
Beginning Build
and Release
Management with
TFS 2017 and VSTS

Leveraging Continuous Delivery
for Your Business
—
Chaminda Chandrasekara

www.allitebooks.com

http://www.allitebooks.org

Beginning Build
and Release

Management with
TFS 2017 and VSTS

Leveraging Continuous Delivery
for Your Business

Chaminda Chandrasekara

www.allitebooks.com

http://www.allitebooks.org

Beginning Build and Release Management with TFS 2017 and VSTS

Chaminda Chandrasekara							
Colombo, Sri Lanka						

ISBN-13 (pbk): 978-1-4842-2810-4		 ISBN-13 (electronic): 978-1-4842-2811-1
DOI 10.1007/978-1-4842-2811-1

Library of Congress Control Number: 2017943489

Copyright © 2017 by Chaminda Chandrasekara

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Nikhil Karkal
Development Editor: James Markham / Poonam Jain
Technical Reviewer: Mittal Mehta
Coordinating Editor: Prachi Mehta
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2810-4.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2810-4
http://www.apress.com/source-code
http://www.allitebooks.org

To all my true friends who supported and encouraged me in diffcult times.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

■■Chapter 1: Understanding the Concepts�� 1

■■�Chapter 2: Configuring TFS2017/VSTS Build/Release Agents
& Marketplace Extensions��� 43

■■�Chapter 3: ASP.Net Web Application Deployment to
Azure and IIS��� 83

■■Chapter 4: Build as Docker and Deploy to Azure������������������������� 153

■■Chapter 5: Azure SQL and TFS/VSTS Build and Release�������������� 201

■■�Chapter 6: Team Services for Azure Service
Fabric Deployments��� 219

■■�Chapter 7: Task Groups, Folders, and Build/Release
Definition History��� 283

■■�Chapter 8: Building with External Repositories and
Other Platform Builds�� 301

■■Chapter 9: Test Automation with Build and Release������������������� 335

■■�Chapter 10: Dynamics CRM Deployments with
TFS/VSTS Release�� 403

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a Glance

vi

■■Chapter 11: Effective Release Notes with TFS Release��������������� 433

■■Chapter 12: Package Management�� 479

■■�Chapter 13: Extending Build and Release Tasks on Your Own����� 513

Index��� 551

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

■■Chapter 1: Understanding the Concepts�� 1

DevOps��� 1

Continuous Integration (CI)��� 2

Continuous Delivery (CD)�� 3

Continuous Deployment��� 3

DevOps Adoption�� 4

Release/Deployment Pipeline��� 4

TFS/VS Team Services Build & Release Management������������������������������ 5

Build & Release Tab�� 6

Build & Release Agents and Pipelines�� 7

Agent Pool��� 7

Agent Queue�� 9

Security—Agent Pool—Agent Queue��� 11

Build Definition��� 13

Release Definition�� 18

Security for Build & Release Definitions�� 27

What Is New in Team Services Build Layouts?��������������������������������������� 32

Queuing a Build�� 40

www.allitebooks.com

http://www.allitebooks.org

﻿ ■ Contents

viii

Build/Release REST API�� 40

Recommendations��� 41

Summary�� 41

■■�Chapter 2: Configuring TFS2017/VSTS Build/Release Agents
& Marketplace Extensions��� 43

Lesson 2.01 – Set Up Agent Pools and Queues�������������������������������������� 43

2.01.1 Set Up Agent Pool��� 43

2.01.2 Set Up Agent Queue�� 48

2.01.3 Auto-Provision Queues for Existing Pools��� 51

2.01.4 Assign Permissions for Agent Pools and Queues��� 55

2.01.5 Create Agent Pool for Build Farm��� 57

Link VS Team Services Account to Azure Subscription for
Billing Purposes��� 58

Lesson 2.02 – Set Up Build/Release Agent�� 59

2.02.1 Set Up Build/Release Agent for On-Premises TFS—Interactive Mode����������� 60

2.02.2 Remove Windows Build/Release Agent�� 64

2.02.3 Set Up Build/Release Agent for On-Premises TFS and Run as Windows
Service��� 64

2.02.4 Set Up Build/Release Agent in an Untrusted Domain for VS Team
Services or On-Premises TFS�� 66

2.02.5 Set Up Build/Release Agent in Ubuntu Linux�� 69

Lesson 2.03 – Install and Manage Extensions from Marketplace���������� 74

2.03.1 Install Extension from Marketplace�� 74

2.03.2 Manage Extension�� 75

2.03.3 Request an Extension��� 76

2.03.4 Download Extensions for Installation��� 79

2.03.5 Browse and Manage Local Extensions—On-Premises TFS���������������������������� 79

Summary�� 81

www.allitebooks.com

http://www.allitebooks.org

﻿ ■ Contents

ix

■■�Chapter 3: ASP.Net Web Application Deployment to Azure
and IIS��� 83

Lesson 3.01 – Create ASP.Net Applications & Build with Team
Foundation Builds��� 83

3.01.1 Create ASP.Net MVC App in VS 2017��� 84

3.01.2 Build ASP.Net MVC App in TFS/VSTS��� 87

3.01.3 Tokenize ASP.Net MVC 5 App Configurations with Build����������������������������� 106

3.01.4 Create ASP.Net Core Web App in VS 2017��� 114

3.01.5 Build ASP.Net Core Web App with TFS Build��� 116

3.01.6 Tokenize ASP.Net Core Web App Configurations with Build������������������������ 120

Lesson 3.02 – Deploy ASP.NET Web Applications to IIS������������������������ 123

3.02.1 Deploy MVC5 Web Application to IIS��� 123

3.02.2 Deploy .NET Core Web Application to IIS�� 132

Lesson 3.03 – Deploy ASP.NET Web Application to Azure App�������������� 135

3.03.1 Link Azure Subscription to TFS/VSTS Team Project������������������������������������ 135

3.03.2 Deploy ASP .NET MVC5 Web App to Azure App Service������������������������������ 139

3.03.3 Deploy ASP .NET Core Web App to Azure App Service�������������������������������� 143

Summary�� 145

■■Chapter 4: Build as Docker and Deploy to Azure������������������������� 153

Set Up the Environment to Develop Docker-enabled Application��������� 153

Lesson 4.01 – Create a Docker-Enabled ASP.NET Core Application������ 160

Lesson 4.02 – Create Azure Container Registry���������������������������������� 172

Lesson 4.03 – Create Azure App Service on Linux App����������������������������������177

Lesson 4.04 – Create a Build to Push Container Image to
Azure Container Registry�� 182

Lesson 4.05 – Wire Up Container Registry and the App Service
App on Linux��� 192

Summary�� 198

Azure Container Services and Team Services��� 198

www.allitebooks.com

http://www.allitebooks.org

﻿ ■ Contents

x

■■Chapter 5: Azure SQL and TFS/VSTS Build and Release�������������� 201

Lesson 5.01 – Create SQL Project with Visual Studio�������������������������� 201

Lesson 5.02 – Build SQL Project with Team Foundation Build������������� 204

Lesson 5.03 – Deploy .dacpac to Azure SQL using TFS Release
Management�� 208

Summary�� 217

■■�Chapter 6: Team Services for Azure Service Fabric
Deployments�� 219

Azure Service Fabric�� 219

Lesson 6.01 – Set Up Azure Service Fabric SDK for Visual Studio������� 219

Lesson 6.02 – Create a Service Fabric Application and Test Locally����� 222

Lesson 6.03 – Create an Azure Service Fabric Cluster������������������������ 242

Lesson 6.04 – Create a Build to Package the Service
Fabric Application��� 248

Lesson 6.05 – Deploy to Azure Service Fabric Cluster������������������������� 267

Summary�� 281

■■�Chapter 7: Task Groups, Folders, and Build/Release Definition
History��� 283

What Is a Task Group?�� 283

Lesson 7.01 – Create a Task Group�� 283

Lesson 7.02 – Use a Task Group�� 290

Lesson 7.03 – Manage Task Groups��� 292

Lesson 7.04 – Organize Folders to Group Builds���������������������������������� 295

Lesson 7.05 – Track Build/Release Definition History�������������������������� 298

Summary�� 300

www.allitebooks.com

http://www.allitebooks.org

﻿ ■ Contents

xi

■■�Chapter 8: Building with External Repositories and
Other Platform Builds�� 301

Lesson 8.01 – Create a Console App and Commit It to GitHub������������� 301

Lesson 8.02 – Link GitHub with Team Services/TFS as a
Service Endpoint�� 310

Lesson 8.03 – Build GitHub Code in Team Foundation Build���������������� 315

Lesson 8.04 – Submit Java Code to GitHub��� 320

Lesson 8.05 – Build Java Code in GitHub with Team
Foundation Build�� 326

Summary�� 333

■■Chapter 9: Test Automation with Build and Release������������������� 335

Test Automation�� 335

Lesson 9.01 – Write Unit Tests and Integrate with Build���������������������� 336

Lesson 9.02 – Write Coded UI Tests and Package with Build��������������� 342

Lesson 9.03 – Run Functional Tests with TFS/VSTS Release��������������� 349

Lesson 9.04 – Set Up a Test Farm in Azure VMs���������������������������������� 362

Lesson 9.05 – Run Cloud-Based Load Tests with
Release Management��� 390

Summary�� 402

■■�Chapter 10: Dynamics CRM Deployments with
TFS/VSTS Release�� 403

Lesson 10.01 – Install SDK Template for Visual Studio������������������������ 403

Lesson 10.02 – Create CRM Customization Solution and Plugin��������� 405

Lesson 10.03 – Source Control CRM Customizations���������������������������������417

Lesson 10.04 – Enable CRM Customizations to Create
Solution Zip with TFS Build�� 424

Lesson 10.05 – Deploy CRM Solution with TFS Release���������������������� 429

Summary�� 432

﻿ ■ Contents

xii

■■Chapter 11: Effective Release Notes with TFS Release��������������� 433

What Is an Effective Release Note?�� 433

Lesson 11.01 – Create a Backlog��� 442

Lesson 11.02 – Submit Work and Create a Build��������������������������������� 449

Lesson 11.03 – Create a Release Pipeline with Release
Note Capability��� 457

Lesson 11.04 – Generate Release Notes for Each Environment���������� 468

Summary�� 478

■■Chapter 12: Package Management�� 479

Lesson 12.01 – Create a NuGet Package��� 479

Lesson 12.02 – Create a Feed and Publish Package in the Feed��������� 485

Lesson 12.03 – Build and Publish Packages with TFS Builds
and Release�� 492

Lesson 12.04 – Consume Package in Internal Feed in
Visual Studio & TFS Builds��� 500

Summary�� 511

■■Chapter 13: Extending Build and Release Tasks on Your Own����� 513

Lesson 13.01 – Update npm and Add Visual Studio Project
Templates for TFS Extensions�� 513

Lesson 13.02 – Develop a Build/Release Extension and Packaging����� 517

Lesson 13.03 – Sign Up for Publishing Extensions in Marketplace
and Publish Extension�� 530

Lesson 13.04 – Install Privately Shared Extension������������������������������� 535

Lesson 13.05 – Use the Extension in the Build/Release���������������������� 538

What Else Is Possible with Build/Release Extensions?������������������������ 541

Summary�� 548

Index��� 551

xiii

About the Author

Chaminda Chandrasekara is Microsoft Most Valuable
Professional (MVP) for Visual Studio ALM and is also
a Scrum Alliance Certified ScrumMaster®. He focuses
on and believes in the continuous improvement of the
software development lifecycle. He works as the ALM/
DevOps Architect for Navantis IT (Pvt) Ltd, a fully owned
subsidiary of Toronto, Canada–based Navantis, Inc.

Chaminda is an active Microsoft Community
Contributor (MCC) who is well recognized for his
contributions in Microsoft forums, TechNet galleries,
and Wikis, and who contributes extensions to Visual
Studio Team Services/TFS in the Microsoft Visual
Studio marketplace. He also contributes to other open
source projects in GitHub. His technical blog, found at
http://chamindac.blogspot.com/, is popular among
ALM practitioners around the world for its quick and
descriptive tech guidance.

http://chamindac.blogspot.com/

xv

About the Technical
Reviewer

Mittal Mehta has total 14 years of IT experience. Currently, he is working as a
configuration manager and is Microsoft certified professional in TFS 2012. He also has
experience working in build-release, configuration and automation area since last 8 years
in Microsoft Technologies.

xvii

Acknowledgments

I would like to express my gratitude to Sanjaya Yapa, Project Manger at Navantis, who saw
me through this book. He provided support, talked things over, read early drafts, and offered
comments, supported reading proofs, all of which allowed me to write and design this book.

In addition, I must say thanks to Chaminda Bandara Somathilake, Software Archtect
at Navantis, for providing support in defining the topics for the book.

I must mention Jeremy Garner-Howe and Indaka Raigama, who were my top
managers some time back. The knowledge I gained while working with you was
enormous, and the opportunities given by you for my growth really helped me to become
who I am today.

Last and not least: I really value the support given by all those who have been with
me over the course of the years and whose names I have failed to mention.

1© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_1

CHAPTER 1

Understanding the Concepts

By reading through this chapter, you will understand the concept of continuous delivery
and how it helps a software organization to achieve DevOps. Further, you will learn what
various tools, Microsoft VS Team Services, and Team Foundation Server have to offer
when implementing release pipelines. This chapter will set the stage for you to get started
with the walkthrough lessons, which start from Chapter 2. Furthermore, this chapter
also provides you with recommendations for overcoming practical implementation
roadblocks and building a robust deployment pipeline.

DevOps
DevOps is the buzz word that you hear in the industry today. It defines the culture
and the practice of an organization. The aim of DevOps is to establish an environment
where building, testing, and releasing software happens rapidly, frequently, and with a
high degree of reliability, compared to the traditional waterfall type of development life
cycle and manual deployment and testing. This requires an organization to automate
the software delivery cycle and perform a significant amount of infrastructure changes
or upgrades to support the new practices. In a DevOps (software development and
information technology operations) culture, developers and IT pros are encouraged to
collaborate and communicate with one another often, which emphasizes the concept of
teamwork (see Figure 1-1).

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 1 ■ Understanding the Concepts

2

Continuous Integration (CI)
Continuous integration (CI) is the process that ensures the stability of all the available
developer source code. All working copies of source code are merged into the trunk/main
line (instead of a main branch, this can be a code branch for a given iteration/sprint) and
integrated with each other. The primary objective of maintaining a stable code base is
achieved through automated builds of each code submitted and the execution of the unit
tests (see Figure 1-2). This is done so that defects can be found and addressed quickly.
This feature is especially powerful when combined with continuous delivery.

Figure 1-1.  DevOps at a glance

Chapter 1 ■ Understanding the Concepts

3

Continuous Delivery (CD)
Development teams produce software in short cycles using modern-day software
development approaches. One of the biggest challenges is ensuring the reliability of any
software releases to the target environments at any given time. A straightforward and
reusable deployment process is essential in order to reduce the cost, time, and risk of
delivering software changes. These could be incremental updates to the application in
production. In a nutshell, CD delivers software changes more frequently and reliably,
compared to manual deployment and testing and DevOps can be considered a product of
continuous delivery.

Continuous Deployment
Continuous delivery ensures every change can be deployed to production while having
the option to hold the production deployment until a manual approval is given. On the
other hand, continuous deployment lets every change to be automatically deployed to
production. To implement continuous deployment, one must have continuous delivery
in place, since continuous deployment is created by automating the approval steps of
continuous delivery (see Figure 1-3).

Figure 1-2.  Continuous integration

Chapter 1 ■ Understanding the Concepts

4

DevOps Adoption
An organization must go through many cultural and practical changes in order to
implement DevOps. This might take a long time, and it requires continuous focus and a
commitment to improving the way of work.

The following are key factors that are required for DevOps adoption:

•	 Use of process/methodology such as Agile/Scrum/XP, etc.

•	 Demand for frequent production releases

•	 Extensive availability of virtual infrastructure

•	 Deployment automation and configuration management

•	 A focus on test automation and continuous integration

•	 Significant amount of publicly available best practices

•	 Incremental adoption with systematic thinking, amplified
feedback loops, and continual experiment and learning

■■ Note  A detailed discussion of DevOps is out of the scope of this book. You can find
useful information on DevOps at the following links:

https://theagileadmin.com/what-is-devops/

https://en.wikipedia.org/wiki/DevOps

Release/Deployment Pipeline
The release pipeline delineates the sequence of actions involved in deployment, from
retrieving the completed work from source control to delivering software to the end
user. The software retrieved from version control has to be built, tested, and deployed in
several stages before reaching the production environment via a release pipeline.

Figure 1-3.  Continuous delivery versus continuous deployment

https://theagileadmin.com/what-is-devops/
https://en.wikipedia.org/wiki/DevOps

Chapter 1 ■ Understanding the Concepts

5

The process involves many individuals, teams, tools, and components, which vary based
on the software development practice being used. A successful deployment pipeline
should provide the visibility, control, and flexibility of the deployment flow to the teams/
individuals using it (see Figure 1-4).

Figure 1-4.  Release/deployment pipeline

Figure 1-5.  A release workflow

A rule of thumb is to deploy the same binaries/packages, which were built only once,
across the pipeline. Configuration should be applied appropriately to the components
deployed because each environment has its own configuration values. Therefore, each
deployment stage definition on the release flow should contain the configuration values
specific to that stage. These values are applied to the package being deployed while the
deployment process is in the current stage.

TFS/VS Team Services Build & Release
Management
Team Foundation Server and Visual Studio Team Services (online version of TFS) offer an
impressive set of tools to implement continuous delivery. The new web-based extendable
build system (the XAML-based build system is now deprecated) provides the necessary
flexibility and capability to build almost any type of source code, including source code
available in outside repositories such as GitHub.

Release management is now part of TFS and is capable of deploying to Windows,
Linux, and OSX. (The previously used Client Server release management model is not
discussed in this book.) See Figure 1-5 for a representation of a release workflow.

Chapter 1 ■ Understanding the Concepts

6

Build & Release Tab
A team project (https://www.visualstudio.com/en-us/docs/setup-admin/create-
team-project) contains a Build & Release tab that allows you to implement continuous
delivery (see Figure 1-6).

Figure 1-6.  Build & Release tab

■■ Note A discussion of team projects and other topics of TFS/VSTS is out of the scope of
the book. You can refer to https://www.visualstudio.com/en-us/docs/setup-admin/
tfs/architecture/tfs-concepts for more on the TFS concepts.

Let’s look at the options available on the tab:

•	 Builds – Manage build definitions (to define steps for packaging
source code into deployable packages) and builds (executed build
definitions are the builds).

•	 Releases – Manage release definitions (defines the steps for
deploying in each target environment) and deployments
(executed release definitions are the deployments).

•	 Task Groups – Group a set of tasks that can be reusable in builds
and releases.

•	 Packages – Manage packages with TFS and VSTS to share
common code and utilities (discussed in detail in Chapter 12).

•	 Explorer – Explore the completed builds and those in queues,
including legacy XAML builds.

https://www.visualstudio.com/en-us/docs/setup-admin/create-team-project
https://www.visualstudio.com/en-us/docs/setup-admin/create-team-project
https://www.visualstudio.com/en-us/docs/setup-admin/tfs/architecture/tfs-concepts
https://www.visualstudio.com/en-us/docs/setup-admin/tfs/architecture/tfs-concepts
http://dx.doi.org/10.1007/978-1-4842-2811-1_12

Chapter 1 ■ Understanding the Concepts

7

Build & Release Agents and Pipelines
A concurrent pipeline in on-premise s TFS, allows you to run a single release at a given
time. But you can run any number of concurrent builds with no limitation. Single, free
concurrent p ipeline is available for each collection in a TFS instance. Every Visual Studio
Enterprise subscriber contributes an additional concurrent pipeline to TFS. You can buy
additional private pipelines from the Visual Studio Marketplace. For more information
visit https://www.visualstudio.com/en-us/docs/build/concepts/licensing/
concurrent-pipelines-tfs. You are required to configure at least one agent in order
to build and deploy with Team Foundation Server, since it is a prerequisite for running
a build or deployment in a given machine. Agents for TFS require no license, and a TFS
license covers implementing any number of agents for on-premises TFS.

For VS Team Services, three hosted agents (two Windows and one Linux) are available
with a free 240 minutes of build/deploy time altogether, while a single job is limited to 30
minutes. This is provided with one concurrent pipeline available free for VSTS, allowing
you to run a single build or a release at a given time. With the purchase of first hosted
concurrent pipeline 240 minutes total limit and 30 minutes job limit is removed. For more
information on VSTS pipelines and to identify required number of pipelines for your team
size, visit https://www.visualstudio.com/en-us/docs/build/concepts/licensing/
concurrent-pipelines-ts. You can purchase hosted or private pipelines for VSTS as
required by your teams. For private pipelines visit https://marketplace.visualstudio.
com/items?itemName=ms.build-release-private-pipelines and for hosted pipelines
visit https://marketplace.visualstudio.com/items?itemName=ms.build-release-
hosted-pipelines. Any number of on-premises agents can be added free of charge, to VS
Team Services. Visit https://www.visualstudio.com/en-us/products/visual-studio-
team-services-pricing-vs.aspx and view the Additional Services tab for pipeline pricing.

Agent of TFS/VSTS is often referred to as a build agent (actually a build/deployment
agent), due to build automation was introduced well before release managment. Agent is
capable of building source code, executing unit test, executing deployments, configuring the
target computers, and installing other software required to run your application.

Agent Pool
The agent pool specifies the security context and runtime environment for agents
(see Figure 1-7). By default, four agent pools are available for VS Team Services, and one
pool is available for on-premises TFS. Agent pools are scoped to the TFS Application Tier
or VS Team Services Account. You can create agent pools on your own. Below are the four
agent pools available in VSTS:

•	 Hosted Pool – Available with one free hosted agent on Windows
for VS Team Services. When you buy each hosted pipeline,
additional hosted agent get added to the VS Team Services
Account.

•	 Hosted VS2017 Pool – Available with one free hosted agent on
Windows with Visual Studio 2017 for VS Team Services. When you
buy each hosted pipeline, additional hosted agent get added to
the VS Team Services Account.

https://www.visualstudio.com/en-us/docs/build/concepts/licensing/concurrent-pipelines-tfs
https://www.visualstudio.com/en-us/docs/build/concepts/licensing/concurrent-pipelines-tfs
https://www.visualstudio.com/en-us/docs/build/concepts/licensing/concurrent-pipelines-ts
https://www.visualstudio.com/en-us/docs/build/concepts/licensing/concurrent-pipelines-ts
https://marketplace.visualstudio.com/items?itemName=ms.build-release-private-pipelines
https://marketplace.visualstudio.com/items?itemName=ms.build-release-private-pipelines
https://marketplace.visualstudio.com/items?itemName=ms.build-release-private-pipelines
https://marketplace.visualstudio.com/items?itemName=ms.build-release-private-pipelines
https://www.visualstudio.com/en-us/products/visual-studio-team-services-pricing-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-team-services-pricing-vs.aspx

Chapter 1 ■ Understanding the Concepts

8

Figure 1-7.  Agent pools in VSTS

•	 Hosted Linux Pool – Available with one free agent on Linux for
VS Team Services. When you buy each hosted pipeline, additional
hosted agent get added to the VS Team Services Account.

•	 Default Pool – Available in both VS Team Services and
on-premises TFS for setting up your own agents. This pool can
be used to register private on-premises agents. You can add more
agent pools similar to this pool, in both VSTS and TFS. You will
learn more details about agent pools in Chapter 2.

Chapter 1 ■ Understanding the Concepts

9

Agent Queue
An agent queue provides access to a given agent pool containing one or more build/
release agents. This allows more than one operation to be queued for execution, using an
agent available in the pool. Agent queues are scoped to a team’s project collection, so they
can be used with build/release definitions in multiple team projects (see Figure 1-8).

Figure 1-8.  Agent queues overview

Chapter 1 ■ Understanding the Concepts

10

Agent
An agent runs inside an agent pool. An agent carries out operations sequentially assigned
to an agent queue. Agents are capable of building solutions, delivering artifacts to target
environments, installing applications, and configuring target environments. An agent can
run on the following platforms:

•	 Windows (hosted pool for VS Team Services and on-premises for
TFS)

•	 OSX

•	 Linux

An agent’s system capabilities are defined as name–value pairs, ensuring that your
build/release definition is run only by agents that meet the capability criteria specified by
you. Environment variables and some capabilities like installed software and frameworks
are added automatically. You can define additional user capabilities manually for an
agent (similar to tags behavior in legacy XAML build agents). See Figure 1-9.

Figure 1-9.  Agent system and user capabilities

Chapter 1 ■ Understanding the Concepts

11

Security—Agent Pool—Agent Queue
You can assign a TFS user or group to the following roles for an agent pool or for all the
pools (see Figure 1-11):

•	 Reader – Can only view the agent pools

•	 Service Account – May view agents, create sessions, and listen for
jobs from the agent pool

•	 Administrator – Can administer, manage, view, and use agent
pools

Figure 1-10.  Hosted agents and on-premises agents’ “line of sight”

Agent should have “line of sight” (capability to receive and transmit data from agent
to target machines) to target environment so as to perform deployment or configuration
action on the target. By default, VS Team Services’ hosted agents have connectivity to
Windows Azure websites and Windows servers running in Azure. To perform deployment
actions targeting on-premises servers, you have to register at least one on-premises agent
in an agent pool of VS Team Services. This agent should have “line of sight” to the target
on-premises machines in order to perform deployments in them. See Figure 1-10.

Chapter 1 ■ Understanding the Concepts

12

Figure 1-11.  Add user to agent pool roles

You can assign a TFS user or group to the following roles for an agent queue or for all
the queues (see Figure 1-12):

•	 Reader – Can only view the agent queues

•	 User – Can view and use agent queues, but cannot manage or
create agent queues

•	 Creator – Can create and view agent queues, but cannot manage
or use agent queues (all queues only)

•	 Administrator – Can administer, manage, view, and use agent
queues

Chapter 1 ■ Understanding the Concepts

13

Refer lessons in Chapter 2 to learn how to set up agent pools, queues, and agents.

Build Definition
A build definition is a template for your build in which you will set up the required steps
for packaging your solution into deployable artifacts and the steps for executing unit tests.

A build definition has few tabs. Each tab serves a different purpose. (How to create a
build definition is covered in Chapter 3.) See Figure 1-13.

Figure 1-13.  Build definition tabs

Figure 1-12.  Add user to agent queue roles

The Options tab lets you build for multiple configurations, create a work item on
build failure, and so forth. (How to build multi-configurations is explained in Chapter 3.)
See Figure 1-14.

http://dx.doi.org/10.1007/978-1-4842-2811-1_2
http://dx.doi.org/10.1007/978-1-4842-2811-1_3
http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 1 ■ Understanding the Concepts

14

The Repository tab is where you define the repository to use for the build. See
Figure 1-15.

Figure 1-14.  Options tab

Figure 1-15.  Repository tab

Chapter 1 ■ Understanding the Concepts

15

The Variables tab lets you define the custom variables to be used in the build steps.
In build steps, you can use variables in $(variablename) format. Predefined build
variables are explained at https://www.visualstudio.com/en-us/docs/build/define/
variables. The “Allow at Queue Time” option lets you decide if a given build variable
can be altered by the person who is queuing the build (for CI builds, the specified value is
used by default since no human is involved in the queuing). See Figure 1-16.

Figure 1-16.  Variables tab

Figure 1-17.  Triggers tab

The Triggers tab is where you define how the build should be triggered. It could
be continuous integration, scheduled, or manual if the option is not predefined. See
Figure 1-17.

www.allitebooks.com

https://www.visualstudio.com/en-us/docs/build/define/variables
https://www.visualstudio.com/en-us/docs/build/define/variables
http://www.allitebooks.org

Chapter 1 ■ Understanding the Concepts

16

The General tab lets you define the build’s number format, timeouts, agent queue to
use, and demands for agent capabilities. See Figure 1-18.

Figure 1-18.  General tab

Figure 1-19.  Retention tab

The Retention tab is where you can define for how long to keep the builds. See
Figure 1-19.

Chapter 1 ■ Understanding the Concepts

17

The History tab lets you view the definition update history and allows you to
compare definition json files. You have the option to roll back changes to the definition.
See Figure 1-20.

Figure 1-20.  History tab

Figure 1-21.  Build tab

The Build tab is where you define build steps. You can add steps from the Task catalog
by clicking Add build step. You have the ability to reorder/change build steps. To remove a
build step, you can click on the red X next to the selected step, as shown in Figure 1-21.

Chapter 1 ■ Understanding the Concepts

18

The task catalog pops out when you click on Add build step (see Figure 1-22).

Figure 1-22.  Task catalog

Release Definition
In a release definition, you will be setting up tasks for performing deployments,
configuring, provisioning environments, and testing your application.

A release definition also has few tabs, similar to the build definition. Each tab serves
a different purpose. (How to create a release definition is covered in Chapter 3.)

The Artifacts tab allows you to select the build definition(s) to link with the release,
so that their artifacts are made available to the release for deployment. See Figure 1-23.

http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 1 ■ Understanding the Concepts

19

The Variables tab lets you define the variables common to all release environments
(global variables). Predefined release variables are explained at https://www.visual
studio.com/en-us/docs/release/author-release-definition/understanding-
tasks#predefvariables. See Figure 1-24.

Figure 1-24.  Variables tab

Figure 1-23.  Artifacts tab

The Triggers tab lets you define release triggers based on artifacts or schedules. See
Figure 1-25.

https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks#predefvariables
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks#predefvariables
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks#predefvariables

Chapter 1 ■ Understanding the Concepts

20

In the General tab, you can provide a format for naming the releases. See Figure 1-26.

Figure 1-25.  Triggers tabs

Figure 1-26.  General tab

Chapter 1 ■ Understanding the Concepts

21

The Retention tab allows you to define the period of time for which a completed
release should be retained. See Figure 1-27.

Figure 1-27.  Retention tab

Figure 1-28.  History tab

The History tab allows you to view and compare the release definition change
history. However, there is no rollback feature available like in builds. See Figure 1-28.

In the Environments tab, you can define multiple environments for the release
pipeline. See Figure 1-29.

Chapter 1 ■ Understanding the Concepts

22

You can also add multiple agent phases and server phases to a release environment
in this tab (see Figure 1-30).

Figure 1-29.  Environments tab

Figure 1-30.  Add agent or server phase to an environment

Chapter 1 ■ Understanding the Concepts

23

A server phase can only contain Manual Intervention tasks at the moment. An agent
phase can contain multiple tasks (the same task catalog as in build definition will be
opened when Add tasks is clicked). You can set demands for an agent, and if required, a
release environment can run on multiple agents in parallel. You can also define a timeout
for an agent and skip artifacts’ downloading if it is not required for that given agent. See
Figure 1-31.

Figure 1-31.  Defining agent options

Chapter 1 ■ Understanding the Concepts

24

Each environment has a menu allowing cloning, the creation of environment-
specific variables, and more. See Figure 1-32.

Figure 1-32.  Release environment menus

Chapter 1 ■ Understanding the Concepts

25

The environment configuration Approvals tab allows you to define pre-/post-
approvers for deployment with a few options. See Figure 1-33.

Figure 1-34.  Variables tab

Figure 1-33.  Approvals tab

The environment configuration Variables tab allows you to define variables for a
given environment. See Figure 1-34.

Chapter 1 ■ Understanding the Concepts

26

The environment configuration Deployment conditions tab lets you define how
the deployment is triggered. It can be based on a previous successful/partially successful
environment(s) or on a schedule, or can be done manually or after release creation. You
can also define here whether multiple releases are allowed at the same time in a given
environment or not. See Figure 1-35.

Figure 1-35.  Deployment conditions tab

Figure 1-36.  General tab

In the environment configuration General tab you can specify an environment
owner and how they should be notified. See Figure 1-36.

You will learn to use build and release definitions in Chapter 3.

http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 1 ■ Understanding the Concepts

27

Security for Build & Release Definitions
You can define who should have permission to edit build and release definitions, manage
builds, and so on by using the security setting for builds and release management.
The security settings allow you to prevent unauthorized modification of your build
and release pipelines. The build/deployment configuration may cause disaster during
execution in your production or other environments if incorrectly configured. Having
proper access control in place for build and release definitions is mandatory to ensure the
safety of your production and other environments.

All build definition permissions can be accessed by clicking on Security in the Builds
tab (see Figure 1-37).

Figure 1-37.  Accessing project-level security for builds

You can set up group and individual user permissions for all project-level build
definitions. See Figure 1-38.

Chapter 1 ■ Understanding the Concepts

28

Figure 1-38.  Setting project-level security for builds

An individual build permission can be set by clicking on Build Definitions ➤ Security.
See Figure 1-39.

Chapter 1 ■ Understanding the Concepts

29

Or, in edit (click Edit in build definition menu shown in Figure 1-39 open it in edit
mode) mode of the build definition, you can click the Security button. See Figure 1-40.

Figure 1-39.  Accessing individual build permissions from build definition menu

Figure 1-40.  Accessing individual build permissions from edit mode

In the opened build definition security popup window, permissions can be set for
TFS groups or individual users by adding the user or group and selecting the relevant
permissions. See Figure 1-41.

Chapter 1 ■ Understanding the Concepts

30

To access the permissions for all release definitions, you can click on All release
definitions ➤ Security. See Figure 1-42.

Figure 1-41.  Setting permissions for individual build definitions

Figure 1-42.  Accessing all release definitions security for a team project

Chapter 1 ■ Understanding the Concepts

31

For all release definitions in the team project, permissions can be set for an
individual user or TFS groups by adding the user or group to the permissions popup
window. See Figure 1-43.

Figure 1-43.  Setting permissions for all release definitions in a team project

To set permissions for an individual release definition, click on its menu ➤ Security.
Then, set permissions for the release definition for individual users or TFS groups. See
Figure 1-44.

Chapter 1 ■ Understanding the Concepts

32

What Is New in Team Services Build Layouts?
At the time of writing of this book, team services’ new build definition layout is in a
preview phase. You can enable it from your profile menu or from the Builds tab.

From the profile menu, you can enable Preview features for yourself or for the Team
Services account. See Figure 1-45.

Figure 1-44.  Setting permissions for an individual release definition

Figure 1-45.  Enabling a new build editor using the profile menu link

Chapter 1 ■ Understanding the Concepts

33

Or, under the Builds tab, enable New Build Editor. Once enabled, it appears for new
build definitions and for existing definitions when you edit them. See Figure 1-46.

Figure 1-46.  Enabling new build editor in Build & Release tab

Figure 1-47.  Using an empty process or selecting a template to create a build definition

When creating a New Build Definition, it would appear as you see it in Figure 1-47.
You can select a template or go with an empty template (process).

The build definition name can be edited as shown in Figure 1-48.

Chapter 1 ■ Understanding the Concepts

34

You have the option to save or save & queue. Save will just save the build definition.
Save & queue will save the definition and queue a new build using the definition. See
Figure 1-49.

Figure 1-48.  Editing the build definition name

Figure 1-49.  Save or Save & Queue a build

You can select a repository and enable Advanced settings on the top right. This will
allow you to define additional options such as Tag source code for successful builds or
Always clean local repository before getting source code. See Figure 1-50.

Chapter 1 ■ Understanding the Concepts

35

The Remove task option is available at the top right side of the page. You can select a
task you want to remove (NuGet restore is selected in Figure 1-51) and click on Remove to
remove it from the definition.

Figure 1-50.  Setting advanced options in Get sources window

Figure 1-51.  Removing task from build definition

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Understanding the Concepts

36

Add Task allows you to add new tasks to the build definition. The task catalog loads
super-fast via Add Task, compared to the old layout of build definitions. See Figure 1-52.

Figure 1-52.  Adding new tasks to build definition

You can drag and drop tasks to the required position in the build definition tasks
list from the task catalog. This allows you to easily manage the task sequence since you
can decide in between which two tasks the new task should be added. (Even if you have
added the task to a wrong position, you can drag and drop them to reorder the task list,
like the behavior in the previous build layout.) See Figure 1-53.

Chapter 1 ■ Understanding the Concepts

37

The Variables tab is not much changed other than the fresh look in the new layout.
However, it shows signs of giving different categorizations to variables, as current
variables are grouped as Process variables. See Figure 1-54.

Figure 1-54.  Variables tab

Figure 1-53.  Drag and drop tasks to build definition from the task catalog

The Triggers tab has a new look and feel, and you can use it to define the triggers for
the build, such as continuous integration or scheduled. See Figure 1-55.

Chapter 1 ■ Understanding the Concepts

38

Figure 1-55.  Triggers tab

The Options tab now includes Agents details, where you can select an agent pool
to be used to locate an agent for the build. In addition to the agent pool you can define
other general properties of a build definition, like build number format and so forth. The
Demands section allows you to define the capabilities required in the agent in order to
execute the build. These will be further discussed in Chapter 3. See Figure 1-56.

Figure 1-56.  Options tab

http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 1 ■ Understanding the Concepts

39

The Retention tab that allow you to define how long a completed build should be
retained, has a new look compared to previous layout. See Figure 1-57.

Figure 1-58.  History tab

Figure 1-57.  Retention tab

The History tab has the update history of the build definition. It allows the comparison
of edits and the rollback of changes made to a build definition. See Figure 1-58.

All the tabs in the build definition have the option of discarding unsaved changes. All
tabs also have a link to view a summary page for the build and a Queue link to queue a
new build.

Chapter 1 ■ Understanding the Concepts

40

Queuing a Build
Clicking on Queue in the build definition (the Queue new build button is available in
each build definition menu item as well) will pop up a “Queue build” window. You can
select the agent pool and specify a source version (default empty selects latest version).
Variables defined with “Settable at queue time” in the Variables tab can be provided
with different values, if required, before queuing the build in the popup window below.
You can even have an option to select a shelveset (https://www.visualstudio.com/
en-us/docs/tfvc/suspend-your-work-manage-your-shelvesets) if you are using Team
Foundation Version Control (TFVC: https://www.visualstudio.com/en-us/docs/
tfvc/overview). The Demands tab allows you to alter the demands for agent capabilities
in a build definition at queue time. The demands are used to select an agent capable of
building the source code defined in the build. See Figure 1-59.

Figure 1-59.  Queuing a build

Build/Release REST API
Team Services and TFS support REST API for build and release. You can obtain build/
release definition data and build/release data with these APIs. You can also trigger
builds/releases and many other actions with these APIs. Refer to the following articles
to learn more after completing the lessons in this book. (You will be able to understand
more about these APIs when you know how to work with build and release management.)

https://www.visualstudio.com/en-us/docs/integrate/api/build/builds
https://www.visualstudio.com/en-us/docs/integrate/api/rm/overview

https://www.visualstudio.com/en-us/docs/tfvc/suspend-your-work-manage-your-shelvesets
https://www.visualstudio.com/en-us/docs/tfvc/suspend-your-work-manage-your-shelvesets
https://www.visualstudio.com/en-us/docs/tfvc/overview
https://www.visualstudio.com/en-us/docs/tfvc/overview
https://www.visualstudio.com/en-us/docs/integrate/api/build/builds
https://www.visualstudio.com/en-us/docs/integrate/api/rm/overview

Chapter 1 ■ Understanding the Concepts

41

Recommendations
•	 Build once and then use the same binaries and/or packages

across the deployment pipeline until it reaches production or is
stopped due to not getting acceptance to move to the next stage.

•	 TFS/VSTS Build is solely to perform build tasks. Do not use
deployment tasks in build definitions.

•	 Limit the artifact download to required sub-items for improved
performance (extension can be used: https://marketplace.
visualstudio.com/items?itemName=chamindac.chamindac-
vsts-release-task-download-artifacts). Chapter 2 discusses
how to install and manage extensions.

•	 Have a separate continuous integration build without generating
artifacts in order to maintain a stable code base, and have a
dedicated release build with artifacts for deployment purposes.

•	 Apply proper build versioning and apply build version number to
deployed packages.

•	 Make sure to restore any pre-production (QA, UAT/Staging)
environment to the same version as production before deploying
to ensure stable deployment and stable application functionality
on production.

These recommendations will be explained in practical terms in the lessons in the
next chapters.

Summary
In this chapter, we have looked at the DevOps concepts briefly and identified continuous
integration, continuous delivery, and deployment. These help an organization to
establish DevOps. To become a DevOps-enabled organization, a company must improve
its way of work as well by enacting required cultural and process improvements. The
Team Foundation Server’s tools and concepts, such as build pools, agents, build & release
definitions, and overview, are given to prepare you for taking the lessons, which start from
Chapter 2.

The next chapter focuses on getting the required pools, queues, and agents set up in
different platforms to enable you to follow the rest of the chapters/lessons on builds and
deployments.

https://marketplace.visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-download-artifacts
https://marketplace.visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-download-artifacts
https://marketplace.visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-download-artifacts
http://dx.doi.org/10.1007/978-1-4842-2811-1_2
http://dx.doi.org/10.1007/978-1-4842-2811-1_2

43© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_2

CHAPTER 2

Configuring TFS2017/VSTS
Build/Release Agents &
Marketplace Extensions

By following the guidelines discussed in this chapter, you will acquire knowledge on how
to set up new agent pools for TFS and VSTS, configure TFS agents for different scenarios,
and use extensions from Visual Studio Marketplace to enhance features of TFS/VSTS.

Lesson 2.01 – Set Up Agent Pools and Queues
The aim of this lesson is to provide a step-by-step guide to creating new agent pools
and queues in TFS/VSTS. Also, this lesson contains instructions for setting required
permissions for agent pools and queues.

Prerequisites: You should have a VS Team Services account, created by following
the instructions found at https://www.visualstudio.com/en-us/docs/setup-admin/
team-services/sign-up-for-visual-studio-team-service, or have a TFS2017 server.
Ensure you have been granted Manage permission for all pools. For more information on
agent pool permissions, see Chapter 1.

Create a new team project called “Project X” by following the instructions at
https://www.visualstudio.com/en-us/docs/setup-admin/create-team-project. We
will use this project in the lessons in this chapter.

2.01.1 Set Up Agent Pool
The agent pool specifies the security context and runtime environment for agents. An
agent pool can be defined to group agents to be used for the same purpose (for example,
all agents doing builds can be assigned to an agent pool called “BuildAgentPool”) or to
group agents based on projects that they are used for.

	 1.	 In Team Foundation Home, click on Settings, then select
Agentpools and then New pool. This creates the new pool.
See Figure 2-1.

https://www.visualstudio.com/en-us/docs/setup-admin/team-services/sign-up-for-visual-studio-team-service
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/sign-up-for-visual-studio-team-service
http://dx.doi.org/10.1007/978-1-4842-2811-1_1
https://www.visualstudio.com/en-us/docs/setup-admin/create-team-project

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

44

	 2.	 Provide a name (“ProjectX Release Pool”) for the agent pool in
the popup window. You can uncheck “Auto-Provision Queues
in all Projects” to prevent provisioning a queue for each
existing project. If you choose not to select this option, you
can still create a queue for an existing pool in any team project
at a later time. See Figure 2-2.

Figure 2-1.  New agent pool

Figure 2-2.  Creating an agent pool

	 3.	 If you see the error message shown in Figure 2-3, that means
you do not have the Administrator role (this role provides
Manage permissions) for All Pools.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

45

Ask your TFS administrator/VSTS Account Owner to promote
you to an Administrator to All Pools to continue with the
lesson. (Or you could use your own VSTS account to continue
with the lesson.) See Figure 2-4.

Figure 2-3.  Agent pool Manage permission error

Figure 2-4.  Assign administrator role for all pools

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

46

	 4.	 You can create a new pool after being assigned Manage
permission for All Pools. For this pool, uncheck
“Auto-Provision Queues in all Projects.” Name the pool
“Project X Release Pool.” See Figure 2-5.

Figure 2-5.  Creating a pool without provisioning queues

Figure 2-6.  Creator of the pool is added as the administrator to the pool

You will be assigned to the Administrator role of the pool
automatically once it is created. See Figure 2-6.

	 5.	 Create another pool with “Auto-Provision Queues in all
Projects” option checked. See Figure 2-7.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

47

	 6.	 You will be able to see the queue in each project for the pool
created with “Auto-Provision Queues in all Projects” checked,
but not for the pool created without “Auto-Provision Queues
in all Projects” checked. See Figure 2-8.

Figure 2-7.  Creating a pool with provisioning queues

Figure 2-8.  All team projects provisioned with a queue

In the preceding steps, we created two agent pools. One pool is provisioned with a
queue in each team project. The other pool is not provisioned with a queue for any team
projects.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

48

2.01.2 Set Up Agent Queue
Since we have unchecked “Auto-Provision Queues in all Projects” while setting up the
agent pool “ProjectX Release Pool,” no queues are created for the pool. To provision a
queue for a team project, follow the steps given here.

	 1.	 In the team project “Project X,” click on Settings ➤ Agent
Queues and then click New queue. See Figure 2-9.

Figure 2-9.  New queue

Figure 2-10.  Creating a queue with an existing pool

	 2.	 Select the existing pool created earlier. Please note that
the other pools cannot be selected since they are already
provisioned. See Figure 2-10.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

49

	 3.	 You will be assigned with the Administrator role for the created
queue. The project administrators and build administrators
also have the administrator role for the queue. See Figure 2-11.

Figure 2-11.  Creator assigned to administrator role in queue

	 4.	 You can create a new queue directly from the team project
with a new pool. If you do this, “Auto-Provision Queues in all
Projects” is not applied to that pool, and other team projects
will not be provisioned with the queue. To understand that
scenario, follow the steps given next.

In a team project, go to Settings ➤ Select Agent Queues, then
click New queue. See Figure 2-12.

Figure 2-12.  Creating a new pool while creating a queue

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

50

	 5.	 This will create a pool and then provision the queue in the
team project. See Figure 2-13.

Figure 2-13.  Queue provisioned in the team project, and a pool created

Figure 2-14.  Pool created from project while creating a queue

	 6.	 Go to Account Setting ➤ Agent Pools. Click on the pool that
was created while creating the queue in the preceding steps.
You will notice that the pool does not have “Auto-Provision
Queues” checked. See Figure 2-14.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

51

We have looked at steps to provision an agent queue using an existing pool as well as
at creating a new agent pool while provisioning the queue.

