
www.allitebooks.com

http://www.allitebooks.org

Backbone.js
Cookbook

Over 80 recipes for creating outstanding web
applications with Backbone.js, leveraging MVC,
and REST architecture principles

Vadim Mirgorod

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Backbone.js Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-272-8

www.packtpub.com

Cover Image by J.Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Vadim Mirgorod

Reviewers
Ivano Malavolta

Jan Carlo Viray

Stephen Sawchuk

Acquisition Editor
Mary Nadar

Lead Technical Editor
Dayan Hyames

Technical Editors
Aparna Chand

Dylan Fernandes

Kapil Hemnani

Virgin Juanita

Project Coordinator
Kranti Berde

Copy Editors
Mradula Hegde

Insiya Morbiwala

Alfida Paiva

Adithi Shetty

Proofreader
Clyde Jenkins

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vadim Mirgorod is a professional web developer and an open source expert, who is
passionate about technologies and innovations. He provides the code for the content
management system Drupal and maintains several Backbone.js plugins. He is an active
community member, who organized IT events in his city and spoke at the international
conferences in Chicago, Munich, and Portland. His recent session at DrupalCon Portland
was about Backbone.js.

The following are some of the highlights of his career:

ff Presently he is running a company known as CoderBlvd
(http://www.coderblvd.com), which is based in Ukraine.
CoderBlvd provides IT outsourcing services for international businesses.

ff (August 2010- August 2013)He worked in Trellon, LLC as a Lead Developer,
creating CRM-based systems and web applications, using Drupal and PHP.

ff (July 2009- August 2010)He used to give web development classes, when
he was working in Donetsk National Technical University.

You can reach him through his website at http://www.vmirgorod.name or by connecting
to his Twitter account @dealancer.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I would like to thank Mary Nadar, Anish Ramchandani, Kranti Berde, and Dayan Hyames at
Packt Publishing for providing me an opportunity to write my first book and for their guidance,
patience, and encouragement.

Also, I appreciate an incredible help from the review team in the person of Jan Carlo Viray
and Ivano Malavolta, who provided their expertise to make this book more valuable.

Many thanks to all the people at the Backbone.js community, who provided me with
immediate answers for all my questions. Also thanks to all the guys at mongolab.com
for their service.

A huge thanks to Michael Haggerty, CEO of Trellon, for allowing me to take long hours off
to complete this book and also for taking a look at some of the chapters.

And finally, I send all my love and thanks to my wife Julia and my son Artem for their immense
support, patience, and faith in me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ivano Malavolta is a research fellow at the Information Engineering, Computer Science,
and Mathematics department of the University of L'Aquila. He holds a Ph.D. degree and is
currently doing research on mobile (web) apps development, software architecture, and
model-driven engineering.

He is also teaching these topics in dedicated courses at the University of L'Aquila,
for both bachelor and master degrees.

For what concerns his research activities, he is actively collaborating with the
following institutions:

ff Computer Communications Department (Middlesex University, London, U.K.)

ff Software Engineering Group (VU University, Amsterdam, the Netherlands)

ff Software Engineering Research Group (Istituto di Scienza e Tecnologie
dell'Informazione A. Faedo ISTI - CNR, Pisa, Italy)

ff School of Innovation, Design, and Engineering (Mälardalen University,
Västerås, Sweden)

His main professional activities are listed as follows:

ff (from December 2011) Freelance: Design and development of mobile and
web applications.

ff (May–February 2010) Software Architect & Project Manager, Tribe ICT business
sector: Geographic Information Systems. His main responsibilities were design,
management, and technological support for the development of a distributed,
extensible, and customizable GIS framework. The system is based on the uDig
platform (http://www.udig.org) and exploits the following technologies:
Java, Eclipse (RCP, EMF, JFace), JTS, Geoserver, and Geonetwork.

www.allitebooks.com

http://www.allitebooks.org

ff (October–February 2008) Developer, Medea ICT business sector: Information
Technologies, document management systems. His main responsibilities were
development of a document management system in accordance with Italian
security laws for the Regione Abruzzo. The system has been implemented as
a J2EE web application using the following technologies: Java, JSF, IBM DB2,
Eclipse, Jboss, Hibernate, Acegi Security, and Ja-sig CAS single sign-on system.

Jan Carlo Viray is an aspiring entrepreneur with a background in business and web
development. He has experience in .NET, PHP, Node.js, and is specializing in frontend
development. He has a strong passion for growth and to help others reach their potential.
He attributes all his talents and successes to God as he lives his life to the fullest daily.
Making Jesus Lord of his life, he strives daily to be a man of God. He is a graduate of Cal
State Long Beach, earning a title of cum laude. Nothing is impossible for him, because
God is always by his side. He currently lives with his wonderful and loving wife at Los
Angeles, CA. You can reach him through his website at www.jancarloviray.com or
by connecting to his Twitter account @jancarloviray.

I would like to first and foremost thank God who has given me talents,
opportunities, friendships, and blessings that has helped me throughout my
life. I would also like to thank my parents, who have sacrificed so much to
raise me and to help me have a great future. Lastly, I would like to thank my
wife who has been very patient, respectful, loving, kind, and supportive in
every way so that I can fulfill my dreams and live my life to the fullest.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Understanding Backbone	 5

Introduction	 5
Designing an application with the MVC pattern	 7
Defining business logic with models and collections	 11
Modeling an application's behavior with views and a router	 14
Creating an application structure from scratch	 18
Writing your first Backbone application	 20
Implementing URL routing in your application	 24
Extending an application with plugins	 27
Contributing to the Backbone project	 28

Chapter 2: Models	 29
Introduction	 29
Creating a model	 30
Operating with model attributes	 33
Operating with the model identifier	 34
Validating model attributes	 35
Overriding getters and setters	 37
Creating undo points to store/restore a model's state	 41
Implementing workflow for a model	 45
Using advanced validation in a model	 49
Validating an HTML form	 54
Working with nested attributes in a model	 57
Implementing a one-to-one relationship	 60

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Collections	 65
Introduction	 65
Creating a collection of models	 66
Getting a model from a collection by its index	 67
Getting a model from a collection by its ID	 69
Adding a model to a collection	 69
Removing a model from a collection	 71
Working with a collection as a stack or as a queue	 72
Sorting a collection	 73
Filtering models in a collection	 74
Iterating through a collection	 75
Chaining a collection	 77
Running No SQL queries on a collection	 78
Storing models of various types in the same collection	 83
Implementing a one-to-many relationship	 86

Chapter 4: Views	 93
Introduction	 93
Rendering a view	 94
Dealing with a view element using jQuery	 97
Rendering a model in a view	 99
Rendering a collection in a view	 101
Splitting a view into subviews	 103
Handling Document Object Model (DOM) events in a view	 106
Switching views using Backbone.Router	 110

Chapter 5: Events and Bindings	 115
Introduction	 115
Managing events in Backbone.js	 116
Handling events of Backbone objects	 117
Binding a model to a view	 120
Binding a collection to a view	 122
Bidirectional binding with Backbone.stickit	 128
Binding a model and a collection to a select list	 134
Handling keyboard shortcuts in a view	 136
Handling router events	 138

Chapter 6: Templates and UX sugar	 141
Introduction	 141
Using templates in a view	 142
Implementing a template loader	 145
Using Mustache templates	 147

iii

Table of Contents

Defining a form	 149
Adding validation to a form	 153
Handling form events	 156
Customizing a form with the Bootstrap framework	 158
Assembling layouts with LayoutManager	 163
Building a semantic and an easily styleable data grid	 167
How it works...	 171
Drawing on the HTML5 canvas	 175

Chapter 7: REST and Storage	 179
Introduction	 179
Architecting the REST API for the backend	 180
Prototyping a RESTful backend with MongoLab	 181
Synchronizing models and collections with a RESTful service 	 185
Building a RESTful frontend with Backbone	 190
Using the polling technique to fetch data	 201
Working with local storage	 206

Chapter 8: Special Techniques	 209
Introduction	 209
Using mixins with Backbone objects	 210
Creating a Backbone.js extension with Grunt	 211
Writing tests for a Backbone extension with QUnit	 216
Mocking up a RESTful service with jQuery Mockjax in asynchronous tests	 220
Developing a mobile application with jQuery Mobile	 223
Building an iOS/Android app with PhoneGap	 233
Organizing a project structure with Require.js	 236
Ensuring compatibility with search engines	 245
Avoiding memory leaks in a Backbone application	 250

Index	 259

Preface
Welcome to the Backbone.js Cookbook. We will learn how to create outstanding web
applications using lightweight JavaScript framework known as Backbone.js and utilizing
the superior rendering power of modern browsers.

Backbone.js Cookbook contains a series of recipes that provide practical, step-by-step
solutions to the problems that may occur during the frontend application development,
using an MVC pattern and a REST-style communication. You will learn how to build Backbone
applications by utilizing the power of popular Backbone extensions and how to integrate your
app with different third-party libraries. You will also learn how to fulfill the requirements of the
most challenging tasks.

What this book covers
Chapter 1, Understanding Backbone, introduces you to an MVC pattern and Backbone.js
framework. You will learn how to design Backbone applications in terms of MVC and will be
able to create your first Backbone app using models, views, and routers.

Chapter 2, Models, helps you learn about Backbone.Model, the main building block of your
application, which stores data and provides business logic.

Chapter 3, Collections, teaches you how to organize models in manageable sets known as
collections, which allow you to perform different methods, such as sorting, filtering, iterating,
and so on.

Chapter 4, Views, helps you learn how to use Backbone views to render models and collections,
and how to intercept DOM events.

Chapter 5, Events and Bindings, tells you about event system used in Backbone.js and
demonstrates event binding techniques.

Preface

2

Chapter 6, Templates and UX sugar, is devoted to the frontend enhancements that makes
Backbone application look better and program easily.

Chapter 7, REST and Storage, is focused on how Backbone.js synchronizes models and
collections with a RESTful backend or stores them in the HTML5 local storage.

Chapter 8, Special Techniques, helps you learn how to solve the most challenging problems
that can occur during Backbone development, such as creating extensions, testing your app,
creating a mobile app, and performing search-engine compatibility.

What you need for this book
Most of the recipes in this book do not require special software to be used. What you need is
a browser and a text editor or IDE to edit HTML, JavaScript, and CSS files. Some of the recipes
in Chapter 7, Rest and Storage and Chapter 8, Special Techniques require you to install GIT,
Node.js, and NPM. It also assumes that you can use a Unix-like shell.

Who this book is for
This book is created for frontend developers who are familiar with JavaScript, HTML, and CSS.
It assumes that you have good understanding of Object Oriented Programming (OOP) and some
practice with the jQuery library.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To check
if model has an attribute use the has() method. It returns true if the attribute exists,
otherwise false."

A block of code is set as follows:

if (!invoiceItemModel.has('quantity'))
 {
 console.log('Quantity attribute does not exists!')
 }

Preface

3

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

var InvoiceItemModel = Backbone.Model.extend
 ({
 // Define validation criteria.
 validate: function(attrs) {
 if (attrs.quantity <= 0) {
 return "quantity can't be negative or equal to zero";
 }
 }
 });

Any command-line input or output is written as follows:

$ npm install -g requirejs

New terms and important words are shown in bold. Words that you see on the screen,
in menus, or dialog boxes for example, appear in the text like this: "When user clicks on
the Add button, the following popup is generated and shown to the user:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any aspect
of the book, and we will do our best to address it.

http://www.PacktPub.com/
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Understanding

Backbone

In this chapter, we will cover the following points:

ff Designing an application with the MVC pattern

ff Defining business logic with models and collections

ff Modeling an application's behavior with views and a router

ff Creating an application structure from scratch

ff Writing your first Backbone application

ff Implementing URL routing in your application

ff Extending an application with plugins

ff Contributing to the Backbone project

Introduction
Backbone.js is a lightweight JavaScript framework that is based on the Model-View-Controller
(MVC) pattern and allows developers to create single-page web applications. With Backbone,
it is possible to update a web page quickly using the REST approach with a minimal amount
of data transferred between a client and a server.

Understanding Backbone

6

Backbone.js is becoming more popular day by day and is being used on a large scale for web
applications and IT startups; some of them are as follows:

ff Groupon Now!: The team decided that their first product would be AJAX-heavy
but should still be linkable and shareable. Though they were completely new to
Backbone, they found that its learning curve was incredibly quick, so they were
able to deliver the working product in just two weeks.

ff Foursquare: This used the Backbone.js library to create model classes for the
entities in foursquare (for example, venues, check-ins, and users). They found that
Backbone's model classes provide a simple and light-weight mechanism to capture
an object's data and state, complete with the semantics of a classical inheritance.

ff LinkedIn mobile: This used Backbone.js to create its next-generation HTML5
mobile web app. Backbone made it easy to keep the app modular, organized,
and extensible, so it was possible to program the complexities of LinkedIn's
user experience. Moreover, they are using the same code base in their mobile
applications for iOS and Android platforms.

ff WordPress.com: This is a SaaS version of Wordpress and uses Backbone.js models,
collections, and views in its notification system, and is integrating Backbone.js into
the Stats tab and into other features throughout the home page.

ff Airbnb: This is a community marketplace for users to list, discover, and book unique
spaces around the world. Its development team has used Backbone in many latest
products. Recently, they rebuilt a mobile website with Backbone.js and Node.js tied
together with a library named Rendr.

You can visit the following links to get acquainted with other usage examples of Backbone.js:

http://backbonejs.org/#examples

Backbone.js was started by Jeremy Ashkenas from DocumentCloud in 2010 and is now being
used and improved by lots of developers all over the world using Git, the distributed version
control system.

In this chapter, we are going to provide some practical examples of how to use Backbone.js,
and we will structure a design for a program named Billing Application by following the MVC
and Backbone pattern. We will also refer to this structure in the later chapters of this book.
Reading this chapter is especially useful if you are new to developing with Backbone.js.
If you feel that you're an experienced developer, you can skip this chapter.

Chapter 1

7

Designing an application with the MVC
pattern

MVC is a design pattern that is widely used in user-facing software, such as web applications.
It is intended for splitting data and representing it in a way that makes it convenient for user
interaction. To understand what it does, understand the following:

ff Model: This contains data and provides business logic used to run the application

ff View: This presents the model to the user

ff Controller: This reacts to user input by updating the model and the view

There could be some differences in the MVC implementation, but in general it conforms to
the following scheme:

sees
User

uses

View Controller

Application

updates manipulates

Model

synchronizes

Storage

Worldwide practice shows that the use of the MVC pattern provides various benefits to
the developer:

ff Following the separation of the concerned paradigm, which splits an application
into independent parts, it is easier to modify or replace

ff It achieves code reusability by rendering a model in different views without the
need to implement model functionality in each view

ff It requires less training and has a quicker startup time for the new developers
within an organization

Understanding Backbone

8

To have a better understanding of the MVC pattern, we are going to design a Billing Application.
We will refer to this design throughout the book when we are learning specific topics.

Our Billing Application will allow users to generate invoices, manage them, and send them to
clients. According to the worldwide practice, the invoice should contain a reference number,
date, information about the buyer and seller, bank account details, a list of provided products
or services, and an invoice sum. Let's have a look at the following screenshot to understand
how an invoice appears:

Chapter 1

9

How to do it...
Let's follow the ensuing steps to design an MVC structure for the Billing Application:

1.	 Let's write down a list of functional requirements for this application. We assume
that the end user may want to be able to do the following:

�� Generate an invoice
�� E-mail the invoice to the buyer
�� Print the invoice
�� See a list of existing invoices
�� Manage invoices (create, read, update, and delete)
�� Update an invoice status (draft, issued, paid, and canceled)
�� View a yearly income graph and other reports

2.	 To simplify the process of creating multiple invoices, the user may want to manage
information about buyers and his personal details in the specific part of the
application before he/she creates an invoice. So, our application should provide
additional functionalities to the end user, such as the following:

�� The ability to see a list of buyers and use it when generating an invoice
�� The ability to manage buyers (create, read, update, and delete)
�� The ability to see a list of bank accounts and use it when generating

an invoice
�� The ability to manage his/her own bank accounts (create, read, update,

and delete)
�� The ability to edit personal details and use them when generating an invoice

Of course, we may want to have more functions, but this is enough for demonstrating
how to design an application using the MVC pattern.

3.	 Next, we architect an application using the MVC pattern.

After we have defined the features of our application, we need to understand what
is more related to the model (business logic) and what is more related to the view
(presentation). Let's split the functionality into several parts.

4.	 Then, we learn how to define models.

Models present data and provide data-specific business logic. Models can be related
to each other. In our case, they are as follows:

�� InvoiceModel
�� InvoiceItemModel

Understanding Backbone

10

�� BuyerModel

�� SellerModel

�� BankAccountModel

5.	 Then, will define collections of models.

Our application allows users to operate on a number of models, so they need
to be organized into a special iterable object named Collection. We need the
following collections:

�� InvoiceCollection

�� InvoiceItemCollection

�� BuyerCollection

�� BankAccountCollection

6.	 Next, we define views.

View present a model or a collection to the application user. A single model
or collection can be rendered to be used by multiple views. The views that
we need in our application are as follows:

�� EditInvoiceFormView

�� InvoicePageView

�� InvoiceListView

�� PrintInvoicePageView

�� EmailInvoiceFormView

�� YearlyIncomeGraphView

�� EditBuyerFormView

�� BuyerPageView

�� BuyerListView

�� EditBankAccountFormView

�� BankAccountPageView

�� BankAccountListView

�� EditSellerInfoFormView

�� ViewSellectInfoPageView

�� ConfirmationDialogView

Chapter 1

11

7.	 Finally, we define a controller.

A controller allows users to interact with an application. In MVC, each view can have
a different controller that is used to do following:

�� Map a URL to a specific view

�� Fetch models from a server

�� Show and hide views

�� Handle user input

Defining business logic with models and
collections

Now, it is time to design business logic for the Billing Application using the MVC and
OOP approaches.

In this recipe, we are going to define an internal structure for our application with model
and collection objects. Although a model represents a single object, a collection is a set
of models that can be iterated, filtered, and sorted.

Relations between models and collections in the Billing Application conform to the
following scheme:

SellerModel

InvoiceCollection BuyerCollection

InvoiceModel BuyerModel

InvoiceItemCollection BankAccountCollection

InvoiceItemModel BankAccountModel

Understanding Backbone

12

How to do it...
For each model, we are going to create two tables: one for properties and another for methods:

1.	 We define BuyerModel properties.

Name Type Required Unique
id Integer Yes Yes
name Text Yes
address Text Yes
phoneNumber Text No

2.	 Then, we define SellerModel properties.

Name Type Required Unique
id Integer Yes Yes
name Text Yes
address Text Yes
phoneNumber Text No
taxDetails Text Yes

3.	 After this, we define BankAccountModel properties.

Name Type Required Unique
id Integer Yes Yes
beneficiary Text Yes
beneficiaryAccount Text Yes
bank Text Yes
SWIFT Text Yes
specialInstructions Text No

4.	 We define InvoiceItemModel properties.

Name Arguments Return Type Unique
calculateAmount - Decimal

5.	 Next, we define InvoiceItemModel methods.

We don't need to store the item amount in the model, because it always depends on
the price and the quantity, so it can be calculated.

Chapter 1

13

Name Type Required Unique
id Integer Yes Yes
deliveryDate Date Yes
description Text Yes
price Decimal Yes
quantity Decimal Yes

6.	 Now, we define InvoiceModel properties.

Name Type Required Unique
id Integer Yes Yes
referenceNumber Text Yes
date Date Yes
bankAccount Reference Yes
items Collection Yes
comments Text No
status Integer Yes

7.	 We define InvoiceModel methods.

The invoice amount can easily be calculated as the sum of invoice item amounts.

Name Arguments Return Type Unique
calculateAmount Decimal

8.	 Finally, we define collections.

In our case, they are InvoiceCollection, InvoiceItemCollection, BuyerCollection,
and BankAccountCollection. They are used to store models of an appropriate
type and provide some methods to add/remove models to/from the collections.

How it works...
Models in Backbone.js are implemented by extending Backbone.Model, and collections
are made by extending Backbone.Collection. To implement relations between models and
collections, we can use special Backbone extensions, which are described in the later
chapters of this book.

See also
ff The Operating with model attributes recipe in Chapter 2, Models
ff The Creating a collection of models recipe in Chapter 3, Collections

Understanding Backbone

14

To learn more about object properties, methods, and OOP programming in JavaScript,
you can refer to the following resource:

https://developer.mozilla.org/en-US/docs/JavaScript/Introduction_to_
Object-Oriented_JavaScript

Modeling an application's behavior with
views and a router

Unlike traditional MVC frameworks, Backbone does not provide any distinct object that
implements controller functionality. Instead, the controller is diffused between Backbone.
Router and Backbone. View and the following is done:

ff A router handles URL changes and delegates application flow to a view.
Typically, the router fetches a model from the storage asynchronously.
When the model is fetched, it triggers a view update.

ff A view listens to DOM events and either updates a model or navigates
an application through a router.

The following diagram shows a typical workflow in a Backbone application:

Application

1. navigates

2. delegates

3. fetches

4. sync

5. updates

6. enders

7. sees

8. uses

9. notifies

10. changes

11. writes

12. navigates

View

Model

Router

DOM User

Storage

Chapter 1

15

How to do it...
Let's follow the ensuing steps to understand how to define basic views and a router in
our application:

1.	 First, we need to create wireframes for an application.

Let's draw a couple of wireframes in this recipe:

�� The Edit Invoice page allows users to select a buyer, to select the seller's
bank account from the lists, to enter the invoice's date and a reference
number, and to build a table of shipped products and services.

Understanding Backbone

16

ff The Preview Invoice page shows how the final invoice will be seen by a buyer. This
display should render all the information we have entered in the Edit Invoice form.
Buyer and seller information can be looked up in the application storage. The user
has the option to either go back to the Edit display or save this invoice.

2.	 Then, we will define view objects.

According to the previous wireframes, we need to have two main views:
EditInvoiceFormView and PreviewInvoicePageView. These views will operate
with InvoiceModel; it refers to other objects, such as BankAccountModel and
InvoiceItemCollection.

Chapter 1

17

3.	 Now, we will split views into subviews.

For each item in the Products or Services table, we may want to recalculate the
Amount field depending on what the user enters in the Price and Quantity fields.
The first way to do this is to re-render the entire view when the user changes the
value in the table; however, it is not an efficient way, and it takes a significant
amount of computer power to do this.

We don't need to re-render the entire view if we want to update a small part of it.
It is better to split the big view into different, independent pieces, such as subviews,
that are able to render only a specific part of the big view. In our case, we can have
the following views:

View: EditInvoiceFormView

Model: Invoice

View: PreviewInvoiceFormView

Model: Invoice

View: EditInvoiceItemTableView

Collection: InvoiceItemCollection

View: EditInvoiceItemView

Model: InvoiceItemModel

View: PreviewInvoiceItemTableView

Collection: InvoiceItemCollection

View: PreviewInvoiceItemView

Model: InvoiceItemModel

As we can see, EditInvoiceItemTableView and PreviewInvoiceItemTableView render
InvoiceItemCollection with the help of the additional views EditInvoiceItemView and
PreviewInvoiceItemView that render InvoiceItemModel. Such separation allows us
to re-render an item inside a collection when it is changed.

4.	 Finally, we will define URL paths that will be associated with a corresponding view.
In our case, we can have several URLs to show different views, for example:

�� /invoice/add

�� /invoice/:id/edit

�� /invoice/:id/preview

Here, we assume that the Edit Invoice view can be used for either creating a new
invoice or editing an existing one. In the router implementation, we can load this
view and show it on specific URLs.

www.allitebooks.com

http://www.allitebooks.org

Understanding Backbone

18

How it works...
The Backbone.View object can be extended to create our own view that will render model
data. In a view, we can define handlers to user actions, such as data input and keyboard
or mouse events.

In the application, we can have a single Backbone.Router object that allows users to navigate
through an application by changing the URL in the address bar of the browser. The router
object contains a list of available URLs and callbacks. In a callback function, we can trigger
the rendering of a specific view associated with a URL.

If we want a user to be able to jump from one view to another, we may want him/her to
either click on regular HTML links associated with a view or navigate to an application
programmatically.

See also
ff Chapter 2, Views

Creating an application structure from
scratch

In this recipe, we are going to talk about how to create a Backbone project from scratch.
There is important information of which we should be aware when dealing with the later
chapters of this book.

How to do it...
We are going to speak about Backbone dependencies and the directory structure for our project.
Let's follow the ensuing guidelines:

1.	 Download Backbone.js.

Visit http://backbone.js and download the Backbone.js library. There are
several versions available: production, development, and an edge version.

You can use the production version for the best performance because it has been
optimized and minimized. The development version may be good to use when working
on the application, so you can use the code completion and debugging features of your
IDE. And finally, you can use the edge version of Backbone, but do it at your own risk,
because it may not be fully tested.

Chapter 1

19

2.	 Download Backbone dependencies.

Backbone.js depends on the Underscore.js library, which can be downloaded from
http://underscorejs.org. Underscore is also shipped in three different versions.

Also, Backbone.js depends on either the jQuery or Zepto libraries. These libraries
have the same syntax and both provide useful functionality to the developer.
They simplify work with the document tree, event handling, AJAX, and JavaScript
animations.

For many examples in this book, we are going to use the jQuery library, which can be
downloaded from http://jquery.com. It is provided with both the development
and production versions.

3.	 Create a project directory structure.

If you follow a specific directory structure, it would be easier to find any file and
work with it, because such an application structure brings more order into your
project. Here is an example of a directory structure that can be used by a simple
Backbone application:

�� lib/: This is a directory for third-party libraries, such as the following:

backbone.js: This is the source code of Backbone.js

underscore.js: This is the source code of Underscore.js

jquery.js: This has sources of jQuery

�� js/: This is the directory of the project's JavaScript files.

main.js: This is the main JavaScript file that has been used in the project

index.html: This is the main file of our application.

Create the main file of the application, which is index.html. It should include
third-party libraries and your application files, as shown in the following code:
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Backbone.js Cookbook – Application Template</title>

 <script src="lib/jquery.js"></script>
 <script src="lib/underscore.js"></script>
 <script src="lib/backbone.js"></script>

 <script src="js/main.js"></script>
 </head>

Understanding Backbone

20

 <body></body>

</html>

4.	 Create the main JavaScript file named main.js that will contain the code of
your application.
(function($){

 // Your code is here

})(jQuery);

As we include our scripts into the head tag, they are executed before the body content
is processed by a browser and before the whole HTML document is loaded.

In a Backbone application, as in many other JavaScript applications, we want to make
sure our program starts to run right after the document is loaded, so main.js should
look like the following code snippet:
(function($){

 // Object declarations goes here

 $(document).ready(function () {

 // Start application code goes here

 });
})(jQuery);

You can use this application template for creating your own
Backbone app. We are also going to use this template for
the examples in this book.

Writing your first Backbone application
In this recipe, we are going to write our first Backbone application. Let it be a simple part
of the billing system.

For example, we can implement a model and a view for the invoice item. Let's create
InvoiceItemModel that contains the Quantity and Price fields and calculates the item's
amount. We also need to have PreviewInvoiceItemView that is used to render a model.

Chapter 1

21

The output of our demo application could be very simple, as shown in the following screenshot:

How to do it...
The new code in this recipe should go into the main.js file that we created in the previous recipe;
we will do this as follows:

1.	 Define the model by extending it from the Backbone.Model object.
 var InvoiceItemModel = Backbone.Model.extend({

 // Set default values.
 defaults: {
 price: 0,
 quantity: 0
 },

 // Calculate amount.
 calculateAmount: function() {
 return this.get('price') * this.get('quantity');
 }
 });

In the InvoiceItemModel object, we have initialized the default values and performed
the business logic, a function that calculates the total amount.

2.	 Create a model instance.
 var invoiceItemModel = new InvoiceItemModel({
 price: 2,
 quantity: 3
 });

Understanding Backbone

22

3.	 Define the view that will render the model.
 var PreviewInvoiceItemView = Backbone.View.extend({

 // Define template using templating engine from
 // Underscore.js.
 template: _.template('\
 Price: <%= price %>.\
 Quantity: <%= quantity %>.\
 Amount: <%= amount %>.\
 '),

 // Render view.
 render: function () {

 // Generate HTML by rendering the template.
 var html = this.template({

 // Pass model properties to the template.
 price: this.model.get('price'),
 quantity: this.model.get('quantity'),

 // Calculate amount and pass it to the template.
 amount: this.model.calculateAmount()
 });

 // Set html for the view element using jQuery.
 $(this.el).html(html);
 }
 });

As we can see, our view uses the this.model and this.el properties that are passed to
the view when it is created.
 var previewInvoiceItemView = new PreviewInvoiceItemView({
 model: invoiceItemModel,
 el: 'body'
 });

Inside a view, we used the jQuery library to set the content for the element associated
with the view $(this.el).html(html). In our case, this.el contains 'body' that is also a
jQuery selector.

Such selectors are similar to CSS selectors and allow jQuery to find an arbitrary HTML
element using the $() function.

Chapter 1

23

4.	 To render a view, we simply need to execute the render() method.
 previewInvoiceItemView.render();

When rendering a view, we also used a templating engine provided by Underscore.
js. This templating engine substitutes templates with data and outputs static HTML.
More information about templates is available in the Using templates in a view recipe
of Chapter 6, Templates, Forms, and UX Sugar.

5.	 Start the application.

There are several ways to start an application. If your application has only a single
view, you can create a new instance of it and render it manually.

An application should be started right after the HTML page is loaded. Let's write
some code that will start a simple Backbone application:
 // When document is ready create the Model and show
 // the View.
 $(document).ready(function () {

 // Create InvoiceItemModel instance and set
 // model attributes.
 var invoiceItemModel = new InvoiceItemModel({
 price: 2,
 quantity: 3
 });

 // Create PreviewInvoiceItemView instance.
 var previewInvoiceItemView = new PreviewInvoiceItemView({

 // Pass our model.
 model: invoiceItemModel,

 // Set element where to render HTML.
 el: 'body'
 });

 // Render view manually.
 previewInvoiceItemView.render();
 });

See also
ff Chapter 2, Models

ff Chapter 3, Collections

ff Chapter 4, Views

ff Chapter 5, Events and Bindings

Understanding Backbone

24

Implementing URL routing in your
application

The Backbone.Router object is used for navigation inside your application. You should use
it if you want to access different view pages by hitting the appropriate URLs. Users can also
navigate through an application using the browser's history bar.

By default, the router works well with hash paths, such as index.html#path/to/page. Any
string that is placed after a hash character is supposed to be a route and is processed
by Backbone.Router.

How to do it...
Here, we are going to explain how to create our own router in our application:

1.	 Define a router by extending Backbone.Router into the Workspace object and
setting pairs of routes and callback functions for them inside the routes property
that is passed to the extend() method. This gives the router information of which
callback should be executed in case the appropriate route is accessed.
 var Workspace = Backbone.Router.extend({
 routes: {
 // Default path.
 '': 'invoiceList',

 // Usage of static path.
 'invoice': 'invoiceList',
 },
 });

2.	 Add a callback method to the router object.
 invoiceList: function() {
 var invoiceListView = new InvoiceListView({
 el: 'body'
 });
 invoiceListView.render();
 }

If the user visits index.html or index.html#invoice, the invoiceList() callback is
executed, which renders InvoiceListView. Here, InvoiceListView is a simple stub.

Chapter 1

25

3.	 Tell Backbone to use this router and start the application.
 $(document).ready(function () {
 new Workspace();
 Backbone.history.start();
 });

Here, we create a new Workspace object and execute the start() method of the
Backbone.history object that is used for global application routing. As always,
we should start our application right after the HTML page has loaded completely.

How it works...
Backbone.Router is used just for defining routes and callbacks. All the important jobs are
done by Backbone.history that serves as a global router (per frame) to handle hashchange
or pushState events, match the appropriate route, and trigger callbacks. You shouldn't ever
have to create an instance of the global router—you should use the reference to Backbone.
history that will be created for you automatically if you make use of routers with routes.

There's more...
Backbone router allows the defining of routes with parameters, which we are going to explain
in this section.

Understanding Backbone

26

Parsing parameters in a URL
If we want the router to parse parameters in a URL, we need to use the colon character (:)
before the parameter's name. Here is an example that demonstrates how Backbone.Router
parses URLs with a parameter.

 var Workspace = Backbone.Router.extend({
 routes: {
 // Usage of fragment parameter.
 'invoice/:id': 'invoicePage',
 },

 // Shows invoice page.
 invoicePage: function(id) {
 var invoicePageView = new InvoicePageView({
 el: 'body',

 // Pass parameter to the view.
 id: id
 });
 invoicePageView.render();
 },
 });

Paths such as index.html#invoice/1 and index.html#invoice/2 will be parsed by a router. In both
cases, the invoicePage() callback is executed; it passes the ID parameter to InvoiceLPageView
and renders it.

Chapter 1

27

Validate parameters in your router
There is no default way to set a restriction for the data type
or format of the parameters inside the routes definition.
All parameters that are passed to the router callbacks are
strings, and it is up to the developer to validate them.

See also
ff The Handling router events recipe in Chapter 5, Events and Bindings

ff The Switching views using Backbone.Router recipe in Chapter 4, Views

Extending an application with plugins
Backbone's core is small, well-tested, and nicely maintained. However, developers may
need additional functionalities to be used by a complex web application. The power of the
Backbone framework depends on modularity and flexibility. Existing components can easily
be either extended or replaced; thus, many developers create their own plugins.

There are over 100 plugins that can be downloaded and used in your application from
https://github.com/documentcloud/backbone/wiki/Extensions,-Plugins,
-Resources. In this book, we are going to use some of them, so we need to know how to
extend our application with plugins.

How to do it...
If the plugin is a single JavaScript file, simply copy it into the lib folder of the project and include
it in index.html.

 <script src="lib/backbone.plugin.js"></script>

Alternatively, if the plugin has been shipped with additional files, such as CSS and images,
place all the plugin files in the plugin-name directory under the lib folder, and then include
the JS and CSS files in index.html.

Use Git submodules
If your project is hosted in the Git repository, you can use the
Git submodule command to insert a plugin repository inside your
project repository. This is very useful if you want to have an easy
way to update your project plugins by writing a single git command.

Understanding Backbone

28

See also
ff The Creating a Backbone.js extension with Grunt recipe in Chapter 8,

Special Techniques

Contributing to the Backbone project
Backbone.js is an open source project that has been developed by a strong community.
In this recipe, we are going to speak about things that will help you became a part of this
community and improve Backbone.js.

How to do it...
Let's follow the ensuing steps to make Backbone.js better:

1.	 Work on the issue queue.

If you found a bug in Backbone.js or want a new feature to be implemented, you can
submit your issue to the issue queue at https://github.com/documentcloud/
backbone/issues. Before doing this, make sure there is no similar issue;
otherwise, you can update the existing issue queue.

2.	 Contribute code.

You can submit your own code to the Backbone project. Such a contribution can be
very helpful to the community and the project itself.

By using Backbone, you save your own time. By contributing to the project, you save
the time of other developers who use it and your own time in the future instead of
having to work on the same issue again.

Detailed guidelines for the code contributing process can be found on the wiki page
at https://github.com/documentcloud/backbone/wiki/Contributing-
to-Backbone.

