value is ini-
tially set to the seed value of 0, and with each call to the lambda expression it is summed with the
length of an element in the array. The result is the sum of the lengths of each element in the array.

Next you come to the last overload of Aggregate(). This takes three generic type parameters and dif-
fers from the previous version only in that the return value can be a different type from both the type
of the elements in the array and the accumulator value. First, this overload is used to concatenate the
string elements with a seed string:

 WriteLine(people.Aggregate<string, string, string>(
 "Some people:",
 (a, b) => a + " " + b,
 a => a));

Lambda Expressions ❘ 419

The final parameter of this method, resultSelector, must be specified even if (as in this example)
the accumulator value is simply copied to the result. This parameter is a lambda expression of type
Func<TAccumulate, TResult>.

In the final section of code, the same version of Aggregate() is used again, but this time with an int
return value. Here, resultSelector is supplied with a lambda expression that returns the length of the
accumulator string:

 WriteLine(people.Aggregate<string, string, int>(
 "Some people:",
 (a, b) => a + " " + b,
 a => a.Length));

This example hasn’t done anything spectacular, but it demonstrates how you can use more compli-
cated extension methods that involve generic type parameters, collections, and seemingly complex
syntax. You’ll see more of this later in the book.

EXERCISES

 13.1. Write the code for an event handler that uses the general-purpose (object sender,
EventArgs e) syntax that will accept either the Timer.Elapsed event or the Connection
.MessageArrived event from the code shown earlier in this chapter. The handler should
output a string specifying which type of event has been received, along with the Message
property of the MessageArrivedEventArgs parameter or the SignalTime property of the
ElapsedEventArgs parameter, depending on which event occurs.

 13.2. Modify the card game example to check for the more interesting winning condition of the
popular card game, rummy. This means that a player wins the game if his or her hand con-
tains two “sets” of cards, one of which consists of three cards and one of which consists of
four cards. A set is defined as either a sequence of cards of the same suit (such as 3H, 4H,
5H, 6H) or several cards of the same rank (such as 2H, 2D, 2S).

 13.3. Why can’t you use an object initializer with the following class? After modifying this class to
enable the use of an object initializer, give an example of the code you would use to instanti-
ate and initialize this class in one step:

public class Giraffe
{
 public Giraffe(double neckLength, string name)
 {
 NeckLength = neckLength;
 Name = name;
 }
 public double NeckLength {get; set;}
 public string Name {get; set;}
}

420 ❘ CHAPTER 13 AdditionAl C# teChniques

 13.4. True or false: If you declare a variable of type var, you will then be able to use it to hold any
object type.

 13.5. When you use anonymous types, how can you compare two instances to determine whether
they contain the same data?

 13.6. Try to correct the following code for an extension method, which contains an error:

public string ToAcronym(this string inputString)
{
 inputString = inputString.Trim();
 if (inputString == "")
 {
 return "";
 }
 string[] inputStringAsArray = inputString.Split(' ');
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < inputStringAsArray.Length; i++)
 {
 if (inputStringAsArray[i].Length > 0)
 {
 sb.AppendFormat("{0}",
 inputStringAsArray[i].Substring(
 0, 1).ToUpper());
 }
 }
 return sb.ToString();
}

 13.7. How would you ensure that the extension method in Question 4 was available to your client
code?

 13.8. Rewrite the ToAcronym() method shown here as a single statement. The code should ensure
that strings including multiple spaces between words do not cause errors. Hint: You will
require the ?: tertiary operator, the string.Aggregate<string, string>() extension
method, and a lambda expression to achieve this.

Answers to the exercises can be found in Appendix.

Lambda Expressions ❘ 421

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Namespace
qualification

To avoid ambiguity in namespace qualification, you can use the : : operator to
force the compiler to use aliases that you have created. You can also use the
global namespace as an alias for the top-level namespace.

Custom
exceptions

You can create your own exception classes by deriving from the root Exception
class. This is helpful because it gives you greater control over catching specific
exceptions, and allows you to customize the data that is contained in an excep-
tion in order to deal with it effectively.

Event handling Many classes expose events that are raised when certain triggers occur in their
code. You can write handlers for these events to execute code at the point
where they are raised. This two-way communication is a great mechanism for
responsive code, and prevents you from having to write what would otherwise
be complex, convoluted code that might poll an object for changes.

Event definitions You can define your own event types, which involves creating a named event
and a delegate type for any handlers for the event. You can use the standard
delegate type with no return type and custom event arguments that derive from
System.EventArgs to allow for multipurpose event handlers. You can also use
the EventHandler and EventHandler<T> delegate types to define events with
simpler code.

Anonymous
methods

Often, to make your code more readable, you can use an anonymous method
instead of a full event handler method. This means defining the code to execute
when an event is raised in-line at the point where you add the event handler.
You achieve this with the delegate keyword.

Attributes Occasionally, either because the framework you are using demands it or
because you choose to, you will make use of attributes in your code. You can
add attributes to classes, methods and other members using [AttributeName]
syntax, and you can create your own attributes by deriving from System.
Attribute. You can read attribute values through reflection.

Initializers You can use initializers to initialize an object or collection at the same time as
creating it. Both types of initializers consist of a block of code surrounded by
curly brackets. Object initializers allow you to set property values by providing a
comma-separated list of property name/value pairs. Collection initializers simply
require a comma-separated list of values. When you use an object initializer, you
can also use a nondefault constructor.

Type inference The var keyword allows you to omit the type of a variable when you declare it.
However, this is possible only if the type can be determined at compile time.
Using var does not break the strong typing methodology of C# as a variable
declared with var has one and only one possible type.

422 ❘ CHAPTER 13 AdditionAl C# teChniques

TOPIC KEY CONCEPTS

Anonymous
types

For many simple types used to structure data storage, defining a type is not
necessary. Instead, you can use an anonymous type, whose members are
inferred from usage. You define an anonymous type with object initializer syn-
tax, and every property you set is defined as a read-only property.

Dynamic lookup Use the dynamic keyword to define a dynamic type variable that can hold
any value. You can then access members of the contained value with normal
property or method syntax, and these are only checked at runtime. If, at run-
time, you attempt to access a nonexistent member, an exception is thrown. This
dynamic typing greatly simplifies the syntax required to access non-.NET types,
or .NET types whose type information is not available at compile time. However,
dynamic types must be used with caution as you lose compile time code check-
ing. You can control the behavior of dynamic lookup by implementing the
IDynamicMetaObjectProvider interface.

Optional method
parameters

Often, you can define a method with lots of parameters, many of which are
only rarely used. Instead of forcing client code to specify values for rarely used
parameters, you might provide multiple method overloads. Alternatively, you
can define these parameters as optional (and provide default values for param-
eters that are not specified). Client code that calls your method can then specify
only as many parameters as are required.

Named method
parameters

Client code can specify method parameter values by position or by name (or a
mix of the two where positional parameters are specified first). Named param-
eters can be specified in any order. This is particularly useful when combined
with optional parameters.

Lambda
expressions

Lambda expressions are essentially a shorthand way of defining anonymous
methods, although they have additional capabilities such as implicit typing.
You define a lambda expression with a comma-separated list of parameters (or
empty parentheses for no parameters), the => operator, and an expression. The
expression can be a block of code enclosed in curly brackets. Lambda expres-
sions with up to eight parameters and an optional return type can be repre-
sented with the Action, Action<>, and Func<> delegate types. Many LINQ
extension methods that can be used with collections use lambda expression
parameters.

PART II
Windows Programming

 ➤CHAPTER 14: Basic Desktop Programming

 ➤CHAPTER 15: Advanced Desktop Programming

Basic Desktop Programming
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Using the WPF designer

 ➤ Using controls for displaying information to the user, such as the
Label and TextBlock controls

 ➤ Using controls for triggering events, such as the Button control

 ➤ Using the controls that enable users of your application to enter
text, such as the TextBox control

 ➤ Using controls that enable you to inform users of the current state
of the application and allow the user to change that state, such as
the RadioButton and CheckButton controls

 ➤ Using controls that enable you to display lists of information, such
as the ListBox and ComboBox controls

 ➤ Using panels to lay out your user interfaces

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter14 folder and individually named
according to the names throughout the chapter.

The first part of this book has concerned itself with the ins and outs of C#, but now it is time
to move away from the details of the programming language and into the world of the graphi-
cal user interface (GUI).

14

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

426 ❘ CHAPTER 14 Basic Desktop programming

Over the years, Visual Studio has provided the Windows developers with a couple of choices for
creating user interfaces: Windows Forms, which is a basic tool for creating applications that target
classic Windows, and Windows Presentation Foundations (WPF), which provide a wider range of
application types and attempts to solve a number of problems with Windows Forms. WPF is techni-
cally platform-independent, which allows us to use it in a number of interesting ways, one of which,
as you will see in Chapter 25, is that we can use it to create apps that target other Windows plat-
forms, such as the Surface tablet or Xbox. In this and the next chapter you are going to learn how to
use WPF to create classic Windows applications.

At the heart of the development of most graphical Windows applications is the Window Designer.
You create a user interface by dragging and dropping controls from a Toolbox to your window,
placing them where you want them to appear when you run the application. With WPF this is only
partly true, as the user interface is in fact written entirely in another language called Extensible
Application Markup Language (XAML, pronounced zammel). Visual Studio allows you to do both
and as you get more comfortable with WPF, you are likely going to combine dragging and dropping
controls with writing raw XAML.

In this chapter, you work with the Visual Studio WPF designer to create a number of windows for
the card game that you wrote in previous chapters. You learn to use some of the many controls that
ship with Visual Studio that cover a wide range of functionality. Through the design capabilities of
Visual Studio, developing user interfaces and handling user interaction is very straightforward—and
fun! Presenting all of Visual Studio’s controls is impossible within the scope of this book, so this
chapter looks at some of the most commonly used controls, ranging from labels and text boxes to
menu bars and layout panels.

XAML

XAML is a language that uses XML syntax and enables controls to be added to a user interface in a
declarative, hierarchical way. That is to say, you can add controls in the form of XML elements, and
specify control properties with XML attributes. You can also have controls that contain other con-
trols, which is essential for both layout and functionality.

NOTE XML is covered in detail in Chapter 21. If you want a quick introduction
to the basics of XML at this point, it might be a good idea to skip forward and
read the first few pages of that chapter.

XAML is designed with today’s powerful graphics cards in mind, and as such it enables you to use
all the advanced capabilities that these graphics cards offer through DirectX. The following lists
some of these capabilities:

 ➤ Floating-point coordinates and vector graphics to provide layout that can be scaled, rotated,
and otherwise transformed with no loss of quality

 ➤ 2D and 3D capabilities for advanced rendering

XAML ❘ 427

 ➤ Advanced font processing and rendering

 ➤ Solid, gradient, and texture fills with optional transparency for UI objects

 ➤ Animation storyboarding that can be used in all manner of situations, including user-
triggered events such as mouse clicks on buttons

 ➤ Reusable resources that you can use to dynamically style controls

Separation of Concerns
One problem that exists with maintaining Windows applications that has been written over the
years is that they very often mix the code that generates the user interface and the code that executes
based on users’ actions. This makes it difficult for multiple developers and designers to work on the
same project. WPF solves this in two ways. First, by using XAML to describe the GUI rather than
C#, the GUI becomes platform independent, and you can in fact render XAML without any code
whatsoever. Second, this means that it feels natural to place the C# code in a different file than you
place the GUI code. Visual Studio utilizes something called code-behind files, which are C# files
that are dynamically linked to the XAML files.

Because the GUI is separated from the code, it is possible to create tailor-made applications for
designing the GUI, and this is exactly what Microsoft has done. The design tool Blend for Visual
Studio is the favored tool used by designers when creating GUIs for WPF. This tool can load
the same projects as Visual Studio, but where Visual Studio targets the developer more than the
designer, the opposite is true in Blend. This means that on large projects with designers and develop-
ers, everyone can work together on the same project, using their preferred tool without fear of inad-
vertently influencing the others.

XAML in Action
As stated, XAML is XML, which means that as long as the files are fairly small, it is possible to see
immediately what it is describing. Take a look at this small example and see if you can tell what it
does:

<Window x:Class="Ch14Ex01.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WpfApp1"
 mc:Ignorable="d"
 Title="Hello World" Height="350" Width="525">
 <Grid>
 <Button Content="Hello World"
 HorizontalAlignment="Left"
 Margin="220,151,0,0"
 VerticalAlignment="Top"
 Width="75"/>

 </Grid>
</Window

428 ❘ CHAPTER 14 Basic Desktop programming

The XAML in this example creates a window with a single button on it. Both the window and the
button display the text “Hello World”. XML allows you to place tags inside other tags as long as
you close them properly. When an element in placed inside another in XAML, this element becomes
the content of the enclosing element, meaning that the Button could also have been written like this:

 <Button HorizontalAlignment="Left"
 Margin="220,151,0,0"
 VerticalAlignment="Top"
 Width="75">
 Hello World
 </Button>

Here, the Content property of the Button has been removed and the text is now a child node of the
Button control. Content can be just about anything in XAML, which is also demonstrated in this
example: The Button element is the content of the Grid element, which is itself the content of the
Window element.

Most, if not all, controls can have content, and there are very few limits to what you can do to
change the appearance of the built-in controls. Chapter 15 explores this in more detail.

Namespaces
The Window element of the previous example is the root element of the XAML file. This element
usually includes a number of namespace declarations. By default, the Visual Studio designer includes
two namespaces that you should be aware of: http://schemas.microsoft.com/winfx/2006/
xaml/presentation and http://schemas.microsoft.com/winfx/2006/xaml. The first one is
the default namespace of WPF and declares a lot of controls that you are going to use to create
user interfaces. The second one declares the XAML language itself. Namespaces don’t have to be
declared on the root tag, but doing so ensures that their content can be easily accessed throughout
the XAML file, so there is rarely any need to move the declarations.

NOTE The namespaces look like they might be URLs, but this is deceiving. In
fact they are what is known as Uniform Resource Identifiers (URIs). A URI can
be any string as long as it uniquely identifies a resource. Microsoft has chosen
to specify the URIs in a form that is normally used for URLs, but there is no
guarantee that there is a page to be displayed if you were to type the address
into a browser.

When you create a new window in Visual Studio, the presentation namespace is always declared as
the default and the language namespace as xmlns:x. As seen with the Window, Button, and Grid
tags, this ensures that you don’t have to prefix the controls you add to the window, but the language
elements you specify must be prefixed with an x.

The last namespace that you will see quite often is the system namespace: xmlns:sys=”clr-name
space:System;assembly=mscorlib”. This namespace allows you to use the built-in types of the
.NET Framework in your XAML. By doing this, the markup you write can explicitly declare the

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

The Playground ❘ 429

types of elements you are creating. For example, it is possible to declare an array in markup and
state that the members of the array are strings:

 <Window.Resources>
 <ResourceDictionary>
 <x:Array Type="sys:String" x:Key="localArray">
 <sys:String>"Benjamin Perkins"</sys:String>
 <sys:String>"Jacob Vibe Hammer"</sys:String>
 <sys:String>"Job D. Reid"</sys:String>
 </x:Array>
 </ResourceDictionary>
 </Window.Resources>

Code-Behind Files
Although XAML is a powerful way to declare user interfaces, it is not a programming language.
Whenever you want to do more than presentation, you need C#. It is possible to embed C# code
directly into XAML, but mixing code and markup is never recommended and you will not see it
done in this book. What you will see quite a lot is the use of code-behind files. These files are nor-
mal C# files that have the same name as the XAML file, plus a .cs extension. Although you can
call them whatever you like, it’s best to stick to this naming convention. Visual Studio creates code-
behind files automatically when you create a new window in your application, because it expects
you to add code to the window. It also adds the x:Class property to the Window tag in the XAML:

 <Window x:Class="Ch14Ex01.MainWindow"

This tells the compiler that it can find the code for this window in, not a file, but the class
Ch14Ex01.MainWindow . Because you can specify only the fully qualified class name, and not the
assembly in which the class is found, it is not possible to put the code-behind file somewhere outside
of the project in which the XAML is defined. Visual Studio puts the code-behind files in the same
directory as the XAML files so you never have to worry about this while working in Visual Studio.

THE PLAYGROUND

Now that you know enough about how WPF is constructed to start getting your hands dirty, it’s
time to look at the editor. Start by creating a new WPF project by selecting File ➪ New ➪ Project.
From the New Project dialog box, navigate to the Windows Classic Desktop node under Visual C#
and select the project template WPF App (.Net Framework). Figure 14-1 shows the New Project
Dialog with the template selected.

To be able to reuse this example with the next examples, name the project Ch14Ex01.

Visual Studio now displays an empty window and a number of panels around it. The greater part
of the screen is divided in two sections. The upper section, known as the Design View, displays a
WYSIWYG (What You See Is What You Get) representation of the window you are designing and
the lower section, known as the XAML View, displays a textual representation of the same window.

To the right of the Design View, you see the Solution Explorer that you have seen in previous proj-
ects and a Properties panel that displays information about the current selection in the Design

430 ❘ CHAPTER 14 Basic Desktop programming

and XAML Views. It is worth noting that the selection in the Properties panel, XAML View, and
Design View are always in sync, so if you move the cursor in the XAML View you will see the selec-
tion change in the other two.

FIGURE 14-1

Collapsed to the left of the Design View are a number of panels, one of which is the Toolbox. This
chapter shows you how to use many of the controls from the Toolbox panel to create dialog boxes
for the card game, so expand it and pin it open by clicking the pin in the top-right corner. While you
are at it, expand the Common WPF Controls node in the panel as well. You will be using most of
the controls shown here in this chapter.

WPF Controls
Controls combine prepackaged code and a GUI that can be reused to create more complex applica-
tions. They can define how they draw themselves by default and a set of standard behaviors. Some
controls, such as the Label, Button, and TextBox controls are easily recognizable and have been
used in Windows applications for about 20 years. Others, such as Canvas and StackPanel, don’t
display anything and simply help you organize the GUI.

The Playground ❘ 431

Out-of-the-box controls look exactly as you would expect a control to look in a standard Windows
app and use the current Windows Theme to draw themselves. All of this is highly customizable and
with only a few clicks you can completely change how a control is displayed. This customization is
done using properties that are defined on the controls. WPF uses normal properties that you have
seen before and adds a new type of property called a dependency property. These are examined in
detail in Chapter 15, but for now it is enough to know that many of the properties of WPF do more
than just get and set a value; for one, they are able to notify observers of changes.

Besides defining how something looks on the screen, controls also define standard behavior, such as
the ability to click on a button and select something in a list. You can change what happens when a
user performs an action on a control by “handling” the events that the control defines. When and how
you implement the event handler will vary from application to application and from control to control,
but generally speaking you will always handle the Click event for a button; for a ListBox control, you
often have to react when the user changes the selection and so the SelectionChanged event should
be handled. On other controls, such as the Label or TextBlock controls, you will rarely implement
any event.

WARNING Although users are often happy when you take the time to provide
a more interesting user interface than the standard Windows display, you must
be careful when changing the standard behavior of controls. Imagine that you
change a Button control to work only when users right-click it. Your users will
think that your application is broken if nothing happens when they left-click on
the button. In fact, even if there are good reasons for changing the button like
this, it is likely that you should be using another type of control instead of the
Button control.

You can add controls to a window in a number of ways, but the most common way is to drag and
drop them from the Toolbox onto the Design View or the XAML View. In the following Try It Out
you work through a simple example.

TRY IT OUT Adding Controls to a Window

As you work your way through this chapter, you will add controls to the Design View by dragging
them from the Toolbox panel or by typing the XAML manually.

 1. Start by dragging a Button control from the Toolbox onto the Design View. Notice how the text
in the XAML View is updated to reflect the change you made.

 2. Now drag another Button, but this time drop it in the XAML View below the first Button, but
above the </Grid> tag.

How It Works

The result you see in the Design View might be somewhat surprising—the second button expands to
fill the entire window. When you drop a control onto the Design View, Visual Studio will try to set

432 ❘ CHAPTER 14 Basic Desktop programming

properties and insert child elements to allow the controls to display themselves in a standard way. This
does not happen when you drag controls into the XAML View, where only the tag that is used to define
the control is inserted.

There are times when you want to position a control at a specific position on your window and it is
difficult to drop it at exactly the right position. When this happens, you might want to drop the control
directly in the XAML View or type it manually.

NOTE If you want the behavior of the Design View when you drop a control,
but can’t hit the right spot, just drop it anywhere and then cut and paste the
XAML that was generated for you into the correct position.

Properties
As mentioned, all controls have a number of properties that are used to manipulate the behavior
of the control. Some of these are easy to understand such as height and width, whereas others are
less obvious such as RenderTransform. All of them can be set using the Properties panel, directly in
XAML, or by manipulating the control on the Design View. The following Try It Out demonstrates
setting control properties in the Design View.

NOTE Visual Studio will create a default namespace for your classes when you
create a new project. That namespace is subsequently used when you add new
classes or windows to your project. You can change the namespace by double-
clicking Properties in the Solution Explorer. If you find that your classes get a
different namespace than given in the examples, it can be helpful to change
the default namespace to the namespace from the book. The change will only
affect new classes, not anything already in the project.

TRY IT OUT Manipulating Properties: Ch14Ex01\MainWindow.xaml

Return to the previous example and follow these steps. As you change the properties, notice how
your changes affect the XAML and Design Views. You are going to change the window to look like
Figure 14-2.

The Playground ❘ 433

FIGURE 14-2

 1. Start by selecting the second Button control in Design View; this is the button that is currently fill-
ing the entire window.

 2. You can change the name of the control in the Properties panel at the very top. Change it to
rotatedButton.

 3. Under the Common node, change the Content to 2nd Button.

 4. Under Layout, change width to 75 and height to 22.

 5. Expand the Text node and change the text to bold by clicking the B icon.

 6. Select the first button and drag it to a position above the second button. Visual Studio will assist
with the positioning by snapping the control.

 7. Select the second button again, and hover the mouse pointer over the top-left corner of it. The
pointer changes to a quarter-circle with arrows on both ends. Drag down until the button is tilted
down.

 8. The XAML code for the window should now look like this:

<Window x:Class="Ch14Ex01.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Ch14Ex01"
 mc:Ignorable="d"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button Content="Button" HorizontalAlignment="Left" Margin="221,115,0,0"

434 ❘ CHAPTER 14 Basic Desktop programming

 VerticalAlignment="Top" Width="75"/>
 <Button x:Name="rotatedButton" Content="2nd Button" Width="75" Height="22"
 FontWeight="Bold" RenderTransformOrigin="0.5,0.5" >
 <Button.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform Angle="-32.744"/>
 <TranslateTransform/>
 </TransformGroup>
 </Button.RenderTransform>
 </Button>
 </Grid>
</Window>

 9. Run the application by pressing F5. Try to resize the window. Notice that the second button moves
with the window, whereas the first button stays fixed.

How It Works

Any change that you apply in any of the three views is reflected in the other views, but some things
are easier to do in certain views. Changing something trivial like the text displayed on a button can be
done quickly in XAML View, but adding the information needed to perform a render transformation is
much quicker from Design View.

In this exercise, you began by changing the name of the button, which added the x:Name property to
the button. The name of a control must be unique within the scope of the namespace, so you can use
the name for only one control.

Next you changed the Content property, set the Height and Width of the control, and then changed
the font to bold. Doing so changed the way the control displayed itself within the window. It used to fill
all the space of its container, but now you have limited it to a specific size.

Then you dragged the first button to a specific position on the Design View. As you see later in this
chapter, this action will not always yield the same results but is dependent on the container in which the
control is placed. In this case, with the Grid container, the control can be dragged to a specific position.
The action sets the Margin property on the control. Two other properties should be mentioned here:
HorizontalAlignment="Left" and VerticalAlignment="Top". With these two properties set, the
margin becomes relative to the top-left corner of the window and thus the control is pushed to the
position you placed it in the grid. If you compare the first and second buttons at this point, you will
notice that the second control has none of these properties set. By omitting the alignment properties as
well as the margin properties, the control is placed at the center of the container, even at runtime. This
means that the first button with the margin and alignments set is fixed when the window resizes, but
the second button always stays centered.

Finally, you performed a little bit of a party trick. By dragging the control when the Rotate mouse
pointer is displayed, you can rotate the control. This is a standard feature of XAML and WPF and can
be applied to all controls, although there are a few controls that fail to change their content when the
control itself is rotated. This includes controls that rely on Windows Forms or old Windows controls to
display content.

The Playground ❘ 435

The animations that you can do in WPF are covered in Chapter 15, but from the XML that was gener-
ated when you dragged the cursor, you can see that you can perform some advanced animation simply
by manipulating these properties.

Dependency Properties
Actions users take on a dialog, such as selecting something from a list, should often cause other
controls to change and update their display or content. For the most part, normal .NET properties
are simple getters and setters, which do not have the ability to inform other controls that they have
changed. Enter Dependency Properties. A dependency property is a property that is registered
with the WPF property system in such a way that it allows extended functionality. This extended
functionality includes, but is not limited to, automatic property change notifications. Specifically,
dependency properties have the following features:

 ➤ You can use styles to change the values of dependency properties.

 ➤ You can set the value of a dependency property by using resources or by data binding.

 ➤ You can change dependency property values in an animation.

 ➤ You can set dependency properties hierarchically in XAML—that is, a value for a depen-
dency property that you set on a parent element can be used to set the default value for the
same dependency property of its child elements.

 ➤ You can configure notifications for property value changes using a well-defined coding
pattern.

 ➤ You can configure sets of related properties so that they all update in response to a change to
one of them. This is known as coercion. The changed property is said to coerce the values of
the other properties.

 ➤ You can apply metadata to a dependency property to specify other behavior characteristics.
For example, you might specify that if a given property changes, then it might be necessary to
rearrange the user interface.

In practice, because of the way in which dependency properties are implemented, you might not
notice much of a difference compared to ordinary properties. However, when you create your own
controls, you will quickly find that a lot of functionality suddenly disappears when you use ordinary
.NET properties.

Chapter 15 shows how you can implement new dependency properties.

Attached Properties
An attached property is a property that is made available to each child object of an instance of the
class that defines the property. For example, as you will see later in this chapter, the Grid control
that you used in the previous examples allows you to define columns and rows for ordering the child

436 ❘ CHAPTER 14 Basic Desktop programming

controls of the Grid. Each child control can then use the attached properties Column and Row to
specify where it belongs in the grid:

<Grid HorizontalAlignment="Left" Height="167" VerticalAlignment="Top" Width="290">
 <Button Content="Button" HorizontalAlignment="Left" Margin="10,10,0,0"
VerticalAlignment="Top" Width="75" Grid.Column="0" Grid.Row="0"
Height="22" />
...
 </Grid>

Here, the attached property is referred to using the name of the parent element, a period, and the
name of the attached property.

In WPF, attached properties serve a variety of uses. You will see a lot of attached properties shortly,
when you look at how to position controls in the “Control Layout” section. You will learn how
container controls define attached properties that enable child controls to define, for example, which
edges of the container to dock to.

Events
In Chapter 13, you learned what events are and how to use them. This section covers particular
kinds of events—specifically, the events generated by WPF controls—and introduces routed events,
which are usually associated with user actions. For example, when the user clicks a button, that but-
ton generates an event indicating what just happened to it. Handling the event is the means by which
the programmer can provide some functionality for that button.

Many of the events you handle are exposed by most of the controls that you work with in this
book. This includes events such as LostFocus and MouseEnter. This is because the events them-
selves are inherited from base classes such as Control or ContentControl. Other events such as the
CalendarOpened event of the DatePicker are more specific and only found on specialized controls.
Some of the most used events are listed in Table 14-1.

TABLE 14-1: Common Control Events

EVENT DESCRIPTION

Click Occurs when a control is clicked. In some cases, this event also occurs when
a user presses the Enter or space keys.

Drop Occurs when a drag-and-drop operation is completed—in other words,
when an object has been dragged over the control, and the user releases the
mouse button.

DragEnter Occurs when an object being dragged enters the bounds of the control.

DragLeave Occurs when an object being dragged leaves the bounds of the control.

DragOver Occurs when an object has been dragged over the control.

KeyDown Occurs when a key is pressed while the control has focus. This event always
occurs before KeyPress and KeyUp.

The Playground ❘ 437

EVENT DESCRIPTION

KeyUp Occurs when a key is released while a control has focus. This event always
occurs after KeyDown event.

GotFocus Occurs when a control receives focus. Do not use this event to perform vali-
dation of controls. Use Validating and Validated instead.

LostFocus Occurs when a control loses focus. Do not use this event to perform valida-
tion of controls. Use Validating and Validated instead.

MouseDoubleClick Occurs when a control is double-clicked.

MouseDown Occurs when the mouse pointer is over a control and a mouse button is
pressed. This is not the same as a Click event because MouseDown occurs as
soon as the button is pressed and before it is released.

MouseMove Occurs continually as the mouse travels over the control.

MouseUp Occurs when the mouse pointer is over a control and a mouse button is
released.

You will see many of these events in the examples in this chapter.

Handling Events
There are two basic ways to add a handler for an event. One way is to use the Events list in the
Properties window, shown in Figure 14-3, which is displayed when you click the lightning bolt button.

FIGURE 14-3

438 ❘ CHAPTER 14 Basic Desktop programming

To add a handler for a particular event, either type the name of the event and press Enter, or
 double-click to the right of the event name in the Events list. This causes the event to be added to the
XAML tag. The method signature to handle the event is added to the C# code-behind file.

 <Button x:Name="rotatedButton" Content="2nd Button" Width="75"
 Height="22" FontWeight="Bold" Margin="218,138,224,159"
 RenderTransformOrigin="0.5,0.5"
 Click="rotatedButton_Click">

 ...
 </Button>
private void rotatedButton_Click(object sender, RoutedEventArgs e)
 {
 }

You can also type the name of the event directly in XAML and add the name of the handler there.
If you do this, Visual Studio will display a New Event Handler menu as you type. Selecting this will
give the event the default name and create the handler in the code-behind file. If you type the name
yourself, you can later right-click the event and select Go To Definition to generate the event handler
in code.

Routed Events
WPF uses events that are called routed events. A standard .NET event is handled by the code that
has explicitly subscribed to it and it is sent only to those subscribers. Routed events are different in
that they can send the event to all controls in the hierarchy in which the control participates.

A routed event can travel up and down the hierarchy of the control on which the event occurred. So,
if you right-click a button, the MouseRightButtonDown event will first be sent to the button itself,
then to the parent of the control—in the case of the earlier example, the Grid control. If this doesn’t
handle it, then the event is finally sent to the window. If, on the other hand you don’t want the event
to travel further up the hierarchy, then you simply set the RoutedEventArgs property Handled to
true, and no additional calls will be made at that point. When an event travels up the control hier-
archy like this, it is called a bubbling event.

Routed events can also travel in the other direction, that is, from the root element to the control on
which the action was performed. This is called a tunneling event and by convention all events like
this are prefixed with the word Preview and always occur before their bubbling counterparts. An
example of this is the PreviewMouseRightButtonDown event.

Finally, a routed event can behave exactly like a normal .NET event and only be sent to the control
on which the action was made.

Routed Commands
Routed commands serve much the same purpose as events in that they cause some code to execute.
Where Events are bound directly to a single element in the XAML and a handler in the code,
Routed Commands are more sophisticated.

The key difference between events and commands is in their use. An event should be used whenever
you have a piece of code that has to respond to a user action that happens in only one place in your

The Playground ❘ 439

application. An example of such an event could be when the user clicks OK in a window to save and
close it. A command can be used when you have code that will be executed to respond to actions
that happen in many locations. An example of this is when the content of an application is saved.
There is often a menu with a Save command that can be selected, as well as a toolbar button for the
same purpose. It is possible to use event handlers to do this, but it would mean implementing the
same code in many locations—a command allows you to write the code just once.

When you create a command, you must also implement code that can respond to the question,
“Should this code be available to the user at the moment?” This means that when a command
is associated with a button, that button can ask the command if it can execute and set its state
accordingly.

A command is much more complicated to implement than an event, so you are not going to see them
in use until Chapter 15, where they will be used with menu items. In the next Try It Out you add
event handlers to the examples from earlier in this chapter to demonstrate the routed events.

TRY IT OUT Routed Events: Ch14Ex01\MainWindow.xaml

This example builds on the example from earlier in the chapter. If you added the rows and columns ear-
lier, you should remove them to match the XAML in this example.

 1. Select the button rotatedButton and add the event KeyDown. You can do this by double-clicking
the event in the Properties panel or by typing the XAML directly. If you type the name yourself,
give it the name rotatedButton_KeyDown.

 2. Select the Grid by clicking on the tag it in the XAML View, and add the same event to it. Name it
Grid_KeyDown.

 3. Select the Window tag in the XAML View and add the event again. Name it Window_KeyDown.

 4. Repeat Steps 1 through 3, but replace the event with PreviewKeyDown and change the name of the
event to reflect that it is the Preview handler. The XAML should look like this:

<Window x:Class="Ch14Ex01.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Ch14Ex01"
 mc:Ignorable="d"
 Title="MainWindow" Height="350" Width="525" KeyDown="Window_KeyDown"
 PreviewKeyDown="Window_PreviewKeyDown">
 <Grid KeyDown="Grid_KeyDown" PreviewKeyDown="Grid_PreviewKeyDown">
 <Button Content="Button" HorizontalAlignment="Left" Margin="221,115,0,0"
 VerticalAlignment="Top" Width="75" />
 <Button x:Name="rotatedButton" Content="2nd Button" Width="75" Height="22"
 FontWeight="Bold" RenderTransformOrigin="0.5,0.5" KeyDown="rotatedButton_
 KeyDown" PreviewKeyDown="rotatedButton_PreviewKeyDown" >
 <Button.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform Angle="-32.744"/>

440 ❘ CHAPTER 14 Basic Desktop programming

 <TranslateTransform/>
 </TransformGroup>
 </Button.RenderTransform>
 </Button>
 </Grid>
</Window>

 5. If you typed the XAML directly, right-click each of the events and add the event handler to the
code-behind by selecting the Go To Definition menu item.

 6. Add this code to the event handlers:

 private void Grid_KeyDown(object sender, KeyEventArgs e)
 {
 MessageBox.Show("Grid handler, bubbling up");
 }
 private void Grid_PreviewKeyDown(object sender, KeyEventArgs e)
 {
 MessageBox.Show("Grid handler, tunneling down");
 }
 private void rotatedButton_KeyDown(object sender, KeyEventArgs e)
 {
 MessageBox.Show("rotatedButton handler, bubbling up");
 }
 private void rotatedButton_PreviewKeyDown(object sender, KeyEventArgs e)
 {
 MessageBox.Show("rotatedButton handler, tunneling down");
 }
 private void Window_KeyDown(object sender, KeyEventArgs e)
 {
 MessageBox.Show("Window handler, bubbling up");
 }
 private void Window_PreviewKeyDown(object sender, KeyEventArgs e)
 {
 MessageBox.Show("Window handler, tunneling down");
 }

 7. Run the application by pressing F5.

 8. Select the rotated button by clicking it and pressing any key except Enter, or the spacebar key.
Observe the events being executed in turn.

 9. Stop the application.

 10. Go to the Grid_PreviewKeyDown event handler and add this line below the MessageBox line:

e.Handled = true;

 11. Repeat Steps 7 and 8.

How It Works

The KeyDown and PreviewKeyDown events demonstrate bubbling and tunneling events. When you press
a key with rotatedButton selected, you see each of the event handlers executing, one after another.

Control Layout ❘ 441

First the Preview events execute, starting with the handler on Window, then the Grid, and finally the
rotatedButton. Then the KeyDown events execute, but in the opposite order, starting with the event
handler on the rotatedButton and finishing with the handler on Window.

The Enter and Space keys are handled specially by the button control. Both of these are treated as a
Click, and you will therefore only see the Preview events fired for these keys.

Then you added this line:

e.Handled = true;

This changed the behavior dramatically. By setting the Handled property of the RoutedEventArgs you
not only caused the execution of the tunneling events, but also of the bubbling events. This is generally
true for all events like this. If you stop the execution of either the Preview or the “normal” version of
the event handlers, you stop them both.

Control Types
WPF has a lot of controls to choose from. Two types of interest are the Content and Items controls.
Content controls, such as the Button control, have a Content property that can be set to any other
control. This means that you can specify how the control is displayed, but you must specify zero or
exactly one control directly in the content. That being said, you can specify an Items control, which
is a control that allows you to insert multiple controls as content. An example of an Items control is
the Grid control. When you are creating user interfaces, you are continually combining these two
control types.

In addition to Content and Items controls, there are a number of other types of controls that don’t
allow you to use other controls as their content. One example of this is the Image control, which is
used to display an image. Changing that behavior defeats the purpose of the control.

CONTROL LAYOUT

So far in this chapter you have used the Grid element to lay out a few controls, primarily because
that is the control supplied by default when you create a new WPF application. However, you
haven’t yet examined the full capabilities of this class, nor have you learned about the other layout
containers that you can use to achieve alternative layouts. This section looks at control layout in
more detail, as it is a fundamental concept of WPF.

Basic Layout Concepts
In WPF you use layout controls to assist you with the layout of the items on a window. There are
a number of these controls, but before you start using them, there are a few basic concepts and a
visual aid provided by Visual Studio that you should know about.

442 ❘ CHAPTER 14 Basic Desktop programming

Stack Order
When a container control contains multiple child controls, they are drawn in a specific stack order.
You might be familiar with this concept from drawing packages. The best way to think of stack
order is to imagine that each control is contained in a plate of glass, and the container contains a
stack of these plates of glass. The appearance of the container, therefore, is what you would see if
you looked down from the top through these layers of glass. The controls contained by the container
overlap, so what you see is determined by the order of the glass plates. If a control is higher up the
stack, then it will be the control that you see in the overlap area. Controls lower down may be par-
tially or completely hidden by controls above them.

This also affects hit testing when you click on a window with the mouse. The target control will
always be the one that is uppermost in the stack when considering overlapping controls. The stack
order of controls is determined by the order in which they appear in the list of children for a con-
tainer. The first child in a container is placed on the lowest layer in the stack, and the last child on
the topmost layer. The children between the first and last child are placed on increasingly higher lay-
ers. The stack order of controls has additional implications for some of the layout controls that you
can use in WPF, as you will see shortly.

Alignment, Margins, Padding, and Dimensions
Earlier examples used the Margin, HorizontalAlignment, and VerticalAlignment properties to
position controls in a Grid container, but without going into much detail about their use. You have
also seen how you can use Height and Width to specify dimensions. These properties, along with
Padding, which you haven’t looked at yet, are useful for all of the layout controls (or most of them,
as you will see), but in different ways. Different layout controls can also set default values for these
properties. You’ll see a lot of this by example in subsequent sections, but before doing that, it is
worth covering the basics.

The two alignment properties, HorizontalAlignment and VerticalAlignment, determine how the
control is aligned. HorizontalAlignment can be set to Left, Right, Center, or Stretch. Left and
Right tend to position controls to the left or right edges of the container, Center positions controls
in the middle, and Stretch changes the width of the control so that its edges reach to the sides of
the container. VerticalAlignment is similar, and has the values Top, Bottom, Center, or Stretch.

Margin and Padding specify the space to leave blank around the edges of controls and inside
the edges of controls, respectively. Earlier examples used Margin to position controls relative
to the edges of a window. This worked because with HorizontalAlignment set to Left and
VerticalAlignment set to Top, the control is positioned tight against the top-left corner, and
Margin inserted a gap around the edge of the control. Padding is used similarly, but spaces out
the content of a control from its edges. This is particularly useful for Border, as you will see in the
next section. Both Padding and Margin can be specified in four parts (in the form leftAmount,
topAmount, rightAmount, bottomAmount) or as a single value (a Thickness value).

Later, you will see how Height and Width are often controlled by other properties. For example,
with HorizontalAlignment set to Stretch, the Width property of a control changes as the width of
its container changes.

Control Layout ❘ 443

Border
The Border control is a very simple, and very useful, container control. It holds a single child, not
multiple children like the more complicated controls you’ll look at in a moment. This child will be
sized to completely fill the Border control. This might not seem particularly useful, but remember
that you can use the Margin and Padding properties to position the Border within its container,
and the content of the Border within the edges of the Border. You can also set, for example, the
Background property of a Border so that it is visible. You will see this control in action shortly.

Visual Debugging Tools
When you run a WPF app in debug mode, Visual Studio overlays the application with a small
4-point menu at the top center of the window. Three of the four menu items toggle debugging func-
tionality on and off, and the final item opens the Live Visual Tree. The next Try It Out continues on
the previous example and demonstrates the visual tools.

TRY IT OUT Using Visual Debugging Tools: Ch14Ex01\MainWindow.xaml

Return to the first Try It Out example this chapter and follow these steps.

 1. Run the app in debug mode by pressing F5.

 2. Toggle Enable Selection on by clicking the send menu item.

 3. Click the button with the “2nd button” text. Note how a red dotted outline is displayed on the
button.

 4. Open the Live Visual Tree by clicking the left-most menu item.

 5. In Visual Studio, the Live Visual Tree is a tab on the left; click it to expand it.

 6. Depending on where you clicked the button, the Live Visual Tree will either have selected some-
thing called a TextBlock or the rotatedButton.

 7. Right-click the rotatedButton in the Live Visual Tree and select Show Properties. This opens
the Live Properties Explorer. In this you can see the properties of the control as they are during
run-time.

 8. Click on the MainWindow to bring the running app back up in front of Visual Studio.

 9. Click the right-most menu item, which is named Track Focused Element.

 10. Click the button with the text “Button” and notice that the values in the Live Properties Explorer
change to reflect the new selection. If you toggle the Track Focused Element off, then the explorer
will no longer change its content when you select something.

 11. Finally, toggle the Display Layout Adorners menu item.

 12. Hover the mouse over different elements in the display, and notice how Visual Studio displays lines
that indicate how the margins are applied.

444 ❘ CHAPTER 14 Basic Desktop programming

How It Works

The Visual Debugging tools are useful for examining how the UI of an app is behaving at runtime. It
can be very hard to determine why elements of a UI behave in a certain way at runtime, and these tools
will allow you to dig down and examine the properties of controls as they are actually applied as the
app executes.

Layout Panels
All content layout controls derive from the abstract Panel class. This class simply defines a
container that can hold a collection of objects derived from UIElement. All WPF controls derive
from UIElement. You cannot use the Panel class directly for control layout, but you can derive
from it if you want to. Alternatively, you can use one of the layout controls that derive from Panel.
Table 14-2 describes the most common panels.

TABLE 14-2: Common Layout Panels

PANEL DESCRIPTION

Canvas This control enables you to position child controls any way you see fit. It doesn’t
place any restrictions on child control positioning, but nor does it provide any
assistance in positioning.

DockPanel This control enables you to dock child controls against one of its four edges. The
last child control fills the remaining space.

Grid This control enables flexible positioning of child controls. You can divide the layout
of this control into rows and columns, which enables you to align controls in a grid
layout.

StackPanel This control positions its child controls in a sequential horizontal or vertical layout.

WrapPanel This control positions its child controls in a sequential horizontal or vertical layout
as StackPanel, but rather than a single row or column of controls, this control
wraps its children into multiple rows or columns according to the space available.

Canvas
The Canvas control, provides complete freedom over control positioning. Another thing about
Canvas is that the HorizontalAligment and VerticalAlignment properties used with a child ele-
ment will have no effect whatsoever over the positioning of those elements.

You can use Margin to position elements in a Canvas as it was done in earlier examples, but a better
way is to use the Canvas.Left, Canvas.Top, Canvas.Right, and Canvas.Bottom attached proper-
ties that the Canvas class exposes:

<Canvas...>
 <Button Canvas.Top="10" Canvas.Left="10"...>Button1</Button>
</Canvas>

Control Layout ❘ 445

The preceding code positions a Button so that its top edge is 10 pixels from the top edge of the
Canvas, and its left edge is 10 pixels from the left edge of the Canvas. Note that the Top and Left
properties take precedence over Bottom and Right. For example, if you specify both Top and
Bottom, then the Bottom property is ignored.

Figure 14-4 shows two Rectangle controls positioned in a Canvas control, with the window resized
to two sizes.

FIGURE 14-4

NOTE All of the example layouts in this section can be found in the
LayoutExamples project in the downloadable code for this chapter. See the
“Wrox.com Code Downloads for this Chapter” section at the beginning of this
chapter for information on how to download this chapter’s code.

One Rectangle is positioned relative to the top-left corner, and one is positioned relative to the
bottom-right corner. As you resize the window, these relative positions are maintained. You can also
see the importance of the stacking order of the Rectangle controls. The bottom-right Rectangle is
higher up in the stacking order, so when they overlap this is the control that you see.

The code for this example is as follows (you can find it in the download code LayoutExamples\
Canvas.xaml):

<Window x:Class="LayoutExamples.Canvas"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:LayoutExamples"
 mc:Ignorable="d"
 Title="Canvas" Height="300" Width="300">
 <Canvas Background="AliceBlue">
 <Rectangle Canvas.Left="50" Canvas.Top="50" Height="40" Width="100"
 Stroke="Black" Fill="Chocolate" />
 <Rectangle Canvas.Right="50" Canvas.Bottom="50" Height="40" Width="100"

446 ❘ CHAPTER 14 Basic Desktop programming

 Stroke="Black" Fill="Bisque" />
 </Canvas>
</Window>

DockPanel
The DockPanel control, as its name suggests, enables you to dock controls to one of its edges. This
sort of layout should be familiar to you, even if you’ve never stopped to notice it before. It is how,
for example, the Ribbon control in Word remains at the top of the Word window, or how the vari-
ous windows in Visual Studio are positioned. In Visual Studio you can also change the docking of
windows by dragging them around.

DockPanel has a single attached property that child controls can use to specify the edge to which
controls dock: DockPanel.Dock. You can set this property to Left, Top, Right, or Bottom.

The stack order of controls in a DockPanel is extremely important, as every time you dock a control
to an edge you also reduce the available space of subsequent child controls. For example, you might
dock a toolbar to the top of a DockPanel and then a second toolbar to the left of the DockPanel.
The first control would stretch across the entire top of the DockPanel display area, but the second
control would only stretch from the bottom of the first toolbar to the bottom of the DockPanel
along the left edge.

The last child control you specify will (usually) fill the area that remains after all the previous chil-
dren have been positioned. (You can control this behavior, which is why this statement is qualified.)

When you position a control in a DockPanel, the area occupied by the control might be smaller than
the area of the DockPanel that is reserved for the control. For example, if you dock a Button with a
Width of 100, a Height of 50, and a HorizontalAlingment of Left to the top of a DockPanel, then
there will be space to the right of the Button that isn’t used by other docked children. In addition, if
the Button control has a Margin of 20, then a total of 90 pixels at the top of the DockPanel will be
reserved (the height of the control plus the top and bottom margins). You need to take this behav-
ior into account when you use DockPanel for layout; otherwise, you can end up with unexpected
results.

Figure 14-5 shows a sample DockPanel layout.

FIGURE 14-5

Control Layout ❘ 447

The code for this layout is as follows (you can find it in the download code LayoutExamples\
DockPanels.xaml):

<Window x:Class="LayoutExamples.DockPanels"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:LayoutExamples"
 mc:Ignorable="d"
 Title="DockPanels" Height="300" Width="300">
 <DockPanel Background="AliceBlue">
 <Border DockPanel.Dock="Top" Padding="10" Margin="5"
 Background="Aquamarine" Height="45">
 <Label>1) DockPanel.Dock="Top"</Label>
 </Border>
 <Border DockPanel.Dock="Top" Padding="10" Margin="5"
 Background="PaleVioletRed" Height="45" Width="200">
 <Label>2) DockPanel.Dock="Top"</Label>
 </Border>
 <Border DockPanel.Dock="Left" Padding="10" Margin="5"
 Background="Bisque" Width="200">
 <Label>3) DockPanel.Dock="Left"</Label>
 </Border>
 <Border DockPanel.Dock="Bottom" Padding="10" Margin="5"
 Background="Ivory" Width="200" HorizontalAlignment="Right">
 <Label>4) DockPanel.Dock="Bottom"</Label>
 </Border>
 <Border Padding="10" Margin="5" Background="BlueViolet">
 <Label Foreground="White">5) Last control</Label>
 </Border>
 </DockPanel>
</Window>

This code uses the Border control introduced earlier to clearly mark out the docked control regions
in the example layout, along with Label controls to output simple informative text. To understand
the layout, you must read it from top to bottom, looking at each control in turn:

 1. The first Border control is docked to the top of the DockPanel. The total area taken up in
the DockPanel is the top 55 pixels (Height + 2 × Margin). Note that the Padding property
does not affect this layout, as it is inside the edge of the Border, but this property does con-
trol the positioning of the embedded Label control. The Border control fills any available
space along the edge it is docked to if not constrained by Height or Width properties, which
is why it stretches across the DockPanel.

 2. The second Border control is also docked to the top of the DockPanel, and takes up another
55 pixels from the top of the display area. This Border control also includes a Width prop-
erty, which causes the border to take up only a portion of the width of the DockPanel. It
is positioned centrally, as the default value for HorizonalAlignment in a DockPanel is
Center.

 3. The third Border control is docked to the left of the DockPanel and takes up 210 pixels of
the left of the display.

448 ❘ CHAPTER 14 Basic Desktop programming

 4. The fourth Border control is docked to the bottom of the DockPanel and takes up 30 pixels
plus the height of the Label control it contains (whatever that is). This height is determined
by the Margin, Padding, and contents of the Border control, as it is not specified explic-
itly. The Border control is locked to the bottom-right corner of the DockPanel, as it has a
HorizontalAlignment of Right.

 5. The fifth and final Border control fills the remaining space.

Run this example and experiment with resizing content. Note that the further up the stacking order
a control is, the more priority is given to its space. By shrinking the window, the fifth Border con-
trol can be completely obscured by controls further up the stacking order. Be careful when using
DockPanel control layout to avoid this, perhaps by setting minimum dimensions for the window.

StackPanel
You can think of StackPanel as being a slimmed down version of DockPanel, where the edge,
to which child controls are docked, is fixed for those controls. The other difference between
these controls is that the last child control of a StackPanel doesn’t fill the remaining space.
However, controls will, by default, stretch to the edges of the
StackPanel control.

The direction in which controls are stacked is determined by
three properties. Orientation can be set to Horizontal or
Vertical, and HorizontalAlignment and VerticalAlignment
can be used to determine whether control stacks are positioned
next to the top, bottom, left, or right edge of the StackPanel.
You can even make the stacked controls stack at the center of
the StackPanel using the Center value for the alignment prop-
erty you use.

Figure 14-6 shows two StackPanel controls, each of which con-
tains three buttons. The top StackPanel has its Orientation
property set to Horizontal and the bottom one has
Orientation set to Vertical.

The code used here is as follows (you can find it in the download code LayoutExamples\
StackPanels.xaml):

<Window x:Class="LayoutExamples.StackPanels"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:LayoutExamples"
 mc:Ignorable="d"
 Title="StackPanels" Height="300" Width="300">
 <Grid>
 <StackPanel HorizontalAlignment="Left" Height="128" VerticalAlignment="Top"
 Width="284" Orientation="Horizontal">
 <Button Content="Button" Height="128" VerticalAlignment="Top"
 Width="75"/>

FIGURE 14-6

Control Layout ❘ 449

 <Button Content="Button" Height="128" VerticalAlignment="Top"
 Width="75"/>
 <Button Content="Button" Height="128" VerticalAlignment="Top"
 Width="75"/>
 </StackPanel>
 <StackPanel HorizontalAlignment="Left" Height="128" VerticalAlignment="Top"
 Width="284" Margin="0,128,0,0" Orientation="Vertical">
 <Button Content="Button" HorizontalAlignment="Left" Width="284"/>
 <Button Content="Button" HorizontalAlignment="Left" Width="284"/>
 <Button Content="Button" HorizontalAlignment="Left" Width="284"/>
 </StackPanel>
 </Grid>
</Window>

WrapPanel
WrapPanel is essentially an extended version of
StackPanel; controls that “don’t fit” are moved to
additional rows (or columns). Figure 14-7 shows a
WrapPanel control containing multiple shapes, with
the window resized to two sizes.

The code to achieve this effect is shown here (you
can find it in the download code LayoutExamples\
WrapPanel.xaml):

<Window x:Class="LayoutExamples.WrapPanel"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:LayoutExamples"
 mc:Ignorable="d"
 Title="WrapPanel" Height="92" Width="260">
 <WrapPanel Background="AliceBlue">
 <Rectangle Fill="#FF000000" Height="50" Width="50" Stroke="Black"
 RadiusX="10" RadiusY="10" />
 <Rectangle Fill="#FF111111" Height="50" Width="50" Stroke="Black"
 RadiusX="10" RadiusY="10" />
 <Rectangle Fill="#FF222222" Height="50" Width="50" Stroke="Black"
 RadiusX="10" RadiusY="10" />
 <Rectangle Fill="#FFFFFFFF" Height="50" Width="50" Stroke="Black"
 RadiusX="10" RadiusY="10" />
 </WrapPanel>
</Window>

WrapPanel controls are a great way to create a dynamic layout that enables users to control exactly
how content should be viewed.

Grid
Grid controls can have multiple rows and columns that you can use to lay out child controls.
You have used Grid controls several times already in this chapter, but in all cases you used a

FIGURE 14-7

450 ❘ CHAPTER 14 Basic Desktop programming

Grid with a single row and a single column. To add more rows and columns, you must use the
RowDefinitions and ColumnDefinitions properties, which are collections of RowDefinition and
ColumnDefinition objects, respectively, and are specified using property element syntax:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 ...
</Grid>

This code defines a Grid control with two rows and two columns. Note that no extra information is
required here; with this code, each row and column is dynamically resized automatically as the Grid
control resizes. Each row will be a third of the height of the Grid, and each column will be half the
width. You can display lines between cells in a Grid by setting the Grid.ShowGridlines property
to true.

NOTE You can also define rows and columns in the grid by clicking the edges
of the grid in the Design View. If you move the mouse pointer to the edge of
the grid, a yellow line is drawn across the Design View; if you click the edge,
the necessary XAML is inserted. When you do this, the Width and Height
properties of the rows and columns are always set by the designer, but you
can delete them or drag the lines to suit your needs.

You can control the resizing with the Width, Height, MinWidth, MaxWidth, MinHeight, and
MaxHeight properties. For example, setting the Width property of a column ensures that the column
stays at that width. You can also set the Width property of a column to *, which means “fill the
remaining space after calculating the width of all other columns.” This is actually the default. When
you have multiple columns with a Width of *, then the remaining space is divided between them
equally. The * value can also be used with the Height property of rows. The other possible value for
Height and Width is Auto, which sizes the row or column according to its content. You can also use
GridSplitter controls to enable users to customize the dimensions of rows and columns by click-
ing and dragging.

Child controls of a Grid control can use the attached Grid.Column and Grid.Row properties to
specify which cell they are contained in. Both these properties default to 0, so if you omit them, then
the child control is placed in the top-left cell. Child controls can also use Grid.ColumnSpan and
Grid.RowSpan to be positioned over multiple cells in a table, where the upper-left cell is specified by
Grid.Column and Grid.Row.

In the following Try It Out you will use the properties of the Grid to create rows and columns and
use a GridSplitter to change these properties at run-time.

Control Layout ❘ 451

TRY IT OUT Using Rows and Columns: Ch14Ex01\MainWindow.xaml

Return to the example from the beginning of the chapter with the two buttons and follow these steps.

 1. Select the Grid control by clicking in the XAML View.

 2. Move the mouse pointer to the top edge of the grid in Design View; you’ll see an orange line
appear across the surface of the grid. Allow room for a button and click to create two columns.

 3. Repeat Step 2 on the left edge of the window, creating two rows.

 4. Select the first of the two buttons. Note that the action of adding the rows and columns automati-
cally added the Grid.Row and Grid.Column properties to the button. Change the Grid.Row and
Grid.Column attached properties to 0.

 5. Adjust the Margin property to make the button fully visible in the cell.

 6. The second button has also been adjusted. For example, a Margin has been added. Now delete the
Margin property from the second button.

 7. Add a GridSplitter control to the XAML View just before the closing tag of the Grid control
and set its properties like this:

<GridSplitter Grid.RowSpan="2" Width="3" BorderThickness="2" BorderBrush="Black" />

 8. Run the application. The complete XAML should look like this:

<Window x:Class="Ch14Ex01.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Ch14Ex01"
 mc:Ignorable="d"
 Title="MainWindow" Height="350" Width="525" KeyDown="Window_KeyDown"
 PreviewKeyDown="Window_PreviewKeyDown">
 <Grid KeyDown="Grid_KeyDown" PreviewKeyDown="Grid_PreviewKeyDown">
 <Grid.RowDefinitions>
 <RowDefinition Height="109*"/>
 <RowDefinition Height="210*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="191*"/>
 <ColumnDefinition Width="326*"/>
 </Grid.ColumnDefinitions>
 <Button x:Name="button" Content="Button" HorizontalAlignment="Left"
 Margin="27,4,0,0" VerticalAlignment="Top" Width="75" Grid.Column="0"
 Grid.Row="0"/>
 <Button x:Name="rotatedButton" Content="2nd Button" Width="75" Height="22"
 FontWeight="Bold" RenderTransformOrigin="0.5,0.5"
 KeyDown="rotatedButton_KeyDown"
 PreviewKeyDown="rotatedButton_PreviewKeyDown" Grid.Column="1"
 Grid.Row="1" >
 <Button.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>

452 ❘ CHAPTER 14 Basic Desktop programming

 <SkewTransform/>
 <RotateTransform Angle="-23.896"/>
 <TranslateTransform/>
 </TransformGroup>
 </Button.RenderTransform>
 </Button>
 <GridSplitter Grid.RowSpan="2" Width="3" BorderThickness="2"
 BorderBrush="Black" />
 </Grid>
</Window>

Figure 14-8 shows the application running with the splitter pushed to two positions.

FIGURE 14-8

How It Works

By dividing the grid into two columns and two rows, you have changed how the controls can be posi-
tioned in the grid. When you set the Grid.Row and Grid.Column to 0 for the first button, you move it
from its previous position on the form to the top-left section.

The second button more or less stays put, but when you drag the GridSplitter slider, you see that the
margin of the button is now relative to the left edge of the column in which it is placed, meaning that it
slides across the window as you move the slider.

THE GAME CLIENT

Now that you know the basics of what it means to work with WPF and Visual Studio, it is time to
start working with the controls to create something useful. The remaining sections of this chapter
and Chapter 15 are dedicated to writing a game client for the card game you have been developing
over the previous chapters. You are going to use a lot of controls and you are even going to write one
yourself.

The Game Client ❘ 453

In this chapter you are going to write the supporting dialog boxes of the game—this includes the
About, Options, and New Game windows.

The About Window
An About window, or About box as it’s sometimes called, is used to display information about the
developer of the application and the application itself. Some About windows are quite complex, like
the one found in Microsoft Office applications and Visual Studio, and display version and licensing
information. The About window is often accessible from the Help menu where it is usually the last
item on the list.

Figure 14-9 shows a screenshot of the finished dialog box that you are about to create.

FIGURE 14-9

Designing the User Interface
An About window is not something that the user is going to see very often. In fact, the reason that
it is usually located on the Help menu is that it is very often only used when the user needs to find
information about the version of the application or who to contact when something is wrong. But
this also means that it is something the user has a specific purpose for visiting and if you include
such a window in your application, you should treat it as important.

Whenever you are designing an application, you should strive to keep the look and feel as consis-
tent as possible. This means that you should stick to a few select colors and use the same styling of
controls everywhere in the application. In the case of Karli Cards, you are going to work with three
main colors—red, black, and white.

If you look at Figure 14-9 you will see that the top-left corner of the window is occupied by a Wrox
Press logo. You have not used images before, but adding a few select images to your applications can
make the user interface look more professional.

454 ❘ CHAPTER 14 Basic Desktop programming

The Image Control
Image is a very simple control that can be used to great effect. It allows you to display a single image
and to resize this image as you see fit. The control exposes two properties, as shown in Table 14-3.

TABLE 14-3: Image Control Properties

PROPERTY DESCRIPTION

Source Use this property to specify the location of the image. This can be a location on disk
or somewhere on the web. As you will see in Chapter 15, it is also possible to create a
static resource and use it as the source.

Stretch It’s actually pretty rare to have an image that is exactly the right size for your pur-
pose, and sometimes the size of the image must change as the application window is
resized. You can use this property to control how the image behaves. There are four
possibilities:

None—The image doesn’t resize.

Fill—The image resizes to fill the entire space. This may contort the image.

Uniform—The image keeps its aspect ratio and doesn’t fill the available space if this
would change the aspect ratio.

UniformToFill—The image keeps its aspect ratio and fills the available space. If
keeping the ratio means that some of the image is too large for the space available,
the image is clipped to fit.

The Label Control
You have already seen this most simple of controls used in some of the previous examples. It displays
simple text information to the user and in some cases relays information about shortcut keys. The
control uses the Content property to display its text. The Label control displays text on a single
line. If you prefix a letter with an underscore “_” character, the letter will become underlined and it
will then be possible to access the control directly by using the prefixed letter and Alt. For example,
_Name assigns the shortcut Alt+N to any control directly following the label.

The TextBlock Control
Like Label, this control displays simple text without any complicated formatting. Unlike the Label,
the TextBlock control is capable of displaying multiple lines of text. It is not possible to format indi-
vidual parts of the text.

The TextBlock displays the text even if it will not fit in the space granted to the control. The control
itself does not provide any scrollbars in this case, but it can be wrapped in a handy view control
when needed: the ScrollViewer.

The Game Client ❘ 455

The Button Control
Like the Label control, you have already seen quite a bit of the Button control. This control is used
everywhere and is easily recognized on a user interface. Your users will expect that they can left-
click it to perform an action—no more and no less. Altering this behavior will most likely lead to
bad interface design and frustrated users.

By default, the button displays itself with a single short line of text or an image that describes what
happens when you click on it.

The button does not contain any properties to display images or text, but you can use the Content
property to display simple text or embed an Image control in the content to display an image. You
can find this code in the download code Ch14Ex01\ImageButton.xaml:

<Button HorizontalAlignment="Left" VerticalAlignment="Top" Width="75" Margin="10" >
 <StackPanel Orientation="Horizontal">
 <Image Source=".\Images\Delete_black_32x32.png" Stretch="UniformToFill"
Width="16" Height="16" />
 <TextBlock>Delete</TextBlock>
 </StackPanel>
 </Button>

NOTE The image for the button is included in the code download in
Ch14Ex01\Images.

Figure 14-10 shows the Delete button with text and an image.

NOTE To complete the following example, you need an image for a banner.
This image is included in the download for this chapter in KarliCards Gui\
Images\Banner.png.

TRY IT OUT Creating the About Window: KarliCards Gui\AboutWindow.xaml

Before you can start the About window, you need a project to work on. This is just one of many win-
dows you are going to make in this and the next chapter, so go ahead and create a new WPF App
(.NET Framework) project and name it KarliCards.Gui. Name the solution KarliCards.

 1. In the Solution Explorer, right-click the KarliCards.Gui project and select Add ➪ Window. Name
the window AboutWindow.xaml.

 2. Resize the window by clicking and dragging it or by setting these properties:

Height="300" Width="434" MinWidth="434" MinHeight="300"
ResizeMode="CanResizeWithGrip"

FIGURE 14-10

456 ❘ CHAPTER 14 Basic Desktop programming

 3. Select the Grid and create four rows by clicking at the edges of the grid. Don’t worry too much
about the exact positioning of the rows; instead change the values like this:

<Grid.RowDefinitions>
 <RowDefinition Height="58"/>
 <RowDefinition Height="20"/>
 <RowDefinition />
 <RowDefinition Height="42"/>
</Grid.RowDefinitions>

 4. Drag a Canvas control from the Toolbox into the top-most row. Remove any properties inserted
by Visual Studio and add this:

Grid.Row="0" Background="#C40D42"

 5. Select the new canvas and drag an image control onto it. Change its properties like so:

Height="56" Canvas.Left="0" Canvas.Top="0" Stretch="UniformToFill"
Source=".\Images\Banner.png"

 6. Right-click the project and Select Add ➪ New Folder. Create a directory called Images.

 7. Right-click the new directory in the Solution Explorer and select Add ➪ Existing Item. Browse to
the images of this chapter. Select them all and click Add. The banner is now displayed in Design.

 8. Select the Canvas control and drag a Label control onto it. Change its properties like this:

Canvas.Right="10" Canvas.Top="25" Content="Karli Cards" Foreground="#FFF7EFEF"
FontFamily="Times New Roman"

 9. Select the Grid control and drag a new canvas control onto it. Change its properties to:

Grid.Row="1" Background="Black"

 10. Select the new Canvas control and drag a Label onto it. Change its properties like this:

Canvas.Left="5" Canvas.Top="0" FontWeight="Bold" FontFamily="Arial"
Foreground="White"
Content="Karli Cards (c) Copyright 2012 by Wrox Press and all readers"

 11. Select the Grid control again, and drag the last Canvas into the bottom-most row. Change its
properties like this:

Grid.Row="3"

 12. Select the new Canvas control and drag a Button onto it. Change its properties to this:

Content="_OK" Canvas.Right="12" Canvas.Bottom="10" Width="75"

 13. Select Grid again, and drag a StackPanel into the last center row. Change its properties to:

Grid.Row="2"

 14. Select StackPanel and drag two Label controls and one TextBlock into it, in that order.

 15. Change the top-most Label like this:

Content="CardLib and Idea developed by Karli Watson" HorizontalAlignment="Left"
VerticalAlignment="Top" Padding="20,20,0,0" FontWeight="Bold"
Foreground="#FF8B6F6F"

The Game Client ❘ 457

 16. Change the next Label like this:

Content="Graphical User Interface developed by Jacob Hammer"
HorizontalAlignment="Left" Padding="20, 0,0,0" VerticalAlignment="Top"
FontWeight="Bold" Foreground="#FF8B6F6F"

 17. Change TextBlock like this:

Text="Karli Cards developed with C# 7 for Wrox Press.
You can visit Wrox Press at http://www.wrox.com."
Margin="0, 10,0,0" Padding="20,0,0,0" TextWrapping="Wrap"
HorizontalAlignment="Left" VerticalAlignment="Top" Height="39"

 18. Double-click the button and, in the event handler, add this code:

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 this.Close();
 }

 19. In the Solution Explorer, double-click the App.xaml file and change the StartupUri property from
MainWindow.xaml to AboutWindow.xaml.

 20. Run the application.

How It Works

You begin by setting some properties on the window. By setting MinWidth and MinHeight, you prevent
the user from resizing the window to a point where it obscures the content. The ResizeMode is set to
CanResizeWithGrip, which displays a small grip section in the bottom-right corner of the window that
indicates to the user that the window can be resized.

Next you add four rows to the grid. By doing this, you define the basic structure of the window. By set-
ting rows 1, 2, and 4 to fixed heights, you ensure that only the third row can change height; this is the
row that holds the content.

Then you add the first Canvas control. This provides you with a handy place to set the background
color of the first row. By ensuring that the canvas has no specific size, you force the canvas to fill the top
row in the grid.

The Image control that is added to the canvas is fixed to the left and top edges of the canvas. This ensures
that as the window resizes, the image stays put. You also gave the image a fixed height, but left the width
open. With the Stretch property set to UniformToFill, this allows the Image control to use the height
as a guide for the aspect ratio. The control simply changes its width to match the scale specified by the
height and aspect ratio.

For the final part of the first row you add a single Label control and bind it to the top-right edge of the
canvas, ensuring that when the window resizes, the Label moves with the right edge.

Then you start on the second row, which is filled by another Canvas control that has a Label added
to it.

The bottom Canvas is more of the same, but this time you add a button to it and bind that button to
the bottom-right side of the canvas. This ensures that when the window is resized, the button sticks to

458 ❘ CHAPTER 14 Basic Desktop programming

the bottom-right side of the window. The underscore “_” before the text OK creates a Alt+O shortcut
for the button.

Finally, you add a StackPanel to the third row and add Labels and a TextBlock control to it. By set-
ting the Padding of the first label to 20, 20, 0, 0, you push the content of the control down from the
row above by 20 pixels and out from the left edge, also by 20 pixels.

The padding of the next label is set to 20,0,0,0, which pushes the content out from the edge because the
space between the two labels is fine and doesn’t need any extra space.

The TextBlock was then introduced. The property TextWrapping is set to Wrap, which causes the text
to wrap if it can’t fit on a single line. As the window resizes and the line becomes longer, the text is
automatically fitted into as few lines as needed. Both the Margin and Padding properties are used here.
The Margin property is set so it pushes the entire control down 10 pixels from the labels above, and the
Padding is set so it pushes the content of the control in by 20 pixels from the left edge.

The code in the event handler closes the window. In this case, this is the same as closing the entire
application, because in Step 19 you changed the startup window to be the About window, so closing it
is the same as closing the application.

The Options Window
The next window you are going to create is the Options window. This window will allow the
players to set a number of parameters that will alter the game play. It will also allow you to use
some controls that you haven’t used yet: the CheckBox, RadioButton, ComboBox, TextBox, and
TabControl controls.

Figure 14-11 shows the window with the first tab selected. At first glance the window looks much
like the About window, but there is a lot more to do on this window.

FIGURE 14-11

The Game Client ❘ 459

The TextBox Control
Previously in this chapter you used the Label and TextBlock controls. These controls are designed
exclusively for displaying text to the user. The TextBox control allows the user to type text into the
application. Although it can just display text as well, you should not use it for this purpose unless
the user is allowed to edit the displayed text. If you decide that you want to display text using a text-
box, be sure to set its IsEnabled property to false to prevent users from being able to edit it.

You control how the text is displayed and can be entered into the TextBox using a number of prop-
erties shown in Table 14-4.

TABLE 14-4: TextBox Properties

PROPERTY DESCRIPTION

Text The text currently displayed in the TextBox control.

IsEnabled When this is set to true, the user can edit the text in the
TextBox. When it is false, the text is grayed out and the user
cannot give focus to the control.

TextWrapping Sometimes you want the TextBox to display only a single line of
text. In this case, you can set this property to NoWrap. This is the
default. If you want your text to be displayed on multiple lines,
you can set it to either Wrap or WrapWithOverflow. Wrap will
cause the text that extends beyond the edge of the box to be
moved to the line below. WrapWithOverflow will in some cases
allow very long words to extend beyond the edge if no suitable
breakpoint can be determined.

VerticalScrollBarVisibility If your TextBox allows the user to enter multiple lines of text,
then the user can potentially type text that will disappear below
the lower edge of the box. In that case, it’s a good idea to
display a scrollbar. Set this to Auto if you want the scrollbar
to appear only if the text is too long to be displayed. Set it to
Visible to always display it, and Hidden or Disabled to never
display a scrollbar.

AcceptsReturn This property controls how text can be entered into the control.
If you set this to false, which is the default, then the user can’t
break the line with a Return.

The CheckBox Control
CheckBoxes present the users with options that they can select or clear. You should use a CheckBox
if you have want to present an option to the users that can be turned on or off, or want the users to
answer yes or no to a question. For example, in the Options dialog box, you want the user to answer

460 ❘ CHAPTER 14 Basic Desktop programming

to decide whether they should play against the computer. To this end a CheckBox with the text “Play
Against Computer” is used.

A CheckBox is designed to be used as a single entity that is unaffected by other CheckBoxes on the
view. You will sometimes see CheckBoxes used in a way that links them together so that selecting
one causes another to become cleared, but this is not the intended use for this control. If you want
this functionality, you should use a RadioButton, described in the next section.

CheckBoxes can also display a third state, which is known as “indeterminate” and is supposed
to indicate that the yes/no answer could not be answered. This state is commonly used when a
CheckBox is used to show information about something else. For example, CheckBoxes are some-
times used to indicate whether all child nodes in a Tree View are selected. In this case, the CheckBox
will be selected if all nodes are selected, cleared if none are, and indeterminate if some, but not all,
are selected.

Table 14-5 lists the properties commonly used to control the CheckBox control.

TABLE 14-5: CheckBox Properties

PROPERTY DESCRIPTION

Content The CheckBox is a Content control and its display can therefore be heavily cus-
tomized. Adding a text to the Content property yields the default view.

IsThreeState Used to indicate if the control can have two or three states. The default is false,
meaning that only two possible values exist.

IsChecked This is either true or false. By default, setting it to true displays a check-
mark. If IsThreeState is true, null is possible and indicates that the state is
indeterminate.

The RadioButton Control
RadioButtons are used with other RadioButtons to allow users to choose between multiple options
where only one can be selected at any time. You should use RadioButtons when you want the users
to answer a question that has a very limited number of possible values. If there are more than four
or five possible values, you should consider using a ListBox or a ComboBox instead. In the Options
window you will create shortly, the user can choose the skill level of the computer player. There are
three options: Dumb, Good, and Cheats. Only one should ever be selected at any given time.

The Game Client ❘ 461

When more than one RadioButton is displayed in the same view they will by default know about
each other and as soon as any one of them is selected, all the others are cleared. If you have multiple
unrelated RadioButtons on the same view, they can be grouped together to avoid controls clearing
the values of unrelated controls.

You can control RadioButtons with the properties listed in Table 14-6.

TABLE 14-6: RadioButton Properties

PROPERTY DESCRIPTION

Content RadioButtons are Content controls and can therefore have their display modified.
By default, you enter a text in the Content.

IsChecked This is either true or false. If IsThreeState is true, null is possible and indi-
cates that the state is indeterminate.

GroupName The name of the group the control belongs to. By default this is empty and any
RadioButtons without a GroupName is considered in the same group.

The ComboBox Control
Like the RadioButton and CheckBox controls, ComboBoxes allow users to select exactly one option.
However, ComboBoxes are fundamentally different from the other two in two ways:

 ➤ ComboBoxes display the possible choices in a drop-down list.

 ➤ It is possible to allow the users to type new values.

ComboBoxes are commonly used to display long lists of values, such as country or state names, but
they can be used for many purposes. In the Options dialog box, a ComboBox is used to display a list
from which the user can choose the number of players. Although this could just as well have been
done using RadioButtons, the use of a ComboBox saves space in the view.

A ComboBox can be changed to display itself with a TextBox at the top that allows the users to type
any values that they feel are missing. One of the exercises of this chapter asks you to add a ComboBox
to the Options dialog box from which the users can either type their name or select it from a list.

The two properties—IsReadOnly and IsEditable—are very important for the behavior of the
control and work together to provide four possible ways for the user to select the value of the
ComboBox using the keyboard (see Table 14-7):

462 ❘ CHAPTER 14 Basic Desktop programming

TABLE 14-7: IsReadOnly and IsEditable Combinations

ISREADONLY IS TRUE ISREADONLY IS FALSE

IsEditable is
true

The TextBox is displayed but
the control does not react to key
presses. If a selection is made in the
list, the text can be selected in the
TextBox.

The TextBox is displayed and the user
can type anything she wishes. If some-
thing is typed that is in the list, it is
selected. The control will display the best
possible match as the user is typing.

IsEditable is
false

When IsEditable is false, IsReadOnly no longer has any effect because the
TextBox is not displayed. When the control is selected, the user can select a value
from the list by typing but it is not possible to type a value that isn’t in the list.

A ComboBox is an Items control, which means that you can add multiple items to it. Table 14-8
shows additional properties for the ComboBox control.

TABLE 14-8: Other ComboBox Properties

COMBOBOX PROPERTY DESCRIPTION

Text The Text property represents the text displayed at the head of the
ComboBox. It is either an element of the list or a new text typed by the user.

SelectedIndex Represents the index of the selected item in the list. If this is –1 then no
selection is made. This is also the case if the user has typed something that
was not in the list.

SelectedItem Represents the actual item of the list, not just the index or the text. If noth-
ing is selected or the user has typed something new, this returns null.

The TabControl
The TabControl is radically different than the other controls presented this section. It is a layout
control that is used to group controls on pages that can be selected by clicking on them.

Tab controls are used when you want to display a lot of information in a single window but don’t
want to clutter the view too much. In this case, you should divide the information into groups of
related items and create a single page for each group. Generally speaking, you should never allow
controls on one page to affect controls on another page. If you do so anyway, the user will not
realize that something has changed on another page and will be confused when settings change
behind her back.

By default each page is constructed of TabItems that, by default, are populated by a single Grid
control, but you can change the Grid to any other control as you see fit. On each tab, you can lay

The Game Client ❘ 463

out your UI and, by selecting the TabItems, you can change between the tabs. Each TabItem has a
Header that can be used to display the tab itself. This can be used as a Content control, meaning
that you can customize how the header is displayed so that it can be more than just a text.

TRY IT OUT
Designing the Options Window: KarliCards.Gui \OptionsWindow
.xaml

The first thing that you probably notice when you see the Options window is that it looks remarkably
like the About window, and that is true. Because of that, it is possible to reuse at least some of the code
from the previous example.

 1. Right-click the project in the Solution Explorer and chose Add ➪ Window. Name the window
OptionsWindow.xaml.

 2. Delete the Grid control that is inserted by default.

 3. Open the AboutWindow.xaml window described earlier, copy the Grid control and all its content,
and paste it into the new OptionsWindow.xaml file.

 4. Change the window properties like this:

Title="Options" Height="345" Width="434" ResizeMode="NoResize"

 5. Delete the StackPanel and all of its content.

 6. Delete the Canvas control with the Grid.Row property set to 3 and all of its content.

 7. Delete the Label control from the Canvas control with the Grid.Row property set to 1.

 8. Change the Label control in the Canvas with the Grid.Row property set to 0 like this:

<Label Canvas.Right="10" Canvas.Top="13" Content="Options" Foreground="#FFF7EFEF"
FontFamily="Times New Roman" FontSize="24" FontWeight="Bold" />

 9. Drag a StackPanel into the bottom row and set its properties to this:

Grid.Row="3" Orientation="Horizontal" FlowDirection="RightToLeft"

 10. Add two buttons to the StackPanel like this:

 <Button Content="_Cancel" Height="22" Width="75" Margin="10,0,0,0"
 Name="cancelButton" />
 <Button Content="_OK" Height="22" Width="75" Margin="10,0,0,0"
 Name="okButton" />

 11. Drag a TabControl into the second row and set its properties like this:

Grid.RowSpan="2" Canvas.Left="10" Canvas.Top="2" Width="408" Height="208"
Grid.Row="1"

 12. Change the Header property of each of the two TabItem controls to Game and Computer Player,
respectively.

464 ❘ CHAPTER 14 Basic Desktop programming

Your window now looks like Figure 14-12 and it is time to insert some content into the tab
items.

FIGURE 14-12

 13. Select the Game TabItem and drag a CheckBox control onto it. Set its properties like this:

Content="Play against computer" HorizontalAlignment="Left" Margin="11,33,0,0"
VerticalAlignment="Top" Name="playAgainstComputerCheck"

 14. Drag a Label control and then a ComboBox control into the TabItem and set their properties
like this:

 <Label Content="Number of players" HorizontalAlignment="Left"
Margin="10,54,0,0" VerticalAlignment="Top" />
 <ComboBox HorizontalAlignment="Left" Margin="196,58,0,0"
VerticalAlignment="Top" Width="86" Name="numberOfPlayersComboBox"
SelectedIndex="0" >
 <ComboBoxItem>2</ComboBoxItem>
 <ComboBoxItem>3</ComboBoxItem>
 <ComboBoxItem>4</ComboBoxItem>
 </ComboBox>

 15. Select the second TabItem with the header Computer Player. Drag a Label and three
RadioButtons onto the Grid and set their properties like this:

 <Label Content="Skill Level" HorizontalAlignment="Left"
Margin="10,10,0,0" VerticalAlignment="Top"/>
 <RadioButton Content="Dumb" HorizontalAlignment="Left"
Margin="37,41,0,0" VerticalAlignment="Top" IsChecked="True"
Name="dumbAIRadioButton"/>
 <RadioButton Content="Good" HorizontalAlignment="Left"
Margin="37,62,0,0" VerticalAlignment="Top" Name="goodAIRadioButton"/>
 <RadioButton Content="Cheats" HorizontalAlignment="Left"
Margin="37,83,0,0" VerticalAlignment="Top"
Name="cheatingAIRadioButton"/>

The Game Client ❘ 465

 16. The layout of the window is now complete. Open the App.xaml file and change StartupUri to
OptionsWindow.xaml.

 17. Run the application.

How It Works

The window’s ResizeMode is set to NoResize. You can therefore position the controls without regard
to what happens if the window changes size, because the user can no longer resize the window.

The StackPanel in Step 9 has a new property, FlowDirection, which is set to RightToLeft. This
causes the two buttons that are added to it to cling to the right edge of the dialog box rather than the
left edge that is the default. Interestingly, this also changes the meaning of the Margin property of the
two buttons, causing Left and Right to be swapped.

The RadioButtons on the second tab are set up without specifying a GroupName, which causes them
to be grouped together. You set the IsChecked property to true on the first one, which makes this the
default selection.

Handling Events in the Options Window
The window looks fine at this point, and there are even a few things users can do with it, although
nothing happens when a setting is changed. Users expect that the options they choose are stored and
used by the application. You could do this by storing the values of the controls in the window, but
this is not very flexible and mixes the data of the application with the GUI, which is not a good idea.
Instead, you should create a class to hold the selections made by the users.

In the following Try It Out you add event handlers to the Options Window that are executed as the
user interacts with the controls.

TRY IT OUT Handling Events: KarliCards Gui\OptionsWindow.xaml

In this example, you will add a new class to the project that will contain the selections made by the user
and handle events that happen as the user changes selections.

 1. Add a new class to the project and name it GameOptions.cs.

 2. Enter this code:

using System;
namespace KarliCards.Gui
{
 [Serializable]
 public class GameOptions
 {
 public bool PlayAgainstComputer { get; set; }
 public int NumberOfPlayers { get; set; }
 public int MinutesBeforeLoss { get; set; }

466 ❘ CHAPTER 14 Basic Desktop programming

 public ComputerSkillLevel ComputerSkill { get; set; }
 }
 [Serializable]
 public enum ComputerSkillLevel
 {
 Dumb,
 Good,
 Cheats
 }
}

 3. Return to the OptionsWindow.xaml.cs code-behind file and add a private field to hold the
GameOptions instance:

 private GameOptions gameOptions;

 4. Add this code to the constructor:

using System.IO;
using System.Windows;
using System.Xml.Serialization;
namespace KarliCards.Gui
{

 public partial class OptionsWindow : Window
 {
 private GameOptions gameOptions;
 public OptionsWindow()
 {
 if (gameOptions == null)
 {
 if (File.Exists("GameOptions.xml"))
 {
 using (var stream = File.OpenRead("GameOptions.xml"))
 {
 var serializer = new XmlSerializer(typeof(GameOptions));
 gameOptions = serializer.Deserialize(stream) as GameOptions;
 }
 }
 else
 gameOptions = new GameOptions();
 }
 InitializeComponent();
 }

 5. Go to Design View and double-click each of the three RadioButtons to add the Checked event
handler to the code-behind file. Change the handlers like this:

 private void dumbAIRadioButton_Checked(object sender, RoutedEventArgs e)
 {
 gameOptions.ComputerSkill = ComputerSkillLevel.Dumb;
 }
 private void goodAIRadioButton_Checked(object sender, RoutedEventArgs e)
 {

The Game Client ❘ 467

 gameOptions.ComputerSkill = ComputerSkillLevel.Good;
 }
 private void cheatingAIRadioButton_Checked(object sender, RoutedEventArgs e)
 {
 gameOptions.ComputerSkill = ComputerSkillLevel.Cheats;
 }

 6. Double-click the OK and Cancel buttons and add this code to the handler methods:

 private void okButton_Click(object sender, RoutedEventArgs e)
 {
 using (var stream = File.Open("GameOptions.xml", FileMode.Create))
 {
 var serializer = new XmlSerializer(typeof(GameOptions));
 serializer.Serialize(stream, gameOptions);
 }
 Close();
 }

 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 gameOptions = null;
 Close();
 }

 7. Run the application.

How It Works

The new class is currently just a number of properties that store the values from the Options window. It
is marked as Serializable to make it possible to save it to a file.

The Checked event of a RadioButton is raised whenever the user selects it. You handle this event in
order to set the value of the ComputerSkillLevel property of the GameOptions instance.

Data Binding
Data binding is a way of declaratively connecting controls with data. In the Options win-
dow, you handled the Checked event of the RadioButtons in order to set the value of the
ComputerSkillLevel property in the GameOptions class. This works well, and you can use code
and event handling to set all the values you have in a window, but very often it is better to bind the
properties of your controls directly to the data.

A binding consists of four components:

 ➤ The binding target, which specifies the object on which the binding is used

 ➤ The target property, which specifies the property to set

 ➤ The binding source, which specifies the object used by the binding

 ➤ The source property, which specifies which property holds the data

468 ❘ CHAPTER 14 Basic Desktop programming

You don’t always set all of these elements explicitly; particularly the binding target is very often
implicitly specified by the fact that you are setting a binding to a property on a control.

The binding source is always set in order to make a binding work, but it can be set in several ways.
In the following sections and in Chapter 15, you are going to see several ways of binding data from
sources.

The DataContext
A DataContext control defines a data source that can be used for data binding on all child elements
of an element. You will often have a single instance of a class that holds most of the data that is
used in a view. If this is the case you can set the DataContext of the window to the instance of that
object, which makes you able to bind properties from that class in your view. This is demonstrated
in the “Dynamic Binding to External Objects” section.

Binding to Local Objects
You can bind to any .NET object that has the data you need as long as the compiler can locate the
object. If the object is found in the same context, that is the same XAML block, as the control using
the object, you can specify the binding source by setting the ElementName property of the binding.
Take a look at this changed ComboBox from the Options window:

<ComboBox HorizontalAlignment="Left" Margin="196,58,0,0" VerticalAlignment="Top"
Width="86" Name="numberOfPlayersComboBox" SelectedIndex="0"
IsEnabled="{Binding ElementName=playAgainstComputerCheck, Path=IsChecked}" >

Notice the IsEnabled property. Instead of specifying true or false, there is now lengthy text
within a couple of curly brackets. This way of specifying property values is called markup extension
syntax, and is shorthand for specifying properties. The same could have been written like this:

 <ComboBox HorizontalAlignment="Left" Margin="196,58,0,0"
VerticalAlignment="Top" Width="86" Name="numberOfPlayersComboBox"
SelectedIndex="0" >
 <ComboBox.IsEnabled>
 <Binding ElementName="playAgainstComputerCheck"
Path="IsChecked" />
 </ComboBox.IsEnabled>

Both examples set the binding source to the playAgainstComputerCheck CheckBox. The source
property is specified in the Path to be the IsChecked property.

The binding target is set to the IsEnabled property. Both examples do this by the specifying the
binding as the content of the property—they just do it using different syntax. Finally, the binding
target is implicitly specified by the fact that the binding is done on the ComboBox.

The binding in this example causes the IsEnabled property of the ComboBox to be set or cleared
depending on the value of the IsChecked property of the CheckBox. The result is that without any
code, the ComboBox is enabled and disabled when the user changes the value of the CheckBox.

The Game Client ❘ 469

Static Binding to External Objects
It is possible to create object instances on the fly by specifying that a class is used as a resource in
the XAML. This is done by adding a namespace to the XAML to allow the class to be located, and
then declaring the class as a resource on an element in the XAML.

The following Try It Out shows how to create resource references on parent elements of the object
that you want to data bind.

NOTE If you changed the ComboBox as described in the previous sections, you
should revert the changes by removing the IsEnabled binding.

TRY IT OUT Creating a Static Data Binding: KarliCards Gui\NumberOfPlayers.cs

In this example you create a new class to hold the data for the ComboBox in the Options window and
bind it to the control.

 1. Add a new class to the project and name it NumberOfPlayers.cs.

 2. Add this code:

using System.Collections.ObjectModel;

namespace KarliCards.Gui
{
 public class NumberOfPlayers : ObservableCollection<int>
 {
 public NumberOfPlayers()
 : base()
 {
 Add(2);
 Add(3);
 Add(4);
 }
 }
}

 3. In the OptionsWindow.xaml, select the Canvas element that contains the ComboBox and add this
code below it, and above the TabControl declaration.

 <Canvas.Resources>
 <local:NumberOfPlayers x:Key="numberOfPlayersData" />
 </Canvas.Resources>

 4. Select the ComboBox and remove the three ComboBoxItems from it.

 5. Add this property to it:

ItemsSource="{Binding Source={StaticResource numberOfPlayersData}}"

470 ❘ CHAPTER 14 Basic Desktop programming

How It Works

There is a lot happening in this example. The class NumberOfPlayers derives from a special collection
named ObservableCollection. This base class is a collection that has been extended to make it work
better with WPF. In the constructor of the class, you add the values to the collection.

Next you create a new resource on the Canvas. You could have created this resource on any parent ele-
ment of the ComboBox. When a resource is specified on an element, all child elements can use it.

Finally you set the ItemsSource to a binding. The ItemsSource property is specifically designed to
allow you to specify a binding for the collection of items on an Items control. In the binding you just
need to specify the binding source. The binding target, target property, and source property settings are
handled by the ItemsSource property.

Dynamic Binding to External Objects
Now you can bind to objects that are created on the fly as they are needed in order to provide some
data. What if you already have an instantiated object that you want to use for data binding? In that
case, you need to do a little plumbing in the code.

In the case of the Options window, you don’t want the options to be cleared every time the win-
dow is opened, and you want the selections the user made to persist and be used in the rest of the
application.

In the following Try It Out you set the DataContext to an instance of the GameOptions class, which
allows you to use dynamic bindings of the properties of that class.

TRY IT OUT Creating Dynamic Bindings: KarliCards Gui\GameOptions.cs

In this example you bind the remaining controls to the GameOptions instance in the Options window.

 1. Go to the OptionsWindow.xaml.cs code-behind file.

 2. At the bottom of the constructor, but above InitializeComponent(), add this line:

DataContext = gameOptions;

 3. Go to the GameOptions class and change it like this:

using System;
using System.ComponentModel;

namespace KarliCards.Gui
{
 [Serializable]
 public class GameOptions
 {
 private bool playAgainstComputer = true;
 private int numberOfPlayers = 2;
 private ComputerSkillLevel computerSkill = ComputerSkillLevel.Dumb;

 public int NumberOfPlayers

The Game Client ❘ 471

 {
 get { return numberOfPlayers; }
 set
 {
 numberOfPlayers = value;
 OnPropertyChanged(nameof(NumberOfPlayers));
 }
 }
 public bool PlayAgainstComputer
 {
 get { return playAgainstComputer; }
 set
 {
 playAgainstComputer = value;
 OnPropertyChanged(nameof(PlayAgainstComputer));
 }
 }
 public ComputerSkillLevel ComputerSkill
 {
 get { return computerSkill; }
 set
 {
 computerSkill = value;
 OnPropertyChanged(nameof(ComputerSkill));
 }
 }
 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string propertyName)
 {
 PropertyChanged?.Invoke(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }

 [Serializable]
 public enum ComputerSkillLevel
 {
 Dumb,
 Good,
 Cheats
 }
}

 4. Return OptionsWindow.xaml and select the CheckBox. Add the IsChecked property like this:

IsChecked="{Binding Path=PlayAgainstComputer}"

 5. Select the ComboBox and change it like this, removing the SelectedIndex property and changing
the ItemsSource and SelectedValue properties:

<ComboBox HorizontalAlignment="Left" Margin="196,58,0,0" VerticalAlignment="Top"
Width="86" Name="numberOfPlayersComboBox"
ItemsSource="{Binding Source={StaticResource numberOfPlayersData}}"
SelectedValue="{Binding Path=NumberOfPlayers}" />

 6. Run the application.

472 ❘ CHAPTER 14 Basic Desktop programming

How It Works

Setting the DataContext of the window to an instance of GameOptions allows you to bind to this
instance simply by specifying the property to use in the binding. This is done in Steps 4 and 5.
Note that the ComboBox is filled with items from a static resource, but the selected value is set in the
GameOptions instance.

The GameOptions class is changed quite a bit. It now implements the INotifyPropertyChanged inter-
face, which means that the class is now able to inform WPF that a property has changed. In order for
this notification to work, you have to call the subscribers to the PropertyChanged event defined by the
interface. For this to happen, the property setters have to actively call them, which is done using the
helper method OnPropertyChanged.

When the OnPropertyChanged method is called, we use a new expression introduced by C# 6:
nameof. When we call nameof(…) with an expression, it will retrieve the name of the final identifier.
This is particularly useful in the case of the OnPropertyChanged method, because it takes the name of
the property that is being changed as a string.

The OK button event handler saves the settings to disk using an XmlSerializer. The Cancel event
handler sets the game options field to null, ensuring that the selections made by the user are cleared.
Both event handlers close the window.

Starting a Game with the ListBox Control
You are now only one window short of having created all the supporting windows in the game. The
last window before creating the game board is a window where the player can add new players and
select the players who will be participating in a new game. This window will use a ListBox to dis-
play the names of the players.

ListBoxes and ComboBoxes can often be used for the same purpose, but where a ComboBox nor-
mally allows you to select only a single entry, ListBoxes often allows the user to select multiple
items. Another key difference is that a ListBox will display its content in a list that is always
expanded. This means that it takes up more real estate on the window, but it allows the user to see
the options available right away.

Table 14-9 lists a few particularly interesting properties for the ListBox control.

