
www.allitebooks.com

http://www.allitebooks.org

BEGINNING SWIFT ™ PROGRAMMING

INTRODUCTION . xxiii

CHAPTER 1 Introduction to Swift . 1

CHAPTER 2 Data Types . 19

CHAPTER 3 Strings and Characters . 39

CHAPTER 4 Basic Operators . 59

CHAPTER 5 Functions . 75

CHAPTER 6 Collections . 89

CHAPTER 7 Control Flow and Looping . 107

CHAPTER 8 Structures and Classes . 131

CHAPTER 9 Inheritance . 161

CHAPTER 10 Closures . 185

CHAPTER 11 Protocols and Delegates . 201

CHAPTER 12 Generics . 217

APPENDIX Exercise Answers . 233

INDEX . 247

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

BEGINNING

Swift™ Programming

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

BEGINNING

Swift™ Programming

Wei-Meng Lee

www.allitebooks.com

http://www.allitebooks.org

Beginning Swift™ Programming

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-00931-3
ISBN: 978-1-119-04288-4 (ebk)
ISBN: 978-1-119-00932-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014951015

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. Swift is a trademark of Apple, Inc. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned
in this book. Beginning Swift Programming is an independent publication has not been authorized, sponsored, or g
otherwise approved by Apple, Inc.

www.allitebooks.com

http://www.allitebooks.org

To my family:

Thanks for your understanding and support while

I worked on getting this book ready. I could not have

done this without your help!

I love you all!

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHOR

WEI-MENG LEE is a technologist and founder of Developer Learning Solutions
(www.learn2develop.net), a technology company specializing in hands-on training on the latest
mobile technologies. Wei-Meng has many years of training experience, and his training courses
place special emphasis on the learning-by-doing approach. This hands-on approach to learning
programming makes understanding the subject much easier than reading books, tutorials, and
other documentation.

Wei-Meng is also the author of Beginning iOS 5 Application Development (Wrox, 2010) and t
Beginning Android 4 Application Development (Wrox, 2011). Contact Wei-Meng att
weimenglee@learn2develop.net.

ABOUT THE TECHNICAL EDITOR

CHAIM KRAUSE is a Simulation Specialist at the US Army’s Command and General Staff College,
where he develops various software products on a multitude of platforms, from iOS and Android
devices to Windows desktops and Linux servers, among other duties. Python is his preferred lan-
guage, but he is multilingual and also codes in Java and JavaScript/HTML5/CSS, and others. He
was fortunate to begin his professional career in the software fi eld at Borland, where he was a
Senior Developer Support Engineer for Delphi. Outside of computer geek stuff, Chaim enjoys techno
and dubstep music and scootering with his two sled dogs, Dasher and Minnie.

www.allitebooks.com

http://www.allitebooks.org

Executive Editor
Robert Elliott

Project Editor
John Sleeva

Technical Editor
Chaim Krause

Production Editor
Christine Mugnolo

Copy Editor
Luann Rouff

Production Manager
Kathleen Wisor

Manager of Content Development
and Assembly
Mary Beth Wakefi eld

Marketing Director
David Mayhew

Marketing Manager
C SCarrie Sherrill

fProfessional Technology &
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Patrick Redmond

Proofreader
Nancy Carrasco

Technical Proofreader
Matthew Eccles

Indexer
Robert Swanson

Cover Designer
Wiley

Cover Image
© S /G© iStock.com/Gorfer

CREDITS

ACKNOWLEDGMENTS

I WANT TO TAKE this chance to thank some key people who worked very hard behind the scenes to
make this book a reality.

First, a big “thank you” to Bob Elliott, executive editor at Wrox. When I proposed this book to Bob,
his fi rst question was, how fast can you do it? And the rest, as they say, is history. Thank you, Bob,
for the confi dence you had in me to deliver this book on time!

Of course, I cannot forget John Sleeva, my editor (and a new friend!), who is always a pleasure to
work with. Thank you, John, for the guidance and encouragement to keep the project going!

I am also grateful to my technical editors, Chaim Krause and Matthew Eccles. Chaim has never
failed to spot my mistakes in the manuscript, and I can always count on him to give suggestions
on how to improve the code. Thanks, Chaim! Matthew has also been eagle-eye testing my code
samples to ensure that they work with the latest release of Xcode. Thanks, Matthew!

Last but not least, I want to take this chance to thank my family. The fact that you are holding this
book in your hand is the result of the help I received while working on this book. I want to thank
my wife, Sze Wa, for taking care of Chloe, our new baby, while I was rushing to meet the deadlines.
She has been selfl essly taking care of Chloe after her delivery, and I know it is physically and psy-
chologically draining for her. Thank you, dear!

Our parents have also been extremely helpful in taking turns to help take care of our baby during
the periods where I have to juggle between work, travelling, and writing. They have done so without
any complaints, and for this I am deeply grateful. I would like to say to our parents and family: I
love you all! Finally, to our lovely dog, Ookii, thanks for faithfully staying by our side.

CONTENTS

INTRODUCTION xxiii

CHAPTER 1: INTRODUCTION TO SWIFT 1

What Is Swift? 2
Why Swift Is Important 3
Setting Up the Environment 3

Creating a Playground Project 4
Creating an iOS Project 6

Swift Syntax 10
Constants 10
Variables 12
String Interpolation: Including Values in Strings 14
Statements 14
Printing 15
Comments 15

Summary 17

CHAPTER 2: DATA TYPES 19

Basic Data Types 20
Integers 20

Types of Integers 21
Integer Operations 22
Integer Literals 22

Floating‐Point Numbers 23
Floating‐Point Operations 23
Floating‐Point Literals 24

Type Alias 25
Boolean 25

Tuples 26
Optional Types 27

Implicitly Unwrapped Optionals 28
Optional Binding 29
Unwrapping Optionals Using “?” 30

Enumerations 30
Using Enumeration in Switch Statements 31

xvi

CONTENTS

Enumeration Raw Values 32
Auto‐Increment for Raw Values 33
Associated Values 34
Enumeration Functions 35

Summary 36

CHAPTER 3: STRINGS AND CHARACTERS 39

Strings 40
Mutability of Strings 40
Strings as Value Types 40
Characters 41
Concatenating Strings 43
Special Characters 44
Unicode 45

Common String Functions 46
Equality 46
Prefi x and Suffi x 47
Length 47
Substrings 48
Converting Strings to Arrays 51
Type Conversion 51

Interoperability with NSString 52
Casting String to NSString 53
Using NSString Directly 54
String or NSString? 55

Summary 56

CHAPTER 4: BASIC OPERATORS 59

Assignment Operator 60
Arithmetic Operators 61

Addition Operator 61
Subtraction Operator 62
Multiplication Operator 62
Division Operator 63
Modulus Operator 63
Increment and Decrement Operator 63
Compound Assignment Operators 65
Nil Coalescing Operator 65

Comparison Operators 66
Equal To and Not Equal To 66
Greater Than or Equal To 67

xvii

CONTENTS

Less Than or Equal To 67
Range Operators 68
Logical Operators 69

NOT 69
AND 70
OR 71
Combining Logical Operators 71
Ternary Conditional Operator 72

Summary 73

CHAPTER 5: FUNCTIONS 75

Defi ning and Calling a Function 76
Input Parameters 76
Returning a Value 76
Returning Multiple Values 77
Function Parameter Names 77
External Parameter Names Shorthand 79
Default Parameter Values 79
Variadic (Variable) Parameters 80
Constant and Variable Parameters 81
In‐Out Parameters 82

Function Types 83
Defi ning a Function Type Variable 83
Calling a Function Type Variable 84
Returning Function Type in a Function 85

Nested Functions 85
Summary 86

CHAPTER 6: COLLECTIONS 89

Arrays 90
Mutability of Arrays 90
Array Data Types 90
Retrieving Elements from an Array 91
Inserting Elements into an Array 91
Modifying Elements in an Array 92
Appending Elements to an Array 92
Checking the Size of an Array 93
Removing Elements from an Array 93
Iterating over an Array 93
Creating an Empty Array 94
Testing Arrays for Equality 95

xviii

CONTENTS

Dictionaries 96
Mutability of Dictionaries 97
Retrieving Elements from a Dictionary 97
Checking the Size of a Dictionary 98
Modifying an Item in the Dictionary 98
Removing an Item from the Dictionary 99
Iterating over a Dictionary 99
Creating an Empty Dictionary 101
Testing Dictionaries for Equality 101

Copying the Behavior of Arrays and Dictionaries 102
Summary 103

CHAPTER 7: CONTROL FLOW AND LOOPING 107

Flow Control 108
If Statement 108
If‐Else Statement 109
Switch Statement 110

Matching Numbers 111
Matching Characters 112
Fallthrough 112
Matching a Range of Numbers 113
Matching Tuples 114
Value Bindings 115

Where Clause 117
Looping 118

For‐In Loop 118
Traditional For Loop 121
While Loop 122
Do‐While Loop 123
Control Transfer Statements 124

Break Statement 124
Continue Statement 126
Labeled Statement 126

Summary 128

CHAPTER 8: STRUCTURES AND CLASSES 131

Structures 132
Memberwise Initializers 132
Structures as Value Types 133
Comparing Structures 135

Classes 135

xix

CONTENTS

Defi ning a Class 136
Properties 136

Stored Properties 136
Lazy Stored Properties 137
Computed Properties 138
Motivation Behind Computed Properties 139
The newValue keyword 140
Read‐Only Computed Properties 141
Property Observers 141
Typed Properties 143

Initializers 144
Initializers and External Parameter Names 145
Initializing Variables and Constants During Initialization 147
Classes as Reference Types 147

Comparing Instances—Identity Operators 149
Comparing Instances—Equivalence Operators 150

Methods in Classes 151
Instance Methods 151
Local and External Parameter Names for Methods 152
The self Property 154

Type Methods 155
Methods in Structures 155

Summary 157

CHAPTER 9: INHERITANCE 161

Understanding Inheritance 162
Defi ning a Base Class 162
Instantiating a Base Class 162
Creating an Abstract Class 163
Inheriting from a Base Class 164

Overriding Initializers 164
Overloading Initializers 165
Creating Abstract Methods 167
Overloading Methods 169
Preventing Subclassing 170

Types of Initializers 171
Default Initializer 171
Designated Initializers 172
Convenience Initializers and Initializer Chaining 174
Calling Initializers in Subclasses 176

Extensions 177

xx

CONTENTS

Extending Methods 177
Extending Properties 177

Access Controls 178
Internal 179
Private 180
Public 181

Summary 181

CHAPTER 10: CLOSURES 185

Understanding Closures 186
Functions as Closures 186
Assigning Closures to Variables 187
Writing Closures Inline 188
Type Inference 188
Shorthand Argument Names 189
Operator Function 190
Trailing Closures 190

Using the Array’s Three Closure Functions 190
The map Function 191

Example 1 191
Example 2 192

The fi lter Function 192
Example 1 192
Example 2 193

The reduce Function 194
Example 1 194
Example 2 195

Using Closures in Your Functions 196
Summary 198

CHAPTER 11: PROTOCOLS AND DELEGATES 201

Understanding Protocols 202
Defi ning and Using a Protocol 202

Conforming to a Protocol 202
Optional Methods 204
Conforming to Multiple Protocols 206

Property Requirements 206
Initializer Requirements 207

Understanding Delegates 207
Delegates as Event Handlers 208

xxi

CONTENTS

A Practical Example of Protocols and Delegates 211
Summary 213

CHAPTER 12: GENERICS 217

Understanding Generics 218
Using Generic Functions 218
Multiple Type Parameters 219
Specifying Type Constraint 220

Generic Types 221
Generic Classes 221
Generic Structures 223
Generic Type Extension 224
Using Generics in Protocols 225
Specifying Requirements for Associated Types 228

Summary 229

APPENDIX: EXERCISE ANSWERS 233

INDEX 247

 INTRODUCTION

 THE IT WORLD IS an extremely fast‐changing one. Small changes occur nearly daily, and every now
and then something big happens that changes the entire industry, if not the world. For example,
the iPhone, introduced in 2007, transformed the mobile industry overnight, spearheading the new
era of the smartphones. The launch of the iPad three years later (2010) changed the way we use our
computers, causing many to predict that we are all entering the end of the PC era.

 For a long time after its inception in the 1980s, Objective‐C was used by NeXT for its NeXTStEP
operating system. Mac OS X and iOS both derived from NeXTSTEP, and Objective‐C was thus
the natural choice of language to use for Mac OS and iOS development. Developers starting on iOS
development often complain that Objective‐C does not look like a modern programming language
(such as Java or C#), and that it is diffi cult to write and requires spending signifi cant amounts of
time trying to learn. For seven years, Apple has improved on the language and the iOS framework,
making life easier for developers by introducing helpful features, such as Automatic Reference
Counting (ARC), which takes the drudgery out of memory management, and Storyboard, which
simplifi es the fl ow of your application user interface. However, this did not stop all the complaints.
Furthermore, Apple needed a new language that could take iOS and Mac OS development to the
next level.

 In 2014, at the Apple World Wide Developers Conference (WWDC), Apple took many developers
by surprise by introducing a new programming language: Swift. After seven years, Apple fi nally
released a new language that can replace Objective‐C! As you will see throughout this book,
Swift is a modern programming language with an easy‐to‐read syntax, and strict enforcement of
type safety.

 This book was written with busy developers in mind. It aims to cut through all the technical
jargon and dive straight into the language. Of course, the best way to learn any new language
is to see code examples, and this book is loaded with them. To get the most from the material,
therefore, I strongly recommend that you work through the examples in each chapter as you
read them.

 WHO THIS BOOK IS FOR

 This book is targeted at both beginning iOS developers and experienced Objective‐C developers.
It assumes a foundation in programming, and an understanding of object‐oriented programming
(OOP) concepts is required to get the most out of this book.

 All the code samples in the chapters were written and tested using the fi nal version of Xcode 6.
Because the Swift language is still evolving, expect to see minor tweaks by the time this book is on
the market.

xxiv

INTRODUCTION

 HOW THIS BOOK IS STRUCTURED

 This book covers the key topics of Swift programming using Xcode 6. It is divided into the
following 12 chapters:

 Chapter 1 , “Introduction to Swift,” covers the basic syntax of Swift and how to set up the
development environment so that you can test your Swift code.

 Chapter 2 , “Data Types,” covers the basic data types supported in Swift and how to perform the
common operations involving them. It also covers the new tuple and optional data types introduced
in Swift.

 Chapter 3 , “Strings and Characters,” discusses how strings and characters are managed in Swift. In
particular, special emphasis is placed on how the string type in Swift is backwardly compatible with
the NSString in Objective‐C. Also covered are things you need to be aware of when dealing with
Unicode characters.

 Chapter 4 , “Basic Operators,” covers all the commonly used operators supported by Swift. In
addition, it discusses the new range operators introduced in Swift.

 Chapter 5 , “Functions,” explains how functions are defi ned in Swift and the use of internal and
external parameter names when calling them.

 Chapter 6 , “Collections,” covers the collection types supported in Swift—arrays and
dictionaries.

 Chapter 7 , “Control Flow and Looping,” covers how to make decisions in Swift and how to use the
looping statements to execute your Swift code repetitively.

 Chapter 8 , “Structures and Classes,” covers the basics of these programming constructs. It also
demonstrates how to defi ne properties and methods in your classes and structures.

 Chapter 9 , “Inheritance,” covers how to create subclasses in Swift and how access control rules
affect the accessibility of a member. It also explains how to extend a class using the extension
feature.

 Chapter 10 , “Closures,” covers everything you need to know about these blocks of functionality and
demonstrates how they enable you to write versatile code in Swift.

 Chapter 11 , “Protocols and Delegates,” discusses a very important part of Swift’s design pattern.
The protocol and delegate model is the basis on which most of the APIs in iOS and Mac OS
programming are based.

 Chapter 12 , “Generics,” covers how Swift embraces this familiar programming concept, which
enables the developer to write highly adaptable code that promotes sharing and reusing.

 The appendix offers the answers to the exercises found at the end of each chapter.

xxv

INTRODUCTION

 As for styles in the text:

➤ We highlight new terms and important words when we introduce them. t

➤ We show keyboard strokes like this: Command+A.