3.	 Work on the documentation of Backbone.js.

The official documentation, which is located at http://backbonejs.org, is
based on a recent version of Backbone.js in the GitHub repository. You can improve
the documentation by either updating the index.html file or the docs directory. If you
want to add a new example, use the examples folder.

2
Models

In this chapter, we will cover:

ff Creating a model

ff Operating with model attributes

ff Operating with model identifier

ff Validating model attributes

ff Overriding getters and setters

ff Creating undo points to store/restore a model's state

ff Implementing workflow for a model

ff Using advanced validation in a model

ff Validating an HTML form

ff Working with nested attributes in a model

ff Implementing a one-to-one relationship

Introduction
In this chapter we are going to learn what a Backbone model is and how can we use it. We are
also going to consider various Backbone extensions, which provide lots of improvement and
bring amazing features to our models.

The first three recipes of the current chapter contain information for beginners who are
not familiar with Backbone yet; and other recipes bring additional value and cover more
advanced topics.

Models

30

Creating a model
A model is a building brick of any MVC application, which contains data, provides validation,
performs access control, and implements specific business logic required by an application.
In Backbone.js, a model is defined by extending its instance from the Backbone.Model
object. In this recipe, we are going to learn how to work with models in Backbone.js.

How to do it...
Perform the following steps to define a new model object and create its instance:

1.	 Define a model by extending Backbone.Model.
 var InvoiceItemModel = Backbone.Model.extend({

 });

There is no need to define a data structure inside the model object, because
Backbone allows it to be defined dynamically when the model is initialized.

2.	 Create a Backbone.Model instance and initialize it with attribute values.

 var invoiceItemModel = new InvoiceItemModel({
 date: '2013-04-24',
 description: 'Wooden Toy House',
 price: 22,
 quantity: 3
 });

There's more...
In this section, we are going to learn how to clone a model and how to initialize a model with
default values.

Cloning a model
When you assign a model to another variable, it makes one model reflect changes in another
model. If you need an independent copy of a model, use the clone() method.

newModel = invoiceItemModel.clone();

Setting default attribute values
Sometimes, you may want your model to have attributes that are initialized with default values
when a new model instance is created, so you don't need to set them manually. Here is how
default attributes are defined:

Chapter 2

31

 var InvoiceItemModel = Backbone.Model.extend({

 // Define default attributes.
 defaults: {
 date: '',
 description: '',
 price: 0,
 quantity: 1
 },
 });

The following example shows that the quantity and date attributes are initialized by
default:

 var invoiceItemModel2 = new InvoiceItemModel({
 description: 'Farm Animal Set',
 price: 17
 });

 invoiceItemModel2.get('date') != undefined; // true
 invoiceItemModel2.get('quantity'); // 1

Setting default attribute values with a multiline expression
If you want to set default values with a multiline expression you can wrap it into a function and
call it when setting default attributes in defaults.

 // Create new model object
 var InvoiceItemModel = Backbone.Model.extend({

 // Set default attributes.
 defaults: {
 description: '',
 price: 0,
 quantity: 1,

 // Use function for multiline expression.
 date: function() {
 var date = new Date();

 // Return attribute value.
 return date.toISOString();
 }
 }
 });

Models

32

There is also a way to do the same in the initialize() method, which is called right after
the model object is created and initialized with values.

 // Crate new model
 var InvoiceItemModel = Backbone.Model.extend({

 // Set default values.
 defaults: {
 description: '',
 price: 0,
 quantity: 1,
 },

 // Set default values in initialize method.
 // Following method is run after the object is created.
 initialize: function() {

 // Check that attribute is not initialized yet.
 if (!this.has('date')) {
 var date = new Date();

 // Set attribute value.
 this.set('date', date.toISOString());
 }
 }
 }

In the initialize() method we set the date attribute to today's date using JavaScript's
Date object. Before doing this, we need to check that the date attribute is not initialized yet,
so we do not override it.

If the default attributes are defined, then they can override the attributes
defined in the initialize() method, and so we need to remove such
attributes from the default values, otherwise they are initialized as
defaults instead.

See also
ff In the current recipe examples, we used the has() and set() methods, which are

described in the following recipe: Operating with model attributes

Chapter 2

33

Operating with model attributes
Attributes are where a model stores all its data. Unlike model properties, which are used for
storing internal object information, attributes cannot be accessed via the . operator. There
are special methods to work with them, which we are going to learn in this recipe.

How to do it...
The main methods to work with model attributes are get(), set(), unset(),and clear().

1.	 Use the get() method to get an attribute value.
var quantity = invoiceItemModel.get('quantity');

If the attribute is not found, undefined is returned.

2.	 Use the set() method to update/create a single attribute value.
invoiceItemModel.set('quantity', 5);

�� To update multiple attributes use key-value format.
 invoiceItemModel.set({
 quantity: 5,
 price: 10
 });

When setting an attribute if it does not exist, one is created. The set() method
returns a reference with the value true to the model, if validation does not fail;
otherwise returns the value false. We will learn more about validation in the recipe,
Validating model attributes.

3.	 Use the unset() method to delete an attribute from a model.
invoiceItemModel.unset('quantity');

4.	 Use the clear() method to delete all attributes from a model.

invoiceItemModel.clear();

How it works...
Attributes are stored in the attributes property. It is better not to access attributes directly
and to use methods we have learned previously; otherwise, it can break the event triggering
mechanism or integration with other Backbone extensions.

When a new module is initialized, values from the defaults property are assigned to the
attributes one.

Models

34

There's more…
In this section we are going to learn some useful methods with the model attributes.

Checking if a model has an attribute
To check if a model has an attribute, use the has() method. It returns true if the attribute
exists, otherwise false.

if (!invoiceItemModel.has('quantity')) {
 console.log('Quantity attribute does not exists!')
}

Getting HTML escaped attribute value
If you are going to display user-entered text, which you assume is in plain text format, you
should worry about security issues. The best way to prevent vulnerability which may lead to
possible XSS attacks is to use the escape() method before outputting any user entered text.
This disallows the browser to parse any HTML code by escaping HTML characters. Let's figure
out how it works:

 var hacker = new Backbone.Model({
 name: "<script>alert('xss')</script>"
 });
 var escaped_name = hacker.escape('name');
 // <script>alert('xss')</script>

Operating with the model identifier
Each model has a unique identifier property ID, which allows distinguishing one model from
another. When developing a Backbone application it is often required to operate with an
identifier.

How to do it...
The following steps explains how to set and get the id property:

1.	 Setting and getting the id property is really easy.
 invoiceItemModel.id =
 Math.random().toString(36).substr(2);

Getting the id property looks as follows:
 var id = invoiceItemModel.id;

Chapter 2

35

How it works...
The id property provides direct access to an attribute where the identifier is stored. By default
it is id; however, you can override it by setting idAttribute when extending a model.

 var Meal = Backbone.Model.extend({
 idAttribute: "_id"
 });

When a new model is created, the identifier is empty unless it is manually assigned.

There's more...
If id is not initialized yet in your model, then you can use a client identifier, which can be
accessed using the cid property. The value of cid is unique and assigned automatically
when a new model instance is created. Client IDs can take forms, such as c0, c1, c2,
and so on.

Validating model attributes
To prevent unexpected behavior, we often need to validate model attributes.

How to do it...
Perform the following steps to set up an attribute validation:

1.	 Validation can be done by defining the validate() method.
 var InvoiceItemModel = Backbone.Model.extend({

 // Define validation criteria.
 validate: function(attrs) {
 if (attrs.quantity <= 0) {
 return "quantity can't be negative or equal to
 zero";
 }
 }
 });

The attrs parameter contains the attribute values that were changed. The
validate() method will return an error message if they do not validate.

Models

36

2.	 Attribute validation is triggered on the save() method. It can also trigger on the
set() method if you pass {validate: true} as the last parameter.
 var invoiceItemModel = new InvoiceItemModel({
 description: 'Wooden Toy House',
 price: 10
 });

 // Set value that is not valid.
 invoiceItemModel.set('quantity', -1, {validate: true});

When validating a model you can still access old attribute values with
the help of this.get() or this.attributes.

How it works...
validate is called before save(), and accepts the updated model attributes, which are
passed from save(). If validate() returns an error string, save() will not continue,
and the model attributes will not be modified. Failed validation triggers the invalid event.
If you want validation to be triggered in the set() method, pass {validate: true} as
the last parameter.

There's more...
In this section, we are going to investigate more details about validation.

Handling validation errors
If a model does not validate, we often need to continue running an application and provide a
custom code for handling events. Let's check out how it is done.

 invoiceItemModel.on("invalid", function(model, error) {
 console.log(error);
 });

Such an error handler should be bound before the validation event is triggered.

There is also another way of handling events, which allows us to pass an error handling
function as an option to the set(), fetch(), save(), or destroy() methods.

 var invoiceItemModel2 = new InvoiceItemModel({
 description: 'Animal Farm',
 price: 17
 });
 invoiceItemModel2.set({quantity: 0}, {

Chapter 2

37

 invalid: function(model, error) {
 console.log(error);
 },
 validate: true
 });

Triggering validation manually
Though validation is performed every time a model is updated or saved to the storage,
sometimes you may want to check manually if the model validates. Let's figure out how to
do it.

 var invoiceItemModel3 = new InvoiceItemModel({
 description: 'Wooden Toy House',
 price: 10,
 quantity: -5
 });
 invoiceItemModel3.isValid(); // false

isValid() returns true or false, but does not trigger the invalid event.

See also
ff Handling events of Backbone objects in Chapter 5, Events and Bindings

Overriding getters and setters
Sometimes it is required to override getters or setters in your application. There can be
different reasons to do so:

ff An attribute is stored in a different format rather than a format for input or output

ff You have a virtual attribute that is not stored in the model, but depends on other
attributes

ff Prevent illegal values to be assigned to an attribute

By default, Backbone does not allow users to override getters or setters, but there is an
extension named Backbone.Mutators, which allows you to do so.

Getting ready
There is a link to download Backbone.Mutators from the GitHub page https://github.
com/asciidisco/Backbone.Mutators.

www.allitebooks.com

http://www.allitebooks.org

Models

38

To include this extension into your project, save the backbone.mutators.js file into the
lib folder and include a reference to it in index.html.

Including a Backbone extension into your project is described in the
Extending application with plugins recipe in Chapter 1, Understanding
Backbone in detail.

How to do it...
We can specify a getter or setter for a virtual attribute that does not exist. This can be helpful
in some cases, for example, if a virtual attribute depends on other attributes.

1.	 Introduce a new virtual attribute by overriding getter for it.
 var BuyerModel = Backbone.Model.extend({

 // Use mutators
 mutators: {

 // Introduce virtual attribute.
 fullName: {
 get: function () {
 return this.firstName + ' ' + this.lastName;
 }
 }
 }
 });

In the model object, we defined a new mutators attribute, which provides our model
with a getter for the new virtual attribute named fullName. This attribute is not
assumed to be stored in the model, because it contains values of existing attributes
firstName and lastName. Now, let's see how we can use an overridden getter.

 var buyerModel = new BuyerModel();
 buyerModel.set({
 firstName: 'John',
 lastName: 'Smith'
 });

 buyerModel.get('fullName'); // John Smith
 buyerModel.get('firstName'); // John
 buyerModel.get('lastName'); // Smith

Chapter 2

39

2.	 Override setter, so the virtual attribute is not actually saved in the model, but other
attributes are updated instead.

 var BuyerModel = Backbone.Model.extend({

 // Use mutators
 mutators: {

 // Introduce virtual attribute.
 fullName: {
 set: function (key, value, options, set) {
 var names = value.split(' ');
 this.set('firstName', names[0], options);
 this.set('lastName', names[1], options);
 }
 }
 }
 });

In the setter for the fullName attribute, we split a value into an array and then
assign the firstName and lastName attributes with its parts. Here is an example
which demonstrates how it can be used:

 var buyerModel2 = new BuyerModel()
 buyerModel2.set('fullName', 'Joe Bloggs');

 buyerModel2.get('fullName'); // Joe Bloggs
 buyerModel2.get('firstName'); // Joe
 buyerModel2.get('lastName'); // Bloggs

Initialize attributes using the set() method
If you use setter mutator for an attribute, the only way to trigger it is to
call the set() method. Setter mutator won't work if you assign attributes
when creating a new model, because in this case the change event
is not triggered. Otherwise, you need to trigger the change event for a
specific property.

How it works...
The Backbone.Mutators extension overrides the get() and set() methods of
Bakcbone.Model. New methods try to call overridden getters and setters. If not, run the
original get() or set() methods.

It also overrides the toJSON() method and replaces attributes which have overridden getter.

Models

40

There's more...
In this section, we are going to learn the advanced usage of the Backbone.Mutators
extension.

Overriding getter and setter of an existing attribute
Overriding setter of an existing attribute may be done if you need the attribute to be stored in
a different format rather than the one in which it is outputted or inputted. You can override
getter and setter for this attribute and solve this problem. Let's see how to use Backbone.
Mutators for existing attributes:

 var BuyerModel = Backbone.Model.extend({

 // Use mutators.
 mutators: {

 // Override existing attribute.
 vip: {
 get: function() {
 return this.vip === true ? 'VIP' : 'Regular';
 },
 set: function (key, value, options, set) {
 set(key, value === 'VIP', options);
 }
 }
 }
 });

In this model, there is the vip attribute, which is boolean. We want this attribute to be
represented as a string to the user, so we are going to override getter and setter for it.

The usage syntax stays the same as for a regular attribute.

 var buyerModel3 = new BuyerModel();
 buyerModel2.set({
 fullName: 'Mister X',
 vip: 'VIP'
 });

 buyerModel2.get('vip'); // VIP
 buyerModel2.attributes.vip; // true

Chapter 2

41

Mutators aim to override setters or getters, but they do not modify
attribute values itself. You can always get the original attributes by
accessing the attributes property of a model.

Handling mutators events
You can bind callback to the mutators:set:* event. Here is how it is done:

 buyerModel3.on('mutators:set:fullName',
 function (a, b, c, d) {
 console.log('mutators:set:fullName is triggered');
 });

 buyerModel3.set({
 fullName: 'Mister Y'
 });

See also
ff Handling events of Backbone objects in Chapter 5, Events and Bindings

Creating undo points to store/restore a
model's state

Sometimes, you may need to manage the states of a model in your application. This can be
useful in one of the following cases:

ff Your application requires an undo/redo feature

ff You want to implement transactions

ff Your application emulates some process

ff You want to change a model temporarily and then restore it

Typically for all of the previous cases developers often use the Memento pattern. There is an
implementation of this pattern in Backbone, which is available in the Backbone.Memento
extension. This extension allows developers to store or restore a model's state and provides a
stack for operating with multiple states.

Models

42

Getting ready
You can download the Backbone.Memento extension from the GitHub page https://
github.com/derickbailey/backbone.memento. To include this extension into your
project, save the backbone.memento.js file into the lib folder and include a reference
to it in index.html.

Including a Backbone extension into your project is described in the
Extending application with plugins recipe in Chapter 1, Understanding
Backbone in detail.

How to do it...
Perform the following steps to operate model states:

1.	 Extend a model with the Backbone.Memento extension in the initialize()
method.
 var InvoiceItemModel = Backbone.Model.extend({

 // Extend model instance with memento instance.
 initialize: function() {
 _.extend(this, new Backbone.Memento(this));
 }
 });

2.	 Create the model instance and initialize it with values.
 var invoiceItemModel = new InvoiceItemModel();
 invoiceItemModel.set('price', 10);

3.	 Use the store() method to save a state.
 invoiceItemModel.store();

4.	 Update the model with temporary values.
 invoiceItemModel.set('price', 20);

5.	 Use the restore() method to retrieve a previously saved state.
 invoiceItemModel.restore();

6.	 Retrieve model values of the saved state.

 invoiceItemModel.get('price'); // 10

Chapter 2

43

How it works...
Memento uses the LIFO (last in, first out) data structure, also known as stack, for storing
model states. So it is possible to save model states multiple times, and then restore them
in a backward direction. The following diagram shows how it works:

Current state

store() restore()

Stack of states

Saved state N

Saved state 2

Saved state 1

...

Each time you call the store() method, the state is saved on top of the stack. Each time you
call the restore() method, the state that was saved last is restored and deleted from the
top of the stack.

There's more...
In this section, we are going to understand the advanced features of Memento.

Working with the Memento stack
Here is an example which demonstrates how to work with such stack of states:

 // States stack demo.
 var invoiceItemModel2 = new InvoiceItemModel();
 invoiceItemModel2.set('price', 10);

 // Save state and update value.
 invoiceItemModel2.store();
 invoiceItemModel2.set('price', 20);

 // Save state and update value.
 invoiceItemModel2.store();

Models

44

 invoiceItemModel2.set('price', 30);

 // Restore last state and get value.
 invoiceItemModel2.restore();
 invoiceItemModel2.get('price'); // 20

 // Restore last state and get value.
 invoiceItemModel2.restore();
 invoiceItemModel2.get('price'); // 10

As we can see in the preceding code, dealing with stacks is quite easy.

Restoring from the first state in the stack
Sometimes, it is required to reset a model to the state in which it was first saved in the stack,
no matter how many states were saved after. This can be done using the restart() method.

 invoiceItemModel3.restart();

Ignoring attributes from being restored
There is an interesting feature in Backbone.Memento, which allows you to ignore some
model attributes from being saved or restored. It is very useful if a model contains some
technical properties, which is not intended to be used as part of the state. When extending
a model in the initialize() method, pass the properties to be ignored in the ignore
option.

 var AnotherInvoiceItemModel = Backbone.Model.extend({

 // Extend model instance with memento instance.
 // Ignore restoring of description attribute.
 initialize: function() {
 _.extend(this, new Backbone.Memento(
 this, {ignore: ["description"]}
));
 }
 });

Working with collections
The Memento extension also allows to extend a collection with Memento functionality. It
provides the same methods when working with collections store(), restore(), and
restart().

Chapter 2

45

See also
ff There is also another extension named Backbone.actAs.Mementoable, which

implements the Memento pattern in a more accurate way, because it uses separate
objects for storing states. It is more flexible, but does not provide stack out of the box
and cannot ignore specific attributes from being saved/restored.

ff Backbone.actAs.Mementoable can be downloaded from the GitHub page
https://github.com/iVariable/Backbone.actAs.Mementoable.

ff You can learn more about working with collections in Chapter 3, Collections.

Implementing workflow for a model
If you are implementing a business logic, which assumes that a model can be in different
states and there are special rules applied to a state change, you should use the workflow.
js extension, which is very helpful for building such kind of functionality.

Getting ready
You can download the workflow.js extension from the GitHub page https://github.
com/kendagriff/workflow.js. To include this extension into your project, save the
workflow.js file into the lib folder and include a reference to it in index.html.

Including a Backbone extension into your project is described in the
Extending application with plugins recipe in Chapter 1, Understanding
Backbone in detail.

How to do it...
Let's create a workflow for InvoiceModel, because it has a status attribute, which
represents the model state and is well suited for a workflow example.

1.	 Draw a graph of the states and possible transitions.

draft

issue

issued

payout

paid

cancel cancel

canceled

Models

46

Available states are draft, issued, paid, and canceled. There are also a few transitions
available that allow one state to be changed into another. If there is no appropriate
transition, then such a change is not possible.

2.	 Define workflow in code.
 var InvoiceModel = Backbone.Model.extend({

 // Define workflow states.
 workflow: {

 // Define initial state.
 initial: 'draft',

 // Define state transitions.
 events: [
 { name: 'issue', from: 'draft', to: 'issued' },
 { name: 'payout', from: 'issued', to: 'paid' },
 { name: 'cancel', from: 'draft', to: 'canceled' },
 { name: 'cancel', from: 'issued', to: 'canceled' },
]
 },

 initialize: function() {
 // Extend model instance with workflow instance.
 // Set attribute name which contains status.
 _.extend(this,
 new Backbone.Workflow(this, {attrName: 'status'})
);
 }
 });

As we can see, there is a new workflow property which describes our workflow.
Transitions are defined in an array, which is assigned to the events property.

Each element of the transitions array should contain the name of the transition,
from state, and to state. Initial state of the model should be defined in the initial
property.

In the previous example, in the initialize() method, we extend our model object
with an instance of the Backbone.Workflow object and pass the state attribute
name (attrName) as an option, which contains 'status' instead of the default
value 'workflow_state'.

3.	 Trigger workflow transition by calling the triggerEvent() method.
 var invoiceModel = new InvoiceModel();
 invoiceModel.get('status'); // draft

Chapter 2

47

 invoiceModel.triggerEvent('issue');
 invoiceModel.get('status'); // issued

 invoiceModel.triggerEvent('payout');
 invoiceModel.get('status') // paid

As we can see in the preceding code, triggerEvent() accepts a single parameter,
which is the transition name. In case if an inappropriate transition is triggered, then
an exception is thrown.

How it works...
The Workflow.js extension is written on CoffeeScript and is quite easy to understand. It
just provides the triggerEvent() method, which switches the workflow property and
triggers an event.

There's more...
In this section, we are going to learn how to handle transition events.

Binding callbacks to transition events
Sometimes, you may want to execute a code when a specific transition is triggered. In this case,
you need to bind a callback function to a transition event. This callback is executed if an event
is being triggered.

Workflow.js provides two types of events transition:from:* and transition:to:*.
The first one is triggered when a workflow loses a specific state, and the second one is
triggered when a workflow reaches a specific state. Let's define event bindings for our model.

 var InvoiceModel = Backbone.Model.extend({

 // Define workflow states.
 // [workflow definition goes here]

 initialize: function() {
 // Extend model instance with workflow instance.
 // Set attribute name which contains status.
 _.extend(this,
 new Backbone.Workflow(this, {attrName: 'status'})
);

 // Bind reaction on event when status changes from
 // draft to any.
 this.bind('transition:from:draft', function() {

Models

48

 this.set('createdDate', new Date().toISOString());
 });

 // Bind reaction on event when status changes
 // from any to paid.
 this.bind('transition:to:paid, function() {
 this.set('payoutDate', new Date().toISOString());
 });
 }
 });

In the preceding example, we bind a couple of callbacks, which update date attributes when
appropriate events are triggered.

The next code snippet is an example which demonstrates what happens when workflow
events are triggered.

 var invoiceModel = new InvoiceModel();
 invoiceModel.get('status'); // draft

 invoiceModel.triggerEvent('issue');
 invoiceModel.get('status'); // issued
 invoiceModel.get('createdDate');
 // 2012-05-01T12:00:10.234Z

 invoiceModel.triggerEvent('payout');
 invoiceModel.get('status') // paid
 invoiceModel.get('payoutDate');
 // 2012-05-01T12:00:10.238Z

Always use the triggerEvent() method when changing state
Event callback is executed if an event is triggered by the triggerEvent()
method only. That is why an event callback is not executed when an object is
initialized or if you use the set() method to update the workflow state.

See also
ff Handling events of Backbone objects in Chapter 5, Events and Bindings

Chapter 2

49

Using advanced validation in a model
By default, Backbone provides a simple way for validating model attributes using the
validate() method, which allows to create your own validating function, but this can take
more developer's time compared to the usage of existing solutions.

Getting ready
Why don't you save time with another Backbone extension named Backbone.Validation,
which provides lots of features and allows to reuse existing validators. It is available to
download from the GitHub page https://github.com/thedersen/backbone.
validation.

To include this extension into your project, save the backbone-validation.js file in the
lib folder and include a reference to it in index.html.

Including a Backbone extension into your project is described in the
Extending application with plugins recipe in Chapter 1, Understanding
Backbone in detail.

How to do it...
Perform the following steps to set the validation criteria for a model:

1.	 Extend Backbone.object() with Backbone.Validation.mixin.
 _.extend(Backbone.Model.prototype, Backbone.Validation.mixin);

There is more information about mixins in the Using mixins with Backbone
objects recipe in Chapter 8, Special Techniques.

2.	 Define the validation criteria in the validation property.
 var BuyerModel = Backbone.Model.extend({

 // Defining a validation criteria.
 validation: {
 name: {
 required: true
 },
 email: {
 pattern: 'email'
 }
 }
 });

Models

50

How it works...
The Backbone.Validation extension overrides the validate() method of Backbone.
Model, so we can still call the validate() and isValid() methods as usual, and
validation is performed automatically when a model is updated. Let's check this out.

 var buyerModel = new BuyerModel();

 // Set attribute values which do not validate.
 buyerModel.set({
 email: 'http://example.com'
 }, {validate: true});

 // Check if model is valid.
 buyerModel.isValid(); // false
 buyerModel.get('email'); // undefined

There's more...
In this section, we are going to learn more about built-in validators.

Using built-in validators
In the previous example, we reused existing validators, such as required and pattern.
They are named built-in validators. In this recipe, we are going to learn how to use all of them.

ff required: It validates if the attribute is required or not. It can be equal to true or false.
 var BuyerModel = Backbone.Model.extend({
 validation: {
 name: {
 required: true
 },
 }
 });

ff acceptance: It validates if something has to be accepted, for example, terms of use.
It checks whether the attribute value is true or false. It works with boolean attributes.
 var UserRegistrationModel = Backbone.Model.extend({
 validation: {
 terms: {
 acceptance: true
 },
 }
 });

Chapter 2

51

ff min: It validates that the attribute value has to be a number and equal to or greater
than the min value specified.
 var BuyerModel = Backbone.Model.extend({
 validation: {
 age: {
 min: 18
 },
 }
 });

ff max: It validates that the attribute value has to be a number and equal to or less
than the max value specified.
 var EventRegistrationModel = Backbone.Model.extend({
 validation: {
 guests: {
 max: 2
 },
 }
 });

ff range: It validates that the attribute value has to be a number and equal to or
between the two numbers specified.
 var ChildTicketModel = Backbone.Model.extend({
 validation: {
 age: {
 range: [2, 12]
 },
 }
 });

ff length: It validates that the attribute value has to be a string with length equal to the
length value specified.
 var AddressModel = Backbone.Model.extend({
 validation: {
 zip: {
 length: 5
 },
 }
 });

ff minLength: It validates that the attribute value has to be a string with length equal to
or greater than the min length value specified.
 var UserModel = Backbone.Model.extend({
 validation: {

Models

52

 password: {
 minLength: 8
 },
 }
 });

ff maxLength: It validates that the attribute value has to be a string with length equal to
or less than the max length value specified.
 var UserModel = Backbone.Model.extend({
 validation: {
 password: {
 maxLength: 8
 },
 }
 });

ff rangeLength: It validates that the attribute value has to be a string and equal to or
between the two numbers specified.
 var BuyerModel = Backbone.Model.extend({
 validation: {
 phoneNumber: {
 rangeLength: [10, 12]
 },
 }
 });

ff oneOf: It validates that the attribute value has to be equal to one of the elements in
the specified array. It uses case-sensitive matching.
 var BuyerModel = Backbone.Model.extend({
 validation: {
 type: {
 oneOf: [''person'', ''organization'']
 },
 }
 });

ff equalTo: It validates that the attribute value has to be equal to the value of the
attribute with the name specified.
 var UserModel = Backbone.Model.extend({
 validation: {
 password: {
 required: true
 },
 passwordRepeat: {

Chapter 2

53

 equalTo: 'password'
 }
 }
 });

ff pattern: It validates that the attribute value has to match the pattern specified.
It can be a regular expression or the name of one of the built-in patterns.

var BuyerModel = Backbone.Model.extend({
 validation: {
 email: {
 pattern: 'email'
 }
 }
});

Pattern can accept one of the following attribute values:

�� number: matches any decimal number

�� digits: matches any digit sequence

�� email: matches a valid email address

�� url: matches any valid URL

You can also specify any regular expression instead.

var BuyerModel = Backbone.Model.extend({
 validation: {
 phoneNumber: {
 pattern: /^(\+\d)*\s*(\(\d{3}\)\s*)*\d{3}(-
 {0,1}|\s{0,1})\d{2}(-{0,1}|\s{0,1})\d{2}$/
 }
 }
});

See also
ff In this recipe, we learned the basics of the Backbone.Validation extension,

though there are even more techniques that you can find on the GitHub
documentation page https://github.com/thedersen/backbone.
validation.

ff There are also a couple of alternatives to Backbone.Validation. They are
Backbone.validations and Backbone.Validator extensions. They are
all very similar, but Backbone.Validation has better documentation and
provides more methods and events.

Models

54

Validating an HTML form
Most of the web applications use HTML forms for data input, and Backbone is not
an exception. An application should let the user know about any validation errors.
Implementation of such functionality could fall on the developers' shoulders, but not in
Backbone!

Fortunately, Backbone.Validation provides integration with a view and works well with
HTML forms.

Getting ready
Make sure you have the Backbone.Validation extension installed. Installation is
described in the previous recipe Using advanced validation in a model.

How to do it...
Perform the following step to validate a form:

To allow form validation, we need to bind a view to a Backbone.Validation object in the
initialize() method of the view.

Backbone.Validation.bind(this);

Backbone.Validation assumes that your model is stored in this.model and you have
implemented getting data from the form elements and updating model values with it.

How it works...
If a user enters information that does not validate, then Backbone.Validation adds the
invalid class to an appropriate form element and sets the data-error attribute with an
error message.

data-* attributes are an HTML5 feature. They can be easily displayed with
the help of CSS3 or custom JavaScript. They are also supported by major
web frontend frameworks, such as jQueryMobile or Twitter Bootstrap.

The following screenshot illustrates how Backbone.Validation validates wrong data
entered into the HTML form:

Chapter 2

55

There's more...
The following code snippet is a full listing of the example for this recipe:

(function($){

 // Define new model.
 var BuyerModel = Backbone.Model.extend({
 defaults: {
 name: '',
 age: ''
 },

 // Define validation criteria.
 validation: {
 name: {
 required: true
 },
 age: {
 min: 18
 }
 }

Models

56

 });

 var BuyerModelFormView = Backbone.View.extend({

 // Bind Backbone.Validation to a view.
 initialize: function(){
 Backbone.Validation.bind(this);
 },

 // Define a template.
 template: _.template('\
 <form>\
 Enter name:\
 <input name="name" type="text" value="<%= name %>">
\
 Enter age:\
 <input name="age" type="text" value="<%= age %>">
\
 <input type="button" name="save" value="Save">\
 </form>\
 '),

 // Render view.
 render: function(){
 // Render template with model values.
 var html = this.template(this.model.toJSON());

 // Update html.
 $(this.el).html(html);
 },

 // Bind save callback click event.
 events: {
 'click [name~="save"]': 'save'
 },

 // Save callback.
 save: function(){

 // Update model attributes.
 this.model.set({
 name: $('[name~="name"]').val(),
 age: $('[name~="age"]').val()
 });
 }
 });

Chapter 2

57

 $(document).ready(function () {
 // Create new model instance.
 var buyerModel = new BuyerModel();

 // Create new view instance.
 var buyerModelFormView = new BuyerModelFormView({
 model: buyerModel,
 el: 'body'
 });

 // Render view.
 buyerModelFormView.render();
 });
})(jQuery);

Working with nested attributes in a model
Sometimes nested attributes are required to operate with complex hierarchical structures
stored in the model. This is typically done by using JavaScript objects as nested attributes;
however, it is not a Backbone way. Fortunately, there is the Backbone-Nested extension,
which provides various improvements when working with nested attributes.

Getting ready
You can download the Backbone-Nested extension from the GitHub page https://
github.com/afeld/backbone-nested. To include this extension into your project, save the
backbone-nested.js file into the lib folder and include a reference to it in index.html.

Including Backbone extension into your project is described in the
Extending application with plugins recipe in Chapter 1, Understanding
Backbone in detail.

How to do it...
Perform the following steps to use nested attributes in a model:

1.	 Use Backnone.NestedModel as the base object when extending a new model.
 var BuyerModel = Backbone.NestedModel.extend({

 });

Models

58

2.	 Set the nested attribute value with the help of dot syntax provided by the Backbone-
Nested extension.
 buyerModel.set({
 'name.title': 'Mr',
 'name.generation': 'II'
 });

You can still use object syntax, which is typical to JavaScript, to set multiple values.

 buyerModel.set({
 name: {
 first: 'John',
 last: 'Smith',
 middle: {
 initial: 'P',
 full: 'Peter'
 }
 }
 });

3.	 Get the attribute value with the dot syntax.

 buyerModel.get('name.middle.full'); // Peter
 buyerModel.get('name.middle');
 // { full: 'Peter', initial: 'P }
 buyerModel.get('name.title'); // Mr

How it works...
The Backbone-Nested extension provides a new model object Backbone.NestedModel
based on Backbone.Model. It overrides existing methods, such as get(), set(), has(),
toJSON, and so on. It also provides new add() and remove() methods.

There's more...
This section describes advanced usage of the Backbone-Nested extension.

Working with a nested array of attributes
Of course, there is a way of working with a bit more complex structures, such as nested array
of attributes. You can set it using the object syntax as well.

 buyerModel.set({
 'addresses': [
 {city: 'Brooklyn', state: 'NY'},

Chapter 2

59

 {city: 'Oak Park', state: 'IL'}
]
 });

Or you can set attributes in the nested array with a dot and bracket syntax, as shown in
following example:

 buyerModel.set({
 'addresses[1].state': 'MI'
 });

And the same syntax is used for getting attributes from the nested array.

 buyerModel.get('addresses[0].state'); // NY
 buyerModel.get('addresses[1].state'); // MI

Adding/removing elements to/from a nested array
Backbone-Nested provides additional methods to work with nested arrays. The add method
adds a new element to a nested array. Here is how it works.

 buyerModel.add('addresses', {
 city: 'Seattle',
 state: 'WA'
 });

 buyerModel.get('addresses[2]');
 // { city: 'Seattle', state: 'WA' }

The remove() method removes desired elements from a nested array. Let's see
how it is done.

 buyerModel.remove('addresses[1]');

 buyerModel.get('addresses').length; // 2

Binding callbacks to an events
When binding a callback to an event, you can use the same dot and bracket syntax as
described previously. Let's check out the following example of binding a callback to an event:

 buyerModel.bind('change:addresses[0].city', function(model, value){
 console.log(value);
 });

 buyerModel.set('addresses[0].city', 'Chicago');

Moreover, Backbone-Nested provides additional add:* and remove:* events for handling
array update events.

Models

60

See also
ff There is more information about event handling available in the recipe Handling

events of Backbone objects in Chapter 5, Events and Bindings.

ff There are a couple of alternatives to the Backbone-Nested extension, such as
Backbone-deep-model and Backbone-dotattr. They are all very similar, but
Backbone-Nested provides more features, and is better maintained.

Implementing a one-to-one relationship
Mostly in any application, we may need to have models that are related to each other.
For example, a blog post model can have a relationship with a model of its author or
have a connection to a comment model.

We may also need to access comments quickly when dealing with a blog post, or list all
blog posts of a specific author. Moreover, we may want to export blog posts with author
info and comments in a single JSON format.

In a Backbone app, this can be implemented with the help of the Backbone-relational
extension.

Getting ready
You can download the Backbone-relational extension from the GitHub page https://
github.com/PaulUithol/Backbone-relational. To include Backbone-relational
into your project, save the backbone-relational.js file into the lib folder and include a
reference to it in index.html.

Including a Backbone extension into your project is described in the
Extending application with plugins recipe in Chapter 1, Understanding
Backbone in detail.