TABLE 14-9: Interesting ListBox Properties

PROPERTY DESCRIPTION

SelectionMode This property controls how the user can select items from the list. There are
three possible values: Single, which allows the user to select only one item,
Multiple, which allows the user to select multiple items without holding
down the Ctrl key, and Extended, which allows the user to select multiple
consecutive items by holding down the Shift key, and non-consecutive items
by holding down the Ctrl key.

The Game Client ❘ 473

PROPERTY DESCRIPTION

SelectedItem Gets or sets the first selected item or null if nothing is selected. Even if mul-
tiple items are selected, only the first item is returned.

SelectedItems Gets a list containing the items that are currently selected.

SelectedIndex Works like SelectedItem, but returns the index instead of the item itself and
–1 instead of null if nothing is selected.

In the next Try It Out you create the window that is displayed when the user wants to start a new
game.

TRY IT OUT
Creating the Start Game Window: KarliCards
Gui\StartGameWindow.xaml

This window is displayed to the players when a new game starts. It will allow the players to enter their
names and select them from a list of known players.

 1. Create a new window and name it StartGameWindow.xaml.

 2. Delete the Grid element from the window and copy the main Grid and its content from the
OptionsWindow.xaml window instead.

 3. Remove all the content from the Canvas control that has its Grid.Row property set to 1.

 4. Change the window title to “Start New Game” and set these properties:

Height="345" Width="445" ResizeMode="NoResize"

 5. Change the content of the label in grid row 0 to “New Game”

 6. Open the GameOptions.cs file and add these fields at the top of the class:

 private ObservableCollection<string> playerNames =
new ObservableCollection<string>();
public List<string> SelectedPlayers { get; set; } = new List<string>();

 7. The previous code used System.Collections.Generic and the System.Collections.
ObjectModel namespaces, so include these:

using System.Collections.Generic;
using System.Collections.ObjectModel;

 8. Add a property and two methods to the class like this:

 public ObservableCollection<string> PlayerNames
 {
 get
 {
 return playerNames;
 }
 set
 {
 playerNames = value;

474 ❘ CHAPTER 14 Basic Desktop programming

 OnPropertyChanged("PlayerNames");
 }
 }
 public void AddPlayer(string playerName)
 {
 if (playerNames.Contains(playerName))
 return;
 playerNames.Add(playerName);
 OnPropertyChanged("PlayerNames");
 }

 9. Return to the StartGameWindow.xaml window.

 10. Add a ListBox, two Labels, a TextBox, and a Button to the grid below the Canvas in grid row 1
and change the controls to look like those shown in Figure 14-13.

FIGURE 14-13

 12. Set the Name property of the controls as shown in Table 14-10.

TABLE 14-10: The Name Property

CONTROL NAME

TextBox newPlayerTextBox

Button addNewPlayerButton

ListBox playerNamesListBox

 13. Set the ItemsSource of the ListBox like this:

ItemsSource="{Binding Path=PlayerNames}"

 14. Add the ListBox’s SelectionChanged event handler to the code-behind file and add this code:

 private void playerNamesListBox_SelectionChanged(object sender,

The Game Client ❘ 475

SelectionChangedEventArgs e)
 {
 if (gameOptions.PlayAgainstComputer)
 okButton.IsEnabled = (playerNamesListBox.SelectedItems.Count == 1);
 else
 okButton.IsEnabled = (playerNamesListBox.SelectedItems.Count ==
gameOptions.NumberOfPlayers);
 }

 15. Add this field to the top of the class:

 private GameOptions gameOptions;

 16. Set the IsEnabled property of the OK button to false.

 17. Copy the constructor from the OptionsWindow.xaml.cs code-behind (though not the name) and
add these lines to the end after InitializeComponent (Note: You will need to add using declara-
tions for System.IO and System.Xml.Serialization):

 if (gameOptions.PlayAgainstComputer)
 playerNamesListBox.SelectionMode = SelectionMode.Single;
 else
 playerNamesListBox.SelectionMode = SelectionMode.Extended;

 18. Select the Add button and add the Click event handler. Add this code:

 private void addNewPlayerButton_Click(object sender, RoutedEventArgs e)
 {
 if (!string.IsNullOrWhiteSpace(newPlayerTextBox.Text))
 gameOptions.AddPlayer(newPlayerTextBox.Text);
 newPlayerTextBox.Text = string.Empty;
 }

 19. Copy the event handler for the OK an d Cancel buttons from the OptionsWindow.xaml.cs code-
behind files to this code-behind.

 20. Add these lines to the top of the OK button handler:

 foreach (string item in playerNamesListBox.SelectedItems)
 {
 gameOptions.SelectedPlayers.Add(item);
 }

 21. Go to the App.xaml file and change the StartupUri to StartGameWindow.xaml.

 22. Run the application.

How It Works

You started by adding code to the GameOptions class that holds information about all the known play-
ers and the current selection made in the StartGame window.

The ListBox’s ItemsSource property is the same as you saw on the ComboBox earlier. But where you
were able to bind the selected value of the ComboBox directly to a value, it is more complicated with a
ListBox. If you try to bind the SelectedValues property you will find that it is read-only and there-
fore can’t be used for data binding. The work-around used here is to use the OK button to store the val-
ues through code. Note that the cast to IList<string> works here because the content of the ListBox

476 ❘ CHAPTER 14 Basic Desktop programming

is strings at the moment, but if you decided to change the default behavior and display something else,
then this selection of items must be changed as well.

The ListBox’s SelectionChanged event is raised whenever something happens that changes the selec-
tion. In this case you want to handle this event to check if the number of items selected is correct. If the
game is to be played against a computer, then there can only be one human player; otherwise the cor-
rect number of human players must be selected.

NOTE Chapter 15 discusses the Styles, Control, and Item templates and
shows why you can’t always know what type the content of a control is.

EXERCISES

 14.1 A TextBlock control can be used to display large amounts of text, but the control does not
provide any way to scroll the text itself if the text extends beyond the viewport. By combin-
ing the TextBlock with another control, create a window that contains a TextBlock with a lot
of text that can be scrolled and where the scrollbar appears only if the text extends beyond
the viewport.

 14.2 The Slider and Progress controls have a few things in common, such as a minimum, maxi-
mum, and current value. Using only data binding on the ProgressBar, create a window with
a slider and a progress bar, where the Slider control controls the minimum, maximum, and
current value of the progress bar.

 14.3 Change the ProgressBar in the previous question to display itself diagonally from the
 bottom-left corner to the top-right corner of the window.

 14.4 Create a new class with the name PersistentSlider and three properties: MinValue,
MaxValue, and CurrentValue. The class must be able to participate in data binding and all
the properties must be able to notify bound controls of changes.

 a. In the code-behind of the window you created in the two previous exercises, create a
new field of type PersistentSlider and initialize it with some default values.

 b. In the constructor, bind the instance to the windows data source.

 c. Bind the slider’s Minimum, Maximum, and Value properties to the data source.

Answers to the exercises can be found in Appendix.

The Game Client ❘ 477

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT DESCRIPTION

XAML XAML is a language that uses XML syntax and enables controls to be
added to a user interface in a declarative, hierarchical way.

Data binding You can use data binding to connect properties of controls to the value
of other controls. You can also define resources and use code defined in
classes outside your views as a data source for both values of properties
and as content for controls. DataContexts can be used to specify the
binding source of existing object instances and thereby allow you to bind
to instances that are created in other parts of your application.

Routed events Routed events are special events used in WPF. They come in two flavors:
bubbling and tunneling. Bubbling events are first called on the control
on which they are activated and then bobble up through the view tree to
the root element. Tunneling events move the other way, from the root
element to the control that was activated by the user. Both bubbling and
tunneling can be stopped by setting the Handled property of the event
arguments to true.

INotifyPropertyChanged The INotifyPropertyChanged interface is implemented by a class
that will be used from a WPF view. When property setters of the class
are called, they raise the event PropertyChanged with the name of the
property that changed its value. Any control property that is bound to
the property that raised the event will be notified of the change and can
update itself accordingly.

ObservableCollections An ObservableCollection is a collection that, among others, imple-
ment the INotifyPropertyChanged interface. You use this specialized
collection when you want to provide properties or values that are lists to
a WPF view for data binding.

Content controls Content controls can contain a single control in their content. An exam-
ple of such a control is Button. This control can be Grid or StackPanel;
they allow you to create complex customizations.

Items controls Items controls can contain a list of controls in their content. An exam-
ple of such a control is the ListBox. Each control in the list can be
customized.

478 ❘ CHAPTER 14 Basic Desktop programming

KEY CONCEPT DESCRIPTION

Layout controls You learned to use a number of controls that are used to help you create
the view:

1. Canvas allows for explicit positioning of controls but little else.

2. StackPanel stacks controls horizontally or vertically.

3. WrapPanel stacks controls and wraps them to the next line or column
depending on the orientation of the panel.

4. DockPanel allows you to dock controls to the edges of the control or
fill the entire content.

5. Grid allows you to define rows and columns and use these to position
the controls.

UI controls UI controls display themselves on the view, often using the layout con-
trols to guide their positions. These controls were used:

1. Label controls display short text.

2. TextBlock controls display text that can need multiple lines to display.

3. TextBox controls allow the users to provide text input.

4. Button controls allow the users to perform a single action.

5. Image controls are used to display an image.

6. CheckBoxes let the users answer yes/no questions such as “Play
Against Computer?”

7. RadioButtons let the users select exactly one from multiple options.

8. ComboBoxes display a drop-down list of items from which the user can
select a single item. The control can also display a TextBox, letting the
user enter new options.

9. ListBox controls display a list of items. Unlike the ComboBox the list is
always expanded. The control allows for multiple items being selected.

10. TabControls allows you to group controls on pages.

Advanced Desktop
Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Using routed commands instead of events

 ➤ Working with styling controls and applications using XAML styles

 ➤ Creating menus using the Menu control and routed commands

 ➤ Creating value converters

 ➤ Using timelines to create animations

 ➤ Defining and referencing static and dynamic resources

 ➤ Creating user controls when the common controls are not enough

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter15 folder and individually named
according to the names throughout the chapter.

Until this point you have used Windows Presentation Foundation (WPF) in much the same
way that you use the other major technology for creating windows applications in Visual
Studio: Windows Forms. But that is about to change. WPF can style any control and use tem-
plates to change existing controls to look nothing like they do out-of-the-box. In addition to
that, you are going to start working more and more by typing XAML. Although this might
seem like a burden at first, the ability to move and fine-tune the display by setting properties

15

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

480 ❘ CHAPTER 15 AdvAnced desktop progrAmming

will quickly become second nature, and you will find that there is quite a bit in XAML that cannot
be done in the designer, such as creating animations.

CREATING AND STYLING CONTROLS

One of the best features of WPF is the complete control it provides designers over the look and feel
of user interfaces. Central to this is the capability to style controls however you want, in two or
three dimensions. Until now, you have been using the basic styling for controls that is supplied with
.NET, but the actual possibilities are endless.

This section describes two basic techniques:

 ➤ Styles—Sets of properties that are applied to a control as a batch

 ➤ Templates—The controls that are used to build the display for a control

There is some overlap here, as styles can contain templates.

Styles
WPF controls have a property called Style (inherited from FrameworkElement) that can be set to
an instance of the Style class. The Style class is quite complex and is capable of advanced styling
functionality, but at its heart it is a set of Setter objects. Each Setter object is responsible for set-
ting the value of a property according to its Property property (the name of the property to set) and
its Value property (the value to set the property to). You can either fully qualify the name you use
in Property to the control type (for example, Button.Foreground), or you can set the TargetType
property of the Style object (for example, Button), so that it is capable of resolving property
names.

The following code shows how to use a Style object to set the Foreground property of a Button
control:

<Button>
 Click me!
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="Foreground">
 <Setter.Value>
 <SolidColorBrush Color="Purple" />
 </Setter.Value>
 </Setter>
 </Style>
 </Button.Style>
</Button>

Obviously, in this case it would be far easier simply to set the Foreground property of the button
in the usual way. Styles become much more useful when you turn them into resources, because
resources can be reused.

Creating and Styling Controls ❘ 481

Templates
Controls are constructed using templates, which you can customize. A template consists of a
hierarchy of controls used to build the display of a control, which may include a content presenter
for controls such as buttons that display content.

The template of a control is stored in its Template property, which is an instance of the
ControlTemplate class. The ControlTemplate class includes a TargetType property that you can
set to the type of control for which you are defining a template.

Typically, you set the template for a class by using a style. This simply involves providing controls to
use for the Template property in the following way:

<Button>
 Click me!
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 ...
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Button.Style>
</Button>

Some controls may require more than one template. For example, CheckBox controls use one tem-
plate for a check box (CheckBox.Template) and one template to output text next to the check box
(CheckBox.ContentTemplate).

Templates that allow you to change the content of the control can do so by including a
ContentPresenter at the location where you want to output content.

In the previous chapter you developed three dialogs with similar look and feel. One of the common
elements of the dialogs is the header where you changed the text of the label in each dialog. You can
define that header as a label, and in the next Try It Out you will develop a new Label style and use
it to replace the headers in the four dialogs.

TRY IT OUT
Creating the Main Window: KarliCards Gui\GameClientWindow
.xaml

 1. Create a new Resource Dictionary by right-clicking the project and selecting Add ➪ Resource
Dictionary. Name it ControlResources.xaml.

 2. Create a new Control Template for a label like this:

 <ControlTemplate x:Key="HeaderTemplate" TargetType="{x:Type Label}">
 <Canvas Background="#C40D42" >

482 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 <Image Height="56" Canvas.Left="0" Canvas.Top="0"
 Stretch="UniformToFill" Source=".\Images\Banner.png"/>
 <ContentPresenter Canvas.Right="10" Canvas.Top="25"
 Content="{TemplateBinding Content}" />
 </Canvas>
 </ControlTemplate>

 3. Add a style that includes the Control Template:

 <Style x:Key="HeaderLabelStyle" TargetType="Label">
 <Setter Property="Template" Value="{StaticResource HeaderTemplate}" />
 <Setter Property="FontFamily" Value="Times New Roman" />
 <Setter Property="FontSize" Value="24" />
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="Foreground" Value="#FFF7EFEF" />
 </Style>

 4. Create a new window called GameClientWindow.xaml.

 5. Change the title to “Karli Cards Game Client” and remove the Height and Width properties.

 6. Set the WindowState property to Maximized.

 7. At the top of the window, just before the Grid, import the Resource Dictionary like this:

 <Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="ControlResources.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>

 8. Insert the grid’s row definitions inside the Grid control like this:

 <Grid.RowDefinitions>
 <RowDefinition Height="58"/>
 <RowDefinition Height="20"/>
 <RowDefinition />
 <RowDefinition Height="42"/>
 </Grid.RowDefinitions>

 9. Insert a new Label control instead of the Canvas like this:

<Label Grid.Row="0" Style="{StaticResource HeaderLabelStyle}">Karli Cards
</Label>

How It Works

When you look at the control template, you will see that it is almost exactly the same as the controls in
the windows you developed in the previous chapter; the only differences are the ControlTemplate dec-
laration and a ContentPresenter has replaced the Label control.

The ControlTemplate TargetType declaration is very important, as it specifies which control this
template will target. This allows you to use bind properties from the parent control to controls within
the template. Examine the ContentPresenter:

<ContentPresenter Content="{TemplateBinding Content}" />

Creating and Styling Controls ❘ 483

The ContentPresenter control allows you to specify where the content of the control type is going to
go. In the GameClientWindow you specify that the content of the Label should be Karli Cards, which
causes the text to be displayed. That is what you would normally do, but the control presenter allows
you to specify any content, just like you would expect from the content property.

The Style control sets the properties that we want to set on the label, but notice that the Template
property is set to a reference to the new HeaderTemplate:

<Setter Property="Template" Value="{StaticResource HeaderTemplate}" />

Triggers
Events in WPF can include all manner of things, including button clicks, application startup and
shutdown events, and so on. WPF makes use of several types of triggers to provide functionality like
events, all of which inherit from a base TriggerBase class. One such trigger is the EventTrigger
class, which contains a collection of actions, each of which is an object that derives from the base
TriggerAction class. These actions are executed when the trigger is activated.

You can use EventTrigger to trigger animations using the BeginStoryboard action, manipu-
late storyboards using ControllableStoryboardAction, and trigger sound effects with
SoundPlayerAction.

Every control has a Triggers property that you can use to define triggers directly on that control.
You can also define triggers further up the hierarchy—for example, on a Window object. The type of
trigger you will use most often when you are styling controls is Trigger (although you will still use
EventTrigger to trigger control animations). The Trigger class is used to set properties in response
to changes to other properties, and is particularly useful when used in Style objects.

Trigger objects are configured as follows:

 ➤ To define what property a Trigger object monitors, you use the Trigger.Property
property.

 ➤ To define when the Trigger object activates, you set the Trigger.Value property.

 ➤ To define the actions taken by a Trigger, you set the Trigger.Setters property to a collec-
tion of Setter objects.

The Setter objects referred to here are exactly the same objects that you saw in the “Styles” section
earlier.

The following code shows a Trigger as you would use it in a Style object:

<Style TargetType="Button">
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="true">
 <Setter Property="Foreground" Value="Yellow" />
 </Trigger>
 </Style.Triggers>
</Style>

This code changes the Foreground property of a Button control to Yellow when the Button
.IsMouseOver property is true. IsMouseOver is one of several extremely useful properties that you

484 ❘ CHAPTER 15 AdvAnced desktop progrAmming

can use as a shortcut to find out information about controls and control state. As its name suggests,
it is true if the mouse is over the control. This enables you to code for mouse rollovers. Other prop-
erties like this include IsFocused, to determine whether a control has focus; IsHitTestVisible,
which indicates whether it is possible to click on a control (that is, it is not obscured by controls fur-
ther up the stacking order); and IsPressed, which indicates whether a button is pressed. The last of
these only applies to buttons that inherit from ButtonBase, whereas the others are available on all
controls.

You can also achieve a great deal by using the ControlTemplate.Triggers property, which enables
you to create templates for controls that include triggers. This is how the default Button template is
able to respond to mouse rollovers, clicks, and focus changes with its template. This is also what you
must modify to implement this functionality for yourself.

Animations
Animations are created by using storyboards. The best way to define complex animations is to use
a designer such as Expression Blend. However, you can also define them by editing XAML code
directly and through C# code.

NOTE Detailed graphical animations are well beyond the scope of this book.
The information in this section will give you an idea of what you can do with
animations.

Animations in WPF are defined using an object called a Storyboard. Using storyboards, you can
animate the value of a property—for example, the background color of a button. It is very impor-
tant to realize that you can animate just about any property in this way, not just properties that
affect how a control is displayed.

A storyboard can be defined on its own in a Resource Dictionary or inside controls using the
BeginStoryboard property of an event trigger. Inside the storyboard you define one or more anima-
tions, or timelines.

In the previous section, you used a trigger to set the foreground value of a Button control when the
mouse rolls over the control. Examine the following code, which uses storyboards instead:

 <Button Content="Animation" HorizontalAlignment="Left" Margin="197,63,0,0"
 VerticalAlignment="Top" Width="75">
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.MouseEnter">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation To="Yellow"
 Storyboard.TargetProperty="(Button.Foreground)
 .(SolidColorBrush.Color)"
 FillBehavior="HoldEnd"
 Duration="0:0:1" AutoReverse="False" />
 </Storyboard>
 </BeginStoryboard>

WPF User Controls ❘ 485

 </EventTrigger>
 <EventTrigger RoutedEvent="Button.MouseLeave">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation To="Black"
 Storyboard.TargetProperty="(Button.Foreground)
 .(SolidColorBrush.Color)"
 FillBehavior="HoldEnd"
 Duration="0:0:1"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Button.Triggers>
 </Button>

The Button contains two triggers, one for MouseEnter and one for MouseLeave. Each of these con-
tains a ColorAnimation that changes the foreground color of the text to yellow and black, respec-
tively. The difference between using the Trigger to set the Foreground property directly and using
a storyboard is in the details: With the storyboard you get a flowing transition over 1 second, but
when you set the property directly, it happens instantaneously. Both are valuable tools to have and
they should be used when appropriate—too many animations may annoy your users, but a few
well-placed ones can make an application look spectacular.

WPF USER CONTROLS

One key feature of a graphical card game is…the cards. Obviously, you are not going to find
a “Playing Card” control in the standard controls that ship with WPF, so you have to create it
yourself.

WPF provides a set of controls that are useful in many situations. However, as with all the .NET
development frameworks, it also enables you to extend this functionality. Specifically, you can create
your own controls by deriving your classes from classes in the WPF class hierarchy.

One of the most useful controls you can derive from is UserControl. This class gives you all the
basic functionality that you are likely to require from a WPF control and it enables your control to
snap in beside the existing WPF control suite seamlessly. Everything you might hope to achieve with
a WPF control—such as animation, styling, and templating—can be achieved with user controls.

You can add user controls to your project by using the Project ➪ Add User Control menu item. This
gives you a blank canvas (well, actually a blank Grid) to work from. User controls are defined using
the top-level UserControl element in XAML, and the class in the code-behind derives from the
System.Windows.Controls.UserControl class.

Once you have added a user control to your project, you can add controls to lay out the visual
appearance and code-behind to configure the control. When you have finished doing that, you can
use it throughout your application, and even reuse it in other applications.

One of the crucial things you need to know when creating user controls is how to implement depen-
dency properties. Chapter 14 briefly discussed this kind of property, and now that you are getting
closer to writing your own controls, it is time to take a look at them.

486 ❘ CHAPTER 15 AdvAnced desktop progrAmming

Implementing Dependency Properties
You can add dependency properties to any class that inherits from System.Windows
.DependencyObject. This class is in the inheritance hierarchy for many classes in WPF, including
all the controls and UserControl.

To implement a dependency property to a class, you add a public, static member to your class defini-
tion of type System.Windows.DependencyProperty. The name of this member is up to you, but
best practice is to follow the naming convention <PropertyName>Property:

public static DependencyProperty MyStringProperty;

It might seem odd that this property is defined as static, as you end up with a property that can be
uniquely defined for each instance of your class. The WPF property framework keeps track of things
for you, so you don’t have to worry about this for the moment.

The member you add must be configured by using the static DependencyProperty.Register()
method:

public static DependencyProperty MyStringProperty =
 DependencyProperty.Register(...);

This method takes between three and five parameters, as shown in the Table 15-1 (these are shown
in order, with the first three parameters being the mandatory ones).

TABLE 15-1: The Register() Method’s Parameters

PARAMETER USAGE

string name The name of the property

Type propertyType The type of the property

Type ownerType The type of the class containing the property

PropertyMetadata typeMetadata Additional property settings: the default value of the prop-
erty and callback methods to use for property change notifi-
cations and coercion

ValidateValueCallback
validateValueCallback

The callback method to use to validate property values

NOTE There are other methods that you can use to register dependency
properties, such as RegisterAttached(), which you can use to implement an
attached property. You won’t look at these other methods in this chapter, but
it’s worth reading up on them.

WPF User Controls ❘ 487

For example, you could register the MyStringProperty dependency property using three param-
eters as follows:

public class MyClass : DependencyObject
{
 public static DependencyProperty MyStringProperty = DependencyProperty.Register(
 "MyString",
 typeof(string),
 typeof(MyClass));
}

You can also include a .NET property that can be used to access dependency properties directly
(although this isn’t mandatory, as you will see shortly). However, because dependency properties
are defined as static members, you cannot use the same syntax you would use with ordinary proper-
ties. To access the value of a dependency property, you have to use methods that are inherited from
DependencyObject, as follows:

 public string MyString
 {
 get { return (string)GetValue(MyStringProperty); }
 set { SetValue(MyStringProperty, value); }
 }

Here, the GetValue() and SetValue() methods get and set, respectively, the value of the
MyStringProperty, dependency property for the current instance. These two methods are public,
so client code can use them directly to manipulate dependency property values. This is why adding a
.NET property to access a dependency property is not mandatory.

If you want to set metadata for a property, then you must use an object that derives from
PropertyMetadata, such as FrameworkPropertyMetadata, and pass this instance as the fourth
parameter to Register(). There are 11 overloads of the FrameworkPropertyMetadata constructor,
and they take one or more of the parameters shown in Table 15-2.

TABLE 15-2: Overloads for the FrameworkPropertyMetadata Constructor

PARAMETER TYPE USAGE

object defaultValue The default value for the property.

FrameworkPropertyMetadataOptions
flags

A combination of the flags (from the
FrameworkPropertyMetadataOptions enum) that you
can use to specify additional metadata for a property. For
example, you might use AffectsArrange to declare that
changes to the property might affect control layout. This
would cause the layout engine for a window to recalculate
control layout if the property changed. See the MSDN
documentation for a full list of the options available here.

PropertyChangedCallback
propertyChangedCallback

The callback method to use when the property value
changes.

continues

488 ❘ CHAPTER 15 AdvAnced desktop progrAmming

PARAMETER TYPE USAGE

CoerceValueCallback
coerceValueCallback

The callback method to use if the property value is
coerced.

bool isAnimationProhibited Specifies whether this property can be changed by an
animation.

UpdateSourceTrigger
defaultUpdateSourceTrigger

When property values are data-bound, this property
determines when the data source is updated, according to
values in the UpdateSourceTrigger enum. The default
value is PropertyChanged, which means that the binding
source is updated as soon as the property changes. This is
not always appropriate—for example, the TextBox.Text
property uses a value of LostFocus for this property.
This ensures that the binding source is not updated pre-
maturely. You can also use the value Explicit to specify
that the binding source should be updated only when
requested (by calling the UpdateSource() method of a
class derived from DependencyObject).

A simple example of using FrameworkPropertyMetadata is to use it to set the default value of a
property:

 public static DependencyProperty MyStringProperty =
 DependencyProperty.Register(
 "MyString",
 typeof(string),
 typeof(MyClass),
 new FrameworkPropertyMetadata("Default value"));

You have so far learned about three callback methods that you can specify, for property change
notification, property coercion, and property value validation. These callbacks, like the dependency
property itself, must all be implemented as public, static methods. Each callback has a specific
return type and parameter list that you must use on your callback method.

Now it is time to get back on track and continue with the game client for Karli Cards. In the follow-
ing Try It Out, you create a user control that can represent a playing card in the application.

NOTE You can add dependency properties by typing propdp in the editor and
pressing the Tab key.

TABLE 15-2 (continued)

WPF User Controls ❘ 489

TRY IT OUT User Controls: KarliCards.Gui\CardControl.xaml

Return to the KarliCards.Gui project from the previous Try It Out.

 1. This example uses the CardLib project that you created in Chapter 13, so you have to add this to
the solution. Begin by right-clicking the solution name in the Solution Explorer and choosing Add
➪ Existing Project. Browse to and select the Ch13CardLib.csproj file from the Chapter 13 code
examples.

 2. In the KarliCards.Gui project, add a reference to the Ch13CardLib project by right-clicking
References and choosing Add Reference in the KarliCards.Gui project. Click Projects ➪ Solution
from the tree on the left and select Ch13CardLib. Click OK.

 3. Add a new value converter by adding a new class to the project. Name it RankNameConverter.cs
and add this code:

using System;
using System.Windows;
using System.Windows.Data;
namespace KarliCards.Gui
{
 [ValueConversion(typeof(Ch13CardLib.Rank), typeof(string))]
 public class RankNameConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
 {
 int source = (int)value;
 if (source == 1 || source > 10)
 {
 switch (source)
 {
 case 1:
 return "Ace";
 case 11:
 return "Jack";
 case 12:
 return "Queen";
 case 13:
 return "King";
 default:
 return DependencyProperty.UnsetValue;
 }
 }
 else
 return source.ToString();
 }
 public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
 {
 return DependencyProperty.UnsetValue;
 }
 }
}

490 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 4. Add a new user control called CardControl to the KarliCards.Gui project.

 5. Set the Height, Width, and Name properties of the UserControl like this:

Height="154" Width="100" Name="UserControl"

 6. Before the Grid control, add the resources that will be used in the definition of the control:

 <UserControl.Resources>
 <local:RankNameConverter x:Key="rankConverter"/>
 <DataTemplate x:Key="SuitTemplate">
 <TextBlock Text="{Binding}"/>
 </DataTemplate>
 <Style TargetType="Image" x:Key="SuitImage">
 <Style.Triggers>
 <DataTrigger Binding="{Binding ElementName=UserControl, Path=Suit}"
Value="Club">
 <Setter Property="Source" Value="Images\Clubs.png" />
 </DataTrigger>
 <DataTrigger Binding="{Binding ElementName=UserControl, Path=Suit}"
Value="Heart">
 <Setter Property="Source" Value="Images\Hearts.png" />
 </DataTrigger>
 <DataTrigger Binding="{Binding ElementName=UserControl, Path=Suit}"
Value="Diamond">
 <Setter Property="Source" Value="Images\Diamonds.png" />
 </DataTrigger>
 <DataTrigger Binding="{Binding ElementName=UserControl, Path=Suit}"
Value="Spade">
 <Setter Property="Source" Value="Images\Spades.png" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </UserControl.Resources>

 7. Inside the Grid control, add a Rectangle control like this:

 <Rectangle RadiusX="12.5" RadiusY="12.5">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="0.47,-0.167" StartPoint="0.86,0.92">
 <GradientStop Color="#FFD1C78F" Offset="0"/>
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 <Rectangle.Effect>
 <DropShadowEffect Direction="145" BlurRadius="10" ShadowDepth="0" />
 </Rectangle.Effect>
 </Rectangle>

 8. Next, add a Path control. Once this is done, you should have a control that looks like Figure 15-1.

 <Path Fill="#FFFFFFFF" Stretch="Fill" Stroke="{x:Null}"
 Margin=" 0,0,35,0" Data="M12,0
 L47,0
 C18,25 17,81 23,98
 35,131 54,144 63,149
 L12,149

WPF User Controls ❘ 491

 C3,149 0,143 0,136
 L0,12
 C0,5 3,0 12,0
 z">
 <Path.OpacityMask>
 <LinearGradientBrush EndPoint="0.957,1.127" StartPoint="0,-0.06">
 <GradientStop Color="#FF000000" Offset="0"/>
 <GradientStop Color="#00FFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </Path.OpacityMask>
 </Path>

FIGURE 15-1

 9. You now have something that looks kind of like the back of a playing card, but we want this con-
trol to display the front as well, so we continue with some labels to display the suit and rank of the
card:

 <Label x:Name="SuitLabel"
 Content="{Binding Path=Suit, ElementName=UserControl, Mode=Default}"
 ContentTemplate="{DynamicResource SuitTemplate}"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Margin="8,51,8,60" />
 <Label x:Name="RankLabel" Grid.ZIndex="1"
 Content="{Binding Path=Rank, ElementName=UserControl, Mode=Default,
Converter={StaticResource ResourceKey=rankConverter}}"
 ContentTemplate="{DynamicResource SuitTemplate}"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="8,8,0,0" />
 <Label x:Name="RankLabelInverted"
 Content="{Binding Path=Rank, ElementName=UserControl, Mode=Default,
Converter={StaticResource ResourceKey=rankConverter}}"
 ContentTemplate="{DynamicResource SuitTemplate}"
 HorizontalAlignment="Right" VerticalAlignment="Bottom"
 Margin="0,0,8,8" RenderTransformOrigin="0.5,0.5">
 <Label.RenderTransform>
 <RotateTransform Angle="180"/>
 </Label.RenderTransform>
 </Label>

 10. Finally, images should display the suit of the card to give a nice visual representation of the suit:

 <Image Name="TopRightImage" Style="{StaticResource ResourceKey=SuitImage}"
Margin="12,12,8,0" HorizontalAlignment="Right" VerticalAlignment="Top"

492 ❘ CHAPTER 15 AdvAnced desktop progrAmming

Width="18.5" Height="18.5" Stretch="UniformToFill" />
 <Image Name="BottomLeftImage" Style="{StaticResource ResourceKey=SuitImage}"
Margin="12,0,8,12" HorizontalAlignment="Left" VerticalAlignment="Bottom"
Width="18.5" Height="18.5" Stretch="UniformToFill"
RenderTransformOrigin="0.5,0.5">
 <Image.RenderTransform>
 <RotateTransform Angle="180" />
 </Image.RenderTransform>
 </Image>

 11. Go to the code-behind for the CardControl and add three dependency properties to the class (you
can type propdp and press the Tab key twice to make Visual Studio create the template for the
properties):

 public static DependencyProperty SuitProperty = DependencyProperty.Register(
 "Suit",
 typeof(Ch13CardLib.Suit),
 typeof(CardControl),
 new PropertyMetadata(Ch13CardLib.Suit.Club,
new PropertyChangedCallback(OnSuitChanged)));
 public static DependencyProperty RankProperty = DependencyProperty.Register(
 "Rank",
 typeof(Ch13CardLib.Rank),
 typeof(CardControl),
 new PropertyMetadata(Ch13CardLib.Rank.Ace));
 public static DependencyProperty IsFaceUpProperty = DependencyProperty.Register(
 "IsFaceUp",
 typeof(bool),
 typeof(CardControl),
 new PropertyMetadata(true, new PropertyChangedCallback(OnIsFaceUpChanged)));
 public bool IsFaceUp
 {
 get { return (bool)GetValue(IsFaceUpProperty); }
 set { SetValue(IsFaceUpProperty, value); }
 }
 public Ch13CardLib.Suit Suit
 {
 get { return (Ch13CardLib.Suit)GetValue(SuitProperty); }
 set { SetValue(SuitProperty, value); }
 }
 public Ch13CardLib.Rank Rank
 {
 get { return (Ch13CardLib.Rank)GetValue(RankProperty); }
 set { SetValue(RankProperty, value); }
 }

 12. Add the change event handlers to the class:

 public static void OnSuitChanged(DependencyObject source,
 DependencyPropertyChangedEventArgs args)
 {
 var control = source as CardControl;
 control.SetTextColor();
 }
 private static void OnIsFaceUpChanged(DependencyObject source,

WPF User Controls ❘ 493

 DependencyPropertyChangedEventArgs args)
 {
 var control = source as CardControl;
 control.RankLabel.Visibility = control.SuitLabel.Visibility =
 control.RankLabelInverted.Visibility =
control.TopRightImage.Visibility =
control.BottomLeftImage.Visibility = control.IsFaceUp ?
Visibility.Visible : Visibility.Hidden;
 }

 13. Add a property to the class:

 private Ch13CardLib.Card card;
 public Ch13CardLib.Card Card
 {
 get { return card; }
 private set { card = value; Suit = card.suit; Rank = card.rank; }
 }

 14. Add a helper method to set the text colors and overload the constructor to take a card:

 public CardControl(Ch13CardLib.Card card)
 {
 InitializeComponent();
 Card = card;
 }
 private void SetTextColor()
 {
 var color = (Suit == Ch13CardLib.Suit.Club || Suit == Ch13CardLib.Suit.Spade) ?
 new SolidColorBrush(Color.FromRgb(0, 0, 0)) :
 new SolidColorBrush(Color.FromRgb(255, 0, 0));
 RankLabel.Foreground = SuitLabel.Foreground = RankLabelInverted.Foreground =
 color;
 }

 15. Go to the GameClientWindow and add a new grid to the window below the label:

<Grid x:Name="contentGrid" Grid.Row="2" />

 16. Set the main grid’s Background color to green:

<Grid Background="Green">

 17. Go to the code-behind file and change the constructor like this:

 public GameClientWindow()
 {
 InitializeComponent();
 var position = new Point(15, 15);
 for (var i = 0; i < 4; i++)
 {
 var suit = (Ch13CardLib.Suit)i;
 position.Y = 15;
 for (int rank = 1; rank < 14; rank++)
 {
 position.Y += 30;
 var card = new CardControl(new Ch13CardLib.Card((Ch13CardLib.Suit)suit,
 (Ch13CardLib.Rank)rank));

494 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 card.VerticalAlignment = VerticalAlignment.Top;
 card.HorizontalAlignment = HorizontalAlignment.Left;
 card.Margin = new Thickness(position.X, position.Y, 0, 0);
 contentGrid.Children.Add(card);
 }
 position.X += 112;
 }
 }

 18. Change the StartupUri in the App.xaml file to GameClientWindow.xaml and run the application.
The result is shown in Figure 15-2.

FIGURE 15-2

WPF User Controls ❘ 495

How It Works

This example creates a user control with two dependent properties, and includes client code to use the
control. This example covers plenty of ground, and the place to start looking at the code is with the
Card control.

The Card control consists mostly of code that will be familiar to you from code you’ve seen earlier in
this chapter. The first section defines a number of resources for the control. First, it defines an instance
of the RankConverter class, ensuring that this can be used in the XAML.

<local:RankNameConverter x:Key="rankConverter"/>

Next, a DataTemplate is defined. A DataTemplate is similar to a ControlTemplate in that it can be
used to change the visual appearance of a control. However, where a ControlTemplate is typically used
only to modify the look and feel of the control, a DataTemplate is used to present the underlying data of
a control, so, for example, it can be used to display properties from the controls DataContext.

The final resource that is defined is a style for an Image control. This style defines four triggers, each of
which are bound to the Suit property of the UserControl class. Depending on the value of the control,
the trigger will set the Source property of the Image control to the appropriate picture:

<DataTrigger Binding="{Binding ElementName=UserControl, Path=Suit}"
 Value="Club">
 <Setter Property="Source" Value="Images\Clubs.png" />
</DataTrigger>

Once the resources are in place, the drawing of the card starts. The first control in the grid on which
the card is drawn is a Rectangle, which may be a little surprising since the cards have rounded corners.
This is achieved by setting the RadiusX and RadiusY properties of the control:

<Rectangle RadiusX="12.5" RadiusY="12.5">

These two properties actually control the x and y radius of an ellipse that the rectangle uses internally
to display rounded corners.

The rectangle is then filled with color using a LiniarGradientBrush. The StartPoint and EndPoint
properties dictate the line along which the gradient is drawn. By default, this line will be from 0,0 (top
left corner) to 1,1 (bottom right corner). The gradient used here specifies that the line starts close to the
bottom right corner and ends close to the middle of the x-axis, above the top of the control:

<LinearGradientBrush EndPoint="0.47,-0.167" StartPoint="0.86,0.92">

Finally, a DropShadow effect is added to the rectangle, which draws a shadow around the control.

Next a Path control is placed in the Grid. This control allows you to draw polygons using lines and
curves. You can use C# code to program the path that the control should describe, or you can use
markup syntax as you did in this example. As the Path is defined for the control, it can be difficult to
see the polygon that is drawn. This is because the Stroke property is set to null, so for the purpose of
this explanation, try changing it to Red instead. You should then see on the card the polygon shown in
Figure 15-3.

496 ❘ CHAPTER 15 AdvAnced desktop progrAmming

FIGURE 15-3

The Stretch property is also important. When this is set to Fill, and the control in which the Path is
defined is resized, the polygon will resize gracefully with the parent control. Finally, the Margin causes
the Path control to move its right edge to 35 pixels to the left of the parent’s right edge.

Now, take a look at the Data Property:

Data="M12,0
 L47,0
 C18,25 17,81 23,98
 35,131 54,144 63,149
 L12,149
 C3,149 0,143 0,136
 L0,12
 C0,5 3,0 12,0
 z"

You use the Data property to set the path. This property takes a string on a very specific format. Some
of the numbers in the string are prefixed with letters; others are not, so let’s dig into it.

The path starts with M12,0. The M before the coordinate instructs the path that this is a start point for
the path. The fact that it is an upper case M is important, because that means that this coordinate is an
absolute position; if it had been lower case instead, it would mean that the coordinate is an offset to the
previous point. If no such point exists, 0,0 is used as a previous point. This positions the start of the
polygon 12 pixels to the left of the top left corner.

The next instruction is L47,0. This creates a straight line from the current point to the specified point.
In this case, it draws a vertical line from 12,0 to 47,0. Another way to achieve the same effect would be
to write h35 or H47. The H, either upper or lower case, instructs the path to draw a vertical line. Once
again, an upper case letter means an absolute position; lower case means a distance from the previous
point.

The third instruction is a little longer:

C18,25 17,81 23,98

The C means that this is a Cubic Bezier Curve. To draw such a curve, you need four points: the start-
ing point, two points to specify the starting and ending tangents, and the endpoint. The starting point
is given by the endpoint of the preceding line. The first two points in the set are the control points that
define the starting and ending tangents of the curve, respectively. The third point is the ending point.

WPF User Controls ❘ 497

The next set of points isn’t prefixed with a letter. When this happens, the instructions are treated as the
same type as the previous instruction, so this is another curve.

The remainder of the instructions are just more lines and curves, until you reach the very end, where a
lower case z is specified. This means that the polygon must be closed, so a straight line is drawn from
the current position to the starting point. In this case, it could have been omitted, since the final curve
meets up with the start of the polygon, but it is included for the sake of completeness.

The code in CardControl exposes three dependency properties, Suit, Rank, and IsFaceUp, to client
code, and binds these properties to visual elements in the control layout. As a result, when you set Suit
to Club, the word Club is displayed in the center of the card and the Club image is displayed in the
top-right and bottom-left corners of the card. Similarly, the value of Rank is displayed in the other two
corners of the card.

You’ll look at the implementation of these properties in a moment. For now it is enough to know that
they are enumerations originating from the CardLib project that you started in Chapter 10.

The three labels display the rank and suit of the card. Even though they are bound to different proper-
ties, they have a few things in common. They must display some text in red or black depending on the
values of the bound properties. In this example, the color is set using the events raised when the Rank
changes, but you can use triggers for this:

<Label x:Name="SuitLabel"
 Content="{Binding Path=Suit, ElementName=UserControl, Mode=Default}"
 ContentTemplate="{DynamicResource SuitTemplate}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Margin="8,51,8,60" />

When you bind property values, you can also specify how to render the bound content, by using a
data template. In this example, the data template is SuitTemplate, referenced as a dynamic resource
(although in this case a static resource binding would also work fine). This template is defined in the
user control resources section as follows:

 <UserControl.Resources>
 <DataTemplate x:Key="SuitTemplate">
 <TextBlock Text="{Binding}"/>
 </DataTemplate>
 </UserControl.Resources>

The string value of Suit is therefore used as the Text property of a TextBlock control. This same
DataTemplate definition is reused for the two rank labels. Suit is an enumeration, and the name of the
value in the enumeration is automatically converted to a string to be displayed in the Text property.

The two Rank labels include a value converter in the binding.

<Label x:Name="RankLabel" Grid.ZIndex="1"
 Content="{Binding Path=Rank, ElementName=UserControl, Mode=Default,
 Converter={StaticResource ResourceKey=rankConverter}}"
 ContentTemplate="{DynamicResource SuitTemplate}"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="8,8,0,0" />

The converter is included in the UserControl resources through this declaration:

<local:RankNameConverter x:Key="rankConverter"/>

498 ❘ CHAPTER 15 AdvAnced desktop progrAmming

You will not break the control if you remove the value converter. Instead, you will see Ace, 2, 3, 4, and
so on. You will also see the names of the enumeration values converted to string—Ace, Deuce, Three,
Four, and so on. Although this is technically correct, it doesn’t look quite right, so you convert the val-
ues to a combination of numbers and strings.

The final point to notice is the Grid.ZIndex="1" property assignment on the RankLabel. The ZIndex
of a control on a Grid or Canvas determines the visual layer that holds the control. If two or more
controls occupy the same space, then you can use the ZIndex to force one of them to go to the front.
Normally all controls have a ZIndex of zero, so setting a single control to 1 means that it is moved to
the front. This is necessary because the blur of the path would otherwise obscure the text.

For this data binding to work, you must define three dependency properties using techniques you
learned previously. These are defined in the code-behind for the user control as follows (they have sim-
ple .NET property wrappers, which there is no need to show here because of the simplicity of the code):

 public static DependencyProperty SuitProperty = DependencyProperty.Register(
 "Suit",
 typeof(CardLib.Suit),
 typeof(CardControl),
 new PropertyMetadata(CardLib.Suit.Club,
new PropertyChangedCallback(OnSuitChanged)));
 public static DependencyProperty RankProperty = DependencyProperty.Register(
 "Rank",
 typeof(CardLib.Rank),
 typeof(CardControl),
 new PropertyMetadata(CardLib.Rank.Ace));
 public static DependencyProperty IsFaceUpProperty = DependencyProperty.Register(
 "IsFaceUp",typeof(bool),
 typeof(CardControl),
 new PropertyMetadata(true, new PropertyChangedCallback(OnIsFaceUpChanged)));

The dependency properties use a callback method to validate their values, and the Suit and IsFaceUp
properties also have a callback method for when their values change.

When the value of Suit changes, the OnSuitChanged() callback method is called. This method is
responsible for setting the text color to red (for hearts and diamonds) or black (for clubs and spades).
It does this by calling a utility method on the source of the method call. This is necessary because the
callback method is implemented as a static method, but it is passed the instance of the user control that
raised the event as a parameter so that it can interact with it. The method called is SetTextColor():

 public static void OnSuitChanged(DependencyObject source,
 DependencyPropertyChangedEventArgs args)
 {
 var control = source as CardControl;
 control.SetTextColor();
 }

The SetTextColor() method is private but is obviously still accessible from OnSuitChanged(), as
they are both members of the same class, despite being instance and static methods, respectively.
SetTextColor() simply sets the Foreground property of the various labels of the control to a solid
color brush that is either black or red, depending on the Suit value.

The Main Window ❘ 499

When IsFaceUp changes, the control displays or hides the images and labels that are used to display
the current value of the control.

The code in the GameClientWindow.xaml.cs code-behind file is included to display the cards and
is only temporary. It generates one card for each of the 13 possible values and displays each suit in a
column.

THE MAIN WINDOW

The main window of the application is where the game is played, and it therefore has only a few
controls on it. You’ll construct the game in this section, but before you start, there are a couple of
things that to do. You need to add menus to the game client window, and bind the windows you
already constructed to the menu items.

The Menu Control
Most applications include menus and toolbars of some kind. Both are a means to the same end: to
provide easy navigation of the application’s content. Toolbars generally contain a subset of the same
entries that the menus provide and can be thought of as shortcuts to the menu items.

Visual Studio ships with both a Menu and a Toolbar control. The example here shows the use of the
Menu control but using the Toolbar is very similar.

By default, the menu item appears as a horizontal bar from which you can drop down lists of items.
The control is an Items control, so it is possible to change the default items contained in the con-
tent; however, you would normally use MenuItems in some form, as shown in the following exam-
ple. Each MenuItem can contain other menu items, and you can build complex menus by nesting
MenuItems within each other, but you should try to keep the menu structure as simple as possible.

You can control how the MenuItem displays using a number of properties (see Table 15-3).

TABLE 15-3: Displaying MenuItem Properties

PROPERTY DESCRIPTION

Icon Displays an icon by the left edge of the control

IsCheckable Displays a CheckBox by the left edge of the control

IsChecked Gets or sets the value of a CheckBox on a MenuItem

Routed Commands with Menus
Routed commands were briefly discussed in Chapter 14, but now you are going to see them in
action for the first time. Recall that these commands are akin to events in that they execute code

500 ❘ CHAPTER 15 AdvAnced desktop progrAmming

when a user performs an action, and they can return a state indicating whether they can be executed
at any given time.

There are at least three reasons why you would want to use routed commands instead of events:

 1. The action that will cause an event to occur can be triggered from multiple locations in your
application.

 2. The UI element should be accessible only under certain conditions, such as a Save button
being disabled if there’s nothing to save.

 3. You want to disconnect the code that handles the event from the code-behind file.

If any of these scenarios matches yours, consider using routed commands. In the case of the game,
some of the items in the menu should also potentially be available from a toolbar. In addition, the
Save action should be available only when a game is in progress and it should potentially be avail-
able from both a menu and the toolbar.

NOTE It is important to have the correct default namespace set in the
KarliCards GUI project in order to make the examples work. If you get com-
piler errors stating that a class or resource isn’t a member of a namespace, you
probably used a different namespace than the one that is being used in the
book. The KarliCards solution uses two root namespaces: Ch13CardLib for the
Ch13CardLib project and KarliCards.Gui for the KarliCards GUI project. If
you experience problems, try changing the namespaces throughout the proj-
ects to match those used in the book.

TRY IT OUT
Creating the Main Window: KarliCards Gui\GameClientWindow
.xaml

In this example you continue work on the GameClientWindow you created earlier in this chapter.

 1. Open the ControlResource.xaml file, and add these styles for use by the Menu control:

 <Style x:Key="MainMenuStyle" TargetType="Menu">
 <Setter Property="Background" Value="Black" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="FontWeight" Value="Bold" />
 </Style>
 <Style x:Key="MainMenuItemStyle" TargetType="MenuItem">
 <Setter Property="Foreground" Value="White" />
 </Style>
 <Style x:Key="MainMenuSubMenuItemStyle" TargetType="MenuItem">
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="Width" Value="200" />
 <Setter Property="Height" Value="22" />
 </Style>
 <Style x:Key="MenuItemSeperatorStyle" TargetType="Separator">
 <Setter Property="Foreground" Value="Black" />
 </Style>

The Main Window ❘ 501

 2. Open the GameClientWindow and drag a Menu control into the grid. Set its properties like this:

 <Menu Grid.Row="1" Margin="0" Style="{StaticResource MainMenuStyle}">
 </Menu>

 3. Right-click the menu in the design view and choose Add MenuItem.

 4. Change the Header property to _File. Note the leading underscore. Remove Height and Width
properties and set the Style to MainMenuStyle:

<MenuItem Header="_File" Style="{StaticResource MainMenuItemStyle}"/>

 5. Add another MenuItem inside the _File item by right-clicking the _File item and selecting Add
MenuItem. Set the Header and Style properties like this:

 <MenuItem Header="_File" Style="{StaticResource MainMenuItemStyle}">
 <MenuItem Header="_New Game" Style="{StaticResource
 MainMenuSubMenuItemStyle}"/>
 </MenuItem>

 6. Add the following MenuItems to the File menu:

 <MenuItem Header="_Open" Style="{StaticResource
 MainMenuSubMenuItemStyle}"/>
 <MenuItem Header="_Save" Style="{StaticResource
 MainMenuSubMenuItemStyle}" Command="Save">
 <MenuItem.Icon>
 <Image Source="Images\base_floppydisk_32.png" Width="20" />
 </MenuItem.Icon>
 </MenuItem>
 <Separator Style="{StaticResource MenuItemSeperatorStyle}"/>
 <MenuItem Header="_Close"
 Style="{StaticResource MainMenuSubMenuItemStyle}" Command="Close"/>

 7. Add these MenuItems to the menu on the same level as the File MenuItem.

 <MenuItem Header="_Game" Style="{StaticResource MainMenuItemStyle}">
 <MenuItem Header="_Undo" Style="{StaticResource
 MainMenuSubMenuItemStyle}"/>
 </MenuItem>
 <MenuItem Header="_Tools" Style="{StaticResource MainMenuItemStyle}">
 <MenuItem Header="_Options" Style="{StaticResource
 MainMenuSubMenuItemStyle}"/>
 </MenuItem>
 <MenuItem Header="Help" Style="{StaticResource MainMenuItemStyle}">
 <MenuItem Header="_About" Style="{StaticResource
 MainMenuSubMenuItemStyle}"/>
 </MenuItem>

 8. Above the main grid control, below the </Window.Resources> tag, add this command binding to
the window:

 <Window.CommandBindings>
 <CommandBinding Command="ApplicationCommands.Close"
 CanExecute="CommandCanExecute" Executed="CommandExecuted" />
 <CommandBinding Command="ApplicationCommands.Save"
 CanExecute="CommandCanExecute" Executed="CommandExecuted" />
 </Window.CommandBindings>

Your window should now look like Figure 15-4.

502 ❘ CHAPTER 15 AdvAnced desktop progrAmming

FIGURE 15-4

 9. Go to the GameClientWindow.xaml.cs code-behind file and add the following two methods. You
must include the System.Windows.Input namespace:

 private void CommandCanExecute(object sender, CanExecuteRoutedEventArgs e)
 {
 if (e.Command == ApplicationCommands.Close)
 e.CanExecute = true;
 if (e.Command == ApplicationCommands.Save)
 e.CanExecute = false;
 e.Handled = true;
 }
 private void CommandExecuted(object sender, ExecutedRoutedEventArgs e)
 {
 if (e.Command == ApplicationCommands.Close)
 this.Close();
 e.Handled = true;
 }

 10. Change the constructor of the GameClientWindow so it only calls InitializeComponent():

 public GameClientWindow()
 {
 InitializeComponent();
 }

 13. Run the application.

The Main Window ❘ 503

How It Works

When you run the application you will notice that the Game Client window is initially displayed as
maximized, but you can resize the window as you like. When you hold down the Alt key, the File menu
gets focus and the F in File is underlined, indicating that you can expand the menu by pressing F.

When you expand the menu you can see that the Save menu is disabled, but it displays a disk icon as
well as the text “Ctrl-S” to the right of the element title. This means that you can access it by pressing
Ctrl-S (when it is enabled). You might wonder why this is displayed, as you haven’t set any shortcut keys
anywhere. However, you did set a command for the menu item:

<MenuItem Header="_Save" Style="{StaticResource MainMenuSubMenuItemStyle}"
 Command="Save">

The Save command is defined by WPF. Save and Close, which are used in the File menu, are defined
in the ApplicationCommands class, which also defines Cut, Copy, Paste, and Print. When you specify
the Save command for a MenuItem, the shortcut key Ctrl-S is assigned to the menu item because it’s the
standard key combination used to access that function in most Windows applications.

In the code-behind file, you added two methods used to determine the state and action taken by the
commands. In the XAML, you created two command bindings that used the methods like this:

 <Window.CommandBindings>
 <CommandBinding Command="ApplicationCommands.Close"
 CanExecute="CommandCanExecute" Executed="CommandExecuted" />
 <CommandBinding Command="ApplicationCommands.Save"
 CanExecute="CommandCanExecute" Executed="CommandExecuted" />
 </Window.CommandBindings>
 private void CommandCanExecute(object sender, CanExecuteRoutedEventArgs e)
 {
 if (e.Command == ApplicationCommands.Close)
 e.CanExecute = true;
 if (e.Command == ApplicationCommands.Save)
 e.CanExecute = false;
 e.Handled = true;
 }
 private void CommandExecuted(object sender, ExecutedRoutedEventArgs e)
 {
 if (e.Command == ApplicationCommands.Close)
 this.Close();
 e.Handled = true;
 }

The CanExecute part of the command binding specifies a method that is called to determine whether
the command should be available to the user at the moment. The Executed part specifies a method that
should be called when the user activates the command. Note that it doesn’t matter from where the com-
mand is activated. If a menu item and a button both include the Save command, the binding works for
both.

The current implementation of CommandCanExecute is too simple for real life, where you would do
some calculation to determine whether the application is ready to save anything. Since you don’t have a
game to save yet, just returning false for the Save command is appropriate. You do this by setting the

504 ❘ CHAPTER 15 AdvAnced desktop progrAmming

e.CanExecute property on the CanExecuteRoutedEventArgs class. The Close command, on the other
hand, can be executed just fine, so you return true for that one.

CommandExecuted performs the same test as CommandCanExecute. If it determines that the command
to execute is the Close command, then it closes the current window.

PUTTING IT ALL TOGETHER

At this point in the development of the game, you have two independent dialog boxes, a card library,
and a main window that provides a blank space for the game to be displayed on. That still leaves
quite a lot of work, but with the foundation built, it’s time to start on the game itself. The classes
in the CardLib describe the game “domain model,” that is, the objects that a game can be broken
down into, which need to be refactored a bit to make it work better with a Windows application.
Next you are going to write the game’s “View Model,” which is a class that is able to control the
display of the game. Then you will create two additional user controls that use the Card user control
to display the game visually. Finally, you will bind it all together in the game client.

NOTE The term “View Model” comes from a much used design pattern
in WPF: Model - View - ViewModel (MVVM). This design pattern describes
how to separate code from the view and link it together. Although this book
doesn’t attempt to conform to this pattern, this example uses a lot of the
elements from it, such as separating the ViewModel from the views. In this
context, the domain model described next is the “model” part of the MVVM
name, and the Windows you have been creating are the views.

Refactoring the Domain Model
As stated, the domain model is the code that describes the objects of the game. At the moment, you
have these classes in the CardLib project that describe objects of the game:

 ➤ Card

 ➤ Deck

 ➤ Rank

 ➤ Suit

In addition to these classes, the game needs a Player and a ComputerPlayer class, so you are going
to add those. You also need to modify the Card and Deck classes a bit to make them work better in a
Windows application.

There is a lot of work to do, so let’s get started.

Putting It All Together ❘ 505

NOTE This example does not use the CardClient class from the earlier chap-
ters because the differences between console and Windows applications are
so great that very little code can be reused.

TRY IT OUT Finishing the Domain Model: KarliCards.Gui

This example continues where the previous example left off.

 1. Each player in the game can be in a number of “states” during the game. You can model this in a
PlayerState enumeration. Go to the Ch13CardLib project and create a new PlayerState enu-
meration for the project. You can simply create a new class and replace code like this:

 [Serializable]
 public enum PlayerState
 {
 Inactive,
 Active,
 MustDiscard,
 Winner,
 Loser
 }

 2. Next, you raise a few events when something happens on a player. For that, you need some custom
event arguments, so add another class named PlayerEventArgs. For now, don’t worry that the
Player class is missing:

 public class PlayerEventArgs : EventArgs
 {
 public Player Player { get; set; }
 public PlayerState State { get; set; }
 }

 3. You also need to raise events when something happens to a card, so go ahead and create another
class called CardEventArgs:

 public class CardEventArgs : EventArgs
 {
 public Card Card { get; set; }
 }

 4. The enumeration ComputerSkillLevel currently exists in the GameOptions.cs class (in the
KarliCards.Gui project). Go ahead and cut it from there and move it to its own file in the Ch13CardLib
project. This changes its namespace to Ch13CardLib, so you have to add the Ch13CardLib namespace
to the GameOptions.cs and OptionsWindow.Xaml.cs files:

using Ch13CardLib;

 5. The Deck class should be changed. Rather than going back to this class multiple times over the
course of this chapter, the following listing is the complete class.

using System;
using System.Collections.Generic;

506 ❘ CHAPTER 15 AdvAnced desktop progrAmming

using System.Linq;
namespace Ch13CardLib
{
 public delegate void LastCardDrawnHandler(Deck currentDeck);
 public class Deck : ICloneable
 {
 public event LastCardDrawnHandler LastCardDrawn;
 private Cards cards = new Cards();
 public Deck()
 {
 InsertAllCards();
 }
 protected Deck(Cards newCards)
 {
 cards = newCards;
 }
 public int CardsInDeck
 {
 get { return cards.Count; }
 }
 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 {
 if ((cardNum == 51) && (LastCardDrawn != null)) LastCardDrawn(this);
 return cards[cardNum];
 }
 else
 throw new CardOutOfRangeException(cards.Clone() as Cards);
 }
 public void Shuffle()
 {
 Cards newDeck = new Cards();
 bool[] assigned = new bool[cards.Count];
 Random sourceGen = new Random();
 for (int i = 0; i < cards.Count; i++)
 {
 int sourceCard = 0;
 bool foundCard = false;
 while (foundCard == false)
 {
 sourceCard = sourceGen.Next(cards.Count);
 if (assigned[sourceCard] == false)
 foundCard = true;
 }
 assigned[sourceCard] = true;
 newDeck.Add(cards[sourceCard]);
 }
 newDeck.CopyTo(cards);
 }
 public void ReshuffleDiscarded(List<Card> cardsInPlay)
 {
 InsertAllCards(cardsInPlay);
 Shuffle();
 }

Putting It All Together ❘ 507

 public Card Draw()
 {
 if (cards.Count == 0) return null;
 var card = cards[0];
 cards.RemoveAt(0);
 return card;
 }
 public Card SelectCardOfSpecificSuit(Suit suit)
 {
 Card selectedCard = cards.FirstOrDefault(card => card?.suit == suit);
 if (selectedCard == null) return Draw();
 cards.Remove(selectedCard);
 return selectedCard;
 }
 public object Clone()
 {
 Deck newDeck = new Deck(cards.Clone() as Cards);
 return newDeck;
 }
 private void InsertAllCards()
 {
 for (int suitVal = 0; suitVal < 4; suitVal++)
 {
 for (int rankVal = 1; rankVal < 14; rankVal++)
 {
 cards.Add(new Card((Suit)suitVal, (Rank)rankVal));
 }
 }
 }
 private void InsertAllCards(List<Card> except)
 {
 for (int suitVal = 0; suitVal < 4; suitVal++)
 {
 for (int rankVal = 1; rankVal < 14; rankVal++)
 {
 var card = new Card((Suit)suitVal, (Rank)rankVal);
 if (except?.Contains(card) ?? false) continue;
 cards.Add(card);
 }
 }
 }
 }
}

 6. There will be two types of players in the game: a Player, which is controlled by a real person; and a
ComputerPlayer, which is controlled by the game. Add the Player class like this:

using System;
using System.ComponentModel;
using System.Linq;

namespace Ch13CardLib
{
 [Serializable]
 public class Player : INotifyPropertyChanged
 {

508 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 public int Index { get; set; }
 protected Cards Hand { get; set; }
 private string name;
 private PlayerState state;

 public event EventHandler<CardEventArgs> OnCardDiscarded;
 public event EventHandler<PlayerEventArgs> OnPlayerHasWon;

 public PlayerState State
 {
 get { return state; }
 set
 {
 state = value;
 OnPropertyChanged(nameof(State));
 }
 }

 public virtual string PlayerName
 {
 get { return name; }
 set
 {
 name = value;
 OnPropertyChanged(nameof(PlayerName));
 }
 }

 public void AddCard(Card card)
 {
 Hand.Add(card);
 if (Hand.Count > 7)
 State = PlayerState.MustDiscard;
 }

 public void DrawCard(Deck deck)
 {
 AddCard(deck.Draw());
 }

 public void DiscardCard(Card card)
 {
 Hand.Remove(card);
 if (HasWon)
 OnPlayerHasWon?.Invoke(this, new PlayerEventArgs { Player = this, State =
 PlayerState.Winner });
 OnCardDiscarded?.Invoke(this, new CardEventArgs { Card = card });
 }

 public void DrawNewHand(Deck deck)
 {
 Hand = new Cards();
 for (int i = 0; i < 7; i++)
 Hand.Add(deck.Draw());
 }

Putting It All Together ❘ 509

 public bool HasWon => Hand.Count == 7 && Hand.Select(x => x.suit)
 .Distinct().Count() == 1;

 public Cards GetCards() => Hand.Clone() as Cards;

 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string propertyName) => PropertyChanged?
 .Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
}

 7. Add the ComputerPlayer class like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Ch13CardLib
{
 [Serializable]
 public class ComputerPlayer : Player
 {
 private Random random = new Random();
 public ComputerSkillLevel Skill { get; set; }
 public override string PlayerName => $"Computer {Index}";

 public void PerformDraw(Deck deck, Card availableCard)
 {
 if (Skill == ComputerSkillLevel.Dumb)
 DrawCard(deck);
 else
 DrawBestCard(deck, availableCard, (Skill ==
 ComputerSkillLevel.Cheats));
 }

 public void PerformDiscard(Deck deck)
 {
 if (Skill == ComputerSkillLevel.Dumb)
 DiscardCard(Hand[random.Next(Hand.Count)]);
 else
 DiscardWorstCard();
 }

 private void DrawBestCard(Deck deck, Card availableCard, bool cheat = false)
 {
 var bestSuit = CalculateBestSuit();
 if (availableCard.suit == bestSuit)
 AddCard(availableCard);
 else if (cheat == false)
 DrawCard(deck);
 else
 AddCard(deck.SelectCardOfSpecificSuit(bestSuit));
 }

510 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 private void DiscardWorstCard()
 {
 DiscardCard(Hand.First(x => x.suit == CalculateWorstSuit()));
 }

 private Suit CalculateBestSuit() => OrderSuitsInHand().Last();

 private Suit CalculateWorstSuit() => OrderSuitsInHand().First();

 private List<Suit> OrderSuitsInHand()
 {
 var cardSuits = new Dictionary<Suit, int>
 {
 { Suit.Club, 0 },
 { Suit.Diamond, 0 },
 { Suit.Heart, 0 },
 { Suit.Spade, 0 }
 };
 foreach (var card in Hand)
 cardSuits[card.suit]++;
 return cardSuits.OrderBy(x => x.Value).Select(y => y.Key).ToList();
 }
 }
}

How It Works

That was a lot of code and a lot of changes! However, when you run the application, nothing seems to
have changed, but a lot of plumbing has been put in to make the game work.

The Deck class has been extended with a few new methods. Whenever the deck is emptied, the dis-
carded cards should be put back in play. In order to do this, an overload of the InsertAllCards
method that takes a list of the cards that are in play has been added. The property CardsInDeck will
be used to tell how many cards are left in the deck. If the players draw every card in the deck, you
want to shuffle all the discarded cards back into the deck, and so the Shuffle method now allows the
deck to contain fewer than 52 cards and the ReshuffleDiscarded method allows you to perform
the reshuffle. Draw and SelectCardOfSpecificSuit are both used to draw a card. Most of the code
in the Player and ComputerPlayer classes that you added to the project from the downloaded code
is pretty easy to understand. The Player class can draw and discard cards. This is shared with the
ComputerPlayer, but the computer is also equipped with the ability to decide which cards to draw and
discard without user interaction. The ComputerPlayer class can also cheat:

 public void PerformDraw(Deck deck, Card availableCard)
 {
 if (Skill == ComputerSkillLevel.Dumb)
 DrawCard(deck);
 else
 DrawBestCard(deck, availableCard, (Skill == ComputerSkillLevel
 .Cheats));
 }

 public void PerformDiscard(Deck deck)

Putting It All Together ❘ 511

 {
 if (Skill == ComputerSkillLevel.Dumb)
 DiscardCard(Hand[random.Next(Hand.Count)]);
 else
 DiscardWorstCard();
 }

 private void DrawBestCard(Deck deck, Card availableCard, bool cheat = false)
 {
 var bestSuit = CalculateBestSuit();
 if (availableCard.suit == bestSuit)
 AddCard(availableCard);
 else if (cheat == false)
 DrawCard(deck);
 else
 AddCard(deck.SelectCardOfSpecificSuit(bestSuit));
 }

Cheating is assisted by a deck that allows the computer to select a card of a specific suit. If you allow
the computer to cheat, you are going to have a hard time winning any games!

You will also notice that the Player class implements the INotifyPropertyChanged interface and the
properties PlayerName and State use this to notify any observers of changes. Particularly, the State
property is important later as changes to this property will drive the game forward.

The ViewModel
The purpose of a view model is to hold the state of the view that displays it. In the case of the Karli
Cards, this means that you already have a view model class: the GameOptions class. This class holds
the state of the Options and StartGame windows. At the moment, you can’t get the selected play-
ers from the options, so you have to add that ability. The view model of the Game Client window is
missing, so that is the next task to do.

The view model for the execution of the game must reflect all the parts of the game as it is running.
The parts of the game are:

 ➤ The deck from which the current player draw a card

 ➤ A card that can be taken by the current player instead of drawing a card

 ➤ A current player

 ➤ A number of participating players

The view model should also be able to notify observers of changes, and that means implementing
INotifyPropertyChanged again.

In addition to these abilities, the view model should also provide a way of starting a new game. You
will do this by creating a new routed command for the menu. The command is created in the view
model, but is called from the view.

512 ❘ CHAPTER 15 AdvAnced desktop progrAmming

TRY IT OUT The View Model: KarliCards.Gui

This example continues with the KarliCards.Gui project.

 1. Add the following namespaces to the GameOptions class using statements:

using System.Windows.Input;
using System.IO;
using System.Xml.Serialization;

 2. Add a new command to the GameOptions class:

 public static RoutedCommand OptionsCommand = new RoutedCommand("Show Options",
 typeof(GameOptions), new InputGestureCollection(new List<InputGesture>
 { new KeyGesture(Key.O, ModifierKeys.Control) }));

 3. Add two new methods to the class:

 public void Save()
 {
 using (var stream = File.Open("GameOptions.xml", FileMode.Create))
 {
 var serializer = new XmlSerializer(typeof(GameOptions));
 serializer.Serialize(stream, this);
 }
 }
 public static GameOptions Create()
 {
 if (File.Exists("GameOptions.xml"))
 {
 using (var stream = File.OpenRead("GameOptions.xml"))
 {
 var serializer = new XmlSerializer(typeof(GameOptions));
 return serializer.Deserialize(stream) as GameOptions;
 }
 }
 else
 return new GameOptions();
 }

 4. Change the OK click event handler of the OptionsWindow.xaml.cs code-behind file like this:

 private void okButton_Click(object sender, RoutedEventArgs e)
 {
 DialogResult = true;
 gameOptions.Save();
 Close();
 }

 5. Delete everything except the InitializeComponent call from the constructor and hook the
DataContextChanged event like this:

 public OptionsWindow()
 {
 gameOptions = GameOptions.Create();
 DataContext = gameOptions;
 InitializeComponent();
 }

Putting It All Together ❘ 513

 6. Open the StartGameWindow.xaml.cs code-behind file and select the last four lines of the code
in the constructor. Extract a new method called ChangeListBoxOptions by right-clicking the
selected code and selecting Quick Actions and Refactorings… ➪ ExtractMethod:

 private void ChangeListBoxOptions()
 {
 if (gameOptions.PlayAgainstComputer)
 playerNamesListBox.SelectionMode = SelectionMode.Single;
 else
 playerNamesListBox.SelectionMode = SelectionMode.Extended;
 }

 7. Add the StartGame_DataContextChanged event handler:

 void StartGame_DataContextChanged(object sender,
DependencyPropertyChangedEventArgs e)
 {
 gameOptions = DataContext as GameOptions;
 ChangeListBoxOptions();
 }

 8. Delete everything except the InitializeComponent call from the constructor and hook the
DataContextChanged event like this:

 public StartGameWindow()
 {
 InitializeComponent();
 DataContextChanged += StartGame_DataContextChanged;
 }

 9. Change the OK click event handler like this:

 private void okButton_Click(object sender, RoutedEventArgs e)
 {
 var gameOptions = DataContext as GameOptions;
 gameOptions.SelectedPlayers = new List<string>();
 foreach (string item in playerNamesListBox.SelectedItems)
 {
 gameOptions.SelectedPlayers.Add(item);
 }
 this.DialogResult = true;
 this.Close();
 }

 10. Create a new class and name it GameViewModel. Start by implementing the
INotifyPropertyChanged interface:

using Ch13CardLib;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Windows.Input;
namespace KarliCards.Gui
{
 public class GameViewModel : INotifyPropertyChanged
 {

514 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string propertyName) =>
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
}

 11. Add a property to hold the current player. This property should use the OnPropertyChanged
event:

 private Player currentPlayer;
 public Player CurrentPlayer
 {
 get { return currentPlayer; }
 set
 {
 currentPlayer = value;
 OnPropertyChanged(nameof(CurrentPlayer));
 }
 }

 12. Add four more properties and their related fields to the class, just as you did with the
CurrentPlayer property. The property names and field names are shown in Table 15-4.

TABLE 15-4: Property and Field Names

TYPE PROPERTY NAME FIELD NAME

List<Player> Players players

Card CurrentAvailableCard availableCard

Deck GameDeck deck

bool GameStarted gameStarted

 13. Add this private field to hold the game options:

 private GameOptions gameOptions;

 14. Add two Routed commands:

 public static RoutedCommand StartGameCommand =
new RoutedCommand("Start New Game", typeof(GameViewModel),
new InputGestureCollection(new List<InputGesture>
{ new KeyGesture(Key.N, ModifierKeys.Control) }));
 public static RoutedCommand ShowAboutCommand =
new RoutedCommand("Show About Dialog", typeof(GameViewModel));

 15. Add a new default constructor:

 public GameViewModel()
 {
 Players = new List<Player>();
 gameOptions = GameOptions.Create();
 }

Putting It All Together ❘ 515

 16. When a game is started, the players and deck must be initialized. Add this code to the class:

 public void StartNewGame()
 {
 if (gameOptions.SelectedPlayers.Count < 1 ||
 (gameOptions.SelectedPlayers.Count == 1
 && !gameOptions.PlayAgainstComputer))
 return;
 CreateGameDeck();
 CreatePlayers();
 InitializeGame();
 GameStarted = true;
 }
 private void InitializeGame()
 {
 AssignCurrentPlayer(0);
 CurrentAvailableCard = GameDeck.Draw();
 }
 private void AssignCurrentPlayer(int index)
 {
 CurrentPlayer = Players[index];
 if (!Players.Any(x => x.State == PlayerState.Winner))
 Players.ForEach(x => x.State = (x == Players[index] ?
 PlayerState.Active :
 PlayerState.Inactive));
 }
 private void InitializePlayer(Player player)
 {
 player.DrawNewHand(GameDeck);
 player.OnCardDiscarded += player_OnCardDiscarded;
 player.OnPlayerHasWon += player_OnPlayerHasWon;
 Players.Add(player);
 }
 private void CreateGameDeck()
 {
 GameDeck = new Deck();
 GameDeck.Shuffle();
 }
 private void CreatePlayers()
 {
 Players.Clear();
 for (var i = 0; i < gameOptions.NumberOfPlayers; i++)
 {
 if (i < gameOptions.SelectedPlayers.Count)
 InitializePlayer(new Player
 {
 Index = i,
 PlayerName =
 gameOptions.SelectedPlayers[i]
 });
 else
 InitializePlayer(new ComputerPlayer
 {

516 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 Index = i,
 Skill =
 gameOptions.ComputerSkill
 });
 }
 }

 17. Finally, add the two event handlers for the events generated by the players:

 void player_OnPlayerHasWon(object sender, PlayerEventArgs e)
 {
 Players.ForEach(x => x.State = (x == e.Player ? PlayerState.Winner :
 PlayerState.Loser));
 }
 void player_OnCardDiscarded(object sender, CardEventArgs e)
 {
 CurrentAvailableCard = e.Card;
 var nextIndex = CurrentPlayer.Index + 1 >= gameOptions.NumberOfPlayers ? 0 :
 CurrentPlayer.Index + 1;
 if (GameDeck.CardsInDeck == 0)
 {
 var cardsInPlay = new List<Card>();
 foreach (var player in Players)
 cardsInPlay.AddRange(player.GetCards());
 cardsInPlay.Add(CurrentAvailableCard);
 GameDeck.ReshuffleDiscarded(cardsInPlay);
 }
 AssignCurrentPlayer(nextIndex);
 }

 18. Go to the GameClientWindow.xaml. Below the Window declaration, add a DataContext
declaration:

 <Window.DataContext >
 <local:GameViewModel />
 </Window.DataContext>

 20. Add three command bindings to the CommandBindings declarations:

 <CommandBinding Command="local:GameViewModel.StartGameCommand"
CanExecute="CommandCanExecute" Executed="CommandExecuted" />
<CommandBinding Command="local:GameViewModel.ShowAboutCommand"
CanExecute="CommandCanExecute" Executed="CommandExecuted" />
 <CommandBinding Command="local:GameOptions.OptionsCommand"
CanExecute="CommandCanExecute" Executed="CommandExecuted" />

 21. Add a command to the New Game menu item like this:

<MenuItem Header="_New Game" Style="{StaticResource MainMenuSubMenuItemStyle}"
 Command="local:GameViewModel.StartGameCommand"/>

 22. Add a command to the Options menu item:

Command="local:GameOptions.OptionsCommand"

 23. Add a command to the About menu item like this:

Command="local:GameViewModel.ShowAboutCommand"

Putting It All Together ❘ 517

 24. Go to the code-behind file and change the CommandCanExecute and CommandExecuted methods
like this:

 private void CommandCanExecute(object sender, CanExecuteRoutedEventArgs e)
 {
 if (e.Command == ApplicationCommands.Close)
 e.CanExecute = true;
 if (e.Command == ApplicationCommands.Save)
 e.CanExecute = false;
 if (e.Command == GameViewModel.StartGameCommand)
 e.CanExecute = true;
 if (e.Command == GameOptions.OptionsCommand)
 e.CanExecute = true;
 if (e.Command == GameViewModel.ShowAboutCommand)
 e.CanExecute = true;
 e.Handled = true;
 }
 private void CommandExecuted(object sender, ExecutedRoutedEventArgs e)
 {
 if (e.Command == ApplicationCommands.Close)
 this.Close();
 if (e.Command == GameViewModel.StartGameCommand)
 {
 var model = new GameViewModel();
 var startGameDialog = new StartGameWindow();
 var options = GameOptions.Create();
 startGameDialog.DataContext = options;
 var result = startGameDialog.ShowDialog();
 if (result.HasValue && result.Value == true)
 {
 options.Save();
 model.StartNewGame();
 DataContext = model;
 }
 }
 if (e.Command == GameOptions.OptionsCommand)
 {
 var dialog = new OptionsWindow();
 var result = dialog.ShowDialog();
 if (result.HasValue && result.Value == true)
 DataContext = new GameViewModel(); // Clear current game
 }
 if (e.Command == GameViewModel.ShowAboutCommand)
 {
 var dialog = new AboutWindow();
 dialog.ShowDialog();
 }
 e.Handled = true;
 }

How It Works

Once again you have done a lot of work with very little to show for it when you run the application.
The Options and New Game menu items have been given shortcut keys and can now be accessed using

518 ❘ CHAPTER 15 AdvAnced desktop progrAmming

Ctrl-O and Ctrl-N. This is displayed when you drop down the menus. This has happened because you
created two new commands for the menu. You did this in GameOptions.cs and GameViewModel.cs,
respectively:

 public static RoutedCommand OptionsCommand = new RoutedCommand("Show Options",
typeof(GameOptions), new InputGestureCollection(new List<InputGesture>
{ new KeyGesture(Key.O, ModifierKeys.Control) }));
 public static RoutedCommand StartGameCommand =
new RoutedCommand("Start New Game", typeof(GameViewModel),
new InputGestureCollection(new List<InputGesture>
{ new KeyGesture(Key.N, ModifierKeys.Control) }));

When you assign a list of InputGestures to the command, the shortcuts are automatically associated
with the menus.

In the code-behind for the game client, you also added code to display the two windows as dialog
boxes.

 if (e.Command == GameViewModel.StartGameCommand)
 {
 var model = new GameViewModel();
 var startGameDialog = new StartGameWindow();
 startGameDialog.DataContext = model.GameOptions;
 var result = startGameDialog.ShowDialog();
 if (result.HasValue && result.Value == true)
 {
 model.GameOptions.Save();
 model.StartNewGame();
 DataContext = model;
 }
 }

By showing the windows as dialog boxes, you can return a value that indicates whether the result of the
dialog box should be used. You can’t return a value directly from the window; instead, you set the win-
dow’s DialogResult property to either true or false to indicate success or failure:

 private void okButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = true;
 this.Close();
 }

In Chapter 14 you were told that if you want to set the DataContext to an existing object instance, you
had to do so from code. This happens in the previous code, but the XAML in GameClientWindow.xaml
also instantiates a new instance when the applications starts:

 <Window.DataContext >
 <local:GameViewModel />
 </Window.DataContext>

This instance ensures that there is a DataContext for the view, but it isn’t used for much before it is
exchanged for a new instance in the StartGame command.

Putting It All Together ❘ 519

The GameViewModel contains a lot of code but much of it is just properties and instantiation of the
players and the Deck instances.

Once the game has started, the state of the players and GameViewModel drive the game forward as the
computer or the players make choices. The PlayerHasWon event is handled in GameViewModel and
ensures that the state of the other players changes to Loser.

 void player_OnPlayerHasWon(object sender, PlayerEventArgs e)
 {
 Players.ForEach(x => x.State = (x == e.Player ? PlayerState.Winner :
PlayerState.Loser));
 }

The other event you created for the player is also handled here: CardDiscarded is used to indicate that
a player has completed her turn. This causes the CurrentPlayer to be set to the next available player:

 void player_OnCardDiscarded(object sender, CardEventArgs e)
 {
 CurrentAvailableCard = e.Card;
 var nextIndex = CurrentPlayer.Index + 1 >= gameOptions.NumberOfPlayers ? 0 :
 CurrentPlayer.Index + 1;
 if (GameDeck.CardsInDeck == 0)
 {
 var cardsInPlay = new List<Card>();
 foreach (var player in Players)
 cardsInPlay.AddRange(player.GetCards());
 cardsInPlay.Add(CurrentAvailableCard);
 GameDeck.ReshuffleDiscarded(cardsInPlay);
 }
 AssignCurrentPlayer(nextIndex);
 }

This event handler also checks whether there are any more cards in the deck. If there are no more
cards, the event handler collects a list of cards that are currently used in the game and makes the deck
generate a new, shuffled deck containing only cards that have been discarded.

The StartGame method is called from the CommandExecuted method in the GameClient.xaml.cs
code-behind file. This method uses three methods to create a new deck, to create and deal cards to the
players, and finally to set the CurrentPlayer to start the game.

Completing the Game
You now have a complete game that you can’t play because nothing is being displayed in the game
client. For the game to run, you need two additional user controls that will be positioned on the
game client using a dock panel.

The two user controls are called CardsInHand, which displays a player’s hand, and GameDecks,
which displays the main deck and the available card.

520 ❘ CHAPTER 15 AdvAnced desktop progrAmming

TRY IT OUT Completing the Game: KarliCards.Gui

Once again, this example continues with the KarliCards.Gui project you have been working on.

 1. Create a new user control in the KarliCards.Gui project by right-clicking the project and selecting
Add ➪ User Control. Name it CardsInHandControl.

 2. Add a Label and a Canvas control to the Grid like this:

 <Grid>
 <Label Name="PlayerNameLabel" Foreground="White" FontWeight="Bold"
FontSize="14" >
 <Label.Effect>
 <DropShadowEffect ShadowDepth="5" Opacity="0.5" Direction="145" />
 </Label.Effect>
 </Label>
 <Canvas Name="CardSurface">
 </Canvas>
 </Grid>

 3. Go to the code-behind file and use these using directives:

using Ch13CardLib;
using System;
using System.Threading;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Threading;

 4. There are four dependency properties. Type propdp and press the Tab key to insert the property
template. Insert the Type, Name, OwnerClass, and default value. Use tab to switch from one value
to the next. Set the values as shown in Table 15-5. Press the Return key after you finish editing the
values to complete the template.

TABLE 15-5: Cards in Hand Dependency Properties

TYPE NAME OWNERCLASS DEFAULT VALUE

Player Owner CardsInHandControl null

GameViewModel Game CardsInHandControl null

PlayerState PlayerState CardsInHandControl PlayerState.Inactive

Orientation PlayerOrientation CardsInHandControl Orientation.Horizontal

 5. Add callback methods that will be used when the properties of the Owner, PlayerState, and
PlayerOrientation change:

 private static void OnOwnerChanged(DependencyObject source,
DependencyPropertyChangedEventArgs e)
 {
 var control = source as CardsInHandControl;

Putting It All Together ❘ 521

 control.RedrawCards();
 }
 private static void OnPlayerStateChanged(DependencyObject source,
DependencyPropertyChangedEventArgs e)
 {
 var control = source as CardsInHandControl;
 var computerPlayer = control.Owner as ComputerPlayer;
 if (computerPlayer != null)
 {
 if (computerPlayer.State == PlayerState.MustDiscard)
 {
 Thread delayedWorker = new Thread(control.DelayDiscard);
 delayedWorker.Start(new Payload { Deck = control.Game.GameDeck,
AvailableCard = control.Game.CurrentAvailableCard, Player = computerPlayer });
 }
 else if (computerPlayer.State == PlayerState.Active)
 {
 Thread delayedWorker = new Thread(control.DelayDraw);
 delayedWorker.Start(new Payload { Deck = control.Game.GameDeck,
AvailableCard = control.Game.CurrentAvailableCard, Player = computerPlayer });
 }
 }
 control.RedrawCards();
 }
 private static void OnPlayerOrientationChanged(DependencyObject source,
DependencyPropertyChangedEventArgs args)
 {
 var control = source as CardsInHandControl;
 control.RedrawCards();
 }

 6. The callbacks require a number of helper methods. Start by adding the private class and two meth-
ods that are used by the delayedWorker threads in the OnPlayerStateChanged method:

 private class Payload
 {
 public Deck Deck { get; set; }
 public Card AvailableCard { get; set; }
 public ComputerPlayer Player { get; set; }
 }
 private void DelayDraw(object payload)
 {
 Thread.Sleep(1250);
 var data = payload as Payload;
 Dispatcher.Invoke(DispatcherPriority.Normal,
new Action<Deck, Card>(data.Player.PerformDraw), data.Deck, data.AvailableCard);
 }
 private void DelayDiscard(object payload)
 {
 Thread.Sleep(1250);
 var data = payload as Payload;
 Dispatcher.Invoke(DispatcherPriority.Normal,
new Action<Deck>(data.Player.PerformDiscard), data.Deck);
 }

522 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 7. The Owner property requires a callback that should be called whenever the property changes. You
can specify this as the second parameter of the constructor of the PropertyMetadata class that is
used as the fourth parameter of the register() method. Change the registration like this:

 public static readonly DependencyProperty OwnerProperty =
 DependencyProperty.Register(
 "Owner",
 typeof(Player),
 typeof(CardsInHandControl),
 new PropertyMetadata(null, new PropertyChangedCallback(OnOwnerChanged)));

 8. Like the Owner property, the PlayerState and PlayerOrientation properties should also regis-
ter a callback. Repeat Step 7 for these two properties using the names OnPlayerStateChanged and
OnPlayerOrientationChanged for the callback methods.

 9. Add the methods used to draw the control:

 private void RedrawCards()
 {
 CardSurface.Children.Clear();
 if (Owner == null)
 {
 PlayerNameLabel.Content = string.Empty;
 return;
 }
 DrawPlayerName();
 DrawCards();
 }
 private void DrawCards()
 {
 bool isFaceup = (Owner.State != PlayerState.Inactive);
 if (Owner is ComputerPlayer)
 isFaceup = (Owner.State == PlayerState.Loser ||
 Owner.State == PlayerState.Winner);
 var cards = Owner.GetCards();
 if (cards == null || cards.Count == 0)
 return;
 for (var i = 0; i < cards.Count; i++)
 {
 var cardControl = new CardControl(cards[i]);
 if (PlayerOrientation == Orientation.Horizontal)
 cardControl.Margin = new Thickness(i * 35, 35, 0, 0);
 else
 cardControl.Margin = new Thickness(5, 35 + i * 30, 0, 0);
 cardControl.MouseDoubleClick += cardControl_MouseDoubleClick;
 cardControl.IsFaceUp = isFaceup;
 CardSurface.Children.Add(cardControl);
 }
 }
 private void DrawPlayerName()
 {
 if (Owner.State == PlayerState.Winner || Owner.State ==
 PlayerState.Loser)
 PlayerNameLabel.Content = Owner.PlayerName +
 (Owner.State == PlayerState.Winner ?
 " is the WINNER" : " has LOST");

Putting It All Together ❘ 523

 else
 PlayerNameLabel.Content = Owner.PlayerName;
 var isActivePlayer = (Owner.State == PlayerState.Active ||
 Owner.State == PlayerState.MustDiscard);
 PlayerNameLabel.FontSize = isActivePlayer ? 18 : 14;
 PlayerNameLabel.Foreground = isActivePlayer ?
 new SolidColorBrush(Colors.Gold) :
 new SolidColorBrush(Colors.White);
 }

 10. Finally, add the double-click handler that is called when the player double-clicks a card:

 private void cardControl_MouseDoubleClick(object sender,
 MouseButtonEventArgs e)
 {
 var selectedCard = sender as CardControl;
 if (Owner == null)
 return;
 if (Owner.State == PlayerState.MustDiscard)
 Owner.DiscardCard(selectedCard.Card);
 RedrawCards();
 }

 11. Create another user control like you did in Step 1 and name it GameDecksControl.

 12. Remove the Grid and insert a Canvas control instead:

 <Canvas Name="controlCanvas" Width="250" />

 13. Go to the code-behind file use these namespaces:

using Ch13CardLib;
using System.Collections.Generic;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

 14. As you did in Step 4, add four dependency properties with these values (see Table 15-6).

TABLE 15-6: Game Decks Dependency Properties

TYPE NAME OWNERCLASS DEFAULT VALUE

bool GameStarted GameDecksControl false

Player CurrentPlayer GameDecksControl null

Deck Deck GameDecksControl null

Card AvailableCard GameDecksControl null

 15. Add the DrawDecks method:

 private void DrawDecks()
 {
 controlCanvas.Children.Clear();

524 ❘ CHAPTER 15 AdvAnced desktop progrAmming

 if (CurrentPlayer == null || Deck == null || !GameStarted)
 return;
 List<CardControl> stackedCards = new List<CardControl>();
 for (int i = 0; i < Deck.CardsInDeck; i++)
 stackedCards.Add(new CardControl(Deck.GetCard(i)) { Margin =
new Thickness(150 + (i * 1.25), 25 - (i * 1.25), 0, 0), IsFaceUp = false });
 if (stackedCards.Count > 0)
 stackedCards.Last().MouseDoubleClick += Deck_MouseDoubleClick;
 if (AvailableCard != null)
 {
 var availableCard = new CardControl(AvailableCard) { Margin =
new Thickness(0, 25, 0, 0) };
 availableCard.MouseDoubleClick += AvailalbleCard_MouseDoubleClick;
 controlCanvas.Children.Add(availableCard);
 }
 stackedCards.ForEach(x => controlCanvas.Children.Add(x));
 }

 16. All four dependency properties you added in step 14 require a callback method for when the prop-
erty changes. Add these as you did in Step 5 with the names OnGameStarted, OnPlayerChanged,
OnDeckChanged, and OnAvailableCardChanged.

 17. Add the callback methods:

 private static void OnGameStarted(DependencyObject source,
 DependencyPropertyChangedEventArgs e) => (source as GameDecksControl)?
 .DrawDecks();

 private static void OnDeckChanged(DependencyObject source,
DependencyPropertyChangedEventArgs e) => (source as GameDecksControl)?.DrawDecks();

 private static void OnAvailableCardChanged(DependencyObject source,
 DependencyPropertyChangedEventArgs e) => (source as GameDecksControl)?
 .DrawDecks();

 private static void OnPlayerChanged(DependencyObject source,
 DependencyPropertyChangedEventArgs e)
 {
 var control = source as GameDecksControl;
 if (control.CurrentPlayer == null)
 return;
 control.CurrentPlayer.OnCardDiscarded +=
 control.CurrentPlayer_OnCardDiscarded;
 control.DrawDecks();
 }
 private void CurrentPlayer_OnCardDiscarded(object sender, CardEventArgs e)
 {
 AvailableCard = e.Card;
 DrawDecks();
 }

Putting It All Together ❘ 525

 18. Finally, add the event handlers for the cards:

 void AvailalbleCard_MouseDoubleClick(object sender, MouseButtonEventArgs e)
 {
 if (CurrentPlayer.State != PlayerState.Active)
 return;
 var control = sender as CardControl;
 CurrentPlayer.AddCard(control.Card);
 AvailableCard = null;
 DrawDecks();
 }
 void Deck_MouseDoubleClick(object sender, MouseButtonEventArgs e)
 {
 if (CurrentPlayer.State != PlayerState.Active)
 return;
 CurrentPlayer.DrawCard(Deck);
 DrawDecks();
 }

 19. Return to the GameClientWindow.xaml file and remove the Grid that is currently in Row 2.
Instead, insert a new dock panel like this:

 <DockPanel Grid.Row="2">
 <local:CardsInHandControl x:Name="Player2Hand" DockPanel.Dock="Right"
Height="380" Game="{Binding}"
 VerticalAlignment="Center" Width="180" PlayerOrientation="Vertical"
 Owner="{Binding Players[1]}" PlayerState="{Binding Players[1].State}" />
 <local:CardsInHandControl x:Name="Player4Hand" DockPanel.Dock="Left"
 HorizontalAlignment="Left" Height="380" VerticalAlignment="Center"
 PlayerOrientation="Vertical" Owner="{Binding Players[3]}" Width="180"
 PlayerState="{Binding Players[3].State}" Game="{Binding}"/>
 <local:CardsInHandControl x:Name="Player1Hand" DockPanel.Dock="Top"
 HorizontalAlignment="Center" Height="154" VerticalAlignment="Top"
 PlayerOrientation="Horizontal" Owner="{Binding Players[0]}" Width="380"
 PlayerState="{Binding Players[0].State}" Game="{Binding}"/>
 <local:CardsInHandControl x:Name="Player3Hand" DockPanel.Dock="Bottom"
 HorizontalAlignment="Center" Height="154" VerticalAlignment="Top"
 PlayerOrientation="Horizontal" Owner="{Binding Players[2]}" Width="380"
 PlayerState="{Binding Players[2].State}" Game="{Binding}"/>
 <local:GameDecksControl Height="180" x:Name="GameDecks"
 Deck="{Binding GameDeck}"
 AvailableCard="{Binding CurrentAvailableCard}"
 CurrentPlayer="{Binding CurrentPlayer}"
 GameStarted="{Binding GameStarted}"/>
 </DockPanel>

 20. Run the application. By default the ComputerPlayer class is enabled and the number of players
is set to two. This means you select a single name in the Start Game dialog box. After that, you
should be able to see something like Figure 15-5.

526 ❘ CHAPTER 15 AdvAnced desktop progrAmming

FIGURE 15-5

Double-click on the deck or available card to draw and then click a card from your hand to discard it.