➤ We show fi le names, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

 We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

 SOURCE CODE

 As you work through the examples in this book, you should type all the code into Xcode and observe the
results. Remember, the best way to learn a language is to experience it yourself and make mistakes. For
Chapter 11, you can fi nd the source code for the LBS project at www.wrox/com/go/beginningswift .
When at the site, simply locate the book’s title (use the Search box or one of the title lists) and click the
Download Code link on the book’s detail page to obtain all the source code for the book.

 After you download the code, just decompress it with your favorite compression tool. Alternatively,
go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

 WHAT YOU NEED TO USE THIS BOOK

 In order to follow the examples provided in this book, you need a Mac to install Xcode 6. Xcode 6
is available for download, free, from the Mac App Store. No iOS device is needed to test the code in
this book. For testing, you can create either a Playground project or an iOS project, which you can
then test on the included iPhone Simulator.

 CONVENTIONS

 To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes indicates notes, tips, hints, tricks, and asides to the current
discussion.

WARNING Warnings hold important, not‐to‐be‐forgotten information that is
directly relevant to the surrounding text.

xxvi

INTRODUCTION

NOTE Because many books have similar titles, you may fi nd it easiest to
search by ISBN; this book’s ISBN is 978‐1‐119‐00931‐3.

 ERRATA

 We make every effort to ensure that there are no errors in the text or in the code. However, no
one is perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling
mistake or a faulty piece of code, we would be very grateful for your feedback. By sending in errata,
you may save another reader hours of frustration and at the same time help us provide even higher‐
quality information.

 To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc‐pages/
booklist.shtml .

 If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web‐based m

system for you to post messages relating to Wrox books and related technologies and to interact
with other readers and technology users. The forums offer a subscription feature to e‐mail you
topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors,
other industry experts, and your fellow readers are present on these forums.

 At p2p.wrox.com , you will fi nd a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you want to
provide and click Submit.

4. You will receive an e‐mail with information describing how to verify your account and
complete the joining process.

xxvii

INTRODUCTION

 After you join, you can post new messages and respond to messages that other users post. You can
read messages at any time on the web. If you want to have new messages from a particular forum
e‐mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as for many common questions specifi c to
P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

NOTE You can read messages in the forums without joining P2P, but in order
to post your own messages, you must join.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ What Swift is

➤ Why Swift is important

➤ Setting up the development environment to learn Swift

➤ How to create a Playground project

➤ How to create an iOS project

➤ The syntax of Swift

➤ How to declare constants

➤ How to declare variables

➤ Using string interpolation to include variable values in strings

➤ Swift statements

➤ How to print the values of variables for debugging

➤ How to insert comments in your Swift code

 Apple surprised the Mac and iOS developer world at the Apple World Wide Developers
Conference (WWDC) 2014 with the announcement of a new programming language: Swift.
The aim of Swift is to replace Objective‐C with a much more modern language syntax without
worrying too much about the constraints of C compatibility. Apple itself touted Swift as
Objective‐C without the C.

 For developers already deeply entrenched in Objective‐C, it is foreseeable that Objective‐C will
still be the supported language for iOS and Mac OS X development in the near and immediate
future. However, signs are all pointing to Apple’s intention to make Swift the future language
of choice for iOS and Mac development.

 1

www.allitebooks.com

http://www.allitebooks.org

2 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

 In this chapter, you will learn about the basics of Swift and how you can set up the development
environment to learn it.

 WHAT IS SWIFT?

 Swift is a new programming language designed by Apple for Cocoa (Mac OS X) and Cocoa Touch
(iOS) programming. The syntax of Swift is similar to modern languages such as Java and C#,
while at the same time retaining some of the core features of Objective‐C, such as named parameters,
protocols, and delegates. The language’s clear syntax makes your code simpler to read and maintain.

 As an example, consider the following method in Objective‐C:

 -(int) addOneNumber:(int) num1 withAnotherNum:(int) num2
 {
 return num1 + num2;
 }

 The preceding method adds two numbers and returns their sum. To use the method, you can pass a
message to it:

 int sum = [self addOneNumber:2 withAnotherNum:7];

 Note the verbosity of Objective‐C and the use of named parameters in the method name. The
following example shows the same method in Swift:

 func addTwoNumbers(num1:Int, num2:Int) -> Int {
 return num1 + num2
 }

 The preceding statements defi ne a function called addTwoNumbers , accept two arguments, and
return an integer value. You can call the method like this:

 var sum = addTwoNumbers(2,5)

 As you can see, Swift’s syntax is simpler and easier to read.

 In keeping with Objective‐C’s named parameters tradition, you can also use named parameters in
methods:

 func addTwoNumbers(num1:Int, secondNumber num2:Int) ‐> Int {
 return num1 + num2
 }

 You can now call the method using named parameters:

 var sum = addTwoNumbers(2, secondNumber:5)

NOTE Chapter 5 discusses functions and named parameters in more detail.

 Swift is also designed to be a type‐safe language. Variables must be initialized before use. In
most cases, you have to perform explicit type conversions when assigning values from one type

Setting Up the Environment ❘ 3

to another. Also, variables that are not assigned a value cannot be used in a statement and will be
fl agged as errors.

 In Swift, for safety reasons there is no implicit type conversion—you must explicitly convert an
Int to a Float (or Double). For example, you cannot implicitly assign an Int variable to a Float
variable:

 var f:Float
 var i:Int = 5
 f = i //---error---

 Rather, you need to explicitly convert the value into a Float value:

 f = Float(i)

NOTE Chapter 2 discusses data types in more detail.

 WHY SWIFT IS IMPORTANT

 Make no mistake; Apple did not create Swift for the sake of creating a new programming language.
With the platform wars heating up, Apple desperately needs a language that will enable it to
secure its long‐term lead in the mobile platform market. Swift is strategic to Apple in a number of
ways:

➤ It fi xes many of the issues developers had with Objective‐C—particularly, that Objective‐C is
hard to learn—replacing it with a language that is both fast to learn and easy to maintain.

➤ It delivers this easy‐to‐learn language while retaining the spirit of Objective‐C but without its
verbose syntax.

➤ It is a much safer language than Objective‐C, which contributes to a much more robust app
platform.

➤ It is able to coexist with Objective‐C, which gives developers ample time to port their code to
Swift over time.

 SETTING UP THE ENVIRONMENT

 To test all the Swift examples in this book, you need a Swift compiler. The easiest way to obtain the
Swift compiler is to download the Xcode 6 from the Mac App Store (see Figure 1-1).

 Once Xcode 6 is downloaded and installed on your Mac, launch it (see Figure 1-2).

 There are two ways to test the code in this book:

➤ Create a Playground project —Playground is a new feature in Xcode 6 that makes learning
Swift easy and fun. As you enter each line of code, Playground will evaluate the line and dis-
play the results. You can also use it to watch the values of variables as you step through the
code. Playground is very useful for examining variable types when you are assigning values to
them.

4 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

 Creating a Playground Project
 To create a Playground project, launch Xcode 6 and select File ➪ New ➪ Playground…. Name the
Playground project and select the platform you want to test it on (see Figure 1-3).

 Once the Playground project is created, you will see the editor shown in Figure 1-4 . You can start
writing your Swift code in this editor. I will show you some of Playground’s neat features as we
discuss the various Swift topics covered in this chapter.

 For example, consider the following code snippet:

 var sum = 0
 for index in 1...5 {
 sum += index
 }

 The preceding code snippet sums all the numbers from 1 to 5. If you type this code snippet into
Playground, you will see that the right side of the Playground window displays a circle (see Figure 1-5).

FIGURE 1-1

➤ Create an iOS project —You can create an iOS project and test your application using the
iPhone Simulator included in the Xcode 6. While the focus of this book is on the Swift
programming language and not iOS development, testing your code in an iOS project enables
you to test your code in its entirety.

Setting Up the Environment ❘ 5

 FIGURE 1-2

 FIGURE 1-3

6 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

 FIGURE 1-4

 FIGURE 1-5

NOTE The Single View Application template creates an iPhone project with a
single View window. This is the best template to use for learning Swift without
getting bogged down with how an iOS application works.

 Clicking on the circle will reveal the Timeline, where you can examine the values for sum for each
iteration of the For loop (see Figure 1-6).

 This feature makes it very easy for you to trace through your code, and it is especially useful when
you are analyzing your new algorithm.

NOTE The For loop is discussed in more detail in Chapter 7 .

 Creating an iOS Project
 An alternative to creating a Playground project is to create an iOS project. In Xcode 6, select
File ➪ New ➪ Project… and you will see the dialog shown in Figure 1-7 .

 Select Application under the iOS category (on the left) and then select the Single View Application
template. Click Next.

Setting Up the Environment ❘ 7

 In the next dialog, enter the information as follows (see Figure 1-8):

➤ Product Name —The name of the project.

➤ Organization Name —This can either be your name or your organization’s name.

➤ Organization Identifi er —Commonly the reverse domain name of your company. If your
organization’s domain name were example.com, then you would enter com.example. The
Organization Identifi er and the Product Name are concatenated to form a unique string
called the Bundle Identifi er. Every application listed on the App Store must have a unique
Bundle Identifi er. For testing purposes, this is not important.

➤ Language —Select Swift.

➤ Devices —Select iPhone.

 FIGURE 1-6

 FIGURE 1-7

8 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

FIGURE 1-8

 FIGURE 1-9

 To test your Swift code, you can insert it in the position indicated in bold in the following example:

 import UIKit

 class ViewController: UIViewController {

 override func viewDidLoad() {

 Once the information is entered, click Next and select a location to save the project, and
then click Create. Xcode will proceed to create the project. In the created project, select the
ViewController.swift fi le for editing (see Figure 1-9).

Setting Up the Environment ❘ 9

 super.viewDidLoad()

//---insert your Swift code here---
 println("Hello, Swift!")

 // Do any additional setup after loading the view, typically from a
 // nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 }

 To run the application, select the iPhone 6 Simulator and click the Build and Run button (see
Figure 1-10). Alternatively, you can also use the Command+R keyboard shortcut.

 You should now see the iPhone Simulator appear (see Figure 1-11).

 FIGURE 1-10

 FIGURE 1-11

10 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

 FIGURE 1-12

 SWIFT SYNTAX

 Now that you know how to set up the development environment for learning Swift and have looked
at the various types of projects you can create to experiment with it, this section introduces the
various syntaxes of Swift, beginning with how to create constants and variables.

 Constants
 In Swift, you create a constant using the let keyword:

 let radius = 3.45
 let numOfColumns = 5
 let myName = "Wei-Meng Lee"

 Notice that there is no need to specify the data type—they are inferred automatically. In the preceding
example, radius is a Double , numOfColumns is an Int , while myName is a String . How can the
programmer verify the variable type? A good way is to use Xcode’s Playground feature. Go ahead
and type the preceding statements into your Playground project. Then, Option‐click on each of the
constants and look at the pop‐up that appears. Figure 1-13 shows that the type of radius is Double .

 As our focus in this book is not on iOS programming, you would be primarily interested in the
output generated by your Swift code. Back in Xcode 6, press Command+Shift+C to reveal the
Output window. Figure 1-12 shows our single Swift code printing out a line in the Output window.

Swift Syntax ❘ 11

 FIGURE 1-13

 Readers familiar with Objective‐C will immediately note the lack of the @ character when defi ning a
string literal. In Objective‐C, you need the @ character before a string:

 NSString *myName = @"Wei‐Meng Lee" //---Objective‐C---

 However, it is not needed in Swift:

 let myName = "Wei-Meng Lee" //---Swift---

 Also, in Objective‐C you need to use the * to indicate memory pointers whenever you are dealing
with objects; in Swift there is no need to use the * , regardless of whether you are using objects or
primitive types.

NOTE Strictly speaking, the String type in Swift is a primitive (value) type,
whereas the NSString in Objective‐C is a reference type (object). Strings are
discussed in more detail in Chapter 3 .

 If you wish to declare the type of constant, you can do so using the colon operator (:) followed by
the data type, as shown here:

 let diameter:Double = 8

 The preceding statement declares diameter to be a Double constant. You want to declare it
explicitly because you are assigning an integer value to it. If you don’t do this, the compiler will
assume it is an integer constant.

12 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

 Once a constant is created, you can no longer change its value:

 let radius = 3.45
radius = 5.67 //---error---

 Figure 1-14 shows Playground fl agging the statement as an error.

 FIGURE 1-14

 Variables
 To declare a variable, you use the var keyword:

 let radius = 3.45
 var myAge = 25
 var circumference = 2 * 3.14 * radius

 Once a variable is created, you can change its value:

 let diameter = 20.5
 circumference = 2 * 3.14 * diameter/2

 Observe that after you type the preceding statements into Playground, the value of circumference is
immediately computed and the result shown on the right (see Figure 1-15).

 In Swift, values are never implicitly converted to another type. For example, suppose you are trying
to concatenate a string and the value of a variable. In the following example, you need to explicitly
use the String() initializer to convert the value of myAge to a string value before concatenating it
with another string:

 var strMyAge = "My age is " + String(myAge)
 //---My age is 25---

Swift Syntax ❘ 13

 FIGURE 1-15

 If you type the preceding statements into Playground, the value of strMyAge is immediately shown
on the right (see Figure 1-16).

 FIGURE 1-16

14 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

 Interestingly, an error will occur if you try to do something such as the following:

 var strCircumference =
 "Circumference of circle is " + String(circumference)

 This is because the String() initializer cannot convert the Double type (the circumference
variable by type inference is Double) into a String type. To solve this, you need to use the string
interpolation method, as described in the next section.

NOTE You will learn more about data types in the next chapter.

 String Interpolation: Including Values in Strings
 One of the dreaded tasks in Objective‐C is inserting values of variables in a string. (You have to use
the NSString class and its associated stringWithFormat: method to perform string concatenation,
which makes your code really long.)

 In Swift, this is very easy using the \() syntax, known as string interpolation . It has the following
format:

 "Your string literal \(variable_name)"

 The following example shows how:

 let myName = "Wei-Meng Lee"
 var strName = "My name is \(myName)"

 You can use this method to include a Double value in your string as shown here:

 var strResult = "The circumference is \(circumference)"

 Statements
 You might have noticed that in the statements you wrote earlier, unlike most other programming
languages each statement does not end with a semicolon (;):

 let radius = 3.45
 let numOfColumns = 5
 let myName = "Wei-Meng Lee"

 If you want to include semicolons at the end of each statement, it is syntactically correct but not
necessary:

 let radius = 3.45;
 let numOfColumns = 5;
 let myName = "Wei‐Meng Lee";

 The only time the semicolon is required is when you combine multiple statements into one single
line:

 let radius = 3.45; let numOfColumns = 5; let myName = "Wei‐Meng Lee";

Swift Syntax ❘ 15

 Printing
 You can print the current values of variables or constants using the println() or print() function.
The print() function prints out the value, whereas the println() function does the same and
additionally prints a line break. These two functions are similar to Cocoa’s NSLog function (for
readers who are familiar with Objective‐C).

 In Playground, the println() and print() functions print the values to the Console Output window
in the Timeline; in Xcode, these functions print out the values to the Output window. The following
statements print out the value of strMyAge :

 var strMyAge = "My age is " + String(myAge)
 println(strMyAge)

 Figure 1-17 shows the output of the preceding statements in Xcode’s Output window. (Press
Command+Shift+C to reveal the Output window.)

 FIGURE 1-17

 Comments
 In Swift, as in most programming languages, you insert comments into your code using two
forward slashes (//):

 // this is a comment
 // this is another comment

 The // characters mark the line as a comment. The compiler ignores comments at compilation
time.

16 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

 If you have several lines of comments, it is better to use the /* and */ combination to denote a block
of statements as comments. For example:

 /*
 this is a comment
 this is another comment
 */

 The two preceding lines are marked as a comment.

 You can also nest comments, as shown in the following example:

 // this is a comment

 var myAge = 25
 var circumference = 2 * 3.14 * radius
 var strMyAge = "My age is " + String(myAge)

 /*
 this is a comment
 this is another comment
 */

 println(strMyAge)

 To comment the entire block of code, enclose everything within the /* and */ , as shown here:/

/*

 // this is a comment

 var myAge = 25
 var circumference = 2 * 3.14 * radius
 var strMyAge = "My age is " + String(myAge)

/*
 this is a comment
 this is another comment
*/

 println(strMyAge)

*/

NOTE In other languages such as C and Java, you are not allowed to nest
comments.