How to do it...
Let's recall our Invoice application and try to find out how we can apply a one-to-one
relationship there. Let's say we want buyers to log in to the application and view all invoices
assigned to them.

In this case, we need to store buyer credentials somewhere. It can be a new UserModel
associated with an existing BuyerModel. We know that for each user there is a single buyer
and vice versa, so we are dealing with a one-to-one relationship. Let's implement one such
one-to-one relationship.

Chapter 2

61

1.	 Extend models from Backbone.RelationalModel and pass the relations
property with a relationship definition.
 // Define new model object.
 var UserModel = Backbone.RelationalModel.extend({

 });

 // Define new model object.
 var BuyerModel = Backbone.RelationalModel.extend({

 // Define one-to-one relationship.
 relations: [
 {
 // Relationship type
 type: Backbone.HasOne,

 // Relationship key in BuyerModel.
 key: 'user',

 // Related model.
 relatedModel: UserModel,

 // Define reverse relationship.
 reverseRelation: {
 type: Backbone.HasOne,
 key: 'buyer'
 }
 }
]
 });

As we see from the previous example, the relations property takes an array, so
multiple relationships are possible.

Note that UserModel should be defined before BuyerModel, because
it is referenced afterwards in the code (in the relations property of
BuyerModel).

2.	 Initialize a one-to-one relationship by referencing the UserModel instance in the
BuyerModel instance or vice versa.
 var userModel1 = new UserModel({
 login: 'jsmith',
 email: 'jsmith@example.com'

Models

62

 });

 var buyerModel1 = new BuyerModel({
 firstName: 'John',
 lastName: 'Smith',
 user: userModel1
 });

There is also a way to do the same by passing a single input JSON when creating both
BuyerModel and UserModel.

 var buyerModel = new BuyerModel({
 firstName: 'John',
 lastName: 'Smith',
 user: {
 login: 'jsmith',
 email: 'jsmith@example.com'
 }
 });

3.	 If a reversed relation is defined, pass a BuyerModel array when initializing
UserModel.
 var userModel = new UserModel({
 login: 'jsmith',
 email: 'jsmith@example.com',
 buyer: {
 firstName: 'John',
 lastName: 'Smith'
 }
 });

4.	 Optionally, access the related model with the help of the get() method.

 buyerModel1.get('user').get('email');
 // jsmith@example.com
 userModel1.get('buyer').get('lastName'); // Smith

How it works...
Each Backbone.RelationalModel registers itself with Backbone.Store upon creation
(and is removed from the Store when destroyed). When creating or updating an attribute that
is a key in a relation, removed related objects are notified of their removal, and new related
objects are looked up in the Store.

Chapter 2

63

See also
ff One-to-many relationships and many-to-many relationships are described in the

recipe Implementing a one-to-many relationship in Chapter 3, Collections.

ff Complete documentation to the Backbone-relational extension can be found on
the GitHub page https://github.com/PaulUithol/Backbone-relational.

ff Also, there are a couple of alternatives to Backbone-relational, which are very
similar and known as Backbone-associations and ligament.js. However, they
do not provide one-to-many and many-to-many relationships.

3
Collections

In this chapter we will cover:

ff Creating a collection of models

ff Getting a model from a collection by its index

ff Getting a model from a collection by its ID

ff Adding a model to a collection

ff Removing a model from a collection

ff Working with a collection as a stack or as a queue

ff Sorting a collection

ff Filtering models in a collection

ff Iterating through a collection

ff Chaining a collection

ff Running No SQL queries on a collection

ff Storing models of various types in the same collection

ff Implementing a one-to-many relationship

Introduction
When developing applications with Backbone, you often need to work with a number of
models, which can be organized in a collection. A collection is more than just a JavaScript
array. Backbone provides various useful methods to work with it. Moreover, Backbone
collection can easily communicate with a REST server to get or post a number of models.

In this chapter, we are going to learn common operations to work with collections, and will
discover new extensions which provide amazing functionality.

Collections

66

Creating a collection of models
In this recipe, we are going to learn how to create a collection of models. Collection is an
object used for organizing models into an ordered set. There are specific methods to sort,
filter, and iterate through a collection.

How to do it...
Follow these steps to create a collection:

1.	 Extend the Backbone.Collection object and pass the model's object name as
an option.
var InvoiceItemCollection = Backbone.Collection.extend
({
 model: InvoiceItemModel
});

2.	 Initialize a new collection instance and pass the initial array of models.
var invoiceItemCollection = new InvoiceItemCollection
([
 {description: 'Wooden Toy House', price: 22, quantity: 3},
 {description: 'Farm Animal Set', price: 17, quantity: 1},
 {description: 'Farmer Figure', price: 8, quantity: 1},
 {description: 'Toy Tractor', price: 15, quantity: 1}
]);

How it works...
Backbone.Collection knows which model object to use when creating new instances,
because we specified it in the model property. Internally, models are stored in the
models array.

There's more...
We can also initialize a collection with the existing models. Here is how it is done.

invoiceItemModel1 = new InvoiceItemModel
 ({
 description: 'Wooden Toy House',
 price: 22,

Chapter 3

67

 quantity: 3
 });
invoiceItemModel2 = new InvoiceItemModel
 ({
 description: 'Farm Animal Set',
 price: 17,
 quantity: 1
 });
var invoiceItemCollection2 = new InvoiceItemCollection
 ([
 invoiceItemModel1,
 invoiceItemModel2
]);

Getting a model from a collection by its
index

When working with a collection, we may need to get a model at the specific index, because it
is stored inside the collection.

How to do it...
Use the at() method to get a model from a collection at the specific index.

var model = invoiceItemCollection.at(2);
model.get('description'); // Farmer Figure

How it works...
Internally, models are stored in the models array, so the first element starts with a zero index.
Backbone.Collection keeps this array in the accurate state when we add a new model to
a collection, remove one model, or perform sorting.

Be careful when sorting a collection
When performing a collection, sorting it can update the model
indexes, so the at() method with the same parameter can
get different models before and after sorting.

Collections

68

There's more...
In this section, we are going to learn some interesting details about models in a collection.

Getting an index of a collection model
To get an index of a model stored in a collection, use the indexOf() method inherited from
Underscore.js.

invoiceItemCollection.indexOf(model); // 2

Getting an independent copy of a model
The model object that is retrieved from a collection is the same object stored there, so if we
modify this object, one object in the collection gets updated.

model.set('description', 'Superman Figure');
invoiceItemCollection.at(2).get('description');
// Superman Figure

If we need to get an independent copy of the model object, we can use the clone() method
of a returned model. Changing the attributes of the cloned model does not affect the
attributes of the original model.

var anotherModel = invoiceItemCollection.at(2).clone();
anotherModel.set('description', 'Another Figure');
invoiceItemCollection.at(2).get('description');
// Superman Figure

Getting the length of a collection
There is a way to get the length of a collection. It is done with the help of the length()
method. The following example gets a collection length and then obtains the last model
from the collection:

var length = invoiceItemCollection.length; //4
model = invoiceItemCollection.at(length-1);
model.get('description'); // Toy Tractor

Chapter 3

69

Getting a model from a collection by its ID
In our application, we may need to request a model from a collection by its ID.

How to do it...
Follow these steps to get a model from a collection by its ID:

1.	 To get a model from a collection by its identifier, use the get() method.
model = invoiceItemCollection2.get('4ryurtz3m5gn9udi');

2.	 To get a model from a collection by its client identifier, you can again use the
get() method.
model = invoiceItemCollection.get('c4');
model.get('description'); // Toy Tractor

How it works...
When getting a model by its ID, Backbone.Collection searches for the model in the
_byId array, which stores models mapped to their IDs. Such an implementation guarantees
the best performance, because there is no need to loop through all the models in a collection.

See also
ff Extending an application with plugins in Chapter 2, Models

Adding a model to a collection
In this recipe, we are going to learn different ways of adding new models to a collection.

How to do it...
Call the add() method to add a new model to the end of a collection.

invoiceItemCollection.add
 ({
 description: 'Toy Track',
 price: 10,
 quantity: 1
 });

Collections

70

How it works...
The code in the add() method prevents duplicates from being added to the collection.
A unique model is inserted into the models array and is mapped to its ID in the _byId array.
Also, a reference to the collection is created in the model object in the collection property.

By default, a new model is added to the end of the collection. But in case sorting is enabled,
or insertion index is specified, the model can be inserted at a different position.

When adding a new model to a collection, the add event is being triggered.

There's more...
In this section, we are going to learn different ways to add a model(s) into a collection.

Adding a model at a specific position
To add a model at a specific position, we need to pass {at: index} as an option.

invoiceItemCollection.add
 (
 {description: 'Fisherman Hut', price: 15, quantity: 1},
 {at: 0}
);
invoiceItemCollection.at(0).get('description');
// Fisherman Hut

Adding multiple models
We can also add multiple models at the same time.

invoiceItemCollection.add
 ([
 {description: 'Powerboat', price: 12, quantity: 1},
 {description: 'Jet Ski', price: 12, quantity: 1}
]);

Adding existing models
We can also use existing model objects as the arguments for the add() method. We can
pass a single object as well as an array of existing objects.

Chapter 3

71

See also
ff Handling events of Backbone objects in Chapter 5, Events and Bindings

Removing a model from a collection
In this recipe, we are going to learn about removing a model from a collection.

How to do it...
Call the remove() method to remove a model from a collection.

invoiceItemCollection.remove(['c0', 'c1', 'c2', 'c3']);

Here we can pass the model's id, cid, or even the model object as a parameter. We can
either pass a single value or an array of values.

How it works...
When calling the remove() method, a model is removed from the models array, and any
references between them are removed as well. Thus, the model object itself is not destroyed,
and we can still work with it if the need arises.

There's more...
Sometimes, we may need to delete all the existing models from a collection and add some
others. There is a useful reset() method, which does both these jobs simultaneously.
Here is how it works.

invoiceItemCollection.reset  ([
 {description: 'Wooden Toy House', price: 22, quantity: 3},
 {description: 'Farm Animal Set', price: 17, quantity: 1}
]);

Collections

72

Working with a collection as a stack or as
a queue

There are special methods in Backbone that allow working with a collection as a stack or as
a queue.

How to do it...
Follow these steps to work with a collection as a stack or as a queue:

1.	 Call the push() method to add a model to the end of a collection.
invoiceItemCollection.push(model);

2.	 Call the pop() method to remove and return the last model from a collection.
model = invoiceItemCollection.pop();

3.	 Call the unshift() method to add a model at the beginning of a collection.
invoiceItemCollection.unshift(model);

4.	 Call the shift() method to remove and return the first model from a collection.
model = invoiceItemCollection.shift();

How it works...
To organize a stack also known as LIFO (last in, first out), we need to use the push and pop
(unshift and shift) methods. To organize a queue also known as FIFO (first in, first out),
we need to use the unshift and pop (push and shift) methods.

The following image illustrates the difference between a stack and a queue:

Push Pop

Top

Bottom

LIFO(Stack)

Pop

Front

Rear

Unshift

FIFO(queue)

Stack Pointer n

.

..

1

0

n

.

..

1

0

Chapter 3

73

Sorting a collection
Backbone.js provides a sorting mechanism, out of the box, which we are going to learn in
this recipe.

How to do it...
Follow these steps to sort a collection:

1.	 Assign the comparator callback to the comparator property of a collection
to maintain the correct order.
invoiceItemCollection.comparator = function(model)
 {
 return model.get("price");
 };

2.	 The comparator callback accepts a single parameter, which is a model object.
It should return a value according to which the collection is sorted.

3.	 Optionally, call the sort() method to force sorting.
invoiceItemCollection.sort();

4.	 Check the result.
invoiceItemCollection.pluck("price"); // [8, 15, 17, 22]

How it works...
When the comparator callback is defined, Backbone uses it to insert a new model in
the models array so that it is inserted in the correct order.

If you assign a new comparator callback to a collection with existing models, you need
to trigger sorting manually by calling the sort() method.

You also need to call the sort() method if the model in the collection gets updated.
This can be done automatically if you bind sorting on the model's change event.

There's more...
In this section, we are going to define a comparator in a different way.

Collections

74

Comparing a pair of models in the comparator
Another way to implement a comparator is to evaluate a pair of models passed as parameters
and return one of the following values:

ff -1 (or any negative value), if the first model should come before the second

ff 0, if they are of the same rank

ff 1 (or any positive value), if the first model should come after the second

The following example demonstrates sorting by the length of the description attribute:

invoiceItemCollection.comparator = function(m1, m1)
 {
 return m1.get("description").length -
 m2.get("description").length;
 };
invoiceItemCollection.sort();
invoiceItemCollection.pluck("description");
// ["Toy Tractor", "Farmer Figure", "Farm Animal Set",
// "Wooden Toy

See also
ff Handling events of Backbone objects in Chapter 5, Events and Bindings

Filtering models in a collection
Backbone provides a simple filtering mechanism out of the box, which we can use.

How to do it...
To filter models in a collection, use the where() method. It accepts a search criteria and
returns an array of found models.

var result = invoiceItemCollection.where({quantity: 1});
// Result is just an array of models, so let's create
// new collection.
var resultCollection = new InvoiceItemCollection(result);
resultCollection.pluck('quantity'); // [1, 1, 1]

Chapter 3

75

It is also possible to pass multiple criteria together.

invoiceItemCollection.where({quantity: 1, price: 10});

See also
ff Refer to the Running No SQL queries on a collection recipe to learn more about

advanced filtering

Iterating through a collection
In this recipe, we are going to discuss various ways of iterating through a collection to implement
the functionality we need.

How to do it...
The easiest way to iterate through a collection is to use the each() method provided by
Underscore.js.

var descriptions_txt = '';
invoiceItemCollection.each(function(model, index, list)
 {
 descriptions_txt += descriptions_txt ? ', ' : '';
 descriptions_txt += model.get('description');
 });
descriptions_txt; // Wooden Toy House, Farm Animal Set

In the each() method, we pass an iterator function, which is executed for each model.
It accepts the following parameters:

ff model: The model that is being iterated

ff index: This is the model index

ff list: This is the whole model array

How it works...
Backbone.js is based on Underscore.js, which provides various useful tools, including
methods to work with the collections and arrays. Backbone collections support some of
those functions.

Collections

76

There's more...
In this section, we are going to learn some methods that rely on the iteration method but are
more specific.

Checking every model to match a specific condition
To check every model in a collection that fulfills a specific criteria, use the every() method.
It accepts a callback parameter which should return a Boolean value if the condition is fulfilled.

var multiple = invoiceItemCollection.every(function(model)
 {
 return model.get('quantity') > 1;
 });
multiple; // false

Checking any model to match a specific condition
To check any model in a collection that fulfills a specific criteria, use the some() method. It
accepts a callback parameter which should return a Boolean value if the condition is fulfilled.

var multiple = invoiceItemCollection.some(function(model)
 {
 return model.get('quantity') > 1;
});
multiple; // true

Getting the attribute from each model in a collection
In the previous examples, we used the pluck() method, which returns an array of values for
the specified attribute from each model in a collection. Let's see how it works.

var descriptions = invoiceItemCollection.pluck("description");
descriptions; // ["Wooden Toy House", "Farm Animal Set"]

Performing specific calculations to each model in a collection
To perform specific calculations to each model in a collection, use the map() method.
It takes callback as a parameter, executes it for each model in a collection, and returns
an array of results.

var amounts = invoiceItemCollection.map(function(model)
 {
 return model.get('quantity') * model.get('price');
 });
amounts; // [66, 77]

Chapter 3

77

Boiling down models in a collection into a single value
Models in a collection can be boiled down to a single value using the reduce() method.
Here is how it works.

var count = invoiceItemCollection.reduce(function(memo,model)
 {
 return memo + model.get('quantity');
 }, 0);
count; // 4

See also
ff There are many helpful methods from Underscore.js that can be used with

Backbone collections. You can find them in Underscore.js official docs from
http://documentcloud.github.com/underscore/#collections.

Chaining a collection
If you want to perform several Underscore methods in a row, a good way of doing it is by
chaining one method to the other method.

Let's consider a simple MapReduce example, which calculates the total amount.

var amounts = invoiceItemCollection.map(function(model)
 {
 return model.get('quantity') * model.get('price');
 });
// [66, 77]
var total_amount = _.reduce(amounts, function(memo, val)
 {
 return memo + val;
 }, 0);
total_amount; // 83

Here, amounts is a JavaScript array, and it does not provide the reduce() method that we can
call. To solve this problem, we are calling the reduce() method provided by Underscore.js,
which takes an array as the first parameter.

Collections

78

How to do it…
With chaining, it is possible to call one method right after another using the dot syntax.
Here is an example.

var amount = invoiceItemCollection.chain()
.map(function(model)
 {
 return model.get('quantity') * model.get('price');
 })
.reduce(function(memo, val)
 {
 return memo + val;
 })
.value(); // 83

How it works...
The chain() method wraps a value into an object, which provides different methods that
can be executed, which return their result as a wrapped value. To unwrap a result, use the
value() method.

See also
ff To see more chaining examples, please visit http://documentcloud.github.

com/underscore/#chain

Running No SQL queries on a collection
In the previous recipe we described several techniques, including the one about searching
the models in a collection with the where() method.

There are more advanced ways of searching the models in a collection, which can be done
with the help of a Backbone extension named Backbone Query. It allows running No SQL
(such as MongoDB) queries for searching, sorting, and paging the models in a collection.

Getting ready
You can download the Backbone Query extension from its GitHub page by going to
https://github.com/davidgtonge/backbone_query. To include this extension
into your project, save the backbone-query.js file into the lib folder and include
the reference to it in index.html.

Chapter 3

79

Including the Backbone extension into your project is described
in detail in the Extending an application with plugins recipe in
Chapter 1, Understanding Backbone.

How to do it...
Follow these steps to perform a No SQL query to a collection:

1.	 To allow a No SQL query to be executed, extend a collection from the Backbone.
QueryCollection object instead of a Backbone.Collection one.
var BuyerCollection = Backbone.QueryCollection.extend
 ({
 model: BuyerModel
 });

2.	 Run the query with the query() method.
var result = buyerCollection.query({ firstName: 'John' });

3.	 Optionally, run the pluck attribute from the resulting array.
var resultCollection = new BuyerCollection(result);
resultCollection.pluck('firstName'); // ["John", "John"]

How it works...
Backbone.QueryCollection extends Backbone.Collection and provides the new
query() method, which parses the base query into subqueries recursively and uses the
reduce() method of Underscore.js to run queries of the same group sequentially.

Backbone Query is written initially in CoffeeScript and compiled into JavaScript later. So,
if you are interested in understanding its source code, see backbone-query.coffee.
It looks quite similar though.

There's more...
This section describes No SQL operators and covers some advanced topics, such as grouping,
sorting, paging, and caching.

Using standard operators
The following operators are common and applied to the attributes of the models stored in
a collection.

Collections

80

$equal
This performs a strict equality test using ===.

buyerCollection.query({ firstName: {$equal: 'John'} });

If no operator is provided, and the query value is neither a regex nor an array, then $equal
is assumed.

buyerCollection.query({ firstName: 'John' });

$ne
This means not equal, which is the opposite of $equal, and returns all the models that are
not equal to the query value.

buyerCollection.query({ firstName: {$ne: 'John'} });

$in
An array of possible values can be supplied using $in; a model will be returned if any of the
supplied values is matched.

buyerCollection.query({ firstName: {$in: ['John', 'Joe',
 'Patrick']} });

$nin
This means not in, which is the opposite of $in, and a model will be returned if none of the
supplied values is matched.

buyerCollection.query
({ firstName: {$nin: ['Samuel', 'Victor']} });

$exists or $has
This checks for the existence of an attribute, and can be supplied as either true or false.

buyerCollection.query({ middleName: {$exists: true} });

buyerCollection.query({ middleName: {$has: false} });

Combining queries
Multiple queries can be combined together. There are the $and, $or, $nor, and $not
operators, which we are going to learn shortly.

Chapter 3

81

$and
This is a logical AND operator. The following query selects all the buyers named John and
who live in Alexandria:

buyerCollection.query
 ({ $and: {firstName: 'John', city: 'Alexandria'}});

The $and operator is used as a glue if no combining operator is supplied.

buyerCollection.query
({ firstName: 'John', city: 'Alexandria' });

$or
This is a logical OR operator. The following query selects all the buyers named John or whether
the buyers live in Alexandria:

buyerCollection.query
({ $or: {firstName: 'John', city: 'Alexandria'}});

$nor
This is the opposite of $or. The following query selects all the buyers with a name other than
John or if they do not live in Alexandria:

buyerCollection.query
({ $nor: {firstName: 'John', city: 'Alexandria'}});

$not
This is the opposite of $and. The following query selects all buyers except anyone whose
name is John and who lives in Alexandria:

buyerCollection.query
({ $not: {firstName: 'John', city: 'Alexandria'}});

Multiple queries on the same key
If we need to perform multiple queries on the same key, then we can supply the query as an
array. The following query returns all the clients with the name John or Joe:

buyerCollection.query
 ({
 $or:[
 { firstName: 'John' },
 { firstName: 'Joe' }
]
 });

Collections

82

Sorting query results
To sort results by a property, we need to pass it with the sortBy key in a second argument.
We can also specify the order by passing the asc or desc value with the sort key. By default,
asc is assumed as the value. The following code shows how sorting is done:

result = buyerCollection.query
 (
 { firstName: {$like: 'John'} },
 { sortBy: 'lastName', order: 'desc' }
);
resultCollection = new BuyerCollection(result);
resultCollection.pluck('lastName'); // ["Smith", "Doe"]

Paging query results
There is a way to split a big result array on several pages and return a specified one. Let's see
how it is done.

buyerCollection.query
({firstName: 'John'}, {limit:10, offset:1, page:2});

We can specify the following properties in the second parameter:

ff limit: It limits the resulting array size to a given number. The first N elements are
returned. It is a required property.

ff page: It returns a specified resulting page. The page size is set by the limit property.
It is an optional property.

ff offset: It skips the first N result items. It is an optional property.

Caching results
For performance reasons, we may want to cache our results. This can greatly decrease the
query execution time, especially if using paging, because unpaged results are saved in the
cache and a user can quickly navigate through its pages.

To enable caching, simply use the cache property in the second parameter.

buyerCollection.query
({firstName: 'John'}, {limit:10, page:2, cache: true});

Caching is not set by default, because there is no automatic way to
flush the cache, so when caching is enabled and the collection is
being updated, the cache becomes outdated.
You should be aware of this problem, and manually perform cache
flushing every time the collections or models in it are updated. This
can be done by calling the reset_query_cache() method.

Chapter 3

83

We can bind the collection's change event to the reset_query_cache() method,
and thus, provide automatic cache flushing when the collection gets updated.

var BuyerCollection = Backbone.QueryCollection.extend
 ({
 initialize: function(){
 this.bind('change', this.reset_query_cache, this);
 }
 });

See also
ff Please see more information about Backbone query operators from

https://github.com/davidgtonge/backbone_query#query-api

ff Handling events of Backbone objects in Chapter 5, Events and Bindings

Storing models of various types in the same
collection

When building complex Backbone applications, you may need to work with models of different
types, which should be processed in a similar way, so you may want them to be stored in the
same collection. Fortunately, there is a Backbone.Chosen extension that allow us to do so.

Getting ready
You can find and download Backbone.Chosen from the following page: https://github.
com/asciidisco/Backbone.Chosen. To include Backbone.Chosen into your project,
save the backbone.chosen.js file into the lib folder and include the reference to it in
index.html.

Including Backbone extension into your project is described
in detail in the Extending an application with plugins recipe
in Chapter 1, Understanding Backbone.

Collections

84

How to do it...
Let's say we have two different model classes, namely IndividualContactModel and
OrganizationContactModel, and we want to organize them into a single collection.
We can do this by performing the following steps:

1.	 Define models.
var IndividualContactModel = Backbone.Model.extend
 ({
 name: function() {
 return this.get('firstName') + ' ' + this.get('lastName');
 }
 });

var OrganizationContactModel = Backbone.Model.extend
 ({
 name: function() {
 return this.get('businessName') + ', '
 + this.get('businessType');
 }
 });

As we can see, these models have different attributes, but share a common
name() method.

2.	 Define collection with a chosen attribute.
var ContactCollection = Backbone.Collection.extend
 ({
 model: {
 // Pass chosen properties.
 chosen: {
 // Attribute that should contain model type.
 attr: 'type',

 // Default model class.
 defaults: IndividualContactModel,

 // Mapping attribute values to model classes.
 map: {
 individual: IndividualContactModel,
 organization: OrganizationContactModel
 }
 }
 }
 });

Chapter 3

85

3.	 Create a collection instance and specify the mapping attribute in the incoming JSON.
var contactCollection = new ContactCollection
 ([
 {
 firstName: 'John',
 lastName: 'Smith',
 type: 'individual'
 },
 {
 businessName: 'North American Veeblefetzer',
 businessType: 'LLC',
 type: 'organization'
 }
]);

4.	 Check the result. The newly added models to the collection should be the instance
of the correct model class.
contactCollection.at(0) instanceof IndividualContactModel;
//true

contactCollection.at(0).name(); // John Smith

contactCollection.at(1) instanceof OrganizationContactModel;
//true

contactCollection.at(1).name();
// North American Veeblefetzer, LLC

How it works...
Backbone.Chosen overrides the _prepareModel method of Backbone.Collection to
select the proper model object that depends on its mapping attribute value.

There's more...
This section explains how to perform advanced mapping.

Mapping deeply nested attributes
Backbone.Chosen also supports nested attributes. You can specify the value for the attr
property with a dot syntax, for example, options.type, if your incoming JSON looks like
the following code:

var contactCollection = new ContactCollection
 ([

Collections

86

 {
 firstName: 'John',
 lastName: 'Smith',
 options: {type: 'individual'}
 },
 {
 businessName: 'North American Veeblefetzer',
 businessType: 'LLC',
 options: {type: 'organization'}
 }
]);

Use a function to map the models
Sometimes, we may need to use more complex calculations to map the models. This can be
done with the help of the mapping function. Here is how it is done.

// Set up a collection
var ContactCollection = Backbone.Collection.extend({
 model: {
 chosen: function (rawData) {
 if (rawData.spice === 'salt') {
 return SaltyModel;
 }
 if (rawData.spice === 'sugar') {
 return SweetyModel;
 }
 return BoringModel;
 }
 }
 });

Implementing a one-to-many relationship
In Chapter 2, Models, there is a recipe about creating a one-to-one relationship between two
models. In this recipe, we are going to learn about creating one-to-many relationships.

A one-to-many relationship can be used if the association between a single model and a
collection of models of another type takes place. In our invoice application, the relationship
between InvoiceModel and InvoiceItemModel is one such relationship. InvoiceItem
Model can be multiple and thus is stored in InvoiceItemCollection.

Chapter 3

87

Getting ready
You can download the Backbone-relational extension from its GitHub page at https://
github.com/PaulUithol/Backbone-relational. To include Backbone.Relational
into your project, save the backbone-relational.js file into the lib folder and include
the reference to it in index.html.

Including Backbone extension into your project is described
in detail in the Extending an application with plugins recipe
in Chapter 1, Understanding Backbone.

How to do it...
Implementation of a one-to-many relationship is similar to an implementation of a one-to-
one relationship, except that we need to use Backbone.HasMany as a type and specify
collectionType, because multiple models should be stored in the collection. We can
do this by performing the following steps:

1.	 Extend the new model object from Backbone.RelationalModel.
var InvoiceItemModel = Backbone.RelationalModel.extend
 ({
 });

2.	 Define the collection for this model type.
var InvoiceItemCollection = Backbone.Collection.extend
 ({
 model: InvoiceItemModel
 });

3.	 Extend another model object from Backbone.RelationalModel and pass the
relations property with a relationship definition.
var InvoiceModel = Backbone.RelationalModel.extend
 ({
 // Define one-to-many relationship.
 relations: [{
 // Relationship type
 type: Backbone.HasMany,

 // Relationship key in BuyerModel.
 key: 'items',

www.allitebooks.com

http://www.allitebooks.org

Collections

88

 // Related model.
 relatedModel: InvoiceItemModel,

 // Collection to store related models.
 collectionType: InvoiceItemCollection,

 // Define reverse relationship.
 reverseRelation: {
 key: 'invoice'
 }
 }]
 });

4.	 To initialize models with a one-to-many relationship, pass the invoice items' data in
a single JSON when creating a new InvoiceModel object instance.
var invoiceModel = new InvoiceModel
 ({
 referenceNumber: '12345',
 date: '2012-09-01',
 items: [
 { description:'Wooden Toy House', price:22, quantity:3 },
 { description:'Farm Animal Set', price:17, quantity:1 }
]
 });

invoiceModel.get('items').at(0).get('description');
// Wooden Toy House

invoiceModel.get('items').at(0).get('invoice')
.get('referenceNumber'); // 12345

5.	 Add new records into this relation with the help of the add() method when accessing
the related collection using the items attribute.
// Add new model to a collection
invoiceModel.get('items').add
 ({
 description: 'Powerboat',
 price: 12,
 quantity: 1
 });

invoiceModel.get('items').at(2).get('invoice') == invoiceModel;
// true

Chapter 3

89

Or we can also create an instance of invoiceItemModel and set the invoice
attribute with an instance of invoiceModel; thus, a new relation in both the
directions will be created.
// Add new model
invoiceItemModel = new InvoiceItemModel
 ({
 description: 'Jet Ski',
 price: 12,
 quantity: 1,
 invoice: invoiceModel
 });

invoiceModel.get('items').at(3).get('description');
// Jet Ski

How it works...
Each Backbone.RelationalModel registers itself with Backbone.Store upon creation,
and is removed from Store when destroyed. When creating or updating an attribute that is
a key in a relation, the removed related objects are notified of their removal, and new related
objects are looked up in Store.

There's more...
In this section, we are going to learn some advanced usages of Backbone.Relational.

Implementing a many-to-many relationship
There is no way to create a many-to-many relationship between two models out of the box,
but it can be easily done with the help of a pair of one-to-many relationships between those
models and a new intermediate model.

Exporting related models to JSON
When exporting a model to JSON, it does include related models. This is how we can export
InvoiceModel to JSON.

JSON.stringify(invoiceModel.toJSON());

And here is a result of such an export.

{
 "referenceNumber":"12345",
 "date":"2012-09-01",

Collections

90

 "items":[
 {
 "description":"Wooden Toy House","price":22,"quantity":3
 },
 {"description":"Farm Animal Set","price":17,"quantity":1},
 {"description":"Powerboat","price":12,"quantity":1},
 {"description":"Jet Ski","price":12,"quantity":1}
]
}

This is how we can export the InvoiceItemModel model.

JSON.stringify(invoiceModel.get('items').at(0).toJSON())

And the result is the following code snippet:

{
 "description":"Wooden Toy House",
 "price":22,
 "quantity":3,
 "invoice":{includeInJSON
 "referenceNumber":"12345",
 "date":"2012-09-01",
 "items":[
 null,
 {
 "description":"Farm Animal Set","price":17,
 "quantity":1
 },
 {"description":"Powerboat","price":12,"quantity":1},
 {"description":"Jet Ski","price":12,"quantity":1}
]
 }
}

As we can see, the toJSON() method also exports reversed relationships, but we can control
the attributes of the related models that need to be exported by specifying an array of such
attributes in the includeInJSON property for direct and reverse relationships.

var InvoiceModel = Backbone.RelationalModel.extend
 ({
 relations: [{
 type: Backbone.HasMany,
 key: 'items',

Chapter 3

91

 relatedModel: InvoiceItemModel,
 collectionType: InvoiceItemCollection,

 // Restrict related models properties when exporting
 // to JSON.
 includeInJSON: ['description', 'price', 'quantity'],

 reverseRelation: {
 key: 'invoice',

 // Restrict related models properties when exporting
 // to JSON for reversed relations.
 includeInJSON: ['referenceNumber', 'items'],
 }
 }]
 });

See also
ff Implementing a one-to-one relationship in Chapter 2, Models

ff More information about exporting to JSON is described in the Synchronizing models
and collections with a RESTful service recipe in Chapter 7, REST and Storage

ff A complete documentation of the Backbone-relational extension can be found on its
GitHub page at https://github.com/PaulUithol/Backbone-relational

ff Also, there is an alternative to the Backbone-relational extension, which is
Backbone-associations

4
Views

In this chapter, we will cover the following areas:

ff Rendering a view

ff Dealing with a view element using jQuery

ff Rendering a model in a view

ff Rendering a collection in a view

ff Splitting a view into subviews

ff Handling Document Object Model (DOM) events in a view

ff Switching views using Backbone.Router

Introduction
This chapter is devoted to the view object in Backbone.js; it is used for rendering data into HTML
code. A view can be bound to the HTML element in the DOM tree and can handle its events and
events for its child elements.

Models and collections are typically rendered with the help of a view that acts as an interactive
bridge between business logic and a user. For example, a view can listen to DOM events and
as a result, manipulate models and collections or navigate the user to a different page. The
process can also go in a reverse direction: changes in models and collections trigger a view
update, and so changes in a DOM tree are made.

A Backbone view relies on frontend JavaScript libraries, such as jQuery or Zepto when dealing
with HTML elements and handling their events.

Views

94

Rendering a view
When we want to output any data to the user, we should typically do it with the help of a
Backbone view. In this recipe, we are going to create a simple view and render it.

Our result will look like the following screenshot:

How to do it...
Follow the ensuing steps to create a simple view and render it.

1.	 Define a new view by extending the Backbone.View object:
 var InvoiceItemView = Backbone.View.extend({

 // HTML element name, where to render a view.
 el: 'body',

 // Initialize view object values.
 initialize: function() {
 this.html = 'Description: Wooden Toy House. ' +
 'Price: $22. Quantity: 3.'
 },

 // Render view.
 render: function() {

Chapter 4

95

 // Set html for the view element using jQuery.
 $(this.el).html(this.html);
 }
 });

2.	 Create an instance of the view:
 var invoiceItemView = new InvoiceItemView();

3.	 Call the render() method manually to output HTML code to the user:
 invoiceItemView.render();

How it works...
In the initialize() method of the view, we generate the HTML code and save it in
the html property, which we have been using lately in the render() method, where we
assign this code to the HTML container defined by the el property. To do so, we invoke
jQuery functions, such as $() and html().

When a new view instance is created, the initialize() method is triggered automatically.
Additionally, we can pass any standard property to the view from outside of the object when
creating its instance. It can be done with the help of the following code snippet:

var invoiceItemView = new InvoiceItemView({
 el: 'body'
});

The el property can also be defined as a function if we want it to be calculated dynamically.

When the render() method is called, it runs our code that then renders the view.

There's more...
In this section, we will learn some useful tricks when dealing with a view.

Creating a new HTML element associated with a view
Sometimes, we may not want to render a view into the existing HTML element in the DOM
tree; instead, we may want to create a new one and then add it to the document. Follow the
given steps to create a new HTML element associated with a view.