How It Works

Even though there is quite a bit of code in this example, most of it is the dependency properties, and the
XAML is all about data binding these properties. The CardsInHandControl creates three properties
that it uses to display itself and react to changes: Game, Owner, and PlayerState. Game and Owner are
mostly used to draw, but the PlayerState is also used to control the ComputerPlayer actions.

 private static void OnPlayerStateChanged(DependencyObject source,
 DependencyPropertyChangedEventArgs e)
 {
 var control = source as CardsInHandControl;
 var computerPlayer = control.Owner as ComputerPlayer;
 if (computerPlayer != null)
 {
 if (computerPlayer.State == PlayerState.MustDiscard)
 {
 Thread delayedWorker = new Thread(control.DelayDiscard);
 delayedWorker.Start(new Payload
 {
 Deck = control.Game.GameDeck,
 AvailableCard = control.Game.CurrentAvailableCard,
 Player = computerPlayer
 });

Putting It All Together ❘ 527

 }
 else if (computerPlayer.State == PlayerState.Active)
 {
 Thread delayedWorker = new Thread(control.DelayDraw);
 delayedWorker.Start(new Payload
 {
 Deck = control.Game.GameDeck,
 AvailableCard = control.Game.CurrentAvailableCard,
 Player = computerPlayer
 });
 }
 }
 control.RedrawCards();
 }

The OnPlayerStateChanged method, which is used to react to changes in the state of the player, deter-
mines if the current player is a ComputerPlayer. If it is, it checks to make sure that the computer player
draws or discards a card. If this is the case, it creates a worker thread for this to happen and executes
the methods on this thread. This allows the application to continue working while the computer is
waiting:

 private void DelayDraw(object payload)
 {
 Thread.Sleep(1250);
 var data = payload as Payload;
 Dispatcher.Invoke(DispatcherPriority.Normal,
new Action<Deck, Card>(data.Player.PerformDraw), data.Deck, data.AvailableCard);
 }

The Dispatcher is used to invoke the call. This ensures that the calls are made on the GUI thread.

Drawing the cards is pretty straightforward. The program simply stacks them vertically or horizontally
depending on the settings in PlayerOrientation.

The GameDecksControl uses the CurrentPlayer class to be notified that the CurrentPlayer has
changed. When this happens, it hooks the CardDiscarded event on the player, and uses this event to be
notified that the card was discarded.

Finally, you added a dock panel to the game client with a CardsInHandControl on each side and with a
GameDecksControl in the middle:

 <local:CardsInHandControl x:Name="Player1Hand" DockPanel.Dock="Top"
 HorizontalAlignment="Center" Height="154" VerticalAlignment="Top"
 PlayerOrientation="Horizontal" Owner="{Binding Players[0]}" Width="380"
 PlayerState="{Binding Players[0].State}" Game="{Binding}" />

The binding for Game binds the DataContext of the game client directly to the Game property of the
CardsInHandControl. The PlayerState is bound to the State property of a player. In this case, the
player at index 0 is used to access the state.

528 ❘ CHAPTER 15 AdvAnced desktop progrAmming

EXERCISES

 15.1 The current game client has a problem. From the Options dialog box, you can set the skill
level of the computer. The problem is that the radio buttons are not updated to reflect
the choice the next time you open the Options dialog box. This is partly because there
is nothing that tries to update them and partly because there is no value converter from
ComputerSkillLevel. Fix this problem by creating a new value converter and setting the
IsChecked binding instead of using the Checked event that is currently being used.

Hint: You must use the ConverterParameter part of the Converter binding.

 15.2 The computer cheats, so you might want to allow the players to cheat as well. On the Options
dialog box, create an option for the computer to play with open cards.

 15.3 Create a status bar at the bottom of the game client that displays the current state of the
game.

Answers to the exercises can be found in Appendix.

Putting It All Together ❘ 529

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Styles You can use styles to create styles for XAML elements that can be reused on many
elements. Styles allow you to set the properties of an element. When you set the
Style property of an element to point to a style you have defined, the properties of
the element will use the values you specified in the Style property.

Templates Templates are used to define the content of a control. Using templates you can
change how standard controls are displayed. You can also build complex custom
controls with them.

User controls User controls are used to create code and XAML that can be reused easily in your
own project. This code and XAML can also be exported for use in other projects.

PART III
Cloud and Cross-Platform
Programming

 ➤CHAPTER 16: Basic Cloud Programming

 ➤CHAPTER 17: Advanced Cloud Programing and Deployment

 ➤CHAPTER 18: .NET Standard and .NET Core

 ➤CHAPTER 19: ASP.NET and ASP.NET Core

Basic Cloud Programming
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Understanding the cloud, cloud programming, and the cloud opti-
mized stack

 ➤ Programming for the cloud using cloud design patterns

 ➤ Using Microsoft Azure C# libraries to create a storage container

 ➤ Creating an ASP.NET 4.7 Web site that uses the storage container

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter16 folder and individually named
according to the names throughout the chapter.

In this book, the basics of C# programming are conveyed mostly using console applications,
desktop applications with WPF, and Windows Universal Apps. Although these are viable
and compelling development techniques, they are not suitable examples of programs to host
and run in the cloud. These kinds of programs are classically deployed to and run on a user’s
computer, tablet, or mobile device. These programs are compiled into executables or dynamic
linked libraries that have dependencies on preinstalled software like the .NET Framework,
for example. These dependencies are generally assumed to be present on the location where
they are installed, or they get included in the installation procedure. By contrast, an Internet
application that is run in the cloud, based on ASP.NET, for instance, cannot rely on any such
library or dependency being present on the computer or device from which the program is
accessed. All dependencies instead are installed on the server hosting the Internet application
and are accessed by a device using protocols such as HTTP, WS (web socket), FTP, or SMTP.

16

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

534 ❘ CHAPTER 16 Basic cloud Programming

Although console, desktop, and Windows Universal Apps can have dependencies in the cloud, like
databases, storage containers, or web services, they themselves are generally not hosted there.

Programs that are accessed via web browsers and respond to REST API or WCF service requests are
good candidates for running in the cloud. Development techniques used for creating those program
types do not require any built-in dependency on the device from which they are called. In typical
cases, those program types merely exchange information between themselves and render data in a
legible and user-friendly fashion. Additionally, programs that receive and process large amounts of
data are good candidates for running in the cloud, as utilizing the hyper-scalability of resources to
accept and process the data is a fundamental feature of the cloud itself.

This chapter provides an overview of what the cloud is, some examples of patterns and techniques
for successfully running a program in the cloud, and an example of creating and using cloud
resources from an ASP.NET Web Site.

THE CLOUD, CLOUD COMPUTING, AND THE CLOUD
OPTIMIZED STACK

It is only a matter of time before you begin creating applications that run completely or partially in
the cloud. It’s no longer a question of “if” but “when.” Deciding which components of your pro-
gram will run in the cloud, the cloud type, and the cloud service model requires some investigation,
understanding, and planning. For starters, you need to be clear on what the cloud is. The cloud is
simply a large amount of commoditized computer hardware running inside a datacenter that can
run programs and store large amounts of data. The differentiator is elasticity, which is the ability
to scale up (for example, increase CPU and memory) and/or out (for example, increase number of
virtual server instances) dynamically, then scale back down with seemingly minimal to no effort.
This is an enormous difference from the current IT operational landscape where differentiated com-
puter resources often go partially or completely unused in one area of the company, while in other
areas there is a serious lack of computer resources. The cloud resolves this issue by providing access
to computer resources as you need them, and when you don’t need them those resources are given to
someone else. For individual developers, the cloud is a place to deploy your program and expose it
to the world. If by chance the program becomes a popular one, you can scale to meet your resources
needs; if the program is a flop, then you are not out much money or time spent on setting up dedi-
cated computer hardware and infrastructure.

Let’s explore cloud type and cloud service models in more detail now. The common cloud types are
public, private, and hybrid and are described in the following bullet points and illustrated in Figure
16-1.

 ➤ Public cloud is shared computer hardware and infrastructure owned and operated by a cloud
provider like Microsoft Azure, Amazon AWS, Rackspace, or IBM Cloud. This cloud type is
ideal for small and medium businesses that need to manage fluctuations in customer and user
demands.

 ➤ Private cloud is dedicated computer hardware and infrastructure that exists onsite or in
an outsourced data center. This cloud type is ideal for larger companies or those that must
deliver a higher level of data security or government compliance.

 ➤ Hybrid cloud is a combination of both public and private cloud types whereby you choose
which segments of your IT solution run on the private cloud and which run on the public

The Cloud, Cloud Computing, and the Cloud Optimized Stack ❘ 535

cloud. The ideal solution is to run your businesses-critical programs that require a greater
level of security in the private cloud and run non-sensitive, possibly spiking tasks in the pub-
lic cloud.

No Shared Infrastructure

Difficult to Build and Manage

Capital Costs

Security

Uses Private Network

Full Control +

+

+

–

–

– Lack of Control

Metered Usage Complexity

Duel Tenants

Proven Flexibility

Ease of Scalability

Cost +

+

+

–

–

–

Private Cloud

Hybrid Cloud

Private Cloud

Public Cloud

Public Cloud
Bridge

FIGURE 16-1

The number of cloud service models continues to increase, but the most common cloud service mod-
els are described in the following bullet points and illustrated in Figure 16-2.

Clients
Web clients, Mobile applications, etc. . . .

SaaS
Office 365, CRM dynamics, Outlook.com, games, etc. . . .

PaaS
Development tools, database, web server, run time DLLs, etc. . . .

laaS
Physical machines, virtual machines, storage, network, etc. . . .

FIGURE 16-2

http://Outlook.com

536 ❘ CHAPTER 16 Basic cloud Programming

 ➤ Infrastructure as a Service (IaaS)—You are responsible from the operating system upward.
You are not responsible for the hardware or network infrastructure; however, you are
responsible for operating system patches and third-party dependent libraries.

 ➤ Platform as a Service (PaaS)—You are responsible only for your program running on the
chosen operating system and its dependencies. You are not responsible for operating system
maintenance, hardware, or network infrastructure.

 ➤ Software as a Service (SaaS)—A software program or service used from a device that is
accessed via the Internet. For example, O365, Salesforce, OneDrive or Box, all of which are
accessible from anywhere with an Internet connection and do not require software to be
installed on the client to function. You are only responsible for the software running on the
platform and nothing else.

In summary, the cloud is an elastic structure of commoditized computer hardware for running pro-
grams. These programs run on IaaS, PaaS, or SaaS service models in a Hybrid, Public, or Private
Cloud type.

Cloud programming is the development of code logic that runs on any of the cloud service models.
The cloud program should incorporate portability, scalability, and resiliency patterns that improve
the performance and stability of the program. Programs that do not implement these portability,
scalability, and resiliency patterns would likely run in the cloud, but some circumstances such as a
hardware failure or network latency issue may cause the program to execute an unexpected code
path and terminate.

NOTE Cloud programming patterns and best practices are discussed in the
next section.

Reflecting back to the elasticity of the cloud as being one of its most favorable benefits, it is impor-
tant that not only the platform is able to scale, but the cloud program can as well. For example,
does the code rely on backend resources, databases, read or open files, or parse through large data
objects? These kinds of functional actions within a cloud program can reduce its ability to scale and
therefore have a low support for throughput. Make sure your cloud program manages code paths
that execute long running methods and perhaps place them into an offline process mechanism.

The cloud optimized stack is a concept used to refer to code that can handle high throughput, makes
a small footprint, can run side-by-side with other applications on the same server, and is cross-platform
enabled. A small footprint refers to packaging into your cloud program only the components for
which a dependency exists, making the deployment size as small as possible. Consider whether the
cloud program requires the entire .NET Framework to function. If not, then instead of packaging
the entire .NET Framework, include only the libraries required to run your cloud program, and then
compile your cloud program into a self-contained application to support side-by-side execution. The
cloud program can run alongside any other cloud program because it contains the needed depen-
dencies within the binaries package itself. Finally, by using an open source version of Mono, .NET
Core, or ASP.NET Core the cloud program can be packaged, compiled, and deployed onto operat-
ing systems other than Microsoft—for example Mac OS X, iOS or Linux.

Cloud Patterns and Best Practices ❘ 537

CLOUD PATTERNS AND BEST PRACTICES

In the cloud, very brief moments of increased latency or downtime are expected, and your code must
be prepared for this and include logic to successfully recover from these platform exceptions. This is
a significant mind shift if you have historically been coding for onsite or on-premise program execu-
tions. You need to unlearn a lot of what you know about managing exceptions and learn to embrace
failure and create your code to recover from such failures.

In the previous section words like portability, scalability, and resiliency were touched upon in the
context of integrating those concepts into your program slated to run in the cloud. But what does
portability specifically mean here? A program is portable if it can be moved or executed on multiple
platforms, for example Windows, Linux, and Mac OS X. Take for example some ASP.NET Core
features that sit on a new stack of open source technologies that provide the developer with options
to compile code into binaries capable of running on any of those platforms. Traditionally, a devel-
oper who wrote a program using ASP.NET, with C# in the background, would run it on a Windows
server using Internet Information Server (IIS). However, from a core cloud-centric perspective, the
ability of your program and all its dependencies to move from one virtual machine to another, with-
out manual or programmatic intervention, is the most applicable form of portability in this context.
Remember that failures in the cloud are expected, and the virtual machine (VM) on which your
program is running can be wiped out at any given time and then be rebuilt fresh on another VM.
Therefore, your program needs to be portable and able to recover from such an event.

Scalability means that your code responds well when multiple customers use it. For example, if you
have 1,500 requests per minute, that would be roughly 25 concurrent requests per second, if the
request is completed and responded to in 1 second. However, if you have 15,000 requests per min-
ute, that would mean 250 concurrent requests per second. Will the cloud program respond in the
same manner with 25 or 250 concurrent requests? How about 2,550? The following are a few cloud
programming patterns that are useful for managing scalability.

 ➤ Command and Query Responsibility Segregation (CQRS) pattern—This pattern concerns the
separation of operations that read data from operations that modify or update the data.

 ➤ Materialized View pattern—This modifies the storage structure to reflect the data query pat-
tern. For example, creating views for specific highly used queries can make for more efficient
querying.

 ➤ Sharding pattern—This breaks your data into multiple horizontal shards that contain a dis-
tinct subset of the data as opposed to vertical scaling via the addition of hardware capacity.

 ➤ Valet Key pattern—This gives clients direct access to the data store for streaming of or
uploading of large files. Instead of having a web client manage the gatekeeping to the data
store, it provides a client with a Valet Key and direct access to the data store.

NOTE These patterns cover some advanced C# coding techniques and there-
fore only descriptions of the patterns are provided. If you are interested in see-
ing the actual C# code to implement the patterns, it certainly exists and can
be found by searching for it on the Internet.

538 ❘ CHAPTER 16 Basic cloud Programming

Resiliency refers to how well your program responds and recovers from service faults and
exceptions. Historically, IT infrastructures have been focused on failure prevention where the
acceptance of downtime was minimal and 99.99% or 99.999% SLAs (service-level agreements) were
the expectation. Running a program in the cloud, however, requires a reliability mind shift, one
which embraces failure and is clearly oriented toward recovery and not prevention. Having multiple
dependencies such as database, storage, network, and third-party services, some of which have no
SLA, requires this shift in perspectives. User-friendly reactions in response to outages or situations
that are not considered normal operation make your cloud program resilient. Here are a few cloud
programming patterns that are useful for embedding resiliency into your cloud program:

 ➤ Circuit Breaker pattern—This is a code design that is aware of the state of remote services
and will only attempt to make the connection if the service is available. This avoids attempt-
ing a request and wasting CPU cycles when it is already known the remote service is unavail-
able via previous failures.

 ➤ Health Endpoint Monitoring pattern—This checks that cloud-based applications are func-
tionally available via the implementation of endpoint monitoring.

 ➤ Retry pattern—This retries the request after transient exceptions or failure. This pattern
retries a number of times within a given timeframe and stops when the retry attempt thresh-
old is breached.

 ➤ Throttling pattern—This manages the consumption of a cloud program so that SLAs can be
met and the program remains functional under high load.

Using one or more of the patterns described in this section will help make your cloud migration
more successful. The discussed patterns enhance usability of your program by improving the scal-
ability and resiliency of it. This in turn makes for a more pleasant user or customer experience.

USING MICROSOFT AZURE C# LIBRARIES TO CREATE
A STORAGE CONTAINER

Although there are numerous cloud providers, the cloud provider used for the examples in this and
the next chapter is Microsoft. The cloud platform provided by Microsoft is called Azure. Azure has
many different kinds of features. For example, the IaaS offering is called Azure VM, and the PaaS
offering is called Azure Cloud Services. Additionally, Microsoft has SQL Azure for database, Azure
Active Directory for user authentication, and Azure Storage for storing blobs, for example.

NOTE The exercise in the next Try It Out requires that you have a Microsoft
Azure subscription. If you do not have one, you can sign up for a 30-day free
trial here: http://azure.microsoft.com.

The following two exercises walk through the creation of an Azure storage account and an Azure
storage container. Once created, images of 52 playing cards are stored in the container using the

http://azure.microsoft.com

Using Microsoft Azure C# Libraries to Create a Storage Container ❘ 539

Microsoft Azure Storage SDK for .NET. Then in the next section you will create an ASP.NET 4.7
Web Application, to access the images stored in the Azure storage container. Then, following along
with the card game theme the book, the ASP.NET 4.7 Web Site will deal a hand of playing cards.
The card images are the blobs stored in the Azure storage container.

TRY IT OUT Try It Out: Create an Azure Storage Account

 1. Access the Microsoft Azure Portal at https://portal.azure.com.

 2. Click on the + New menu item, then Storage and then Storage account – blob, file, table, queue as
shown in Figure 16-3.

FIGURE 16-3

 3. Enter the storage account name, replication, resource group and location. For cost reasons (after
the free trial period has expired), consider setting the redundancy to Locally Redundant. This
avoids the small additional cost of a shadow copy of your storage account being created in another
region. Your files, however, are copied three times within the same regional data center in which
storage account exists.

https://portal.azure.com

540 ❘ CHAPTER 16 Basic cloud Programming

 4. Once the name, replication, resource group, and location are entered, click the Create button and
confirm that you see something like what is shown in Figure 16-4. In this example, the Azure stor-
age account is deckofcards. Give your Azure storage account a different name. Remember the
name of the storage account, as it is used in the next Try It Out exercise.

FIGURE 16-4

 5. You have now successfully created an Azure storage account.

NOTE Storage accounts can be used for storing blobs, tables, queues, and
files. Some examples of these include database backups, Azure Web App IIS
logs, VM machine images, documents, or images, with a limit of 100TB per
storage account.

How It Works

The Microsoft Azure management console itself runs on the Microsoft Azure platform in the PaaS
cloud service model, i.e., Azure Cloud Services. The management console is written by a product team
within Microsoft and supported by additional Microsoft support staff. All the features you find on the
left-hand side navigation bar can be created and utilized. Creating an Azure storage account with your
subscriptions allocates storage space and a globally accessible URL for accessing the contents of the
deckofcards storage account (for example: https://deckofcards.blob.core.windows.net).

TRY IT OUT
Create an Azure Storage Container Using the Microsoft Azure
Storage Client Library

You will create a console application using Visual Studio 2017 and the Microsoft Azure Storage Client
libraries to create an Azure storage container and upload the 52 cards into it.

 1. Create a new console application project by selecting File ➪ New ➪ Project within Visual Studio.
In the Add New Project dialog box (see Figure 16-5), select the category Visual C# and then select the

https://deckofcards.blob.core.windows.net

Using Microsoft Azure C# Libraries to Create a Storage Container ❘ 541

Console App (.NET Framework) template. Name the project Ch16Ex01 and save it in the
directory C:\BeginningCSharp7\Chapter16.

FIGURE 16-5

 2. Add a directory named Cards to the project by right-clicking on Ch16Ex01 ➪ Add… ➪ New
Folder. Add the 52 card images to the directory, like that shown in Figure 16-6. The images are
available from the source code download site and are named from 0-1.PNG to 3-13.PNG.

FIGURE 16-6

542 ❘ CHAPTER 16 Basic cloud Programming

 3. Additionally, copy the Cards directory into C:\BeginningCSharp7\Chapter16\Ch16Ex01\bin\
Debug so that the compiled executable can find them when run.

 4. Right-click again on the Ch16Ex01 project and select Manage NuGet Packages… from the popup
menu.

 5. In the search textbox, as shown in Figure 16-7, enter Microsoft Azure Storage and install the
WindowsAzure.Storage client library. You can find more information about the Windows Azure
Storage library here: https://docs.microsoft.com/en-us/dotnet/api/overview/azure/
storage?view=azure-dotnet.

FIGURE 16-7

 6. Accept the user agreements and once the NuGet package and its dependencies are installed, you
should see a ============== Finished================= message in the Output window of
Visual Studio. Additionally, the References folder within Ch16Ex01 is expanded, and you can
view the newly added binaries.

 7. Open the App.config file and add the following <appSetting> settings into the <configuration>
section. Notice that the AccountName is the name of the Azure storage account created in the previ-
ous Try It Out exercise (deckofcards). You would change this to the name of your Azure storage
account. Refer to step 8 for instructions on how to get the AccountKey.

<appSettings>
 <add key="StorageConnectionString"
 value="DefaultEndpointsProtocol=https;AccountName=NAME;
 AccountKey=KEY" />
</appSettings>

https://docs.microsoft.com/en-us/dotnet/api/overview/azure/storage?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/storage?view=azure-dotnet

Using Microsoft Azure C# Libraries to Create a Storage Container ❘ 543

 8. To get the Azure storage account key and connection string, access the Microsoft Azure manage-
ment portal (https://portal.azure.com) and navigate to your Azure storage account. As seen in
Figure 16-8, in the SETTINGS section there is an item named Access keys. Select that and copy the
connection string for Key1 and place it as the value in the App.config file.

FIGURE 16-8

 9. Now add the code that creates the container, uploads the images, lists them, and if desired deletes
them. First add the assembly references and the try{}...catch{} C# framework to the Main()
method, as shown here.

using System;
using System.IO;
using System.Configuration;
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Auth;
using Microsoft.WindowsAzure.Storage.Blob;
using static System.Console;

namespace Ch16Ex01
{
 class Program
 {
 static void Main(string[] args)
 {
 try {}
 catch (StorageException ex)
 {
 WriteLine($"StorageException: {ex.Message}");
 }
 catch (Exception ex)
 {
 WriteLine($"Exception: {ex.Message}");
 }
 WriteLine("Press enter to exit.");
 ReadLine();
 }
 }
}

https://portal.azure.com

544 ❘ CHAPTER 16 Basic cloud Programming

 10. Next, add the code within the try{} code block that creates the container, as shown here. Look
at the parameter passed to the blobClient.GetContainerReference("carddeck"), carddeck.
This is the name used for the Azure storage container. Content within this container can then be
accessed via https://deckofcards.blob.core.windows.net/carddeck/0-1.PNG, for example.
You can place any desired name if it meets the naming requirements (for example, it must be 3
to 63 characters long and must begin with a letter or number). If you provide a container name
that does not meet the naming requirements, a 400 HTTP status error is returned. Add a refer-
ence to the System.Configuration.dll assembly by right-clicking the Reference folder then
Add Reference… ➪ Assemblies ➪ Framework ➪ System.Configuration and then press the OK
button.

CloudStorageAccount storageAccount = CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["StorageConnectionString"]);
CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();
CloudBlobContainer container = blobClient.GetContainerReference("carddeck");
if (container.CreateIfNotExists())
{
 WriteLine($"Created container '{container.Name}' " +
 $"in storage account '{storageAccount.Credentials.AccountName}'.");
}
else
{
 WriteLine($"Container '{container.Name}' already exists " +
 $"for storage account '{storageAccount.Credentials.AccountName}'.");
}
container.SetPermissions(new BlobContainerPermissions
{ PublicAccess = BlobContainerPublicAccessType.Blob });
 WriteLine($"Permission for container '{container.Name}' is public.");

 11. Add this code following the code that creates the container in step 10 which uploads the card
images stored in the Cards folder.

int numberOfCards = 0;
DirectoryInfo dir = new DirectoryInfo(@"Cards");
foreach (FileInfo f in dir.GetFiles("*.*"))
{
 CloudBlockBlob blockBlob = container.GetBlockBlobReference(f.Name);
 using (var fileStream = System.IO.File.OpenRead(@"Cards\" + f.Name))
 {
 blockBlob.UploadFromStream(fileStream);
 WriteLine($"Uploading: '{f.Name}' which " +
 $"is {fileStream.Length} bytes.");
 }
 numberOfCards++;
}
WriteLine($"Uploaded {numberOfCards.ToString()} cards.");
WriteLine();

 12. Now that the images are uploaded, just to check that all went well, add this code to list the blobs
stored in the newly created Azure storage container, named carddeck after the code from step 11.

numberOfCards = 0;
foreach (IListBlobItem item in container.ListBlobs(null, false))
{

https://deckofcards.blob.core.windows.net/carddeck/0-1.PNG

Using Microsoft Azure C# Libraries to Create a Storage Container ❘ 545

 if (item.GetType() == typeof(CloudBlockBlob))
 {
 CloudBlockBlob blob = (CloudBlockBlob)item;
 WriteLine($"Card image url '{blob.Uri}' with length " +
 $" of {blob.Properties.Length}");
}
numberOfCards++;
}
WriteLine($"Listed {numberOfCards.ToString()} cards.");

 13. Now, if desired, you can delete the images that were just uploaded. This is really to show an exam-
ple of how you can delete the blob files from your container programmatically.

WriteLine("Enter Y to delete listed cards, press enter to skip deletion:");
if (ReadLine() == "Y")
{
 numberOfCards = 0;
 foreach (IListBlobItem item in container.ListBlobs(null, false))
 {
 CloudBlockBlob blob = (CloudBlockBlob)item;
 CloudBlockBlob blockBlobToDelete = container.GetBlockBlobReference(blob.Name);
 blockBlobToDelete.Delete();
 WriteLine($"Deleted: '{blob.Name}' which was {blob.Name.Length} bytes.");
 numberOfCards++;
}
WriteLine($"Deleted {numberOfCards.ToString()} cards.");
}

 14. Run the console application and review the output. You should see something like what is shown
in Figure 16-9. Then access the Microsoft Azure management console and look on the container
page for the newly created container named, for example, carddeck as shown in Figure 16-10.
Click on the container to view its contents.

FIGURE 16-9

546 ❘ CHAPTER 16 Basic cloud Programming

FIGURE 16-10

How It Works

It is programmatically possible to create a Microsoft Azure storage account, but the security aspect of
that creation is relatively complex, and that step is performed instead from within the Microsoft Azure
Management console directly. Once an Azure storage account is created, you can then create multiple
containers within the account. In this example, you created a container called carddeck. There is only
a limit on the number of storage accounts per Microsoft Azure subscription and no limit on the number
of containers within the storage account. You can create as much and as many as you want, but keep in
mind that each comes with a cost.

The code is split into four sections (create the container, upload the images to the container, list the
blobs in the container, and optionally delete the contents of the container). The first action taken was
to set up the try{}...catch{} framework for the console application. This is a good practice because
uncaught or unhandled exceptions typically crash the process (EXE), which is something that should
always be avoided. The first catch() expression is the StorageException and captures exceptions
thrown specifically from methods within the Microsoft.WindowsAzure.Storage namespace.

catch (StorageException ex)

Then there is a catch all exceptions expression that handles all other unexpected exceptions and writes
the exception message for them to the console.

catch (Exception ex)

The first line within the try{} code block creates the storage account using the details added to the
App.config file.

CloudStorageAccount storageAccount = CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["StorageConnectionString"]);

The App.config file contains the storage account name and the secret storage account key that is
needed for performing administrative actions on the Azure storage account. Next, you create a client
that manages the interface with a specific blob container within the storage account. Then the code gets
a reference to a specific container named carddeck.

CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();
CloudBlobContainer container =
blobClient.GetContainerReference("carddeck");

Using Microsoft Azure C# Libraries to Create a Storage Container ❘ 547

Next the container.CreateIfNotExists() method is called. If the container is created, meaning it
does not already exist, then the value true is returned and that information is written to the console.
Otherwise, false is returned if the container does already exist.

if (container.CreateIfNotExists())
{...} ...

Containers can be Private or Public. For this example, the container is public, which means an access
key is not required to access it. The container is set to be public by executing this code.

container.SetPermissions(new BlobContainerPermissions
 { PublicAccess = BlobContainerPublicAccessType.Blob });

At this point the container is created and publicly accessible, but it is empty. Using a System.IO method
like DirectoryInfo and FileInfo, you created a foreach loop that added each of the card images to the
carddeck storage container. The GetBlockBlobReference() method is used to set the reference to the
specific image name to be added to the container. Then using the filename and path, the System.IO.File
.OpenRead() method opens the actual file as a FileStream, and it is uploaded to the container via the
UploadFromStream() method.

CloudBlockBlob blockBlob = container.GetBlockBlobReference(f.Name);
using (var fileStream = System.IO.File.OpenRead(@"Cards\" + f.Name))
{
 blockBlob.UploadFromStream(fileStream);
}

All of the files in the Cards directory are looped through and uploaded to the container. Using the
same container object created during the initial creation of the carddeck container, by calling the
ListBlob() method, a list of existing blobs are returned as an IEnumerable<IListBlobItems>. You
then loop through the list and write them to the console.

foreach (IListBlobItem item in container.ListBlobs(null, false))
{
 if (item.GetType() == typeof(CloudBlockBlob))
 {
 CloudBlockBlob blob = (CloudBlockBlob)item;
 WriteLine($"Card image url '{blob.Uri}' with length of " +
 $" {blob.Properties.Length}");
}
numberOfCards++;
}

As previously noted, there are numerous types of items that can be stored in a container, like blobs,
tables, queues, and files. Therefore, prior to boxing the item as a CloudBlockBlob, it is important to
confirm that the item is indeed a CloudBlockBlob. Other types to check for are CloudPageBlob and
CloudBlobDirectory.

To delete the blobs in the container, first the list of blobs is retrieved in the same manner as previously
performed when looping through them and writing them to the console. The difference when deleting
them is that GetBlockBlobReference(blob.Name) is called to get a reference to the specific blob, then
the Delete() method is called for that specific blob.

CloudBlockBlob blockBlobToDelete = container.GetBlockBlobReference(blob.Name);
blockBlobToDelete.Delete();

548 ❘ CHAPTER 16 Basic cloud Programming

Now that the Microsoft Azure storage account and container are created and loaded with the
images of a 52-card deck, you can create an ASP.NET Web Site to reference the Microsoft Azure
storage container.

CREATING AN ASP.NET 4.7 WEB SITE THAT USES THE
STORAGE CONTAINER

Up to now there has not been any in-depth examination of what a web application is nor a discus-
sion about the fundamental aspects of ASP.NET. This section provides some insight into these tech-
nical perspectives.

A web application causes a web server to send HTML code to a client. That code is displayed in a
web browser such as Microsoft Edge or Google Chrome. When a user enters a URL string in the
browser, an HTTP request is sent to the web server. The HTTP request contains the filename that
is requested along with additional information such as a string identifying the application, the lan-
guages that the client supports, and additional data belonging to the request. The web server returns
an HTTP response that contains HTML code, which is interpreted by the web browser to display
text boxes, buttons, and lists to the user.

ASP.NET is a technology for dynamically creating web pages with server-side code. These web
pages can be developed with many similarities to client-side Windows programs. Instead of dealing
directly with the HTTP request and response and manually creating HTML code to send to the cli-
ent, you can use controls such as TextBox, Label, ComboBox, and Calendar, which create HTML
code.

Using ASP.NET for web applications on the client system requires only a simple web browser. You
can use Internet Explorer, Edge, Chrome, Firefox, or any other web browser that supports HTML.
The client system doesn’t require .NET to be installed.

On the server system, the ASP.NET runtime is needed. If you have Internet Information Services
(IIS) on the system, the ASP.NET runtime is configured with the server when the .NET Framework
is installed. During development, there’s no need to work with Internet Information Services because
Visual Studio delivers its own ASP.NET Web Development server that you can use for testing and
debugging the application.

To understand how the ASP.NET runtime goes into action, consider a typical web request from a
browser (see Figure 16-11). The client requests a file, such as default.aspx or default.cshtml,
from the server. ASP.NET web form pages usually have the file extension .aspx, (ASP.NET MVC
has no specific file extension), and .cshtml is used for Razor-based Web Sites. Because these file
extensions are registered with IIS or known by the ASP.NET Web Development Server, the ASP.

Creating an ASP.NET 4.7 Web Site That Uses the Storage Container ❘ 549

NET runtime and the ASP.NET worker process enter the picture. The IIS worker process is named
w3wp.exe and is host to your application on the web server. With the first request to the default
.cshtml file, the ASP.NET parser starts, and the compiler compiles the file together with the C#
code, which is associated with the .cshtml file and creates an assembly. Then the assembly is com-
piled to native code by the JIT compiler of the .NET runtime. Then the Page object is destroyed.
The assembly is kept for subsequent requests, though, so it is not necessary to compile the assembly
again.

IIS

BROWSER INTERNET

HTTP.SYS

Listen

1

Route

2

Worker Process

Process
Request

3

Return
Response

4

FIGURE 16-11

Now that you have a basic understanding of what web applications and ASP.NET are, perform the
steps in the following Try It Out.

TRY IT OUT Create an ASP.NET 4.7 Web Site That Deals Two Hands of Cards

Again, you will use Visual Studio 2017, but this time you create an ASP.NET Web Site that requests the
names of two players, and then when the page is submitted, two hands of cards are dealt. Those cards
are downloaded from the Microsoft Azure storage container created earlier, and the cards are displayed
on the web page.

 1. Create a new Web Site project by selecting File ➪ New ➪ Web Site… within Visual Studio. In the
New Web Site dialog box (see Figure 16-12), select the category Visual C# and then select the ASP
.NET Empty Web Site template. Name the Web Site Ch16Ex02.

550 ❘ CHAPTER 16 Basic cloud Programming

FIGURE 16-12

 2. Add an ASP.NET Folder named App_Code by right-clicking on the Ch16Ex02 solution, and then
select Add ➪ Add ASP.NET Folder ➪ App_Code.

 3. Download the sample code for this exercise from the download site and place the following class
files into the App_Code folder you just created. Once downloaded, right-click on the App_Code
folder, select Add ➪ Existing Item…, and select the seven classes from the downloaded example.

 a. Card.cs

 b. Cards.cs

 c. Deck.cs

 d. Game.cs

 e. Player.cs

 f. Rank.cs

 g. Suit.cs

NOTE The classes in step 3 are very similar to those used in previous
examples. Only a few modifications were implemented, like the removal of
WriteLine() and ReadLine() methods and some unused methods. Look in
the Card.cs class, and you will see a new constructor which contains the link
to the card image.

Creating an ASP.NET 4.7 Web Site That Uses the Storage Container ❘ 551

 4. Add a default.cshtml Razor v3 file to the project by right-clicking on the CH16Ex02 solutions,
and then select Add New Item… ➪ Visual C# ➪ Empty Page (Razor v3) as shown in Figure 16-13.

FIGURE 16-13

 5. Open the default.cshtml file and place the following code at the top of the page.

@{

 Player[] players = new Player[2];
 var player1 = Request["PlayerName1"];
 var player2 = Request["PlayerName2"];

 if(IsPost)
 {
 players[0] = new Player(player1);
 players[1] = new Player(player2);
 Game newGame = new Game();
 newGame.SetPlayers(players);
 newGame.DealHands();
 }
}

 6. Next, add this syntax under the code you added in step 5. Pay close attention to the @card.image-
Link, which is the newly added parameter to the Card class.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />

552 ❘ CHAPTER 16 Basic cloud Programming

 <style>
 body {font-family:Verdana; margin-left:50px;
 margin-top:50px;}
 div {border: 1px solid black; width:40%;
 margin:1.2em;padding:1em;}
 </style>
 <title>BensCards: a new and exciting card game. </title>
 </head>
 <body>
 @if(IsPost){
 <label id="labelGoal">Which player has the best hand.</label>

 <div>
 <p><label id="labelPlayer1">Player1: @player1</label></p>
 @foreach(Card card in players[0].PlayHand)
 {
 <img width="75px" height="100px" alt="cardImage"
 src=
 "https://deckofcards.blob.core.windows.net/carddeck/@card
 .imageLink" />
 }
 </div>
 <div>
 <p><label id="labelPlayer1">Player2: @player2</label></p>
 @foreach(Card card in players[1].PlayHand)
 {
 <img width="75px" height="100px" alt="cardImage"
 src=
 "https://deckofcards.blob.core.windows.net/carddeck/@card
 .imageLink" />
 }
 </div>
 }
 else
 {
 <label id="labelGoal">
 Enter the players name and deal the cards.
 </label>

 <form method="post">
 <div>
 <p>Player 1: @Html.TextBox("PlayerName1")</p>
 <p>Player 2: @Html.TextBox("PlayerName2")</p>
 <p><input type="submit" value="Deal Cards"
 class="submit"></p>
 </div>
 </form>
 }
 </body>
</html>

 7. Now, run the Web Site by pressing F5 or the Run button within Visual Studio. A browser will start
up and you should see a page rendered similar to the one illustrated in Figure 16-14. First you are
prompted to enter in the Player names. Enter any two names.

Creating an ASP.NET 4.7 Web Site That Uses the Storage Container ❘ 553

FIGURE 16-14

 8. Press the Deal Cards button, and a hand of cards is dealt to each player. You would see something
similar to what is shown in Figure 16-15.

FIGURE 16-15

554 ❘ CHAPTER 16 Basic cloud Programming

You have now created a simple ASP.NET Web Site using Razor v3. The ASP.NET Web Site connects
to the Azure storage account and container for displaying the images of the playing cards.

How It Works

You certainly noticed a new technology named Razor that was used in the previous exercise. Razor is a
view engine that was introduced with ASP.NET 3 MVC along with Visual Studio 2013. Razor, as you
have seen, uses C#-like language (VB is supported too) that is placed within a @{...} code block and is
compiled and executed when the page is requested from a browser. Take a look at this code:

@{

 Player[] players = new Player[2];
 var player1 = Request["PlayerName1"];
 var player2 = Request["PlayerName2"];

 if(IsPost)
 {
 players[0] = new Player(player1);
 players[1] = new Player(player2);
 Game newGame = new Game();
 newGame.SetPlayers(players);
 newGame.DealHands();
 }
}

The code is encapsulated within a @{...} code block and is compiled and executed by the Razor engine
when accessed. When the page is accessed, an array of type Player[] is created and the contents of the
query string are populated into the two variables called player1 and player2. If the page is not a post
back, which means the page was simply requested (GET) instead of a button click (POST), then the code
within the if(IsPost){} code block does not execute. If the request to the page is a POST, which hap-
pens when you click the Deal Cards button, the Players are instantiated, a new game is started, and
the hands of cards get dealt.

The initial request to the default.cshtml file executes this code path because it is not a POST.

else
 {
 <label id="labelGoal">
 Enter the players name and deal the cards.
 </label>

 <form method="post">
 <div>
 <p>Player 1: @Html.TextBox("PlayerName1")</p>
 <p>Player 2: @Html.TextBox("PlayerName2")</p>
 <p><input type="submit"
 value="Deal Cards"
 class="submit">
 </p>
 </div>
 </form>
 }

Creating an ASP.NET 4.7 Web Site That Uses the Storage Container ❘ 555

The code renders two HTML TextBox controls that request the player names and a button. Once the
information is entered, pressing the Deal Cards button executes a POST and the following code path is
executed. The code loops through the cards dealt to each player of the game.

@if (IsPost)
 {
 <label id="labelGoal">Which player has the best
 hand.</label>

 <div>
 <p><label id="labelPlayer1">Player1:
 @player1</label></p>
 @foreach (Card card in players[0].PlayHand)
 {
 <img width="75"
 height="100"
 alt="cardImage"

src=
"https://deckofcards.blob.core.windows.net/carddeck/@card
 .imageLink" />
 }
 </div>
 <div>
 <p><label id="labelPlayer1">Player2:
 @player2</label></p>
 @foreach (Card card in players[1].PlayHand)
 {
 <img width="75"
 height="100"
 alt="cardImage"

src=
"https://deckofcards.blob.core.windows.net/carddeck/@card
 .imageLink" />
 }
 </div>
 }

Notice that within both foreach loops there is a reference to the Azure storage account URL and the
container created in the previous exercise.

NOTE The Azure storage account URL and container are for example only.
You should replace deckofcards with your Azure storage account and card-
deck with your Azure storage container.

556 ❘ CHAPTER 16 Basic cloud Programming

EXERCISES

 16.1 What information would you need to pass between the browser and the server to play the
card game?

 16.2 As web applications are stateless, describe some ways to store this information so it can be
included with a web request.

Answers to the exercises can be found in Appendix.

Creating an ASP.NET 4.7 Web Site That Uses the Storage Container ❘ 557

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Defining the cloud The cloud is an elastic structure of commoditized computer hardware
for running programs. These programs run on IaaS, PaaS, or SaaS ser-
vice models in a Hybrid, Public, or Private Cloud type.

Defining the cloud
optimized stack

The cloud optimized stack is a concept used to refer to code that can
handle high throughput, makes a small footprint, can run side-by-
side with other applications on the same server, and is cross-platform
enabled.

Creating a storage account A storage account can contain an infinite number of containers. The
storage account is the mechanism for controlling access to the con-
tainers created within it.

Creating a storage
container with C#

A storage container exists within a storage account and contains
the blobs, files, or data that are accessible from any place where an
Internet connection exists.

Referencing the storage
container from ASP.NET
Razor

It is possible to reference a storage container from C# code. You use
the storage account name, the container name, and the name of the
blog, file, or data you need to access.

Advanced Cloud Programming
and Deployment

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Creating an ASP.NET Web API

 ➤ Deploying and consuming an ASP.NET Web API on Microsoft
Azure

 ➤ Scaling an ASP.NET Web API on Microsoft Azure

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter17 folder and individually named
according to the names throughout the chapter.

Now that you have spent some time learning about the cloud and cloud programming, let’s
move forward and write some C# code that is a little more complex than what you did in the
previous chapter. In this chapter, you continue exploring both ASP.NET and Microsoft Azure.
You will modify the CardLib program so that it runs in the cloud as an ASP.NET Web API
and, once deployed, you consume it from an ASP.NET Web Site.

NOTE To successfully complete the exercises in this chapter, you need a
Microsoft Azure subscription. If you do not have one, you can sign up for a free
trial here: http://azure.microsoft.com. It is quick and easy to do.

17

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://azure.microsoft.com
http://wrox.com
http://wrox.com
http://wrox.com

560 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

After creating, deploying, and consuming the ASP.NET Web API, you will learn how to scale it.
The concept of scaling is important to grasp if the cloud program you create becomes popular. The
example in this chapter uses free Microsoft Azure cloud resources. These free resources have low
CPU, memory, and bandwidth thresholds and are easily breached under high usage. You will learn
how to avoid any suspension of your cloud program due to resource threshold breaches by scaling
when appropriate.

CREATING AN ASP.NET WEB API

The Application Programming Interface (API) computer programming concept has been around
for many decades and is generally described as a module that contains a set of functions useful for
building software programs.

Originally, from a Windows client application perspective, these modules were dynamic linked librar-
ies (.dll) which revealed programmatically accessible interfaces that exposed internal functions to
other programs. In such a system, when a consuming program uses an API, it becomes dependent
on the pattern of the interface. Changes to the interface cause exceptions and failures within the
 consuming program because the current procedure to access and execute the functions within the
module is no longer valid. Once programs become dependent on an interface, it shouldn’t be changed.
When it is changed, that event is commonly referred to as DLL Hell. For more information about
DLL Hell, read this article: http://www.desaware.com/tech/dllhell.aspx.

As time moved on and the implementation of Internet and intranet solutions became mainstream,
dependencies on technologies such as web services and Windows Communication Foundation
(WCF) were made. Both web services and WCF exposed formal contractual interfaces that exposed
the functions contained within them to other programs. As opposed to the previously mentioned
DLL API where the module exists on the same computer as the one consuming it, the web service
and WCF are hosted on a web server. As a result of being hosted on an Internet or intranet web
server, access to the web interface is no longer confined to a single computer and is possible from
any device, from any place with an Internet or networked intranet connection.

Recall from the previous chapter where the analysis of the cloud optimized stack took place. From
that discussion, you learned that in order to be considered cloud optimized, a program must have
a small footprint, be able to handle high throughput, and be cross-platform enabled. An ASP.NET
Web API is based on the ASP.NET MVC (Model, View, Controller) concept, which aligns directly
with the new cloud optimized stack definition. If you have created and/or used web services or WCF
in the past, you will see how much simpler and compact an ASP.NET Web API is in comparison. If
you have never used either, take my word for it: It is.

In the following Try It Out, you will create an ASP.NET Web API that deals a hand of cards.

TRY IT OUT Create an ASP.NET Web API

You will use Visual Studio 2017 to create an ASP.NET Web API that accepts a player’s name and
returns a hand of cards for that player.

http://www.desaware.com/tech/dllhell.aspx

Creating an ASP.NET Web API ❘ 561

 1. Create a new ASP.NET Web API by selecting File ➪ New ➪ Project… within Visual Studio. In the
New Project dialog box (see Figure 17-1), select the category Visual C# ➪ Web and then select
the ASP.NET Web Application template. Change the path to C:\BeginningCSharp7\Chapter17,
name the Web Application Ch17Ex01, and then click the OK button.

FIGURE 17-1

 2. Next click on the Empty ASP.NET 4.7 Template and check the Web API checkbox so required
folders and core references are added to the project. See Figure 17-2. Click the OK button.

FIGURE 17-2

562 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

 3. Right-click on the Ch17Ex01 project, and then select Add ➪ New Folder and rename the folder
CardLib.

 4. Download the sample code from the download site and place the following class files into the
CardLib folder you just created. Once downloaded, right-click on the CardLib folder and select
Add ➪ Existing Item… and select the seven classes from the downloaded example.

 a. Card.cs

 b. Cards.cs

 c. Deck.cs

 d. Game.cs

 e. Player.cs

 f. Rank.cs

 g. Suit.cs

NOTE The seven classes are the same as used in Ch16Ex02. If you have
already downloaded the source code for that exercise, then you can reuse
them here as well.

 5. Next add a controller by right-clicking on the Controllers folder, selecting ➪ Add ➪ Controller…,
and selecting Web API 2 Controller - Empty… ➪ Add (Figure 17-3).

FIGURE 17-3

Creating an ASP.NET Web API ❘ 563

 6. Name the controller HandOfCardsController.

 7. Add this code into the HandOfCardsController class:

[Route("api/HandOfCards/{playerName}")]
public IEnumerable<Card> GetHandOfCards(string playerName)
{
 Player[] players = new Player[1];
 players[0] = new Player(playerName);
 Game newGame = new Game();
 newGame.SetPlayers(players);
 newGame.DealHands();
 var handOfCards = players[0].PlayHand;
 return handOfCards;
}

 8. The ASP.NET Web API is now created and ready to be published to the cloud.

Congratulations! You have completed the creation of an ASP.NET Web API that returns a hand of
cards.

How It Works

When you want to create a new ASP.NET Web API, there are two options. The first is the method that
this Try It Out described. The fact that you selected Empty from the Template selection window meant
that the project would contain nothing other than the bare necessities required to create an ASP
.NET Web API. This resulted in very few configuration files and binaries being added to the solution;
the footprint for this Web API is therefore very small and is just what is needed to run optimally in the
cloud.

The other possible approach is to select the Web API template (see Figure 17-2) instead of the Empty
one. This includes additional configuration files, many additional references, and a basic example of an
ASP.NET MVC application. As this Try It Out is relatively small and did not require most of the MVC
features, the Empty template was chosen. If additional functionalities and examples are needed in a
future project of your own, consider selecting the Web API template because it constructs data pipelines
and provides many proven coding patterns to build your solution on top of.

You add the same seven card classes used in the Chapter 16 example to a directory called CardLib. The
contents of the GetHandOfCards() method are identical to those of the one in Chapter 16. The method
accepts one parameter, the playerName, creates a new Game, sets the Players, deals the hand of cards,
and returns the Cards class to the ASP.NET Web API consumer. The one additional line of code is this:

[Route("api/HandOfCards/{playerName}")]

The Route annotation is how ASP.NET decides which Web API method responds to which request. As
you will come to realize, after publishing there is no specific file requested when you interface with an
ASP.NET Web API. Unlike an ASP.NET Web Forms application where a request is sent to a file with
an .aspx extension, the same is not true when calling a Web API (or an ASP.NET MVC application
for that matter). A Web API request is sent to a web server, where the parameters are in the requested
URL, separated by forward slashes. For example: “http://contoso.com/api/{controllerName}/
Parameter1/Parameter2/etc…”.

http://contoso.com/api/
http://contoso.com/api/%7BcontrollerName%7D/Parameter1/Parameter2/etc%E2%80%A6

564 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

NOTE Instead of using annotations for creating Route Maps, you can create
them in a file called WebApiConfig.cs located in the App_Start directory.

Now that the ASP.NET Web API is created, move on to the next section to learn about deployment
and then consumption of the Web API.

DEPLOYING AND CONSUMING AN ASP.NET WEB API ON
MICROSOFT AZURE

There are numerous options for deploying your Web App to the Microsoft Azure platform. One of
the most popular methods is via a local Git repository or a public Git repository hosted on GitHub.
Both the local and public Git repositories provide capabilities for version control, which is a very
useful feature. Having version control lets the developer and release manager know what specific
changes have been made, when they were made, and by whom. In the event that there are problems
or unexpected exceptions when the binaries are compiled, or the changes are deployed to the live
environment, it is easy to find who to contact about it. Other deployment platforms that can be
integrated into Microsoft Azure include Visual Studio Team Services, OneDrive, and Bitbucket, for
example.

NOTE There are numerous methods for making deployments of your code
to the Microsoft Azure platform. Projects stored in a source code repository
versus specific standalone code scenarios each have numerous and individual
deployment options.

As the code in the previous Try It Out is a standalone project that is not contained in a version con-
trol repository, the deployment is performed directly from within the IDE, in this case Visual Studio
2017. Additional methods for deploying a solution not contained in a source code repository include,
for example, Web Deploy (msdeploy.exe) and FTP.

Complete the following Try It Out to deploy an ASP.NET Web API to a Microsoft Azure Web App.

TRY IT OUT Deploy an ASP.NET Web API to the Cloud

 1. Right-click Ch17Ex01 project ➪ Publish…. then select the Create New radio button and click the
Publish button

 2. Select Web App from the Change Type drop-down list, select the subscription to create the
Web App into, import your Microsoft Azure subscription (if required), select or create a new

Deploying and Consuming an ASP.NET Web API on Microsoft Azure ❘ 565

Resource Group, select an App Service Plan or create a new one, and finally click the Create button
(Figure 17-4).

 ➤ Web App Name: Must be a unique name.

 ➤ Subscription: If you have multiple Microsoft Azure Subscriptions, select the one that you
want this Web App to be created in.

 ➤ Resource Group: a logical grouping of Azure resources. This is a way to keep all the resources
for a specific project or application grouped together, helping you manage the resources better.

 ➤ App Service Plan: the type of virtual machine you want to run the Web App on. For example,
when running in FREE mode you share resources with other tenants, while in STANDARD
mode your application runs on its own virtual machine.

FIGURE 17-4

 3. Once created, you can validate the connection by clicking the Settings… ➪ Validate Connection
button (Figure 17-5) to make sure the configuration and credentials are set up correctly.

566 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

FIGURE 17-5

 4. After the ASP.NET Web API is successfully published, a browser will open notifying that the web
app has been successfully created. You can also view the details of the Output window in Visual
Studio to find more information about the publishing steps.

 5. Check the response of the ASP.NET Web API. It is now globally accessible via, for example,
http://handofcards.azurewebsites.net/api/HandOfCards/Benjamin, where handofcards
is the name you provided when creating the Microsoft Azure Web App and Benjamin is the name
of the player.

NOTE By default, different browsers render the results in different ways.
For example, Internet Explorer prompts you to download a JSON file, while
Chrome, Firefox, and Edge display some XML data. The important aspect is
that you get a response. Consuming the API is covered in the next section.

How It Works

When you publish a Web App from within Visual Studio, it uses Web Deploy in the background to per-
form the actual deployment. Knowing this, if you have special requirements for the deployment, they
can be set within the publish profile located in the Properties\PublishProfiles directory. The con-
tents within *.pubxml contain the configuration items and dependencies for the given deployment.

http://handofcards.azurewebsites.net/api/HandOfCards/Benjamin

Deploying and Consuming an ASP.NET Web API on Microsoft Azure ❘ 567

Once the deployment completes, a browser is rendered to the main page of the Web App (illustrated by
Figure 17-6), and not the ASP.NET Web API.

FIGURE 17-6

Unlike legacy APIs contained in a .dll, web service, or WCF service, it is uncommon in practice to
access an ASP.NET Web API directly. Rather, in all cases, the call to the API comes from code con-
tained in another (API consuming) project or solution.

Now that the ASP.NET Web API is deployed, it is consumable from any client with capabilities to
make an HTTP request and parse a JSON file. The following Try It Out provides all the instructions
you need to learn how to consume the just published ASP.NET Web API from an ASP.NET Web
Page.

NOTE The following Try It Out modifies the Ch16Ex02 ASP.NET Web Site.
The primary difference is that instead of retrieving the Cards from classes con-
tained in the Web Site itself, the Cards are retrieved from the ASP.NET Web
API created and deployed in this chapter.

TRY IT OUT Consume the Web API from a Web Site

You will use Visual Studio 2017 to modify the CH16Ex02 example so that it consumes an ASP.NET
Web API. The Web API accepts a player’s name and returns a hand of cards for that player.

 1. Open Visual Studio 2017, select File ➪ New ➪ Web Site, and select ASP.NET Empty Web Site
from the Visual C# list of installed Templates.

 2. Change the Web Location to C:\BeginningCSharp7\Chapter17\Ch17Ex02 and then press the
OK button to continue.

NOTE The output of an ASP.NET Web API is a JSON file, the format of which
follows a standard format making it easily parsed. The most common means
for parsing a JSON file is using the Newtonsoft.Json libraries.

568 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

 3. To install the Newtonsoft.Json libraries used for parsing the JSON file, right-click on the
Ch17Ex02 project and select Manage NuGet Packages…, which opens a tab in Visual Studio
similar to that shown in Figure 17-7.

FIGURE 17-7

 4. Browse for and select Newtonsoft.Json from the Package list and press the Install button. A Bin
directory is added to the ASP.NET Web Site that contains the Newtonsoft.Json.dll binary.

 5. Add a cshtml file to the solution by right-clicking on the Ch17Ex02 and selecting Add ➪ Add
New Item… ➪ Empty Page (Razor v3), name it default.cshtml, and press the Add button.

NOTE The contents of the default.cshtml file here and the one previously
created in CH16Ex02 are very similar, but some modifications are required.
Consider copying the contents of default.cshtml from Chapter 16 instead of
retyping the entire page.

 6. Next, include the Newtonsoft.Json libraries into the Razor file by adding this statement at the
very top of the page:

@using Newtonsoft.Json;

 7. Add this code snippet directly below the line added in step 6:

@{
 List<string> cards = new List<string>();
 var playerName = Request["PlayerName"];

Deploying and Consuming an ASP.NET Web API on Microsoft Azure ❘ 569

 if (IsPost)
 {
 string GetURL = "http://handofcards.azurewebsites.net/api/" +
 "HandOfCards/" + playerName;
 WebClient client = new WebClient();
 Stream dataStream = client.OpenRead(GetURL);
 StreamReader reader = new StreamReader(dataStream);
 var results =
 JsonConvert.DeserializeObject<dynamic>
 (reader.ReadLine());
 reader.Close();

 foreach (var item in results)
 {
 cards.Add((string)item.imageLink);
 }
 }
}

 8. Lastly, add the markup and Razor code to trigger the consumption of the ASP.NET Web API
directly under the code added in step 7:

<html>
<head>
 <title>BensCards: Deal yourself a hand. </title>
</head>
<body>
 @if (IsPost)
 {
 <label id="labelGoal">Here is your hand of cards.</label>

 <div>
 <p><label id="labelPlayer1">Player1:
 @playerName</label></p>
 @foreach (string card in cards)
 {
 <img width="75"
 height="100"
 alt="cardImage"
 src=
 "https://deckofcards.blob.core.windows.net/carddeck/
 @card" />
 }
 </div>
 <label id="errorMessageLabel" />
 }
 else
 {
 <label id="labelGoal">
 Enter the players name and deal the cards.
 </label>

 <form method="post">
 <div>
 <p>Player 1: @Html.TextBox("PlayerName")</p>

570 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

 <p><input type="submit" value="Deal Hand"
 class="submit"></p>
 </div>
 </form>
 }
</body>
</html>

 9. Run the ASP.NET Web Site by pressing F5. Once rendered, enter a name and click the Deal Hand
button. The ASP.NET Web Site consumes the ASP.NET Web API and renders a hand of cards,
similar to that shown in Figure 17-8.

FIGURE 17-8

How It Works

When the default.cshtml page is initially rendered, IsPost is false and therefore the calling of the
ASP.NET Web API from the C# code contained in the Razor code block does not execute. Instead, only
the portion of HTML code within the else code block gets displayed. The rendered portion contains a
TextBox to capture the player name and a Button to trigger the posting of the page back to itself.

Once a player name is entered, and the Deal Hand button is pressed, the IsPost property becomes
true and the C# code within the Razor tag at the top of page is executed.

string GetURL = "http://handofcards.azurewebsites.net/api/
 HandOfCards/" +
 playerName;
WebClient client = new WebClient();
Stream dataStream = client.OpenRead(GetURL);

Deploying and Consuming an ASP.NET Web API on Microsoft Azure ❘ 571

The web address stored in the GetURL string is the Internet or intranet location of the ASP.NET Web
API and is used as a parameter for the OpenRead() method of the WebClient class. The WebClient
contains the methods required to perform an HTTP request. The result of the OpenRead() method is
stored in a Stream object.

StreamReader reader = new StreamReader(dataStream);
var results = JsonConvert.DeserializeObject<dynamic>
 (reader.ReadLine());

The Stream object is then passed as a parameter to the StreamReader constructor. Using the
ReadLine() method of the StreamReader class as a parameter to deserialize the JSON file using the
Newtonsoft.Json libraries, the results can then be enumerated through a foreach statement and
added to a List<string> container named cards. The cards list can then be accessed for usage later
in the page rendering process.

foreach (var item in results)
{
 cards.Add((string)item.imageLink);
}

NOTE Review the dynamic type discussed previously in Chapter 13. It is com-
mon practice to use the dynamic type with JSON files as the structure con-
tained within it is not always castable to a strongly typed class.

Once the parsed results of the JSON file are loaded into the cards container, the markup code within
the IsPost code block gets executed. The foreach loop within the Razor tags reads through the cards
container and concatenates the image name with the link to the Microsoft Azure Blob Container cre-
ated in Chapter 16.

@foreach (string card in cards)
{
 <img width="75"
 height="100"
 alt="cardImage"
 src="https://deckofcards.blob.core.windows.net/carddeck/
 @card" />
}

You might consider deploying this ASP.NET Web Site to the Microsoft Azure platform using the
acquired knowledge from the previous Try It Out. For example, simply right-click the Ch17Ex02
solution, select Publish Web App, and follow the publish wizard. Creating a Web App called
“handofcards-consumer” would then be accessible from http://handofcards-consumer
.azurewebsites.net/. As both the ASP.NET Web API and the Microsoft Azure Blob Container
are accessible on the Internet from any place in the world, placing the ASP.NET Web Site on Azure
would result in the same outcome (getting a hand of cards).

http://handofcards-consumer.azurewebsites.net/
http://handofcards-consumer.azurewebsites.net/

572 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

Over time, if either the consumer or the API become popular and begin receiving many requests,
running the Web Apps in FREE mode would likely result in a resource threshold breach that then
suspends the resource availability. This would not be ideal. In the next section, you learn how to
scale an ASP.NET Web API running as a Web App on the Microsoft Azure platform so that users
and customers can access your responsive web resource when required.

SCALING AN ASP.NET WEB API ON MICROSOFT AZURE

Scaling to meet the requirements of your users used to be a very tedious, time-consuming, and
expensive activity. Historically, when a company wanted to increase server capacity to support
more traffic, it required the acquisition, assembly, and configuration of physical hardware into a
data center. Then, once the hardware was on the network, it was handed over to the application
owners to install and configure the operating system, the required components, and the applica-
tion source code. The time required to perform such tasks resulted in companies installing a lot of
physical capacity to manage peak time usage; however, during times of non-peak usage, the extra
capacity simply went unused and sat idle, which is a very expensive and non-optimal way to allocate
resources.

A better approach is to use cloud platforms, like Microsoft Azure, that provide the ability to opti-
mally utilize physical resources to scale up, down, and out during the times when the resources are
required. When you need physical resources like CPU, disk space or memory, you scale up or out to
meet the demands, and when the demand for your cloud-hosted services reduce, you can scale back
down and save your financial resources for use with other projects and services.

NOTE To successfully complete the exercises in this chapter, you need a
Microsoft Azure subscription. If you do not have one, you can sign up for a
30 day free trial here: http://azure.microsoft.com. It is quick and easy to do.

The remainder of this chapter illustrates how to scale an ASP.NET Web API based on CPU demand
and during a specific time frame.

TRY IT OUT Scale an ASP.NET Web API Based on CPU Usage

 1. Access the Microsoft Azure portal at https://portal.azure.com.

 2. Select the ASP.NET Web API you created earlier in this chapter, for example “handofcards.” As
shown in Figure 17-9, notice that the Web App is in the FREE pricing tier. Auto Scaling is only
available when the Web App is in STANDARD mode.

http://azure.microsoft.com
https://portal.azure.com

Scaling an ASP.NET Web API on Microsoft Azure ❘ 573

FIGURE 17-9

 3. Scale your Web App up to STANDARD (this will incur a charge) by clicking on the Scale up (App
Service Plan) link, choose S1, S2, or S3, then the Select button at the bottom of the page.

 4. Once the scale up is completed, click Scale out (App Service Plan) then click the Enable autoscale but-
ton + Add a rule (see Figure 17-10). Select CPU Percentage from the Metric Name drop-down box.

FIGURE 17-10

 5. Change the Instance limits maximum to 5 and the Threshold to 80.

 6. Save the rule by clicking the Add button then Save.

574 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

How It Works

Running a Web App in FREE mode does not get you a whole lot. It is really for testing and
learning how the Microsoft Azure platform works. Auto Scaling is only available in STANDARD
or higher modes and therefore you must scale to this tier to have access to this feature. Other modes
like SHARED and BASIC have the capacity to scale but require a manual configuration to do so.

By default, the Auto Scale settings are to scale up to a maximum of 1 instance of this App Service
Plan when the CPU utilization averages over 70% within a 10-minute time period examined every
1 minute. This was changed to a maximum of 5 instances with an average CPU threshold of 80% (see
Figure 17-10). This means that when the average CPU consumption on one instance is greater than
80% for 10 minutes, the Azure platform will add another instance. If the average combined CPU con-
sumption on those two instances is again greater than 80%, another instance is added. This happens
up to a maximum of five instances. The absolute maximum number of instances in a STANDARD
App Service Plan is 10 instances.

Consider the S1 App Service Plan (ASP), which equates to 1 x 2.6 GHZ CPU and 1.75GB of memory.
This means that when you scale to the maximum of five instances, there are five different virtual
machines, each one with 1 x 2.6GHZ CPU and 1.75GB of memory all running the same Web App in
the form of a Web Farm. Had an S3 ASP been selected instead, a maximum of five virtual machines
with 4 x 2.6GHZ CPUs and 7GB of memory each could be available from this rule.

Finally, when the utilization of the CPU or CPUs on the virtual machines running your Web App
breaches the configured CPU threshold percentage downwards, i.e., less than 80% (refer to Figure
17-10), an instance or virtual machine is removed from the Web Farm until the number of instances set
in the Minimum text box is reached.

The auto scaling feature is very useful for managing unexpected peaks of usage and requests to
your Web App. However, if you already know when your customers or users interact with your Web
App, you can plan ahead and have the additional instances available slightly before they are actu-
ally needed. The benefit is that instead of a gradual increase or decrease of instances based on CPU
usage, you can scale immediately to the number of CPUs and amount of memory required during
only that specific timeframe. For example, if you know that your marketing department is running
a campaign during the month of October, you can schedule additional resources to be available dur-
ing that month. By having the required resources available and warmed up, you can avoid any delay
in getting them allocated for use by your users or customers. Perform the steps described in the fol-
lowing Try It Out to see how.

TRY IT OUT Scale an ASP.NET Web API at a Specific Time

 1. Access the Microsoft Azure portal at https://portal.azure.com.

 2. Select the ASP.NET Web API you created earlier in this chapter, for example “handofcards.”
Remember that if the Web App is in the FREE pricing tier Auto Scaling is not available; it is only
available when the Web App is in STANDARD or higher mode.

https://portal.azure.com

Scaling an ASP.NET Web API on Microsoft Azure ❘ 575

 3. Scale your Web App up to STANDARD by clicking on the Scale up (App Service Plan), choose
either S1, S2, or S3, and then press the Select button at the bottom of the page.

 4. Once the configuration is saved, select Scale out (App Service Plan), + Add a scale condition, and
the options for scaling based on dates and time are rendered, as illustrated by Figure 17-11. Click the
“Specify start/end dates” radio button.

FIGURE 17-11

 5. Enter for example the Timezone, dates, and times similar to those shown in Figure 17-12.

FIGURE 17-12

 6. Click the SAVE button at the top of the page, and when the configured time frame becomes cur-
rent, the scale setting will take effect.

When you create a schedule for scaling your Web App, a name, start date, start time, end date, and
end time are required. With this information, the Microsoft Azure platform manages the number
of available instances, which are virtual machines that serve requests to your Web App during the
configured time frame. It is possible to create numerous schedules, each having its own number of
instances and scale settings. Simply create the schedule, save it, and when it’s needed select it from
the schedule drop down, and the resources will become available as expected.

576 ❘ CHAPTER 17 AdvAnced cloud ProgrAmming And dePloyment

EXERCISES

 17.1 Instead of consuming the ASP.NET Web API from an ASP.NET Web Site application, try con-
suming it from another program type like a console application or a Windows Universal App.

 17.2 What is the maximum size and number of instances you can have for a Web App on the
Microsoft Azure platform?

Answers to the exercises can be found in Appendix.

Scaling an ASP.NET Web API on Microsoft Azure ❘ 577

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

ASP.NET Web
API

An ASP.NET Web API is an Internet or intranet interface that exposes methods
for consumption from external programs.

Deploying to the
cloud

Use tools like Visual Studio, WebDeploy, Git, or FTP to deploy your program to
the cloud.

Consuming a
Web API

An ASP.NET Web API returns the output of the method in a JSON file. Use the
Newtonsoft.Json class library to parse and use its content.

Scaling in the
cloud

Microsoft Azure Web Apps let you auto scale based on a defined schedule or
CPU usage. Being able to scale up when you need more of a resource and down
when it is no longer needed is one of the most valuable benefits of the cloud.

.NET Standard and .NET Core
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Cross-platform basics and key “must know” terms

 ➤ What is .NET Standard, and why is it needed?

 ➤ Referencing and Targeting frameworks

 ➤ What is .NET Core?

 ➤ Building and packaging a .NET Standard library

 ➤ Building a .NET Core application with Visual Studio

 ➤ Porting from .NET Framework to .NET Core

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter18 folder and individually named
according to the names throughout the chapter.

For many years, perhaps even for many decades, the Microsoft Windows operating system
platform had such reach and usage that there was limited need for cross-platform support.
Companies and developers would create software using the .NET Framework, which ran on
Microsoft Windows, without any consideration of supporting Android, Apple, or Linux. With
the rise of mobile, IoT, and touch-based devices, these other platforms gained in popularity,
leading many firms to rethink their cross-platform support and opportunities.

The .NET Framework was designed from the beginning to run cross-platform, to function on
different processor types (i.e., x86, ARM, or x64) and to interoperate with other programming

18

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

580 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

languages. The way in which the .NET Framework was intended to run cross-platform was by
compiling first into an intermediate language, frequently referred to as the Common Intermediate
Language (CIL), previously called Microsoft Intermediate Language (MSIL). CIL, considered the
lowest level of human readable code, is then compiled into native code, (native code is machine code
[0s and 1s] that is executed directly by the processor). Once compiled into native code (this process
is discussed next), the instructions can be run on the targeted platform and processor. Finally, the
compilation of CIL into native code can be optimized on the type and version of processor. For
example, the Intel Core i5 processor has some features and instruction sets which do not exist in
older Pentium 4 processors.

NOTE How to configure the compiler options to optimize execution based
on processor type is not discussed in this book. Consider performing an
Internet search using “.NET Compiler Optimizations” to learn more about this
advanced subject.

There are two methods for compiling the CIL code into native code: Just in Time (JIT) or Ahead of
Time (AOT). JIT compilation happens, as its name implies only when the contents of the assembly
are executed. This means that when you deploy your C# code onto a platform, it remains in CIL
until a request to a specific method is invoked. The assembly (or .dll) is compiled a little bit at a
time based on when/if it gets used. This contrasts with AOT, where you compile all assemblies into
native code on the targeted platform and processor type prior to deployment. The tool which is used
to AOT compile is called NGEN.

The prerequisite to the .NET Framework cross-platform support is having a Common Language
Runtime (CLR) that can convert the CIL into the native code required to run on the targeted plat-
form. The CLR is often referred to as a “virtual machine” (not to be confused with a VM created
using Hyper-V or VMWare). Without a CLR virtual machine for Android, Apple OS, or Linux, the
CIL cannot be compiled and run on those platforms. The fact that those virtual machines were not
fully created or supported is the primary basis for the rise of Mono, Xamarin, and ultimately the
creation of .NET Standard and .NET Core frameworks.

Finally, from an interoperational perspective, the .NET Framework library can be consumed using
many languages like F#, PowerShell, Eiffel, COBOL, and Visual Basic .NET, for example. The con-
cept of interoperate means that if a module (e.g., a DLL file) is written in F#, then the objects and
methods within that module can be consumed by a program written in any supported CLI language,
i.e., C#. This consumption is achieved by adding the F# module as a reference in your C# project
and then declaring the module with the using directive at the top of the .cs file.

You know now that the .NET Framework was originally designed to run cross-platform and how
it was intended to be achieved (with CIL and CLR virtual machines). The remainder of this chapter
discusses reasons why the shift from the .NET Framework to .NET Core happened and some exam-
ples of how to create .NET Standard libraries and .NET Core projects. You begin by reading about
some must-know cross-platform and open source terms in the next section.

Cross-Platform Basics and Key “Must Know” Terms ❘ 581

CROSS-PLATFORM BASICS AND KEY “MUST KNOW” TERMS

A cross-platform program is one that can run on more than a single operating system, where an
operating system is, for example, Microsoft Windows, Android, Mac OS, and Linux. The objec-
tive is that the program is written once, compiled on a supported OS and when deployed, the code
executes, performs and behaves the same on each of the targeted operating systems. This has histori-
cally been very difficult to achieve, even when using an open source library like Mono or Java, and,
as previously stated, is not truly viable using the full .NET Framework. Many of the complexities
come from the way the cross-platform code interfaces and reacts to subtle differences in operating
system services like disk I/O, security protocols, and network access.

As programmers begin to focus more effort towards writing C# code that can easily run cross-platform,
consider these numerous “must know” concepts and terms to help build a solid foundation. These
key terms are identified and described in Table 18-1.

TABLE 18-1: Cross-Platform Key Terms

KEY TERM DESCRIPTION

Hardware platform X86, 64-bit, Itanium, ARM, and so on

Software platform The operating system: Windows, Linux, Android, Mac OS, iOS and so on

Cross platform Write code once and run on any supported hardware and software platform
combination after the code is compiled to target the desired platform

Ecosystem The combination of community resources, development tools, and runtime
software

Stack Hardware, software, and ecosystem used together to build and run programs
(e.g., Windows Stack, Linux Stack, and so on)

API An Application Programming Interface (API) exposes classes, delegates, enu-
merations, interfaces, and structures for consumption via other programs.

Assembly A .dll file that exposes APIs that can be utilized from other assemblies or
executables

Standard A formal specification of APIs, or a contract

Verticals Windows Forms, ASP.NET, WPF, UWP, and so on; often referred to as
Application Models

Framework/library An inclusive collection of APIs used for the creation of programs focused on a
specific vertical, in the form of an assembly

Open Source Frameworks and code libraries that are written and supported by an open
community of software developers. These libraries can be used based on the
license for the specific open source library.

continues

582 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

KEY TERM DESCRIPTION

GitHub An online open source code repository for sharing, updating, and forking pub-
licly available and community supported code

Forking Also referred to as a branch, but implies a split in the development community
as well. It is a copy of an existing source code repository to start new indepen-
dent development. For example, .NET Core is a fork of the .NET Framework.

Version Each version of a framework contains new or enhanced APIs and possible bug
fixes.

Semantic
versioning

A concept to describe the scale and type of change in this format: [MAJOR]
.[MINOR].[PATCH].If the MAJOR number changes, the version is more impact-
ful than if the MINOR changes.

Target framework The collection of APIs that a program relies on, for example:
dotnet-sdk-2.0.4-win10-x64

TFM Target Framework Moniker (TFM) is a condensed version of the target frame-
work, for example: netstandard2.0 or netcoreapp2.0 TFM is most com-
monly used for targeting the program to a specific framework version.

Dependencies A specific group of assemblies required for a program to compile or for a task
to be completed

Metadata Data that provides information about other data, for example: date created,
author, and file size

Package A group of assemblies and metadata

Metapackages A group of interdependent packages but has no library or assembly of its own

NuGet A package manager for .NET that helps developers create and consume
packages

BCL Base Class Libraries (BCL) is a common collection of classes, interfaces, and
value types. For example, the classes, interfaces, methods, and value types in
the System.* directive.

PCL Portable Class Library (PCL) is a class library that can run in numerous .NET ver-
ticals without recompilation.

Runtime The Common Language Runtime (CLR). The CLR manages memory allocation
(garbage collection), compilation, and execution.

CoreCLR Same as the CLR but can run cross-platform. This is the Common Language
Runtime engine for .NET Core.

TABLE 18-1 (continued)

What Is .NET Standard, and Why Is It Needed? ❘ 583

KEY TERM DESCRIPTION

CoreFX The .NET Core System.* namespaces, which have strong dependencies on
the runtime.

CoreRT A runtime like the CoreCLR but without the JIT compiler. The program is com-
piled AOT (see .NET Native) and during which time all unnecessary code and
metadata are removed.

.NET Native Creates native code compiled AOT and is commonly used with UWP
development

With a solid understanding of these key terms, it is time to jump into the new Microsoft cross-platform
library and framework called .NET Standard and .NET Core.

WHAT IS .NET STANDARD, AND WHY IS IT NEEDED?

As illustrated in Figure 18-1 there are numerous verticals or application models that developers and
companies can target a program to run on. For example, Windows Forms, ASP.NET, and WPF are
based on the full .NET Framework, while Windows Phone utilizes the .NET Compact Framework
and Universal Windows Apps is based on .NET Native library.

.NET Native/CoreFX Android/iOS/OS X

Xamarin
Universal

Windows Apps
(UWP)

CoreCLRComman Language Runtime (CLR)

.NET Framework

Common Infrastructure

Runtime Compilers Components Languages Platform

Base Class Library
Mono
Library

Core Library

.NET Core Mono
.NET

Framework
for

SilverLight

SilverLight
Library

.NET Micro
Framework

Micro
Library

Compact
Library

.NET
Compact

Framework

ASP.NET
Core

Windows
Phone

Windows
Forms

B
as
e

Li
b
ra
ri
es

A
p
p

M
o
d
el
s

ASP.NET WPF SilverLight IoT

FIGURE 18-1

The .NET Compact Framework, .NET Core, .NET Microframework and others shown in Figure
18-1 all contain some type of Base Class Library (BCL) capabilities which were forked from the full
.NET Framework.

584 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

NOTE Forking is an indicator that the base code has a solid foundation and is
now being used for a separate, independent, and specifically tailored version
of the code.

Take the .NET Microframework fork for example. This fork, with a slimmed down BCL, was cre-
ated specifically to work within the confines of small Internet of Things (IoT) devices where the
full .NET Framework footprint was simply too large to be a feasible library on that hardware plat-
form. That framework version simply consumed too much drive and memory space for those small
devices. The fork was made with reduced size and memory requirements so that it could fit and
function on that platform. To reduce the size of the .NET Microframework, some of the features
commonly found in the full .NET Framework were removed. The capabilities that were minimized
and/or modified requires the developer to learn the subtleties of the vertical BCL library for that
specific framework. Each application model having a slightly different set of requirements was the
reason for most of the forks made from the .NET Framework.

When a developer wanted a program to run on a Windows PC, a Windows Phone, and to function
as a Universal Windows App, historically it was necessary to have multiple projects and sources for
each of the three verticals. As implied previously, in most cases the differences in the implementation
of features were distinct per vertical BCL, specifically in the cases of security, networking, remoting,
reflection, and file access, for example. This required the developer to learn, develop, and support
the BCL confines for each vertical, which also resulted in additional costs for a company. The costs
are incurred by having to develop, test, deploy, and support multiple versions of the same program.

NOTE Most of the features which cannot be easily ported to different verticals
are contained specifically in the mscorlib.dll.

Also note in Figure 18-1 that each .NET Framework runtime (Compact, Micro, Silverlight, Core,
and so on) used by each application model remains necessary to successfully run the program on the
targeted vertical and platform. When a developer decides to target a vertical, the target framework
gets chosen during the creation of the solution and project in Visual Studio, for example. Therefore,
each vertical will execute in its own runtime or virtual machine and must be compiled for the target
app model, deployed with the dependent components and programmed in a .NET Framework sup-
ported language. This remains the case also when targeting a .NET Standard class library.

Shared Project, PCL, and .NET Standard
Before .NET Standard and Portable Class Libraries (PCL) both of which are described later, there
were shared projects where it was common to use the #if, #else and #endif directives to identify
which software or hardware platform the code is running on and then load the correct assembly(s)
for the platform. The following code snippet, for example, checks whether the platform is .NET
Framework 4.0. If it is, a reference to System.Net is used; if not, a reference to System.Net.Http
occurs. (The code does assume there’s no .NET Framework version older than 4.0.) Later in the
code or class file, the developer must again check for platform dependencies and call the methods

What Is .NET Standard, and Why Is It Needed? ❘ 585

within those classes to achieve the objective of the program, such as using either the WebClient()
or HttpClient() methods. Those methods handle outgoing or incoming HTTP requests and
responses. Those two methods have different implementations depending on the version of the
loaded .NET Framework.

#if NET40
 using System.Net;
#else
 using System.Net.Http;
 using System.Threading.Tasks;
#endif

In addition to software runtime validation, developers could also use those directives (#if, #else,
and #endif) to determine different hardware platforms and load specific binaries based on the
results.

#if PLATFORM_X64
 [DllImport("BLIB64.dll", CallingConvention=CallingConvention.Cdecl)]
#else
 [DllImport("BLIB32.dll", CallingConvention=CallingConvention.Cdecl)]
#endif

Using the directives #if, #else, and #endif to provide cross-platform support was never a solid,
scalable, maintainable, or easily supportable approach. The program ended up with many code paths,
required much updating and complicated testing procedures when the components of the software or
hardware were changed. As the need for targeting multiple verticals and platforms increased, a new
solution for cross-platform support was in high demand. From that demand, the concept of Portable
Class Libraries (PCL) was created. PCL helped resolve the scaling, maintaining, testing, and support-
ability issues to a considerable extent. When creating a PCL, a developer could select from a list of
verticals to target (see Figure 18-2) and the tooling (e.g., Visual Studio) would generate the APIs into
the specific BCL for each different application model. Notice that you can also Install additional tar-
gets like Xamarin, Unity, and other supported versions of the full .NET Framework.

FIGURE 18-2

586 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

PCLs worked well if you remained on the Windows stack and ecosystem. The issue is that the
Windows operating system has features which are unique to the operating system. One such feature
is the registry which other operating systems either do not have or have something similar but dif-
ferent enough not to work with a PCL designed for reading and writing to the Windows registry.
Additionally, Windows implements reflection differently than other operating systems and has a
different concept when it comes to application domains (i.e., AppDomain). Where an AppDomain is
a layer of isolation within a process. Therefore, using a PCL did help resolve the issue of develop-
ing for multiple Windows verticals but does not achieve full software and hardware cross-platform
support.

The solution is the creation of the .NET Standard library in combination with .NET Core. (See the
next section for details about .NET Core). .NET Standard is a set of .NET APIs that are intended to
be used across all .NET verticals. As shown in Figure 18-3, it replaces all the various BCL-specific
implementation details per fork or framework vertical. A .NET Standard class library unifies the
BCLs for all .NET Framework verticals.

.NET Native/CoreFX Android/iOS/OS X

Xamarin
Universal

Windows Apps
(UWP)

CoreCLRComman Language Runtime (CLR)

.NET Framework

Common Infrastructure

Runtime Compilers Components Languages Platform

.NET Standard Library

.NET Core Mono
.NET

Framework
for

SilverLight

.NET Micro
Framework

.NET
Compact

Framework

ASP.NET
Core

Windows
Phone

Windows
Forms

U
ni
fie

d
B
as
e

Li
b
ra
ri
es

A
p
p

M
o
d
el
s

ASP.NET WPF SilverLight IoT

FIGURE 18-3

Similar to a PCL where during the creation of the class the programmer selects which .NET
Framework fork to target (Compact, Micro, Silverlight, Core, etc.), when creating the .NET
Standard Class Library, the .NET Standard target version is chosen instead. As discussed in detail in
the coming “Referencing and Targeting Frameworks” section, the programmer selects the version of
.NET Standard based on the desired target framework, where the higher the version, the lower the
number of platforms on which the application model can run.

Finally, version 1.0 of .NET Standard exposed few APIs; however, with the release of .NET
Standard 2.0 the number of APIs is up to around 33,000. You can consider the APIs as the methods
contained within a .NET Framework namespace. A brief overview of the supported namespaces and
number of available APIs within them are shown in Table 18-2.

Referencing and Targeting Frameworks ❘ 587

TABLE 18-2: Summary of .NET Standard 2.0 Namespace and API Count

NAMESPACE #APIS

System 1,087

System.Collections 292

System.Data 1,399

System.IO 275

System.Net 1,271

System.Security.Authentication 11

System.Web 32

System.XML 1,011

For a detailed list of APIs available in .NET Standard 2.0, have a look at this page: https://
github.com/dotnet/standard/blob/master/docs/versions/netstandard2.0.md. The purpose
of the .NET Standard class library and the history of the industry’s evolution toward greater need
for cross-platform support should now all be clarified. But it is still very Windows stack oriented
which is where the .NET Core framework fork comes into view.

REFERENCING AND TARGETING FRAMEWORKS

The key factor when deciding which version of .NET Standard to implement is which platforms
and framework your class library must run on. Recognize, as shown in Table 18-3, that the higher
the version of .NET Standard chosen the more APIs (Table 18-2) are available, but consequently the
class will run on fewer platforms.

TABLE 18-3: Summary of .NET Standard Supported Version

FRAMEWORK

.NET Standard 1.1 1.2 1.4 1.5 2.0

.NET Core 1.0 1.0 1.0 1.0 2.0

.NET Framework (.NET Core 2.0) 4.5 4.5.1 4.6.1 4.6.1 4.6.1

Mono 4.6 4.6 4.6 4.6 5.4

Xamarin.iOS 10 10 10 10 10.14

Xamarin.Android 7.0 7.0 7.0 7.0 8.0

UWP 10 10 10 vNext vNext

https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.0.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.0.md

588 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

Envision a scenario where your .NET Standard class library needs to run, targeting the .NET Core
1.0, .NET Framework 4.5.1 and Xamarin.Android 7.0 frameworks. In that case, the .NET Standard
class library must target .NET Standard version 1.2 because that is the version that supports all
those frameworks. Consider a scenario where all the previous frameworks remain the same exclud-
ing the .NET Framework, which needs to target 4.6.1. The .NET Standard class library should
therefore be targeted to version 1.4. Had the .NET Framework needed to focus on version 4.5, know
that 4.5 features exist in 4.6.1; therefore, a backwards downgrade is not required as the APIs are
rolled up into newer versions.

The exposed APIs are vastly different between the .NET Standard versions. As summarized in Table
18-2, the number of APIs in .NET Standard 2.0 is rather large with around 33,000, while version
1.0 exposes many, many fewer. Therefore, the probability of having access to the APIs required to
execute a program is less when targeting 1.0 than when targeting 2.0. In many cases these “older”
shared projects or PCLs would target older .NET Framework versions, which are not ported to
.NET Standard at all. That would mean that the code in those projects would not run as the APIs
either don’t exist, have changed considerably, or are not supported at all.

WHAT IS .NET CORE?

In a previous section you learned that .NET standard is a class library for use across all the
Windows application verticals, and one of those verticals is .NET Core. .NET Core is a fork of the
full, feature rich .NET Framework and is cross-platform and open source. In addition, .NET Core is
optimized to run on the cloud platform, such as Microsoft Azure, and is highly performant, modu-
larized, and adopts a true self-contained deployment model.

NOTE The full version on .NET Framework is still the best choice for develop-
ing feature rich Windows- and ASP.NET-based applications that target the
Windows operating system.

The .NET Core framework is the newest addition to the Microsoft development verticals and is des-
tined to be the preferred framework for all future developments.

In the following Try It Out, you will install .NET Core 2.0 which additionally includes .NET
Standard 2.0.

TRY IT OUT Install the .NET Core 2.0 SDK

You will update to at least Visual Studio 2017 update 3 and then install the .NET Core 2.0.0 Runtime
and SDK, which allows you to then create .NET Standard 2.0 class libraries and .NET Core applica-
tions based on version 2.0.0.

 1. Within Visual Studio 2017, click on Help ➪ About Microsoft Visual Studio.

 2. If the version is greater than or equal to 15.3, you can skip to step 5.

 3. Select the Tools ➪ Extensions and Updates menu item, then expand the Updates Tree View item, as
illustrated in Figure 18-4.

What is .NET Core? ❘ 589

FIGURE 18-4

 4. Install the Visual Studio Update.

 5. Download and install the .NET Core Runtime 2.0.0 and the .NET Core SDK 2.0.0 or newer
from here: https://www.microsoft.com/net/download/windows. Alternatively you can down-
load it from the GitHub repository here: https://github.com/dotnet/core/tree/master/
release-notes/download-archives.

 6. You will now be able to select .NET Core 2.0 and .NET Standard as the target framework from
the Properties tab of your Visual Studio project.

How It Works

The .NET Core 2.0 SDK installs into C:\Program Files\dotnet or C:\Program Files (x86)\dotnet
depending on the bit version that was installed (see Figure 18-5). This example is performed on a Windows
10 computer using Visual Studio Community. There is currently no example for the installation of .NET
Core into Visual Studio Code on Mac or Linux.

FIGURE 18-5

https://www.microsoft.com/net/download/windows
https://github.com/dotnet/core/tree/master/release-notes/download-archives
https://github.com/dotnet/core/tree/master/release-notes/download-archives

590 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

The remainder of this chapter discusses the specific elements that make .NET Core 2.0 worthy of a
new Microsoft vertical.

Cross Platform
As shown in Table 18-1, cross platform means that code is written once and can then run on any
supported hardware and software platform. It is, though, necessary to target the hardware and soft-
ware platform and compile the code for those specific platforms and include the specific runtimes.
However, the code needs to be written only once. As shown in Figure 18-5, the .NET Core 2.0 SDK
can be downloaded for Windows (x64), Windows (x86), MacOS, and Linux.

To use the .NET Core SDK for either Windows, MacOS, or Linux you need to have a computer
that is running one of those operating systems and an IDE that supports the .NET Core SDK for
use with your code. A very popular IDE for development using .NET Core is Visual Studio Code,
downloadable from https://code.visualstudio.com (see Figure 18-6). Visual Studio Code has
a feature debugging capabilities and supports IntelliSense.

FIGURE 18-6

The exercises to this point in the book have used Visual Studio Community. Because this is a
Microsoft-focused book, Visual Studio Community will continue to be used because the exercises
are executed on a computer running the Windows operating system. But, have no doubt that the
code written using the .NET Core framework on a Windows computer using the .NET Core frame-
work targeting windows can be compiled on a Mac or Linux machine and executed there.

One topic which has been discussed already but is worth mentioning again is that operating system-
specific features like those that would live in the System.IO namespace must be compiled against
a System.IO.dll compiled for the targeted operating system. Therefore, if you create a project in
Visual Studio Code on a Linux computer and include the System.IO namespace, it will be the one
necessary to work on the Linux OS. NuGet, which is explained later in this section, will help ensure
your project gets the correct platform version of the binary.

https://code.visualstudio.com

What is .NET Core? ❘ 591

Open Source
The source code for the .NET Core framework is located at https://github.com/dotnet/core.
Any developer (or anyone who can read code) can view it and see specifically what it does. In
addition, individuals can, in collaboration with others, search for, identify, and even fix bugs or
problems with the code. Note that the source code for the full .NET Framework can be found at
http://referencesource.microsoft.com, but it is not open source and therefore it’s neither pos-
sible to fork it nor can you build/compile a version of that full framework. Don’t assume that you
need to clone or download the .NET Core GitHub repository, build, and compile it to use it. As
mentioned previously (refer to Figure 18-5), a stable compiled version created by Microsoft can be
downloaded and installed.

If a method or class is found to be missing, or something your application needs to work optimally
in the .NET Core source code—and this is the coolness of open source—you can add it. When mak-
ing a fork, add the code optimization and make it known to the community that it was done. If the
optimization is accepted, then it can be placed into the main branch and included in the next ver-
sion. If the optimization is not accepted, it would be possible to compile and build a version of the
.NET Core framework just for that one project that needs it.

Finally, by making the .NET Core framework open source, Microsoft has truly engaged the open
community of developers and designers, giving them a terrific opportunity to contribute, make a
name for themselves, and really use their existing skills to contribute and advance their careers. This
kind of access to code written predominantly by Microsoft developers has historically been locked
off to the open community.

Optimized for the Cloud
Recall Chapter 16 where the cloud-optimized stack is discussed. The attributes that defined the
cloud-optimized stack are:

 ➤ Portability

 ➤ Scalability

 ➤ Small and compact

 ➤ Modular (side-by-side execution)

 ➤ Resiliency

.NET Core is portable and it is fully cross-platform compliant. It is also scalable due to its small
footprint, certainly when compared to the full .NET Framework. When a .NET Core program is
compiled, only the binaries required to run the program are packaged into the assembly or execut-
able, making it very easy to copy and run on additional cloud hardware. Because the code is a fork
of the full .NET Framework, which is a time-tested and heavily engineered programming library,

https://github.com/dotnet/core
http://referencesource.microsoft.com

592 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

the code is resilient to transient blips and handled exceptions. Refer to the “Cloud Patterns and Best
Practices” section in Chapter 16 for more on that.

The size and speed of the .NET Core library and runtime has also been optimized, which is very
important considering that in the cloud, customers are charged by what is used (i.e., consumption).
Therefore, if the program takes up little space and runs fast, less compute power is required, and
costs are reduced.

Performance
.NET Core offers many performance improvements compared to the full .NET Framework. Many
ideas for optimization have come from the open source community. Now, instead of working
around performance issues, developers can view the source code causing the slowness and optimize
it. Check the COREFX and CORECLR GitHub repositories for requests containing “performance”
and you’ll find thousands of changes. Some examples are shown in Table 18-4.

TABLE 18-4: .NET Core Performance Improvements versus .NET Framework

NAMESPACE / MODULE PERFORMANCE

IMPROVEMENT

System.Runtime.Serialization 12x

System.Security.Cryptography 2x

System.IO.Compression 4x

System.Linq up to 30x

System.Collections.Concurrent.CollectionBag<T> 30%

System.Collections.Generic.List<T> 25%

System.Collections.Generic.SortedSet<T> 600x

System.Collections.Generic.Queue<T> 2x

System.Text.RegularExpressions 25%

There have been many optimizations and the library will continue to get better and better as more
developers and companies adopt it and contribute to it. Visit https://blogs.msdn.microsoft
.com/dotnet/2017/06/07/performance-improvements-in-net-core/ for a discussion of the
performance improvements in .NET Core.

https://blogs.msdn.microsoft.com/dotnet/2017/06/07/performance-improvements-in-net-core/
https://blogs.msdn.microsoft.com/dotnet/2017/06/07/performance-improvements-in-net-core/

What is .NET Core? ❘ 593

Modular Design
When a new .NET Core 2.0 project is created, which is done in the next Try It Out, the project
contains a “standard” set of dependencies found when you expand Dependencies ➪ SDK ➪
Microsoft.NetCore.App, as shown in Figure 18-7. Although the project contains over 100 assem-
blies, only the ones your program requires to run and are referenced are included in the assembly or
executable when it’s compiled.

FIGURE 18-7

.NET Core is delivered via a set of NuGet packages. The “standard” or default project assemblies
are present to support a scenario, for example where a developer has a computer that is not con-
nected to the Internet and is therefore not able to download and install the basic NuGet packages.
However, these default assemblies ensures that there are roadblocks with making progress once the
.NET Core 2.0 project is created.