Summary ❘ 17

 SUMMARY

 In this chapter, you learned about Apple’s motives for creating Swift, as well as how to obtain the
tools to start learning it. You also had a brief look at its syntax. If you have been an Objective‐C
developer until now, your fi rst impression of Swift is likely a positive one, as it is a thoroughly
contemporary and safe language, without the obscure syntax of Objective‐C. In the following
chapters, you will learn about various other impressive aspects of Swift.

EXERCISES

1. Declare three constants: to store the number of months in a year, the number of days in a
week, and the number of weeks in a year.

2. Declare variables to store a user’s gender, weight, height, and date of birth.

3. Write statement(s) to print out the details of the user using the variables that you have declared
in question #2.

4. The following statements resulted in a compiler error. Fix it.

 var weight = 102.5 // in pounds
 var str = "Your weight is " + weight + " pounds"

18 ❘ CHAPTER 1 INTRODUCTION TO SWIFT

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Declaring constants You declare a constant using the let keyword.

Declaring variables You declare a variable using the var keyword.

Printing values of constants
or variables

You can use the print() or println() functions to print out
the values of variables or constants.

No need for semicolons Each statement in Swift does not need to end with a semicolon. t
However, a semicolon(s) is needed if you are combining multiple
statements into a single line.

Including the value of variables
or constants in strings

 The easiest way to include these values is to use the string
interpolation method: "\()"

Comments You can use // to comment a single line, or use the /* and */
combination to comment out a block of statements. In Swift,
comments can be nested.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The basic data types: integers, fl oating‐point numbers, and
Booleans

➤ The types of integers

➤ How to perform integer operations

➤ Different ways to represent integer literals

➤ The two different fl oating‐point types

➤ How to perform fl oating‐point operations

➤ Different ways to represent fl oating‐point literals

➤ How to create type aliases

➤ What tuples are

➤ The new optional types

➤ How to declare implicitly unwrapped optionals

➤ How to perform optional binding

➤ How to unwrap optionals using the ? character

➤ How to defi ne enumerations

 2

20 ❘ CHAPTER 2 DATA TYPES

 In Chapter 1 , you took a quick look at the syntax of Swift statements, as well as how to declare
variables and constants quickly using type inference. In this chapter, you will learn more about the
various data types available in the language.

 In addition to supporting the various basic data types available in most programming languages,
Swift also introduces new data types not available in Objective‐C. Such new data types include the
following:

➤ Tuples —A tuple is a group of related values that can be manipulated as a single data type.
Tuples are very useful when you need to return multiple values from a function.

➤ Optional types —An optional type specifi es a variable that can contain no value. Optional
types make your code safer, as you will learn later in this chapter.

 Swift is a type‐safe language. In most cases, you have to perform explicit type conversions when
assigning values from one type to another. Also, variables that are not assigned a value are not
allowed to be used in a statement and will be fl agged as errors.

 BASIC DATA TYPES

 Like most programming languages, Swift provides the following basic data types:

➤ Integers

➤ Floating‐point numbers

➤ Booleans

 Integers
 Integers are whole numbers with no fractional parts. Integers can be positive or negative. In
Swift, integers are represented using the Int type. The Int type represents both positive as well
as negative values. If you only need to store positive values, you can use the unsigned integer UInt
type. The size of an Int type depends on the system on which your code is running. On 32‐bit
systems, Int and UInt each use 32 bits for storage, whereas on 64‐bit systems Int and UInt each
use 64 bits.

 You can programmatically check the number of bytes stored by each data type using the sizeof()
function:

 println("Size of Int: \(sizeof(Int)) bytes")
 println("Size of UInt: \(sizeof(UInt)) bytes")

 If you run the preceding statement on an iPhone 5 (which uses the 32‐bit A6 chip), you will get the
following:

 Size of Int: 4 bytes
 Size of UInt: 4 bytes

Basic Data Types ❘ 21

 If you run the preceding statement on an iPhone 5s (which uses the 64‐bit A7 chip), you will get
the following:

 Size of Int: 8 bytes
 Size of UInt: 8 bytes

 If you do not know the type of data a variable is storing, you can use the sizeofValue()
function:

 var num = 5
 println("Size of num: \(sizeofValue(num)) bytes")

 Types of Integers
 In most cases, you will use Int for storing signed numbers, and UInt if you do not need to store
negative values (even if you don’t need to store negative numbers it is still a good idea to use Int for
code compatibility). However, if you want to explicitly control the size of the variable used, you can
specify one of the various integer types available:

➤ Int8 and UInt8

➤ Int16 and UInt16

➤ Int32 and UInt32

➤ Int64 and UInt64

NOTE On 32‐bit systems, Int is the same as Int32 , while on 64‐bit systems,
Int is the same as Int64 .

 On 32‐bit systems, UInt is the same as UInt32 , while on 64‐bit systems, UInt
is the same as UInt64 .

 The following code snippet prints the range of numbers representable for each integer type:

 //---UInt8 - Min: 0 Max: 255---
 println("UInt8 - Min: \(UInt8.min) Max: \(UInt8.max)")

 //---UInt16 - Min: 0 Max: 65535---
 println("UInt16 - Min: \(UInt16.min) Max: \(UInt16.max)")

 //---UInt32 - Min: 0 Max: 4294967295---
 println("UInt32 - Min: \(UInt32.min) Max: \(UInt32.max)")

 //---UInt64 - Min: 0 Max: 18446744073709551615---
 println("UInt64 - Min: \(UInt64.min) Max: \(UInt64.max)")

 //---Int8 - Min: -128 Max: 127---
 println("Int8 - Min: \(Int8.min) Max: \(Int8.max)")

www.allitebooks.com

http://www.allitebooks.org

22 ❘ CHAPTER 2 DATA TYPES

 //---Int16 - Min: -32768 Max: 32767---
 println("Int16 - Min: \(Int16.min) Max: \(Int16.max)")

 //---Int32 - Min: -2147483648 Max: 2147483647---
 println("Int32 - Min: \(Int32.min) Max: \(Int32.max)")

 //---Int64 - Min: -9223372036854775808 Max: 9223372036854775807---
 println("Int64 - Min: \(Int64.min) Max: \(Int64.max)")

 For each integer type, the min property returns the minimum number representable and the max
property returns the maximum number representable.

 Integer Operations
 When you try to add two numbers of different integer types, you will get an error. Consider the
following example:

 var i1: UInt8 = 255
 var i2: UInt16 = 255
 var i3 = i1 + i2 //---cannot add two variables of different types---

 To fi x this, you need to typecast one of the types to be the same as the other type:

 var i3 = UInt16(i1) + i2 //---i3 is now UInt16---

 Integer Literals
 You can represent integer values as follows:

➤ Decimal

➤ Binary—Use the 0b prefi x.

➤ Octal—Use the 0o prefi x.

➤ Hexadecimal—Use the 0x prefi x.

 The following code snippet shows the number 15 represented in the four forms:

 let num1 = 15 //---decimal---
 let num2 = 0b 1111 //---binary
 let num3 = 0o 17 //---octal---
 let num4 = 0x F //---hexadecimal---

 You can pad the integers with zeros if you want to make them more readable. The
preceding code snippet can be rewritten as the following statements without changing the value
represented:

 let num1 = 000000 15 //---decimal---
 let num2 = 0b 00 1111 //---binary
 let num3 = 0o 0000 17 //---octal---
 let num4 = 0x 00000 F //---hexadecimal---

Basic Data Types ❘ 23

 In addition, for big numbers, you can also use underscores (_) to make them more readable. For
example, instead of writing one billion as:

 let billion = 1000000000

 you can use the underscore to make it more readable:

 let billion = 1_000_000_000

 The placement of the underscore is not important; the following represents the same value as the
previous statement:

 let billion = 100_00_00_00_0

 Floating‐Point Numbers
 Floating‐point numbers are numbers with fractional parts. Examples of fl oating‐point numbers are
0.0123, 2.45, and –4.521. In Swift, there are two fl oating‐point types: Float and Double . Float
uses 32 bits for storage and Double uses 64 bits. This can be confi rmed using the sizeof() function:

 println("Size of Double: \(sizeof(Double)) bytes")
 println("Size of Float: \(sizeof(Float)) bytes")

Double has a precision of at least 15 decimal digits, while Float has a precision of at least six
decimal digits.

 When assigning a fl oating‐point number to a constant or variable, Swift will always infer the
Double type unless you explicitly specify otherwise:

 var num1 = 3.14 //---num1 is Double---
 var num2: Float = 3.14 //---num2 is Float---

 If you try to assign a Double to a Float type, the compiler will fl ag an error:

 num2 = num1 //---num1 is Double and num2 is Float---

 This is because the number stored in a Double type may not be able to fi t into a Float type, thereby
resulting in an overfl ow. In order to assign num1 to num2 , you need to explicitly cast num1 to a
Float , like this:

 num2 = Float(num1)

Floating‐Point Operations
 When you add an integer constant to a Double , the resultant type would also be a Double type.
Likewise, when you add an integer constant to a Float , the resultant type would also be a Float
type, as the following example illustrates:

 var sum1 = 5 + num1 //---num1 and sum1 are both Double---

 var sum2 = 5 + num2 //---num2 and sum2 are both Float---

24 ❘ CHAPTER 2 DATA TYPES

 However, if you try to add Int and Double variables, you will get an error:

 var i4: Int = 123
 var f1: Double = 3.14567
 var r = i4 + f1 //---error---

 In order to add two variables of different types, you need to cast the Int variable to Double :

 var r = Double(i4) + f1

 When you add an integer to a fl oating‐point number, the result would be a Double value. For
example:

 var someNumber = 5 + 3.14

 In the preceding statement, someNumber would be inferred to be a Double .

 In Swift, for safety reasons there is no implicit type conversion—you must explicitly convert an Int
to a Float (or Double):

 var f:Float
 var i:Int = 5
 f = i //---error---
 f = Float(i)

 When you cast a fl oating‐point value to an integer, the value is always truncated—that is, you will
lose its fractional part:

 var floatNum = 3.5
 var intNum = Int(floatNum) //---intNum is now 3---

 Floating‐Point Literals
 You can represent fl oating‐point values as follows:

➤ Decimal

➤ Hexadecimal—Use the 0x prefi x

 The following code snippet shows the fl oating‐point number 345.678 represented in the two forms:

 let num5 = 345.678
 let num6 = 3.45678E2 // 3.45678 x 10^2
 let num7 = 34567.8E-2 // 3.45678 x 10^(-2)

 The E (it can also be written as the lowercase “e ”) represents the exponent. 3.45678E2 means
3.45678 times 10 to the power of two.

 You can also represent a hexadecimal fl oating‐point number with an exponent of base 2:

 let num8 = 0x2Cp3 // 44 x 2^3
 let num9 = 0x2Cp-3 // 44 x 2^(-3)

 In this case, 2Cp3 means 2C (hexadecimal; which is 44 in decimal) times two to the power of three.

Basic Data Types ❘ 25

 Type Alias
 A type alias enables you to defi ne an alternative name for the existing data type. For example, using
the built‐in types you can specify the data type for variables like this:

 var customerID: UInt32
 var customerName: String

 However, it would be more useful if you could provide a more meaningful and contextually relevant
name using the typealias keyword:

typealias CustomerIDType = UInt32
typealias CustomerNameType = String

 In the preceding code snippet, CustomerIDType is now the alias for the UInt32 type, and
CustomerNameType is the alias for the String type. You can use the aliases as if they are the data
types, like this:

 var customerID: CustomerIDType
 var customerName: CustomerNameType

 customerID = 12345
 customerName = "Chloe Lee"

 Boolean
 Swift supports the Boolean logic type—Bool . A Bool type can take either a true or false value.

NOTE Unlike Objective‐C, in which a Boolean value can be YES or NO , the
Bool values in Swift are similar to most programming languages like Java and
C. It does not support Objective‐C’s YES or NO value.

 The following code snippet shows the Bool type in use:

 var skyIsBlue = true
 var seaIsGreen = false
 var areYouKidding:Bool = true

 skyIsBlue = !true //---skyIsBlue is now false---
 println(skyIsBlue) //---false---

Bool variables are often used in conditional statements such as the If statement:

 if areYouKidding {
 println("Just joking, huh?")
 } else {
 println("Are you serious?")
 }

26 ❘ CHAPTER 2 DATA TYPES

 TUPLES

 A tuple is an ordered collection of values. The values inside a tuple can be of any type; they need not
be all of the same type. Consider the example in which you want to store the coordinates of a point
in the coordinate space:

 var x = 7
 var y = 8

 This used two variables to store the x and y coordinates of a point. Because these two values are
related, it is much better to store them together as a tuple instead of two individual integer variables,
as shown here:

 var pt = (7,8)

 In the preceding statement, pt is a tuple containing two values: 7 and 8. You can also rewrite the
tuple as follows:

 var pt: (Int, Int)
 pt = (7,8)

 In this case, it is now obvious that the pt is a tuple of type (Int, Int) .

 Here are some more examples of tuples:

 var flight = (7031, "ATL", "ORD")
 //---tuple of type (Int, String, String)---

 var phone = ("Chloe", "732-757-2923")
 //---tuple of type (String, String)---

 If you want to retrieve the individual values inside a tuple, you can assign it to individual variables
or constants:

 var flight = (7031, "ATL", "ORD")
let (flightno, orig, dest) = flight
println(flightno) //---7031---
println(orig) //---ATL---
println(dest) //---ORD---

 If you are not interested in some values within the tuple, use the underscore (_) character in place
of variables or constants:

 let (flightno, _ , _) = flight
 println(flightno)

NOTE Chapter 7 discusses the If statement in more detail.

Optional Types ❘ 27

 Alternatively, you can also access the individual values inside the tuple using the index, starting
from 0:

 println(flight.0) //---7031---
 println(flight.1) //---ATL---
 println(flight.2) //---ORD---

 Using the index to access the individual values inside a tuple is not intuitive. A better way is to name
the individual elements inside the tuple:

 var flight = (flightno :7031, orig :"ATL", dest :"ORD")

 Once the individual elements are named, you can access them using those names:

 println(flight.flightno)
 println(flight.orig)
 println(flight.dest)

NOTE One common use for a tuple is returning multiple values in a function.
Chapter 5 discusses this topic in more detail.

 OPTIONAL TYPES

 Swift uses a new concept known as optionals . To understand this concept, consider the following
code snippet:

 let str = "125"
 let num = str.toInt()

 Here, str is a string, and the String type has a method named toInt() that converts a String to
an integer. However, the conversion may not always be successful (the string may contain characters
that cannot be converted to a number) and the result returned to num may be an Int value or nil .
Hence, by type inference, num is assigned a type of Int? .

 The ? character indicates that this variable can optionally contain a value—it might not contain
a value at all if the conversion is not successful (in which case num will be assigned a nil value).
In the preceding code snippet, any attempt to use the num variable (such as multiplying it with
another variable/constant) will result in a compiler error—” value of optional type 'Int?' not
unwrapped; did you mean to use '!' or '?'? ”:

 let multiply = num * 2 //---error---

 To fi x this, you should use the If statement to determine whether num does indeed contain a value. If
it does, you need to use the ! character after the variable name to use its value, like this:

 let str = "125"
 let num = str.toInt()

28 ❘ CHAPTER 2 DATA TYPES

if num != nil {
 let multiply = num! * 2
 println(multiply) //---250---
}

 The ! character indicates to the compiler that you know that the variable contains a value and you
indeed know what you are doing.

NOTE The use of the ! character is known as forced unwrapping of an
optional’s value .

 In the previous example, num is an optional due to type inference. If you want to explicitly declare
a variable as an optional type, you can append the ? character to the type name. For example, the
following statement declares description to be an optional string type:

 var description: String?

 You can assign a string to description :

 description = "Hello"

 You can also assign the special value nil to an optional type:

 description = nil

NOTE You cannot assign nil to a non‐optional type.