1.	 Define a view and set its elements and attributes manually by assigning values to
the tagName, className, and attributes properties:
 // Define new view.
 var InvoiceItemView2 = Backbone.View.extend({

Views

96

 // Set tag name and its attributes.
 tagName: 'p',
 className: 'item',
 attributes: {
 'align': 'left'
 },

 // Initialize view object values.
 initialize: function() {
 this.html = 'Farm Animal Set. Price: $17. Quantity: 1.'
 },

 // Render view.
 render: function() {

 // Set html for the view element using jQuery.
 $(this.el).html(this.html);
 }
 });

2.	 Create a new view instance. When doing this, Backbone will automatically assign el
with an appropriate value:
 // Create new view instance.
 var invoiceItemView2 = new InvoiceItemView2();

 invoiceItemView2.el; // <p align="left" class="item"></p>

3.	 Render this view. Our render code will create a new HTML object:
 invoiceItemView2.render();

4.	 Insert the newly created HTML object into the DOM:
 $('body').append(invoiceItemView2.el);

5.	 Check the result. The body of our HTML page should contain a code like the following
code snippet:
<body>
 <p align="left" class="item">
 Farm Animal Set. Price: $17. Quantity: 1.
 </p>
</body>

Chapter 4

97

Changing the view element dynamically
We may want to change the view element during the working of our code. This could be done
with the help of a setElement() method. Both of the following are valid.

// Change existing element to the new one.
InvoiceItemView.setElement('li');

// Change existing element to the one already exists
// in the DOM tree.
InvoiceItemView.setElement($('body div'));

When calling the setElement() method, Backbone undelegates events assigned to a previous
element, and assigns them to a new element.

Removing a view
When we have finished working with a view and want to remove it, we also need to remove
its elements from the DOM and stop listening to events. To do this, we simply need to call
the remove() method.

See also
ff In this recipe, we use the jQuery method $() to access the properties of the view

element. Please refer to the next recipe to get more information about jQuery.

Dealing with a view element using jQuery
There is no doubt that jQuery is the most popular JavaScript library nowadays. It simplifies
document traversing with the help of CSS selectors, and provides easy event handling,
animating, and AJAX interactions.

Backbone.js relies on jQuery when dealing with a view. In this recipe, we are going to learn
how to interact with a view element using jQuery.

How to do it...
Follow the given steps to deal with a view element using jQuery.

1.	 To access a view element with jQuery, use $(this.el):
$(this.el).show();

2.	 Use this.$el as a shortened alias for $(this.el):
this.$el.appendl('An item');

Views

98

3.	 To run a query within the scope of a view, use this.$el.find():
this.$el.find('li').html('Hey there');

4.	 Use this.$() as a shortened alias for this.$el.find():
this.$el('li').addClass('highlighted');

How it works...
Backbone integrates with the jQuery library as well as with Zepto.js and Ender.js. When
Backbone is loaded, it determines which library is used and assigns a reference to it in
the form of the Backbone.$ variable.

There are a couple of aliases, such as this.$el and this.$(), that simplify access to
the library.

There's more...
In this section, we are going to meet a jQuery alternative known as Zepto.

Using Zepto as a faster alternative to jQuery
Zepto is a minimalist JavaScript library that is 99 percent compatible with jQuery. The design
goal of Zepto was to have a small-sized library and faster execution rate, which can be achieved
by supporting modern browsers only. As a result, Zepto works much faster on mobile devices.

To use Zepto with Backbone, you need to perform the following steps:

1.	 Download the library from http://zeptojs.com and include it in the lib folder
of your project.

2.	 Include Zepto in the index.html file instead of in jQuery.
 <script src="lib/zepto.js"></script>

See also
ff You can find the complete documentation of jQuery on its official website

http://jquery.com.

Chapter 4

99

Rendering a model in a view
When working with models, we may often want to render them and show them in the browser.
Typically, this can be done by creating a view for rendering a model and passing the model
instance as a parameter.

In this recipe, we are going to render a simple model with a view, and the result will look like
the following screenshot:

How to do it...
Follow the given steps to render a model in a view.

1.	 Define a new model:
 var InvoiceItemModel = Backbone.Model.extend({

 });

2.	 Define a view that will render this model:
 var InvoiceItemView = Backbone.View.extend({

 // HTML element name, where to render a view.
 el: 'body',

 // Render view.
 render: function() {
 var html = 'Description: ' +

Views

100

 this.model.get('description') + '. ' +
 'Price: ' + this.model.get('price') + '. ' +
 'Quantity: ' + this.model.get('quantity') + '.';

 // Set html for the view element using jQuery.
 $(this.el).html(html);
 }
 });

3.	 Create a model instance:
 var invoiceItemModel = new InvoiceItemModel({
 description: 'Farmer Figure',
 price: 8,
 quantity: 1
 });

4.	 Create a view instance and pass the model to it as a parameter:
 var invoiceItemView = new InvoiceItemView({

 // Pass model as a parameter to a view.
 model: invoiceItemModel
 });

5.	 Render the view:
 invoiceItemView.render();

How it works...
When initializing a new view object, we pass a model object to the view that is added to its
property array by Backbone. In any method of this view, the assigned model can be made
available by using the this.model property.

See also
ff Often when rendering a model in a view, we need to update HTML if the model

object has to get updated. This means we need to call the setElement() method
every time the model is changed. Fortunately, Backbone provides an event-handling
mechanism that does this automatically. It has been described in Chapter 5, Events
and Bindings.

Chapter 4

101

Rendering a collection in a view
In this recipe, we are going to learn a simple way of rendering a collection of models in the view.

The result output is an HTML list and looks like the following screenshot:

How to do it...
Follow the given steps to render a collection in a view.

1.	 Define a model:
 var InvoiceItemModel = Backbone.Model.extend({

 });

2.	 Define a collection:
 var InvoiceItemCollection = Backbone.Collection.extend({
 model: InvoiceItemModel
 });

3.	 Define a view:
var InvoiceItemListView = Backbone.View.extend({

 // HTML element name, where to render a view.
 el: 'body',

 // Render view.
 render: function() {
 var html = '';

Views

102

 _.each(this.collection.models,function(model,index,list) {
 var item_html = 'Description: ' +
 model.get('description') + '. ' +
 'Price: ' + model.get('price') + '. ' +
 'Quantity: ' + model.get('quantity') + '.';
 html = html + '' + item_html + '';
 });

 html = '' + html + '';

 // Set html for the view element using jQuery.
 $(this.el).html(html);
 }
});

4.	 Create a collection instance:
var invoiceItemCollection = new InvoiceItemCollection([
 { description: 'Wooden Toy House', price: 22, quantity: 3 },
 { description: 'Farm Animal Set', price: 17, quantity: 1 },
 { description: 'Farmer Figure', price: 8, quantity: 1 },
 { description: 'Toy Tractor', price: 15, quantity: 1 }
]);

5.	 Create a view instance:
 var invoiceItemListView = new InvoiceItemListView({

 // Pass model as a parameter to a view.
 collection: invoiceItemCollection
 });

6.	 Render a view:
 invoiceItemListView.render();

How it works...
When initializing a new view object, we pass the collection object to it, so that we later handle
in a loop with the help of the render() method. Thus, we create the result HTML code that
is later assigned to the view element.

See also
ff Often when rendering a collection in a view, we need to update HTML if the collection

is being sorted or updated. This means we need to call the setElement() method
every time the model is changed. Fortunately, Backbone provides an event-handling
mechanism that does this automatically. It has been described in Chapter 5, Events
and Bindings.

Chapter 4

103

Splitting a view into subviews
In the previous recipe, we used a single big view to render the collection. However, there is
a better way to handle big views, by splitting them into multiple small views. Such a practice
should have several advantages. In the context of our collection, the following advantages
are observed:

ff The ability to insert, delete, or update a model in a collection without the need to
re-render the whole collection

ff The ability to re-use subviews in other places of the program

ff The ability to split a single big piece of code into small and simple parts

In this recipe, we are going to split a view which renders a collection into several simple
subviews. Let's output the data in a table rather than in a list and apply some Cascading
Style Sheets (CSS) to make it look better.

How to do it...
Follow the given steps to split one big view into small subviews.

1.	 Make sure you have the model and the collection definition:
 var InvoiceItemModel = Backbone.Model.extend({

 });

Views

104

 var InvoiceItemCollection = Backbone.Collection.extend({
 model: InvoiceItemModel
 });

2.	 Define a view for rendering a single model:
 // Define new view to render a model.
 var InvoiceItemView = Backbone.View.extend({

 // Define element tag name.
 tagName: 'tr',

 // Render view.
 render: function() {

 // Add cells to the table row.
 $(this.el).html(_.map([
 this.model.get('quantity'),
 this.model.get('description'),
 this.model.get('price'), this.model.calculateAmount(),
], function(val, key){
 return '<td>' + val + '</td>'
 }));

 return this;
 }
 });

3.	 Define a view for rendering a collection:
 // Define new view to render a collection.
 var InvoiceItemListView = Backbone.View.extend({

 // Define element tag name.
 tagName: 'table',

 // Define element class name.
 className: 'invoice-item-view',

 // Render view.
 render: function() {

 $(this.el).empty();

 // Append table with a table header.
 $(this.el).append($('<tr></tr>').html(

Chapter 4

105

 _.map(['Quantity', 'Description', 'Price', 'Total'],
 function(val, key){
 return '<th>' + val + '</th>'
 })
));

 // Append table with a row.
 $(this.el).append(
 _.map(this.collection.models, function(model, key) {
 return new InvoiceItemView({
 model: model
 }).render().el;
 })
);

 return this;
 }
 });

4.	 Define a view for rendering a whole page.
 var InvoiceItemListPageView = Backbone.View.extend({

 // Render whole page view.
 render: function() {
 $(this.el).html(new InvoiceItemListView({
 collection: this.collection
 }).render().el);
 }
 });

5.	 Create and initialize a collection instance with data.
var invoiceItemCollection = new InvoiceItemCollection([
 { description: 'Wooden Toy House', price: 22, quantity: 3 },
 { description: 'Farm Animal Set', price: 17, quantity: 1 },
 { description: 'Farmer Figure', price: 8, quantity: 1 },
 { description: 'Toy Tractor', price: 15, quantity: 1 }
]);

6.	 Create a view instance for a whole page and render it.
 new InvoiceItemListPageView({
 collection: invoiceItemCollection,
 el: 'body'
 }).render();

Views

106

How it works...
In this example, we used InvoiceItemView for rendering the model and
InvoiceItemListView for rendering the collection.

Also, we introduced the new view InvoiceItemListPageView that renders the whole
page. When creating an instance of this view, we pass the el property; it contains the HTML
element name where the view should output its result. This gives us more flexibility, and so
we can render the view wherever we need.

Handling Document Object Model (DOM)
events in a view

A view in Backbone provides some functionality to interact with a user. It allows the handling
of events that occur in the DOM in context of the view element.

In this recipe, we are going to modify an example given in the previous recipe. Let's add an
Edit button to each row of the table as shown in the following screenshot:

By clicking on the Edit button, we will immediately replace the text values with input boxes
so that the user can enter new values. We will also show Save and Cancel buttons to save
or cancel the changes.

Chapter 4

107

If the user clicks on the Save button, the model gets updated. If the user clicks on the Cancel
button, values in the row are restored. Clicking on both the buttons makes the row view work
in the view mode again.

How to do it...
Apply the following changes to InvoiceItemView that we created in the previous recipe.

1.	 Define a view:
 // Define new view to render a model.
 var InvoiceItemView = Backbone.View.extend({

 // Define tag name.
 tagName: 'tr',
 });

2.	 Introduce a rendering function when the user is viewing an item:
 renderViewMode: function() {
 $(this.el).html(_.map([
 this.model.get('quantity'),
 this.model.get('description'),
 this.model.get('price'),
 this.model.calculateAmount(),
 '<button class="edit">Edit</button>'

Views

108

], function(val, key){
 return '<td>' + val + '</td>'
 }));
 },

3.	 Introduce a rendering function when the user is editing an item:
 renderEditMode: function() {
 $(this.el).html(_.map([
 '<input class="quantity" value="' +
 this.model.get('quantity') + '">',
 '<input class="description" value="' +
 this.model.get('description') +
 '">',
 '<input class="price" value="' +
 this.model.get('price') + '">',
 this.model.calculateAmount(),
 '<button class="save">Save</button>' +
 '<button class="cancel">Cancel</button>'
], function(val, key){
 return '<td>' + val + '</td>'
 }));
 },

4.	 Set a property that will contain a function name that will be called on rendering
the view:
 renderCallback: 'renderViewMode',

 render: function() {
 this[this.renderCallback]();

 return this;
 },

5.	 Map the DOM events to the handlers:
 events: {
 'click button.edit': 'edit',
 'click button.save': 'save',
 'click button.cancel': 'cancel',
 },

6.	 Define the event handlers:
 // Edit button click handler.
 edit: function() {

Chapter 4

109

 this.renderCallback = 'renderEditMode';

 this.render();
 },

 // Save button click handler.
 save: function() {
 this.model.set({
 quantity: $(this.el).find('input.quantity').val(),
 description:
 $(this.el).find('input.description').val(),
 price: $(this.el).find('input.price').val(),
 });

 this.renderCallback = 'renderViewMode';

 this.render();
 },

 // Cancel button click handler.
 cancel: function() {
 this.renderCallback = 'renderViewMode';

 this.render();
 }

7.	 Create and initialize a collection instance with data:
var invoiceItemCollection = new InvoiceItemCollection([
 { description: 'Wooden Toy House', price: 22, quantity: 3 },
 { description: 'Farm Animal Set', price: 17, quantity: 1 },
 { description: 'Farmer Figure', price: 8, quantity: 1 },
 { description: 'Toy Tractor', price: 15, quantity: 1 }
]);

8.	 Create a view instance for a whole page and render it:
 new InvoiceItemListPageView({
 collection: invoiceItemCollection,
 el: 'body'
 }).render();

Views

110

How it works...
By defining the event property, we can tell Backbone how to map events to the handlers.
To do so, we will use the following syntax:

{"event selector": "callback"}

Backbone.js uses jQuery's on() function to provide declarative callbacks for DOM events within
a view. If the selector value is not given, the view's root element (this.el) is assumed.

There's more...
This section describes view methods to delegate and undelegate DOM events.

Delegating and undelegating events manually
In some cases, we may need a view to start handling DOM events manually from a specific place
in the program. This can be done by calling the delegateEvents() method. It accepts a hash
table of event names and their callbacks. If no parameter is given, this.events is used.

If we need a view to stop handling DOM events, we should call the undelegateEvents()
method. This can be useful when we hide the view temporarily and need to ensure that no
unexpected behavior is caused by the DOM events.

See also...
ff A complete reference to the jQuery events can be found at

http://api.jquery.com/category/events/.

Switching views using Backbone.Router
In the real Backbone application, we'll often need to switch from one view to another. This
is typically done with the help of Backbone.Router; it allows us to map a URL to the specific
callback that renders a view. In Chapter 1, Understanding Backbone, we learned about a
router in Backbone.js. However, we did not speak much about its interaction with views.

In this recipe, we are going to build a Backbone application that will dynamically render
an appropriate view on the URL, as well as change and remove the view that was shown to
 the user previously in order to prevent a memory leak. The views are going to be switched
without a page reload, because Backbone.Router supports hash URLs and pushState.

Chapter 4

111

In our application, we are going to implement InvoiceListView and InvoicePageView.
The first one displays a list of invoices, as shown in the following screenshot:

When the user clicks on the view details link, he/she is shown an invoice details screen like
the one shown in the following screenshot:

Views

112

How to do it...
Let's assume that we already have a model, a collection, and view objects defined. Follow the
given steps to create a router that switches views.

1.	 Define a router object and its routes:
 var Workspace = Backbone.Router.extend({

 // Define routes
 routes: {
 '': 'invoiceList',
 'invoice': 'invoiceList',
 'invoice/:id': 'invoicePage',
 }

2.	 Create a new collection instance in the initialize() method in the router object:
 initialize: function() {

 // Create collection
 this.invoiceCollection = new InvoiceCollection([
 { referenceNumber: 1234},
 { referenceNumber: 2345},
 { referenceNumber: 3456},
 { referenceNumber: 4567}
]);
 }

3.	 Define routing callbacks in the router object:
 invoiceList: function() {
 this.changeView(new InvoiceListView({
 collection: this.invoiceCollection
 }));
 },

 invoicePage: function(id) {
 this.changeView(new InvoicePageView({
 model: this.invoiceCollection.get(id)
 }));
 }

Chapter 4

113

4.	 Define a changeView() method in the router object that will help us change the
current view:
 changeView: function(view) {
 if (this.currentView) {
 if (this.currentView == view) {
 return;
 }

 this.currentView.remove();
 }

 $('body').append(view.render().el);

 this.currentView = view;
 }
 });

5.	 Create a router instance and run the Backbone.history.start() method to
start our application:
 new Workspace();
 Backbone.history.start();

How it works...
Many interesting things are happening in the changeView() method. Just for our assurance,
we check if the current view is not the one to which we are going to switch and then remove.
While removing a view, all the events handled by it need to be unbound, and the corresponding
HTML elements removed from the DOM tree. Then, we render a new view and append its
element to the body.

Removing previously used views helps us to avoid memory leaks, which can happen when the
application is used continuously for a very long time.

See also
ff Please refer to Chapter 1, Understanding Backbone, to learn more about routers in

Backbone.js.

5
Events and Bindings

In this chapter, we will cover:

ff Managing events in Backbone.js

ff Handling events of Backbone objects

ff Binding a model to a view

ff Binding a collection to a view

ff Bidirectional binding with Backbone.stickit

ff Binding a model and a collection to a select list

ff Handling keyboard shortcuts in a view

ff Handling router events

Introduction
This chapter is devoted to the Backbone.Events object and its involvement in other
Backbone objects, such as models, collections, views, and routers.

We will learn how to assign a callback to a specific event or how to listen to events of other
objects. We will also learn how to bind a model or a collection to a view in both directions.
So if a model is updated, the view automatically shows the changes, or if a user inputs
data into a view, the model is validated and updated.

Events and Bindings

116

Managing events in Backbone.js
Backbone provides a unified way for triggering and handling events in other Backbone
objects, such as Model, Collection, View, and Router. This becomes possible due to the
Backbone.Events object, which provides this functionality and thus can be mixed to any
object, including your own.

In this recipe, we are going to learn how to mix Backbone.Events to your own object, how to
trigger an event, and how to bind a callback to an event.

How to do it...
Perform the following steps to handle object events.

1.	 Define a new object.
object1 = {};

2.	 Mix Backbone.Events to your object.
_.extend(object1, Backbone.Events);

3.	 Define a callback function.
var hello = function(msg) {
 alert("Hello"+ msg);
}

4.	 Bind the callback using the on() method.
object1.on("handshake", hello);

Alternatively, you can use the once() method to fire the callback once before it
is unbound.

object1.once("handshake", hello);

If you have a large number of different events for an object, the convention
is to use colons to name them poll:start, or change:selection.

5.	 Trigger an event by calling the trigger() method.
object1.trigger("handshake", "world!");

How it works...
In the on() method, Backbone.Events saves callback in an associative array _events,
and then in the trigger() method it runs all callbacks for that event iteratively.

Chapter 5

117

There's more...
In this section, we will learn some important topics about events: unbinding callback from the
event and listening events of other objects.

Unbinding callback from the event
To unbind callbacks from the event, we need to use the off() method. The following line of
code will unbind a specific callback we set previously.

object1.off("handshake", hello);

To unbind all callbacks from the event, skip the second parameter.

object1.off("handshake");

To unbind a specific callback from all events, skip the first parameter.

object1.off(null, hello);

To unbind all callbacks from all events, skip both parameters.

object1.off();

Listening to events on other objects
To listen to events on other objects, we can use the listenTo() method.

object2.listenTo(object1, 'handshake', object2.hello);

It works similar to the on() method, but its advantage is that it allows us to keep a track of
the events, and they can be removed all at once later on.

object2.stopListening(object1);

To stop listening to all objects, run the stopListening() method without parameters.

object2.stopListening();

Handling events of Backbone objects
All Backbone objects implement Backbone.Events, and some of them provide built-in
events, to which your objects can listen.

For example, a change event is fired when a model is changed. Especially for this event, there
are several methods in Backbone.Model that can be used in the change event callback. In
this recipe, we are going to learn how to use them.

Events and Bindings

118

How to do it...
Perform the following steps to handle model events.

1.	 Create a new model instance.
 var model = new Backbone.Model({
 firstName: 'John',
 lastName: 'Doe',
 age: 20,
 });

2.	 Bind the callback to the change event.
 model.on('change', function(model) {

 }

3.	 Use the hasChanged() method in the event callback to check if the specific
attribute has been changed since the last change event.
 model.hasChanged("age"); // true
 model.hasChanged("firstName"); // false

4.	 Use the changedAttributes() method in the event callback to obtain changed
attributes' hash.
 model.changedAttributes(); // Object {age: 21}

5.	 Use the previous() method in the event callback to get the value of the previous
attribute.
 model.previous('age'); // 20

6.	 Use the previousAttributes() method in the event callback to get the hash of
the previous attributes.
 model.previousAttributes();
 // Object {firstName: "John", lastName: "Doe", age:
 20}

7.	 Change a model attribute to trigger the change event.

 model.set('age', 21);

There's more...
In this section, we are going to learn more about events to Backbone objects: avoiding event
triggering when working with Backbone objects and using built-in events.

Chapter 5

119

Avoiding event triggering when working with Backbone objects
There is a way to avoid event triggering when working with Backbone events. This can be
helpful if you want to update object properties without making event callbacks know about
this fact.

For example, you can pass {silent: true} when updating model values.

model.set('age', 22, {silent: true});

The following line of code is also valid:

model.set({ age: 25 }, {silent: true});

Using built-in events
The following events are used with model objects:

ff change (model, options): It is fired when a model's attributes have changed

ff change:[attribute] (model, value, options): It is fired when a specific attribute has
been updated

ff destroy (model, collection, options): It is fired when a model is destroyed

ff invalid (model, error, options): It is fired when a model's validation fails on the client

ff error (model, xhr, options): It is fired when a model's save call fails on the server

ff sync (model, resp, options): It is fired when a model has been successfully synced
with the server

The following events are used with collections:

ff add (model, collection, options): It is fired when a model is added to a collection

ff remove (model, collection, options): It is fired when a model is removed from a
collection

ff reset (collection, options): It is fired when the entire content of the collection has
been replaced

ff sort (collection, options): It is fired when the collection has been re-sorted

ff sync (collection, resp, options): It is fired when a collection has been successfully
synced with the server

The following events are used with the router object:

ff route:[name] (params): It is fired by the router when a specific route is matched

ff route (router, route, params): It is fired by history (or router) when any route has
been matched

Events and Bindings

120

The following events are triggered when storage operations are performed:

ff route:[name] (params): It is fired by the router when a specific route is matched

ff route (router, route, params): It is fired by history (or router) when any route has
been matched

To handle any triggered event, use the special event all.

See also
ff You can find the complete built-in events catalog from http://backbonejs.

org/#Events-catalog

ff To check which Backbone methods support {silent: true}, please refer to
the official docs

Binding a model to a view
One of the useful features in Backbone.js is the ability to bind model changes to a view,
thus a view is re-rendered every time a model is changed. It allows you to write less code and
makes your application work like an AJAX app, for example, when new data is fetched from a
REST server, the user sees the update immediately.

Let's take an example of the Rendering a model in a view recipe from Chapter 4, Views, where
we rendered a model with a view and modified it, so views is re-rendered every time the model
is updated.

The view which we are going to implement will be rendered as shown in the following
screenshot:

Chapter 5

121

In the browser console, we can modify the model values, thus the change event is triggered
and the view is re-rendered.

How to do it...
Perform the following steps to bind a model to a view.

1.	 Define a new model.
 var InvoiceItemModel = Backbone.Model.extend({

 });

2.	 Define a view that renders this model.
 var InvoiceItemView = Backbone.View.extend({

 // HTML element name, where to render a view.
 el: 'body',

 // Render view.
 render: function() {
 var html = 'Description: ' +
 this.model.get('description') + '. ' +
 'Price: ' + this.model.get('price') + '. ' +
 'Quantity: ' + this.model.get('quantity') + '.';

Events and Bindings

122

 // Set html for the view element using jQuery.
 $(this.el).html(html);
 }
 });

3.	 Bind the model to InvoiceItemView in the initialize() method.
 initialize: function() {
 this.listenTo(this.model, 'change', this.render, this);
 }

4.	 Create the model instance.
 var invoiceItemModel = new InvoiceItemModel({
 description: 'Farmer Figure',
 price: 8,
 quantity: 1
 });

5.	 Create a view instance and pass model to it as a parameter.
 var invoiceItemView = new InvoiceItemView({

 // Pass model as a parameter to a view.
 model: invoiceItemModel
 });

6.	 Render the view.
 invoiceItemView.render();

7.	 To check how binding works, export the model to be a global variable, so we can
update model values in a browser console.

window.invoiceItemModel = invoiceItemModel;

How it works...
Both the Backbone.Model and Backbone.View objects implement Backbone.Events,
so it is possible to listen to model changes in the view and bind the render() method as a
callback for the change event.

Binding a collection to a view
In this recipe, we are going to learn how to bind a collection to a view. This can be very helpful
if we have different views working with the same collection, or if we want to synchronize data
with a REST server.

Chapter 5

123

Let's take an example of the Rendering a model in a view recipe from Chapter 4, Views, where
we rendered a collection with subviews and modified it. We are going to add an additional
view with the Add and Remove buttons, which will update the collection.

Also, we will bind appropriate callbacks to the model and collection events in our first view,
so it is re-rendered automatically when the collection is changed.

When a user clicks on the Add button, he/she is prompted to enter the required information
to create InvoiceItemModel.

Events and Bindings

124

After the user goes through all the questions, a new model is created and added into a
collection, and the corresponding views are updated.

When the Remove button is clicked, the user is promoted to enter the position of the item to
be removed.

How to do it...
Perform the following steps to bind a collection to a view.

1.	 Make sure you have the model and collection definitions.
 var InvoiceItemModel = Backbone.Model.extend({

 });

Chapter 5

125

 var InvoiceItemCollection = Backbone.Collection.extend({
 model: InvoiceItemModel
 });

2.	 Define a view for rendering a single model.
 // Define new view to render a model.
 var InvoiceItemView = Backbone.View.extend({

 // Define element tag name.
 tagName: 'tr',

 // Render view.
 render: function() {

 // Add cells to the table row.
 $(this.el).html(_.map([
 this.model.get('quantity'),
 this.model.get('description'),
 this.model.get('price'), this.model.calculateAmount(),
], function(val, key){
 return '<td>' + val + '</td>'
 }));

 return this;
 }
 });

3.	 In the initialize() method of the InvoiceItemView object, bind callback to
handle the destroy event of the model.
 initialize: function() {
 this.listenTo(this.model, 'destroy', this.destroy, this);
 }

4.	 Add the destroy() method, which removes the view bound to a model.
 destroy: function() {
 this.remove();
 }

5.	 Define a view for rendering a collection.
 // Define new view to render a collection.
 var InvoiceItemListView = Backbone.View.extend({

 // Define element tag name.
 tagName: 'table',

Events and Bindings

126

 // Define element class name.
 className: 'invoice-item-view',

 // Render view.
 render: function() {

 $(this.el).empty();

 // Append table with a table header.
 $(this.el).append($('<tr></tr>').html(
 _.map(['Quantity', 'Description', 'Price', 'Total'],
 function(val, key){
 return '<th>' + val + '</th>'
 }
)
));

 // Append table with a row.
 _.each(this.collection.models, function(model, key) {
 this.append(model);
 }, this);

 return this;
 },

 // Add invoice item row to the table.
 append: function(model) {
 $(this.el).append(
 new InvoiceItemView({ model: model }).render().el
);
 }
 });

Here we used the append() method, which adds InvoiceItemView into the
output table. We will use this method later on.

6.	 In the initialize() method of the InvoiceItemListView object, bind the
callback to handle the add event of the collection.
 initialize: function() {
 this.listenTo(
 this.collection, 'add', this.append, this
);
 },

Here we have called the same append() method.

Chapter 5

127

7.	 Define the view with Add and Remove controls.
 var InvoiceItemListControlsView = Backbone.View.extend({
 render: function() {
 var html =
 '
<input id="add" type="button"' value="Add" id>' +
 ' <input id="remove" type="button" value="Remove">';

 $(this.el).html(html);

 return this;
 },

 // Handle HTML events.
 events: {
 'click #add': 'addNewInvoiceItem',
 'click #remove': 'removeInvoiceItem',
 },

 // Add button handler.
 addNewInvoiceItem: function() {
 var description = prompt('Enter item description', '');
 var price = prompt('Enter item price', '0');
 var quantity = prompt('Enter item quantity', '1');

 this.collection.add([{
 description: description,
 price: price,
 quantity: quantity
 }]);
 },

 // Remove button handler.
 removeInvoiceItem: function() {
 var position =
 prompt('Enter position of item to remove', '');

 model = this.collection.at(position);
 model.destroy();
 }
 });

8.	 Define a view for rendering a whole page.
 var InvoiceItemListPageView = Backbone.View.extend({

 // Render whole page view.
 render: function() {

Events and Bindings

128

 $(this.el).html(new InvoiceItemListView({
 collection: this.collection
 }).render().el);

 $(this.el).append(new InvoiceItemListControlsView({
 collection: this.collection
 }).render().el);
 }
 });

9.	 Create and initialize the collection instance with data.
var invoiceItemCollection = new InvoiceItemCollection([
 { description: 'Wooden Toy House', price: 22, quantity: 3 },
 { description: 'Farm Animal Set', price: 17, quantity: 1 }
]);

10.	 Create the whole page view instance and render it.

 new InvoiceItemListPageView({
 collection: invoiceItemCollection,
 el: 'body'
 }).render();

How it works...
When a new model is added to the collection, the add event is fired, and the model is
rendered as a table row and appended to the table.

When a model is destroyed, the destroy event is fired, and a view corresponding to this
model is removed, also a view element is removed from a DOM tree.

Bidirectional binding with Backbone.stickit
In Backbone.js, we can bind a model to a view out of the box, but it is not easy to make
binding in reverse direction without the need to parse values of HTML elements.

In this recipe, we will speak about the Backbone.stickit extension, which allows
developers to implement bidirectional binding of the model properties and view elements
in a simple and native Backbone.js way.

Among many similar extensions, Backbone.stickit stands out by its perfect
documentation, simplicity, and the great advantage that it gives to application developers.
It was written in New York Times not so long time ago, and its popularity is being growing
day-by-day. It is definitely one of the coolest extensions for Backbone.js.

Chapter 5

129

In this recipe, we are going to build a simple application that has a couple of views bound
to the same model, so if a user makes changes in the element of the first view, the second
view is updated automatically. The user interface of our application will look like the following
screenshot:

There are a couple of views that are bound to the same model. When the user enters data
into the form, the model and the other view are updated.

Getting ready
You can download the Backbone.stickit extension from the GitHub page https://
github.com/nytimes/backbone.stickit. To include this extension into your project,
save the backbone.stickit.js file into the lib folder of your project and include the
reference to this file in index.html.

Including a Backbone extension into your project is described in detail
in the Extending an application with plugins recipe in Chapter 1,
Understanding Backbone.

How to do it...
Perform the following steps to perform a bidirectional binding.

1.	 Make sure you have a model defined.
 var InvoiceItemModel = Backbone.Model.extend({

 });

Events and Bindings

130

2.	 Define the form view.
 var InvoiceItemFormView = Backbone.View.extend({

 // Define class name of view element.
 className: 'invoice-item-form-view',
 });

3.	 Add the bindings hash to the view.
 bindings: {
 '#description': 'description',
 '#price': 'price',
 '#quantity': 'quantity'
 }

Here we used short binding definition, which acts as an alias for the detailed
definition shown in the next snippet.
 bindings: {
 '#description': { observe: 'description' },
 '#price': { observe: 'price' },
 '#quantity': { observe: 'quantity' }
 }

4.	 Add the render() method to the view and call this.stickit() after rendering.
 render: function() {
 var html = '<label>Description:</label>' +
 '<input type="text" id="description"></input>
' +
 '<label>Price:</label>' +
 '<input type="text" id="price"></input>
' +
 '<label>Quantity:</label>' +
 '<input type="text" id="quantity"></input>
';

 // Set html for the view element using jQuery.
 $(this.el).html(html);

 // Here binding occurs.
 this.stickit();

 return this;
 }

5.	 Define the other view in a similar way.
 var InvoiceItemView = Backbone.View.extend({

 // Define class name of view element.
 className: 'invoice-item-view',

Chapter 5

131

 // Bind HTML elements to the view model.
 bindings: {
 '#description': 'description',
 '#price': 'price',
 '#quantity': 'quantity'
 },

 // Render view.
 render: function() {
 var html = 'Description:' +
 ', ' +
 'Price: , ' +
 'Quantity: .';

 // Set html for the view element using jQuery.
 $(this.el).html(html);

 // Here binding occurs.
 this.stickit();

 return this;
 },
 });

6.	 Create a new model instance.
 var invoiceItemModel = new InvoiceItemModel({
 description: 'Farmer Figure',
 price: 8,
 quantity: 1
 });

7.	 Append both views to the HTML body.

 $('body').append(new InvoiceItemView({
 model: invoiceItemModel
 }).render().el);
 $('body').append(new InvoiceItemFormView({
 model: invoiceItemModel
 }).render().el);

How it works...
Whenever the stickit() method is called, the stickit extension initializes innerHTML of the
HTML elements, which we have defined in the bindings hash. Because of such initialization,
Stickit lets us to keep our templates clean, and we don't need to pass model values into the
html variable manually when rendering the view.

Events and Bindings

132

For the InvoiceItemView view, one-way binding is configured (model to view), so every time
model properties get changed, the corresponding HTML elements are updated.

For the InvoiceItemFormView view, Stickit sets up two-way binding (model to view and
then, view to model), connecting and reflecting changes in the view elements with changes in
bound model attributes.

There's more...
This section describes advanced usage of the Backbone.stickit extension: overriding
model getters and setters, overriding view element updates, and listening to a specific
HTML event.

Overriding model getters and setters
When getting or setting properties of a model bound to our view, we can override the getting
or setting behavior by specifying the onGet and onSet callbacks.

 bindings: {
 '#price': {
 observe: 'price',
 onGet: 'priceGetter',
 onGet: 'priceSetter'
 }
 },
 priceGetter: function(val, options) {
 return '$ ' + val;
 },
 priceSetter: function(val, options) {
 return Number(val.replace(/[^0-9\.]+/g, ''));
 }

Overriding view element updates
There are different ways in which we can override and customize view element updates. We
can specify an update callback, which is triggered when an HTML element gets updated or
we can specify afterUpdate callback, which will be executed afterwards.

 bindings: {
 '#price': {
 observe: 'price',
 update: function($el, val, model, options) {
 $el.val(val);
 }
 afterUpdate: 'highlight',
 },

Chapter 5

133

 },
 highlight: function($el, val, options) {
 $el.animate({ backgroundColor: "#ff9999" }, "fast")
 .animate({ backgroundColor: "#ffffff" }, "fast");
 }
 }

There is another way in which we can override value update for the view element by specifying
updateMethod. By default it uses the text method, but we can change its value to html.
If the html method is used, and we want to escape model values before assigning it to an
HTML element, we can set the escape option to true.

 bindings: {
 '#price': {
 observe: 'price',
 updateMethod: 'html',
 escape: true
 }
 }

Listening to a specific HTML event
By default, for a textbox, textarea and other content-editable HTML elements, the Backbone.
stickit extension listens to the following events, keyup, change, cut, and paste. For
other elements, the Backbone.stickit extension listens to the change event.