2.01.3 Auto-Provision Queues for Existing Pools
Even if you select “Auto-Provision Queues” from the popup menu of the pool, it will not
affect any existing team projects. You will have to provision the queue for each team
project manually, if required. Follow these steps to understand how it works:

	 1.	 Click on the popup menu for “Pool from ProjectX” in the
Agent Pools tab of the account settings. Then, select “Auto-
Provision Queues.” See Figure 2-15.

Figure 2-15.  Selecting auto-provision in an existing pool

	 2.	 Open another team project and navigate to Settings, Agent
Queue tab. You can see that the preceding step did not
provision the queue for the pool in other team projects. In
Figure 2-16, you can see that Project X (the team project you
used to create the new queue while creating a new pool)
is provisioned with a queue, while other team projects are
not provisioned with the queue (one other team project,
EventBooking, is shown in the figure).

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

52

	 3.	 If required, you can provision the queue for other existing
team projects by selecting the existing pool. See Figure 2-17.

Figure 2-16.  Queue not getting provisioned for other existing team projects

Figure 2-17.  Selecting existing pool and provisioning a queue

	 4.	 If you create a new team project, all pools marked with
“Auto-Provision Queues” will be provisioned for that new team
project. Right now, all pools except ProjectX Release Pool are
checked with “Auto-Provision Queues.” See Figure 2-18.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

53

	 5.	 Create a new team project called “ProjectY” to verify what we
just discussed. Do so by going through the following steps.
(You need to have Team Project Collection administrator
permission to create a new team project.) Go to the Project
Collection administration page and click on New Team
Project. See Figure 2-19.

Figure 2-18.  ProjectX Release Pool not set for auto-provision

Figure 2-19.  Creating new team project VSTS

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

54

You can see in the figure a VSTS account projects overview
page. On-premises TFS collection administration pages will
look something like what you see in Figure 2-20.

Figure 2-20.  Creating a new team project in TFS 2017

Figure 2-21.  New team project

	 6.	 Provide the team project name and select your preferred
version control. Click the Create project button to create the
new team project. See Figure 2-21.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

55

	 7.	 In ProjectY, created in the previous step, queues are
provisioned for all pools except for the Project X Release Pool,
which does not have “Auto-Provision Queues” selected. See
Figure 2-22.

Figure 2-22.  Queues provisioned for pools specified with auto-provision

In this lesson, you have discovered the ways to provision queues for existing team
projects, as well as how the “Auto-Provision Queues” option in an agent pool behaves,
both when selected and when unselected.

2.01.4 Assign Permissions for Agent Pools and Queues
There are a few different roles in agent pools and queues, which were explained in
Chapter 1. You can assign individuals or a group of users to each of these roles.

	 1.	 Select the pool or queue and click Roles, then add the
relevant user or group to the preferred role. See Figure 2-23.

http://dx.doi.org/10.1007/978-1-4842-2811-1_1

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

56

	 2.	 By default, Project Collection Administrators, Project
Administrators, and Build Administrators are granted the
Administrator role for a queue in TFS2017. See Figure 2-24.

Figure 2-23.  Adding user to roles in agent queue

Figure 2-24.  Agent queue default permissions

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

57

Permissions in agent pools and queues can be specified as
describe in above steps. To learn more details on agent pool
and queue roles refer to Chapter 1.

2.01.5 Create Agent Pool for Build Farm
Let’s create a new agent pool called “BuildFarm” to be used in the lessons to follow in this
chapter.

	 1.	 Create an agent pool in TFS called “BuildFarm” by selecting
Agent pools from the main page and then clicking New pool
(let’s use it as build server pool), with the option checked to
auto-provision agent for all projects. See Figure 2-25.

Figure 2-25.  Creating a pool as build farm

When you create a pool in one project collection, it is available to other project
collections in the TFS, and all projects are provisioned with a queue.

In this lesson, you created agent pools and queues in a few different ways. You
allowed some agent pools to be accessible to all team projects and some agent pools to
only be accessible to a given project. Limiting access to a pool for a given team project
will be required when setting up deployment agents to be used with release management
for a given project. Such agents could even reside in the client’s production environment
and be assigned specific permissions for users who are using roles available for agent
pools and queues.

http://dx.doi.org/10.1007/978-1-4842-2811-1_1

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

58

Link VS Team Services Account to Azure
Subscription for Billing Purposes
You can link the VS Team Services Account to an Azure subscription in order to purchase
build/release pipelines in addition to the provided free pipeline. It is not mandatory
to link VSTS to an Azure subscription to complete the lessons to follow, since they can
be performed with the available free pipeline. Chapter 1 contains more information on
agents, pipelines and the difference of them in on-premises TFS and VSTS.

To link a Team Services account to an Azure subscription, you need a VS Team Services
account for which you are the account owner. You should have an Azure subscription with at
least co-administrator permissions, and the subscription should not be one of the following:

•	 Azure Free Trial (https://azure.microsoft.com/en-us/offers/
ms-azr-0044p/)

•	 Free Azure AD Subscription (https://technet.microsoft.com/
library/dn832618.aspx)

•	 From Cloud Solution Provider Program (https://partner.
microsoft.com/en-US/Solutions/cloud-reseller-overview)

Changing the owner of a Team Services account is possible in the Settings tab, as
shown in Figure 2-26.

Figure 2-26.  Changing VSTS account owner

http://dx.doi.org/10.1007/978-1-4842-2811-1_1
https://azure.microsoft.com/en-us/offers/ms-azr-0044p/
https://azure.microsoft.com/en-us/offers/ms-azr-0044p/
https://technet.microsoft.com/library/dn832618.aspx
https://technet.microsoft.com/library/dn832618.aspx
https://partner.microsoft.com/en-US/Solutions/cloud-reseller-overview
https://partner.microsoft.com/en-US/Solutions/cloud-reseller-overview

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

59

You need to remove the spending limit of the Azure subscription indefinitely and
link your credit card, even for Azure subscriptions that come with your VS subscription.
VS subscription–granted free credits cannot be used as payment for Team Services
features or users.

You can link your VS Team Services account in the Azure portal. Detailed
instructions can be found here: https://www.visualstudio.com/en-us/docs/setup-
admin/team-services/set-up-billing-for-your-account-vs.

Once the billing for VSTS is set up as per the instructions, you can purchase more
hosted/private pipelines via Azure portal, which will take you to relevant VS Marketplace
purchase pipeline page. See Figure 2-27.

Figure 2-27.  Purchasing pipelines via Azure portal for VSTS

To calculate the pricing for agents and other VS Team Services users, use the
pricing calculator available here: https://azure.microsoft.com/en-us/pricing/
calculator/?service=visual-studio-team-services.

Lesson 2.02 – Set Up Build/Release Agent
In this lesson, you will learn how to set up a build/release agent in the same domain as
TFS. This will give you the knowledge required to set up your own build farm in your
domain, set up agents for your QA environment deployments, and so on.

Prerequisites: You should have Manage permission for the pool that you are setting
up the agent for, or you should have followed Lesson 2.01.5 and created a pool with name
BuildFarm. You need to have PowerShell 3.0 or later available in the agent machine in
which you are going to set up a build/release agent for TFS.

https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-billing-for-your-account-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-billing-for-your-account-vs
https://azure.microsoft.com/en-us/pricing/calculator/?service=visual-studio-team-services
https://azure.microsoft.com/en-us/pricing/calculator/?service=visual-studio-team-services

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

60

There are no known prerequisites for agents set up with Windows 10. Windows 7,
8.1, and Server 2012 R2 require the C Runtime update (https://support.microsoft.
com/en-us/kb/2999226).

2.02.1 Set Up Build/Release Agent for On-Premises
TFS—Interactive Mode
Running a build agent in interactive mode is required if you want to run UI tests with your
builds (test automation is discussed in Chapter 9).

	 1.	 In the machine you are setting up the a gent, open TFS/VSTS
web portal in a browser. Go to Agent pools tab of the project
collection administration page and click Download agent.
See Figure 2-28.

Figure 2-29.  Download agent from Agent Queues tab

Figure 2-28.  Download agent from Agent pools tab

Or, in the Agent Queues tab of the team project administration
page, click Download agent. See Figure 2-29.

https://support.microsoft.com/en-us/kb/2999226
https://support.microsoft.com/en-us/kb/2999226
http://dx.doi.org/10.1007/978-1-4842-2811-1_9

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

61

	 2.	 Download the Windows agent by clicking the Download
option on the popup page. See Figure 2-30.

Figure 2-30.  Downloading Windows agent

Figure 2-31.  Extracted agent files

	 3.	 Extract the downloaded .zip file to a directory on your hard
drive. See Figure 2-31.

	 4.	 Using the command prompt, run config.cmd and
provide a team foundation server URL, such as
http://youttfsserver:8080/tfs.

	 5.	 For authentication, use default type Integrated. This will
use your current, logged-in user to make the connection
to TFS when configuring the agent. The user needs to have
Manage permission to the agent pool. More information on
authentication types is provided at the end of this lesson.

http://youttfsserver:8080/tfs

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

62

	 6.	 Provide the agent pool name and a name for the agent. Use
default values for the working folder. Select N by pressing
Enter to say No for the “run as service” question, since we
want to run the agent in interactive mode. See Figure 2-32.

Figure 2-32.  Configuring agent in interactive mode

Figure 2-33.  Agent configured but offline

	 7.	 With this, agent will be set up in the pool but will be offline.
See Figure 2-33.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

63

	 8.	 To bring the agent online, execute run.cmd. See Figure 2-34.

Figure 2-34.  Bringing agent online

This will start to run the agent in interactive mode, with the
current logged-on user being used for the agent machine.
The agent will be shown as online if you view it in the Agent
Queues tab or Agent Pools tab. See Figure 3-35.

Figure 2-35.  Agent is online

Running an agent in interactive mode is not as stable as running an agent as a
Windows service. If the agent is stopped because of an issue, it must be started again
manually. Getting an interactive mode agent to start automatically is described at
http://donovanbrown.com/post/auto-start-build-agent-in-interactive-mode.

We can use an online agent to perform build or deployment tasks. If you want to
remove an agent because it is no longer in use, you can do so by taking it offline before
removing. The removal of an agent from a pool is described in the next lesson.

http://dx.doi.org/10.1007/978-1-4842-2811-1_3#Fig35
http://donovanbrown.com/post/auto-start-build-agent-in-interactive-mode

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

64

2.02.2 Remove Windows Build/Release Agent
You can remove an agent from a pool if it is no longer in use. The following steps describe
how to remove an agent.

	 1.	 Open command prompt and change directory to the agent
folder.

	 2.	 Run config.cmd with the remove argument. See Figure 2-36.

Figure 2-36.  Removing an agent

When an agent is removed, it will be fully unconfigured and will no longer be visible
in the agent pool.

2.02.3 Set Up Build/Release Agent for On-Premises TFS
and Run as Windows Service
Let’s configure an agent to run as a Windows service. This allows the agent to be stable
and recover automatically in a failure, like other Windows services.

	 1.	 Open command prompt with Administrator privileges.
Running the command prompt as an administrator is
required in order to configure the agent as a service.

	 2.	 Run config.cmd and provide the TFS URL.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

65

Figure 2-37.  Configure agent as a service

Figure 2-38.  Agent running as a Windows service

	 3.	 This time, use Negotiate as the authentication type. This will
prompt for a username and password in order to connect to
the server to configure the agent. Provide the user credentials
that have Manage permission for the agent pool.

	 4.	 Provide the agent pool name and agent name.

	 5.	 Provide the work folder path or use default _work folder.

	 6.	 Choose to run agent as a service.

Provide your domain or local user credentials to run the agent. See Figure 2-37.

	 7.	 After the Agent is configured and online, as shown in Figure 2-37,
you can see a windows service is running in the services
window of the agent machine. See Figure 2-38.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

66

Figure 2-40.  Creating personal access token

The preceding steps guided you in setting up an agent as a service. An agent that
is set up as a Windows service is sufficient to perform most of the code-building and
deployment tasks in the Windows platform.

2.02.4 Set Up Build/Release Agent in an Untrusted
Domain for VS Team Services or On-Premises TFS
Prerequisites: If you are using on-premises TFS, it should be available securely and
publicly in order to set up agents in untrusted domains. In other words, your TFS server
should have a public URL set up with SSL and should be accessible publicly via https
to the untrusted domain or workgroup machine you are using to set up the agent. If
you are using VS Team Services, it is available publicly via https. Refer to https://www.
visualstudio.com/da-dk/docs/setup-admin/websitesettings for more details.

	 1.	 Create a PAT (Personal Access Token), with the user having
Manage permissions for the agent pool. This PAT will be used
to configure agent in untrusted domain/workgroup machine
for VSTS or TFS. Click on your profile picture and click
Security. See Figure 2-39.

Figure 2-39.  Access Security tab with a user having Manage pool permissions

	 2.	 In the opened Security window of your profile, select Personal
access tokens tab and click Add. See Figure 2-40.

https://www.visualstudio.com/da-dk/docs/setup-admin/websitesettings
https://www.visualstudio.com/da-dk/docs/setup-admin/websitesettings

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

67

Figure 2-41.  Define scope and create token

Figure 2-42.  Generated PAT only available once

	 3.	 Then, select Agent Pools (read, manage) scope and, finally,
hit the Create Token button on the bottom left corner of the
screen. See Figure 2-41.

	 4.	 Once the PAT is created, it will be displayed only once for you to
copy. Copy it and keep it in a secure location. See Figure 2-42.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

68

	 5.	 Download the VS Team Services or on-premises TFS Windows
build/release agent.zip file from the Agent Pools tab or Agent
Queues tab. Extract the zip file content to a directory on the
agent machine. (Refer to 2.02.1, steps 1, 2, and 3.)

	 6.	 Open a command prompt (or PowerShell) as administrator
and change directory to the extracted agent folder.

	 7.	 Run config.cmd and provide a TFS secure URL.

	 8.	 Enter authentication type as PAT and enter the PAT created.

	 9.	 Provide agent pool name.

	 10.	 Enter the build agent run as user, or use the default network
service user. You can even use a domain user in the agent
machine domain. If a local user in the agent machine is
provided, do not provide as .\username; just provide the
username for a local user. If .\username is provided, you
might get an error saying the user cannot be granted Log on as
service permission. See Figure 2-43.

Figure 2-43.  Configure agent in untrusted domain

	 11.	 With the preceding details, agent gets configured and comes
online. See Figure 2-44.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

69

Figure 2-44.  Untrusted domain agent running online

Figure 2-45.  Download agent for Ubuntu Linux

You can follow the preceding steps to set up an agent in a different domain than
your TFS server domain or in a workgroup. The same steps can be used to create an
on-premises agent for VS Team Services. If your TFS is available via Internet (making
TFS on-premises available via Internet is described at https://www.visualstudio.com/
en-us/docs/setup-admin/tfs/admin/setup-secure-sockets-layer), you can set up a
deployment agent in any machine that has an Internet connection, which allows you to
access your TFS URL via internet.

2.02.5 Set Up Build/Release Agent in Ubuntu Linux
Prerequisites: You have an Ubuntu16.04LTS available to you, and you should have admin
access on the machine. Based on the instructions from the previous lesson, you have
created a PAT in your TFS or VS Team Services. You have the option of using credentials,
instead of PAT, to configure an agent by using Negotiate, if you are using on-premises TFS.

	 1.	 Download the Linux agent for Ubuntu 16.04 from agent
download popup. See Figure 2-45.

https://www.visualstudio.com/en-us/docs/setup-admin/tfs/admin/setup-secure-sockets-layer
https://www.visualstudio.com/en-us/docs/setup-admin/tfs/admin/setup-secure-sockets-layer

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

70

Figure 2-46.  Extracting downloaded agent

Figure 2-47.  Executing ./config.sh to configure agent

	 2.	 Run Ubuntu terminal and execute the following commands
to create a directory and extract the downloaded file to it. See
Figure 2-46.

mkdirmyagent&& cd myagent
tar zxvf ~/Downloads/downloadedAgentFileName.tar.gz

Execute ./config.sh to configure the agent. Provide the Team Services or TFS URL
and provide PAT. (Negotiate credentials for on-premises TFS can be used instead of PAT.
Read more details on credentials at the end of this lesson.) See Figure 2-47.

	 3.	 Enter agent pool to add the agent and specify an agent name.
See Figure 2-48.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

71

Figure 2-48.  Configuring agent for provided agent pool

Figure 2-49.  Agent on Ubuntu is configured and offline

	 4.	 Agent is configured but will be offline. See Figure 2-49.

	 5.	 Once the agent is configured, execute ./run.sh to bring the
agent online. See Figure 2-50.

Figure 2-50.  Executing ./run.sh brings the agent online

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

72

Figure 2-51.  Agent goes offline if terminal is closed or Ctrl+C is pressed

Figure 2-52.  Install the agent as a service in Ubuntu. Agent is still offline.

Figure 2-53.  Agent online as a service in Ubuntu

	 6.	 But if you close the terminal or press Ctrl+C, the agent will go
offline. See Figure 2-51.

	 7.	 To install the agent as a service in Linux, execute the following
command from the agent folder. See Figure 2-52.

sudo ./svc.sh install

	 8.	 To run the agent as a service, execute the following command.
After executing the command, the agent will come online.
You can press Ctrl+C or close the terminal. The agent will
remain running since it has been configured as a service. See
Figure 2-53.

sudo ./svc.sh start

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

73

	 9.	 In a new terminal, you can test the service status by executing
the following command. See Figure 2-54.

sudo ./svc.sh status

Figure 2-54.  Check agent service status

	 10.	 To stop service, execute the following:

sudo ./svc.sh stop

	 11.	 To uninstall, first stop the service and then execute the
following:

sudo ./svc.sh uninstall

In this lesson, you have learned how to set up a Windows build/release agent in
the same domain as TFS and for untrusted domains. Setting up agents in an untrusted
domain helps to set up the required agents for production deployment scenarios. PAT
(Personal Access Token) helps to set up agents in untrusted domains for on-premises
TFS as well as set up private agents for VS Team Services. There are three types of
authentications for configuring agents, and it is expected that users involved with all three
types will have agent pool Manage (Administrator) permission:

•	 Integrated – uses logged-on user to connect and configure agent

•	 Negotiate – allows user to enter user credentials

•	 PAT – uses personal access token

The preceding authentication is used only for registering the agent. Once configured,
an OAuth token (for more information on OAuth tokens and TFS/VSTS visit https://www.
visualstudio.com/en-us/docs/integrate/get-started/auth/oauth) is downloaded
and will be used by the agent to listen to incoming jobs from TFS or VSTS. When a build
is running, another OAuth token is used depending on the scope defined in the build
definition. This will be further discussed in the build definition lessons in Chapter 3.

https://www.visualstudio.com/en-us/docs/integrate/get-started/auth/oauth
https://www.visualstudio.com/en-us/docs/integrate/get-started/auth/oauth
http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

74

Figure 2-55.  Browsing the marketplace

Lesson 2.03 – Install and Manage Extensions
from Marketplace
In this lesson, you will learn how to install extensions from Visual Studio Marketplace
(https://marketplace.visualstudio.com/vsts) to enhance the functionality of TFS
and VS Team Services. Many of these extensions are free, and some are paid.

Prerequisites: You should have administrator permissions for the TFS project
collection.

2.03.1 Install Extension from Marketplace
You can install extensions from Visual Studio Marketplace (https://marketplace.
visualstudio.com/vsts) to Team Services or TFS to enhance the functionality.

	 1.	 Click on Browse Marketplace in the top-right corner of the
TFS web portal and select the marketplace component you
want to install. Click on it. See Figure 2-55.

Figure 2-56.  Installing an extension

	 2.	 In the marketplace component window, click on the Install
button. This will take you to the installation page after
downloading the extension to your team project collection.
See Figure 2-56.

https://marketplace.visualstudio.com/vsts
https://marketplace.visualstudio.com/vsts
https://marketplace.visualstudio.com/vsts
https://marketplace.visualstudio.com/vsts

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

75

Figure 2-57.  Confirming the installation of extension

	 3.	 Select the project collection and click Confirm to install. See
Figure 2-57.

This will allow you use the installed extension. You will be doing this often while you
go through the rest of the chapters.

2.03.2 Manage Extension
The Manage Extensions page allows you to manage the extensions already installed from
Marketplace.

	 1.	 To manage extensions, click Manage extensions in the
top-right corner of the TFS web portal while you are on a team
project home page. See Figure 2-58.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

76

Figure 2-59.  Managing extensions

	 2.	 You can disable or uninstall an extension from the project
collection by clicking the respective option on the page. See
Figure 2-59.

Figure 2-58.  Navigate to Manage extensions

Uninstalling or disabling an extension might affect the build/release definitions
already using them. If it is an extension providing additional functionality to any other
area of TFS/VSTS, that functionality will revert to the default behavior, once the extension
is unintalled or disabled. Make sure to analyze the impact before you uninstall or disable
an extension that is already in use.

2.03.3 Request an Extension
If you do not have Project Collection Administrator permissions as a TFS user, you can
request an extension by following these steps:

	 1.	 Click on Browse Marketplace in the top-right corner of the
TFS web portal and go to your preferred extension page, then
click Install.

	 2.	 This will prompt you to provide a reason for requesting the
extension and allow you to submit the request. See Figure 2-60.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

77

Figure 2-60.  Requesting extension

Figure 2-61.  Approving extension installation request

	 3.	 Once the request is confirmed, your team project collection
administrators will be notified via email about the request
for the extension. The TFS project collection administrator
is then able to install the requested extension by clicking
Manage Extension and navigating to the Requested tab. Your
team project collection administrator can either approve and
install the extension or decline it. See Figure 2-61.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

78

Figure 2-62.  View reason for the request of extension

Figure 2-63.  Declining extension installation request

	 4.	 Clicking the “5 months ago” link will show the reason for the
request. See Figure 2-62.

	 5.	 If declining the extension, the administrator should provide
a reason and reject the request for extension install. See
Figure 2-63.

You have learned how to request that an extension be installed for TFS/VSTS. The
options available to the TFS/Project collection administrator regarding approving or
declining the request, are also described.

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

79

Figure 2-64.  Downloading an extension

2.03.4 Download Extensions for Installation
You have learned in previous lessons how to install an extension directly to TFS/VSTS
by browsing Marketplace via the TFS/VSTS web portal. If you want to download an
extension to install it in offline mode, follow these instructions:

	 1.	 You have the option of downloading the extension by directly
browsing to https://marketplace.visualstudio.com/vsts.
Click on the extension you prefer and click download (use
a private/incognito browsing window if you do not see the
download button on the component page). See Figure 2-64.

Uploading a downloaded extension is described in the next lesson.

2.03.5 Browse and Manage Local Extensions—
On-Premises TFS
On-premises TFS allows you to manage any extensions installed in TFS on the Browse
local extensions page.

	 1.	 Click Manage Extensions at the top-right corner of the TFS
web portal.

	 2.	 On the Manage Extensions page, click on Browse local
extensions. This is not available for VS Team Services. See
Figure 2-65.

Figure 2-65.  Browse local extensions

https://marketplace.visualstudio.com/vsts

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

80

Figure 2-66.  Options available on manage extensions page

Figure 2-67.  Upload new extensions or manage existing local extensions

	 3.	 You can view the installed extensions and, by clicking on
them, you will be allowed to install them to any other team
project collection as well. At the bottom of the page, you can
find the Manage extensions button. Click on it to go to the
team foundation server’s installed extension gallery. See
Figure 2-66.

	 4.	 Here, you have the option of uploading extensions that were
downloaded from Marketplace or the extensions you have
developed (developing an extension is discussed in Chapter 13).
You can download updates for the extensions that are
already installed. To install an extension to another team
project collection, you can click on Install. See Figure 2-67.

In this short lesson, you learned how to install and manage TFS extensions form
Marketplace. Extensions will be useful in achieving various build and release tasks.
There are extensions that will enhance the other functionalities of TFS and VSTS as well.
Creating your own build release extensions is described in Chapter 13.

http://dx.doi.org/10.1007/978-1-4842-2811-1_13
http://dx.doi.org/10.1007/978-1-4842-2811-1_13

Chapter 2 ■ Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions

81

Summary
Looking back at what you have learned throughout this chapter, you now know how to set
up build and release agent pools, agent queues, and agents, and how to install extensions
from Marketplace. This will allow you to set up build server farms and connect release
environments to TFS or VSTS so as to automate deployments. Installing the TFS agent is
not sufficient for a server/machine to work as a build server. The machine working as a
build server should have Visual Studio versions and any other software that is required to
build your application.

In the next chapter, we will take a closer look at builds and deployments of web
applications to Azure platform and IIS.

83© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_3

CHAPTER 3

ASP.Net Web Application
Deployment to Azure and IIS

The objective of this chapter and the lessons it encompasses is to guide you step by step
in building and deploying ASP.NET MVC and ASP.NET Core web applications to Azure
and IIS using TFS/Team Services build and release management.

Lesson 3.01 – Create ASP.Net Applications &
Build with Team Foundation Builds
This lesson will guide you in creating web applications and testing them in Visual Studio
2017. Also, it provides guidance for building ASP.NET MVC web applications and .NET
Core web applications with Team Foundation builds and tokenizing configurations with
builds.

Prerequisites: You have VS Team Services or TFS 2017, and you have set up a team
project with Team Foundation version control in it (https://www.visualstudio.com/
en-us/docs/setup-admin/create-team-project). You have installed Visual Studio 2017
with ASP.NET and web development on your computer. .NET Core tools are included in
VS 2017 (https://www.microsoft.com/net/core#windowsvs2017). See Figure 3-1.

Figure 3-1.  ASP.NET and web development

https://www.visualstudio.com/en-us/docs/setup-admin/create-team-project
https://www.visualstudio.com/en-us/docs/setup-admin/create-team-project
https://www.microsoft.com/net/core#windowsvs2017

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

84

3.01.1 Create ASP.Net MVC App in VS 2017
Let’s create an MVC web application using the available template.

	 1.	 In VS 2017, connect to the team project in Team Explorer.
Then, open Source Control Explorer from Team Explorer
home. In Source Control Explorer, expand your Team Project
and create a folder called Main. See Figure 3-2.

Figure 3-2.  Main folder in team project

	 2.	 Create a new solution called “MVC5” using a blank solution
template; put it in the Main folder. Make sure to check the
“Add to Source Control” option to allow it to be added to
TFVC repository.

	 3.	 Right click on the MVC solution in the Solution Explorer and
select Add ➤ New Project.

	 4.	 In the popup dialog, select C# Web ➤ ASP.NET Web
Application (.Net Framework) project, name the project
“MVCWebApp,” and click OK.

	 5.	 In the next popup window, select the MVC template and
make sure authentication is set to Individual User Accounts
(if another authentication is selected, click on Change
Authentication and select Individual User Accounts). We
are doing this to get account-controller functionality in order
to get a database connection so as to demonstrate connection
string parameterization. Click OK. See Figure 3-3.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

85

	 6.	 This will add a new MVC web application project to the
solution. See Figure 3-4.

Figure 3-3.  Creating the MVC project

Figure 3-4.  MVC web application created

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

86

	 7.	 Build the solution in Visual Studio. This will download
the required NuGet packages to the Packages folder in the
Solution folder. In VS 2017, this Packages folder is excluded
from the “pending changes to source control” repository by
default. This is a really great improvement over VS 2015, where
you had to undo the Packages folder in the Source Control
Explorer (Adding packages folder increase TFS database sizes
unnecessarily while those packages are readily available to
download on demand). These NuGet packages can be restored
in Team Foundation builds using a build task. This will be
explained in a future lesson in this chapter. See Figure 3-5.

	 8.	 Run the MVCWebApp set as startup in Visual Studio, and you
will see a browser window loaded with the ASP.NET MVC
sample project.

	 9.	 Stop the running application in Visual Studio. Check in
the solution with the MVC web application to the Team
Foundation version-control repository using the Team
Explorer Pending Changes window. See Figure 3-6.

Figure 3-5.  Packages folder excluded from pending changes by default

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

87

In this lesson, you have created an MVC web application project and checked it in to
the source control repository. You will be using this solution in the next lesson to create a
build in the Team Foundation Server team project.

3.01.2 Build ASP.Net MVC App in TFS/VSTS
Let’s create a build definition in the team project for the MVC web application solution
that you created in the previous lesson.

Figure 3-6.  Check the solution in to source control

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

88

■■ Note T he screen layouts involved in creating build definitions use the new build editor
(in preview at the time of writing of this book) in this lesson to get you familiar with the
new changes that will be available in the future. Enabling this preview layout is explained
in Chapter 1. If you are using TFS on-premises (TFS 2017 does not have this build editor),
the layouts of the build definition tabs are slightly different. In the lesson, both layouts will
be shown in cases where the changes are significant. The current layout tab name will be
mentioned for the same fields if they are shown in a different tab in the new preview layout.
You can identify the correct tab to use by comparing new preview layouts and current
layouts of the build definition described in Chapter 1.

	 1.	 Navigate to the TFS/VSTS web portal of the relevant team
project and click the Build & Release tab.

	 2.	 In the Build & Release tab submenu, click on Builds.

	 3.	 Click the New Definition button to create a new build
definition, and click empty process to use an empty template
for the build definition. See Figure 3-7.

Figure 3-7.  Creating an empty process template build definition—new preview layout

http://dx.doi.org/10.1007/978-1-4842-2811-1_1
http://dx.doi.org/10.1007/978-1-4842-2811-1_1

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

89

In the current build layout, you will be presented with another
window from which to select the repository to use for the
build. You have to select the agent pool to be used. The agent
pool should have an agent capable of building the project.
Agents, agent pools, and queues are described in Chapter 2.
Click Create to create the build definition. See Figure 3-9.

Figure 3-8.  Creating empty process template build definition—current layout

If you are using TFS on-premises (which does not have the
new preview build layouts at the time of writing of this book)
or not using the preview build layouts in VSTS, you will see a
popup window from which to select a build template. Select
Empty and click on Next. See Figure 3-8.

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

90

	 4.	 If you are using the current layout, you will see build tabs
similar to those in Figure 3-10 after Step 3 of this lesson.

Figure 3-9.  Creating build definition: selecting repository—current layout

Figure 3-10.  Created build definition—current layout

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

91

In the new preview layout (you will be in this window after
step 3), name the build definition “MVC.CI” (CI stands for
continuous integration build; details are explained in a later
step of the lesson) by clicking Process in the Tasks tab of the
build definition (see Figure 3-11). In the current layout, you
have to click the Save button (see Figure 3-10) to provide a
name for the build definition.

Figure 3-11.  Naming the build definition—new preview layout

Figure 3-12.  Save build definition—new preview layout

	 5.	 Click on Save to save the build definition (see Figure 3-12; for
current layout click Save. Refer to Figure 3-10).

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

92

Figure 3-13.  Save build definition—new preview layout

In the popup window, you can click on Choose Folders and then create folders
to organize the build definitions in a team project (there is a similar window in the
current layout with a field to provide the build definition name). Create a folder named
“WebAppBuilds” and select it, click OK, and then click Save to save the new build
definition. See Figure 3-13.

	 6.	 In the Get sources window, select the path type of the MVC
solution folder to be Map. Remove the default added Cloak
Type Workspace mapping. After removing it the Get Sources
window will look like as shown in Figure 3-14. A similar activity
can be performed in the Repository tab of the current layout.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

93

	 7.	 In the Options tab (General tab of the current layout) select
the agent queue. The selected agent queue must have an
agent and must have Visual Studio 2017 installed in order to
build the web application project. You can add demands for
the agent in the Options tab (General tab in current layout).
For more details, refer to Chapter 1’s agent capabilities topic.
Authorization scope is set to current project since the build
is building code from only the current team project. See
Figure 3-15.

Figure 3-14.  Save build definition—new preview layout

http://dx.doi.org/10.1007/978-1-4842-2811-1_1

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

94

	 8.	 Go to the Triggers tab and set a trigger to build on each
check-in (code submitted to repository) to the MVC folder.
See Figure 3-16.

Figure 3-15.  Select the agent queue and set demands—new preview layout

Figure 3-16.  Build for each check-in—new preview layout

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

95

	 9.	 Go to the Variables tab and define variables for
BuildConfiguration and BuildPlatform to use release and any
cpu, so that the solution will be built for release configuration
on any cpu platform, enabling the app to run o n x86 or x64
machines. These will be created automatically if you create
a build definition with the Visual Studio build template.
The “Settable at queue time” option allows the value to be
changed when queuing a build. See Figure 3-17.

Figure 3-17.  Variables for configuration and platform—new preview layout

Figure 3-18.  Add NuGet Installer—new preview layout

	 10.	 Click on Add Task in Tasks tab (or on Add Build Step in Builds
tab of current layout) of the build definition. From the Task
Catalog’s Package tab, Add the NuGet Installer task to the
build definition. See Figure 3-18.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

96

	 11.	 In the NuGet Installer task added, select the MVC solution
and set it to restore packages. This will enable the restoring
of required NuGet packages before building the solution. See
Figure 3-19.

Figure 3-19.  Variables for configuration and platform—new preview layout

	 12.	 Add a Visual Studio build task from the Task Catalog to
the Tasks tab (Build tab in current layout), then provide
the MVC solution path as the solution to build. Use the
defined variables BuildConfiguration and BuildPlatform for
Configuration and Platform fields, respectively. When using
variables in build steps, follow the syntax of $(variablename);
for example, BuildConfiguration should be used as
$(buildConfiguration). There are predefined build variables
available. You can find more information on predefined
build variables at https://www.visualstudio.com/en-us/
docs/build/define/variables. Select Visual Studio 2017 as
the Visual Studio Version. Set the “Clean” option to allow a
rebuild of the solution each time a build runs. See Figure 3-20.

https://www.visualstudio.com/en-us/docs/build/define/variables
https://www.visualstudio.com/en-us/docs/build/define/variables

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

97

	 13.	 Save the definition and then queue a build. This will pop up
the Build Queue window explained in Chapter 1. Click the
Queue button on the popup window. You will see a build
begin running. The Build should be successful; its status is
shown in the build summary. This build does not publish any
output. It just compiles the solution. See Figure 3-21.

Figure 3-20.  Visual Studio build step—new preview layout

http://dx.doi.org/10.1007/978-1-4842-2811-1_1

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

98

Figure 3-22.  Build notifications

Figure 3-21.  Build succeeds

	 14.	 You can do code changes in the MVC web application
and check them in to source control to see a build getting
automatically queued. This allows you to make sure each
code submitted is validated, using a build to verify the healthy
compiling state of the source code. To further enhance this
validation, you can add unit tests to be run with the build,
which will be described in Chapter 9 on test automation.
You can set up notifications in VSTS/TFS to send you/the
team an email alert upon build failure and so forth. To set up
notifications, go to Settings ➤ Notifications and click New.
Then, select Build in the Category column and A build fails
in the Template column. Click Next to configure build failure
notification email. See Figure 3-22.

http://dx.doi.org/10.1007/978-1-4842-2811-1_9

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

99

	 15.	 You can set up a few options for notifications, such as sending
emails to all team members or specific team members, or
to a set of given email addresses, etc. Further, you can set
up notifications for different filter criteria, such as sending
a notification if a given named build definition fails. After
setting criteria and other parameters, click Finish to set up the
notification. After notification setup, you have the option to
enable or disable it in the Notifications tab. Do experiments
with notification criteria by failing (you can submit code
with compilation errors to fail a build) and making builds
successful. See Figure 3-23.

Figure 3-23.  Build notifications settings

	 16.	 To generate deployable output for the MVC web application,
let’s clone this build and create a release build definition. To
clone the build, go to Build & Release ➤ All Definitions, click
on the link menu (…) of the definition, and then click Clone.
See Figure 3-24.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

100

	 17.	 Save the cloned definition with the name MVC5.Rel.

	 18.	 In the Triggers tab, disable the “Continuous Integration”
option to prevent the build from getting triggered for each
code submitted to the source control repository.

	 19.	 In the Visual Studio Build task, add the following MSBuild
arguments:

/p:DeployOnBuild=true /p:WebPublishMethod=Package
/p:PackageAsSingleFile=true /p:OutDir="$(build.stagingDirectory)"

These arguments will publish the website for XCopy mode
deployments, and a deployment package will be created,
which can be deployed with msdeploy. See Figure 3-25.

Figure 3-24.  Cloning the build

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

101

Figure 3-25.  Build arguments

	 20.	 Add the Copy and Publish step/task from the Task Catalog
to the build definition, to enable publishing the artifacts
after the build completed. The provided copy root is
$(build.stagingDirectory), which is used as OutDir
in the Visual Studio Build step. Set contents to copy as
_PublishedWebsites*** and provide a name for Artifact
Name field. Set Artifact Type to Server. See Figure 3-26.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

102

Figure 3-26.  Copy and Publish Artifacts task

	 21.	 Leave the Options tab of the definition, as it was already set up
when the MVC.CI build was created.

■■ Note B uild multi-configuration allows you to build for multiple configurations. You can
specify variables such as BuildConfiguration in the Variables tab and use it to build multiple
configurations, as shown in Figure 3-27, which uses the current layout of build definitions.
Skip this step (21) and go to step 22, if you do not want to try out multiple configurations now.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

103

Then, use the variables in the Multi-configuration Multipliers
field, in the Options tab to build multiple configurations.
See Figure 3-28.

Figure 3-27.  Multiple build configurations

Figure 3-28.  Configure multi-configuration build

This allows you to build multiple configurations in a single build. You can see in
Figure 3-29 that the build is building for both debug and release configurations. After
trying out the multiple configurations, reverse the actions performed in this step (21)
before proceeding to next step (22).

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

104

	 22.	 The “Create work item on failure” option allows you to
create a work item and assign it to the build requestor if a
build fails. See Figure 3-30.

Figure 3-29.  Build executes for multiple configurations

Figure 3-30.  Creating work item on build failure

	 23.	 In the Build definition, the Retention tab allows you to define
rules for retaining builds after completion of build execution.
See Figure 3-31.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

105

	 24.	 Queue a build, and once the build is completed, you can
view and download the artifacts to deploy them manually,
if required. Or, you can explore and view the artifacts. From
the Explorer view, if necessary, you can partially download the
artifacts. The MVCWebApp folder contains the site-published
files for xcopy deployments. MVCWebApp_Package contains
a web-deployment package that can be deployed using
msdeploy. See Figure 3-32.

Figure 3-31.  Retaining completed builds

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

106

In this lesson, you have built an MVC web application with Team Foundation builds
and generated deployable artifacts, which you can download using the Artifacts explorer
of the completed build summary page. Artifacts explorer lets you download individual
build artifact items so that you can filter only required components for your target server.
For example a target DB server may need only database componets to be installed as web
server only requires web application componets to be deployed.

3.01.3 Tokenize ASP.Net MVC 5 App Configurations
with Build
The connection strings, application settings, and so on can be tokenized by the build to
allow them to be updated at the time of deployment.

	 1.	 Open the web.config file and add a new app setting called
“ClientId” and provide a value for it. See Figure 3-33.

Figure 3-32.  Explore artifacts

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

107

	 2.	 In web.release.config (configuration used in the TFS build),
set the transformations as follows (see Figure 3-34):

<connectionStrings>
<add name="DefaultConnection" connectionString="__defaultDBConnection__"
providerName="System.Data.SqlClient" xdt:Transform="SetAttributes"
xdt:Locator="Match(name)"/>
</connectionStrings>
<appSettings>
<add key="ClientId" value="__ClientId__"
xdt:Transform="SetAttributes" xdt:Locator="Match(key)"/>
</appSettings>

Figure 3-33.  App settings and connection strings

Figure 3-34.  Transformations in web.release.config

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

108

	 3.	 Open the MVCWebApp.csproj file in a notepad or using the
Team Foundation web portal for editing. Add the following
Target to enable config transformations:

<Target Name="TransformConfigFiles" AfterTargets="AfterBuild"
Condition="'$(TransformConfigFiles)'=='true'">
<ItemGroup>
<DeleteAfterBuild Include="$(WebProjectOutputDir)\Web.*.config" />
</ItemGroup>
<TransformXml Source="Web.config" Transform="$(ProjectConfigTrans
formFileName)" Destination="$(WebProjectOutputDir)\Web.config" />
<Delete Files="@(DeleteAfterBuild)" />
</Target>

This transformation target will process transformations in
web.release.config and update the web.config file with tokens.
It will then remove the web.debug.config and web.release.
config files from the built artifacts. This will allow a clean
build output with just one web.config. See Figure 3-35.

Figure 3-35.  Transformation target in .csproj

	 4.	 In the MVC5.Rel build definition, add the following MSBuild
Argument to the Visual Studio Build step to allow config
transformations with builds:

/p:TransformConfigFiles=true

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

109

	 5.	 Queue a new build and download the web config from
the artifacts explorer of the completed build, to verify the
configuration tokens have been applied. See Figure 3-36.

Figure 3-36.  Transformation applied in web.config

	 6.	 However, if you download the .SetParameters.xml file from
the MVC5WebApp_Package, it only has the connection string
parameter and deployment target. See Figure 3-37.

Figure 3-37.  SetParameters file only has connection string.

	 7.	 To get the app settings in web.config to the .SetParameters.
xml file, add a Parameters.xml file to the MVC5WebApp
project. See Figure 3-38.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

110

	 8.	 Add the following content to the Parameters.xml file
(see Figure 3-39):

<parameters>
<parameter name="ClientIdParam" defaultValue="__ClientId__">
<parameterEntry kind="XmlFile" scope="\\web.config$"
match="/configuration/appSettings/add[@key='ClientId']/@value" />
</parameter>
</parameters>

Figure 3-38.  Adding Parameters.xml file

Figure 3-39.  Parameters.xml

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

111

	 9.	 With this, when the build generates .SetParameters.xml it will
include the tokenized parameter for the app settings as well.
See Figure 3-40.

Figure 3-40.  .SetParameters.xml file with tokenized app settings

	 10.	 As a next step, we need to get the “IIS Web Application Name”
value tokenized. To do this, we create a publish profile by right
clicking on the web project and then clicking Publish.

	 11.	 In the opened window in VS 2017, click on the Publish screen,
select IIS, FTP, etc., and click the Publish button.
See Figure 3-41.

Figure 3-41.  IIS, FTP publish

	 12.	 Set Publish method on the Connection screen to be Web
Deploy Package. For Package location and Site name, provide
token values __MVC5WebAppZip__ and __MVC5SiteName__
respectively. The package location provided here is not
important, as it will be overridden by the TFS build. See
Figure 3-42.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

112

In the next screen, i.e., Settings, set Configuration field to
Release and click the Save button. See Figure 3-43.

Figure 3-42.  Web deploy package publish profile

Figure 3-43.  Save publish profile

	 13.	 This will generate a Cutom.pubxml file in Properties ➤
PublishProfiles in the web application project. Rename the file
to TFSPublish.pubxml. See Figure 3-44.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

113

	 14.	 Check in/submit the TFSPublish.pubxml file to the source
control repository.

	 15.	 In the build definition, modify the MSBuild Arguments in the Visual
Studio Build screen to use the publish profile. See Figure 3-45.

/p:DeployOnBuild=true should be changed to
/p:DeployOnBuild=true;PublishProfile="TFSPublish"

Figure 3-44.  Save publish profile

Figure 3-45.  Change build arguments to use publish profile

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

114

	 16.	 Queue a new build and download the .SetParameters.xml file
from the build artifacts. It has applied the token for the IIS
Web Application Name parameter. See Figure 3-46.

Figure 3-46.  IIS Web Application Name as parameter in .SetParameters file

In this lesson, you have enabled web configuration transformation and other
parameterization to enable the tokenizing of configurations and other parameters so as
to allow them to be changed at deployment time. This enables you to use the same binary
package to deploy into multiple targets (QA, UAT, etc.).

■■ Note  We have used preview build layouts in the previous lessons to get you familiar
with the upcoming changes to Build Editor in TFS/VSTS. From the next lesson onward, we
will be using the current layouts of build definitions since preview layouts are not available
to TFS 2017 on-premises at the time of writing this book. This will enable you to understand
the complexities in the build definitions in future lessons without getting confused by the
layout differences.

3.01.4 Create ASP.Net Core Web App in VS 2017
Let’s create a Core web application in Visual Studio 2017 so we can also build it with Team
Foundation builds in a later lesson.

	 1.	 Create a new solution named “Core1” in the Main folder.
Make sure to check the “Add to Source Control” box.

	 2.	 Right click on the solution and select Add ➤ New Project

	 3.	 In the popup dialog, select C# .NET Core ➤ ASP.NET Core
Web Application (.NET Core).

	 4.	 Name the project “CoreWebApp” and click OK. See Figure 3-47.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

115

	 5.	 Select Web Application template from the Core 1.0 templates
in the popup window. Make sure authentication is set to
Individual User Accounts (we are doing this to get account
controller functionality in order to get a database connection
so as to demonstrate connection string parameterization) and
click OK. See Figure 3-48.

Figure 3-47.  Creating core web application project

Figure 3-48.  Selecting Core web application template

	 6.	 This will add a new ASP.NET Core Web Application Project to
the solution.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

116

	 7.	 Set CoreWebApp as a startup project and run it to verify the
web app is running. It will load a browser window with the
default Core web application.

	 8.	 Check the Core1 solution source code into the Team Foundation
version control repository to enable it to be built with TFS builds.

In this lesson, you have created a Core web application with Visual Studio 2017 and
submitted the code to the source control repository. This allows you to set up a TFS build
to generate deployable artifacts with the available source code in the repository.

3.01.5 Build ASP.Net Core Web App with TFS Build
Let’s create a build definition with which to build the Core web application created in the
previous lesson.

	 1.	 In the Build tab, click the New button to create a build
definition for Core.CI using an empty template definition.
This build is going to be used to verify the code is stable in the
.NET core web application added to the repository.

	 2.	 Add BuildConfiguration and BuildPlatform variables in the
Variables tab with values of release and any cpu, respectively.

	 3.	 Map the source control path $/yourteamproject/Main/Core1
in the Repository tab.

	 4.	 In the Triggers tab, select Continuous Integration and set the
path filter to $/yourteamproject/Main/Core1.

	 5.	 Add the Run command line build step from the Task Catalog’s
Utilities tab to the build definition. Set the Tool to dotnet and
Arguments to restore. This will prepare the environment
(agent machine) to build .NET Core applications. See Figure 3-49.