 Implicitly Unwrapped Optionals
 In the previous section you saw the use of the optional type and the use of the ! character to unwrap
the value of an optional variable. The problem with this is that you likely will end up with a lot
of ! characters in your code whenever you access the value of the optional variable. To access the
value of an optional variable without using the ! character, you can declare an optional type as an
implicitly unwrapped optional. l

 Consider the following declaration:

 //---implicit optional variable---
 var str2: String! = "This is a string"

 Here, str2 is an implicitly unwrapped optional. When you access str2 , there is no need to use the !
character, as it is implicitly unwrapped:

 println(str2) // "This is a string"

Optional Types ❘ 29

 If str2 is set to nil , accessing the str2 will return a nil :

 str2 = nil
 println(str2) // nil

 Optional Binding
 Many times you need to assign the value of an optional type to another variable or constant.
Consider the following example:

 var productCode:String? = getProductCode("Diet Coke")
 if let tempProductCode = productCode {
 println(tempProductCode)
 } else {
 println("Product Code not found")
 }

 In this snippet, getProductCode() is a function that takes in a product name (of String type)
and returns a product code (a String value) or nil if the product cannot be found. As such, the
productCode is an optional String .

 To assign the value of productCode to another variable/constant, you can use the following
pattern:

 if let tempProductCode = productCode {

 Here, you are essentially doing this: check the value of productCode ; if it is not nil, assign the value
to tempProductCode and execute the If block of statements—otherwise, execute the Else block of
statements.

 You can easily test this by setting productCode to a value:

productCode = "12345"
 if let tempProductCode = productCode {
 println(tempProductCode)
 } else {
 println("Product Code not found")
 }

 The preceding code snippet will print out:

 12345

 If you now set productCode to nil :

productCode = nil
 if let tempProductCode = productCode {
 println(tempProductCode)
 } else {
 println("Product Code not found")
 }

30 ❘ CHAPTER 2 DATA TYPES

 The preceding code snippet will print out:

 Product Code not found

 Unwrapping Optionals Using “?”
 So far you have learned that you can use the ! character to unwrap an optional type’s value.
Consider the following scenario:

 var str:String?
 var empty = str!.isEmpty

 From this code snippet, str is an optional String and isEmpty is a property from the String class.
In this example, you want to know if str is empty, so you call the isEmpty property. However, the
preceding code will crash, as str contains nil , and trying to call the isEmpty property from nil
results in a runtime error. The use of the ! character is like telling the compiler: I am very confi dent
that str is not nil , so please go ahead and call the isEmpty property. Unfortunately, str is indeed
nil in this case.

 To prevent the statement from crashing, you should instead use the ? character, as follows:

 var empty = str? .isEmpty

 The ? character tells the compiler: I am not sure if str is nil . If it is not nil , please call the isEmpty
property; otherwise, ignore it.

 ENUMERATIONS

 An enumeration is a user‐defi ned type consisting of a group of named constants. The best way to
explain an enumeration is to use an example. Suppose you want to create a variable to store the
color of a bag. You can store the color as a string, like this:

 var colorOfBag = "Black"

 The color can also be changed to, for example, “Yellow”:

 colorOfBag = "Yellow"

 However, using this approach is not safe, as there are two potential pitfalls:

➤ The color may be set to a color that is invalid—for example, a bag’s color can only be Black
or Green. If the color is set to Yellow, your code will not be able to detect it.

➤ The color specifi ed might not be the same case you expected. If your code expected “Black”
and you assigned “black” to the variable, your code might break.

 In either case, it is always better to be able to defi ne your own type to represent all the different
colors that a bag may be. In this case, you create an enumeration containing all the valid colors. The
following code snippet defi nes an enumeration named BagColor :

Enumerations ❘ 31

 enum BagColor {
 case Black
 case White
 case Red
 case Green
 case Yellow
 }

 The BagColor enumeration contains fi ve cases (also known as members): Black , White , Red , Green ,
and Yellow . Each member is declared using the w case keyword. You can also group the fi ve separate
cases into one single case, separated using commas (,), as shown here:

 enum BagColor {
 case Black , White, Red , Green, Yellow
 }

 You can now declare a variable of this enumeration type:

 var colorOfBag:BagColor

 To assign a value to this variable, specify the enumeration name, followed by its member:

 colorOfBag = BagColor.Yellow

NOTE In Swift, you need to specify the enumeration name followed by its
member. This is different from Objective‐C, for which you just need to specify
the member name, e.g., UITableViewCellAccessoryDetailDisclosureButton .
The approach in Swift makes the code more comprehensible.

 You can omit the enumeration name by simply specifying its member name:

 colorOfBag = .Yellow

 Using Enumeration in Switch Statements
 Enumerations are often used in Switch statements. The following code snippet checks the value of
colorOfBag and outputs the respective statement:

 switch colorOfBag {
 case BagColor.Black:
 println("Black")
 case BagColor.White:
 println("White")
 case BagColor.Red:
 println("Red")
 case BagColor.Green:
 println("Green")
 case BagColor.Yellow:
 println("Yellow")
 }

32 ❘ CHAPTER 2 DATA TYPES

 Because the type of colorOfBag (which is BagColor) is already known, Swift allows you to specify r

only the enumeration members and omit the name:

 switch colorOfBag {
 case .Black :
 println("Black")
 case .White :
 println("White")
 case .Red :
 println("Red")
 case .Green :
 println("Green")
 case .Yellow : w
 println("Yellow")
 }

 Enumeration Raw Values
 One of the common operations that you need to perform with enumerations is that of associating
a value with the members of an enumeration. For example, suppose you want to store the value of
colorOfBag to a fi le as a string (or, if you like, an integer). In this case, Swift makes it very easy for
you to associate a value to members of an enumeration:

 enum BagColor : String {
 case Black = "Black"
 case White = "White"
 case Red = "Red"
 case Green = "Green"
 case Yellow = "Yellow"
 }

 After the declaration of the enumeration, append the enumeration name with a colon (:) and
indicate the type of data to which you want each member associated (all members must be of the
same type):

 enum BagColor : String {

NOTE The String in the preceding code snippet is known as the raw type .

 Within the enumeration, you then assign each member to the desired value, of the type that you
have just specifi ed:

 case Black = "Black"
 case White = "White"
 case Red = "Red"
 case Green = "Green"
 case Yellow = "Yellow"

Enumerations ❘ 33

 To obtain the value of an enumeration, use the rawValue property of the enumeration instance:

 var colorOfBag:BagColor
 colorOfBag = BagColor.Yellow
 var c = colorOfBag.rawValue
 println(c) //---prints out "Yellow"---

 The rawValue property will return the value that you have assigned to each member of the
enumeration.

 What about the reverse? If you have a string of "Green" , how do you convert it to the enumeration
member? You can do so via the rawValue initializer, as follows:

 var colorOfSecondBag:BagColor? = BagColor(rawValue:"Green")

 The preceding statement uses the rawValue initializer to try to convert the string "Green" to the
enumeration member from BagColor . Because the r rawValue initializer does not guarantee that it
is able to return an enumeration member (imagine you pass in a value of, for example, "Brown"), it
returns an optional value—hence, the ? sign in the statement. Once the value is returned, you can
proceed to use it:

 if colorOfSecondBag == BagColor.Green {
 ...
 }

 If you want to use the rawValue property on colorOfSecondBag , you should confi rm that it is not
nil before proceeding to use it:

 //---print only if colorOfSecondBag is not nil---
 if colorOfSecondBag != nil {
 println(colorOfSecondBag!.rawValue)
 }

 You also need to have a ! character to force unwrap the value of colorOfSecondBag before
accessing the rawValue property.

Auto‐Increment for Raw Values
 In the previous section you saw that you could assign string values to each member in an
enumeration. Very often, you would also assign integer values instead of strings. A good example is
when you are representing the day of a week, as shown in the following code snippet:

 enum DayOfWeek: Int {
 case Monday = 1
 case Tuesday = 2

NOTE Each raw value must be unique within the enumeration.

34 ❘ CHAPTER 2 DATA TYPES

 case Wednesday = 3
 case Thursday = 4
 case Friday = 5
 case Saturday = 6
 case Sunday = 7
 }

 From the preceding statements, you can see that each day of the week is assigned an integer value—
Monday is assigned 1, Tuesday is assigned 2, and so on. The following statements show how it can
be used:

 var d = DayOfWeek.Wednesday
 println(d.rawValue) //---prints out 3---

 When integer values are used for raw values within an enumeration, they are automatically
incremented if no values are specifi ed for subsequent members. For example, the following code
snippet shows that only the fi rst member within the DayOfWeek enumeration is set to a value:

 enum DayOfWeek: Int {
 case Monday = 1
 case Tuesday
 case Wednesday
 case Thursday
 case Friday
 case Saturday
 case Sunday
 }

 Due to auto‐incrementing of integer raw values, the following will still work:

 var d = DayOfWeek.Thursday
 println(d.rawValue) //---prints out 4---

 Associated Values
 The previous section demonstrated how you can assign a value to each member of an enumeration.
Sometimes, it would be very useful to be able to store a particular value (or values) associated with a
particular member of an enumeration. Consider the following code snippets:

 enum NetworkType: String {
 case LTE = "LTE"
 case ThreeG = "3G"
 }

 enum DeviceType {
 case Phone (NetworkType, String)
 case Tablet (String)
 }

 The fi rst enumeration, NetworkType , represents the type of network to which a phone can connect.
The second enumeration, DeviceType , represents two types of devices: Phone or Tablet . If a device

Enumerations ❘ 35

is a phone, you would want to store some values associated with it—in this case, you want to store
its network type and the model of the device. If a device is a tablet, you would just store the model
of the device.

 To use the preceding enumerations declared, take a look at the following code snippet:

 var device1 = DeviceType.Phone(NetworkType.LTE, "iPhone 5S")
 var device2 = DeviceType.Tablet("iPad Air")

 For device1 , its type is a phone and you store the associated information (network type
and model name) with it. For device2 , its type is a tablet and you store its model name
with it.

 You can use a Switch statement to extract the associated value of an enumeration:

 switch device1 {
 case .Phone(let networkType, let model):
 println("\(networkType.rawValue) - \(model)")
 case .Tablet(let model):
 println("\(model)")
 }

 The preceding code snippet will output the following line:

 LTE - iPhone 5S

 Enumeration Functions
 You can defi ne a function within an enumeration. Using the same example used in the previous
section, we’ll now add a function named info to the DeviceType enumeration:

 enum DeviceType {
 case Phone (NetworkType, String)
 case Tablet(String)
 var info: String {
 switch (self) {
 case let .Phone (networkType, model):
 return "\(networkType.rawValue) ‐ \(model)"
 case let .Tablet (model):
 return "\(model)"
 }
 }
 }

 In the preceding code snippet, the info() function returns a string. It checks the member that is
currently selected (using the self keyword) and returns either a string containing the network type
and model (for phone) or simply the model (for tablet). To use the function, simply call it with the
enumeration instance, as shown here:

 println(device1. info) //---LTE ‐ iPhone 5S---
 println(device2. info) //---iPad Air---

36 ❘ CHAPTER 2 DATA TYPES

 SUMMARY

 In this chapter, you had a more detailed look at the basic data types supported by Swift. In addition,
you also learned about some of the features that make Swift a type‐safe language. In addition,
Swift also introduces some new features, such as optional types, as well as tuples. Enumerations in
Swift have also been greatly enhanced with the support for raw values, associated values, as well as
internal functions.

EXERCISES

1. Consider the following code snippet. The compiler generates an error. Suggest ways to fi x it.

 var weightInPounds = 154
 var heightInInches = 66.9
 var BMI = (weightInPounds / pow(heightInInches,2)) * 703.06957964
 println(BMI)

2. Examine the following code snippet:

 enum cartoonCharacters: Int {
 case FelixTheCat = 1
 case AngelicaPickles
 case ThePowerpuffGirls
 case SpiderMan = 9
 case GeorgeOfTheJungle
 case Superman
 case Batman
 }

 What is the output for the following statements?

 var d = cartoonCharacters.GeorgeOfTheJungle
 println(d.rawValue)

 d = cartoonCharacters.AngelicaPickles
 println(d.rawValue)

3. Examine the following code snippet:

 enum cartoonCharacters: Int {
 case FelixTheCat
 case AngelicaPickles
 case ThePowerpuffGirls
 case SpiderMan = 9
 case GeorgeOfTheJungle
 case Superman
 case Batman
 }

Summary ❘ 37

 What is the output for the following statements?

 var d = cartoonCharacters.GeorgeOfTheJungle
 println(d.rawValue)

 d = cartoonCharacters.AngelicaPickles
 println(d.rawValue)

4. The following code snippets cause the compiler to generate an error. Fix it.

 var isMember:Bool?
 if isMember {
 println("User is a member")
 } else {
 println("User is a not member")
 }

38 ❘ CHAPTER 2 DATA TYPES

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Integers Integers are represented using the Int and UInt
types. You can also use specifi c‐sized types, such
as Int8 and UInt8 , Int16 and UInt16 , Int32 and
UInt32 , or Int64 and UInt64 .

Integers representations Integers can be represented as decimal, binary,
octal, or hexadecimal.

Floating‐point numbers Floating‐point numbers are represented using the
Float or Double type.

Floating‐point numbers representations Floating‐point numbers can be represented as
decimal or hexadecimal.

Boolean values A Boolean value is either true or false.

Tuples A tuple is an order collection of values.

Optional types An optional type variable can either contain a value
or nil.

Unwrapping optional variables To unwrap the value of an optional variable, use
the ! character.

Implicitly unwrapped optionals If you declare a type to be an implicitly unwrapped
optional, there is no need to use the ! character to
unwrap the type.

Optional binding Optional binding allows a value of an optional to
be assigned to another variable directly.

Unwrapping an optional using ? If you are not sure if an optional variable is nil or
not before calling its methods or properties, use
the ? character

Enumerations An enumeration is a user‐defi ned type consisting of
a group of named constants.

Enumeration raw values You can assign a value to each member of an
enumeration.

Enumeration auto‐increment values You can assign an integer value to a member of
an enumeration; the compiler will automatically
increment the value and assign them to each
subsequent members.

Enumeration associated value You can store a value to associate with a particular
member of an enumeration.

Enumeration functions An enumeration can also contain a function within
its defi nition.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ How to defi ne a string literal

➤ The copy behavior of strings

➤ The difference between characters and strings

➤ How to use the various special string characters

➤ How to use Unicode characters in Swift

➤ How to use the various common string functions

➤ How type conversion works for strings

➤ How the String type interoperates with the NSString class

 In the previous chapter, you learned about the various basic data types supported in Swift
as well as some of the new features it introduces—tuples, optional types, and enhanced
enumerations. In this chapter, you will learn how strings are represented in Swift using the
String type and how it is bridged seamlessly with the NSString class found in the Foundation
framework in Objective‐C. In particular, because Swift supports Unicode natively, there
are some areas that you need to pay attention to when dealing with strings. All of these are
discussed in this chapter.

 3

40 ❘ CHAPTER 3 STRINGS AND CHARACTERS

 STRINGS

 In Swift, a string literal is a sequence of characters enclosed by a pair of double quotes (""). The
following code snippet shows a string literal assigned to a constant and another to a variable:

 let str1 = "This is a string in Swift" //---str1 is a constant---
 var str2 = "This is another string in Swift" //---str2 is a variable---

 Because the compiler uses type inference, there is no need to specify the type of constant and
variable that is being assigned the string. However, if you wish, you could still specify the String
type explicitly:

 var str3:String = "This is yet another string in Swift"

 To assign an empty string to a variable, you can simply use a pair of empty double quotes, or call
the initializer of the String type, like this:

 var str4 = ""
 var str5 = String()

 The preceding statements initialize both str4 and str5 to contain an empty string. To check
whether a variable contains an empty string, use the isEmpty() method of the String type:

 if str4.isEmpty {
 println("Empty string")
 }

 Mutability of Strings
 The mutability of a string means whether it can be modifi ed after it has been assigned to a variable.
In Swift, a string’s mutability is dependent on whether it is assigned to a constant or a variable.

 A string that is assigned to a variable is mutable, as the following shows:

 var myName = "Wei-Meng"
 myName += " Lee"
 println(myName) //---Wei-Meng Lee---

 A string that is assigned to a constant is immutable (i.e., not mutable—its value cannot be changed):

 let yourName = "Joe"
 yourName += "Sim" //---error---
 yourName = "James" //---error---

 Strings as Value Types
 In Swift, String is a value type. This means that when you assign a string to another variable, or pass
a string into a function, a copy of the string is always created. Consider the following code snippet:

 var originalStr = "This is the original"
 var copyStr = originalStr

Strings ❘ 41

 In the preceding example, originalStr is initialized with a string literal and then
assigned to copyStr . A copy of the string literal is copied and assigned to r copyStr , as shown in r

Figure 3-1 .