However, there is a way to override this setting by specifying the events array.

 bindings: {
 '#price': {
 observe: 'price',
 events: ['blur'],
 },
 }

In this case, view-to-model binding will occur on the blur event of the #price textbox.

See also
ff In the following recipe, we are going to continue learning about the Stickit extension.

You can also find complete docs on Backbone.stickit on the GitHub page
http://nytimes.github.com/backbone.stickit/.

Events and Bindings

134

Binding a model and a collection to a select
list

In the previous recipe, we talked about how to bind a model to an HTML arbitrary element
of the view. In this recipe we are going to learn how to bind a model to a select element. By
changing the value of the select list, we need to change the associated property of a bound
model.

This is a bit more complex, because we may want to take key-value pairs for select options
from an array or a collection. Fortunately, the Backbone.stickit extension allows us to do
this easily.

In this recipe, we will create a simple example to demonstrate how we can bind a model and a
collection to a select list.

Getting ready
You can download the Backbone.stickit extension from the GitHub page https://
github.com/nytimes/backbone.stickit. To include this extension into your project,
save the backbone.stickit.js file into the lib folder and include the reference to it in
index.html.

Including the Backbone extension into your project is described in
detail in the Extending an application with plugins recipe in Chapter 1,
Understanding Backbone.

How to do it...
Perform the following steps to bind a model and a collection to a select list.

1.	 Define a model.
 var InvoiceModel = Backbone.Model.extend({

 });

Chapter 5

135

2.	 Define a view.
 var InvoiceView = Backbone.View.extend({

 // Define class name of view element.
 className: 'invoice-item-view',

 },

 // Render view.
 render: function() {
 var html = 'Status: <select id="items"></select>';

 // Set html for the view element using jQuery.
 $(this.el).html(html);

 // Here binding occurs.
 this.stickit();

 return this;
 },
 });

3.	 Add bindings hash to the view.
 // Bind HTML elements to the view model.
 bindings: {
 'select#items': {
 observe: 'status',

 // Define additional options for select element.
 selectOptions: {

 // You can return regular Backbone collection or
 // an array of objects.
 collection: function() {
 return [
 {name: null, label: '- Status-'},
 {name: 'in_progress', label: 'In Progress'},
 {name: 'complete', label: 'Complete'}
]
 },

 // Set the path to the label value for select
 // options within the collection of objects.
 labelPath: 'label',

Events and Bindings

136

 // Define the path to the values for select options
 // within the collection of objects.
 valuePath: 'name'
 }
 }

4.	 Create a new model instance.
 var invoiceModel = new InvoiceModel({
 status: 'in_progress'
 });

5.	 Render the view.

$('body').append(new InvoiceView({
 model: invoiceModel
}).render().el);

How it works...
Backbone.stickit takes values for select list options from the collection property
and assumes that it defines either a path to a collection relative to the window object or
a function, which returns a collection. Also, an array of objects can be used instead of a
collection, as shown in the previous example.

labelPath indicates a path to a property of a collection object, which is used as a label for
select list options, and valuePath defines the path to an option value.

See also
ff You can find additional details about binding a model and a collection to a select

list on the Bacbkone.stickit GitHub page http://nytimes.github.com/
backbone.stickit/

Handling keyboard shortcuts in a view
To perform the best user experience, your application should support various types of
navigation within an application. One of these ways could be achieved by using shortcuts.
Shortcut is a combination of keystrokes that provides easier access to a command or
operation.

In this recipe, we are going to handle a couple of shortcuts for a view we implemented in the
Binding a collection to a view recipe.

To perform keyboard shortcut handling, we are going to use the Moustrap library and the
Backbone.Mousetrap extension, which provide the functionality we need.

Chapter 5

137

Getting ready
You can download both the Moustrap library and the Backbone.Moustrap extension
from the GitHub pages https://github.com/ccampbell/mousetrap and https://
github.com/elasticsales/backbone.mousetrap respectively.

To include them into your project, save the mousetrap.js and backbone.mousetrap.js
files into the lib folder and include references to them in index.html.

Including a Backbone extension into your project is described in detail
in the Extending an application with plugins recipe in Chapter 1,
Understanding Backbone.

How to do it...
To perform keyboard shortcut handling, add the following property into a view object:

 keyboardEvents: {
 'shift+n': 'addNewInvoiceItem',
 'shift+d': 'removeInvoiceItem',
 },

How it works...
Backbone.Mousetrap automatically delegates keyboard events to a view when it's being
created and undelegates when it is removed or when undelegateEvents() is called.

The following keys, shift, ctrl, alt, option, meta, and command are available. Other
special keys are backspace, tab, enter, return, capslock, esc, escape, space,
pageup, pagedown, end, home, left, up, right, down, ins, and del.

You should be able to reference any other key by names, such as a, /, $, *, or =.

By default, Mousetrap prevents shortcut events from being handled when the browser is
focused on any form element, such as input, text area, or select box. However, if you want to
handle a shortcut event for such elements, you can add the mousetrap class to it.

<textarea name="message" class="mousetrap"></textarea>

See also
ff Please visit the following resource in order to learn more about Mousetrap: http://

craig.is/killing/mice

Events and Bindings

138

Handling router events
Though there are not many use cases for handling router events, Backbone.js provides
a mechanism to do so. In this recipe, we are going to create a simple application that logs
router events.

How to do it...
Perform the following steps in order to handle router events.

1.	 Listen to the route event of Backbone.History.
 initialize: function() {
 Backbone.history.on('route', this.routeTracker);
 },

2.	 Define the route event callback.

 routeTracker: function(router, route, params) {
 console.log(
 'Route: ' + route + '. Params: ' + params + '.'
);
 },

Chapter 5

139

How it works...
The route event is triggered after routing has been successfully performed. The route event
callback accepts the following parameters:

ff router: This parameter indicates a current router in use

ff route: This parameter indicates a router callback name

ff params: This indicates parameters passed to a router callback

There's more...
To handle a specific event for a specific router, listen to the route:[name] event.

 var Workspace = Backbone.Router.extend({
 routes: {
 '': 'invoiceList',
 'invoice': 'invoiceList',
 'invoice/:id': 'invoicePage',
 },

 initialize: function() {
 this.on('route:invoicePage', this.invoicePageEvent);
 },

 invoicePageEvent: function(param1, param2) {
 console.log(param1);
 },
});

In this case, the event callback accepts the routes parameters.

See also
ff More information about routes can be found in the Implementing URL routing in

your application recipe in Chapter 1, Understanding Backbone

6
Templates and

UX sugar

In this chapter, we will cover the following recipes:

ff Using templates in a view

ff Implementing a template loader

ff Using Mustache templates

ff Defining a form

ff Adding validation to a form

ff Handling form events

ff Customizing a form with the Bootstrap framework

ff Assembling layouts with LayoutManager

ff Building a semantic and an easily styleable data grid

ff Drawing on the HTML5 canvas

Introduction
This chapter introduces you to templates, which are used to separate HTML markup from the
application code. Thus, the application becomes more structured and clean. We will discuss
the templating engine provided by Underscore.js and learn how to integrate Backbone with
third-party templating engines, such as Mustache.js.

Also, we will discuss useful Backbone extensions, which allows the use of forms, layouts,
and grids.

Templates and UX sugar

142

Using templates in a view
In this recipe, you are going to learn how to use templates in the Backbone view. By default,
Backbone.js is integrated with templating engine provided by Underscore.js.

Let's take an example of the Rendering a collection in a view recipe in Chapter 4, Views,
where we rendered a collection with a view and updated the code using Underscore's
templating engine. The result will look like the following image:

How to do it...
Follow these steps to use templates in a view:

1.	 Make sure you have models and collection objects defined.
 var InvoiceItemModel = Backbone.Model.extend({

 });

 var InvoiceItemCollection = Backbone.Collection.extend({
 model: InvoiceItemModel
 });

2.	 Define a view with the template property which contains a template. Then,
when rendering a view, use template() to return rendered HTML.
 var InvoiceItemListView = Backbone.View.extend({

 // HTML element name, where to render a view.
 tagName: 'ul',

Chapter 6

143

 // Define template.
 template: _.template(
 '<% _.each(items, function(item) { %>' +
 ' ' +
 ' Description: <%= item.description %>.' +
 ' Price: <%= item.price %>.' +
 ' Quantity: <%= item.quantity %>.' +
 ' ' +
 '<% }); %>'
),

 // Render view.
 render: function() {

 // Render template and set html for the view element
 // using jQuery.
 this.$el.html(this.template({
 items: this.collection.toJSON()
 }));

 return this;
 }
 });

3.	 Create a collection instance.
var invoiceItemCollection = new InvoiceItemCollection([
 { description: 'Wooden Toy House', price: 22, quantity: 3 },
 { description: 'Farm Animal Set', price: 17, quantity: 1 },
 { description: 'Farmer Figure', price: 8, quantity: 1 },
 { description: 'Toy Tractor', price: 15, quantity: 1 }
]);

4.	 Create a view instance, render it, and set the result to the value of body.
$('body').html(new InvoiceItemListView({
 collection: invoiceItemCollection
}).render().el);

How it works...
With the help of the _.template() method provided by Underscore.js, we can define
an HTML template where we can include JavaScript code inside the <% … %> brackets.
To output a variable into the template, we need to use the <%= … %> syntax, and to
output an HTML escaped variable, we can use the <%- … %> syntax.

Further, in the render() method, we pass the collection items in the JSON format into
a template.

Templates and UX sugar

144

There's more...
In this section, we are going to learn how to split a template into partials.

Splitting a template into partials
Partial is a template that can be called from other templates as a function.

In case we want to reuse parts of the existing templates, we can split one template into
different parts. To do so, follow these steps:

1.	 Define the template part.
itemTemplate: _.template(
 'Description: <%= description %>.' +
 'Price: <%= price %>.' +
 'Quantity: <%= quantity %>.'
),

2.	 Define the main template.
template: _.template(
 '<% _.each(items, function(item) { %>' +
 ' ' +
 ' <%= itemTemplate(item) %>' +
 ' ' +
 '<% }); %>'
),

3.	 When rendering a template, pass a partial method as a setting.
this.$el.html(this.template({
 items: this.collection.toJSON(),
 itemTemplate: this.itemTemplate
}));

See also
To get more information about templates in Underscore.js, you can refer to the official docs
at http://underscorejs.org/#template.

Chapter 6

145

Implementing a template loader
In a large application, which follows separation of concerned paradigm, it is important to store
templates apart from views, so the web designer can modify them easily without harming views.
Such a practice also provides template reusability within the application.

Store all your templates in a single HTML file
For server-side applications, developers typically store templates
in separate files, achieving a convenient way for accessing and
editing them. However, this can hardly be applied to client-side
applications, because it makes a browser download multiple
small files from a server, delaying an application start.

In this recipe we will store our templates apart from views in a single HTML file. Also, we will
write a template loader, which will load those templates into the memory, allowing them to
be accessed from all over the application.

How to do it...
Follow these steps to implement the template loader:

1.	 Add templates enclosed in the script tag to the header of the index.html file.
Set the id attribute to distinguish one template from another.
<head>

 …

 <script type="text/html" class="template" id="items">
 <% _.each(items, function(item) { %>

 <%= itemTemplate(item) %>

 <% }); %>
 </script>

 <script type="text/html" class="template" id="item">
 Description: <%= description %>.
 Price: <%= price %>.
 Quantity: <%= quantity %>
 </script>

</head>

Templates and UX sugar

146

2.	 Create a template loading utility and place it into the js/template-loader.js file.
(function($){

 $(document).ready(function () {

 	 // Store variable within global jQuery object.
 $.tpl = {}

 $('script.template').each(function(index) {

 // Load template from DOM.
 $.tpl[$(this).attr('id')] = _.template($(this).html());

 // Remove template from DOM.
 $(this).remove();
 });
 });

})(jQuery);

3.	 Include the template loader into the index.html file.
<head>
 ...
 <script src="js/template-loader.js"></script>
 …
</head>

4.	 When rendering a view, use templates defined in the global $.tpl array.
this.$el.html($.tpl['items']({
 items: this.collection.toJSON(),
 itemTemplate: $.tpl['item']
}));

How it works...
Because we defined our templates in index.html, they are loaded instantaneously.
Then, in the template loader, when the document is fully loaded, we move them into
the global variable $.tpl and remove templates from the DOM. This should speed
up further usage of our templates as if we defined them in the JS file. Now, we can
use those templates in different views of our application.

Chapter 6

147

Using Mustache templates
Mustache is a beautiful, logicless template syntax. It can be used for HTML, config files,
source code, and so on. There are various implementations of Mustache that exist for
different languages, such as JavaScript, PHP, Ruby, Python, and many others.

In this chapter, we are going to learn how to use Mustache.js, which is the implementation
of Mustache for JavaScript, with Backbone.js.

Getting ready
You can download Mustache.js from its GitHub page at https://github.com/janl/
mustache.js. To include Mustache.js into your project, save the mustache.js file into
the lib folder, and include a reference to it in index.html.

Including the Backbone extension into your project is described in detail in the Extending
an application with plugins recipe in Chapter 1, Understanding Backbone.

How to do it...
Follow these steps to use a Mustache template:

1.	 Define a Mustache template in the view.
// Define template.
template: '{{#items}}' +
 ' Description: {{description}}' +
 ' Price: {{price}}.' +
 ' Quantity: {{quantity}}.' +
 '{{/items}}',

2.	 Run the Mustache.render() method to render a template.
this.$el.html(
 Mustache.render(this.template, {
 items: this.collection.toJSON()
 })
);

How it works...
Mustache.render() compiles a template string into a JavaScript code, and then executes
it. A template string contains placeholders like {{placeholder}}, which are replaced with
values provided in the second parameter.

Templates and UX sugar

148

There's more...
This section describes how to use compiled templates and partials in Mustache.js.

Using compiled templates
To improve the performance of your application, you can compile the template before using
it by calling Mustache.compile(). This method accepts the template string as a single
parameter and returns a JavaScript function, which can be called to return HTML code.
The following example demonstrates how to do it:

 var InvoiceItemListView = Backbone.View.extend({
 tagName: 'ul',

 template: Mustache.compile(
 '{{#items}}' +
 ' Description: {{description}}' +
 ' Price: {{price}}.' +
 ' Quantity: {{quantity}}.' +
 '{{/items}}'
),

 render: function() {
 this.$el.html(this.template({
 items: this.collection.toJSON()
 }));

 return this;
 }
 });

Using partials
As in Underscore templates, Mustache.js allows partials to be used. To call a partial template,
use the > syntax.

{{#items}}
 {{> item }}
{{/items}}

The partial template will look like this:

 Description: {{description}}
 Price: {{price}}.
 Quantity: {{quantity}}.

Chapter 6

149

You can pass the partial template in several ways, as follows:

ff An object of partials, which are strings as well, may be passed as the third argument
to Mustache.render(). The object should be keyed by the name of the partial,
and its value should be the partial text.
Mustache.render(
 this.template,
 { items: this.collection.toJSON() },
 { item: this.itemTemplate }
);

ff Template partials can also be compiled using the Mustache.compilePartial()
function. The first parameter of this function is the name of the partial as it is named
within a parent template. The second parameter is a partial template string.
Mustache.compilePartial(
 'item',
 'Description: {{description}}. Price: {{price}}.\
 Quantity: {{quantity}}.'
);

See also
To learn more about the Mustche.js syntax, you can visit its official GitHub page at
https://github.com/janl/mustache.js.

Defining a form
Almost any web application requires an HTML form for user input. In the previous chapters,
we learned how to render a form manually and bind it to the view model.

However, we should look for backbone-forms extensions, which allow us to deal with forms
more easily by writing less code. In this recipe and in further recipes, we are going to learn
how to use this extension.

Templates and UX sugar

150

Let's create a simple form for BuyerModel, which will look like the following screenshot:

Getting ready
To include backbone-forms into your project, download the entire extension archive from
the GitHub page (https://github.com/powmedia/backbone-forms), and extract
it into the lib/backbone-forms directory. Then include a reference to the extension
files into index.html.

<link href="lib/backbone-forms/distribution/templates/default.css"
rel="stylesheet" />

<script src="lib/backbone-forms/distribution/backbone-forms.min.js"></
script>

Including the Backbone extension into your project is described in detail in the Extending
an application with plugins recipe in Chapter 1, Understanding Backbone.

Chapter 6

151

How to do it...
Follow these steps to define a form:

1.	 Define a form schema definition inside the model object.
var BuyerModel = Backbone.Model.extend({
 schema: {
 title: { type: 'Select', options: ['Mr', 'Mrs', 'Ms'] },
 name: 'Text',
 email: { validators: ['required', 'email'] },
 birthday:'Date',
 }
});

2.	 Create a view which should render a form with the help of the Backbone.Form object.
 var BuyerFormView = Backbone.View.extend({
 render: function() {
 this.form = new Backbone.Form({ model: this.model });

 this.$el.html('<h3>Enter buyer details below</h3>');
 this.$el.append(this.form.render().el);
 this.$el.append('<button>Submit</button>');

 return this;
 },
 });

3.	 Add a submit callback to the view. In this, the callback form is validated, and its
values are passed to a model through the commit() method of the form.
 events: {
 'click button': 'submit'
 },

 submit: function() {
 this.form.commit();

 console.log(this.model.toJSON());
 // Object { title: "Mr", name: "John Doe",
 // email: "john.doe@example.com",
 // birthday: Thu Mar 20 1986 00:00:00 GMT+0200 (EET) }
 }

Templates and UX sugar

152

How it works...
The Backbone.Form object extends Backbone.Views by overriding the render() method,
where it builds a form based on the schema definition we pass along with the model. If the
model has initial values, then those values will be assigned to the form elements.

By executing the commit() method, form validation is performed and form values are assigned
to the model properties. If the {validate: true} option is passed to this method, then both
form validation and model validation are performed.

There's more...
This section describes how to build a form without a model.

Using a form without a model
We can create a form without tying a schema definition to a model. The following example
shows how to do it:

var form = new Backbone.Form({
 data: {
 title: 'Mr',
 name: 'John Doe',
 email: 'john.doe@example.com',
 birthday: '1986-03-20'
 },

 schema: {
 title: { type: 'Select', options: ['Mr', 'Mrs', 'Ms'] },
 name: 'Text',
 email: { validators: ['required', 'email'] },
 birthday:'Date',
 }
}).render();

To get form values, use the getValue() method.

var this.data = this.getValue();

See also
To learn more about schema definition, you can check their official docs at
https://github.com/powmedia/backbone-forms#schema-definition.
In the later recipes, we will continue learning backbone-forms extension.

Chapter 6

153

Adding validation to a form
In this recipe, we will continue to learn backbone-forms extension, and we will talk about form
validation, which is quite a useful functionality and required by almost any web application
which leverages backbone-forms extensions.

How to do it...
Follow these steps to add validation to a form:

1.	 Make sure you have model schema defined.
 var BuyerModel = Backbone.Model.extend({
 schema: {
 email: 'Text',
 }
 });

2.	 Add validators.
 var BuyerModel = Backbone.Model.extend({
 schema: {
 email: {
 type: 'Text',
 validators: ['required', 'email']
 }
 }
 });

3.	 Set a validation message.
 var BuyerModel = Backbone.Model.extend({
 schema: {
 email: {
 type: 'Text',
 validators: [
 {
 type: 'required',
 message: 'Email field is required'
 },
 'email'
],
 }
 }
 });

Templates and UX sugar

154

How it works...
To enable validation, we need to pass the validators array to a schema field definition.
A validator can be a string, an object, a regexp (regular expression), or a function.

A string is used to set built-in validators, which do not require additional parameters. These
validators are required, email, and url. If a validator requires an additional parameter
(for example, match and regexp), or if we want to override an error message, we need to
use an object to define a validator.

password: {
 validators: [{
 type: 'match',
 field: 'passwordConfirm',
 message: 'Passwords must match!'
 }]
}

To perform a custom validator, we need to pass a validation function with two parameters:
value, which is a form element value, and formValues, which is a hash of all form values.

//Custom function
username: { validators: [
 function checkUsername(value, formValues) {
 var err = {
 type: 'username',
 message: 'Usernames must be at least 3 characters long'
 };

 if (value.length < 3) return err;
 }
] }

Validation is performed when the form.validate() or form.commit() method is called.

Chapter 6

155

There's more...
This section describes more about form validation.

Customizing error messages
It can be useful to override an error message for all built-in validators of a specific type
at once. It is quite easy to do this by overriding values in Backbone.Form.validators.
errMessages (the configuration object). We can use Mustache tags. Here is how it is done:

Backbone.Form.validators.errMessages.required =
 'Please enter a value for this field.';

Backbone.Form.validators.errMessages.match =
 'This value must match the value of {{field}}';

Backbone.Form.validators.errMessages.email =
 '{{value}} is an invalid email address.';

Performing a model validation
If you want to perform a model validation when committing or validating a form, you need to
make sure that the model's validate() method returns an object of error messages keyed
by the field names.

 validate: function(attrs) {
 var errs = {};

 if (this.usernameTaken(attrs.username)) {
 errs.username = 'The username is taken'
 }

 if (!_.isEmpty(errs)) return errs;
 },

See also
To learn more about form validation, you can refer to the docs at https://github.com/
powmedia/backbone-forms#validation.

Templates and UX sugar

156

Handling form events
The Backbone.Form extension provides several events that we can use in our application.
For example, by leveraging such events, we can implement specific functionalities where the
value of one field depends on the value of another field.

In this recipe, we are going to create a form for the InvoiceModel model, where the Paid
Date field will be shown only if the Paid option is selected as the Status field value. Our form
will look like the following screenshot:

How to do it...
Follow these steps tohandle form events:

1.	 Define the model and the form schema.
 var InvoiceModel = Backbone.Model.extend({
 schema: {
 referenceNumber: { type: 'Text'},

 date: { type: 'Date'},

 status: {
 type: 'Select',
 options: [
 { val: 'draft', label: 'Draft' },

Chapter 6

157

 { val: 'issued', label: 'Issued' },
 { val: 'paid', label: 'Paid' },
 { val: 'canceled', label: 'Canceled' }
]
 }

 paidDate: { type: 'Date' },
 }
 });

2.	 Create InvoiceForm based on Backbone.Form.
 var InvoiceForm = Backbone.Form.extend({

 }

3.	 Override parent's initialize() method to bind the status field's change event
to the callback, which will update dependent fields.
 initialize: function() {

 // Call parent method.
 InvoiceForm.__super__.initialize.apply(this, arguments);

 // Bind change status change event to the
 // update callback.
 this.on('status:change', this.update);
 }

4.	 Implement the update method for the form, which will update dependent fields.
 update: function(form, editor) {
 if (form.fields.status.editor.getValue() == 'paid') {
 form.fields.paidDate.$el.show();
 }
 else {
 form.fields.paidDate.$el.hide();
 }
 }

5.	 Override the render method of the form, where we need to run the update method
to ensure dependent fields are shown properly.
 render: function() {

 // Call parent method.
 InvoiceForm.__super__.render.apply(this, arguments);

Templates and UX sugar

158

 // Esnure dependent are shown properly.
 this.update(this);

 return this;
 }

How it works...
Backbone.Form provides several form events, which we can bind to our callbacks using the
on() method. They are:

ff change: This event is triggered whenever something happens that affects the result
of form.getValue().

ff focus: This event is triggered whenever this form gains focus, that is, when the input
of an editor within this form becomes document.activeElement.

ff blur: This event is triggered whenever this form loses focus, that is, when the input
of an editor within this form stops being document.activeElement.

ff <key>:<event>: the change, focus, or blur event is triggered for the form
element specified by key.

Backbone.Form extends Backbone.Views and implements initialize() and render()
methods. In our child object, we need to use these methods, and so we need to make sure
parent methods are executed, which is possible because of JavaScript's __super__ keyword.
Then, apply the method.

See also
ff The Handling events of Backbone objects recipe in Chapter 5, Events and Bindings

Customizing a form with the Bootstrap
framework

Default backbone-form's styles look pretty boring, and we may want to replace them with
something cool like Bootstrap. In this case, our form will look much better, as shown in
the following screenshot:

Chapter 6

159

Here we also use a List element (aka editor) to allow the user to input invoice item details.
When user clicks on the Add button, the following popup is generated and shown to the user:

Templates and UX sugar

160

Getting ready
Follow these steps to be prepared to use Bootstrap.js:

1.	 Download the Bootstrap framework archive from its GitHub page at
http://twitter.github.com/bootstrap, and extract it into the
lib folder of the application.

2.	 Remove the default.css style's reference from index.html.

3.	 Include links to the Bootstrap files into index.html.
<link rel="stylesheet"
href="lib/bootstrap/css/bootstrap.css" />

<script src="lib/bootstrap/js/bootstrap.js"></script>

4.	 Include links to the Backbone.Forms extension, List editor, Bootstrap modal
adapter, Bootstrap templates, and styles.
<script
src="lib/backbone-forms/distribution/backbone-forms.js">
</script>

<script
src="lib/backbone-forms/distribution/editors/list.js">
</script>

<script
src="lib/backbone-forms/distribution/adapters/backbone.bootstrap-
modal.js">
</script>

<script
src="lib/backbone-forms/distribution/templates/bootstrap.js">
</script>

<link rel="stylesheet"
href="lib/backbone-forms/distribution/templates/bootstrap.css" />

Including Backbone extension into your project is described in detail in the Extending an
application with plugins recipe in Chapter 1, Understanding Backbone.

Chapter 6

161

How to do it...
Follow these steps to customize a form with the Bootstrap framework:

1.	 Add the following line of code into main.js in order to set default modal adapter:
Backbone.Form.editors.List.Modal.ModalAdapter = Backbone.
BootstrapModal;

2.	 Add invoice items field definitions into the Backbone schema.
 items: {
 type: 'List', itemType: 'Object', subSchema: {
 description: { validators: ['required'] },
 price: 'Number',
 quantity: 'Number',
 }
 }

How it works...
We included files which override default backbone-forms templates and styles in order to
achieve integration with the Bootstrap framework. Also, we used List element, which makes
a special call to the Bootstrap modal adapter to show a nice modal popup.

There's more...
This section describes how to override form templates.

Overriding form templates
In the previous example, we included lib/backbone-forms/distribution/templates/
bootstrap.js into our project to make sure proper templates are used in order to provide
integration with the Bootstrap engine. In this file, the setTemplates() method of the
Backbone.Form object is called to override default templates.

 var Form = Backbone.Form;

 Form.setTemplates({
 form:
 '<form class="form-horizontal">{{fieldsets}}</form>',

 // ...

Templates and UX sugar

162

 field:
 '<div class="control-group field-{{key}}">' +
 ' <label class="control-label" for="{{id}}">' +
 ' {{title}}' +
 ' </label>' +
 ' <div class="controls">' +
 ' {{editor}}' +
 ' <div class="help-inline">{{error}}</div>' +
 ' <div class="help-block">{{help}}</div>' +
 ' </div>' +
 '</div>',
 }, {
 error: 'error'
 // Set error class on the field tag when validation fails
 });

Mustache syntax is used for template definition, and the templates that can be overridden
are: form, fieldset, field, nestedField, list, listItem, date, dateTime, and
'list.Modal'.

To use a specific template that is different from the one defined for the form element,
add a template, and pass its name in the template parameter in the schema definition.

title: { type: 'Select', options: ['Mr', 'Mrs', 'Ms'], template:
'customField'}

To use a specific template for the form, pass its name when creating a new form.

this.form = new Backbone.Form({
 model: this.model, template: 'customForm'
});

See also
You can check the official Bootstrap.js docs to learn more about it at http://twitter.
github.com/bootstrap. Also, look at the lib/backbone-forms/distribution/
templates/default.js file to find out all the available templates which can be overridden.

Chapter 6

163

Assembling layouts with LayoutManager
Backbone.LayoutManager is one of the most useful extensions for Backbone.js. It allows to
build a layout out of panes easily and to get rid of many lines of code compared to using just
Backbone views. LayoutManager also provides mechanisms to load templates from the main
HTML file or external files.

Let's build an application which will have two panes. On the first pane, the user will see a list
of invoices, and on the other pane he'll see invoice details.

By clicking on the invoice number from the first pane, our application will update the second
pane immediately.

Getting ready
You can download Backbone.LayoutManager from its GitHub page at https://github.
com/tbranyen/backbone.layoutmanager. To include LayoutManager into your project,
save the backbone.layoutmanager.js file into the lib folder and include a reference
to it in index.html.

Including Backbone extension into your project is described in detail in the Extending an
application with plugins recipe in Chapter 1, Understanding Backbone.

Templates and UX sugar

164

How to do it...
Follow these steps to assemble layouts:

1.	 Make sure you have model and collection objects defined.
 var InvoiceModel = Backbone.Model.extend({

 });

 var InvoiceCollection = Backbone.Collection.extend({
 model: InvoiceModel
 });

2.	 Define the invoice list pane.
 var InvoiceListPane = Backbone.Layout.extend({

 // Returns selector for template.
 template: "#invoice-list-pane",

 // Set selector for template.
 serialize: function() {
 return {
 // Wrap the collection.
 invoices: _.chain(this.collection.models)
 };
 }
 });

3.	 Define the invoice pane.
 var InvoicePane = Backbone.Layout.extend({

 // Set selector for template.
 template: "#invoice-pane",

 // Returns data for template.
 serialize: function() {
 return {
 invoice: this.model
 };
 }
 });

Chapter 6

165

4.	 Define a router with routes and create the collection instance in its
initialize() method.
 var Workspace = Backbone.Router.extend({
 routes: {
 '': 'page',
 'invoice/:id': 'page',
 },

 // Initialize function run when Router object instance
 // is created.
 initialize: function() {
 // Create collection
 this.collection = new InvoiceCollection([
 {
 referenceNumber: 'AB 12345',
 date: new Date().toISOString(),
 status: 'draft'
 },
 {
 referenceNumber: 'ZX 98765',
 date: new Date().toISOString(),
 status: 'issued'
 },
]);
 },

 });

5.	 Add a page callback to the router, which creates a Backbone.Layout object and
renders it.
 page: function(id) {
 if (!id) {
 // Set default id.
 id = this.collection.at(0).cid;
 }

 var layout = new Backbone.Layout({
 // Attach the layout to the main container.
 el: "body",

 // Set template selector.
 template: "#layout",

Templates and UX sugar

166

 // Declaratively bind a nested View to the layout.
 views: {
 "#invoice-list-pane": new InvoiceListPane({
 collection: this.collection
 }),
 "#invoice-pane": new InvoicePane({
 model: this.collection.get(id)
 }),
 }
 });

 // Render the layout.
 layout.render();
 },

6.	 Add templates to the <head> tag of the page element.
 <script class="template" type="template" id="layout">
 <h1>Invoice application</h1>
 <div id="invoice-list-pane"></div>
 <div id="invoice-pane"></div>
 </script>

 <script class="template"
 type="template"id="invoice-list-pane">
 <h3>Invoices:</h3>

 <% invoices.each(function(invoice) { %>

 <a href="#invoice/<%= invoice.cid %>">
 <%= invoice.get('referenceNumber') %>

 <% }); %>

 </script>

 <script class="template" type="template" id="invoice-pane">
 <h3>Invoice details:</h3>
 Reference Number:
 <%= invoice.get('referenceNumber') %>

 Date: <%= invoice.get('date') %>

 Status: <%= invoice.get('status') %>

 </script>

Chapter 6

167

How it works...
The Backbone.LayoutManager object implements the template loader, the render()
method, and provides many other cool features, which is typically done by the developer.
In the views option, we can select which layout pane or Backbone view should be attached
to the HTML elements that is specified in the main template for the layout.

See also
Please refer to the LayoutManager docs to learn more about the extension at
https://github.com/tbranyen/backbone.layoutmanager/wiki.

Building a semantic and an easily styleable
data grid

In your application, you may want to output the data as a sortable, filterable, and editable grid,
which is not an easy task to do from scratch. In this recipe, we will learn a quick solution for that
task using Backgrid.js, a powerful extension for building data grids in Backbone applications.

In this application, we are going to create a simple grid using the Backgrid example. It will look
like the following screenshot:

Templates and UX sugar

168

When a user clicks on the column header, the grid is sorted by this column.

If a user double-clicks on a specific cell, that cell is replaced by an input element, where a
user can enter a new value.

Chapter 6

169

Getting ready
Follow these steps to be prepared to use Backgrid extension:

1.	 Download Backgrid.js extension from its official web site at
http://backgridjs.com/.

2.	 Include Backgrid.js into your project by extracting this extension into the
lib/backgrid folder.

3.	 Include references to the extension files into index.html.
<link rel="stylesheet"
href="lib/backgrid/lib/backgrid.css" />
<script src="lib/backgrid/lib/backgrid.js"></script>

Including Backbone extension into your project is described in detail in the Extending an
application with plugins recipe in Chapter 1, Understanding Backbone.

How to do it...
Follow these steps to build a grid:

1.	 Make sure you have a model and collection objects defined.
 var InvoiceModel = Backbone.Model.extend({

 });

 var InvoiceCollection = Backbone.Collection.extend({
 model: InvoiceModel
 });

2.	 Create a collection instance.
 var invoiceCollection = new InvoiceCollection();

3.	 Define grid column settings.
 var columns = [
 {
 name: "referenceNumber",
 label: "Ref #",
 editable: false,
 cell: 'string'
 },

Templates and UX sugar

170

 {
 name: "date",
 label: "Date",
 cell: "date"
 },
 {
 name: "status",
 label: "Status",
 cell: Backgrid.SelectCell.extend({
 optionValues: [
 ['Draft', 'draft'],
 ['Issued', 'issued']
]
 })
 }
];

4.	 Initialize a new grid instance.
 var grid = new Backgrid.Grid({
 columns: columns,
 collection: invoiceCollection
 });

 $('body').append(grid.render().$el);

 invoiceCollection.add([
 {
 referenceNumber: 'AB 12345',
 date: new Date().toISOString(),
 status: 'draft'
 },
 {
 referenceNumber: 'ZX 98765',
 date: new Date().toISOString(),
 status: 'issued'
 },
]);

5.	 Add models into the collection.
 invoiceCollection.add([
 {
 referenceNumber: 'AB 12345',

Chapter 6

171

 date: new Date().toISOString(),
 status: 'draft'
 },
 {
 referenceNumber: 'ZX 98765',
 date: new Date().toISOString(),
 status: 'issued'
 },
]);

6.	 Start the application.
 Backbone.history.start();

How it works...
Backgrid.Grid extends Backbone.View so you can create its instance and pass column
settings keyed by the columns parameter. Column settings are defined as an array, and each
row has the following properties:

ff name: It's the name of the model property.

ff label: It's the label of the heading column.

ff sortable: It returns a boolean value to check whether a column is sortable.

ff editable: It returns a boolean value to check whether a column is editable.

ff cell: It's the cell type, which could be one of these: datetime, date, time,
number, integer, string, uri, email, boolean, and select.

If you need to specify additional parameters for a cell type, you can extend the corresponding
class and pass it to the cell property.

Backgrid.SelectCell.extend({
 optionValues: [
 ['Draft', 'draft'],
 ['Issued', 'issued']
]
})

There's more...
In this section, we are going to use several extensions for Backgrid, which can add extra
features to our grid.