Figure 3-49.  Restore dotnet build step

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

117

	 6.	 Add a Visual Studio build step and set the solution path
to the Core1 solution. Type the Build Platform and Build
Configuration variables, defined in the Variables tab, into the
Platform and Configuration fields, respectively. This will build
the solution in both release and any cpu configurations. See
Figure 3-50.

Figure 3-50.  Build step to build the Core web application

	 7.	 In the General tab of the build definition, select an agent
queue that has an agent with Visual Studio 2017 available in it.
Set a demand for Visual Studio 2017 in the Demands section,
as shown in Figure 3-51.

Figure 3-51.  Demand for Visual Studio 2017

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

118

	 8.	 Queue a new build and verify the build status in the Build
Summary tab. The build should succeed in compiling the
solution.

	 9.	 Clone the build definition and create a Core1.Rel build
definition.

	 10.	 Add a new Command Line build step to the Core1.Rel
definition. Set Tool to dotnet, and for the Arguments
field, input publish -c $(BuildConfiguration). Expand
the Advanced section and set the working folder to
$/yourteamproject/Main/Core1/CoreWebApp (folder path
that contains the .csproj). Rename the Command Line step to
Run dotnet publish.

	 11.	 Rename the first Command Line step in the definition to Run
dotnet restore. See Figure 3-52.

Figure 3-52.  Run dotnet publish

	 12.	 Add the Archive Files build step from the Task Catalog Utility
tab to the build definition. Set the root folder for archiving to
CoreWebApp/bin/$(BuildConfiguration)/netcoreapp1.0/
publish. Uncheck the “Prefix root folder name to archive
paths” check box. Set archive type to zip. Let the “Archive file
to create” feild remain with the default value of $(Build.Ar
tifactStagingDirectory)/$(Build.BuildId).zip. This step will
package the published Core web application as a zip file.
See Figure 3-53.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

119

	 13.	 Add the Publish Build Artifacts build step from Task Catalog’s
Utility tab to the build definition. Set Path to Publish field to
$(Build.ArtifactStagingDirectory), Artifact Name field to Drop,
and Artifact Type to Server. See Figure 3-54.

Figure 3-53.  Add archive file step

Figure 3-54.  Publish Build Artifacts build task

	 14.	 Queue a build and download the artifacts. You will see that
a zip file named by build number is created and available to
download.

You have created a build definition with which to package Core web applications as
zip files, which can be used with release management to deploy the application to target
platforms, such as IIS and Azure App Service Apps.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

120

3.01.6 Tokenize ASP.Net Core Web App Configurations
with Build
Connections strings, application settings, and so on can be tokenized by the build to
allow them to be updated at the time of deployment.

	 1.	 In the .Net core web application inside Visual Studio,
open appsettings.json and add a few entries as shown.
The connection string should already be available. Add a
SiteSettings section as shown here (and see Figure 3-55):

"SiteSettings": {
"SiteTitle": "CoreApp Demo",
"ClientId": "4545445664656"
 },

Figure 3-55.  Adding application settings

Figure 3-56.  Copy of appsettings.json as token file

	 2.	 Browse to the physical folder containing appsettings.json and
make a copy of it in the same folder, naming it appsettings.
json.token. Add this file to source control using Source
Control Explorer. See Figure 3-56.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

121

	 3.	 Open appsettings.json.token and edit the values to be tokens
by adding prefixes and suffixes of __ (double underscore).
These tokens can be replaced at the deployment time to
values required for the target environment. See Figure 3-57.

Figure 3-57.  Tokenizing settings

	 4.	 In Source Control Explorer, create a folder called BuildScripts
in the Core1 solution folder and add a new PowerShell script
file named TransformTokens.ps1. Add the following content
to the script file:

$TokenFiles = gci $Env:BUILD_SOURCESDIRECTORY -recurse
-include "*.token"

foreach ($TokenFile in $TokenFiles)
{
 $OrginalFile = $TokenFile -replace ".token", ""
 Write-Host $TokenFile
 Write-Host $OrginalFile

 if ([IO.File]::Exists($OrginalFile))
 {
 Remove-Item $OrginalFile -Force
 Rename-Item -Path $TokenFile -NewName $OrginalFile
 }
}

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

122

	 5.	 The preceding script will remove the appsettings.json with the
build and rename appsettings.json.token to appsettings.json.
This method keeps the tokenized parameters in the .token file
for each setting in appsettings.json.

	 6.	 Check in to source control the appsettings.json and
appsettings.json.token files and the build script
TransformTokens.ps1.

	 7.	 Edit the Core.Rel build definition and add a PowerShell build
step (PowerShell Script task). Set the script TransformTokens.
ps1 as the script to execute. See Figure 3-58.

Figure 3-58.  Transform tokens build step

	 8.	 Queue a build and download the build artifact zip file. Extract
it and check appsetting.json to verify that it contains the
tokens for the values in question. See Figure 3-59.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

123

In this lesson, you have enabled application settings transformations using a .token
file and a PowerShell script–based build task.

You have created two ASP.NET web applications, MVC and Core, in the previous
few lessons. Also, you have enabled configuration transformations for both of the web
applications and set up builds to generate deployable artifacts. In the next few lessons,
let’s get these applications deployed to IIS using Team Services release management.

Lesson 3.02 – Deploy ASP.NET Web Applications
to IIS
This lesson will provide a step-by-step guide to deploying ASP.NET MVC5 and .NET Core 1
web applications to IIS using the release management features of TFS and Team Services.

3.02.1 Deploy MVC5 Web Application to IIS
Prerequisites: Install IIS deployment extension to TFS/VSTS from Marketplace
https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.iiswebapp
(for instructions on installing Marketplace extensions, refer to Chapter 2). Set up
build/release agent on a machine that has line of sight to the machine with IIS. On

Figure 3-59.  Build transforming app settings

https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.iiswebapp
http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

124

Figure 3-60.  Create site in IIS and configure Web Deploy

the IIS machine, configure WinRM (https://msdn.microsoft.com/en-us/library/
aa384372(v=vs.85).aspx) and the Win RM IIS extension (http://www.dell.com/support/
Article/lk/en/lkbsdt1/SLN293852/EN). Allow file and printer sharing on the IIS machine
so that you can ping it from the agent machine. Make sure Web Deploy is installed on
the IIS machine (https://www.iis.net/learn/install/installing-publishing-
technologies/installing-and-configuring-web-deploy-on-iis-80-or-later).

	 1.	 Go to the IIS machine and set up a new website, MVC5Demo.
Right click on the site and select Deploy ➤ Configure Web
Deploy Publishing. See Figure 3-60.

	 2.	 Configure web deployment for the site by clicking on the
Setup button. See Figure 3-61.

https://msdn.microsoft.com/en-us/library/aa384372(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa384372(v=vs.85).aspx
http://www.dell.com/support/Article/lk/en/lkbsdt1/SLN293852/EN
http://www.dell.com/support/Article/lk/en/lkbsdt1/SLN293852/EN
https://www.iis.net/learn/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later
https://www.iis.net/learn/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

125

	 3.	 In the Build & Release tab of the TFS/VSTS web portal,
choose the Releases tab and click on the New Definition
button. See Figure 3-62.

Figure 3-61.  Setting up Web Deploy

Figure 3-62.  Create New Release

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

126

	 4.	 In the popup window, select Empty definition and click Next.

	 5.	 In the next popup window, select MVC5.Rel in the Source
(build definition) field. Select an agent queue for deployment
that has an agent set up in its pool. This agent should have
line of sight to your IIS machine. You will be adding demands
to select the correct agent in a later step in this lesson. See
Figure 3-63. Setting up agent pools, queues, and agents is
explained in Chapter 2.

Figure 3-63.  Creating release definition

	 6.	 Rename the definition to MVC5.ReleasePipline and rename
the first environment added by default to “QA.” See Figure 3-64.

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

127

	 7.	 Click on Run on agent and set the demands to locate the
correct agent (set the agent.name demand) for deployment.
See Figure 3-65.

Figure 3-64.  Renaming environment to QA

Figure 3-65.  Setting agent demand with agent name

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

128

	 8.	 Add the Windows Machine File Copy step from Task catalogue
to the release environment. Set the Source field to $(System.
DefaultWorkingDirectory)/MVC5.Rel/Drop/MVS5WebApp_
Package. For the Machines field, provide the FQDN
(Fully Qualified Domain Name) of the target IIS machine. For
Admin Login and Password, provide admin user and password
(you can use variables in the release environment to secure
the password; variables for release definitions are explained
in Chapter 1) of the target machine. Set a destination folder on
the target machine as a local path. (You do not have to create
the folder.) See Figure 3-66.

Figure 3-66.  Copy file command to copy deployment package to target

	 9.	 Add the Win RM IIS Web App Deployment task from the
Task Catalog to the release environment to Run on agent
phase. For the Machines field, provide target IIS machine
FQDN. Provide admin login information for the target IIS
machine. In the Deployment section, provide the Web
Deploy Package location (this is copied by previous task to
local folder of the IIS machine). Web Deploy Parameter File
should be .SetParameters.xml. Provide override values for
.Setparameters.xml in Override Parameters field. Each entry
should be in a separate line. See Figure 3-67.

name="IIS Web Application Name",value="MVC5Demo"
name="ClientIdParam",value="222223333344"
name="DefaultConnection-Web.config Connection String",
value="Server=localhost;Database=MVC5DemoDB;"

http://dx.doi.org/10.1007/978-1-4842-2811-1_1

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

129

Check the “Take App Offline” option to allow taking the web
application offline while deploying.

	 10.	 Save the release definition and create a new release by
clicking the Release menu arrow and then selecting Create
Release. See Figure 3-68.

Figure 3-67.  WinRM IIS app deployment

Figure 3-68.  Creating a new release

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

130

	 11.	 In the popup window, select the build number to use for the
deployment. Check the QA environment is set to trigger after
release creation and click the Create button. See Figure 3-69.

Figure 3-69.  Creating new release

Figure 3-70.  Release in progress

	 12.	 You can view the release progress by clicking on the release
name link, that appears aft er creating the release, on top of the
release definition and viewing the release log. See Figure 3-70.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

131

	 13.	 Once the deployment is completed, verify the IIS target
machine. The site should be up and running, and web.config
should have been applied with the values from the release
definition step. See Figure 3-71.

Figure 3-71.  Site deployed and web.config applied with values from release definition

You have successfully deployed the MVC web application to IIS via TFS release
management. You learned how to replace tokenized parameters in the .SetParameters file
with the environment-specific values via the IIS Win RM deployment component. The lesson
used target environment values directly in IIS WIN RM. Instead, you can create variables in
the environment by clicking on Environment menu ➤ Configure variables. These variables
then can be used in the IIS Win RM component. For example, instead of the following line

name="ClientIdParam",value="222223333344"
you can use
name="ClientIdParam",value="$(System.ClientID)"

to replace the ClientId parameter, if a variable named System.ClientId is defined. Follow
what you see in Figure 3-72:

Figure 3-72.  Variables for configuration parameters

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

132

3.02.2 Deploy .NET Core Web Application to IIS
Prerequisites: In addition to the prerequisites for Lesson 3.02.1, follow the instructions in
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis and set up the IIS
machine (make sure to install all features and roles, and the .NET Core Windows Server
Hosting bundle found at https://aka.ms/dotnetcore_windowshosting_1_1_0) with the
prerequisites of the .NET Core. However, skip the application configuration and deploy
the application topics in the link. Ensure WebDeploy is installed on the IIS machine and
on the agent machine (https://www.iis.net/learn/install/installing-publishing-
technologies/installing-and-configuring-web-deploy-on-iis-80-or-later).

	 1.	 Go to the IIS machine and set up a new WebSiteCore1Demo.
See Figure 3-73.

Figure 3-73.  Site settings for hosting core web application

	 2.	 Configure Web Deploy publishing for the site, copy the URL,
and add FQDN to make it accessible via network. Keep
it for use in a later step (https://CC-WIN2012.domainx.
local:8172/msdeploy.axd). See Figure 3-74.

https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://aka.ms/dotnetcore_windowshosting_1_1_0
https://www.iis.net/learn/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later
https://www.iis.net/learn/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later
https://cc-win2012.domainx.local:8172/msdeploy.axd
https://cc-win2012.domainx.local:8172/msdeploy.axd

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

133

	 3.	 Create a new release definition with an empty template
to deploy the .NET Core web application to IIS. Use the
same build as Core.Rel and set the agent pool to the team
project release agent pool. Name the definition
“Core1.ReleasePipeline.”

	 4.	 Change the name of the environment to “QA” and set
demands to locate the agent set up with web deploys (does
not have to be the IIS machine. Using the IIS machine and
setting up the agent there is also OK).

	 5.	 Add PowerShell tasks to the release environment and set it to
run the following inline PowerShell script:

param($MSDeployPath, $package, $websiteName, $computerName,
$deployUser, $deployUserPwd)

. "$MSDeployPath\msdeploy" -verb:sync -source:package=$package
-dest:contentPath="$websiteName",computerName=$computerName,
username=$deployUser,password=$deployUserPwd,AuthType="Basic"
-enablelink:contentlibextension -enableRule:AppOffline
-enableRule:DoNotDeleteRule -allowUntrusted

Write-Host "##vso[task.complete result=Succeeded;]DONE"

Figure 3-74.  Configure Web Deploy publishing

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

134

	 6.	 Pass the arguments seen in the following example to the script
(change the computer name FQDN and website name values
as per your machine and site names):

-MSDeployPath "C:\Program Files (x86)\IIS\Microsoft Web
Deploy V3" -package "$(System.DefaultWorkingDirectory)/Core.
Rel/drop/$(Build.BuildNumber).zip" -websiteName "Core1Demo"
-computerName "https://CC-WIN2012.domainx.local:8172/
msdeploy.axd?site=Core1Demo" -deployUser "domainx\chamindac"
-deployUserPwd "Donkey1"

See Figure 3-75.

Figure 3-75.  Using PowerShell task to execute MSDeploy

Figure 3-76.  Deploying Core web application to IIS

	 7.	 Save and queue a new release, and the Core web application
gets deployed to IIS. See Figure 3-76.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

135

In this lesson, you have learned how to deploy the Core web app with release
management using PowerShell. You can do further experiments and even create your
own component for deploying Core web applications to IIS once you have completed this
book. How to create your own build/release tasks is covered in Chapter 13.

Lesson 3.03 – Deploy ASP.NET Web Application to
Azure App
The objective of this lesson is to provide a step-by-step guide to deploying ASP.NET
MVC5 and .NET Core 1 web applications to the Azure App Service using the release
management features of TFS and Team Services.

Prerequisites: You must have an Azure subscription, and you should be familiar
with creating Azure App Service web apps. You should also have required access
permissions (https://docs.microsoft.com/en-us/azure/azure-resource-manager/
resource-group-create-service-principal-portal) to Azure.

3.03.1 Link Azure Subscription to TFS/VSTS Team Project
In this lesson, we will be enabling the connectivity between TFS/VS Team Services,
Team Project, and your Azure account to enable deployments. We have two options for
enabling the link between Azure and TFS/VSTS: classic and Resource Manager (RM). For
this lesson, we will be using Azure RM.

	 1.	 In Team Project, click on Settings and then the Services tab,
and then go to Endpoints ➤ Azure Resource Manager. See
Figure 3-77.

Figure 3-77.  Creating Azure Resource Manager endpoint

	 2.	 In the popup window, click on the link to view the full details
form. See Figure 3-78.

http://dx.doi.org/10.1007/978-1-4842-2811-1_13
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

136

	 3.	 Leave that popup windows open. Open another browser
window and download the PowerShell found at https://
github.com/Microsoft/vsts-rm-documentation/blob/
master/Azure/SPNCreation.ps1. Right click and get the
properties of the downloaded script and unblock it. Then,
run it to create a Service Principal (the blog post here
has detailed steps: https://blogs.msdn.microsoft.
com/visualstudioalm/2015/10/04/automating-azure-
resource-group-deployment-using-a-service-principal-
in-visual-studio-online-buildrelease-management/).
You can find the Azure subscription name and the
subscription ID in the Azure portal. See Figure 3-79.

Figure 3-78.  Azure subscription service endpoint

https://github.com/Microsoft/vsts-rm-documentation/blob/master/Azure/SPNCreation.ps1
https://github.com/Microsoft/vsts-rm-documentation/blob/master/Azure/SPNCreation.ps1
https://github.com/Microsoft/vsts-rm-documentation/blob/master/Azure/SPNCreation.ps1
https://blogs.msdn.microsoft.com/visualstudioalm/2015/10/04/automating-azure-resource-group-deployment-using-a-service-principal-in-visual-studio-online-buildrelease-management/
https://blogs.msdn.microsoft.com/visualstudioalm/2015/10/04/automating-azure-resource-group-deployment-using-a-service-principal-in-visual-studio-online-buildrelease-management/
https://blogs.msdn.microsoft.com/visualstudioalm/2015/10/04/automating-azure-resource-group-deployment-using-a-service-principal-in-visual-studio-online-buildrelease-management/
https://blogs.msdn.microsoft.com/visualstudioalm/2015/10/04/automating-azure-resource-group-deployment-using-a-service-principal-in-visual-studio-online-buildrelease-management/

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

137

Figure 3-79.  Azure subscription name and ID

	 4.	 Running SPNCreation.ps1 will prompt you for the Azure
subscription name. Provide that as well as a password for
the prompt. This password is used to set up for SPN (service
principal name), and it should not be the subscription owner
password. See Figure 3-80.

Figure 3-80.  Running SPNCreation.ps1

With this information, a window will pop up in which to
provide your Azure subscription login details. Once you are
logged in, the script will create the Service Principal, and you
will get the ID and key information. See Figure 3-81.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

138

	 5.	 Provide this information in the TFS popup window and click
OK to create the service endpoint. See Figure 3-82.

Figure 3-81.  SPN details

Figure 3-82.  Creating service end point in team project

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

139

You have created a service endpoint with which to link your Azure subscription
to a team project. This is useful when you are not using the same Microsoft account
for the deployment target Azure subscription and for your Team Services account (in
a production scenario, the target Azure subscription owner is not the Team Services
account owner). But, if you are using the same Microsoft account for both your Azure
subscription and the Team Services account, the Azure subscription will be listed to
select when you try to create a service end point in step 2 of this lesson. Once selected, it
will be linked to the team project automatically after you authorize when prompted.

3.03.2 Deploy ASP .NET MVC5 Web App to Azure App
Service
Prerequisites: You need a TFS agent set up with Azure PowerShell v1.3.0 (https://
github.com/Azure/azure-powershell/releases/tag/v1.3.0-March2016) and
WebDeploy 3.5 or higher installed with bundled SQL support. This can be installed with
Microsoft Web Platform Installer (https://www.microsoft.com/web/gallery/install.
aspx?appid=wdeploynosmo).

	 1.	 Open the MVC5.ReleasePipeline release definition created in
Lesson 3.02.1 and add a new environment by setting it to run
upon successful completion of the QA environment added
earlier. Name the new environment “UAT.” See Figure 3-83.

Figure 3-83.  Add new environment to release definition

https://github.com/Azure/azure-powershell/releases/tag/v1.3.0-March2016
https://github.com/Azure/azure-powershell/releases/tag/v1.3.0-March2016
https://www.microsoft.com/web/gallery/install.aspx?appid=wdeploynosmo
https://www.microsoft.com/web/gallery/install.aspx?appid=wdeploynosmo

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

140

	 2.	 Set it to run on the agent set up with the specified
prerequisites.

	 3.	 Add the Azure App Service Deploy step to the environment
from the Deploy tab in the Task Catalog. Select the Azure RM
endpoint created in Lesson 3.03.1. See Figure 3-84.

Figure 3-84.  Azure App Service Deploy step

	 4.	 In Azure portal, under App Services, click Add, then select
Web App. In the Web App window, click Create to create a
new app service, Web App. Fill in the details as shown in
Figure 3-85, and click the Create button.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

141

	 5.	 Select the app service’s name after using the Refresh button
near the dropdown menu. Select the package to deploy and
set it to use WebDeploy. Take the application offline while
deploying. See Figure 3-86.

Figure 3-85.  Creating Azure web app

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

142

	 6.	 Trigger a release. You can see MVC5 web app get deployed
to the first environment and, upon success, get deployed to
Azure App Service. You can browse to the Azure App Service’s
site URL (available on the Azure Portal Web App overview
page) and verify that the MVC application is deployed and
running. See Figure 3-87.

Figure 3-86.  Azure deployment task

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

143

In this lesson, you have learned how to deploy an MVC web application to Azure
App Service using Team Services release management. Learn about Azure App Services
(https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-configure)
and experiment with deployments by changing the configuration of deployment tasks in
release management.

3.03.3 Deploy ASP .NET Core Web App to Azure App
Service
Prerequisites: You need a TFS agent set up with Azure PowerShell v1.3.0 (https://
github.com/Azure/azure-powershell/releases/tag/v1.3.0-March2016) and
WebDeploy 3.5 or higher installed with bundled SQL support. This can be installed with
Microsoft Web Platform Installer (https://www.microsoft.com/web/gallery/install.
aspx?appid=wdeploynosmo).

	 1.	 Open the Core1.ReleasePipeline release definition created in
Lesson 3.02.2 and add a new environment by setting it to run
upon successful completion of the QA environment added
earlier. Name new environment “UAT.”

	 2.	 Set it to run on the agent set up with the prerequisites
specified.

	 3.	 In the Azure portal, create a new app service called “Web App.”

Figure 3-87.  MVC web application deploying to Azure

https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-configure
https://github.com/Azure/azure-powershell/releases/tag/v1.3.0-March2016
https://github.com/Azure/azure-powershell/releases/tag/v1.3.0-March2016
https://www.microsoft.com/web/gallery/install.aspx?appid=wdeploynosmo
https://www.microsoft.com/web/gallery/install.aspx?appid=wdeploynosmo

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

144

	 4.	 Add the Azure App Service Deploy step to the environment
from the Deploy tab in the Task Catalog. Select the Azure RM
endpoint created in Lesson 3.03.1.

	 5.	 Select the app service’s name after using the Refresh button
near dropdown menu. Select the package to deploy and
set it to use Web Deploy. Take the application offline while
deploying. Note that the package to deploy should be
$(System.DefaultWorkingDirectory)/Core.Rel/drop/$(Build.
BuildNumber).zip. $(Build.BuildNumber) identifies the
name of the zip file created by the Core.Rel build using the
buildnumber.zip name format. See Figure 3-88.

Figure 3-88.  Core web application deployment task

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

145

	 6.	 Trigger a release, and you can see the ASP .NET Core web app
get deployed to the first environment (IIS) and, upon success,
get deployed to Azure App Service. See Figure 3-89.

Figure 3-89.  Core web application deploying to Azure

You have deployed an ASP.NET Core web application to Azure App Service using
Team Foundation release management.

Summary
You have learned the basics of TFS/VSTS release management in this chapter. You are
now capable of creating release environments and adding deployment actions to them.
To further enhance your knowledge, carry out the following experiments.

	 1.	 Use approvers in pre- and post-deployment. You can
set approvers for each environment and at execution
time override these approvals. Experiment and learn. To
get environment approvers, click on the menu in each
environment (explained in Chapter 1). See Figure 3-90.

http://dx.doi.org/10.1007/978-1-4842-2811-1_1

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

146

	 2.	 Try different deployment conditions. You can trigger
deployment after one or more environments are done, on a
schedule, or right after release created with the definition.
See Figure 3-91.

Figure 3-90.  Approvers in deployment environments

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

147

Trigger on Partially succeeded environments allow you
to continue an environment deployment tasks even if the
previous environment had errors in tasks set to continue on
error (deployment step failed is not considered a failure of
the deployment to environment if you select “Continue on
error” check box in Control Options section of the task).
See Figure 3-92.

Figure 3-91.  Deployment conditions for environments

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

148

	 4.	 Try deployment timeouts and skip artifacts for
non-deployment actions on environments. See Figure 3-94.

Figure 3-93.  Manual intervention

Figure 3-92.  Continue to next task on error in the current task

	 3.	 Try the Manual Intervention server space task from Task
Catalog. See Figure 3-93.

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

149

Figure 3-94.  Run on agent additional options

	 5.	 Use variables with release definitions. Access them in
deployment or build steps using the syntax $(variablename).
You can define variables at the release definition level and at
each environment level. Predefined variables (https://www.
visualstudio.com/en-us/docs/release/author-release-
definition/understanding-tasks#predefvariables) are
available to use for any release definition. If you have defined
variables with names releasedefvar01 and releaseenvvar01,
you can use them in any text field of a deployment/build step
using $(releasedefvar01) and $(releaseenvvar01).
See Figure 3-95.

https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks#predefvariables
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks#predefvariables
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks#predefvariables

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

150

	 6.	 Experiment with continuous deployment triggers and
scheduled release triggers. See Figure 3-96.

Figure 3-95.  Environment variables

Figure 3-96.  Continuous deployment

Chapter 3 ■ ASP.Net Web Application Deployment to Azure and IIS

151

	 7.	 Further experiment with Azure slot deployments, swap
deployment slots, and usage of slot settings. Read below
articles and experiment.

https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-
staged-publishing
http://chamindac.blogspot.com/2016/08/azure-website-swap-
slotwith-vsts.html

In the next chapter, you will learn about building Docker-enabled web applications
and deploying to Azure App Services on Linux using Team Services release management.

https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-staged-publishing
https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-staged-publishing
http://chamindac.blogspot.com/2016/08/azure-website-swap-slotwith-vsts.html
http://chamindac.blogspot.com/2016/08/azure-website-swap-slotwith-vsts.html

153© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_4

CHAPTER 4

Build as Docker and Deploy
to Azure

This chapter will take you through the steps required to build ASP.Net Core as a Docker
container and upload the image to the Azure container registry (to learn more visit
https://docs.microsoft.com/en-us/azure/container-registry/) using a Team Services
build. You will also learn how to use the Docker container image in the Azure container
registry to host an application in Azure App Service on Linux (more information available at
https://docs.microsoft.com/en-us/azure/app-service-web/app-service-linux-intro).

■■ Note  The Docker tools for Team Services are still evolving. As of writing of this book, the
Team Services tasks for Docker are in their early stages. The chapter summary describes a
few more upcoming options regarding Azure’s capabilities to handle Docker containers and
VSTS Release Management’s capabilities when combined with Visual Studio 2017.

Prerequisites: Ensure you have a 64-bit Windows 10 Pro, Enterprise, or Education
(1511 November update, Build 10586 or later) machine installed with Visual Studio 2017
RC3 or later. You need a Team Services account and the extension for Docker (https://
marketplace.visualstudio.com/items?itemName=ms-vscs-rm.docker) installed for
that account. You are familiar working with Azure portal to create web apps etc.

Set Up the Environment to Develop Docker-
enabled Application
The following steps will guide you in setting up VS 2017 and Docker for Windows,
enabling you to create Docker-enabled .NET Core applications.

	 1.	 Make sure you have installed Visual Studio 2017 RC3 or
later with ASP.NET and web development to enable web
application development. See Figure 4-1.

https://docs.microsoft.com/en-us/azure/container-registry/
https://docs.microsoft.com/en-us/azure/app-service-web/app-service-linux-intro
https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.docker
https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.docker

Chapter 4 ■ Build as Docker and Deploy to Azure

154

	 2.	 Install .NET Core cross-platform development, including
container development tools. Container development
tools allow you to create Docker-enabled ASP.NET core
applications. See Figure 4-2.

Figure 4-1.  Install VS 2017 ASP.NET and web development

Figure 4-2.  Install VS 2017 .NET Core cross-platform development

Chapter 4 ■ Build as Docker and Deploy to Azure

155

	 3.	 Download Docker for Windows from https://docs.docker.
com/docker-for-windows/install/#download-docker-for-
windows. Docker for windows allow you to develop Docker
enabled applications in a Windows PC. For more information
visit https://www.docker.com/docker-windows. Once
completed, run downloaded MSI and click Install; follow the
installation wizard steps. See Figure 4-3.

	 4.	 Once the installation has completed, you will see an option
available to “Launch Docker.” Select it and click on Finish.
See Figure 4-4.

Figure 4-3.  Installing Docker for Windows

https://docs.docker.com/docker-for-windows/install/#download-docker-for-windows
https://docs.docker.com/docker-for-windows/install/#download-docker-for-windows
https://docs.docker.com/docker-for-windows/install/#download-docker-for-windows
https://www.docker.com/docker-windows

Chapter 4 ■ Build as Docker and Deploy to Azure

156

■■ Note  If you have not set up Hyper-V, you will be asked to enable it. Click on OK for the
message, install Hyper-V, and restart your computer after installation. Launch Docker again
from the Start menu after restarting the machine.

	 5.	 Docker is shown as starting in the system tray. Once it has
completed setting things up, you will be notified, as shown in
Figure 4-5.

Figure 4-4.  Select Launch Docker and Finish

Chapter 4 ■ Build as Docker and Deploy to Azure

157

Figure 4-5.  Docker is up and running

	 6.	 Open PowerShell and run a few Docker commands to confirm
that Docker is running as expected on your machine.

docker info – This command will show the information
about Docker for Windows. See Figure 4-6.

Chapter 4 ■ Build as Docker and Deploy to Azure

158

docker version – This command will show the version of
Docker for Windows. See Figure 4-7.

Figure 4-6.  Docker for Windows information

Figure 4-7.  Docker for Windows version

Chapter 4 ■ Build as Docker and Deploy to Azure

159

	 7.	 In your computer’s system tray, right click on Docker and
select Settings. See Figure 4-8.

Figure 4-8.  Launch Docker settings

Figure 4-9.  Sharing drives with Docker

	 8.	 Share the hard disk drives to Docker in the Shared Drives tab
of the Docker Settings popup window. The system drive and
the drive on which you plan to have your source code must
be shared with Docker. Click Apply after selecting the desired
drives to save the settings. See Figure 4-9.

Chapter 4 ■ Build as Docker and Deploy to Azure

160

	 9.	 Clicking Apply in the Shared Drives tab will open a popup
window asking for authentication. Provide the credentials
of the user you are logged on as to enable file sharing. See
Figure 4-10.

Figure 4-10.  Authorizing shared drives access for Docker

You have set up VS 2017, web and cross-platform development components, and
Docker for Windows in the development environment. This will allow you to create and
run Docker-enabled web applications on your machine. Docker for Windows runs a Linux
virtual machine in Hyper-V to allow the running of Docker containers in Windows 10.

Lesson 4.01 – Create a Docker-Enabled ASP.NET
Core Application
Let’s create a Docker-enabled ASP.NET Core Web API in a new team project using the
following steps.

	 1.	 Follow the instructions at https://www.visualstudio.
com/en-us/docs/setup-admin/create-team-project and
create a team project (described at the same link) in your
VSTS account, with Git as the repository. We have to use Git
repository since we are going to build the application on the
Linux platform. The new team project will be created when
you click on the Create project button. You will be navigated
to the new team project automatically, once it is created.
See Figure 4-11.

https://www.visualstudio.com/en-us/docs/setup-admin/create-team-project
https://www.visualstudio.com/en-us/docs/setup-admin/create-team-project

Chapter 4 ■ Build as Docker and Deploy to Azure

161

	 2.	 Open Visual Studio 2017 and, in Team Explorer, click on
Manage Connections ➤ Connect to Project. In the resulting
popup window, select your Microsoft account. If you are
not signed in to your Microsoft account in VS 2017, sign in
or add your Microsoft account using the Showing hosted
repositories for dropdown. Select the Git repository of the
team project created in Step 1 of this lesson, provide a Path
for the local repository, and click the Clone button to clone
the repository to your machine. See Figure 4-12.

Figure 4-11.  Creating the team project

Chapter 4 ■ Build as Docker and Deploy to Azure

162

	 3.	 Create a new VS solution by clicking New under the Solutions
tab in the Team Explorer window. See Figure 4-13.

Figure 4-12.  Cloning the Git repository

Chapter 4 ■ Build as Docker and Deploy to Azure

163

	 4.	 Select the Blank Solution template to create a new empty VS
solution and name it “DemoCoreDocker.” See Figure 4-14.

Figure 4-13.  Creating a new VS solution

Figure 4-14.  Creating an empty solution in Visual Studio

Chapter 4 ■ Build as Docker and Deploy to Azure

164

	 5.	 Right click on the solution named “DemoCoreDocker” in VS
Solution Explorer and go to Add ➤ New Project. In the Add
New Project popup window, select the ASP.NET Core Web
Application (.NET Core) project template, fill Name field with
CoreDockerAPI, and click OK. See Figure 4-15.

Figure 4-15.  Selecting ASP.NET Core Web Application (.NET Core)

	 6.	 In the next popup window, select Web API from the ASP.
NET Core template options. Check whether it is set as No
Authentication and keep the “Enable Docker Support”
box unchecked. We are going to enable Docker support after
testing the application. See Figure 4-16.

Chapter 4 ■ Build as Docker and Deploy to Azure

165

If any other Authentication option is shown, click Change
Authentication and set it to No Authentication. Click OK.
See Figure 4-17.

Figure 4-16.  Creating ASP.NET Core Web API

Figure 4-17.  No authentication required

Chapter 4 ■ Build as Docker and Deploy to Azure

166

	 7.	 Clicking OK after selecting Web API template in the window
shown in Figure 4-16 will add the Web API project to the
solution. It should be available in the Solution Explorer, as
shown in Figure 4-18.

Figure 4-18.  API project added to solution

	 8.	 Open the ValuesController.cs file and replace the following
line in the Get method

return new string[] { "value1", "value2" };

with the following:

return new string[] { "value1", System.Runtime.InteropServices.
RuntimeInformation.OSDescription };

This will allow the default /api/values to display the operating
system description of the host of the CoreDockerAPI. See
Figure 4-19.

Chapter 4 ■ Build as Docker and Deploy to Azure

167

	 9.	 Run the application by hitting F5 or use IIS Express, as shown
in Figure 4-20.

Figure 4-19.  Allow web API to show host OS description

Figure 4-20.  Running the web API

A browser window will launch, and you will see that the API is
returning the current OS description as “Microsoft Windows”
with the version number. This confirms the web API you have
created is not yet enabled with Docker and is still running on
the Windows platform. See Figure 4-21.

Figure 4-21.  Web API running on Windows OS

Chapter 4 ■ Build as Docker and Deploy to Azure

168

	 10.	 Since we have a working web API project, before making any
additional changes we should commit it to the repository.
For this, click on Changes in the Team Explorer Home and
commit the solution to the local Git repository. Then, you can
push the changes to the Git repository of the team project by
clicking on Push. We must push to the repository, since this
is the first set of code that is committed. To learn more about
working with Team Foundation Git with Visual Studio, refer to
the article at https://www.visualstudio.com/en-us/docs/
git/gitquickstart. See Figure 4-22.

Figure 4-22.  Committing the solution to Git repository

https://www.visualstudio.com/en-us/docs/git/gitquickstart
https://www.visualstudio.com/en-us/docs/git/gitquickstart

Chapter 4 ■ Build as Docker and Deploy to Azure

169

	 11.	 Let’s add Docker support to the web API to enable it
to be deployed as a Docker container. Right click on
DockerCoreDemoApp in the Solution Explorer page and go to
Add ➤ Docker Support. See Figure 4-23.

Figure 4-23.  Adding Docker support to web API

	 12.	 New docker-compose.dcproj (it is the project highlighted in
blue in Figure 4-24) and .yml files are added at the solution
level. A Dockerfile is added to the CoreDockerAPI project,
along with a .dockerignore file. Dockerfiles and .yml files
contain the information required to compose a Docker
container, while the .dockerignore file has the information on
which content to ignore when packaging. You do not have to
change anything for this lesson. You can get more information
about these files in the following articles:

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/engine/reference/builder/

Chapter 4 ■ Build as Docker and Deploy to Azure

170

	 13.	 docker-compose should be set as the startup project to enable
running it with Visual Studio. If not available, right click on
docker-compose and choose Set as Startup Project. Then,
hit F5 or click on Docker, as shown in Figure 4-25, to run
the web API in Docker. This will take few minutes to run, as
it is building a Docker image and deploying it to a Docker
container (Docker on Windows is enabled by running a Linux
Docker container in Hyper-V).

Figure 4-24.  Docker-enabled web API

Chapter 4 ■ Build as Docker and Deploy to Azure

171

Figure 4-25.  Running web API with Docker

A browser window will be launched, and you can see the
running OS description shown as Linux. This confirms the
web API is running in a Docker container on Linux. See
Figure 4-26.

Figure 4-26.  Web API running on Linux Docker container

	 14.	 Commit the new files to the local Git repository and sync
changes with the team project Git repository to enable them
to be built with a Team Services build in a future lesson in this
chapter (https://www.visualstudio.com/en-us/docs/git/
gitquickstart). See Figure 4-27.

https://www.visualstudio.com/en-us/docs/git/gitquickstart
https://www.visualstudio.com/en-us/docs/git/gitquickstart

Chapter 4 ■ Build as Docker and Deploy to Azure

172

In this lesson, you have created a new team project with the team foundation Git as
the source control repository and added a Docker-enabled web API to it. You managed
to test the API locally and confirmed it can build a Docker image, which can be run on a
Docker container on Linux.

Lesson 4.02 – Create Azure Container Registry
An Azure container registry lets you store images of containers, such as Docker Swarm,
DC/OS, and Kubernetes, and of Azure services like Service Fabric, App Services, and so
forth. It is a private Docker registry and provides you with local, network-close storage
of your container images within your subscription. Learn more from https://docs.
microsoft.com/en-us/azure/container-registry/container-registry-intro.

Figure 4-27.  Committing Docker-enabled web API to Git repository

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-intro
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-intro

Chapter 4 ■ Build as Docker and Deploy to Azure

173

Figure 4-28.  Searching for Azure rontainer registry

Figure 4-29.  Selecting Azure Container Registry

	 1.	 Go to the Azure portal and click the green + sign to add a new
item. Type “Azure Container” in the search field and select
Azure Container Registry from the list. See Figure 4-28.

In the search results, select Azure Container Registry by
Microsoft. See Figure 4-29.

	 2.	 Click on Create in the window that opens. See Figure 4-30.

Chapter 4 ■ Build as Docker and Deploy to Azure

174

	 3.	 Provide a name for the registry. Select West Europe or West
US as the location. This is required, since as of the writing
of this book, the Azure Linux app service is available for
only West US, West Europe, and Southeast Asia. To make
the container available to the Linux app service, we need to
have both, Azure container registry and app service app on
Linux, set to the same region. Select the option to create a new
resource group and provide a name. Enable Admin User, as
we are going to use this user’s username and password (both
auto-generated) to connect the group to the app service app
on Linux and so forth. Click on Create after providing all the
information, as shown in Figure 4-31.

Figure 4-30.  Creating the Azure container registry

Chapter 4 ■ Build as Docker and Deploy to Azure

175

	 4.	 The new resource group gets created with the name provided
in the previous step. You can click on Resource Groups in the
Azure portal to view the new resource group. See Figure 4-32.

Figure 4-31.  Filling in required information to create the container registry in Azure

Chapter 4 ■ Build as Docker and Deploy to Azure

176

	 5.	 Click on the new resource group name. You can see in the
resource group that an Azure container registry gets created.
See Figure 4-33.

Figure 4-33.  New Azure container registry created

Figure 4-32.  New resource group

You have created an Azure container registry using the Azure portal in this lesson.
You will be using it in a future lesson in this chapter to deploy with the Docker-enabled
ASP.NET Core web API, which we created in a previous lesson in this chapter.

Chapter 4 ■ Build as Docker and Deploy to Azure

177

Lesson 4.03 – Create Azure App Service on Linux App
The Azure app service on Linux can host web apps on Linux. The app service app on
Linux you will create in this lesson will be used to host the Docker-enabled web API you
created in a previous lesson in this chapter. Learn more at https://docs.microsoft.
com/en-us/azure/app-service-web/app-service-linux-intro.

	 1.	 In the Azure portal, click on Resource Groups and click Add.
You are going to use this new resource group to create an
Azure app service app on Linux. See Figure 4-34.

Figure 4-34.  Adding a new resource group

Figure 4-35.  Creating new resource group

	 2.	 Provide a name for the resource group and select the location
as West Europe (region should be same region as that for
the Azure container registry in the previous lesson). Click on
Create. See Figure 4-35.

https://docs.microsoft.com/en-us/azure/app-service-web/app-service-linux-intro
https://docs.microsoft.com/en-us/azure/app-service-web/app-service-linux-intro

Chapter 4 ■ Build as Docker and Deploy to Azure

178

	 3.	 Now, we have both an Azure container registry resource group
(created in the previous lesson) and a resource group for App
Service App on Linux in the same region, West Europe.
See Figure 4-36.

Figure 4-36. Both resource groups set to same region

Figure 4-37.  Selecting Web App On Linux

	 4.	 In the Azure portal, click on the green + to add a new item
and search for “app on linux.” Select Web App On Linux.
See Figure 4-37.

Chapter 4 ■ Build as Docker and Deploy to Azure

179

Figure 4-38.  Creating web app on Linux

	 5.	 Click Create on the preview page to create a web app on
Linux. See Figure 4-38.

	 6.	 Provide a name for the app. Select the “Use Existing”
Resource Group option and select the resource group created
in this lesson. You will see that a new service plan is created
in the West Europe region (region should be the same region
that you used for the Azure container registry in the previous
lesson). Click on Configure container to configure the
container option before creating the app. See Figure 4-39.

Chapter 4 ■ Build as Docker and Deploy to Azure

180

Figure 4-40.  Configure container

Figure 4-39.  Provide information to create the web app on Linux

	 7.	 Leave the node.js container for the time being. We will set up
a private registry for this later. Click Create. See Figure 4-40.

Chapter 4 ■ Build as Docker and Deploy to Azure

181

	 8.	 A new app service app gets created. Click on its name. See
Figure 4-41.

Figure 4-41.  App service app on Linux is created

	 9.	 In the app overview, click on the available URL. See Figure 4-42.

Figure 4-42.  URL of the new web app

	 10.	 The new web app should load in a new tab in the browser. See
Figure 4-43.

Chapter 4 ■ Build as Docker and Deploy to Azure

182

In this lesson, you have created a new Azure app service app on Linux in the same
region where we created the Azure container registry in the previous lesson. You will be
using this app to host the Docker-enabled ASP.NET Core web API, which was created in a
previous lesson.

Lesson 4.04 – Create a Build to Push Container
Image to Azure Container Registry
Prerequisites: You need to install the Team Services extension called “Docker
Integration” from https://marketplace.visualstudio.com/items?itemName=ms-vscs-
rm.docker to your Team Services account. Installation of marketplace extensions is
explained in Chapter 2.

	 1.	 First, link the Azure container registry to the team project. Go
to Services tab of the settings in the team project and click
New Service Endpoint, and then select Docker Registry.
This will open a popup window for Add new Docker Registry
Connection. See Figure 4-44.

Figure 4-43.  Web app on Linux is ready

https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.docker
https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.docker
http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 4 ■ Build as Docker and Deploy to Azure

183

	 2.	 In another browser window, open the Access Key section of
the container registry in the Azure portal. See Figure 4-45.

Figure 4-44.  Linking Docker registry to Team Services

Figure 4-45.  Access Key section of container registry

Chapter 4 ■ Build as Docker and Deploy to Azure

184

	 3.	 Provide the registry connection information in the Add new
Docker Registry Connection window to connect Docker
registry to the team project.

Registry - Login server = demodockerregistry-on.azurecr.io

Connection – Docker Registry = https://
demodockerregistry-on.azurecr.io

Provide a name for the connection. Use your username as
Docker Id and the password from the container registry
in the connection and Click OK. Make sure Admin user is
enabled in the registry. Save changes in Azure portal, if you
have enabled Admin user just now (if it was left disabled
when the registry was created in a previous lesson). See
Figure 4-46.

Figure 4-46.  Linking container registry to Team Services project

	 4.	 A new Demo Docker Registry connection is now available for
the team project. See Figure 4-47.

https://demodockerregistry-on.azurecr.io/
https://demodockerregistry-on.azurecr.io/

Chapter 4 ■ Build as Docker and Deploy to Azure

185

Figure 4-47.  Docker registry is connected to team project

	 5.	 Create a new empty build definition named
“DockerDemoBuild” in the Build & Release tab of the team
project. Select agent queue Hosted Linux (Preview) in the
General tab of the build definition. Provide a build number
format, such as $(date:yyyyMMdd)$(rev:.r). See Figure 3-48.

Figure 4-48.  Build definition using hosted Linux agent pool

http://dx.doi.org/10.1007/978-1-4842-2811-1_3#Fig38

Chapter 4 ■ Build as Docker and Deploy to Azure

186

	 6.	 In the Repository tab of the build definition, select Git and
select the repository of the team project. Set default branch
to master. Uncheck all other options. The “Sources” option
in the Clean options dropdown can be set to true or false. See
Figure 4-49.

Figure 4-49.  Repository selected for the build definition

	 7.	 In the Triggers tab, check the “Continuous integration”
option to enable build triggering for each commit made to
the repository master branch. Select “master branch” for the
Branch filters dropdown. See Figure 4-50.

Chapter 4 ■ Build as Docker and Deploy to Azure

187

Figure 4-51.  Add Docker Compose tasks to build definition

Figure 4-50.  Build all commits to master branch

	 8.	 Leave Variables tab as it is.

	 9.	 For Options and Retention tabs, do not make any changes.

	 10.	 In the Build tab, add three build steps using the Docker
Compose task that comes with the Docker Integration
extension (https://marketplace.visualstudio.com/
items?itemName=ms-vscs-rm.docker). See Figure 4-51.

https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.docker
https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.docker

Chapter 4 ■ Build as Docker and Deploy to Azure

188

	 11.	 i. Name the first Docker Compose step “Build Repository and
Create Container” since that is what happens in this step.

•	 Select the Demo Docker Registry connection created earlier.

•	 Provide **/docker-compose.ci.build.yml as the Docker Compose
file. This was added when we enabled Docker for the project.

•	 Make sure to uncheck both the “Qualify Image Names” and
the “Run In Background” options.

•	 Provide Project name as $(Build.RepositoryName).