This is the original This is the original

originalStr copyStr

FIGURE 3-1

 If you output the values of both variables, you can see that both output the same string literal:

 println(originalStr) //---This is the original---
 println(copyStr) //---This is the original---

 Now let’s make a change to the copyStr variable by assigning it another string literal:

 copyStr = "This is the copy!"

 What happened here is that copyStr is now assigned another string, as shown in Figure 3-2 .

This is the original
This is the copy!

copyStroriginalStr

This is the origina

FIGURE 3-2

 To prove this, output the values of both variables:

 println(originalStr)
 println(copyStr)

 The preceding code snippet would output the following:

 This is the original
 This is the copy!

 Characters
 As mentioned earlier, in Swift a string is made up of characters . You can iterate through a string and
extract each character using the For‐In loop. The following code snippet shows an example:

 var helloWorld = "Hello, World!"

42 ❘ CHAPTER 3 STRINGS AND CHARACTERS

 for c in helloWorld {
 println(c)

 }

 The preceding statements output the following:

 H
 e
 l
 l
 o
 ,

 W
 o
 r
 l
 d
 !

 The For‐In loop works with Unicode characters as well:

 var hello = " " //---hello contains two Chinese characters---
 for c in hello {
 println(c)
 }

 The preceding code snippet outputs the following:

 By default, using type inference the compiler will always use the String type for a character
enclosed with double quotes. For example, in the following statement, euro is inferred to be of
String type:

 var euro = "€"

 However, if you want euro to be the Character type, you have to explicitly specify the Character
type:

 var euro:Character = "€"

 To append a string to a character, you need to convert the character to a string, as the following
shows:

 var euro:Character = "€"
 var price = String(euro) + "2500" //---€2500---
 euro += "2500" //---error---

Strings ❘ 43

 Concatenating Strings
 In Swift, you can concatenate strings using the + operator:

 var hello = "Hello"
 var comma = ","
 var world = "World"
 var exclamation = "!"
 var space = " "
 var combinedStr = hello + comma + space + world + exclamation
 println(combinedStr) //---Hello, World!---

 You can also use the addition assignment operator (+=) to append a string to another string:

 var hello = "Hello"
 hello += ", World!"
 println(hello) //---Hello, World!"

NOTE If you have an Objective‐C background, the capability to append
strings using the + operator is a very welcome feature.

 In the preceding examples, you are concatenating variables of the same type, which in this case is
String . If you want to concatenate a String variable with variables of other types, there are a few
things you need to note. Consider the following statements:

 var euro:Character = "€"
 var amount = 500

 Here, euro is of type Character , and r amount is of type Int . The easiest way to combine the two
variables into a string is to use string interpolation . String interpolation has the following syntax:

 \(variable_name)

 The following statement uses string interpolation to combine the value of euro and amount into a
single string:

 var amountStr1 = "\(euro)\(amount)"
 println(amountStr1) //---€500---

 If you try to concatenate a string together with a numeric value (such as Double or Int), you will get
an error:

 var amountStr2 = "\(euro)" + amount //---error---

 Instead, you should explicitly convert the numeric value to a string using the String() initializer:

 var amountStr2 = "\(euro)" + String(amount)

44 ❘ CHAPTER 3 STRINGS AND CHARACTERS

 Likewise, if you try to concatenate a Character type and an Int type, you will get a compiler error:

 var amountStr3 = euro + amount //---error---

 As usual, you should convert both types to String before concatenating them:

 var amountStr3 = String(euro) + String(amount)

 Special Characters
 String literals can contain one or more characters that have a special meaning in Swift.

 If you want to represent the double quote (") within a string, prefi x the double quote with a
backslash (\):

 var quotation =
 "Albert Einstein: \" A person who never made a mistake never tried
 anything new \" "
 println(quotation)

 The preceding statement outputs the following:

 Albert Einstein: "A person who never made a mistake never tried anything
 new"

 If you want to represent the single quote (') within a string, simply include it in the string:

 var str = "'A' for Apple"
 println(str)

 The preceding statement outputs the following:

 'A' for Apple

 If you want to represent the backslash (\) within a string, prefi x the backslash with another
backslash (\):

 var path = "C:\\WINDOWS\\system32"
 println(path)

 The preceding statement outputs the following:

 C:\WINDOWS\system32

 The \t special character represents a tab character:

 var headers = "Column 1 \t Column 2 \t Column3"
 println(headers)

 The preceding statement outputs the following:

 Column 1 Column 2 Column3

Strings ❘ 45

 The \n special character represents a newline character:

 var column1 = "Row 1\nRow 2\nRow 3"
 println(column1)

 The preceding statement outputs the following:

 Row 1
 Row 2
 Row 3

 Unicode
 In Swift, a Character represents a single extended grapheme cluster. An extended rr
grapheme cluster is a sequence of one or more Unicode scalars that when combined
produces a single human‐readable character. Consider the following example:

 let hand:Character = "\u{270B}"
 let star = "\u{2b50}"
 let bouquet = "\u{1F490}"

 In the preceding code snippet, the three variables are of type Character , withr

the fi rst one explicitly declared. Their values are assigned using single Unicode
scalars , and when output they appear as shown in Figure 3-3 .

FIGURE 3-3

NOTE Each Unicode scalar is a unique 21‐bit number.

 Here is another example:

 let aGrave = "\u{E0}" //---à---

 In the preceding statement, aGrave represents the Latin small letter “a” with a grave: à . The same
statement can also be rewritten using a pair of scalars—the letter a followed by the COMBINING
GRAVE ACCENT scalar:

 let aGrave = "\u{61}\u{300}"

 In either case, the aGrave variable contains one single character. To make this point clearer,
consider the following statement:

 var voila = "voila"

 In the preceding statement, voila contains fi ve characters. If you append the
COMBINING GRAVE ACCENT scalar to it as follows, the voila variable would still contain
fi ve characters:

 voila = "voila" + "\u{300}" //--- voilà---

 This is because the a has been changed to à .

46 ❘ CHAPTER 3 STRINGS AND CHARACTERS

 COMMON STRING FUNCTIONS

 When dealing with strings, you often need to perform the following operations:

➤ Test for string equality.

➤ Test if a string starts or ends with a particular string.

➤ Test if a string contains a particular string.

➤ Check the length of a string.

 The following sections touch on these common string operations.

 Equality
 In Swift, string and character comparisons are performed using the equal to operator (==) or the not
equal to operator (!=). Two strings are deemed to be equal if they contain exactly the same Unicode
scalars in the same order . Here is an obvious example:rr

 var string1 = "I am a string!"
 var string2 = "I am a string!"
 println(string1 == string2) //---true---
 println(string1 != string2) //---false---

 The following example shows a comparison between two Character variables, each containing a
Unicode character:

 var s1 = "é" //---é---
 var s2 = "\u{E9}" //---é---
 println(s1 == s2) //---true---

 The next example shows a comparison between two String variables, each including a Unicode
character:

 var s3 = "café" //---café---
 var s4 = "caf\u{E9}" //---café---
 println(s3 == s4) //---true---

 If you use a COMBINING ACUTE ACCENT scalar and apply it to the scalar that precedes it, the
string would be different from one that does not use the COMBINING ACUTE ACCENT scalar, as the
following code snippet shows:

 var s5 = "voilà" //--- voilà---
 var s6 = "voila" + "\u{300}" //--- voila + `---
 println(s5 == s6) //---false ---

 let s7 = "\u{E0}" //---à---
 let s8 = "\u{61}\u{300}" //---a + `---
 println(s7 == s8) //---false ---

Common String Functions ❘ 47

 Prefi x and Suffi x
 If you want to check if a string starts with a particular string prefi x, use the hasPrefix() method:

 var url: String = "www.apple.com"
 var prefix = "http://"
 if !url.hasPrefix(prefix) {
 url = prefix + url
 }
 println(url)

 In the preceding code snippet, the hasPrefix() method takes in a String argument and returns
true if the string contains the specifi ed string prefi x.

 Likewise, you can use the hasSuffix() method to check whether a string contains a particular
string suffi x:

 var url2 = "https://developer.apple.com/library/prerelease/ios/" +
 "documentation/General/Reference/" +
 "SwiftStandardLibraryReference/"

 var suffix = "/"
 if url2.hasSuffix(suffix) {
 println("URL ends with \(suffix)")
 } else {
 println("URL does not end with \(suffix)")
 }

 The hasPrefix() and hasSuffix() methods work correctly with Unicode characters as well:

 var str = "voila" + "\u{300}" //--- voila + `---
 var suffix = "à"
 if str.hasSuffix(suffix) {
 println("String ends with \(suffix)")
 } else {
 println("String does not end with \(suffix)")
 }

 The preceding code snippet outputs the following:

 String ends with à

 Length
 In Objective‐C, you get the length/size of a string using the length property. However, in Swift,
because Unicode characters do not take up the same unit of storage in memory, calling the length
property on a string will not work (the length property is based on 16‐bit code units). There are
two ways to go about fi nding the length of a string in Swift:

➤ Use the equivalent of the length property (from NSString) in Swift. The length property
from NSString is now wrapped in Swift and available as the utf16Count property. This
approach is useful if you are not dealing with Unicode characters in your string.

48 ❘ CHAPTER 3 STRINGS AND CHARACTERS

➤ Use the length property in NSString directly. You can declare a string as an NSString
instance and call the length property directly, or use the bridgeToObjectiveC() method to
convert a String instance to an NSString instance.

➤ Use the global countElements() function available in Swift to count the length/size of a
string. The countElements() function counts the size of Unicode characters correctly.

NOTE The section “Interoperability with NSString” discusses using NSString
in Swift in more detail.

 Following are several examples. First, consider this statement:

 let bouquet:Character = "\u{1F490}"

 Because bouquet is declared as a Character , you will not be able to use the r countElements()

function (the countElements() function only works for strings):

 println(countElements(bouquet)) //---error---

 The following statements each output 1 for the length of the strings:

 var s1 = "é" //---é---
 println(countElements(s1)) //---1---

 var s2 = "\u{E9}" //---é---
 println(countElements(s2)) //---1---

 Whether you use a Unicode character directly or use a Unicode scalar within your string, the length
of the string is still the same:

 var s3 = "café" //---café---
 println(countElements(s3)) //---4---

 var s4 = "caf\u{E9}" //---café---
 println(countElements(s4)) //---4---

 Even if you combine a Unicode scalar with a string, the countElements() function will still count
the number of characters correctly, as the following statements show:

 var s5 = "voilà" //--- voilà---
 println(countElements(s5)) //---5---

 var s6 = "voila" + "\u{300}" //--- voila + `---
 println(countElements(s6)) //---5---

 Substrings
 One of the most common operations you perform with a string is that of extracting part of it,
commonly known as a substring. Unfortunately, due to the support of Unicode characters in the

Common String Functions ❘ 49

String type, extracting strings from a String type is not so straightforward. This section provides
an explanation of how to go about extracting part of a string.

 First, consider the following swiftString :

 let swiftString:String =
 "The quick brown fox jumps over the lazy dog."

 Every String type has a number of properties of type String.Index . Index is a structure that
contains a number of properties that point to the current character in the String variable, its next
character, its previous character, and so on. The Index structure is defi ned as an extension to the
String type:

 extension String : Collection {
 struct Index : BidirectionalIndex, Reflectable {
 func successor() ‐> String.Index
 func predecessor() ‐> String.Index
 func getMirror() ‐> Mirror
 }
 var startIndex : String.Index { get }
 var endIndex : String.Index { get }
 subscript (i: String.Index) ‐> Character { get }
 func generate() -> IndexingGenerator<String>
 }

 To better understand the use of the Index structure, consider the following statement:

 println(swiftString[swiftString. startIndex]) //---T---

 The preceding statement uses the startIndex property (of type String.Index) to refer to the fi rst x

character of the string. You use it as the index to pass to the String ’s subscript() method to
extract the fi rst character. Note that due to the way characters are stored in the String variable, you
cannot directly specify a number indicating the position of the character that you want to extract,
like this:

 println(swiftString[0]) //---error---

 You can also use the endIndex property together with the predecessor() method to get the last
character in the string:

 println(swiftString[swiftString.endIndex.predecessor()]) //---.---

 To get the character at a particular index, you can use the advance() method and specify the
number of characters to move relative to a starting position:

 //---start from the string's startIndex and advance 2 characters---
 var index = advance(swiftString.startIndex, 2)
 println(swiftString[index]) //---e---

 In the preceding statements, index is of type String.Index . You make use of it to extract the
character from the string.

50 ❘ CHAPTER 3 STRINGS AND CHARACTERS

 You can also traverse the string backwards by starting at the end index and specifying a negative
value to move:

 index = advance(swiftString.endIndex, -3)
 println(swiftString[index]) //---o---

 The successor() method returns the position of the character after the current character:

 println(swiftString[index.successor()]) //---g---

 The predecessor() method returns the position of the character prior to the current character:

 println(swiftString[index.predecessor()]) //---d---

 You can also use the subStringFromIndex() method to obtain a substring starting from the
specifi ed index:

 println(swiftString.substringFromIndex(index))
 //---e quick brown fox jumps over the lazy dog.---

 Likewise, to get the substring from the beginning up to the specifi ed index, use the
substringToIndex() method:

 println(swiftString.substringToIndex(index)) //---Th---

 What if you want to fi nd a range within the string? You can use the following code snippet:

 //---creates a Range<Int> instance; start index at 4 and end at 8---
 let r = Range(start: 4, end: 8)

 //---create a String.Index instance to point to the starting char---
 let startIndex = advance(swiftString.startIndex, r.startIndex)

 //---create a String.Index instance to point to the end char---
 let endIndex = advance(startIndex, r.endIndex - r.startIndex + 1)

 //---create a Range<String.Index> instance---
 var range = Range(start: startIndex, end: endIndex)

 //---extract the substring using the Range<String.Index> instance---
 println(swiftString.substringWithRange(range)) //---quick---

 The preceding code snippet uses the substringWithRange() method to extract the characters
starting from index 4 and ending at index 8. The substringWithRange() method takes in a
Range<String.Index> instance, so you need to write a little code to create it.

 If you want to fi nd the position of a character within a string, you can use the find() method:

 //---finding the position of a character in a string---
 let char:Character = "i"
 if let charIndex = find(swiftString, char) {
 let charPosition = distance(swiftString.startIndex, charIndex)

Common String Functions ❘ 51

 println(charPosition) //---6---
 }

 The find() method returns a String.Index instance. In order to translate that into an integer, you
need to use the distance() method.

 Converting Strings to Arrays
 Another way to deal with a string’s individual character is to convert a String value into an array.
The following statement shows str containing a string with a Unicode character:

 var str = "voila" + "\u{300}" //--- voila + `---

 You can convert the string into an Array instance:

 var arr = Array(str)

 Once the string is converted to an array, you can access its individual characters through its index:

 println(arr[4]) //---à---

 Type Conversion
 In Swift, there is no implicit conversion; you need to perform explicit conversion whenever you want
to convert a variable from one type to another type. Consider the following statement:

 var s1 = "400"

 By type inherence, s1 is String . If you want to convert it into an Int type, you need to use the
toInt() method to explicitly convert it:

 var amount1:Int? = s1.toInt()

 You must specify the ? character to indicate that this is an optional type; otherwise, the type
conversion will fail. You can rewrite the preceding example to use type inference:

 var amount1 = s1.toInt()

 Consider another example:

 var s2 = "1.25"

 If you call the toInt() method to explicitly convert it to the Int type, you will get a nil :

 var amount2 = s2.toInt() //---nil as string cannot be converted to Int---

 If you call the toDouble() method to explicitly convert it to the Double type, you will get an error:

 var amount2:Double = s2.toDouble() //---error---

52 ❘ CHAPTER 3 STRINGS AND CHARACTERS

 This is because the String type does not have the toDouble() method. To resolve this, you can cast
it to NSString and use the doubleValue property:

 var amount2: Double = (s2 as NSString).doubleValue //---1.25---

NOTE The next section, “Interoperability with NSString,” discusses this in
more detail.