In the following Try It Out, you create a Console App (.NET Core) and use NuGet to add a .NET
Core package that is not part of the default set of project assemblies.

TRY IT OUT
Create a Console App (.NET Core) and Install a .NET Core Targeted
NuGet Package: Ch18Ex01\Program.cs

 1. Create a new Console App (.NET Core) application by selecting File ➪ New ➪ Project… within
Visual Studio. In the New Project dialog box (see Figure 18-8), select the category Visual C#
➪ .NET Core and then select the Console App (.NET Core) template. Change the path to C:\
BeginningCSharp7\Chapter18, name the Console App Ch18Ex01, and then click the OK button.

594 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

FIGURE 18-8

 2. Expand Dependencies ➪ SDK ➪ Microsoft.NetCore.App, as shown in Figure 18-7; notice that
there is no Newtonsoft.Json assembly.

 3. To install that assembly using the NuGet Package Manager, from the menu, click Tools ➪ NuGet
Package Manager ➪ Package Manager Console.

 4. Enter the following command:

Install-Package Newtonsoft.Json

 5. Once installed, a new folder is created under Dependencies named NuGet. Expand that folder and
the module Newtonsoft.Json is present and can therefore be referenced from within the project
by adding this line to the top of the Program.cs:

using Newtonsoft.Json

 6. Right-click on the Ch18Ex01 project, select Edit Ch18Ex01.csproj, and notice that a reference to
the Newtonsoft.Json NuGet package has been added to the project.

How It Works

As shown in Table 18-1, .NET Core packages and modules are versioned using semantic versioning.
For example, it is very common to see a reference to an assembly as type=Newtonsoft.Json, ver-
sion=10.0.3, Culture=neutral, PublicKeyToken= 30ad4fe6b2a6aeed. If for some reason the
version number gets out of sync and an error message like:

"Could not load file or assembly 'Newtonsoft.Json, Version=10.0.2, Culture=neutral,

PublicKeyToken=30ad4fe6b2a6aeed' or one of its dependencies. The system cannot find

the file specified."

What is .NET Core? ❘ 595

is rendered during compilation or runtime, then the new NuGet-based modular design of .NET Core
helps resolve this complexity quickly. Historically, the complexity of resolving an exception like that is
finding where the reference is configured and where and perhaps why it changed. Then, placing the cor-
rect version of the assembly into the correct location so that the reference matches the installed assem-
bly has been problematic for a long time.

The solution would be to include the -Version parameter with the Install-Package NuGet com-
mand; that would install the version the .NET Core project is referencing.

Install-Package Newtonsoft.Jcon -Version 10.0.2

Installing packages using NuGet with the named assembly and version number is what makes .NET
Core modular. This modular design has a massive impact on the application deployment and frame-
work update facilities discussed in the next section.

Self-Contained Deployment Model
The full .NET Framework is most commonly installed on the computer or server that will run the
program created by a developer. A benefit of doing this is that the framework is installed once and
all applications can reference and use the framework as needed, saving local storage space. However,
an undesirable situation can happen when all applications reference the same framework assemblies
and unexpected updates are performed, breaking some code functions.

There are two distinguishable types of upgrades in the context of the full .NET Framework. They
are side-by-side and in-place. Side-by-side is a major version change. For example, installing .NET
Framework 2.0 and .NET Framework 4.0 would support programs targeting either 2.0 or 4.0. This
is common when there are significant modifications or optimizations to the CLR and framework
components. If a program targeted .NET Framework 2.0 and .NET Framework 4.0 was installed,
the risk of impact is small, because it is a side-by-side installation. In contrast, an in-place upgrade,
for example, upgrading from .NET Framework 4.5 to .NET Framework 4.6.2, would likely contain
changes to the mscorlib.dll and other .NET assemblies that would be run when programs are tar-
geting .NET Framework 4.x.

.NET Core resolves this by being self-contained, also referred to as application local frameworks.
What this means is that the assemblies referenced within the program are included with the module
or executable and when deployed the program has all the required assemblies to run (the runtime,
the compiler and the referenced framework components). The program is no longer dependent on a
machine-wide installation of any .NET Framework, and any modification to a machine-wide side-
by-side or in-place .NET Framework version would have no impact on the .NET Core program.
Finally, because the assemblies are small and compact (i.e., cloud optimized), they consume limited
local storage space.

This means that as a developer and a company, once the product has shipped, high confidence can
be held that the program will never stop working due to a framework upgrade on a computer or

596 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

server. Historically, when breaking upgrades happened, the developers and IT support staff were
called into escalation meetings to resolve this issue in a state of crisis. These were very complicated
situations in the enterprise as it is common for groups, teams, and processes requiring many agree-
ments and approvals to get changes made to a production environment. It is common practice that
once the development is complete, the ownership of the code transfers to support, which is the basis
for the complexities and approvals. Those constraints made the situation much more challenging.

NOTE .NET Core upgrades and rollbacks in the development environment
are simple when compared to .NET Framework machine-wide changes. To
upgrade to the most current version of a .NET Core module execute: install-
package System.Text.RegularExpressions. To roll back to the previous ver-
sion, use the -Version parameter to identify the desired version.

However, when .NET Core is chosen as the framework, this crisis mode situation will no longer
happen. Instead, upgrades are made only at the application level where ample development, integra-
tion, and performance testing can happen in advance. If issues do come up during the development
cycle when upgrading to a new assembly version, developers and companies then can decide on
which actions to take. Deciding to upgrade the code to support the new version or roll back to the
version that had worked well prior to the upgrade is much easier in a development environment than
in production crisis mode.

BUILDING AND PACKAGING A .NET STANDARD LIBRARY

A .NET Standard class library is a BCL which can be used to run across many different application
verticals. In the following Try It Out, you will create a .NET Standard class library which contains
classes required to deal a hand of cards.

TRY IT OUT Create a .NET Standard Class Library

You will use Visual Studio 2017 to create a .NET Standard class library that contains the classes for use
with the Card game example used throughout the book.

 1. Create a new .NET Standard class library by selecting File ➪ New ➪ Project… within Visual
Studio. In the New Project dialog box (see Figure 18-9), select the category Visual C# ➪ .NET
Standard and then select the Class Library (.NET Standard) template. Change the path to C:\
BeginningCSharp7\Chapter18, name the Class Library Ch18CardLibStandard, and then click
the OK button.

Building and Packaging a .NET Standard Library ❘ 597

FIGURE 18-9

 2. Because the default class is not needed, right-click on the Class1.cs file, which was created by
default, and select the Delete menu item, which removes the class from the project.

 3. Download the sample code from the online repository (the location is stated at the beginning of the
chapter) and add the following class files to the root of the Ch18CardLibStandard project. Add
them by right-clicking on the Ch18CardLibStandard project, then select Add ➪ Existing Item…
and select the seven classes from the downloaded example.

 a. Card.cs

 b. Cards.cs

 c. Deck.cs

 d. Game.cs

 e. Player.cs

 f. Rank.cs

 g. Suit.cs

598 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

NOTE The seven classes are like those used in Ch13CardClient and
Ch13CardLib. Only a few modifications were implemented such as the removal
of the WriteLine() and ReadLine() methods and some other unneeded
methods.

 4. As shown in Figure 18-10, set the project to Release mode and, on the Properties tab of the
Ch18CardLibStandard project, confirm the Target framework is set to .NET Standard 2.0 by
right-clicking the project ➪ Properties.

FIGURE 18-10

 5. Click on the Build sub-tab menu, also seen in Figure 18-10 directly under Application sub-tab.
Click the XML documentation file checkbox and then save.

 6. Build/Rebuild the project by pressing SHIFT + F6 or by selecting Build ➪ Build
Ch18CardLibStandard from the toolbar.

 7. View the output on the bin\Release\netstandard2.0 directory under the
Ch18CardLibStandard and confirm both the XML and DLL files were successfully produced from
the build.

Congratulations! You have completed the creation of a .NET Standard class library.

Building and Packaging a .NET Standard Library ❘ 599

How It Works

Although this Try It Out targeted .NET Standard version 2.0, there are no APIs in the CardLib library
that require APIs that exist in the frameworks supported only in 2.0. This means that realistically, the
.NET Standard version can run on version 1.0 and would therefore function on more platforms.

Step 5 instructed you to enable creation of the XML documentation file by placing a check in the
checkbox. The information in the generated XML file is collected from the summary content within the
class files. This information is used for automated description generation during publishing and packag-
ing of the NuGet package performed later in this chapter. For example, within Card.cs, there is a sum-
mary like this:

/// <summary>
/// Class that describes a single card
/// </summary>

The content between the /// <summary> and /// </summary> tags represents the content of the XML
documentation file. Now that the .NET Standard class library is completed, package it and deploy it to
NuGet so that it can be consumed by all supported application verticals, platforms, and processors.

In the following Try It Out, you will package the .NET Standard class library created in the previ-
ous exercise. This package will be used for consumption via a .NET Core application later in this
chapter, and an ASP.NET and an ASP.NET Core application in Chapter 19.

TRY IT OUT Package a .NET Standard Class Library

You will use Visual Studio 2017 and msbuild to package the .NET Standard class library created in the
previous exercise.

 1. Open the Ch18CardLibStandard project created in the previous exercise, right-click
Ch18CardLibStandard Edit ➪ Ch18CardLibStandard.csproj.

 2. Update the C# project file .csproj so it resembles the following. Feel free to change any of the
attribute values, for example Authors.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <PackageId>Ch18CardLibStandard</PackageId>
 <PackageVersion>1.0.0</PackageVersion>
 <Authors>Benjamin Perkins</Authors>
 <Description>Beginning C# 7 .NET Standard CardLib</Description>
 <PackageRequireLicenseAcceptance>false</PackageRequireLicenseAcceptance>
 <PackageReleaseNotes>
 Beginning C# 7 .NET Standard CardLib for completing the Chapter 18 exercises
 </PackageReleaseNotes>
 <Copyright>Copyright 2017 (c). All rights reserved.</Copyright>
 <PackageTags>Beginning C# 7, CardLib</PackageTags>
 </PropertyGroup>

 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|AnyCPU'">

600 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

 <DocumentationFile>
 bin\Release\netstandard2.0\Ch18CardLibStandard.xml
 </DocumentationFile>
 </PropertyGroup>
</Project>

 3. Rebuild the project by pressing SHIFT + F6 or by selecting Build ➪ Build. It is expected that the
build happens in Release mode, as shown in previously in Figure 18-10.

 4. View the output on the bin\Release\netstandard2.0 directory under the
Ch18CardLibStandard and confirm both the XML and DLL files were successfully produced from
the build.

 5. Open the Developer Command Prompt for VS 2017 by opening the Windows Start menu (click the
taskbar’s icon and searching for ‘dev’.

 6. Change the directory path to the location of the Ch18CardLibStandard project by executing this
command (see Figure 18-11):

cd C:\BeginningCSharp7\Chapter18\Ch18CardLibStandard

FIGURE 18-11

 7. Then execute this command to build the NuGet package, also shown in Figure 18-11.

msbuild Ch18CardLibStandard.csproj /t:pack /p:Configuration=Release

 8. Once the command successfully completes, the NuGet package named Ch18CardLibStandard
.BeginningCSharp7.1.0.0.nupkg is created and placed into the bin\Release directory under
the Ch18CardLibStandard project directory path.

 9. Copy the just created .NET Standard Ch18CardLibStandard NuGet package into the C:\Program
Files (x86)\Microsoft SDKs\NuGetPackages. That directory is the location to store NuGet
packages offline.

Building and Packaging a .NET Standard Library ❘ 601

 10. To view the NuGet package offline, right-click Ch18CardLibStandard project ➪ Manage NuGet
Packages and select Microsoft Visual Studio Offline Packages from the Package source drop-down
list as shown in Figure 18-12.

FIGURE 18-12

How It Works

The .NET Core and .NET Standard tooling have been through numerous iterations, migrating from
DNX to project.json and now to the csproj format. These project formats have to do with the identi-
fication of dependencies when compiling and building the program. As stated previously, a characteris-
tic of an optimized program is that it must be small, and requiring the sometimes-manual identification
of the program dependencies helps achieve that objective. Recall from Ch18Ex01 when the csproj
file was opened that there was a package reference for Newtonsoft.Json. Each package dependency
required to run the program will be identified in that file.

The Microsoft Build Engine (MSBUILD) is the build platform for Visual Studio. It is transparent to the
programmer and uses the content of the csproj file to build the assembly or executable. This is what is
triggered when selecting the Build or Rebuild menu items in Visual Studio. Additionally, when Build con-
figurations are configured on the Properties tab of the project, those are sent as parameters to the msbuild
executable. It is also possible to compile and build a project using the command line version of msbuild
outside of Visual Studio.

602 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

NOTE Instead of manually building the NuGet package, it is pos-
sible to create a package each time the class is compiled. Right-click the
Ch18CardLibStandard project ➪ Properties. There is a check box on the
Package sub-tab named Generate NuGet package on build. When enabled,
as the name suggests, a NuGet package is created each time a build is
performed.

Although the NuGet package in this example is deployed locally, the pro-
grammer can deploy the package to Nuget.org and make it public or private.
NuGet is the current and future package manager for .NET and is used by
many programmers and companies to get their product into the open. The
.NET Standard Ch18CardLibStandard library is publicly hosted at NuGet.org.
Anyone can browse for Ch18CardLibStandard within Visual Studio after
selecting Manage NuGet Packages, or entering:

Install-Package Ch18CardLibStandard

into the Package Manager Console. Then the package will be installed into the
program.

Now that the .NET Standard class library is created and packaged, it is time to consume it.
Continue reading to learn how to do that.

BUILDING A .NET CORE APPLICATION WITH VISUAL STUDIO

.NET Core is a cross-platform, open source application framework. Using this framework in com-
bination with the .NET Standard class library allows the programmer to code the BCL once and
use it across all supported application verticals. In the .NET Core scenario, the benefit is true cross-
platform support.

In the following Try It Out, you will create a Console App (.NET Core) to consume the .NET
Standard class library created in the previous section. The .NET Core console application will deal a
hand of cards.

TRY IT OUT Create a .NET Core Console Application

You will use Visual Studio 2017 to create a Console App (.NET Core) using the classes and methods
within the .NET Standard class library Ch18CardLibStandard.

 1. Create a new Console App (.NET Core) application by selecting File ➪ New ➪ Project… within
Visual Studio. In the New Project dialog box, select the category Visual C# ➪ .NET Core and
then select the Console App (.NET Core) template. Change the path to C:\BeginningCSharp7\
Chapter18, name the Console App Ch18CardClientCore, and then click the OK button.

 2. Right-click on the Dependencies ➪ Manage NuGet Packages. If the .NET Standard NuGet package
was placed into the directory C:\Program Files (x86)\Microsoft SDKs\NuGetPackages, as
shown previously (Figure 18-12), the package is available offline.

http://Nuget.org
http://Nuget.org

Building a .NET Core Application with Visual Studio ❘ 603

 3. Select either the local copy of the Ch18CardLibStandard NuGet package by selecting Microsoft
Visual Studio Offline Packages from the Package source drop-down list (refer to Figure 18-12) or
the public one, mentioned in Step 5.

 4. Install the local package by then selecting the Ch18CardLibStandard NuGet package from the
offline package list ➪ press the Install button.

 5. Install the public package (written by Benjamin Perkins) from the Package Manager Console, select
the menu item Tools ➪ NuGet Package Manager ➪ Package Manager Console. Then execute the
following command.

Install-Package Ch18CardLibStandard

 6. Open the Program.cs file and update the code so that it resembles the following.

using System;
using static System.Console;
using Ch18CardLibStandard;

namespace Ch18CardClientCore
{
 class Program
 {
 static void Main(string[] args)
 {
 Player[] players = new Player[2];
 Write("Enter the name of player #1: ");
 players[0] = new Player(ReadLine());
 Write("Enter the name of player #2: ");
 players[1] = new Player(ReadLine());

 Game newGame = new Game();
 newGame.SetPlayers(players);
 newGame.DealHands();

 WriteLine($"{players[0].Name} received this hand: ");
 foreach (var card in players[0].PlayHand)
 {
 WriteLine($"{card.rank} of {card.suit}s");
 }

 WriteLine($"{players[1].Name} received this hand: ");
 foreach (var card in players[1].PlayHand)
 {
 WriteLine($"{card.rank} of {card.suit}s");
 }
 WriteLine("Press enter to exit.");
 ReadLine();
 }
 }
}

 7. Execute the .NET Core application and enter names for two players as requested. The result and
the dealt hands of cards will look like Figure 18-13.

604 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

FIGURE 18-13

How It Works

When a Console App (.NET Core) project is rendered, a default Program.cs file is created with a
Console.WriteLine() command including the string “Hello World.” Take note of two things. First,
notice that only the using System directive is included in the Program class file by default. This is
another indication that the focus is on making the assembly as small as possible. This is in contrast to a
Console App (.NET Framework) project that includes many more modules by default. Second, notice in
the sample code the addition of the using static directive. This negates the need to provide the static
reference to the Console class for using the WriteLine()method.

By default, the Console App (.NET Core) project is targeting the .NET Core 2.0 framework which is
the highest version of the framework existing on the computer. The .NET Core 2.0 SDK contains many
dependencies in the project by default. You can view them by expanding the Dependencies folder in the
project. As mentioned previously, only the required dependencies are included in the assembly when it’s
compiled and deployed. This keeps the assembly footprint as small as possible.

When the code is executed an array of the Player[] class expecting 2 elements is instantiated and
named players. The names of both players are requested and retrieved from the console using the
ReadLine() method and stored into the player[0] and player[1] elements. A new Game class is
instantiated called newGame and the players are allocated to the Game by calling the SetPlayers()
method, passing the players array as a parameter. The DealHands() method in the Game class is called
and the results are looped through using foreach statements for each player. Look through the results
and pick the winner.

One noticeable difference when executing the Console App (.NET Core) is that it runs within the
dontnet.exe process (refer to Figure 18-13). Notice the path in the title of the console is C:\Program
Files\dotnet\dotnet.exe. Unlike Console App (.NET Framework) applications that compile into an
exe and run within its own process, a Console App (.NET Core) is compiled into an assembly or dll
and then loaded and executed by the dotnet.exe process when run from Visual Studio.

Porting from .NET Framework to .NET Core ❘ 605

NOTE It is possible to compile a Console App (.NET Core) project to an exe.
The term for this is self-contained deployment. In that context the .NET Core
framework is included in the deployment package, making it much larger than
when performing framework-dependent deployments. Framework-dependent
deployments expect the required framework to be present on the computer
that will run the program.

To this point discussions have been focused on creating new .NET Standard class libraries and
.NET Core applications. The next section discusses some topics having to do with moving a pro-
gram that originally targeted the full .NET Framework version to .NET Core so that it can run
cross-platform.

PORTING FROM .NET FRAMEWORK TO .NET CORE

After reading about all the benefits of .NET Core, it is probable that you are wondering about
how to use this new framework. If an existing program is written using the full version of .NET
Framework, the possibility to port the code to .NET Core is achievable. Because each program has
unique constraints and context, this section describes only some basic ideas and processes for port-
ing. In many cases, for large, complicated programs, more analysis, planning, code development,
and testing is surely required and recommended.

Microsoft has created a tool called the API Portability Analyzer. This tool will analyze a program
and its assemblies, then generate a report that identifies any APIs the program has which are not
currently part of the .NET Core framework. This tool can be downloaded from https://github
.com/Microsoft/dotnet-apiport/. The report can be used as a starting point for porting code to
.NET Core.

Other points the consider when porting from .NET Framework to .NET Core are:

 ➤ Identifying any third-party dependencies

 ➤ Understanding which features are not available

 ➤ Upgrading the current .NET Framework target

 ➤ Choosing the platforms to target for the program

Identifying Third-Party Dependencies
As previously mentioned, the .NET Core framework runs cross-platform (Windows, Linux,
MacOS) and across multiple chipsets (x64, x86, ARM). The .NET Core assemblies are designed to
function and run on those platforms when compiled against those targets. However, this does not
mean that all assemblies included in the project do so. It is possible that a third-party package only

https://github.com/Microsoft/dotnet-apiport/
https://github.com/Microsoft/dotnet-apiport/

606 ❘ CHAPTER 18 .NET STaNdard aNd .NET CorE

supports running in a 32-bit (x86) process mode or doesn’t have a package that runs on a Linux OS.
In that case, the developer must find an alternative or contact the third-party and ask if there are
plans to provide this kind of support.

Understanding Which Features Are Not Available
If the third-party assembly utilizes Windows OS-specific technologies like AppDomains, Remoting,
File Access, and so on, then the included third-party assemblies will not function as expected. There
is a comprehensive list of unsupported APIs here: https://github.com/dotnet/corefx/wiki/
ApiCompat. By comparing this list and a review of the code contained in the .NET Framework pro-
gram, you can gain more insight into the effort and feasibility of porting to .NET Core and realize
the gain of running cross-platform.

Upgrading the Current .NET Framework Target
In addition to upgrading the development IDE to at least Visual Studio 2017, the individual or team
planning the port to .NET Core should additionally consider targeting the highest supported version
of the .NET Framework. Currently, the highest supported .NET Framework by .NET Core is .NET
Framework 4.6.2 when running within the .NET Core 1.1 SDK. For .NET Core 2.0, the highest
supported version is 4.6.1. See Table 18-3 for a summary or here for a complete list: https://docs
.microsoft.com/en-us/dotnet/standard/net-standard.

Upgrading this way ensures that at least most of the code in the program will have a supported
.NET Core API for the previous .NET Framework target. If for some reason the API in the original
program does not exist in the .NET Core project, there are these options:

 ➤ Refer to the previous section, “Understanding which features are not available.”

 ➤ Confirm the API is identified in the ApiPort report.

 ➤ Remain on the current framework version until the API is added. Recall from Table 18-2 that
APIs are being added all the time.

 ➤ Find an alternative API, a third-party assembly, or a NuGet package that helps resolve the
issue and satisfies the requirement.

Choosing the Platforms to Target for the Program
The new and exciting feature of .NET Core is that it runs cross-platform. A significant portion of
the porting process is deciding which platform(s) to target: Windows, Mac, Linux, or all three? You
should seriously consider placing the bulk of the code into a .NET Standard class library. Doing so
provides the developer and company with the greatest opportunity to simultaneously run that code
on multiple Windows application verticals and execute across platforms.

In conclusion, the .NET Standard is a class library to support writing a BCL that can run across
multiple application verticals. One of those verticals is .NET Core which is cross-platform and
open-source. .NET Core’s modular design, through the use of NuGet packages, helps reduce foot
print size and is further optimized for running on the cloud platform. Developers starting new proj-
ects should seriously consider this vertical as the future of programming because it can run on many
verticals and on many platforms.

https://github.com/dotnet/corefx/wiki/ApiCompat
https://github.com/dotnet/corefx/wiki/ApiCompat
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard

Porting from .NET Framework to .NET Core ❘ 607

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Key cross-platform
terms

See Table 18-1 for a list of important cross-platform terms you should know.

.NET Standard APIs A group of classes and methods found in .NET Framework namespaces for
consumption inside cross-platform or cross-vertical programs.

Targeting The higher the version the fewer the platforms, but the greater the number of
APIs; it’s a trade-off.

.NET Core A cross-platform and open-source programming vertical.

Open Source Code or frameworks written and supported by an open community of
developers.

NuGet Packages A modular approach for installing program dependencies. In contrast to
creating a reference to an assembly, install the assembly NuGet.

ASP.NET and ASP.NET Core
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Overview of web applications

 ➤ Which ASP.NET to use and why

 ➤ Using ASP.NET Web Forms

 ➤ Creating ASP.NET Core web applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter19 folder and individually named
according to the names throughout the chapter.

Windows Presentation Foundation (WPF) and its predecessor Windows Forms are technolo-
gies for writing applications to run on the Windows operating system. Additionally, the
Universal Windows App (UWA) application type is the technology for writing apps that are
downloadable from the Microsoft Store and target tablets or other mobile devices. With ASP
.NET, developers create web applications that are hosted on an Internet or intranet web server
and are most commonly utilized using an Internet browser via the HTTP protocol.

The ASP.NET technology supplies programmers with a library and framework to write web
applications in a way comparable to WPF and UWA applications. The key difference is that
instead of controls such as a Textbox and Button running in an executable (EXE) on a com-
puter, ASP.NET controls are run server-side and are abstracted by HTML. The HTML code
mimics the behavior of Windows controls in an Internet browser. There are numerous other
differences between WPF/UWA and web applications, specifically to do with the underlying
web-based technologies such as HTTP, IIS, HTML, and JavaScript, which are explained in
detail later in this chapter.

19

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

610 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

This chapter provides an overview of programming web applications using ASP.NET Web Forms
and ASP.NET Core. In addition, as there are numerous flavors of ASP.NET (e.g., MVC, Web
Forms, Web Pages, and Web API) their differences and the scenarios to use each flavor is described.
Additionally, the differences between ASP.NET Web Site and ASP.NET Web Application Projects
are presented and dissected.

NOTE The Try It Out exercises in this chapter depend on the
Ch18CardLibStandard .NET Standard class library created in Chapter 18. Be
sure you look over that chapter and work the examples before starting the
exercises in this chapter.

In addition to a comparison of the ASP.NET flavors and project types, discussions covering topics
with regard to web controls, input validation, state management, and authentication are provided.
Start with reading about what a web application is, its benefits, and its unique properties and fea-
tures in the next section.

OVERVIEW OF WEB APPLICATIONS

A web application causes a web server to send graphics, HTML and/or JavaScript code to a client.
That code is typically displayed in a web browser, for example Microsoft Edge, Chrome, or Firefox.
When a user enters a web address (URL) into a browser and presses enter, an HTTP request is
sent to the web server. The HTTP request can contain a filename like Default.aspx along with
additional information such as cookies, the languages that the client supports, security tokens, and
additional data belonging to the request. The web server then returns an HTTP response that con-
tains HTML code. This code is interpreted by the web browser and can display, for example, text
boxes, buttons, and lists to the user. If JavaScript is included in the HTTP response, that code will
run on the client while loading or to perform validation prior to sending a further HTTP request.
For example, the JavaScript might confirm that a value exists in a text box when a submit button is
pressed. When the ASP.NET Web Form (ASPX) and ASP.NET Core applications are written later,
take note of the ASP.NET Page object and its properties. In fact, two of the Page properties are
Request and Response.

ASP.NET is a technology for dynamically creating web pages with server-side code. These web
pages can be developed with many similarities to client-side Windows programs. Instead of dealing
directly with the HTTP request and response and manually creating HTML code to send to the
client, use ASP.NET controls such as TextBox, Label, ComboBox, and Calendar, which create
HTML code. To create a TextBox server-side control add the following to an ASP.NET Web Form
(ASPX) file:

<asp:TextBox ID="player1TextBox" runat="server" />

To achieve the same using razor syntax, which was introduced in Chapter 16, use this syntax:

@Html.TextBox("player1TextBox")

Which ASP.NET to Use and Why ❘ 611

In each case, when an HTTP request is made to the file containing those codes snippets, the code is
executed, and an HTTP response is returned to the client containing an HTML representation of
that control. Figure 19-1 illustrates how a request flows from a browser to an IIS server and back.

IIS

BROWSER INTERNET

HTTP.SYS

Listen

1

Route

2

Worker Process

Process
Request

3

Return
Response

4

FIGURE 19-1

WHICH ASP.NET TO USE AND WHY

After a solution architect or a programmer has decided that the best platform to run their pro-
gram on is a web site, the next question is which flavor of ASP.NET to target. The first iteration of
Microsoft’s web development platform was Active Server Pages or ASP. ASP used razor-like syntax
contained within an .asp file and often included an embedded VB COM instantiated using the
Service.CreateObject() for initialization that provided the reference to the methods exposed via
the API. Although ASP is still a supported technology, it would not be a recommended application
type for the creation of any new web-based program.

When the .NET Framework was created in the early 2000s the natural evolution of ASP was to uti-
lize that framework when updating ASP, which was renamed to ASP.NET. The major change was
the split between the presentation layer (.aspx file) and the business logic layer (aspx.cs or aspx
.vb file), commonly referred to as a code-behind. The supported languages in a code-behind are C#
and VB.NET, and the ASP.NET model was referred to as Web Forms. ASP.NET Web Forms were
and continue to be a valid and fully supported technology for creating feature-friendly and highly
complex applications that target IIS and the Windows Server operating system. Over the many years
of engineering and feature improvements, it became apparent that ASP.NET Web Forms was a little
heavy. What “heavy” specifically means is described later, but this “heavy” stigma resulted in the
development of a new ASP.NET flavor which is called ASP.NET MVC.

612 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

The MVC in ASP.NET MVC stands for Model-View-Controller. As mentioned previously, ASP
.NET Web Forms split ASP code into two different layers: the presentation layer and the business
logic layer. Now, MVC split this out into a third layer, the three layers being:

 ➤ Model—the business layer

 ➤ View—the presentation layer

 ➤ Controller—the input control layer

ASP.NET MVC was a logical iteration from the ASP.NET Web Form model, but be aware that ASP
.NET MVC is significantly different in design, support concepts, and practices. Some programmers
having an ASP.NET Web Form background might view the changes as a bit challenging from the
beginning, but after digging in and using the model, clarity begins to take root. More on this in the
sections of this chapter where each ASP.NET flavor is discussed in detail.

NOTE Each of the primary ASP.NET flavors (Web Forms and MVC) as well as
ASP and ASP.NET Web APIs are handled by what is called a handler. A han-
dler is most commonly a .dll assembly that is configured in IIS. The assembly
parses the file and executes the code found within it, then returns HTML to the
requesting client.

The most recent addition to the ASP.NET family is ASP.NET Core, which aligns with .NET Core
like ASP.NET aligned with the .NET Framework. ASP.NET Core, like .NET Core, is an open
source framework and platform which can target operating systems other than Microsoft Windows,
such as, for example, Linux and MacOS. ASP.NET Core supports both Web Applications and Web
Applications (Model-View-Controller) project types. Where ASP.NET Core Web Applications is
similar to the ASP.NET Web Pages flavor and provides a simpler, less complex implementation for
programmers of small web sites, ASP.NET Core Web Applications (MVC) provides full MVC capa-
bilities for running web applications cross-platform.

NOTE For complete details of an ASP.NET Web API, read Chapter 17.

In summary, an ASP.NET Web API is like a .dll that exposes an API. There is no presentation
layer, only the ability to call the exposed API method and passing the required parameters is avail-
able. The result of the API method call is a string of data, in the context of an ASP.NET Web API
this string is in JSON format. The calling client then needs to parse and present the JSON data in a
usable form. Now that the progression and evolution of the Microsoft web application frameworks
are described, read on to learn why one should be used versus the other.

Which ASP.NET to Use and Why ❘ 613

ASP.NET Web Forms
The reasons to choose ASP.NET Web Forms over the other frameworks are that Web Forms are:

 ➤ Optimal for small to mid-sized development teams and projects

 ➤ Useful for web applications which need to maintain session and state over HTTP

 ➤ Based on a very initiative set of request pipeline events

When compared to the other ASP.NET flavors, ASP.NET Web Forms is the best and simplest way
to get a feature-rich and highly-performant web application developed and deployed rapidly. The
separation between the presentation logic and the business logic align well with targeted skillsets of
front-end, user interface developers and coders. This is optimal because the team can have special-
ists working on the various aspects of the project in parallel.

ASP.NET Web Forms is often considered “heavy” due to a feature called viewstate. viewstate is
one way in which state is maintained in an ASP.NET Web Form. For example, consider a web appli-
cation that requires a series of page completions and submits to place an order. If a client hits the
back button at some point in the process, viewstate is how the contents in the previous form are
repopulated with the originally entered values. The issue with the viewstate feature is that it can
be abused (i.e., overused), which results in a very large page size that moves back and forth between
the client and the sever. As well, viewstate is enabled for the Page by default, instead of only on the
web page controls that need to maintain state.

The best way to avoid problems with viewstate is to disable it at the Page level by setting the
EnableViewState property to false. If you need to then maintain state on a TextBox, for example,
use the following snippet to enable it specifically. Additionally, monitor the size of the .aspx files to
make sure they are not getting too big.

<asp:TextBox EnableViewState="true" ID="Name" runat="server" />

It is not possible to maintain state without a session. Maintaining a session is a concept which
comes from the era of client/server computing, where the connection between a computer and a
server remained persistent. The HTTP protocol is synonymous with being stateless and is optimally
suited for handling static (i.e., not dynamic) content.

NOTE Sessions are restricted to a worker process (refer to Figure 19-1), which
means values stored within them cannot be accessed between them. This is
a very important constraint when an ASP.NET application needs to run in the
cloud or in a web farm.

ASP.NET Web Forms are dynamic because of the C# code in the code-behind file (e.g., Default
.aspx.cs), which executes when the file is requested. The returned HTML delivered to the browser

614 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

is most likely changed by the executing C# code based on the unique input from the client/user. The
HTML can be different for each client based on the contents stored in the session cookie, as well.
ASP.NET Web Form programmers store information in a session using the following syntax:

Session["username"] = TextBoxUID.Text;

The session variable with the name of username can then be accessed on subsequent HTTP requests
using this code:

var username = Session["username"];

Lastly, events in the execution of an ASP.NET Web Forms request, such as BeginRequest,
AuthenticateRequest, Init, Load, ProcessRequest, and EndRequest to name a few, are com-
pletely intuitive by name. That is important because when a programmer wants to take some special
action toward authenticating a client or clean up any data before the request is completed, it’s easy
to identify the location to place the code.

ASP.NET MVC
Some reasons for choosing ASP.NET MVC over other ASP.NET application types are that it is:

 ➤ Well suited for larger, more complicated web applications

 ➤ Tightly coupled with Entity Framework (EF) and model binding

 ➤ Deeply integrated with test-driven development (TDD)

Where ASP.NET Web Forms was split into two separate modules, as stated previously, ASP.NET
MVC is split into three, a Model, a View, and a Controller (see Figure 19-2). For the same reason
that such separation helped ASP.NET Web Forms, it also helps ASP.NET MVC. The separation of
the components allows larger teams to be split by specialization and work in parallel on the applica-
tion, which results in a more rapid development cycle.

Entity Framework (EF) is an Object Relationship Model (ORM) technology, discussed in Chapter
23, that is tightly coupled with the ASP.NET MVC architecture and model binding. ORMs, and
therefore EF, give developers the power to design a database in an object-oriented way. For example,
if an ASP.NET MVC application is intended to store information about people, then a Person class,
like the following can store and retrieve that information.

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
}

Once the data model is designed, developers can deploy the model to a database (like SQL Server)
and the data structure. The database tables and primary and foreign keys are generated using the
description in the C# classes. When an ASP.NET MVC application is created in Visual Studio, part
of the default solution is a folder named Models. This is the location where C# class representations

Which ASP.NET to Use and Why ❘ 615

of database tables reside. These classes are used to store the data from the database in memory for
modification by the controller updating from the view. Each of which also have a folder in a default
ASP.NET MVC application named Controllers and Views.

MODEL

VIEW

CLIENT

O
B
SE

R
V
E
S

CONTROLLER

M
A
N
A
G
E
S

U
P
D
A
TE

S

M
O
D
IFIE

S

FIGURE 19-2

The controller is the location where a developer places the code to create, read, update, or delete
contents of a database via EF logic through a bound Model object like a Person. The controller
is also where any business logic, authentication, or any other activity the application needs is per-
formed. The view is the presentation layer where the output of the actions triggered from the client
and executed in the controller using an object-oriented model is presented back to the client.

ASP.NET MVC is deeply integrated with test-driven development techniques and is much simpler
to unit test when compared to ASP.NET Web Forms. As shown in Figure 19-3, when you create an
ASP.NET application, there is a check box to select that results in the creation of a second project
dedicated to unit testing the program.

616 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

FIGURE 19-3

By placing test code in the Tests project, dependencies such as IIS, databases, and external classes
can be abstracted away from the test cases. This is an important and very beneficial feature as
data is often different between production instances, and the build of a server running IIS may
also deliver inconsistent behavior between production and testing environments. Removing these
dependencies—by testing only the logic within the controller, regardless of the dependency state—
improves the speed and efficiency of testing. The reason is that instead of keeping all the dependen-
cies in a valid and stable testing state, which can be very time consuming, a developer can focus only
on making sure the testing scenarios complete successfully.

NOTE It is common for dependencies to change; however, those changes
would be coded into the testing scenarios as well. The point is that instead of
troubleshooting an issue that comes from inconsistent data or a platform issue,
these are avoided because of TDD.

ASP.NET MVC utilizes extension-less URLs: No specific filename is placed into the request. .aspx
files are requested for ASP.NET Web Form applications, but this is not the case for ASP.NET MVC.
ASP.NET MVC uses the concept of routes or routing where URL segments instead of a filename are
used to route the request to the correct controller and view. For example, a request to /Home/About
would execute the About() method in a controller named HomeController, which is found in the
Controllers folder. The results of the About() method are presented to the client, using the view
named About.cshtml located in the Views\Home directory.

Which ASP.NET to Use and Why ❘ 617

ASP.NET Web API
The benefits of choosing an ASP.NET Web API are similar to those for an ASP.NET MVC applica-
tion in that the application type is tightly coupled with EF, deeply integrated into the TDD concepts,
and it is well suited for large and complicated web applications. The primary difference is that
there is no View component or Views folder in a ASP.NET Web API Visual Studio project. This
makes perfect sense simply based on the API concept, described in Chapter 17, where a client calls a
method, exposed by the API, that returns some data. The client is responsible for consuming, react-
ing to, and/or presenting the result of the API, which is typically in the JSON format.

ASP.NET Core
The benefits of .NET Core and .NET Standard are discussed in Chapter 18. The advantages real-
ized with .NET Core exist within the ASP.NET Core application type as well. The following are
examples of the benefits:

 ➤ ASP.NET Core run across platforms.

 ➤ ASP.NET Core is not dependent on IIS.

 ➤ ASP.NET Core does not rely on the full .NET Framework.

 ➤ ASP.NET Core is optimized for the cloud and is more performant.

Like .NET Core, ASP.NET Core can run on operating systems other than Microsoft Windows such
as MacOS and Linux. Historically, when talking about any ASP.NET application type it was doubt-
lessly tied to Internet Information Services (IIS). ASP.NET Core includes a new web server called
Kestrel which is described in more detail in the “Creating ASP.NET Core Web Applications” section
in this chapter. ASP.NET Core can run on IIS as a reverse proxy server or in a self-contained con-
tainer running only Kestrel.

ASP.NET Core does not need nor rely on the full .NET Framework library. Instead, like .NET Core,
only the assemblies required to perform the function of the program are included in the application
deployment package. The modularized, highly performant, and self-contained application package
is what gets deployed to a server or cloud platform for execution and consumption.

Due to the optimizations in size and code execution paths with ASP.NET Core on Kestrel, perfor-
mance when compared to ASP.NET 4.6 Web Forms experiences an increase of 5.5x in its ability to
handle requests per second. When compared to Node.js, ASP.NET Core on Kestrel exceeds the per-
formance by a factor of three, as described in Table 19-1.

TABLE 19-1: Baseline ASP.NET Core on Kestrel performance

STACK REQUESTS PER SECOND (RPS)

ASP.NET Web Forms 4.6 ~57,000

ASP.NET Core on Kestrel ~310,000

Node.js ~105,000

618 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

The RPS performance tests were performed on the same operating system, Windows Server 2012
R2, with the same amount of RAM, CPU speed/type, and network interface card. Therefore, the
performance is due specifically to the optimizations and execution efficiencies existing in the
application type.

ASP.NET Web Site versus ASP.NET Web Application
Project Types

As shown in Figure 19-4, a new ASP.NET web application comes in two types: Projects and Web
Sites.

FIGURE 19-4

The differences between them are shown in Table 19-2.

TABLE 19-2: Differences between Projects and Web Sites

DIFFERENCE PROJECTS WEB SITES

File Structure C# project has a .csproj file which
contains a list of files and assem-
bly references required to run the
program.

There is no .csproj file for Web Sites created
in C#. All files existing in the directory struc-
ture are included in the site.

Compiling The code-behind files are compiled
into a single assembly (.dll).

Source code is compiled dynamically when
first requested. Usually results in multiple
assemblies (.dll).

Deployment The assembly (.dll), .aspx and .ascx
files are deployed to the web server
where the application is consumed.

A copy of the web application source is
deployed to the web server (.aspx, .ascx and
aspx.cs).

Which ASP.NET to Use and Why ❘ 619

File Structure
A .csproj (project file) for ASP.NET Projects provides the ability to remove from the project a file
that will not be included in the deployment, but also will not be removed permanently. The file is
excluded from the project but not deleted. This is helpful if there is a need to make a deployment but
some of the files are not ready for it. Additionally, as you learned in the previous chapter, the project
file is used to store information about a .NET Standard class that is used to create a NuGet package.
Where there is no .csproj file, in the Web Sites context, all files within the directory structure of
the site are considered part of the solution.

Compiling
Having the web application project compiled before deployment saves the time that would other-
wise be spent compiling the .aspx file and its code-behind on the first request after deployment.
Although web sites can be precompiled using NGEN, that kind of pre-deployment activity is much
more complicated than simply manually making the first request so that the ASP.NET files are com-
piled by the ASP.NET Runtime.

When the compiled assembly or an ASP.NET Project is loaded into memory, the entire web applica-
tion consumes the memory. On the other hand, only the files that are part of a Web Site that gets
requested are compiled and loaded into memory. Therefore, a project where only a small number of
the pages are actually ever used would consume more memory than a web site over time, because,
as previously stated, only files that are requested get compiled and loaded into memory. This is an
important concept when customers pay for resource consumption on a cloud platform.

Deployment
When a Web Site is deployed, the source code in the code-behind (.aspx.cs) is deployed as plain
text and is human-readable. So long as the location where the web site is deployed is secure, that is
not a problem, but still some developers or businesses might not want that. Instead, with a project,
no human-readable code is deployed to the server as it is all compiled into an assembly (.dll).

WARNING Even though the code in the assembly is not human-readable,
if access to the server is obtained the code in the .dll can be captured and
decompiled. Fiercely restrict access to servers running a program.

Additionally, to make a change to the project after the compiled assembly (.dll) that is part of the
ASP.NET web application project is loaded into the ASP.NET Runtime, the ASP.NET Runtime pro-
cess must be stopped and unloaded from memory for the change to become available to clients using
the web site. If the process has a handle on the assembly, it cannot be changed and therefore must be
stopped to release the handle. This is not the case with Web Sites where the .aspx.cs or .aspx files
can be updated without stopping the ASP.NET Runtime and are compiled and loaded into memory
the next time there is a request to them.

620 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

Now you know the differences between the numerous ASP.NET web application flavors as well as
many of the differences between Projects and Web Sites. Read on for a deeper look into ASP.NET
Web Forms and ASP.NET Core.

USING ASP.NET WEB FORMS

In this section a few important ASP.NET Web Form concepts are discussed in more detail. Each of
the ASP.NET application flavors have aspects that make them unique (the specifics were discussed
previously). After reading this section, you will have a solid understanding of the of the following
ASP.NET Web Form features:

 ➤ Server controls

 ➤ Input validation

 ➤ State management

 ➤ Authentication and authorization

NOTE The remainder of this section covers these four points in more detail,
but there is much more to ASP.NET Web Forms. Keep in mind that this is not
an ASP.NET book and therefore if more information about any flavor of ASP
.NET interest you, there are many books that cover each of them.

Server Controls
In this section, you will learn about the server controls provided by the ASP.NET page framework.
These controls are designed to provide a structured, event-driven, object-oriented model for pro-
gramming web applications. Table 19-3 lists some of the principal web server controls available with
ASP.NET, and the HTML code returned by these controls.

TABLE 19-3: Examples of ASP.NET Server Controls

CONTROL HTML DESCRIPTION

Label Returns a span element containing text.

TextBox <input

type=”text”>
Returns HTML <input type=”text”> whereby the
user can enter some values. You can write a server-
side event handler when the text changes.

Button <input

type=”submit”>
Sends form values to the server.

HyperLink <a> Creates a simple anchor tag referencing a web page.

Using ASP.NET Web Forms ❘ 621

CONTROL HTML DESCRIPTION

DropDownList <select> Creates a select tag whereby the user sees one item
and can select one of multiple items by clicking on the
drop-down list.

CheckBox <input

type=”checkbox”>
Returns an input element of type check box to show
a button that can be selected or deselected. Instead
of using the CheckBox, you can use a CheckBoxList,
which creates a table consisting of multiple check box
elements.

RadioButton <input

type=”radio”>
Returns an input element of type radio. With a radio
button, just one button of a group can be selected.
Similar to the CheckBoxList, RadioButtonList pro-
vides a list of buttons.

Image Returns an img tag to display a GIF or JPG file on the
client.

There are many additional controls not shown in this table. However, these controls all have in com-
mon an ability to fire off events invoked by the user, either automatically or as part of the page event
lifecycle. These events execute server-side event handlers. You will find ASP.NET applications are
largely structured based on this event-driven model.

Input Validation
When users enter data, it should be checked for validity. The check can happen on both the cli-
ent and on the server. You can check the data on the client using JavaScript. However, if the data
is checked on the client using JavaScript, it should also be checked on the server, because you can
never fully trust the client. It is possible to disable JavaScript in the browser, and hackers can use
different JavaScript functions that accept incorrect input. Checking the data on the client leads to
better performance, as no round-trips occur to the server until the data is validated on the client.

With ASP.NET it is not necessary to write the validation functions yourself. Many validation
controls exist that create both client- and server-side validation. The following example shows
the RequiredFieldValidator validation control that is associated with the text box player-
1TextBox. All validator controls have the properties ErrorMessage and ControlToValidate in
common. If the input is not correct, then ErrorMessage defines the message that is displayed.
By default, the error message is displayed where the validator control is positioned. The property
ControlToValidate defines the control where the input is checked.

<asp:TextBox ID="player1TextBox" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"
 ErrorMessage="Enter a name for player 1" ControlToValidate="player1TextBox">
</asp:RequiredFieldValidator>

Table 19-4 lists and describes all the validation controls.

622 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

TABLE 19-4: Examples of ASP.NET Validation Controls

CONTROL DESCRIPTION

RequiredFieldValidator Specifies that input is required with the control that is validated. If
the control to validate has an initial value set, which the user has to
change, you can set this initial value with the InitialValue property
of the validator control.

RangeValidator Defines a minimum and maximum value that the user is allowed to
enter. The specific properties of the control are MinimumValue and
MaximumValue.

CompareValidator Compares multiple values (such as passwords). Not only does this val-
idator support comparing two values for equality, additional options
can be set with the Operator property. The Operator property is of
type ValidationCompareOperator, which defines enumeration val-
ues such as Equal, NotEqual, GreaterThan, and DataTypeCheck.
Using DataTypeCheck, the input value can be checked to determine
whether it is of a specific data type, for example, correct date input.

State Management
The HTTP protocol is stateless. The connection that is initiated from the client to the server is
closed after every request. However, normally it is necessary to remember some client information
from one page to the other. There are several ways to accomplish this.

The main difference among the various ways to keep state is whether the state is stored on the client
or on the server. Table 19-5 shows an overview of state management techniques and how long the
state can be valid.

TABLE 19-5: ASP.NET Web Forms State Management Techniques

STATE TYPE CLIENT OR SERVER

RESOURCE

TIME VALID

View State Client Within a single page only.

Cookie Client Temporary cookies are deleted when the browser is closed;
permanent cookies are stored on the disk of the client system.

Session Server Session state is associated with a browser session. The session
is invalidated with a timeout (by default, 20 minutes).

Application Server Application state is shared among all clients. This state is valid
until the server restarts.

Cache Server Similar to application state, cache is shared. Developers have
control over when the cache can be invalidated.

Using ASP.NET Web Forms ❘ 623

Authentication and Authorization
To secure the website, authentication is used to verify that the user has a valid logon, and autho-
rization confirms that the user who was authenticated can use the resource. Commonly used
authentication techniques for web applications are Forms and Windows authentication. Windows
Authentication makes use of Windows accounts and IIS to authenticate users while Forms requires a
database that contains user access information.

ASP.NET has many classes for user authentication. With ASP.NET, many security controls, such
as Login and PasswordRecovery, are available. These controls make use of the Membership API.
With the Membership API, it is possible to create and delete users, validate logon information, or
get information about currently logged-in users. The Membership API makes use of a membership
provider. Since ASP.NET 4.5, different providers exist to access users in an Access database, a SQL
Server database, or the Active Directory. It is also possible to create a custom provider that accesses
an XML file or any custom store.

In the following Try It Out, you will create an ASP.NET Web Forms application that deals a hand of
cards to two players.

TRY IT OUT Create an ASP.NET Web Forms Application

You will use Visual Studio 2017 to create an ASP.NET Web Form that accepts two players’ names and
returns a hand of cards for each player.

 1. In Visual Studio select File ➪ New ➪ Project and select ASP.NET Web Application (.NET
Framework), create a project named Ch19Ex01 as shown in Figure 19-5, then click the OK button.

FIGURE 19-5

624 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

 2. Select Web Forms and click OK as illustrated in Figure 19-6.

FIGURE 19-6

 3. Select Tools ➪ NuGet Package Manager ➪ Package Manager Console and enter the following
command (see Figure 19-7):

Install-Package Ch18CardLibStandard

NOTE Recall from Chapter 18 where the Ch18CardLibStandard .NET
Standard class library was created and consumed. If the Ch18CardLibStandard
.NET Standard class library is installed locally (see Figure 18-12), the library
can be installed from there instead of using the described Install-Package
command.

FIGURE 19-7

Using ASP.NET Web Forms ❘ 625

Pay close attention to the Default project: value as shown in Figure 19-7.

 4. Replace all the code below the <% @Page ... %> directive in the Default.aspx page with the
following:

<asp:Content ID="BodyContent" ContentPlaceHolderID="MainContent"
 runat="server">
 <asp:Table ID="cardGameTable" runat="server">
 <asp:TableHeaderRow>
 <asp:TableHeaderCell>Player 1</asp:TableHeaderCell>
 <asp:TableHeaderCell>Player 2</asp:TableHeaderCell>
 </asp:TableHeaderRow>
 <asp:TableRow>
 <asp:TableCell>
 <asp:TextBox ID="player1TextBox" runat="server" />
 </asp:TableCell>
 <asp:TableCell>
 <asp:TextBox ID="player2TextBox" runat="server" />
 </asp:TableCell>
 </asp:TableRow>
 <asp:TableRow>
 <asp:TableCell>
 <asp:RequiredFieldValidator
 ID="RequiredFieldValidatorplayer1TextBox"
 runat="server" style="color:Red;"
 ErrorMessage="A name for Player 1 is required."
 ControlToValidate="player1TextBox">
 </asp:RequiredFieldValidator>
 </asp:TableCell>
 <asp:TableCell>
 <asp:RequiredFieldValidator
 ID="RequiredFieldValidatorplayer2TextBox"
 runat="server" style="color:Red;"
 ErrorMessage="A name for Player 2 is required."
 ControlToValidate="player2TextBox">
 </asp:RequiredFieldValidator>
 </asp:TableCell>
 </asp:TableRow>
 </asp:Table>

 <asp:Button ID="dealHandButton" runat="server"
 Text="Deal Hand"
 OnClick="dealHandButton_Click" />

 <asp:Label ID="dealtHandLabel" runat="server" Visible="false"
 Text="Here are the cards." />
 <asp:Table ID="dealtHandsTable" runat="server"
 Visible="false" />
</asp:Content>

 5. Add the using Ch18CardLibStandard; declaration to the beginning of the Default.aspx.cs
code-behind.

 6. Create the dealHandButton_Click() method in the Default.aspx.cs code-behind with the
following syntax:

protected void dealHandButton_Click(object sender, EventArgs e)

626 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

{
 Player[] players = new Player[2];
 players[0] = new Player(player1TextBox.Text);
 players[1] = new Player(player2TextBox.Text);

 Game newGame = new Game();
 newGame.SetPlayers(players);
 newGame.DealHands();

 dealtHandLabel.Visible = true;
 dealtHandsTable.Visible = true;

 foreach (Player player in players)
 {
 TableHeaderRow tableHeaderRow = new TableHeaderRow();
 TableHeaderCell tableHeaderCell = new TableHeaderCell();
 tableHeaderCell.Text = player.Name;
 tableHeaderRow.Cells.Add(tableHeaderCell);
 dealtHandsTable.Rows.Add(tableHeaderRow);

 TableRow tableRow = new TableRow();
 foreach (Card card in players[0].PlayHand)
 {
 TableCell tableCell = new TableCell();
 tableCell.Text = "<img width=75 height=100 alt=cardImage " +
 "src=https://deckofcards.blob.core.windows.net/carddeck/" +
 $"{card.imageLink} />";
 tableRow.Cells.Add(tableCell);
 }
 dealtHandsTable.Rows.Add(tableRow);
 }
}

 7. Press F5 or CTRL+F5 within Visual Studio to run the ASP.NET Web Forms application in IIS
Express, enter the Player names, and press the Deal Hand button.

 8. The seven cards are dealt and rendered to each player.

How It Works

Notice when the Default.aspx file is opened that the first text on the first line is the <% @Page ... %>
directive. Within that directive there are other numerous parameters. For example:

 ➤ Title—the text that will show up in the browser tab

 ➤ Language—the .NET language the code for the page is written in

 ➤ MasterPageFile—a reference to a file that contains the style configuration of the web site. Having
the look and feel code in a single location makes it much easier to have a consistent visual and
structured experience when navigating to different pages.

 ➤ CodeBehind—the name of the file that contains source code for the presentation layer .aspx file.
A code behind is typically .aspx.cs.

 ➤ Inherits—defines the namespace and class within the code-behind that contains the code for use
with the presentation layer .aspx file.

Creating ASP.NET Core Web Applications ❘ 627

The Default.aspx file contains the presentation markup language that renders textboxes that
accept the player names and related labels that describe them. The input validation control named
RequiredFieldValidator is configured to check each of the textboxes for a value prior to allowing
the page to be submitted to deal the hand of cards. All of those controls are contained within a Table,
TableHeaderRow, TableRow, and TableCell controls which render in a browser in table, th, tr, and
td HTML format.

Once the page is rendered in a browser and values are placed into both textboxes, the button is clicked,
which executes the OnClick="dealHandButton_Click" method in the code-behind. That method,
dealHandButton_Click in the Default.aspx.cs file, first instantiates an array with two values of
type Player and assigns the values from the textboxes to each of the Player objects.

 players[0] = new Player(player1TextBox.Text);
 players[1] = new Player(player2TextBox.Text);

An instance of the Game class is created, the players are set by passing the players array to the
SetPlayers() method, then the DealHands() method is called. The result of the DealHands() is two
hands of cards which is looped through per player in a foreach loop. This loop not only provides the
rank and suit of the card, it also dynamically creates a table, row and cells to present the content in
the presentations layer. Notice also that the image of the card is rendered by accessing the Azure Blob
Storage container created in Chapter 16, “Basic Cloud Programming.”

ASP.NET Web Forms are still a very valid option for rapidly creating fully functional, resource-
rich web-based applications. This flavor of ASP.NET application uses the full version of the .NET
Framework, which means the application will run solely on the Microsoft Windows platform. If the
web application needs to run on multiple operating systems, then ASP.NET Core (discussed in the
next section) might be a better choice.

CREATING ASP.NET CORE WEB APPLICATIONS

This section discusses numerous ASP.NET Core concepts. The most important concept to take
away from the section is that ASP.NET Core can be run cross-platform. Like .NET Core applica-
tions, ASP.NET Core web sites can run on Linux and MacOS in addition to Microsoft Windows.
Therefore, if the web application needs to run cross-platform, this is the ASP.NET flavor to develop
in. If, however, the web application is targeted to run only on Microsoft Windows, you should con-
sider using either ASP.NET Web Forms or ASP.NET MVC. At the time of writing, ASP.NET Core
is the newest flavor of ASP.NET, but not all capabilities are included in the binary yet. This will
change in the future.

You will learn about the following ASP.NET Core specifics in this section:

 ➤ IIS and Kestrel

 ➤ Razor Syntax

 ➤ Input Validation

 ➤ State Management

628 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

 ➤ Authentication and Authorization

 ➤ Dependency Injection

IIS and Kestrel
Up to now, when developers spoke about an ASP.NET flavor, it was understood that the web
application would run on a Microsoft Windows server with Internet Information Services (IIS),
a Microsoft-developed web server that responds to HTTP and HTTPS requests from clients.
However, because IIS won’t run on Linux or MacOS, there needs to be a way for IIS to send
requests to a web server that can run on those operating systems. The answer is to use Kestrel, a
new cross-platform web server included with ASP.NET Core projects.

As shown in Figure 19-8, when Kestrel is configured to run with IIS, the clients’ HTTP request is
simply forwarded to the Kestrel web server. Kestrel then interacts with the ASP.NET Core source
code by passing the HttpContext class, which contains the HTTP-specific information about the
HTTP request (for example, session management information, query string, culture information,
client certificates, and much, much more).

CLIENT
HTTP

HTTP
Kestrel

HttoContext Source
Code

Reverse proxy server ASP.NET Core web application

IIS, Nginx,
Apache

CLIENT
HTTP

Kestrel
HttoContext Source

Code

ASP.NET Core web application

FIGURE 19-8

In addition to IIS, Apache and Nginx are functional web servers which run only on their targeted
operating system like Windows, Linux or MacOS. ASP.NET Core can run without any operating
system-specific web server, as Kestrel is a web server. Running in this manner is commonly referred
to as self-hosting in that the web application and the components required to operate are enclosed
within a dedicated container. Having the web application bundled together in this manner makes it
easily deployable using, for example, XCOPY, and portability is a fundamental characteristic of a
cloud optimized program, as described in Chapter 16.

Razor Syntax
Instead of Server Controls, a basic design principle of ASP.NET Web Forms, use the HTML ren-
dering feature when creating Razor pages for an ASP.NET Core application. When referencing

Creating ASP.NET Core Web Applications ❘ 629

variables in a page, historically the markup syntax was <%= %>, which is five characters. The
improvement with Razor is that the @ sign is used to denote the starting point of code or for setting
a reference to a variable. For example, @Html.Hidden is the way a hidden field is added to a Razor
page. The Html object provides the reference to the constructors, properties, fields, and methods of
the System.Web.Mvc.HtmlHelper class. Table 19-6 lists a few HtmlHelper methods accessible from
a Razor web page. The HTML output is very similar to the ASP.NET Web Forms Server Control
output.

TABLE 19-6: Examples of Razor HtmlHelper methods

CONTROL HTML DESCRIPTION

Html.Label <label> Returns a label element containing
text.

Html.TextBox <input type=”text”> Returns HTML <input type=”text”>
whereby the user can enter some
values.

Html.ActionLink <a href> Creates a simple anchor tag referencing
a web page.

Html.DropDownList <select> Creates a select tag whereby the user
sees one item and can select one of
multiple items by clicking on the drop-
down list.

Html.CheckBox <input

type=”checkbox”>
Returns an input element of type
check box to show a button that can
be selected or deselected.

Html.RadioButton <input type=”radio”> Returns an input element of type
radio. With a radio button, just one
button of a group can be selected.

There are many other HtmlHelper methods that are not included in this table.

Input Validation
Validation for an ASP.NET Core application is configured using validation attributes existing within
the System.ComponentModel.DataAnnotations namespace. The validators are configured in the
class definition for a specific model.

public class Player
{
 [StringLength(20, MinimumLength = 3)]
 [Required]
 public string Name { get; set; }
}

630 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

When a request is made to the page that binds with the defined Player model, the ASP.NET Core
runtime generates jQuery client-side validation syntax. Then, if a user attempts to submit a form
without a value for Name, validation happens on the client and an error is rendered.

Table 19-7 lists and describes some ASP.NET Core data annotation validation attributes.

TABLE 19-7: Examples of ASP.NET Core Validation Attributes

CONTROL DESCRIPTION

Required Indicates that the property is required.

StringLength Defines a maximum and an optional minimum value that the user must.

Range For a numeric field, maximum and minimum values can be set.

EmailAddress Confirms that the entered value is an email address.

DataType Confirms that the entered value is a specific type like Date or
Currency.

RegularExpression Confirms that the entered value matches regular expression syntax.

State Management
As previously mentioned, the HTTP protocol is stateless, which means that once the request has
been successfully responded to by the server, no information is stored about the client that made the
request. The connection is closed and forgotten after every request. However, it does often happen
that some information about the client needs to be persisted and reused when managing multiple
requests from a client. As is true with other ASP.NET flavors, there are several ways to implement
the management of state-full information when using HTTP. Table 19-8 shows an overview of state
management techniques and how long the state can be valid.

TABLE 19-8: ASP.NET Core State Management Techniques

STATE TYPE CLIENT OR SERVER

RESOURCE

TIME VALID

TempData Server Removed once the data is read by the application.

Query strings Both Passed between client and server as URL elements and
are accessible only during a single request.

Cookie Client Temporary cookies are deleted when the browser is
closed; permanent cookies are stored on the disk of the
client system.

Creating ASP.NET Core Web Applications ❘ 631

STATE TYPE CLIENT OR SERVER

RESOURCE

TIME VALID

HttpContext.Items Both Passed between client and server, stored in the
HttpContext object, and accessible only during a
single request.

Cache Server Similar to application state, cache is shared. However,
when the cache should be invalidated, there’s much
better control.

Session Server Session state is associated with a browser session.
The session is invalidated with a configurable timeout
setting.

Application Server Application state is shared among all clients. This state
is valid until the server restarts.

Authentication and Authorization
Since ASP.NET Core is not focused on a single operating system, the authentication and autho-
rization protocols must also work cross-platform. The most popular open source authentication
providers are OWIN and OAuth. OWIN, which stands for Open Web Interface for .NET, isn’t an
authentication provider per se; however, it is commonly associated with Katana, which is. OWIN
is a specification that details how web servers and web applications should be decoupled from each
other. OWIN removes the dependency of ASP.NET Core from IIS and helps make the self-hosting
concept via Kestrel a reality. The Katana NuGet package contains the libraries necessary for imple-
menting the many types of authentication like Windows and Forms, for example.

OAuth is an interface exposed by companies like Microsoft, Facebook, Twitter, Google and oth-
ers for web applications to authenticate against. It is common for applications running on a mobile
device or in a browser to prompt client to use Facebook or Microsoft credentials to access the web
site. In those cases, OAuth is the protocol being used. The classes and methods for implementing
OAuth into an ASP.NET Core web application are found in the AspNet.Security.OAuth
.Providers namespace.

Authentication is the process of confirming that individuals are really who they say they are.
Usually when someone creates a new account, it’s linked to an email address and a password. A
verification email is sent to the provided email and once clicked, the registration is completed. Using
that email and password from then on to access a resource validates that it really is the one who cre-
ated the account. The other portion of the process is authorization. Authorization is the process of
defining what features or content the authorized person has access to. This is commonly referred to
as claims.

632 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

In the simplest form, some source code checks for the existence of a claim, for example to a
DealCard() method, and if the claim exists, the method can be called from the requesting card
dealer.

policy.RequireClaim("DealerID");

Claims can also be represented by name-value pairs that provide more granular access to a resource.

policy.RequireClaim("DealerID", "1", "2", "3", "4", "5"));

This shows that the DealCard() is only available for a card dealer with a DealerID equal to 1, 2, 3,
4, or 5.

Dependency Injection
Dependency Injection (DI) is a very advanced topic but as it is a fundamental concept on which ASP
.NET Core is built, so it will be touched on here. The basic point to understand when it comes to DI
is the avoidance of the new keyword.

Player[] players = new Player[2];

The reason for avoiding new is that it permanently binds the program to the class it refers to. There
are cases where using new is acceptable when the likelihood that the class will need to be modified
is very slim, in which case using the keyword is a design decision. The alternative is the implementa-
tion of an interface, which was discussed in Chapters 9, 10, and 12. An interface loosely couples or
decouples the consumer from the provider, where the program is the consumer and the class is the
provider. As seen in the following code snippet, a Player is created without using the new keyword.

public interface ICardGameClient
{
 void Player(string Name);
}
public class PlaySomeCards
{
 private readonly ICardGameClient _cardGameClient;
 public PlaySomeCards(ICardGameClient cardGameClient)
 {
 _cardGameClient = cardGameClient;
 }
 public PlayHand
 {
 _cardGameClient.Player("Benjamin");
 }
}

Dependency Injection takes it one step further by using what is known as a factory or container.
ASP.NET Core supports DI by default and is configured into the Startup.cs file, which is created

Creating ASP.NET Core Web Applications ❘ 633

with an ASP.NET Core web application. This file contains a method named ConfigureServices()
and is the place where the providers are configured.

public void ConfigurServices(IServiceCollection services)
{
 services.AddMvc();
 services.AddDbContext<className>(options => ...
 services.AddIdentity<className1,className2>()...
 ...
}

The configured service providers contained in the ConfigureServices() method provide the
className when it is requested from the code running within the program.

In the following Try It Out, you will create a Razor Page in ASP.NET Core that deals a hand of
cards to two players.

TRY IT OUT Create a Razor Page in ASP.NET Core

You will use Visual Studio 2017 to create a Razor Page in ASP.NET Core that accepts two players’
names and returns a hand of cards for each player.

 1. Select File ➪ New ➪ Project ➪ ASP.NET Core Web Application as illustrated in Figure 19-9.
Name the project Ch19Ex02 and click OK.

FIGURE 19-9

 2. Select .NET Core and ASP.NET Core 2.0 from the drop-down, then select Web Application and
click OK, as shown in Figure 19-10.

634 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

FIGURE 19-10

 3. Select Tools ➪ NuGet Package Manager ➪ Package Manager Console and enter the following
command (see Figure 19-11):

Install-Package Ch18CardLibStandard

NOTE Recall from Chapter 18 the Ch18CardLibStandard .NET Standard
class library was created and consumed. If the Ch18CardLibStandard .NET
Standard class library is installed locally (refer to Figure 18-12), the library
can be installed from there instead of using the described Install-Package
command.

FIGURE 19-11

Creating ASP.NET Core Web Applications ❘ 635

 4. Replace the code within the Pages/Index.chtml with the following:

@page
@using Ch18CardLibStandard;
@{
 ViewData["Title"] = "BensCards: Deal yourself a hand. ";
}
@{
 Player[] players = new Player[2];

 string player1 = String.Empty;
 string player2 = String.Empty;

 if (HttpContext.Request.Method == "POST")
 {
 player1 = HttpContext.Request.Form["PlayerName1"];
 player2 = HttpContext.Request.Form["PlayerName2"];

 players[0] = new Player(player1);
 players[1] = new Player(player2);

 Game newGame = new Game();
 newGame.SetPlayers(players);
 newGame.DealHands();
 }
}

@if (HttpContext.Request.Method == "GET")
{
 @Html.Label("labelGoal",
 "Enter the players name and deal the cards.")

 @using (Html.BeginForm())
 {
 <p>@Html.Label("labelPlayer1", "Player 1:")
 @Html.TextBox("PlayerName1")</p>
 <p>@Html.Label("labelPlayer2", "Player 2:")
 @Html.TextBox("PlayerName2")</p>
 <p><input type="submit" value="Deal Hand" class="submit">
 </p>
 }
}
else
{
 @Html.Label("labelGoal", "Here are the cards.")

 <p>@Html.Label("labelPlayer1", "Player 1:") @player1</p>
 @foreach (Card card in players[0].PlayHand)
 {
 <img width="75"
 height="100"
 alt="cardImage"
src="https://deckofcards.blob.core.windows.net/carddeck/
@card.imageLink" />
 }

636 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

 <p>@Html.Label("labelPlayer2", "Player 2:") @player2</p>
 @foreach (var card in players[1].PlayHand)
 {
 <img width="75"
 height="100"
 alt="cardImage"
src="https://deckofcards.blob.core.windows.net/carddeck/
@card.imageLink" />
 }
}

 5. Press F5 or CTRL+F5 within Visual Studio to run the ASP.NET Core application in IIS Express.
Enter the Player names and click the Deal Hand button.

 6. The seven cards are dealt and rendered to each player.

How It Works

As is true for an .aspx file, a reference to a Page class is responsible for managing properties and meth-
ods for the page, for example Context or HttpContext. The @page directive is specifically responsible
for converting the Razor page into an action so that it does not need a controller. In the default direc-
tories of the ASP.NET Core web application, there is only a folder named Pages. All requests to the
Razor web application are directed to the Pages folder, which acts as the default controller. When the
web application is started, a GET request is sent to the web server requesting the Index.cshtml file. An
if statement checks the HttpContext.Request.Method value and displays a form that requests two
player names.

 @if (HttpContext.Request.Method == "GET")
{
 @using (Html.BeginForm())
 {
 ...
 }
}

By default, when using Html.BeginForm() the form is posted back to itself. When the POST happens,
this code snippet is executed:

if (HttpContext.Request.Method == "POST")
{
 player1 = HttpContext.Request.Form["PlayerName1"];
 player2 = HttpContext.Request.Form["PlayerName2"];
 players[0] = new Player(player1);
 players[1] = new Player(player2);
 Game newGame = new Game();
 newGame.SetPlayers(players);
 newGame.DealHands();
 }

The code first checks the HttpContext.Request.Method for POST, then accesses the contents of the
HttpContext.Request.Form collection. The HttpContext.Request.Form collection contains all the
attributes contained within the posted form and can be accessed by name or number. The values from

Creating ASP.NET Core Web Applications ❘ 637

the PlayerName1 and PlayerName2 textboxes are used to create Players, which then are dealt a hand
of cards after the Game object is created and players are bound to the game.

Finally, because the HttpContext.Request.Method is POST, instead of rendering the form to request
player names, the results of the dealt cards are looped through and displayed for each player.

@foreach (Card card in players[0].PlayHand)
{
 <img width="75"
 height="100"
 alt="cardImage"
src="https://deckofcards.blob.core.windows.net/carddeck/
@card.imageLink" />
 }

638 ❘ CHAPTER 19 ASP.NET ANd ASP.NET CorE

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

ASP.NET flavors There are numerous ASP.NET application types, each have specific
cases and benefits for use.

Projects vs. Web Sites Projects are compiled into a .dll and deployed while Web Sites
deploy the source code and are compiled when requested for the first
time.

Server controls and the
HtmlHelper

Web Server Controls are server-side controls that generate HTML code
for ASP.NET Web Forms applications. The HtmlHelper class provides
the means to create objects such as Label, Textbox, and so on with
Razor pages.

Verifying user input with
validation controls and
Data Annotations

ASP.NET offers several validation controls that can easily be used to
validate user input on both the client and server sides. Validation on
the client is done for performance reasons, but because the web client
can never be trusted, validation must happen on the server as well.

State management With web applications it is necessary to think about where to store
state. State can be stored on the client with cookies or view state, and
on the server with session, cache, and application objects.

Authentication and
Authorization

Authentication is the process that determines whether clients really are
who they say they are. Authorization provides access to features and
services the authenticated client has access to.

Kestrel Kestrel is a new web server that can self-host ASP.NET Core web appli-
cations and can run cross-platform.

Dependency Injection (DI) DI decouples consumers and providers.

PART IV
Data Access

 ➤CHAPTER 20: Files

 ➤CHAPTER 21: XML and JSON

 ➤CHAPTER 22: LINQ

 ➤CHAPTER 23: Databases

Files
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Discovering the File and Directory classes

 ➤ Understanding how .NET uses streams to access files

 ➤ Writing to and reading from a file

 ➤ Reading and writing compressed files

 ➤ Serializing and deserializing objects

 ➤ Monitoring files and directories for changes

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter20 folder and individually named
according to the names throughout the chapter.

Files can be a great way to store data between instances of your application, or they can be
used to transfer data between applications. User and application configuration settings can be
stored to be retrieved the next time your application is run.

This chapter shows you how to use files effectively in your applications, touching on the major
classes used to create, read from, and write to files, and the supporting classes used to manipu-
late the file system from C# code. Although you won’t examine all of the classes in detail, this
chapter goes into enough depth to give you a good idea of the concepts and fundamentals.

20

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

642 ❘ CHAPTER 20 Files

FILE CLASSES FOR INPUT AND OUTPUT

Reading and writing files is an essential way to get data into your C# program (input) and send data
out of your program (output). Because files are used for input and output, the file classes are con-
tained in the System.IO namespace. (IO is a common abbreviation for Input/Output.)

System.IO contains the classes for reading and writing data to and from files, and you can reference
this namespace in your C# application to gain access to these classes without fully qualifying type
names.

The classes covered in this chapter are described in Table 20-1.

TABLE 20-1: File System Access Classes

CLASS DESCRIPTION

File A static utility class that exposes many static methods for moving,
copying, and deleting files.

Directory A static utility class that exposes many static methods for moving,
copying, and deleting directories.

Path A utility class used to manipulate path names.

FileInfo Represents a physical file on disk, and has methods to manipulate this
file. For any reading from and writing to the file, a Stream object must
be created.

DirectoryInfo Represents a physical directory on disk and has methods to manipu-
late this directory.

FileSystemInfo Serves as the base class for both FileInfo and DirectoryInfo,
making it possible to deal with files and directories at the same time
using polymorphism.

FileSystemWatcher The most advanced class you examine in this chapter. It is used to
monitor files and directories, and it exposes events that your applica-
tion can catch when changes occur in these locations.

You’ll also look at the System.IO.Compression namespace, which enables you to read from and
write to compressed files (.ZIP extension). In particular, you will look at the following two stream
classes:

 ➤ DeflateStream—Represents a stream in which data is compressed automatically when writ-
ing, or uncompressed automatically when reading. Compression is achieved using the Deflate
algorithm.

 ➤ GZipStream—Represents a stream in which data is compressed automatically when
writing, or uncompressed automatically when reading. Compression is achieved using the
GZIP (GNU Zip) algorithm.

File Classes for Input and Output ❘ 643

The File and Directory Classes
The File and Directory utility classes expose many static methods for manipulating, surprisingly
enough, files and directories. These methods make it possible to move files, query and update attri-
butes, and create FileStream objects. As you learned in Chapter 8, static methods can be called on
classes without having to create instances of them.

Some of the most useful static methods of the File class are shown in the Table 20-2.

TABLE 20-2: Static Methods of the File Class

METHOD DESCRIPTION

Copy() Copies a file from a source location to a target location.

Create() Creates a file in the specified path.

Delete() Deletes a file.

Open() Returns a FileStream object at the specified path.

Move() Moves a specified file to a new location. You can specify a different name for the file in
the new location.

Some useful static methods of the Directory class are shown in Table 20-3.

TABLE 20-3: Static Methods of the Directory Class

METHOD DESCRIPTION

CreateDirectory() Creates a directory with the specified path.

Delete() Deletes the specified directory and all the files within it.

GetDirectories() Returns an array of string objects that represent the names
of the directories below the specified directory.

EnumerateDirectories() Like GetDirectories(), but returns an
IEnumerable<string> collection of directory names.

GetFiles() Returns an array of string objects that represent the names
of the files in the specified directory.

EnumerateFiles() Like GetFiles(), but returns an IEnumerable<string> col-
lection of filenames.

GetFileSystemEntries() Returns an array of string objects that represent the names
of the files and directories in the specified directory.

continues

644 ❘ CHAPTER 20 Files

METHOD DESCRIPTION

EnumerateFileSystemEntries() Like GetFileSystemEntries(), but returns an
IEnumerable<string> collection of file and directory names.

Move() Moves the specified directory to a new location. You can spec-
ify a new name for the folder in the new location.

The three EnumerateXxx() methods provide better performance than their GetXxx() counterparts
when a large amount of files or directories exist.

The FileInfo Class
Unlike the File class, the FileInfo class is not static and does not have static methods. This class is
useful only when instantiated. A FileInfo object represents a file on a disk or a network location,
and you can create one by supplying a path to a file:

FileInfo aFile = new FileInfo(@"C:\Log.txt");

NOTE You will be working with strings representing the path of a file through-
out this chapter, which means a lot of backslash (\) characters in your strings.
Therefore, you should remember that you can precede a string value with @,
which means that the string will be interpreted literally. Thus, \ will be inter-
preted as \, and not as an escape character. Without the @ prefix, you need to
use \\ instead of \ to avoid having this character be interpreted as an escape
character. In this chapter you’ll stick to the @ prefix for your strings.

You can also use the forward slash (/) in path names, but that can cause
conflicts when executing Windows commands that use the forward slash for
command line options.

You can also pass the name of a directory to the FileInfo constructor, although in practi-
cal terms that isn’t particularly useful. Doing this causes the base class of FileInfo, which is
FileSystemInfo, to be initialized with all the directory information, but none of the FileInfo
methods or properties relating specifically to files will work.

Many of the methods exposed by the FileInfo class are similar to those of the File class, but
because File is a static class, it requires a string parameter that specifies the file location for every
method call. Therefore, the following calls do the same thing:

FileInfo aFile = new FileInfo("Data.txt");
if (aFile.Exists)
 WriteLine("File Exists");

TABLE 20-3 (continued)

File Classes for Input and Output ❘ 645

if (File.Exists("Data.txt"))
 WriteLine("File Exists");

In this code, a check is made to see whether the file Data.txt exists. Note that no directory infor-
mation is specified here, which means that the current working directory is the only location exam-
ined. This directory is the one containing the application that calls this code. You’ll look at this in
more detail a little later, in the section “Path Names and Relative Paths.”

Most of the FileInfo methods mirror the File methods in this manner. In most cases it doesn’t
matter which technique you use, although the following criteria can help you to decide which is
more appropriate:

 ➤ It makes sense to use methods on the static File class if you are making only a single method
call—the single call will be faster because the .NET Framework won’t have to go through the
process of instantiating a new object and then calling the method.

 ➤ If your application is performing several operations on a file, then it makes more sense to
instantiate a FileInfo object and use its methods—this saves time because the object will
already be referencing the correct file on the file system, whereas the static class has to find it
every time.

The FileInfo class also exposes properties relating to the underlying file, some of which can be
manipulated to update the file. Many of these properties are inherited from FileSystemInfo, and
thus apply to both the FileInfo and DirectoryInfo classes. The properties of FileSystemInfo
are shown in Table 20-4.

TABLE 20-4: FileSystemInfo Properties

PROPERTY DESCRIPTION

Attributes Gets or sets the attributes of the current file or directory, using the
FileAttributes enumeration.

CreationTime,
CreationTimeUtc

Gets or sets the creation date and time of the current file, available in
coordinated universal time (UTC) and non-UTC versions.

Extension Retrieves the extension of the file. This property is read-only.

Exists Determines whether a file exists. This is a read-only abstract property,
and is overridden in FileInfo and DirectoryInfo.

FullName Retrieves the full path of the file. This property is read-only.

LastAccessTime,
LastAccessTimeUtc

Gets or sets the date and time that the current file was last accessed,
available in UTC and non-UTC versions.

LastWriteTime,
LastWriteTimeUtc

Gets or sets the date and time that the current file was last written to,
available in UTC and non-UTC versions.

Name Retrieves the full path of the file. This is a read-only abstract property,
and is overridden in FileInfo and DirectoryInfo.

646 ❘ CHAPTER 20 Files

The properties specific to FileInfo are shown in Table 20-5.

TABLE 20-5: FileInfo Properties

PROPERTY DESCRIPTION

Directory Retrieves a DirectoryInfo object representing the directory containing the
current file. This property is read-only.

DirectoryName Returns the path to the file’s directory. This property is read-only.

IsReadOnly Shortcut to the read-only attribute of the file. This property is also accessible via
Attributes.

Length Gets the size of the file in bytes, returned as a long value. This property is
read-only.

The DirectoryInfo Class
The DirectoryInfo class works exactly like the FileInfo class. It is an instantiated object that
represents a single directory on a machine. Like the FileInfo class, many of the method calls are
duplicated across Directory and DirectoryInfo. The guidelines for choosing whether to use the
methods of File or FileInfo also apply to DirectoryInfo methods:

 ➤ If you are making a single call, use the static Directory class.

 ➤ If you are making a series of calls, use an instantiated DirectoryInfo object.

The DirectoryInfo class inherits most of its properties from FileSystemInfo, as does FileInfo,
although these properties operate on directories instead of files. There are also two DirectoryInfo-
specific properties, shown in Table 20-6.

TABLE 20-6: Properties Unique to the DirectoryInfo Class

PROPERTY DESCRIPTION

Parent Retrieves a DirectoryInfo object representing the directory containing the current
directory. This property is read-only.

Root Retrieves a DirectoryInfo object representing the root directory of the current vol-
ume—for example, the C:\ directory. This property is read-only.

Path Names and Relative Paths
When specifying a path name in .NET code, you can use absolute or relative path names. An abso-
lute path name explicitly specifies a file or directory from a known location—such as the C: drive.

Streams ❘ 647

An example of this is C:\Work\LogFile.txt—this path defines exactly where the file is, with no
ambiguity.

Relative path names are relative to a starting location. By using relative path names, no drive or
known location needs to be specified. You saw this earlier, where the current working directory was
the starting point, which is the default behavior for relative path names. For example, if your appli-
cation is running in the C:\Development\FileDemo directory and uses the relative path LogFile
.txt, the file references would be C:\Development\FileDemo\LogFile.txt. To move “up” a direc-
tory, the .. string is used. Thus, in the same application, the path ..\Log.txt points to the file C:\
Development\Log.txt.

As shown earlier, the working directory is initially set to the directory in which your application is
running. When you are developing with Visual Studio, this means the application is several direc-
tories beneath the project folder you created. It is usually located in ProjectName\bin\Debug. To
access a file in the root folder of the project, then, you have to move up two directories with ..\..\.
You will see this happen often throughout the chapter.

Should you need to, you can determine the working directory by using Directory
.GetCurrentDirectory(), or you can set it to a new path by using Directory
.SetCurrentDirectory().

STREAMS

All input and output in the .NET Framework involves the use of streams. A stream is an abstract
representation of a serial device. A serial device is something that stores and/or accesses data in
a linear manner, that is, one byte at a time, sequentially. This device can be a disk file, a network
channel, a memory location, or any other object that supports linear reading, writing, or both. By
keeping the device abstract, the underlying destination/source of the stream can be hidden. This
level of abstraction enables code reuse, and enables you to write more generic routines because you
don’t have to worry about the specifics of how data transfer actually occurs. Therefore, similar code
can be transferred and reused when the application is reading from a file input stream, a network
input stream, or any other kind of stream. Because you can ignore the physical mechanics of each
device, you don’t need to worry about, for example, hard disk heads or memory allocation when
dealing with a file stream.

A stream can represent almost any source such as a keyboard, a physical disk file, a network loca-
tion, a printer, or even another program, but this chapter focuses on reading and writing disk files.
The concepts applied to reading/writing disk files apply to most devices, so you’ll gain a basic under-
standing of streams and learn a proven approach that can be applied to many situations.

Classes for Using Streams
The classes for using streams are contained in the same System.IO namespace along with the File
and Directory classes. These classes are listed in Table 20-7.

648 ❘ CHAPTER 20 Files

TABLE 20-7: Stream Classes

CLASS DESCRIPTION

FileStream Represents a file that can be written to, read from, or both. This file can be
written to and read from asynchronously or synchronously.

StreamReader Reads character data from a stream and can be created by using a FileStream
as a base.

StreamWriter Writes character data to a stream and can be created by using a FileStream as
a base.

Let’s look now at how to use each of these classes.

The FileStream Object
The FileStream object represents a stream pointing to a file on a disk or a network path. Although
the class does expose methods for reading and writing bytes from and to the files, most often
you will use a StreamReader or StreamWriter to perform these functions. That’s because the
FileStream class operates on bytes and byte arrays, whereas the Stream classes operate on char-
acter data. Character data is easier to work with, but certain operations, such as random file access
(access to data at some point in the middle of a file), can be performed only by a FileStream object.
You’ll learn more about this later in the chapter.

There are several ways to create a FileStream object. The constructor has many different over-
loads, but the simplest takes just two arguments: the filename and a FileMode enumeration value:

FileStream aFile = new FileStream(filename, FileMode.<Member>);

The FileMode enumeration has several members that specify how the file is opened or created.
You’ll see the possibilities shortly. Another commonly used constructor is as follows:

FileStream aFile =
new FileStream(filename, FileMode.<Member>, FileAccess.<Member>);

The third parameter is a member of the FileAccess enumeration and is a way of specifying the pur-
pose of the stream. The members of the FileAccess enumeration are shown in Table 20-8.

TABLE 20-8: FileAccess Enumeration Members

MEMBER DESCRIPTION

Read Opens the file for reading only

Write Opens the file for writing only

ReadWrite Opens the file for reading or writing

Streams ❘ 649

Attempting to perform an action other than that specified by the FileAccess enumeration member
will result in an exception being thrown. This property is often used as a way to vary user access to
the file based on the user’s authorization level.

In the version of the FileStream constructor that doesn’t use a FileAccess enumeration param-
eter, the default value is used, which is FileAccess.ReadWrite.

The FileMode enumeration members are shown in Table 20-9. What actually happens when each
of these values is used depends on whether the filename specified refers to an existing file. Note that
the entries in this table refer to the position in the file that the stream points to when it is created, a
topic you’ll learn more about in the next section. Unless otherwise stated, the stream points to the
beginning of a file.

TABLE 20-9: FileMode Enumeration Members

MEMBER FILE EXISTS BEHAVIOR NO FILE EXISTS BEHAVIOR

Append The file is opened, with the stream positioned at
the end of the file. Can be used only in conjunc-
tion with FileAccess.Write.

A new file is created. Can
be used only in conjunction
with FileAccess.Write.

Create The file is destroyed, and a new file is created in
its place.

A new file is created.

CreateNew An exception is thrown. A new file is created.

Open The file is opened, with the stream positioned at
the beginning of the file.

An exception is thrown.

OpenOrCreate The file is opened, with the stream positioned at
the beginning of the file.

A new file is created.

Truncate The file is opened and erased. The stream is posi-
tioned at the beginning of the file. The original file
creation date is retained.

An exception is thrown.

Both the File and FileInfo classes expose OpenRead() and OpenWrite() methods that make it
easier to create FileStream objects. The first opens the file for read-only access, and the second
allows write-only access. These methods provide shortcuts, so you do not have to provide all the
information required in the form of parameters to the FileStream constructor. For example, the
following line of code opens the Data.txt file for read-only access:

FileStream aFile = File.OpenRead("Data.txt");

The following code performs the same function:

FileInfo aFileInfo = new FileInfo("Data.txt");
FileStream aFile = aFileInfo.OpenRead();

650 ❘ CHAPTER 20 Files

File Position
The FileStream class maintains an internal file pointer that points to the location within the file
where the next read or write operation will occur. In most cases, when a file is opened, it points to
the beginning of the file, but this pointer can be modified. This enables an application to read or
write anywhere within the file, which in turn enables random access to a file and the capability to
jump directly to a specific location in the file. This can save a lot of time when dealing with very
large files because you can instantly move to the location you want.

The method that implements this functionality is the Seek() method, which takes two parameters. The
first parameter specifies how far to move the file pointer, in bytes. The second parameter specifies where
to start counting from, in the form of a value from the SeekOrigin enumeration. The SeekOrigin enu-
meration contains three values: Begin, Current, and End.

For example, the following line would move the file pointer to the eighth byte in the file, starting
from the very first byte in the file:

aFile.Seek(8, SeekOrigin.Begin);

The following line would move the file pointer two bytes forward, starting from the current
position. If this were executed directly after the previous line, then the file pointer would now point
to the tenth byte in the file:

aFile.Seek(2, SeekOrigin.Current);

When you read from or write to a file, the file pointer changes as well. After you have read 10 bytes,
the file pointer will point to the byte after the tenth byte read.

You can also specify negative seek positions, which could be combined with the SeekOrigin.End
enumeration value to seek near the end of the file. The following seeks to the fifth byte from the end
of the file:

aFile.Seek(-5, SeekOrigin.End);

Files accessed in this manner are sometimes referred to as random access files because an applica-
tion can access any position within the file. The StreamReader and StreamWriter classes described
later access files sequentially and do not allow you to manipulate the file pointer in this way.

Reading Data
Reading data using the FileStream class is not as easy as using the StreamReader class, which you
will look at later in this chapter. That’s because the FileStream class deals exclusively with raw
bytes. Working in raw bytes makes the FileStream class useful for any kind of data file, not just
text files. By reading byte data, the FileStream object can be used to read files such as images or
sound files. The cost of this flexibility is that you cannot use a FileStream to read data directly into
a string as you can with the StreamReader class. However, several conversion classes make it fairly
easy to convert byte arrays into character arrays, and vice versa.

Streams ❘ 651

The FileStream.Read() method is the primary means to access data from a file that a FileStream
object points to. This method reads the data from a file and then writes this data into a byte
array. There are three parameters, the first being a byte array passed in to accept data from the
FileStream object. The second parameter is the position in the byte array to begin writing data
to—this is normally zero, to begin writing data from the file at the beginning of the array. The last
parameter specifies how many bytes to read from the file.

The following Try It Out demonstrates reading data from a random access file. The file you will
read from is actually the class file you create for the example.

TRY IT OUT Reading Data from Random Access Files: ReadFile\Program.cs

 1. Create a new console application called ReadFile and save it in the directory C:\
BeginningCSharp7\Chapter20.

 2. Add the following using directives to the top of the Program.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

 3. Add the following code to the Main()method:

static void Main(string[] args)
{
 byte[] byteData = new byte[200];
 char[] charData = new char[200];
 try
 {
 FileStream aFile = new FileStream(@"..\..\Program.cs", FileMode.Open);
 aFile.Seek(174, SeekOrigin.Begin);
 aFile.Read(byteData, 0, 200);
 }
 catch(IOException e)
 {
 WriteLine("An IO exception has been thrown!");
 WriteLine(e.ToString());
 ReadKey();
 return;
 }
 Decoder d = Encoding.UTF8.GetDecoder();
 d.GetChars(byteData, 0, byteData.Length, charData, 0);
 WriteLine(charData);
 ReadKey();
}

 4. Run the application. The result is shown in Figure 20-1.

652 ❘ CHAPTER 20 Files

FIGURE 20-1

How It Works

This application opens its own .cs file to read from. It does so by navigating two directories up the file
structure with the .. string in the following line:

 FileStream aFile = new FileStream("../../Program.cs", FileMode.Open);

The two lines that implement the actual seeking and reading from a specific point in the file are as
follows:

 aFile.Seek(174, SeekOrigin.Begin);
 aFile.Read(byteData, 0, 200);

The first line moves the file pointer to byte number 174 in the file. This is the n of namespace in the
Program.cs file; the 174 characters preceding it are the using directives. The second line reads the next
200 bytes into the byte array byteData.

Note that these two lines were enclosed in try...catch blocks to handle any exceptions that are
thrown:

 try
 {
 aFile.Seek(113, SeekOrigin.Begin);

Streams ❘ 653

 aFile.Read(byteData, 0, 100);
 }
 catch(IOException e)
 {
 WriteLine("An IO exception has been thrown!");
 WriteLine(e.ToString());
 ReadKey();
 return;
 }

Almost all operations involving file I/O can throw an exception of type IOException. All production
code should contain error handling, especially when dealing with the file system. The examples in this
chapter all include a basic form of error handling.

Once you have the byte array from the file, you need to convert it into a character array so that you
can display it to the Console. To do this, use the Decoder class from the System.Text namespace. This
class is designed to convert raw bytes into more useful items, such as characters:

Decoder d = Encoding.UTF8.GetDecoder();
d.GetChars(byteData, 0, byteData.Length, charData, 0);

These lines create a Decoder object based on the UTF-8 encoding schema, which is the Unicode encod-
ing schema. Then the GetChars() method is called, which takes an array of bytes and converts it to an
array of characters. After that has been done, the character array can be written to the Console.

Writing Data
The process for writing data to a random access file is very similar; a byte array must be created.
The easiest way to do this is to first build the character array you want to write to the file. Next, use the
Encoder object to convert it to a byte array, very much as you used the Decoder object. Last, call the
Write() method to send the array to the file.

The following Try It Out is a simple example to demonstrate how this is done.

TRY IT OUT Writing Data to Random Access Files: WriteFile\Program.cs

 1. Create a new console application called WriteFile and save it in the directory C:\
BeginningCSharp7\Chapter20.

 2. Add the following using directive to the top of the Program.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

 3. Add the following code to the Main() method:

static void Main(string[] args)
{

654 ❘ CHAPTER 20 Files

 byte[] byteData;
 char[] charData;
 try
 {
 FileStream aFile = new FileStream("Temp.txt", FileMode.Create);
 charData = "My pink half of the drainpipe.".ToCharArray();
 byteData = new byte[charData.Length];
 Encoder e = Encoding.UTF8.GetEncoder();
 e.GetBytes(charData, 0, charData.Length, byteData, 0, true);
 // Move file pointer to beginning of file.
 aFile.Seek(0, SeekOrigin.Begin);
 aFile.Write(byteData, 0, byteData.Length);
 }
 catch (IOException ex)
 {
 WriteLine("An IO exception has been thrown!");
 WriteLine(ex.ToString());
 ReadKey();
 return;
 }
}

 4. Run the application. It should run briefly and then close.

 5. Navigate to the application directory—the file will have been saved there because you used a rela-
tive path. This is located in the WriteFile\bin\Debug folder. Open the Temp.txt file. You should
see text in the file, as shown in Figure 20-2.