•	 Select “Run a specific service image” for the Action dropdown
and provide service name as ci-build.

•	 In Advanced Options, check the “No-op if no Docker Compose
File” box and provide $(System.DefaultWorkingDirectory) as
the Working Directory. See Figure 4-52.

Figure 4-52.  Build repository and create container

Chapter 4 ■ Build as Docker and Deploy to Azure

189

ii. Name the second Docker Compose step “Build Services
Image.” The container generated in the previous step will be
packaged as an image in this step.

•	 Select the Demo Docker Registry and provide **/docker-
compose.yml as the Docker Compose file.

•	 For Additional Docker compose file, provide docker-
compose.ci.yml.

•	 Set Environment Variable to DOCKER_BUILD_SOURCE=.
This will set its value to empty while running the task.

•	 For Project Name, type in $(Build.Repository.Name) and
check the “Qualify Image Names” box.

•	 Select “Build service images” from the Action dropdown.

•	 Type “RTM” in Additional Image Tags field.

•	 Check options for “Include Source Tags” and “Include Latest
Tag.” These tags are useful when referring to a container
image. You can see the RTM tag being used when the wiring
up of the Azure Container Registry with the Azure app service
app on Linux is done. See Figure 4-53.

Chapter 4 ■ Build as Docker and Deploy to Azure

190

iii. In the third Docker Compose task, we are pushing the
container image to the Azure Container Registry.

•	 Provide all options similar to previous task, except the Action.
Action should be set to “Push service images.”

•	 Follow the screenshot in Figure 4-54 to set the parameters
properly.

Figure 4-53.  Build container service image

Chapter 4 ■ Build as Docker and Deploy to Azure

191

Figure 4-54.  Pushing image to Azure container registry

	 12.	 Save the build definition and queue a new build. You can see
the build is pushing a container image with the application’s
API name and using the RTM tag specified. See Figure 4-55.

Chapter 4 ■ Build as Docker and Deploy to Azure

192

You have created a build in this lesson that can build a Docker-enabled ASP.NET
Core web API. This build can create the Docker image and push it to the Azure container
registry.

Lesson 4.05 – Wire Up Container Registry and the
App Service App on Linux
The next step is to wire this Azure app service app on Linux with the Azure container
registry that was pushed with a Docker container image in the previous lesson.

	 1.	 Open the app service app on Linux and the Azure container
registry in two browser windows. Navigate to the Azure
container registry’s Access key and make sure to enable
Admin user. See Figure 4-56.

Figure 4-55.  Building the Docker image and pushing it to registry

Chapter 4 ■ Build as Docker and Deploy to Azure

193

Figure 4-56.  Make sure admin user enabled in access key of registry

	 2.	 In a third browser window, navigate to Web App on Linux and
go to Docker Containers section. Select Private registry. See
Figure 4-57.

Chapter 4 ■ Build as Docker and Deploy to Azure

194

	 3.	 Set up private registry information as follows.

The Login Server name in the registry should be used to
create the Image Source and Server URL, as shown here:

Registry - Login server = demodockerregistry-on.azurecr.io

App - Image and Tag = demodockerregistry-on.azurecr.io/ap
pnameinsourcecode:imagetag

demodockerregistry-on.azurecr.io/coredockerapi:RTM

(RTM tag was used in the build definition and the image was
pushed with the tag. We are setting the container to use that
image by providing the tag.)

App – Server URL = http://demodockerregistry-on.
azurecr.io

For username and password, copy from the registry form, and
save. See Figure 4-58.

Figure 4-57.  Private registry for Docker container in Linux app

http://demodockerregistry-on.azurecr.io/
http://demodockerregistry-on.azurecr.io/

Chapter 4 ■ Build as Docker and Deploy to Azure

195

	 4.	 You can now browse the app using the URL of the app service
app on Linux plus api/values. See the app running in the
Docker container and showing as running on Ubuntu in the
browser. See Figure 4-59.

Figure 4-58.  Configure private registry as Docker container on Linux app

Figure 4-59.  ASP.NET Core app running on Ubuntu as Linux app service

	 5.	 Let’s carry out some changes to the code and get them
deployed to the app service app on Linux. To do this, add an
additional step to the build definition created previously. Add
the Azure App Service Manage task to the build definition. See
Figure 4-60.

Chapter 4 ■ Build as Docker and Deploy to Azure

196

	 6.	 Select the Azure subscription. Linking the Azure subscription
to a Team Services team project is explained in Chapter 3.
From the Action dropdown choose “Restart App Service.”
Select the app service on Linux from the App Service Name
dropdown. See Figure 4-61.

Figure 4-60.  Adding App Service Manage task to build definition

Figure 4-61.  Restart Linux app on Azure task

http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 4 ■ Build as Docker and Deploy to Azure

197

	 7.	 In the ValuesController.cs file’s Get method, change following
line”

return new string[] { "value1", System.Runtime.InteropServices.
RuntimeInformation.OSDescription };

to

return new string[] { "Hello World", System.Runtime.
InteropServices.RuntimeInformation.OSDescription };

and commit and sync the code changes to the team project
Git repository using the team explorer Changes tab. See
Figure 4-62.

Figure 4-62.  Making a code change

Figure 4-63.  Code change available in the Linux app on Azure

	 8.	 The build gets kicked in once the code syncs to the Git
repository, since we have enabled continuous integration.
Refresh the URL of the Azure app service on Linux, and the
change will be available. See Figure 4-63.

You have learned how to deploy a Docker-enabled ASP.NET Core web API to the
Azure app service app on Linux using a private container registry in this lesson.

Chapter 4 ■ Build as Docker and Deploy to Azure

198

Summary
In this chapter, you have learned how to build a Docker container with a Team Services
build and push it to the Azure container registry. Using the Azure app service on Linux,
you were able to host the container as a private registry. This is not an ideal production-
ready scenario, since we have omitted usage of release managment steps here. Deploying
the containers to Azure container service (https://docs.microsoft.com/enus/azure/
container-service/container-service-intro) would be the robust way of hosting
Docker containers in Azure. But for learning purposes, this was sufficient. Instead of the
Azure container registry, you could use a Docker hub registry with the Team Services
builds that use Docker integration extensions.

Azure Container Services and Team Services
You can explore the capabilities of Azure container services to host production systems.
Azure container services allow you to deploy and manage containers. For more
information, visit the following:

https://azure.microsoft.com/en-us/services/container-service/
�https://docs.microsoft.com/en-us/azure/container-service/container-
service-intro
https://docs.microsoft.com/en-us/azure/container-service/

Visual Studio 2017 + Visual Studio Team Services offer a great capability to
generate build and release pipelines automatically when using the extension
https://marketplace.visualstudio.com/items?itemName=VSIDEDevOpsMSFT.
ContinuousDeliveryToolsforVisualStudio with Visual Studio 2017. You can add
extensions directly via Visual Studio 2017 Extensions and Updates. See Figure 4-64.

Figure 4-64.  Configuring continuous delivery for Azure container services

The build and release definitions will be generated by linking to required Azure
resources as well. See Figure 4-65.

https://docs.microsoft.com/enus/azure/container-service/container-service-intro
https://docs.microsoft.com/enus/azure/container-service/container-service-intro
https://azure.microsoft.com/en-us/services/container-service/
https://docs.microsoft.com/en-us/azure/container-service/container-service-intro
https://docs.microsoft.com/en-us/azure/container-service/container-service-intro
https://docs.microsoft.com/en-us/azure/container-service/
https://marketplace.visualstudio.com/items?itemName=VSIDEDevOpsMSFT.ContinuousDeliveryToolsforVisualStudio
https://marketplace.visualstudio.com/items?itemName=VSIDEDevOpsMSFT.ContinuousDeliveryToolsforVisualStudio

Chapter 4 ■ Build as Docker and Deploy to Azure

199

Figure 4-65.  Visual Studio 2017 generates the build and release definitions

Build definitions are capable of building Docker containers and pushing them to the
Azure container registry. See Figure 4-66.

Figure 4-66.  Building and pushing to the Azure container registry

A release definition capable of deploying to Azure container services is created as DC/
OS (Data Centre OS - allows deploying and scaling clustered workloads while abstracting
underlying hardware - for more information visit https://docs.microsoft.com/en-us/
azure/container-service/container-service-mesos-marathon-ui and https://docs.
microsoft.com/en-us/azure/container-service/container-service-intro#deploying-
anapplication). The capabilities found in the Docker Deploy component (the Docker
Integration Marketplace extension adds this release task to Team Services) will be enhanced
to support many other types of deployments soon. See Figure 4-67.

https://docs.microsoft.com/en-us/azure/container-service/container-service-mesos-marathon-ui
https://docs.microsoft.com/en-us/azure/container-service/container-service-mesos-marathon-ui
https://docs.microsoft.com/en-us/azure/container-service/container-service-intro#deploying-anapplication
https://docs.microsoft.com/en-us/azure/container-service/container-service-intro#deploying-anapplication
https://docs.microsoft.com/en-us/azure/container-service/container-service-intro#deploying-anapplication

Chapter 4 ■ Build as Docker and Deploy to Azure

200

These features in Azure container services, Azure container registry, and Azure app
services apps on Linux with Team Services and Visual Studio show signs of evolving into a
rich set of tools and platforms providing an enormous set of capabilities.

In the next chapter, you will be learning about SQL database deployment, targeting
Azure SQL databases using Team Services build and release management.

Figure 4-67.  A release definition generated by VS 2017 targeting an Azure container service

201© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_5

CHAPTER 5

Azure SQL and TFS/VSTS
Build and Release

This chapter will include hands-on lessons on managing Azure SQL databases with
TFS/VSTS release management tasks. By the end, you will be able to create database
projects with Visual Studio, you will build them with TFS build and deploy via TFS release
management to Azure.

Lesson 5.01 – Create SQL Project with
Visual Studio
Let’s create an SQL project to get the database schema development under source
control.

	 1.	 Create a Visual Studio solution by clicking File ➤ New
➤ Project in Visual Studio.

	 2.	 Select Other Project Types ➤ Visual Studio Solutions and
create a blank solution in your team project local path, say \
TeamProjectX\Main. Name the solution “DBDemo” and check
the “Add to Source Control” option. This adds the solution as
a pending change to source control. See Figure 5-1.

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

202

	 3.	 In the solution DBDemo, right click and go to Add ➤ New Project
and select SQL Server ➤ SQL Server Database Project. Name the
project as “AzDB” and click OK. This will add an SQL database
development project to the solution. See Figure 5-2.

Figure 5-1.  Creating a Visual Studio solution

Figure 5-2.  Adding an SQL Server database project

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

203

	 4.	 Right click on the AzDB project and choose Properties. In
Project Settings, change the Target Platform to Microsoft
Azure SQL Database V12 and save the project by clicking the
Save button in Visual Studio. See Figure 5-3.

Figure 5-3.  Setting DB to Azure SQL Database V12

	 5.	 Add folder named dbo to the AzDB project. In the dbo
folder, add another folder named Tables. Then, right click on
the Tables folder, click Add Table, and create a table called
“Customer.” Add ID and Name fields to the Customer table
and save using Visual Studio. See Figure 5-4.

Figure 5-4.  Creating a database table in database project in VS

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

204

	 6.	 Right click on the solution in Solution Explorer and click Rebuild
to build the solution. This should build the database project
successfully in Visual Studio. In the Pending Changes window of
Team Explorer, check-in/submit the solution, including database
project and all its content, to the Source Control repository.

In this lesson, you have created a database project in Visual Studio and added a table
to it. You have added the database project to the Source Control repository. When an SQL
server database project is built in Visual Studio, it generates a .dacpac file, which contains
the current schema of the database. In a future lesson in this chapter, this .dacpac file will
be used to compare schema changes with an existing database or with a blank database
that you will create later, and apply changes to it via release management.

Lesson 5.02 – Build SQL Project with Team
Foundation Build
Prerequisites: You have followed the Chapter 3 lessons and are familiar with build
definition creation.

Let’s create a build definition with which to build the database project created in the
previous lesson.

	 1.	 Create a new build definition with the empty template and
name it “DB.Rel.”

	 2.	 In the Repository tab, set the server path to $/Project X/Main/
DemoDB. See Figure 5-5.

Figure 5-5.  Setting repository

http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

205

	 3.	 Add a demand for SqlPackage in the General tab so as to
enable .dacpac creation and building of the database project
with the TFS build. VS 2015 availability on the build server
will provide the necessary SSDT (SQL Server Data Tools).
The latest versions of SSDT can be obtained for VS 2015 from
https://msdn.microsoft.com/en-us/mt186501.aspx. If
you are using VS 2017 you should install “Data Storage and
Processing” workload to allow using SQL projects. Even
workloads such as Azure, ASP.Net and Web Development,
and .Net Core Cross Platform Development also enable SQL
Projects for VS 2017. See Figure 5-6.

Figure 5-6.  Add demand for SqlPackage

https://msdn.microsoft.com/en-us/mt186501.aspx

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

206

	 4.	 Define BuildConfiguration and BuildPlatform variables with
values of release and any cpu, respectively. See Figure 5-7.

	 5.	 Add the Visual Studio Build step and specify the database
solution ($/Project X/Main/DemoDB/DemoDB.sln) to build.
Provide the configuration and platform using the variables
defined in the previous step. See Figure 5-8.

Figure 5-7.  Setting build configuration and platform

Figure 5-8.  Build the solution

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

207

	 6.	 Add the Copy & Publish Artifacts build step and set the
Contents field to **/*.dacpac. Set Artifact Name to drop and
Artifact Type to Server. See Figure 5-9.

	 7.	 Queue a build and check the Artifacts explorer of the build to
verify that .dacpac is available as build output. See Figure 5-10.

Figure 5-9.  Copy & publish .dacpac

Figure 5-10.  .dacpac file available as build artifact

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

208

You have created a build definition that can package an SQL database project into
a .dacpac file. This .dacpac file can be used in release management to deploy database
schema changes to a target Azure SQL database.

Lesson 5.03 – Deploy .dacpac to Azure SQL using
TFS Release Management
Prerequisites: You have Azure subscription access and are familiar with working in
Azure portal. You have followed Chapter 3 and are familiar with release definition and
environment creation. You have created an Azure RM Service Endpoint as explained in
Chapter 3.

Let’s create an Azure SQL database and deploy the .dacpac built with Team
Foundation build in the previous lesson to it using Team Foundation release
management.

	 1.	 Go to Azure portal and click on SQL Servers. Click Add to
create a new SQL Server. See Figure 5-11.

	 2.	 In the tab that appears, provide a server name and credentials
for Azure SQL Server. Select your subscription and select an
existing resource group, or opt to create a new resource group
(if new resource group, provide a name). Select Location and
check the option to allow Azure services to access the server
(this will allow the SQL server to be accessed from the Azure
app service and so on. This is not mandatory, as we are not
going to connect a web app with the databases in the server
created in this chapter). See Figure 5-12.

Figure 5-11.  Adding SQL Server in Azure

http://dx.doi.org/10.1007/978-1-4842-2811-1_3
http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

209

Figure 5-12.  Creating SQL Server in Azure

	 3.	 Go to SQL databases in Azure portal and click Add to create a
new Azure SQL database. See Figure 5-13.

Figure 5-13.  Add Azure SQL database

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

210

Figure 5-14.  Creating Azure SQL database

	 4.	 In the tab that appears, provide a name for the database. Use
the resource group of the SQL server created in the previous
step as the resource group here. Select the created SQL server.
Select “Blank database” from the Select source dropdown to
create an empty database. Select “Basic pricing tier” if you
want to reduce the cost. Fill in other information as shown in
Figure 5-14 and click the Create button.

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

211

Figure 5-15.  Demands for sqlpackage and AzurePS

Figure 5-16.  Verify the artifacts from DB.Rel build are linked

	 5.	 Now you have an empty SQL database in Azure. Let’s get
it deployed with the database schema in the .dacpac that
you built in the previous lesson. We will do so using Team
Foundation release management. Create a release definition
using the linked artifact from the DB.Rel build created in
the previous lesson. Set the default added first environment
agent, to demand for both sqlpackage and Azure PowerShell.
Both of these demands are required in order to deploy
.dacpac to the target Azure SQL database. See Figure 5-15.

	 6.	 Check the Artifacts tab to see if the DB.Rel build created in
the previous lesson is linked to the release definition. If not,
add it by clicking “Link an artifact source” and selecting the
build definition in the popup window. Once added, it should
appear as shown in Figure 5-16.

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

212

	 7.	 Add the release task Azure SQL Database Deployment from
the Task Catalog to Environment1 in the release definition.
In the Azure Connection Type dropdown select the service
endpoint created for the Azure RM subscription (linking
Azure RM subscription as a service endpoint to a team project
is described in Chapter 3). Provide the Azure SQL Server
name and the database name. Server Admin Login is the
login specified when the database server was created in Azure.
Store this password in a variable in the release definition or
environment, and use the variable in the task. For the Type
field in the Deployment Package section, select “SQL DACPAC
File.” Then select the artifact path for the .dacpac. Set the
Firewall settings to AutoDetect and remove the rule after the
task ends. See Figure 5-17.

Figure 5-17.  Azure SQL database deployment task

http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

213

	 8.	 Create a release, and then you can verify successful database
deployment to Azure as shown in Figure 5-18.

Figure 5-18.  Deploying to Azure SQL database

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

214

	 9.	 Connect to the Azure SQL database in Visual Studio Server
Explorer to check whether the database has been updated
with the schema. You may encounter an issue here, as shown
in Figure 5-19, resulting from firewall restrictions in Azure
SQL Server.

If the Azure firewall prevents access to the server when trying
to access the selected database, as shown in Figure 5-19, set
the firewall rule for the Azure SQL database server for the IP
address shown in the error message. Do this by clicking on
Azure SQL Server in the Azure portal, then clicking on Firewall.
You then can add the IP shown in the error message as Start IP
and End IP, give it a Rule Name, and save. See Figure 5-20.

Figure 5-19.  Connecting Azure SQL is prevented by firewall

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

215

Figure 5-20.  Add firewall rule to Azure SQL server

Figure 5-21. View Azure SQL database in Server Explorer

	 10.	 This connects your Azure SQL database as a data connection
in Server Explorer, and you can view the schema changes
applied with the deployment via VS Team Services/TFS
release using .dacpac. To view the Azure SQL database in
SQL Server Object Explorer in Visual Studio, right click on the
database in Server Explorer and select Open in SQL Server
Object Explorer. See Figure 5-21.

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

216

	 11.	 In the popup window, almost all of the information will be
auto-filled. You must provide the password for the Azure
SQL Server user and click on Connect to open the Azure SQL
database in SQL Server Object Explorer. See Figure 5-22.

Figure 5-22.  Opening Azure SQL database in SQL Server Object Explorer

	 12.	 SQL Server Object Explorer allows you to view the database
schema and data. You can directly modify the database from
here. However, this is not good practice, since your changes
will be directly applied to the database and not source
controlled. See Figure 5-23.

Chapter 5 ■ Azure SQL and TFS/VSTS Build and Release

217

In this lesson, you created a release definition with which you successfully deployed
a .dacpac file built with TFS build to a target Azure SQL server database.

Summary
You have learned how to use TFS builds to build an Azure SQL project that was created
in Visual Studio, and to get the .dacpac file as output. Then, you used the Azure SQL
Deployment task in TFS/VSTS release management to deploy the database schema to
the target Azure database. As further experiments, you can make modifications to the
database schema of the SQL project in Visual Studio and deploy the project to the target
Azure SQL database using the build and release definitions created in this chapter.

In the next chapter, you will learn how to develop micro-services applications
and build and deploy them to Azure Service Fabric using TFS/VSTS builds and release
management.

Figure 5-23.  Azure SQL database opened in SQL Server Object Explorer

219© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_6

CHAPTER 6

Team Services for Azure
Service Fabric Deployments

This chapter offers hands-on lessons on creating ASP.NET Core applications for Azure
Service Fabric and getting them built and deployed to Azure Service Fabric via Visual
Studio Team Services release management. It will also give you a deeper understanding
of implementation with Visual Studio and deployment with Team Services.

Azure Service Fabric
Azure Service Fabric provides you with a platform for managing scalable and reliable
microservices in the cloud. To learn more about Azure Service Fabric, refer to https://
docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview.
You can learn about microservices software architecture in more depth by referring to
https://martinfowler.com/articles/microservices.html, https://smartbear.com/
learn/api-design/what-are-microservices/, and many other articles available online.

■■ Note  Using Visual Studio 2015 is recommended for this chapter, since all code and
screenshots in the lessons are based on it.

Lesson 6.01 – Set Up Azure Service Fabric SDK
for Visual Studio
Prerequisites: You need Visual Studio 2015 update 2 or higher, or Visual Studio 2017. You
must have Web Platform Installer 5.0 on your machine (https://www.microsoft.com/
web/downloads/platform.aspx).

Let’s take a look at the steps required to set up the environment for developing an
Azure Service Fabric application.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://martinfowler.com/articles/microservices.html
https://smartbear.com/learn/api-design/what-are-microservices/
https://smartbear.com/learn/api-design/what-are-microservices/
https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/web/downloads/platform.aspx

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

220

For Visual Studio 2015:

	 1.	 Download Azure Service Fabric SDK from http://www.
microsoft.com/web/handlers/webpi.ashx?command=getin
stallerredirect&appid=MicrosoftAzure-ServiceFabric-
VS2015 or search for Azure Service Fabric in Web Platform
Installer. Select the latest SDK and tools for VS 2015 to
allow developing microservices applications (https://
docs.microsoft.com/en-us/azure/service-fabric/
service-fabric-overview#applications-composed-of-
microservices) targeting Azure Service Fabric. See Figure 6-1.

Figure 6-1.  Service Fabric SDK and tools for VS 2015

	 2.	 Install it on your machine. Make sure Visual Studio 2015 is
closed while installing.

	 3.	 You can see the Service Fabric Application template in VS
2015 once installation has completed. See Figure 6-2.

http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-VS2015
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-VS2015
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-VS2015
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-VS2015
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview#applications-composed-of-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview#applications-composed-of-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview#applications-composed-of-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview#applications-composed-of-microservices

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

221

For Visual Studio 2017:

	 1.	 Install ASP.NET and web development to get the ASP.NET
Core development tools. See Figure 6-3.

Figure 6-2.  Service Fabric Application project template in VS 2015

Figure 6-3.  Getting ASP.NET Core development tools for VS 2017

	 2.	 Install Azure Development for Visual Studio 2017, which will
install the Service Fabric tools as well. See Figure 6-4.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

222

	 3.	 Download and install the latest Azure Service Fabric SDK
from http://www.microsoft.com/web/handlers/webpi.ashx
?command=getinstallerredirect&appid=MicrosoftAzure-
ServiceFabric-CoreSDK, or install the latest Azure Service
Fabric SDK with Web Platform Installer.

In this lesson, you set up your development environment for developing Azure
Service Fabric applications with Visual Studio 2015/2017.

Lesson 6.02 – Create a Service Fabric Application
and Test Locally
Using Visual Studio, let’s create a Service Fabric application and test it in the local
development machine.

	 1.	 Create a Visual Studio solution named “DemoServiceFabric”
in Visual Studio by selecting the Blank Solution template to
create an empty solution.

	 2.	 Add a Service Fabric application project named “SvcFabApp”
to the solution and click OK. See Figure 6-5.

Figure 6-4.  Azure Development for VS 2017

http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

223

	 3.	 You will be presented with several application templates.
Select Stateful Service and provide DemoStateFull as Service
Name. Stateful service lets you create a service with persistent
state. We are choosing it here because it is the simplest type
of service to understand the basics of micro-services. To learn
more on different templates available here visit https://
docs.microsoft.com/en-us/azure/service-fabric/
service-fabric-choose-framework. Click OK. See Figure 6-6.

Figure 6-5.  Adding Service Fabric Application project

Figure 6-6.  Stateful Service template

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

224

	 5.	 Press F5, or start the Service Fabric application. A local cluster
will be deployed by Visual Studio with five nodes allowing you
to test micro-services applications locally (More information
on local cluster with PowerShell can be found here https://
docs.microsoft.com/en-us/azure/service-fabric/
service-fabric-get-started-witha-local-cluster),
which will take a few minutes, and you will be able to see the
Diagnostic Events view in Visual Studio, which shows the
demo counter values. See Figure 6-8.

Figure 6-8.  Counter shown in Diagnostic Events view

Figure 6-7.  Changing the counter name

	 4.	 This will generate the first service for the Service Fabric
application. This service has a simple counter incrementing
continuously while running the service. Open the
DemoStateFull.cs file and change the Counter name to
DemoCounter in the RunAsync method, as shown in Figure 6-7.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-witha-local-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-witha-local-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-witha-local-cluster

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

225

	 6.	 You can pause the Diagnostic Events view and inspect
the message. You can do more experiments by disabling
the running node and so forth, as explained in the article
mentioned in the following note.

■■ Note  Detailed discussions on Azure Service Fabric applications are out of the scope of
the book. Stateful service is explained in more detail in the following article: https://docs.
microsoft.com/en-us/azure/service-fabric/service-fabric-create-your-first-

application-in-visual-studio. This Channel 9 video (https://channel9.msdn.com/
Blogs/Azure/Creating-your-first-Service-Fabric-application-in-Visual-Studio)
explains it more clearly. The preceding steps in the book are provided as prerequisites to
setting up builds and releases to deploy to Azure Service Fabric.

	 7.	 You can view/manage the local cluster using the Service
Fabric Local Cluster Manager available in the system tray
once you have deployed the application to the local cluster by
running the “DemoServiceFabric” solution in Visual Studio.
See Figure 6-9.

Figure 6-9.  Service Fabric menu

	 8.	 The “Manage Local Cluster” option will launch Service
Fabric Explorer and allow you to view/manage nodes and
applications in the cluster (more information is available in
the articles mentioned in the preceding note). See Figure 6-10.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-create-your-first-application-in-visual-studio
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-create-your-first-application-in-visual-studio
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-create-your-first-application-in-visual-studio
https://channel9.msdn.com/Blogs/Azure/Creating-your-first-Service-Fabric-application-in-Visual-Studio
https://channel9.msdn.com/Blogs/Azure/Creating-your-first-Service-Fabric-application-in-Visual-Studio

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

226

	 9.	 Let’s add a web service front end to the “SvcFabApp” Service
Fabric solution to allow the retrieval of the demo counter
value and exposing it, as explained in this article: https://
docs.microsoft.com/en-us/azure/service-fabric/
service-fabric-add-a-web-frontend. Steps are briefly
described next for completing the Service Fabric solution
(“SvcFabApp”) so as to be able to build and deploy it via Team
Services build and release management.

	 10.	 Expand the “SvcFabApp” Service Fabric application and right
click on Services. Go to Add ➤ New Service Fabric Service.
See Figure 6-11.

Figure 6-10.  Service Fabric Explorer

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-add-a-web-frontend
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-add-a-web-frontend
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-add-a-web-frontend

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

227

	 11.	 Select ASP.NET Core for creating stateless reliable service and
type “DemoCoreWebAPI” in the Service Name field. Click OK.
See Figure 6-12.

Figure 6-11.  Add new Service Fabric service

Figure 6-12.  Creating an ASP.NET Core reliable service

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

228

	 12.	 In the next popup, select the Web API template to enable
the “DemoCoreWebAPI” service as an API, thus providing
access for external applications, to other micro-services in
the “SvsFabApp”, via API (DemoStateFull is one such service).
Click OK. See Figure 6-13.

Figure 6-13.  Creating an ASP.NET Core API service

	 13.	 This adds an ASP.NET Core Web API project to the Service
Fabric solution along with additional files required to package
it as a Service Fabric service. See Figure 6-14.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

229

	 14.	 Press F5 in Visual Studio to inspect the added web API. Once
it is deployed to the local Service Fabric cluster, it will open
a browser window. A Visual Studio output window will show
the application-launching status.

	 15.	 A browser window launched with URL, like http://
localhost:8295 (port number may vary), will show an error
loading page message always. Instead of launching a browser
window, if you get the message “The application URL is not set
or is not an HTTP/HTTPS URL so the browser will not be opened
to the application” in the output window of Visual Studio,
follow the instructions here: http://stackoverflow.com/
questions/40997359/getting-error-in-service-fabric-the-
application-url-is-not-set-or-is-not-an-htt.

Figure 6-14.  Web API created as a service for Service Fabric application

http://stackoverflow.com/questions/40997359/getting-error-in-service-fabric-the-application-url-is-not-set-or-is-not-an-htt
http://stackoverflow.com/questions/40997359/getting-error-in-service-fabric-the-application-url-is-not-set-or-is-not-an-htt
http://stackoverflow.com/questions/40997359/getting-error-in-service-fabric-the-application-url-is-not-set-or-is-not-an-htt

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

230

	 16.	 Copy the URL (like http://localhost:8295/) and add
api/values so that the complete URL looks like http://
localhost:8295/api/values. Paste it in a Chrome browser,
which will let you view the json default payload returned,
which has [“value1”, “value2”] as the default value returned
by API (ASP.NET Core API template generated code has this
default value returning from api/values controller). If you try
on Internet Explorer 11, it will prompt you to download json.
See Figure 6-15.

Figure 6-15.  Web API running as a service in the local service fabric cluster

	 17.	 Stop the Visual Studio solution from running by clicking Stop
in Visual Studio. Undo the added NuGet packages (these
packages were automatically downloaded and added during
the building of the solution inside Visual Studio) folder from
Source Control Explorer, as shown in Figure 6-16. Then, check
in the solution to source control before proceeding to the
next step.

Figure 6-16.  Undo packages folder

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

231

	 18.	 Now, we are going to expose the DemoCounter’s actual
values from the stateful service via a web API in the Service
Fabric application. To communicate with the stateful service,
we need to add an interface between the stateful service
and its clients. For this, add a Class Library project named
“DemoStateFull.Interface” to the solution and make sure to
select .NET framework 4.5.2. See Figure 6-17.

Figure 6-17.  Creating interface for stateful service

	 19.	 Right click on the DemoStateFull.Interface project and then
click Manage NuGet Packages.

	 20.	 Search for the Microsoft.ServiceFabric.Services package and
click Install. Make sure to use version 2.4.164, as the code
in this book uses that NuGet package version. If you use the
latest versions, the code in this book may not be usable. See
Figure 6-18.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

232

	 21.	 Click OK in the popup widow to install this package for the
DemoStateFull.Interface project, and accept the license if
prompted. See Figure 6-19.

Figure 6-18.  Microsoft.ServiceFabric.Services

Figure 6-19.  Installing Microsoft.ServiceFabric.Services

	 22.	 After the NuGet package is installed, rename the default
added Class1.cs to “IDemoCounter.cs” so that it has a
meaningful name for its purpose. See Figure 6-20.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

233

	 23.	 Open IDemoCounter.cs and add the following code to create
an interface method named GetDemoCountAsync that allows
you to get the demo counter values from the stateful service.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.ServiceFabric.Services.Remoting;

namespace DemoStateFull.Interface
{ public interface IDemoCounter : IService
 {
Task<long> GetDemoCountAsync();
 }
}

	 24.	 Right click on the References of the DemoStateFull
project and select Add Reference. In the popup window,
select DemoStateFull.Interface and add it to the project
so as to allow the implementation of interface method
GetDemoCountAsync in the project. See Figure 6-21.

Figure 6-20.  Renaming as IDemoCounter.cs

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

234

	 25.	 Open DemoStateFull.cs in the DemoStateFull project and
implement the IDemoCounter interface as shown in Figure 6-22.

Figure 6-22.  Implementing DemoStateFull.Interface

Figure 6-21.  Adding a reference to DemoStateFull.Interface

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

235

	 26.	 Replace the GetDemoCountAsync method code with the
following code in the DemoStateFull.cs file. This code reads
the value from the DemoCounter and returns it to the caller of
the GetDemoCountAsync method. See Figure 6-23.

public async Task<long> GetDemoCountAsync()
 {
 var myDictionary =
 �await this.StateManager.GetOrAddAsync<IReliable

Dictionary<string, long>>("myDictionary");

 using (var tx = this.StateManager.CreateTransaction())
 {
 �var result = await myDictionary.

TryGetValueAsync(tx, "DemoCounter");
 return result.HasValue ? result.Value : 0;
 }
 }

Figure 6-23.  Getting DemoCount value

	 27.	 Replace the CreateServiceReplicaListeners method in the
DemoStateFull.cs file with the following code to expose the
stateful service using a service remoting listener. See Figure 6-24.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

236

protected override IEnumerable<ServiceReplicaListener>
CreateServiceReplicaListeners()
 {
 return new List<ServiceReplicaListener>()
 {
 new ServiceReplicaListener(
 (context) =>
 �this.CreateServiceRemoting

Listener(context))
 };
 }

Figure 6-24.  Default added CreateServiceReplicaListeners method

Use the following using statement to allow the use of
the CreateServiceRemotingListener method which
allows the service to listen to remote calls. This method
gets added to the DemoStateFull class along with the
ServiceRemotingExtensions class, which is available in the
Microsoft.ServiceFabric.Services.Remoting.Runtime
namespace, when the following using statement is used
(see Figure 6-25):

using Microsoft.ServiceFabric.Services.Remoting.Runtime;

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

237

	 28.	 Add a reference to DemoStateFull.Interface from
DemoCoreWebAPI to allow the calling of the
GetDemoCountAsync method using the interface. See
Figure 6-26.

Figure 6-25.  Expose stateful service with CreateServiceReplicaListeners method

Figure 6-26.  Reference to interface from API

	 29.	 Right click on the DemoServiceFabric solution in Solution
Explorer and open Configuration Manager. You can see in
Figure 6-27 that the DemoStateFull.Interface project is set to
build platform Any CPU. You need to change it to x64 since
Service Fabric application only supports x64 for services. Click
on menu and click <New…>.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

238

	 30.	 Deselect the “Create new solution platforms” box. Choose
“x64” from the New platform dropdown and click OK. See
Figure 6-28.

Figure 6-28.  Creating x64 build platform

Figure 6-27.  Creating new build platform

	 31.	 Make sure the release and debug build configuration looks
like Figure 6-29.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

239

	 32.	 In the DemoStateFull.Interface properties window, go to
the Build tab. Make sure the Output path fields are set as
bin\Debug\ and bin\Release\ for the debug and release
configurations, respectively, as shown in Figure 6-30.

Figure 6-29.  Release and debug configuration with x64 build platform

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

240

	 33.	 Open the ValuesController.cs file in the DemoCoreWebAPI.
Replace the default Get method (shown in Figure 6-31)
with the following code so that it looks like what is shown
in Figure 6-32. This code change to the Get method will
allow you to get the value of the demo counter from the
stateful service and return it as the return value of the API
ValuesController’s Get method.

public async Task<IEnumerable<string>> Get()
 {
 IDemoCounter demoCounter =
 �ServiceProxy.Create<IDemoCounter>(new Uri("fabric:/

SvcFabApp/DemoStateFull"), new ServicePartitionKey(0));

 long count = await demoCounter.GetDemoCountAsync();

 return new string[] { count.ToString() };
 }

Figure 6-30.  Release and debug output paths

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

241

Make sure to use the following using statements to enable
access to DemoStateFull.Interface and other required
services in Service Fabric:

using DemoStateFull.Interface;
using Microsoft.ServiceFabric.Services.Remoting.Client;
using Microsoft.ServiceFabric.Services.Client;

Figure 6-32.  Get method changed to retrieve value from demo stateful service

Figure 6-31.  Default available Get method

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

242

	 34.	 Press F5 in Visual Studio to run the application in the local
cluster. You can add api/values to the end of the URL in the
launched browser and keep on refreshing to retrieve updated
counter values. See Figure 6-33.

Figure 6-33.  API returning demo counter value from stateful service

You have created a stateful service using Visual Studio that is running with Service
Fabric. The stateful service has an incrementing counter named DemoCounter, and you
have created an API running in Service Fabric to expose the value of the counter.

Lesson 6.03 – Create an Azure Service Fabric
Cluster
Let’s create an Azure Service Fabric cluster to host the stateful service and the web API in
the SvcFabApp project created in the previous lesson.

	 1.	 In Azure portal, click on the green + to add new item, and then
search for Service Fabric. Select the Service Fabric cluster. See
Figure 6-34.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

243

	 2.	 In the screen that appears, click the Create button to start
creating the cluster. See Figure 6-35.

Figure 6-35.  Create Azure Service Fabric cluster

Figure 6-34.  Azure Service Fabric cluster

	 3.	 On the Basics screen, provide a name for the cluster. Select
Windows as the operating system. Set up credentials and
select your Azure subscription. If you already have a resource
group, you can select it or opt to create a new one in a
preferred location. Click OK to proceed. See Figure 6-36.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

244

	 4.	 In the Cluster Configuration section, select “1” from the Node
type count dropdown. You can define different node types
with different VM sizes and so on by using more than one
node type.

In the Node Type Configuration section, give a name and
select “Bronze” from both the Durability tier and Reliability
tier dropdowns to go for cheaper options, as this is a demo.
Select a VM size and set the VM scale capacity to 3. Ignore the
warning shown saying this will be a test cluster (setting up as
a test cluster is OK for learning purposes) and click OK in both
sections, as shown in Figure 6-37.

Figure 6-36.  Azure Service Fabric cluster basic information

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

245

	 5.	 Security mode is set to Unsecure for this lesson. If you want
to create a secure cluster, you need an SSL certificate from an
authorized certificate provider. See Figure 6-38.

Figure 6-37.  Azure Service Fabric cluster configuration

Figure 6-38.  Setting up as an unsecure cluster

	 6.	 Review the summary and click the Create button. See
Figure 6-39.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

246

	 7.	 Service Fabric clusters take a few minutes to be created. You
can view the created cluster by searching for Service Fabric in
the All resources section of the Azure portal and clicking on
Service Fabric Clusters. See Figure 6-40.

Figure 6-39.  Summary for Service Fabric cluster

Figure 6-40.  Searching for Service Fabric cluster

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

247

	 8.	 Click on the Service Fabric cluster name to view the details of
the cluster. See Figure 6-41.

Figure 6-41.  New Service Fabric cluster

	 9.	 In the overview, it shows the number of nodes running (three
nodes, since we created with three nodes for the lesson) and
the applications running (no applications deployed yet) in the
cluster. To view the Service Fabric Explorer, click on the link
highlighted in Figure 6-42.

Figure 6-42.  Service Fabric cluster overview

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

248

	 10.	 Service Fabric Cluster Explorer shows information about the
applications and nodes running and many other useful bits
of information, like the Local Cluster Explorer you saw in a
previous lesson. See Figure 6-43.

Figure 6-43.  Service Fabric Cluster Explorer

In this lesson, you have created a Service Fabric cluster in Azure that can be used
to host the application with a stateful service and a web API, which were created in a
previous lesson of this chapter.

Lesson 6.04 – Create a Build to Package the
Service Fabric Application
VSTS and TFS 2017 allow you to easily build Azure Service Fabric applications using built-
in templates. If you are using a previous version of TFS, you can try the steps described
in this article: http://www.colinsalmcorner.com/post/continuous-deployment-of-
service-fabric-apps-using-vsts-or-tfs.

http://www.colinsalmcorner.com/post/continuous-deployment-of-service-fabric-apps-using-vsts-or-tfs
http://www.colinsalmcorner.com/post/continuous-deployment-of-service-fabric-apps-using-vsts-or-tfs

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

249

	 1.	 Before creating a build definition, you have to tokenize the
cluster connection endpoint in the Service Fabric application
you have developed and add application-upgrade capability.
Open the Cloud.xml file in the PublishProfiles folder of the
SvcFabApp to view the contents before performing the next
steps. See Figure 6-44.

Figure 6-44.  Open Cloud.xml in PublishProfiles folder of SvcFabApp

This file by default contains an empty cluster connection
endpoint, as shown in Figure 6-45. Let’s look at the file’s
contents after performing the following steps in order to see
how the file is getting updated with those steps.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

250

	 2.	 Right click on SvcFabApp in Solution Explorer and click
Publish. See Figure 6-46.

Figure 6-46.  Publish Service Fabric application to add tokens

Figure 6-45.  Empty connection endpoint in the Cloud.xml file in PublishProfiles folder of
SvcFabApp

	 3.	 In the Publish Service Fabric Application window, select the
Microsoft account used for your Azure subscription. You
can add your account if it has not already been added. Note
that the Cloud.xml file is selected as the publish profile. See
Figure 6-47.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

251

	 4.	 Once the account has been connected, you can refresh to
load the Azure Service Fabric connection endpoint URL. See
Figure 6-48.

Figure 6-47.  Selecting Microsoft account

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

252

	 5.	 Select the endpoint URL. You can see the connection is valid,
as indicated by the green check mark (see Figure 6-49). Since
our Azure Service Fabric cluster is not secure, if you clicked
the Publish button (do not click publish now), it would
publish the Service Fabric application to Azure directly from
Visual Studio. But do not proceed as such, because we want to
publish in a more systematic way, using Team Services build
and release management. We are using this publish window
just to tokenize the publish profile and save the profile as
described in the next step.

Figure 6-48.  Selecting connection endpoint

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

253

	 6.	 Type __ConnectionEndpoint__ (prefix and suffix with double
underscore) in the Connection Endpoint field and select the
“Upgrade the Application” check box. Click Save Profile and
close the window. See Figure 6-50.

Figure 6-49.  Visual Studio Service Fabric publish window

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

254

	 7.	 You can see that the Cloud.xml file in the PublishProfiles of
SvcFabApp get updated as shown in Figure 6-51. Since we
have tokenized the connection endpoint, we can use any
Azure Service Fabric cluster at deployment time.

Figure 6-50.  Saving tokenized publish profile

Figure 6-51.  Publish profile tokenized and upgrade enabled

	 8.	 Open the Cloud.xml file from the ApplicationParameters
folder of the SvcFabApp. Make sure DemoCoreWebAPI_
InstanceCount is set to -1 to ensure that DemoCoreWebAPI
gets deployed to each machine in a multi-machine cluster (we
have set up a single-machine cluster, but this setting ensures
multi-machine cluster deployment capability). If you inspect

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

255

the local node application parameters (Local.1Node.xml), you
will see this value is set to 1. Read more about this at https://
docs.microsoft.com/en-us/azure/service-fabric/
service-fabric-add-a-web-frontend#how-web-services-
work-on-your-local-cluster. See Figure 6-52.

Figure 6-52.  Application parameters Cloud.xml

Figure 6-53.  Creating build definition to build Azure Service Fabric Application

	 9.	 Now that you have tokenized the publish profile and have
the required application settings in place, let’s create a build
definition with which to build and package the Service Fabric
application. In the Team Services Build tab of the TFS/VSTS
web portal, create a new build definition using the Azure
Service Fabric Application template, as shown in Figure 6-53.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-add-a-web-frontend#how-web-services-work-on-your-local-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-add-a-web-frontend#how-web-services-work-on-your-local-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-add-a-web-frontend#how-web-services-work-on-your-local-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-add-a-web-frontend#how-web-services-work-on-your-local-cluster

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

256

	 10.	 This creates a build definition with a few tasks, as shown in
Figure 6-54. Name the definition “SvcFabDemoBuild.”

Figure 6-54.  Build definition steps

	 11.	 First, go to the Repository tab and select the
DemoServiceFabric solution folder path. See Figure 6-55.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

257

	 12.	 In the Variables tab, shown in Figure 6-56, you can see that
the template has created build configuration and build
platform variables, which have been set as release and x64,
respectively, as required by the Service Fabric application.

Figure 6-56.  Build Configuration and Platform variables

Figure 6-55.  Setting repository path

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

258

	 13.	 In the Triggers tab, in the Continuous Integration section,
select the path of the DemoServiceFabric solution folder, as
shown in Figure 6-57.

Figure 6-57.  Continuous Integration settings

	 14.	 In the General tab, provide the version number format as
1.0.0$(rev:.r). The VSTS Hosted agent queue supports the
building of Azure Service Fabric applications (if Visual Studio
2017 was used to create the Service Fabric solution, select the
Hosted VS2017 agent queue for VSTS). If you using an on-
premises agent, make sure to install Visual Studio 2015/2017
and Azure Service Fabric SDK/components for Visual Studio
2015/2017 in the agent. Setting up agents is described in
Chapter 2. See Figure 6-58.

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

259

	 15.	 Leave Options, Retention, and History tabs as they are.

	 16.	 In the Build tab, select the NuGet Installer step and select the
DemoServiceFabric solution path for the Path to solution
field. Set the Installation type to Restore, as in Figure 6-59.
Expand the Advanced section and make sure to select 3.5.0
for the NuGet version. This allows the restoring of packages
required by the Core web API used in the solution. The
command-line step with the dotnet restore command
(as described in Chapter 3 on building ASP.NET Core
applications) cannot be used with this project structure. You
will run into the issue discussed at https://github.com/
dotnet/cli/issues/3199 since we are referring to the class
library .csproj from the Core web API.

Figure 6-58.  Build number format and agent

http://dx.doi.org/10.1007/978-1-4842-2811-1_3
https://github.com/dotnet/cli/issues/3199
https://github.com/dotnet/cli/issues/3199

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

260

	 17.	 In the first Visual Studio Build step, select the
DemoServiceFabric solution to build, as shown in
Figure 6-60. Select Visual Studio 2015 or 2017, depending on
the version you used. Make sure the build configuration and
build platform variables are used in the relevant fields.

Figure 6-59.  NuGet restore step

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

261

	 18.	 In the second Visual Studio Build task, select the SvcFabApp.
sfproj (Service Fabric project) to build. This will package the
Service Fabric application. Provide the following MS build
arguments.

/t:Package /p:PackageLocation=$(build.artifactstaging
directory)\applicationpackage

Select correct Visual Studio version (2015/2017 depending on
the version you have used) and make sure build platform and
build configuration variables are used. See Figure 6-61.

Figure 6-60.  Building the solution

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

262

	 19.	 In the Update Service Fabric App Versions task, provide the
Application Package path as $(build.artifactstagingdirectory)\
applicationpackage. Version value should be specified
as $(build.BuildNumber). (Note that in the default value
provided with the template, there is a “ . ” in front of $(build.
BuildNumber), so it reads as .$(build.BuildNumber). Remove
the prefixing “ . ” character, since we are going to replace the
version.) Choose “Replace” for the Version Behavior field.
Uncheck the “Update only if changed” option to allow the
updating of the version even if no changes from previous
builds have been made. This step properly updates the
Service Fabric application manifest and services manifest
versions. See Figure 6-62.