 What about converting from numeric values to String types? Consider the following code snippet:

 var num1 = 200 //---num1 is Int---
 var num2 = 1.25 //---num2 is Double---

 To convert the num1 (which is of type Int), you can use the String initializer:

 var s3 = String(num1)

 Alternatively, you can use the string interpolation method:

 var s3 = "\(num1)"

 To convert the num2 (which is of type Double), you cannot use the String initializer, as it does not
accept an argument of type Double :

 var s4 = String(num2) //---error---

 Instead, you have to use the string interpolation method:

 var s4 = "\(num2)"

 INTEROPERABILITY WITH NSSTRING

 If you are familiar with the NSString class in Objective‐C, you will be happy to know that the
String type in Swift is bridged seamlessly (almost) with the NSString class in the Foundation
framework in Objective‐C. This means that you can continue to use the methods and properties
related to NSString in Swift’s String type. However, there are some caveats that you need to be
aware of.

 Consider the following statement:

 var str1 = "This is a Swift string"

 Based on type inference, str1 would be of String type. However, you can continue to use the
methods and properties already available in NSString , such as the following properties:

 println(str1.uppercaseString)
 println(str1.lowercaseString)
 println(str1.capitalizedString)

Interoperability with NSString ❘ 53

 In the preceding statements, uppercaseString , lowercaseString , and capitalizedString are all
properties belonging to the NSString class, but you can use them in a String instance.

 Swift will also automatically convert a result from NSArray of NSString s to the Array class in
Swift, as the following example demonstrates:

 var fruitsStr = "apple,orange,pineapple,durian"
 var fruits = fruitsStr.componentsSeparatedByString(",")
 for fruit in fruits {
 println(fruit)
 }

 The preceding code snippet extracts from the string an array of items separated by the comma (,).
The result of type NSArray is automatically converted to the Array type in Swift. The preceding
example will output the following:

 apple
 orange
 pineapple
 durian

 Casting String to NSString
 There are some methods from the NSString class that you need to take note of in Swift. For
example, the containsString() method is available in NSString , but if you call it directly in an
instance of the String type, you will get an error:

 var str1 = "This is a Swift string"
 println(str1.containsString("Swift"))
 //---error: 'String' does not have a member named 'containsString'---

 For such cases, you fi rst need to explicitly convert the String instance to an NSString instance
using the as keyword:

 var str1 = "This is a Swift string"
 println((str1 as NSString).containsString("Swift")) //---true---

 Once you have converted the String instance to an NSString instance, you can call the
containsString() method.

 As described earlier in the chapter, due to the way characters are stored in a String
instance, you have to use the countElements() method in Swift to get the length of a string.
However, you can also use the length property available in the NSString class by type casting it to
NSString :

 var str1 = "This is a Swift string"
 println((str1 as NSString).length) //---22---

 Another thing to be aware of is that some methods require arguments to be of a
particular Swift type, even if the method is available in NSString . For example, the
stringByReplacingCharactersInRange() method takes in two arguments: an instance of type

54 ❘ CHAPTER 3 STRINGS AND CHARACTERS

Range<String.Index> and a String instance. If you call this method and pass in an NSRange
instance, an error will occur:

//---an instance of NSRange---
var nsRange = NSMakeRange(5, 2)

 str1.stringByReplacingCharactersInRange(nsRange , withString: "was")
 //---error: 'NSRange' is not convertible to 'Range<String.Index>'---

 Instead, you need to create an instance of type Range<String.Index> (a Swift type) and use it in the
stringByReplacingCharactersInRange() method:

 //---an instance of Range<String.Index>---
var swiftRange =
 advance(str1.startIndex, 5) ..< advance(str1.startIndex, 7)

 str1 = str1.stringByReplacingCharactersInRange(
 swiftRange , withString: "was")
 println(str1) //---This was a Swift string---

NOTE The ..< operator is known as the half‐open range operator. It has this r
syntax: a ..< b , which specifi es a range of values from a to b , but not including
b . The half‐open range operator is discussed in more details in Chapter 4 .

 Using NSString Directly
 An alternative way to deal with strings is to declare a variable explicitly as an NSString type:

 var str2:NSString = "This is a NSString in Objective-C. "

 In the preceding statement, str2 will now be an NSString instance. The statement can also be
rewritten as follows:

 var str2 = "This is a NSString in Objective-C. " as NSString

 You can call all the NSString methods directly via str2 :

 println(str2.length) //---35---
 println(str2.containsString("NSString")) //---true---
 println(str2.hasPrefix("This")) //---true---
 println(str2.hasSuffix(". ")) //---true---
 println(str2.uppercaseString) //---THIS IS A NSSTRING IN OBJECTIVE-C.---
 println(str2.lowercaseString) //---this is a nsstring in objective-c.---
 println(str2.capitalizedString) //---This Is A Nsstring In Objective-C---

 println(str2.stringByAppendingString("Yeah!"))
 //---This is a NSString in Objective-C. Yeah!---

 println(str2.stringByAppendingFormat("This is a number: %d", 123))
 //---This is a NSString in Objective-C. This is a number: 123---

Interoperability with NSString ❘ 55

 You can also create an NSRange instance and use it directly in the
stringByReplacingCharactersInRange() method:

 var range = str2.rangeOfString("Objective-C")
 if range.location != NSNotFound {
 println("Index is \(range.location) length is \(range.length)")
 //---Index is 22 length is 11---
 str2 = str2.stringByReplacingCharactersInRange(
 range, withString: "Swift")
 println(str2) //---This is a NSString in Swift.---
 }

 Here is another example of using the rangeOfString() method from NSString to fi nd the index of
the occurrence of a string within a string:

 var path:NSString = "/Users/wei-menglee/Desktop"

 //---find the index of the last /---
 range = path.rangeOfString("/",
 options:NSStringCompareOptions.BackwardsSearch)

 if range.location != NSNotFound {
 println("Index is \(range.location)") //---18---
 }

 String or NSString?
 Now that you are aware of the two possible ways to deal with strings in Swift, which one should
you use?

 As a rule of thumb, use the String type in Swift whenever possible and feasible. The Swift language
is optimized to use the String type and in most cases, you can pass a String type into methods
that expect an NSString type.

 If you are dealing with special characters such as emoji or Chinese characters that take up two or
three bytes, it is always better to use the native String type in Swift. For example, consider the
following statement:

 let bouquet = "\u{1F490}"

 In the preceding statement, bouquet contains a single emoji (a bouquet graphic). It occupies two
bytes of storage. If you want to count the number of characters contained within the string, the
countElements() method counts it correctly:

 println(countElements("\(bouquet)")) //---1---

 However, if you use the NSString ’s length property, it returns the storage required instead of the
number of characters contained within the string:

 println((bouquet as NSString).length) //---2---

56 ❘ CHAPTER 3 STRINGS AND CHARACTERS

 Likewise, in one of the examples earlier in the chapter, if you append the COMBINING GRAVE ACCENT
scalar to a string, the countElements() method will count the characters correctly, whereas the
length property does not:

 var s6 = "voila" + "\u{300}" //--- voila + `---
 println(countElements(s6)) //---5---
 println((s6 as NSString).length) //---6---

 Using the native String type also enables you to use the various string features (such as string
concatenation using the + operator, the For‐In loop for character iteration, etc.) introduced in Swift.
Once you explicitly declare a variable as NSString , you lose all these features. For example, for
NSString types you cannot concatenate strings using the + operator:

 var s:NSString = "Swift"
 s += " Programming" //---not allowed---

 Nor can you cannot iterate through an NSString using the For‐In loop:

 var s:NSString = "Swift"
 for c in s {
 println(c)
 }

 If you want to have the best of both worlds, always create a native String instance and then
typecast to NSString to call the NSString ’s methods whenever necessary.

NOTE There is another good reason to use the native String type. If Swift
is ever ported to a non‐Apple platform, the Foundation framework may not
be available for your use. Therefore, your code that relies on the NSString
methods will now likely break.

 SUMMARY

 In this chapter, you have learned about the String type in Swift and how it interoperates with the
NSString class, with which most Objective‐C developers are familiar. While you may be tempted to
use the various string libraries that you are already familiar with in Objective‐C, it is always a good
idea to familiarize yourself with the various String methods in Swift so that your code is future‐
proof. Also, as the Swift language evolves, you should be seeing more enhancements to the language
as Apple ramps up adoption of the language.

Summary ❘ 57

EXERCISES

1. Given the following statement, write the solution to fi nd out the position of the “q” character in
the string:

 var str1 = "The quick brown fox jumps over the lazy dog"

2. The following code snippet causes the compiler to fl ag an error. Fix it.

 var amount = "1200"
 var rate = "1.27"
 var result = amount * rate

3. Given the following variables, write the statement to output the following:

 var lat = 40.765819
 var lng = -73.975866
 println("<fill in the blanks>")
 // Lat/Lng is (40.765819, -73.975866)

58 ❘ CHAPTER 3 STRINGS AND CHARACTERS

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Representing a
string

You can represent a string using the String or NSString type.

Mutability of strings Strings created using the let keyword are immutable. Strings created
using the var keyword are mutable.

String as a value
type

Strings are represented as a value type in Swift; when they are assigned to
another variable/constant, a copy is made.

Representing
characters

You can represent a character using the Character type.

Concatenating
strings

Strings can be conveniently concatenated using the + or += operator.

Unicode The String type in Swift is capable of representing Unicode characters.

String equality To test the equality of two strings, use the == or != operator.

Length of a string To fi nd out the length of a string, you can either cast it to a NSString
and then use the length property, or you can use the countElements()
function in Swift.

Converting a string
to an array

Another way to deal with a string is to convert it into an array.

String to number
conversion

Use the toInt() method to convert a string to an integer. To convert
a string into a double, cast the string to NSString and then use the
doubleValue property.

Casting from String
to NSString

Use the as keyword to cast a String to NSString .

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ How to assign values to variables and constants using the
assignment operator

➤ How to perform arithmetic operations using the arithmetic operators

➤ How to increment and decrement variables by one using the
increment and decrement operators

➤ Using increment and decrement variables using the compound
assignment operators

➤ How to use the nil coalescing operator when dealing with optional
types

➤ How to perform comparisons using the comparison operators

➤ How to specify ranges using the range operator

➤ How to perform logical comparisons using the logical operators

 In the previous two chapters you learned about the various data types in Swift and how Swift
deals with strings and characters. In this chapter, you will learn about the various operators
available in Swift. Operators work with the various data types to enable you to make logical
decisions, perform arithmetical calculations, as well as change values. Swift supports the
following types of operators:

 4

60 ❘ CHAPTER 4 BASIC OPERATORS

➤ Assignment

➤ Arithmetic

➤ Comparison

➤ Range

➤ Logical

 ASSIGNMENT OPERATOR

 The assignment operator (=) sets a variable or constant to a value. In Swift, you can create a
constant by assigning a value to a constant name as shown here:

 let companyName = "Developer Learning Solutions"
 let factor = 5

 You can also create a variable using the assignment operator:

 var customerName1 = "Richard"

 Besides assigning a value to a variable or constant, you can also assign a variable or constant to another:

 var customerName2 = customerName1

 You can also assign a tuple directly to a variable or constant:

 let pt1 = (3,4)

NOTE Tuples are discussed in more detail in Chapter 2 .

 You can decompose the value of a tuple into multiple variables or constants by using the assignment
operator:

 let (x,y) = (5,6)
 println(x) //---5---
 println(y) //---6---

 Unlike Objective‐C, the assignment operator does not return a value; hence, you cannot do
something like this:

 //---error---
 if num = 5 {
 ...
 }

 This is a good feature, as it prevents programmers from accidentally doing an assignment instead of
an equality comparison.

Arithmetic Operators ❘ 61

 ARITHMETIC OPERATORS

 Swift supports the four standard arithmetic operators:

➤ Addition (+)

➤ Subtraction (‐)

➤ Multiplication (*)

➤ Division (/)

 Swift requires the operands in all arithmetic operations to be of the same type. This enforces type
safety, as it requires you to explicitly perform type casting. Consider the following statements:

 var a = 9 //---Int---
 var b = 4.1 //---Double---

 By using type inference, a is Int and b is Double . Because they are of different types, the following
operations are not allowed:

 println(a * b) //---error---
 println(a / b) //---error---
 println(a + b) //---error---
 println(a - b) //---error---

 You need to convert the variables to be of the same type before you can perform arithmetic
operations on them.

 Addition Operator
 The addition operator (+) adds two numbers together. When adding numeric values, you need to be
aware of some important subtleties. First, integer addition is straightforward:

 println(5 + 6) //---integer addition (11)---

 If you add a double to an integer, the result is a double:

 println(5.1 + 6) //---double addition (11.1)---

 If you add two doubles, the result is a double:

 println(5.1 + 6.2) //---double addition (11.3)---

 Besides adding numbers, the addition operator can also be used to concatenate two strings:

 //---string concatenation (Hello, World)---
 println("Hello, " + "World")

 The addition operator can also be used as a unary plus operator (it operates on only one operand):

 var num1 = 8
 var anotherNum1 = +num1 //---anotherNum1 is 8---

62 ❘ CHAPTER 4 BASIC OPERATORS

 var num2 = -9
 var anotherNum2 = +num2 //---anotherNum2 is -9---

 For the additional operator, using it as a unary plus operator is redundant—it does not change
the value or the sign of the number. However, it is useful as an aid to improve code readability.

 Subtraction Operator
 The subtraction operator (‐) enables you to subtract one number from another. As with the addition
operator, you need to be aware of its behavior when subtracting two numbers of different types.

 The following subtracts an integer from another:

 println(7 - 8) //---integer subtraction (-1)---

 If you subtract an integer from a double, the result is a double:

 println(9.1 - 5) //---double subtraction (4.1)---

 However, when you subtract a double from an integer, the result is a double:

 println(9 - 4.1) //---double subtraction (4.9)---

 Like the addition operator, the subtraction operator can also be used as a unary operator to indicate
a negative number:

 println(-25) //---negative number---

 It can also be used to negate the value of a variable:

 var positiveNum = 5
 var negativeNum = -positiveNum //---negativeNum is now -5---
 positiveNum = -negativeNum //---positiveNum is now 5---

 Multiplication Operator
 The multiplication operator (*) multiplies two numbers. Like the addition and subtraction
operators, multiplying numbers of different types yields results of different types, as the following
demonstrates.

 Multiplying two integer numbers results in an integer result:

 println(3 * 4) //---integer multiplication (12)---

 Multiplying a double value with an integer value also results in a double result:

 println(3.1 * 4) //---double multiplication (12.4)---

 When you multiply two double values you get a double result:

 println(3.1 * 4.0) //---double multiplication (12.4)---

Arithmetic Operators ❘ 63

 Division Operator
 The division operator (/) divides a number by another number. Dividing an integer by another
integer will return only the integer part of the result:

 println(5 / 6) //---integer division (0)---
 println(6 / 5) //---integer division (1)---

 Dividing a double by an integer will return a double:

 println(6.1 / 5) //---double division (1.22)---
 println(9.99 / 5) //---double division (1.998)---

 Dividing a double by a double will return a double:

 println(6.1 / 5.5) //---double division (1.10909090909091)---

 Modulus Operator
 The modulus operator (%) returns the remainder of a division. For example, if you divide fi ve by
three, the remainder is two. The following shows how the % operator works:

 println(8 % 9) //---modulo (8)---
 println(9 % 8) //---modulo (1)---
 println(9 % 9) //---modulo (0)---

 The modulus operator also works with a negative number:

 println(-5 % 3) //---module (-2)---

 If the second operand is a negative number, the negative value is always ignored:

 //---negative value for second number is always ignored---
 println(-5 % -3) //---module (-2)---

 The modulus operator also works with double values:

 println(5 % 3.5) //---module (1.5)---
 println(5.9 % 3.5) //---module (2.4)---

 Increment and Decrement Operators
 Because it is a very common task in programming to increment or decrement the value of a variable
by one, Swift provides the increment (++) and decrement (––) operators as a shortcut to these
operations. For example, if you want to increment the value of a variable by one, you typically
do this:

 var i = 5
 i = i + 1 //---i is now 6---

64 ❘ CHAPTER 4 BASIC OPERATORS

 However, using the increment operator, you can rewrite the preceding code as follows:

 var i = 5
 ++i //---i is now 6---

 Both the increment and decrement operators can be used as either a prefi x or a postfi x operator.
Let’s take a look at the increment operator fi rst:

 i = 5
 ++i //---i is now 6---
 i++ //---i is now 7---

 In the preceding example, i has an initial value of 5 . Using the ++ as a prefi x operator (i.e., ++i) as
well as a postfi x operator (i.e., i++) yields no difference—the value of i will be increased by one.
However, if you use the increment or decrement operator in an assignment statement, you need to be
aware of the subtle difference between using it as a prefi x or postfi x operator. The following example
makes this clear:

 i = 5
 var j = i++ //---j is now 5, i is now 6---
 println(i) //---6---
 println(j) //---5---

 In the preceding example, when you use the ++ as a postfi x operator, its initial value (which is l
currently 5) is retrieved and assigned to j , after which the value of i is incremented by one (which is
6 after the incrementing).