FIGURE 20-2

How It Works

This application opens a file in its own directory and writes a simple string to it. In structure, this
example is very similar to the previous example, except you use Write() instead of Read(), and
Encoder instead of Decoder.

The following line creates a character array by using the ToCharArray() method of the String class.
Because everything in C# is an object, the text "My pink half of the drainpipe." is actually a string
object (albeit a slightly odd one), so these static methods can be called even on a string of characters:

CharData = "My pink half of the drainpipe.".ToCharArray();

The following lines show how to convert the character array to the correct byte array needed by the
FileStream object:

Encoder e = Encoding.UTF8.GetEncoder();
e.GetBytes(charData, 0, charData.Length, byteData, 0, true);

Streams ❘ 655

This time, an Encoder object is created based on the UTF-8 encoding. You used Unicode for the decod-
ing as well, and this time you need to encode the character data into the correct byte format before you
can write to the stream. The GetBytes() method is where the magic happens. It converts the character
array to the byte array. It accepts a character array as the first parameter (charData in this example),
and the index to start in that array as the second parameter (0 for the start of the array). The third
parameter is the number of characters to convert (charData.Length—the number of elements in the
charData array). The fourth parameter is the byte array to place the data into (byteData), and the fifth
parameter is the index to start writing from in the byte array (0 for the start of the byteData array).

The sixth, and final, parameter determines whether the Encoder object should flush its state after com-
pletion. This reflects the fact that the Encoder object retains an in-memory record of where it was in
the byte array. This aids in subsequent calls to the Encoder object but is meaningless when only a single
call is made. The final call to the Encoder must set this parameter to true to clear its memory and free
the object for garbage collection.

After that, it is a simple matter of writing the byte array to the FileStream by using the Write()
method:

aFile.Seek(0, SeekOrigin.Begin);
aFile.Write(byteData, 0, byteData.Length);

Like the Read() method, the Write() method has three parameters: a byte array containing the data to
write to the file stream, the index in the array to start writing from, and the number of bytes to write.

The StreamWriter Object
Working with arrays of bytes is not most people’s idea of fun—having worked with the FileStream
object, you might be wondering whether there is an easier way. Fear not, for once you have a
FileStream object, you will usually create a StreamWriter or StreamReader and use its methods
to manipulate the file. If you don’t need the capability to change the file pointer to any arbitrary
position, these classes make working with files much easier.

The StreamWriter class enables you to write characters and strings to a file, with the class handling
the underlying conversions and writing to the FileStream object for you.

There are many ways to create a StreamWriter object. If you already have a FileStream object,
then you can use it to create a StreamWriter:

FileStream aFile = new FileStream("Log.txt", FileMode.CreateNew);
StreamWriter sw = new StreamWriter(aFile);

A StreamWriter object can also be created directly from a file:

StreamWriter sw = new StreamWriter("Log.txt", true);

This constructor takes the filename and a Boolean value that specifies whether to append to the file
or create a new one:

 ➤ If this is set to false, then a new file is created or the existing file is truncated and then
opened.

 ➤ If it is set to true, then the file is opened and the data is retained. If there is no file, then a
new one is created.

656 ❘ CHAPTER 20 Files

Unlike creating a FileStream object, creating a StreamWriter does not provide you with a similar
range of options—other than the Boolean value to append or create a new file, you have no option
for specifying the FileMode property as you did with the FileStream class. Nor do you have an
option to set the FileAccess property, so you will always have read/write privileges to the file. To
use any of the advanced parameters, you must first specify them in the FileStream constructor and
then create a StreamWriter from the FileStream object, as you do in the following Try It Out.

TRY IT OUT Writing Data to an Output Stream: StreamWrite\Program.cs

 1. Create a new console application called StreamWrite and save it in the directory C:\
BeginningCSharp7\Chapter20.

 2. You will be using the System.IO namespace again, so add the following using directives near the
top of the Program.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

 3. Add the following code to the Main() method:

static void Main(string[] args)
{
 try
 {
 FileStream aFile = new FileStream("Log.txt", FileMode.OpenOrCreate);
 StreamWriter sw = new StreamWriter(aFile);
 bool truth = true;
 // Write data to file.
 sw.WriteLine("Hello to you.");
 sw.Write($"It is now {DateTime.Now.ToLongDateString(}");
 sw.Write("and things are looking good.");
 sw.Write("More than that,");
 sw.Write($" it's {truth} that C# is fun.");
 sw.Close();
 }
 catch(IOException e)
 {
 WriteLine("An IO exception has been thrown!");
 WriteLine(e.ToString());
 ReadLine();
 return;
 }
}

 4. Build and run the project. If no errors are found, it should quickly run and close. Because you are
not displaying anything on the console, it is not a very exciting program to watch.

Streams ❘ 657

 5. Go to the application directory and find the Log.txt file. It is located in the StreamWrite\bin\
Debug folder because you used a relative path.

 6. Open the file. You should see the text shown in Figure 20-3.

FIGURE 20-3

How It Works

This simple application demonstrates the two most important methods of the StreamWriter class,
Write() and WriteLine(). Both of them have many overloaded versions for performing more
advanced file output, but you used basic string output in this example.

The WriteLine() method writes the string passed to it, followed immediately by a newline character.
You can see in the example that this causes the next write operation to begin on a new line:

sw.WriteLine("Hello to you.");

The Write() method simply writes the string passed to it to the file, without a newline character
appended, enabling you to write a complete sentence or paragraph using more than one Write() state-
ment. Just as you can write formatted data to the console, you can also write formatted data to files.
For example, you can write out the value of variables to the file using interpolated string parameters:

 sw.Write($"It is now {DateTime.Now.ToLongDateString(}");

DateTime.Now holds the current date; the ToLongDateString() method is used to convert this date
into an easy-to-read form.

 sw.Write("More than that,");
 sw.Write(" it's {truth} that C# is fun.");

Again, you use interpolated string parameters, this time with Write() to display the Boolean value
truth—you set this variable to true earlier, and its value is automatically converted into the string
“True” for the formatting.

You can use Write() and format parameters to write comma-separated files:

[StreamWriter object].Write($"{100},{"A nice product"},{10.50}");

In a more sophisticated example, this data could come from a database or other data source.

658 ❘ CHAPTER 20 Files

The StreamReader Object
Input streams are used to read data from an external source. Often, this will be a file on a disk or
network location, but remember that this source could be almost anything that can send data, such
as a network application or even the Console.

The StreamReader class is the one that you will be using to read data from files. Like the
StreamWriter class, this is a generic class that can be used with any stream. In the next Try It Out,
you again construct it around a FileStream object so that it points to the correct file.

StreamReader objects are created in much the same way as StreamWriter objects. The most com-
mon way to create one is to use a previously created FileStream object:

FileStream aFile = new FileStream("Log.txt", FileMode.Open);
StreamReader sr = new StreamReader(aFile);

Like StreamWriter, the StreamReader class can be created directly from a string containing the
path to a particular file:

StreamReader sr = new StreamReader("Log.txt");

TRY IT OUT Reading Data from an Input Stream: StreamRead\Program.cs

 1. Create a new console application called StreamRead and save it in the directory C:\
BeginningCSharp7\Chapter20.

 2. Import the System.IO and System.Console namespaces by placing the following lines of code
near the top of Program.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;
using static System.Console;

 3. Add the following code to the Main() method:

static void Main(string[] args)
{
 string line;
 try
 {
 FileStream aFile = new FileStream("Log.txt", FileMode.Open);
 StreamReader sr = new StreamReader(aFile);
 line = sr.ReadLine();
 // Read data in line by line.
 while(line != null)
 {
 WriteLine(line);
 line = sr.ReadLine();
 }

Streams ❘ 659

 sr.Close();
 }
 catch(IOException e)
 {
 WriteLine("An IO exception has been thrown!");
 WriteLine(e.ToString());
 return;
 }
 ReadKey();
}

 4. Copy the Log.txt file, created in the previous example, into the StreamRead\bin\Debug direc-
tory. If you don’t have a file named Log.txt, the FileStream constructor will throw an exception
when it doesn’t find it.

 5. Run the application. You should see the text of the file written to the console, as shown in
Figure 20-4.

FIGURE 20-4

How It Works

This application is very similar to the previous one, with the obvious difference being that it is read-
ing a file, rather than writing one. As before, you must import the System.IO namespace to be able to
access the necessary classes.

You use the ReadLine() method to read text from the file. This method reads text until a new line is
found, and returns the resulting text as a string. The method returns a null when the end of the file
has been reached, which you use to test for the end of the file. Note that you use a while loop, which
ensures that the line read isn’t null before any code in the body of the loop is executed—that way, only
the genuine contents of the file are displayed:

line = sr.ReadLine();
while(line != null)
{
 WriteLine(line);
 line = sr.ReadLine();
}

660 ❘ CHAPTER 20 Files

Reading Data
The ReadLine() method is not the only way you can access data in a file. The StreamReader class
has many methods for reading data.

The simplest of the reading methods is Read(). It returns the next character from the stream as a
positive integer value or a -1 if it has reached the end. This value can be converted into a character
by using the Convert utility class. In the preceding example, the main parts of the program could be
rewritten as follows:

StreamReader sr = new StreamReader(aFile);
int charCode;
charCode = sr.Read();
while(charCode != -1)
{
 Write(Convert.ToChar(charCode));
 charCode = sr.Read();
}
sr.Close();

A very convenient method to use with smaller files is the ReadToEnd() method. It reads the entire
file and returns it as a string. In this case, the earlier application could be simplified to the following:

StreamReader sr = new StreamReader(aFile);
line = sr.ReadToEnd();
WriteLine(line);
sr.Close();

Although this might seem easy and convenient, be careful. By reading all the data into a string
object, you are forcing the data in the file to exist in memory. Depending on the size of the data file,
this can be prohibitive. If the data file is extremely large, then it is better to leave the data in the file
and access it with the methods of the StreamReader.

Another way to deal with large files, which was introduced in .NET 4, is to use the static File
.ReadLines() method. There are, in fact, several static methods of File that you can use to
simplify reading and writing file data, but this one is particularly interesting in that it returns an
IEnumerable<string> collection. You can iterate through the strings in this collection to read the file
one line at a time. Using this method, you can rewrite the previous example as follows:

foreach (string alternativeLine in File.ReadLines("Log.txt"))
 WriteLine(alternativeLine);

There are, as you can see, several ways in .NET to achieve the same result—namely, reading data
from a file. Choose the technique that suits you best.

Asynchronous File Access
Sometimes—for example, when you are performing a lot of file access operations in one go or are
working with very large files—reading and writing file system data can be slow. If this is the case,
you might want to perform other operations while you wait. This is especially important with desk-
top applications, where you want your application to remain responsive to users while you are doing
work in the background.

Streams ❘ 661

To facilitate this, .NET 4.5 introduced asynchronous ways to work with streams. This applies
to the FileStream class, as well as to StreamReader and StreamWriter. If you have browsed
through the definitions of these classes, you might have noticed some methods that end with the
suffix Async—for example, StreamReader has a method called ReadLineAsync(), which is an
asynchronous version of ReadLine(). These methods are designed to be used with the task-based
asynchronous programming model.

Asynchronous programming is an advanced technique that isn’t covered in detail in this book.
However, if asynchronous file system access is something you are interested in doing then this is the
place to start. You might also want to read Professional C# 7.0 and .NET Core 2.0 by Christian
Nagel (Wrox, 2018) for more details.

Reading and Writing Compressed Files
Often when dealing with files, quite a lot of space is used up on the hard disk. This is particularly
true for graphics and sound files. You’ve probably come across utilities that enable you to compress
and decompress files, which are handy when you want to move them around or e-mail them. The
System.IO.Compression namespace contains classes that enable you to compress files from your
code, using either the GZIP or Deflate algorithm—both of which are publicly available and free for
anyone to use.

There is a little bit more to compressing files than just compressing them, though. You’ve probably
seen how commercial applications enable multiple files to be placed in a single compressed file, often
called an archive. There are classes in the System.IO.Compression namespace that enable similar
functionality. However, to keep things simple for this book you’ll just look at one scenario: saving
text data to a compressed file. You are unlikely to be able to access this file in an external utility, but
the file will be much smaller than its uncompressed equivalent!

The two compression stream classes in the System.IO.Compression namespace that you’ll look at
here, DeflateStream and GZipStream, work very similarly. In both cases, you initialize them with
an existing stream, which, in the case of files, will be a FileStream object. After this you can use
them with StreamReader and StreamWriter just like any other stream. All you need to specify in
addition to that is whether the stream will be used for compression (saving files) or decompression
(loading files) so that the class knows what to do with the data that passes through it. This is best
illustrated with the following example.

TRY IT OUT Reading and Writing Compressed Data: Compressor\Program.cs

 1. Create a new console application called Compressor and save it in the directory C:\
BeginningCSharp7\Chapter20.

 2. Place the following lines of code near the top of Program.cs. You need to import the System
.Console, System.IO, and System.IO.Compression namespaces to use the file and compression
classes:

using System;
using System.Collections.Generic;
using System.Linq;

662 ❘ CHAPTER 20 Files

using System.Text;
using System.Threading.Tasks;
using System.IO;
using System.IO.Compression;
using static System.Console;

 3. Add the following methods into the body of Program.cs, before the Main() method:

static void SaveCompressedFile(string filename, string data)
{
 FileStream fileStream =
 new FileStream(filename, FileMode.Create, FileAccess.Write);
 GZipStream compressionStream =
 new GZipStream(fileStream, CompressionMode.Compress);
 StreamWriter writer = new StreamWriter(compressionStream);
 writer.Write(data);
 writer.Close();
}
static string LoadCompressedFile(string filename)
{
 FileStream fileStream =
 new FileStream(filename, FileMode.Open, FileAccess.Read);
 GZipStream compressionStream =
 new GZipStream(fileStream, CompressionMode.Decompress);
 StreamReader reader = new StreamReader(compressionStream);
 string data = reader.ReadToEnd();
 reader.Close();
 return data;
}

 4. Add the following code to the Main() method:

static void Main(string[] args)
{
 try
 {
 string filename = "compressedFile.txt";
 WriteLine(
 "Enter a string to compress (will be repeated 100 times):");
 string sourceString = ReadLine();
 StringBuilder sourceStringMultiplier =
 new StringBuilder(sourceString.Length * 100);
 for (int i = 0; i < 100; i++)
 {
 sourceStringMultiplier.Append(sourceString);
 }
 sourceString = sourceStringMultiplier.ToString();
 WriteLine($"Source data is {sourceString.Length} bytes long.");
 SaveCompressedFile(filename, sourceString);
 WriteLine($"\nData saved to {filename}.");
 FileInfo compressedFileData = new FileInfo(filename);
 Write($"Compressed file is {compressedFileData.Length}");
 WriteLine(" bytes long.");
 string recoveredString = LoadCompressedFile(filename);
 recoveredString = recoveredString.Substring(
 0, recoveredString.Length / 100);

Streams ❘ 663

 WriteLine($"\nRecovered data: {recoveredString}",);
 ReadKey();
 }
 catch (IOException ex)
 {
 WriteLine("An IO exception has been thrown!");
 WriteLine(ex.ToString());
 ReadKey();
 }
}

 5. Run the application and enter a suitably long string. An example result is shown in Figure 20-5.

FIGURE 20-5

 6. Open compressedFile.txt in Notepad. The text is shown in Figure 20-6.

FIGURE 20-6

How It Works

In this example, you define two methods for saving and loading a compressed text file. The first of
these, SaveCompressedFile(), is as follows:

static void SaveCompressedFile(string filename, string data)
{
 FileStream fileStream =
 new FileStream(filename, FileMode.Create, FileAccess.Write);
 GZipStream compressionStream =
 new GZipStream(fileStream, CompressionMode.Compress);
 StreamWriter writer = new StreamWriter(compressionStream);
 writer.Write(data);
 writer.Close();
}

664 ❘ CHAPTER 20 Files

The code starts by creating a FileStream object, and then uses it to create a GZipStream object. Note
that you could replace all occurrences of GZipStream in this code with DeflateStream—the classes
work in the same way. You use the CompressionMode.Compress enumeration value to specify that data
is to be compressed, and then use a StreamWriter to write data to the file.

LoadCompressedFile() mirrors the SaveCompressedFile() method. Instead of saving to a filename,
it loads a compressed file into a string:

static string LoadCompressedFile(string filename)
{
 FileStream fileStream =
 new FileStream(filename, FileMode.Open, FileAccess.Read);
 GZipStream compressionStream =
 new GZipStream(fileStream, CompressionMode.Decompress);
 StreamReader reader = new StreamReader(compressionStream);
 string data = reader.ReadToEnd();
 reader.Close();
 return data;
}

The differences are as you would expect—different FileMode, FileAccess, and CompressionMode
enumeration values to load and uncompress data, and the use of a StreamReader to get the uncom-
pressed text out of the file.

The code in Main() is a simple test of these methods. It simply asks for a string, duplicates the string
100 times to make things interesting, compresses it to a file, and then retrieves it. In the example, the
first sentence of book XI of The Iliad repeated 100 times is 19,400 characters long, but when com-
pressed, it takes up only 225 bytes—that’s a compression ratio of more than 80:1. Admittedly, this is
a bit of a cheat—the GZIP algorithm works particularly well with repetitive data, but it does illustrate
compression in action.

You also looked at the text stored in the compressed file. Obviously, it isn’t easily readable, which has
implications should you want to share data between applications, for example. However, because the
file was compressed with a known algorithm, at least you know that it is possible for applications to
uncompress it.

MONITORING THE FILE SYSTEM

Sometimes an application must do more than just read and write files to the file system. For
example, it might be important to know when files or directories are being modified. The .NET
Framework has made it easy to create custom applications that do just that.

The class that helps you to do this is the FileSystemWatcher class. It exposes several events that
your application can catch. This enables your application to respond to file system events.

The basic procedure for using the FileSystemWatcher is simple. First, you must set a handful of
properties, which specify where to monitor, what to monitor, and when it should raise the event that

Monitoring the File System ❘ 665

your application will handle. Then you give it the addresses of your custom event handlers, so that it
can call these when significant events occur. Finally, you turn it on and wait for the events.

The properties that must be set before a FileSystemWatcher object is enabled are shown in
Table 20-10.

TABLE 20-10: FileSystemWatcher Properties

PROPERTY DESCRIPTION

Path Must be set to the file location or directory to monitor.

NotifyFilter A combination of NotifyFilters enumeration values that specify what
to watch for within the monitored files. These represent properties of the
file or folders being monitored. If any of the specified properties change,
then an event is raised. The possible enumeration values are Attributes,
CreationTime, DirectoryName, FileName, LastAccess, LastWrite,
Security, and Size. Note that these can be combined using the binary OR
operator.

Filter A filter specifying which files to monitor—for example, *.txt.

Once these are set, you must write event handlers for four events: Changed, Created, Deleted, and
Renamed. As shown in Chapter 13, this is simply a matter of creating your own method and assign-
ing it to the object’s event. By assigning your own event handler to these methods, your method will
be called when the event is fired. Each event will fire when a file or directory matching the Path,
NotifyFilter, and Filter property is modified.

Once you have set the properties and the events, set the EnableRaisingEvents property to true to
begin the monitoring. In the following Try It Out, you use FileSystemWatcher in a simple client
application to keep tabs on a directory of your choice.

TRY IT OUT Monitoring the File System: FileWatch

Here’s a more sophisticated example using much of what you have learned in this chapter.

 1. Create a new WPF application called FileWatch and save it in the directory C:\
BeginningCSharp7\Chapter20.

 2. Modify MainWindow.xaml as follows (the resulting window is shown in Figure 20-7):

<Window x:Class="FileWatch.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="File Monitor" Height="160" Width="300">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />

666 ❘ CHAPTER 20 Files

 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid Margin="4">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBox Name="LocationBox" TextChanged="LocationBox_TextChanged" />
 <Button Name="BrowseButton" Grid.Column="1" Margin="4,0,0,0"
 Content="Browse..." Click="BrowseButton_Click" />
 </Grid>
 <Button Name="WatchButton" Content="Watch!" Margin="4" Grid.Row="1"
 Click="WatchButton_Click" IsEnabled="False" />
 <ListBox Name="WatchOutput" Margin="4" Grid.Row="2" />
 </Grid>
</Window>

FIGURE 20-7

 3. Add the following using directives to MainWindow.xaml.cs:

using System.IO;
using Microsoft.Win32;

 4. Add a field of type FileSystemWatcher class to the MainWindow class:

namespace FileWatch
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 // File System Watcher object.
 private FileSystemWatcher watcher;

 5. Add the following utility method to the class to allow messages to be added to the output from a
background thread:

 private void AddMessage(string message
 {
 Dispatcher.BeginInvoke(new Action(
 () => WatchOutput.Items.Insert(
 0, message))));
 }

Monitoring the File System ❘ 667

 6. Just after the InitializeComponent() method call in the window constructor, add the following
code. This code is needed to initialize the FileSystemWatcher object and associate the events to
calls to AddMessage():

 public MainWindow()
 {
 InitializeComponent();
 watcher = new FileSystemWatcher();
 watcher.Deleted += (s, e) =>
 AddMessage($"File: {e.FullPath} Deleted");
 watcher.Renamed += (s, e) =>
 AddMessage($"File renamed from {e.OldName} to {e.FullPath}");
 watcher.Changed += (s, e) =>
 AddMessage($"File: {e.FullPath} {e.ChangeType.ToString()}");
 watcher.Created += (s, e) =>
 AddMessage($"File: {e.FullPath} Created");
 }

 7. Add the Click event handler for the Browse button. The code in this event handler opens the Open
File dialog box, enabling the user to select a file to monitor:

 private void BrowseButton_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog dialog = new OpenFileDialog();
 if (dialog.ShowDialog(this) == true)
 {
 LocationBox.Text = dialog.FileName;
 }
 }

The ShowDialog() method returns a bool? value reflecting how the user exited the File
Open dialog box (the user could have clicked OK or pressed the Cancel button). You need
to confirm that the user did not click the Cancel button, so you compare the result from the
method call to true before saving the user’s file selection to the TextBox.

 8. Add the TextChanged event handler for the TextBox to ensure the Watch! button is enabled when
the TextBox contains text:

 private void LocationBox_TextChanged(object sender, TextChangedEventArgs e)
 {
 WatchButton.IsEnabled = !string.IsNullOrEmpty(LocationBox.Text);
 }

 9. Add the following code to the Click event handler for the Watch! button, which starts the
FileSystemWatcher:

 private void WatchButton_Click(object sender, RoutedEventArgs e)
 {
 watcher.Path = System.IO.Path.GetDirectoryName(LocationBox.Text);
 watcher.Filter = System.IO.Path.GetFileName(LocationBox.Text);
 watcher.NotifyFilter = NotifyFilters.LastWrite |
 NotifyFilters.FileName | NotifyFilters.Size;

668 ❘ CHAPTER 20 Files

 AddMessage("Watching " + LocationBox.Text);
 // Begin watching.
 watcher.EnableRaisingEvents = true;
 }

 10. Create a directory called C:\TempWatch and a file in this directory called temp.txt.

 11. Run the application. If everything builds successfully, click the Browse button and select
C:\TempWatch\temp.txt.

 12. Click the Watch! button to begin monitoring the file. The only change you will see in your
application is a message confirming that the file is being watched.

 13. Using Windows Explorer, navigate to C:\TempWatch. Open temp.txt in Notepad, add some text
to the file, and save it.

 14. Rename the file.

 15. You should see a description of the changes to the file you selected to watch, as shown in
Figure 20-8.

FIGURE 20-8

How It Works

This application is fairly simple, but it demonstrates how the FileSystemWatcher works. Try playing
with the string you put into the monitor text box. If you specify *.* in a directory, it will monitor all
changes in the directory.

Most of the code in the application is related to setting up the FileSystemWatcher object to watch the
correct location:

 watcher.Path = System.IO.Path.GetDirectoryName(LocationBox.Text);
 watcher.Filter = System.IO.Path.GetFileName(LocationBox.Text);
 watcher.NotifyFilter = NotifyFilters.LastWrite |
 NotifyFilters.FileName | NotifyFilters.Size;
 AddMessage("Watching " + LocationBox.Text);
 // Begin watching.
 watcher.EnableRaisingEvents = true;

The code first sets the path to the directory to monitor. It uses a new object you have not looked at yet:
System.IO.Path. This is a static class, much like the static File object. It exposes many static methods
to manipulate and extract information out of file location strings. You first use it to extract the direc-
tory name the user typed in the text box, using the GetDirectoryName() method.

Monitoring the File System ❘ 669

The next line sets the filter for the object. This can be an actual file, in which case it would only moni-
tor the file, or it could be something like *.txt, in which case it would monitor all the .txt files in the
directory specified. Again, you use the Path static object to extract the information from the supplied
file location.

The NotifyFilter is a combination of NotifyFilters enumeration values that specify what consti-
tutes a change. In this example, you have indicated that if the last write time stamp, the filename, or the
size of the file changes, your application should be notified of the change. After updating the UI, you set
the EnableRaisingEvents property to true to begin monitoring.

Before that, however, you have to create the object and set the event handlers:

 watcher = new FileSystemWatcher();
 watcher.Deleted += (s, e) =>
 AddMessage($"File: {e.FullPath} Deleted");
 watcher.Renamed += (s, e) =>
 AddMessage($"File renamed from {e.OldName} to {e.FullPath}");
 watcher.Changed += (s, e) =>
 AddMessage($"File: {e.FullPath} {e.ChangeType.ToString()}");
 watcher.Created += (s, e) =>
 AddMessage($"File: {e.FullPath} Created");

This code uses lambda expressions to create anonymous event handler methods for the events raised
by the watcher object when a file is deleted, renamed, changed, or created. These event handlers simply
call the AddMessage() method with an informative message. Obviously, you could implement a more
sophisticated response, depending on your application. When a file is added to a directory, you could
move it somewhere else or read the contents and fire off a new process using the information. The pos-
sibilities are endless!

EXERCISES

 20.1 Which namespace enables an application to work with files?

 20.2 When would you use a FileStream object to write to a file instead of using a StreamWriter
object?

 20.3 Which methods of the StreamReader class enable you to read data from files and what does
each one do?

 20.4 Which class would you use to compress a stream by using the Deflate algorithm?

 20.5 Which events does the FileSystemWatcher class expose and what are they for?

 20.6 Modify the FileWatch application you built in this chapter by adding the capability to turn the
file system monitoring on and off without exiting the application.

Answers to the exercises can be found in Appendix.

670 ❘ CHAPTER 20 Files

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Streams A stream is an abstract representation of a serial device that you can read
from or write to a byte at a time. Files are an example of such a device. There
are two types of streams—input and output—for reading from and writing to
devices, respectively.

File classes There are numerous classes in the .NET Framework that abstract file system
access, including File and Directory for dealing with files and directories
through static methods, and FileInfo and DirectoryInfo, which can
be instantiated to represent specific files and directories. The latter pair of
classes is useful when you perform multiple operations on files and direc-
tories, as those classes don’t require a path for every method call. Typical
operations that you can perform on files and directories include interrogating
and changing properties, creating, deleting, and copying.

File paths File and directory paths can be absolute or relative. An absolute path gives
a complete description of a location starting from the root of the drive that
contains it; all parent directories are separated from child directories with
backslashes. Relative directories are similar, but start from a defined point in
the file system, such as the directory where an application is executing (the
working directory). To navigate the file system, you often use the .. parent
directory alias.

The FileStream
object

The FileStream object provides access to the contents of a file, for read-
ing and writing purposes. It accesses file data at the byte level, and so is not
always the best choice for accessing file data. A FileStream instance main-
tains a position byte index within a file so that you can navigate through the
contents of a file. Accessing a file at any point in this way is known as random
access.

Reading and
writing to streams

An easier way to read and write file data is to use the StreamReader and
StreamWriter classes in combination with a FileStream. These enable you
to read and write character and string data rather than working with bytes.
These types expose familiar methods for working with strings, including
ReadLine() and WriteLine(). Because they work with string data, these
classes make it easy to work with comma-delimited files, which are a common
way to represent structured data.

Monitoring the File System ❘ 671

TOPIC KEY CONCEPTS

Compressed files You can use the DeflateStream and GZipStream compressed stream
classes to read and write compressed data from and to files. These classes
work with byte data much like FileStream, but as with FileStream you can
access data through StreamReader and StreamWriter classes to simplify
your code.

Monitoring the file
system

You can use the FileSystemWatcher class to monitor changes to file sys-
tem data. You can monitor both files and directories, and provide a filter,
if required, to modify only those files that have a specific file extension.
FileSystemWatcher instances notify you of changes by raising events that
you can handle in your code.

XML and JSON
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ XML basics

 ➤ JSON basics

 ➤ XML schemas

 ➤ XML Document Object Model

 ➤ Converting XML to JSON

 ➤ Searching XML documents using XPath

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter21 folder and individually named
according to the names throughout the chapter.

Just as programming languages like C# describe computer logic in a format that is readable by
both machines and humans, XML and JSON are both data languages, which are used storing
data in a simple text format that can be read by both humans and nearly any computer.

Most C# .NET applications use XML in some form for storing data, such as .config files for
storing configuration details and XAML files used in WPF and Windows Store applications.
Because of this important fact, we’ll spend the most time in this chapter on XML, with just a
short look at JSON on the side.

During this chapter you will learn the basics of XML and JSON and then learn how to create
XML documents and schemas. You will learn the basics of the XmlDocument class, how to

21

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

674 ❘ CHAPTER 21 XML and JSOn

read and write XML, how to insert and delete nodes, how to convert XML to JSON format, and
finally how to search for data in XML documents using XPath.

XML BASICS

Extensible Markup Language (XML) is a data language, which is a way of storing data in a simple
text format that can be read by both humans and nearly any computer. It is a W3C standard format
like HTML (www.w3.org/XML). It has been fully adopted by Microsoft in the .NET Framework
and other Microsoft products. Even the document formats introduced with the newer versions of
Microsoft Office are based on XML, although the Office applications themselves are not .NET
applications.

The ins and outs of XML can be very complicated, so you won’t look at every single detail here.
Luckily, most tasks don’t require a detailed knowledge of XML because Visual Studio typically
takes care of most of the work—you will rarely have to write an XML document by hand. If you
want to learn about XML in more depth, read a book such as Beginning XML by Joe Fawcett,
Danny Ayers, and Liam Quin (Wrox, 2012) or one of the many online tutorials such as www.xmlnews
.org/docs/xml-basics.html or http://www.w3schools.com/xml/.

The basic format is very simple, as you can see in the following example that shows an XML format
for sharing data about books.

 <book>
 <title>Beginning Visual C# 7</title>
 <author>Benjamin Perkins et al</author>
 <code>458685</code>
 </book>

In this example each book has a title, an author, and a unique code identifying the book. Each
book’s data is contained in a book element beginning with a <book> tag and ending with the </
book> end tag. The title, author, and code values are stored in nested elements inside the book
element.

Optionally, an element may also have attributes inside the tag itself. If the book code were an attri-
bute of the book element instead of its own element, you’d see the book element beginning with
something like this: <book code=458685>. To keep it simple we’ll stick with elements in this chap-
ter’s examples. Generically both attributes and elements are called nodes, like the nodes of a graph.

JSON BASICS

Another data language you may encounter when developing C# applications is JSON. JSON stands
for JavaScript Object Notation. Like XML, it is also a standard (www.json.org), though as you
can tell from the name it is derived from the JavaScript language rather than C#. While not used
throughout .NET like XML, it is a common format for transferring data from web services and web
browsers.

www.w3.org/XML
www.xmlnews.org/docs/xml-basics.html
www.xmlnews.org/docs/xml-basics.html
http://www.w3schools.com/xml/
www.json.org

XML Schemas ❘ 675

JSON also has a very simple format. The same book data we showed previously in XML is pre-
sented here in JSON:

{"book":[{"title":"Beginning Visual C# 2017",
 "author":"Benamin Perkins et al",
 "code":"458685"}]

As with the previous XML example, we see the same book with title, author, and a unique code.
JSON uses curly braces ({}) to delimit blocks of data and square brackets ([]) to delimit arrays
similar to the way C#, JavaScript, and other C-like languages use curly braces for blocks of code and
square brackets for arrays.

JSON is a more compact format than XML, but it is much harder for humans to read, especially as
the curly braces and brackets become deeply nested in complex data.

XML SCHEMAS

An XML document may be described by a schema, which is another XML file describing what
elements and attributes are allowed in a particular document. You can validate an XML document
against a schema, ensuring that your program doesn’t encounter data it isn’t prepared to handle.
The standard schema XML format used with C# is XSD (for XML Schema Definition).

Figure 21-1 includes a long list of schemas recognized by Visual Studio (you can see this list by
selecting XML ➪ Schemas… from the Visual Studio menu). However Visual Studio will not auto-
matically remember schemas you’ve used. If you are using a schema repeatedly and don’t want to
browse for it every time you need it, you can copy it to the following location: C:\Program Files
(x86)\Microsoft Visual Studio\2017\Community\Xml\Schemas. Any schema copied to that
location will show up on the XML Schemas dialog box.

FIGURE 21-1

You can create an XML schema from an XML file and then use the schema to validate further
changes, as demonstrated in the following Try It Out.

676 ❘ CHAPTER 21 XML and JSOn

TRY IT OUT
Creating an XML Document in Visual Studio: Chapter21\XML and
Schema\GhostStories.xml

Follow these steps to create an XML document:

 1. Open Visual Studio and select File ➪ New ➪ File from the menu. If you don’t see this option,
create a new project, right-click the project in the Solution Explorer, and choose to add a new item.
Then select XML File from the dialog box.

 2. In the New File dialog box, select XML File and click Open. Visual Studio creates a new XML
document for you. As Figure 21-1 shows, Visual Studio adds an XML declaration, complete with
an encoding attribute. (It also colors the attributes and elements.)

 3. Save the file by pressing Ctrl+S or by selecting File ➪ Save XMLFile1.xml from the menu. Visual
Studio asks you where to save the file and what to call the file; save it in the BeginningCSharp7\
Chapter21\XML and Schemas folder as GhostStories.xml.

 4. Move the cursor to the line underneath the XML declaration, and type the text <stories>. Notice
how Visual Studio automatically puts the end tag in as soon as you type the greater than sign to
close the opening tag.

 5. Type this XML file and then click Save:

<stories>
 <story>
 <title>A House in Aungier Street</title>
 <author>
 <name>Sheridan Le Fanu</name>
 <nationality>Irish</nationality>
 </author>
 <rating>eerie</rating>
 </story>
 <story>
 <title>The Signalman</title>
 <author>
 <name>Charles Dickens</name>
 <nationality>English</nationality>
 </author>
 <rating>atmospheric</rating>
 </story>
 <story>
 <title>The Turn of the Screw</title>
 <author>
 <name>Henry James</name>
 <nationality>American</nationality>
 </author>
 <rating>a bit dull</rating>
 </story>
</stories>

 6. It is now possible to let Visual Studio create a schema that fits the XML you have written. Do this
by selecting the Create Schema menu option from the XML menu. Save the resulting XSD file by
clicking Save as GhostStories.xsd.

XML Document Object Model ❘ 677

 7. Return to the XML file and type the following XML before the ending </stories> tag:

 <story>
 <title>Number 13</title>
 <author>
 <name>M.R. James</name>
 <nationality>English</nationality>
 </author>
 <rating>mysterious</rating>
 </story>

You are now getting IntelliSense hints when you begin typing the starting tags. That’s
because Visual Studio knows to connect the newly created XSD schema to the XML file you
are typing.

 8. It is possible to create this link between XML and one or more schemas in Visual Studio. Select
XML ➪ Schemas. That brings up the XML Schemas dialog box shown in Figure 21-2. At the top
of the long list of schemas that Visual Studio recognizes, you will see GhostStories.xsd. To
the left of it is a checkmark, which indicates that this schema is being used on the current XML
document.

FIGURE 21-2

XML DOCUMENT OBJECT MODEL

The XML Document Object Model (XML DOM) is a set of classes used to access and manipulate
XML in a very intuitive way. The DOM is perhaps not the quickest way to read XML data, but as
soon as you understand the relationship between the classes and the elements of an XML document,
you will find it very easy to use.

The classes that make up the DOM can be found in the namespace System.Xml. There are several
classes and namespaces in this namespace, but this chapter focuses on only a few of the classes that
enable you to easily manipulate XML. These classes are described in Table 21-1.

TABLE 21-1: Common DOM Classes

CLASS DESCRIPTION

XmlNode Represents a single node in a document tree. It is the base of many of the classes
shown in this chapter. If this node represents the root of an XML document, you
can navigate to any position in the document from it.

XmlDocument Extends the XmlNode class, but is often the first object you use when using XML.
That’s because this class is used to load and save data from disk or elsewhere.

XmlElement Represents a single element in the XML document. XmlElement is derived from
XmlLinkedNode, which in turn is derived from XmlNode.

continues

678 ❘ CHAPTER 21 XML and JSOn

CLASS DESCRIPTION

XmlAttribute Represents a single attribute. Like the XmlDocument class, it is derived from the
XmlNode class.

XmlText Represents the text between a starting tag and a closing tag.

XmlComment Represents a special kind of node that is not regarded as part of the document
other than to provide information to the reader about parts of the document.

XmlNodeList Represents a collection of nodes.

The XmlDocument Class
Usually, the first thing your application will want to do with XML is read it from disk. As described
in Table 21-1, this is the domain of the XmlDocument class. You can think of the XmlDocument as
an in-memory representation of the file on disk. Once you have used the XmlDocument class to load
a file into memory, you can obtain the root node of the document from it and start reading and
manipulating the XML:

using System.Xml;
.
.
.
XmlDocument document = new XmlDocument();
document.Load(@"C:\BeginningCSharp7\Chapter21\XML and Schema\books.xml");

The two lines of code create a new instance of the XmlDocument class and load the file books.xml
into it.

NOTE The folder name is an absolute path; your folder structure may differ
and if so you should adjust the path following document.Load to reflect the
actual folder path on your computer.

Remember that the XmlDocument class is located in the System.Xml namespace, and you should
insert a using System.Xml; in the using section at the beginning of the code.

In addition to loading and saving the XML, the XmlDocument class is also responsible for maintain-
ing the XML structure itself. Therefore, you will find numerous methods on this class that are used
to create, alter, and delete nodes in the tree. You will look at some of those methods shortly, but to
present the methods properly, you need to know a bit more about another class: XmlElement.

The XmlElement Class
Now that the document has been loaded into memory, you want to do something with it. The
DocumentElement property of the XmlDocument instance you created in the preceding code returns

TABLE 21-1 (continued)

XML Document Object Model ❘ 679

an instance of an XmlElement that represents the root element of the XmlDocument. This element is
important because it gives you access to every bit of information in the document:

XmlDocument document = new XmlDocument();
document.Load(@"C:\BeginningCSharp7\Chapter21\
XML and Schema\books.xml");
XmlElement element = document.DocumentElement;

After you have the root element of the document, you are ready to use the information. The
XmlElement class contains methods and properties for manipulating the nodes and attributes of the
tree. Let’s examine the properties for navigating the XML elements first, shown in Table 21-2.

TABLE 21-2: XmlElement Properties

PROPERTY DESCRIPTION

FirstChild Returns the first child element after this one. If you recall the books.xml file
from earlier in the chapter, the root node of the document was called “books”
and the next node after that was “book.” In that document, then, the first child
of the root node “books” is “book.”

<books> Root node

<book> FirstChild

FirstChild returns an XmlNode object, and you should test for the type of the
returned node because it is unlikely to always be an XmlElement instance. In the
books example, the child of the Title element is, in fact, an XmlText node that
represents the text Beginning Visual C#.

LastChild Operates exactly like the FirstChild property except that it returns the last
child of the current node. In the case of the books example, the last child of the
“books” node will still be a “book” node, but it will be the node representing
the “Beginning XML” book.

<books> Root node

 <book> FirstChild

 <title>Beginning Visual C# 2017</title>

 <author>Benjamin Perkins et al</author>

 <code>458685</code>

 </book>

 <book> LastChild

 <title>Beginning XML</title>

 <author>Joe Fawcett et al</author>

 <code>162132</code>

 </book>

</books>

ParentNode Returns the parent of the current node. In the books example, the “books” node
is the parent of both of the “book” nodes.

continues

680 ❘ CHAPTER 21 XML and JSOn

PROPERTY DESCRIPTION

NextSibling Where FirstChild and LastChild properties return the leaf node of the
current node, the NextSibling node returns the next node that has the
same parent node. In the case of the books example, that means getting
the NextSibling of the title element will return the author element, and
 calling NextSibling on that will return the code element.

HasChildNodes Enables you to check whether the current element has child elements without
actually getting the value from FirstChild and examining that against null.

Using the five properties from Table 21-2, it is possible to run through an entire XmlDocument, as
shown in the following Try It Out.

TRY IT OUT
Looping through All Nodes in an XML Document: Chapter21\
LoopThroughXml Document\MainWindows.xaml.cs

In this example, you are going to create a small WPF application that loops through all the nodes of an
XML document and prints out the name of the element or the text contained in the element in the case
of an XmlText element. This code uses Books.xml, which you saw in the “Schemas” section earlier; if
you didn’t create that file as you worked through that section, you can find it in Chapter21\XML and
Schemas\ in this chapter’s downloadable code.

 1. Begin by creating a new WPF project by selecting File ➪ New ➪ Project. In the dia-
log box that appears, select Visual C# ➪ WPF App (.NET Framework). Name the project
LoopThroughXmlDocument and press Enter.

 2. Design the form as shown in Figure 21-3 by dragging a TextBlock control and a Button control
onto the form.

FIGURE 21-3

TABLE 21-2 (continued)

XML Document Object Model ❘ 681

 3. Name the TextBlock control textBlockResults and name the button buttonLoop. Allow the
TextBlock to fill all the space not used by the button.

 4. Add the event handler for the Click event for the button and enter the code that follows. Don’t for-
get to add using System.Xml; to the using section at the top of the file:

private void buttonLoop_Click(object sender, RoutedEventArgs e)
 {
 XmlDocument document = new XmlDocument();
 document.Load(booksFile);
 textBlockResults.Text =
 FormatText(document.DocumentElement as XmlNode, "", "");
 }
 private string FormatText(XmlNode node, string text, string indent)
 {
 if (node is XmlText)
 {
 text += node.Value;
 return text;
 }
 if (string.IsNullOrEmpty(indent))
 indent = "";
 else
 {
 text += "\r\n" + indent;
 }
 if (node is XmlComment)
 {
 text += node.OuterXml;
 return text;
 }
 text += "<" + node.Name;
 if (node.Attributes.Count > 0)
 {
 AddAttributes(node, ref text);
 }
 if (node.HasChildNodes)
 {
 text += ">";
 foreach (XmlNode child in node.ChildNodes)
 {
 text = FormatText(child, text, indent + " ");
 }
 if (node.ChildNodes.Count == 1 &&
 (node.FirstChild is XmlText || node.FirstChild is XmlComment))
 text += "</" + node.Name + ">";
 else
 text += "\r\n" + indent + "</" + node.Name + ">";
 }
 else
 text += " />";
 return text;
 }

682 ❘ CHAPTER 21 XML and JSOn

 private void AddAttributes(XmlNode node, ref string text)
 {
 foreach (XmlAttribute xa in node.Attributes)
 {
 text += " " + xa.Name + "='" + xa.Value + "'";
 }
 }

 5. Add the private const that holds the location of the file that is loaded. You can change the loca-
tion to reflect the location you put the file on your local system:

private const string booksFile =
@"C:\BeginningCSharp7\Chapter21\XML and Schema\Books.xml";

 6. Run the application and click Loop. You should get a result like the one shown in Figure 21-4.

FIGURE 21-4

How It Works

When you click the button, the XmlDocument method Load is called. This method loads the XML from
a file into the XmlDocument instance, which can then be used to access the elements of the XML. Then
you call a method that enables you to loop through the XML recursively, passing the root node of the
XML document to the method. The root element is obtained with the property DocumentElement of
the XmlDocument class. Aside from the check for null on the root parameter that is passed into the
FormatText method, the first line to note is the if sentence:

 if (node is XmlText)
 {
 ...
 }

Recall that the is operator enables you to examine the type of an object, and it returns true if the
instance is of the specified type. Even though the root node is declared as an XmlNode, that is merely

XML Document Object Model ❘ 683

the base type of the objects you are going to work with. By using the is operator to test the type of the
objects, you are able to determine the type of the object at runtime and select the action to perform
based on that.

Inside the FormatText method you generate the text for the textbox. You have to know the type of the
current instance of root because the information you want to display is obtained differently for differ-
ent elements: You want to display the name of XmlElements and the value of XmlText elements.

Changing the Values of Nodes
Before you examine how to change the value of a node, it is important to realize that very rarely
is the value of a node a simple thing. In fact, you will find that although all of the classes that
derive from XmlNode include a property called Value, it very rarely returns anything useful to you.
Although this can feel like a bit of a letdown at first, you’ll find it is actually quite logical. Examine
the books example from earlier:

<books>
 <book>
 <title>Beginning Visual C# 2017</title>
 <author>Benjamin Perkins et al</author>
 <code>458685</code>
 </book>
 <book>
</books>

Every single tag pair in the document resolves into a node in the DOM. Remember that when you
looped through all the nodes in the document, you encountered a number of XmlElement nodes
and three XmlText nodes. The XmlElement nodes in this XML are <books>, <book>, <title>,
<author>, and <code>. The XmlText nodes are the text between the starting and closing tags of
title, author, and code. Although it could be argued that the value of title, author, and code is the
text between the tags, that text is itself a node; and it is that node that actually holds the value. The
other tags clearly have no value associated with them other than other nodes.

The following line is in the if block near the top of the code in the earlier FormatText method. It
executes when the current node is an XmlText node.

text += node.Value;

You can see that the Value property of the XmlText node instance is used to get the value of the
node.

Nodes of the type XmlElement return null if you use their Value property, but it is possible to get
the information between the starting and closing tags of an XmlElement if you use one of two other
methods: InnerText and InnerXml. That means you are able to manipulate the value of nodes using
two methods and a property, as described in Table 21-3.

684 ❘ CHAPTER 21 XML and JSOn

TABLE 21-3: Three Ways to Get the Value of a Node

PROPERTY DESCRIPTION

InnerText Gets the text of all the child nodes of the current node and returns it as a single
concatenated string. This means if you get the value of InnerText from the book
node in the preceding XML, the string Beginning Visual C# 2017#Benjamin
Perkins et al458685 is returned. If you get the InnerText of the title node, only
"Beginning Visual C# 2017" is returned. You can set the text using this method,
but be careful if you do so because if you set the text of a wrong node you may
overwrite information you did not want to change.

InnerXml Returns the text like InnerText, but it also returns all of the tags. Therefore, if you
get the value of InnerXml on the book node, the result is the following string:

<title>Beginning Visual C# 2017</title><author>Benjamin Perkins et al

</author><code>458685</code>

As you can see, this can be quite useful if you have a string containing XML that you
want to inject directly into your XML document. However, you are entirely respon-
sible for the string yourself, and if you insert badly formed XML, the application will
generate an exception.

Value The “cleanest” way to manipulate information in the document, but as mentioned
earlier, only a few of the classes actually return anything useful when you get the
value. The classes that will return the desired text are as follows:

XmlText

XmlComment

XmlAttribute

Inserting New Nodes
Now that you’ve seen that you can move around in the XML document and even get the values of
the elements, let’s examine how to change the structure of the document by adding nodes to the
books document you’ve been using.

To insert new elements in the list, you need to examine the new methods that are placed on the
XmlDocument and XmlNode classes, shown in Table 21-4. The XmlDocument class has methods that
enable you to create new XmlNode and XmlElement instances, which is nice because both of these
classes have only a protected constructor, which means you cannot create an instance of either
directly with new.

XML Document Object Model ❘ 685

TABLE 21-4: Methods for Creating Nodes

METHOD DESCRIPTION

CreateNode Creates any kind of node. There are three overloads of the method, two of
which enable you to create nodes of the type found in the XmlNodeType
enumeration and one that enables you to specify the type of node to use
as a string. Unless you are quite sure about specifying a node type other
than those in the enumeration, use the two overloads that use the enumer-
ation. The method returns an instance of XmlNode that can then be cast to
the appropriate type explicitly.

CreateElement A version of CreateNode that creates only nodes of the XmlElement
variety.

CreateAttribute A version of CreateNode that creates only nodes of the XmlAttribute
variety.

CreateTextNode Creates—yes, you guessed it—nodes of the type XmlTextNode.

CreateComment This method is included here to highlight the diversity of node types that
can be created. This method doesn’t create a node that is actually part
of the data represented by the XML document, but rather is a comment
meant for any human eyes that might have to read the data. You can pick
up comments when reading the document in your applications as well.

The methods in Table 21-4 are all used to create the nodes themselves, but after calling any of them
you have to do something with them before they become interesting. Immediately after creation,
the nodes contain no additional information, and they are not yet inserted into the document. To
do either, you should use methods that are found on any class derived from XmlNode (including
XmlDocument and XmlElement), described in Table 21-5.

TABLE 21-5: Methods for Inserting Nodes

METHOD DESCRIPTION

AppendChild Appends a child node to a node of type XmlNode or a derived type. Remember
that the node you append appears at the bottom of the list of children of the
node on which the method is called. If you don’t care about the order of the
children, there’s no problem; if you do care, remember to append the nodes in
the correct sequence.

InsertAfter Controls exactly where you want to insert the new node. The method takes two
parameters—the first is the new node and the second is the node after which
the new node should be inserted.

InsertBefore Works exactly like InsertAfter, except that the new node is inserted before
the node you supply as a reference.

686 ❘ CHAPTER 21 XML and JSOn

In the following Try It Out, you build on the previous example and insert a book node in the
books.xml document. There is no code in the example to clean up the document (yet), so if you run
it several times you will probably end up with a lot of identical nodes.

TRY IT OUT
Creating Nodes: Chapter21\LoopThroughXmlDocument\
MainWindow.xaml.cs

This example builds on the LoopThroughXmlDocument project you created earlier. Follow these steps
to add a node to the books.xml document:

 1. Wrap the TextBlock in a ScrollViewer and set its VerticalScrollBarVisibility property to
Auto.

 2. Add a button beneath the existing button on the form and name it buttonCreateNode. Change its
Content property to Create.

 3. Add the Click event handler to the new button and enter the following code:

private void buttonCreateNode_Click(object sender, RoutedEventArgs e)
 {
 // Load the XML document.
 XmlDocument document = new XmlDocument();
 document.Load(booksFile);
 // Get the root element.
 XmlElement root = document.DocumentElement;
 // Create the new nodes.
 XmlElement newBook = document.CreateElement("book");
 XmlElement newTitle = document.CreateElement("title");
 XmlElement newAuthor = document.CreateElement("author");
 XmlElement newCode = document.CreateElement("code");
 XmlText title = document.CreateTextNode("Beginning Visual C# 2015");
 XmlText author = document.CreateTextNode("Karli Watson et al");
 XmlText code = document.CreateTextNode("314418");
 XmlComment comment = document.CreateComment("The previous edition");
 // Insert the elements.
 newBook.AppendChild(comment);
 newBook.AppendChild(newTitle);
 newBook.AppendChild(newAuthor);
 newBook.AppendChild(newCode);
 newTitle.AppendChild(title);
 newAuthor.AppendChild(author);
 newCode.AppendChild(code);
 root.InsertAfter(newBook, root.LastChild);
 document.Save(booksFile);
 }

 4. Run the application and click Create. Then click Loop, and you should see the dialog box shown
in Figure 21-5.

XML Document Object Model ❘ 687

FIGURE 21-5

There is one important type of node that you didn’t create in the preceding example: the
XmlAttribute. That is left as an exercise at the end of the chapter.

How It Works

The code in the buttonCreateNode_Click method is where all the creation of nodes happens. It cre-
ates eight new nodes, four of which are of type XmlElement, three of type XmlText, and one of type
XmlComment.

All of the nodes are created with the method of the encapsulating XmlDocument instance. The
XmlElement nodes are created with the CreateElement method, the XmlText nodes are created with
the CreateTextNode method, and the XmlComment node is created with the CreateComment method.

After the nodes have been created, they still need to be inserted into the XML tree. This is done
with the AppendChild method on the element to which the new node should become a child. The
only exception to this is the book node, which is the root node of all of the new nodes. This node is
inserted into the tree using the InsertAfter method of the root object. Whereas all of the nodes that
are inserted using AppendChild always become the last node in the list of child nodes, InsertAfter
enables you to position the node where you want it.

Deleting Nodes
Now that you’ve seen how to create new nodes, all that is left is to learn how to delete them again.
All classes derived from XmlNode include two methods, shown in Table 21-6, that enable you to
remove nodes from the document.

688 ❘ CHAPTER 21 XML and JSOn

TABLE 21-6: Methods for Removing Nodes

METHOD DESCRIPTION

RemoveAll Removes all child nodes in the node on which it is called. What is slightly less
obvious is that it also removes all attributes on the node because they are
regarded as child nodes as well.

RemoveChild Removes a single child in the node on which it is called. The method returns the
node that has been removed from the document, but you can reinsert it if you
change your mind.

The following short Try It Out extends the application you’ve been creating over the past two exam-
ples to include the capability to delete nodes. For now, it finds only the last instance of the book
node and removes it.

TRY IT OUT
Removing Nodes: Chapter21\LoopThroughXmlDocument\
MainWindow.xaml.cs

This example builds on the LoopThroughXmlDocument project you created earlier. The following
steps enable you to find and remove the final instance of the book node:

 1. Add a new button below the two that already exist and name it buttonDeleteNode. Set its Content
property to Delete.

 2. Double-click the new button and enter the following code:

private void buttonDeleteNode_Click(object sender, RoutedEventArgs e)
 {
 // Load the XML document.
 XmlDocument document = new XmlDocument();
 document.Load(booksFile);
 // Get the root element.
 XmlElement root = document.DocumentElement;
 // Find the node. root is the <books> tag, so its last child
 // which will be the last <book> node.
 if (root.HasChildNodes)
 {
 XmlNode book = root.LastChild;
 // Delete the child.
 root.RemoveChild(book);
 // Save the document back to disk.
 document.Save(booksFile);
 }
 }

 3. Run the application. When you click the Delete Node button and then the Loop button, the last
node in the tree will disappear.

Converting XML to JSON ❘ 689

How It Works

After the initial steps to load the XML into the XmlDocument object, you examine the root element to
see whether there are any child elements in the XML you loaded. If there are, you use the LastChild
property of the XmlElement class to get the last child. After that, removing the element is as simple as
calling RemoveChild, which passes in the instance of the element you want to remove—in this case, the
last child of the root element.

Selecting Nodes
You now know how to move back and forth in an XML document, how to manipulate the values of
the document, how to create new nodes, and how to delete them again. Only one thing remains in
this section: how to select nodes without having to traverse the entire tree.

The XmlNode class includes two methods, described in Table 21-7, commonly used to select
nodes from the document without running through every node in it: SelectSingleNode and
SelectNodes, both of which use a special query language, called XPath, to select the nodes. You
learn about that shortly.

TABLE 21-7: Methods for Selecting Nodes

METHOD DESCRIPTION

SelectSingleNode Selects a single node. If you create a query that fetches more than one
node, only the first node will be returned.

SelectNodes Returns a node collection in the form of an XmlNodeList class.

CONVERTING XML TO JSON

We mentioned the JSON data language in the introduction to this chapter. There is limited support
for JSON in the C# system libraries, but you can use a free third-party JSON library to work with
JSON to convert XML to JSON and vice versa, and to do other manipulations with JSON similar
to the .NET classes for XML. One such library available via the NuGet Package Manager in Visual
Studio is the Newtonsoft JSON.NET package. Help and a full tutorial for this package are available
at www.json.net.

The following short Try It Out extends the application you’ve been creating over the previous exam-
ples in the chapter to include the capability to convert XML to JSON.

www.json.net

690 ❘ CHAPTER 21 XML and JSOn

TRY IT OUT
Convert: Chapter21\LoopThroughXmlDocument\MainWindow
.xaml.cs

This example builds on the LoopThroughXmlDocument project you created earlier. The following
steps enable you to find and remove the final instance of the book node:

 1. In the Visual Studio menu, go to Tools ➪ NuGet Package Manager ➪ Manage NuGet Packages for
Solution. Choose the Newtonsoft.Json package as shown in Figure 21-6. Click the Install button,
and click OK on the Review Changes dialog to complete the installation.

FIGURE 21-6

 2. Add a new button below the three that already exist and name it buttonXMLtoJSON. Set its
Content property to XML>JSON.

 3. Double-click the new button and enter the following code:

private void buttonXMLtoJSON_Click(object sender, RoutedEventArgs e)
{
 // Load the XML document.
 XmlDocument document = new XmlDocument();
 document.Load(booksFile);

 string json = Newtonsoft.Json.JsonConvert.SerializeXmlNode(document);

 textBlockResults.Text = json;

}

 4. Run the application. Click the XML > JSON button. The JSON version of the book’s data will
appear in the main window as shown in Figure 21-7.

FIGURE 21-7

Searching XML with XPath ❘ 691

How It Works

After the initial steps to load the XML into the XmlDocument object, you call the Newtonsoft JSON
package method JsonConvert.SerializeXmlNode to convert your XML document to a text string in
JSON format. Then you show the JSON text in any child elements in the XML you loaded. If there are
any child elements, you use the textBlockResults window. As you can see, the JSON version of the
book’s data is more compact than the XML but a bit harder to read. That is why JSON is more often
used for data transfer across the network rather than for storage in files that might be directly read by
humans.

SEARCHING XML WITH XPATH

XPath is a query language for XML documents, much as SQL is for relational databases. It is used
by the two methods described in Table 21-7 that enable you to avoid the hassle of walking the entire
tree of an XML document. It does take a little getting used to, however, because the syntax is noth-
ing like SQL or C#.

NOTE XPath is quite extensive, and only a small part of it is covered here so
you can start selecting nodes. If you are interested in learning more, take a
look at www.w3.org/TR/xpath and the Visual Studio help pages.

To properly see XPath in action, you are going to use an XML file called Elements.xml, which con-
tains a partial list of the chemical elements of the periodic table. You will find a subset of that XML
listed in the “Selecting Nodes” Try It Out example later in the chapter, and it can be found in the
download code for this chapter on this book’s website as Elements.xml.

Table 21-8 lists some of the most common operations you can perform with XPath. If nothing else
is stated, the XPath query example makes a selection that is relative to the node on which it is per-
formed. Where it is necessary to have a node name, you can assume the current node is the <ele-
ment> node in the XML document.

TABLE 21-8: Common XPath Operations

PURPOSE XPATH QUERY EXAMPLE

Select the current node. .

Select the parent of the current node. ..

Select all child nodes of the current node. *

Select all child nodes with a specific name—in this
case, title.

Title

continues

www.w3.org/TR/xpath

692 ❘ CHAPTER 21 XML and JSOn

PURPOSE XPATH QUERY EXAMPLE

Select an attribute of the current node. @Type

Select all attributes of the current node. @*

Select a child node by index—in this case, the second
element node.

element[2]

Select all the text nodes of the current node. text()

Select one or more grandchildren of the current node. element/text()

Select all nodes in the document with a particular
name—in this case, all mass nodes.

//mass

Select all nodes in the document with a particular
name and a particular parent name—in this case, the
parent name is element and the node name is name.

//element/name

Select a node where a value criterion is met—in this
case, the element for which the name of the element is
Hydrogen.

//element[name='Hydrogen']

Select a node where an attribute value criterion is
met—in this case, the Type attribute is Noble Gas.

//element[@Type='Noble Gas']

In the following Try It Out, you’ll create a small application that enables you to execute and see the
results of a number of predefined queries, as well as enter your own queries.

TRY IT OUT Selecting Nodes: Chapter21\XpathQuery\Elements.xml

As previously mentioned, this example uses an XML file called Elements.xml. You can download the
file from the book’s website or type part of it in from here:

<?xml version="1.0"?>
<elements>
 <!--First Non-Metal-->
 <element Type="Non-Metal">
 <name>Hydrogen</name>
 <symbol>H</symbol>
 <number>1</number>
 <specification>
 <mass>1.007825</mass>
 <density>0.0899 g/cm3</density>
 </specification>
 </element>
 <!--First Noble Gas-->
 <element Type="Noble Gas">
 <name>Helium</name>
 <symbol>He</symbol>

TABLE 21-8 (continued)

Searching XML with XPath ❘ 693

 <number>2</number>
 <specification>
 <mass>4.002602</mass>
 <density>0.1785 g/cm3</density>
 </specification>
 </element>
 <!--First Halogen-->
 <element Type="Halogen">
 <name>Fluorine</name>
 <symbol>F</symbol>
 <number>9</number>
 <specification>
 <mass>18.998404</mass>
 <density>1.696 g/cm3</density>
 </specification>
 </element>
 <element Type="Noble Gas">
 <name>Neon</name>
 <symbol>Ne</symbol>
 <number>10</number>
 <specification>
 <mass>20.1797</mass>
 <density>0.901 g/cm3</density>
 </specification>
 </element>
</elements>

Save the XML file as Elements.xml. Remember to change the path to the file in the code that follows.
This example is a small query tool that you can use to test different queries on the XML provided with
the code.

Follow these steps to create a WPF application with querying capability:

 1. Create a new WPF application and name it XPath Query.

 2. Create the dialog box shown in Figure 21-8. Name the controls as shown in the figure, except for
the button, which should be named buttonExecute. Wrap the TextBlock in a ScrollViewer control
and set its VerticalScrollBarVisibility property to Auto.

FIGURE 21-8

694 ❘ CHAPTER 21 XML and JSOn

 3. Go to the Code view and include the using directive.

 4. Add a private field to hold the document, and initialize it in the constructor:

 private XmlDocument document;

 public MainWindow()
 {
 InitializeComponent();
 document = new XmlDocument();
 document.Load(@"C:\BeginningCSharp7\Chapter21\XML and Schema\Elements.xml");
 }

 5. You need a few helper methods to display the result of the queries in the textBlockResult
TextBlock:

 private void Update(XmlNodeList nodes)
 {
 if (nodes == null || nodes.Count == 0)
 {
 textBlockResult.Text = "The query yielded no results";
 return;
 }
 string text = "";
 foreach (XmlNode node in nodes)
 {
 text = FormatText(node, text, "") + "\r\n";
 }
 textBlockResult.Text = text;
 }

 6. Update the constructor to display the entire contents of the XML file when the application starts:

public MainWindow()
 {
 InitializeComponent();
 document = new XmlDocument();
 document.Load(@"C:\BeginningCSharp7\Chapter21\XML and Schemas\Elements.xml");
 Update(document.DocumentElement.SelectNodes("."));
 }

 7. Copy and paste the two methods FormatText and AddAttributes from the previous Try It Out
sections to the new project.

 8. Finally, insert the code that executes whatever the user enters in the text box:

private void buttonExecute_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 XmlNodeList nodes = document.DocumentElement.SelectNodes(textBoxQuery.Text);
 Update(nodes);
 }
 catch (Exception err)
 {
 textBlockResult.Text = err.Message;
 }
 }

Searching XML with XPath ❘ 695

 9. Run the application and type the following query into the textBoxQuery textbox to select the ele-
ment node that contains a node with the text Hydrogen:

element[name='Hydrogen']

How It Works

The buttonExecute_Click method performs the queries. Because you can’t know in advance if the
queries typed into the textBoxQuery are going to yield a single node or multiple nodes, you must use
the SelectNodes method. This will either return an XmlNodeList object or throw one of the excep-
tions regarding XPath if the query used is illegal.

The Update method is responsible for looping through the content of the XmlNodeList selected by
SelectNodes. It calls FormatText from the earlier examples with each of the nodes, and FormatText is
responsible for recursively traversing the node tree and creating readable text you can use in the text-
BoxResult control.

In the exercises at the end of the chapter, you will find a number of additional XPath queries to try.
Before you enter them into the XPathQuery application to see the result, try to determine for yourself
the query’s outcome.

EXERCISES

 21.1 Change the Insert example in the “Creating Nodes” Try It Out section to insert an attribute
called Pages with the value 1000+ on the book node.

 21.2 Determine the outcome of the following XPath queries and then verify your results by typ-
ing the queries into the XPathQuery application from the “Selecting Nodes” Try It Out.
Remember that all of your queries are being executed on the DocumentElement, which is the
elements node.

//elements
element
element[@Type='Noble Gas']
//mass
//mass/..
element/specification[mass='20.1797']
element/name[text()='Neon']
Solution:

 21.3 On many Windows systems the default viewer of XML is a web browser. If you are using
Internet Explorer you will see a nicely formatted view of the XML when you load the
Elements.xml file into it. Why would it not be ideal to display the XML from our queries in a
browser control instead of a text box?

 21.4 Use the Newtonsoft library to convert JSON to XML button as well (the reverse of the exam-
ple shown in the chapter).

Answers to the exercises can be found in Appendix.

696 ❘ CHAPTER 21 XML and JSOn

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

XML basics XML documents are created from an XML declaration, XML namespaces, XML
elements, and attributes. The XML declaration defines the XML version. XML
namespaces are used to define vocabularies and XML elements and attributes are
used to define the XML document content.

JSON basics JSON is a data language used when transferring JavaScript and web services. JSON
is more compact than the XML but harder to read.

XML
schema

XML schemas are used to define the structure of XML documents. Schemas are espe-
cially useful when you need to exchange information with third parties. By agreeing
on a schema for the data that is exchanged, you and the third party will be able to
check that the documents are valid.

XML DOM The Document Object Model (XML DOM) is the basis for .NET Framework classes
provided for creating and manipulating XML.

JSON
packages

You can use a JSON package such as Newtonsoft to convert XML to JSON and vice
versa, and do other manipulations with JSON similar to the .NET classes for XML.

XPath XPath is one of the possible ways to query data in XML documents. To use XPath,
you must be familiar with the structure of the XML document in order to be able to
select individual elements from it. Although XPath can be used on any well-formed
XML document, the fact that you must know the structure of the document when you
create the query means that ensuring that the document is valid also ensures that
the query will work from document to document, as long as the documents are valid
against the same schema.

LINQ
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ LINQ to XML

 ➤ LINQ providers

 ➤ LINQ query syntax

 ➤ LINQ method syntax

 ➤ Lambda expressions

 ➤ Ordering query results

 ➤ Aggregates (Count, Sum, Min, Max, Average)

 ➤ SelectDistinctQuery

 ➤ Group queries

 ➤ Joins

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/benperk/
BeginningCSharp7. The code is in the Chapter22 folder and individually named according to
the names throughout the chapter.

This chapter introduces Language INtegrated Query (LINQ). LINQ is an extension to the C#
language that integrates data query directly into the programming language itself.

Before LINQ this sort of work required writing a lot of looping code, and additional process-
ing such as sorting or grouping the found objects required even more code that would differ
depending on the data source. LINQ provides a portable, consistent way of querying, sorting,

22

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

698 ❘ CHAPTER 22 LINQ

and grouping many different kinds of data (XML, JSON, SQL databases, collections of objects, web
services, corporate directories, and more).

First you’ll build on the previous chapter by learning the additional capabilities that the system
.xml.linq namespace adds for creating XML. Then you’ll get into the heart of LINQ by using
query syntax, method syntax, lambda expressions, sorting, grouping, and joining related results.

LINQ is large enough that complete coverage of all its facilities and methods is beyond the scope of
a beginning book. However, you will see examples of each of the different types of statements and
operators you are likely to need as a user of LINQ, and you will be pointed to resources for more
in-depth coverage as appropriate.

LINQ TO XML

LINQ to XML is an alternate set of classes for XML that enables the use of LINQ for XML data
and also makes certain operations with XML easier even if you are not using LINQ. We will look
at a couple of specific cases where LINQ to XML has advantages over the XML DOM (Document
Object Model) introduced in the previous chapter.

LINQ to XML Functional Constructors
While you can create XML documents in code with the XML DOM, LINQ to XML provides an
easier way to create XML documents called functional construction. In formal construction the
constructor calls can be nested in a way that naturally reflects the structure of the XML document.
In the following Try It Out, you use functional constructors to make a simple XML document
containing customers and orders.

TRY IT OUT LINQ to XML: BeginningCSharp7_22_1_LinqtoXmlConstructors

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application called BeginningCSharp7_22_1_LinqToXmlConstructors in the
directory C:\BeginningCSharp7\Chapter22.

 2. Open the main source file Program.cs.

 3. Add a reference to the System.Xml.Linq namespace to the beginning of Program.cs, as shown
here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;
using System.Text;
using static System.Console;

 4. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{

LINQ to XML ❘ 699

 XDocument xdoc = new XDocument(
 new XElement("customers",
 new XElement("customer",
 new XAttribute("ID", "A"),
 new XAttribute("City", "New York"),
 new XAttribute("Region", "North America"),
 new XElement("order",
 new XAttribute("Item", "Widget"),
 new XAttribute("Price", 100)
),
 new XElement("order",
 new XAttribute("Item", "Tire"),
 new XAttribute("Price", 220)
)
),
 new XElement("customer",
 new XAttribute("ID", "B"),
 new XAttribute("City", "Mumbai"),
 new XAttribute("Region", "Asia"),
 new XElement("order",
 new XAttribute("Item", "Oven"),
 new XAttribute("Price", 501)
)
)
)
);
 WriteLine(xdoc);
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();
}

 5. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
output shown here:

<customers>
 <customer ID="A" City="New York" Region="North America">
 <order Item="Widget" Price="100" />
 <order Item="Tire" Price="200" />
 </customer>
 <customer ID="B" City="Mumbai" Region="Asia">
 <order Item="Oven" Price="501" />
 </customer>
</customers>
Program finished, press Enter/Return to continue:

The XML document shown on the output screen contains a very simplified set of customer/order
data. Note that the root element of the XML document is <customers>, which contains two nested
<customer> elements. These in turn contain a number of nested <order> elements. The <customer>
elements have two attributes, City and Region, and the <order> elements have Item and Price
attributes.

Press Enter/Return to exit the program and make the console screen disappear. If you used Ctrl+F5
(Start Without Debugging), you might need to press Enter/Return twice.

700 ❘ CHAPTER 22 LINQ

How It Works

The first step is to reference the System.Xml.Linq namespace. All of the XML examples in this chapter
require that you add this line to your program:

using System.Xml.Linq;

Although the System.Linq namespace is included by default when you create a project, the System
.Xml.Linq namespace is not included; you must add this line explicitly.

Next are the calls to the LINQ to XML constructors XDocument(), XElement(), and XAttribute(),
which are nested inside one another as shown here:

 XDocument xdoc = new XDocument(
 new XElement("customers",
 new XElement("customer",
 new XAttribute("ID", "A"),
 ...

Note that the code here looks like the XML itself, where the document contains elements and each ele-
ment contains attributes and other elements. Take a look at each of these constructors in turn:

 ➤ XDocument()—The highest-level object in the LINQ to XML constructor hierarchy is
XDocument(), which represents the complete XML document. It appears in your code here:

static void Main(string[] args)
{
 XDocument xdoc = new XDocument(
...
);

The parameter list for XDocument() is omitted in the previous code fragment so you can
see where the XDocument() call begins and ends. Like all the LINQ to XML constructors,
XDocument() takes an array of objects (object[]) as one of its parameters so that a number of
other objects created by other constructors can be passed to it. All the other constructors you call
in this program are parameters in the one call to the XDocument() constructor. The first (and
only) parameter you pass in this program is the XElement() constructor.

 ➤ XElement()—An XML document must have a root element, so in most cases the parameter list
of XDocument() will begin with an XElement object. The XElement() constructor takes the name of
the element as a string, followed by a list of the XML objects contained within that element. Here, the
root element is "customers", which in turn contains a list of "customer" elements:

 new XElement("customers",
 new XElement("customer",
...
),
...
)

The "customer" element does not contain any other XML elements. Instead, it contains three
XML attributes, which are constructed with the XAttribute() constructor.

LINQ to XML ❘ 701

 ➤ XAttribute()—Here you add three XML attributes to the "customer" element, named "ID",
"City", and "Region":

 new XAttribute("ID", "A"),
 new XAttribute("City", "New York"),
 new XAttribute("Region", "North America"),

Because an XML attribute is by definition a leaf XML node containing no other XML nodes,
the XAttribute() constructor takes only the name of the attribute and its value as parameters.
In this case, the three attributes generated are ID="A", City="New York", and Region="North
America".

 ➤ Other LINQ to XML constructors—Although you do not call them in this program, there are
other LINQ to XML constructors for all the XML node types, such as XDeclaration() for the
XML declaration at the start of an XML document, XComment() for an XML comment, and so
on. These other constructors are not used often but are available if you need them for precise con-
trol over formatting an XML document.

Finishing up the explanation of the first example, you add two child "order" elements to the "cus-
tomer" element following the "ID", "City", and "Region" attributes:

 new XElement("order=",
 new XAttribute("Item", "Widget"),
 new XAttribute("Price", 100)
),
 new XElement("order",
 new XAttribute("Item", "Tire"),
 new XAttribute("Price", 200)
)

These order elements have "Item" and "Price" attributes but no other children.

Next, you display the contents of the XDocument to the console screen:

 WriteLine(xdoc);

This prints the text of the XML document using the default ToString() method of XDocument().

Finally, you pause the screen so you can see the console output, and then wait until the user presses
Enter:

 Write("Program finished, press Enter/Return to continue:");
 ReadLine();

After that your program exits the Main() method, which ends the program.

Working with XML Fragments
Unlike the XML DOM, LINQ to XML works with XML fragments (partial or incomplete XML
documents) in very much the same way as complete XML documents. When working with a frag-
ment, you simply work with XElement as the top-level XML object instead of XDocument.

702 ❘ CHAPTER 22 LINQ

NOTE The only restriction on working with XML fragments is that you cannot
add some of the more esoteric XML node types that apply only to XML docu-
ments or XML fragments, such as XComment for XML comments, XDeclaration
for the XML document declaration, and XProcessingInstruction for XML
processing instructions.

In the following Try It Out, you load, save, and manipulate an XML element and its child nodes,
just as you did for an XML document.

TRY IT OUT
Working with XML Fragments: BeginningCSharp7_22_2_
XMLFragments

Follow these steps to create the example in Visual Studio 2017:

 1. Either modify the previous example or create a new console application called
BeginningCSharp7_22_2_XMLFragments in the directory C:\BeginningCSharp7\Chapter22.

 2. Open the main source file Program.cs.

 3. Add a reference to the System.Xml.Linq namespace to the beginning of Program.cs, as shown
here:

using System;
using System.Collections.Generic;
using System.Xml.Linq;
using System.Text;
using static System.Console;

This will already be present if you are modifying the previous example.

 4. Add the XML element without the containing XML document constructor used in the previous
examples to the Main() method in Program.cs:

static void Main(string[] args)
{
 XElement xcust =
 new XElement("customers",
 new XElement("customer",
 new XAttribute("ID", "A"),
 new XAttribute("City", "New York"),
 new XAttribute("Region", "North America"),
 new XElement("order",
 new XAttribute("Item", "Widget"),
 new XAttribute("Price", 100)
),
 new XElement("order",
 new XAttribute("Item", "Tire"),
 new XAttribute("Price", 200)
)
),

LINQ to XML ❘ 703

 new XElement("customer",
 new XAttribute("ID", "B"),
 new XAttribute("City", "Mumbai"),
 new XAttribute("Region", "Asia"),
 new XElement("order",
 new XAttribute("Item", "Oven"),
 new XAttribute("Price", 501)
)
)
)
 ;

 5. After the XML element constructor code you added in the previous step, add the following code to
save, load, and display the XML element:

 string xmlFileName =
 @"c:\BeginningCSharp7\Chapter22\BeginningCSharp7_22_2_XMLFragments\fragment.xml";
 xcust.Save(xmlFileName);
 XElement xcust2 = XElement.Load(xmlFileName);
 WriteLine("Contents of xcust:");
 WriteLine(xcust);
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();
}

NOTE The xmlFileName is an absolute path; your folder structure may differ
and if so you should adjust the path to reflect the actual folder path on your
computer.

 6. Compile and execute the program (you can just press F5 for Start Debugging). You should see the
following output in the console window:

Contents of XElement xcust2:
<customers>
 <customer ID="A" City="New York" Region="North America">
 <order Item="Widget" Price="100" />
 <order Item="Tire" Price="200" />
 </customer>
 <customer ID="B" City="Mumbai" Region="Asia">
 <order Item="Oven" Price="501" />
 </customer>
</customers>
Program finished, press Enter/Return to continue:

Press Enter/Return to finish the program and make the console screen disappear. If you used
Ctrl+F5 (Start Without Debugging), you might need to press Enter/Return twice.

How It Works

Both XElement and XDocument inherit from the LINQ to XML XContainer class, which implements
an XML node that can contain other XML nodes. Both classes also implement Load() and Save(), so

704 ❘ CHAPTER 22 LINQ

most operations that can be performed on an XDocument() in LINQ to XML can also be performed on
an XElement instance and its children.

You simply create an XElement instance that has the same structure as the XDocument used in previous
examples but omits the containing XDocument. All the operations for this particular program work the
same with the XElement fragment.

XElement also supports the Load() and Parse() methods for loading XML from files and strings,
respectively.

LINQ PROVIDERS

LINQ to XML is just one example of a LINQ provider. Visual Studio 2017 and the .NET
Framework 4.7 come with a number of built-in LINQ providers that provide query solutions for dif-
ferent types of data:

 ➤ LINQ to Objects—Provides queries on any kind of C# in-memory object, such as arrays,
lists, and other collection types. All of the examples in the previous chapter use LINQ to
Objects. However, you can use the techniques you learn in this chapter with all of the variet-
ies of LINQ.

 ➤ LINQ to XML—As you have just seen, this provides creation and manipulation of XML
documents using the same syntax and general query mechanism as the other LINQ varieties.

 ➤ LINQ to Entities—The Entity Framework is the newest set of data interface classes in .NET,
recommended by Microsoft for new development.

 ➤ LINQ to Data Set—The DataSet object was introduced in the first version of the .NET
Framework. This variety of LINQ enables legacy .NET data to be queried easily with LINQ.

 ➤ LINQ to SQL—This is an alternative LINQ interface that has been superseded by LINQ to
Entities.

 ➤ PLINQ—PLINQ, or Parallel LINQ, extends LINQ to Objects with a parallel programming
library that can split up a query to execute simultaneously on a multicore processor.

 ➤ LINQ to JSON—Included in the Newtonsoft package you used in the previous chapter, this
library supports creation and manipulation of JSON documents using the same syntax and
general query mechanism as the other LINQ varieties.

With so many varieties of LINQ, it is impossible to cover them all in a beginning book, but the syn-
tax and methods you will see apply to all. Let’s next look at the LINQ query syntax using the LINQ
to Objects provider.

LINQ Query Syntax ❘ 705

LINQ QUERY SYNTAX

In the following Try It Out, you use LINQ to create a query to find some data in a simple in-memory
array of objects and print it to the console.

TRY IT OUT
First LINQ Program: BeginningCSharp7_22_3_QuerySyntax\
Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application called BeginningCSharp7_22_3_QuerySyntax in the directory
C:\BeginningCSharp7\Chapter22, and then open the main source file Program.cs.

 2. Notice that Visual Studio 2017 includes the System.Linq namespace by default in Program.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using static System.Console;

 3. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{
 string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };
 var queryResults =
 from n in names
 where n.StartsWith("S")
 select n;
 WriteLine("Names beginning with S:");
 foreach (var item in queryResults) {
 WriteLine(item);
 }
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();
}

 4. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
names in the list beginning with S in the order they were declared in the array, as shown here:

Names beginning with S:
Smith
Smythe
Small
Singh
Samba
Program finished, press Enter/Return to continue:

Simply press Enter/Return to finish the program and make the console screen disappear. If you
used Ctrl+F5 (Start Without Debugging), you may need to press Enter/Return twice. That finishes
the program run.

706 ❘ CHAPTER 22 LINQ

How It Works

The first step is to reference the System.Linq namespace, which is done automatically by Visual Studio
2017 when you create a project:

using System.Linq;

All the underlying base system support classes for LINQ reside in the System.Linq namespace. If you
create a C# source file outside of Visual Studio 2017 or edit a project created from a previous version,
you may have to add the using System.Linq directive manually.

The next step is to create some data, which is done in this example by declaring and initializing the
array of names:

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe", "Small",
"Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

This is a trivial set of data, but it is good to start with an example for which the result of the query is
obvious. The actual LINQ query statement is the next part of the program:

var queryResults =
 from n in names
 where n.StartsWith("S")
 select n;

That is an odd-looking statement, isn’t it? It almost looks like something from a language other than
C#, and the from...where...select syntax is deliberately similar to that of the SQL database query
language. However, this statement is not SQL; it is indeed C#, as you saw when you typed in the code
in Visual Studio 2017—the keywords from, where, and select are highlighted, and the odd-looking
syntax is perfectly fine to the compiler.

The LINQ query statement in this program uses the LINQ declarative query syntax:

 var queryResults =
 from n in names
 where n.StartsWith("S")
 select n;

The statement has four parts: the result variable declaration beginning with var, which is assigned
using a query expression consisting of the from clause; the where clause; and the select clause. Let’s
look at each of these parts in turn.

Declaring a Variable for Results Using the var Keyword
The LINQ query starts by declaring a variable to hold the results of the query, which is usually done
by declaring a variable with the var keyword:

var queryResult =

var is a keyword in C# created to declare a general variable type that is ideal for holding the results
of LINQ queries. The var keyword tells the C# compiler to infer the type of the result based on the
query. That way, you don’t have to declare ahead of time what type of objects will be returned from

LINQ Query Syntax ❘ 707

the LINQ query—the compiler takes care of it for you. If the query can return multiple items, then it
acts like a collection of the objects in the query data source (technically, it is not a collection; it just
looks that way).

NOTE If you want to know the details, the query result will be a type that
implements the IEnumerable<T> interface. The angle brackets with T(<T>)
following IEnumerable indicate that it is a generic type. Generics are
described in Chapter 12.

In this particular case, the compiler creates a special LINQ data type that pro-
vides an ordered list of strings (strings because the data source is a collection
of strings).

By the way, the name queryResult is arbitrary—you can name the result anything you want. It
could be namesBeginningWithS or anything else that makes sense in your program.

Specifying the Data Source: from Clause
The next part of the LINQ query is the from clause, which specifies the data you are querying:

 from n in names

Your data source in this case is names, the array of strings declared earlier. The variable n is just
a stand-in for an individual element in the data source, similar to the variable name following a
foreach statement. By specifying from, you are indicating that you are going to query a subset of
the collection, rather than iterate through all the elements.

Speaking of iteration, a LINQ data source must be enumerable—that is, it must be an array or col-
lection of items from which you can pick one or more elements to iterate through.

NOTE Enumerable means the data source must support the IEnumerable<T>
interface, which is supported for any C# array or collection of items.

The data source cannot be a single value or object, such as a single int variable. You already have
such a single item, so there is no point in querying it!

Specify Condition: where Clause
In the next part of the LINQ query, you specify the condition for your query using the where clause,
which looks like this:

 where n.StartsWith("S")

Any Boolean (true or false) expression that can be applied to the items in the data source can be
specified in the where clause. Actually, the where clause is optional and can even be omitted, but in

708 ❘ CHAPTER 22 LINQ

almost all cases you will want to specify a where condition to limit the results to only the data you
want. The where clause is called a restriction operator in LINQ because it restricts the results of the
query.

Here, you specify that the name string starts with the letter S, but you could specify anything else
about the string instead—for example, a length greater than 10 (where n.Length > 10) or contain-
ing a Q (where n.Contains("Q")).

Selecting Items: select Clause
Finally, the select clause specifies which items appear in the result set. The select clause looks
like this:

 select n

The select clause is required because you must specify which items from your query appear in the
result set. For this set of data, it is not very interesting because you have only one item, the name, in
each element of the result set. You’ll look at some examples with more complex objects in the result
set where the usefulness of the select clause will be more apparent, but first, you need to finish the
example.

Finishing Up: Using the foreach Loop
Now you print out the results of the query. Like the array used as the data source, the results of a
LINQ query like this are enumerable, meaning you can iterate through the results with a foreach
statement:

WriteLine("Names beginning with S:");
foreach (var item in queryResults) {
 WriteLine(item);
}

In this case, you matched five names—Smith, Smythe, Small, Singh, and Samba—so that is what
you display in the foreach loop.

Deferred Query Execution
You may be thinking that the foreach loop really isn’t part of LINQ itself—it’s only looping
through your results. While it’s true that the foreach construct is not itself part of LINQ, neverthe-
less, it is the part of your code that actually executes the LINQ query! The assignment of the query
results variable only saves a plan for executing the query; with LINQ, the data itself is not retrieved
until the results are accessed. This is called deferred query execution or lazy evaluation of queries.
Execution will be deferred for any query that produces a sequence—that is, a list—of results.

Now, back to the code. You’ve printed out the results; it’s time to finish the program:

Write("Program finished, press Enter/Return to continue:");
ReadLine();

LINQ Method Syntax ❘ 709

These lines just ensure that the results of the console program stay on the screen until you press a
key, even if you press F5 instead of Ctrl+F5. You’ll use this construct in most of the other LINQ
examples as well.

LINQ METHOD SYNTAX

There are multiple ways of doing the same thing with LINQ, as is often the case in programming.
As noted, the previous example was written using the LINQ query syntax; in the next example, you
will write the same program using LINQ’s method syntax (also called explicit syntax, but the term
method syntax is used here).

LINQ Extension Methods
LINQ is implemented as a series of extension methods to collections, arrays, query results, and any
other object that implements the IEnumerable<T> interface. You can see these methods with the
Visual Studio IntelliSense feature. For example, in Visual Studio 2017, open the Program.cs file in
the FirstLINQquery program you just completed and type in a new reference to the names array
just below it:

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe", "Small",
"Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };
names.

Just as you type the period following names, you will see the methods available for names listed by
the Visual Studio IntelliSense feature.

The Where<T> method and most of the other available methods are extension methods (as shown in
the documentation appearing to the right of the Where<T> method, it begins with extension). You
can see that they are LINQ extensions by commenting out the using System.Linq directive at the
top; you will find that Where<T>, Union<T>, Take<T>, and most of the other methods in the list no
longer appear. The from...where...select query expression you used in the previous example is
translated by the C# compiler into a series of calls to these methods. When using the LINQ method
syntax, you call these methods directly.

Query Syntax versus Method Syntax
The query syntax is the preferred way of programming queries in LINQ, as it is generally easier to
read and is simpler to use for the most common queries. However, it is important to have a basic
understanding of the method syntax because some LINQ capabilities either are not available in the
query syntax, or are just easier to use in the method syntax.

NOTE As the Visual Studio 2017 online help recommends, use query syntax
whenever possible, and method syntax whenever necessary.

710 ❘ CHAPTER 22 LINQ

In this chapter, you will mostly use the query syntax, but the method syntax is pointed out in situa-
tions where it is needed, and you’ll learn how to use the method syntax to solve the problem.

Most of the LINQ methods that use the method syntax require that you pass a method or function
to evaluate the query expression. The method/function parameter is passed in the form of a delegate,
which typically references an anonymous method.

Luckily, LINQ makes doing this much easier than it sounds! You create the method/function by
using a lambda expression, which encapsulates the delegate in an elegant manner.

Lambda Expressions
A lambda expression is a simple way to create a method on-the-fly for use in your LINQ query. It
uses the => operator, which declares the parameters for your method followed by the method logic
all on a single line!

NOTE The term “lambda expression” comes from lambda calculus, which is
a mathematical field important in programming language theory. Look it up if
you’re mathematically inclined. Luckily you don’t need the math in order to use
lambdas in C#!

For example, consider the lambda expression:

n => n < 0

This declares a method with a single parameter named n. The method returns true if n is less than
zero, otherwise false. It’s dead simple. You don’t have to come up with a method name, put in a
return statement, or wrap any code with curly braces.

Returning a true/false value like this is typical for methods used in LINQ lambdas, but it doesn’t
have to be done. For example, here is a lambda that creates a method that returns the sum of two
variables. This lambda uses multiple parameters:

(a, b) => a + b

This declares a method with two parameters named a and b. The method logic returns the sum of a
and b. You don’t have to declare what type a and b are. They can be int or double or string. The C#
compiler infers the types.

Finally, consider this lambda expression:

n => n.StartsWith("S")

This method returns true if n starts with the letter S, otherwise false. Try this out in an actual pro-
gram to see this more clearly.

LINQ Method Syntax ❘ 711

TRY IT OUT
Using LINQ Method Syntax and Lambda Expressions:
BeginningCSharp7_22_4_MethodSyntax\Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. You can either modify the previous example or create a new console application called
BeginningCSharp7_22_4_MethodSyntax in the directory C:\BeginningCSharp7\Chapter22.
Open the main source file Program.cs.

 2. Again, Visual Studio 2017 includes the Linq namespace automatically in Program.cs:

using System.Linq;

 3. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{
 string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };
 var queryResults = names.Where(n => n.StartsWith("S"));
 WriteLine("Names beginning with S:");
 foreach (var item in queryResults) {
 WriteLine(item);
 }
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();
}

 4. Compile and execute the program (you can just press F5). You will see the same output of names
in the list beginning with S, in the order they were declared in the array, as shown here:

Names beginning with S:
Smith
Smythe
Small
Singh
Samba
Program finished, press Enter/Return to continue:

How It Works

As before, the System.Linq namespace is referenced automatically by Visual Studio 2017:

using System.Linq;

The same source data as before is created again by declaring and initializing the array of names:

string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe", "Small", "Ruiz",
 "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

The part that is different is the LINQ query, which is now a call to the Where() method instead of a
query expression:

var queryResults = names.Where(n => n.StartsWith("S"));

712 ❘ CHAPTER 22 LINQ

The C# compiler compiles the lambda expression n => n.StartsWith("S")) into an anonymous
method that is executed by Where() on each item in the names array. If the lambda expression returns
true for an item, that item is included in the result set returned by Where(). The C# compiler infers
that the Where() method should accept string as the input type for each item from the definition of
the input source (the names array, in this case).

Well, a lot is going on in that one line, isn’t it? For the simplest type of query like this, the method syn-
tax is actually shorter than the query syntax because you do not need the from or select clauses; how-
ever, most queries are more complex than this.

The rest of the example is the same as the previous one—you print out the results of the query in a
foreach loop and pause the output so you can see it before the program finishes execution:

foreach (var item in queryResults) {
 WriteLine(item);
}
Write("Program finished, press Enter/Return to continue:");
ReadLine();

An explanation of these lines isn’t repeated here because that was covered in the “How It Works” sec-
tion following the first example in the chapter. Let’s move on to explore how to use more of LINQ’s
capabilities.

ORDERING QUERY RESULTS

Once you have located some data of interest with a where clause (or Where() method invocation),
LINQ makes it easy to perform further processing—such as reordering the results—on the resulting
data. In the following Try It Out, you put the results from your first query in alphabetical order.

TRY IT OUT
Ordering Query Results: BeginningCSharp7_22_5_
OrderQueryResults\Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. You can either modify the QuerySyntax example or create a new console application project called
BeginningCSharp7_22_5_OrderQueryResults in the directory C:\BeginningCSharp7\Chapter22.

 2. Open the main source file Program.cs. As before, Visual Studio 2017 includes the using System.
Linq; namespace directive automatically in Program.cs.

 3. Add the following code to the Main() method in Program.cs:

static void Main(string[] args)
{
 string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };
 var queryResults =
 from n in names

Understanding the orderby Clause ❘ 713

 where n.StartsWith("S")
 orderby n
 select n;
 WriteLine("Names beginning with S ordered alphabetically:");
 foreach (var item in queryResults) {
 WriteLine(item);
 }
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();
}

 4. Compile and execute the program. You will see the names in the list beginning with S in alphabeti-
cal order, as shown here:

Names beginning with S:
Samba
Singh
Small
Smith
Smythe
Program finished, press Enter/Return to continue:

How It Works

This program is nearly identical to the previous example, except for one additional line added to the
query statement:

var queryResults =
 from n in names
 where n.StartsWith("S")
 orderby n
 select n;

UNDERSTANDING THE ORDERBY CLAUSE

The orderby clause looks like this:

orderby n

Like the where clause, the orderby clause is optional. Just by adding one line, you can order the
results of any arbitrary query, which would otherwise require at least several lines of additional code
and probably additional methods or collections to store the results of the reordered result, depend-
ing on the sorting algorithm you chose to implement. If multiple types needed to be sorted, you
would have to implement a set of ordering methods for each one. With LINQ, you don’t need to
worry about any of that; just add one additional clause in the query statement and you’re done.

By default, orderby orders in ascending order (A to Z), but you can specify descending order (from
Z to A) simply by adding the descending keyword:

orderby n descending

714 ❘ CHAPTER 22 LINQ

This orders the example results as follows:

Smythe
Smith
Small
Singh
Samba

Plus, you can order by any arbitrary expression without having to rewrite the query; for example,
to order by the last letter in the name instead of normal alphabetical order, you just change the
orderby clause to the following:

 orderby n.Substring(n.Length - 1)

This results in the following output:

Samba
Smythe
Smith
Singh
Small

NOTE The last letters are in alphabetical order (a, e, h, h, l). However,
you will notice that the execution is implementation-dependent, meaning
there’s no guarantee of order beyond what is specified in the orderby clause.
The last letter is the only letter considered, so, in this case, Smith came before
Singh.