Figure 6-61.  Building the .sfproj

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

263

	 20.	 In the Copy Files task, provide $(build.sourcesdirectory) as the
Source Folder. Specify the following values as content to copy
from the publish profiles and application parameters folders:

**\PublishProfiles*.xml
**\ApplicationParameters*.xml

Set target folder as $(build.artifactstagingdirectory)\
projectartifacts. See Figure 6-63.

Figure 6-62.  Updating Service Fabric app version

Figure 6-63.  Copy Files step

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

264

	 21.	 In the Publish Build Artifacts step, specify $
(build.artifactstagingdirectory) as the path to publish. Provide
“drop” in Artifact Name field and “Server” in the Artifact Type
field, as shown in Figure 6-64.

Figure 6-64.  Publish Build Artifacts step

	 22.	 Save the build definition and queue a new build. You can see
that the application package is created with both web API
service and stateful service. See Figure 6-65.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

265

	 23.	 If you download the publish profile Cloud.xml, you can see
the __ConnectionEndpoint__ token, as in Figure 6-66.

Figure 6-65.  Build “drop” contains application package and project artifacts

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

266

	 24.	 A build number is applied to service manifests and the
application manifest. It is important to apply this version
number in these files to enable upgrade capability in Azure
Service Fabric applications. See Figure 6-67.

Figure 6-66.  Connection endpoint in the PublishProfiles\cloud.xml tokenized

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

267

You have created a build definition to package a Service Fabric application. The
build was configured to output the required project artifacts (application parameters and
publish profiles) for enabling deployment.

Lesson 6.05 – Deploy to Azure Service Fabric
Cluster
You have built the Service Fabric application package using VSTS/TFS build and created
a Service Fabric cluster in Azure. The next step is to get the built packages deployed to the
cluster using Team Services/TFS release management.

	 1.	 Create a new release definition using the Azure Service Fabric
Deployment template. After selecting the template, click Next.
See Figure 6-68.

Figure 6-67.  Build number applied to application and service manifests

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

268

	 2.	 In the next popup window, select SvcFabDemoBuild as the build
source and select “Continuous deployment” to enable deployment
when a new artifact from the build definition becomes available.
Click Create to create a release definition. See Figure 6-69.

Figure 6-68.  Azure Service Fabric Deployment template

Figure 6-69.  Create release definition

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

269

	 3.	 You can see a default environment, and that a Deploy Service
Fabric Application task has been added to the definition. Let’s
leave this task as it is for the time being and come back to it
later. See Figure 6-70.

Figure 6-70.  Service Fabric Application Deployment task

Figure 6-71.  Linked artifacts

	 4.	 Go to the Artifacts tab, and you can see SvcFabDemoBuild is
selected (Figure 6-71).

	 5.	 In the Triggers tab, you can see that continuous deployment
is set up, as shown in Figure 6-72. This allows a change to be
deployed to Azure Service Fabric once a new artifact becomes
available with a new build.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

270

	 6.	 Leave the Variables, General, Retention, and History tabs with
default values.

	 7.	 If you are running the deployment from an on-premises agent,
you need to have Azure Service Fabric SDK (http://www.
microsoft.com/web/handlers/webpi.ashx?command=getin
stallerredirect&appid=MicrosoftAzure-ServiceFabric-
CoreSDK) available in the agent.

	 8.	 Add the Replace Tokens task to the release definition. This
extension can be downloaded from Marketplace at https://
marketplace.visualstudio.com/items?itemName=qetza.
replacetokens . Setting up extensions for build and release is
described in Chapter 2.

In the Replace Tokens task, select the publish profiles
directory ($(System.DefaultWorkingDirectory)/
SvcFabDemoBuild/drop/projectartifacts/SvcFabApp/
PublishProfiles) as the root directory and cloud.xml as
the target file. In the Advanced section, specify __ (double
underscore) as both token prefix and token suffix, since
we have specified __ConnectionEndpoint__ in the publish
profile. See Figure 6-73.

Figure 6-72.  Set up for continuous deployment

http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://marketplace.visualstudio.com/items?itemName=qetza.replacetokens
https://marketplace.visualstudio.com/items?itemName=qetza.replacetokens
https://marketplace.visualstudio.com/items?itemName=qetza.replacetokens
http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

271

In the Environment menu, click on Configure variables. Add a new
environment variable named ConnectionEndpoint (token value in
Cloud.xml is ConnectionEndpoint prefixed and suffixed with __)
with a value like that shown in Figure 6-74. This allows the
__ConnectionEndpoint__ to be replaced with a value like below.

demo-scvfab-cluster.eastus.cloudapp.azure.com:19000

You can copy this value from the Azure Service Fabric Cluster
Overview page.

Figure 6-73.  Replace Tokens task

Figure 6-74.  Azure Service Fabric client connection endpoint

	 9.	 In the Service Fabric Application Deployment task, click the
Add link (highlighted in Figure 6-75), which appears next to
the Cluster Connection field. In the popup window, specify
the connection endpoint as follows, prefixing with http://:

http://demo-scvfab-cluster.eastus.cloudapp.azure.
com:19000

Provide a name for the connection and click OK.

http://demo-scvfab-cluster.eastus.cloudapp.azure.com:19000/
http://demo-scvfab-cluster.eastus.cloudapp.azure.com:19000/

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

272

You can click the Manage link next to the Cluster Connection
field to go to the Services tab in Settings and add an Azure
Service Fabric endpoint. It will show the same popup window
as in Figure 6-75, and you can create the endpoint. We are
using no authentication since we have created the Azure
Service Fabric cluster as non-secure. You can use other
options with a secure cluster. See Figure 6-76.

Figure 6-75.  Azure Service Fabric Connection

Figure 6-76.  Azure Service Fabric connection endpoint in Services tab

	 10.	 Refresh the cluster connections and select the connection
created. See Figure 6-77.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

273

	 11.	 Save the release definition as AzureServiceFabDeployDemo.

	 12.	 Create a release by clicking Create Release in the release
definition. It will deploy the Azure Service Fabric application.
See Figure 6-78.

Figure 6-77.  Selecting cluster connection

Figure 6-78.  Deployment to Azure Service Fabric completed

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

274

	 13.	 In the Azure Service Fabric cluster, the current application
version is deployed (notice the version number in Figure 6-79).

Figure 6-79.  Application deployed to Azure Service Fabric cluster

Figure 6-80.  Endpoint is set to use a given port

	 14.	 We could test the web API locally using http://localhost:8295/
api/values, since the service manifest of the web API
specified the port as 8295. See Figure 6-80.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

275

But if we try to run the connection endpoint URL with port
8295 to get values from the web API, as seen here, nothing will
be returned:

http://demo-scvfab-cluster.eastus.cloudapp.azure.
com:8292/api/values

See Figure 6-81.

Figure 6-81.  Web API cannot be accessed from the Azure Service Fabric cluster

This is because we have our web API behind a load balancer,
and we need to map the backend port 8295 with a front port.

To map backend port 8295 (or port in your service manifest
for web API) to load balancer front end port, search for load
balancers in the More Services field in Azure portal. Click on
the load balancers. Then, select the load balancer with your
Service Fabric cluster name. See Figure 6-82.

http://demo-scvfab-cluster.eastus.cloudapp.azure.com:8292/api/values
http://demo-scvfab-cluster.eastus.cloudapp.azure.com:8292/api/values

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

276

Figure 6-82.  Load balancer for Service Fabric cluster

Click Load balancing rules on the left and click Add to add a
new rule. See Figure 6-83.

Figure 6-83.  Load balancing rules

Create a new rule with port set as 85 (your preference port
is OK) and backend port as 8295 (or port number in your
web API service manifest). Save the rule by clicking OK. See
Figure 6-84.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

277

Figure 6-85.  Web API in Azure Service Fabric cluster

Now you can run the URL that follows and get the counter
value from the deployed Service Fabric application in the
Azure Service Fabric cluster. See Figure 6-85.

http://demo-scvfab-cluster.eastus.cloudapp.azure.
com:85/api/values

Figure 6-84.  Load balancing rule for web API

http://demo-scvfab-cluster.eastus.cloudapp.azure.com:85/api/values
http://demo-scvfab-cluster.eastus.cloudapp.azure.com:85/api/values

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

278

	 15.	 Let’s open the DemoServiceFabric solution in Visual
Studio and make a small code change to verify the upgrade
deployment process. In the web API project, open the
ValuesController.cs and replace the code line retuning the
counter value with the following (see Figure 6-86):

return new string[] { string.Format("Demo counter: {0}",
count.ToString()) };

Figure 6-86.  Code change in web API

	 16.	 Check in the changes to source control, providing a comment
“Format counter value message”, to trigger a build and a
deplyment to deploy the changes to Azure Service Fabric. See
Figure 6-87.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

279

Figure 6-87.  Code change check-in to source control

Figure 6-88.  Build completes and triggers deployment

	 17.	 A build will automatically be triggered, and, once it
completes, a deployment will be triggered. See Figure 6-88.

	 18.	 You can see the deployment in progress as it upgrades the
Server Fabric application. See Figure 6-89.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

280

Figure 6-89.  Service Fabric application upgrading

	 19.	 Once the upgrade is complete, you can see the new
SvcFabApp version deployed (Figure 6-90).

Figure 6-90.  New Service Fabric application version deployed

	 20.	 When the web API is accessed, you can see that the changes
are in effect. See Figure 6-91.

Chapter 6 ■ Team Services for Azure Service Fabric Deployments

281

Figure 6-91.  Changes to Web API are in effect

In this lesson, you created a release definition with which to deploy your Service
Fabric application—which is created with Visual Studio and packaged with TFS build—to
the Azure Service Fabric cluster.

Summary
In this chapter, you learned how to implement continuous delivery to Azure Service
Fabric using Team Services/TFS. With this knowledge, you can learn more about building
microservice applications without worrying about how to get them deployed.

In the next chapter, you will learn about task groups and build/release definition
history usage.

283© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_7

CHAPTER 7

Task Groups, Folders, and
Build/Release Definition
History

In this chapter, you will learn what a task group is and how to create and use them. Using
the history and the comments provided by updaters of the definitions, you will be able
to identify changes made to the build or the release definitions. You will also get to learn
about grouping build or release definitions using folders and the use of tags.

What Is a Task Group?
A sequence of tasks can be encapsulated into a reusable task in the Task Catalog using
a task group. This allows a task group to be added to a build or release definition like a
normal task. You have the option to abstract the task information while extracting the
required parameters from the encapsulated tasks. Task groups are scoped at the
team-project level and are not visible to other team projects.

Lesson 7.01 – Create a Task Group
Let’s use a few PowerShell tasks to show what can be done with task groups. You can
use any of the available tasks in a task group, but PowerShell tasks are used here to make
the concept easy to understand.

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

284

	 1.	 Create a new build definition with an empty template.
Add three PowerShell tasks from the Task Catalog and add the
following PowerShell as an inline script to all three tasks
(see Figure 7-1):

parame
$CommonParam,
$TaskParam1,
$TaskParam2
)
write-host "Task 1 CommonParam Value:" $CommonParam
write-host "Task 1 TaskParam1 Value:" $TaskParam1
write-host "Task 1 TaskParam2 Value:" $TaskParam2

Figure 7-1.  Build definition with three PowerShell tasks

	 2.	 For the first, second, and third tasks, provide the arguments as
specified here (see Figure 7-2):

First Task Arguments:

-CommonParam $(CommonParam) -TaskParam1
$(Task1Param1) -TaskParam2 "Task1FixedValueforParam2"

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

285

Second Task Arguments:

-CommonParam $(CommonParam) -TaskParam1
"Task2FixedValueforParam1" -TaskParam2
"Task2FixedValueforParam2"

Third Task Arguments (see Figure 7-3):

-CommonParam $(CommonParam) -TaskParam1
"Task3FixedValueforParam1" -TaskParam2
$(Task3Param2)

Figure 7-2.  PowerShell task two

Figure 7-3.  PowerShell task three

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

286

	 3.	 Select all three PowerShell tasks and right click; select “Create
task group” from the dropdown. See Figure 7-4.

Figure 7-4.  Grouping tasks

Figure 7-5.  Creating a task group

	 4.	 In the popup window, define the default values and descriptions
(not mandatory) for parameters. Provide a description and
select Utility for the Task Catalog category. You can select
Build, Deploy, Package, Utility, or Test as the category of the
task group so that it appears in the appropriate tab of the Task
Catalog. See Figure 7-5.

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

287

	 5.	 This will instantly convert the tasks in the build definition
to the task group. You can see the default values specified
appear, and the parameters defined are ready for values to
be entered. The description entered can be viewed when the
mouse hovers over the information icon. See Figure 7-6.

Figure 7-6.  Build definition tasks converted to task group

Figure 7-7.  Using task group in build definition

	 6.	 Provide values for the parameters CommonParam and
Task1Param1. Make sure to enable the task execution by
selecting “Enabled” in the Control Options section. See
Figure 7-7.

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

288

	 7.	 Save the build definition, giving it the name “TskGroupTest,”
and queue a new build. You will see all of the values (values
specified in encapsulated tasks and values provided as
parameters in the task group) appear in the log. This way you
can expose required parameters from the task group while
hiding any private values inside the task group you create. See
Figure 7-8.

Figure 7-8.  Values in task group and parameters provided to task group shown in log

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

289

	 8.	 Change a default value, and you will see the effects when a
new build is queued. See Figure 7-9.

	 9.	 When saving the build definition, make sure to provide a
comment. This will be useful when the history of the build
definition is inspected. See Figure 7-10.

Figure 7-9.  Change Task3Param2

Figure 7-10.  Saving build definition

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

290

	 10.	 Queue a new build, and it shows the changed value in
PowerShell task three. See Figure 7-11.

In this lesson, you learned how to easily create a task group using existing tasks in
a build definition. In the same way, you can create a task group using a set of tasks in a
release definition.

Lesson 7.02 – Use a Task Group
You can use a task group you created in a different build or release definition within the
team project.

	 1.	 Open an existing build definition or create another build
definition in the same team project you created the task group
in during the previous lesson. Then, open up Task Catalog and
go to the Utility tab to find the task group. See Figure 7-12.

Figure 7-11.  Task3Param2 shown when build is running

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

291

Figure 7-12.  Task group available as a task in Task Catalog in a build definition

	 2.	 The same thing can be done with a release definition. See
Figure 7-13.

Figure 7-13.  Task group available as a task in Task Catalog in a release definition

You can create your own task groups using the existing tasks in your build or release
definition and reuse them in other build/release definitions you are creating in the same
team project. This allows you to avoid duplication of the same set of tasks in different
build/release definitions and increases the maintainability of the definitions.

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

292

Lesson 7.03 – Manage Task Groups
To manage existing task groups, you can use the Task Groups tab.

	 1.	 In the Build & Release menu, click on Task Groups. See
Figure 7-14.

Figure 7-14.  Task groups

Figure 7-15.  Editing a task group

	 2.	 You can edit the parameters’ default values and other
information, such as where the task group’s tasks appear in
the Task Catalog. See Figure 7-15.

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

293

	 3.	 Click on Tasks to view the steps in the task group. You can edit
the individual tasks in a task group and add new tasks from
the Task Catalog to the task group by clicking on Add tasks.
See Figure 7-16.

	 4.	 Add another PowerShell task and use the same inline script.
Pass arguments as given below (see Figure 7-17):

-CommonParam $(CommonParam) -TaskParam1
"Task3FixedValueforParam1" -TaskParam2
$(Task4Param2)

Figure 7-16.  Editing task group tasks

Figure 7-17.  Adding a new task to task group

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

294

	 5.	 You can see a new parameter getting added to the task group
since you specified $(Task4Param2) as a parameter for the
fourth task, which was added in the previous step. Do not
provide a default value for the new parameter. See Figure 7-18.

	 6.	 Save the task group and open the build definition that is using
the task group so the definition can be edited. The build
definition now has another mandatory parameter for the task
(task group task from catalog). See Figure 7-19.

Figure 7-18.  New parameter in task group

Figure 7-19.  New parameter in task group is required in the build definition that is using
the task group

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

295

	 7.	 Provide the value Task4Param2ValueviaBuild in the build
definition, save, and queue a build to verify. See Figure 7-20.

You learned how to manage an existing task group in this lesson. Do further
experiments by modifying the task group in order to understand more about them.

Lesson 7.04 – Organize Folders to Group Builds
When you have multiple build definitions in a team project, you might find at times it is
not easy to locate a given build definition. To group or categorize your build definitions,
you can use folders, as shown in the following steps.

	 1.	 In the Builds tab, go to All Definitions and click Manage
Folders. See Figure 7-21.

Figure 7-20.  New parameter value shown in build log

Figure 7-21.  Manage folders for grouping build definitions

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

296

	 2.	 Click on Create new folder, provide a name, and click OK. See
Figure 7-22.

	 3.	 Then, click on the menu link for a build and choose Move
definition. See Figure 7-23.

Figure 7-22.  Creating new folder

Figure 7-23.  Move build definition to a folder

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

297

	 4.	 Select the folder and click OK, as shown in Figure 7-24.

	 5.	 This way, you can group your build definitions into folders to
organize them properly. See Figure 7-25.

You can use folders to group your build definitions in order to keep them organized
and categorized in your team project.

Figure 7-24.  Selecting a folder for build definition

Figure 7-25.  Build definition moved to folder

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

298

Lesson 7.05 – Track Build/Release
Definition History
Build and release definitions are stored as json files in TFS. You can view the history of
updates and compare changes to get an idea of what has been changed in a definition.
You can roll back to a previous version of the build definition. But, for release definitions,
rollback is not available.

	 1.	 Go to the build definition named TskGroupTest, created in
Lesson 7.01, and edit it. Go to the History tab. You can see the
comments provided while saving and see the change history.
See Figure 7-26.

	 2.	 You can view the differences by selecting two versions and
clicking on Diff, as shown in Figure 7-27.

Figure 7-26.  Build definition history

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

299

	 3.	 In the build definition history, you can select a version and
click on Rollback to go back to that version of the build. See
Figure 7-28.

Figure 7-27.  Build definition version comparison

Figure 7-28.  Rollback build definition

Chapter 7 ■ Task Groups, Folders, and Build/Release Definition History

300

	 4.	 In the new build editor layout (explained in Chapter 1), you
can see the rollback option and comparison of definitions via
a menu link. Rollback is available as Revert Definition, and
Diff is available as Compare difference. See Figure 7-29.

In this lesson, you learned how to use the build/release definition History tab.

Summary
In this chapter, you learned about task groups. These help you group a common set of
tasks into a single unit of functionality, which could be shared between multiple build
definitions or release definitions while parameterizing as required. This provides higher
maintainability in build/release definitions.

Organizing builds using folders allows you to maintain a proper structure and to
categorize your builds. This is useful if you are using a large team project with multiple
teams, or applications with multiple builds.

The build and release history allows you to track changes made to a definition.
Rollback of build definitions lets you go back to the previous versions easily if you
made any mistakes in an update. This would be a really nice feature to have for release
definitions as well, and will eventually be available in the future.

In the next chapter, you will learn how to build source code in external repositories
using Team Services build.

Figure 7-29.  Rollback and Diff in new build definition layout

http://dx.doi.org/10.1007/978-1-4842-2811-1_1

301© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_8

CHAPTER 8

Building with External
Repositories and Other
Platform Builds

In this chapter, you will learn how to use Team Services builds to build code in GitHub and
how to build Java code with Team Services builds. Using a similar mechanism which you
will use for GitHub, you will be able to build code in other repositories, such as Subversion.

Lesson 8.01 – Create a Console App and Commit
It to GitHub
Prerequisites: You have signed up for a GitHub account (https://github.com/), and
you have a Team Services account (https://www.visualstudio.com/team-services/).

Let’s create a simple console application in Visual Studio and commit it to GitHub.

	 1.	 Open GitHub in your browser and click on the Start a project
button, as shown in Figure 8-1.

Figure 8-1.  Start a project in GitHub

https://github.com/
https://www.visualstudio.com/team-services/

Chapter 8 ■ Building with External Repositories and Other Platform Builds

302

	 2.	 Type in TFS.Build.Demo for the repository name and create
a repository. A public repository will allow anyone to see it,
but you can control who is allowed to commit code to it. A
private one allows you to control who can see the repository
as well. If you select the “Initialize this repository” option
you will be allowed to clone the repository to your computer
immediately. Do not select this option, since it will be cloned
in a later step using Visual Studio. See Figure 8-2.

Figure 8-2.  Create GitHub repository

Chapter 8 ■ Building with External Repositories and Other Platform Builds

303

	 3.	 Make sure you have installed GitHub Extension for Visual
Studio. If not, install it in Visual Studio by clicking on Tools ➤
Extensions and Updates. Then, search for GitHub Extension
in the popup window. Install it to Visual Studio by clicking
Download and following the steps in the popup installation
window. For Visual Studio 2017, the default behavior is that
the installation will be started once you close Visual Studio.
See Figure 8-3.

	 4.	 Open Team Explorer in Visual Studio. On the Connect page,
click on Manage Connections and select “Connect to GitHub”
from the dropdown list, as shown in Figure 8-4.

Figure 8-3.  Installing GitHub Extensions for Visual Studio

Figure 8-4.  Connect to GitHub

Chapter 8 ■ Building with External Repositories and Other Platform Builds

304

	 5.	 Provide the credentials to the GitHub account and click Login.
See Figure 8-5.

	 6.	 Once logged in, in the Team Explorer you can see an option to
clone GitHub repositories (see Figure 8-6). Click it.

Figure 8-5.  Login to GitHub

Figure 8-6.  Clone GitHub repositories

Chapter 8 ■ Building with External Repositories and Other Platform Builds

305

	 7.	 The popup window shows the repositories available to clone
in the GitHub account. Select the TFS.Build.Demo repository
and provide a local path for the repository. Then, clone the
repository by clicking Clone. See Figure 8-7.

Figure 8-7.  Clone GitHub repository

Chapter 8 ■ Building with External Repositories and Other Platform Builds

306

Figure 8-8.  Creating new solution

Figure 8-9.  Creating a new solution

	 8.	 Create a new solution using the “Create a new project or
solution” link. See Figure 8-8.

Or, on the Team Explorer home screen, click New in the
Solutions section (Figure 8-9).

Chapter 8 ■ Building with External Repositories and Other Platform Builds

307

	 9.	 Create an empty solution by selecting the Blank Solution template
in the popup window. Name the solution “GitHubSolution” and
add a console application named “ConsoleApp” to it by right
clicking on the solution in the Solution Explorer. See Figure 8-10.

	 10.	 On the Team Explorer home screen, click on Changes to
commit the changes to the local repository. See Figure 8-11.

Figure 8-10.  Console application added to solution

Figure 8-11.  Pending changes

Chapter 8 ■ Building with External Repositories and Other Platform Builds

308

	 11.	 Let Git save the user details if prompted. See Figure 8-12.

	 12.	 Provide a comment and select “Commit All and Sync” from
the dropdown options to commit the code to the master
branch of the repository. See Figure 8-13.

Figure 8-12.  Saving username for Git

Figure 8-13.  Commit the changes

Chapter 8 ■ Building with External Repositories and Other Platform Builds

309

	 13.	 The solution will be synchronized with the GitHub repository.
See Figure 8-14.

You created a solution and a console application and committed it to GitHub. This
code from GitHub can be built with TFS/Team Services builds, as explained in a future
lesson of this chapter.

Figure 8-14.  GitHub updated with the changes

Chapter 8 ■ Building with External Repositories and Other Platform Builds

310

Lesson 8.02 – Link GitHub with Team Services/
TFS as a Service Endpoint
To use a GitHub repository with Team Foundation builds, GitHub needs to be connected
to Team Services/TFS as an external service endpoint. You can use a GitHub personal
access token to connect it to Team Services/TFS.

	 1.	 Click on your GitHub profile to expand the menu, then click
on Settings. See Figure 8-15.

	 2.	 Click on the Generate new token button in the Personal
access tokens tab on the Settings page. See Figure 8-16.

Figure 8-16.  Generate token in GitHub

Figure 8-15.  Select GitHub account settings

Chapter 8 ■ Building with External Repositories and Other Platform Builds

311

	 3.	 Type TFSLink as the description of the token and select
the scopes: repo, admin:repo_hook, and user. Click the
Generate token button as shown in Figure 8-17.

Figure 8-17.  Scopes for token in GitHub

Chapter 8 ■ Building with External Repositories and Other Platform Builds

312

	 4.	 The generated token only appears once in GitHub. You should
copy it and save it in a notepad or some other text document.
Keep the token securely somewhere so it can be accessed
when required. See Figure 8-18.

	 5.	 The next time you view the token in GitHub, it only shows
the token name. You can click Edit to change scopes, but the
token value cannot be seen again. See Figure 8-19.

	 6.	 Go to the Team Services/TFS project and click on Settings.
In the Services tab, click on New Service Endpoint and select
GitHub from the list. See Figure 8-20.

Figure 8-18.  Generated token in GitHub

Figure 8-19.  View generated token in GitHub

Chapter 8 ■ Building with External Repositories and Other Platform Builds

313

Figure 8-20.  Creating GitHub service endpoint

	 7.	 Select the “Personal access token” option in the popup window,
provide a name for the GitHub link, provide the personal access
token generated previously and click OK. See Figure 8-21.

Figure 8-21.  Creating GitHub service endpoint with personal access token

Chapter 8 ■ Building with External Repositories and Other Platform Builds

314

	 8.	 The GitHub service endpoint is added to the Team Services/
TFS project. See Figure 8-22.

In this lesson, you created a GitHub service endpoint in TFS/VSTS to enable access
to code in GitHub from VSTS/TFS builds.

Figure 8-22.  GitHub service endpoint

Chapter 8 ■ Building with External Repositories and Other Platform Builds

315

Lesson 8.03 – Build GitHub Code in Team
Foundation Build
Let’s create a new build definition with which to build the solution created and submitted
to GitHub previously.

	 1.	 Create a new build definition with an empty template and
select GitHub as the repository (you can change the repository
type after creating the definition in the Repository tab of the
build definition). See Figure 8-23.

Figure 8-23.  New build definition with GitHub as the repository

Chapter 8 ■ Building with External Repositories and Other Platform Builds

316

Figure 8-24.  Repository tab of build definition

	 2.	 Go to the Repository tab and make sure GitHub is selected
as the repository type. Select the service endpoint that was
created in the previous lesson as the Connection (you can
use the Manage link to go to Settings, then to the Services
tab, to create an external service endpoint). Select the TFS.
Build.Demo repository and select the master branch, since
you committed the solution to the master branch in the first
lesson in this chapter. See Figure 8-24.

Chapter 8 ■ Building with External Repositories and Other Platform Builds

317

	 3.	 In the Build tab, add a Visual Studio Build step and select
the GitHub solution to build with this build definition. See
Figure 8-25.

Figure 8-25.  Selecting GitHub solution to build in the Visual Studio Build step of the build
definition

	 4.	 Queue a new build to verify. See Figure 8-26.

Figure 8-26.  GitHub solution is built with TFS build

Chapter 8 ■ Building with External Repositories and Other Platform Builds

318

	 5.	 Go to Edit build definition and, in the Trigger tab, set each
check-in to build by selecting the “Continuous integration” box.
This will allow you to verify whether a build can be triggered for
a commit to the GitHub repository. See Figure 8-27.

Figure 8-27.  Continuous integration using GitHub

Chapter 8 ■ Building with External Repositories and Other Platform Builds

319

	 7.	 You can see in Figure 8-29 that this build is marked with an
icon to denote as a continuous integration build.

Figure 8-28.  Continuous integration build in progress

Figure 8-29.  Continuous integration build completed

	 6.	 Do a code change and select Commit and Sync. You will see
that a new build is triggered automatically. See Figure 8-28.

Chapter 8 ■ Building with External Repositories and Other Platform Builds

320

This confirms that the commit to the GitHub repository allows
TFS/VSTS to trigger a build, as shown (batched continuous
integration) in Figure 8-30.

You created a build definition with which to build .NET code committed to GitHub
using Team Foundation builds.

Lesson 8.04 – Submit Java Code to GitHub
Let’s create and commit Java code to GitHub to enable it to be built with TFS builds.

	 1.	 Create a new repository in GitHub named “TFS.Java.Build.
Demo.”

	 2.	 Download and install the GitHub desktop from
https://desktop.github.com/.

	 3.	 Open the GitHub desktop and log in with your GitHub
account. Clone the repository by clicking + and selecting the
repository. See Figure 8-31.

Figure 8-30.  Continuous integration build with GitHub code repository

https://desktop.github.com/

Chapter 8 ■ Building with External Repositories and Other Platform Builds

321

Figure 8-31.  Clone repository with GitHub desktop

	 4.	 After cloning, click on the repository name and click “open
this repository” to open the Windows Explorer folder of the
repository. See Figure 8-32.

Figure 8-32.  Open Windows Explorer folder with GitHub desktop

Chapter 8 ■ Building with External Repositories and Other Platform Builds

322

	 5.	 Create a folder called “JavaDemo” in the repository folder and
create a DemoX.java file with the following code. This code is
available at https://docs.oracle.com/javase/tutorial/
getStarted/cupojava/win32.html. See Figure 8-33.

/**
 * The HelloWorldApp class implements an application that
 * simply prints "Hello World!" to standard output.
 */
 classHelloWorldApp {
 publicstaticvoidmain(String[] args) {
 �System.out.println("Hello World - TFS Builds!");

// Display the string.
 }
 }

Figure 8-33.  “Hello World” Java code

https://docs.oracle.com/javase/tutorial/getStarted/cupojava/win32.html
https://docs.oracle.com/javase/tutorial/getStarted/cupojava/win32.html

Chapter 8 ■ Building with External Repositories and Other Platform Builds

323

	 6.	 In the repository folder, create a file named build.xml and add
the following XML content. Make sure the src.dir property
has value JavaDemo (name of folder holding the Java code).
You can find the original code at https://ant.apache.org/
manual/tutorial-HelloWorldWithAnt.html. See Figure 8-34.

<project name="HelloWorld" basedir="." default="main">

 <property name="src.dir" value="JavaDemo"/>

 <property name="build.dir" value="build"/>
 <property name="classes.dir" value="${build.dir}/classes"/>
 <property name="jar.dir" value="${build.dir}/jar"/>

 <property name="main-class" value="HelloWorldApp"/>

 <target name="clean">
 <delete dir="${build.dir}"/>
 </target>

 <target name="compile">
 <mkdirdir="${classes.dir}"/>
 <javacsrcdir="${src.dir}" destdir="${classes.dir}"/>
 </target>

 <target name="jar" depends="compile">
 <mkdirdir="${jar.dir}"/>
 <jar destfile="${jar.dir}/${ant.project.name}.jar"
basedir="${classes.dir}">
 <manifest>
 �<attribute name="Main-Class"

value="${main-class}"/>
 </manifest>
 </jar>
 </target>

 <target name="run" depends="jar">
 �<java jar="${jar.dir}/${ant.project.name}.jar"

fork="true"/>
 </target>

 <target name="clean-build" depends="clean,jar"/>

 <target name="main" depends="clean,run"/>

</project>

https://ant.apache.org/manual/tutorial-HelloWorldWithAnt.html
https://ant.apache.org/manual/tutorial-HelloWorldWithAnt.html

Chapter 8 ■ Building with External Repositories and Other Platform Builds

324

Figure 8-34.  Build.xml

Chapter 8 ■ Building with External Repositories and Other Platform Builds

325

	 7.	 Using the GitHub desktop, commit the changes to the
repository. See Figure 8-35.

	 8.	 Then, publish them to GitHub, as seen in Figure 8-36.

Figure 8-35.  Commit the Java code and build.xml to master branch

Figure 8-36.  Publish to GitHub

Chapter 8 ■ Building with External Repositories and Other Platform Builds

326

	 9.	 GitHub gets updated with the Java code and the build.xml file.
See Figure 8-37.

You created a “Hello World” Java code and a build.xml file and submitted them to
GitHub.

Lesson 8.05 – Build Java Code in GitHub with
Team Foundation Build
Let’s create a build definition in TFS/VSTS with which to build the Java code committed
to GitHub in the previous lesson.

	 1.	 As explained in Lesson 8.02 – Link GitHub with Team
Services/TFS as a Service Endpoint, set up a link to GitHub
with the team project.

	 2.	 Create a new build definition and select TFS.Java.Build.Demo
as the repository. See Figure 8-38.

Figure 8-37.  Code and XML published to GitHub

Chapter 8 ■ Building with External Repositories and Other Platform Builds

327

	 3.	 Add the Ant build step to the definition from the Task Catalog,
as shown in Figure 8-39.

Figure 8-38.  Repository tab of build definition

Figure 8-39.  Ant build task

Chapter 8 ■ Building with External Repositories and Other Platform Builds

328

	 4.	 Select the build.xml file from the TFS.Java.Demo.Build
repository as the build file, as shown in Figure 8-40.

	 5.	 Add a Copy Publish Artifact step to the build from the Task
Catalog. Set the content to copy as follows:

**/*.class
**/*.jar

Figure 8-40.  Select build.xml in Ant build task

Chapter 8 ■ Building with External Repositories and Other Platform Builds

329

Figure 8-41.  Task to publish built Java code

Provide information for the Artifact Name let’s say
“AntOutput” and for Artifact Type select Server, as seen in
Figure 8-41.

	 6.	 Use the hosted build agent to build the Java code with the Ant
build task. (If you are using on-premises TFS, you have to set
up a build server with Ant, as explained here: http://ant.
apache.org/manual/install.html.) See Figure 8-42.

Figure 8-42.  Hosted build agent has Ant capability

http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html

Chapter 8 ■ Building with External Repositories and Other Platform Builds

330

	 7.	 In the General tab of the build definition, add a demand for
the agent to look for Ant within itself (see Figure 8-43).

Figure 8-43.  Demand for Ant

Chapter 8 ■ Building with External Repositories and Other Platform Builds

331

	 8.	 Queue a build, and it should build the .class and .jar files and
make them available as output. See Figure 8-44.

Figure 8-44.  Build output

Chapter 8 ■ Building with External Repositories and Other Platform Builds

332

	 9.	 Download the .jar file, open the properties of the downloaded
file, and unblock it. See Figure 8-45.

Figure 8-45.  Unblock downloaded .jar file

Chapter 8 ■ Building with External Repositories and Other Platform Builds

333

	 10.	 Execute the .jar file with the following Java command to verify
the Java code built with TFS build (Java Runtime required).
See Figure 8-46.

In this lesson, you created a build definition with which to build Java code
committed to GitHub.

Summary
In this chapter, you learned how to link GitHub to Team Services/TFS to enable building
the code available in GitHub using Team Foundation builds. Similarly, you can integrate
it with source code repositories such as Remote Git repositories and Subversion.

Java code can be built using Ant and Maven. This chapter covered very basic Java
code build using Ant builds. Experimentation with more-complex Java projects is
required to gain more experience in this area.

In the next chapter, you will learn how to use, test automation capabilities with build
and release management with TFS.

Figure 8-46.  Running the downloaded .jar file

335© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_9

CHAPTER 9

Test Automation with Build
and Release

This chapter will give you an overview of test automation, as well as of the capabilities
of Team Foundation build and release management to run automated tests with build
and deployment processes. Hands-on lessons will guide you step-by-step on unit test
integration, functional test integration, and cloud-based load-test execution with TFS and
Team Services.

Test Automation
Test automation has become a buzz word in modern software development. This
enthusiasm is the result of test automation’s vitality to the software delivery process.
No software delivery company can afford to test their software using manpower alone.
Manual testing requires a lot of time and could introduce human errors. A small bug
fix of a software product manually taken through a full system test or smoke test costs
more time and money to a software development organization than an automated
process does. Hence, such companies must have the capability to run tests faster and
with less human involvement. This could lead to dramatic savings in the effort and cost
required for a delivery cycle, which in turn provides a competitive advantage to the
software vendor.

It is essential to have automated builds and deployments integrated with the
automated tests to get the maximum productivity outcome in the delivery cycle of a
software. Visual Studio Team Services and TFS have built-in capabilities, to integrate
with automated tests written using Visual Studio, Selenium, and so forth. In the following
lessons, we will look at a few types of tests that can be automated and integrated with TFS
build and release management.

Chapter 9 ■ Test Automation with Build and Release

336

Lesson 9.01 – Write Unit Tests and Integrate with
Build
Let’s look at how to automate the running of unit tests with TFS builds in order to validate
code checked in to a given repository.

	 1.	 Create a Visual Studio solution and add a class library project
to it.

	 2.	 In the class, write two simple methods as follows. (The
code is available at https://github.com/chamindac/Book-
Beginning-Build-ReleaseManagement-/blob/master/
Chapter09/UnitTestDemo/Lib/Class1.cs.)

public class Class1
{
public int Add(int num1, int num2)
 {
return num1 + num2;
 }

public int Substract(int num1, int num2)
 {
return num1 - num2;
 }
}

	 3.	 In the Visual Studio Solution Explorer, right click on the
solution and select New Project to add a unit test project to
the solution. In the pop up window select “Unit Test Project”
and provide a name for the project, then click OK.
See Figure 9-1.

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/UnitTestDemo/Lib/Class1.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/UnitTestDemo/Lib/Class1.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/UnitTestDemo/Lib/Class1.cs

Chapter 9 ■ Test Automation with Build and Release

337

	 4.	 Add a reference to class library project from the unit
test project. Then, add two unit test methods to test
the Add and Subtract methods (the code is available
at https://github.com/chamindac/Book-Beginning-
Build-ReleaseManagement-/blob/master/Chapter09/
UnitTestDemo/DemoUnitTest/UnitTest1.cs).

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Lib;

namespace DemoUnitTest
{
 [TestClass]
public class UnitTest1
 {
 [TestMethod]
public void TestAdd()
 {
Class1 c1 = new Class1();

Figure 9-1.  Adding a unit test project

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/UnitTestDemo/DemoUnitTest/UnitTest1.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/UnitTestDemo/DemoUnitTest/UnitTest1.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/UnitTestDemo/DemoUnitTest/UnitTest1.cs

Chapter 9 ■ Test Automation with Build and Release

338

Assert.AreEqual(10, c1.Add(4, 6));
 }

 [TestMethod]
public void TestSubstract()
 {
Class1 c1 = new Class1();

Assert.AreEqual(2, c1.Substract(6, 4));
 }
 }
}

Discussing advanced topics related to unit testing is out of the
scope of this book. Refer to articles such as the one found at
https://msdn.microsoft.com/en-us/library/hh549175.as
px?f=255&MSPPError=-2147217396 to learn more about topics
such as Fakes for unit testing.

	 5.	 Build the solution and execute the tests in Test Explorer in
Visual Studio to verify the solution. See Figure 9-2.

Figure 9-2.  Executing unit tests in Visual Studio

	 6.	 Check the solution in to the source control repository.

	 7.	 Create a new build definition and set the repository to the
Solution folder. Creating a build definition is explained in
Chapter 3. See Figure 9-3.

https://msdn.microsoft.com/en-us/library/hh549175.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/hh549175.aspx?f=255&MSPPError=-2147217396
http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 9 ■ Test Automation with Build and Release

339

	 8.	 Add BuildPlatform and BuildConfiguration variables in the
Variables tab and set their values to any cpu and release,
respectively, as shown in Figure 9-4.

Figure 9-3.  Map unit test project in build definition

Figure 9-4.  Build variables

Chapter 9 ■ Test Automation with Build and Release

340

	 9.	 Add a Visual Studio build step and select the UnitTestDemo.
sln file to build. See Figure 9-5.

Figure 9-5.  Build step used to build the solution

	 10.	 Add a Visual Studio Test step to the build definition from the
Test tab of the Task Catalog. Set the test assembly name as
follows (use the name of your unit test project dll instead of
DemoUnitTest.dll). It is important to have -:**\obj** in
order to tell the test runner to ignore the contents of any obj
folders. See Figure 9-6.

\DemoUnitTest.dll;-:\obj**

Chapter 9 ■ Test Automation with Build and Release

341

	 11.	 Queue a new build. You can see the test results in the Tests tab
of the build details screen. See Figure 9-7.

Figure 9-6.  Build step to run unit tests

Chapter 9 ■ Test Automation with Build and Release

342

In this lesson, you learned how to enable unit test execution with TFS builds.
Experiment further by adding more unit tests, test fail scenarios, and so on.

Lesson 9.02 – Write Coded UI Tests and Package
with Build
To automate functional tests, you can use coded UI tests in Visual Studio. The following
steps describe how to create a coded UI test and how to package it using TFS builds.

	 1.	 Create a Visual Studio solution named “CodedUIDemo.”

	 2.	 Add a new Coded UI Test Project to the solution and name it
“DemoCodedUI.” See Figure 9-8.

Figure 9-7.  Unit test results

Chapter 9 ■ Test Automation with Build and Release

343

	 3.	 A popup window appears that will allow you to generate code.
Click the Cancel button to close that window, since we are
going to write the coded UI test manually in this lesson. See
Figure 9-9.

Figure 9-8.  Adding Coded UI Test Project

Figure 9-9.  Generating coded UI tests

Chapter 9 ■ Test Automation with Build and Release

344

	 4.	 Create a new folder in the DemoCodedUI project called
“ObjectModel” and add a GoogleHome class. In this lesson, we
are going to launch the browser and load Google Home, then
look for the Google search button as the coded UI test. See
Figure 9-10.

Figure 9-10.  Add GoogleHome.cs

	 5.	 Open GoogleHome.cs and replace the class code with code
found at https://github.com/chamindac/Book-Beginning-
Build-ReleaseManagement-/blob/master/Chapter09/
CodedUIDemo/DemoCodedUI/ObjectModel/GoogleHome.cs.
This code will allow you to locate the Google Home page
and the Google search button. Add the assemblies shown in
Figure 9-11 to the project.

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/CodedUIDemo/DemoCodedUI/ObjectModel/GoogleHome.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/CodedUIDemo/DemoCodedUI/ObjectModel/GoogleHome.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/CodedUIDemo/DemoCodedUI/ObjectModel/GoogleHome.cs

Chapter 9 ■ Test Automation with Build and Release

345

	 6.	 Open the default added CodedUITest1.cs and replace the
code with the code found at https://github.com/chamindac/
Book-Beginning-Build-ReleaseManagement-/blob/master/
Chapter09/CodedUIDemo/DemoCodedUI/CodedUITest1.cs. Five
passing test methods and two failing test methods (purposely
failing for learning purposes) are written in this code. You must
make sure you have added the assemblies shown in the previous
figure. Sample passing and failing test methods are shown here:

[TestMethod]
public void SampleCodedUIPassTestMethod()
{
 BrowserWindow browser = BrowserWindow.Launch(new System.
Uri("http://www.google.com"));
 GoogleHome gh = new GoogleHome(browser);

 HtmlInputButton uIGoogleSearchButton = gh.GoogleSearchButton;
 Assert.AreEqual("Google Search", uIGoogleSearchButton.
ValueAttribute);
}

[TestMethod]
public void SampleCodedUIFailTestMethod()
{
 BrowserWindow browser = BrowserWindow.Launch(new System.
Uri("http://www.google.com"));
 GoogleHome gh = new GoogleHome(browser);

Figure 9-11.  Add reference assemblies

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/CodedUIDemo/DemoCodedUI/CodedUITest1.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/CodedUIDemo/DemoCodedUI/CodedUITest1.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter09/CodedUIDemo/DemoCodedUI/CodedUITest1.cs

Chapter 9 ■ Test Automation with Build and Release

346

 HtmlInputButton uIGoogleSearchButton = gh.GoogleSearchButton;
 Assert.AreEqual("Google1 Search", uIGoogleSearchButton.
ValueAttribute);

}

	 7.	 Build the solution in Visual Studio and execute all the tests in
Test Explorer to verify. You will notice five tests pass and two
fail. See Figure 9-12.

Figure 9-12.  Coded UI tests’ execution in Visual Studio

	 8.	 Check all the code in to the source control repository.

	 9.	 Create a new empty build definition. Name it
“CodedUIDemoBuild.”

	 10.	 In the Repository tab, set the CodedUIDemo solution path, as
shown in Figure 9-13.

Chapter 9 ■ Test Automation with Build and Release

347

	 11.	 Add BuildPlatform and BuildConfiguration variables with
values of any cpu and release, respectively.

	 12.	 Add a Visual Studio Build step and select the CodedUIDemo
solution to build. See Figure 9-14.

Figure 9-13.  Map the coded UI project in the build definition

Figure 9-14.  Build step to build the coded UI demo solution

Chapter 9 ■ Test Automation with Build and Release

348

	 13.	 Add the Copy Publish Artifact step and set contents to **/
bin/**/DemoCodedUI.dll. This will publish the build artifacts
once the build is executed. See Figure 9-15.

Figure 9-16.  Built coded UI test dll

Figure 9-15.  Build step to publish artifacts

	 14.	 Save and queue a new build. The build should create the
DemoCodedUI.dll as the output/artifacts of the completed
build. See Figure 9-16.

You created the Coded UI Test Project with a few tests and then created a build to
package it. This can be used to execute functional tests using Team Foundation release
management.

Chapter 9 ■ Test Automation with Build and Release

349

Lesson 9.03 – Run Functional Tests with TFS/
VSTS Release
Prerequisites: Set up a TFS build/release agent on a machine. Then, set up a machine
or virtual machine to be used as a test client machine with OS Window 8.1 or 10. The
agent machine should have line of sight to the test client machine. Refer to Chapter 2 to
understand the TFS build and release agents.

Let’s look at the steps required to execute functional tests with Team Foundation
release management.

	 1.	 In the machine setup as the test client, create a user named
“adminuser” and add it to the Administrator group. Log on to
the test client machine using “adminuser” at least once. See
Figure 9-17.

Figure 9-17.  Adding user to Administrator group

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 9 ■ Test Automation with Build and Release

350

	 2.	 Create another user named “testsvcuser” to run the test agent
service. See Figure 9-18.

Figure 9-18.  Creating test service user

	 3.	 On the test client machine, allow file and printer sharing for
both private and public use if the test client machine is in a
work group. If it is in the same domain as the build/release
agent machine, allowing for domain is okay. The screenshots
taken from a work group machine used as test client so you
cannot see domain in the Figure. See Figure 9-19.