 What about using the ++ as a prefi x operator? Consider the following example:

 i = 5
 j = ++i //---both i and j are now 6---
 println(i) //---6---
 println(j) //---6---

 Here, using the ++ as a prefi x operator will immediately increment the value of i by one (6 after
incrementing). The value of i is then assigned to j (which is now 6).

 The same behavior of the postfi x and prefi x operators applies to the –– operator as well, as the
following code snippet shows:

 i = 5
 j = i-- //---j is now 5, i is now 4---
 println(i) //---4---
 println(j) //---5---

 i = 5
 j = --i //---both i and j are now 4---
 println(i) //---4---
 println(j) //---4---

Arithmetic Operators ❘ 65

 Compound Assignment Operators
 Compound assignment operators combine the assignment (=) operator with another operator:

 var salary = 2000
 salary = salary + 1200 //---salary is now 3200---

 In the preceding example, the value of salary is incremented by 1200 . This statement could be
rewritten using the compound assignment operator += :

 salary += 1200 //---salary is now 3200---

 The following shows some additional compound assignment operators in use:

 var speed = 80
 speed -= 15 //---speed is now 65---

 var size = 2
 size *= 3 //---size is now 6---

 var width = 100
 width /= 2 //---width is now 50---

 Nil Coalescing Operator
 Consider the following optional variable:

 var gender:String?

 The gender variable is an optional variable that can take a String value or a nil value. Suppose
you want to assign the value of gender to another variable, and if it contains nil , you will assign a
default value to the variable. Your code may look like this:

 var genderOfCustomer:String

 if gender == nil {
 genderOfCustomer = "male"
 } else {
 genderOfCustomer = gender!
 }

 Here you check whether gender is nil . If it is, you assign a default value of “male ” to
genderOfCustomer . If gender is not nil , then its value is assigned to genderOfCustomer .

 Swift introduces the new nil coalescing operator , which has the following syntax: rr a ?? b . It reads
“unwrap the value of optional a and return its value if it is not nil ; otherwise, return b. ”

 The preceding code snippet could be rewritten in a single statement using the new nil coalescing operator:

 var gender:String?
 var genderOfCustomer = gender ?? "male" //---male---

66 ❘ CHAPTER 4 BASIC OPERATORS

 Because gender is nil , genderOfCustomer is now assigned male .

 If you now assign a value to gender and execute the preceding statements again, gender would be female :

 var gender:String? = "female"
 var genderOfCustomer = gender ?? "male" //---female---

 COMPARISON OPERATORS

 Swift supports the standard comparison operators available in most programming languages:

➤ Equal to (==)

➤ Not equal to (!=)

➤ Less than (<)

➤ Less than or equal to (<=)

➤ Greater than (>)

➤ Greater than or equal to (>=)

 Equal To and Not Equal To
 To check for the equality of two variables, you can use the equal to (==) operator. The == operator
works with numbers as well as strings. Consider the following example:

 var n = 6
 if n % 2 == 1 {
 println("Odd number")
 } else {
 println("Even number")
 }

 The preceding code snippet checks whether the remainder of a number divided by two is equal to
one. If it is, then the number is an odd number, otherwise it is an even number.

 The following example shows the == operator comparing string values:

 var status = "ready"
 if status == "ready" {
 println("Machine is ready")
 } else {
 println("Machine is not ready")
 }

 Besides the == operator, you can also use the not equal to (!=) operator. The following code snippet
shows the earlier example rewritten using the != operator:

 var n = 6
 if n % 2 != 1 {
 println("Even number")
 } else {

Comparison Operators ❘ 67

 println("Odd number")
 }

 Likewise, you can also use the != operator for string comparisons:

 var status = "ready"
 if status != "ready" {
 println("Machine is not ready")
 } else {
 println("Machine is ready")
 }

 The == and != operators also work with Character types:

 let char1:Character = "A"
 let char2:Character = "B"
 let char3:Character = "B"
 println(char1 == char2) //---false---
 println(char2 == char3) //---true---
 println(char1 != char2) //---true---
 println(char2 != char3) //---false---

NOTE When comparing instances of classes, you need to use the identity
operators (===((and !==). Identity operators are discussed in Chapter 8 .

 Greater Than or Equal To
 To determine whether a number is greater than another number, use the greater than (>) operator:

 println(5 > 5) //---false---
 println(5 > 6) //---false---
 println(6 > 5) //---true---

 You can also use the greater than or equal to (>=) operator:

 println(7 >= 7) //---true---
 println(7 >= 8) //---false---
 println(9 >= 8) //---true---

NOTE The > and >= operators do not work with the String type.

 Less Than or Equal To
 To determine whether a number is less than another number, use the less than (<) operator:

 println(4 < 4) //---false---
 println(4 < 5) //---true---
 println(5 < 4) //---false---

68 ❘ CHAPTER 4 BASIC OPERATORS

 You can also use the less than or equal to (>=) operator:

 println(8 <= 8) //---true---
 println(9 <= 8) //---false---
 println(7 <= 8) //---true---

 The < operator also work with strings:

 println("abc" < "ABC") //---false---
 println("123a" < "123b") //---true---

NOTE The <= operator does not work with the String type.

 RANGE OPERATORS

 Swift supports two types of range operators to specify a range of values:

➤ Closed range operator (a. . .b) —Specifi es a range of values starting from a right up to b
(inclusive)

➤ Half‐open range operator (a. .<b) —Specifi es a range of values starting from a right up to b ,
but not including b

 To demonstrate how these range operators work, consider the following example:

 //---prints 5 to 9 inclusive---
 for num in 5...9 {
 println(num)
 }

 The preceding code snippet uses the closed range operator to output all the numbers from 5
to 9:

 5
 6
 7
 8
 9

 To output only 5 to 8, you can use the half‐open range operator:

 //---prints 5 to 8---
 for num in 5..<9 {
 println(num)
 }

 The preceding code snippet outputs 5 to 8:

 5
 6

Logical Operators ❘ 69

 7
 8

 The half‐open range operator is particularly useful when you are dealing with zero‐based lists such
as arrays. The following code snippet is one good example:

 //---useful for 0-based lists such as arrays---
 var fruits = ["apple","orange","pineapple","durian","rambutan"]
 for n in 0..<fruits.count {
 println(fruits[n])
 }

 The preceding code snippet outputs the following:

 apple
 orange
 pineapple
 durian
 rambutan

 LOGICAL OPERATORS

 Like most programming languages, Swift supports three logical operators:

➤ Logical NOT (!)

➤ Logical AND (&&)

➤ Logical OR (||)

 NOT
 The logical NOT (!) operator inverts a Bool value so that true becomes false and false becomes
true .

 The following table shows how the NOT operator works on a value:

a !a

true false

false true

 Consider the following statement:

 var happy = true

 The variable happy is of type Bool and is set to true . To invert the value of happy , use the logical y

NOT operator:

 happy = !happy

70 ❘ CHAPTER 4 BASIC OPERATORS

 The value of happy is now false . You can use the logical NOT operator in an If condition, like the
following:

 if !happy {
 println("Cheer up man!")
 }

 The preceding reads: “If NOT happy, then print the line ...” Because the value of happy is false , the
NOT operator negates it and returns a true value, which satisfi es the If condition. Therefore, the
line is printed.

 As you can see in this example, using the appropriate name for your variables can greatly aid in the
readability of your code.

 AND
 The logical AND operator creates a logical expression (a && b) where both a and b must be true in
order to evaluate to true .

 The following table shows how the AND operator works on two values. As you can see, both a and
b must be true in order for the expression to be true .

a b a && b

true true true

true false false

false true false

false false false

 Consider the following example:

 var happy = true
 var raining = false

 if happy && !raining {
 println("Let's go for a picnic!")
 }

 In the preceding example, the line “Let’s go for a picnic!” will only be printed if you are happy and
it is not raining.

 Note that Swift does not require you to wrap an expression using a pair of parentheses (needed in
Objective‐C), but you can always add it for readability:

 if (happy && !raining) {
 println("Let's go for a picnic!")
 }

 Swift supports short‐circuit evaluation for evaluating the AND expression—if the fi rst value is false ,
the second value will not be evaluated because the logical AND operator requires both values to be true .

Logical Operators ❘ 71

 OR
 The logical OR operator creates a logical expression (a || b) where either a or b needs to be true in
order to evaluate to true .

 The following table shows how the OR operator works on two values. As you can see, as long as
either a or b is true , the expression evaluates to true .

a b a || b

true true true

true false true

false true true

false false false

 Consider the following example:

 var age = 131
 if age > 130 || age < 1 {
 println("Age is out of range")
 }

 In the preceding example, the line “Age is out of range” will be printed if age is more than 130 or
less than 1. In this case, the line is printed, as age is 131.

Combining Logical Operators
 While the logical operators work with two operands, it is common to combine them together in a
single expression, as shown in the following example:

 var condition1 = false
 var condition2 = true
 var condition3 = true

 if condition1 && condition2 || condition3 {
 println("Do something")
 }

 In this example, the fi rst condition is evaluated fi rst:

condition1 (false) && condition2 (true)

 It then takes the result of the evaluation (which is false) and evaluates it with the next operand:

 false || condition3 (true)

 The result of this expression is true , and the line “Do something” is printed.

 Sometimes, however, you may not want the evaluation of the expressions to go from left to right.
Consider the following example:

 var happy = false

www.allitebooks.com

http://www.allitebooks.org

72 ❘ CHAPTER 4 BASIC OPERATORS

 var skyIsClear = true
 var weatherIsGood = true

 Suppose you want to go out only if you are happy and the sky is either clear or the weather is good.
In this case you would write the expression as follows:

 if happy && (skyIsClear || weatherIsGood) {
 println("Let's go out!")
 }

 Note the parentheses in the expression:

 (skyIsClear || weatherIsGood)

 This expression needs to be evaluated fi rst. In this example, it evaluates to true . Next, it evaluates
with the fi rst operand:

 happy (false) && true

 The fi nal expression evaluates to false , which means you are not going out today.

 The next example doesn’t use the parentheses:

 happy && skyIsClear || weatherIsGood

 Therefore, the preceding expression yields a different result:

 happy (false) && skyIsClear (true) = false
false || weatherIsGood (true) = true

 As a rule of thumb, use parentheses to group related conditions together so that they
are evaluated fi rst. Even if it is redundant sometimes, parentheses aid in the readability of your code.

 Ternary Conditional Operator
 Very often, you will use the If‐Else statement to write simple statements like the following:

 var day = 5
 var openingTime:Int

 if day == 6 || day == 7 {
 openingTime = 12
 } else {
 openingTime = 9
 }

 In the preceding code snippet, you want to know the opening time (openingTime) of a store based
on the day of the week (day). If it is Saturday (6) or Sunday (7), then the opening time is 12:00y

noon; otherwise on the weekday it is 9:00 a.m . Such a statement could be shortened using the
ternary conditional operator, as shown here:rr

 openingTime = (day == 6 || day == 7) ? 12: 9

Summary ❘ 73

 The ternary conditional operator has the following syntax:

 variable = condition ? value_if_true : value_if_false

 It fi rst evaluates the condition . If the condition evaluates to true , the value_if_true is assigned to
variable . Otherwise, the value_if_false is assigned to variable .

 SUMMARY

 In this chapter, you have seen the many operators supported in Swift. While some are standards
in other languages, such as the logical, comparison, and arithmetic operators, some are new in
Swift—such as the nil coalescing operator and the range operators. When using constant values
with the arithmetic operators, you have to pay attention to data types and be sure to check the
data type of the result if you are using a mixture of different types in your arithmetic operations.

EXERCISES

1. Write the output for the following code snippet:

 var num = 5
 var sum = ++num + num++

 println(num)
 println(sum)

2. Given the following array of numbers, write the code snippet to sum up all the odd numbers
using the half‐open range operator:

 var nums = [3,4,2,1,5,7,9,8]

3. Rewrite the following code snippet using the nil coalescing operator:

 var userInput = "5"
 var num = userInput.toInt()
 var value:Int
 if num == nil {
 value = 0
 } else {
 value = num!
 }

74 ❘ CHAPTER 4 BASIC OPERATORS

▸ WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPTS

Assignment operation Use the = operator.

Arithmetic operations Use the + , ‐ , * , and / operators.

Modulus operation Use the % operator.

Increment and decrement operations Use the ++ and –– operators.

Compound assignment operators Use the += , ‐= , *= , and /= operators.

Nil coalescing operator var c = a ?? b .b

Comparison operations Use the == , != , < , <= , > , or >= operators.

Range operations Use the closed range operator (a...b) or the half‐open
range operator (a..<b).

Logical operations Use the ! , && , or || operators.

Ternary conditional operator variable = condition ?
value_if_true : value_if_false .

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ How to defi ne and call a function

➤ How to defi ne input parameters

➤ How to return a value or multiple values from a function

➤ How to defi ne external parameter names

➤ How to defi ne default parameter values

➤ How to defi ne variadic parameters

➤ How to defi ne constant and variable parameters

➤ How to defi ne in-out parameters

➤ How to defi ne and call function type variables

➤ How to return a function type from a function

➤ How to defi ne nested functions

 A function is a group of statements that perform a specifi c set of tasks. For example, a
particular function may calculate the bonus of an employee based on a few parameters, such
as his or her performance rating, number of years in the company, and so on. A function may
also return a value, such as the amount of bonus to which an employee is entitled. In Swift, a
function has a name, and it may also accept parameters and optionally return a value (or a set
of values). Functions in Swift work similarly to traditional C functions, and they also support
features such as external parameter names, which enables them to mirror the verbosity of
Objective‐C methods.

 5

76 ❘ CHAPTER 5 FUNCTIONS

 DEFINING AND CALLING A FUNCTION

 In Swift, a function is defi ned using the func keyword, like this:

 func doSomething() {
 println("doSomething")
 }

 The preceding code snippet defi nes a function called doSomething . It does not take in any inputs
(known as parameters) and does not return a value (technically it does return a s Void value).

 To call the function, simply call its name followed by a pair of empty parentheses:

 doSomething()

 Input Parameters
 A function can also optionally defi ne one or more named typed inputs. The following function takes
in one single typed input parameter :

 func doSomething(num: Int) {
 println(num)
 }

 The num parameter is used internally within the function, and its data type is Int . To call this
function, call its name and pass in an integer value (known as an argument), like this:t

 doSomething(5)
 //---or---
 var num = 5
 doSomething(num)

 The following function takes in two input parameters, both of type Int :

 func doSomething(num1: Int, num2: Int) {
 println(num1, num2)

 }

 To call this function, pass it two integer values as the argument:

 doSomething(5, 6)

 Returning a Value
 Functions are not required to return a value. However, if you want the function to return a value,
use the ‐> operator after the function declaration. The following function returns an integer value:

 func doSomething(num1: Int, num2: Int, num3: Int) ‐> Int {
 return num1 + num2 + num3

 }

 You use the return keyword to return a value from a function and then exit it. When the function
returns a value, you can assign it to a variable or constant, like this:

Defi ning and Calling a Function ❘ 77

 //---value returned from the function is assigned to a variable---
 var sum = doSomething(5,6,7)

 Return values from a function can also be ignored:

 //---return value from a function is ignored---
 doSomething(5,6,7)

 Returning Multiple Values
 Functions are not limited to returning a single value. In some cases, it is important for functions
to return multiple values. In Swift, you can use a tuple type in a function to return multiple values.
The following example shows a function that takes in a string containing numbers, examines each
character in the string, and counts the number of odd and even numbers contained in it:

 func countNumbers(string: String) -> (odd:Int, even:Int) {
 var odd = 0, even = 0
 for char in string {
 let digit = String(char).toInt()
 if (digit != nil) {
 (digit!) % 2 == 0 ? even++ : odd++
 }
 }
 return (odd, even)
 }

 The (odd:Int, even:Int) return type specifi es the members of the tuple that would be returned by
the function— odd (of type Int) and even (of type Int).