QUERYING A LARGE DATA SET

All this LINQ syntax is well and good, you may be saying, but what is the point? You can see the
expected results clearly just by looking at the source array, so why go to all this trouble to query
something that is obvious by just looking? As mentioned earlier, sometimes the results of a query are
not so obvious. In the following Try It Out, you create a very large array of numbers and query it
using LINQ.

TRY IT OUT
Querying a Large Data Set: BeginningCSharp7_22_6_
LargeNumberQuery\Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application called BeginningCSharp7_22_6_LargeNumberQuery in the direc-
tory C:\BeginningCSharp7\Chapter22. As before, when you create the project, Visual Studio
2017 already includes the Linq namespace method in Program.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using static System.Console;

Querying a Large Data Set ❘ 715

 2. Add the following code to the Main() method:

static void Main(string[] args)
{
 int[] numbers = GenerateLotsOfNumbers(12045678);
 var queryResults =
 from n in numbers
 where n < 1000
 select n
 ;
 WriteLine("Numbers less than 1000:");
 foreach (var item in queryResults)
 {
 WriteLine(item);
 }
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();
}

 3. Add the following method to generate the list of random numbers:

 private static int[] GenerateLotsOfNumbers(int count)
 {
 Random generator = new Random(0);
 int[] result = new int[count];
 for (int i = 0; i < count; i++)
 {
 result[i] = generator.Next();
 }
 return result;
 }

 4. Compile and execute the program. You will see a list of numbers less than 1,000, as shown here:

Numbers less than 1000:
714
24
677
350
257
719
584
Program finished, press Enter/Return to continue:

How It Works

As before, the first step is to reference the System.Linq namespace, which is done automatically by
Visual Studio 2017 when you create the project:

using System.Linq;

The next step is to create some data, which is done in this example by creating and calling the
GenerateLotsOfNumbers() method:

 int[] numbers = GenerateLotsOfNumbers(12345678);
 private static int[] GenerateLotsOfNumbers(int count)
 {

716 ❘ CHAPTER 22 LINQ

 Random generator = new Random(0);
 int[] result = new int[count];
 for (int i = 0; i < count; i++)
 {
 result[i] = generator.Next();
 }
 return result;
 }

This is not a trivial set of data—there are more than 12 million numbers in the array! In one
of the exercises at the end of the chapter, you will change the size parameter passed to the
GenerateLotsOfNumbers() method to generate variously sized sets of random numbers and see
how this affects the query results. As you will see when doing the exercises, the size shown here of
12,345,678 is just large enough for the program to generate some random numbers less than 1,000, in
order to have results to show for this first query.

The values should be randomly distributed over the range of a signed integer (from zero to more than
two billion). By creating the random number generator with a seed of 0, you ensure that the same set
of random numbers is created each time and is repeatable, so you get the same query results as shown
here, but what those query results are is unknown until you try some queries. Luckily, LINQ makes
those queries easy!

The query statement itself is similar to what you did with the names before, selecting some numbers
that meet a condition (in this case, numbers less than 1,000):

 var queryResults =
 from n in numbers
 where n < 1000
 select n

The orderby clause isn’t needed here and would add extra processing time (not noticeably for this
query, but more so as you vary the conditions in the next example).

You print out the results of the query with a foreach statement, just as in the previous example:

WriteLine("Numbers less than 1000:");
foreach (var item in queryResults) {
 WriteLine(item);
}

Again, output to the console and read a character to pause the output:

Write("Program finished, press Enter/Return to continue:");
ReadLine();

The pause code appears in all the following examples but isn’t shown again because it is the same for
each one.

It is very easy with LINQ to change the query conditions to explore different characteristics of the data
set. However, depending on how many results the query returns, it may not make sense to print all the
results each time. In the next section you’ll see how LINQ provides aggregate operators to deal with
that issue.

Using Aggregate Operators ❘ 717

USING AGGREGATE OPERATORS

Often, a query returns more results than you might expect. For example, if you were to change
the condition of the large-number query program you just created to list the numbers greater than
1,000, rather than the numbers less than 1,000, there would be so many query results that the num-
bers would not stop printing!

Luckily, LINQ provides a set of aggregate operators that enable you to analyze the results of a query
without having to loop through them all. Table 22-1 shows the most commonly used aggregate
operators for a set of numeric results such as those from the large-number query. These may be
familiar to you if you have used a database query language such as SQL.

TABLE 22-1: Aggregate Operators for Numeric Results

OPERATOR DESCRIPTION

Count() Count of results

Min() Minimum value in results

Max() Maximum value in results

Average() Average value of numeric results

Sum() Total of all of numeric results

There are more aggregate operators, such as Aggregate(), for executing arbitrary code in a manner
that enables you to code your own aggregate function. However, those are for advanced users and
therefore beyond the scope of this book.

NOTE Because the aggregate operators return a simple scalar type instead
of a sequence for their results, their use forces immediate execution of query
results with no deferred execution.

In the following Try It Out, you modify the large-number query and use aggregate operators to
explore the result set from the greater-than version of the large-number query using LINQ.

TRY IT OUT
Numeric Aggregate Operators: BeginningCSharp7_22_7_
NumericAggregates\Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. For this example, you can either modify the LargeNumberQuery example you just made or create
a new console project named BeginningCSharp7_22_7_NumericAggregates in the directory C:\
BeginningCSharp7\Chapter22.

718 ❘ CHAPTER 22 LINQ

 2. As before, when you create the project, Visual Studio 2017 includes the Linq namespace method
in Program.cs. You just need to modify the Main() method as shown in the following code and
in the rest of this Try It Out. As with the previous example, the orderby clause is not used in this
query. However, the condition on the where clause is the opposite of the previous example (the
numbers are greater than 1,000 (n > 1000), instead of less than 1,000):

 static void Main(string[] args)
 {
 int[] numbers = GenerateLotsOfNumbers(12345678);
 WriteLine("Numeric Aggregates");
 var queryResults =
 from n in numbers
 where n > 1000
 select n
 ;
 WriteLine("Count of Numbers > 1000");
 WriteLine(queryResults.Count());
 WriteLine("Max of Numbers > 1000");
 WriteLine(queryResults.Max());
 WriteLine("Min of Numbers > 1000");
 WriteLine(queryResults.Min());
 WriteLine("Average of Numbers > 1000");
 WriteLine(queryResults.Average());
 WriteLine("Sum of Numbers > 1000");
 WriteLine(queryResults.Sum(n => (long) n));
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();
 }

 3. If it is not already present, add the same GenerateLotsOfNumbers() method used in the previous
example:

 private static int[] GenerateLotsOfNumbers(int count)
 {
 Random generator = new Random(0);
 int[] result = new int[count];
 for (int i = 0; i < count; i++)
 {
 result[i] = generator.Next();
 }
 return result;
 }

 4. Compile and execute. You will see the count, minimum, maximum, and average values as shown
here:

Numeric Aggregates
Count of Numbers > 1000
12345671
Maximum of Numbers > 1000
2147483591
Minimum of Numbers > 1000
1034
Average of Numbers > 1000
1073643807.50298

Using Aggregate Operators ❘ 719

Sum of Numbers > 1000
13254853218619179
Program finished, press Enter/Return to continue:

This query produces many more results than the previous example (more than 12 million).
Using orderby on this result set would definitely have a noticeable impact on performance! The
largest number (maximum) in the result set is over two billion and the smallest (minimum) is
just over one thousand, as expected. The average is around one billion, near the middle of the
range of possible values. Looks like the Random() function generates a good distribution of
numbers!

How It Works

The first part of the program is exactly the same as the previous example, with the reference to the
System.Linq namespace, and the use of the GenerateLotsOfNumbers() method to generate the source
data:

 int[] numbers = GenerateLotsOfNumbers(12345678);

The query is the same as the previous example, except for changing the where condition from less than
to greater than:

 var queryResults =
 from n in numbers
 where n > 1000
 select n;

As noted before, this query using the greater-than condition produces many more results than the less-
than query (with this particular data set). By using the aggregate operators, you are able to explore the
results of the query without having to print out each result or do a comparison in a foreach loop. Each
one appears as a method that can be called on the result set, similar to methods on a collection type.

Look at the use of each aggregate operator:

 ➤ Count():

 WriteLine("Count of Numbers > 1000");
 WriteLine(queryResults.Count());

Count() returns the number of rows in the query results—in this case, 12,345,671 rows.

 ➤ Max():

 WriteLine("Max of Numbers > 1000");
 WriteLine(queryResults.Max());

Max() returns the maximum value in the query results—in this case, a number larger than two
billion: 2,147,483,591, which is very close to the maximum value of an int (int.MaxValue or
2,147,483,647).

 ➤ Min():

 WriteLine("Min of Numbers > 1000");
 WriteLine(queryResults.Min());

min() returns the minimum value in the query results—in this case, 1,034.

720 ❘ CHAPTER 22 LINQ

 ➤ Average():

 WriteLine("Average of Numbers > 1000");
 WriteLine(queryResults.Average());

Average() returns the average value of the query results, which in this case is
1,073,643,807.50298, a value very close to the middle of the range of possible values from 1,000
to more than two billion. This is rather meaningless with an arbitrary set of large numbers, but it
shows the kind of query result analysis that is possible. You’ll look at a more practical use of these
operators with some business-oriented data in the last part of the chapter.

 ➤ Sum():

 WriteLine("Sum of Numbers > 1000");
 WriteLine(queryResults.Sum(n => (long) n));

You passed the lambda expression n => (long) n to the Sum() method call to get the sum of all
the numbers. Although Sum() has a no-parameter overload, like Count(), Min(), Max(), and so
on, using that version of the method call would cause an overflow error because there are so many
large numbers in the data set that the sum of all of them would be too large to fit into a standard
32-bit int, which is what the no-parameter version of Sum() returns. The lambda expression
enables you to convert the result of Sum() to a long 64-bit integer, which is what you need to hold
the total of over 13 quadrillion without overflow—13,254,853,218,619,179 lambda expressions
enable you to perform this kind of fix-up easily.

NOTE In addition to Count(), which returns a 32-bit int, LINQ also provides a
LongCount() method that returns the count of query results in a 64-bit integer.
That is a special case, however—all the other operators require a lambda or a
call to a conversion method if a 64-bit version of the number is needed.

USING THE SELECT DISTINCT QUERY

Another type of query that those of you familiar with the SQL data query language will recognize
is the SELECT DISTINCT query, in which you search for the unique values in your data—that is, the
query removes any repeated values from the result set. This is a fairly common need when working
with queries.

Suppose you need to find the distinct regions in the customer data used in the previous examples.
There is no separate region list in the data you just used, so you need to find the unique, nonrepeat-
ing list of regions from the customer list itself. LINQ provides a Distinct() method that makes it
easy to find this data. You’ll use it in the following Try It Out.

Using the Select Distinct Query ❘ 721

TRY IT OUT
Projection: Select Distinct Query: BeginningCSharp7_22_8_
SelectDistinctQuery\Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application called BeginningCSharp7_22_8_SelectDistinctQuery in the
directory C:\BeginningCSharp7\Chapter22.

 2. Enter this code to create the Customer class and the initialization of the customers list
(List<Customer> customers):

class Customer
 {
 public string ID { get; set; }
 public string City { get; set; }
 public string Country { get; set; }
 public string Region { get; set; }
 public decimal Sales { get; set; }

 public override string ToString()
 {
 return "ID: " + ID + " City: " + City +
 " Country: " + Country +
 " Region: " + Region +
 " Sales: " + Sales;
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 List<Customer> customers = new List<Customer> {
 new Customer { ID="A", City="New York", Country="USA",
Region="North America", Sales=9999},
 new Customer { ID="B", City="Mumbai", Country="India",
Region="Asia", Sales=8888},
 new Customer { ID="C", City="Karachi", Country="Pakistan",
Region="Asia", Sales=7777},
 new Customer { ID="D", City="Delhi", Country="India",
Region="Asia", Sales=6666},
 new Customer { ID="E", City="São Paulo", Country="Brazil",
Region="South America", Sales=5555 },
 new Customer { ID="F", City="Moscow", Country="Russia",
Region="Europe", Sales=4444 },
 new Customer { ID="G", City="Seoul", Country="Korea",
Region="Asia", Sales=3333 },
 new Customer { ID="H", City="Istanbul", Country="Turkey",
Region="Asia", Sales=2222 },
 new Customer { ID="I", City="Shanghai", Country="China",
Region="Asia", Sales=1111 },
 new Customer { ID="J", City="Lagos", Country="Nigeria",
Region="Africa", Sales=1000 },
 new Customer { ID="K", City="Mexico City", Country="Mexico",
Region="North America", Sales=2000 },

722 ❘ CHAPTER 22 LINQ

 new Customer { ID="L", City="Jakarta", Country="Indonesia",
Region="Asia", Sales=3000 },
 new Customer { ID="M", City="Tokyo", Country="Japan",
Region="Asia", Sales=4000 },
 new Customer { ID="N", City="Los Angeles", Country="USA",
Region="North America", Sales=5000 },
 new Customer { ID="O", City="Cairo", Country="Egypt",
Region="Africa", Sales=6000 },
 new Customer { ID="P", City="Tehran", Country="Iran",
Region="Asia", Sales=7000 },
 new Customer { ID="Q", City="London", Country="UK",
Region="Europe", Sales=8000 },
 new Customer { ID="R", City="Beijing", Country="China",
Region="Asia", Sales=9000 },
 new Customer { ID="S", City="Bogotá", Country="Colombia",
Region="South America", Sales=1001 },
 new Customer { ID="T", City="Lima", Country="Peru",
Region="South America", Sales=2002 }
 };

 3. In the Main() method, following the initialization of the customers list, enter (or modify) the
query as shown here:

 var queryResults = customers.Select(c => c.Region).Distinct();

 4. Finish the remaining code in the Main() method as shown here.

foreach (var item in queryResults)
 {
 WriteLine(item);
 }
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();

 5. Compile and execute the program. You will see the unique regions where customers exist:

North America
Asia
South America
Europe
Africa
Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as in the previous example. In the
query statement, you call the Select() method with a simple lambda expression to select the region
from the Customer objects, and then call Distinct() to return only the unique results from Select():

var queryResults = customers.Select(c => c.Region).Distinct();

Because Distinct() is available only in method syntax, you make the call to Select() using method
syntax. However, you can call Distinct() to modify a query made in the query syntax as well:

var queryResults = (from c in customers select c.Region).Distinct();

Ordering by Multiple Levels ❘ 723

Because query syntax is translated by the C# compiler into the same series of LINQ method calls as
used in the method syntax, you can mix and match if it makes sense for readability and style.

ORDERING BY MULTIPLE LEVELS

Now that you are dealing with objects with multiple properties, you might be able to envision a situ-
ation where ordering the query results by a single field is not enough. What if you wanted to query
your customers and order the results alphabetically by region, but then order alphabetically by coun-
try or city name within a region? LINQ makes this very easy, as you will see in the following Try It
Out.

TRY IT OUT
Ordering by Multiple Levels: BeginningCSharp7_22_9_
MultiLevelOrdering\Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. Modify the previous example, BeginningCSharp7_22_8_SelectDistinctQuery, or create a new
console application called BeginningCSharp7_22_9_MultiLevelOrdering in the directory C:\
BeginningCSharp7\Chapter22.

 2. Create the Customer class and the initialization of the customers list (List<Customer> custom-
ers) as shown in the BeginningCSharp7_22_8_SelectDistinctQuery example; this code is exactly
the same as in previous examples.

 3. In the Main() method, following the initialization of the customers list, enter the following query:

 var queryResults =
 from c in customers
 orderby c.Region, c.Country, c.City
 select new { c.ID, c.Region, c.Country, c.City }
 ;

 4. The results processing loop and the remaining code in the Main() method are the same as in previ-
ous examples.

 5. Compile and execute the program. You will see the selected properties from all customers ordered
alphabetically by region first, then by country, and then by city, as shown here:

{ ID = O, Region = Africa, Country = Egypt, City = Cairo }
{ ID = J, Region = Africa, Country = Nigeria, City = Lagos }
{ ID = R, Region = Asia, Country = China, City = Beijing }
{ ID = I, Region = Asia, Country = China, City = Shanghai }
{ ID = D, Region = Asia, Country = India, City = Delhi }
{ ID = B, Region = Asia, Country = India, City = Mumbai }
{ ID = L, Region = Asia, Country = Indonesia, City = Jakarta }
{ ID = P, Region = Asia, Country = Iran, City = Tehran }
{ ID = M, Region = Asia, Country = Japan, City = Tokyo }
{ ID = G, Region = Asia, Country = Korea, City = Seoul }

724 ❘ CHAPTER 22 LINQ

{ ID = C, Region = Asia, Country = Pakistan, City = Karachi }
{ ID = H, Region = Asia, Country = Turkey, City = Istanbul }
{ ID = F, Region = Europe, Country = Russia, City = Moscow }
{ ID = Q, Region = Europe, Country = UK, City = London }
{ ID = K, Region = North America, Country = Mexico, City = Mexico City }
{ ID = N, Region = North America, Country = USA, City = Los Angeles }
{ ID = A, Region = North America, Country = USA, City = New York }
{ ID = E, Region = South America, Country = Brazil, City = São Paulo }
{ ID = S, Region = South America, Country = Colombia, City = Bogotá }
{ ID = T, Region = South America, Country = Peru, City = Lima }
Program finished, press Enter/Return to continue:

How It Works

The Customer class and customers list initialization are the same as in previous examples. In this
query you have no where clause because you want to see all the customers, but you simply list the fields
you want to sort by order in a comma-separated list in the orderby clause:

 orderby c.Region, c.Country, c.City

Couldn’t be easier, could it? It seems a bit counterintuitive that a simple list of fields is allowed in the
orderby clause but not in the select clause, but that is how LINQ works. It makes sense if you real-
ize that the select clause is creating a new object but the orderby clause, by definition, operates on a
field-by-field basis.

You can add the descending keyword to any of the fields listed to reverse the sort order for that field.
For example, to order this query by ascending region but descending country, simply add descending
following Country in the list, like this:

 orderby c.Region, c.Country descending, c.City

With descending added, you see following output:

{ ID = J, Region = Africa, Country = Nigeria, City = Lagos }
{ ID = O, Region = Africa, Country = Egypt, City = Cairo }
{ ID = H, Region = Asia, Country = Turkey, City = Istanbul }
{ ID = C, Region = Asia, Country = Pakistan, City = Karachi }
{ ID = G, Region = Asia, Country = Korea, City = Seoul }
{ ID = M, Region = Asia, Country = Japan, City = Tokyo }
{ ID = P, Region = Asia, Country = Iran, City = Tehran }
{ ID = L, Region = Asia, Country = Indonesia, City = Jakarta }
{ ID = D, Region = Asia, Country = India, City = Delhi }
{ ID = B, Region = Asia, Country = India, City = Mumbai }
{ ID = R, Region = Asia, Country = China, City = Beijing }
{ ID = I, Region = Asia, Country = China, City = Shanghai }
{ ID = Q, Region = Europe, Country = UK, City = London }
{ ID = F, Region = Europe, Country = Russia, City = Moscow }
{ ID = N, Region = North America, Country = USA, City = Los Angeles }
{ ID = A, Region = North America, Country = USA, City = New York }
{ ID = K, Region = North America, Country = Mexico, City = Mexico City }
{ ID = T, Region = South America, Country = Peru, City = Lima }
{ ID = S, Region = South America, Country = Colombia, City = Bogotá }
{ ID = E, Region = South America, Country = Brazil, City = São Paulo }
Program finished, press Enter/Return to continue:

Using Group Queries ❘ 725

Note that the cities in India and China are still in ascending order even though the country ordering
has been reversed.

USING GROUP QUERIES

A group query divides the data into groups and enables you to sort, calculate aggregates, and com-
pare by group. These are often the most interesting queries in a business context (the ones that really
drive decision-making). For example, you might want to compare sales by country or by region to
decide where to open another store or hire more staff. You’ll do that in the next Try It Out.

TRY IT OUT
Using a Group Query: BeginningCSharp7_22_10_GroupQuery\
Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application called BeginningCSharp7_22_10_GroupQuery in the directory
C:\BeginningCSharp7\Chapter22.

 2. Create the Customer class and the initialization of the customers list (List<Customer> custom-
ers), as shown in the BeginningCSharp7_22_8_SelectDistinctQuery example; this code is exactly
the same as previous examples.

 3. In the Main() method, following the initialization of the customers list, enter two queries:

 var queryResults =
 from c in customers
 group c by c.Region into cg
 select new { TotalSales = cg.Sum(c => c.Sales), Region = cg.Key }
 ;
 var orderedResults =
 from cg in queryResults
 orderby cg.TotalSales descending
 select cg
 ;

 4. Continuing in the Main() method, add the following print statement and foreach processing loop:

 WriteLine("Total\t: By\nSales\t: Region\n-----\t ------");
 foreach (var item in orderedResults)
 {
 WriteLine($"{item.TotalSales}\t: {item.Region}");
 }

 5. The results processing loop and the remaining code in the Main() method are the same as in previ-
ous examples. Compile and execute the program. Here are the group results:

Total : By
Sales : Region
----- ------
52997 : Asia

726 ❘ CHAPTER 22 LINQ

16999 : North America
12444 : Europe
8558 : South America
7000 : Africa

How It Works

The Customer class and customers list initialization are the same as in previous examples.

The data in a group query is grouped by a key field, the field for which all the members of each group
share a value. In this example, the key field is the Region:

group c by c.Region

You want to calculate a total for each group, so you group into a new result set named cg:

group c by c.Region into cg

In the select clause, you project a new anonymous type whose properties are the total sales (calcu-
lated by referencing the cg result set) and the key value of the group, which you reference with the spe-
cial group Key:

select new { TotalSales = cg.Sum(c => c.Sales), Region = cg.Key }

The group result set implements the LINQ IGrouping interface, which supports the Key property. You
almost always want to reference the Key property in some way in processing group results, because it
represents the criteria by which each group in your data was created.

You want to order the result in descending order by TotalSales field so you can see which region
has the highest total sales, next highest, and so on. To do that, you create a second query to order the
results from the group query:

 var orderedResults =
 from cg in queryResults
 orderby cg.TotalSales descending
 select cg
 ;

The second query is a standard select query with an orderby clause, as you have seen in previous
examples; it does not make use of any LINQ group capabilities except that the data source comes from
the previous group query.

Next, you print out the results, with a little bit of formatting code to display the data with column
headers and some separation between the totals and the group names:

 WriteLine("Total\t: By\nSales\t: Region\n---\t ---");
 foreach (var item in orderedResults)
 {
 WriteLine($"{item.TotalSales}\t: {item.Region}");
 };

This could be formatted in a more sophisticated way with field widths and by right-justifying the totals,
but this is just an example so you don’t need to bother—you can see the data clearly enough to under-
stand what the code is doing.

Using Joins ❘ 727

USING JOINS

A data set such as the customers and orders list you just created, with a shared key field (ID),
enables a join query, whereby you can query related data in both lists with a single query, joining
the results together with the key field. This is similar to the JOIN operation in the SQL data query
language; and as you might expect, LINQ provides a join command in the query syntax, which
you will use in the following Try It Out.

TRY IT OUT Join Query: BeginningCSharp7_22_11_JoinQuery\Program.cs

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application called BeginningCSharp7_22_11_JoinQuery in the directory C:\
BeginningCSharp7\Chapter22.

 2. Copy the code to create the Customer class, the Order class, and the initialization of the custom-
ers list (List<Customer> customers) and orders list (List<Order> orders) from the previous
example; this code is the same.

 3. In the Main() method, following the initialization of the customers and orders list, enter this
query:

 var queryResults =
 from c in customers
 join o in orders on c.ID equals o.ID
 select new { c.ID, c.City, SalesBefore = c.Sales, NewOrder = o.Amount,
 SalesAfter = c.Sales+o.Amount };

 4. Finish the program using the standard foreach query processing loop you used in earlier examples:

 foreach (var item in queryResults)
 {
 WriteLine(item);
 }

 5. Compile and execute the program. Here’s the output:

{ ID = P, City = Tehran, SalesBefore = 7000, NewOrder = 100, SalesAfter = 7100 }
{ ID = Q, City = London, SalesBefore = 8000, NewOrder = 200, SalesAfter = 8200 }
{ ID = R, City = Beijing, SalesBefore = 9000, NewOrder = 300, SalesAfter = 9300 }
{ ID = S, City = Bogotá, SalesBefore = 1001, NewOrder = 400, SalesAfter = 1401 }
{ ID = T, City = Lima, SalesBefore = 2002, NewOrder = 500, SalesAfter = 2502 }
Program finished, press Enter/Return to continue:

How It Works

The code declaring and initializing the Customer class, the Order class, and the customers and orders
lists is the same as in the previous example.

The query uses the join keyword to unite the customers with their corresponding orders using the ID
fields from the Customer and Order classes, respectively:

 var queryResults =
 from c in customers
 join o in orders on c.ID equals o.ID

728 ❘ CHAPTER 22 LINQ

The on keyword is followed by the name of the key field (ID), and the equals keyword indicates the
corresponding field in the other collection. The query result only includes the data for objects that have
the same ID field value as the corresponding ID field in the other collection.

The select statement projects a new data type with properties named so that you can clearly see the
original sales total, the new order, and the resulting new total:

select new { c.ID, c.City, SalesBefore = c.Sales, NewOrder = o.Amount,
 SalesAfter = c.Sales+o.Amount };

Although you do not increment the sales total in the customer object in this program, you could easily
do so in the business logic of your program.

The logic of the foreach loop and the display of the values from the query are exactly the same as in
previous programs in this chapter.

EXERCISES

 22.1 Modify the third example program (BeginningCSharp7_22_3_QuerySyntax) to order the
results in descending order.

 22.2 Modify the number passed to the GenerateLotsOfNumbers() method in the large number
program example (BeginningCSharp7_22_6_LargeNumberQuery) to create result sets of dif-
ferent sizes and see how query results are affected.

 22.3 Add an orderby clause to the query in the large number program example
(BeginningCSharp7_22_6_LargeNumberQuery) to see how this affects performance.

 22.4 Modify the query conditions in the large number program example
(BeginningCSharp7_22_6_LargeNumberQuery) to select larger and smaller subsets of the
number list. How does this affect performance?

 22.5 Modify the method syntax example (BeginningCSharp7_22_4_MethodSyntax) to eliminate
the where clause entirely. How much output does it generate?

 22.6 Add aggregate operators to the third example program (BeginningCSharp7_22_3_
QuerySyntax). Which simple aggregate operators are available for this non-numeric result set?

Answers to Exercises can be found in Appendix.

Using Joins ❘ 729

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

What LINQ is and when
to use it

LINQ is a query language built into C#. Use LINQ to query data from
large collections of objects, XML, or databases.

Parts of a LINQ query A LINQ query includes the from, where, select, and orderby clauses.

How to get the results of
a LINQ query

Use the foreach statement to iterate through the results of a LINQ
query.

Deferred execution LINQ query execution is deferred until the foreach statement is
executed.

Method syntax and
query syntax

Use the query syntax for most LINQ queries and method queries when
required. For any given query, the query syntax or the method syntax
will give the same result.

Lambda Expressions Lambda expressions let you declare a method on-the-fly for use in a
LINQ query using the method syntax.

Aggregate operators Use LINQ aggregate operators to obtain information about a large data
set without having to iterate through every result.

Group queries Use group queries to divide data into groups, then sort, calculate aggre-
gates, and compare by group.

Ordering Use the orderby operator to order the results of a query.

Joins Use the join operator to query related data in multiple collections with
a single query.

Databases
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Using databases

 ➤ Understanding the Entity Framework

 ➤ Creating data with Code First

 ➤ Using LINQ with databases

 ➤ Navigating database relationships

 ➤ Creating and querying XML from databases

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/benperk/
BeginningCSharp7. The code is in the Chapter23 folder and individually named according to
the names throughout the chapter.

The previous chapter introduced LINQ (Language INtegrated Query) and showed how LINQ
works with objects and XML. This chapter teaches you how to store your objects in a data-
base and use LINQ to query the data.

USING DATABASES

For the purposes of this book, A database is a persistent, structured storehouse for data.
There are many different kinds of databases, but the most common type you will encounter
for storing and querying business data is relational databases such as Microsoft SQL Server
and Oracle. Relational databases use the SQL database language (SQL stands for Structured

23

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

732 ❘ CHAPTER 23 Databases

Query Language) to query and manipulate their data. Traditionally, working with such a database
required knowing at least some SQL, either embedding SQL statements in your programming lan-
guage or passing strings containing SQL statements to API calls or methods in a SQL-oriented data-
base class library.

Sounds complicated, doesn’t it? Well, the good news is that with Visual Studio 2017 you can use a
Code First approach to create objects in C#, store them in a database, and use LINQ to query the
objects without having to use another language such as SQL.

INSTALLING SQL SERVER EXPRESS

To run the examples shown in this chapter, you must install Microsoft SQL Server Express, the free
lightweight version of Microsoft SQL Server. You will use the LocalDB option with SQL Server
Express, which enables Visual Studio 2017 to create and open a database file directly without the
need to connect to a separate server.

SQL Server Express with LocalDB supports the same SQL syntax as the full Microsoft SQL Server,
so it is an appropriate version for beginners to learn on. Download SQL Server express from this
link: https://www.microsoft.com/sql-server/sql-server-editions-express.

NOTE If you are familiar with SQL Server and have access to an instance of
Microsoft SQL Server, you may skip this installation, although you will have to
change the connection information to match your SQL Server instance. If you
have never worked with SQL Server, then go ahead and install SQL Server
Express.

ENTITY FRAMEWORK

The class library in .NET that supports Code First is the newest version of the Entity Framework. The
name comes from a database concept called the entity-relationship model, where an entity is the abstract
concept of a data object such as a customer, which is related to other entities such as orders and products
(for example, a customer places an order for products) in a relational database.

The Entity Framework maps the C# objects in your program to the entities in a relational database.
This is called object-relational mapping. Object-relational mapping is code that maps your classes,
objects, and properties in C# to the tables, rows, and columns that make up a relational database.
Creating this mapping code by hand is tedious and time-consuming, but the Entity Framework
makes it easy!

The Entity Framework is built on top of ADO.NET, the low-level data access library built into
.NET. ADO.NET requires some knowledge of SQL, but luckily the Entity Framework also handles
this for you and lets you concentrate on your C# code.

https://www.microsoft.com/sql-server/sql-server-editions-express

A Code First Database ❘ 733

NOTE Microsoft recently introduced Entity Framework Core for .NET Core
applications as described in Chapter 18. This version is often referred to as EF
Core. (In many blogs and articles, you will see the Entity Framework abbrevi-
ated to just EF.) The examples in this chapter use EF 6, which is the latest
stable version for .NET 4.7, but the patterns shown in the examples will also
work with EF Core.

A CODE FIRST DATABASE

In the following Try It Out, you create some objects in a database using Code First with the Entity
Framework, then query the objects you created using LINQ to Entities.

TRY IT OUT Code First Database: BeginningCSharp7_23_1_CodeFirstDatabase

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application project called BeginningCSharp7_23_1_CodeFirstDatabase in the
directory C:\BeginningCSharp7\Chapter23.

 2. Press OK to create the project.

 3. To add the Entity Framework, use NuGet as you did in Chapter 21. Go to Tools ➪ NuGet Package
Manager ➪ Manage NuGetPackages for Solution as shown in Figure 23-1.

FIGURE 23-1

 4. Get the Entity Framework latest stable release as shown in Figure 23-2. Click the Install button.

734 ❘ CHAPTER 23 Databases

FIGURE 23-2

 5. Click OK on the Preview dialog as shown in Figure 23-3.

FIGURE 23-3

 6. Click the I Accept button on the License Acceptance dialog for the Entity Framework as shown in
Figure 23-4.

A Code First Database ❘ 735

FIGURE 23-4

 7. Now the Entity Framework and its references are added to your project. You can see them in the
References section of your project in Solution Explorer as shown in Figure 23-5.

FIGURE 23-5

736 ❘ CHAPTER 23 Databases

 8. Open the main source file Program.cs and add the following code. First add the Entity Framework
namespace at the top of the file below the other using clauses:

using System.Data.Entity;

 9. Next, add another using clause for data annotations. This enables you to give hints to the Entity
Framework on how to set up the database. Finally, add the System.Console namespace as with
previous examples:

using System.ComponentModel.DataAnnotations;
using static System.Console;

 10. Next, you add a Book class with Author, Title, and Code similar to the example you used in
Chapter 21. The [Key] attribute you see before the Code field is a data annotation, telling C# to
use this field as the unique identifier for each object in the database.

namespace BeginningCSharp7_23_1_CodeFirstDatabase
{
 public class Book
 {
 public string Title { get; set; }
 public string Author { get; set; }
 [Key] public int Code { get; set; }
 }

 11. Now add a DbContext class (Database Context) to manage create, update, and delete the table of
books in the database:

 public class BookContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }

 12. Next, add code in the Main() function to create a couple of Book objects, and save the book
objects to the database:

 class Program
 {
 static void Main(string[] args)
 {
 using (var db = new BookContext())
 {
 Book book1 = new Book { Title = "Beginning C# 7",
 Author = "Perkins, Reid, and Hammer" };
 db.Books.Add(book1);
 Book book2 = new Book { Title = "Beginning XML",
 Author = "Fawcett, Quin, and Ayers"};
 db.Books.Add(book2);
 db.SaveChanges();

 13. Finally, add the code for a simple LINQ query to list the books in the database after creation:

 var query = from b in db.Books
 orderby b.Title
 select b;
 WriteLine("All books in the database:");
 foreach (var b in query)

A Code First Database ❘ 737

 {
 WriteLine($"{b.Title} by {b.Author}, code={b.Code}");
 }
 WriteLine("Press a key to exit...");
 ReadKey();
 }

The complete code for your program should now look like this:

using System.Data.Entity;
using System.Data.Annotations;
using static System.Console;
namespace BeginningCSharp7_23_1_CodeFirstDatabase
{
 public class Book
 {
 public string Title { get; set; }
 public string Author { get; set; }
 [Key] public int Code { get; set; }
 }
 public class BookContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }
 class Program
 {
 static void Main(string[] args)
 {
 using (var db = new BookContext())
 {
 Book book1 = new Book { Title = "Beginning C# 7",
 Author = "Perkins, Reid, and Hammer" };
 db.Books.Add(book1);
 Book book2 = new Book { Title = "Beginning XML",
 Author = "Fawcett, Quin, and Ayers"};
 db.Books.Add(book2);
 db.SaveChanges();
 var query = from b in db.Books
 orderby b.Title
 select b;
 WriteLine("All books in the database:");
 foreach (var b in query)
 {
 WriteLine($"{b.Title} by {b.Author}, code={b.Code}");
 }
 WriteLine("Press a key to exit...");
 ReadKey();
 }
 }
 }
}

 14. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
information for the books database appear as shown in Figure 23-6.

738 ❘ CHAPTER 23 Databases

FIGURE 23-6

Press any key to finish the program and make the console screen disappear. If you used Ctrl+F5 (Start
Without Debugging), you might need to press Enter/Return twice. That finishes the program run. Now
look at how it works in detail.

How It Works

As is shown in the previous chapter, this code uses extension classes from the System.Linq namespace,
which is referenced by a using statement inserted automatically by Visual C# 2017 when you create the
project:

using System.Linq;

Next you added the Entity Framework namespace at the top of the file below the other using clauses:

using System.Data.Entity;

Then you added the using clause for data annotations, so that you could add hints to tell the Entity
Framework on how to set up the database, and the static System.Console namespace:

using System.ComponentModel.DataAnnotations;
using static System.Console;

Next, you added a Book class with Author, Title, and Code similar to the example used in Chapter 21.
You used the [Key] attribute to identify the Code property as the unique identifier for each row in the
database.

namespace BeginningCSharp7_23_1_CodeFirstDatabase
{
 public class Book
 {
 public string Title { get; set; }
 public string Author { get; set; }
 [Key] public int Code { get; set; }
 }

Next you created the BookContext class inheriting from the DbContext (Database Context) class in the
Entity Framework for creating, updating, and deleting the book objects as needed in the database:

 public class BookContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }

The class member DbSet<Book> is a collection of all the Book entities in your database.

A Code First Database ❘ 739

Next you added code to use the BookContext to create two Book objects and save them to the
database:

 using (var db = new BookContext())
 {
 Book book1 = new Book { Title = "Beginning C# 7",
 Author = "Perkins, Reid, and Hammer" };
 db.Books.Add(book1);
 Book book2 = new Book { Title = "Beginning XML",
 Author = "Fawcett, Quin, and Ayers"};
 db.Books.Add(book2);
 db.SaveChanges();

The using(var db = new BookContext()) clause lets you create a new BookContext instance for use
in all the following code between the curly braces. Besides being a convenient shorthand, the using()
clause ensures that the database connection and other underlying plumbing objects associated with the
connection are closed properly when your program is finished, even if there is an exception or other
unexpected event.

The Book creation and assignment statements such as

 Book book = new Book { Title = "Beginning C# 7",
 Author = "Perkins, Reid, and Hammer" };

are fairly straightforward creation of Book objects; no database magic has occurred yet as these are
simple objects in memory. You’ll note that you did not assign any value for the Code property; at this
point the unassigned Code property simply contains a default value.

Next you saved the changes to BookContext db to the database:

 db.SaveChanges();

Now some magic has happened; because you used the [Key] attribute to identify Code as a key, a
unique value was assigned to the Code field when each object was saved to the database. You don’t have
to use this value or even care what it is, because it is taken care of for you by the Entity Framework.

NOTE If you had not added the [Key] attribute to your object, you would
have seen an exception like the one shown Figure 23-7 when running your
program.

FIGURE 23-7

740 ❘ CHAPTER 23 Databases

Finally, you execute the code for a simple LINQ query to list the books in the database after creation:

 var query = from b in db.Books
 orderby b.Title
 select b;
 WriteLine("All books in the database:");
 foreach (var b in query)
 {
 WriteLine($"{b.Title} by {b.Author}, code={b.Code}");
 }
 WriteLine("Press a key to exit...");
 ReadKey();
 }

This LINQ query is very similar to the one you used in the previous chapter, but instead of querying
objects in memory using the LINQ to Objects provider, you are querying the database with the LINQ
to Entities provider. LINQ infers the correct provider based on the types referenced in the query; you
don’t have to make any changes in your logic.

Finally you just use the standard ReadKey()to pause the program before exiting so you can see the
output.

That was easy, right? You created some objects, saved them to a database, and queried the database
using LINQ.

BUT WHERE IS MY DATABASE?

But wait, you say. Where is the database you created? You never specified a file name or a folder
location—it was all magic! You can see the database in Visual Studio 2017 through the Server
Explorer. Go to Tools ➪ Connect to Database. The Entity Framework will create a database in the
first local SQL Server instance it finds on your computer.

If you never had any databases on your computer previously, Visual Studio 2017 creates a local
SQL Server instance for you called (localdb)\MSSQLLocalDB. To connect to this database type
(localdb)\MSSQLLocalDB into the Server Name field as shown in Figure 23-8.

NOTE If you had installed a previous version of Visual Studio before using Visual
C# 2017, you might have to enter (localdb)\v11.0 into the Server Name field,
as this was the previous edition’s local database name. Or if you have installed
the SQL Server Express Edition, you might have to enter .\ sqlexpress, as
Entity Framework uses the first local SQL Server database it finds.

The database containing your data will be called BeginningCSharp7_23_1_CodeFirstDatabase
.BookContext assuming you typed in the example name exactly as shown in the chapter. It will
show up in the Select or enter a database name field after taking a moment to connect.

But Where Is My Database? ❘ 741

Now you can press OK and the database will appear in the Server Explorer Data Connections win-
dow in Visual Studio 2017 as shown in Figure 23-9.

FIGURE 23-8

FIGURE 23-9

From here you can explore the database directly. For example you can right-click on the Books table
and choose Show Table Data to see the data you entered as shown in Figure 23-10.

742 ❘ CHAPTER 23 Databases

FIGURE 23-10

NAVIGATING DATABASE RELATIONSHIPS

One of the most powerful aspects of the Entity Framework is its capability to automatically create
LINQ objects to help you navigate relationships between related tables in the database.

In the following Try It Out, you add two new classes related to the Book class to make a simple
bookstore inventory report. The new classes are called Store (to represent each bookstore) and
Stock, to represent the inventory of books on hand (in the store on the shelf) and on order from the
publisher. A diagram of these new classes and relationships is shown in Figure 23-11.

FIGURE 23-11

Each store has a name, address, and an Inventory collection consisting of one or more stock objects,
one for each different book (title) carried by the store. The relationship between Store and Stock is
one-to-many. Each stock record is related to exactly one book. The relationship between Stock and
Book is one-to-one. You need the stock record because one store may have three copies of a particu-
lar book, but another store will have six copies of the same book.

Navigating Database Relationships ❘ 743

You’ll see how with Code First, all you have to do is create the C# objects and collections, and the
Entity Framework will create the database structure for you and let you easily navigate the relation-
ships between your database objects and then query the related objects in the database.

TRY IT OUT
Navigating Database Relationships: BeginningCSharp7_23_2_
DatabaseRelations

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application project called BeginningCSharp7_23_2_DatabaseRelations in the
directory C:\BeginningCSharp7\Chapter23.

 2. Press OK to create the project.

 3. Add the Entity Framework using NuGet as you did in the previous example. Go to Tools ➪ NuGet
Package Manager ➪ Manage NuGetPackages for Solution.

 4. In the NuGet Package Manager, choose the Entity Framework, uncheck the Include Prerelease
checkbox and get the Entity Framework latest stable release. Click the Install button. It does
not have to download because you already downloaded it in the previous step. Click OK on the
Preview Changes and the I Accept button for the License Acceptance dialog.

 5. Open the main source file Program.cs. As in the previous example, add the using statements for
the System.Console, System.Data.Entity, and DataAnnotations namespaces, as well as the
code to create the Book class:

using System.Data.Entity;
using System.ComponentModel.DataAnnotations;
using static System.Console;
namespace BeginningCSharp7_23_2_DatabaseRelations
{
 public class Book
 {
 public string Title { get; set; }
 public string Author { get; set; }
 [Key]
 public int Code { get; set; }
 }

 6. Now declare the Store and Stock classes as shown below. Make sure to declare Inventory and
Item as virtual. You’ll see why in the How It Works section.

 public class Store
 {
 [Key]
 public int StoreId { get; set; }
 public string Name { get; set; }
 public string Address { get; set; }
 public virtual List<Stock> Inventory { get; set; }
 }

744 ❘ CHAPTER 23 Databases

 public class Stock
 {
 [Key]
 public int StockId { get; set; }
 public int OnHand { get; set; }
 public int OnOrder { get; set; }
 public virtual Book Item{ get; set; }
 }

 7. Next add Stores and Stocks to the DbContext class:

 public class BookContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 public DbSet<Store> Stores { get; set; }
 public DbSet<Stock> Stocks { get; set; }
 }

 8. Now add code to the Main() method to use the BookContext and create the two instances of the
Book class as in the previous example:

 class Program
 {
 static void Main(string[] args)
 {
 using (var db = new BookContext())
 {
 Book book1 = new Book
 {
 Title = "Beginning C# 7",
 Author = "Perkins, Reid, and Hammer"
 };
 db.Books.Add(book1);
 Book book2 = new Book
 {
 Title = "Beginning XML",
 Author = "Fawcett, Quin, and Ayers"
 };
 db.Books.Add(book2);
}

 9. Now add an instance for the first store and its inventory, still inside the using(var db = new
BookContext()) clause:

 var store1 = new Store
 {
 Name = "Main St Books",
 Address = "123 Main St",
 Inventory = new List<Stock>()
 };
 db.Stores.Add(store1);
 Stock store1book1 = new Stock
 { Item = book1, OnHand = 4, OnOrder = 6 };

Navigating Database Relationships ❘ 745

 store1.Inventory.Add(store1book1);
 Stock store1book2 = new Stock
 { Item = book2, OnHand = 1, OnOrder = 9 };
 store1.Inventory.Add(store1book2);

 10. Now add an instance for the second store and its inventory:

 var store2 = new Store
 {
 Name = "Campus Books",
 Address = "323 College Ave",
 Inventory = new List<Stock>()
 };
 db.Stores.Add(store2);
 Stock store2book1 = new Stock
 { Item = book1, OnHand = 7, OnOrder = 23 };
 store2.Inventory.Add(store2book1);
 Stock store2book2 = new Stock
 { Item = book2, OnHand = 2, OnOrder = 8 };
 store2.Inventory.Add(store2book2);

 11. Next save the database changes as in the previous example:

 db.SaveChanges();

 12. Now create a LINQ query on all the stores, and print out the results:

 var query = from store in db.Stores
 orderby store.Name
 select store;

 13. Finally add code to print out the results of the query and pause the output:

 WriteLine("Bookstore Inventory Report:");
 foreach (var store in query)
 {
 WriteLine($"{store.Name} located at {store.Address}");
 foreach (Stock stock in store.Inventory)
 {
 WriteLine($"- Title: {stock.Item.Title}");
 WriteLine($"-- Copies in Store: {stock.OnHand}");
 WriteLine($"-- Copies on Order: {stock.OnOrder}");
 }
 }
 WriteLine("Press a key to exit...");
 ReadKey();
 }
 }
 }
}

 14. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
information for the bookstore inventory appear as shown in Figure 23-12.

746 ❘ CHAPTER 23 Databases

FIGURE 23-12

Press any key to finish the program and make the console screen disappear. If you used Ctrl+F5 (Start
Without Debugging), you might need to press Enter/Return twice. That finishes the program run. Now
look at how it works in detail.

How It Works

The basics of the Entity Framework, DbContext, and data annotations were covered in the previous
example, so here you’ll concentrate on what is different.

The Store and Stock classes are similar to the original Book class but you added some new virtual
properties for Inventory and Item as shown here:

 public class Store
 {
 [Key]
 public int StoreId { get; set; }
 public string Name { get; set; }
 public string Address { get; set; }
 public virtual List<Stock> Inventory { get; set; }
 }
 public class Stock
 {
 [Key]
 public int StockId { get; set; }
 public int OnHand { get; set; }
 public int OnOrder { get; set; }
 public virtual Book Item{ get; set; }
 }

Navigating Database Relationships ❘ 747

The Inventory property looks and behaves like a normal in-memory List<Stock> collection.
However because it is declared as virtual, the Entity Framework can override its behavior when stor-
ing to and retrieving from the database.

The Entity Framework takes care of the database details such as adding a foreign key column to the
Stocks table in the database to implement the Inventory relationship between a Store and its Stock
records. Similarly the Entity Framework adds another foreign key column to the Stock table in the data-
base to implement the Item relationship between Stock and Book. If you’re curious you can see this in
Server Explorer database design view of the BeginningCSharp7_23_2_DatabaseRelations.BookContext
database as shown in Figure 23-13.

FIGURE 23-13

In the past you would have had to decide how to map the collection in your program to foreign keys
and columns in the database and keep that code up-to-date as your design changes. However, with the
Entity Framework you do not need to know these details; with Code First you simply work with C#
classes and collections and let the framework take care of the plumbing for you.

Next you added the DbSet classes for Store and Stock to the BookContext.

 public class BookContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 public DbSet<Store> Stores { get; set; }
 public DbSet<Stock> Stocks { get; set; }
 }

748 ❘ CHAPTER 23 Databases

Then you used those DbSet classes to create instances of two books, two stores, and two stock records
for each book under each store:

 class Program
 {
 static void Main(string[] args)
 {
 using (var db = new BookContext())
 {
 Book book1 = new Book
 {
 Title = "Beginning C# 7",
 Author = "Perkins, Reid, and Hammer"
 };
 db.Books.Add(book1);
 Book book2 = new Book
 {
 Title = "Beginning XML",
 Author = "Fawcett, Quin, and Ayers"
 };
 db.Books.Add(book2);
 var store1 = new Store
 {
 Name = "Main St Books",
 Address = "123 Main St",
 Inventory = new List<Stock>()
 };
 db.Stores.Add(store1);
 Stock store1book1 = new Stock
 { Item = book1, OnHand = 4, OnOrder = 6 };
 store1.Inventory.Add(store1book1);
 Stock store1book2 = new Stock
 { Item = book2, OnHand = 1, OnOrder = 9 };
 store1.Inventory.Add(store1book2);
 var store2 = new Store
 {
 Name = "Campus Books",
 Address = "323 College Ave",
 Inventory = new List<Stock>()
 };
 db.Stores.Add(store2);
 Stock store2book1 = new Stock
 { Item = book1, OnHand = 7, OnOrder = 23 };
 store2.Inventory.Add(store2book1);
 Stock store2book2 = new Stock
 { Item = book2, OnHand = 2, OnOrder = 8 };
 store2.Inventory.Add(store2book2);

After creating the objects, you saved the changes to the database:

 db.SaveChanges();

Then you made a simple LINQ query to list all the stores’ information:

 var query = from store in db.Stores
 orderby store.Name
 select store;

Handling Migrations ❘ 749

The code to print out the results of the query is very straightforward because it simply deals with
objects and collections, no database-specific code:

 WriteLine("Bookstore Inventory Report:");
 foreach (var store in query)
 {
 WriteLine($"{store.Name} located at {store.Address}");
 foreach (Stock stock in store.Inventory)
 {
 WriteLine($"- Title: {stock.Item.Title}");
 WriteLine($"-- Copies in Store: {stock.OnHand}");
 WriteLine($"-- Copies on Order: {stock.OnOrder}");
 }
 }

To print the inventory under each store, you simply use a foreach loop like with any collection.

HANDLING MIGRATIONS

Inevitably as you develop your code, you are going to change your mind. You will come up with a
better name for one of your properties, or you will realize you need a new class or relationship. If
you change the code in a class connected to a database, via the Entity Framework, you will encoun-
ter the Invalid Operation Exception shown in Figure 23-14 when you first run the changed program.

FIGURE 23-14

Keeping the database up to date with your changed classes is complicated, but again the Entity
Framework steps in with a facility to make it relatively easy. As the error message suggests, you need
to add the Code First Migrations package to your program.

To do this, go to Tools ➪ NuGet Package Manager ➪ Package Manager Console. This brings up a
command window as shown in Figure 23-15.

To enable automatic migration of your database to your updated class structure, enter this com-
mand in the Package Manager Console at the PM> prompt:

Enable-Migrations –EnableAutomaticMigrations

750 ❘ CHAPTER 23 Databases

FIGURE 23-15

This adds a Migrations class to your project, shown in Figure 23-16.

FIGURE 23-16

The Entity Framework will compare the timestamp of the database to your program and advise
you when the database is out of sync with your classes. To update the database, simply enter this
command in the Package Manager Console at the PM> prompt:

Update-Database -Force

CREATING AND QUERYING XML FROM AN EXISTING
DATABASE

For the last example you will combine all you have learned about LINQ, databases, and XML.

Creating and Querying XML from an Existing Database ❘ 751

XML is often used to communicate data between client and server machines or between “tiers” in a
multitier application. It is quite common to query for some data in a database and then produce an
XML document or fragment from that data to pass to another tier.

In the following Try It Out, you create a query to find some data in the previous example database,
use LINQ to Entities to query the data, and then use LINQ to XML classes to convert the data to
XML. This is an example of Database First as opposed to Code First programming where you take
an existing database and generate C# objects from it.

TRY IT OUT
Generating XML from Databases: BeginningCSharp7_23_3_
XMLfromDatabase

Follow these steps to create the example in Visual Studio 2017:

 1. Create a new console application called BeginningCSharp7_23_3_XMLfromDatabase in the direc-
tory C:\BeginningCSharp7\Chapter23.

 2. As described in the previous example, add the Entity Framework to the project.

 3. Add a connection to the database used by the previous example by selecting Project ➪ Add New
Item. Choose ADO.NET Entity Data Model in the Add New Item dialog and change the name
from Model1 to BookContext as shown in Figure 23-17.

FIGURE 23-17

752 ❘ CHAPTER 23 Databases

 4. Choose Code First from database in the Choose Model Contents dialog as shown in Figure 23-18.

FIGURE 23-18

 5. In the Entity Data Model Wizard, choose the connection to the BeginningCSharp7_23_2_
DatabaseRelations.BookContext database you created in the previous example, as shown in
Figure 23-19.

Creating and Querying XML from an Existing Database ❘ 753

FIGURE 23-19

 6. Open the main source file Program.cs.

 7. Add a reference to the System.Xml.Linq namespace to the beginning of Program.cs, as shown:

using System;
using System.Collections.Generic;
using System.Linq;

754 ❘ CHAPTER 23 Databases

using System.Xml.Linq;
using System.Text;
using static System.Console;

 8. Add the following code to the Main() method in Program.cs:

 static void Main(string[] args)
 {
 using (var db = new BookContext())
 {
 var query = from store in db.Stores
 orderby store.Name
 select store;
 foreach (var s in query)
 {
 XElement storeElement = new XElement("store",
 new XAttribute("name", s.Name),
 new XAttribute("address", s.Address),
 from stock in s.Stocks
 select new XElement("stock",
 new XAttribute("StockID", stock.StockId),
 new XAttribute("onHand",
 stock.OnHand),
 new XAttribute("onOrder",
 stock.OnOrder),
 new XElement("book",
 new XAttribute("title",
 stock.Book.Title),
 new XAttribute("author",
 stock.Book.Author)
)// end book
) // end stock
); // end store
 WriteLine(storeElement);
 }
 Write("Program finished, press Enter/Return to continue:");
 ReadLine();
 }
 }

 9. Compile and execute the program (you can just press F5 for Start Debugging). You will see the
output shown in Figure 23-20.

Creating and Querying XML from an Existing Database ❘ 755

FIGURE 23-20

Simply press Enter/Return to exit the program and make the console screen disappear. If you used
Ctrl+F5 (Start Without Debugging), you might need to press Enter/Return twice.

How It Works

In Program.cs you added the reference to the System.Xml.Linq namespace in order to call the LINQ
to XML constructor classes in addition to the Entity Framework classes.

When you added the Database First code by choosing ADO.NET Entity Data Model in the Add New
Item dialog, Visual Studio generated a separate BookContext.cs class and added it to your project
using the information from the existing BeginningCSharp7_23_2_DatabaseRelations.BookContext
database created in the previous example.

In the main program, you created an instance of the BookContext database context class and the same
LINQ to Entities query used in previous examples:

 using (var db = new BookContext())
 {
 var query = from store in db.Stores
 orderby store.Name
 select store;

756 ❘ CHAPTER 23 Databases

When you processed the results of the query in a foreach loop, you used the LINQ to XML classes to
transform the query results into XML using a nested set of LINQ to XML elements and attributes:

 foreach (var s in query)
 {
 XElement storeElement = new XElement("store",
 new XAttribute("name", s.Name),
 new XAttribute("address", s.Address),
 from stock in s.Stocks
 select new XElement("stock",
 new XAttribute("StockID", stock.StockId),
 new XAttribute("onHand",
 stock.OnHand),
 new XAttribute("onOrder",
 stock.OnOrder),
 new XElement("book",
 new XAttribute("title",
 stock.Book.Title),
 new XAttribute("author",
 stock.Book.Author)
)// end book
) // end stock
); // end store
 WriteLine(storeElement);
 }

Congratulations! You have combined your data access knowledge from Chapters 22 and 23 into a
single program using the full power of LINQ and the Entity Framework!

EXERCISES

 23.1 Modify the first example BeginningCSharp7_23_1_CodeFirstDatabase to prompt the user for
title and author and store the user-entered data into the database.

 23.2 The first example BeginningCSharp7_23_1_CodeFirstDatabase will create duplicate records if
run repeatedly. Modify the example to not create duplicates.

 23.3 The generated BookContext class used in the last example BeginningCSharp7_23_3_
XMLfromDatabase does not use the same relationship names as the previous example
BeginningCSharp7_23_2_DatabaseRelations. Modify the BookContext class to use the same
relationship names.

 23.4 Create a database using Code First to store the data found in the GhostStories.xml file
used in Chapter 21.

Answers to the exercises can be found in Appendix.

Creating and Querying XML from an Existing Database ❘ 757

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Using databases A database is a persistent, structured storehouse for data. While there
are many different kinds of databases, the most common type used for
business data are relational databases.

Entity Framework The Entity Framework is a set of .NET classes for object-relational map-
ping between C# objects and relational databases.

How to create data with
Code First

By using the Code First classes in the Entity Framework you can create
databases directly from C# classes and collections using object-relational
mapping.

How to use LINQ with
databases

LINQ to Entities enables powerful queries on databases using the same
Entity Framework classes to create the data.

How to navigate
 database relationships

The Entity Framework enables creation and navigation of related enti-
ties in your database through the use of virtual properties and collec-
tions in your C# code.

How to create and query
XML from databases

You can construct XML from databases by combining LINQ to Entities,
LINQ to Objects, and LINQ to XML in a single query.

PART V
Additional Techniques

 ➤CHAPTER 24: Windows Communication Foundation

 ➤CHAPTER 25: Universal Apps

Windows Communication
Foundation

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Discovering WCF

 ➤ Mastering WCF concepts

 ➤ Understanding WCF programming

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter24 folder and individually named
according to the names throughout the chapter.

In recent years, as use of the Internet has become more ubiquitous, there has been a rapid
increase in web services. A web service is like a website that is used by a computer instead of
a person. For example, instead of browsing to a website about your favorite TV program, you
might instead use a desktop application that pulled in the same information via a web service.
The advantage here is that the same web service could be used by all sorts of applications and,
indeed, by websites. Also, you can write your own application or website that uses third-party
web services. Perhaps you might combine information about your favorite TV program with a
mapping service to show filming locations.

The .NET Framework has supported web services for a long time now. However, in the more
recent versions of the framework, web services have been combined with another technology,
called remoting, to create Windows Communication Foundation (WCF), which is a generic
infrastructure for communication between applications.

24

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

762 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

Remoting makes it possible to create instances of objects in one process and use them from another
process—even if the object is created on a computer other than the one that is using it. However,
remoting on its own is limited, and isn’t the easiest thing for a beginner programmer to learn.

WCF takes concepts such as services and platform-independent SOAP messaging from web services,
and combines these with concepts such as host server applications and advanced binding capabilities
from remoting. The result is a technology you can think of as a superset that includes both web ser-
vices and remoting, but that is much more powerful than web services and much easier to use than
remoting. Using WCF, you can move from simple applications to applications that use a service-
oriented architecture (SOA). SOA means that you decentralize processing and make use of distrib-
uted processing by connecting to services and data as you need them across local networks and the
Internet.

This chapter walks you through how to create and consume WCF services from your application
code. But just as importantly, it also covers the principles behind WCF, so you understand why
things work the way they do.

WHAT IS WCF?

WCF is a technology that enables you to create services that you can access from other applications across
process, machine, and network boundaries. You can use these services to share functionality across mul-
tiple applications, to expose data sources, or to abstract complicated processes.

The functionality that WCF services offer is encapsulated as individual methods that are exposed
by the service. Each method—or, in WCF terminology, each operation—has an endpoint that you
exchange data with in order to use it. This data exchange can be defined by one or more protocols,
depending on the network that you use to connect to the service and your specific requirements.

In WCF, an endpoint can have multiple bindings, each of which specifies a means of communica-
tion. Bindings can also specify additional information, such as which security requirements must be
met to communicate with the endpoint. A binding might require username and password authenti-
cation or a Windows user account token, for example. When you connect to an endpoint, the proto-
col that the binding uses may affect the address that you use, as you will see shortly.

Once you have connected to an endpoint, you can communicate with it by using Simple Object
Access Protocol (SOAP) or Representational State Transfer (REST) messages. The form of the mes-
sages that you use depends on the operation you are using and the data structures that are required
to send messages to (and receive messages from) that operation. WCF uses contracts to specify all
of this. You can discover contracts through metadata exchange with a service. One commonly used
format for service discovery is the Web Service Description Language (WSDL), which was originally
used for web services, although WCF services can also be described in other ways.

NOTE WCF is something of a chameleon in how it can be used and set up. It
is possible to create Representative State Transfer (REST) services using WCF.
These services rely on simple HTTP requests to communicate between the cli-
ent and the server, and because of this they can have a smaller footprint than
the SOAP messages.

WCF Concepts ❘ 763

When you have identified a service and endpoint that you want to use, and after you know which
binding you use and which contracts to adhere to, you can communicate with a WCF service as
easily as with an object that you have defined locally. Communications with WCF services can be
simple, one-way transactions, request/response messages, or full-duplex communications that can
be initiated from either end of the communication channel. You can also use message payload opti-
mization techniques, such as Message Transmission Optimization Mechanism (MTOM), to package
data if required.

The WCF service itself might be running in one of a number of different processes on the computer
where it is hosted. Unlike web services, which always run in Internet Information Services (IIS), you
can choose a host process that is appropriate to your situation. You can use IIS to host WCF ser-
vices, but you can also use Windows services or executables. If you are using TCP to communicate
with a WCF service over a local network, there is no need even to have IIS installed on the PC that is
hosting the service.

The WCF framework has been designed to enable you to customize nearly everything you have read
about in this section. However, this is an advanced subject and you will only be using the techniques
provided by default in .NET 4.7 in this chapter.

Now that you have covered the basics about WCF services, you will look in more detail at these con-
cepts in the following sections.

WCF CONCEPTS

This section describes the following aspects of WCF:

 ➤ WCF communication protocols

 ➤ Addresses, endpoints, and bindings

 ➤ Contracts

 ➤ Message patterns

 ➤ Behaviors

 ➤ Hosting

WCF Communication Protocols
As described earlier, you can communicate with WCF services through a variety of transport
protocols. In fact, five are defined in the .NET 4.7 Framework:

 ➤ HTTP—Enables you to communicate with WCF services from anywhere, including across
the Internet. You can use HTTP communications to create WCF web services.

 ➤ TCP—Enables you to communicate with WCF services on your local network or across the
Internet if you configure your firewall appropriately. TCP is more efficient than HTTP and
has more capabilities, but it can be more complicated to configure.

764 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

 ➤ UDP—User Datagram Protocol is similar to TCP in that it enables communications via the
local network or Internet, but it’s implemented in a subtly different way. One of the conse-
quences of this implementation is that a service can broadcast messages to multiple clients
simultaneously.

 ➤ Named pipe—Enables you to communicate with WCF services that are on the same machine
as the calling code, but reside in a separate process.

 ➤ MSMQ—Microsoft Message Queuing is a queuing technology that enables messages sent
by an application to be routed through a queue to arrive at a destination. MSMQ is a reli-
able messaging technology that ensures that a message sent to a queue will reach that queue.
MSMQ is also inherently asynchronous, so a queued message will be processed only when
messages ahead of it in the queue have been processed and a processing service is available.

These protocols often enable you to establish secure connections. For example, you can use the
HTTPS protocol to establish an TLS connection across the Internet. TCP offers extensive possibili-
ties for security in a local network by using the Windows security framework. UDP doesn’t support
security.

In order to connect to a WCF service, you must know where it is. In practice, this means knowing
the address of an endpoint.

Addresses, Endpoints, and Bindings
The type of address you use for a service depends on the protocol that you are using. Service
addresses are formatted for the three protocols described in this chapter (MSMQ is not covered) as
follows:

 ➤ HTTP—Addresses for the HTTP protocol are URLs of the familiar form http://<server>:
<port>/<service>. For TLS connections, you can also use https://<server>:<port>/
<service>. If you are hosting a service in IIS, <service> will be a file with a .svc extension.
IIS addresses will probably include more subdirectories than this example—that is, more sec-
tions separated by / characters before the .svc file.

 ➤ TCP—Addresses for TCP are of the form net.tcp://<server>:<port>/<service>.

 ➤ UDP—Addresses for UDP are of the form soap.udp://<server>:<port>/<service>.
Certain <server> values are required for multicast communications, but this is beyond the
scope of this chapter.

 ➤ Named pipe—Addresses for named pipe connections are similar but have no port number.
They are of the form net.pipe://<server>/<service>.

The address for a service is a base address that you can use to create addresses for endpoints
 representing operations. For example, you might have an operation at net
.tcp://<server>:<port>/<service>/operation1.

WCF Concepts ❘ 765

Imagine you create a WCF service with a single operation that has bindings for all three of the
protocols listed here. You might use the following base addresses:

http://www.mydomain.com/services/amazingservices/mygreatservice.svc
net.tcp://myhugeserver:8080/mygreatservice
net.pipe://localhost/mygreatservice

You could then use the following addresses for operations:

http://www.mydomain.com/services/amazingservices/mygreatservice.svc/greatop
net.tcp://myhugeserver:8080/mygreatservice/greatop
net.pipe://localhost/mygreatservice/greatop

Since .NET 4, it has been possible to use default endpoints for operations, without having to explic-
itly configure them. This simplifies configuration, especially in situations where you want to use
standard endpoint addresses, as in the preceding examples.

Bindings, as mentioned earlier, specify more than just the transport protocol that will be used by an
operation. You can also use them to specify the security requirements for communication over the
transport protocol, transactional capabilities of the endpoint, message encoding, and much more.

Because bindings offer such a great degree of flexibility, the .NET Framework provides some pre-
defined bindings that you can use. You can also use these bindings as starting points, tweaking them
to obtain exactly the type of binding you want—up to a point. The predefined bindings have certain
capabilities to which you must adhere. Each binding type is represented by a class in the System.
ServiceModel namespace. Table 24-1 lists the most commonly used bindings along with some basic
information about them.

TABLE 24-1: Binding Types

BINDING DESCRIPTION

BasicHttpBinding The simplest HTTP binding, and the default binding used by web
services. It has limited security capabilities and no transactional
support.

WSHttpBinding A more advanced form of HTTP binding that is capable of using all
the additional functionality that was introduced in WSE.

WSDualHttpBinding Extends WSHttpBinding capabilities to include duplex communica-
tion capabilities. With duplex communication, the server can initi-
ate communications with the client in addition to ordinary message
exchange.

WSFederationHttpBinding Extends WSHttpBinding capabilities to include federation capabili-
ties. Federation enables third parties to implement single sign-on
and other proprietary security measures. This is an advanced topic
not covered in this chapter.

continues

766 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

BINDING DESCRIPTION

NetTcpBinding Used for TCP communications, and enables you to configure secu-
rity, transactions, and so on.

NetNamedPipeBinding Used for named pipe communications, and enables you to configure
security, transactions, and so on.

NetMsmqBinding Used with MSMQ, which is not covered in this chapter.

NetPeerTcpBinding Used for peer-to-peer binding, which is not covered in this chapter.

WebHttpBinding Used for web services that use HTTP requests instead of SOAP
messages.

UdpBinding Allows binding to the UDP protocol.

Many of the binding classes have similar properties that you can use for additional configuration.
For example, they have properties that you can use to configure timeout values. You’ll learn more
about this when you look at code later in this chapter.

Endpoints have default bindings that vary according to the protocol used. These defaults are shown
in Table 24-2.

TABLE 24-2: NET Default Bindings

PROTOCOL DEFAULT BINDING

HTTP BasicHttpBinding

TCP NetTcpBinding

UDP UdpBinding

Named pipe NetNamedPipeBinding

Contracts
Contracts define how WCF services can be used. Several types of contract can be defined:

 ➤ Service contract—Contains general information about a service and the operations exposed
by a service. This includes, for example, the namespace used by service. Services have unique
namespaces that are used when defining the schema for SOAP messages in order to avoid
possible conflicts with other services.

 ➤ Operation contract—Defines how an operation is used. This includes the parameter and
return types for an operation method along with additional information, such as whether a
method will return a response message.

TABLE 24-1 (continued)

WCF Concepts ❘ 767

 ➤ Message contract—Enables you to customize how information is formatted inside SOAP
messages—for example, whether data should be included in the SOAP header or SOAP mes-
sage body. This can be useful when creating a WCF service that must integrate with legacy
systems.

 ➤ Fault contract—Defines faults that an operation can return. When you use .NET clients,
faults result in exceptions that you can catch and deal with in the normal way.

 ➤ Data contract—If you use complex types, such as user-defined structs and objects, as param-
eters or return types for operations, then you must define data contracts for these types. Data
contracts define the types in terms of the data that they expose through properties.

You typically add contracts to service classes and methods by using attributes, as you will see later
in this chapter.

Message Patterns
In the previous section, you saw that an operation contract can define whether an operation
returns a value. You’ve also read about duplex communications that are made possible by the
WSDualHttpBinding binding. These are both forms of message patterns, of which there are three
types:

 ➤ Request/response messaging—The “ordinary” way of exchanging messages, whereby every
message sent to a service results in a response being sent back to the client. This doesn’t nec-
essarily mean that the client waits for a response, as you can call operations asynchronously
in the usual way.

 ➤ One-way, or simplex, messaging—Messages are sent from the client to the WCF operation,
but no response is sent.

 ➤ Two-way, or duplex, messaging—A more advanced scheme whereby the client effectively
acts as a server as well as a client, and the server as a client as well as a server. Once set up,
duplex messaging enables both the client and the server to send messages to each other,
which might not have responses.

You’ll see how these message patterns are used in practice later in this chapter.

Behaviors
Behaviors are a way to apply additional configuration to services and operations. By adding a behav-
ior to a service, you can control how it is instantiated and used by its hosting process, how it partici-
pates in transactions, how multithreading issues are dealt with in the service, and so on. Operation
behaviors can control whether impersonation is used in the operation execution, how the individual
operation affects transactions, and more.

You can specify default behaviors at various levels, so that you don’t have to specify every aspect of
every behavior for every service and operation. Instead, you can provide defaults and override set-
tings where necessary, which reduces the amount of configuration required.

768 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

Hosting
In the introduction to this chapter, you learned that WCF services can be hosted in several different
processes. Your options are as follows:

 ➤ Web server—IIS-hosted WCF services are the closest thing to pure web services that WCF
offers. However, you can use advanced functionality and security features in WCF services
that are much more difficult to implement in web services. You can also integrate with IIS
features such as IIS security.

 ➤ Executable—You can host a WCF service in any application type that you can create in
.NET, such as console applications, Windows Forms applications, and WPF applications.

 ➤ Windows service—You can host a WCF service in a Windows service and take advantage
of the useful features that Windows services provide, such as automatic startup and fault
recovery.

 ➤ Windows Activation Service (WAS)—Designed specifically to host WCF services, WAS is
basically a simple version of IIS that you can use where IIS is not available.

Two of the options in the preceding list—IIS and WAS—provide useful features for WCF services
such as activation, process recycling, and object pooling. If you use either of the other two hosting
options, a WCF service is said to be self-hosted. You will occasionally self-host services for testing
purposes, but there can be very good reasons for creating self-hosted production-grade services. For
example, you could be in a situation where you’re not allowed to install a web server on the com-
puter on which your service should run. This might be the case if the service runs on a domain con-
troller or if the local policy of your organization simply prohibits running IIS. In this case you can
host the service in a Windows service and it will work every bit as well as it would otherwise.

WCF PROGRAMMING

Now that you have covered all the basics, it is time to get started with some code. In this section
you’ll start by looking as a simple web server–hosted WCF service and a console application client.
After looking at the structure of the code created, you’ll learn about the basic structure of WCF ser-
vices and client applications. Then you will look at some key topics in a bit more detail:

 ➤ Defining WCF service contracts

 ➤ Self-hosted WCF services

In the following Try It Out, you create a simple WCF service that exposes a two methods and a cli-
ent to consume them.

TRY IT OUT A Simple WCF Service and Client: Ch24Ex01Client

 1. Create a new WCF Service Application project called Ch24Ex01 in the directory
C:\ BeginningCSharp7\Chapter24.

 2. Add a console application called Ch24Ex01Client to the solution.

WCF Programming ❘ 769

 3. On the Build menu, click Build Solution.

 4. In the Ch24Ex01Client project, right click References in the Solution Explorer and select Add
Service Reference.

 5. In the Add Service Reference dialog box, click Discover.

 6. When the development web server has started and information about the WCF service has been
loaded, expand the reference to look at its details. Notice that there are two methods in the service:
GetData and GetDataUsingDataContract.

 7. Click OK to add the service reference.

 8. Modify the code in Program.cs in the Ch24Ex01Client application as follows:

using Ch24Ex01Client.ServiceReference1;
using static System.Console;

namespace Ch24Ex01Client
{
 class Program
 {
 static void Main(string[] args)
 {
 Title = "Ch22Ex01Client";
 int intParam;
 do
 {
 WriteLine("Enter an integer and press enter to call the WCF service.");
 } while (!int.TryParse(ReadLine(), out intParam));
 Service1Client client = new Service1Client();
 WriteLine(client.GetData(intParam));
 WriteLine("Press an key to exit.");
 ReadKey();
 }
 }
}

 9. Right-click the Ch24Ex01Client project in the Solution Explorer and select Set as StartUp Project.

 10. Run the application. Enter a number in the console application window and press Enter. The result
is shown in Figure 24-1.

FIGURE 24-1

 11. Exit the application, right-click the Service1.svc file in the Ch24Ex01 project in the Solution
Explorer, and click View in Browser.

770 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

 12. Review the information in the window.

 13. Click the link at the top of the web page for the service to view the WSDL. Don’t panic—you don’t
need to understand all the stuff in the WSDL file!

How It Works

In this example you created a simple web server–hosted WCF service and console application cli-
ent. You used the default Visual Studio template for a WCF service project, which meant that you
didn’t have to add any code. Instead, you used one of the operations defined in this default template,
GetData(). For the purposes of this example, the actual operation used isn’t important; here, you are
focusing on the structure of the code and the plumbing that makes things work.

First, look at the server project, Ch24Ex01. This consists of the following:

 ➤ A Service1.svc file that defines the hosting for the service

 ➤ A class definition, CompositeType, that defines a data contract used by the service (located in the
IService1.cs code file)

 ➤ An interface definition, IService1, that defines the service contract and two operation contracts
for the service

 ➤ A class definition, Service1, that implements IService1 and defines the functionality of the ser-
vice (located in the Service1.svc.cs code file)

 ➤ A <system.serviceModel> configuration section (in Web.config) that configures the service

The Service1.svc file contains the following line of code (to see this code, right-click the file in the
Solution Explorer and select View Markup):

<%@ ServiceHost Language="C#" Debug="true" Service="Ch24Ex01.Service1"
 CodeBehind="Service1.svc.cs" %>

This is a ServiceHost instruction that is used to tell the web server (the development web server in this
case, although this also applies to IIS) what service is hosted at this address. The class that defines the
service is declared in the Service attribute, and the code file that defines this class is declared in the
CodeBehind attribute. This instruction is necessary in order to obtain the hosting features of the web
server as defined in the previous sections.

This file is not required for WCF services that aren’t hosted in a web server. You’ll learn how to self-
host WCF services later in this chapter.

Next, the data contract CompositeType is defined in the IService1.cs file. You can see from the code
that the data contract is simply a class definition that includes the DataContract attribute on the class
definition and DataMember attributes on class members:

[DataContract]
public class CompositeType
{
 bool boolValue = true;
 string stringValue = "Hello ";
 [DataMember]

WCF Programming ❘ 771

 public bool BoolValue
 {
 get { return boolValue; }
 set { boolValue = value; }
 }
 [DataMember]
 public string StringValue
 {
 get { return stringValue; }
 set { stringValue = value; }
 }
}

This data contract is exposed to the client application through metadata (if you looked through the
WSDL file in the example you might have seen this). This enables client applications to define a type
that can be serialized into a form that can be deserialized by the service into a CompositeType object.
The client doesn’t need to know the actual definition of this type; in fact, the class used by the client
might have a different implementation. This simple way of defining data contracts is surprisingly pow-
erful, and enables the exchange of complex data structures between the WCF service and its clients.

The IService1.cs file also contains the service contract for the service, which is defined as an inter-
face with the ServiceContract attribute. Again, this interface is completely described in the meta-
data for the service, and can be recreated in client applications. The interface members constitute the
operations exposed by the service, and each is used to create an operation contract by applying the
OperationContract attribute. The example code includes two operations, one of which uses the data
contract you looked at earlier:

[ServiceContract]
public interface IService1
{
 [OperationContract]
 string GetData(int value);
 [OperationContract]
 CompositeType GetDataUsingDataContract(CompositeType composite);
}

All four of the contract-defining attributes that you have seen so far can be further configured with
attributes, as shown in the next section. The code that implements the service looks much like any
other class definition:

public class Service1 : IService1
{
 public string GetData(int value)
 {
 return string.Format("You entered: {0}", value);
 }
 public CompositeType GetDataUsingDataContract(CompositeType composite)
 {
...
 }
}

Note that this class definition doesn’t need to inherit from a particular type, and doesn’t require any
particular attributes. All it needs to do is implement the interface that defines the service contract.

772 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

In fact, you can add attributes to this class and its members to specify behaviors, but these aren’t
mandatory.

The separation of the service contract (the interface) from the service implementation (the class) works
extremely well. The client doesn’t need to know anything about the class, which could include much
more functionality than just the service implementation. A single class could even implement more than
one service contract.

Finally, you come to the configuration in the Web.config file. Configuration of WCF services in .con-
fig files works with all types of WCF services (hosted or self-hosted) as well as clients of WCF services
(as shown in a moment).

WCF configuration code is contained in the <system.serviceModel> configuration section of Web
.config or app.config files. In this example, there is little service configuration, as default values are
used. In the Web.config file, the configuration section consists of a single subsection that supplies over-
rides to default values for the service behavior <behaviors>. The code for the <system.serviceModel>
configuration section in Web.config (with comments removed for clarity) is as follows:

 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="true" httpsGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>

This section can define one or more behaviors in <behavior> child sections, which can be reused on
multiple other elements. A <behavior> section can be given a name to facilitate this reuse (so that it
can be referenced from elsewhere), or can be used without a name (as in this example) to specify over-
rides to default behavior settings.

NOTE If nondefault configuration were being used, you would expect to see
a <services> section inside <system.serviceModel>, containing one or more
<services> child sections. In turn, the <service> sections can contain child
<endpoint> sections, each of which (you guessed it) defines an endpoint for
the service. In fact, the endpoints defined are base endpoints for the service.
Endpoints for operations are inferred from these.

One of the default behavior overrides in Web.config is as follows:

 <serviceDebug includeExceptionDetailInFaults="false"/>

This setting can be set to true to expose exception details in any faults that are transmitted to the cli-
ent, which is something you would usually allow only in development.

Another default behavior override in Web.config relates to metadata. Metadata is used to enable cli-
ents to obtain descriptions of WCF services. The default configuration defines two default endpoints

WCF Programming ❘ 773

for services. One is the endpoint that clients use to access the service; the other is an endpoint used to
obtain metadata from the service. This can be disabled in the Web.config file as follows:

 <serviceMetadata httpGetEnabled="false"
 httpsGetEnabled="false" />

Alternatively, you could remove this line of configuration code entirely, as the default behavior does not
enable metadata exchange.

If you try disabling this in the example it won’t stop your client from being able to access the service,
because it has already obtained the metadata it needed when you added the service reference. However,
disabling metadata will prevent other clients from using the Add Service Reference tool for this service.
Typically, web services in a production environment will not need to expose metadata, so you should
disable this functionality after the development phase is complete.

Now that you’ve looked at the WCF service code, it’s time to look at the client, and in particular at
what using the Add Service Reference tool actually did. You will notice in the Solution Explorer that
the client includes a folder called Service References, and if you expand that you will see an item called
ServiceReference1, which is the default name given to a service reference if you don’t provide one
yourself.

The Add Service Reference tool creates all the classes you require to access the service. This includes
a proxy class for the service that contain methods for all the operations exposed by the service
(Service1Client), and a client-side class generated from the data contract (CompositeType).

NOTE You can browse through the code that is generated by the Add Service
Reference tool if you want (by displaying all files in the project, including the
hidden ones).

The tool also adds a configuration file to the project, app.config. This configuration defines two
things:

 ➤ Binding information for the service endpoint

 ➤ The address and contract for the endpoint

The binding information is taken from the service description:

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="BasicHttpBinding_IService1" />
 </basicHttpBinding>
 </bindings>

This binding is used in the endpoint configuration, along with the base address of the service (which
is the address of the .svc file for web server–hosted services) and the client-side version of the contract
IService1:

 <client>
 <endpoint address="http://localhost:49227/Service1.svc"

774 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

 binding="basicHttpBinding"
 bindingConfiguration="BasicHttpBinding_IService1"
 contract="ServiceReference1.IService1"
 name="BasicHttpBinding_IService1" />
 </client>
 </system.serviceModel>
</configuration>

If you remove the <bindings> section as well as the bindingConfiguration attribute from the <end-
point> element, then the client will use the default binding configuration.

The <binding> element, which has the name BasicHttpBinding_IService1, is included so that you
can use it to customize the configuration of the binding. There are a number of configuration settings
that you might use here, ranging from timeout settings to message size limits and security settings. If
these had been specified in the service project to be nondefault values, then you would have seen them
in the app.config file, since they would have been copied across. In order for the client to communi-
cate with the service, the binding configurations must match. You won’t look at WCF service configura-
tion in great depth in this chapter.

This example has covered a lot of ground, and it is worth summarizing what you have learned before
moving on:

 ➤ WCF service definitions:

 ➤ Services are defined by a service contract interface that includes operation contract members.

 ➤ Services are implemented in a class that implements the service contract interface.

 ➤ Data contracts are simply type definitions that use data contract attributes.

 ➤ WCF service configuration:

 ➤ You can use configuration files (Web.config or app.config) to configure WCF services.

 ➤ WCF web server hosting:

 ➤ Web server hosting uses .svc files as service base addresses.

 ➤ WCF client configuration:

 ➤ You can use configuration files (Web.config or app.config) to configure WCF service clients.

The following section explores contracts in more detail.

The WCF Test Client
In the previous Try It Out, you created both a service and a client in order to look at how the basic
WCF architecture works and how configuration of WCF services is achieved. In practice, though, the
client application you want to use might be complex, and it can be tricky to test services properly.

To ease the development of WCF services, Visual Studio provides a test tool you can use to ensure
that your WCF operations work correctly. This tool is automatically configured to work with your
WCF service projects, so if you run your project the tool will appear. All you need to do is ensure

WCF Programming ❘ 775

that the service you want to test (that is, the .svc file) is set to be the startup page for the WCF ser-
vice project.

The tool enables you to invoke service operations and inspect the service in some other ways. The
following Try It Out illustrates this.

TRY IT OUT Using the WCF Test Client: Ch24Ex01\Web.config

 1. Open the WCF Service Application project from the previous Try It Out, Ch24Ex01.

 2. Right-click the Service1.svc service in Solution Explorer and click Set As Start Page.

 3. Right-click the Ch24Ex01 project in Solution Explorer and click Set As StartUp Project.

 4. Metadata must be enabled, so if you have disabled it, re-enable it in the web.config file like this:

<serviceMetadata httpGetEnabled="true" httpsGetEnabled="true" />

 5. Run the application. The WCF test client appears.

 6. In the left pane of the test client, double-click Config File. The config file used to access the service
is displayed in the right pane.

 7. In the left pane, double-click the GetDataUsingDataContract() operation.

 8. In the pane that appears on the right, change the value of BoolValue to True and StringValue to
Test String, and then click Invoke.

 9. If a security prompt dialog box appears, click OK to confirm that you are happy to send informa-
tion to the service.

 10. The operation result appears, as shown in Figure 24-2.

FIGURE 24-2

776 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

 11. Click the XML tab at the bottom to view the request and response XML.

 12. Close the WCF Test Client. This will stop debugging in Visual Studio.

How It Works

In this example you used the WCF test client to inspect and invoke an operation on the service you cre-
ated in the previous Try It Out. The first thing you probably noticed is a slight delay while the service
is loaded. This is because the test client has to inspect the service to determine its capabilities. This
discovery uses the same metadata as the Add Service Reference tool, which is why you must ensure that
metadata is available. Once discovery is complete, you can view the service and its operations in the left
pane of the tool.

Next, you looked at the configuration used to access the service. As with the client application from the
previous Try It Out, this is generated automatically from the service metadata, and contains exactly the
same code. You can edit this configuration file through the tool if you need to, by right-clicking on the
Config File item and clicking Edit WCF Configuration. An example of this configuration is shown in
Figure 24-3, which includes the binding configuration options mentioned earlier in this chapter.

FIGURE 24-3

Finally, you invoked an operation. The test client allows you to enter the parameters to use and invoke
the method, then displays the result, all without you writing any client code. You also saw how to view the
actual XML that is sent and received to obtain the result. This information is quite technical, but it can be
absolutely critical when debugging more complex services.

WCF Programming ❘ 777

Defining WCF Service Contracts
The previous examples showed how the WCF infrastructure makes it easy for you to define con-
tracts for WCF services with a combination of classes, interfaces, and attributes. This section takes
a deeper look at this technique.

Data Contracts
To define a data contract for a service, you apply the DataContractAttribute attribute to a class
definition. This attribute is found in the System.Runtime.Serialization namespace. You can
configure this attribute with the properties shown in Table 24-3.

TABLE 24-3: DataContractAttribute Properties

PROPERTY DESCRIPTION

Name Names the data contract with a different name than the one you use for the class
definition. This name will be used in SOAP messages and client-side data objects
that are defined from service metadata.

Namespace Defines the namespace that the data contract uses in SOAP messages.

IsReference Affects the way that objects are serialized. If this is set to true, then an object
instance is serialized only once even if it is referenced several times, which can be
important is some situations. The default is false.

The Name and Namespace properties are useful when you need interoperability with existing SOAP
message formats (as are the similarly named properties for other contracts), but otherwise you will
probably not require them.

Each class member that is part of a data contract must use the DataMemberAttribute attribute,
which is also found in the System.Runtime.Serialization namespace. Table 24-4 lists this attri-
bute’s properties.

TABLE 24-4: DataMemberAttribute Properties

PROPERTY DESCRIPTION

Name Specifies the name of the data member when serialized (the default is the
member name).

IsRequired Specifies whether the member must be present in a SOAP message.

Order An int value specifying the order of serializing or deserializing the member,
which might be required if one member must be present before another.
Lower Order members are processed first.

EmitDefaultValue Set this to false to prevent members from being included in SOAP mes-
sages if their value is the default value for the member.

778 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

Service Contracts
Service contracts are defined by applying the System.ServiceModel.ServiceContractAttribute
attribute to an interface definition. You can customize the service contract with the properties
shown in Table 24-5.

TABLE 24-5: ServiceContractAttribute Properties

PROPERTY DESCRIPTION

Name Specifies the name of the service contract as defined in the <portType>
element in WSDL.

Namespace Defines the namespace of the service contract used by the <portType>
element in WSDL.

ConfigurationName The name of the service contract as used in the configuration file.

HasProtectionLevel Determines whether messages used by the service have explicitly defined
protection levels. Protection levels enable you to sign, or sign and encrypt,
messages.

ProtectionLevel The protection level to use for message protection.

SessionMode Determines whether sessions are enabled for messages. If you use ses-
sions, then you can ensure that messages sent to different endpoints of a
service are correlated—that is, they use the same service instance and so
can share state, and so on.

CallbackContract For duplex messaging the client exposes a contract as well as the service.
This is because, as discussed earlier, the client in duplex communications
also acts as a server. This property enables you to specify which contract
the client uses.

Operation Contracts
Within interfaces that define service contracts, you define members as operations by applying the
System.ServiceModel.OperationContractAttribute attribute. This attribute has the properties
described in Table 24-6.

TABLE 24-6: OperationContractAttribute Properties

PROPERTY DESCRIPTION

Name Specifies the name of the service operation. The default is the mem-
ber name.

IsOneWay Specifies whether the operation returns a response. If you set this to
true, then clients won’t wait for the operation to complete before
continuing.

WCF Programming ❘ 779

PROPERTY DESCRIPTION

AsyncPattern If set to true, the operation is implemented as two methods that you
can use to call the operation asynchronously: Begin<methodName>()
and End<methodName>().

HasProtectionLevel See the previous section.

ProtectionLevel See the previous section.

IsInitiating If sessions are used, then this property determines whether calling this
operation can start a new session.

IsTerminating If sessions are used, then this property determines whether calling this
operation terminates the current session.

Action If you are using addressing (an advanced capability of WCF services),
then an operation has an associated action name, which you can
specify with this property.

ReplyAction As with Action, but specifies the action name for the operation
response.

NOTE When you add a service reference, Visual Studio also generates
asynchronous proxy methods to call the service, regardless of whether
AsyncPattern is set to true. These methods, which have the suffix Async, use
the asynchronous techniques that was introduced in .NET 4.5, and are asyn-
chronous only from the point of view of the calling code. Internally, they call
the synchronous WCF operations.

Message Contracts
The earlier example didn’t use message contract specifications. If you use these, then you do so by
defining a class that represents the message and applying the MessageContractAttribute attri-
bute to the class. You then apply MessageBodyMemberAttribute, MessageHeaderAttribute, or
MessageHeaderArrayAttribute attributes to members of this class. All these attributes are in the
System.ServiceModel namespace. You are unlikely to want to do this unless you need a very high
degree of control over the SOAP messages used by WCF services, so details are not provided here.

Fault Contracts
If you have a particular exception type—for example, a custom exception—that you want
to make available to client applications, then you can apply the System.ServiceModel
.FaultContractAttribute attribute to the operation that might generate this exception.

780 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

TRY IT OUT WCF Contracts: Ch24Ex02Contracts

 1. Create a new WCF Service Application project called Ch24Ex02 in the directory C:\
BeginningCSharp7\Chapter24.

 2. Add a class library project called Ch24Ex02Contracts to the solution and remove the Class1.cs
file.

 3. Add references to the System.Runtime.Serialization.dll and System.ServiceModel.dll
assemblies to the Ch24Ex02Contracts project.

 4. Add a class called Person to the Ch24Ex02Contracts project and modify the code in Person.cs as
follows:

using System.Runtime.Serialization;

namespace Ch24Ex02Contracts
{
 [DataContract]
 public class Person
 {
 [DataMember]
 public string Name { get; set; }
 [DataMember]
 public int Mark { get; set; }
 }
}

 5. Add an interface called IAwardService to the Ch24Ex02Contracts project and modify the code in
IAwardService.cs as follows:

using System.ServiceModel;

namespace Ch24Ex02Contracts
{
 [ServiceContract(SessionMode = SessionMode.Required)]
 public interface IAwardService
 {
 [OperationContract(IsOneWay = true, IsInitiating = true)]
 void SetPassMark(int passMark);
 [OperationContract]
 Person[] GetAwardedPeople(Person[] peopleToTest);
 }
}

 6. In the Ch24Ex02 project, add a reference to the Ch24Ex02Contracts project.

 7. Remove IService1.cs and Service1.svc from the Ch24Ex02 project.

 8. Add a new WCF service called AwardService to Ch24Ex02.

 9. Remove the IAwardService.cs file from the Ch24Ex02 project.

 10. Modify the code in AwardService.svc.cs as follows:

using System.Collections.Generic;
using Ch24Ex02Contracts;

WCF Programming ❘ 781

namespace Ch24Ex02
{
 public class AwardService : IAwardService
 {
 private int passMark;
 public void SetPassMark(int passMark)
 {
 this.passMark = passMark;
 }
 public Person[] GetAwardedPeople(Person[] peopleToTest)
 {
 List<Person> result = new List<Person>();
 foreach (Person person in peopleToTest)
 {
 if (person.Mark > passMark)
 {
 result.Add(person);
 }
 }
 return result.ToArray();
 }
 }
}

 11. Modify the service configuration section in Web.config as follows:

 <system.serviceModel>
 <protocolMapping>
 <add scheme="http" binding="wsHttpBinding" />
 </protocolMapping>
 ...
 </syste m.serviceModel>

 12. Open the project properties for Ch24Ex02. In the Web section, make a note of the port used in
the hosting settings. If you don’t have IIS installed, you can set a specific port for use in the Visual
Studio Development Server instead.

 13. Add a new console project called Ch24Ex02Client to the solution and set it as the startup project.

 14. Add references to the System.ServiceModel.dll assembly and the Ch24Ex02Contracts project
to the Ch24Ex02Client project.

 15. Modify the code in Program.cs in Ch24Ex02Client as follows (ensure that you use the port num-
ber you obtained earlier in the EndpointAddress constructor, the example code uses port 59558):

using static System.Console;
using System.ServiceModel;
using Ch24Ex02Contracts;

namespace Ch24Ex2Client
{
 class Program
 {
 static void Main(string[] args)
 {

782 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

 Person[] people = new Person[]
 {
 new Person { Mark = 46, Name="Jim" },
 new Person { Mark = 73, Name="Mike" },
 new Person { Mark = 92, Name="Stefan" },
 new Person { Mark = 24, Name="Arthur" }
 };
 WriteLine("People:");
 OutputPeople(people);
 IAwardService client = ChannelFactory<IAwardService>.CreateChannel(
 new WSHttpBinding(),
 new EndpointAddress("http://localhost:59558/AwardService.svc"));
 client.SetPassMark(70);
 Person[] awardedPeople = client.GetAwardedPeople(people);
 WriteLine();
 WriteLine("Awarded people:");
 OutputPeople(awardedPeople);
 ReadKey();
 }
 static void OutputPeople(Person[] people)
 {
 foreach (Person person in people)
 WriteLine("{0}, mark: {1}", person.Name, person.Mark);
 }
 }
}

 16. If you are using IIS, simply run the application. If you are using the development server, you must
ensure the development server is running for the service, so run the service project first. You can
do this by setting the Ch24Ex02 project as the startup project and then pressing Ctrl+F5. This will
start the service without debugging. Then set the startup project to the Ch24Ex02Client project
again and press F5. The result is shown in Figure 24-4.