Chapter 9 ■ Test Automation with Build and Release

351

	 4.	 Set up test client machine with WinRM (https://msdn.
microsoft.com/en-us/library/aa384372(v=vs.85).aspx) if
not already installed. (WinRM is automatically installed with
all currently supported versions of the Windows operating
system.)

	 5.	 Enable PowerShell remoting on the test client machine by
executing the following command in the Administrative
PowerShell window. See Figure 9-20.

Enable-PSRemoting

Figure 9-19.  Allow file and printer sharing in test client

https://msdn.microsoft.com/en-us/library/aa384372(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa384372(v=vs.85).aspx

Chapter 9 ■ Test Automation with Build and Release

352

Note This may throw an error that is a bit misleading and does not provide enough
information if your virtual machine is not in a domain. More details are explained here:
https://4sysops.com/archives/enable-powershell-remoting-on-a-standalone-

workgroup-computer/

This can be fixed by running the command with a –SkipNetworkProfileCheck switch.

Enable-PSRemoting –SkipNetworkProfileCheck

	 6.	 If your test client machine is not in the same domain as the
build/release agent, then allow public access to WinRM by
enabling the firewall rule shown in Figure 9-21 (it is by default
not enabled).

Figure 9-20.  Enable PowerShell remoting

https://4sysops.com/archives/enable-powershell-remoting-on-a-standalone-workgroup-computer/
https://4sysops.com/archives/enable-powershell-remoting-on-a-standalone-workgroup-computer/

Chapter 9 ■ Test Automation with Build and Release

353

	 7.	 Verify PowerShell remoting access from the build/release
agent machine by entering into a remote PowerShell session
to the test client machine from the build/release agent
machine. It could throw an error, as shown in Figure 9-22.

Enter-PSSession –ComputerName<remotemachinenameorip>
–Credential <remotemachineadminuser>

Figure 9-22.  Error when entering PS session

Figure 9-21.  Remote management public firewall rule

	 8.	 If WinRM is not set up in the build/release agent machine, run
the following command to set it up (see Figure 9-23):

winrm qc

Chapter 9 ■ Test Automation with Build and Release

354

	 9.	 Even with this remote PowerShell session may not work.
Check the trusted host list in the build/release agent machine
by executing the following command (see Figure 9-24).

Get-Item -Path WSMan:\localhost\Client\TrustedHosts

Figure 9-23.  Setting up WinRM in build/release agent machine

Figure 9-24.  Get trusted hosts

Chapter 9 ■ Test Automation with Build and Release

355

	 10.	 To add the test client machine as a trusted host, execute the
following command (see Figure 9-25).

Set-Item -Path WSMan:\localhost\Client\TrustedHosts –Value
<remotemachinenameorip>

Figure 9-25.  Adding test client machine to trusted hosts in build/release agent machine

	 11.	 Then, retry obtaining a remote PowerShell session and create
a folder on the test client machine from the build/release
agent machine to confirm the session access. See Figure 9-26.

Chapter 9 ■ Test Automation with Build and Release

356

	 12.	 Create a new release definition with an empty template and
set the linked artifact to the build (CodedUIDemoBuild)
created in Lesson 9.02. See Figure 9-27.

Figure 9-26.  Create folder with PowerShell remotely

Figure 9-27.  Linked artifacts

	 13.	 Add variables with the usernames and passwords for the test
client machine in the first environment 1, which is added
by default to the release definition. Make sure to add the
adminuser without the machine name, as shown in
Figure 9-28—just the username only. However, if it is a
domain username, add it as domain\username. For the test
service user, input machineip\username.

Chapter 9 ■ Test Automation with Build and Release

357

Figure 9-28.  Adding variables for release environment

	 14.	 Set the agent to run as the release agent. Add a Visual Studio
Test Agent Deployment task from the Task Catalog. For
machines, provide the IP address (or FQDN if in a domain)
of the test client machine. Use the variables defined for the
admin user and the test service user. Select HTTP as the
protocol. Make sure to run the task as an interactive process
to enable the execution of functional UI tests on the test client
machine. See Figure 9-29.

Chapter 9 ■ Test Automation with Build and Release

358

Figure 9-29.  Test Agent Deployment task

	 15.	 Add a Windows Machine File Copy task to the release
environment. This allows coded UI test assemblies and any
other required files to be copied to the test client machine, so
the UI tests can be executed in the test client. Select the source
file or folder from the build output. Set the test client machine
IP as the machine to copy files to. Provide defined variables
for the admin user credentials of the test client machine and
set a local folder path destination (local folder will be created
automatically on the test client machine). See Figure 9-30.

Chapter 9 ■ Test Automation with Build and Release

359

	 16.	 To execute the tests on the test client, add a Run Functional
Tests task from the Task Catalog. Define the IP of the test
client machine and set the test drop location to be the
local destination folder path specified in the previous task
(Windows Machine File Copy). Set the Test Selection field to
Test Assembly and provide **\DemoCodedUI.dll as the value
of the Test Assemble field. Make sure to check “Continue on
error.” This will allow the release environment to proceed,
with partially completed state, despite individual test failures.
If this option is not selected, the environment will fail even if a
single test fails. See Figure 9-31.

Figure 9-30.  Copy files task

Chapter 9 ■ Test Automation with Build and Release

360

	 17.	 Create a new release using the build completed in Lesson
9.02. You will see that the environment completes as Partially
Succeeded. This is because we have intentionally set some test
methods to fail to demonstrate how it works. See Figure 9-32.

Figure 9-31.  Run Functional Tests task

Chapter 9 ■ Test Automation with Build and Release

361

	 18.	 In the Test tab of the release, you can see the details of the
tests passed and failed. Failure information is available,
including screenshots and assert fail details. See Figure 9-33.

Figure 9-32.  Release summary

Figure 9-33.  Test run details

This is simplest demo of functional test execution. You can introduce run settings
files and do more experiments. You can generate test cases from the test assembly by
following the instructions described at https://msdn.microsoft.com/en-us/library/
dd465191%28v=vs.110%29.aspx?f=255&MSPPError=-2147217396. Then, add them to a
Test Plan and Test Suites. You can use the Test Plan and Test Suites in the Run Functional
Tests task. Experiment with these to learn more. See Figure 9-34.

https://msdn.microsoft.com/en-us/library/dd465191(v=vs.110).aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/dd465191(v=vs.110).aspx?f=255&MSPPError=-2147217396

Chapter 9 ■ Test Automation with Build and Release

362

Lesson 9.04 – Set Up a Test Farm in Azure VMs
The purpose of creating test farms on Azure virtual machines is to use the resources
only on demand. If a test cycle runs only for a few minutes or a couple hours a day,
keeping physical or virtual machines running on local infrastructure is not going to be
cost effective. Even if the machines are switched off during unused time, they are still
allocated hardware like disk space, and available RAM is required to get them up and
running on demand. Setting up the machines as Azure VMs and using those on demand
will enable you to use resources more cost effectively and reliably.

Prerequisites: You have an Azure subscription and have privileges to create virtual
machines, networks, and so forth in Azure. You are familiar with Azure portal and know
how to create virtual machines.

	 1.	 Create a virtual network in Azure portal following the
instructions found at https://docs.microsoft.com/en-us/
azure/virtual-network/virtual-networks-create-vnet-
arm-pportal.

Create a Windows 8.1 virtual machine as the admin
machine that will keep the TFS agents running. Name it
“testFarmAdmin." See Figure 9-35.

Figure 9-34.  Test Run task with plan and suites

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-create-vnet-arm-pportal
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-create-vnet-arm-pportal
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-create-vnet-arm-pportal

Chapter 9 ■ Test Automation with Build and Release

363

	 2.	 Choose a size for the machine and select the virtual network
created in step one of this lesson. See Figure 9-36.

Figure 9-35.  Test farm admin machine

Chapter 9 ■ Test Automation with Build and Release

364

Figure 9-36.  Test farm admin machine settings

Chapter 9 ■ Test Automation with Build and Release

365

	 5.	 For each of the three machines, go to Settings ➤ Network
interfaces. Click on the network interface, then Settings ➤
IP configurations. Click on “IP configuration.” Then set the
Private IP address settings to Static, as shown in Figure 9-38.
Save.

Figure 9-37.  Test--farm machines

	 3.	 In the summary review, click Create to create the virtual
machine.

	 4.	 Create another two Windows 8.1 virtual machines
(testClient01 and testClient02) to use as test clients, then add
them to the same virtual network. See Figure 9-37.

Chapter 9 ■ Test Automation with Build and Release

366

	 6.	 Log on to both test client machines and create a user,
testsvcuser, to run the test service as an interactive process.
See Figure 9-39.

Figure 9-38.  Test farm machines to use internal static IP

Chapter 9 ■ Test Automation with Build and Release

367

	 7.	 Enable File and Printer Sharing for Private and Public
networking on both test client machines. See Figure 9-40.

Figure 9-39.  Test service user on test client machines

Figure 9-40.  File and Printer Sharing on test client machines

Chapter 9 ■ Test Automation with Build and Release

368

	 8.	 Ping the two test clients by executing ping <ip address of
test client> from the testfarmAdmin machine to verify
network connectivity. See Figure 9-41.

Figure 9-41.  Ping test client machines from test farm admin machine

	 9.	 Enable PowerShell remoting in both test client machines by
running the following command:

Enable-PSRemoting –SkipNetworkProfileCheck

–SkipNetworkProfileCheck is important here to prevent the
following error in an Azure VM:

Code="2150859113" Machine="testclient01"><f:Message>
WinRM firewall exception will not work since one of the
networkconnection types on this machine is set to Public.
Change the network connection type to either Domain or
Private and try again.

See Figure 9-42.

Chapter 9 ■ Test Automation with Build and Release

369

	 10.	 On the testfarmAdmin machine, add the two test client
machine names to the trusted host with the following
command (both machine names are provided as a single
string with a comma separating machine names). See
Figure 9-43.

Set-Item -Path WSMan:\localhost\Client\TrustedHosts
–Value <remotemachinenameorip>

Set-Item -Path WSMan:\localhost\Client\TrustedHosts
–Value “testclient01,testclient02”

Figure 9-42.  Enable PowerShell remoting in test client machines

Chapter 9 ■ Test Automation with Build and Release

370

	 11.	 Verify that a remote session can be obtained to each of the test
client machines from the testfarmAdmin machine. To obtain
the session, execute the following command.

Enter-PSSession –ComputerName<remotemachinenameorip>
–Credential <remotemachineadminuser>

Then provide the password for the admin user when
prompted. See Figure 9-44.

Figure 9-43.  Adding test client machines to test farm admin trusted hosts list

Figure 9-44.  Entering a PS session

Chapter 9 ■ Test Automation with Build and Release

371

In each test client machine, create a folder using a remote
PowerShell session from the test farm admin machine, to
verify the accessibility via remote PowerShell. See Figure 9-45.

Figure 9-45.  Creating folder to verify PS remoting access

	 12.	 Download and set up two build/release agents on the
testFarmAdmin machine. Chapter 2 has information on
how to set up an agent on a Windows machine. Extract the
downloaded agent zip file to two different folders and set up
two agents to run agent service using the admin account of
the machines. Two agents are required since we have two test
client machines to monitor in parallel. Make sure to register
the agents to a pool that is accessible by the team project
that contains the release definition created in Lesson 9.03,
“Running Functional Tests with TFS15/VSTS Release.” See
Figure 9-46.

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 9 ■ Test Automation with Build and Release

372

	 13.	 Clone the CodedUIDemoRelease created in Lesson 9.03 and
name it TestFarmDemoRelease. See Figure 9-47.

Figure 9-46.  Agents

Figure 9-47.  Clone release definition

	 14.	 Change the existing environment name to “Test Client 01,”
and in the Run on agent screen set a demand to Agent.Name
with a value of TestFarmAdmin01. Make sure to select correct
agent queue name (same as agent pool name) containing the
agent in test farm admin machine. See Figure 9-48.

Chapter 9 ■ Test Automation with Build and Release

373

	 15.	 Go to the environment variables and create variables
for TestClientAdmin’s username and password,
TestClientTestSvcUser username and password, and a new
variable for TestClientName. Use the admin username used
for the Test Client and Test Farm Admin machines as the
TestFarm admin user. Use TestClientTestSvcUser (variable
name) as the test service user (created on both test client
machines as a local user). Use it as testclientmachinename\
testserviceuser, as shown in Figure 9-49, to allow the use of
the user created locally on each test client machine.

Figure 9-48.  Run on TestFarmAdmin01 agent

Chapter 9 ■ Test Automation with Build and Release

374

	 16.	 Use these variables in the Deploy Test Agent task available in
the environment. See Figure 9-50.

Figure 9-49.  Test client environment variables

Chapter 9 ■ Test Automation with Build and Release

375

Figure 9-50.  Deploy TestAgent task

Chapter 9 ■ Test Automation with Build and Release

376

	 17.	 Modify the Copy Files task to use the variables
(TestClientName variable; other variables already used). See
Figure 9-51.

Figure 9-51.  Copy Files task

	 18.	 Do the same in the Run Tests task. Make sure “Continue on
error” is checked. See Figure 9-52.

Chapter 9 ■ Test Automation with Build and Release

377

	 19.	 Save the definition and clone the Test Client 01 environment.
See Figure 9-53.

Figure 9-52.  Run Functional Tests task

Chapter 9 ■ Test Automation with Build and Release

378

	 20.	 In the popup widow, uncheck the Trigger option to deploy
automatically once the Test Client 01 environment is done, as
we are setting triggers later. See Figure 9-54.

Figure 9-53.  Clone environment

Chapter 9 ■ Test Automation with Build and Release

379

	 21.	 Name the cloned environment “Test Client 02” and set it to
run on agent TestFarmAdmin02. See Figure 9-55.

Figure 9-54.  Cloning environment

Figure 9-55.  Run on TestFarmAdmin02

	 22.	 Open the Configure Variables window for the Test
Client 02 environment. Set the TestClientName and
TestServiceUserName values to reflect test client machine 02.

Chapter 9 ■ Test Automation with Build and Release

380

	 23.	 Save the definition and add a new environment to the top
of Test Client 01 environment. Name the new environment
“Test Farm Start.” Set it to run on a hosted agent if you are
using VSTS. If TFS is used, set up a different local agent that
Azure PowerShell is installed on (this agent should not be an
agent running on the Azure machine created as the test farm
admin). Select the “Skip downloading artifacts” option, since
they are not necessary for starting virtual machines in Azure.
See Figure 9-57.

Figure 9-56.  Test environment 02 variables

Chapter 9 ■ Test Automation with Build and Release

381

Figure 9-57.  Test Farm Start, Run on agent

	 24.	 Add an Azure Resource Group Deployment task to the Test
Farm Start environment and select Azure Resource Manager
from the Azure Connection Type dropdown. Then, select
linked Azure RM Subscription, as shown in Figure 9-58.
Linking the Azure subscription is covered in Chapter 3
(Lesson 3.03.1). Select Start Virtual Machines from the Action
dropdown and select the resource group (ch-demo-resgroup
contains all the Azure virtual machines - you should use your
resource group name) that has the test farm machines.

http://dx.doi.org/10.1007/978-1-4842-2811-1_3

Chapter 9 ■ Test Automation with Build and Release

382

	 25.	 Add a PowerShell task to the Test Farm Start environment and
add the following script as inline script (see Figure 9-59):

Param(
[Parameter(mandatory=$true)]
[int]$EnvReadyWait
)
sleep -Seconds $EnvReadyWait

Figure 9-58.  Test Farm Start, Azure machine start task

Figure 9-59.  Test Farm Start, Wait for machines to start

Chapter 9 ■ Test Automation with Build and Release

383

	 26.	 Pass wait time as a parameter and set up a variable in the
release definition to provide the wait time for virtual machines
to be ready after start. See Figure 9-60.

Figure 9-60.  Environment ready wait time variable

	 27.	 Add another environment named Test Farm Stop to the end
of the release definition. Set this to run on the hosted agent
(for VSTS) or on a separate on-premises agent that has Azure
PowerShell. This agent cannot be an agent on the Test Farm
Admin machine, since that also will be stopped by the tasks
in this environment. Skip the downloading of artifacts, since
artifacts are not required for this environment. See Figure 9-61.

Chapter 9 ■ Test Automation with Build and Release

384

	 28.	 Add an Azure Resource Group Deployment task and select
Stop Virtual Machines from the Action dropdown. Select the
same Azure RM subscription used in Test Farm Start. See
Figure 9-62.

Figure 9-61.  Test Farm Stop, Run on agent

Figure 9-62.  Test Farm Stop, Stop virtual machines

Chapter 9 ■ Test Automation with Build and Release

385

	 29.	 Save the release definition. In the Triggers tab of the release
definition, set up environment triggers. Test Farm Start should
run immediately after release creation. Test Client 01 and Test
Client 02 should start once Test Farm Start has successfully
completed. Test Farm Stop should start only once Test Client
01 and Test Client 02 have both completed. See Figure 9-63.

Figure 9-63.  Test Farm triggers

	 30.	 Make sure to select “Also trigger for partially succeeded
deployment(s)” in the Test Farm Stop environment
deployment conditions to ensure Test Farm Stop runs even in
a situation where tests fail and test client environments have
only partially succeeded. See Figure 9-64.

Chapter 9 ■ Test Automation with Build and Release

386

	 31.	 In Azure portal, stop the test farm virtual machines. This
allows you to experience the virtual machines getting started
on demand, when Test Farm start environment executed with
the release management. See Figure 9-65.

Figure 9-64.  Test Farm Stop trigger

Figure 9-65.  Stop all VMs

Chapter 9 ■ Test Automation with Build and Release

387

	 32.	 Create a new release. You will see the warning in Figure 9-66,
since the agents on the test farm admin machine are offline.
This is OK because Test Farm Start will initiate the test farm
admin virtual machine.

Figure 9-66.  Release-creation warning

	 33.	 You will notice in the release definition log that the Test
Client 01 and Test Client 02 environments execute the tests in
parallel. See Figure 9-67.

Chapter 9 ■ Test Automation with Build and Release

388

	 34.	 Once the execution has completed, the release definition
summary shows that the test clients have only partially
succeeded. This is because we set a few tests to fail for demo
purposes. See Figure 9-68.

Figure 9-67.  Tests running in parallel

Chapter 9 ■ Test Automation with Build and Release

389

	 35.	 The Test tab of the definition can be used to analyze the
results of the test run in the release definition. See Figure 9-69.

Figure 9-68.  Release summary

Figure 9-69.  Test run information in release definition

Chapter 9 ■ Test Automation with Build and Release

390

You can use test plans and suites to a run different set of tests for each test client. This
way, you can achieve fast execution time in your test automation by running different
test suites in parallel. The benefit of using test automation with release definitions is that
you can deploy to a given target environment and then have the test automation running.
This allows you to achieve build, deploy, and test the workflow in a fully automated way,
saves time, and is cost-effective, all good things for the software delivery process. Azure’s
on-demand test farm reduces costs further by using resources only when required.

Lesson 9.05 – Run Cloud-Based Load Tests with
Release Management
Cloud-based load tests allow you to run load tests on a website without setting up any
infrastructure. You can set up a Team Services release to run cloud-based load tests on an
environment after a deployment. Let’s look at a very simple scenario where we set up a
load test for the home page of a basic ASP.NET website deployed to Azure.

Prerequisites: You have followed the Chapter 2 lessons and deployed a basic ASP.
NET MVC 5 website to the Azure app service, or you have a different simple site with an
anonymous, accessible home page. You have set up a VSTS account.

	 1.	 Connect Visual Studio to a VSTS team project.

	 2.	 Create a new solution in Visual Studio and add a Web
Performance and Load Test project. See Figure 9-70.

Figure 9-70.  Adding load test project

	 3.	 Open the default added WebTest and add a request URL by
right clicking on it. Give the URL of the website you are going
to load test. See Figure 9-71.

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 9 ■ Test Automation with Build and Release

391

Figure 9-71.  Setting URL in web test

	 4.	 Right click on the project and select Add New Item. Then,
select Load Test in the popup window and click Add. See
Figure 9-72.

Figure 9-72.  Adding a load test to project

	 5.	 Select the cloud-based load test option in the popup window
and click Next. Your VSTS account is selected by default.
However, this can be set to run with a different VSTS account
if required when running with release management. See
Figure 9-73.

Chapter 9 ■ Test Automation with Build and Release

392

	 6.	 Select the Azure datacenter location, where the load on your
website will be generated. See Figure 9-74.

Figure 9-73.  Cloud-based load test

Figure 9-74.  Select datacenter

Chapter 9 ■ Test Automation with Build and Release

393

Figure 9-75.  Run settings for the load test

	 7.	 Set the load test run settings. Set the warmup time to ten
seconds and the test run time to one minute, as shown in
Figure 9-75.

	 8.	 Click on Test Mix and select the WebTest, as in Figure 9-76.

Chapter 9 ■ Test Automation with Build and Release

394

	 9.	 Set up a browser mix by clicking on Browser Mix and then
selecting from the browsers listed in the dropdowns. Click OK
to complete setting up the load test. See Figure 9-77.

Figure 9-76.  Selecting web test for the load test

Chapter 9 ■ Test Automation with Build and Release

395

Figure 9-77.  Browser mix

	 10.	 You can build and run the load test from Visual Studio to
check if it is executing as expected. This will start a cloud-
based load test. To get it running with Team Services/TFS
release management, you need to build the load test project
with TFS builds. Create a new empty build definition and set
the repository path (Server Path) to the load test’s solution
folder. See Figure 9-78.

Chapter 9 ■ Test Automation with Build and Release

396

Figure 9-78.  Map LoadTestDemo in build definition

	 11.	 Add a Visual Studio Build task and set it to select the solution
and build. Set the build argument to /p:OutDir=“$(build.
stagingDirectory) (see Figure 9-79).

Chapter 9 ■ Test Automation with Build and Release

397

Figure 9-79.  Build LoadTest solution

	 12.	 Add a Copy File step to copy the test settings file to the build
staging directory (this is the local path on the build agent to
which any artifacts are copied before being pushed to their
destination). More information can be found at https://www.
visualstudio.com/en-us/docs/build/define/variables.
See Figure 9-80.

https://www.visualstudio.com/en-us/docs/build/define/variables
https://www.visualstudio.com/en-us/docs/build/define/variables

Chapter 9 ■ Test Automation with Build and Release

398

Figure 9-81.  Publish artifacts

Figure 9-80.  Copy to staging directory

	 13.	 Add a Publish Artifacts task to publish the build.
stagingdirectory content. See Figure 9-81.

Chapter 9 ■ Test Automation with Build and Release

399

	 14.	 Save and queue a build and verify the artifacts in the build
summary page by clicking Explore in the Artifacts tab.

	 15.	 Go to the settings screen of the team project. In the Services
tab, add a generic service endpoint with the Team Services
account’s URL. You can use the same Team Services account
that your team project is in (self-referencing to the same Team
Services account). This service endpoint to Team Services
account is created to use with cloud-based load test release
tasks. This way, even on-premises TFS can run cloud-based
load tests by connecting to a Team Services account. Creating
a token (PAT, or Personal Access Token) is described in
Chapter 2. See Figure 9-82.

Figure 9-82.  Link Team Services account

	 16.	 Create a new release definition and link the load test build.
Then, add a cloud-based load test task from the Test tab in
the Task Catalog. Select the created generic connection to the
Team Services account (can be self-referencing to the same
Team Services account) as the “Registered connection”. Select
the correct test settings file for the “Test settings file” feild, then
select the artifacts location that contains the load test built files
as the “Load test files folder”. Provide the load test file name in
the “Load test file” field. Set the test to automatically provision
an agent for running load tests. See Figure 9-83.

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 9 ■ Test Automation with Build and Release

400

Figure 9-83.  Cloud-based load test task

Figure 9-84.  Running cloud-based load tests

	 17.	 Save and create a release. This will execute the load test as per
the test settings. See Figure 9-84.

	 18.	 You can view the load test results in the VSTS account’s Test
tab under “load tests.” See Figure 9-85.

Chapter 9 ■ Test Automation with Build and Release

401

Figure 9-86.  Load test results charts

Figure 9-85.  Load test results summary

	 19.	 You can view charts, compare test runs, and so forth. See
Figure 9-86.

Chapter 9 ■ Test Automation with Build and Release

402

In this lesson, you created a cloud-based load test and executed it using Team
Services release management.

Summary
In this chapter, you learned how to run test automations with builds and with
deployments. You identified how to set up functional test runs with release management.
By using a test farm in Azure, you can cost-effectively manage test automation hardware
needs. You learned the basics of integrating the load tests with Team Services release
automation. Do further experiments to learn more complex and advanced scenarios.

In the next chapter, you will learn how to use Team Foundation builds and
release management to automate deployments to Dynamics CRM (https://partner.
microsoft.com/en-US/Solutions/microsoft-dynamics-crm-online).

https://partner.microsoft.com/en-US/Solutions/microsoft-dynamics-crm-online
https://partner.microsoft.com/en-US/Solutions/microsoft-dynamics-crm-online

403© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_10

CHAPTER 10

Dynamics CRM Deployments
with TFS/VSTS Release

Streamlining Dynamics CRM deployments is always a challenging task because there
is less support from development environments. In this chapter, you will get hands-on
lessons on Dynamics CRM 2016/CRMOnline, customizations source controlling, and
build and deployment with TFS. This chapter can be skipped if you are not familiar
with Dynamics CRM development. For more information on Dynamics CRM visit
https://partner.microsoft.com/en-US/Solutions/microsoft-dynamics-crm-online.

Prerequisites: You are familiar with customizing CRM and developing plugins,
workflows, and so on with Dynamics CRM. Set up two CRM organizations—one to do
development and the other to use as a deployment target. If required, you can set up
two organizations in CRM online. To set up CRM online (for a trial), go to https://www.
microsoft.com/en-us/dynamics/free-crm-trial.aspx.

Lesson 10.01 – Install SDK Template for Visual
Studio
To enable developing for Dynamics CRM with Visual Studio, you need to install the
required SDK templates as described in the following steps:

	 1.	 Download CRM sdk from https://www.microsoft.com/
en-us/download/details.aspx?id=50032.

	 2.	 Run the exe and extract the SDK to a local folder.

	 3.	 Install the CRM SDK template for Visual Studio from the
templates folder in the SDK. See Figure 10-1.

https://partner.microsoft.com/en-US/Solutions/microsoft-dynamics-crm-online
https://www.microsoft.com/en-us/dynamics/free-crm-trial.aspx
https://www.microsoft.com/en-us/dynamics/free-crm-trial.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=50032
https://www.microsoft.com/en-us/download/details.aspx?id=50032

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

404

	 4.	 CRM templates will be available in Visual Studio, as shown in
Figure 10-2.

Figure 10-1.  Install CRM SDK templates for Visual Studio

Figure 10-2.  CRM project templates

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

405

You are now ready with the prerequisites to follow the other lessons in this chapter.

Lesson 10.02 – Create CRM Customization
Solution and Plugin
Let’s create a CRM solution in your new development CRM organization, which has
already been created as a prerequisite of this chapter. You will then add a few entities,
along with plugin code to work with them, in this lesson.

	 1.	 Go to Settings ➤ Solutions in your development CRM
organization. See Figure 10-3.

Figure 10-3.  CRM solutions

	 2.	 Click on New under Solutions. See Figure 10-4.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

406

	 3.	 Name the solution “DemoCustomizations” and save it. See
Figure 10-5.

Figure 10-4.  Adding a new CRM solution

Figure 10-5.  New CRM Solution

	 4.	 Click on Entities ➤ New Entity and create Demo Entity 1 by
filling in the mandatory fields, as shown in Figure 10-6. Save
the entity by clicking Save, and then click Fields in the
left-hand menu.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

407

	 5.	 In the Fields tab’s action toolbar click New to add a new string
field to the entity. Fill in the details for the string field as
shown in Figure 10-7 and click Save.

Figure 10-6.  New entity in CRM

Figure 10-7.  New string field

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

408

	 6.	 In the same way, add a new integer field to the entity.
See Figure 10-8.

Figure 10-8.  New integer field

	 7.	 Add another field with name Int Field 2, but let the type of the
field be a single line of text. See Figure 10-9.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

409

	 8.	 Save the fields and then open the main form in the Forms tab.
Add the new fields to it and save. See Figure 10-10.

Figure 10-9.  New string field with name IntField2

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

410

	 9.	 Add another entity with a few fields, adding the fields to the
main form of that entity. Save and publish all customizations
in the solution. Figure 10-11.

Figure 10-10.  Adding new fields to main form

Figure 10-11.  Publish all customizations

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

411

	 10.	 Create a blank Visual Studio solution named “CRMDemo”
and add a project named “PluginDemo” using the CRM
plugin template. See Figure 10-12.

Figure 10-12.  Plugin project

Figure 10-13.  Restore NuGet

	 11.	 Right click on the solution and in the pop up menu, click
Restore NuGet packages and build the solution. This will add
the required NuGet packages, while missing dll warnings will
go away and the build will succeed. See Figure 10-13.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

412

	 12.	 Open the PluginEntryPoint.cs file that was added with
the project and replace the code with the code from
https://github.com/chamindac/Book-Beginning-Build-
ReleaseManagement-/blob/master/Chapter10/CRMDemo/
PluginDemo/PluginEntryPoint.cs.

See Figure 10-14.

Figure 10-14.  PluginEntryPoint.cs

The required assemblies are added with the project template
(CRM Plugin Base Class Template) by default. The code in
https://github.com/chamindac/Book-Beginning-Build-
ReleaseManagement-/blob/master/Chapter10/CRMDemo/
PluginDemo/PluginEntryPoint.cs contains the following
ExecuteCRMPlugin method:

 �protected override void ExecuteCrmPlugin(LocalPlugin
Context localContext)

 {
 if (localContext == null)
 {
 �throw new ArgumentNullException

("localContext");
 }

 �// TODO: Implement your custom plug-in business
logic.

 �if (localContext.PluginExecutionContext.
InputParameters.Contains("Target") &&

 �localContext.PluginExecutionContext.
InputParameters["Target"] is Entity)

 {

 �// Obtain the target entity from the input
parameters.

 �Entity entity = (Entity)
localContext.PluginExecutionContext.
InputParameters["Target"];

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/PluginDemo/PluginEntryPoint.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/PluginDemo/PluginEntryPoint.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/PluginDemo/PluginEntryPoint.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/PluginDemo/PluginEntryPoint.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/PluginDemo/PluginEntryPoint.cs
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/PluginDemo/PluginEntryPoint.cs

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

413

 �int f1val = (int)entity.Attributes
["new_intfeild1"];

 �if (entity.Attributes.Contains
("new_intfield2"))

 {
 �entity.Attributes["new_intfield2"] =

(f1val*2).ToString();

 }
 else
 {
 �entity.Attributes.Add("new_intfield2",

(f1val * 2).ToString());

 }
 }

 }

	 13.	 The preceding plugin code will work with Demo Entity 1 and
multiply the value of intfield1 by two. Then, it will add that
result as a string to intField2 since its field type is a single line
of text. With the preceding code, make sure to use the exact
field names you created previously. (CRM development is
out of the scope of this book, which assumes the reader is
experienced with CRM development. This is just a basic plugin
to demonstrate deployment with TFS release management).

	 14.	 Build the solution.

	 15.	 Open the plugin registration tool in SDK as shown in
Figure 10-15.

Figure 10-15.  Plugin registration tool

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

414

	 16.	 Connect to your development CRM organization and register
the plugin dll built with Visual Studio. See Figure 10-15.

Figure 10-16.  Register plugin

	 17.	 Add steps to update and create messages of Demo Entity 1,
so the plugin steps are wired to the create and update actions
of the entity.

The Create step should be set up like in Figure 10-17.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

415

Figure 10-17.  Create step

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

416

	 19.	 Try creating a new entity record for Demo Entity 1. You will
notice intfield2 will be auto-updated with double the value of
intfield1 via plugin. See Figure 10-19.

Figure 10-18.  Update step

	 18.	 The Update step should be set up as shown in Figure 10-18.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

417

You created a CRM solution and added two entities and a plugin in this lesson. In the
next lesson, you will be adding these customizations to the source control repository to
enable packaging them with Team Foundation build.

Lesson 10.03 – Source Control CRM Customizations
Source control of CRM customization solutions can be done in three different ways:

•	 Export customizations zip file and check in/submit the zip file as
it is to the source control repository.

•	 Export customizations zip file, extract it, and check in/submit
extracted files.

•	 Export customizations zip file and unpack it using
SolutionPackager.exe, available with the SDK. This gives
individual-entity, relationship, form, and view levels of
granularity. However, it is a more complex process for the
development team, and at times some teams find this process is
causing unwanted delays in progress of work and in return results
in less productivity.

Out of these three, the first option does not provide any valuable information in
the source control history because comparing zip files is not possible. The most feasible
option for many teams is the second one. It involves just unzipping the exported
customizations solution zip file and checking it into source control. This way you can
compare the customization XML of the solution with previous versions and have a simple
check-in model. In this book, we will only discuss the second option for the check-in
of CRM customizations and how to package them back with TFS builds. We will use
PowerShell scripts and this available open source PowerShell module: https://github.
com/seanmcne/Microsoft.Xrm.Data.PowerShell.

Figure 10-19.  Entity created

https://github.com/seanmcne/Microsoft.Xrm.Data.PowerShell
https://github.com/seanmcne/Microsoft.Xrm.Data.PowerShell

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

418

	 1.	 Create a folder called “DevScripts” in the solution. Add
the script from https://github.com/chamindac/Book-
Beginning-Build-ReleaseManagement-/blob/master/
Chapter10/CRMDemo/DevScripts/DownloadCRMSolutions.
ps1to the folder. See Figure 10-20.

Figure 10-20.  Download CRMSolutions.ps1

	 2.	 Use the PSModules folder available at https://github.com/
chamindac/Book-Beginning-Build-ReleaseManagement-/
tree/master/Chapter10/CRMDemo/PSModulesand add
its content to the solution, as shown in Figure 10-21.
The Microsoft.Xrm.Data.PowerShell module is an open
source PowerShell module capable of handling many
functionalities with CRM 2016 and CRM online. Use the
content from https://github.com/chamindac/Book-
Beginning-Build-ReleaseManagement-/tree/master/
Chapter10/CRMDemo/PSModules/Microsoft.Xrm.Data.
PowerShell, as it is slightly modified from the original files
available at https://github.com/seanmcne/Microsoft.
Xrm.Data.PowerShell.

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/DevScripts/DownloadCRMSolutions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/DevScripts/DownloadCRMSolutions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/DevScripts/DownloadCRMSolutions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/DevScripts/DownloadCRMSolutions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/tree/master/Chapter10/CRMDemo/PSModules
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/tree/master/Chapter10/CRMDemo/PSModules
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/tree/master/Chapter10/CRMDemo/PSModules
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/tree/master/Chapter10/CRMDemo/PSModules/Microsoft.Xrm.Data.PowerShell
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/tree/master/Chapter10/CRMDemo/PSModules/Microsoft.Xrm.Data.PowerShell
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/tree/master/Chapter10/CRMDemo/PSModules/Microsoft.Xrm.Data.PowerShell
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/tree/master/Chapter10/CRMDemo/PSModules/Microsoft.Xrm.Data.PowerShell
https://github.com/seanmcne/Microsoft.Xrm.Data.PowerShell
https://github.com/seanmcne/Microsoft.Xrm.Data.PowerShell

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

419

Figure 10-21.  Microsoft.Xrm.Data.PowerShell

Figure 10-22.  CommonFunctions.ps1

	 3.	 Create a folder called “Utils” and add the CommonFunctions.
ps1from https://github.com/chamindac/Book-Beginning-
Build-ReleaseManagement-/blob/master/Chapter10/
CRMDemo/Utils/CommonFunctions.ps1to it. This script
contains common functions required to work with CRM
solutions. See Figure 10-22.

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/Utils/CommonFunctions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/Utils/CommonFunctions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/Utils/CommonFunctions.ps1

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

420

	 4.	 Make sure there is a physical folder structure like that shown
in Figure 10-23 to confirm you have followed the previous
steps correctly.

Figure 10-24.  Run PowerShell from Visual Studio

Figure 10-23.  CRMDemo folder structure

	 5.	 Check in the solution, along with the DevScripts, PSModules,
and Utils folder contents to the source control repository.

	 6.	 Execute the DownloadCRMSolutions script with the
DevScripts folder using PowerShell. You can add the Run with
PowerShell Visual Studio Extension (https://marketplace.
visualstudio.com/items?itemName=JochenVanGasse.
RunWithPowerShell) to do it directly from the Visual Studio.
See Figure 10-24.

https://marketplace.visualstudio.com/items?itemName=JochenVanGasse.RunWithPowerShell
https://marketplace.visualstudio.com/items?itemName=JochenVanGasse.RunWithPowerShell
https://marketplace.visualstudio.com/items?itemName=JochenVanGasse.RunWithPowerShell

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

421

Figure 10-25.  SysWOW64 PowerShell

You might encounter run restrictions in PowerShell. You can
allow the scripts to run from VS by going to your system drive
path (C:\Windows\SysWOW64\WindowsPowerShell\v1.0), as
shown in Figure 10-25, and set execution policy as remote
signed.

Run PowerShell.exe in the path as Administrator. Note that
running PowerShell from the start menu and setting execution
policy will not allow scripts to run from Visual Studio.

	 7.	 Set the execution policy to be remote signed. See Figure 10-26.

Figure 10-26.  Set execution policy

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

422

	 8.	 The DownloadCRMSolutions script will prompt for
parameters for CRM URL, organization name, credentials,
and solution name. Timeout is in seconds. Provide the details
of the development CRM organization and solution. Set
ExportMode as Both in order to download both managed and
unmanaged solutions. See Figure 10-27.

Figure 10-27.  Parameters for downloading CRM solutions

Figure 10-28.  Downloading CRM solutions

	 9.	 CRM solutions will be published, and downloading will start,
as shown in Figure 10-28.

	 10.	 Once the download has completed, the script will show the
downloaded paths. See Figure 10-29.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

423

	 11.	 DownloadCRMSolutions will connect to specified CRM
organization and will download the specified solution. Then,
it will extract the CRM solution into a folder hierarchy, as
shown in Figure 10-30, inside the Visual Studio solution.

Figure 10-29.  Downloaded CRM solution

Figure 10-30.  Downloaded managed and unmanaged CRM solutions

	 12.	 Managed and unmanaged solution folders will contain the
customization files. See Figure 10-31.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

424

	 13.	 Check in/submit these files to the source control repository.

You source-controlled CRM customizations in this lesson, and they can be used to
build deployable CRM solutions with Team Foundation builds.

Lesson 10.04 – Enable CRM Customizations to
Create Solution Zip with TFS Build
If you create a zip file with CRM customization contents that are checked in to the
repository using the .NetframeworkZipFile class, it gets corrupted and cannot be
imported to CRM. To enable the creation of a CRM-importable zip file, the zipjs.bat file
available at https://github.com/npocmaka/batch.scripts/blob/master/hybrids/
jscript/zipjs.bat should be used.

	 1.	 Create a folder called “BuildScripts” (in the screenshots
provided the BuildScripts folder is misspelled as BuidScripts -
keep a note of it while following the lessons in this Chapter)
inside the Solution folder in Source Control Explorer.

	 2.	 Download the zipjs.bat file from https://github.com/
npocmaka/batch.scripts/blob/master/hybrids/jscript/
zipjs.bat or https://github.com/chamindac/Book-
Beginning-Build-ReleaseManagement-/blob/master/
Chapter10/CRMDemo/BuidScripts/zipjs.bat. Download
PackageCRMSolutions.ps1 provided at https://github.com/
chamindac/Book-Beginning-Build-ReleaseManagement-/
blob/master/Chapter10/CRMDemo/BuidScripts/
PackageCRMSolutions.ps1 and add them to the BuildScripts
folder. See Figure 10-32.

Figure 10-31.  Contents of CRM solution

https://github.com/npocmaka/batch.scripts/blob/master/hybrids/jscript/zipjs.bat
https://github.com/npocmaka/batch.scripts/blob/master/hybrids/jscript/zipjs.bat
https://github.com/npocmaka/batch.scripts/blob/master/hybrids/jscript/zipjs.bat
https://github.com/npocmaka/batch.scripts/blob/master/hybrids/jscript/zipjs.bat
https://github.com/npocmaka/batch.scripts/blob/master/hybrids/jscript/zipjs.bat
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/BuidScripts/zipjs.bat
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/BuidScripts/zipjs.bat
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/BuidScripts/zipjs.bat
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/BuidScripts/PackageCRMSolutions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/BuidScripts/PackageCRMSolutions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/BuidScripts/PackageCRMSolutions.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter10/CRMDemo/BuidScripts/PackageCRMSolutions.ps1

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

425

	 3.	 PackageCRMSolutions.ps1 contains the following PowerShell
script, and it will package the CRM solution’s extracted files
back to a CRM-importable zip file.

param(
$CRMSolutionsRootPath,
$CRMSolutionName
)

$ErrorActionPreference = "Stop"

#resolve path to make sure no VB script errors
$CRMSolutionsRootPath = Resolve-Path $CRMSolutionsRootPath

$SolutionContainerPath = Join-Path $CRMSolutionsRootPath
$CRMSolutionName
$SolutionContainerPathInfo = New-Object System.IO.DirectoryInfo
$SolutionContainerPath
$SolutionDirectories = $SolutionContainerPathInfo.
GetDirectories();

foreach($SolutionDirName in $SolutionDirectories)
{

 $zipFileName = "$CRMSolutionsRootPath\$SolutionDirName.zip"
 $foldertozip = "$SolutionContainerPath\$SolutionDirName"

 #& CScript zip.vbs $foldertozip $zipFileName | out-null
 & $PSScriptRoot\zipjs.bat zipDirItems -source $foldertozip
-destination $zipFileName -keep yes -force no | out-null
}

Figure 10-32.  zipjs/bat and PackageCRMSolutions.ps1

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

426

	 4.	 Check in the BuildScripts folder with its contents to the source
control repository.

	 5.	 Create a new empty build definition. Name it
“CRMDemoBuild.” Set the repository to the CRMDemo
solution path. See Figure 10-33.

Figure 10-33.  Map CRMDemo path

	 6.	 Add a PowerShell task to the build definition and select the
script PackageCRMSolutions.ps1. This script will package the
checked in CRM cutomizations (extracted files are checked-in
in the previous lesson) as zip files when the build is executing.
Provide the following arguments to the script:

-CRMSolutionsRootPath $(Build.SourcesDirectory)\CRM\
Solutions –CRMSolutionNameDemoCustomizations

See Figure 10-34.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

427

Figure 10-34.  Package CRM solutions

	 7.	 Add a Copy Files task to the build definition. Keep the source
folder empty to allow selecting from the root of the repository
recursively matching the provided pattern. Provide contents
(file pattern) as follows to allow the copying of all CRM
solution zip files to the build staging directory which will be
published as output/artifacts of the build in the next step.

**\CRM\Solutions*.zip

Set the target folder to the build-staging directory. See Figure 10-35.

Figure 10-35.  Copy Files step

	 8.	 As the last step of the build definition, add a Copy Publish
Artifact task. Set the copy root as a build-staging directory and
contents as * to copy all. Type “drop” in the Artifact Name field
and “Server” in the Artifact Type field. See Figure 10-36.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

428

	 9.	 Queue a new build and verify the output with the CRM solution
zip files in the Build Artifacts explorer. See Figure 10-37.

Figure 10-36.  Publish Artifacts step

Figure 10-37.  CRM zip files as build artifacts

In this lesson, you have packaged CRM solutions using Team Foundation builds.
These solutions can be used to deploy to a target CRM organization.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

429

Lesson 10.05 – Deploy CRM Solution with TFS
Release
There is an extension created to allow CRM solution deployment and to activate CRM
workflows after deployment. This extension is available at https://marketplace.
visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-
crm-2016. This extension can only run on a build/release agent that is created on-
premises (private agent). Hosted agents are currently not supported. You can use this
extension with Visual Studio Team Services by using an agent set up as an on-premises
agent. Instructions on installing Marketplace extensions are available in Chapter 2.

Prerequisites: You have an on-premises build release agent set up for VSTS or TFS.
You have installed the Chamindac.vsts.release.task.crm-2016 file from Visual Studio
Marketplace (https://marketplace.visualstudio.com/items?itemName=chamindac.
chamindac-vsts-release-task-crm-2016) to your Team Services or TFS. Chapter 2
describes the installation of extensions from Marketplace to Team Services or TFS.

	 1.	 Create an empty release definition.

	 2.	 Link the build CRMDemoBuild to the release. See Figure 10-38.

Figure 10-38.  Linked artifacts

	 3.	 In the Environment 1 that was added by default, set Run on
agent to an on-premises (private agent). See Figure 10-39.

https://marketplace.visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-crm-2016
https://marketplace.visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-crm-2016
https://marketplace.visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-crm-2016
http://dx.doi.org/10.1007/978-1-4842-2811-1_2
https://marketplace.visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-crm-2016
https://marketplace.visualstudio.com/items?itemName=chamindac.chamindac-vsts-release-task-crm-2016
http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

430

Figure 10-40.  CRM Solution Import task

Figure 10-39.  Run on agent

	 4.	 Add a CRM 2016 Solution Import task to the release definition
environment 1. Set the target CRM organization URL and
credentials. Select the solution to deploy from the build drop
and select the “Managed Solution” checkbox if the selected
solution is managed. Provide the name of the importing
solution and timeout to wait for import. See Figure 10-40.

	 5.	 Save the release definition and create a release. It deploys to
the target CRM. See Figure 10-41.

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

431

	 6.	 CRM entities and plugins work as expected in the target CRM
organization. See Figure 10-42.

Figure 10-41.  CRM Solution deployed with release management

Figure 10-42.  CRM customizations available in target CRM

Chapter 10 ■ Dynamics CRM Deployments with TFS/VSTS Release

432

	 7.	 The CRM Solution Import extension gives details if an error or
any warnings are found in importing. See Figure 10-43.