Templates and UX sugar

172

Performing bulk operations on grid models
We are going to add an extra column to our grid, which will contain checkboxes allowing
users to select specific models in a grid and to perform bulk operations on them, for
example, deleting. The following screenshot shows what our table will look like:

To complete this task, follow these steps:

1.	 Include the SelectAll extension files into index.html.
<link rel="stylesheet" href="lib/backgrid/lib/extensions/select-
all/backgrid-select-all.css" />

<script src="lib/backgrid/lib/extensions/select-all/backgrid-
select-all.js"></script>

2.	 Wrap grid into TableView.
 var TableView = Backbone.View.extend({
 initialize: function(columns, collection) {
 this.collection = collection;

 this.grid = new Backgrid.Grid({
 columns: columns,
 collection: this.collection
 });
 },

 render: function() {
 this.$el.html(this.grid.render().$el);

 return this;
 },
 });

Chapter 6

173

3.	 Add the checkbox's column in the initalize() method.
 initialize: function(columns, collection) {
 this.collection = collection;

 columns = [{
 name: "",
 cell: "select-row",
 headerCell: "select-all",
 }].concat(columns)

 this.grid = new Backgrid.Grid({
 columns: columns,
 collection: this.collection
 });
 },

4.	 Append the delete button in the render() method.
 render: function() {
 this.$el.html(this.grid.render().$el);

 this.$el.append('<button class="delete">Delete</button>');

 return this;
 },

5.	 Handle the button click event.
 events: {
 'click button.delete': 'delete'
 },

 delete: function() {
 _.each(this.grid.getSelectedModels(), function (model) {
 model.destroy();
 });
 }

6.	 Create a new TableView instance and append it into the body element.
$('body').append(new TableView(columns, invoiceCollection).
render().$el);

Templates and UX sugar

174

Performing records filtering
To allow users to filter records, we are going to use the Select extension and the Lunr.js library,
which is shipped with the Backgrid package. Also, we will apply Bootstrap styles to make the
search box look neat.

Follow these steps to perform records filtering:

1.	 Include Select extension, Lunr library, and Boostrap files into index.html.
<link rel="stylesheet" href="lib/backgrid/assets/css/bootstrap.
css" />

<link rel="stylesheet" href="lib/backgrid/lib/extensions/filter/
backgrid-filter.css" />

<script src="lib/backgrid/assets/js/lunr.js"></script>

<script src="lib/backgrid/lib/extensions/filter/backgrid-filter.
js"></script>

2.	 Wrap grid into TableView as we did in the Performing bulk operations on grid
models section.

3.	 Initialize ClientSideFilter in the TableView.initalize() method.
this.clientSideFilter =
 new Backgrid.Extension.ClientSideFilter({
 collection: collection,
 placeholder: "Search by Ref #",
 fields: ['referenceNumber'],
 wait: 150
 });

Chapter 6

175

4.	 Prepend the table with ClientSideFilter in the TableView.render() method.
 this.$el.prepend(this.clientSideFilter.render().$el);

See also
Backgrid extension is actually very vast to be fully considered in this recipe. So, you can check
the official Backgrid documentation at http://backgridjs.com/.

Drawing on the HTML5 canvas
Sometimes, we may want to render our view on the HTML5 canvas element, which can give
more freedom and flexibility. The canvas can be used for rendering graphs as well as for
creating an online game.

In this example, we are going to visualize the collection of models on the HTML5 canvas.
The output of our code will look like the following screenshot:

Getting ready
In this recipe, we are going to take an example from the Splitting a view into subviews recipe
in Chapter 4, Views, to change InvoiceItemView and InvoiceItemListView.

Templates and UX sugar

176

How to do it...
Follow these steps:

InvoiceItemView var InvoiceItemView = Backbone.View.extend({

});

1.	 Set box boundaries in the initialize() method of InvoiceItemView.
 initialize: function() {
 // Set box size
 this.w = 100;
 this.h = 75;

 // Set random position
 this.x = Math.random() * (this.options.canvasW - this.w);
 this.y = Math.random() * (this.options.canvasH - this.h);
 }

2.	 Draw a box and output model values on ctx, the canvas context, in the render()
method of InvoiceItemView.
 render: function() {

 // Get canvas context from parameters.
 ctx = this.options.ctx;

 // Draw transparent box
 ctx.fillStyle = '#FF9000';
 ctx.globalAlpha = 0.1;
 ctx.fillRect(this.x, this.y, this.w, this.h);

 // Stroke the box
 ctx.strokeStyle = '#FF9900';
 ctx.globalAlpha = 1;
 ctx.lineWidth = 2;
 ctx.strokeRect(this.x, this.y, this.w, this.h);

 // Output text in the box
 ctx.fillStyle = '#009966';
 ctx.font = 'bold 12px Arial';
 var textX = this.x + 4,
 textY = this.y + 4,

Chapter 6

177

 textMaxW = this.w - 8,
 lineHeight = 12;

 ctx.fillText(
 this.model.get('description'),
 textX,textY + lineHeight, textMaxW
);
 ctx.fillText(
 'Price: $' + this.model.get('price'),
 textX, textY + lineHeight*3,
 textMaxW
);
 ctx.fillText(
 'Quantity: ' + this.model.get('quantity'),
 textX, textY + lineHeight*4, textMaxW
);
 ctx.fillText(
 'Total: $' + this.model.calculateAmount(),
 textX, textY + lineHeight*5, textMaxW
);

 return this;
 }

3.	 Define InvoiceItemListView, which creates an empty canvas and triggers model
view rendering iteratively, passing ctx as an option.
 var InvoiceItemListView = Backbone.View.extend({

 // Set a canvas as element tag name and define it's size.
 tagName: 'canvas',
 attributes: {
 width: 400,
 height: 200
 },

 // Render view.
 render: function() {

 // Get canvas context and it's size.
 var ctx = this.el.getContext("2d")
 canvasW = this.el.width,
 canvasH = this.el.height;

Templates and UX sugar

178

 // Clear canvas.
 ctx.clearRect(0, 0, canvasW, canvasH);

 // Iterate through models in collection and render them.
 this.collection.each(function(model) {
 new InvoiceItemView({
 model: model,

 // Pass canvas context and it's size.
 ctx: ctx,
 canvasW: canvasW,
 canvasH: canvasH
 }).render();
 }, this);

 return this;
 }
 });

How it works...
InvoiceItemListView defines canvas as a main view element and sets its boundaries.
In the render() method, we get ctx, the context object of the canvas, by calling the
getContext() method. Context object allows us to draw on the canvas by running special
HTML5 methods.

By passing ctx and canvas dimensions to the subview as options, we allow them to be used
for text and shapes output to the canvas.

See also
HTML 5 canvas reference could be found at
http://www.w3schools.com/html/html5_canvas.asp.

REST and Storage

In this chapter, we will cover the following recipes:

ff Architecting the REST API for the backend

ff Prototyping a RESTful backend with MongoLab

ff Synchronizing models and collections with a RESTful service

ff Building a RESTful frontend with Backbone

ff Using the polling technique to fetch data

ff Working with local storage

Introduction
This chapter focuses on the way Backbone.js synchronizes models and collections with
a RESTful backend, or stores them in the HTML5 local storage.

We will learn how to design the REST API for our backend, which can be implemented with
almost any programming framework, such as Symphony, Ruby on Rails, Django, or Node.js.

Throughout the chapter, we will use MongoLab (http://mongolab.com), which is the cloud
version of MongoDB, with a RESTful interface. We will also learn what tools to use to debug
the RESTful service when the frontend app has not been built yet.

Finally we will make the Backbone application communicate with the RESTful service,
performing full set of CRUD operations supported by the REST server. We will also learn how
to use the polling technique to update data in a collection in the application dynamically.

We will also discuss about an extension that allows us to keep data in HTML5's local storage
instead of keeping them in the remote server.

7

REST and Storage

180

Architecting the REST API for the backend
Representational State Transfer (REST) is an architectural style for designing network
applications that communicate amongst each other. Unlike COBRA or SOAP, REST can be
easily implemented on top of pure HTTP.

REST-style architectures consist of clients and servers. The client calls the HTTP request
method (POST, GET, PUT, or DELETE) to perform CRUD (created, read, update, and delete)
operation over a resource that can be either a collection or a single element.

In this recipe, we are going to architect an API of the REST server for the Billing application.

How to do it...
Follow these steps to architect an API of a RESTful service:

1.	 Define the base REST URI used by the client to access resources stored on the
server; for example, it can look like http://example.com/resources.

2.	 Define URIs to access your app-specific resources. These URIs should be relative to
the base REST URI:

�� Invoice collection: <rest-uri>/invoices
�� Invoice: <rest-uri>/invoices/<invoice-id>
�� Buyer collection: <rest-uri>/buyers
�� Buyer: <rest-uri>/buyers/<buyer-id>
�� Seller: <rest-uri>/seller

How it works...
The URI to access the resource can look like http://example.com/resources/items
and data, which are transferred through REST, and are typically in the JSON format, XML, or
any other valid Internet media types.

The following table describes what happens when the REST operation is performed on a
specific resource type:

Resource URI Collection:

http://example.com/
resources/items

Element:

http://example.com/
resources/items/1

POST This request creates a new
item in the collection and
returns a newly created item or
its URI.

It's not typically used. If used,
it does the same job as a
POST query for a collection's
resource.

Chapter 7

181

GET This request lists collection
items or theirs URIs.

This request retrieves collection
items by their URIs.

PUT This request replaces the
entire collection with another
collection.

This request replaces collection
items or creates one if it does
not exist.

DELETE This request deletes the entire
collection.

This request deletes items from
the collection.

Refer to the Roy Fieldings' PhD thesis, which is the first and most complete work about
REST, to learn more about REST at http://www.ics.uci.edu/~fielding/pubs/
dissertation/rest_arch_style.htm.

Prototyping a RESTful backend with
MongoLab

Let's say we want to create a Backbone application that will communicate with a RESTful
service. Should we start with creating a backend or a frontend? This question sounds like a
dilemma, but the answer is very simple.

The easiest way is to create a prototype using a simple database with a REST-style interface,
so we can quickly replace it with our own backend in the future.

There is a good tool for that named MongoLab (http://mongolab.com), which is the cloud
version of MongoDB with a REST-style interface. MongoDB is a NoSQL document-oriented
database that works with JSON-like data. MongoLab will not require us to write even a single
line of code on the backend, so it is perfect for us as a prototyping tool.

To test and debug the MongoLab backend, we will use the Advanced REST client, which is an
extension to the Chrome browser. It allows performing HTTP queries on a RESTful service and
visualizes JSON data.

Getting ready...
Follow these steps to be prepared for this recipe:

1.	 Create an account on the MongoLab website (https://mongolab.com), or log
in if you have an existing one.

2.	 Install the Advanced REST client on your browser using the URL https://
chrome.google.com/webstore/detail/advanced-rest-client/
hgmloofddffdnphfgcellkdfbfbjeloo. If you're using Firefox or Safari,
you can easily find a similar extension for this purpose.

REST and Storage

182

How to do it...
Follow these steps to create a MongoLab database and fill it with data:

1.	 Go to https://mongolab.com/newdb and create a new database named
billing-app within your MongoLab account.

2.	 Go to https://mongolab.com/user?username=<username> and get an API
key that you can use for authentication.

3.	 To check databases in your account, perform a GET request on a URI, say https://
api.mongolab.com/api/1/databases?apiKey=<your-api-key>, using the
Advanced REST client.

The result will look like the following screenshot:

Chapter 7

183

4.	 To get a list of collections in the database, perform a GET request on the
URI https://api.mongolab.com/api/1/databases/billing-app/
collections?apiKey=<your-api-key>. The result will look like the
following screenshot:

5.	 To create a new collection, let's send the collection items defined in the JSON
format using a POST query on this URI: https://api.mongolab.com/api/1/
databases/billing-app/collections/invoices?apiKey=<your-api-
key>. Make sure that the application/json Content-Type header is set.

The result of such an operation will look like the following screenshot:

REST and Storage

184

By performing a GET request on the same resource again, we will be returned
inserted items with their IDs in the JSON format.

6.	 To update an existing item in the collection, we need to perform a PUT request on the
collection item resource, specified by its ID, in the URI https://api.mongolab.
com/api/1/databases/billing-app/collections/invoices/<invoice-
id>?apiKey=<your-api-key>. In the PUT request, we should pass an updated
model in the JSON format. The result is also returned in JSON, as shown in the
following screenshot:

Chapter 7

185

How it works...
MogoLab translates HTTP requests into MongoDB queries, which are executed, and the
results are returned in the MongoDB Extended JSON format.

See also
ff Refer to the MongoLab's REST API to learn more about performing queries at

https://support.mongolab.com/entries/20433053-REST-API-for-
MongoDB.

ff You can also visit the following URL in order to meet specifications of the MongoDB
Extended JSON format at http://docs.mongodb.org/manual/reference/
mongodb-extended-json/

Synchronizing models and collections with a
RESTful service

In this recipe, we are going to learn how to synchronize models and collections with a RESTful
service. Just as we did in all other recipes, we will use MongoLab for a RESTful service.

How to do it...
Follow these steps to get familiar with REST in Backbone.js:

1.	 Create a configuration object that stores a server URL and an authentication key for
MongoLab.
var appConfig = {
 baseURL: 'https://api.mongolab.com/api/1/databases/billing-app/
collections/',

 addURL: '?apiKey=kNCrqJUqB4n1S_qW7wnXH43NH9XKjdIL'
}

2.	 Define a url() method that returns a resource URL to perform a REST request.
Such URLs should contain a model ID, if a model is already synchronized with a
RESTful service. Also, such URLs should contain a MongoLab's authentication key.
 var InvoiceModel = Backbone.Model.extend({
 url: function() {
 if (_.isUndefined(this.id)) {
 return appConfig.baseURL +
 'invoices' + appConfig.addURL;
 }

REST and Storage

186

 else {
 return appConfig.baseURL + 'invoices/' +
 encodeURIComponent(this.id) + appConfig.addURL;
 }
 },
 });

Another way to do this is to define the urlRoot property, though it does not allow
adding parameters to the URL.

 var InvoiceModel = Backbone.Model.extend({
 urlRoot: appConfig.baseURL;
 });

3.	 Define a new collection and a url property or url() method that should return the
URL to a collection resource.
 var InvoiceCollection = Backbone.Collection.extend({
 model: InvoiceModel,
 url: appConfig.baseURL +'invoices' + appConfig.addURL
 });

4.	 To load data from a server into a collection, use the fetch() method. You can
pass success and error callbacks as a parameter. Either of them will be called
asynchronously if a synchronization succeeds or fails.
 var collection = new InvoiceCollection();

 collection.fetch({
 success: function(collection, response, options) {
 $('body').html(
 new View({ collection: collection}).render().el
);
 },
 error: function(collection, response, options) {
 alert('error!');
 }
 });

When the fetch() method is run, the read event is triggered. Also, on success,
the sync event is triggered.

5.	 To load a specific model that exists on a server, you can also use the fetch()
method, which works in a similar way as it worked for collection.
 var model = new InvoieModel();

 model.id = '5176396ce4b0c62bf3e53d79';

Chapter 7

187

 model.fetch(
 success: function(model, response, options) {
 // success
 },
 error: function(collection, response, options) {
 // error
 }
);

6.	 To sync a model with a RESTful service, use the save() method.
 model.save();

To perform an update for a specific attribute , pass hash of changed attributes in the
first parameter and {patch: true} in the second parameter.
 model.save({ status: 'complete'}, {patch: true});

By default, the save() method works asynchronously, so you need to handle results
in the success or error callbacks. However, if you need to run the save() method
synchronously, pass null in the first parameter and {wait: true} in the second
parameter.

 model.save(null, {wait: true});

7.	 You can create a new model within a collection using the create() method. In this
case, Backbone.js automatically calls the save() method and a new module is
pushed to the server.
 var model = collection.create(
 { referenceNumber: '123', status: complete },
 { wait: true }
);

8.	 You can destroy a model using the destroy() method, which removes a model both
from a collection and a server.
 model.save(null, {
 success: function(model, response, options) {
 // success
 },
 wait: true
 });

REST and Storage

188

How it works...
The fetch(), save(), or destroy() methods call the sync() method to perform HTTP
queries to synchronize models and collections with a RESTful service. The sync() method
accepts the following parameters:

ff method: It can be either create, update, patch, delete, or read.

ff model: It's either a model or a collection used to sync.

ff options: These are the options accepted by the $.ajax variable.

You can override the sync() method if you need to override synchronization, or to use
storage without a REST support.

There's more...
MongoLab returns data in the MongoDB Extended JSON format, which is not supported by
Backbone.js by default. In this recipe, we are going to fix this and find a good solution to
process MongoDB Extended JSON directly in a Backbone application.

Handling MongoDB Extended JSON
MongoLab (http://mongolab.com) is a RESTful service that transforms HTTP requests into
MongoDB queries and returns the results in the MongoDB Extended JSON, which will look like
the following code snippet:

{
 "_id": {
 "$oid": "516eb001e4b0799160e0e864"
 },
}

For appropriate results, we need to handle such IDs. The idea behind this is to override
the parse() method, which processes JSON and initializes the model properties out of it.
We are going to replace the format of an ID here:

Backbone.Model.prototype.parse = function(resp, options) {
 if (_.isObject(resp._id)) {
 resp[this.idAttribute] = resp._id.$oid;
 delete resp._id;
 }
 return resp;
},

Chapter 7

189

Also, when the sync() method is run, we need to make sure that data is exported in the
MongoDB Extended JSON format. In all the other cases, it should be exported in a regular
JSON format. Data export is performed only in the toJSON() method, so we can do this by
replacing the toJSON() method during the sync() method execution.

// Convert regular JSON into MongoDB extended one.

 Backbone.Model.prototype.toExtendedJSON= function() {
 var attrs = this.attributes;

 var attrs = _.omit(attrs, this.idAttribute);
 if (!_.isUndefined(this[this.idAttribute])) {
 attrs._id = { $oid: this[this.idAttribute] };
 }

 return attrs;
 },

// Substitute toJSON method when performing synchronization.

 Backbone.Model.prototype.sync = function() {
 var toJSON = this.toJSON;
 this.toJSON = this.toExtendedJSON;

 var ret = Backbone.sync.apply(this, arguments);

 this.toJSON = toJSON;

 return ret;
 }

See also
ff The Creating a Backbone.js extension with Grunt recipe in Chapter 8,

Special Techniques

ff You may also be interested in checking the source code of Backbone.sync at
http://backbonejs.org/docs/backbone.html#section-134.

ff Visit the following URL in order to meet specifications of MongoDB Extended JSON at
http://docs.mongodb.org/manual/reference/mongodb-extended-json/

REST and Storage

190

Building a RESTful frontend with Backbone
In this recipe, we are going to write a frontend application that will act as a client for a
RESTful service. For the backend, we will use the MongoLab service, which is a cloud
version of MongoDB with a REST interface.

We will use the LayoutManager extension to output our views in a neat format. To build our
application, we will take an example app from Chapter 6, Templates and UX sugar, and will
modify it, so it will support data sync via REST and will look like the following screenshot:

In the left-hand side pane, we can see a list of invoice titles, and in the right-hand side pane,
we can see the invoice details. By default, these details are shown for the first invoice until the
user clicks on a link in the left-hand side pane.

Chapter 7

191

If the user clicks on the Edit button, the following form is shown:

When the user clicks on the Save button, the model is updated, and it's JSON is sent to the
server via REST, and the list in the left pane is also updated.

If the user clicks on the Delete button, a delete confirmation form appears, as shown in the
following screenshot:

REST and Storage

192

If the user confirms the deletion, the model is destroyed and removed from the server
via REST.

Users can also create a new invoice by clicking on the Add an invoice link at the top of
the page. Then, an Add Invoice form is shown, which is identical to the Edit form, with no
data shown.

Getting ready...
Follow these steps to be prepared for this recipe:

1.	 Make sure the LayoutManager extension is installed. The usage and installation of
this extension is described in the Assembling layouts with LayoutManager recipe in
Chapter 6, Templates and UX Sugar.

2.	 Override Backbone.Model to support the MongoDB Extended JSON format, which is
used in MongoLab.
 // Convert MongoDB Extended JSON into regular JSON.
 Backbone.Model.prototype.parse = function(resp, options) {
 if (_.isObject(resp._id)) {
 resp[this.idAttribute] = resp._id.$oid;
 delete resp._id;
 }

Chapter 7

193

 return resp;
 },

 // Convert regular JSON into MongoDB extended one.
 Backbone.Model.prototype.toExtendedJSON= function() {
 var attrs = this.attributes;

 var attrs = _.omit(attrs, this.idAttribute);
 if (!_.isUndefined(this[this.idAttribute])) {
 attrs._id = { $oid: this[this.idAttribute] };
 }

 return attrs;
 },

 // Substute toJSON method when performing synchronization.
 Backbone.Model.prototype.sync = function() {
 var toJSON = this.toJSON;
 this.toJSON = this.toExtendedJSON;

 var ret = Backbone.sync.apply(this, arguments);

 this.toJSON = toJSON;

 return ret;
 }

This allows Backbone to work correctly with data IDs in a format like this:

{
 "_id": {
 "$oid": "516eb001e4b0799160e0e864"
 },
}

How to do it...
Follow these steps to create a RESTful application with Backbone:

1.	 Create a configuration object that we will store the server URL and authentication key.
var appConfig = {
 baseURL: 'https://api.mongolab.com/api/1/databases/billing-app/
collections/',

 addURL: '?apiKey=kNCrqJUqB4n1S_qW7wnXH43NH9XKjdIL'
}

REST and Storage

194

2.	 Define InvoiceModel and set the url() method, which will return the model's
resource URL to perform REST requests.
 var InvoiceModel = Backbone.Model.extend({
 url: function() {
 if (_.isUndefined(this.id)) {
 return appConfig.baseURL +
 'invoices' + appConfig.addURL;
 }
 else {
 return appConfig.baseURL + 'invoices/' +
 encodeURIComponent(this.id) + appConfig.addURL;
 }
 },
 });

3.	 Define InvoiceCollection and the url() method for the model.
 var InvoiceCollection = Backbone.Collection.extend({
 model: InvoiceModel,
 url: function() {
 return appConfig.baseURL +
 'invoices' + appConfig.addURL;
 },
 });

4.	 Define a router and add the initialize() method, which creates an empty
collection and layout objects and renders a layout.
 // Define router object.
 var Workspace = Backbone.Router.extend({
 initialize: function() {

 // Create collection.
 this.collection = new InvoiceCollection();

 // Create new layout.
 this.layout = new Backbone.Layout({
 // Attach the layout to the main container.
 el: 'body',

 // Set template selector.
 template: '#layout',

 // Declaratively bind a nested View to the layout.
 views: {
 '#first-pane': new InvoiceListPane({

Chapter 7

195

 collection: this.collection
 }),
 },
 });

 // Render whole layout for the first time.
 this.layout.render();
 },
 });

5.	 Add a layout template into index.html.
 <script class="template" type="template" id="layout">
 <h1>Billing application</h1>
 <div id="links-pane">
 + Add an invoice
 </div>
 <div id="first-pane"></div>
 <div id="second-pane"></div>
 </script>

6.	 Add routes and callbacks to the router object. Each callback calls the
switchPane() method, which switches the right-hand side pane of the layout.
 routes: {
 '': 'invoicePage',
 'invoice': 'invoicePage',
 'invoice/add': 'addInvoicePage',
 'invoice/:id/edit': 'editInvoicePage',
 'invoice/:id/delete': 'deleteInvoicePage',
 'invoice/:id': 'invoicePage',
 },

 // Page callbacks.
 invoicePage: function(id) {
 this.switchPane('InvoicePane', id);
 },
 addInvoicePage: function() {
 this.switchPane('EditInvoicePane', null);
 },
 editInvoicePage: function(id) {
 this.switchPane('EditInvoicePane', id);
 },
 deleteInvoicePage: function(id) {
 this.switchPane('DeleteInvoicePane', id);
 },

REST and Storage

196

7.	 Add the switchPane() method to the router, which fetches collection from the
RESTful service and switches the right-hand side pane.
 switchPane: function(pane_name, id) {

 // Define panes array.
 // This will allow use to create new object from string.
 var panes = {
 InvoicePane: InvoicePane,
 EditInvoicePane: EditInvoicePane,
 DeleteInvoicePane: DeleteInvoicePane
 };

 // Update collection.
 this.collection.fetch({ success: function(collection) {

 // Get model by id or take first model
 // from collection.
 var model = _.isUndefined(id) ?
 collection.at(0) : collection.get(id);

 // Create new pane and pass model and collection.
 pane = new panes[pane_name] ({
 model: model, collection: collection
 });

 // Render pane.
 pane.render();

 // Switch views.
 window.workspace.layout.removeView('#second-pane');
 window.workspace.layout.setView('#second-pane', pane);

 }, reset: true });
 },

8.	 Define the invoice list pane.
 var InvoiceListPane = Backbone.Layout.extend({

 // Returns selector for template.
 template: '#invoice-list-pane',

 // Set selector for template.
 serialize: function() {
 return { invoices: _.chain(this.collection.models) };

Chapter 7

197

 },

 // Bind callbacks to collection event.
 initialize: function() {
 this.listenTo(this.collection, 'reset', this.render);
 }
 });

Add a template for it in index.html.

 <script class="template" type="template" id="invoice-list-pane">
 <h3>Invoices:</h3>

 <% invoices.each(function(invoice) { %>

 <a href="#invoice/<%= invoice.id %>">
 <%= invoice.get('referenceNumber') %>

 <% }); %>

 </script>

9.	 Define a view invoice pane.
 var InvoicePane = Backbone.Layout.extend({

 // Set selector for template.
 template: '#invoice-pane',

 // Returns data for template.
 serialize: function() {
 return { invoice: this.model };
 },

 // Bind callbacks to model events.
 initialize: function() {
 this.listenTo(this.model, 'change', this.render);
 }
 });

Add a template for it in index.html.

 <script class="template" type="template" id="invoice-pane">
 <h3>Invoice details:</h3>
 Reference Number:
 <%= invoice.get('referenceNumber') %>

REST and Storage

198

 Date: <%= invoice.get('date') %>

 Status: <%= invoice.get('status') %>

 <a href="#invoice/<%= invoice.id %>/edit" class="btn">
 Edit

 <a href="#invoice/<%= invoice.id %>/delete" class="btn">
 Delete

 </script>

10.	 Define an edit invoice pane.
 var EditInvoicePane = Backbone.Layout.extend({

 // Set selector for template.
 template: '#edit-invoice-pane',

 // Returns data for template.
 serialize: function() {

 // Create new model if no model is given.
 return {
 invoice:
 _.isEmpty(this.model) ?
 new InvoiceModel() : this.model
 };
 },

 // Bind callbacks form events.
 events: {
 "click .submit": "save"
 },

 // Save model
 save: function() {
 var data = {
 referenceNumber:
 this.$el.find('.referenceNumber').val(),
 date: this.$el.find('.date').val(),
 status: this.$el.find('.status').val(),
 };

 var success = function(model, response, options) {
 window.workspace.navigate('#invoice/' + model.id, {

Chapter 7

199

 trigger: true
 });
 };

 // Run appropriate method.
 if (_.isEmpty(this.model)) {
 this.collection.create(data, {success: success});
 }
 else {
 this.model.save(data, { success: success});
 }
 }
 });

Add a template for it in index.html.

 <script class="template" type="template"
 id="edit-invoice-pane">
 <h3>Enter invoice details:</h3>
 Reference Number:

 <input class="referenceNumber" type="text"
 value="<%= invoice.get('referenceNumber') %>">

 Date:

 <input class="date" type="text"
 value="<%= invoice.get('date') %>">

 Status:

 <input class="status" type="text"
 value="<%= invoice.get('status') %>">

 <button class="btn btn-primary submit">Save</button>
 </script>

11.	 Define a delete invoice pane.
 var DeleteInvoicePane = Backbone.Layout.extend({

 // Set selector for template.
 template: '#delete-invoice-pane',

 // Returns data for template.
 serialize: function() {
 return { invoice: this.model };
 },

 // Bind callbacks to form events.
 events: {
 "click .submit": "delete"

REST and Storage

200

 },

 // Delete model.
 delete: function() {
 this.model.destroy({
 success: function(model, response) {
 window.workspace.navigate('#invoice', {
 trigger: true
 });
 }});
 }
 });

Add a template for it in index.html.

<script class="template" type="template"
 id="delete-invoice-pane">
 <h3>Are you sure you want to delete invoice
 <%= invoice.get('referenceNumber') %>?</h3>
 <button class="btn submit btn-primary">Yes</button>
 <a href="#invoice/<%= invoice.id %>" class="btn">No
</script>

12.	 Create a router instance and start the application.
 // Create the workspace.
 window.workspace = new Workspace();

 // Start the application.
 Backbone.history.start();

How it works...
To load the collection from a RESTful service, we need to call the fetch() method, which
runs asynchronously as a regular AJAX call does. If we need to run any code after the data is
fetched successfully, we need to pass the callback function in a second parameter keyed by
the success key. If we need to perform a fallback behavior in case of an error, we should
pass the callback function keyed by the error key in the function parameter.

collection.fetch({
 success: function(collection, response, options){
 // success behavior
 },

 error: function(collection, response, options){
 // fall back behavior

Chapter 7

201

 }
 })

To sync model with a remote server via REST, we use the save() method. To remove the
model entirely from a remote server, we use the destroy() method. Both the methods
accept the success and error callbacks.

See also
ff The Assembling layouts with LayoutManager recipe in Chapter 6, Templates

and UX sugar

ff Refer to the official docs to get more information about Backbone methods
we used in this recipe at http://backbonejs.org/.

Using the polling technique to fetch data
In the previous recipes, we were fetching data into a collection each time the router processed
a URL change. We may wonder what happens if someone else updates data in the same
storage? Can we see the updates immediately?

You might have seen how Facebook or Twitter updates a news feed in real time, and you may
want to implement a similar behavior in your application. Typically, it can be done using the
polling technique, which we are going to learn in this recipe.

We are going to create a web application that will update the collection view dynamically with
the help of a polling technique.

Getting ready...
Override Backbone.Model and Backbone.Collection to support the MongoDB Extended
JSON format, which is used in MongoLab.

 // Convert MongoDB Extended JSON into regular JSON.
 Backbone.Model.prototype.parse = function(resp, options) {
 if (_.isObject(resp._id)) {
 resp[this.idAttribute] = resp._id.$oid;
 delete resp._id;
 }

 return resp;
 },

 // Convert regular JSON into MongoDB extended one.
 Backbone.Model.prototype.toExtendedJSON= function() {

REST and Storage

202

 var attrs = this.attributes;

 var attrs = _.omit(attrs, this.idAttribute);
 if (!_.isUndefined(this[this.idAttribute])) {
 attrs._id = { $oid: this[this.idAttribute] };
 }

 return attrs;
 },

 // Substitute toJSON method when performing synchronization.
 Backbone.Model.prototype.sync = function() {
 var toJSON = this.toJSON;
 this.toJSON = this.toExtendedJSON;

 var ret = Backbone.sync.apply(this, arguments);

 this.toJSON = toJSON;

 return ret;
 }

How to do it...
Follow these steps to implement the polling technique:

1.	 Create a new polling collection that fetches data recursively and provides methods to
start or stop polling.
 var PollingCollection = Backbone.Collection.extend({
 polling: false,

 // Set default interval in seconds.
 interval: 1,

 // Make all object methods to work from its own context.
 initialize: function() {
 _.bindAll(this);
 },

 // Starts polling.
 startPolling: function(interval) {
 this.polling = true;

 if (interval) {
 this.interval = interval;
 }

Chapter 7

203

 this.executePolling();
 },

 // Stops polling.
 stopPolling: function() {
 this.polling = false;
 },

 // Executes polling.
 executePolling: function() {
 this.fetch({
 success: this.onFetch, error: this.onFetch
 });
 },

 // Runs recursion.
 onFetch: function() {
 setTimeout(this.executePolling, 1000 * this.interval)
 },
 });

2.	 Define a configuration object.
 var appConfig = {
 baseURL:'https://api.mongolab.com/api/1/databases/billing-app/
collections/',
 addURL: '?apiKey=kNCrqJUqB4n1S_qW7wnXH43NH9XKjdIL'
 }
Define a model and a collection.
 var InvoiceModel = Backbone.Model.extend({
 url: function() {
 if (_.isUndefined(this.id)) {
 return appConfig.baseURL + 'invoices' +
 appConfig.addURL;
 }
 else {
 return appConfig.baseURL + 'invoices/' +
 encodeURIComponent(this.id) + appConfig.addURL;
 }
 },
 });

 var InvoiceCollection = PollingCollection.extend({
 model: InvoiceModel,

REST and Storage

204

 url: function() {
 return appConfig.baseURL + 'invoices' +
 appConfig.addURL;
 },
 });

3.	 Define an invoice view and bind callbacks to model events.
 var InvoiceView = Backbone.View.extend({

 // Define element tag name.
 tagName: 'li',

 // Define template.
 template: _.template('Invoice #<%= referenceNumber %>.'),

 // Render view.
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));

 return this;
 },

 // Bind callback to the model events.
 initialize: function() {
 this.listenTo(this.model, 'change', this.render, this);
 this.listenTo(this.model, 'destroy', this.remove, this);
 }
 });

4.	 Define an invoice list view and bind callbacks to collection events.
 var InvoiceListView = Backbone.View.extend({

 // Define element tag name.
 tagName: 'ul',

 // Render view.
 render: function() {
 $(this.el).empty();

 // Append table with a row.
 _.each(this.collection.models, function(model, key) {
 this.append(model);
 }, this);

 return this;
 },

Chapter 7

205

 // Add invoice item row to the table.
 append: function(model) {
 $(this.el).append(
 new InvoiceView({ model: model }).render().el
);
 },

 // Remove model from collection.
 remove: function(model) {
 model.trigger('destroy');
 },

 // Bind callbacks to the collection events.
 initialize: function() {
 this.listenTo(this.collection,'reset',this.render,this);
 this.listenTo(this.collection,'add',this.appen,this);
 this.listenTo(this.collection,'remove',this.remove,this);
 },
 });

5.	 Create a collection and render the corresponding view.
 collection = new InvoiceCollection();

 $('body').append('<h3>Invoices</h3>')
 $('body').append(new InvoiceListView({
 collection: collection,
 }).render().el);

6.	 Start polling.
 collection.startPolling();

How it works...
The idea behind polling is to fetch the server regularly. However, we can't do this in a simple
loop, because fetching works asynchronously, and we need to make sure AJAX requests do
not overlap with each other. Thus, we need to make sure previous fetching is completed
successfully before performing the next one.

In this recipe, we inherited a collection from Backbone.Collection and added new
methods and properties that we needed to implement polling. In the executePolling()
method, we are performing the fetch() method and passing the onFetch() method as
a success callback. In the onFetch() method, we call the executePolling() method
with a timeout.

REST and Storage

206

Working with local storage
Sometimes, we need to store data on a browser storage rather than on a remote server. This
is quite easy to do with the help of the Backbone extension known as localStorage Adapter,
which overrides the behavior of the Backbone.sync() method to sync data with HTML5
local storage. In this recipe, we are going to learn how to use this extension.