FIGURE 24-4

How It Works

In this example, you created a set of contracts in a class library project and used that class library in
both a WCF service and a client. The service, as in the previous example, is hosted in a web server. The
configuration for this service is reduced to the bare minimum.

WCF Programming ❘ 783

The main difference in this example is that no metadata is required by the client, as the client has
access to the contract assembly. Instead of generating a proxy class from metadata, the client obtains a
reference to the service contract interface through an alternative method. Another point to note about
this example is the use of a session to maintain state in the service, which requires the wsHttpBinding
binding instead of the BasicHttpBinding binding.

The data contract used in this example is for a simple class called Person, which has a string
property called Name and an int property called Mark. You used the DataContractAttribute and
DataMemberAttribute attributes with no customization.

The service contract is defined by applying the ServiceContractAttribute attribute to the
IAwardService interface. The SessionMode property of this attribute is set to SessionMode.
Required, as this service requires state:

 [ServiceContract(SessionMode=SessionMode.Required)]
 public interface IAwardService
 {

The first operation contract, SetPassMark(), is the one that sets state, and therefore has the
IsInitiating property of OperationContractAttribute set to true. This operation doesn’t return
anything, so it is defined as a one-way operation by setting IsOneWay to true:

 [OperationContract(IsOneWay=true,IsInitiating=true)]
 void SetPassMark(int passMark);

The other operation contract, GetAwardedPeople(), does not require any customization and uses the
data contract defined earlier:

 [OperationContract]
 Person[] GetAwardedPeople(Person[] peopleToTest);
 }

Remember that these two types, Person and IAwardService, are available to both the service and
the client. The service implements the IAwardService contract in a type called AwardService, which
doesn’t contain any remarkable code. The only difference between this class and the service class you
saw earlier is that it is stateful. This is permissible, as a session is defined to correlate messages from a
client.

To ensure that the service uses the wsHttpBinding binding, you added the following to Web.config for
the service:

 <protocolMapping>
 <add scheme="http" binding="wsHttpBinding" />
 </protocolMapping>

This overrides the default mapping for HTTP binding. Alternatively, you could configure the service
manually and keep the existing default, but this override is much simpler. However, be aware that this
type of override is applied to all services in a project. If you have more than one service in a project,
then you would have to ensure that this binding is acceptable to each of them.

The client is more interesting, primarily because of this code:

 IAwardService client = ChannelFactory<IAwardService>.CreateChannel(
 new WSHttpBinding(),
 new EndpointAddress("http://localhost:38831/AwardService.svc"));

784 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

The client application has no app.config file to configure communications with the service, and no
proxy class defined from metadata to communicate with the service. Instead, a proxy class is created
through the ChannelFactory<T>.CreateChannel() method. This method creates a proxy class that
implements the IAwardService client, although behind the scenes the generated class communicates
with the service just like the metadata-generated proxy shown earlier.

NOTE If you create a proxy class with ChannelFactory<T>.CreateChannel(),
the communication channel will, by default, time out after a minute, which can
lead to communication errors. There are ways to keep connections alive, but
they are beyond the scope of this chapter.

Creating proxy classes in this way is an extremely useful technique that you can
use to quickly generate a client application on-the-fly.

Self-Hosted WCF Services
So far in this chapter you have seen WCF services that are hosted in web servers. This enables you to
communicate across the Internet, but for local network communications it is not the most efficient
way of doing things. For one thing, you need a web server on the computer that hosts the service. In
addition, the architecture of your applications might be such that having an independent WCF ser-
vice isn’t desirable.

Instead, you might want to use a self-hosted WCF service. A self-hosted WCF service exists in a pro-
cess that you create, rather than in the process of a specially made hosting application such as a web
server. This means, for example, that you can use a console application or Windows application to
host your service.

To self-host a WCF service, you use the System.ServiceModel.ServiceHost class. You instantiate
this class with either the type of the service you want to host or an instance of the service class. You
can configure a service host through properties or methods, or (and this is the clever part) through
a configuration file. In fact, host processes, such as web servers, use a ServiceHost instance to do
their hosting. The difference when self-hosting is that you interact with this class directly. However,
the configuration you place in the <system.serviceModel> section of the app.config file for your
host application uses exactly the same syntax as the configuration sections you’ve already seen in
this chapter.

You can expose a self-hosted service through any protocol that you like, although typically you will
use TCP or named pipe binding in this type of application. Services accessed through HTTP are
more likely to live inside web server processes, because you get the additional functionality that web
servers offer, such as security and other features.

If you want to host a service called MyService, you could use code such as the following to create
an instance of ServiceHost:

ServiceHost host = new ServiceHost(typeof(MyService));

WCF Programming ❘ 785

If you want to host an instance of MyService called myServiceObject, you could code as follows to
create an instance of ServiceHost:

MyService myServiceObject = new MyService();
ServiceHost host = new ServiceHost(myServiceObject);

WARNING Hosting a service instance in a ServiceHost works only if you con-
figure the service so that calls are always routed to the same object instance.
To do this, you must apply a ServiceBehaviorAttribute attribute to the
service class and set the InstanceContextMode property of this attribute to
InstanceContextMode.Single.

After creating a ServiceHost instance you can configure the service and its endpoints and binding
through properties. Alternatively, if you put your configuration in a .config file, the ServiceHost
instance will be configured automatically.

To start hosting a service once you have a configured ServiceHost instance, you use the
ServiceHost.Open() method. Similarly, you stop hosting the service through the ServiceHost
.Close() method. When you first start hosting a TCP-bound service, you might, if you have it
enabled, receive a warning from the Windows Firewall service, as it will block the TCP port by
default. You must open the TCP port for the service to begin listening on the port.

In the following Try it Out you use self-hosting techniques to expose some functionality of a WPF
application through a WCF service.

TRY IT OUT Self-Hosted WCF Services: Ch24Ex03

 1. Create a new WPF App called Ch24Ex03 in the directory C:\ BeginningCSharp7\Chapter24.

 2. Add a new WCF service to the project called AppControlService by using the Add New Item
Wizard.

 3. Modify the code in MainWindow.xaml.cs as follows:

<Window x:Class="Ch24Ex03.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Ch24Ex03"
 Loaded="Window_Loaded" Closing="Window_Closing"
 Title="Stellar Evolution" Height="450" Width="430"
 mc:Ignorable="d">
 <Grid Height="400" Width="400" HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Rectangle Fill="Black" RadiusX="20" RadiusY="20"
 StrokeThickness="10">
 <Rectangle.Stroke>
 <LinearGradientBrush EndPoint="0.358,0.02"
 StartPoint="0.642,0.98">

786 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

 <GradientStop Color="#FF121A5D" Offset="0" />
 <GradientStop Color="#FFB1B9FF" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Stroke>
 </Rectangle>
 <Ellipse Name="AnimatableEllipse" Stroke="{x:Null}" Height="0"
 Width="0" HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="#FFFFFFFF" Offset="0" />
 <GradientStop Color="#FFFFFFFF" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 <Ellipse.Effect>
 <DropShadowEffect ShadowDepth="0" Color="#FFFFFFFF"
 BlurRadius="50" />
 </Ellipse.Effect>
 </Ellipse>
 </Grid>
</Window>

 4. Modify the code in MainWindow.xaml.cs as follows:

using System;
using System.Windows;
using System.Windows.Media;
using System.Windows.Shapes;
using System.ServiceModel;
using System.Windows.Media.Animation;

namespace Ch24Ex03
{
 public partial class MainWindow : Window
 {
 private AppControlService service;
 private ServiceHost host;
 public MainWindow()
 {
 InitializeComponent();
 }
 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 service = new AppControlService(this);
 host = new ServiceHost(service);
 host.Open();
 }
 private void Window_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
 {
 host.Close();
 }
 internal void SetRadius(double radius, string foreTo,
 TimeSpan duration)
 {

WCF Programming ❘ 787

 if (radius > 200)
 {
 radius = 200;
 }
 Color foreToColor = Colors.Red;
 try
 {
 foreToColor = (Color)ColorConverter.ConvertFromString(foreTo);
 }
 catch
 {
 // Ignore color conversion failure.
 }
 Duration animationLength = new Duration(duration);
 DoubleAnimation radiusAnimation = new DoubleAnimation(
 radius * 2, animationLength);
 ColorAnimation colorAnimation = new ColorAnimation(
 foreToColor, animationLength);
 AnimatableEllipse.BeginAnimation(Ellipse.HeightProperty,
 radiusAnimation);
 AnimatableEllipse.BeginAnimation(Ellipse.WidthProperty,
 radiusAnimation);
 ((RadialGradientBrush)AnimatableEllipse.Fill).GradientStops[1]
 .BeginAnimation(GradientStop.ColorProperty, colorAnimation);
 }
 }
}

 5. Modify the code in IAppControlService.cs as follows:

[ServiceContract]
public interface IAppControlService
{
 [OperationContract]
 void SetRadius(int radius, string foreTo, int seconds);
}

 6. Modify the code in AppControlService.cs as follows:

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
public class AppControlService : IAppControlService
{
 private MainWindow hostApp;
 public AppControlService(MainWindow hostApp)
 {
 this.hostApp = hostApp;
 }
 public void SetRadius(int radius, string foreTo, int seconds)
 {
 hostApp.SetRadius(radius, foreTo, new TimeSpan(0, 0, seconds));
 }
}

 7. Modify the code in app.config as follows:

<configuration>
 <startup>

788 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5.2" />
 </startup>
 <system.serviceModel>
 <services>
 <service name="Ch24Ex03.AppControlService">
 <endpoint address="net.tcp://localhost:8081/AppControlService"
 binding="netTcpBinding"
 contract="Ch24Ex03.IAppControlService" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

 8. Add a new console application to the project called Ch24Ex03Client.

 9. Right-click the solution in the Solution Explorer and click Set StartUp Projects.

 10. Configure the solution to have multiple startup projects, with both projects being started
simultaneously.

 11. Add references to System.ServiceModel.dll and Ch24Ex03 to the Ch24Ex03Client project.

 12. Modify the code in Program.cs as follows:

using Ch24Ex03;
using System.ServiceModel;
using static System.Console;

namespace Ch24Ex03Client
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine("Press enter to begin.");
 ReadLine();
 WriteLine("Opening channel.");
 IAppControlService client =
 ChannelFactory<IAppControlService>.CreateChannel(
 new NetTcpBinding(),
 new EndpointAddress(
 "net.tcp://localhost:8081/AppControlService"));
 WriteLine("Creating sun.");
 client.SetRadius(100, "yellow", 3);
 WriteLine("Press enter to continue.");
 ReadLine();
 WriteLine("Growing sun to red giant.");
 client.SetRadius(200, "Red", 5);
 WriteLine("Press enter to continue.");
 ReadLine();
 WriteLine("Collapsing sun to neutron star.");
 client.SetRadius(50, "AliceBlue", 2);
 WriteLine("Finished. Press enter to exit.");
 ReadLine();
 }
 }
}

WCF Programming ❘ 789

 13. Run the solution. If prompted, unblock the Windows Firewall TCP port so that the WCF can listen
for connections.

 14. When both the Stellar Evolution window and the console application window are displayed, press
Enter in the console window. The result is shown in Figure 24-5.

FIGURE 24-5

 15. Continue pressing Enter in the console window to continue the stellar evolution cycle.

 16. Close the Stellar Evolution window to stop debugging.

How It Works

In this example you have added a WCF service to a WPF application and used it to control the anima-
tion of an Ellipse control. You have created a simple client application to test the service. Don’t worry
too much about the XAML code in this example if you are not familiar with WPF yet; it’s the WCF
plumbing that is of interest here.

The WCF service, AppControlService, exposes a single operation, SetRadius(), which clients call
to control the animation. This method communicates with an identically named method defined in the
Window1 class for the WPF application. For this to work, the service needs a reference to the applica-
tion, so you must host an object instance of the service. As discussed previously, this means that the
service must use a behavior attribute:

790 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
public class AppControlService : IAppControlService
{
 ...
}

In Window1.xaml.cs, the service instance is created in the Windows_Loaded() event handler. This
method also begins hosting by creating a ServiceHost object for the service and calling its Open()
method:

 public partial class Window1 : Window
 {
 private AppControlService service;
 private ServiceHost host;
 ...
 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 service = new AppControlService(this);
 host = new ServiceHost(service);
 host.Open();
 }

When the application closes, hosting is terminated in the Window_Closing() event handler.

The configuration file is again about as simple as it can be. It defines a single endpoint for the WCF ser-
vice that listens at a net.tcp address, on port 8081, and uses the default NetTcpBinding binding:

 <service name="Ch24Ex03.AppControlService">
 <endpoint address="net.tcp://localhost:8081/AppControlService"
 binding="netTcpBinding"
 contract="Ch24Ex03.IAppControlService" />
 </service>

This matches up with code in the client app:

 IAppControlService client =
 ChannelFactory<IAppControlService>.CreateChannel(
 new NetTcpBinding(),
 new EndpointAddress(
 "net.tcp://localhost:8081/AppControlService"));

When the client has created a client proxy class, it can call the SetRadius() method with radius, color,
and animation duration parameters, and these are forwarded to the WPF application through the ser-
vice. Simple code in the WPF application then defines and uses animations to change the size and color
of the ellipse.

This code would work across a network if you used a machine name, rather than localhost, and if
the network permitted traffic on the specified port. Alternatively, you could separate the client and host
application further, and connect across the Internet. Either way, WCF services provide an excellent
means of communication that doesn’t take much effort to set up.

WCF Programming ❘ 791

EXERCISES

 24.1 Which of the following applications can host WCF services?

 a. Web applications

 b. Windows Forms applications

 c. Windows services

 d. COM+ applications

 e. Console applications

 24.2 Which type of contract would you implement if you wanted to exchange parameters of type
MyClass with a WCF service? Which attributes would you require?

 24.3 If you host a WCF service in a web application, what extension will the base endpoint for the
service use?

 24.4 When self-hosting WCF services, you must configure the service by setting properties and
calling methods of the ServiceHost class. True or false?

 24.5 Provide the code for a service contract, IMusicPlayer, with operations defined for Play(),
Stop(), and GetTrackInformation(). Use one-way methods where appropriate. What other con-
tracts might you define for this service to work?

Answers to the exercises can be found in Appendix.

792 ❘ CHAPTER 24 WindoWs CommuniCation Foundation

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

WCF fundamentals WCF provides a framework for creating and communicating with remote
services. It combines elements of the web service and remoting architec-
tures along with new technologies to achieve this.

Communication
protocols

You can communicate with a WCF service by any one of several proto-
cols, including HTTP and TCP. This means that you can use services that
are local to your client application, or that are separated by machine or
network boundaries. To do this, you access a specific endpoint for the
service through a binding corresponding to the protocol and features that
you require. You can control these features, such as using session state or
exposing metadata, through behaviors. .NET includes many default set-
tings to make it very easy to define a simple service.

Communication
payload

Typically, calls to responses from WCF services are encoded as SOAP
messages. However, there are alternatives, such as plain HTTP messages,
and you can define your own payload types from scratch if you need to.

Hosting WCF services might be hosted in IIS or in a Windows service, or they can
be self-hosted. Using a host such as IIS enables you to make use of the
host’s built-in capabilities, including security and application pooling. Self-
hosting is more flexible, but it can require more configuration and coding.

Contracts You define the interface between a WCF service and client code
through contracts. Services themselves, along with any operations they
expose, are defined with service and operation contracts. Data types are
defined with data contracts. Further customization of communications is
achieved with message and fault contracts.

Client applications Client applications communicate with WCF services by means of a proxy
class. Proxy classes implement the service contract interface for the ser-
vice, and any calls to operation methods of this interface are redirected to
the service. You can generate a proxy by using the Add Service Reference
tool, or you can create one programmatically through channel factory
methods. In order for communications to succeed, the client must be
configured to match the service configuration.

Universal Apps
WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Enabling your Windows 10 device for development

 ➤ Developing Windows Universal apps using XAML and C#

 ➤ Using common Windows Universal Apps

 ➤ Packaging and deploying an app

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book’s webpage on Wrox
.com on the Download Code tab. The code can also be found at http://github.com/
benperk/BeginningCSharp7. The code is in the Chapter25 folder and individually named
according to the names throughout the chapter.

It is easy to think of Windows as an operating system for the PC, but in reality, Windows
can and is run on many types of devices. Most devices running Windows are of course PCs,
but the Xbox and Surface tablets also run Windows, as do more exotic devices such as the
HoloLens.

The Windows Universal Platform (UWP) provides a common infrastructure for developing
apps that can run on every device that runs Windows 10. This allows you to build the app
once and use the Windows Store to distribute the app without the need to build a package for
each device type.

25

http://github.com/benperk/BeginningCSharp7
http://github.com/benperk/BeginningCSharp7
http://wrox.com
http://wrox.com
http://wrox.com

794 ❘ CHAPTER 25 Universal apps

GETTING STARTED

Writing Universal apps requires a few initial steps before you can get going. In the previous version
of Visual Studio, you were required to get a Windows 8 Developer License that should be renewed
quite often. For Windows 10, this is no longer needed for development, though you still need a
store account to be able to publish the app. While developing the app, you can simply register your
Windows 10 device for development.

Before you can start working on Windows Universal apps, you must enable development on your
device and, unless they’re already installed, you must install Universal Windows App Development
Tools.

When you open a solution to create a Windows Universal app in Visual Studio, you may get
prompted to enable Developer Mode with the dialog shown in Figure 25-1. When you see this dia-
log, click the link “settings for developers,” select the “Developer Mode” option, and then click yes
to the warning that you are selecting a less secure option.

FIGURE 25-1

Windows Universal Apps ❘ 795

NOTE Developer mode has three options: Windows Store apps, Sideloaded
apps, and Developer mode. Windows Store apps is the most secure set-
ting and should always be enabled unless you are developing apps yourself.
Developer mode is the least secure option and should be used only if you
need to develop and debug apps on the device. Sideloaded apps is a more
secure option because in this mode you cannot install apps that are not
trusted on the device, but this will not allow you to debug apps.

You may not have the Universal Windows App Development Tools installed. To install, you
must run the Visual Studio Installer again. You can do this from the Start menu by typing Visual
Studio Installer. When you are presented with the list of installed products, click Modify and then
check the Windows Universal Platform development option before finally clicking Modify again to
install the selected options.

WINDOWS UNIVERSAL APPS

Traditional applications, like the WPF desktop game you wrote earlier in this book, target a single
device type, such as a PC. With the introduction of the Universal Windows Platform, Microsoft has
made it possible to write a single app that is able to run on multiple devices, and much effort has
been put into making development of this kind of app a pleasant experience for the developer.

The primary challenges of developing apps that work on a large set of heterogeneous devices are
that you can’t know in advance how large the screen is or how the user will interact with the device.
If you simply scrunch the Karli Card WPF application from earlier in the book to the screen size of a
tablet, it will look terrible. Another aspect of this is that tablet users will expect your app to be able
to adjust its orientation on the screen. In this chapter we will introduce the concepts of responsive
UI and adaptive triggers to solve these problems.

Universal Apps are deployed through the Windows Store, and this presents its own set of challenges
for packaging the app. In order to get your app onto the store, you must undergo a fairly rigorous
testing process and pass a number of requirements set by Microsoft. In the final part of this chapter
we will examine this process so that you are ready to publish your own apps.

NOTE As the name “Windows Universal apps” implies, the “universal” part is
actually only for devices running Windows. If you want to target other devices
such as Android or IOS phones and tablets, you have to look to another devel-
opment platform called Xamarin. Xamarin will allow you to use XAML and C#
to target these other platforms. Many of the concepts you will read about in
this chapter apply to Xamarin as well, though the implementation details will
be different.

796 ❘ CHAPTER 25 Universal apps

APP CONCEPTS AND DESIGN

There are great differences in how applications display themselves on a tablet and on the Windows
Desktop. The design of applications running on the Windows Desktop is largely unchanged, albeit
with much better graphics, since the introduction of Windows 95. The design features a window
with a caption bar, three buttons in the top-right to maximize, minimize, and close the application
and buttons, radio-buttons, check-boxes, and so on to display content. The generation of apps that
was introduced with Windows 8 does things a little differently. They are designed to work with
touch rather than mouse and keyboard, may or may not have a caption bar, and can swivel to fit the
orientation of the device they are running on, just to mention a few differences.

Microsoft has released a fairly substantial design guide for UWP apps, and you should be aware of
this guide, even if you don’t have to stick to it at all times. Even though apps will run on a diverse
set of devices, they have a number of common traits that you should be aware of, so let’s take a look
at some of them and compare how Windows Store apps match up against desktop applications.

NOTE You can download the design guide for UWP apps here: https://
developer.microsoft.com/en-US/windows/apps/design.

Screen Orientation
All Windows applications should be able to resize themselves gracefully. One aspect that is par-
ticularly important is the fact that handheld devices can move in three dimensions. Your users will
expect your app to move with the orientation of the screen. So, if the user flips her tablet around,
your app should follow the movement.

Menus and Toolbars
Classic desktop apps use menus and toolbars for navigation between views. Universal apps can do
so as well, but they are more likely to use toolbars than menus. Desktop apps usually display the
visual components of the menu and toolbar all the time, but Universal apps will often choose not to
do so to save precious real-estate on the smaller screen.

Rather than forcing your users to look at the complexity of your app through the menu, the app
style presents the application to the users, and they can activate the menu when needed. When the
menu is displayed, it should be simple, containing only the main options. It is up to you to decide
where and when to display the menu.

Tiles and Badges
Windows uses something called live tiles to display the apps on the Start menu and page. The “live”
part of the name springs from the fact that the tiles can change based on the current content or state
of the app. For example, you will see photo apps rotating through your pictures on the Start menu,

https://developer.microsoft.com/en-US/windows/apps/design
https://developer.microsoft.com/en-US/windows/apps/design

App Development ❘ 797

mail clients displaying the number of unread mails, games displaying screenshots from the last save,
and so on. The possibilities are virtually endless.

Providing a good tile for your application is more important than providing a good icon for a desk-
top application, and that’s pretty important as well. Tiles are embedded in the manifest for the
application, and, as you will see later in the chapter, they are easy to include using Visual Studio.

A badge is a small version of the tile that Windows can use on the Lock Screen and in other situa-
tions. You don’t have to provide a badge for your app unless it will show notifications on the Lock
Screen.

App Lifetime
Classic Windows Desktop applications can be closed by clicking a button in the top-right corner of
the caption bar, but Universal apps don’t normally display a caption bar, so how do you close them?
Generally speaking, you don’t need to close an app. Whenever a Universal app loses focus, it is sus-
pended and will stop using processor resources entirely. This allows many apps to appear to be run-
ning at the same time, when in fact they are just suspended. The suspension happens automatically
in Windows as soon as an app loses focus. It’s not really something that you notice as a user, but it
is a very important fact to know and handle as an app developer.

Lock Screen Apps
Some apps should keep running when they lose focus. Examples of this kind of app include GPS
navigation and audio-streaming apps. Users expect these types of apps to continue running even if
they start driving or begin using other apps. If your app needs to keep running in the background,
you must declare it as a Lock Screen app and provide information to display notifications on the
Lock Screen.

APP DEVELOPMENT

When you start developing Windows Universal apps, you have a number of options regarding pro-
gramming and UI language. This book uses C# and XAML, but other possibilities include using
JavaScript and HTML5, C++ and DirectX, or Visual Basic and XAML.

The XAML that is used to create the user interfaces of the Universal apps is not entirely identical to
the XAML used by WPF, but it is close enough that you should feel comfortable working with it.
Many of the controls you are familiar with exist for Universal apps as well, though they tend to look
slightly differently than their Windows Desktop counterparts. There are also a number of controls
that are optimized to touch.

Adaptive Displays
Adaptive displays are displays that are able to change in response to user actions such as a tablet
being flipped on its side or the window changing size. Your app should be able to gracefully switch
from portrait to landscape mode when the user flips her tablet on the side and should work and look
good on all devices.

798 ❘ CHAPTER 25 Universal apps

The first thing you will notice when you create a new Windows
Universal app project is that the page displayed in the designer
looks rather small. This is because this project defaults to a view
that is optimized for a 13.5” Surface Book display. You can
change this using the Device Preview panel shown in Figure 25-2.
You can also use this panel to change the layout from portrait to
landscape.

A well-behaved app is able to display itself well in many if not
all of the form-factors shown in the Device Preview panel.
Considering that the range in this list is anything from a 4"
Internet of Things (IoT) device to a 84" Surface Hub, this is a
daunting task. Happily, you will be aided by Visual Studio and
the UWP framework. When you change the resolution (or screen
size) from the drop-down, Visual Studio will resize your appli-
cation, and you will immediately be able to see what the page
looks like. In addition to that, controls that assist in creating an
adaptive design for the application are included in the toolbox,
and you can take advantage of them to easily create UIs that will
transform nicely.

Relative Panel
In Chapters 14 and 15 you used Grid and StackPanel controls to create a UI that worked well on
a static display. But in a world where you must target many display sizes, you want something that
will be better able to move the controls around for you. Enter the RelativePanel control.

NOTE The Try It Outs in this chapter assume that you are familiar with WPF
and XAML development, which was discussed in chapters 14 and 15.

The relative panel allows you to specify how controls should be positioned relative to one another.
As you would expect, you can position controls to the left, right, above, or below other controls, but
you can also do a few other nice tricks. It is possible to place a control in relation to the left, right,
or center of another, both horizontally and vertically, and align the edges of the controls with the
edges of the panel. This means no more fiddling with pixels to get two controls to line up perfectly
on the display.

Adaptive Triggers
Adaptive triggers are new to the Visual State Manager. Using these triggers you can change the lay-
out of your application based on the size of the display. When combined with a relative panel, this
is a very potent feature that in a fairly straightforward manner lets you build what the web-world

FIGURE 25-2

App Development ❘ 799

refers to as responsive UIs and Microsoft calls adaptive displays. In the next Try It Out, you will use
the RelativePanel to create a display that will change its layout depending on the size of the window.

TRY IT OUT Adaptive Displays: Ch25Ex01

 1. Create a new Windows Universal app project by selecting File ➪ New ➪ Project and expanding the
Installed ➪ Visual C# ➪ Windows Universal. Select the Blank App (Universal Windows) project
and name it AdaptiveDisplay. When you are prompted for the target and minimum platform ver-
sions, just click OK to use the defaults.

 2. Double-click the MainPage.xaml file in the Solution Explorer, and add a RelativePanel control
to the Grid. Set its Margin to 20 and HorizontalAlignment to Stretch. If the designer set values
for Height and Width, then go ahead and remove them.

 3. Add a TextBlock and TextBox to the panel:

 <RelativePanel HorizontalAlignment="Stretch" Margin="20" >
 <TextBlock x:Name="textBlockFirstName" Text="First name" Margin=
"0, 10, 10, 5" />
 <TextBox x:Name="textBoxFirstName" Text="" Width="400" RelativePanel.RightOf=
"textBlockFirstName" RelativePanel.AlignVerticalCenterWith="textBlockFirstName" />
 </RelativePanel>

 4. Add a Visual State Manager in the grid. It is critically important that it is the first child of the grid!

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="narrowView">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="0" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="textBoxFirstName.(RelativePanel.Below)"
 Value="textBlockFirstName" />
 <Setter
 Target="textBoxFirstName.(RelativePanel.
AlignVerticalCenterWith)"
 Value="" />
 <Setter
 Target="textBoxFirstName.(RelativePanel.AlignLeftWith)"
 Value="textBlockFirstName" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="wideView">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="720" />
 </VisualState.StateTriggers>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 5. Run the app and resize the window. When the window is small enough, less than 720 pixels, the
TextBox will pop down below the TextBlock.

800 ❘ CHAPTER 25 Universal apps

How It Works

It is important that the Visual State Manager in the example is placed as the first child of the root grid.
This allows the interpreter to find the controls that are referenced. You will not get any errors if you
place it in another position, but you will not get the expected result.

The Visual State Manager uses the AdaptiveTrigger with the property MinWindowWith to change the
behavior of the display:

<AdaptiveTrigger MinWindowWidth="0" />

We define two states, one that is activated if the view is at least 0 pixels wide, and another that activates
if the view is at least 720 pixels wide. You might expect that both will be active when the view is wider
than 720 pixels, but that’s not how it works. Rather, only one of the states will be active at any time,
and the one that matches best will be selected. So, when the view is 1024 pixels wide, only the wide
state is selected.

In the narrowView, we set three properties:

 <VisualState.Setters>
 <Setter Target="textBoxFirstName.(RelativePanel.Below)"
 Value="textBlockFirstName" />
 <Setter
 Target="textBoxFirstName.(RelativePanel.
AlignVerticalCenterWith)"
 Value="" />
 <Setter
 Target="textBoxFirstName.(RelativePanel.AlignLeftWith)"
 Value="textBlockFirstName" />

First we ensure that the textbox should be moved below the TextBlock. Second, we clear the
AlignVerticalCenterWith property. If we didn’t change this, it will overrule the instruction to move
the control below the TextBlock. This is because the AlignVerticalCenterWith property is set
directly on the control, so if we leave it, it will take precedence over the Below directive of the View
State. Another approach would be to refrain from setting any of the properties directly on the controls
and only use view states. Finally, we align the left edges of the control.

The wideView state is in fact left empty. This means that no modifications to the properties defined
directly on the controls should be made, making this the default state.

NOTE The current version of Visual Studio sometimes fails to move the con-
trols based on the selection in the Device Preview panel, so you will have to
run the app to see the results.

FlipView
The FlipView is a nice little control that works very well with handheld devices. It allows the user
to swipe left or right to display some content. It is often used to display images one at a time and
allows the user to use the swipe gesture to move between the images.

App Development ❘ 801

By default, the FlipView allows the user to swipe left or right to move the content in view, but this
can be changed to move up or down. When a mouse is used, the scroll button will work as well. The
next Try It Out demonstrates how to use a FlipView to display the content of the Pictures folder on
the local device.

TRY IT OUT FlipView: Ch25Ex02

 1. Create a new Windows Universal app project by selecting File ➪ New ➪ Project and expanding
Installed ➪ Visual C# ➪ Windows Universal. Select the Blank App (Universal Windows) project
and name it PictureViewer.

 2. Add three RelativePanels within the Grid tag on the MainPage.

 <RelativePanel Margin="20">
 <RelativePanel x:Name="LeftPanel" Margin="0,10,0,0" >
 </RelativePanel>
 <RelativePanel x:Name="RightPanel" Margin="20,10,0,0">
 </RelativePanel>
 </RelativePanel>

 3. Add a FlipView to the panel named LeftPanel like this:

 <FlipView x:Name="flipView" VerticalAlignment="Stretch"
HorizontalAlignment="Stretch" >
 <FlipView.ItemTemplate>
 <DataTemplate>
 <Image x:Name="image" Source="{Binding}" Stretch="Uniform"/>
 </DataTemplate>
 </FlipView.ItemTemplate>
 </FlipView>

 4. Add three TextBlocks to the panel named RightPanel like this:

 <TextBlock x:Name="textBlockCurrentImageDisplayName"
 Margin="10,10,10,0" FontSize="24" FontWeight="Bold"
 RelativePanel.AlignLeftWithPanel="True"
 RelativePanel.AlignRightWithPanel="True" />
 <TextBlock x:Name="textBlockCurrentImageImageHeight" Margin="10,10,10,0"
 FontSize="24" FontWeight="Bold"
 RelativePanel.AlignLeftWithPanel="True"
 RelativePanel.AlignRightWithPanel="True"
 RelativePanel.Below="textBlockCurrentImageDisplayName" />
 <TextBlock x:Name="textBlockCurrentImageImageWidth" Margin="10,10,10,0"
 FontSize="24" FontWeight="Bold"
 RelativePanel.AlignLeftWithPanel="True"
 RelativePanel.AlignRightWithPanel="True"
 RelativePanel.Below="textBlockCurrentImageImageHeight" />

 5. Add the following Visual State Manager to control the appearance when the app is resizing. Add it
as the first child to the Grid tag:

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="narrowView">
 <VisualState.StateTriggers>

802 ❘ CHAPTER 25 Universal apps

 <AdaptiveTrigger MinWindowWidth="0" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="RightPanel.(RelativePanel.Below)" Value="LeftPanel" />
 <Setter Target="RightPanel.(RelativePanel.AlignLeftWithPanel)" Value=
"True" />
 <Setter Target="RightPanel.(RelativePanel.AlignRightWithPanel)" Value=
"True" />
 <Setter Target="RightPanel.Margin" Value="0,10,0,0" />
 <Setter Target="LeftPanel.(RelativePanel.AlignTopWithPanel)" Value=
"True" />
 <Setter Target="LeftPanel.(RelativePanel.AlignLeftWithPanel)" Value=
"True" />
 <Setter Target="LeftPanel.(RelativePanel.AlignRightWithPanel)" Value=
"True" />
 <Setter Target="LeftPanel.Height" Value="560" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="wideView">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="720" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="RightPanel.(RelativePanel.AlignBottomWithPanel)" Value=
"True" />
 <Setter Target="RightPanel.(RelativePanel.AlignRightWithPanel)" Value=
"True" />
 <Setter Target="RightPanel.(RelativePanel.AlignTopWithPanel)" Value=
"True" />
 <Setter Target="RightPanel.Width" Value="200" />
 <Setter Target="LeftPanel.(RelativePanel.LeftOf)" Value="RightPanel" />
 <Setter Target="LeftPanel.(RelativePanel.AlignBottomWithPanel)" Value=
"True" />
 <Setter Target="LeftPanel.(RelativePanel.AlignTopWithPanel)" Value=
"True" />
 <Setter Target="LeftPanel.(RelativePanel.AlignLeftWithPanel)" Value=
"True" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 6. Create a new class and name it ImageProperties. Add three properties to it like this:

namespace PictureViewer
{
 class ImageProperties
 {
 public string FileName { get; set; }
 public int Width { get; set; }
 public int Height { get; set; }
 }
}

 7. Go to the code-behind for the main page and add these using statements:

App Development ❘ 803

using System;
using System.Collections.Generic;
using Windows.Storage;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.Storage.Search;
using Windows.UI.Xaml.Media.Imaging;
using Windows.UI.Popups;
using System.Linq;

 8. Create a private field to hold some information about the pictures that are being displayed:

private IList<ImageProperties> imageProperties = new List<ImageProperties>();

 9. Add a method to load the files:

 private async void GetFiles()
 {
 try
 {
 StorageFolder picturesFolder = KnownFolders.PicturesLibrary;
 IReadOnlyList<StorageFile> sortedItems = await picturesFolder.
GetFilesAsync(CommonFileQuery.OrderByDate);
 var images = new List<BitmapImage>();
 if (sortedItems.Any())
 {
 foreach (StorageFile file in sortedItems)
 {
 if (file.FileType.ToUpper() == ".JPG")
 {
 using (Windows.Storage.Streams.IRandomAccessStream fileStream = await
file.OpenAsync(FileAccessMode.Read))
 {
 BitmapImage bitmapImage = new BitmapImage();
 await bitmapImage.SetSourceAsync(fileStream);
 images.Add(bitmapImage);
 imageProperties.Add(new ImageProperties
 {
 FileName = file.DisplayName,
 Height = bitmapImage.PixelHeight,
 Width = bitmapImage.PixelWidth
 });
 if (imageProperties.Count > 10)
 break;
 }
 }
 }
 }
 else
 {
 var message = new MessageDialog("There are no images in the Pictures
Library");
 await message.ShowAsync();
 }
 flipView.ItemsSource = images;
 }

804 ❘ CHAPTER 25 Universal apps

 catch (UnauthorizedAccessException)
 {
 var message = new MessageDialog("The app does not have access to the
Pictures Library on this device.");
 await message.ShowAsync();
 }
 }

 10. Select the Page tag in the XAML of the main page and add the Loading event to it. Then imple-
ment this event handler for it:

 private void Page_Loaded(object sender, RoutedEventArgs e)
 {
 GetFiles();
 }

 11. Select the FlipView in the XAML of the Main Page and implement the SelectionChanged event:

 private void flipView_SelectionChanged(object sender,
SelectionChangedEventArgs e)
 {
 if (flipView.SelectedIndex >= 0)
 {
 textBlockCurrentImageDisplayName.Text = imageProperties[flipView.
SelectedIndex].FileName;
 textBlockCurrentImageImageHeight.Text = imageProperties[flipView.
SelectedIndex].Height.ToString();
 textBlockCurrentImageImageWidth.Text = imageProperties[flipView.
SelectedIndex].Width.ToString();
 }
 }

 12. Finally, double-click the Package.appxmanifest file to open the manifest file designer.

 13. Select the Capabilities tab and ensure that the Pictures Library capability is checked.

 14. Run the app and try resizing it.

How It Works

The code uses three RelativePanels to move its content about. None of the panels have any position-
ing instructions directly on them; instead the entire layout is defined in the Visual State Manager. In
this case, we are using two adaptive triggers, one that activates if the view is wider than 720 pixels and
one that activates if the view is wider than 0 pixels.

The FlipView itself is almost the least amount of code in the example.

 <FlipView x:Name="flipView" VerticalAlignment="Stretch"
HorizontalAlignment="Stretch" >
 <FlipView.ItemTemplate>
 <DataTemplate>
 <Image x:Name="image" Source="{Binding}" Stretch="Uniform"/>
 </DataTemplate>
 </FlipView.ItemTemplate>
 </FlipView>

App Development ❘ 805

In this code, we tell the FlipView that it should use the ItemTemplate we define here, and this just
includes a single Image control. From this it is apparent that you can use the FlipView to display any-
thing, not just images.

The code in the GetFiles method demonstrates several of the interfaces that you can use to access
files and resources in an app. Later in this chapter we will discuss the concept of sandboxed apps
and what limitations they put on your code, but you have already seen some of this in action in this
example. The following code gets a StorageFolder object if the app has access to it and throws a
UnauthorizedAccessException exception if it does not.

StorageFolder picturesFolder = KnownFolders.PicturesLibrary;

In the normal .NET Framework, you don’t have this class, and the determination of whether access is
granted is based on the user’s permissions in the file system. For apps, this is very different. Here you
have to declare up front which resources the app will need access to, and the user must accept these for
the application to run. In step 13 you declared that the app will include the capability to access to the
Pictures Library. If you didn’t do that, you will get an exception when you run the app.

Next you used the GetFilesAsync method of the StorageFolder to retrieve the files, ordered by date.

Once we have the files, we open them by calling OpenAsync on the StorageFile objects

using (Windows.Storage.Streams.IRandomAccessStream fileStream = await file.
OpenAsync(FileAccessMode.Read))

This returns a file stream we can use to access the content of the files. In this case, we don’t want to
write to it, so we specify Read access only.

Finally, we set the ItemsSource of the FlipView to the list of images we have loaded from the Pictures
Library.

Sandboxed Apps
At this point, it is worth taking a step back and looking at some of the limitations of the .NET
framework for the Windows Universal Platform. Apps running on mobile devices have limited
access to the OS on which they run, and this means that there are types of applications that you sim-
ply cannot write. If you require direct access to the file system to access Windows system files, for
instance, you must write a classic Windows desktop application.

When you are writing Universal apps in C#, you will find that the limiting factor is in the .NET
Framework that is referenced from your application, where common namespaces and classes are
missing entirely or have fewer methods available than before. If you open Visual Studio, create a
new Blank app, and then expand the References node, you will see that the references are very dif-
ferent from those for Windows Desktop Apps. There is a reference to the analyzers, which are there
to help monitor various aspects of your app: a reference to .NET Core for UWP, and a reference to
Universal Windows.. At this point you might expect that you could simply change the references to
use the normal .NET Framework, and indeed this will work. That is, it will work right up to the
point when you try to publish your app to the Windows Store, at which point it will be rejected for
non-compliance with the specifications.

806 ❘ CHAPTER 25 Universal apps

The sandboxed nature of the Windows Universal apps, and the process they must go through before
they are admitted into the Windows Store, means that the users should rarely have to fear down-
loading malicious apps through the store. Obviously, there are people who will try to circumvent
this, and users should never let their guard down; however, it is considerably harder to place mali-
cious programs on Windows computers through Windows Store apps than it is through normal
download and installation.

Disk Access
Desktop applications can access the disk pretty much as they like, with a few exceptions. One
such exception is that they are normally prohibited from writing to the Program Files folder and
other system folders. Windows Universal apps can access only a few very specific locations on disk
directly. These locations include the folder in which the app is installed, the AppData folder associ-
ated with the app, and a few special folders such as the Documents folder. Access to the files and
folders have also been moved in the .NET Core Framework to make sure that the developer can’t
accidentally write to a forbidden location.

In order to allow the user control over where files should be stored and read from, Windows
provides you with three File Picker contracts: FolderOpenPicker, FileOpenPicker, and
FileSavePicker. These picker classes can be used from your app to gain secure access to the
local disk.

As you saw earlier, you can also use the KnownFolders class to access resources on a device. You
should use the KnownFolders class when you want to read or write to locations that the user must
grant access to, for the app to be able to open them.

Serialization, Streams, and Async Programming
In Chapter 14, you used the [Serializable] attribute to allow classes to be serialized. .NET Core
for UWP do not include this attribute, but you can use a similar attribute called [DataContract]
instead. The DataContract attribute works with the DataContractSerializer class to serialize
the content of a class. In order to get the serialized content to or from disk, you need to use some file
access types, but unlike with normal .NET, you can’t create these directly. Instead, you use file pick-
ers to create the stream objects, which you can use with DataContractSerializer to save and load
your files.

NOTE The projects you can download for this chapter include a certificate file
that you may not be able to use, but can generate yourself. Follow these steps
to do so:

 1. With the project open, double-click the file Package.appxmanifest.

 2. Select the Packaging tab.

 3. Click Choose Certificate.

 4. Select Create test certificate from the Configure Certificate.

 5. Click OK.

App Development ❘ 807

The next Try It Out demonstrates using DataContractSerializator with streams created by
FileOpenPicker and FileSavePicker to load and save XML representations of a data model.

TRY IT OUT Disk Access: Ch25Ex03

 1. Create a new project in Visual Studio by selecting Blank App (Universal Windows) and name it
DataSerialization.

 2. Create a new class in the project named AppData.

 3. Mark the class with the [DataContract] attribute and add the System.Runtime.Serialization
namespace to the using section:

using System.Runtime.Serialization;
namespace DataSerialization
{
 [DataContract]
 class AppData
 {
 }
}

 4. Add a property of type int to the class and mark it with the [DataMember] attribute:

 [DataMember]
 public int TheAnswer { get; set; }

 5. Add a new enum to the project called AppStates. Mark it with the [DataContract] attribute:

using System.Runtime.Serialization;
namespace DataSerialization
{
 [DataContract]
 public enum AppStates
 {
 }
}

 6. Add three values to AppStates, taking care to mark each one with the [EnumMember] attribute:

 [EnumMember]
 Started,
 [EnumMember]
 Suspended,
 [EnumMember]
 Closing

 7. Add two new properties to the AppData class:

 [DataMember]
 public AppStates State { get; set; }
 [DataMember]
 public object StateData { get; set; }

 8. Add a new class with the name AppStateData and mark it with the [DataContract] attribute:

using System.Runtime.Serialization;
namespace DataSerialization
{

808 ❘ CHAPTER 25 Universal apps

 [DataContract]
 public class AppStateData
 {
 [DataMember]
 public string Data { get; set; }
 }
}

 9. Add a [KnownType] attribute to the AppData class like this:

 [DataContract]
 [KnownType(typeof(AppStateData))]
 public class AppData
 {

 10. Double-click the MainPage.xaml file in the Solution Explorer and drag two buttons onto the page.
Set their content and name properties to Save and Load.

 11. Create a click event handler for the Save button and navigate to it in the code-behind file. Add
this code (note the async keyword in the method declaration):

 private async void Save_Click(object sender, RoutedEventArgs e)
 {
 var data = new AppData
 {
 State = AppStates.Started,
 TheAnswer = 42,
 StateData = new AppStateData { Data = "The data is being saved" }
 };
 var fileSavePicker = new FileSavePicker
 {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary,
 DefaultFileExtension = ".xml",
 };
 fileSavePicker.FileTypeChoices.Add("XML file", new[] { ".xml" });
 var file = await fileSavePicker.PickSaveFileAsync();
 if (file != null)
 {
 var stream = await file.OpenStreamForWriteAsync();
 var serializer = new DataContractSerializer(typeof(AppData));
 serializer.WriteObject(stream, data);
 }
 }

 12. Create the click event handler for the Load button and add this code (note the async keyword
again):

 private async void Load_Click(object sender, RoutedEventArgs e)
 {
 var fileOpenPicker = new FileOpenPicker
 {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary,
 ViewMode = PickerViewMode.Thumbnail
 };
 fileOpenPicker.FileTypeFilter.Add(".xml");
 var file = await fileOpenPicker.PickSingleFileAsync();

App Development ❘ 809

 if (file != null)
 {
 var stream = await file.OpenStreamForReadAsync();
 var serializer = new DataContractSerializer(typeof(AppData));
 var data = serializer.ReadObject(stream);
 }
 }

 13. You will need to add these two namespaces to the code-behind file:

using System.Runtime.Serialization;
using Windows.Storage.Pickers;

 14. Run the app.

How It Works

In steps 1 through 9, you create the data model of the app. All classes and enumerations are marked
with the [DataContract] attribute, but notice the difference in how members are marked. Properties
and fields in classes can be marked with the [DataMember] attribute, but members of an enumeration
must be marked with [EnumMember]:

 [DataContract]
 public class AppStateData
 {
 [DataMember]
 public string Data { get; set; }
 }
 [DataContract]
 public enum AppStates
 {
 [EnumMember]
 Started,
 [EnumMember]
 Suspended,
 [EnumMember]
 Closing
 }

There is another attribute that is not shown here that can be of interest: CollectionDataContract. It
can be set on custom collections.

You also add a property with a type object. In order for the serializer to be able to serialize this prop-
erty, you must tell it what types it could be. You do this by setting the [KnownTypes] attribute on the
class that contains the property.

The Save and Load methods demonstrate some of the new file pickers. After displaying the pickers, you
get a StorageFile instance back:

 var file = await fileOpenPicker.PickSingleFileAsync();
 if (file != null)
 {
 var stream = await file.OpenStreamForReadAsync();
 var serializer = new DataContractSerializer(typeof(AppData));
 var data = serializer.ReadObject(stream);
 }

810 ❘ CHAPTER 25 Universal apps

This object can be used to open a stream for read or write operations. It is not shown directly here, but
you can also use it directly with the FileIO class, which provides some simple methods for writing and
reading data.

Navigation between Pages
Navigating between pages within an app is similar to how web applications navigate. You can call
the method Navigate to go from one page to another; you can go back by calling the Back method.
The following Try It Out demonstrates how to move between pages in an app using three basic
pages.

TRY IT OUT Navigation: Ch25Ex04

 1. Create a new project in Visual Studio by selecting Blank App (Universal Windows) and name it
BasicNavigation.

 2. Select and delete the MainPage.xaml file.

 3. Right-click the project and select Add ➪ New item. Add a new page using the Blank Page template
and name it BlankPage1.

 4. Repeat step 3 twice so you have a total of three pages in the project, naming the pages BlankPage2
and BlankPage3 respectively.

 5. Open the App.xaml.cs code-behind file and locate the OnLaunched method. This method uses the
MainPage that you just deleted, so change the reference to BlankPage1 instead.

 6. On the BlankPage1, insert a stack panel, a TextBlock, and three buttons into the grid:

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock x:Name="textBlockCaption" Text="Page 1" HorizontalAlignment="Center"
Margin="10" VerticalAlignment="Top"/>
 <StackPanel Orientation="Horizontal" Grid.Row="1" HorizontalAlignment="Center">
 <Button Content="Page 2" Click="buttonGoto2_Click" />
 <Button Content="Page 3" Click="buttonGoto3_Click" />
 <Button Content="Back" Click="buttonGoBack_Click" />
 </StackPanel>
 </Grid>

 7. Add the event handlers for the click events like this:

 private void buttonGoto2_Click(object sender, RoutedEventArgs e)
 {
 Frame.Navigate(typeof(BlankPage2));
 }
 private void buttonGoto3_Click(object sender, RoutedEventArgs e)
 {
 Frame.Navigate(typeof(BlankPage3));
 }

App Development ❘ 811

 private void buttonGoBack_Click(object sender, RoutedEventArgs e)
 {
 if (Frame.CanGoBack) this.Frame.GoBack();
 }

 8. Open the second page (BlankPage2) and add a similar stack panel to it:

 <TextBlock x:Name="textBlockCaption" Text="Page 2" HorizontalAlignment="Center"
Margin="10" VerticalAlignment="Top"/>
 <StackPanel Orientation="Horizontal" Grid.Row="1" HorizontalAlignment="Center">
 <Button Content="Page 1" Click="buttonGoto1_Click" />
 <Button Content="Page 3" Click="buttonGoto3_Click" />
 <Button Content="Back" Click="buttonGoBack_Click" />
 </StackPanel>

 9. Add the navigation to the event handlers:

 private void buttonGoto1_Click(object sender, RoutedEventArgs e)
 {
 Frame.Navigate(typeof(BlankPage1));
 }
 private void buttonGoto3_Click(object sender, RoutedEventArgs e)
 {
 Frame.Navigate(typeof(BlankPage3));
 }
 private void buttonGoBack_Click(object sender, RoutedEventArgs e)
 {
 if (Frame.CanGoBack) this.Frame.GoBack();
 }

 10. Open the third page and add another stack panel that includes a Home button:

 <TextBlock x:Name="textBlockCaption" Text="Page 3" HorizontalAlignment="Center"
Margin="10" VerticalAlignment="Top"/>
 <StackPanel Orientation="Horizontal" Grid.Row="1" HorizontalAlignment="Center">
 <Button Content="Page 1" Click="buttonGoto1_Click" />
 <Button Content="Page 2" Click="buttonGoto2_Click" />
 <Button Content="Back" Click="buttonGoBack_Click" />
 </StackPanel>

 11. Add the event handlers:

 private void buttonGoto1_Click(object sender, RoutedEventArgs e)
 {
 Frame.Navigate(typeof(BlankPage1));
 }
 private void buttonGoto2_Click(object sender, RoutedEventArgs e)
 {
 Frame.Navigate(typeof(BlankPage2));
 }
 private void buttonGoBack_Click(object sender, RoutedEventArgs e)
 {
 if (Frame.CanGoBack) this.Frame.GoBack();
 }

 12. Run the app. The app displays the front page with three buttons.

812 ❘ CHAPTER 25 Universal apps

How It Works

When you run the application, it displays a splash screen when loading and then displays the first page.
The first time you click one of the buttons, the Navigate method is called using the type of the page
you want to navigate to.

Frame.Navigate(typeof(BlankPage2));

It is not shown in this example, but the Navigate method includes an overload that allows you to
send parameters to the page that is being navigated to. When you navigate between the pages, you will
notice that if you go back to Page 1 using one of the buttons, the Back button remains active.

On each page, you use the GoBack event implementation to go back to the previous page. Before the
GoBack method is called, the CanGoBack property is checked. If you fail to do so and call GoBack on the
first page displayed, you will get an exception.

if (Frame.CanGoBack) this.Frame.GoBack();

Each time you navigate to a page, a new instance is created. You can change this behavior by enabling
the property NavigationCacheMode in the constructor of your pages; for example, like this:

public BasicPage1()
{
 this.InitializeComponent();
 NavigationCacheMode = Windows.UI.Xaml.Navigation.NavigationCacheMode.Enabled;
}

This will cause the page to become cached.

The CommandBar Control
A CommandBar provides the users with much the same functionality that a tool bar provides in desk-
top applications, but you should keep them much simpler, usually limiting the available options to
fewer than eight items in a bar.

You can display more than one CommandBar at a time, but keep in mind that this clutters up the user
interface, and you should not display more than one bar just to show more options. On the other
hand, if you want to provide more than one kind of navigation, it is sometimes beneficial to show a
top and bottom bar at the same time.

Visual Studio ships with the CommandBar control, which makes it very easy to create this kind of
control. The following Try It Out creates an App Bar with a number of standard items on it.

TRY IT OUT Creating CommandBars: Ch25Ex05

 1. Return to the BasicNavigation example from earlier.

 2. Add a CommandBar to all three pages. Place it as a child of the Grid control on each of the pages:

 <CommandBar>
 <AppBarToggleButton x:Name="toggleButtonBold" Icon="Bold" Label="Bold" Click=
"AppBarToggleButtonBold_Click" />

App Development ❘ 813

 <AppBarSeparator />
 <AppBarButton Icon="Back" Label="Back" Click="buttonGoBack_Click"/>
 <AppBarButton Icon="Forward" Label="Forward" Click=
"AppBarButtonForward_Click"/>
 <CommandBar.SecondaryCommands>
 <AppBarButton Icon="Camera" Label="Take picture" />
 <AppBarButton Icon="Help" Label="Help" />
 </CommandBar.SecondaryCommands>
 </CommandBar>

 3. Add this event handler to all three pages:

 private void AppBarButtonForward_Click(object sender, RoutedEventArgs e)
 {
 if (Frame.CanGoForward) this.Frame.GoForward();
 }
 private void AppBarToggleButtonBold_Click(object sender, RoutedEventArgs e)
 {
 AppBarToggleButton toggleButton = sender as AppBarToggleButton;
 bool isChecked = toggleButton.IsChecked.HasValue ?
 (bool)toggleButton?.IsChecked.Value : false;
 textBlockCaption.FontWeight = isChecked ? FontWeights.Bold :
FontWeights.Normal;
 }

 4. Add this using statement to all pages:

using Windows.UI.Text;

 5. On all three pages, change the margin of the TextBox to 10,50,10,10.

 6. Run the app.

How It Works

When you run the app, you can now use the command bar buttons to move back and forth in the list of
pages that you have visited. The command bar itself is very easy to work with.

The command bar is built using three types. The first one is the AppBarToggleButton.

<AppBarToggleButton x:Name="toggleButtonBold" Icon="Bold" Label="Bold" Click=
"AppBarToggleButtonBold_Click" />

This type of button can be used to display a state that can be toggled on or off.

The second type is the AppBarButton, which works like any other button, and in fact you can see
that the click event of the AppBarButtonBack button is handled by the same event handler as the
ButtonBack from the previous example.

<AppBarButton Icon="Back" Label="Back" Click="buttonGoBack_Click"/>

The third type that is used in the command bar is the AppBarSeperator. This control simply displays a
separator on the bar.

Finally, two buttons are located inside a CommandBar.SecondaryCommands tag:

 <CommandBar.SecondaryCommands>
 <AppBarButton Icon="Camera" Label="Take picture" />
 <AppBarButton Icon="Help" Label="Help" />

814 ❘ CHAPTER 25 Universal apps

 </CommandBar.SecondaryCommands>
 </CommandBar>

These commands are not displayed directly on the command bar. Instead they are displayed as a drop-
down when you click the three dots that are displayed.

Managing State
Unlike a desktop application, an app must expect to be suspended at any time. This happens when
the user switches to another app or to the desktop, so it’s a very common scenario that must be
handled by all apps. When an app is suspended, Windows will save the values of your variables
and data structures and restore them when the app resumes. However, your app may have been
suspended for an extended period of time, so if you have data that change over time, such as a news
feed, then you should refresh this when the app is restored.

When the app is suspended, you should also consider saving any data that should persist between
invocations of the app, as you will not get a chance to do so if the app is subsequently terminated by
Windows or the user.

When your app is about to be suspended, a Suspending event is sent, which you should handle. When
the app is returned to life, it will receive a Resuming event. By handling these two events and sav-
ing the state of the application, you can return the app to the state it was in before the suspension,
and the user shouldn’t notice anything.

TRY IT OUT Resume from Suspension: Ch25Ex06

 1. Return to the previous example and create a new class named AppState:

using System.Collections.Generic;
namespace BasicNavigation
{
 public static class AppState
 {
 private static Dictionary<string, bool> state = new Dictionary<string, bool>();
 public static bool GetState(string pageName) => state.ContainsKey(pageName) ?
state[pageName] : false;
 public static void SetState(string pageName, bool isBold)
 {
 if (state.ContainsKey(pageName))
 state[pageName] = isBold;
 else
 state.Add(pageName, isBold);
 }
 public static void Save()
 {
 var settings = Windows.Storage.ApplicationData.Current.RoamingSettings;
 foreach (var key in state.Keys)
 {
 settings.Values[key] = state[key];
 }

App Development ❘ 815

 }
 public static void Load(string pageName)
 {
 if (!state.ContainsKey(pageName) && Windows.Storage.ApplicationData.Current.
RoamingSettings.Values.ContainsKey(pageName))
 state.Add(pageName, (bool)Windows.Storage.ApplicationData.Current.
RoamingSettings.Values[pageName]);
 }
 }
}

 2. Open the code-behind of the app.xaml file and locate the OnSuspending method at the bottom.
Add AppState.Save(); like this:

 private void OnSuspending(object sender, SuspendingEventArgs e)
 {
 var deferral = e.SuspendingOperation.GetDeferral();
 //TODO: Save application state and stop any background activity
 AppState.Save();
 deferral.Complete();
 }

 3. Add these lines to the bottom of the OnLaunched method, just above Window.Current
.Activate();:

 AppState.Load(typeof(BlankPage1).Name);
 AppState.Load(typeof(BlankPage2).Name);
 AppState.Load(typeof(BlankPage3).Name);

 4. Go to the BlankPage1 and add the loaded event on the Page class like this:

<Page
 x:Class="BasicNavigation.BlankPage1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BasicNavigation"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" Loaded="Page_Loaded">

 5. Implement the event:

 private void Page_Loaded(object sender, RoutedEventArgs e)
 {
 toggleButtonBold.IsChecked = AppState.GetState(GetType().Name);
 AppBarToggleButtonBold_Click(toggleButtonBold, new RoutedEventArgs());
 }

 6. Change the Click event handler for the toggle button to save the state of the page when the button
is pressed:

 private void AppBarToggleButtonBold_Click(object sender, RoutedEventArgs e)
 {
 AppState.SetState(GetType().Name, (bool)toggleButtonBold.IsChecked);
 ...
 }

816 ❘ CHAPTER 25 Universal apps

 7. Repeat steps 4 through 6 for BlankPage2 and BlankPage3.

 8. Set a break point in the OnSuspending method in the app.xaml code-behind file.

 9. Run the app.

 10. Once the app is running, click the Bold button on one or two of the pages. Then, while the app is
still running, return to Visual Studio. If you don’t see a Debug Location toolbar, then right-click
in the toolbar area and make sure that it is checked. Click the drop-down with the text Lifecycle
Events and click Suspend.

 11. Once you step through the OnSuspended method, the app is suspended. Expand the drop-down
again and click Resume.

How It Works

The AppState class uses the Windows.Storage.ApplicationData class to save the application set-
tings. This class allows you to access the application data store and lets you easily set some simple val-
ues. You should only store simple types in this store, so if you need to save very complex state for the
app you should consider some other mechanism, like a database or XML files.

The app already handles the Suspending event in the app.xaml code-behind file, so you can simply use
this. If you had to handle the suspension differently for individual pages, you should handle this event
on the pages themselves as well.

In the OnSuspending event, we save the state of the entire app so that it can be retrieved when the app
restarts. Since there’s no data that must be updated on any of the pages when the app resumes from
suspension, we don’t handle the Resuming event.

We restore the state when the app loads by loading it in the OnLaunched method, also in the app.xaml
code-behind.

COMMON ELEMENTS OF WINDOWS STORE APPS

All Windows Store apps should provide their own Tiles and Badges. Tiles give your app presence
on the Start page in Windows and allow you to display information about the app. Badges allow
Windows to display a small image that represents your app on the Lock Screen.

Tiles are important because users tend to be fickle and are inclined to make decisions based on how
well an app presents itself. Also, a tile should be easily identifiable; if you make your users search for
a tile that disappears in the other tiles, they’re unlikely to be in a good mood by the time that they
finally locate it.

There are many possible tile sizes in Windows Store apps and if your app is targeting many different
display sizes, you should supply tailored tiles for all the suggested sizes, or at the very least provide
tiles that scale well. If you don’t provide a tile of the right size, Windows will scale what you do sup-
ply to the correct size and this will often look bad. So, for a professional app, make sure you tailor
make tiles for every expected tile size.

Common Elements of Windows Store Apps ❘ 817

Badges are smaller than the tiles (24 × 24 pixels) and are used when Windows displays the app on
the Lock Screen. If you set a badge image for your app, you must also enable Lock Screen notifica-
tions. Badges can also be scaled, so provide all the appropriate sizes.

Splash screens are displayed while the app loads; and since that should take only a moment or two,
they should not be too complex or provide any kind of information to the users, except for clearly
identifying which app is currently starting. Splash screens are at least 620 × 300 pixels, but you
can make them smaller by making parts of the image transparent. And once again, scaled versions
should be supplied.

Finally, you should supply a “Package Logo” of exactly 50 × 50 pixels and of course the scaled ver-
sions of it, which will be displayed in the Windows Store.

Tiles, badges, and logos are embedded in the apps package manifest, which can be edited easily in
the Visual Studio Manifest Package editor. If you have downloaded the code for this book, you can
use the tiles and badge supplied with the code (in the Assets folder), but otherwise you can quickly
create the images in Paint or in a similar application. In the following Try It Out you add tiles,
logos, and splash screen images to a Windows Universal app.

TRY IT OUT Adding Tiles and Badges

 1. Use an image editor like Paint to create PNG images with these sizes:

 ➤ 620 × 300

 ➤ 310 × 150

 ➤ 310 × 310

 ➤ 150 × 150

 ➤ 71 × 71

 ➤ 50 × 50

 ➤ 44 × 44

 ➤ 24 × 24

Name the images so you can recognize them without opening them.

 2. Open the project from the previous example.

 3. Delete all images in the Assets folder.

 4. Double-click the file Package.appxmanifest in the Solution Explorer to open the package editor.

 5. Below the Visual Assets heading, you will find a menu on the left where you can change the tiles,
logos, and splash screens. For each of them, click the button for the source of the images and select
the appropriate image. Then click Generate to allow Visual Studio to scale the image.

 6. Select the Application tab and select Badge in the Lock Screen Notifications drop-down.

 7. Compile the app, then right-click the project in the Solution Explorer and select Deploy.

818 ❘ CHAPTER 25 Universal apps

How It Works

Go to the Start menu and find the app. You will probably have to click All Apps or search for the name.
Notice that the small tile is displayed in the list. If you right-click it and pin the app to the Start menu,
one of the larger tiles is used. You can right-click the tile and select Resize to change the size.

When the app runs, the splash screen briefly appears.

Right-click the app in the menu and select Uninstall to remove it again.

THE WINDOWS STORE

After you create your app, you will probably want to distribute it to the public, and the way to do
this is to use the Windows Store. Microsoft has gone to great lengths to create a store that is secure
and lets Windows users download apps from it without too much fear of downloading malicious
code. Unfortunately, this means you must endure a lengthy process to get your app in the store.

Packaging an App
You have already seen some of the contents of the package.appxmanifest file when you had to
specify the Picture Viewer required access to the Pictures Library and when adding Tiles to the app.
When you are ready to package your app for the App Store, you must return to this file and set a
number of other values.

Before you package your app, you should go through each of the six tabs for configuring the
 package.appxmanifest and consider every option you have:

 ➤ Application: Name your app well! Along with the store logo, this is probably the very first
thing your potential users see about your app, so naming it something generic is not effective.
Try to pick an interesting name that also indicates the purpose of the app.

 ➤ Visual Assets: In the last example you added tiles to the app. You should ensure that there is
at least one image for every category on the Visual Assets tab.

 ➤ Capabilities: On this tab you specify which capabilities your app requires. Be warned that
users will view your app suspiciously if it requires capabilities that don’t appear reasonable.
For instance, if you require access to the chat messages on the device, there had better be a
good reason; otherwise it is likely that this will be seen as a potential breach of privacy. Most
apps shouldn’t require more than a few capabilities, but you must pick all that you use. If
you don’t accurately specify what you need, then the app will receive an access denied excep-
tion when it tries to access the resource.

 ➤ Declarations: On the Declarations tab, you can register the app as a provider of services. For
instance, if your app works as a search provider, then you can add this declaration to the app
and specify the required properties.

The Windows Store ❘ 819

 ➤ Content URIs: If your app navigates to a remote page, it will have limited access to the sys-
tem. You can use Content URIs to give a web page access to geo-location devices and the
clipboard.

 ➤ Packaging: On this tab you can set the properties of the package, including the name of the
developer/publisher, the version of the app, and the certificate used to sign the package.

Creating the Package
Once you have specified all you need in the appxmanifest, you are ready to package your app. You
can do this directly from Visual Studio by selecting Project ➪ Store ➪ Create App Packages. This
will launch the Create App Packages wizard. A few steps into the wizard you will be required to log
in with a store account. If you don’t have one, you must create one. You must have a store account
to be able to publish to the app store and to be able to get paid for your app.

At some point during the wizard, you will be shown the Select and Configure Packages page. On
this, it is important to select all three of the target architectures (x86, x64, and ARM) to allow the
app to be deployed to the widest range of devices.

On the final page you will be given options on how to validate that your app can be submitted to the
app store. Launch the Windows App Certification Kit and learn if your app is ready to be submitted.
If any problems are detected, you must fix them and go through the Create App Packages wizard
again. If your app passes inspection, you can upload the package.

EXERCISES

 25.1 Extend the Ch25Ex06 example by adding a WebView control to the page BlankPage1 and use
the navigate method to show a web page of your choice. Add an event handler to the page
that will navigate the WebView to another web page when the app resumes from suspension.

 25.2 If you want your app to work as a voice recorder, you must ensure that the app has
access to the microphone on the device. How do you ensure that the app will not get an
UnauthorizedAccessException when it tries to use the microphone on the device?

Answers to the exercises can be found in Appendix.

820 ❘ CHAPTER 25 Universal apps

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT DESCRIPTION

Windows Universal
App XAML

Windows Universal app XAML is used with C# to create the GUI for Windows
Universal apps. It includes many of the same controls that you know from
WPF, but some have changed, others are missing, and new controls have been
introduced.

Visual State
manager

You saw how to use a Visual State manager to change the look of your con-
trols and pages simply by changing the visual state of the control. This leads to
a lot less code in exchange for slightly more complex XAML.

App state Windows Universal apps are suspended when the user switches to another app
or to the desktop, so it’s important to handle this suspension and save the
app state when it happens.

App store account This account is used for deploying apps to the Windows Store.

Navigation Navigation in Windows Universal apps is done in much the same way that it
is in web applications, using method calls to move back and forth in the page
structure.

Exercise Solutions
There are no exercises in Chapters 1, 2, 18, and 19.

CHAPTER 3 SOLUTIONS

Exercise 1
super.smashing.great

Exercise 2
b), as it starts with a number, and e), as it contains a full stop.

Exercise 3
No, there is no theoretical limit to the size of a string that may be contained in a string
variable.

Exercise 4
The * and / operators have the highest precedence here, followed by %, +, and finally +=. The
precedence in the exercise can be illustrated using parentheses as follows:

resultVar += (((var1 * var2) % var3) + (var4 / var5));

Exercise 5
using static System.Console;
using static System.Convert;
static void Main(string[] args)
{
 int firstNumber, secondNumber, thirdNumber, fourthNumber;
 WriteLine("Give me a number:");

Appendix

822 ❘ APPENDIX ExErcisE solutions

 firstNumber = ToInt32(ReadLine());
 WriteLine("Give me another number:");
 secondNumber = ToInt32(Console.ReadLine());
 WriteLine("Give me another number:");
 thirdNumber = ToInt32(ReadLine());
 WriteLine("Give me another number:");
 fourthNumber = ToInt32(ReadLine());
 WriteLine($"The product of {firstNumber}, {secondNumber}, " +
 $"{thirdNumber}, and {fourthNumber} is " +
 $"{firstNumber * secondNumber * thirdNumber * fourthNumber}.");
}

Note that Convert.ToInt32() is used here, which isn’t covered in the chapter.

CHAPTER 4 SOLUTIONS

Exercise 1
(var1 > 10) ^ (var2 > 10)

Exercise 2
Note that at least one number must be >10 for the messages to be consistent with the entered sce-
nario. Also, consider checking whether a value has been entered before attempting to convert it
using ToDouble().

using static System.Console;
using static System.Convert;
static void Main(string[] args)
{
 bool numbersOK = false;
 double var1, var2;
 var1 = 0;
 var2 = 0;
 while (!numbersOK)
 {
 WriteLine("Enter 2 numbers, both numbers cannot be greater than 10.");
 WriteLine("Please enter the first number:");
 var1 = ToDouble(ReadLine());
 WriteLine("Please enter the second number:");
 var2 = ToDouble(ReadLine());

 WriteLine($"The first number entered is {var1} " +
 $"and the second is {var2}");

 if ((var1 > 10) ^ (var2 > 10))
 {
 numbersOK = true;
 }
 else if ((var2 > 10) ^ (var1 > 10))
 {

Chapter 5 Solutions ❘ 823

 numbersOK = true;
 }
 else
 {
 WriteLine("Only one number may be greater than 10, " +
 "please try again.");
 }
 }
 WriteLine("Press the <ENTER> key to exit.");
 ReadLine();
}

Exercise 3
The code should read:

 int i;
 for (i = 1; i <= 10; i++)
 {
 if ((i % 2) == 0)
 continue;
 WriteLine(i);
 }

Using the = assignment operator instead of the Boolean == operator is a very common mistake.

CHAPTER 5 SOLUTIONS

Exercise 1
Conversions a and c can’t be performed implicitly.

Exercise 2
 enum color : short
 {
 Red, Orange, Yellow, Green, Blue, Indigo, Violet, Black, White
 }

Yes, as the byte type can hold numbers between 0 and 255, so byte-based enumerations can hold
256 entries with individual values, or more if duplicate values are used for entries.

Exercise 3
The code will not compile, for the following reasons:

 ➤ End of statement semicolons are missing.

 ➤ Second line attempts to access a nonexistent sixth element of blab.

 ➤ Second line attempts to assign a string that isn’t enclosed in double quotes.

824 ❘ APPENDIX ExErcisE solutions

Exercise 4
using static System.Console;
static void Main(string[] args)
{
 WriteLine("Enter a string:");
 string myString = ReadLine();
 string reversedString = "";
 for (int index = myString.Length - 1; index >= 0; index--)
 {
 reversedString += myString[index];
 }
 WriteLine($"Reversed: {reversedString}");
}

Exercise 5
using static System.Console;
static void Main(string[] args)
{
 WriteLine("Enter a string:");
 string myString = ReadLine();
 myString = myString.Replace("no", "yes");
 WriteLine($"Replaced \"no\" with \"yes\": {myString}");
}

Exercise 6
using static System.Console;
static void Main(string[] args)
 {
 WriteLine("Enter a string:");
 string myString = ReadLine();
 myString = "\"" + myString.Replace(" ", "\" \"") + "\"";
 WriteLine($"Added double quotes around words: {myString}");
 }

Or using String.Split():

using static System.Console;
static void Main(string[] args)
 {
 WriteLine("Enter a string:");
 string myString = ReadLine();
 string[] myWords = myString.Split(' ');
 WriteLine("Adding double quotes around words:");
 foreach (string myWord in myWords)
 {
 Write($"\"{myWord}\" ");
 }
 }

Chapter 6 Solutions ❘ 825

CHAPTER 6 SOLUTIONS

Exercise 1
The first function has a return type of bool, but doesn’t return a bool value.

The second function has a params argument, but this argument isn’t at the end of the argument list.

Exercise 2
using static System.Console;
static void Main(string[] args)
 {
 if (args.Length != 2)
 {
 WriteLine("Two arguments required.");
 return;
 }
 string param1 = args[0];
 int param2 = ToInt32(args[1]);
 WriteLine($"String parameter: {param1}",);
 WriteLine($"Integer parameter: {param2}",);
 }

Note that this answer contains code that checks that two arguments have been supplied, which
wasn’t part of the question but seems logical in this situation.

Exercise 3
class Program
{
 using static System.Console;
 delegate string ReadLineDelegate();
 static void Main(string[] args)
 {
 ReadLineDelegate readLine = new ReadLineDelegate(ReadLine);
 WriteLine("Type a string:");
 string userInput = readLine();
 WriteLine($"You typed: {userInput}");
 }
}

Exercise 4
struct order
{
 public string itemName;
 public int unitCount;
 public double unitCost;
 public double TotalCost() => unitCount * unitCost;}

826 ❘ APPENDIX ExErcisE solutions

Exercise 5
struct order
{
 public string itemName;
 public int unitCount;
 public double unitCost;
 public double TotalCost() => unitCount * unitCost;
 public string Info() => "Order information: " + unitCount.ToString() +
 " " + itemName + " items at $" + unitCost.ToString() +
 " each, total cost $" + TotalCost().ToString();
}

CHAPTER 7 SOLUTIONS

Exercise 1
This statement is true only for information that you want to make available in all builds. More
often, you will want debugging information to be written out only when debug builds are used. In
this situation, the Debug.WriteLine() version is preferable.

Using the Debug.WriteLine() version also has the advantage that it will not be compiled into
release builds, thus reducing the size of the resultant code.

Exercise 2
 static void Main(string[] args)
 {
 for (int i = 1; i < 10000; i++)
 {
 WriteLine($"Loop cycle {i}");
 if (i == 5000)
 {
 WriteLine(args[999]);
 }
 }
 }

In VS, you can place a breakpoint on the following line:

 WriteLine("Loop cycle {0}", i);

The properties of the breakpoint should be modified such that the hit count criterion is “break when
hit count is equal to 5000”.

Exercise 3
False. finally blocks always execute. This may occur after a catch block has been processed.

Chapter 8 Solutions ❘ 827

Exercise 4
 static void Main(string[] args)
 {
 Orientation myDirection;
 for (byte myByte = 2; myByte < 10; myByte++)
 {
 try
 {
 myDirection = checked((Orientation)myByte);
 if ((myDirection < Orientation.North) ║
 (myDirection > Orientation.West))
 {
 throw new ArgumentOutOfRangeException("myByte", myByte,
 "Value must be between 1 and 4");
 }
 }
 catch (ArgumentOutOfRangeException e)
 {
 // If this section is reached then myByte < 1 or myByte > 4.
 WriteLine(e.Message);
 WriteLine("Assigning default value, Orientation.North.");
 myDirection = Orientation.North;
 }
 WriteLine($"myDirection = {myDirection}");
 }
 }

Note that this is a bit of a trick question. Because the enumeration is based on the byte type, any
byte value may be assigned to it, even if that value isn’t assigned a name in the enumeration. In the
previous code, you can generate your own exception if necessary.

CHAPTER 8 SOLUTIONS

Exercise 1
B, d, and e. Public, private, and protected are all real levels of accessibility.

Exercise 2
False. You should never call the destructor of an object manually; the .NET runtime environment
will do this for you during garbage collection.

Exercise 3
No, you can call static methods without any class instances.

828 ❘ APPENDIX ExErcisE solutions

Exercise 4

+Milk

HotDrink

+Sugar

+Drink()
+AddMilk()
+AddSugar()

+BeanType

CupOfCoffee

+LeafType
ICup CupOfTea

+Color

«Interface»
ICup

+Volume

+Refill()
+Wash()

ICup

Exercise 5
 static void ManipulateDrink(HotDrink drink)
 {
 drink.AddMilk();
 drink.Drink();
 ICup cupInterface = (ICup)drink;
 cupInterface.Wash();
 }

Note the explicit cast to ICup. This is necessary as HotDrink doesn’t support the ICup interface,
but you know that the two cup objects that might be passed to this function do. However, this is
dangerous, as other classes deriving from HotDrink are possible, which might not support ICup,
but could be passed to this function. To correct this, you should check to see if the interface is
supported:

 static void ManipulateDrink(HotDrink drink)
 {
 drink.AddMilk();
 drink.Drink();
 if (drink is ICup)
 {
 ICup cupInterface = drink as ICup;
 cupInterface.Wash();
 }
 }

The is and as operators used here are covered in Chapter 11.

Chapter 9 Solutions ❘ 829

CHAPTER 9 SOLUTIONS

Exercise 1
myDerivedClass derives from MyClass, but MyClass is sealed and can’t be derived from.

Exercise 2
You can define a noncreatable class by defining it as a static class or by defining all of its construc-
tors as private.

Exercise 3
Noncreatable classes can be useful through the static members they possess. In fact, you can even
get instances of these classes through these members, as shown here:

 class CreateMe
 {
 private CreateMe()
 {
 }
 static public CreateMe GetCreateMe()
 {
 return new CreateMe();
 }
 }

Here, the public constructor has access to the private constructor, as it is part of the same class
definition.

Exercise 4
For simplicity, the following class definitions are shown as part of a single code file, rather than list-
ing a separate code file for each:

namespace Vehicles
{
 public abstract class Vehicle
 {
 }
 public abstract class Car : Vehicle
 {
 }
 public abstract class Train : Vehicle
 {
 }

830 ❘ APPENDIX ExErcisE solutions

 public interface IPassengerCarrier
 {
 }
 public interface IHeavyLoadCarrier
 {
 }
 public class SUV : Car, IPassengerCarrier
 {
 }
 public class Pickup : Car, IPassengerCarrier, IHeavyLoadCarrier
 {
 }
 public class Compact : Car, IPassengerCarrier
 {
 }
 public class PassengerTrain : Train, IPassengerCarrier
 {
 }
 public class FreightTrain : Train, IHeavyLoadCarrier
 {
 }
 public class T424DoubleBogey : Train, IHeavyLoadCarrier
 {
 }
}

Exercise 5
using System;
using static System.Console;
using Vehicles;
namespace Traffic
{
 class Program
 {
 static void Main(string[] args)
 {
 AddPassenger(new Compact());
 AddPassenger(new SUV());
 AddPassenger(new Pickup());
 AddPassenger(new PassengerTrain());
 ReadKey();
 }
 static void AddPassenger(IPassengerCarrier Vehicle)
 {
 WriteLine(Vehicle.ToString());
 }
 }
}

Chapter 10 Solutions ❘ 831

CHAPTER 10 SOLUTIONS

Exercise 1
 class MyClass
 {
 protected string myString;
 public string ContainedString
 {
 set
 {
 myString = value;
 }
 }
 public virtual string GetString() => myString;
 }

Exercise 2
 class MyDerivedClass : MyClass
 {
 public override string GetString() => base.GetString() +
 " (output from derived class)";
 }

Exercise 3
If a method has a return type, then it is possible to use it as part of an expression:

 x = Manipulate(y, z);

If no implementation is provided for a partial method, then it will be removed by the compiler
along with all places where it is used. In the preceding code this would leave the result of x unclear
because no replacement for the Manipulate() method is available. It might be the case that without
this method you would simply want to ignore the entire line of code, but the compiler cannot decide
whether this is what you want.

Methods with no return types are not called as part of expressions, so it is safe for the compiler to
remove all references to the partial method calls.

Similarly, out parameters are forbidden since variables used as an out parameter must be undefined
before the method call and will be defined after the method call. Removing the method call would
break this behavior.

Exercise 4
class MyCopyableClass
{

832 ❘ APPENDIX ExErcisE solutions

 protected int myInt;
 public int ContainedInt
 {
 get
 {
 return myInt;
 }
 set
 {
 myInt = value;
 }
 }
 public MyCopyableClass GetCopy() => (MyCopyableClass)MemberwiseClone();
}

The client code:

class Program
{
 using static System.Console;
 static void Main(string[] args)
 {
 MyCopyableClass obj1 = new MyCopyableClass();
 obj1.ContainedInt = 5;
 MyCopyableClass obj2 = obj1.GetCopy();
 obj1.ContainedInt = 9;
 WriteLine(obj2.ContainedInt);
 }
}

This code displays 5, showing that the copied object has its own version of the myInt field.

Exercise 5
 using System;
 using static System.Console;
 using Ch10CardLib;
 namespace Exercise_Answers
 {
 class Class1
 {
 static void Main(string[] args)
 {
 while(true)
 {
 Deck playDeck = new Deck();
 playDeck.Shuffle();
 bool isFlush = false;
 int flushHandIndex = 0;
 for (int hand = 0; hand < 10; hand++)
 {
 isFlush = true;
 Suit flushSuit = playDeck.GetCard(hand * 5).suit;
 for (int card = 1; card < 5; card++)
 {

Chapter 11 Solutions ❘ 833

 if (playDeck.GetCard(hand * 5 + card).suit != flushSuit)
 {
 isFlush = false;
 }
 }
 if (isFlush)
 {
 flushHandIndex = hand * 5;
 break;
 }
 }
 if (isFlush)
 {
 WriteLine("Flush!");
 for (int card = 0; card < 5; card++)
 {
 WriteLine(playDeck.GetCard(flushHandIndex + card));
 }
 }
 else
 {
 WriteLine("No flush.");
 }
 ReadLine();
 }
 }
 }
 }

This code is looped as flushes are uncommon. You might need to press Return several times before
a flush is found in a shuffled deck. To verify that everything is working as it should, try commenting
out the line that shuffles the deck.

CHAPTER 11 SOLUTIONS

Exercise 1
using System;
using System.Collections;
namespace Exercise_Answers
{
 public class People : DictionaryBase
 {
 public void Add(Person newPerson) =>
 Dictionary.Add(newPerson.Name, newPerson);

 public void Remove(string name) => Dictionary.Remove(name);

 public Person this[string name]
 {
 get
 {

834 ❘ APPENDIX ExErcisE solutions

 return (Person)Dictionary[name];
 }
 set
 {
 Dictionary[name] = value;
 }
 }
 }
}

Exercise 2
public class Person
{
 private string name;
 private int age;
 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }
 public int Age
 {
 get
 {
 return age;
 }
 set
 {
 age = value;
 }
 }
 public static bool operator >(Person p1, Person p2) =>
 p1.Age > p2.Age;
 public static bool operator <(Person p1, Person p2) =>
 p1.Age < p2.Age;
 public static bool operator >=(Person p1, Person p2) =>
 !(p1 < p2);
 public static bool operator <=(Person p1, Person p2) =>
 !(p1 > p2);
}

Exercise 3
 public Person[] GetOldest()
 {
 Person oldestPerson = null;
 People oldestPeople = new People();

Chapter 11 Solutions ❘ 835

 Person currentPerson;
 foreach (DictionaryEntry p in Dictionary)
 {
 currentPerson = p.Value as Person;
 if (oldestPerson == null)
 {
 oldestPerson = currentPerson;
 oldestPeople.Add(oldestPerson);
 }
 else
 {
 if (currentPerson > oldestPerson)
 {
 oldestPeople.Clear();
 oldestPeople.Add(currentPerson);
 oldestPerson = currentPerson;
 }
 else
 {
 if (currentPerson >= oldestPerson)
 {
 oldestPeople.Add(currentPerson);
 }
 }
 }
 }
 Person[] oldestPeopleArray = new Person[oldestPeople.Count];
 int copyIndex = 0;
 foreach (DictionaryEntry p in oldestPeople)
 {
 oldestPeopleArray[copyIndex] = p.Value as Person;
 copyIndex++;
 }
 return oldestPeopleArray;
 }

This function is made more complex by the fact that no == operator has been defined for Person,
but the logic can still be constructed without this. In addition, returning a People instance would
be simpler, as it is easier to manipulate this class during processing. As a compromise, a People
instance is used throughout the function, and then converted into an array of Person instances at
the end.

Exercise 4
public class People : DictionaryBase, ICloneable
{
 public object Clone()
 {
 People clonedPeople = new People();
 Person currentPerson, newPerson;
 foreach (DictionaryEntry p in Dictionary)
 {
 currentPerson = p.Value as Person;
 newPerson = new Person();

836 ❘ APPENDIX ExErcisE solutions

 newPerson.Name = currentPerson.Name;
 newPerson.Age = currentPerson.Age;
 clonedPeople.Add(newPerson);
 }
 return clonedPeople;
 }
 ...
}

You could simplify this by implementing ICloneable on the Person class.

Exercise 5
 public IEnumerable Ages
 {
 get
 {
 foreach (object person in Dictionary.Values)
 yield return (person as Person).Age;
 }
 }

CHAPTER 12 SOLUTIONS

Exercise 1
a, b, and e: Yes

c and d: No, although they can use generic type parameters supplied by the class containing them.

f: No

Exercise 2
 public static double? operator *(Vector op1, Vector op2)
 {
 try
 {
 double angleDiff = (double)(op2.ThetaRadians.Value –
 op1.ThetaRadians.Value);
 return op1.R.Value * op2.R.Value * Math.Cos(angleDiff);
 }
 catch
 {
 return null;
 }
 }

Chapter 12 Solutions ❘ 837

Exercise 3
You can’t instantiate T without enforcing the new() constraint on it, which ensures that a public
default constructor is available:

 public class Instantiator<T>
 where T : new()
 {
 public T instance;
 public Instantiator()
 {
 instance = new T();
 }
 }

Exercise 4
The same generic type parameter, T, is used on both the generic class and the generic method. You
need to rename one or both. For example:

 public class StringGetter<U>
 {
 public string GetString<T>(T item) => item.ToString();
 }

Exercise 5
One way of doing this is as follows:

public class ShortList<T> : IList<T>
{
 protected IList<T> innerCollection;
 protected int maxSize = 10;
 public ShortList()
 : this(10)
 {
 }
 public ShortList(int size)
 {
 maxSize = size;
 innerCollection = new List<T>();
 }
 public ShortList(IEnumerable<T> list)
 : this(10, list)
 {
 }
 public ShortList(int size, IEnumerable<T> list)
 {
 maxSize = size;

838 ❘ APPENDIX ExErcisE solutions

 innerCollection = new List<T>(list);
 if (Count > maxSize)
 {
 ThrowTooManyItemsException();
 }
 }
 protected void ThrowTooManyItemsException()
 {
 throw new IndexOutOfRangeException(
 "Unable to add any more items, maximum size is " + maxSize.ToString()
 + " items.");
 }
 #region IList<T> Members
 public int IndexOf(T item) => innerCollection.IndexOf(item);
 public void Insert(int index, T item)
 {
 if (Count < maxSize)
 {
 innerCollection.Insert(index, item);
 }
 else
 {
 ThrowTooManyItemsException();
 }
 }
 public void RemoveAt(int index)
 {
 innerCollection.RemoveAt(index);
 }
 public T this[int index]
 {
 get
 {
 return innerCollection[index];
 }
 set
 {
 innerCollection[index] = value;
 }
 }
 #endregion
 #region ICollection<T> Members
 public void Add(T item)
 {
 if (Count < maxSize)
 {
 innerCollection.Add(item);
 }
 else
 {
 ThrowTooManyItemsException();
 }
 }
 public void Clear()
 {

Chapter 13 Solutions ❘ 839

 innerCollection.Clear();
 }
 public bool Contains(T item) => innerCollection.Contains(item);
 public void CopyTo(T[] array, int arrayIndex)
 {
 innerCollection.CopyTo(array, arrayIndex);
 }
 public int Count
 {
 get
 {
 return innerCollection.Count;
 }
 }
 public bool IsReadOnly
 {
 get
 {
 return innerCollection.IsReadOnly;
 }
 }
 public bool Remove(T item) => innerCollection.Remove(item);
 #endregion
 #region IEnumerable<T> Members
 public IEnumerator<T> GetEnumerator() =>
 innerCollection.GetEnumerator();
 #endregion
 #region IEnumerable Members
 IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
 #endregion
}

Exercise 6
No, it won’t. The type parameter T is defined as being covariant. However, covariant type param-
eters can be used only as return values of methods, not as method arguments. If you try this out you
will get the following compiler error (assuming you use the namespace VarianceDemo):

Invalid variance: The type parameter 'T' must be contravariantly valid on
'VarianceDemo.IMethaneProducer<T>.BelchAt(T)'. 'T' is covariant.

CHAPTER 13 SOLUTIONS

Exercise 1
using static System.Console;
public void ProcessEvent(object source, EventArgs e)
 {
 if (e is MessageArrivedEventArgs)
 {
 WriteLine("Connection.MessageArrived event received.");
 WriteLine($"Message: {(e as MessageArrivedEventArgs).Message }");

840 ❘ APPENDIX ExErcisE solutions

 }
 if (e is ElapsedEventArgs)
 {
 WriteLine("Timer.Elapsed event received.");
 WriteLine($"SignalTime: {(e as ElapsedEventArgs).SignalTime }");
 }
 }

Exercise 2
Modify Player.cs as follows (one modified method, two new ones—comments in the code explain
the changes):

 public bool HasWon()
 {
 // get temporary copy of hand, which may get modified.
 Cards tempHand = (Cards)PlayHand.Clone();
 // find three and four of a kind sets
 bool fourOfAKind = false;
 bool threeOfAKind = false;
 int fourRank = -1;
 int threeRank = -1;
 int cardsOfRank;
 for (int matchRank = 0; matchRank < 13; matchRank++)
 {
 cardsOfRank = 0;
 foreach (Card c in tempHand)
 {
 if (c.rank == (Rank)matchRank)
 {
 cardsOfRank++;
 }
 }
 if (cardsOfRank == 4)
 {
 // mark set of four
 fourRank = matchRank;
 fourOfAKind if (cardsOfRank == 3)
 {
 // two threes means no win possible
 // (threeOfAKind will be true only if this code
 // has already executed)
 if (threeOfAKind == true)
 {
 return false;
 }
 // mark set of three
 threeRank = matchRank;
 threeOfAKind = true;
 }
 }
 // check simple win condition
 if (threeOfAKind && fourOfAKind)
 {

Chapter 13 Solutions ❘ 841

 return true;
 }
 // simplify hand if three or four of a kind is found,
 // by removing used cards
 if (fourOfAKind || threeOfAKind)
 {
 for (int cardIndex = tempHand.Count - 1; cardIndex >= 0; cardIndex--)
 {
 if ((tempHand[cardIndex].rank == (Rank)fourRank)
 || (tempHand[cardIndex].rank == (Rank)threeRank))
 {
 tempHand.RemoveAt(cardIndex);
 }
 }
 }
 // at this point the method may have returned, because:
 // - a set of four and a set of three has been found, winning.
 // - two sets of three have been found, losing.
 // if the method hasn't returned then:
 // - no sets have been found, and tempHand contains 7 cards.
 // - a set of three has been found, and tempHand contains 4 cards.
 // - a set of four has been found, and tempHand contains 3 cards.
 // find run of four sets, start by looking for cards of same suit
 // in the same way as before
 bool fourOfASuit = false;
 bool threeOfASuit = false;
 int fourSuit = -1;
 int threeSuit = -1;
 int cardsOfSuit;
 for (int matchSuit = 0; matchSuit < 4; matchSuit++)
 {
 cardsOfSuit = 0;
 foreach (Card c in tempHand)
 {
 if (c.suit == (Suit)matchSuit)
 {
 cardsOfSuit++;
 }
 }
 if (cardsOfSuit == 7)
 {
 // if all cards are the same suit then two runs
 // are possible, but not definite.
 threeOfASuit = true;
 threeSuit = matchSuit;
 fourOfASuit = true;
 fourSuit = matchSuit;
 }
 if (cardsOfSuit == 4)
 {
 // mark four card suit.
 fourOfASuit = true;
 fourSuit = matchSuit;
 }
 if (cardsOfSuit == 3)

842 ❘ APPENDIX ExErcisE solutions

 {
 // mark three card suit.
 threeOfASuit = true;
 threeSuit = matchSuit;
 }
 }
 if (!(threeOfASuit || fourOfASuit))
 {
 // need at least one run possibility to continue.
 return false;
 }
 if (tempHand.Count == 7)
 {
 if (!(threeOfASuit && fourOfASuit))
 {
 // need a three and a four card suit.
 return false;
 }
 // create two temporary sets for checking.
 Cards set1 = new Cards();
 Cards set2 = new Cards();
 // if all 7 cards are the same suit...
 if (threeSuit == fourSuit)
 {
 // get min and max cards
 int maxVal, minVal;
 GetLimits(tempHand, out maxVal, out minVal);
 for (int cardIndex = tempHand.Count - 1; cardIndex >= 0; cardIndex--)
 {
 if (((int)tempHand[cardIndex].rank < (minVal + 3))
 || ((int)tempHand[cardIndex].rank > (maxVal - 3)))
 {
 // remove all cards in a three card set that
 // starts at minVal or ends at maxVal.
 tempHand.RemoveAt(cardIndex);
 }
 }
 if (tempHand.Count != 1)
 {
 // if more then one card is left then there aren't two runs.
 return false;
 }
 if ((tempHand[0].rank == (Rank)(minVal + 3))
 || (tempHand[0].rank == (Rank)(maxVal - 3)))
 {
 // if spare card can make one of the three card sets into a
 // four card set then there are two sets.
 return true;
 }
 else
 {
 // if spare card doesn't fit then there are two sets of three
 // cards but no set of four cards.
 return false;
 }

Chapter 13 Solutions ❘ 843

 }
 // if three card and four card suits are different...
 foreach (Card card in tempHand)
 {
 // split cards into sets.
 if (card.suit == (Suit)threeSuit)
 {
 set1.Add(card);
 }
 else
 {
 set2.Add(card);
 }
 }
 // check if sets are sequential.
 if (isSequential(set1) && isSequential(set2))
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 // if four cards remain (three of a kind found)
 if (tempHand.Count == 4)
 {
 // if four cards remain then they must be the same suit.
 if (!fourOfASuit)
 {
 return false;
 }
 // won if cards are sequential.
 if (isSequential(tempHand))
 {
 return true;
 }
 }
 // if three cards remain (four of a kind found)
 if (tempHand.Count == 3)
 {
 // if three cards remain then they must be the same suit.
 if (!threeOfASuit)
 {
 return false;
 }
 // won if cards are sequential.
 if (isSequential(tempHand))
 {
 return true;
 }
 }
 // return false if two valid sets don't exist.
 return false;
 }

844 ❘ APPENDIX ExErcisE solutions

 // utility method to get max and min ranks of cards
 // (same suit assumed)
 private void GetLimits(Cards cards, out int maxVal, out int minVal)
 {
 maxVal = 0;
 minVal = 14;
 foreach (Card card in cards)
 {
 if ((int)card.rank > maxVal)
 {
 maxVal = (int)card.rank;
 }
 if ((int)card.rank < minVal)
 {
 minVal = (int)card.rank;
 }
 }
 }
 // utility method to see if cards are in a run
 // (same suit assumed)
 private bool isSequential(Cards cards)
 {
 int maxVal, minVal;
 GetLimits(cards, out maxVal, out minVal);
 if ((maxVal - minVal) == (cards.Count - 1))
 {
 return true;
 }
 else
 {
 return false;
 }
 }

Exercise 3
In order to use an object initializer with a class, you must include a default, parameter-less construc-
tor. You could either add one to this class or remove the nondefault constructor that is there already.
Once you have done this, you can use the following code to instantiate and initialize this class in
one step:

Giraffe myPetGiraffe = new Giraffe
{
 NeckLength = "3.14",
 Name = "Gerald"
};

Exercise 4
False. When you use the var keyword to declare a variable, the variable is still strongly typed; the
compiler determines the type of the variable.