Figure 10-43.  CRM Solution Import task logs

You created a release definition in Team Foundation release management to deploy
CRM solutions to a target CRM organization.

Summary
You have learned the basics of using Team Foundation builds and release management
to deploy Dynamics CRM solutions. This allows you to streamline CRM development
processes and deployments across multiple environments. Do further experiments with
the CRM components to gain more knowledge of CRM deployments with TFS.

In the next chapter, you will learn about creating and sending effective release notes
with Team Foundation release management.

433© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_11

CHAPTER 11

Effective Release Notes
with TFS Release

Release notes, generated based on the target deployment environment, are important as
they identify what work (requirements, bug fixes etc.) are getting delivered to the target
environment. This provides visibility and traceability from inception of the requirements
through to delivery and then production. Lessons in this chapter will give you guidance in
generating automated release notes based on the work getting delivered.

Prerequisites: You need to have a working knowledge of TFS/VSTS work items,
Kanban boards, Iterations, and so forth. These topics are out of the scope of this book, but
a brief explanation will be provided in the lessons while using them.

What Is an Effective Release Note?
An effective release note clearly communicates what work (requirements, bug fixes etc.)
are getting delivered with the software package to the target environment. It contains
other information, like who reviewed, when to release, and what work-items are
associated with this release. Let’s have a look at an example to understand this.

Consider the release pipeline (created with a release definition having four target
environments) shown in Figure 11-1. It has four stages. DevInt (developer integration),
QA, UAT, and production.

Figure 11-1.  Release pipeline with four stages

Chapter 11 ■ Effective Release Notes with TFS Release

434

The environments have been deployed with several builds using this pipeline. The
current deployment sent to all the environments was done with build 1.0.0.6, as shown
in Figure 11-2.

The previous build to reach the production environment was 1.0.0.1. The last build
to reach UAT before 1.0.0.6 was 1.0.0.2. The last build to reach QA and DevInt before
1.0.0.6 was 1.0.0.5. Table 11-1 explains what the state of each target environment was
before build 1.0.0.6 was deployed. With this, we can determine the gap between builds for
each target.

As per the preceding table, we can identify the pending number of builds (the items
getting delivered with each build) for each of the environments before deploying 1.0.0.6.
You can see this in another way in Table 11-2.

Figure 11-2.  Release history

Table 11-1.  Release and Builds — Deploy Status for Environment

1.0.0.1 1.0.0.2 1.0.0.3 1.0.0.4 1.0.0.5 1.0.0.6

DevInt Deployed Deployed Deployed Deployed Deployed Pending

QA Deployed Deployed Deployed Deployed Deployed Pending

UAT Deployed Deployed Pending Pending Pending Pending

Production Deployed Pending Pending Pending Pending Pending

Chapter 11 ■ Effective Release Notes with TFS Release

435

This means the DevInt and QA environments should get a release note along with
those requirement/fixes getting delivered with build 1.0.0.6 only. See Figure 11-3.

Task work items can be ignored, as they explain development or testing activities for
achieving a requirement or bug fix.

1.0.0.6 has User Story 559, which should be available in both the QA and UAT release
notes.

Table 11-2.  Environment Deployed Builds

Environment Builds Pending Deployment

DevInt 1.0.0.6

QA 1.0.0.6

UAT 1.0.0.3, 1.0.04, 1.0.0.5, 1.0.0.6

Production 1.0.0.2, 1.0.0.3, 1.0.04, 1.0.0.5, 1.0.0.6

Figure 11-3.  Associated work items in build 1.0.0.6

Chapter 11 ■ Effective Release Notes with TFS Release

436

See the release note for DevInt in Figure 11-4.

See the release note for QA in Figure 11-5.

Figure 11-5.  Release note for QA

Figure 11-4.  Release note for DevInt

Chapter 11 ■ Effective Release Notes with TFS Release

437

For the UAT environment, requirements and fixes delivered with builds 1.0.0.6,
1.0.0.5, 1.0.0.4, and 1.0.0.3 are all accumulated and get delivered with build 1.0.0.6. The
release note should consider all of those builds to be associated work.

Build 1.0.0.5’s associated work items are shown in Figure 11-6.

Build 1.0.0.4’s associated work items are shown in Figure 11-7.

Figure 11-6.  Build 1.0.0.5

Chapter 11 ■ Effective Release Notes with TFS Release

438

Build 1.0.0.3’s associated work items are shown in Figure 11-8.

Figure 11-7.  Build 1.0.0.4

Figure 11-8.  Build 1.0.0.3

Chapter 11 ■ Effective Release Notes with TFS Release

439

For the release note to UAT, the work items in Table 11-3 from each build should be
added.

A release not going to UAT would look like that shown in Figure 11-9.

Note that the release note does not show duplicates of the same work item 559 that
was seen in the previous note. It has completely finished by the time build 1.0.0.6 is
getting delivered. In the release note of build 1.0.0.5, it is shown as an active item since it
is only partially done. This informs us it is incomplete. See Figure 11-10.

Table 11-3.  UAT Environment Build and Work Items Pending Deployment

Build Work Items

1.0.0.6 User Story 559

1.0.0.5 User Stories 559(partial), 556 and Bugs 569, 570

1.0.0.4 User Story 560

1.0.0.3 User Stories 558, 555

Figure 11-9.  UAT release note with build 1.0.0.6

Chapter 11 ■ Effective Release Notes with TFS Release

440

The release note for the Production environment should contain the work items of
build 1.0.0.2 in addition to the following (see Table 11-4), which were available in the UAT
release note.

Build 1.0.0.2’s associated work items are shown in Figure 11-11.

Figure 11-10.  Release note with incomplete work

Table 11-4.  UAT Environment Deployed Build and Work Items

Build Work Items

1.0.0.6 User Story 559

1.0.0.5 User Stories 559(partial), 556 and Bugs 569,570

1.0.0.4 User Story 560

1.0.0.3 User Stories 558, 555

Chapter 11 ■ Effective Release Notes with TFS Release

441

The release note for production is shown in Figure 11-12.

Figure 11-11.  Build 1.0.0.2

Figure 11-12.  Production environment release note

Chapter 11 ■ Effective Release Notes with TFS Release

442

Now you have a very good understanding of how a proper release note should be
delivered based on the target environment. In the following lessons, let’s look at the steps
required to automate the delivery of an effective release note, similar to what was just
explained, as an email, using TFS/VSTS release management.

Lesson 11.01 – Create a Backlog
A backlog contains work you need to do in a project. A TFS backlog can contain epics,
features, and user stories/product backlog items/requirements, depending on your
project template. To learn more about backlogs, refer to https://www.visualstudio.
com/en-us/docs/work/backlogs/create-your-backlog. You can use boards in TFS to
visualize the work you do. More information on boards can be found at https://www.
visualstudio.com/en-us/docs/work/backlogs-boards-plans.

Prerequisites: This lesson expects you to have a working knowledge of TFS work
items, backlogs, boards, iterations, and so on. You should also have created a new team
project with the Agile process template.

	 1.	 In the new team project, go to the Work tab and click on
Backlogs. Then, click on Stories. Next, click on the backlog
settings icon at the top right. See Figure 11-13.

	 2.	 On the Settings page, select “Working with bugs” at the
left-hand side, then select the “Bugs appear on the backlogs
and boards with requirements” option and click Save. See
Figure 11-14.

Figure 11-13.  Work tab backlog settings

https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog
https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog
https://www.visualstudio.com/en-us/docs/work/backlogs-boards-plans
https://www.visualstudio.com/en-us/docs/work/backlogs-boards-plans

Chapter 11 ■ Effective Release Notes with TFS Release

443

	 3.	 Now, you will be able to add user story and bug work items to
the backlog. See Figure 11-15.

Figure 11-14.  Bugs in backlog with requirements setting

Figure 11-15.  Bugs and user stories in backlog

Chapter 11 ■ Effective Release Notes with TFS Release

444

	 4.	 Add a user story titled “User Login” and click Add, as shown
in Figure 11-16.

	 5.	 The user story gets added to the backlog. See Figure 11-17.

	 6.	 Create a few user stories, as shown in Figure 11-18.

Figure 11-16.  Add user story

Figure 11-17.  User story added to backlog

Chapter 11 ■ Effective Release Notes with TFS Release

445

Note that we have just created a set of user stories with
only titles. A proper user story should contain a lot more
information so as to provide enough details to the team to do
the implementation. Backlog management is out of the scope
of this book. We have just fulfilled the minimum requirements
in order to demonstrate a release note generation.

	 7.	 Highlight the first six user stories, right click, and move them
to Iteration 1 (you can drag and drop). An iteration is a short
period of work at the end of the period you are trying to
deliver a shippable product version to the client. For more
information visit https://www.visualstudio.com/en-us/
docs/work/scrum/define-sprints. See Figure 11-19.

Figure 11-18.  User stories added to backlog

https://www.visualstudio.com/en-us/docs/work/scrum/define-sprints
https://www.visualstudio.com/en-us/docs/work/scrum/define-sprints

Chapter 11 ■ Effective Release Notes with TFS Release

446

	 8.	 In Iteration 1, go to the Board tab and click on New Item for
each story to add a new task. Provide a title, such as “Develop
User Login.” See Figure 11-20.

Figure 11-19.  Moving user stories to Iteration 1

Chapter 11 ■ Effective Release Notes with TFS Release

447

You can chage the task of the user story in the board itself, as
shown in Figure 11-21.

Figure 11-20.  Adding task to a user story

Figure 11-21.  Task added to a user story

Chapter 11 ■ Effective Release Notes with TFS Release

448

	 9.	 Add a task for each of the user stories. Note that we have
created a simple task to show the association of work items
with the build. An explanation of the real uses of these work
items is out of the scope of this book. For more information on
backlogs, go to https://www.visualstudio.com/en-us/docs/
work/backlogs/create-your-backlog. See Figure 11-22.

In this lesson, you created a backlog of user stories and added a task for each of them
after moving them to Iteration 1.

Figure 11-22.  Each user story added with a task

https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog
https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog

Chapter 11 ■ Effective Release Notes with TFS Release

449

Lesson 11.02 – Submit Work and Create a Build
Now that you have a backlog, let’s create a small application and associate work items
with it.

	 1.	 Create a Visual Studio solution and add a console application
project to it after connecting to the same team project for
which you created a backlog in the previous lesson. See
Figure 11-23.

This will show as pending changes in the Source Control
Explorer (see Figure 11-24).

Figure 11-23.  Solution and the console application

Figure 11-24.  Solution and the console application as pending changes

Chapter 11 ■ Effective Release Notes with TFS Release

450

	 2.	 Go to the iteration backlog board in the TFS web portal and
activate the User Login user story and its development task.
Assign them to yourself. See Figure 11-25.

	 3.	 Go to the Queries tab and click on the menu of the default
“Assigned to me” query and select Save as… (see Figure 11-26).

	 4.	 Save the query in the My Queries folder as “Assigned to me
and active.” See Figure 11-27.

Figure 11-26.  Saving “Assigned to me” query

Figure 11-25.  Activate user story and task

Chapter 11 ■ Effective Release Notes with TFS Release

451

	 5.	 Add a new clause to the query to filter active work items. Save
the query. See Figure 11-28.

	 6.	 Open the program.cs file in the Visual Studio console
application you created and add the following code to it.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

Figure 11-27.  Save “Assigned to me” query in My Queries folder

Figure 11-28.  Filter for active work items assigned to me

Chapter 11 ■ Effective Release Notes with TFS Release

452

namespace BankApp
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("User login");

 Console.ReadLine();
 }
 }
}

	 7.	 Go to the Pending Changes screen in Team Explorer and click
on Queries. Then, click on “Assigned to me and active.” See
Figure 11-29.

	 8.	 In the opened query, you can see the active items assigned to
you: the user login user story and the development task for
it. Drag them both to the Pending Changes screen in Team
Explorer under Related Work Items. See Figure 11-30.

Figure 11-29.  Open query from Visual Studio

Chapter 11 ■ Effective Release Notes with TFS Release

453

	 9.	 Check in the solution and the console application, being
sure to provide an appropriate comment. Let the work items
resolve with the check-in. See Figure 11-31.

Figure 11-30.  Associating work items with pending changes

Figure 11-31.  Pending changes

Chapter 11 ■ Effective Release Notes with TFS Release

454

	 10.	 Once check-in completes, refresh the iteration board view
to see that the user story and task states have changed. The
user story is in a resolved state, and the task is closed. See
Figure 11-32.

	 11.	 Create a new empty build definition named “Bank.Rel” and
set the repository to the DemoBank solution folder path, as
shown in Figure 11-33.

Figure 11-32.  Resolved user story and closed task

Figure 11-33.  Map solution path

Chapter 11 ■ Effective Release Notes with TFS Release

455

	 12.	 Add the Visual Studio Build step and select the DemoBank
solution to build. See Figure 11-34.

	 13.	 Add a Copy Publish Artifact step and set the content to be ***.
exe in order to copy the console app. Name the artifact drop.
Select Server as the Artifact Type. See Figure 11-35.

Figure 11-34.  Visual Studio Build step

Figure 11-35.  Copy Publish Artifact step

Chapter 11 ■ Effective Release Notes with TFS Release

456

	 14.	 In the General tab of the build definition, provide the value
“1.0.0$(rev:.r)” for the build number format. This will create
builds with the number format 1.0.0.1, 1.0.0.2 … 1.0.0.N.
See Figure 11-36.

	 15.	 Save the build definition and queue a new build. The
completed build will have a User Login work item and its
development task as the associated work item. See
Figure 11-37.

Figure 11-36.  Set build number format

Chapter 11 ■ Effective Release Notes with TFS Release

457

In this lesson, you created a small application and associated it with the work items
while checking it in to the source control repository. Then, you created a build definition
with which to build the source code; it contains the associated work items completed by
the time when a build is executed.

Lesson 11.03 – Create a Release Pipeline with
Release Note Capability
Using the build created in the previous lesson, let’s create a release pipeline that has
release notes.

	 1.	 Create an empty release definition and select the Bank.Rel
build as the linked artifact. See Figure 11-38.

Figure 11-37.  Completed build associated with work items

Chapter 11 ■ Effective Release Notes with TFS Release

458

	 2.	 In the General tab of the release definition, set the release’s
name format as follows (see Figure 11-39):

Release-$(Build.BuildNumber)-$(rev:r)

	 3.	 In the Variables tab, add the following variables and values.
The SMTP details are for sending email. You can use a Gmail
account as the SMTP. ReleaseNoteMD defines the mark-
down (usage of this file explained in next steps) file path
that will be used to generate a release note. ReleaseEmail.
SkipTaskWIT specifies whether to include the Task work item
in the release note. You can move any of these variables to
the release definition’s environment level if you want to have
environment-specific values (SMTP settings and so on). See
Table 11-5.

Figure 11-38.  Release’s linked artifacts

Figure 11-39.  Release name format

Chapter 11 ■ Effective Release Notes with TFS Release

459

These variables should be defined as shown in Figure 11-40.

Figure 11-40.  Release variables

Table 11-5.  Variables for Release Definition

Variable Name Value

ReleaseNotePath $(System.DefaultWorkingDirectory)\$(Build.
DefinitionName)_$(Build.BuildNumber)_ReleaseNote

ReleaseNoteMD $(ReleaseNotePath).md

SMTP.User SMTP User Email

SMTP.UserPwd SMTP User Password

SMTP.Server SMTP Server

SMTP.Port SMTP Port

ReleaseEmail.SkipTaskWIT True

ReleaseEmail.Subject Release Note for $(Release.DefinitionName)
$(Release.ReleaseName) on Environment: $(Release.
EnvironmentName)

ReleaseEmail.Recipients Email addresses of recipients separated by semi-colon
(there should be no space between email addresses).

Chapter 11 ■ Effective Release Notes with TFS Release

460

	 4.	 Rename the default added environment to “DevInt” (Dev
Integration environment) and add a PowerShell task to it.
Select it as an inline script and add the following script to it:

param ([String]$EnvName)
Write-Host "Deploying Build - $EnvName"

As arguments to the script, pass

-EnvName $(Release.EnvironmentName)

This is just to simulate a build getting deployed. An actual
deployment is not performed, as this lesson’s goal is to
learn the release note–generation aspect of the process.
See Figure 11-41.

	 5.	 Add the extension found at https://marketplace.
visualstudio.com/items?itemName=richardfennellBM.BM-
VSTS-GenerateReleaseNotes-Task to your VSTS/TFS (adding
extensions from Marketplace is described in Chapter 2). After
adding the preceding extension, from the Task Catalog’s
Utility tab, add a Generate Release Notes task to the release
environment DevInt. See Figure 11-42.

Figure 11-41.  Deploy simulated task

Figure 11-42.  Generate release note task

https://marketplace.visualstudio.com/items?itemName=richardfennellBM.BM-VSTS-GenerateReleaseNotes-Task
https://marketplace.visualstudio.com/items?itemName=richardfennellBM.BM-VSTS-GenerateReleaseNotes-Task
https://marketplace.visualstudio.com/items?itemName=richardfennellBM.BM-VSTS-GenerateReleaseNotes-Task
http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 11 ■ Effective Release Notes with TFS Release

461

	 6.	 In the Generate Release Notes task, specify $(ReleaseNoteMD)
as the output file. This variable contains the path and name
for the release note.md (mark down) file. Release note
generate task will create a release note in mark down format,
using the generated release note mark down content, in the
provided mark down file path. For the Template Location,
select “InLine,” and provide the following as the Template
(available at https://github.com/chamindac/Book-
Beginning-Build-ReleaseManagement-/blob/master/
Chapter11/ReleaseNoteDemo/ReleaseNoteTemplate.txt).
Also see Figure 11-43.

#Release notes for build $defname
Build Number(s) : $($build.buildnumber)
Source Branch(es) : $($build.sourceBranch)

###Associated work items
@@WILOOP@@
* **$($widetail.fields.'System.WorkItemType') $($widetail.id)**
[$($widetail.fields.'System.State')] [$($widetail.fields.'System.Title')]
($($widetail._links.html.href)) [Assigned To: $($widetail.fields.'System.
AssignedTo')]
@@WILOOP@@

###Associated change sets/commits
@@CSLOOP@@
* **ID $($csdetail.changesetid)$($csdetail.commitid)** $($csdetail.comment)
@@CSLOOP@@

Figure 11-43.  Generate release note task fields

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter11/ReleaseNoteDemo/ReleaseNoteTemplate.txt
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter11/ReleaseNoteDemo/ReleaseNoteTemplate.txt
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter11/ReleaseNoteDemo/ReleaseNoteTemplate.txt

Chapter 11 ■ Effective Release Notes with TFS Release

462

Make sure to uncheck “Generate for only this Release”
(this is checked by default) in Advanced settings, as shown
in Figure 11-43. This allows you to generate release notes
that consider the last successful deployment made to the
environment. The release note provides all work items
associated with any builds after the last deployed build to a
given environment,

	 7.	 Add this extension from Marketplace to the TFS/
VSTS: https://marketplace.visualstudio.com/
items?itemName=petergroenewegen.PeterGroenewegen-
Xpirit-Vsts-Build-InlinePowershell. The default
PowerShell task does not allow longer scripts to be used
as inline scripts (script that you type in the task itself).
However, this extension has an Inline PowerShell task that
allows a longer script to be an inline one. Add it to the release
environment DevInt. See Figure 11-44.

	 8.	 In the Run Inline PowerShell task, provide the PowerShell
script contents from https://github.com/chamindac/
Book-Beginning-Build-ReleaseManagement-/blob/master/
Chapter11/ReleaseNoteDemo/ReleaseNoteFromMD.ps1.This
script is written based on the .md (mark down) template
provided. It converts a generated release note mark-down file
via the Generate Release Notes task, into HTML content and
sends an email. Note that if you are altering the mark-down
template this script should be adjusted accordingly (the string
replaces sections).

Figure 11-44.  Inline PowerShell task

https://marketplace.visualstudio.com/items?itemName=petergroenewegen.PeterGroenewegen-Xpirit-Vsts-Build-InlinePowershell
https://marketplace.visualstudio.com/items?itemName=petergroenewegen.PeterGroenewegen-Xpirit-Vsts-Build-InlinePowershell
https://marketplace.visualstudio.com/items?itemName=petergroenewegen.PeterGroenewegen-Xpirit-Vsts-Build-InlinePowershell
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter11/ReleaseNoteDemo/ReleaseNoteFromMD.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter11/ReleaseNoteDemo/ReleaseNoteFromMD.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter11/ReleaseNoteDemo/ReleaseNoteFromMD.ps1

Chapter 11 ■ Effective Release Notes with TFS Release

463

Arguments for the PowerShell are as follows:

-mdfilePath "$(ReleaseNoteMD)"
-SMTPServer $(SMTP.Server)
-SMTPPort $(SMTP.Port)
-Username $(SMTP.User)
-Password $(SMTP.UserPwd)
-EmailTo "$(ReleaseEmail.Recipients)"
-EmailSubject "$(ReleaseEmail.Subject)"
-SkipTasks $(ReleaseEmail.SkipTaskWIT)

See Figure 11-45.

	 9.	 Click on Clone environment for DevInt, as shown in
Figure 11-46.

Figure 11-45.  Release note converting to HTML and email task

Chapter 11 ■ Effective Release Notes with TFS Release

464

	 10.	 In the popup window, select an approver (select your
username) and set cloning to be triggered after the DevInt
environment is done. Click Create to create the cloned
environment. See Figure 11-47.

Figure 11-46.  Clone the environment

Chapter 11 ■ Effective Release Notes with TFS Release

465

	 11.	 Rename the cloned environment “QA.” See Figure 11-48.

Figure 11-47.  Providing parameters for the cloned environment

Figure 11-48.  QA environment

Chapter 11 ■ Effective Release Notes with TFS Release

466

	 12.	 Similarly, clone the QA environment and name it “UAT.” Then,
clone UAT and name it “Prod.” See Figure 11-49.

	 13.	 In the Triggers tab, set the release definition to trigger as
Continuous Deployment and make sure DevInt gets triggered
after release creation. Also, ensure that the other environments
follow upon the success of the previous environment, with an
approval from you. This will create asquantially deployable
release pipeline (explained in Chapter 1) DevInt ➤ QA ➤ UAT
➤ Prod. See Figure 11-50.

Figure 11-49.  Release definition with all environments

http://dx.doi.org/10.1007/978-1-4842-2811-1_1

Chapter 11 ■ Effective Release Notes with TFS Release

467

Figure 11-50.  Release definition triggers

You created a release definition in this lesson to simulate deployments to different
environments and to generate and email release notes.

Chapter 11 ■ Effective Release Notes with TFS Release

468

Lesson 11.04 – Generate Release Notes for Each
Environment
Let’s use the release definition created in the previous lesson and generate release notes
applicable to each target environment.

	 1.	 Trigger a release with the release definition created in
the previous lesson using the Bank.Rel 1.0.0.1 build.
See Figure 11-51.

	 2.	 The release is deployed to DevInt and waits for approval in
QA. See Figure 11-52.

Figure 11-51.  Create first release

Chapter 11 ■ Effective Release Notes with TFS Release

469

Figure 11-52.  Waiting for approval

	 3.	 The release note for the DevInt environment is delivered to
the mail recipient with the User Login user story. Task work
items are automatically filtered and are not included in the
release note because tasks done by each developer are not
valuable information in a release note. See Figure 11-53.

Chapter 11 ■ Effective Release Notes with TFS Release

470

	 4.	 Approve the deployment to QA. See Figure 11-54.

Figure 11-53.  DevInt release note

Figure 11-54.  Approve release to QA

Chapter 11 ■ Effective Release Notes with TFS Release

471

	 5.	 The deployment completes for QA, and the QA release note
with the User Login user story gets delivered. Figure 11-55.

	 6.	 Let’s say QA reported a bug that must be fixed. It is added to
the iteration. See Figure 11-56.

Figure 11-55.  QA release note

Figure 11-56.  New bug

Chapter 11 ■ Effective Release Notes with TFS Release

472

	 7.	 Add a Task work item to fix the bug. Activate bug and assign to
yourself. Activate the Bug Fix Task work item. See Figure 11-57.

	 8.	 Now that the release has a bug in QA, reject the release from
deploying to UAT. See Figure 11-58.

	 9.	 You can abandon the release after rejecting it by clicking on
the release menu and then clicking Abandon, since further
deployment should be prevented. See Figure 11-59.

Figure 11-57.  Bug and Task activated

Figure 11-58.  Reject UAT deployment

Chapter 11 ■ Effective Release Notes with TFS Release

473

	 10.	 Provide a reason for abandoning the release in the popup
window and click OK to abandon the release. See Figure 11-60.

	 11.	 Add the following code line to the BankAppProgram.cs file
and check the file in to source control, being sure to associate
with it the bug to fix and its task, setting them to resolve. This
is done to simulate a bug fixing activity. See Figure 11-61.

Console.WriteLine("Fix user login crash");

Figure 11-59.  Abandoning release

Figure 11-60.  Release abandonment reason

Chapter 11 ■ Effective Release Notes with TFS Release

474

	 12.	 Activate the Open Savings Account user story and its
development task. See Figure 11-62.

	 13.	 Add the following code line to BankAppProgram.cs and check
the file in to source control while associating and resolving the
user story “Open Savings Account” and its task work item. See
Figure 11-63.

Console.WriteLine("Open savings account");

Figure 11-61.  Fixing bug and submitting code to repository

Figure 11-62.  Activate another user story and a task

Chapter 11 ■ Effective Release Notes with TFS Release

475

	 14.	 Queue a new build (1.0.0.2) with the Bank.Rel build definition,
and it will automatically trigger a deployment to the DevInt
environment once the build completes. See Figure 11-64.

	 15.	 Approve deployment to QA as well.

	 16.	 This build, 1.0.02, contains the bug fix and the Open Savings
Account user story.

The release note to DevInt includes these. See Figure 11-65.

Figure 11-63.  Completing another user story

Figure 11-64.  Deploying build 1.0.0.2

Chapter 11 ■ Effective Release Notes with TFS Release

476

The release note to QA is similar to that for DevInt. See
Figure 11-66.

Figure 11-65.  DevInt release note

Figure 11-66.  QA release note

Chapter 11 ■ Effective Release Notes with TFS Release

477

	 17.	 Now, proceed with deployment to UAT by approving it for
pre-deployment in UAT. The release note to UAT should
include work items from builds 1.0.01 and 1.0.0.2, since UAT
has not been deployed with both builds. When 1.0.0.2 gets
deployed to UAT, it has the code changes that came in 1.0.0.1
as well. See Figure 11-67.

The UAT release note includes builds 1.0.0.1 and 1.0.0.2, as
shown in Figure 11-68.

Now you have a working release pipeline with auto-generated release notes. Do
further check-ins with associated work items, queue builds, and deployment approvals to
various stages to see the effective release notes.

Figure 11-68.  UAT release note

Figure 11-67.  Deploying to UAT

Chapter 11 ■ Effective Release Notes with TFS Release

478

Summary
In this chapter, you learned how to generate effective release notes using Marketplace
extensions and emailing with a custom PowerShell script task. Release notes based on
the target deployment environment, help teams and clients to track the requirements to
delivery. This enhances the capability of the continuous delivery process, paving the way
to DevOps (software DEVelopment and information technology OPerationS).

In the next chapter, you will learn about the package management capability of Team
Services/TFS with builds.

479© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_12

CHAPTER 12

Package Management

This chapter will guide you in creating NuGet packages and then using a feed with TFS/VSTS
to store the packages so that they can be shared within your organization. Hands-on
lessons will give you instructions for creating feeds for packages and restoring, building,
and deploying packages with TFS/VSTS.

Prerequisites: You have TFS/VSTS accounts with the package management
feature. Install the Package Management extension, available at https://marketplace.
visualstudio.com/items?itemName=ms.feed, to enable package management features.
You are using Visual Studio 2015, and you have installed productivity power tools for VS
2015 (https://marketplace.visualstudio.com/items?itemName=VisualStudioProduc
tTeam.ProductivityPowerTools2015) in your Visual Studio environment.

Lesson 12.01 – Create a NuGet Package
Let’s create a NuGet package by following these steps:

	 1.	 Download nuget.exe from https://dist.nuget.org/index.html
and copy it to a local folder. Add the nuget.exe path to the Path
environment variable. See Figure 12-1.

https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ProductivityPowerTools2015
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ProductivityPowerTools2015
https://dist.nuget.org/index.html

Chapter 12 ■ Package Management

480

	 2.	 Once you do this, NuGet is recognized as a command in the
system. See Figure 12-2.

Figure 12-1.  Add the nuget.exe path to Path environment variable

Figure 12-2.  NuGet command

Chapter 12 ■ Package Management

481

	 3.	 Create a new Visual Studio solution named “PkgMgmtDemo.”
Add a class library project named “NugetPackageDemo” to it.
See Figure 12-3.

Figure 12-3.  Class library project

	 4.	 Rename the default added Class1.cs to DemoPackage.cs
and add the following code to the class file. Then, build the
solution in Visual Studio to verify it compiles.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace NugetPackageDemo
{
 public class DemoPackage
 {
 public string HelloWorldNugetDemo()
 {
 return "Hello world! Welcome to nuget packages!";
 }
 }
}

Chapter 12 ■ Package Management

482

	 5.	 Right click on the NugetPackageDemo project and open the
command prompt from the Power Commands menu (this
is available if you have installed productivity power tools).
Or, open a command prompt and change the directory to
the folder where NugetPackageDemo.csproj is located. See
Figure 12-4.

Figure 12-4.  Open the command prompt from Visual Studio

Figure 12-5.  Generating the nuspec file

	 6.	 Run the nuget spec command to generate the
NugetPackageDemo.nuspec file. See Figure 12-5.

	 7.	 Click the “show all files” icon in Solution Explorer after
selecting the NugetPackageDemo project. This will show the
nuspec file in Solution Explorer, as shown in Figure 12-6.

Chapter 12 ■ Package Management

483

	 8.	 Double click on the nuspec file to open it in Visual Studio.
See Figure 12-7.

Figure 12-6.  nuspec file in Solution Explorer

Figure 12-7.  Generated nuspec file

	 9.	 Edit the nuspec file in Visual Studio and add an ID, author
name, owner name, and description, as shown in Figure 12-8.
Leave the version and title as they are for the time being,
since they will be updated later to use with builds.
Remove licenseUrl, projectUrl, and iconUrl. Leave
requireLicenceAcceptance as false.

Chapter 12 ■ Package Management

484

	 10.	 Execute the following command from the folder holding the
.csproj and .nuspec files. This will generate a NuGet package.
See Figure 12-9.

nuget pack NugetPackageDemo.csproj

Figure 12-8.  Edited nuspec file

Figure 12-9.  Generating NuGet package

	 11.	 The generated package will be available in the project folder.
See Figure 12-10.

Chapter 12 ■ Package Management

485

In this lesson, you created a simple NuGet package using nuget.exe.

Lesson 12.02 – Create a Feed and Publish
Package in the Feed
A feed is used as a container for packages. A package is consumed or published with a
given feed. Let’s look at how we can create a feed with TFS/VSTS package management.

	 1.	 Go to Team Project ➤ Build & Release ➤ Packages tab. Click
on New feed. See Figure 12-11.

Figure 12-10.  Generated NuGet package

Figure 12-11.  New feed in team project

Chapter 12 ■ Package Management

486

	 2.	 Provide a name for the feed in the popup window. Let the
feed be visible only to the current team project. Click Create to
create the feed. See Figure 12-12.

Figure 12-12.  Creating a new feed

	 3.	 The created feed can be edited by selecting Edit from the
menu of the feed, which is available in the Packages tab. See
Figure 12-13.

Chapter 12 ■ Package Management

487

	 4.	 You can change the options, such as the permissions of the
feed, once you are in the Edit window. After editing, click
Save. See Figure 12-14.

Figure 12-13.  Edit feed

Figure 12-14.  Editing feed

Chapter 12 ■ Package Management

488

	 5.	 To publish a package to the created feed, you need to
authenticate when using nuget.exe. To do this, create a PAT
(Personal Access Token; covered in detail in Lesson 2.02.4
of Chapter 2). Setting the scope for package management
is sufficient for this PAT. Copy the generated PAT to a safe
location, since it will only be displayed once. See Figure 12-15.

Figure 12-15.  PAT for package management

	 6.	 In the Packages tab, click on feed name and then click the
Connect to feed button (see Figure 12-16).

http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 12 ■ Package Management

489

	 7.	 The popup widow has two important commands. The first one
can be used to add the feed authentication. The second one can
be used to push a package to the feed. See Figure 12-17.

Figure 12-16.  Connect to feed

Chapter 12 ■ Package Management

490

Figure 12-18.  Add feed authentication

Figure 12-17.  Feed commands

	 8.	 Copy the “Add this feed” command (shown in Figure 12-17)
to a notepad and add two additional parameters, -username
and –password, to the end of the copied command in the
notepad. Username can be any value, while the password
must be PAT-scoped to manage packages. An example is
shown here:

nuget.exe sources Add -Name "ChamindacNugetDemoFeed01"
-Source "https://chamindac.pkgs.visualstudio.com/_packaging/
ChamindacNugetDemoFeed01/nuget/v3/index.json" -username
"cc" -password <PATvalue>

	 9.	 Execute the preceding command in a command window from
the project folder that contains the NuGet package generated
in the previous lesson. See Figure 12-18.

Chapter 12 ■ Package Management

491

	 10.	 Then, copy the “Push a package” command from Figure 12-17
and change the package name to your package name. From a
folder where your package is available, execute the following
push command:

nuget.exe push -Source "ChamindacNugetDemoFeed01"
-ApiKey VSTS my_package.nupkg

See Figure 12-19.

Figure 12-19.  Push a package to the feed

	 11.	 Your package is now available in the feed. See Figure 12-20.

Figure 12-20.  NuGet package available in the feed

You created a feed in the team project and pushed the NuGet package to the feed
using the command line.

Chapter 12 ■ Package Management

492

Lesson 12.03 – Build and Publish Packages with
TFS Builds and Release
In this lesson, let’s look at how to build NuGet packages with TFS/VSTS builds and deploy
them to a package management feed with TFS/VSTS release.

	 1.	 Create a new build definition and set the repository to the
PkgMgmtDemo solution folder. Save the build definition with
the name “PkgMgmtBuildDemo.” See Figure 12-21.

Figure 12-21.  Map the solution folder

	 2.	 Add BuildConfiguration and BuildPlatform variables with
values of release and any cpu, respectively. Add another two
variables, Package.title and Package.version. Set the Package.
title value as NugetPackageDemo and Package.version as
$(Build.BuildNumber), which will get the current build
number. See Figure 12-22.

Chapter 12 ■ Package Management

493

	 3.	 Open the .nuspec file in the PkgMgmtDemo solution in
Visual Studio and change the version and title to the following
values. Then, check in the .nuspec file to the source control
repository. See Figure 12-23.

<version>$Package.version$</version>
<title>$Package.title$</title>

Figure 12-22.  Build variables

Figure 12-23.  nuspec file updated to support build variables

Chapter 12 ■ Package Management

494

Figure 12-24.  Build step to build the solution

	 4.	 Add a Visual Studio Build step to the build definition and
select the PkgMgmtDemo solution to build. Set the build
platform and build configuration variables. See Figure 12-24.

	 5.	 Add a Replace Token task to the build definition (this task
comes with the extension found at https://marketplace.
visualstudio.com/items?itemName=qetza.replacetokens,
and instructions to add Marketplace extensions to TFS can be
found in Chapter 2). Set $ as the value of both the token prefix
and the token suffix. Keep the Root directory field empty to
allow files to be located in the root folder of the repository and
in all child folders recursively. Target file should be set as ***.
nuspec. This will apply the Package.title variable value and
the build number as the version (using the Package.version
build variable) to the .nuspec file. See Figure 12-25.

https://marketplace.visualstudio.com/items?itemName=qetza.replacetokens
https://marketplace.visualstudio.com/items?itemName=qetza.replacetokens
http://dx.doi.org/10.1007/978-1-4842-2811-1_2

Chapter 12 ■ Package Management

495

	 6.	 Add the NuGet Packager task from the Task Catalog’s
Package tab. Select NugetPackageDemo.csproj (do not select
the .nuspecfile, as it will be auto-loaded when the project
file is specified). Set the Package Folder field to $(build.
StagingDirectory) and the Configuration to Package field as
$(BuildConfiguration). See Figure 12-26.

Figure 12-25.  Replace Tokens step

Chapter 12 ■ Package Management

496

	 7.	 Add a Copy and Publish Build Artifacts step to the build
definition and set Copy Root to $(Build.StagingDirectory). Set
the Contents field to * so as to copy all files in the build staging
directory to output/artifacts of the build (optionally, you can
set it as *.nupkg to filter NuGet packages). Set Artifact Name as
drop and select Server as the Artifact Type. See Figure 12-27.

Figure 12-27.  Copy and Publish step

Figure 12-26.  NuGet Packager step

Chapter 12 ■ Package Management

497

	 8.	 Queue a build, and it will package a .nupkg with the build
version number as the package’s version number. In the
following example, build version 1.0.0.7 is applied to NuGet
package chamindac.demo.package01. See Figure 12-28.

Figure 12-28.  Build generated a NuGet package

Figure 12-29.  Release definition’s linked artifacts

	 9.	 Go to the Release tab of the team project and create a new
release definition. Name it “pkgmgmtDemo.Release.” In the
Artifacts tab, select PkgMgmtDemoBuild as the linked artifact.
See Figure 12-29.

Chapter 12 ■ Package Management

498

	 10.	 Add a NuGet Publisher task to the release definition
Environment 1 from the Package tab of the Task Catalog.
Select the .nupkg from the artifacts and change the version
number part of the path to $(Build.BuildNumber).

Example: chamindac.demo.package01.1.0.0.7.nupkg
is changed to chamindac.demo.package01.$(Build.
BuildNumber).nupkg. (1.0.0.7 is replaced with $(Build.
BuildNumber).

This allows the release definition to pick the correct .nupkg
depending on the build being deployed. Select the option for
an internal NuGet feed and provide the internal feed URL.
The Package’s source URL can be found by connecting to the
feed in the Packages tab. See Figure 12-30.

Figure 12-30.  NuGet Publisher task

	 11.	 Create a release; it deploys the package to the feed. See
Figure 12-31.

Chapter 12 ■ Package Management

499

Figure 12-31.  NuGet package published to feed

	 12.	 The package version built with TFS will be available in the
feed after deployment. See Figure 12-32.

Figure 12-32.  NuGet package version available in the feed

In this lesson, you created a build and a release definition to create a NuGet package
and deploy it to a feed in the team project.

Chapter 12 ■ Package Management

500

Lesson 12.04 – Consume Package in Internal
Feed in Visual Studio & TFS Builds
In this lesson, you will learn how to consume a package published to an internal feed in a
Visual Studio project. As the next step, restoring a NuGet package in the internal feed with
TFS builds is explained.

	 1.	 Open Visual Studio 2015 and click on Tools ➤ Options. Expand
the NuGet Package Manger and select Package Sources. Click
on the green + to add a new package source. See Figure 12-33.

Figure 12-33.  New package source

Figure 12-34.  Package source URL

	 2.	 Connect to the feed in the Packages tab of the team project web
portal and copy the package source URL. See Figure 12-34.

Chapter 12 ■ Package Management

501

	 3.	 Provide the copied package source URL in the Source field
and provide a name to the package. Click on Update, and you
will now see the new package source below the default nuget.
org package source. Click OK to close the options window.
See Figure 12-35.

Figure 12-35.  Package source added to Visual Studio

	 4.	 Create a new Visual Studio solution called
“ConsumePkgDemo2015” in Visual Studio 2015 after
connecting to the same team project which we created
the NuGet package in a previous lesson. Add a console
application to it named “PkgConsumeDemoApp.” Right click
on the solution and then click on “Manage NuGet Packages
for Solution”. See Figure 12-36.

Chapter 12 ■ Package Management

502

	 5.	 In the Manage Packages for Solution window, select the
package source added in Step 3. See Figure 12-37.

Figure 12-36.  Manage NuGet packages

Figure 12-37.  Selecting the package source

	 6.	 In the popup window, provide the credentials to your Team
Services or Team Foundation Server account. See Figure 12-38.

Chapter 12 ■ Package Management

503

	 7.	 In the Browse tab, the package from the internal feed will be
visible. Select PkgConsumeDemoApp and click Install.
See Figure 12-39.

Figure 12-38.  Authorizing the feed usage

Figure 12-39.  Package from the feed

	 8.	 Confirm the installation by clicking OK in the popup window.
See Figure 12-40.

Chapter 12 ■ Package Management

504

	 9.	 NugetPackageDemo is added to the console application as a
reference, and packages.config is added. See Figure 12-41.

Figure 12-40.  Installing the package

Figure 12-41.  Package installed

Chapter 12 ■ Package Management

505

	 10.	 Add the following code to console application Program.
cs’s file. This code uses the package and displays the return
message from the package object DemoPackage.

using System;
usingSystem.Collections.Generic;
usingSystem.Linq;
usingSystem.Text;
usingSystem.Threading.Tasks;

namespacePkgConsumeDemoApp
{
classProgram
 {
staticvoid Main(string[] args)
 {
NugetPackageDemo.DemoPackagedemoPkg = newNugetPackageDemo.
DemoPackage();

Console.WriteLine(demoPkg.HelloWorldNugetDemo());

Console.ReadLine();

 }
 }
}

	 11.	 Build and run the project to verify all is well, and you will see
the message from the package is displayed (package code
created in Lesson 12.1). See Figure 12-42.

Figure 12-42.  Using the package

Chapter 12 ■ Package Management

506

	 12.	 Before checking in/submitting the ConsumePkgDemo2015
solution to the repository, go to Source Control Explorer and
undo the packages folder added. It is not a good practice to
submit packages to the source control repository. Adding
packages folder increase TFS database sizes unnecessarily
while those packages are readily available to download on
demand. Instead, the packages should be restored during
the build. See Figure 12-43.

Figure 12-43.  Undo adding packages to the repository

	 13.	 Check in/submit the solution and the console application.
Make sure to include packages.config but not the packages
folder. See Figure 12-44.

Chapter 12 ■ Package Management

507

	 14.	 You need to make sure that the internal package source can
be found in TFS builds. It is required that you provide the
package source information. This is available in NuGet.Config
in the %APPDATA%\NuGet path. See Figure 12-45.

Figure 12-44.  Check in to source control repository

Figure 12-45.  Locating NuGet.config

Chapter 12 ■ Package Management

508

	 15.	 In Windows Explorer, type %APPDATA%\NuGet and press the
Enter key to open your current user AppData path; you can
see a NuGet.config file.

Figure 12-47.  NuGet.config added to repository

Figure 12-48.  NuGet.config content

	 16.	 Copy this file to the same folder where your Visual Studio
solution file is. Then, add that file to source control using
Source Control Explorer. See Figure 12-47.

	 17.	 If you open the Nuget.config file in Visual Studio, you
can see the available internal feed information. Do not
change anything in the file. Check it in to the source control
repository. See Figure 12-48.

Figure 12-46.  NuGet.config

Chapter 12 ■ Package Management

509

	 18.	 Create a new empty build definition and set the repository
(server path) to the ConsumepkgDemo2015 solution.
See Figure 12-49.

Figure 12-49.  Map solution path

Figure 12-50.  NuGet restore step using NuGet.config

	 19.	 Add a NuGet Installer step to the build definition and select
the ConsumePkgDemo2015 solution as the path to solution.
Select the NuGet.config file checked in previously as the
path to NuGet.config. Set Installation Type to Restore. See
Figure 12-50.

Chapter 12 ■ Package Management

510

	 20.	 Add a Visual Studio build step and select the
ConsumePkgDemo2015 solution to build. See Figure 12-51.

Figure 12-51.  Visual Studio Build step

Figure 12-52.  Restore NuGet package from internal feed

	 21.	 Save and queue a build. You can see internal packages getting
restored, and the project builds successfully. See Figure 12-52.

Chapter 12 ■ Package Management

511

In this lesson, you created a solution and a project that would consume the NuGet
package from the internal feed. Then, you used the internal package feed in a Team
Foundation build successfully.

Summary
In this chapter, you created identified package management features available with
Team Services and TFS. Package management will allow you to share common code as
packages using internal feeds. A feed can be shared to all in the organization or to just a
project team in the organization. This chapter only covered NuGet packages, but you can
use npm packages as well with package management. Do experiments on npm packages
to improve your knowledge.

In the next chapter, you will learn how to extend build and release management tasks
so as to enhance the build/release features of Team Services or Team Foundation Server.

513© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1_13

CHAPTER 13

Extending Build and Release
Tasks on Your Own

You will learn how to set up your Visual Studio environment to enable extension
development for VSTS/TFS. Developing a build and release task and publishing
and using it in build/release will give you the capability to add your own functional
components to TFS build and release management.

Prerequisites: You have Visual Studio 2015 and VSTS/TFS. In your Visual Studio
environment, npm is available. If not, get npm from https://www.npmjs.com/get-npm
and set up Node.js and npm.

Lesson 13.01 – Update npm and Add Visual
Studio Project Templates for TFS Extensions
Let’s prepare the Visual Studio environment for developing extensions for Team Services
and TFS build and release management.

	 1.	 Open a command prompt as administrator and run the
following command to update npm to the latest version
(see Figure 13-1):

npm install npm@latest–g

Figure 13-1.  Update npm

https://www.npmjs.com/get-npm

Chapter 13 ■ Extending Build and Release Tasks on Your Own

514

	 2.	 Get the TFS Cross Platform Command Line Interface (tfx-cli)
by using this npm command (see Figure 13-2).

npmi -g tfx-cli

	 3.	 Close all Visual Studio instances and download the VSTS
Extension Project Templates from https://marketplace.
visualstudio.com/items?itemName=JoshGarverick.
VSTSExtensionProjectTemplates (see Figure 13-3).

	 4.	 Install the downloaded .vsix (VSOExtensionPackage.3.0.vsix)
file. See Figure 13-4.

Figure 13-2.  Get tfx-cli

Figure 13-3.  Download VSTS Extension Project Templates

https://marketplace.visualstudio.com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates
https://marketplace.visualstudio.com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates
https://marketplace.visualstudio.com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates

Chapter 13 ■ Extending Build and Release Tasks on Your Own

515

Installation should add templates to all compatible Visual
Studio versions. See Figure 13-5.