Getting ready...
You can download the Backbone localStorage adapter from its GitHub page at https://
github.com/jeromegn/Backbone.localStorage. To include this extension into your
project, save the backbone.localStorage.js file into the lib folder and include a
reference to it in index.html.

Including Backbone extension into your project is described in detail in the Extending an
application with plugins recipe in Chapter 1, Understanding Backbone.

How to do it...
Extend the collection and set the localStorage key as follows:

 var InvoiceCollection = Backbone.Collection.extend({
 model: InvoiceModel,

 // Use local storage.
 localStorage:
 new Backbone.LocalStorage("InvoiceCollection")
 });

Here, we create an instance of Backbone.LocalStorage and pass the storage name as a
constructor parameter. The storage name should be unique within your application.

Chapter 7

207

How it works...
Backbone's localStorage adapter overrides the Backbone.sync() method, which executes a
code to synchronize data with the HTML5 localStorage, if it is enabled for a collection.

Be aware when creating new models
The only thing you should avoid when using the localStorage adapter is
creating new models and saving them by calling the save() method
of the model. Instead, you should call the create() method of the
collection object, because otherwise the model is not associated to a
collection yet, and the localStorage adapter has no idea which local
storage to use.
After the model is associated with a collection, the save() method works
pretty well.

See also
ff There is also a Backbone extension that allows storing data in the WebSQL storage at

https://github.com/MarrLiss/backbone-websql.

ff There are plenty of extensions that allow using different storage engines at
https://github.com/documentcloud/backbone/wiki/Extensions,-
Plugins,-Resources#storage.

8
Special Techniques

In this chapter, we will cover:

ff Using mixins with Backbone objects

ff Creating a Backbone.js extension with Grunt

ff Wiring tests for a Backbone extension with QUnit

ff Mocking up a RESTful service with jQuery Mockjax in asynchronous tests

ff Developing a mobile application with jQuery Mobile

ff Building an iOS/Android app with PhoneGap

ff Organizing a project structure with Require.js

ff Ensuring compatibility with search engines

ff Avoiding memory leaks in a Backbone application

Introduction
This chapter is aimed at showing how to solve the most challenging problems that can occur
during Backbone development.

We are going to learn how to mix the existing Backbone objects to add any additional
functionality. We will create a Backbone extension using Grunt.

We will also create tests for our extension, which will help us to ensure it works as expected
when any new functionality is added to the extension.

Then, we will integrate jQuery Mobile and Backbone.js and will use PhoneGap to build
native applications for mobile platforms such as iOS and Android.

We will learn how to deal with Require.js, how to use it to organize project structure,
and how to use it in our mobile applications.

Special Techniques

210

And finally, we will understand how to make the search engine index the AJAX application
created with Backbone.js.

This chapter assumes that you are using a Unix like shell and have Node.js and npm
(Node Package Modules) installed in your system.

Using mixins with Backbone objects
Though there are hundreds of Backbone extensions that provide additional functionality,
a project may need to extend Backbone objects with some custom functionality.

There are several ways to do this. Typically, you can extend a Backbone object with the
following code:

 Backbone.ExtraModel = Backbone.Model.extend({
 // Add new method.
 hello: function() {

 },

 // Override existing method.
 toJSON: function() {

 }
 });

It works great unless you face one of following scenarios:

ff You want to modify the Backbone.Model object and all its children objects at once

ff You have different extensions which together modify the same object, and thus you
will need to avoid conflicts

The solution is to use mixins, which we are going to deal with within the scope of this recipe.

How to do it...
Perform the following steps to define mixin and add it to Backbone.Model:

1.	 Define the mixin object in the following way:
 var mixin = {
 // Add new method.
 hello: function() {

 },

Chapter 8

211

 // Override existing method.
 toJSON: function() {

 }
 }

2.	 Add mixin to the existing object as described in the following code:
 Backbone.NewModel = Backbone.Model.extend(mixin);

3.	 Save mixin so that it can be mixed to the other model objects, if required.
 Backbone.NewModel.mixin = mixin;

4.	 Another way is to apply mixin to Backbone.Model.prototype. This will make all
Backbone.Model children to have such mixin.
 _.extend(Backbone.Model.prototype, mixin);

5.	 If there are more functionalities you need to define them in different mixins, you can
extend the Backbone object in a similar way:

 _.extend(Backbone.Model.prototype, mixin2);

How it works...
To create a new model object, we used the extend() method provided by the ancestor
model. To extend all Backbone models at once, we perform the mixing operation on the
prototype of Backbone.Model using the extend() method of Undercore.js.

See also
ff To understand prototype inheritance, please navigate to

http://en.wikipedia.org/wiki/Prototype-based_programming

Creating a Backbone.js extension with Grunt
It could be very important for the developer to create a Backbone extension that will be
shared with the rest of the world or even re-used in future projects. In this recipe, we are
going to learn how to create our own extension using Grunt, and we will upload it on GitHub.

Grunt is the JavaScript task runner that allows automating different tasks such as
minification, compilation, unit testing, and linting. These repetitive tasks are defined in the
Gruntfile.js file and are triggered from a console. There are many different packages
for Grunt that are available as npm extensions. We are going to use one of them, named
grunt-init, for scaffolding the Backbone extension from a template.

Special Techniques

212

Our extension is going to provide a compatibility with MongoDB. In the previous chapter, we
used MongoLab (https://mongolab.com), which is a MongoDB with a RESTful interface.
MongoLab provides the data in the MongoDB Extended JSON, which is not supported by
Backbone by default. The following code is an example of how a resource ID is presented in
the MongoDB Extended JSON:

{
 "$oid": "<id>"
}

By default, the Backbone.js file does not deal with such IDs, but our extension will allow us
to do this.

Getting ready...
Perform the following steps to get prepared for this recipe:

1.	 Make sure that Node.js and npm are installed.

2.	 Install grunt-init, which allows generating a project from a template.
npm install -g grunt-init

3.	 Install grunt-cli, which allows running grunt commands from a command line.
grunt-init-backbone-plugin npm install -g grunt-cli

4.	 Download grunt-init-backbone-plugin and place it in your local grunt-init
directory.
git clone --recursive https://github.com/dealancer/grunt-init-
backbone-plugin.git ~/.grunt-init/backbone-plugin

5.	 Create the public repository on http://github.com where we will upload our
extension.

How to do it...
Perform the following steps to create a Backbone extension with Grunt:

1.	 Create a directory that will contain the source code of our extension. This directory
should be named backbone-mongodb.
 $ mkdir backbone-mongodb

 $ cd backbone-mongodb

2.	 Build an extension project from the Grunt template. Run the next command and
follow the steps asked by Grunt.
 $ grunt-init backbone-plugin

Chapter 8

213

3.	 Update the backbone-mongodb.js file with the following extension code:
// backbone-mongodb 0.1.0
//
// (c) 2013 Vadim Mirgorod
// Licensed under the MIT license.

(function(Backbone) {

 // Define mixing that we will use in our extension.
 var mixin = {

 // Convert MongoDB Extended JSON into regular one.
 parse: function(resp, options) {
 if (_.isObject(resp._id)) {
 resp[this.idAttribute] = resp._id.$oid;
 delete resp._id;
 }

 return resp;
 },

 // Convert regular JSON into MongoDB extended one.
 toExtendedJSON: function() {
 var attrs = this.attributes;

 var attrs = _.omit(attrs, this.idAttribute);
 if (!_.isUndefined(this[this.idAttribute])) {
 attrs._id = { $oid: this[this.idAttribute] };
 }

 return attrs;
 },

 // Substitute toJSON method when performing synchronization.
 sync: function() {
 var toJSON = this.toJSON;
 this.toJSON = this.toExtendedJSON;

 var ret = Backbone.sync.apply(this, arguments);

 this.toJSON = toJSON;

 return ret;
 }

Special Techniques

214

 }

 // Create new MongoModel object.
 Backbone.MongoModel = Backbone.Model.extend(mixin);

 // Provide mixin to extend Backbone.Model.
 Backbone.MongoModel.mixin = mixin;

 // Another way to perform mixin.
 //_.extend(Backbone.Model.prototype, mixin);

}).call(this, Backbone);

4.	 Create the GitHub project by accessing the https://github.com/new link and fill
the form that appears.

5.	 Initialize the repository and push the code to the GitHub project.

 $ git init
 $ git remote add origin https://github.com/dealancer/backbone-
mongo.git
 $ git add *

Chapter 8

215

 $ git add .gitignore

 $ git commit -m "initial commit"

 $ git push -u origin master

How it works...
When we run the grunt-init command with the backbone-plugin parameter, it builds a
new project from the backbone-plugin template, which we downloaded and saved in the
~/.grunt-init/backbone-plugin directory.

The newly generated project structure is as follows:

ff node_modules/: This option provides Node.js modules for our application
�� grunt/

�� grint-contrib-qunit/

ff test/: This option performs tests for our application

�� index.html

�� mongodb.js

ff vendor/: This option lists the libraries used in the application

�� backbone/

ff backbone-mongodb.js: This is the main file of our application

ff Gruntfile.js: This is the Grunt file

ff LICENSE-MIT

ff README.md

ff package.json: This is the Node.js module file

See also
ff The source code of the extension is available at

https://github.com/dealancer/backbone-mongo

ff Grunt documentation is available at http://gruntjs.com/getting-started

ff For more info about the grunt-init backbone plugin, please navigate to
https://github.com/gsamokovarov/grunt-init-backbone-plugin

Special Techniques

216

Writing tests for a Backbone extension with
QUnit

If you are working on a complex project or a Backbone extension, you need to make sure that
the new commits do not break any existing functionality. This is why many developers choose
to create tests prior to or after writing new code.

For JavaScript applications, there are a good number of different testing tools that perfectly
integrate with Backbone. In this recipe, we are going to learn one of the tools named QUnit.

When we were building our project from a template using Grunt, QUnit was included in the
project, and the test/mongodb.js file was created. Let's add a simple test to the extension
we did in the previous recipe.

How to do it...
Perform the following steps to test an application:

1.	 Edit the test/mongodb.js file and add some basic models and collections to the
extension, as described in the following code:
 var Book = Backbone.MongoModel.extend({
 urlRoot: '/books'
 });

 var Library = Backbone.Collection.extend({
 url: '/books',
 model: Book
 });

2.	 Add some variables that we will use, as shown in the following code:
 var library;

 var attrs = {
 id: 5,
 title: "The Tempest",
 author: "Bill Shakespeare",
 };

3.	 Add the setup() and teardown() methods, which will run before and after each
test, as shown in the following code:
 module('Backbone.Mongodb', _.extend(new Environment, {

 setup : function() {

 // Create new library.

Chapter 8

217

 library = new Library();

 // Set init values.
 library.create(attrs, {wait: false});
 },

 teardown: function() {

 },
 }));

4.	 Define as many tests as you need by calling the test() function as follows:
 test("Export to MongoDB Extended JSON", 2, function() {
 var book = library.get(5);
 ok(book);

 var json = book.toJSON();
 equal(json._id.$oid, 5);
 });

5.	 Run the tests by opening the test/index.html file in the browser, as shown in the
following screenshot:

Special Techniques

218

6.	 You can also run tests in a console with the following command, as shown in the
following screenshot:

$ grunt

How it works...
QUnit runs all tests defined by the test() function, which takes the following parameters:
name, amount of asserts, and callback function. Inside a testing callback, we can
use the following asserts:

ff ok(): This is a Boolean assertion that is equivalent to CommonJS's assert.ok()
and JUnit's assertTrue(). It passes if the first argument is true.

ff equal(): This is a non-strict comparison assertion that is roughly equivalent to
JUnit assertEquals.

ff notEqual(): This is a non-strict comparison assertion that checks for inequality.

ff strictEqual(): This is a strict type and value comparison assertion.

ff throws(): This is an assertion that tests if a callback throws an exception when run.

ff notStrictEqual(): This is a non-strict comparison assertion that checks
for inequality.

ff deepEqual(): This is a deep, recursive comparison assertion that works on
primitive types, arrays, objects, regular expressions, dates, and functions.

ff notDeepEqual(): This is an inverted deep, recursive comparison assertion that
works on primitive types, arrays, objects, regular expressions, dates, and functions.

Chapter 8

219

If the required amount of asserts are achieved, the test is considered as successful.

Before running each test, QUnit runs the setup() function, and afterwards the teardown()
function. This can be useful in case we need to change some global settings and then revert
to the changes.

The Source code of the index.html file, which was generated by Grunt, looks like the
following code:

<!doctype html>
<html>
<head>
 <meta charset='utf8'>
 <title>Backbone Test Suite</title>
 <link rel="stylesheet"
 href="../vendor/backbone/test/vendor/qunit.css"
 type="text/css" media="screen">
 <script src="../vendor/backbone/test/vendor/json2.js">
 </script>
 <script src="../vendor/backbone/test/vendor/jquery.js">
 </script>
 <script src="../vendor/backbone/test/vendor/qunit.js">
 </script>
 <script src="../vendor/backbone/test/vendor/underscore.js">
 </script>
 <script src="../vendor/backbone/backbone.js"></script>
 <script src="../backbone-mongodb.js"></script>
 <script src="../vendor/backbone/test/environment.js">
 </script>
 <script src="../vendor/backbone/test/noconflict.js">
 </script>
 <script src="../vendor/backbone/test/events.js"></script>
 <script src="../vendor/backbone/test/model.js"></script>
 <script src="../vendor/backbone/test/collection.js">
 </script>
 <script src="../vendor/backbone/test/router.js"></script>
 <script src="../vendor/backbone/test/view.js"></script>
 <script src="../vendor/backbone/test/sync.js"></script>

 <script src="mongodb.js"></script>
</head>
<body>
 <div id="qunit"></div>

Special Techniques

220

 <div id="qunit-fixture">
 <div id="testElement">
 <h1>Test</h1>
 </div>
 </div>

 <h1 id="qunit-header">
 Backbone Speed Suite
 </h1>
 <div id="jslitmus_container" style="margin: 20px 10px;">
 </div>
</body>
</html>

Also, the source code of the Gruntfile.js file, which describes the commands for Grunt,
looks like the following code:

module.exports = function(grunt) {
 grunt.initConfig({
 qunit: {
 all: ['test/index.html']
 }
 });

 grunt.loadNpmTasks('grunt-contrib-qunit');

 grunt.registerTask('default', ['qunit']);
};

See also
ff Please refer to the official QUnit documentation in order to get more familiar with it,

at http://api.qunitjs.com/.

Mocking up a RESTful service with jQuery
Mockjax in asynchronous tests

In the previous recipe, we got familiar with QUnit and tested the toJSON() method, which is
used for pushing data to a RESTful service. In this recipe, we are going to test the fetch()
method, which works asynchronously. Fortunately, QUnit allows us to create asynchronous
tests. We also going to emulate a RESTful service using jQuery Mockjax.

Chapter 8

221

Getting ready...
Download the jQuery Mockjax extension from its GitHub page, https://github.com/
appendto/jquery-mockjax, and place it in the vendor directory of the extension.
Then, include its main JS file in the test/index.html file.

 <script src="../jquery-mockjax/jquery.mockjax.js"></script>

How to do it...
Perform the following steps to mock up a RESTful service for an asynchronous testing:

1.	 Define the mocked URLs and its output in the JSON format in the setup() method.
 $.mockjax({
 url: '/books',
 responseTime: 10,
 responseText: [
 {_id: { "$oid": "10" }, one: 1},
 {id: "20", one: 1}
]
 });

 $.mockjax({
 url: '/books/10',
 responseTime: 10,
 responseText: {_id: { "$oid": "10" }, one: 1}
 });

 $.mockjax({
 url: '/books/20',
 responseTime: 10,
 responseText: {id: "20", one: 1}
 });

2.	 Cancel mocking in the teardown() method.
 $.mockjaxClear();

Special Techniques

222

3.	 Add asynchronous tests that sync data from the mocked up RESTful service.

 asyncTest("Read MongoDB Extended JSON", 1, function() {
 library.fetch();

 setTimeout(function() {
 ok(library.get('10'));
 start();
 }, 50);
 });

 asyncTest("Read regular JSON", 1, function() {
 library.fetch();

 setTimeout(function() {
 ok(library.get('20'));
 start();
 }, 50);
 });

How it works...
In the previous code, we defined our test in the asyncTest() function, which works almost
the same as the test() function, except that it does not proceed to the next test unless the
start() function is called.

There is also a way to define asynchronous tests using the test() and stop() functions.

test("Read MongoDB Extended JSON", 1, function() {
 // do not proceed on the next stop unless start() is called
 stop();

 library.fetch();

 setTimeout(function() {
 ok(library.get('10'));
 start();
 }, 50);
});

Chapter 8

223

From the previous code, we have seen that the asyncTest() function is an equivalent of the
test() function, which calls the stop() function right away.

It is interesting to know what is happening in the mocked up service. jQuery Mockjax replaces
the jQuery.ajax() method with its own method, which emulates AJAX calls to the server.

Mocked URLs are defined using $.mockjax() and canceled with some help from
$.mockjaxClear().

See also
ff Please refer to the jQuery Mockjax documentation at

https://github.com/appendto/jquery-mockjax

ff Docs about asynchronous testing with QUnit are available at
http://api.qunitjs.com/category/async-control/

Developing a mobile application with jQuery
Mobile

jQuery Mobile is a useful HTML5/JavaScript framework for building mobile applications. It
provides mobiles with look-and-feel components such as lists, buttons, toolbars, and dialogs.
It is quite easy to create our own theme by customizing jQuery Mobile.

By default, all mobile pages can be stored in a single HTML file in different divs or are
rendered on a fly. jQuery Mobile also allows us to use transition effects to switch between
pages.

In this recipe, we are going to create a simple iOS-looking application with jQuery Mobile and
Backbone.js, which allows users to view and create posts. Data is stored on https://
mongolab.com/welcome/ and accessed via REST.

Special Techniques

224

Our application will look like the following screenshot:

Getting ready...
Perform the following steps to get prepared for this recipe:

1.	 Download the backbone-mongodb extension from its GitHub page, http://
github.com/dealancer/backbone-mongodb/, and save it in lib/backbone-
mongodb.js. We are going to use backbone-mongodb to connect to https://
mongolab.com/welcome/, the RESTful MongoDB service.

2.	 Download the jQuery Mobile library from http://jquerymobile.com/ and extract
it in the lib/jquery.mobile/ folder.

Chapter 8

225

3.	 Download the iOS-inspired theme for jQuery Mobile from its GitHub page,
https://github.com/taitems/iOS-Inspired-jQuery-Mobile-Theme,
and extract it in the lib/ios_inspired/ folder.

4.	 Download the icons that we are going to use in our mobile app from
http://www.glyphish.com/, and extract them into the lib/glyphish/ folder.

How to do it...
Perform the following steps to create a mobile application:

1.	 Render a page in the mobile browser using the default browser width, otherwise the
page could be rendered for 980 pixels screen width and then scaled down. Include
the following line into the header of index.html:
<meta name="viewport" content="width=device-width, initial-
scale=1">

2.	 Include the CSS files into the header of index.html.
<link rel="stylesheet" href="lib/jquery.mobile/jquery.mobile-
1.1.0.min.css"/>
<link rel="stylesheet" href="lib/ios_inspired/styles.css"/>
<link rel="stylesheet" href="css/styles.css"/>

3.	 Create the js/jqm-config.js file that will retain the jQuery Mobile configuration
and include this file it in index.html. Make sure it is included after jQuery and
before jQuery Mobile.

4.	 Bind the callback to the mobileinit event in js/jqm-config.js.
$(document).bind("mobileinit", function () {

});

5.	 Disable the jQuery Mobile routing by adding the following code in the mobileinit
event callback that we defined in the previous step:
 $.mobile.ajaxEnabled = false;

 $.mobile.linkBindingEnabled = false;

 $.mobile.hashListeningEnabled = false;

 $.mobile.pushStateEnabled = false;

6.	 Set up transitions and effects by adding the following code in the mobileinit event
callback:
 $.extend($.mobile, {
 slideText: "slide",
 slideUpText: "slideup",

Special Techniques

226

 defaultPageTransition: "slideup",
 defaultDialogTransition: "slideup"
 });

7.	 Remove the page from the Document Object Model (DOM) when it's being replaced.
Add the following code into the mobileinit event callback:
 $('div[data-role="page"]')
 .live('pagehide', function (event, ui) {
 $(event.currentTarget).remove();
 }
);

8.	 Include the Backbone-mongodb extension in index.html.
 <script src="lib/backbone-mongodb.js"></script>

9.	 Enable Cross-site scripting and disable the AJAX cache by adding the following
code in js/app-config.js. Also, include this file in index.html. Make sure it is
included before the main file of the application.
jQuery.support.cors = true;
jQuery.ajaxSetup({ cache: false });

10.	 Mix Backbone.MongoModel in Backbone.Model to support the MongoDB
Extended JSON by adding the following command line in js/app-config.js:
_.extend(Backbone.Model.prototype,
Backbone.MongoModel.mixin);

11.	 Add the RESTful service URL in js/app-config.js.
var appConfig = {
 baseURL: 'https://api.mongolab.com/api/1/databases/social-
mobile-app/collections/',
 addURL: '?apiKey=yGobEjzhT76Pjo9RaOLGfA89xCJXegpl'
}

12.	 Add the template loader in js/template-loader.js and include this file in
index.html before the main application file.
$(document).ready(function () {

 // Create global variable within jQuery object.
 $.tpl = {}

 $('script.template').each(function(index) {

 // Load template from DOM.
 $.tpl[$(this).attr('id')] = _.template($(this).html());

Chapter 8

227

 // Remove template from DOM.
 $(this).remove();
 });

});

13.	 Define the router object with routes and callbacks in js/main.js, which is our main
application file. It should be included after all other files.
var Workspace = Backbone.Router.extend({
 routes: {
 "": "main",
 "post/list": "postList",
 "post/add": "postAdd",
 "post/details/:id": "postDetails",
 "post/delete/:id": "postDelete",
 "settings": "settings",
 "about": "about",
 },

 main: function() {
 this.changePage(new MainPageView());
 },

 postList: function() {
 var postList = new PostList();
 this.changePage(
 new PostListPageView({collection: postList})
);
 postList.fetch();
 },

 postAdd: function() {
 this.changePage(new PostAddPageView());
 },

 postDetails: function(id) {
 var post = new Post({id: id});
 this.changePage(new PostDetailsPageView({model: post}));
 post.fetch();
 },

 postDelete: function(id) {
 var post = new Post({id: id});
 this.showDialog(new PostDeleteDialogView({model: post}));

Special Techniques

228

 post.fetch();
 },

 settings: function() {
 this.changePage(new SettingsPageView());
 },

 about: function() {
 this.changePage(new AboutPageView());
 }
}

14.	 Add the changePage() method to the router object to switch to the current view
page.
 changePage: function (page) {
 $(page.el).attr('data-role', 'page');

 page.render();

 $('body').append($(page.el));

 $.mobile.changePage($(page.el), {
 changeHash: false,
 transition: this.historyCount++ ?
 $.mobile.defaultPageTransition : 'none',
 });
 }

15.	 Add the showDialog() method to show dialogs in the router object.
 showDialog: function(page) {
 $(page.el).attr('data-role', 'dialog');

 page.render();

 $('body').append($(page.el));

 $.mobile.changePage($(page.el), {
 allowSamePageTransition: true,
 reverse: false,
 changeHash: false,
 role: 'dialog',
 transition: this.historyCount++ ?
 $.mobile.defaultDialogTransition : 'none',
 });
 },

Chapter 8

229

16.	 Define the model and collection in js/models/post.js and include this file in
index.html.
var Post = Backbone.Model.extend({
 defaults: {
 title: "",
 body: "",
 created: new Date().toString(),
 },

 url: function() {
 if (_.isUndefined(this.attributes.id)) {
 return appConfig.baseURL + 'posts' + appConfig.addURL;
 }
 else {
 return appConfig.baseURL + 'posts/' +
 encodeURIComponent(this.attributes.id) +
 appConfig.addURL;
 }
 },
});

var PostList = Backbone.Collection.extend({
 model: Post,
 url: function() {
 return appConfig.baseURL + 'posts' + appConfig.addURL;
 }
});

17.	 Define PostDetailsView and PostDetailsPageView in js/views/post-
details-page.js and include this file in index.html.
var PostDetailsView = Backbone.View.extend({
 initialize: function() {
 this.model.bind('change', this.render, this);
 this.template = $.tpl['post-details'];
 },

 render: function() {
 $(this.el).html(this.template(this.model.toJSON())).
 trigger('create');
 return this;
 },
});

Special Techniques

230

var PostDetailsPageView = Backbone.View.extend({
 initialize: function () {
 this.template = $.tpl['post-details-page'];
 },

 render: function (eventName) {
 $(this.el).html(this.template(this.model.toJSON()));
 this.postDetailsView = new PostDetailsView({
 el: $('.post-details', this.el), model: this.model
 });

 return this;
 }
});

18.	 Add templates for all your views in index.html. This will make them load faster.
The following code is a template for the view we defined previously:
 <script type="text/html" class="template"
 id="post-details-page">
 <div data-role="header">
 <h1>Post Details</h1>

 Back

 About
 </div>

 <div data-role="content" class="post-details"></div>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar" data-theme="a">

 <a href="#post/list" id="list-button"
 data-icon="custom">
 View Posts

 <a href="#post/add" id="add-button"
 data-icon="custom">
 Add Post
 <a href="#settings" id="settings-button"
 data-icon="custom">
 Settings

Chapter 8

231

 </div>
 </div>
 </script>

 <script type="text/html" class="template" id="post-details">
 <h1><%= title %></h1>
 <small>Posted on <%= created %>.</small>
 <p><%= body %></p>

 <a href="#post/delete/<%= id %>" name="delete-post"
 id="delete-post" data-role="button">Delete Post

 </script>

 <script type="text/html" class="template"
 id="post-list-item">
 <div class="ui-btn-inner ui-li">
 <div class="ui-btn-text">
 <a class="ui-link-inherit"
 href="#post/details/<%= id %>">
 <%= title %>

<small><%= created %></small>

 </div>
 </div>
 </script>

19.	 Add views and templates to show other pages.

20.	 Add styles in index.html to show the Glyphish icons at the bottom of the toolbar.
#list-button span.ui-icon-custom {
 background:
 url(../lib/glyphish/152-rolodex.png) 0 0 no-repeat;
}

#add-button span.ui-icon-custom {
 background:
 url(../lib/glyphish/187-pencil.png) 0 0 no-repeat;
}

#settings-button span.ui-icon-custom {
 background: url(../lib/glyphish/20-gear2.png) 0 0 no-repeat;
}

Special Techniques

232

21.	 Check the order of CSS and JS inclusions in index.html. It should look like the
following code:

 <!-- CSS -->
 <link rel="stylesheet"
 href="lib/jquery.mobile/jquery.mobile-1.1.0.min.css"/>
 <link rel="stylesheet" href="lib/ios_inspired/styles.css"/>
 <link rel="stylesheet" href="css/styles.css"/>

 <!-- Libraries -->
 <script src="lib/jquery.min.js"></script>
 <script src="js/jqm-config.js"></script>
 <script src="lib/jquery.mobile/jquery.mobile-1.1.0.min.js">
 </script>
 <script src="lib/underscore-min.js"></script>
 <script src="lib/backbone-min.js"></script>
 <script src="lib/backbone-mongodb.js"></script>

 <!-- Config -->
 <script src="js/app-config.js"></script>

 <!-- Template loader -->
 <script src="js/template-loader.js"></script>

 <!-- SMA models and views -->
 <script src="js/model/post.js"></script>
 <script src="js/view/post-list-page.js"></script>
 <script src="js/view/post-add-page.js"></script>
 <script src="js/view/post-details-page.js"></script>
 <script src="js/view/post-delete-dialog.js"></script>
 <script src="js/view/main-page.js"></script>
 <script src="js/view/settings-page.js"></script>
 <script src="js/view/about-page.js"></script>

 <!-- SMA main file and router -->
 <script src="js/main.js"></script>

How it works...
The main challenge of this recipe is to integrate jQuery Mobile with Backbone.js. Basically,
there shouldn't be any problem unless you are trying to use the Backbone router. Both
Backbone.js and jQuery Mobile provide their own routing mechanisms, which conflict with
each other when used together.

Chapter 8

233

The jQuery Mobile routing is enabled by default. You need to disable it manually if you want to
use Backbone.Router. This is what we did in js/jqm-comfig.js in the previous section.

However, we still use jQuery Mobile to switch pages. To do this, we dynamically create a new
page in the div and then call $.mobile.changePage, passing the new page element and
other parameters. If transition effects are configured, animation is performed.

See also
ff Please refer to the official jQuery Mobile resources:

�� http://view.jquerymobile.com/1.3.1/dist/demos/

�� http://api.jquerymobile.com/

ff A live demo of the preceding application is available online at http://dealancer.
github.io/sma. You can try it from your mobile device.

ff The source code of this application is available in the GitHub repository: https://
github.com/dealancer/sma/

Building an iOS/Android app with PhoneGap
PhoneGap is a free and open source framework that allows building mobile applications from
HTML/CSS/JavaScript. It supports iOS, Android, Windows Phone, Blackberry, and some other
mobile platforms. Also, developers can get access to the mobile device features, such as
camera, contacts, geolocation, and storage.

To build a mobile application, you need to download a specific version of PhoneGap for
the mobile platform with you are working. Also, there is a premium online service named
PhoneGap Build that allows building mobile apps online. It integrates with GitHub and can
extract recent version of the code.

In this recipe, we are going to build a mobile application with PhoneGap Build. It will be easy
and cool.

Getting ready...
Please make sure you have created an account on the website
https://build.phonegap.com/apps.

Special Techniques

234

How to do it...
Perform the following steps to build an iOS/Android application with PhoneGap:

1.	 Create the config.xml file in the same directory where the index.html file is
located.

2.	 Save the following PhoneGap configuration in the XML format in config.xml.
<?xml version="1.0" encoding="UTF-8" ?>
 <widget xmlns = "http://www.w3.org/ns/widgets"
 xmlns:gap = "http://phonegap.com/ns/1.0"
 id = "com.phonegap.example"
 versionCode ="1"
 version = "0.0.2">
 <!-- versionCode is optional and Android only -->

 <preference name="phonegap-version" value="2.7.0" />

 <name>Social Mobile App</name>

 <description>
 An example application to demonstrate Backbone.js and
 jQueryMobile capabilities.
 </description>

 <author href="http://vmirgorod.name"
 email="dealancer@gmail.com">
 Vadim Mirgorod
 </author>

 <icon src="icon.png" gap:role="default" />

 <preference name="orientation" value="portrait" />
</widget>

3.	 Place the icon.png file with the application icon in the root directory.

4.	 Go to https://build.phonegap.com/apps/ and click on the + new app button.

Chapter 8

235

5.	 Enter the repository URL git://github.com/dealancer/sma.git in the form.

6.	 If you want to enter a non-GitHub account or upload an application from your
machine, click on the Private tab. PhoneGap allows you to create one private
application for free.

7.	 After the project is pulled out from the GitHub repository, click on the Ready to
Build button, which launches the building process for multiple platforms. To build
an application for iOS or Blackberry, you are required to enter a developer's key.

Special Techniques

236

8.	 Now, the project is ready to be downloaded. You can do it by scanning the QR code on
a mobile device. The QR code contains a link to your application. However, for many
platforms, you need to place the built app on a special application market

9.	 When you are ready to build a new version of the application, click on the Update
Code button, and then click on the Rebuild All button.

See also
ff Please refer to official PhoneGap docs at http://docs.phonegap.com/en/

edge/index.html

Organizing a project structure with
Require.js

In this recipe, we are going to use the Asynchronous Module Definition (AMD) technique that
is implemented in Require.js, the JavaScript library, which helps to bring more order into
your project. It allows you to define and load JavaScript modules dynamically from other parts
of your code in a way similar to that in PHP using the include command. It can also optimize
and uglify the JavaScript files so that they are loaded and executed faster.

We will take the Social Mobile Application example from the previous recipe and will refactor
it using the Require.js library.

The directory structure of our app will look like the following structure:

ff css/

�� main.css

Chapter 8

237

ff js/

�� collection/

�� post.js

ff model/

�� post.js

ff view/

�� about-page.js

�� main-page.js

�� post-add-page.js

�� post-delete-dialog.js

�� post-details-page.js

�� post-list-page.js

�� settings-page.js

ff app-config.js

ff app.js

ff jqm-config.js

ff router.js

ff template-loader.js

ff lib/

�� glyphish/

�� ios_inspired/

�� jquery.mobile/

�� backbone-mongodb.js

�� backbone.js

�� jquery.js

�� require.js

�� underscore.js

ff config.xml

ff icon.png

ff index.html

ff README.md

Special Techniques

238

Getting ready...
Download the Require.js file from http://www.requirejs.org/docs/download.html,
and place it in the lib directory.

How to do it...
Perform the following steps to organize the mobile application with Require.js:

1.	 Extract the collection definition from js/model/post.js and place it in a separate
file under the path js/collection/post.js.

2.	 Remove all CSS inclusions from the index.html file, and keep only a single one that
should contain links to others.
@import url("../lib/jquery.mobile/jquery.mobile-1.1.0.min.css");
@import url("../lib/ios_inspired/styles.css");

// Custom styles
// ...

3.	 Remove all script inclusions from the index.html file and keep only the one that
will load Require.js. Make sure to define the data-main attribute with a relative
path to the main application file. No .js extension is required.
<script data-main="js/app" src="lib/require.js"></script>

4.	 In the js/app.js file, add the Require configuration, which defines aliases to the
libraries. We will use the other aliases later.
require.config({

 paths: {
 jquery : '../lib/jquery',
 'jquery.mobile':
 '../lib/jquery.mobile/jquery.mobile-1.1.0',
 underscore: '../lib/underscore',
 backbone: '../lib/backbone',
 'backbone-mongodb': '../lib/backbone-mongodb',
 }

});

5.	 Define module dependencies by adding the shim property into the Require
configuration.
 shim: {
 'backbone-mongodb': {
 deps: ['backbone'],

Chapter 8

239

 exports: 'Backbone'
 },
 'backbone': {
 deps: ['underscore', 'jquery'],
 exports: 'Backbone'
 },
 'underscore': {
 exports: '_'
 },
 'jquery.mobile': ['jquery','jqm-config'],
 'jqm-config': ['jquery'],
 'jquery': {
 exports: '$',
 }
 }

Here we make Require know about third-party library dependencies; for example,
jquery.mobile requires jquery and jqm-config, and should have been loaded
earlier. If you use standard JS libraries with no AMD support, you should define
objects that are provided by those libraries (for example,. $ in jQuery). This can be
done by defining the object name in the export property.

6.	 Add mapping settings into the Require configuration to load the backbone-
mongodb object instead of the backbone object in all the JS files of your app;
however, to load backbone-mongodb, we still need to load backbone.
 map: {
 '*': {
 'backbone': 'backbone-mongodb',
 },
 'backbone-mongodb': {
 'backbone': 'backbone'
 }
 }

7.	 Add the requirejs() function call to js/app.js to start an application. The first
parameter contains an array of modules that should be loaded, while the second
parameter provides the callback function, which is executed. Parameters of such
callback functions are objects returned by the modules defined in the first parameter
of the requirejs() function.
requirejs(['app-config', 'router'],
function (appConfig, Router) {

 $(document).ready(function () {

 window.router = new Router();

Special Techniques

240

 Backbone.history.start({ pushState : false });

 });

});

The preceding code means that the app-config.js and router.js files will be
included and implemented before executing the code in the callback function.