Chapter 14 Solutions ❘ 845

Exercise 5
You can use the Equals() method that is implemented for you. Note that you cannot use the ==
operator to do this, as this compares variables to determine if they both refer to the same object.

Exercise 6
The extension method must be static:

public static string ToAcronym(this string inputString)

Exercise 7
You must include the extension method in a static class that is accessible from the namespace that
contains your client code. You could do this either by including the code in the same namespace or
by importing the namespace containing the class.

Exercise 8
One way to do this is as follows:

 public static string ToAcronym(this string inputString) =>
 inputString.Trim().Split(' ').Aggregate<string, string>("",
 (a, b) => a + (b.Length > 0 ?
 b.ToUpper()[0].ToString() : ""));

Here the tertiary operator prevents multiple spaces from causing errors. Note also that the version of
Aggregate() with two generic type parameters is required, as a seed value is necessary.

CHAPTER 14 SOLUTIONS

Exercise 1
Wrap the TextBlock control in a ScrollViewer panel. Set the VerticalScrollBarVisibility
property to Auto to make the scrollbar appear when the text extends beyond the bottom edge of the
control.

<Window x:Class="Answers.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="14.1 Solution" Height="350" Width="525">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="75"/>
 <RowDefinition />
 </Grid.RowDefinitions>
 <Label Content="Enter text" HorizontalAlignment="Left" Margin="10,10,0,0"
VerticalAlignment="Top"/>

846 ❘ APPENDIX ExErcisE solutions

 <TextBox HorizontalAlignment="Left" Margin="76,12,0,0" TextWrapping="Wrap"
VerticalAlignment="Top" Height="53" Width="423" AcceptsReturn="True"
Name="textTextBox">
 </TextBox>
 <ScrollViewer HorizontalAlignment="Left" Height="217" Margin="10,10,0,0"
Grid.Row="1" VerticalAlignment="Top" Width="489"
VerticalScrollBarVisibility="Auto">
 <TextBlock TextWrapping="Wrap" Text="{Binding ElementName=textTextBox,
Path=Text}"/>
 </ScrollViewer>
 </Grid>
</Window>

Exercise 2
After dragging a Slider and ProgressBar control into the view, set the minimum and maxi-
mum values of the slider to 1 and 100 and the Value property to 1. Bind the same values of the
ProgressBar to the Slider.

<Window x:Class="Answers. Ch14Solution2"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="14.2 Solution" Height="300" Width="300">
 <Grid>
 <Slider HorizontalAlignment="Left" Margin="10,10,0,0" VerticalAlignment="Top"
Width="264" Minimum="1" Maximum="100" Name="valueSlider"/>
 <ProgressBar HorizontalAlignment="Left" Height="24" Margin="10,77,0,0"
VerticalAlignment="Top" Width="264"
Minimum="{Binding ElementName=valueSlider, Path=Minimum}"
Maximum="{Binding ElementName=valueSlider, Path=Maximum}"
Value="{Binding ElementName=valueSlider, Path=Value}"/>
 </Grid>
</Window>

Exercise 3
You can use a RenderTransform to do this. In Design View, you can position the cursor over the
edge of the control and when you see a quarter circle icon for the mouse pointer, click and drag the
control to the desired position.

<Window x:Class="Answers. Ch14Solution3"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="14.3 Solution" Height="300" Width="300">
 <Grid>
 <Slider HorizontalAlignment="Left" Margin="10,10,0,0" VerticalAlignment="Top"
Width="264" Minimum="1" Maximum="100" Name="valueSlider"/>
 <ProgressBar HorizontalAlignment="Left" Height="24" Margin="-17,125,-10,0"
VerticalAlignment="Top" Width="311"
Minimum="{Binding ElementName=valueSlider, Path=Minimum}" Maximum="{Binding
 ElementName=valueSlider, Path=Maximum}"

Chapter 14 Solutions ❘ 847

Value="{Binding ElementName=valueSlider, Path=Value}"
RenderTransformOrigin="0.5,0.5">
 <ProgressBar.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform Angle="-36.973"/>
 <TranslateTransform/>
 </TransformGroup>
 </ProgressBar.RenderTransform>
 </ProgressBar>
 </Grid>
</Window>

Exercise 4
The PersistentSlider class must implement the INotifyPropertyChanged interface.

Create a field to hold the value of each of the three properties.

In each of the setters of the properties, implement a call to any subscribers of the PropertyChanged
event. You are advised to create a helper method, called OnPropertyChanged, for this purpose.

PersistentSlider.cs:

using System.ComponentModel;
namespace Answers
{
 public class PersistentSlider : INotifyPropertyChanged
 {
 private int _minValue;
 private int _maxValue;
 private int _currentValue;
 public int MinValue
 {
 get { return _minValue; }
 set { _minValue = value; OnPropertyChanged(nameof(MinValue)); }
 }
 public int MaxValue
 {
 get { return _maxValue; }
 set { _maxValue = value; OnPropertyChanged(nameof(MaxValue)); }
 }
 public int CurrentValue
 {
 get { return _currentValue; }
 set { _currentValue = value; OnPropertyChanged(nameof(CurrentValue)); }
 }
 public event PropertyChangedEventHandler PropertyChanged;
 protected void OnPropertyChanged(string propertyName) =>
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
}

848 ❘ APPENDIX ExErcisE solutions

 1. In the code-behind file, add a field like this:

 private PersistentSlider _sliderData = new PersistentSlider { MinValue = 1,
MaxValue = 200, CurrentValue = 100 };

 2. In the constructor, set the DataContext property of the current instance to the field you just
created:

 this.DataContext = _sliderData;
 InitializeComponent();

 3. In the XAML, change the Slider control to use the data context. Only the Path needs
to be set:

<Window x:Class="Answers. Ch14Solution4"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="14.4 Solution" Height="300" Width="300">
 <Grid>
 <Slider HorizontalAlignment="Left" Margin="10,10,0,0"
VerticalAlignment="Top"
Width="264" Minimum="{Binding Path=MinValue}"
Maximum="{Binding Path=MaxValue}" Value="{Binding Path=CurrentValue}"
Name="valueSlider"/>
 <ProgressBar HorizontalAlignment="Left" Height="24" Margin="-17,125,-10,0"
VerticalAlignment="Top" Width="311"
Minimum="{Binding ElementName=valueSlider, Path=Minimum}"
Maximum="{Binding ElementName=valueSlider, Path=Maximum}"
Value="{Binding ElementName=valueSlider, Path=Value}"
RenderTransformOrigin="0.5,0.5">
 <ProgressBar.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform Angle="-36.973"/>
 <TranslateTransform/>
 </TransformGroup>
 </ProgressBar.RenderTransform>
 </ProgressBar>
 </Grid>
</Window>

CHAPTER 15 SOLUTIONS

Exercise 1
Solution:

 1. Create a new class with the name ComputerSkillValueConverter like this:

using Ch13CardLib;
using System;
using System.Windows.Data;

Chapter 15 Solutions ❘ 849

namespace KarliCards_Gui
{
 [ValueConversion(typeof(ComputerSkillLevel), typeof(bool))]
 public class ComputerSkillValueConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)
 {
 string helper = parameter as string;
 if (string.IsNullOrWhiteSpace(helper))
 return false;

 ComputerSkillLevel skillLevel = (ComputerSkillLevel)value;
 return (skillLevel.ToString() == helper);
 }

 public object ConvertBack(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)
 {
 string parameterString = parameter as string;
 if (parameterString == null)
 return ComputerSkillLevel.Dumb;

 return Enum.Parse(targetType, parameterString);
 }
 }

}

 2. Add a static resource declaration to the Options.xaml:

 <Window.Resources>
 <src:ComputerSkillValueConverter x:Key="skillConverter" />
 </Window.Resources>

 3. Change the radio buttons like this:

 <RadioButton Content="Dumb" HorizontalAlignment="Left"
Margin="37,41,0,0" VerticalAlignment="Top" Name="dumbAIRadioButton"
IsChecked="{Binding ComputerSkill, Converter={StaticResource skillConverter},
ConverterParameter=Dumb}" />
 <RadioButton Content="Good" HorizontalAlignment="Left"
Margin="37,62,0,0" VerticalAlignment="Top" Name="goodAIRadioButton"
IsChecked="{Binding ComputerSkill, Converter={StaticResource skillConverter},
ConverterParameter=Good}" />
 <RadioButton Content="Cheats" HorizontalAlignment="Left"
Margin="37,83,0,0" VerticalAlignment="Top" Name="cheatingAIRadioButton"
IsChecked="{Binding ComputerSkill, Converter={StaticResource skillConverter},
ConverterParameter=Cheats}" />

 4. Delete the events from the code-behind file.

850 ❘ APPENDIX ExErcisE solutions

Exercise 2
Solution:

 1. Add a new check box to the Options.xaml dialog box:

<CheckBox Content="Plays with open cards" HorizontalAlignment="Left"
Margin="10,100, 0,0" VerticalAlignment="Top"
IsChecked="{Binding ComputerPlaysWithOpenHand}" />

 2. Add a new property to the GameOptions.cs class:

 private bool _computerPlaysWithOpenHand;
 public bool ComputerPlaysWithOpenHand
 {
 get { return _computerPlaysWithOpenHand; }
 set
 {
 _computerPlaysWithOpenHand = value;
 OnPropertyChanged(nameof(ComputerPlaysWithOpenHand));
 }
}

 3. Add a new dependency property to the CardsInHandControl:

 public bool ComputerPlaysWithOpenHand
 {
 get { return (bool)GetValue(ComputerPlaysWithOpenHandProperty); }
 set { SetValue(ComputerPlaysWithOpenHandProperty, value); }
 }

 public static readonly DependencyProperty ComputerPlaysWithOpenHandProperty =
 DependencyProperty.Register("ComputerPlaysWithOpenHand", typeof(bool),
typeof(CardsInHandControl), new PropertyMetadata(false));

 4. In the DrawCards method of the CardsInHandControl, change the test for isFaceUp:

 if (Owner is ComputerPlayer)
 isFaceup = (Owner.State == CardLib.PlayerState.Loser ||
Owner.State == CardLib.PlayerState.Winner || ComputerPlaysWithOpenHand);

 5. Add a new property to the GameViewModel class:

 public bool ComputerPlaysWithOpenHand
 {
 get { return _gameOptions.ComputerPlaysWithOpenHand; }
 }

 6. Bind the new property to the CardsInHandControls on the game client to all four players:

ComputerPlaysWithOpenHand="{Binding GameOptions.ComputerPlaysWithOpenHand}"

Exercise 3
Solution:

 1. Add a new property to the GameViewModel like this:

 private string _currentStatusText = "Game is not started";
 public string CurrentStatusText

Chapter 16 Solutions ❘ 851

 {
 get { return _currentStatusText; }
 set
 {
 _currentStatusText = value;
 OnPropertyChanged(nameof(CurrentStatusText));
 }
 }

 2. Change the CurrentPlayer property like this:

 public Player CurrentPlayer
 {
 get { return _currentPlayer; }
 set
 {
 _currentPlayer = value;
 OnPropertyChanged("CurrentPlayer");
 if (!Players.Any(x => x.State == PlayerState.Winner))
 {
 Players.ForEach(x => x.State = (x == value ? PlayerState.Active :
PlayerState.Inactive));
 CurrentStatusText = $"Player {CurrentPlayer.PlayerName} ready";
 }
 else
 {
 var winner = Players.Where(x => x.HasWon).FirstOrDefault();
 if (winner != null)
 CurrentStatusText = $"Player {winner.PlayerName} has WON!";
 }
 }
 }

 3. Add this line at the end of the StartNewGame method:

CurrentStatusText = string.Format("New game stated. Player {0} to start",
CurrentPlayer.PlayerName);

 4. Add a status bar to the game client XAML and set the binding to the new property:

 <StatusBar Grid.Row="3" HorizontalAlignment="Center" Margin="0,0,0,15"
VerticalAlignment="Center" Background="Green" Foreground="White"
FontWeight="Bold">
 <StatusBarItem VerticalAlignment="Center">
 <TextBlock Text="{Binding CurrentStatusText}" />
 </StatusBarItem>
 </StatusBar>

CHAPTER 16 SOLUTIONS

Exercise 1
To find the answer to this question, you should have a look at the PlayGame() method in the Game
.cs file. Have a look through the method and list the variables it references while within the main

852 ❘ APPENDIX ExErcisE solutions

do...while loop. This information would need to be sent back and forth between the client and
server for the game to work via a web site:

 ➤ How many people are playing and what are their names?

 ➤ Who is the current player?

 ➤ The player’s hand of cards.

 ➤ The current card in play.

 ➤ The player’s action, for example taking, drawing or discarding.

 ➤ A list of discarded cards.

 ➤ The status of the game, such as whether somebody won.

Exercise 2
You can store the information in a database and then retrieve the required data with each call, and
you can pass the required information back and forth between the client and server using the ASP
.NET Session Object or VIEWSTATE.

For information about the ASP.NET Session Object, read this article: https://msdn.microsoft
.com/en-us/library/ms178581.aspx

For information about VIEWSTATE, read this article: https://msdn.microsoft.com/en-us/
library/ms972976.aspx

CHAPTER 17 SOLUTIONS

Exercise 1
...
using System.Net;
using System.IO;
using Newtonsoft.Json;
using static System.Console;
namespace handofcards
{
 class Program
 {
 static void Main(string[] args)
 {
 List<string> cards = new List<string>();
 var playerName = "Benjamin";
 string GetURL =
 "http://handofcards.azurewebsites.net/api/HandOfCards/" +
 playerName;
 WebClient client = new WebClient();
 Stream dataStream = client.OpenRead(GetURL);
 StreamReader reader = new StreamReader(dataStream);

https://msdn.microsoft.com/en-us/library/ms178581.aspx
https://msdn.microsoft.com/en-us/library/ms178581.aspx
https://msdn.microsoft.com/en-us/library/ms972976.aspx
https://msdn.microsoft.com/en-us/library/ms972976.aspx

Chapter 20 Solutions ❘ 853

 var results =
 JsonConvert.DeserializeObject<dynamic>(reader.ReadLine());
 reader.Close();
 foreach (var item in results)
 {
 WriteLine((string)item.imageLink);
 }
 ReadLine();
 }
 }
}

Exercise 2
The maximum size of a Web App VM is 4 CPU/Cores (~2.6Ghz) with 7GB of RAM.

The maximum number of VMs that you can have in Standard mode is 10. The maximum number
of VMs you can have in Premium mode is 50. That translates into a maximum 200 * 2.6Ghz cores
with 350GB of memory loaded across 50 virtual machines.

Note that this is for Web Apps. You can utilize Azure VMs or Azure Cloud Services to get even
more cores and memory.

CHAPTER 20 SOLUTIONS

Exercise 1
System.IO

Exercise 2
You use a FileStream object to write to a file when you need random access to files, or when you
are not dealing with string data.

Exercise 3
 ➤ Peek(): Gets the value of the next character in the file but does not advance the file position

 ➤ Read(): Gets the value of the next character in the file and advances the file position

 ➤ Read(char[] buffer, int index, int count): Reads count characters into buffer,
starting at buffer[index]

 ➤ ReadLine(): Gets a line of text

 ➤ ReadToEnd(): Gets all text in a file

Exercise 4
DeflateStream

854 ❘ APPENDIX ExErcisE solutions

Exercise 5
 ➤ Changed: Occurs when a file is modified

 ➤ Created: Occurs when a file in created

 ➤ Deleted: Occurs when a file is deleted

 ➤ Renamed: Occurs when a file is renamed

Exercise 6
Add a button that toggles the value of the FileSystemWatcher.EnableRaisingEvents property.

CHAPTER 21 SOLUTIONS

Exercise 1
 1. Double-click the Create Node button to go to the event handler doing the work.

 2. Below the creation of the XmlComment, insert the following three lines:

 XmlAttribute newPages = document.CreateAttribute("pages");
 newPages.Value = "1000";
 newBook.Attributes.Append(newPages);

Exercise 2
 1. //elements—Returns all nodes in the document.

 2. element—Returns every element node in the document but leaves the element root node out.

 3. element[@Type='Noble Gas']—Returns every element that includes an attribute with the
name Type, which has a value of Noble Gas.

 4. //mass—Returns all nodes with the name mass.

 5. //mass/..—The .. causes the XPath to move one up from the selected node, which means
that this query selects all the nodes that include a mass node.

 6. element/specification[mass='20.1797']—Selects the specification element that contains
a mass node with the value 20.1797.

 7. element/name[text()='Neon']—To select the node whose contents you are testing, you
can use the text() function. This selects the name node with the text Neon.

Exercise 3
Recall that XML can be valid, well-formed, or invalid. Whenever you select part of an XML docu-
ment, you are left with a fragment of the whole. This means that there is a good chance that the
XML you’ve selected is in fact invalid XML on its own. Most XML viewers will refuse to display

Chapter 22 Solutions ❘ 855

XML that isn’t well-formed, so it is not possible to display the results of many queries directly in a
standard XML viewer.

Exercise 4
Add a new button JSON>XML to MainWindow.xaml and then add the following code to
MainWindow.xaml.cs:

 private void buttonConvertXMLtoJSON_Click(object sender, RoutedEventArgs e)
 {
 // Load the XML document.
 XmlDocument document = new XmlDocument();

 document.Load(@"C:\BeginningCSharp7\Chapter21\XML and Schemas\
Books.xml");

 string json = Newtonsoft.Json.JsonConvert.SerializeXmlNode(document);

 textBlockResults.Text = json;

 System.IO.File.AppendAllText
 (@"C:\BeginningCSharp7\Chapter21\XML and Schemas\Books
.json",
 json);
 }
 private void buttonConvertJSONtoXML_Click(object sender,
RoutedEventArgs e)
 {
 // Load the json document.
 string json = System.IO.File.ReadAllText
 (@"C:\BeginningCSharp7\Chapter21\XML and Schemas\Books.json");

 XmlDocument document =
 Newtonsoft.Json.JsonConvert.DeserializeXmlNode(json);

 textBlockResults.Text =
 FormatText(document.DocumentElement as XmlNode, "", "");
 }

CHAPTER 22 SOLUTIONS

Exercise 1
static void Main(string[] args)
{
 string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

 var queryResults =
 from n in names
 where n.StartsWith("S")

856 ❘ APPENDIX ExErcisE solutions

 orderby n descending
 select n;

 Console.WriteLine("Names beginning with S:");

 foreach (var item in queryResults) {
 Console.WriteLine(item);
 }

 Console.Write("Program finished, press Enter/Return to continue:");
 Console.ReadLine();
}

Exercise 2
Sets smaller than 5,000,000 have no numbers < 1000:

static void Main(string[] args)
{
 int[] arraySizes = { 100, 1000, 10000, 100000,
 1000000, 5000000, 10000000, 50000000 };

 foreach (int i in arraySizes) {
 int[] numbers = generateLotsOfNumbers(i);
 var queryResults = from n in numbers
 where n < 1000
 select n;
 Console.WriteLine("number array size = {0}: Count(n < 1000) = {1}",
 numbers.Length, queryResults.Count()
);
 }

 Console.Write("Program finished, press Enter/Return to continue:");
 Console.ReadLine();
}

Exercise 3
Does not affect performance noticeably for n < 1000:

 static void Main(string[] args)
 {

 int[] numbers = generateLotsOfNumbers(12345678);

 var queryResults =
 from n in numbers
 where n < 1000
 orderby n
 select n
 ;

 Console.WriteLine("Numbers less than 1000:");
 foreach (var item in queryResults)

Chapter 22 Solutions ❘ 857

 {
 Console.WriteLine(item);
 }

 Console.Write("Program finished, press Enter/Return to continue:");
 Console.ReadLine();
 }

Exercise 4
Very large subsets such as n > 1000 instead of n < 1000 are very slow:

 static void Main(string[] args)
 {

 int[] numbers = generateLotsOfNumbers(12345678);

 var queryResults =
 from n in numbers
 where n > 1000
 select n
 ;

 Console.WriteLine("Numbers less than 1000:");
 foreach (var item in queryResults)
 {
 Console.WriteLine(item);
 }

 Console.Write("Program finished, press Enter/Return to continue:");
 Console.ReadLine();
 }

Exercise 5
All the names are output because there is no query.

static void Main(string[] args)
{
 string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };

 var queryResults = names;

 foreach (var item in queryResults) {
 Console.WriteLine(item);
 }

 Console.Write("Program finished, press Enter/Return to continue:");
 Console.ReadLine();
}

858 ❘ APPENDIX ExErcisE solutions

Exercise 6
 static void Main(string[] args)
 {
 string[] names = { "Alonso", "Zheng", "Smith", "Jones", "Smythe",
"Small", "Ruiz", "Hsieh", "Jorgenson", "Ilyich", "Singh", "Samba", "Fatimah" };
 // only Min() and Max() are available (if no lambda is used)
 // for a result set like this consisting only of strings
 Console.WriteLine("Min(names) = " + names.Min());
 Console.WriteLine("Max(names) = " + names.Max());
 var queryResults =
 from n in names
 where n.StartsWith("S")
 select n;

 Console.WriteLine("Query result: names starting with S");
 foreach (var item in queryResults)
 {
 Console.WriteLine(item);
 }

 Console.WriteLine("Min(queryResults) = " + queryResults.Min());
 Console.WriteLine("Max(queryResults) = " + queryResults.Max());

 Console.Write("Program finished, press Enter/Return to continue:");
 Console.ReadLine();
 }

CHAPTER 23 SOLUTIONS

Exercise 1
Comment out the explicit creation of the two books and replace with code to prompt for a new title
and author such as shown in this code:

//Book book = new Book { Title = "Beginning C# 7",
// Author = "Perkins, Reid, and Hammer" };
//db.Books.Add(book);
//book = new Book { Title = "Beginning XML", Author = "Fawcett, Quin, and Ayers"};

 string title;
 string author;
 Book book;

 do
 {
 Console.Write("Title: "); title = Console.ReadLine();
 Console.Write("Author: "); author = Console.ReadLine();

 if (!string.IsNullOrEmpty(author))
 {
 book = new Book { Title = title, Author = author };

Chapter 23 Solutions ❘ 859

 db.Books.Add(book);

 db.SaveChanges();
 }
 } while (!string.IsNullOrEmpty(author));

Exercise 2
Add a test LINQ query to see if a book with same title and author already exists before adding to
database. Use code like this:

 Book book = new Book { Title = "Beginning C# 7",
 Author = "Perkins, Reid, and Hammer" };

 var testQuery = from b in db.Books
 where b.Title == book.Title && b.Author == book.Author
 select b;

 if (testQuery.Count() < 1)
 {
 db.Books.Add(book);
 db.SaveChanges();
 }

Exercise 3
Modify the generated classes Stock.cs, Store.cs, and BookContext.cs to use the Inventory and Item
names, then change the references to these in Program.cs:

 public partial class Stock
 {
 ...

 public virtual Store Store { get; set; }
 }
 public partial class Store
 {
 ...
 public Store()
 {
 Inventory = new HashSet<Stock>();
 }

 ...

 public virtual ICollection<Stock> Inventory { get; set; }
 }

 public partial class BookContext : DbContext
 {
...

860 ❘ APPENDIX ExErcisE solutions

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Book>()
 .HasMany(e => e.Inventory)
 .WithOptional(e => e.Item)
 .HasForeignKey(e => e.Item_Code);

 modelBuilder.Entity<Store>()
 .HasMany(e => e.Inventory)
 .WithOptional(e => e.Store)
 .HasForeignKey(e => e.Store_StoreId);
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 using (var db = new BookContext())
 {
 var query = from store in db.Stores
 orderby store.Name
 select store;
 foreach (var s in query)
 {
 XElement storeElement = new XElement("store",
 new XAttribute("name", s.Name),
 new XAttribute("address", s.Address),
 from stock in s.Inventory
 select new XElement("stock",
 new XAttribute("StockID", stock.StockId),
 new XAttribute("onHand",
 stock.OnHand),
 new XAttribute("onOrder",
 stock.OnOrder),
 new XElement("book",
 new XAttribute("title",
 stock.Item.Title),
 new XAttribute("author",
 stock.Item.Author)
)// end book
) // end stock
); // end store
 Console.WriteLine(storeElement);
 }

Exercise 4
Use the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Chapter 23 Solutions ❘ 861

using System.Threading.Tasks;
using System.Data.Entity;
using System.ComponentModel.DataAnnotations;

namespace BeginningCSharp7_23_Exercise4_GhostStories
{
 public class Story
 {
 [Key]
 public int StoryID { get; set; }
 public string Title { get; set; }
 public Author Author { get; set; }
 public string Rating { get; set; }
 }

 public class Author
 {
 [Key]
 public int AuthorId { get; set; }
 public string Name { get; set; }
 public string Nationality { get; set; }
 }

 public class StoryContext : DbContext
 {
 public DbSet<Author> Authors { get; set; }
 public DbSet<Story> Stories { get; set; }
 }

 class Program
 {
 static void Main(string[] args)
 {
 using (var db = new StoryContext())
 {
 Author author1 = new Author
 {
 Name = "Henry James",
 Nationality = "American"
 };
 Story story1 = new Story
 {
 Title = "The Turn of the Screw",
 Author = author1,
 Rating = "a bit dull"
 };
 db.Stories.Add(story1);

 db.SaveChanges();

 var query = from story in db.Stories
 orderby story.Title
 select story;

862 ❘ APPENDIX ExErcisE solutions

 Console.WriteLine("Ghost Stories:");
 Console.WriteLine();
 foreach (var story in query)
 {
 Console.WriteLine(story.Title);
 Console.WriteLine();
 }

 Console.WriteLine("Press a key to exit...");
 Console.ReadKey();
 }
 }
 }

CHAPTER 24 SOLUTIONS

Exercise 1
All of the above.

Exercise 2
You would implement a data contract, with the DataContractAttribute and
DataMemberAttribute attributes.

Exercise 3
Use the .svc extension.

Exercise 4
That is one way of doing things, but it is usually easier to put all your WCF configuration in a sepa-
rate configuration file, either web.config or app.config.

Exercise 5
[ServiceContract]
public interface IMusicPlayer
{
 [OperationContract(IsOneWay=true)]
 void Play();
 [OperationContract(IsOneWay=true)]
 void Stop();
 [OperationContract]
 TrackInformation GetCurrentTrackInformation();
}

Chapter 25 Solutions ❘ 863

You would also want a data contract to encapsulate track information; TrackInformation in the
preceding code.

CHAPTER 25 SOLUTIONS

Exercise 1
 1. Modify the XAML of the page BlankPage1 like this:

<Page
 x:Class="BasicNavigation.BlankPage1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BasicNavigation"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" Loaded="Page_Loaded">

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <CommandBar>
 <AppBarToggleButton x:Name="toggleButtonBold" Icon="Bold" Label="Bold"
Click="AppBarToggleButtonBold_Click" />
 <AppBarSeparator />
 <AppBarButton Icon="Back" Label="Back" Click="buttonGoBack_Click"/>
 <AppBarButton Icon="Forward" Label="Forward"
Click="AppBarButtonForward_Click"/>

 <CommandBar.SecondaryCommands>
 <AppBarButton Icon="Camera" Label="Take picture" />
 <AppBarButton Icon="Help" Label="Help" />
 </CommandBar.SecondaryCommands>
 </CommandBar>

 <TextBlock x:Name="textBlockCaption" Text="Page 1"
HorizontalAlignment="Center" Margin="10,50,10,10" VerticalAlignment="Top"/>
 <StackPanel Orientation="Horizontal" Grid.Row="1"
HorizontalAlignment="Center" VerticalAlignment="Bottom">
 <Button Content="Page 2" Click="buttonGoto2_Click" />
 <Button Content="Page 3" Click="buttonGoto3_Click" />
 <Button Content="Back" Click="buttonGoBack_Click" />
 </StackPanel>
 <WebView x:Name="webViewControl"
HorizontalAlignment="Stretch" Margin="0,75,0,40" VerticalAlignment="Stretch" />
 </Grid>

</Page>

 2. Go to the code-behind and add these lines to the constructor:

webViewControl.Navigate(new Uri("http://www.wrox.com"));
Application.Current.Resuming += (sender, o) => webViewControl.Navigate(new

864 ❘ APPENDIX ExErcisE solutions

Uri("https://www.amazon.com/s/ref=nb_sb_noss_2?url=
search-alias%3Dstripbooks&field-keywords=Beginning+C%23+7+Programming+
with+Visual+Studio+2017"));

Exercise 2
You specify which capabilities the app has in the Package.appxmanifest file on the Capabilities
tab. In order to avoid getting an UnauthorizedAccessException when you access the microphone,
you must ensure that the Microphone capability is checked.

865

INDEX

Symbols
{ } (curly brackets), 34
^ = assignment operator (Boolean), 62
| = assignment operator (Boolean), 62
! = comparison operator (Boolean), 60
= = comparison operator (Boolean), 60, 397
| | conditional operator (Boolean), 61
: : operator, namespaces and, 360–361
< >angle brackets, syntax, 320
%= assignment operator, 52
*= assignment operator, 52
+= assignment operator, 52
-= assignment operator, 52
/= assignment operator, 52
= assignment operator, 42, 52
&= assignment operator (Boolean), 62
< comparison operator (Boolean), 60
<= comparison operator (Boolean), 60
> comparison operator (Boolean), 60
>= comparison operator (Boolean), 60
&& conditional operator (Boolean), 61
% operator, 47
* operator, 47
+ operator, 47
- operator, 47
/ operator, 47
?? (null coalescing) operator, 323–324
?. (null condition) operator, 325
/* with comments, 35
// with comments, 36
2D rendering, XAML and, 426
3D rendering, XAML and, 426

A
About window (KarliCards), 453–458
absolute path names, 646–647
abstract classes, 204, 226–228

abstract keyword, 204, 250–251
AcceptsReturn property, 459
accessibility, 182
accumulators, 418
Add() method, 283
Add New Item Wizard, 219–220
AddRange() method, 276
ADO.NET (Active Data Objects .NET), 11

Entity Framework and, 732
Aggregate() method, 416, 418
aggregate operators, LINQ, 717–720
aliases, namespaces, 360–361
alignment, 442
AllowMultiple property, 385–386
animation, WPF, 484–485
anonymous methods, 375, 409–413
anonymous types, 394–398
AOT (Ahead of Time) compiler, 580

NGEN and, 580
API Portability Analyzer, 605
APIs (Application Programming Interfaces), 560

applications, 10
cross-platform programs and, 581

Append() method, 335
AppendChild() method, 685
AppendFormat() method, 335
ApplicationException class, 361
applications

APIs, 10
ASP.NET, web applications, 548–555
Cloud/Web, 10
console applications, 16, 21–23, 32
desktop, 10, 16, 26–31, 32, 196–199
event-driven, 195
.NET Core, 5–9, 13
.NET Framework, 5–9, 13
UWP (Windows Universal Platform), 4

badges, 796–797
creating, 794–795

866

applications – binary operators

applications (continued)
disk access, 807–810
lifetime, 797
Lock Screen, 797
menus, 796
navigation, 810–812
sandboxed, 805–807
screen orientation, 796
tiles, 796–797
toolbars, 796

WCF services, 11
Web APIs, 10
Windows Store, 10, 816–819
WPF (Windows Presentation Foundation), 10
writing, 5–6

archived files, 661
ArrayList collection, 274, 320
arrays, 84, 99, 100–101, 103–106

of arrays, 108–109
collections, 194
declaring, 99–100
expression filter, 103
foreach loops, 101, 105
int, 124
multidimensional, 106–108
parameters, 124–126
pattern matching, switch statement and, 102–103

as operator, 315–317
ASP.NET, 533

code-behinds, 611
controls, HTML and, 609
selecting, 611–612
web applications, 548–555

ASP.NET Core, 612, 617–618
authentication, 631–632
authorization, 631–632
self-hosting and, 628
web applications, 627–637

ASP.NET MVC, 612, 614–616
ASP.NET Web API, 617

ASP.NET MVC (Model, View, Controller) and, 560
consuming from web site, 567–571
creating, 560–564
deployment to cloud, 564–567
JSON file, Newtonsoft.Json library and, 568–570
scaling, 572–575

ASP.NET Web Development Server, 548–549
ASP.NET Web Forms, 611, 613–614

authentication, 623–627
authorization, 623–627

input, validation, 621–622
server controls, 620–621
state management, 622

ASP.NET Web Site, ASP.NET Web Application Project
types comparison, 618–620

assemblies, 7, 581
assignment operators, 52–53

%=, 52
*=, 52
+=, 52
-=, 52
/=, 52
=, 42, 52
Boolean, 62
overloading, 301

async keyword, 168
asynchronous file access, 660–661
attached property, 435–436
attributes, 384

AttributeUsageAttribute, 385–386
creating, 385–386
OptionalAttribute, 404
reading, reflection and, 384–385
using statement, 384

AttributeUsageAttribute attribute,
385–386

automatic properties, 243–244
Average() method, 717
await keyword, 168
Azure, 538

platform, 540
SQL Azure, 538
storage container

ASP.NET web site, 548–555
catch block, 543–544, 546
creating, 539–540
try block, 543–544, 546

Azure Active Directory, 538
Azure Cloud Services, 538
Azure Storage, libraries, 540–547
Azure VM, 538

B
base class methods, 244–247
base keyword, 214, 246
BCL (Base Class Libraries), 5

cross-platform programs and, 582
.NET Standard and, 583

binary operators, overloading, 301

867

blocks – cloud

blocks, 34
indentation, 34

bool type, 40, 60
Boolean logic, 59–64
branching, 59

if statement, 65–69
switch statement, 69–72
ternary operators, 65

break command, 79
bubbling events, 438
Button control, 430, 441
byte integer type, 39

C
C# overview, 9–11
Call Hierarchy view, 218
Card class, 255
CardLib. See also KarliCards

Cards collection, 279–282
class libraries, 256–265
custom exceptions, 362–363
Deck.GetCard() method, 362–363
deep copying, 290–292
event handlers, 375–383
generic collection classes, 339
operator overloads, 302–307

case sensitivity, 36
catch blocks, 168–175
char type, 40
char variables, implicit conversion, 48
CheckBox control

Content property, 460
IsChecked property, 460
IsThreeState property, 460

checked keyword, 314
CheckForMessage() method, 370
CIL (Common Intermediate Language), 6, 8

CLR and, 580
Circuit Breaker cloud programming pattern, 538
class diagrams, 220–222
class keyword, 204–206
class libraries, 222–226

CardLib, 256–265
Class View, 216–218
classes

abstract, 204
access modifiers, 206
adding, 219–220
ApplicationException, 361

base classes, 244–247
Card, 255
CollectionBase, 276
collections, 193, 194, 270
ComputerPlayer, 504–511
Connection, 368–369
containment, 193–194
Deck, 255–256
defining, 204–209

partial definitions, 252–253
DeflateStream, 642
dependency properties, implementing,

486–499
exception classes, 361
file system access, 642
FileStream, 648–655
FileSystemWatcher, 664–669
generic, 320
GZipStream, 642
instances, 181
interface implementation, 250–252
internal, 204
members, 234
MessageArrivedEventArgs,

372
Panel, 444
Player, 504–511
sealed, 204
static, 185–186
StreamReader, 648, 658–660
StreamWriter, 648, 655–657
versus structs, 228–230
System.Attribute, 386–387
System.Timers.Timer, 366
UML and, 181
Vector, 328–329
XmlAttribute, 678
XmlComment, 678
XmlDocument, 677, 678
XmlElement, 677, 678–679
XmlNode, 677
XmlNodeList, 678
XmlText, 678

Clear() method, 276
Clone() method, 289
Cloner object, 290
cloud

applications, 10
hybrid cloud, 534–535
IaaS (Infrastructure as a Service) and, 536

868

cloud – controls

cloud (continued)
.NET Framework and, 536
PaaS (Platform as a Service) and, 536
private cloud, 534–535
public cloud, 534–535
SaaS (Software as a Service) and, 536
service models, 535

cloud optimized stack, 536, 560, 591
cloud programming

dependencies and, 533–534
elasticity, 534, 536
patterns

Circuit Breaker, 538
CQRS, 537
Health Endpoint Monitoring, 538
Materialized View, 537
Retry, 538
Sharding, 537
Throttling, 538
Valet Key, 537

portability, 536, 537
resiliency, 536, 538
scalability, 536, 537
small footprint, 536

CLR (Common Language Runtime), 5, 7
CIL conversion and, 580
cross-platform programs and, 582
virtual machine, 580

code
accessibility, 182
compiling, 6, 8–9
decorating, 384
managed code, 7
native code, 6
reusable, 118

Code First
database

creating, 733–740
location, 740–742
relationships, 742–749

Entity Framework and, 732
code-behind files, 427, 429

ASP.NET, 611
collection classes, 270

strongly typed, 270
collection initializers, 389–390
CollectionBase class, 276
collections, 193, 194, 269–270

ArrayList, 274
arrays, 194, 271–276

defining, 276–277, 317
implementing, 278–279
iterators and, 288
key values, 282–283
lambda expressions and, 416–419
sorting, 309–310

Ch11Ex05, 310–313
column layout, 451–452
COM (Component Object Model), 398
ComboBox control, 461–462
comments, 35

/*, 35
//, 36

Compare() method, 308, 335
CompareTo() method, 308
comparison operators

Boolean, 60
overloading, 301

comparisons, 270
type

boxing, 292–294
is operator, 294–296
unboxing, 292–294

value, operator overloading and,
298–302

compiling, 6, 8–9
JIT (just-in-time), 6

compressed files, reading/writing, 661–664
ComputerPlayer class, 504–511
conditional operators, 4

Boolean logic, 61
Connect() method, 369–370
Connection class, 368–369
Console App (.NET Core), 602–605
console applications, 16, 32

creation, 21–23
ConsoleApplication1, 23, 36–37

Solution Explorer, 24
syntax, 36–38

const pattern, 297
constructors, 211–212

AttributeTargets parameter, 385–386
execution sequence, 212–216
FrameworkPropertyMetadata, 487–488
initializer, 214

containment, 193–194
Content property, 441, 460, 461
contravariance, 353, 354–355
control events, 437–438
controls (WPF)

869

conversions – debugging

Border, 443
Button, 430
Canvas, 430
Grid, 441
Label, 430
layout, 441–442
StackPanel, 430
TextBox, 430
types, 441

conversions, 270, 313–316
Copy() method, 643
copying

deep copies, 289, 230–231
objects, shallow versus deep, 230–231

CoreCLR, cross-platform programs and, 582
CoreFX, cross-platform programs and, 583
CoreRT, cross-platform programs and, 583
Count() method, 717
covariance, 353, 354
CQRS (Command and Query Responsibility

Segregation) cloud programming pattern, 537
Create() method, 643
CreateAttribute() method, 685
CreateComment() method, 685
CreateDirectory() method, 643
CreateElement() method, 685
CreateNode() method, 685
CreateTextNode() method, 685
cross platform, .NET Core and, 590–591
cross-platform programs

APIs, 581
assemblies, 581
BCL (Base Class Libraries), 582
CLR (Common Language Runtime), 582
CoreCLR, 582
CoreFX, 583
CoreRT, 583
cross platform, 581
dependencies, 582
ecosystems, 581
forking, 582
frameworks, 581
GitHub, 582
hardware platform and, 581
libraries, 581
metadata, 582
metapackages, 582
.NET Native, 583
NuGet, 582

open source, 581
packages, 582
PCL (Portable Class Libraries), 582
runtime, 582
semantic versioning, 582
software platform and, 581
stacks, 581
standards, 581
target framework, 582
TFM (Target Framework Moniker), 582
versions, 582
verticals, 581

CTS (Common Type System), 5
custom exceptions, 361

CardLib project, 362–363

D
data binding, Options window (KarliCards), 467–472
data languages, 673

JSON, 674–675
XML, 674

data templates, 497
databases, 731–732

Code First, 733–742
entity-relationship model, 732
migration, 749–750
relational databases, 731
relationships, 742–749
SQL Azure, 538
XML, 750–756

DataContext control, 468
Debug (VS), symbolic information, 150
debugging, 22–23, 150

Break mode
assertions, 161–162
breakpoints, 159–160
entering Break mode, 158–159
stepping through code, 164–166
variable content monitoring, 162–164

Call Stack window, 167
Command window, 166
Immediate window, 166
Normal mode

diagnostics output, 158
Output window, 151–156
tracepoints, 156–158

WPF apps, 443–444

870

Deck class – event handlers

Deck class, 255–256
Deconstruct() method, 242
decorating code, 384
decrement operators, 48
deep copies, 230–231

CardLib, 290–292
MemberwiseClone() and, 289

default keyword, generic class definition, 342
defining classes, partial, 252–253
defining collections, 276–277
defining methods, partial, 253–255
DeflateStream class, 642
delegate keyword, 410
delegate types, 374
delegates

event handlers, 363
functions, 144–147
lambda expressions as, 415–416

Delete() method, 643
dependencies, cross-platform programs and, 582
dependency property, 431, 435

implementing, 486–499
Register() method, 486

Design View, WYSIWYG view, 429
desktop applications, 10, 16, 26–32, 196–199
destructors, 211–212
Dictionary member, 283
DictionaryK, V type, 337–339

index initializers, 338
DictionaryBase, 282–283, 317
digit separators, 44–45
directives

#else, 585
#endif, 585
#if, 585

Directory class, 642
CreateDirectory() method, 643
Delete() method, 643
EnumerateDirectories() method, 643
EnumerateFiles() method, 643
EnumerateFileSystemEntries() method, 644
GetDirectories() method, 643
GetFiles() method, 643
GetFileSystemEntries() method, 643
Move() method, 644

directory path names, 646–647
DirectoryInfo class, 642, 646
Disconnect() method, 369–370
DisplayMessage() method, 371

DLR (Dynamic Language Runtime), 398
do loops, 73–75
documents, XML

creating, 676–677
looping through nodes, 680–683

domain model, refactoring, 504–511
dynamic keyword, 399
dynamic lookup, 398–402
dynamic type, 399–402
dynamic variables, 398–402

E
ecosystems, cross-platform programs and, 581
ElementName property, 468
#else directive, 585
Elvis operator, 324
#endif directive, 585
#endregion keyword, 38
Entity Framework, 732
Entity Framework Core library, 11
enum keyword, 92
EnumerateDirectories() method, 643
EnumerateFiles() method, 643
EnumerateFileSystemEntries() method, 644
enumerations, 83, 91–95

defining, 92–93
underlying type, 92

Equals() method, 397
error handling, 167–168

catch blocks, 168–175
finally blocks, 168–175
SEH (structured exception handling), 168
try blocks, 168–175

Error List window, 20, 25–26
errors

fatal, 149
logic, 149
semantic, 149
syntax, 149

escape sequence, 42, 45
event handlers, 363, 365–367

anonymous methods, 375
CardLib, 375–383
delegates, 363
multipurpose, 371–374
Options window (KarliCards), 465–467
return values, 374
WPF, 437–438

871

EventHandler type – functions

EventHandler type, 374
EventHandlerT type, 374
events, 195, 363

defining, 368–371
event-driven applications, 195
KeyDown, 441
raising, 363
subscribing to, 363–364
throwing, 363
WPF, 436–441, 483–484

exception classes, 361
exception filtering, 169
exception handling, 170–176
exceptions

custom, 361–363
namespaces and, 168, 176

explicit conversion, 84, 86–91
expression filter, 103
expression trees, lambda expressions as, 416
expression-bodied methods, 339
expressions

lambda expressions, 409–419
looping and, 48
operands, 46
operators, 46
query expressions, 706

F
fatal errors, 149
fields, 239–241

defining, 234–235
objects, 182–183

File class, 642
Copy() method, 643
Create() method, 643
Delete() method, 643
Move() method, 643
Open() method, 643

file system, monitoring, 664–669
file system access classes

Directory, 642
DirectoryInfo, 642
File, 642
FileInfo, 642
FileSystemInfo, 642
FileSystemWatcher, 642
Path, 642

FileInfo class, 642, 644–646
files

access, asynchronous, 660–661
archives, 661
compressed, 661–664
random access, 650

FileStream class, 648
file position and, 650
FileAccess enumeration, 648–649
FileMode enumeration, 648–649
GetBytes() method, 655
reading data, 650–653
Seek() method, 650
Write() method, 655
writing data, random access files, 653–655

FileSystemInfo class, 642
Attributes property, 645
CreationTime property, 645
CreationTimeUtc property, 645
Extension property, 645
FullName property, 645
LastAccessTime property, 645
LastAccessTimeUtc property, 645
LastWriteTime property, 645
LastWriteTimeUtc property, 645
Name property, 645

FileSystemWatcher class, 642, 664
monitoring system, 665–669
properties, 665

filtering, exception filtering, 169
Finalize() method, 212
finally blocks, 168–175
floating-point coordinates, vector graphics and, 426
floating-point variables, 40
flow

branching, 59
looping, 59

for loops, 77–78
foreach loops, 101, 297

iterators, 285–288
LINQ, 708

forking
BCL (Base Class Libraries) and, 583
cross-platform programs and, 582
.NET Microframework, 584

FrameworkPropertyMetadata constructor, 487–488
frameworks, cross-platform programs and, 581
functions, 118

872

defining – if statement

defining, 118–120
delegates, 144–147
local, 137–138
Main(), 138–141
overloading, 142–143
parameters, 122–124

arrays, 124–126
global data and, 136–137
matching, 124
out parameters, 129–130
reference parameters, 126–128
tuples, 130–131
value parameters, 126–128

return values, 120–122
global data and, 136–137

reusable code and, 118
signature, 118
struct functions, 141–142
ThrowException(), 173–174
using, 118–120

G
GAC (global assembly cache), 7, 12
garbage collection, 7–8
generic classes, 320

CardLib, 339
inheritance, 348–349

generic delegates, 332, 352
generic interfaces, defining, 350
generic methods, 347

defining, 351–352
generic operators, 349–350
generic structs, 350
generic types, 321

class definitions, 340–342
! = operator, 341
= = operator, 341
constraining types, 342–348
default keyword, 342
InnerT1Object, 340
unbounded types, 342

classes, defining, 340–342
constraints, 343

naked type constraints, 343
methods, 347
parameters, invariant, 353
searching, 331–337
sorting, 331–337

get keyword, 236
GetBytes() method, 655
GetCopy() method, 289
GetDirectories() method, 643
GetEnumerator() method, 274
GetFiles() method, 643
GetFileSystemEntries() method, 643
GetHashCode() method, 302, 397
GetType() method, 211
Git repositories, Web App deployment and,

564–567
GitHub

CORECLR repository, 592
COREFX repository, 592
cross-platform programs and, 582

global data, 136–137
global keyword, : : operator, 361
global namespaces, 54–56
global variables, 133
Grid control, 441
GroupName property, 461
GZipStream class, 642

H
hardware platform, cross-platform programs and,

581
Health Endpoint Monitoring cloud programming

pattern, 538
Hejlsberg, Anders, 360
hierarchy, namespaces, aliases, 360–361
Hierarchy window, 265–266
HorizontalAlignment property, 442
HTML, ASP.NET controls and, 609
HttpClient() method, 585
hybrid cloud, 534–535

I
IaaS (Infrastructure as a Service), Azure VM, 538
ICollection interface, 270, 276
IComparable interface, 308
IComparer interface, 308
IDEs (Integrated Development Environments),

11, 13, 32
IDictionary interface, 270, 282–283, 317
IEnumerable interface, 270, 276, 282–284
#if directive, 585
if statement, 65–69

873

IList interface – KarliCards

IList interface, 270
CollectionBase class, 276

implicit conversion, 48, 84–86
implicit type, 392–393
IMyInterface, 296
increment operators, 48
index initializers, 338
indexers, 277–278

key-accessed, 282–283
infinite loops, 79–80
inheritance, 188–189

abstract classes, 190
base classes, 188
derived classes, 189
generic classes, 348–349
sealed classes, 191
UML, 187

initializers, 386, 390–391
collection initializers, 389–390
object initializers, 387–389

InsertAfter() method, 685
InsertBefore() method, 685
instance constructors, 186
instances, 181

classes, static members, 185–186
int arrays, 124
int integer type, 39
integer types

byte, 39
int, 39
long, 39
sbyte, 39
short, 39
uint, 39
ulong, 39
ushort, 39

interface keyword, 206–207
interfaces

abstract classes and, 226–228
declaring, 206–207
generic, defining, 350
ICollection, 270
IComparable, 308
IComparer, 308
IDictionary, 270
IEnumerable, 270
IList, 270
implementing, 249–252
member implementation, explicit, 251–252

objects, 187–188
System.Collections namespace, 270

internal classes, 204
internal members, 234
interrupting loops, 78–79
I/O (input/output), 642
is operator, 294–297
IsChecked property, 460, 461
IsEditable property, 461–462
IsEnabled property, 459, 468
IsReadOnly property, 461–462
IsThreeState property, 460
iterators, 283–285, 317

collections and, 288
implementing, 285–288

J
JavaScript, ScriptObject type and, 398
JIT (just-in-time) compiler, 6, 8, 580
JSON (JavaScript Object Notation), 674–675

conversion from XML, 689–691

K
KarliCards, 458, 519–527

About window, 455–458
CardsInHand control, dependency properties, 520
ComputerPlayer class, 504–511
Deck class, InsertAllCards() method, 510
domain model, refactoring, 504–511
enumerations

ComputerSkillLevel, 505
PlayerState, 505

GameDecks control, 519
dependency properties, 523

ListBox control, 472–473
Main window, 499–504
Options window, 458

CheckBox control, 459–460
ComboBox control, 461–462
designing, 463–465
event handling, 465–467
RadioButton control, 460–461
TabControl control, 462–463
TextBox control, 459

Player class, 504–511
StartGameWindow, 473–476

874

KarliCards – LINQ

KarliCards (continued)
user controls, 489–499
view model, 511–519

key values
collections, 282–283
pairs, DictionaryK, V, 337–339

KeyDown event, 441
keywords

and, 38
abstract, 204, 250–251
async, 168
await, 168
base, 214, 246
checked, 314
class, 204–206
default, generic class definition, 342
delegate, 410
dynamic, 399
#endregion, 38
enum, 92
get, 236
global, 361
interface, 206–207
internal, 234
namespace, 43
new, 249–250
operator, 299
partial, 253
private, 234
protected, 234
public, 234
#region, 38
return, 121
sealed, 204
set, 236
static, 120
struct, 96–97
this, 215, 246–247, 277–278
using, 43, 188
using static, 55
var, 393, 395, 706–707
virtual, 250–251
void, 120

L
Label control, 430
lambda expressions, 409

anonymous methods, 410–413

collections and, 416–419
as delegates, 415–416
as expression trees, 416
LINQ, 710–712
parameters, 413–415
statement bodies, 414–415

languages
data languages, 673
JSON, 674–675
XML, 674

layout, 441
alignment, 442
Border property, 443
columns, 451–452
dimensions, 442
margins, 442
padding, 442
panels, 444

Canvas control, 444–446
DockPanel control, 444, 446–448
Grid controls, 449–452
StackPanel control, 444, 448–449
WrapPanel control, 444, 449

rows, 451–452
stack order, 442

libraries
class libraries, 222–226
cross-platform programs and, 581
Entity Framework Core library, 11

linking, 9
LINQ (Language Integrated Query), 11, 409, 697–698

aggregate operators, 717–720
clauses, 707–708
explicit syntax, 709
extension methods, 709
foreach statement, 708
joins, 727–728
lambda expressions, 710–712
method syntax, 709–712
orderby clause, 713–714
ordering by multiple levels, 723–725
queries

deferred execution, 708–709
group queries, 725–726
large data sets, 714–716
results ordering, 712–713
SELECT DISTINCT, 720–723

query syntax, 705–706
method syntax and, 709–710

875

LINQ providers – methods

restricted operators, 708
variables, var keyword, 706–707

LINQ providers
LINQ to Data Set, 704
LINQ to Entities, 704
LINQ to JSON, 704
LINQ to Objects, 704
LINQ to SQL, 704
LINQ to XML, 704
PLINQ, 704

LINQ to XML
fragments, 700–704
functional construction, 698–701

Linux, 4
ListBox control, KarliCards

SelectedIndex property, 473
SelectedItem property, 473
SelectedItems property, 473
SelectionMode property, 472

literal values, 43–45
literals, 42

string literals, 45–46
LoadCompressedFile() method, 664
local functions, 137–138
local variables, 133
logic errors, 149
long integer type, 39
looping, 59, 72

do loops, 73–75
foreach loops, 101, 708

iterators, 285–288
infinite loops, 79–80
interrupting loops, 78–79
for loops, 77–78
while loops, 75–77

M
Mac OS, 4
Main() function, 138–141
Main window (KarliCards), 481–483, 499–504
managed code, 7
Margin property, 442
matching parameters, 124
Materialized View cloud programming pattern, 537
mathematical operators

%, 47
*, 47
+, 47

-, 47
/, 47
decrement, 48
increment, 48
string concatenation, 48
variables and, 47–52

Max() method, 717
members

interfaces, explicit implementation, 251–252
internal, 234
private, 234
protected, 234
public, 234
refactoring, 242–243

MemberwiseClone() method, 289
Menu control, KarliCards, 499
MessageArrivedEventArgs class, 372
MessageHandler delegate type, 370
metadata, 7

cross-platform programs and, 582
metapackages, cross-platform programs and, 582
method groups, 337
method parameters, 402
methods, 239–241

Add(), 283
AddRange(), 276
Aggregate(), 416, 418
anonymous, 375, 409–413
Append(), 335
AppendChild(), 685
AppendFormat(), 335
Average(), 717
base classes, hiding, 244–246
CheckForMessage(), 370
Clear(), 276
Clone(), 289
Compare(), 308, 335
CompareTo(), 308
Connect(), 369–370
Copy(), 643
Count(), 717
Create(), 643
CreateAttribute(), 685
CreateComment(), 685
CreateDirectory(), 643
CreateElement(), 685
CreateNode(), 685
CreateTextNode(), 685
Deconstruct(), 242

876

methods – .NET Core

methods (continued)
defining, 235–236

partial definitions, 253–255
Delete(), 643
Disconnect(), 369–370
DisplayMessage(), 371
EnumerateDirectories(), 643
EnumerateFiles(), 643
EnumerateFileSystemEntries(), 644
Equals(), 397
Finalize(), 212
generic, 347

defining, 351–352
GetBytes(), 655
GetCopy(), 289
GetDirectories(), 643
GetEnumerator(), 274
GetFiles(), 643
GetFileSystemEntries(), 643
GetHashCode(), 302, 397
GetType(), 211
HttpClient(), 585
InsertAfter(), 685
InsertBefore(), 685
LoadCompressedFile(), 664
Max(), 717
MemberwiseClone(), 289
Min(), 717
Move(), 643, 644
MoveNext(), 284
objects, 183
Open(), 643
PerformOperations(), 412
ReadKey(), 219
ReadLine(), 659
ReadtoEnd(), 660
Register(), 486
RemoteCall(), 402
Remove(), 283
RemoveAll() method, 688
RemoveAt(), 276
RemoveChild() method, 688
SaveCompressedFile(), 664
SelectNodes(), 689
SelectSingleNode(), 689
SimpleList(), 285
Sum(), 717
System.Object, 209–211
ToString(), 211, 397

WebClient(), 585
Write(), 655
WriteChar(), 367, 409
WriteLine(), 38, 55
XAttribute(), 700
XDocument(), 700
XElement(), 700

Min() method, 717
Mono, 4
Move() method, 643, 644
MoveNext() method, 284
MSBUILD (Microsoft Build Engine),

601
MSIL (Microsoft Intermediate Language),

6
MTOM (Message Transmission Optimization

Mechanism), 763
multidimensional arrays, 106–108
multipurpose event handlers, 371–374
MVC (Model-View-Controller), 612

N
named parameters, 404–408
namespace keyword, 43
namespace statement, 37
namespaces, 54–56

: : operator, 360–361
exceptions and, 168, 176
global namespace, 54
hierarchy, aliases, 360–361
nested type definitions, 247–249
System.Collections, 270
System.Collections.Generic, 329–332
System.Diagnostics, 152, 155
System.IO, 642
System.Text, 329
System.Threading.Tasks, 329
XAML, 428–429

naming, variables, 43
native code, 6

execution, 9
nested type definitions, 247–249
.NET Compact Framework, 5
.NET Core, 13

application local frameworks, 595–596
applications, 13

writing, 5–9
Console App, 602–605

877

.NET Framework – operator overloading

Console App creation, 593–595
CORECLR repository (GitHub), 592
COREFX repository (GitHub), 592
cross platform, 590
modular design and, 593
NuGet package, 593

installation, 593–595
open source, 591
optimization for cloud and, 591–592
performance versus .NET Framework, 592
porting to from .NET Framework

feature availability, 606
.NET Framework target upgrade, 606
platforms targeted, 606–607

SDK installation, 588–590
self-contained deployment, 595–596

.NET Framework, 4, 13, 579
applications, 13

writing, 5–9
BCL (Base Class Libraries), 5
C#, 4
CIL (Common Intermediate Language), 580

AOT (Ahead of Time), 580
JIT (Just in Time), 580

cloud and, 536
CLR (Common Language Runtime), 5
consumption, languages, 580
CTS (Common Type System), 5
library, types, 5
MSIL (Microsoft Intermediate Language), 580
OOP (object-oriented programming), 4
porting to .NET Core from, 605

API Portability Analyzer, 605
feature availability, 606
.NET Framework target upgrade, 606
platforms targeted, 606–607
third-party dependencies and, 605–606

.NET Micro Framework, 5

.NET Microframework, forking, 584

.NET Native, cross-platform programs and, 583

.NET Standard, 583
API count, 587
class library

creating, 596–599
packaging, 599–602

frameworks supported, 587
namespaces, 587
PCLs (Portable Class Libraries) and, 586

platforms supported, 587
shared projects, 584

new keyword, 249–250
NGEN, AOT compiler and, 580
NuGet

cross-platform programs and, 582
.NET Core and, 593

null coalescing (??) operator, 323–324
null condition (?.) operator, 325
nullable types, 196, 321, 325–329

operators and, 322–323
null-coalescing operator, 175

O
Object Browser, 218–219
object initializers, 387–389
object-relational mapping, 732
objects

classes, 181
construction, 184
constructors, 184–185
destructors, 185
fields, 182–183
methods, 183
properties, 182–183
Timer, 366
UML and, 181

OOP (object-oriented programming), 4,
179–180

classes
collections, 194
containment, 193–194

desktop applications, 196–199
events, 195
inheritance, 188–191
interfaces, 187–188
operators, overloading, 194–195
overview, 180–181
polymorphism, 191–192

interface polymorphism, 192–193
Open() method, 643
open source

cross-platform programs and, 581
.NET Core, 591

operands, expressions, 46
operator keyword, 299
operator overloading

878

operator overloading – pattern matching

operator overloading (continued)
CarLib, 302–307
syntax, 298–299
value comparisons and, 298–302

operators
as, 315–316
?? (null coalescing), 323–324
: :, 360–361
= =, 397
= assignment, 42
?. (null condition) operator, 325
aggregate, LINQ, 717–720
assignment, 52–53
binary, overloading, 301
Boolean, 60–62
comparison, overloading, 301
conditional, 47
expressions, 46
generic, 349–350
is, 294–296
is pattern matching, 297
nullable types and, 322–323
overloading, 194–195

conversion operators, 313–314
precedence, 53–54, 64–65
unary, overloading, 301

optional parameters, 403, 405–408
OptionalAttribute attribute, 404
order, 404
values, 404

OptionalAttribute attribute, 404
Options window (KarliCards), 458

CheckBox control, 459–460
ComboBox control, 461–462
data binding

DataContext control, 468
dynamic binding, 470–472
local objects, 468
static binding, external objects, 469

designing, 463–465
event handling, 465–467
RadioButton control, 460–461
TabControl control, 462–463
TextBox control, 459

orientation enumeration type, 94, 98
out parameters, 129–130
overflow checking, 87–88
overloading functions, 142–143
overloading operators, 194–195

<, 301

>, 301
! =, 302
= =, 302
binary, 301
CardLib, 302–307
comparison, 301
conversion operators, 313–314
unary, 301
value comparisons and, 298–302

overriding methods, calling, 246–247

P
PaaS (Platform as a Service), Azure Cloud Services,

538
packages, cross-platform programs and, 582
Padding property, 442
Panel class, 444

Canvas control, 444–446
DockPanel control, 444, 446–448
Grid controls, 449–452
StackPanel control, 444, 448–449
WrapPanel control, 444, 449

parameters, 122–124
arrays, 124–126
global data and, 136–137
lambda expressions, 413–415
matching, 124
method parameters, 402
named, 404–408
optional, 403, 405–408

OptionalAttribute attribute, 404
order, 404
values, 404

out parameters, 129–130
reference parameters, 126–128
tuples, 130–131
value parameters, 126–128

partial class definitions, 252–253
partial keyword, 253
partial method defintion, 253–255
Path class, 642
path names

absolute, 646–647
relative, 647

pattern matching
const pattern, 297
is operator, 297
switch case statement and, 297
switch statement and, 102–103

879

PCLs – ScriptObject type

type pattern, 297
var pattern, 297

PCLs (Portable Class Libraries)
creating, 585–586
cross-platform programs and, 582
shared projects, 584

PerformOperations() method, 412
Player class, 504–511
pointers, 230
polymorphism, 191–192

contravariance and, 353
covariance and, 353
interface polymorphism, 192–193

precedence of operators, 53–54, 64–65
private cloud, 534–535
private members, 234
properties, 239–241

accessors, 236, 252
alignment, 442
AllowMultiple, 385–386
automatic, 243–244
CheckBox control, 460
ComboBox control, 461–462
Content, 441
defining, 236–241
indexers, 277–278
objects, 182–183
RadioButton control, 461
read-only, 395
TextBox control, 459
Value, 323
WPF, dependency property, 431
XAML

attached properties, 435–436
dependency properties, 435

Properties window, 20, 25
protected members, 234
public cloud, 534–535
public members, 234

Q
query expressions, 706

R
RadioButton control, 461
random access files, 650

Razor, 548, 551, 553
reading attributes, reflection, 384–385
ReadKey() method, 219
ReadLine() method, 659
read-only properties, 395
ReadtoEnd() method, 660
refactoring, 242–243
reference parameters, 126–128
reference types, 195–196, 230
reflection, attributes and, 384–385
#region keyword, 38
Register() method, 486
relational databases, 731. See also SQL (Structured

Query Language)
relational operators, Boolean logic, 60
relative path names, 647
RemoteCall() method, 402
remoting, 761–762
Remove() method, 283
RemoveAll() method, 688
RemoveAt() method, 276
RemoveChild() method, 688
rendering

2D, 426
3D, 426

resources, CIL, 7
REST (Representational State Transfer), WCF and,

762
RESTful HTTP services, 10
Retry cloud programming pattern, 538
return keyword, 121
return values, 120–122

event handlers, 374
global data and, 136–137

reusable code, functions and, 118
route struct, 98
routed commands, 438–439

KarliCards, 499–504
routed events, 437–441
row layout, 451–452
runtime, 7

cross-platform programs and, 582

S
SaveCompressedFile() method, 664
sbyte integer type, 39
ScriptObject type, 398

880

sealed classes – System.Threading.Tasks namespace

sealed classes, 204
sealed keyword, 204
searching, generic types, 331–337
SEH (structured exception handling), 168
SelectedIndex property, 462
SelectedItem property, 462
SelectNodes(), 689
SelectSingleNode(), 689
semantic errors, 149
semantic versioning, 594

cross-platform programs and, 582
serial devices, streams and, 647
set keyword, 236
shallow copies, 230–231
Sharding cloud programming pattern, 537
shared projects

.NET Standard and, 584
PCL (Portable Class Libraries) and, 584

short integer type, 39
simple variable types, 38–42
SimpleList() method, 285
SOA (service-oriented architecture), 762
SOAP (Simple Object Access Protocol), WCF and,

762
software platform, cross-platform programs and, 581
Solution Explorer window, 20

Class View, 24
XAML and, 429–430

sorting
collections, Ch11Ex05, 310–313
generic types, 331–337

SQL (Structured Query Language), 731–732
SQL Azure, 538
SQL Server Express, installation, 732
stacks, cross-platform programs and, 581
standards, cross-platform programs and, 581
StartGameWindow (KarliCards), 473–476
statements, 34

if, 65–69
namespace, 37
statement bodies, lamda expressions, 414–415
switch, 69–72
switch case, 297
using, 37, 360, 401

static classes, 186
static keyword, 120
storage, Azure storage account, creating, 539–540
storyboards, animations, 484–485
StreamReader class, 648, 658–660

streams
classes, 647–648

FileStream, 648–655
StreamReader, 648, 658–660
StreamWriter, 648, 655–657

serial devices and, 647
StreamWriter class, 648, 655–657
string concatenation operators, 48
String Interpolation, 42
string literals, 42, 45–46
string type, 40
strings, 109–114
struct keyword, 96–97
structs, 84, 97–98

versus classes, 228–230
defining, 96
functions, 141–142
route, 98

structured exception handling (SEH),
168

subscribing to events, 363–364
Sum() method, 717
switch case statement, 297
switch statement, 69–72

pattern matching and, 102–103
symbolic information, Debug (VS), 150
syntax

{ } (curly brackets), 34
< > angle brackets, 320
/* with comments, 35
// with comments, 36
blocks, 34
case sensitivity, 36
comments, 35
errors, 149
statements, 34
whitespace characters, 34

System.Attribute class, 386–387
System.Collections namespace, 270
System.Collections.Generic namespace, 329–332
System.Diagnostics namespace, 152, 155
System.Exception class, 361
System.IO namespace, 642
System.IO.Compression namespace

DeflateStream class, 642
GZipStream class, 642

System.Object, methods, 209–211
System.Text namespace, 329
System.Threading.Tasks namespace, 329

881

System.Timers.ElapsedEventArgs – UWP

System.Timers.ElapsedEventArgs, 366
System.Timers.ElapsedEventHandler, 366
System.Timers.Timer class, 366

T
target framework, cross-platform programs and, 582
Team Explorer, 20
Text property, 459, 462
TextBox control, 430, 459
TextWrapping property, 459
TFM (Target Framework Moniker), cross-platform

programs and, 582
this keyword, 215, 246–247, 277–278
Throttling cloud programming pattern, 538
throw exceptions, 175
ThrowException() function, 173–174
Timer object, 366
Toolbox, 19
ToString() method, 211, 397
TriggerBase class, 483–484
try blocks, 168–175
tunneling events, 438
tuples, 130–131

deconstructing, 241–242
type, implicit typing, 392–393
type comparisons, 317

boxing, 292–294
is operator, 294–296
unboxing, 292–294

type conversion, 83
explicit, 84, 86–91
implicit, 84–85

type definitions, nested, 247–249
type inference, 392–394
type patterns, 297
typeof() operator, 292
types

anonymous, 394–398
Boolean, 40
dynamic, 399–402
floating-point

decimal, 40
double, 40
float, 40

generic, 321
integers

byte, 39
int, 39

long, 39
sbyte, 39
short, 39
uint, 39
ulong, 39
ushort, 39

nullable, 196, 321, 325–329
operators and, 322–323

reference, 195–196, 230
text, 40
value, 195–196, 230
variables, simple, 38–42

typesafe language, 10

U

uint integer type, 39
ulong integer type, 39
UML (Unified Modeling Language), 181
unary operators, overloading, 301
unsigned variables, 40
URIs (Uniform Resource Identifiers), 428
ushort integer type, 39
using keyword, 43, 188
using statement, 37, 360, 401

attributes, 384
using static keyword, 55
UWA (Universal Windows App), 609
UWP (Windows Universal Platform), 793

adaptive displays, 797–800
adaptive triggers, 798–799
FlipView, 800–805
relative panel, 798

applications, 4
badges, 796–797
creating, 794–795
disk access, 807–810
lifetime, 797
Lock Screen, 797
menus, 796
navigation, 810–812
sandboxed, 805–807
screen orientation, 796
tiles, 796–797
toolbars, 796

CommandBar control, 812–814
state, managing, 814–816
XAML, 797

882

Valet Key cloud programming pattern – WCF

V
Valet Key cloud programming pattern, 537
value comparisons, 317

operator overloading, 298–302
value parameters, 126–128
Value property, 323
value types, 195–196, 230
values

optional parameters, 404
return values, event handlers, 374
variables, literals, 42

var keyword, 393, 395, 706–707
var pattern, 297
variables

arrays, 84, 99, 100–101
declaring, 99–100
foreach loops, 101
multidimensional, 106–108

assignment operators, 52–53
declaring, 38
dynamic, 398–402
enumerations, 83, 91–95
global, 133
LINQ, var keyword, 706–707
local, 133
mathematical operators, 47–52
naming, 38, 43
scope, 131–134
strings, 109–114
structs, 84, 96–98
types, 38

assigning, 38
Boolean, 40
floating-point, 40
integers, 39–40
simple, 38–42
text, 40

unsigned, 40
values, literals, 42

variance
contravariance, 353, 354–355
covariance, 353, 354

Vector class, 328–329
vector graphics, floating-point coordinates, 426
Vectors collection

Compare() method, 335
Sum() method, 335

versions, cross-platform programs and, 582
VerticalAlignment property, 442
verticals, cross-platform programs and, 581
VerticalScrollBarVisibility property, 459
view model, KarliCards, 511–519
virtual keyword, 250–251
Visual Debugging tools, 443–444
Visual Studio 2017, 3

debugging in, 22–23, 150
development environment, 16–20
Properties, 25
settings, 32
Solution Explorer, 24–25
solutions, 12

projects, 12
XAML View, 429

Visual Studio Code, 11
Visual Studio Community, 11, 590
Visual Studio Enterprise, 11, 12
Visual Studio Professional, 11, 12
void keyword, 120
void methods, 370

W
WAS (Windows Activiation Service), 768
WCF (Windows Communication Foundation), 761

addresses, 764
behaviors, 767
bindings, 762, 765–766
contracts, 762, 766–767, 777–784
hosting, 768
HTTP, 763

addresses, 764
message patterns, 767
MSMQ and, 764
MTOM (Message Transmission Optimization

Mechanism) and, 763
named pipes, 764
operations, 762
overview, 762–763
programming, 768–774
REST (Representational State Transfer) messages, 762

883

Web APIs – XML

services, 11
applications, 11
client creation, 768–774
self-hosted, 784–790

SOAP (Simple Object Access Protocol) messages, 762
TCP, 763

addresses, 764
test client, 774–776
UDP, 764

addresses, 764
Web APIs, 10
web applications, 10, 610–611
web services, 761
WebClient() method, 585
while loops, 75–77
whitespace characters, 34
windows, controls, 431–432
Windows Mobile, 4
Windows Store, applications, 10

Badges, 816–818
packaging, 818–819
Tiles, 816–818

WindowsAzure.Storage library, 542
wizards, Add New Item, 219–220
working directory, 645
WPF (Windows Presentation Foundation), 426, 609.

See also KarliCards; XAML
animations, 484–485
applications, 10
Ch14Ex01, 429–430
classes, dependency properties, 486–499
control layout, 441–443
controls, 430–432, 441, 481
debug mode, 443–444
desktop applications, 16
events, 436

bubbling, 438
control events, 436–437
handling, 437–438
routed, 438, 439–441
triggers, 483–484
tunneling, 438

Main window (KarliCards), 481–483
properties, dependency property, 431
storyboards, 484–485

UserControl class, 485
WPF App project template, 429
XAML, 426–427

Write() method, 655
WriteChar() method, 367, 409
WriteLine() method, 38, 55
WSDL (Web Service Description Language), 762

X‑Y‑Z
XAML (eXtensible Application Markup Language),

29–31, 426, 427–428
animation storyboarding, 427
code-behind files, 427, 429
font processing, 427
namespaces, 428–429
properties, 432–436
rendering

2D, 426
3D, 426

reusable resources, 427
routed commands, 438–439
Solution Explorer and, 429–430
UI objects, 427
UWP app development and, 797
XML and, 426

XAML View, 429
XAttribute() method, 700
XDocument() method, 700
XElement() method, 700
XML (eXtensible Markup Language), 426, 427

databases and, 750–756
documents

creating, 676–677
looping through nodes, 680–683

JSON, conversion to, 689–691
LINQ to XML

fragments, 700–704
functional construction, 698–701

nodes
creating, 684–687
deleting, 687–689
inserting, 685–686
selecting, 689
value change, 683–684

884

XML – XPath

XML (continued)
overview, 674
schemas, 675
XPath and, 691–695

XML DOM (XML Document Object Model), classes
XmlAttribute, 678
XmlComment, 678
XmlDocument, 677, 678
XmlElement, 677, 678–679
XmlNode, 677
XmlNodeList, 678

XmlText, 678
XmlAttribute class, 678
XmlComment class, 678
XmlDocument class, 677,

678
XmlElement class, 677

properties, 679–680
XmlNode class, 677
XmlNodeList class, 678
XmlText class, 678
XPath, 691–695

	Cover������������
	Title Page�����������������
	Copyright����������������
	About the Authors
	About the Technical Editor
	Credits
	Acknowledgments
	Contents���������������
	Introduction�������������������
	Who This Book is for
	What This Book Covers
	How This Book is Structured
	The C# Language (Chapters 1–13)
	Windows Programming (Chapters 14–15)
	Cloud and Cross-Platform Programming (Chapters 16–19)
	Data Access (Chapters 20–23)
	Additional Techniques (Chapters 24–25)

	What you Need to use This Book
	Conventions
	Source Code
	Errata

	Part I: The C# Language
	Chapter 1: Introducing C#��������������������������������
	What is the .NET Framework?����������������������������������
	What’s in the .NET Framework?������������������������������������
	.NET Standard and .NET Core����������������������������������
	Writing Applications Using the .NET Framework and .NET Core��
	CIL and JIT������������������
	Assemblies�����������������
	Managed Code�������������������
	Garbage Collection�������������������������
	Fitting it Together��������������������������
	Linking��������������

	What Is C#?������������������
	Applications You Can Write with C#���
	C# in this Book����������������������

	Visual Studio 2017�������������������������
	Visual Studio 2017 Products����������������������������������
	Solutions����������������

	Chapter 2: Writing a C# Program��������������������������������������
	The Visual Studio 2017 Development Environment���
	Console Applications���������������������������
	The Solution Explorer����������������������������
	The Properties Window����������������������������
	The Error List Window����������������������������

	Desktop Applications���������������������������

	Chapter 3: Variables and Expressions���
	Basic C# Syntax����������������������
	Basic C# Console Application Structure���
	Variables����������������
	Simple Types�������������������
	Variable Naming����������������������
	Literal Values���������������������
	Binary Literals and Digit Separators���
	String Literals����������������������

	Expressions������������������
	Mathematical Operators�����������������������������
	Assignment Operators���������������������������
	Operator Precedence��������������������������
	Namespaces�����������������

	Chapter 4: Flow Control������������������������������
	Boolean Logic��������������������
	Boolean Bitwise and Assignment Operators���
	Operator Precedence Updated����������������������������������

	Branching����������������
	The Ternary Operator���������������������������
	The if Statement�����������������������
	Checking More Conditions Using if Statements���

	The switch Statement���������������������������

	Looping��������������
	do Loops���������������
	while Loops������������������
	for Loops����������������
	Interrupting Loops�������������������������
	Infinite Loops���������������������

	Chapter 5: More about Variables��������������������������������������
	Type Conversion����������������������
	Implicit Conversions���������������������������
	Explicit Conversions���������������������������
	Explicit Conversions Using the Convert Commands��

	Complex Variable Types�����������������������������
	Enumerations�������������������
	Defining Enumerations����������������������������

	Structs��������������
	Defining Structs�����������������������

	Arrays�������������
	Declaring Arrays�����������������������
	foreach Loops��������������������
	Pattern Matching with switch case expression���
	Multidimensional Arrays������������������������������
	Arrays of Arrays�����������������������

	String Manipulation��������������������������

	Chapter 6: Functions���������������������������
	Defining and Using Functions�����������������������������������
	Return Values��������������������
	Parameters�����������������
	Parameter Matching�������������������������
	Parameter Arrays�����������������������
	Reference and Value Parameters�������������������������������������
	Out Parameters���������������������
	Tuples�������������

	Variable Scope���������������������
	Variable Scope in Other Structures���
	Parameters and Return Values versus Global Data��
	Local Functions����������������������

	The Main() Function��������������������������
	Struct Functions�����������������������
	Overloading Functions����������������������������
	Using Delegates����������������������

	Chapter 7: Debugging and Error Handling��
	Debugging in Visual Studio���������������������������������
	Debugging in Nonbreak (Normal) Mode��
	Outputting Debugging Information���������������������������������������
	Tracepoints������������������
	Diagnostics Output Versus Tracepoints��

	Debugging in Break Mode������������������������������
	Entering Break Mode��������������������������
	Monitoring Variable Content����������������������������������
	Stepping through Code����������������������������
	Immediate and Command Windows������������������������������������
	The Call Stack Window����������������������������

	Error Handling���������������������
	try…catch…finally������������������������
	Throw Expressions������������������������
	Listing and Configuring Exceptions���

	Chapter 8: Introduction to Object-Oriented Programming���
	What Is Object-Oriented Programming?���
	What Is an Object?�������������������������
	Properties and Fields����������������������������
	Methods��������������

	Everything’s an Object�����������������������������
	The Life Cycle of an Object����������������������������������
	Constructors�������������������
	Destructors������������������

	Static and Instance Class Members��
	Static Constructors��������������������������
	Static Classes���������������������

	OOP Techniques���������������������
	Interfaces�����������������
	Disposable Objects�������������������������

	Inheritance������������������
	Polymorphism�������������������
	Interface Polymorphism�����������������������������

	Relationships between Objects������������������������������������
	Containment������������������
	Collections������������������

	Operator Overloading���������������������������
	Events�������������
	Reference Types versus Value Types���

	OOP in Desktop Applications����������������������������������

	Chapter 9: Defining Classes����������������������������������
	Class Definitions in C#������������������������������
	Interface Definitions����������������������������

	System.Object��������������������
	Constructors and Destructors�����������������������������������
	Constructor Execution Sequence�������������������������������������

	OOP Tools in Visual Studio���������������������������������
	The Class View Window����������������������������
	The Object Browser�������������������������
	Adding Classes���������������������
	Class Diagrams���������������������

	Class Library Projects�����������������������������
	Interfaces Versus Abstract Classes���
	Struct Types�������������������
	Shallow Copying Versus Deep Copying��

	Chapter 10: Defining Class Members���
	Member Definitions�������������������������
	Defining Fields����������������������
	Defining Methods�����������������������
	Defining Properties��������������������������
	Tuple Deconstruction���������������������������
	Refactoring Members��������������������������
	Automatic Properties���������������������������

	Additional Class Member Topics�������������������������������������
	Hiding Base Class Methods��������������������������������
	Calling Overridden or Hidden Base Class Methods��
	The this Keyword�����������������������

	Using Nested Type Definitions������������������������������������

	Interface Implementation�������������������������������
	Implementing Interfaces in Classes���
	Explicit Interface Member Implementation���
	Additional Property Accessors������������������������������������

	Partial Class Definitions��������������������������������
	Partial Method Definitions���������������������������������
	Example Application��������������������������
	Planning the Application�������������������������������
	The Card Class���������������������
	The Deck Class���������������������

	Writing the Class Library��������������������������������
	Adding the Suit and Rank Enumerations��
	Adding the Card Class����������������������������
	Adding the Deck Class����������������������������

	A Client Application for the Class Library���

	The Call Hierarchy Window��������������������������������

	Chapter 11: Collections, Comparisons, and Conversions��
	Collections������������������
	Using Collections������������������������
	Defining Collections���������������������������
	Indexers���������������
	Adding a Cards Collection to CardLib���
	Keyed Collections and IDictionary��
	Iterators����������������
	Iterators and Collections��������������������������������
	Deep Copying�������������������
	Adding Deep Copying to CardLib�������������������������������������

	Comparisons������������������
	Type Comparisons�����������������������
	Boxing and Unboxing��������������������������
	The is Operator����������������������

	Pattern Matching with the is Operator Pattern Expression���
	Value Comparisons������������������������
	Operator Overloading���������������������������
	Adding Operator Overloads to CardLib���
	The IComparable and IComparer Interfaces���
	Sorting Collections��������������������������

	Conversions������������������
	Overloading Conversion Operators���������������������������������������
	The as Operator����������������������

	Chapter 12: Generics���������������������������
	What Are Generics?�������������������������
	Using Generics���������������������
	Nullable Types���������������������
	Operators and Nullable Types�����������������������������������
	The ?? Operator����������������������
	The ?. Operator����������������������
	Working with Nullable Types����������������������������������

	The System.Collections.Generic Namespace���
	List<T>��������������
	Sorting and Searching Generic Lists��
	Dictionary<K, V>�����������������������
	Modifying CardLib to Use a Generic Collection Class��

	Defining Generic Types�����������������������������
	Defining Generic Classes�������������������������������
	The default Keyword��������������������������
	Constraining Types�������������������������
	Inheriting from Generic Classes��������������������������������������
	Generic Operators������������������������
	Generic Structs����������������������

	Defining Generic Interfaces����������������������������������
	Defining Generic Methods�������������������������������
	Defining Generic Delegates���������������������������������

	Variance���������������
	Covariance�����������������
	Contravariance���������������������

	Chapter 13: Additional C# Techniques���
	The :: Operator and the Global Namespace Qualifier���
	Custom Exceptions������������������������
	Adding Custom Exceptions to CardLib��

	Events�������������
	What Is an Event?������������������������
	Handling Events����������������������
	Defining Events����������������������
	Multipurpose Event Handlers����������������������������������
	The EventHandler and Generic EventHandler<T> Types���
	Return Values and Event Handlers���������������������������������������
	Anonymous Methods������������������������

	Expanding and Using CardLib����������������������������������
	Attributes�����������������
	Reading Attributes�������������������������
	Creating Attributes��������������������������

	Initializers�������������������
	Object Initializers��������������������������
	Collection Initializers������������������������������

	Type Inference���������������������
	Anonymous Types����������������������
	Dynamic Lookup���������������������
	The dynamic Type�����������������������

	Advanced Method Parameters���������������������������������
	Optional Parameters��������������������������
	Optional Parameter Values��������������������������������
	The OptionalAttribute Attribute��������������������������������������
	Optional Parameter Order�������������������������������

	Named Parameters�����������������������

	Lambda Expressions�������������������������
	Anonymous Methods Recap������������������������������
	Lambda Expressions for Anonymous Methods���
	Lambda Expression Parameters�����������������������������������
	Lambda Expression Statement Bodies���
	Lambda Expressions as Delegates and Expression Trees���
	Lambda Expressions and Collections���

	Part II: Windows Programming�����������������������������������
	Chapter 14: Basic Desktop Programming��
	XAML�����������
	Separation of Concerns�����������������������������
	XAML in Action���������������������
	Namespaces�����������������
	Code-Behind Files������������������������

	The Playground���������������������
	WPF Controls�������������������
	Properties�����������������
	Dependency Properties����������������������������
	Attached Properties��������������������������

	Events�������������
	Handling Events����������������������
	Routed Events��������������������
	Routed Commands����������������������
	Control Types��������������������

	Control Layout���������������������
	Basic Layout Concepts����������������������������
	Stack Order������������������
	Alignment, Margins, Padding, and Dimensions��
	Border�������������
	Visual Debugging Tools�����������������������������

	Layout Panels��������������������
	Canvas�������������
	DockPanel����������������
	StackPanel�����������������
	WrapPanel����������������
	Grid�����������

	The Game Client����������������������
	The About Window�����������������������
	Designing the User Interface�����������������������������������
	The Image Control������������������������
	The Label Control������������������������
	The TextBlock Control����������������������������
	The Button Control�������������������������

	The Options Window�������������������������
	The TextBox Control��������������������������
	The CheckBox Control���������������������������
	The RadioButton Control������������������������������
	The ComboBox Control���������������������������
	The TabControl���������������������
	Handling Events in the Options Window��

	Data Binding�������������������
	The DataContext����������������������
	Binding to Local Objects�������������������������������
	Static Binding to External Objects���
	Dynamic Binding to External Objects��

	Starting a Game with the Listbox Control���

	Chapter 15: Advanced Desktop Programming���
	Creating and Styling Controls������������������������������������
	Styles�������������
	Templates����������������
	Triggers���������������
	Animations�����������������

	WPF User Controls������������������������
	Implementing Dependency Properties���

	The Main Window����������������������
	The Menu Control�����������������������
	Routed Commands with Menus���������������������������������

	Putting It All Together������������������������������
	Refactoring the Domain Model�����������������������������������
	The ViewModel��������������������
	Completing the Game��������������������������

	Part III: Cloud and Cross-Platform Programming���
	Chapter 16: Basic Cloud Programming��
	The Cloud, Cloud Computing, and the Cloud Optimized Stack��
	Cloud Patterns and Best Practices��
	Using Microsoft Azure C# Libraries to Create a Storage Container���
	Creating an ASP.NET 4.7 Web Site That Uses the Storage Container���

	Chapter 17: Advanced Cloud Programming and Deployment��
	Creating an ASP.NET Web API����������������������������������
	Deploying and Consuming an ASP.NET Web API on Microsoft Azure��
	Scaling an ASP.NET Web API on Microsoft Azure��

	Chapter 18: .NET Standard and .NET Core��
	Cross-Platform Basics and Key “Must Know” Terms��
	What Is .NET Standard, and Why Is It Needed?���
	Shared Project, PCL, and .NET Standard���

	Referencing and Targeting Frameworks���
	What is .NET Core?�������������������������
	Cross Platform���������������������
	Open Source������������������
	Optimized for the Cloud������������������������������
	Performance������������������
	Modular Design���������������������
	Self-Contained Deployment Model��������������������������������������

	Building and Packaging a .NET Standard Library���
	Building a .NET Core Application with Visual Studio��
	Porting from .NET Framework to .NET Core���
	Identifying Third-Party Dependencies���
	Understanding Which Features Are Not Available���
	Upgrading the Current .NET Framework Target��
	Choosing the Platforms to Target for the Program���

	Chapter 19: ASP.NET and ASP.NET Core���
	Overview of Web Applications�����������������������������������
	Which ASP.NET to Use and Why�����������������������������������
	ASP.NET Web Forms������������������������
	ASP.NET MVC������������������
	ASP.NET Web API����������������������
	ASP.NET Core�������������������
	ASP.NET Web Site versus ASP.NET Web Application Project Types��
	File Structure���������������������
	Compiling����������������
	Deployment�����������������

	Using ASP.NET Web Forms������������������������������
	Server Controls����������������������
	Input Validation�����������������������
	State Management�����������������������
	Authentication and Authorization���������������������������������������

	Creating ASP.NET Core Web Applications���
	IIS and Kestrel����������������������
	Razor Syntax�������������������
	Input Validation�����������������������
	State Management�����������������������
	Authentication and Authorization���������������������������������������
	Dependency Injection���������������������������

	Part IV: Data Access���������������������������
	Chapter 20: Files������������������������
	File Classes for Input and Output��
	The File and Directory Classes�������������������������������������
	The FileInfo Class�������������������������
	The DirectoryInfo Class������������������������������
	Path Names and Relative Paths������������������������������������

	Streams��������������
	Classes for Using Streams��������������������������������
	The FileStream Object����������������������������
	File Position��������������������
	Reading Data�������������������
	Writing Data�������������������

	The StreamWriter Object������������������������������
	The StreamReader Object������������������������������
	Reading Data�������������������

	Asynchronous File Access�������������������������������
	Reading and Writing Compressed Files���

	Monitoring the File System���������������������������������

	Chapter 21: XML and JSON�������������������������������
	XML Basics�����������������
	JSON Basics������������������
	XML Schemas������������������
	XML Document Object Model��������������������������������
	The XmlDocument Class����������������������������
	The XmlElement Class���������������������������
	Changing the Values of Nodes�����������������������������������
	Inserting New Nodes��������������������������
	Deleting Nodes���������������������
	Selecting Nodes����������������������

	Converting XML to JSON�����������������������������
	Searching XML with XPath�������������������������������

	Chapter 22: LINQ�����������������������
	LINQ to XML������������������
	LINQ to XML Functional Constructors��
	Working with XML Fragments���������������������������������

	LINQ Providers���������������������
	LINQ Query Syntax������������������������
	Declaring a Variable for Results Using the var Keyword���
	Specifying the Data Source: from Clause��
	Specify Condition: where Clause��������������������������������������
	Selecting Items: select Clause�������������������������������������
	Finishing Up: Using the foreach Loop���
	Deferred Query Execution�������������������������������

	LINQ Method Syntax�������������������������
	LINQ Extension Methods�����������������������������
	Query Syntax versus Method Syntax��
	Lambda Expressions�������������������������

	Ordering Query Results�����������������������������
	Understanding the orderby Clause���������������������������������������
	Querying a Large Data Set��������������������������������
	Using Aggregate Operators��������������������������������
	Using the Select Distinct Query��������������������������������������
	Ordering by Multiple Levels����������������������������������
	Using Group Queries��������������������������
	Using Joins������������������

	Chapter 23: Databases����������������������������
	Using Databases����������������������
	Installing SQL Server Express������������������������������������
	Entity Framework�����������������������
	A Code First Database����������������������������
	But Where Is My Database?��������������������������������
	Navigating Database Relationships��
	Handling Migrations��������������������������
	Creating and Querying XML from an Existing Database��

	Part V: Additional Techniques������������������������������������
	Chapter 24: Windows Communication Foundation���
	What Is WCF?�������������������
	WCF Concepts�������������������
	WCF Communication Protocols����������������������������������
	Addresses, Endpoints, and Bindings���
	Contracts����������������
	Message Patterns�����������������������
	Behaviors����������������
	Hosting��������������

	WCF Programming����������������������
	The WCF Test Client��������������������������
	Defining WCF Service Contracts�������������������������������������
	Data Contracts���������������������
	Service Contracts������������������������
	Operation Contracts��������������������������
	Message Contracts������������������������
	Fault Contracts����������������������

	Self-Hosted WCF Services�������������������������������

	Chapter 25: Universal Apps���������������������������������
	Getting Started����������������������
	Windows Universal Apps�����������������������������
	App Concepts and Design������������������������������
	Screen Orientation�������������������������
	Menus and Toolbars�������������������������
	Tiles and Badges�����������������������
	App Lifetime�������������������
	Lock Screen Apps�����������������������

	App Development����������������������
	Adaptive Displays������������������������
	Relative Panel���������������������
	Adaptive Triggers������������������������
	FlipView���������������

	Sandboxed Apps���������������������
	Disk Access������������������
	Serialization, Streams, and Async Programming��

	Navigation between Pages�������������������������������
	The CommandBar Control�����������������������������
	Managing State���������������������

	Common Elements of Windows Store Apps��
	The Windows Store������������������������
	Packaging an App�����������������������
	Creating the Package���������������������������

	Appendix : Exercise Solutions
	Chapter 3 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 4 Solutions
	Exercise 1
	Exercise 2
	Exercise 3

	Chapter 5 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Chapter 6 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 7 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 8 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 9 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 10 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 11 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 12 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Chapter 13 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8

	Chapter 14 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 15 Solutions
	Exercise 1
	Exercise 2
	Exercise 3

	Chapter 16 Solutions
	Exercise 1
	Exercise 2

	Chapter 17 Solutions
	Exercise 1
	Exercise 2

	Chapter 20 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Chapter 21 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 22 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Chapter 23 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 24 Solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 25 Solutions
	Exercise 1
	Exercise 2

	Index������������
	EULA