Figure 13-4.  Installing VSTS Extension Project Templates

Figure 13-5.  Completed VSTS Extension Project Templates installation

Chapter 13 ■ Extending Build and Release Tasks on Your Own

516

	 5.	 Open Visual Studio. You can see two new project templates.
One is for creating VSTS/TFS extensions in TypeScript tab. See
Figure 13-6.

	 6.	 The other one is found in the PowerShell section and is
used to create VSTS/TFS Build Release extensions. This is
the extension we are going to discuss in this chapter. See
Figure 13-7.

Figure 13-6.  TypeScript-based VSTS extension template

Figure 13-7.  PowerShell-based VSTS extension template

Chapter 13 ■ Extending Build and Release Tasks on Your Own

517

You have set up your Visual Studio environment to develop extensions for TFS/VSTS
in this lesson.

Lesson 13.02 – Develop a Build/Release
Extension and Packaging
Let’s develop a build and release extension using the new templates and package it for
upload to Marketplace (https://marketplace.visualstudio.com/vsts).

	 1.	 Create a Visual Studio solution named
“BuildReleaseExtensionDemo” and add a project named
“DemoBuildReleaseTask” to it with the template Visual Studio
Team Services Build Task, found in the PowerShell section.
See Figure 13-8.

	 2.	 The project is created with an Example Task template. See
Figure 13-9.

Figure 13-8.  Build Task project template

https://marketplace.visualstudio.com/vsts

Chapter 13 ■ Extending Build and Release Tasks on Your Own

518

	 3.	 In Task Runner Explorer in Visual Studio, the Gruntfile.js
file will show as “failed to load” for few seconds until
node_modules and VstsTaskSdk have loaded as specified in
Gruntfile.js. See Figure 13-10.

	 4.	 After few seconds, the Task Runner Explorer shows that
node_modules have loaded and the VstsTaskSdk has been
copied to ExampleTask\ps_modules. See Figure 13-11.

Figure 13-9.  Build Task project

Figure 13-10.  Task runner showing error

Chapter 13 ■ Extending Build and Release Tasks on Your Own

519

	 5.	 This should add node_modules and VstsTaskSdk, as shown in
the Solution Explorer in Figure 13-12.

Figure 13-11.  Task runner loading modules

Figure 13-12.  VstsTaskSdk and node_modules added

Chapter 13 ■ Extending Build and Release Tasks on Your Own

520

	 1.	 If this does not work automatically for some reason, you can
manually download the node modules by running the npm
update command from the project folder. See Figure 13-13.

	 2.	 To get the VstsTaskSdk manually to the ps_modules folder inside
the task folder, open a PowerShell window as administrator and
run the following command (see Figure 13-14):

Save-Module -Name VstsTaskSdk -Path .\

Figure 13-13.  Manually adding node_modules

Figure 13-14.  Manually adding VstsTaskSdk

Chapter 13 ■ Extending Build and Release Tasks on Your Own

521

	 3.	 But, if you download VstTaskSdk manually, make sure to
move all contents from the version-numbered folder to the
VstsTaskSdk folder. See Figure 13-15.

	 4.	 Cut the files from the version-numbered folder in Windows
Explorer. See Figure 13-16.

Figure 13-15.  Manually added VstsTaskSdk in a version-numbered folder

Chapter 13 ■ Extending Build and Release Tasks on Your Own

522

	 5.	 Paste the VstsTaskSdk content into the ps_ modules folder
(this folder is added automatically when downloading
VstsTaskSdk). See Figure 13-17.

Figure 13-16.  Cut the added VstsTaskSdk files from the version-numbered folder

Figure 13-17.  Paste the VstsTaskSdk files into the ps_modules folder

Chapter 13 ■ Extending Build and Release Tasks on Your Own

523

	 6.	 Remove the version-numbered folder so that the folder
structure looks as shown in Figure 13-18.

	 6.	 Let’s rename the task as “DemoTask.” First, change the folder
name to “DemoTask,” as shown in Figure 13-19.

Figure 13-18.  VstsTaskSdk files

Chapter 13 ■ Extending Build and Release Tasks on Your Own

524

	 7.	 Open gruntfile.js and replace Exampletask with DemoTask.
See Figure 13-20.

Figure 13-19.  Rename task

Figure 13-20.  Update gruntfile.js with new task name

Chapter 13 ■ Extending Build and Release Tasks on Your Own

525

	 8.	 Open task.json in the DemoTask folder and change the
values, as shown in Figure 13-21. Provide name as DemoTask
and set the same value to InstanceNameFormat. Provide a
friendlyName and a description. Change the two variables
available by default to have the YourName variable as a string
and ShowWarningMsg and ShowErrorMsgandFail as Boolean
variables. Visibility indicates whether it is available for build
or release or both (for both option you need to specify Build
and Release seperated by a comma).

Figure 13-21.  task.json

Chapter 13 ■ Extending Build and Release Tasks on Your Own

526

	 9.	 Open task.ps1 in the DemoTask folder and replace the
PowerShell code with the following (or download from
https://github.com/chamindac/Book-Beginning-
Build-ReleaseManagement-/blob/master/Chapter13/
BuildReleaseExtensionDemo/DemoBuildReleaseTask/
DemoTask/task.ps1).

#
DemoTask.ps1
#
[CmdletBinding(DefaultParameterSetName = 'None')]
param()

Write-Host "Starting DemoTask"
Trace-VstsEnteringInvocation $MyInvocation

try {

 $YourName = �Get-VstsInput -Name
YourName -Require

 $ShowWarningMsg = �Get-VstsInput -Name
ShowWarningMsg

 $ShowErrorMsgandFail = �Get-VstsInput -Name
ShowErrorMsgandFail

 $compName = $env:COMPUTERNAME;

 �Write-Host ("Hello from {0}, {1}"
-f $compName, $YourName);

 if($ShowWarningMsg.ToLower() -eq "true")
 {
 �Write-Warning ("Warnig message you

requested from {0}, {1}"
-f $compName, $YourName);

 }

 �if($ShowErrorMsgandFail.ToLower() -eq
"true")

 {
 �Write-Error ("Error message you

requested from {0}, {1}" -f
$compName, $YourName);

 }

https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter13/BuildReleaseExtensionDemo/DemoBuildReleaseTask/DemoTask/task.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter13/BuildReleaseExtensionDemo/DemoBuildReleaseTask/DemoTask/task.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter13/BuildReleaseExtensionDemo/DemoBuildReleaseTask/DemoTask/task.ps1
https://github.com/chamindac/Book-Beginning-Build-ReleaseManagement-/blob/master/Chapter13/BuildReleaseExtensionDemo/DemoBuildReleaseTask/DemoTask/task.ps1

Chapter 13 ■ Extending Build and Release Tasks on Your Own

527

} catch {
 throw;
} finally {
 Trace-VstsLeavingInvocation $MyInvocation
}

Write-Host "Ending DemoTask"

	 10.	 Open the vss-extension.json file and change the ID, version,
name, description, and publisher. The publisher name should
be the name you intend to use in Marketplace (https://
marketplace.visualstudio.com). The extension is not yet
ready for the public. Keep it false. How to make an extension
public is discussed later in this chapter. Leave the links as they
are for the time being. See Figure 13-22.

	 11.	 Change the file path and name of the contribution to
DemoTask (task folder name must be used for these two
items). Change the contribution ID to be demo-task. Save
vss-extension.json with the changes. See Figure 13-23.

Figure 13-22.  vss-extension.json

https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/

Chapter 13 ■ Extending Build and Release Tasks on Your Own

528

	 12.	 The vss-web-extension-sdk module is required in order to
package the extension. This should be available in node_
modules, since vss-extension.json is set to look for it in there.
See Figure 13-24.

Figure 13-23.  vss-extension.json

Chapter 13 ■ Extending Build and Release Tasks on Your Own

529

	 13.	 To download vss-web-extension-sdk to node_modules,
execute the following command from the project folder
(see Figure 13-25):

npm install vss-web-extension-sdk

	 14.	 To package the Demo extension, execute the following
command from the project folder (see Figure 13-26):

tfx extension create --manifest-globs vss-extension.json

Figure 13-24.  Setting vss-web-extension-sdk/lib.

Figure 13-25.  Downloading vss-web-extension-sdk

Chapter 13 ■ Extending Build and Release Tasks on Your Own

530

	 15.	 The packaged .vsix will be available in the project folder.
See Figure 13-27.

In this lesson, you created an extension to build and release and packaged it to get it
ready for deployment.

Lesson 13.03 – Sign Up for Publishing Extensions
in Marketplace and Publish Extension
You need to sign up in Visual Studio Marketplace to publish extensions.

	 1.	 Go to https://marketplace.visualstudio.com and click
on the Publish Extensions link in the footer of the page. See
Figure 13-28.

Figure 13-26.  Packaging the extension

Figure 13-27.  Packaged .vsix file

https://marketplace.visualstudio.com/

Chapter 13 ■ Extending Build and Release Tasks on Your Own

531

	 2.	 Sign in with your Microsoft account that has a VSTS account
to test the extension.

	 3.	 After signing in with your Microsoft account, in the popup
window, provide your publisher ID. It is the same value used
for Publisher in vss-extension.json. Provide a display name
and click Create. See Figure 13-29.

Figure 13-28.  Publish Extensions link

Chapter 13 ■ Extending Build and Release Tasks on Your Own

532

	 4.	 This will allow you to upload extensions to share privately
(publishing extensions publically is discussed later in this
chapter). Click on the Upload new extension button, shown in
Figure 13-30.

	 5.	 In the popup window, click the Browse button and select the
extension packaged in the previous lesson. See Figure 13-31.

Figure 13-30.  Publisher

Figure 13-29.  Create a publisher

Chapter 13 ■ Extending Build and Release Tasks on Your Own

533

	 6.	 Click on Upload after selecting the extension .vsix. See
Figure 13-32.

	 7.	 The extension uploads, and it is not yet shared to any VSTS/
TFS account since it is private. To share it, click on the Share
button. See Figure 13-33.

Figure 13-31.  Browsing extension

Figure 13-32.  Uploading the extension .vsix

Chapter 13 ■ Extending Build and Release Tasks on Your Own

534

	 8.	 In the popup window, provide your VSTS account name and
click OK. See Figure 13-34.

	 9.	 The extension is now shared with your VSTS account. See
Figure 13-35.

Figure 13-33.  Uploaded extension

Figure 13-34.  Sharing the extension

Figure 13-35.  Shared extension

Chapter 13 ■ Extending Build and Release Tasks on Your Own

535

You created a publisher, uploaded the extension to Marketplace, and shared it with
your Team Services account.

Lesson 13.04 – Install Privately Shared Extension
Let’s install a shared extension to the Team Services account.

	 1.	 Go to your VSTS account and click on Manage extensions.
See Figure 13-36.

	 2.	 The shared extension is available to install. Click on Demo
Extension Name. See Figure 13-37.

	 3.	 The Marketplace extension page will be opened. Install the
extension into your VSTS account by clicking Install. See
Figure 13-38.

Figure 13-36.  Manage extensions

Figure 13-37.  Extension available to install

Chapter 13 ■ Extending Build and Release Tasks on Your Own

536

	 4.	 Select your Team Services account in the popup window and
click Confirm. See Figure 13-39.

Figure 13-38.  Install extension

Figure 13-39.  Select Team Services account in which to install extension

Chapter 13 ■ Extending Build and Release Tasks on Your Own

537

	 5.	 The extension will be installed in your VSTS account.
See Figure 13-40.

	 6.	 Refresh the Manage Extensions page, and you will see the
extension is now installed. See Figure 13-41.

You have installed a privately shared extension to your Team Services account.

Figure 13-40.  Extension installed

Figure 13-41.  Extension available

Chapter 13 ■ Extending Build and Release Tasks on Your Own

538

Lesson 13.05 – Use the Extension in the
Build/Release
After installing a privately shared extension to VSTS or uploaded and installed it to
on-premises TFS, it can be used with a build or release (as specified in the task).

	 1.	 Create a folder named “Dummy” in a team project and add an
empty text file, dummy.txt, and check it in. This is just to allow
the build to have a repository path. See Figure 13-42.

	 2.	 Create a new empty build definition and set the repository to
Dummy. See Figure 13-43.

Figure 13-42.  Dummy

Figure 13-43.  Map to Dummy

Chapter 13 ■ Extending Build and Release Tasks on Your Own

539

	 3.	 Click Add build step in the Build tab of the build definition. In
the pop up Task Catalog window Utility tab, you will find the
new “Demo Task” added with the new extension. Add it to the
definition. See Figure 13-44.

	 4.	 In the Demo task, provide a value for the Your Name field and
select Show Warning Message. See Figure 13-45.

Figure 13-44.  Add Demo task

Figure 13-45.  Demo task

Chapter 13 ■ Extending Build and Release Tasks on Your Own

540

	 5.	 Queue a new build. The Demo task displays a message and
warning message, and the build succeeds. See Figure 13-46.

	 6.	 Edit the build definition and select the Show Error Message
option as well. See Figure 13-47.

Figure 13-46.  Demo task running with warning

Figure 13-47.  Demo task enabled to show error

Chapter 13 ■ Extending Build and Release Tasks on Your Own

541

	 7.	 Queue a build. The Demo task will show an error message
and fail both the task and the build. With this, you have
learned how to create a build release task and run it. It shows
warnings, and on errors it knows how to fail a task. See
Figure 13-48.

In this lesson, you used the extension installed to the Team Services/TFS with a build
definition.

What Else Is Possible with Build/Release
Extensions?
You have learned how to add new build/release tasks to the Task Catalog. You have
created a publisher account, but you could not share your extensions publicly. In order to
make the extension available publicly in Marketplace, it should have useful functionality
and should work with Visual Studio/Visual Studio code or Team Services/TFS. You
have to follow the instructions found at https://www.visualstudio.com/en-us/docs/
integrate/extensions/publish/publicize to become a verified publisher.

Once you have done so, you can make your extensions public by changing the vss-
extension.json public setting to true. See Figure 13-49.

Figure 13-48.  Demo task failing with error

https://www.visualstudio.com/en-us/docs/integrate/extensions/publish/publicize
https://www.visualstudio.com/en-us/docs/integrate/extensions/publish/publicize

Chapter 13 ■ Extending Build and Release Tasks on Your Own

542

Your extensions will be public once you package and update them. Make sure to
increase the version number for each update to make it effective. See Figure 13-50.

You have seen that the Demo task we created had a blank icon and default logo, and
that its page in Marketplace had no documentation. Before you make your extensions
public, you need to improve these.

•	 You can replace the icon.png file in your task folder with an image
named “icon.” There is no need to reference this file from task.
json or anywhere. It will be automatically displayed as the icon of
the task as long as it is in the folder of the task.

Figure 13-49.  Making an extension public

Figure 13-50.  Public extensions

Chapter 13 ■ Extending Build and Release Tasks on Your Own

543

•	 You can replace logo.png in the img folder of the extension
template. This is referred to in the vss-extension.json icons
section as follows:

"icons": {
 "default": "img/logo.png"
 },

•	 Add a folder called “screenshots” to the img folder; you can
add screenshots of your extension for the documentation. See
Figure 13-51.

This should be referred to in vss-extension.json as shown here:

"screenshots": [
 {
 "path": "img/screenshots/CRM2016-01.png"
 },
 {
 "path": "img/screenshots/CRM2016-02.png"
 },

Figure 13-51.  Screenshots for extension

Chapter 13 ■ Extending Build and Release Tasks on Your Own

544

 {
 "path": "img/screenshots/CRM2016-03.png"
 }
],

•	 Adding license text is required for a public extension. See
Figure 13-52.

•	 The readme.md file can be added for documentation purposes.
See Figure 13-53.

Figure 13-53.  Readme file for the extension

Figure 13-52.  License for extension

Chapter 13 ■ Extending Build and Release Tasks on Your Own

545

Refer to these files in vss-extension.json as follows:

"content": {
 "details": {
 "path": "Docs/readme.md"
 },
 "license": {
 "path": "Docs/license.txt"
 }
},

You can update the extension with screenshots once it is in Marketplace.
You have to put screenshot URLs in the readme.md file, then package and update again.
See Figure 13-54.

To package an update to an extension, execute the package command with
--rev-version. This will auto-increment the version of the generated .vsix by updating
the vss-extension.json automatically. See Figure 13-55.

Figure 13-54.  Using screenshots in documentation

Chapter 13 ■ Extending Build and Release Tasks on Your Own

546

To update an extension in Marketplace, click on the dropdown menu and select
Update. Then, browse for the updated package and update it. See Figure 13-56.

You can add multiple build tasks in a single extension package. To do that, add
separate task folders for each of the tasks. See Figure 13-57.

Figure 13-55.  Packaging extension with version increment

Figure 13-56.  Updating extension in Marketplace

Chapter 13 ■ Extending Build and Release Tasks on Your Own

547

Figure 13-57.  Multiple tasks in extension

In the vss-extension.json file, define contributions for each of the tasks in order to
enable multiple tasks in a single extension package, as follows:

"contributions": [
 {
 "id": "activate-crm-workflows",
 "type": "ms.vss-distributed-task.task",
 "targets": [
 "ms.vss-distributed-task.tasks"
],
 "properties": {
 "name": "activate-crm-workflows"
 }
 },

Chapter 13 ■ Extending Build and Release Tasks on Your Own

548

 {
 "id": "import-crm-solution",
 "targets": [
 "ms.vss-distributed-task.tasks"
],
 "type": "ms.vss-distributed-task.task",
 "properties": {
 "name": "import-crm-solution"
 }
 }
]

You can refer to the following extension code to learn how to set up documentation,
icons, logos, and so forth for the extensions you are developing. These examples are done
on the version 2.4 of the VSTS Extension Template (https://marketplace.visualstudio.
com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates), but it mostly
has a similar implementation to what we just worked with (version 3.0.2) except they do
not use the VstsTaskSdk PowerShell module.

https://github.com/chamindac/vsts.release.task.crm-2016
https://github.com/chamindac/vsts.release.task.restart-win-service
https://github.com/chamindac/vsts.release.task.download-artifacts

The VSTS default tasks are available in GitHub at https://github.com/Microsoft/
vsts-tasks. You can study them to learn more about developing extensions.

You should always try to handle individual requirements in builds/release steps with
custom PowerShell scripts and so on by using default available tasks. But, if you have
common functionality that is beneficial to many other projects in your organization, and
to other organizations, you can use the extending capability of Team Services/TFS build/
release tasks.

Summary
In this book, you have learned how Visual Studio Team Services/TFS Build & Release
management can help you enable continuous delivery so that you can achieve DevOps.
Many concepts are covered, and the role Team Foundation Services Build & Release
can play is explained in the book. Concepts such as using agent pools and queues, the
security aspect of them, and setting up prerequisites for builds and release are explained
via walkthrough lessons that even cover setting up in the Linux platform and building
.NET source code in external repositories such as GitHub.

Several lessons allowed you to explore the deployment capabilities of Team
Foundation Build & Release to Microsoft cloud platform Azure. You have been given
detailed practical guidance on automating deployments of websites in the Azure app
service, doing database deployments to Azure platform, micro-services deployments in
Azure Service Fabric, docker-enabled ASP.NET Core web app deployments, and more
using Team Foundation build and release management.

https://marketplace.visualstudio.com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates
https://marketplace.visualstudio.com/items?itemName=JoshGarverick.VSTSExtensionProjectTemplates
https://github.com/chamindac/vsts.release.task.crm-2016
https://github.com/chamindac/vsts.release.task.restart-win-service
https://github.com/chamindac/vsts.release.task.download-artifacts
https://github.com/Microsoft/vsts-tasks
https://github.com/Microsoft/vsts-tasks
http://asp.net/#_blank

Chapter 13 ■ Extending Build and Release Tasks on Your Own

549

Hands-on lessons gave you experience in automating the generation of effective
release notes with each deployment in a given target environment (QA, UAT, Production,
and so forth) to empower your teams to achieve DevOps by enabling the requirement to
production delivery traceability. Walkthroughs for deploying to and using packages from
Team Services package management feeds with build and release management have
given all the required guidance to use Team Services Package Management for internal
NuGet and npm package sharing.

Dynamics CRM Solution deployment lessons have given you hands-on experience
automating deployments for CRM with Team Services/TFS. Walkthroughs for CRM
deployments could be followed by anyone who has minimal knowledge of Microsoft
Dynamics CRM.

Test automation lessons on how to integrate the automated tests into builds and
deployments have covered all essentials required in order for you to gain practical
knowledge of challenges in test automation and overcoming them. The hands-on
lessons even include guidance on setting up an on-demand test farm using Azure virtual
machines to effectively reduce implementation costs.

Several hands-on lessons in the book allowed you to understand how to optimize
the build release management definitions by using capabilities such as task groups.
Knowledge in diagnosing and fixing issues in automated builds and deployments
has been given via practical walkthroughs. Information on enhancing the capability
of TFS Build & Release Management by using Team Services/TFS Marketplace
extensions and writing your own extensions for any missing functionality was
provided with hands-on lessons.

551© Chaminda Chandrasekara 2017
C. Chandrasekara, Beginning Build and Release Management with TFS 2017 and VSTS,
DOI 10.1007/978-1-4842-2811-1

�       � A
Agent

platforms, 10
system and user capabilities, 10

Agent pool
add user, 12
assign permissions, 55–56
default pool, 8
hosted Linux pool, 8
hosted pool, 7
set up

assign administrator role, 45
auto-provision queues, all

projects, 47
creation, 44
manage permission error, 45
new agent pool, 44
pool creation, provisioning

queues, 46–47
TFS user, assign, 11

Agent queue
add user, 13
assign permissions, 55–56
set up

creating, existing pool, 48
creator assigned to administrator

role, 49
new pool creation, 49
new queue, 48
pool creation, 50
queue provisioned, team

project, 50
TFS user, 12

Ant build task, 327–328
ASP.NET and web development, 83

ASP.Net Core Web App
creation in VS 2017

core web application project, 115
template selection, 115

deployment, Azure App
Service, 143–145

TFS build
add archive file step, 119
build step, 117
Core1.Rel build definition, 118
demand, VS 2017, 117
publish build artifacts build

task, 119
restore dotnet build step, 116

tokenize, build configurations
application settings, adding, 120
appsettings.json, 120
build transforming app settings, 123
tokenizing settings, 121
transform tokens build step, 122

ASP.Net MVC App
build in TFS/VSTS

add NuGet Installer, 95
agent queue selection, 94
arguments, 101
build definition–current layout, 90
build executes, multiple

configurations, 104
build notifications settings, 99
build succeeds, 98
check-in–new preview layout, 94
cloning, 100
configure multi-configuration

build, 103
copy and publish artifacts

task, 102

Index

■ INDEX

552

creating work item, build
failure, 104

empty process template build
definition–new preview layout,
88–89

explore artifacts, 106
multiple build configurations, 103
naming, build definition, 91
retaining completed builds, 105
save build definition, 91–93
selecting repository, 90
variables, configuration and

platform, 95–96
Visual Studio build step, 97

creation in VS 2017
check in, source control, 87
main folder, team project, 84
MVC project, 85
MVC web application creation, 85
packages folder, 86
team explorer pending changes

window, 86
template, 84

tokenize, build configurations
change build arguments, 113
IIS, FTP publish, 111
IIS Web Application Name, 114
Parameters.xml file, adding, 110
save publish profile, 112
SetParameters file, 109
settings and connection strings, 107
transformations in web.release.

config, 107
transformation target in

.csproj, 108
web.config transformation, 109
web deploy package publish

profile, 112
ASP.NET website, 390
Auto-provision queues, existing pool

new team project, 54
Project X Release Pool, 53, 55
queue not getting provisioned, 52
selection, 51
team project creation

TFS 2017, 54
VSTS, 53

Azure App Service on Linux App
Azure container registry, 192–197
configure container, 180

new resource group
adding, 177
creating, 177
same region, 178

web app
creation, 179–180
selection, 178
URL, 181

Azure Connection Type dropdown, 381
Azure container registry

creation, 174
new resource group, 176
required information, creation, 175
searching, Azure container

registry, 173
selecting, 173

Azure container services
build and release definitions, 199
building and pushing, 199
configuring continuous delivery, 198
release definition, 200

Azure datacenter, 392
Azure PowerShell, 383
Azure Resource Group Deployment

task, 384
Azure Service Fabric

build package (see Build Azure Service
Fabric applications)

cluster creation, 242–248
cluster deployment

application deployed, 274
build succeeded and triggers

deployment, 279
client connection endpoint, 271
cluster connection,

selection, 273
code change check-in, 279
code change, web API, 278
connection, 272
connection endpoint in Services

tab, 272
continuous deployment,

set up, 270
linked artifacts, 269
load balancer, 276
new Service Fabric application

version deployed, 280
release definition, 268, 273
replace tokens task, 271
task, 269
template, 268

ASP.Net MVC App (cont.)

■ INDEX

553

upgrading, 280
web API, 274, 275, 277, 281

creation and test locally
adding Service Fabric Application

project, 223
API returning demo counter

value, 242
ASP.NET Core API service, 228
ASP.NET Core reliable service, 227
counter name, changing, 224
CreateServiceReplicaListeners

method, 236–237
DemoCount value getting, 235
DemoStateFull.Interface, 234
diagnostic events view, 224
expose stateful service, 237
default Get method, 240–241
IDemoCounter.cs, 233
implementing DemoStateFull.

Interface, 234
interface, stateful service, 231
Microsoft.ServiceFabric.

Services, 232
new build platform, 238
reference to interface, 237
release and debug

configuration, 239
release and debug output

paths, 240
Service Fabric Explorer, 226
Service Fabric menu, 225
stateful Service template, 223
undo packages folder, 230
web API, 229–230
x64 build platform, 238

set up, Visual Studio 2015, 220–222
Azure SQL databases, TFS/VSTS release

management
build definition creation, 204–205, 207
creation, 201–203
.dacpac (see Deploy .dacpac to Azure

SQL)
Azure subscription, TFS/VSTS Team

Project
Azure Resource Manager

endpoint, 135
name and ID, 137
running SPNCreation.ps1, 137
service endpoint, 136, 138
SPN details, 138

Azure virtual machines, 362

�       � B
Backlog

bugs and user stories, 443, 445–448
settings, 442

Browser mix, 395
BuildAgentPool, 43
Build and release agents

agent pool, 7–8
agent queue, 9–10
set up

on-premises TFS—interactive
mode, 60–63

remove windows, 64
Ubuntu Linux, 69–70, 72–73
untrusted domain, VS Team

Services, 66–69
Windows service, 64–66

TFS/VSTS, 7
Build and release definitions, 298–299
Build and release extension

demo task
adding, 539
failing with error, 541
running with warning, 540
show error message, 540

documentation, 545
dummy, 538
instructions, 541
license, 544
making an extension

public, 541–542
Marketplace, 546

adding node_modules, 520
adding VstsTaskSdk, 520–522
Build Task project

template, 517–518
downloading vss-web-extension-

sdk, 529
Gruntfile.js file, 518
packaged .vsix file, 530
packaging the extension, 530
PowerShell code, 526
ps_modules folder, 522
rename task, 523–524
task.json, 525
Task runner loading

modules, 518–519
Task runner showing error, 518
update gruntfile.js, 524
vss-extension.json, 527–528

■ INDEX

554

vss-web-extension-sdk/lib
setting, 528–529

VstsTaskSdk and node_
modules, 519

VstsTaskSdk files, 523
multiple tasks, 546–547
packaging, version increment, 545–546
public extensions, 542
readme file, 544
screenshots, 543
task catalog, 541
vss-extension.json, 543, 545
VstsTaskSdk PowerShell

module, 548
Build and Release tab, 6
Build Azure Service Fabric applications

application parameters
Cloud.xml, 255

build definition, creation, 255
build number, application and service

manifests, 267
Cloud.xml file, 249
configuration and platform

variables, 257
connection endpoint, PublishProfiles\

cloud.xml, 266
continuous integration settings, 258
copy files, 263
drop folder, application package, 265
Microsoft account selection, 251
NuGet restore, 260
number format and agent, 259
publish, 250
publish build artifacts, 264
saving tokenized publish profile, 254
selecting connection endpoint, 252
setting repository path, 257
solution, 261
version updating, 263
VS Service Fabric publish window, 253

Build creation
activate user story, 450
active work filter, 451
“assigned to me” query, 450–451
Copy Publish Artifact, 455
map solution path, 454
number format settings, 456
open query, 452
resolved user story, 454
solution and console application, 449

Visual Studio, 455
with work items, 457

Build definition
build tab, 17
general tab, 16
history tab, 17
options tab, 13, 14
queue, 40
repository tab, 14
retention tab, 16
security

accessing individual build
permissions, 29

accessing project-level security, 27
setting permissions for

individual, 30
setting project-level security, 28

task catalog, 18
triggers tab, 15
variables tab, 15

Build Farm, 57
Build LoadTest solution, 397
Build NuGet packages, TFS/VSTS builds

build solution step, 494
build variables, 493
copy and publish step, 496
map solution folder, 492
NuGet Packager step, 496
NuGet Publisher task, 498
nuspec file updated, 493
package version in feed, 499
published to feed, 499
release definition’s linked artifacts, 497
replace tokens step, 495

Build.xml, 324

�       � C
Clone environment, 378
Clone GitHub repository, 305
Clone release definition, 372
Cloning environment, 379
Cloud-based load tests, 392, 400
ConsoleApp, 307
Console application, 307
Consume package in internal feed, VS &

TFS builds
feed usage authorization, 503
installing, 504
manage NuGet packages, 502
map solution path, 509

Build and release extension (cont.)

■ INDEX

555

NuGet.config, 507, 508
NuGet restore step, 509
package source selection, 502
package source URL, 500
program.cs’s file, 505
restore NuGet package, 510
source control repository, check in, 507
undo adding packages, 506
Visual Studio Build step, 510

Continuous delivery (CD), 3–4
Continuous deployment, 3–4
Continuous integration (CI), 2–3
Copy files task, 359

�       � D
Datacenter, 392
Deploy .dacpac to Azure SQL

add database, 209
artifacts, DB.Rel build, 211
database creation, 210
deployment task, 212
firewall, 214–215
sqlpackage and AzurePS, 211
SQL server

adding, 208
creating, 209
server object explorer, 215–217

Deployment, ASP .NET Core Web App to
Azure App Service, 143–145

Deployment, ASP .NET MVC5 Web App to
Azure App Service

add new environment, release
definition, 139

creation, 141
deployment task, 142
service deploy step, 140

Deploy Test Agent, 374
DevOps, 1–2, 4
Docker container image

access Key section, 183
add Docker Compose tasks, 187
build container service image, 190
build definition, 185–186
build repository, 188
commits, master branch, 187
Demo Docker Registry

connection, 184–185
linking Docker registry to team

services, 183–184
push image, 191–192

Docker-enabled application, setting up
authorizing shared drives, 160
installing, 155
launch, 156
sharing drives, 159
up and running, 157
VS 2017 ASP.NET and web

development, installation, 154
VS 2017 .NET Core cross-platform

development, installation, 154
windows information, 158
windows version, 158

Docker-enabled ASP.NET Core
application

add API project to solution, 166
allow web API, 167
ASP.NET Core web API, 165
authentication, 165
cloning, git repository, 162
committing file, git repository, 172
committing solution, git repository, 168
Docker support, adding, 169
empty solution in VS, 163
.NET Core selection, 164
team project, 161
VS solution, 163
web API running

Linux, 171
Windows OS, 167

Dynamics CRM
customization solution and plugin

add new fields, main form, 410
create messages, Demo Entity 1,

414–415
deployment, 549
entity, 407–408
entity creation, 417
new CRM solution adding, 406
new integer field, 408
new string field, 409
PluginEntryPoint.cs, 412–413
plugin project, 411
plugin registration tool, 413
publish, 410
register plugin, 414
restore NuGet, 411
update messages, Demo

Entity 1, 416
SDK template installation, 403–404
solution deployment, TFS

release, 429–432

■ INDEX

556

source control, CRM customization
CommonFunctions.ps1, 419
CRMDemo folder structure, 420
CRM solution contents, 424
download CRMSolutions.ps1,

418
managed and unmanaged

solution, 423
Microsoft.Xrm.Data.

PowerShell, 419
parameters, downloading CRM

solutions, 422–423
run PowerShell, 420
set execution policy, 421
SysWOW64 PowerShell, 421

zip file creation,
TFS Build, 424, 426–428

�       � E
Enable PowerShell remoting, 352, 368
Environment ready wait time variable, 383
Extension, marketplace

browse local extensions page, 79
downloading, 79
installation, 74–75
management, 75–76
requesting, 76–78
TFS, 79

�       � F
Feed and publish package

add feed authentication, 490
commands, 490
connect to feed, 489
create new feed, 486
edit feed, 487
NuGet package, 491
PAT, package management, 488
push package, 491

Files task, 376
Folders, 295–297
Functional Tests task, 377

�       � G
GitHub account

account settings, 310
Ant build task, 328
Ant capability, 329

build definition, 316
build output, 331
code and XML, 326
connection, 303
console application, 307
creating new solution, 306
desktop, 321
extension, Visual Studio, 303
integration, 318–320
Java code and build.xml, 320, 325
login, 304
new build definition, 315
pending changes, 307
project button, 301
publish, 325
repositories, 302, 304, 305
service endpoint, 313
solution, 309, 317
token, 310–312
updated, changes, 309
username, 308
Visual Studio and

commit, 301
Windows Explorer folder, 321

GitHub repository, 309
GitHub service endpoint, 314
GitHubSolution, 307

�       � H, I
HelloWorldApp class, 322

�       � J, K
.jar file

downloaded, 333
unblock downloaded, 332

Java code, 320, 322

�       � L
Load test, 393–394

charts, 401
project, 390
results, 401

�       � M
Manage Extension, 75–76
Map LoadTestDemo, 396
MVC5 Web Application to IIS,

deployment

Dynamics CRM (cont.)

■ INDEX

557

agent demand, setting, 127
configure Web Deploy Publishing, 124
copy file, deployment package, 128
new release creation, 129–130
release definition, creation, 126
release progress, 130
renaming environment to QA, 127
setting up Web Deploy, 125
site deployed and web.config

applied, 131
variables, configuration parameters, 131
WinRM IIS app deployment, 129

MVC web application deploying to
Azure, 143

�       � N
.NET Core Web Application to IIS

configure web deploy publishing, 133
new release definition, creation, 133
PowerShell task, 134
site settings, hosting core web

application, 132
NuGet package, creation

add nuget.exe path, 480
class library project, 481
generating, 484–485
NuGet command, 480
nuspec file

edited, 484
generating, 482
Solution Explorer, 483

�       � O
ObjectModel, 344

�       � P, Q
Ping test client machines, 368
PowerShell remotely, 356
PowerShell task, 382
PS remoting access, 371
PS session, 370
Publish built Java code, 329
Publish extensions, Marketplace

browsing extension, 533
link, 531
publisher, 531–532
shared/sharing extension, 534
uploaded/uploading

extension, 533–534

�       � R
Release-creation warning, 387
Release definition

add agent, 22
agent options, 23
approvals tab, 25
artifacts tab, 19
deployment conditions tab, 26
environment menus, 24
environments tab, 22
general tab, 20, 26
history tab, 21
retention tab, 21
security

accessing, team project, 30
setting permissions, 31

triggers tabs, 20
variables tab, 19, 25

Release/deployment pipeline, 5
Release environments, 357

approvers, deployment
environments, 146

continuous deployment, 150
deployment conditions, 147
manual intervention, 148
run, agent, 149
variables, 150

Release management, 5
Release notes

abandoning deployment, 473
bug, 471–472
build 1.0.0.2, 441
build 1.0.0.3, 438
build 1.0.0.4, 438
build 1.0.0.5, 437
build 1.0.0.6, 435
creation, 468
deployed builds, 435
DevInt, 436, 469–470, 476
history, 434
pipeline with stages, 434
production environment, 441
QA, 470–471, 476
repository, 474
UAT, 439–440
UAT deployment, 472, 477
user story, 475

Release pipeline
artifacts, 458
clone environment, 464–465
deploy simulated task, 460

■ INDEX

558

HTML and email task, 463
Inline PowerShell task, 462
name format, 458
QA environment, 465
task generation, 460–461
triggers, 466–467
variables, 459

Release REST API, 40
Release workflow, 5
Remote management public firewall

rule, 353
Repository tab, 327
Run Functional Tests task, 360

�       � S
Shared extension

extension available, 537
installation, 535–537
manage extensions, 535
Team Services account, 536

Skip downloading artifacts, 380
Software delivery process, 390
Staging directory, 398
Stateful service, 225
Stop virtual machines, 384

�       � T
Task group

build definition, 284, 287, 289, 291
creation, 286
definition, 283
management, 292–295
PowerShell, 285–286
release definition, 291
values, 288

Team Foundation Server (TFS), 5
Team Services account, 301, 399
Team services build definition layouts

add task, 36
advanced settings, 34
drag and drop tasks, 37
editing, build definition name, 34
enabling new build editor

build and release tab, 33
profile menu link, 32

history tab, 39
options tab, 38
profile menu link, 32

removing task, 35
retention tab, 39
save and queue, 34
template selection, 33
triggers tab, 38
variables tab, 37

Team Services/TFS project, 310, 312, 395
Test Agent Deployment task, 358
TestAgent task, 375
Test automation

administrator group, 349
agents, 372
artifacts, 356, 398
Azure virtual machines, 362
coded UI tests’ execution, 346
functional tests, 342
GoogleHome.cs, 344
ObjectModel, 344
PS session, 353
publish artifacts, 348
reference assemblies, 345
run unit tests, 341
test client, 351
test service, 350, 367
trusted hosts, 355
UI demo solution, 347
UI test, 348
unit test project, 337
variables, 339
visual Studio Team Services and

TFS, 335
WinRM, 354

test client, 349
Test client environment variables, 374,

380, 387
Test client machines, 367, 369
Test Farm, 381
testFarmAdmin, 362
TestFarmAdmin01 agent, 373
TestFarmAdmin02 agent, 379
Test Farm admin machine, 363–366, 368
Test Farm admin trusted hosts, 370
TestFarmDemoRelease, 372
Test Farm Start, 382
Test Farm Stop trigger, 386
Test Farm triggers, 385
Test run details, 361
Test run information, 389
Test run task, 362
testsvcuser, 350
TFS build and release management, 549

Release pipeline (cont.)

■ INDEX

559

TFS.Build.Demo repository, 316
TFSLink, 311
TFS/VS Team Services, 5, 309
Ttrusted hosts, 354

�       � U
UI Test Project, 343, 348
Unit test project, 337, 339, 342

�       � V
Visual Studio, 302, 303, 338

Build step, 317
Solution Explorer, 336
Team Services, 5

VSTS account, 58–59, 390–391
VSTS/TFS

build and release management, 513
Get tfx-cli, 514
update npm, 513
VSTS Extension Project Templates

completed, 515
downloading, 514
installing, 515
PowerShell-based, 516
typeScript-based, 516

�       � W, X, Y, Z
WebTest, 393
Windows Machine File Copy task, 358

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Understanding the Concepts
	DevOps
	Continuous Integration (CI)
	Continuous Delivery (CD)
	Continuous Deployment
	DevOps Adoption
	Release/Deployment Pipeline
	TFS/VS Team Services Build & Release Management
	Build & Release Tab
	Build & Release Agents and Pipelines
	Agent Pool
	Agent Queue
	Agent

	Security—Agent Pool—Agent Queue

	Build Definition
	Release Definition
	Security for Build & Release Definitions
	What Is New in Team Services Build Layouts?
	Queuing a Build
	Build/Release REST API
	Recommendations
	Summary

	Chapter 2: Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions
	Lesson 2.01 – Set Up Agent Pools and Queues
	2.01.1 Set Up Agent Pool
	2.01.2 Set Up Agent Queue
	2.01.3 Auto-Provision Queues for Existing Pools
	2.01.4 Assign Permissions for Agent Pools and Queues
	2.01.5 Create Agent Pool for Build Farm

	Link VS Team Services Account to Azure Subscription for Billing Purposes
	Lesson 2.02 – Set Up Build/Release Agent
	2.02.1 Set Up Build/Release Agent for On-Premises TFS—Interactive Mode
	2.02.2 Remove Windows Build/Release Agent
	2.02.3 Set Up Build/Release Agent for On-Premises TFS and Run as Windows Service
	2.02.4 Set Up Build/Release Agent in an Untrusted Domain for VS Team Services or On-Premises TFS
	2.02.5 Set Up Build/Release Agent in Ubuntu Linux

	Lesson 2.03 – Install and Manage Extensions from Marketplace
	2.03.1 Install Extension from Marketplace
	2.03.2 Manage Extension
	2.03.3 Request an Extension
	2.03.4 Download Extensions for Installation
	2.03.5 Browse and Manage Local Extensions— On-Premises TFS

	Summary

	Chapter 3: ASP.Net Web Application Deployment to Azure and IIS
	Lesson 3.01 – Create ASP.Net Applications & Build with Team Foundation Builds
	3.01.1 Create ASP.Net MVC App in VS 2017
	3.01.2 Build ASP.Net MVC App in TFS/VSTS
	3.01.3 Tokenize ASP.Net MVC 5 App Configurations with Build
	3.01.4 Create ASP.Net Core Web App in VS 2017
	3.01.5 Build ASP.Net Core Web App with TFS Build
	3.01.6 Tokenize ASP.Net Core Web App Configurations with Build

	Lesson 3.02 – Deploy ASP.NET Web Applications to IIS
	3.02.1 Deploy MVC5 Web Application to IIS
	3.02.2 Deploy .NET Core Web Application to IIS

	Lesson 3.03 – Deploy ASP.NET Web Application to Azure App
	3.03.1 Link Azure Subscription to TFS/VSTS Team Project
	3.03.2 Deploy ASP .NET MVC5 Web App to Azure App Service
	3.03.3 Deploy ASP .NET Core Web App to Azure App Service

	Summary

	Chapter 4: Build as Docker and Deploy to Azure
	Set Up the Environment to Develop Docker-enabled Application
	Lesson 4.01 – Create a Docker-Enabled ASP.NET Core Application
	Lesson 4.02 – Create Azure Container Registry
	Lesson 4.03 – Create Azure App Service on Linux App
	Lesson 4.04 – Create a Build to Push Container Image to Azure Container Registry
	Lesson 4.05 – Wire Up Container Registry and the App Service App on Linux
	Summary
	Azure Container Services and Team Services

	Chapter 5: Azure SQL and TFS/VSTS Build and Release
	Lesson 5.01 – Create SQL Project with Visual Studio
	Lesson 5.02 – Build SQL Project with Team Foundation Build
	Lesson 5.03 – Deploy .dacpac to Azure SQL using TFS Release Management
	Summary

	Chapter 6: Team Services for Azure Service Fabric Deployments
	Azure Service Fabric
	Lesson 6.01 – Set Up Azure Service Fabric SDK for Visual Studio
	Lesson 6.02 – Create a Service Fabric Application and Test Locally
	Lesson 6.03 – Create an Azure Service Fabric Cluster
	Lesson 6.04 – Create a Build to Package the Service Fabric Application
	Lesson 6.05 – Deploy to Azure Service Fabric Cluster
	Summary

	Chapter 7: Task Groups, Folders, and Build/Release Definition History
	What Is a Task Group?
	Lesson 7.01 – Create a Task Group
	Lesson 7.02 – Use a Task Group
	Lesson 7.03 – Manage Task Groups
	Lesson 7.04 – Organize Folders to Group Builds
	Lesson 7.05 – Track Build/Release Definition History
	Summary

	Chapter 8: Building with External Repositories and Other Platform Builds
	Lesson 8.01 – Create a Console App and Commit It to GitHub
	Lesson 8.02 – Link GitHub with Team Services/TFS as a Service Endpoint
	Lesson 8.03 – Build GitHub Code in Team Foundation Build
	Lesson 8.04 – Submit Java Code to GitHub
	Lesson 8.05 – Build Java Code in GitHub with Team Foundation Build
	Summary

	Chapter 9: Test Automation with Build and Release
	Test Automation
	Lesson 9.01 – Write Unit Tests and Integrate with Build
	Lesson 9.02 – Write Coded UI Tests and Package with Build
	Lesson 9.03 – Run Functional Tests with TFS/VSTS Release
	Lesson 9.04 – Set Up a Test Farm in Azure VMs
	Lesson 9.05 – Run Cloud-Based Load Tests with Release Management
	Summary

	Chapter 10: Dynamics CRM Deployments with TFS/VSTS Release
	Lesson 10.01 – Install SDK Template for Visual Studio
	Lesson 10.02 – Create CRM Customization Solution and Plugin
	Lesson 10.03 – Source Control CRM Customizations
	Lesson 10.04 – Enable CRM Customizations to Create Solution Zip with TFS Build
	Lesson 10.05 – Deploy CRM Solution with TFS Release
	Summary

	Chapter 11: Effective Release Notes with TFS Release
	What Is an Effective Release Note?
	Lesson 11.01 – Create a Backlog
	Lesson 11.02 – Submit Work and Create a Build
	Lesson 11.03 – Create a Release Pipeline with Release Note Capability
	Lesson 11.04 – Generate Release Notes for Each Environment
	Summary

	Chapter 12: Package Management
	Lesson 12.01 – Create a NuGet Package
	Lesson 12.02 – Create a Feed and Publish Package in the Feed
	Lesson 12.03 – Build and Publish Packages with TFS Builds and Release
	Lesson 12.04 – Consume Package in Internal Feed in Visual Studio & TFS Builds
	Summary

	Chapter 13: Extending Build and Release Tasks on Your Own
	Lesson 13.01 – Update npm and Add Visual Studio Project Templates for TFS Extensions
	Lesson 13.02 – Develop a Build/Release Extension and Packaging
	Lesson 13.03 – Sign Up for Publishing Extensions in Marketplace and Publish Extension
	Lesson 13.04 – Install Privately Shared Extension
	Lesson 13.05 – Use the Extension in the Build/Release
	What Else Is Possible with Build/Release Extensions?
	Summary

	Index