8.	 Refactor all your custom JS files to be AMD compatible. Add the define() function
call, which has a similar syntax as the requirejs() function. If the module provides
an object (or value) to be used by other modules, such an object should be returned
by the module. The app-config.js file will look like the following code:
// Filename: app-config.js

define(['jquery', 'backbone'],
 function($, Backbone) {

 // Enable cross site scripting.
 $.support.cors = true;

 // Disable ajax cache.
 $.ajaxSetup({ cache: false });

 // Add support of MongoDB Extended JSON.
 _.extend(Backbone.Model.prototype,
 Backbone.MongoModel.mixin);

 // Return app configuration.
 return {
 baseURL: 'https://api.mongolab.com/api/1/databases/
 social-mobile-app/collections/',
 addURL: '?apiKey=yGobEjzhT76Pjo9RaOLGfA89xCJXegpl'
 }
 }
);

9.	 Though the Require.js file can load templates from the text files, let's deal with the
template loader we used before. It also needs to be AMD compatible.
// Filename: template-loader.js

define(['jquery', 'underscore'],
 function($, _) {

 // Create global variable within jQuery object.

Chapter 8

241

 var tpl = {};

 $('script.template').each(function(index) {

 // Load template from DOM.
 tpl[$(this).attr('id')] = _.template($(this).html());

 // Remove template from DOM.
 $(this).remove();
 });

 return tpl;
 }
);

10.	 Make sure all view files are refactored as well. They may look like the following code:
// Filename: about-page.js

define(['jquery', 'backbone', 'template-loader'],
 function($, Backbone, tpl) {
 return Backbone.View.extend({
 initialize: function () {
 this.template = tpl['about-page'];
 },

 render: function (eventName) {
 $(this.el).html(this.template());
 return this;
 },
 });
 }
);

11.	 Make sure all the required module dependencies are included in the router.js file.
// Filename: router.js

define([
 'jquery',
 'jquery.mobile',
 'backbone',
 'model/post',
 'collection/post',
 'view/about-page',
 'view/main-page',

Special Techniques

242

 'view/post-add-page',
 'view/post-delete-dialog',
 'view/post-details-page',
 'view/post-list-page',
 'view/settings-page',
], function($, mobile, Backbone, PostModel, PostCollection,
 AboutPageView, MainPageView, PostAddPageView,
 PostDeleteDialogView, PostDetailsPageView,
 PostListPageView, SettingsPageView) {

 return Backbone.Router.extend({
 // Router code
 });
});

12.	 Remove the main.js file, because we have moved all functionality from it into the
app.js and router.js files.

How it works...
The Require.js library provides two main functions, define() and requirejs(), to load
other modules. The requirejs() function is used to start an application. Both the functions
have similar syntax. The first parameter is used to list all the libraries required by the current
module, and the second parameter contains the callback function that is executed.

define(['jquery', 'backbone', 'template-loader'],
 function($, Backbone, tpl) {

 return Backbone.View.extend({
 initialize: function () {
 this.template = tpl['about-page'];
 },

 render: function (eventName) {
 $(this.el).html(this.template());
 return this;
 },
 });
});

Parameters of the callback function are objects/values returned by the libraries required by
the module. They are listed in the same order as the modules required.

If the module defines an object that is required by other modules, it should return such an
object.

Chapter 8

243

If you are dealing with no AMD library, but it provides an object to be used by other modules of
your app, you should define such objects in the require.config() function.

require.config({
 shim: {
 'jquery': {
 exports: '$',
 }
 }
});

If you need to make sure that the modules are always loaded in a specific order, you should
define the dependencies in the require.config() function.

require.config({
 shim: {
 'jquery.mobile': ['jquery','jqm-config'],
 'jqm-config': ['jquery'],
 'jquery': {
 exports: '$',
 }
 }
});

By default, the Require.js file loads a library using the path relative to the main project
directory. The .js extension is used when referencing of such libraries is skipped. There is
also a way to define path aliases in the require.config() function.

require.config({

 paths: {
 jquery : '../lib/jquery',
 'jquery.mobile':
 '../lib/jquery.mobile/jquery.mobile-1.1.0',
 }

});

When the application is started, the main application file runs and all the required modules
and libraries are loaded in the correct order and according to the definition and configuration.

Special Techniques

244

There's more...

Optimizing JS files with r.js
R.js is a submodule of Require.js that can optimize JavaScript or CSS files by combining
them into a single file and minimizing it so that it is loaded and executed much faster.

To load our Social Mobile Application from the localhost, it takes the browser to perform 27
requests, which is about 308 milliseconds.

The same application, now optimized, is loaded with just 4 requests in 53 milliseconds.

Here, we see a six times boost in performance, which is a good result. Actually, that boost
could be even bigger for larger projects, which are loaded over slow Internet connection.

To optimize your app, please perform the following steps:

1.	 Make sure you have Node.js and npm installed.

2.	 Install Require.js as the Node module.
$ npm install -g requirejs

Chapter 8

245

3.	 Create a new subdirectory named src and move all project files there.

4.	 Download r.js from http://www.requirejs.org/docs/download.html and
save it into the root project directory.

5.	 Create the app.build.js file in the project root. This file should contain an R.js
build configuration.
({
 appDir: "./src",
 baseUrl: "js",
 dir: "build",
 mainConfigFile: "src/js/app.js",
 modules: [
 {
 name: "app"
 },
]
})

6.	 Execute the following command to build the project:

$ node r.js -o app.built.js

You can find the built application in the build directory.

See also
ff Check out the official Require.js documentation at

http://www.requirejs.org/

Ensuring compatibility with search engines
When a search engine finds an AJAX-powered web application, it can't index such an app,
because the search engine does not execute the complex JavaScript code. What the search
engine wants is a static HTML.

In this recipe, we are going to learn how to make the search engine index the AJAX web
application. We are going to deal mostly with Google, but we will also consider how to work
with others.

The idea behind this recipe is that we can render the AJAX app into a static HTML page on the
server and deliver it to a search engine spider via a proxy redirect.

To render JavaScript on the server, we are going to use the Node.js and Phantom.js files,
which is a headless WebKit browser available as a Node module. We will also use a Node
module named Seoserver that helps us to run Phantom.js and output the result.

Special Techniques

246

To distinguish the search engine spider from a regular client and use a proxy redirect to
the Seoserver, we will use Apache's mod_rewrite, mod_proxy, and mod_proxy_http
modules.

Getting ready...
Perform the following steps to get prepared for this recipe:

1.	 Make sure you have Node.js and npm installed.

2.	 Install Phantom.js as a Node module.
$ sudo npm install -g phantomjs

3.	 Install Seoserver, which is also a Node module.
$ sudo npm install -g seoserver

4.	 Make sure you have Apache installed.

5.	 Make sure you have the following Apache extensions installed and configured: mod_
rewrite, mod_proxy, and mod_proxy_http.

6.	 Make sure you have permissions to override a configuration in the .htaccess files.

How to do it...
Perform the following steps to ensure compatibility with search engines:

1.	 Tell Google bot to use _escaped_fragement_ instead of #! by adding the following
line into the header section of index.html.
<meta name="fragment" content="!">

We will learn what it means later.

2.	 Create the .htaccess file and place the following lines to perform the redirect
operation via proxy to the Seoserver running on the 3000 port.
<IfModule mod_rewrite.c>
 RewriteEngine on

 RewriteCond %{QUERY_STRING} ^_escaped_fragment_=(.*)$
 RewriteRule (.*) http://<host>:3000/<path>/index.html#%1? [P]
</IfModule>

3.	 To redirect other search engines (for example, Yandex) to the Seoserver via proxy, add
the following lines into the .htaccess file.
RewriteCond %{HTTP_USER_AGENT} ^YandexBot
RewriteRule (.*) http://<host>:3000/<path/>index.html#%1?

Chapter 8

247

4.	 Start the Seoserver by running the following command.
$ seoserver -p 3000 start > seoserver.log

5.	 Optionally, create a site map with URLs in the following format:
http://<host>/<path>index.html#!route

6.	 You can check a result and see what the Google bot sees using the following
link: http://support.google.com/webmasters/bin/answer.
py?hl=en&answer=158587

You can also check the result manually by accessing
http://<host>/<path>index.html?_escaped_
fragement_=route. In this case, make sure you have
disabled JavaScript in your browser to avoid any conflicts.

How it works...
There is a way how Googlebot understands that the site supports the AJAX crawling scheme.
It simply tries to access the website using URL like http://<host>/</path>index.
html#!route and checks for any significant result. #! is used instead of # to indicate to
the webmaster that it is exactly what Googlebot wants while trying to access the resource.
Googlebot also scans the sitemap and tries to find URLs with the same URL scheme.

Webmaster should implement handling of such URLs and output the HTML snapshots that
can be easily indexed by a search engine. In case if a URL with #! could not be processed by
the server, it is allowed to use the following URL scheme: http://<host>/</path>index.
html?_escaped_fragement_=route. This should be indicated by adding a special meta
tag in the HTML output.

<meta name="fragment" content="!">

Such a URL scheme that is easily handled by Apache and Googlebot is redirected via the proxy
to the server that outputs the HTML snapshot.

We will pass all parameters to the Seoserver, which is running on port 3000, and calls
phantom to get the HTML snapshot of the requested resource.

Seoserver is written on Node.js. Let's see its sources in seoserver.js.

var express = require('express');
var app = express();
var arguments = process.argv.splice(2);
var port = arguments[0] !== 'undefined' ? arguments[0] : 3000;
var getContent = function(url, callback) {
 var content = '';

Special Techniques

248

 var phantom = require('child_process').spawn(
 'phantomjs', [__dirname + '/phantom-server.js', url]
);

 phantom.stdout.setEncoding('utf8');
 phantom.stdout.on('data', function(data) {
 content += data.toString();
 });

 phantom.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
 });

 phantom.on('exit', function(code) {
 if (code !== 0) {
 console.log('We have an error');
 } else {
 callback(content);
 }
 });
};

var respond = function (req, res) {
 res.eader("Access-Control-Allow-Origin", "*");
 res.eader(
 "Access-Control-Allow-Headers", "X-Requested-With"
);

 var url;
 if(req.headers.referer) {
 url = req.headers.referer;

 }
 if(req.headers['x-forwarded-host']) {
 url = 'http://' + req.headers['x-forwarded-host'] +
 req.params[0];

 };

 console.log('url:', url);

 getContent(url, function (content) {
 res.send(content);
 });
}

app.get(/(.*)/, respond);
app.listen(port);

Chapter 8

249

Seoserver also includes the phantom-server.js file with the following code:

var page = require('webpage').create();
var system = require('system');
var lastReceived = new Date().getTime();
var requestCount = 0;
var responseCount = 0;
var requestIds = [];

page.viewportSize = { width: 1024, height: 768 };

page.onResourceReceived = function (response) {
 if(requestIds.indexOf(response.id) !== -1) {
 lastReceived = new Date().getTime();
 responseCount++;
 requestIds[requestIds.indexOf(response.id)] = null;
 }
};

page.onResourceRequested = function (request) {
 if(requestIds.indexOf(request.id) === -1) {
 requestIds.push(request.id);
 requestCount++;
 }
};

page.open(system.args[1], function () {

});

var checkComplete = function () {
 if(new Date().getTime() - lastReceived > 300 && requestCount
 === responseCount) {
 clearInterval(checkCompleteInterval);
 console.log(page.content);
 phantom.exit();
 } else {

 }
}
var checkCompleteInterval = setInterval(checkComplete, 1);

Special Techniques

250

See also
ff Check out the Seoserver source repository at

https://github.com/apiengine/seoserver

ff To learn more about URL rewriting, please visit http://publib.boulder.ibm.
com/httpserv/manual60/misc/rewriteguide.html

ff The Phantom.js docs are available at
https://github.com/ariya/phantomjs/wiki

ff Please refer to the Google Developers docs to learn more about AJAX app crawling
at https://developers.google.com/webmasters/ajax-crawling/

Avoiding memory leaks in a Backbone
application

A memory leak is a problem that can occur in a computer program due to incorrect memory
allocation. In high-level object-oriented languages such as JavaScript, memory leak is often
related to an object that is stored in the memory but isn't used by an application code.
A memory leak can lead to a more serious problem such as exhausting the available
system memory.

The following example demonstrates memory leak caused by a closure (anonymous function):

var div = document.createElement("div");
div.onclick = function () { }

In the preceding code, a new HTML element is created and the onclick callback is assigned
to an anonymous function. Such a code produces a memory leak because div references to
a closure, while closure references to a div since the div variable can be accessed in a closure
scope. Such cyclic referencing can produce a memory leak because neither div nor closure is
utilized by a garbage collector.

In this recipe, we will learn how to detect memory leaks in a Backbone application and
how to fix them. We will use Google Chrome Heap Profiler, which is a part of the Google
Chrome browser.

Getting ready...
In this recipe, we are going to take an example application from the recipe binding a collection
to a view of Chapter 5, Events and Binding and modify it. Such modifications are not required
in the production application but will help us to detect memory leaks using Google Chrome
Heap Profiler.

Chapter 8

251

1.	 Add a named constructor to the each object in your program, which is extended from
a standard Backbone object, such as Model or View. Inside this constructor, call a
parent constructor.

1.	 It could be much easier to detect memory leaks in Google Chrome Heap
Profiler by finding object instances using their class names, which would
only be possible if we defined such classes using named constructors.

2.	 Following code shows the InvoiceItemModel object with the named
constructor defined.

 var InvoiceItemModel = Backbone.Model.extend({
 calculateAmount: function() {
 return this.get('price') * this.get('quantity');
 },

 constructor: function InvoiceItemModel() {
 InvoiceItemModel.__super__.constructor.apply(
 this, arguments
);
 }
 });

2.	 Make sure your application code is performed in a global scope. This will make it
easier to find Backbone objects in Google Chrome Heap Profiler. Contents of your
main.js file shouldn't be enclosed by any function. The next few lines of code
should be removed from your main.js file.
(function($){
 $(document).ready(function () {

 });
})(jQuery);

Inclusion of main.js into index.html should be performed in the body section
as follows:

<body><script src="js/main.js"></script></body>

3.	 Modify ControlsView by adding a button which deletes
InvoiceItemsTableView to demonstrate a memory leak. The following code
explains how it works:
 var ControlsView = Backbone.View.extend({
 render: function() {
 var html = '
<input id="addModel" type="button" ' +
 'value="Add model" id><input id="removeModel" ' +

Special Techniques

252

 'type="button" value="Remove model"><input ' +
 'id="removeTableView" type="button" ' +
 'value="Remove table view">';
 $(this.el).html(html);	

 return this;
 },

 // Handle HTML events.
 events: {
 'click #addModel': 'addNewInvoiceItemModel',
 'click #removeModel': 'removeInvoiceItemModel',
 'click #removeTableView': 'removeInvoiceItemTableView',
 },

 //...

 // Remove a view button handler.
 removeInvoiceItemTableView: function() {
 this.options.invoiceItemTableView.remove();
 },
 });

 //...

 invoiceItemTableView = new InvoiceItemTableView({
 collection: invoiceItemCollection
 });

 $('body').append(invoiceItemTableView.render().el);

 $('body').append(new ControlsView({
 collection: invoiceItemCollection,
 invoiceItemTableView: invoiceItemTableView
 }).render().el);

Chapter 8

253

Our prepared application should look like the following image:

How to do it…
Perform the following steps to detect and to fix memory leaks in this application:

1.	 Open a web application in the Chrome browser.

2.	 Press the F12 key to open Chrome DevTool.

3.	 Click on the Profiles tab and select the Take Heap Snapshot item.

Special Techniques

254

4.	 Click on the Take Snapshot button.

5.	 Enter Invoice in the Class Filter field.

6.	 You will see all the classes starting with an Invoice and an amount of their
instances under the Objects Count column.

7.	 Click on the Remove table view button and take the heap snapshot once
again to see a memory leak.

8.	 You will see that Objects Count was not decreased for any class but should
have been.

Chapter 8

255

9.	 Delete any references to objects from other objects when those references
aren't required.

10.	 Delete references to the InvoiceItemsTableView instance after we called
the remove() method.
 var ControlsView = Backbone.View.extend({

 // ...

 removeInvoiceItemTableView: function() {
 this.options.invoiceItemTableView.remove();
 delete this.options.invoiceItemTableView;
 },
 });

11.	 Delete all the child subviews when the parent view is removed.

Special Techniques

256

12.	 In the following code, when the new sub-view is created, we assign its remove method
as a handler to the clear event of the parent view. In the remove() method of the
parent view, we trigger the clear event.
 var InvoiceItemTableView = Backbone.View.extend({

 // ...

 append: function(model) {
 var view = new InvoiceItemView({ model: model });

 $(this.el).append(
 view.render().el
);

 view.listenTo(this, 'clear', this.remove);
 },

 remove: function() {
 this.trigger('clear');

 return InvoiceItemTableView.__super__.remove.
 apply(
 this, arguments
);
 }
 });

13.	 Use listenTo() method instead of on() to bind callbacks to the events.

14.	 The listenTo() method keeps track of the bound events that unbinds them
when the object is removed to make sure there is no any cyclic reference.
 var InvoiceItemView = Backbone.View.extend({

 // ...

 initialize: function() {
 // Bind callback to destroy event of the model.
 this.listenTo(
 this.model, 'destroy', this.destroy, this
);
 }
 });

Chapter 8

257

 var InvoiceItemTableView = Backbone.View.extend({

 // ...

 initialize: function() {
 // Bind callback to add event of the collection.
 this.listenTo(
 this.collection, 'add', this.append, this
);
 }
 });

15.	 Reload the page, remove the table view, and then create a new heap snapshot to
make sure no invoice views are leaked. We can still see some models are kept in
the memory, but it happens because they are used by ControlsView.

Special Techniques

258

See also
ff The JavaScript Garbage Collector is described at the following location:

http://blogs.msdn.com/b/ericlippert/archive/2003/09/17/53038.
aspx

ff Memory leaks' patterns in JavaScript are described at the following location:
http://www.ibm.com/developerworks/web/library/wa-memleak/

Index
Symbols
$and operator 81
$equal operator 80
$exists operator 80
$has operator 80
$in operator 80
$ne operator 80
$nin operator 80
$nor operator 81
$not operator 81
$or operator 81
_.template() method 143

A
acceptance validator 50
add event 119
add() method 69
advanced mapping

deeply nested attributes, mapping 85
function, using 86
performing 85

Advanced REST client
installing 181

advanced validation
built-in validators 50
using, in model 49

Airbnb 6
append() method 126
Asynchronous Module Definition (AMD)

technique 236
asyncTest() function 222
at() method

using 67
attrs parameter 35

B
Backbone application

basic views, defining 15
extending, with plugins 27
memory leak, avoiding 250
model, defining 21
model instance, creating 21
parameters, parsing in URL 26
Preview Invoice page 16
router, defining 15
starting 23
structure, creating from scratch 18
typical workflow 14
typical workflow diagrammatic

representation 14
URL routing, implementing 24, 25
view, defining 22
view, rendering 23
views, spilting into subviews 17
wireframes, creating 15
writing 20-22

Backbone.Chosen extension 83
Backbone.Collection object 66
Backbone dependencies

downloading 19
Backbone.Events

managing 116
Backbone.HasMany 87
Backbone.history 25
Backbone.js

about 6, 28
code, contributing 28
collections 65
documentation, working on 28
downloading 18

260

events, managing 116
improvements 28
issue queue, working on 28
usage examples 6
used, for building RESTful frontend 190
Zepto, using with 98

Backbone.js documentation
reference link 28

Backbone.js extension
creating, with Grunt 211-215
tests, writing with QUnit 216-220

Backbone.LayoutManager
about 163
downloading 163
used, for assembling layouts 163

Backbone.LayoutManager object 167
Backbone localStorage adapter

downloading 206
Backbone.Memento extension

downloading 42
Backbone model. See model
backbone-mongodb extension

downloading 224
Backbone.Mousetrap extension 136
Backbone objects

events, handling 117, 118
using, with mixins 210, 211

Backbone Query
about 78
downloading 78

Backbone.QueryCollection 79
Backbone.Relational 87
Backbone relational extension

downloading 87
Backbone.RelationalModel 89
Backbone.Router

used, for switching views 110-113
Backbone.Router object 18, 25
Backbone.stickit extension

advanced usage 132
model getters/setters, overriding 132
specific HTML event, listening to 133
used, for bi-directional binding 128-132
view element updates, overriding 132

Backbone.sync() method 206

Backbone.Validation extension 50, 54
Backbone.View 171
Backbone.View object 18
Backgrid documentation

URL 175
Backgrid example 167
Backgrid extension 175
Backgrid.Grid 171
bidirectional binding

performing, with Backbone.stickit 128-131
Billing Application

business logic, designing 11
designing, MVC pattern used 8-11

Bootstrap framework
downloading 160
used, for customizing form 158-160

built-in events
about 119
add 119
change 119
change:[attribute] 119
destroy 119
error 119
invalid 119
remove 119
reset 119
route 119
route:[name] event 119
sort 119
sync 119

built-in validators
acceptance 50
equalTo 52
length 51
max 51
maxLength 52
min 51
minLength 51
oneOf 52
pattern 53
range 51
rangeLength 52
required 50
using 50

bulk operations
performing, on grid models 172, 173

261

business logic, for Billing Application
BankAccountModel properties, defining 12
BuyerModel properties, defining 12
designing, with models and collections 11-13
InvoiceItemModel methods, defining 12
InvoiceItemModel properties, defining 12
InvoiceModel methods, defining 13
InvoiceModel properties, defining 13
SellerModel properties, defining 12

C
callbacks

binding, to transition events 47, 48
Cascading Style Sheets (CSS) 103
chain() method 78
change:[attribute] event 119
changedAttributes() method 118
change event 119
changePage() method 228
changeView() method 113
clear() method 33
clone() method 30, 68
CoffeeScript 47
collection

about 93
binding, to select list 134-136
binding, to view 122-128
chaining 77, 78
common operations 65
creating 66
existing models, adding 70
index, getting 68
iterating through 75
model, adding 69
model, getting from by ID 69
model, getting from by index 67
model, removing 71
models, filtering 74
multiple models, adding 70
No SQL queries, running 78, 79
one-to-many relationship,

implementing 86-89
rendering, in view 101, 102
sorting 73
various types model, storing 83-85
working, as queue 72

working, as stack 72
combining operators, No SQL operators

$and 81
$nor 81
$not 81
$or 81

commit() method 152
comparator

about 73
model pair, comparing 74

compatibility
ensuring, search engine used 245-247

compiled templates
using 148

Cross-site scripting
enabling 226

D
data

fetching, polling technique used 201-205
data grid

building 167-170
deepEqual() 218
delegateEvents() method 110
destroy event 119
destroy() method 187, 201
Document Object Model (DOM) 106, 226
DOM events

handling, in view 106-110

E
each() method 75, 218
Ender.js 98
equalTo validator 52
error event 119
error messages

customizing 155
events

callback, unbinding 117
delegating, manually 110
listening, on objects 117
managing 116
undelegating, manually 110

events, Backbone objects
handling 117, 118

262

event triggering
avoiding, while working with objects 119

every() method 76
executePolling() method 205
extend() method 24, 211

F
fetch() method 186, 220
form

customizing, Bootstrap framework
used 158-160

defining 149-151
using without model 152
validation, adding 153, 154

form events
handling 156-158

form templates
overriding 161

Foursquare 6

G
getContext() method 178
get() method

about 33
using 69

getters or setters
overriding 37-40

GitHub 211
Google Boot 246
Googlebot 247
Google Chrome Heap Profiler

using, to detect memory leak 251-256
Groupon Now! 6
Grunt

used, for creating Backbone.js
extension 211-215

H
HTML5 canvas

drawing on 175-178
reference link 178

HTML element
creating 95, 96

HTML form
validating 54, 55

I
includeInJSON property 90
independent copy, collection model

length, getting 68
retrieving 68

indexOf() method 68
IndividualContactModel 84
initialize() method 32, 95, 157, 176
invalid event 119
InvoiceItemModel object 251
InvoiceItemsTableView instance 255
invoiceList() 24
iOS/Android app

building, with PhoneGap 233-236
iOS-inspired theme

downloading 225
iteration methods, collection

about 76
any model, checking for specific condition 76
attribute, getting from model 76
model, checking for specific condition 76
models, boiling down 77
specific calculations, performing 76

J
JavaScript Garbage Collector

URL 258
jQuery

about 93, 97
dealing, with view element 97, 98
URL, for documentation 98
URL, for events 110

jQuery.ajax() method 223
jQuery Mobile

about 209 223
library, downloading 224

jQuery Mockjax extension
downloading 221

JS files
optimizing, with r.js 244

JSON
model, exporting to 89

263

K
keyboard shortcuts

handling, in view 136, 137

L
layouts

assembling, LayoutManager used 163-166
length() method 68
length validator 51
LIFO (last in, first out) data structure 43
LinkedIn mobile 6
listenTo() method 117, 256
local storage

working with 206, 207

M
many-to-many relationship

implementing 89
map() method 76
maxLength validator 52
max validator 51
memento stack

first state, restoring from 44
working with 43, 44

memory leak
about 250
by closure 250
detecting, Google Chrome Heap Profiler

used 250-257
in JavaScript, URL 258

minLength validator 51
min validator 51
mixins

using, with Backbone objects 210, 211
mobile application

developing, with jQuery Mobile 223-232
model

about 29, 93
adding, to collection 69
adding, to collection at specific position 70
advanced validation, using 49
binding, to select list 134-136
binding, to view 120-122

checking, for attribute 34
cloning 30
creating 30
default attribute values, setting 30, 31
default attribute values, setting with multiline

expression 31, 32
existing models, adding 70
exporting, to JSON 89, 90
filtering, in collection 74
getting from collection, at specific index 67
getting from collection, by ID 69
HTML escaped attribute value, getting 34
multiple models, adding 70
nested attributes, working with 57, 58
removing, from collection 71
rendering, in view 99, 100

model attributes
operating 33
validating 35, 36
validation errors, handling 36
validation, triggering manually 37

model getters/setters
overriding, Backbone.stickit used 132

model identifier
operating 34, 35

model pair
comparing 74

models and collections
synchronizing, RESTful service used 185-187

models, of various types
storing, in collection 83-85

model states
managing 41
operating 42, 43

model validation
performing 155

mod_proxy_http module 246
mod_proxy module 246
mod_rewrite module 246
MongoDB Extended JSON

about 212
handling 188

MongoLab
about 181
creating 182-184
URL 181, 212

264

working 185
Moustrap library 137
Mustache

about 147
downloading 147

Mustache.compilePartial() function 149
Mustache.render() 147
Mustache templates

using 147
Mustche.js syntax

URL 149
mutators attribute 38
mutators events

handling 41
MVC pattern

about 5-7
benefits 7, 8
Controller 7
designing, for Billing Application 9-11
Model 7
View 7

N
name() method 84
nested array

working with 58
nested attributes, model

callbacks, binding to events 59
elements, adding to nested array 59
elements, removing from nested array 59
nested array, working with 58
working with 57, 58

No SQL operators
combining operators 80
standard operators 79

No SQL query
multiple queries, performing on same key 81
performing, to collection 79
results, caching 82
results, paging 82
results, sorting 82

notDeepEqual() 218
notEqual() 218
notStrictEqual() 218

O
off() method 117
ok() method 218
once() method 116
onclick callback 250
oneOf validator 52
one-to-many relationship

implementing 86-89
one-to-one relationship

implementing 60-62
onFetch() method 205
on() function 110
on() method 116, 158
OrganizationContactModel 84

P
parameters

parsing, in URL 26
parse() method 188
partials

using 148
pattern validator 53
Phantom.js docs 250
PhoneGap Build 233
pluck() method 76
plugins

used, for extending application 27
polling technique

used, for fetching data 201-205
pop() method 72
previousAttributes() method 118
previous() method 118
project directory structure, Backbone

application
creating 19

project structure
organizing, with Require.js 236-241

push() method 72

Q
queue

collection, working as 72
QUnit

about 216

265

used, for writing tests 216
working 218

R
rangeLength validator 52
range validator 51
records filtering

performing 174
reduce() method 77
remove event 119
remove() method 71, 97, 255, 256
render() method 95, 102, 130, 143
Rendr 6
Representational State Transfer. See REST
require.config() function 243
required validator 50
Require.js file

downloading 238
requirejs() function 239, 242
reset event 119
reset() method 71
resource URI 180
REST 180
REST API

architecting 180
RESTful backend

prototyping, with MongoLab 181
RESTful frontend

building, with Backbone 190-201
RESTful service

mocking up, with jQuery Mockjax 220-222
restore() method 42
R.js 244
route event 119

params parameter 139
route parameter 139
router parameter 139

route:[name] event 119
router events

handling 138, 139

S
save() method 36, 187
schema definition

URL 152

search engines
used, for ensuring compatibility 245-247

Seoserver
about 245
source repository 250

setElement() method 97, 100-102
set() method 33
setTemplates() method 161
setup() function 216, 219
shift() method 72
showDialog() method 228
Social Mobile Application 236
some() method 76
sort event 119
sort() method 73
specific HTML event

listening to, Backbone.stickit used 133
stack

about 72
collection, working as 72

standard operators, No SQL operators
$equal 80
$exists 80
$has 80
$in 80
$ne 80
$nin 80
about 79
using 79, 80

start() function 25, 222
stickit() method 131
store() method 42
strictEqual() 218
subviews

view, splitting into 103-106
switchPane() method 195, 196
sync event 119
sync() method 188

T
teardown() method 216, 221
template loader

implementing 145, 146
templates

splitting, into partials 144
using, in view 142, 143

266

test() function 218
tests, for Backbone extension

writing, QUnit used 216-218
throws() 218
toJSON() method 39, 90, 189, 220
triggered event

handling 120
triggerEvent() method 46
trigger() method 116

U
undelegateEvents() 137
undelegateEvents() method 110
unset() method 33
unshift() method 72
url() method 185
URL routing

implementing, in Backbone
application 24, 25

usage examples, Backbone.js
Airbnb 6
Foursquare 6
Groupon Now! 6
LinkedIn mobile 6
reference link 6
WordPress.com 6

V
validate() method 35
validation

adding, to form 153, 154
validation errors

handling 36
value() method 78

view
about 93
collection, rendering in 101, 102
creating, steps 94
DOM events, handling 106-110
model, rendering in 99, 100
removing 97
rendering 95
splitting, into subviews 103-106
switching, Backbone.Router used 110-113
templates, using 142, 143

view element
dealing with 97, 98
modifying, dynamically 97

view element updates
overriding, Backbone.stickit used 132

W
where() method 74
WordPress.com 6
workflow.js extension

downloading 45
workflow, model

creating 45, 46

Z
Zepto

about 93, 98
using, with Backbone 98

Thank you for buying

Backbone.js Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant AngularJS Starter
ISBN: 978-1-782166-76-4 Paperback: 66 pages

A concise guide to start building dynamic web
applications with AngularJS, one of the Web's
most innovative JavaScript frameworks

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Take a broad look at the capabilities of AngularJS,
with in-depth analysis of its key features

3.	 See how to build a structured MVC-style
application that will scale gracefully in
real-world applications

Getting Started with Meteor.js
JavaScript Framework
ISBN: 978-1-782160-82-3 Paperback: 130 pages

Develop modern web applications in Meteor, one of the
hottest new JavaScript platforms

1.	 Create dynamic, multi-user web applications
completely in JavaScript

2.	 Use best practice design patterns including
MVC, templates, and data synchronization

3.	 Create simple, effective user authentication
including Facebook and Twitter integration

Please check www.PacktPub.com for information on our titles

Learning Kendo UI Web
Development
ISBN: 978-1-849694-34-6 Paperback: 288 pages

An easy-to-follow practical tutorial to add exciting
features to your web pages without being a
JavaScript expert

1.	 Learn from clear and specific examples on how
to utilize the full range of the Kendo UI tool set
for the web

2.	 Add powerful tools to your website supported
by a familiar and trusted name in innovative
technology

3.	 Learn how to add amazing features with
clear examples and make your website more
interactive without being a JavaScript expert

Instant Meteor JavaScript
Framework Starter
ISBN: 978-1-782163-42-8 Paperback: 78 pages

Enjoy creating a multi-page site, using the exciting new
Meteor framework!

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Create multi-page Meteor sites

3.	 Learn best practices for structuring your app
for maximum efficiency

4.	 Use and configure a NoSQL database

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Backbone
	Introduction
	Designing an application with the MVC pattern
	Defining business logic with models and collections
	Modeling an application's behavior with views and a router
	Creating an application structure from scratch
	Writing your first Backbone application
	Implementing URL routing in your application
	Extending an application with plugins
	Contributing to the Backbone project

	Chapter 2: Models
	Introduction
	Creating a model
	Operating with model attributes
	Operating with the model identifier
	Validating model attributes
	Overriding getters and setters
	Creating undo points to store/restore a model's state
	Implementing workflow for a model
	Using advanced validation in a model
	Validating an HTML form
	Working with nested attributes in a model
	Implementing a one-to-one relationship

	Chapter 3: Collections
	Introduction
	Creating a collection of models
	Getting a model from a collection by its index
	Getting a model from a collection by its ID
	Adding a model to a collection
	Removing a model from a collection
	Working with a collection as a stack or as
a queue
	Sorting a collection
	Filtering models in a collection
	Iterating through a collection
	Chaining a collection
	Running No SQL queries on a collection
	Storing models of various types in the same collection
	Implementing a one-to-many relationship

	Chapter 4: Views
	Introduction
	Rendering a view
	Dealing with a view element using jQuery
	Rendering a model in a view
	Rendering a collection in a view
	Splitting a view into subviews
	Handling Document Object Model (DOM) events in a view
	Switching views using Backbone.Router

	Chapter 5: Events and Bindings
	Introduction
	Managing events in Backbone.js
	Handling events of Backbone objects
	Binding a model to a view
	Binding a collection to a view
	Bi-directional binding with Backbone.stickit
	Binding a model and a collection to a select list
	Handling keyboard shortcuts in a view
	Handling router events

	Chapter 6: Templates and UX sugar
	Introduction
	Using templates in a view
	Implementing a template loader
	Using Mustache templates
	Defining a form
	Adding validation to a form
	Handling form events
	Customizing a form with Bootstrap framework
	Assembling layouts with LayoutManager
	Building semantic and easily styleable data grid
	How it works...
	Drawing on the HTML5 canvas

	Chapter 7: REST and Storage
	Introduction
	Architecting the REST API for the backend
	Prototyping a RESTful backend with MongoLab
	Synchronizing models and collections with a RESTful service
	Building a RESTful frontend with Backbone
	Using the polling technique to fetch data
	Working with local storage

	Chapter 8: Special Techniques
	Introduction
	Using mixins with Backbone objects
	Creating a Backbone.js extension with Grunt
	Writing tests for a Backbone extension with QUnit
	Mocking up a RESTful service with jQuery Mockjax in asynchronous tests
	Developing a mobile application with jQuery Mobile
	Building an iOS/Android app with PhoneGap
	Organizing a project structure with
Require.js
	Ensuring compatibility with search engines
	Avoiding memory leaks in a Backbone application

	Index