 To use this function, pass it a string and assign the result to a variable or constant, like this:

 var result = countNumbers("123456789")

 The return result is stored as a tuple containing two integer members, named odd and even :

 println("Odd: \(result.odd)") //---5---
 println("Even: \(result.even)") //---4---

NOTE The use of the ! character is known as forced unwrapping of an
optional’s value . For more information of the concept of optionals in Swift,
refer to Chapter 2 , “Data Types.”

 Function Parameter Names
 So far in the previous discussion of functions with parameters, each parameter has a name. Take the
example of this function shown previously:

 func doSomething(num1: Int, num2: Int) {
 println(num1, num2)
 }

78 ❘ CHAPTER 5 FUNCTIONS

 In this example, num1 and num2 are the two parameters names for the function and they can only be
used internally within the function. These are called local parameter names .

 When calling this function, these two parameters names are not used at all:

 doSomething(5, 6)

 In more complex functions with multiple parameters, the use of each parameter is sometimes not
obvious. Therefore, it would be useful to be able to name the parameter(s) when passing arguments
to a function. In Swift, you can assign an external parameter name to individual parameters in a
function. Consider the following example:

 func doSomething(num1: Int, secondNum num2: Int) { m

 }

 In this example, the second parameter is prefi xed with an external parameter name secondNum . To
call the function, you now need to specify the external parameter name, like this:

 doSomething(5, secondNum: 6)

NOTE If you defi ne a function within a class (discussed in more details in
Chapter 8), the second parameter onwards automatically becomes an external
parameter name. In other words, there is no need to explicitly specify the
external parameter names for the parameters (second parameter onwards) in
the function declaration.

 You can also specify an external parameter name for the fi rst parameter, such as the following:

 func doSomething(firstNum num1: Int, secondNum num2: Int) {m

 }

 In this case, you need to specify external parameter names for both parameters:

 doSomething(firstNum:5, secondNum:6)

 Figure 5-1 shows the difference between external and local parameter names.

 FIGURE 5-1

func doSomething(firstNum num1: Int, secondNum num2: Int) {

external parameter name local parameter name

Defi ning and Calling a Function ❘ 79

 External parameter names are very useful for making function names descriptive. Consider the
following examples of calling functions using external parameter names:

calculateDistance (point1, fromSecondPoint :point2)
printName (strName, withTitle :"Dr.")
joinString (str1, withString2 :str2 andString3 :str3 usingSeparator :",")

 External Parameter Names Shorthand
 Sometimes the local parameter name itself is descriptive enough to be used as an external parameter
name. Consider the previous example:

func doSomething(num1: Int, num2: Int) {
 println(num1, num2)
 }

 Suppose you want to use num1 as the external parameter name for the fi rst parameter and num2 for
the second parameter. You could write it as follows:

 func doSomething(num1 num1: Int, num2 num2: Int) {

 }

 Instead of repeating the parameter names twice, you could use the shorthand # , like this:

 func doSomething(# num1: Int, # num2: Int) {

 }

 To call the function, you specify the external parameter names like this:

 doSomething(num1 :5, num2 :6)

 Default Parameter Values
 You can assign a default value to a parameter so that it becomes optional when you are calling it.
Consider the following function in which you have three parameters:

 func joinName(firstName:String,
 lastName:String,
 joiner:String = " ") ‐> String {
 return "\(firstName)\(joiner)\(lastName)"
 }

 The third parameter has a default value of a single space. When calling this function with three
arguments, you need to specify the default parameter name, like this:

 var fullName = joinName("Wei‐Meng", "Lee", joiner :",")
 println(fullName) //---Wei-Meng,Lee---

80 ❘ CHAPTER 5 FUNCTIONS

 You can omit the default parameter when calling the function and it will use the default value of the
single space for the third argument:

 fullName = joinName("Wei-Meng","Lee")
 println(fullName) //---Wei-Meng Lee---

NOTE For default parameters, you need to specify the parameter name explicitly
when calling the function. In addition, for a default parameter, there is no need
to specify an external parameter name or use the # shorthand when defi ning the
function, as the default parameter implicitly indicates a named argument.

NOTE Parameters with a default value must always be placed at the end of
the parameter list.

 You need to be careful when defi ning functions of the same name but with different input
parameters. Consider the case where you have two functions both named joinName and the fi rst one
has a default parameter:

 func joinName(firstName:String,
 lastName:String,
 joiner:String = " ") -> String {
 return "\(firstName)\(joiner)\(lastName)"
 }

 func joinName(firstName:String,
 lastName:String) -> String {
 return "\(firstName)\(lastName)"
 }

 To call the fi rst function, you need to specify the external parameter name for the default parameter,
like this:

 var fullName = joinName("Wei-Meng", "Lee", joiner:",")
 println(fullName) //---Wei-Meng,Lee---

 If you now call joinName by passing only two arguments, it will result in a compilation error
because the compiler is not able to resolve which function to call:

 var fullName = joinName("Wei-Meng","Lee")

 Variadic (Variable) Parameters
 In some situations you may need to defi ne a function that accepts a variable number
of arguments. For example, suppose you want to defi ne a function that calculates the

Defi ning and Calling a Function ❘ 81

average of a series of numbers passed in as arguments. In this case your function can be defi ned as
follows:

 func average(nums: Int...) ‐> Float {
 var sum: Float = 0
 for num in nums {
 sum += Float(num)
 }
 return sum/Float(nums.count)
 }

 The . . . (three periods) indicates that the parameter accepts a varying number of
arguments, which in this case are of type Int . A parameter that accepts a variable number
of values is known as a variadic parameter. You can call the function by passing it arguments
of any length:

 println(average(1,2,3)) //---2.0---
 println(average(1,2,3,4)) //---2.5---
 println(average(1,2,3,4,5,6)) //---3.4---

NOTE A variadic parameter must appear last in the parameter list. Also, if you
have a function that accepts default parameter values, the variadic parameter
must be last in the parameter list.

 Constant and Variable Parameters
 By default, all the parameters in a function are constants. In other words, your code within the
function is not allowed to modify the parameter. The following illustrates this:

 func doSomething(num: Int) {
 num++ //---this is illegal as num is a constant by default---
 println(num)
 }

 If you want to modify the value of a parameter, you can copy it out to another variable, like this:

 func doSomething(num: Int) {
 var n = num
 n++
 println(n)
 }

NOTE The variable n is visible only within the doSomething() function. In
general, a variable’s scope is limited to the function in which it is declared.

82 ❘ CHAPTER 5 FUNCTIONS

 However, there is an easier way: Simply prefi x the parameter name with the var keyword to make
the parameter a variable:

 func doSomething(var num: Int) {
 num++
 println(num)
 }

 Note that the parameter duplicates a copy of the argument that is passed in, as the following code
snippet shows:

 num = 8
 doSomething(num) //---prints out 9---
 println(num) //---prints out 8; original value of 8 is unchanged---

 Any changes made to the variable that is passed to the function remain unchanged after the function
has exited.

 In‐Out Parameters
 The previous section showed that a variable passed into a function does not change its value after a
function call has returned. This is because the function makes a copy of the variable and all changes
are made to the copy.

NOTE When passing value types (such as Int , Double , Float , struct , and
String) into a function, the function makes a copy of the variables. However,
when passing an instance of a reference type (such as classes), the function
references the original instance of the type and does not make a copy.
Chapter 8 discusses classes in more detail.

 However, sometimes you want a function to change the value of a variable after it has returned. A
parameter that persists the changes made within the function is known as an in‐out parameter. Thet
following shows an example of an in‐out parameter:

 func fullName(inout name:String, withTitle title:String) {
 name = title + " " + name;
 }

 In the preceding example, the name parameter is prefi xed with the inout keyword. This keyword
specifi es that changes made to the name parameter will be persisted after the function has returned.
To see how this works, consider the following code snippet:

 var myName = "Wei-Meng Lee"
 fullName(&myName, withTitle:"Mr.")
 println(myName) //---prints out "Mr. Wei-Meng Lee"---

 As you can see, the original value of myName was “Wei‐Meng Lee ”. However, after the function has
returned, its value has changed to “ Mr. Wei‐Meng Lee ”.

Function Types ❘ 83

 Here are the things you need to know when calling a function with inout parameters:

➤ You need to pass a variable to an inout parameter; constants are not allowed.

➤ You need to prefi x the & character before the variable that is passed into an inout parameter,
to indicate that its value can be changed by the function.

➤ In‐out parameters cannot have default values.

➤ In‐out parameters cannot be marked with the var or let keyword.

 FUNCTION TYPES

 Every function has a specifi c function type. To understand this, consider the following two
functions:

 func sum(num1: Int, num2: Int) -> Int {
 return num1 + num2
 }

 func diff(num1: Int, num2: Int) -> Int {
 return abs(num1 - num2)
 }

 Both functions accept two parameters and return a value of type Int . The type of each function is
hence (Int, Int) ‐> Int .

NOTE Usually, the type of each function is called the function signature in
programming languages such as Java and C#.

 As another example, the following function has the type () ‐> () , which you can read as “a
function that does not have any parameters and returns Void”: d

 func doSomething() {
 println("doSomething")
 }

 Defi ning a Function Type Variable
 In Swift, you can defi ne a variable or constant as a function type. For example, you could do the
following:

 var myFunction: (Int, Int) -> Int

 The preceding statement basically defi nes a variable called myFunction of type “a function that
takes in two Int parameters and returns an Int value .” Because myFunc has the same function type
as the sum() function discussed earlier, you can then assign the sum() function to it:

 myFunction = sum

84 ❘ CHAPTER 5 FUNCTIONS

 You can shorten the preceding statements to:

 var myFunction: (Int, Int) -> Int = sum

 Calling a Function Type Variable
 You can now call the sum() function using the function type variable myFunction , like this:

 println(myFunction(3,4)) //---prints out 7---

 The myFunction variable can be assigned another function that has the (Int, Int) ‐> Int
function type:

 myFunction = diff

 This time, if you call the myFunction again, you will instead be calling the diff()
function:

 println(myFunction(3,4)) //---prints out 1---

 The following table shows the defi nition of some functions and their corresponding function
types.

FUNCTION DEFINITION FUNCTION TYPE (DESCRIPTION)

func average(nums: Int...)

 ‐> Float {

 }

 (Int...) ‐> Float

 The parameter is a variadic parameter;
hence, you need to specify the three
periods (...).

 func joinName(firstName:String,

 lastName:String,

 joiner:String = " ") ‐> String {

 }

(String, String, String) ‐> String

 You need to specify the type for the
default parameter (third parameter).

func doSomething(num1: Int,

 num2: Int) {

 }

(Int, Int) ‐> ()

The function does not return a value;
hence, you need the () in the function
type.

func doSomething() {

 }
() ‐> ()

 The function does not have any
parameter and does not return a value;
hence, you need to specify the () for
both parameter and return type.

Nested Functions ❘ 85

 Returning Function Type in a Function
 A function type can be used as the return type of a function. Consider the following example:

 func chooseFunction(choice:Int) -> (Int, Int)->Int {
 if choice == 0 {
 return sum
 } else {
 return diff
 }
 }

 The chooseFunction() function takes in an Int parameter and returns a function of type
(Int, Int) ‐> Int . In this case, if choice is 0, then it returns the sum() function; otherwise it
returns the diff() function.

 To use the chooseFunction() function, call it and pass in a value and assign its return value to a
variable or constant:

 var functionToUse = chooseFunction(0)

 The return value can now be called like a function:

 println(functionToUse(2,6)) //---prints out 8---

 functionToUse = chooseFunction(1)
 println(functionToUse(2,6)) //---prints out 4---

 NESTED FUNCTIONS

 You can defi ne functions within a function—this is known as nested functions . A nested function
can only be called within the function in which it is defi ned.

 The chooseFunction() function shown in the previous section can be rewritten using nested functions:

 func chooseFunction(function:Int) -> (Int, Int)->Int {
 func sum(num1: Int, num2: Int) ‐> Int {
 return num1 + num2
 }

 func diff(num1: Int, num2: Int) ‐> Int {
 return abs(num1 ‐ num2)
 }

 if function == 0 {
 return sum
 } else {
 return diff
 }

 }

86 ❘ CHAPTER 5 FUNCTIONS

 SUMMARY

 In this chapter, you have seen how functions are defi ned and used. You have also seen the various
types of parameters that you can defi ne in your functions and how to call them. Functions play a
pivotal role in Swift programming, as they are the cornerstone of object‐oriented programming.
Chapter 8 discusses how functions are used in classes.

EXERCISES

1. Modify the following code snippet so that it can also return the number of digits divisible by 3:

 func countNumbers(string: String) -> (odd:Int, even:Int) {
 var odd = 0, even = 0
 for char in string {
 let digit = String(char).toInt()
 if (digit != nil) {
 (digit!) % 2 == 0 ? even++ : odd++
 }
 }
 return (odd, even)
 }

2. Declare a function so that you can call it like this:

 doSomething("abc", withSomething: "xyz")

3. Write a function that takes in a variable number of Int parameters and returns the sum of all
the arguments.

4. Write a variadic function called cat() using default parameters that can be called in the
following manner with the outputs shown:

 println(cat(joiner:":", nums: 1,2,3,4,5,6,7,8,9))
 // 1:2:3:4:5:6:7:8:9

 println(cat(nums: 1,2,3,4,5))
 // 1 2 3 4 5

Summary ❘ 87

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Defi ning a function Use the func keyword.

Returning multiple
values from a function

Use a tuple to return multiple values from a function.

External parameter
names

You can specify an external parameter name to a parameter in a
function.

External parameter
names shorthand

To use the parameter name as an external parameter name, use the #
character.

Default parameter
values

You can specify default values for a parameter. For default
parameters, you need to specify the parameter name explicitly when
calling the function. In addition, for a default parameter, there is no
need to specify an external parameter name or use the # shorthand
when defi ning the function, as the default parameter implicitly
indicates a named argument.

Variadic parameters A parameter that accepts a variable number of values is known as
a variadic parameter. Note that a variadic parameter must appear
last in the parameter list. Also, if you have a function that accepts
default parameter values, the variadic parameter must be last in the
parameter list.

Constant parameters By default, all the parameters in a function are constants. To modify
the values of parameters, prefi x them with the var keyword.

In‐out parameters A parameter that persists the changes made within the function is
known as an in‐out parameter.

Function types Every function has a specifi c function type—it specifi es the
parameters’ list and the return type.

Calling a function type
variable

You can call a function type variable just like a normal variable.

Returning a function
type in a function

You can return a function type from a function.

Nested functions You can embed functions within a function.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ How to create an array

➤ How to retrieve elements from an array

➤ How to insert elements into an array

➤ How to modify elements in an array

➤ How to append elements to an array

➤ How to check the size of an array

➤ How to remove elements from an array

➤ How to iterate over an array

➤ How to test arrays for equality

➤ How to create a dictionary

➤ How to retrieve elements from a dictionary

➤ How to insert elements into a dictionary

➤ How to modify elements in a dictionary

➤ How to append elements to a dictionary

➤ How to check the size of a dictionary

➤ How to remove elements from a dictionary

➤ How to iterate over a dictionary

➤ How to test dictionaries for equality

 6

90 ❘ CHAPTER 6 COLLECTIONS

 Swift provides two types of collections for storing data of the same type: arrays and dictionaries.
An array stores its items in an ordered fashion, whereas a dictionary stores its items in an
unordered fashion and uses a unique key to identify each item.

 In Swift, both the array and the dictionary are very clear about the type of data they are
storing. Unlike the NSArray and NSDictionary classes in Objective‐C, arrays and dictionaries
in Swift use either type inference or explicit type declaration to ensure that only specifi c
types of data can be stored. This strict rule about data types enables developers to write
type‐safe code.

 ARRAYS

 An array is an indexed collection of objects. The following statement shows an array containing
three items:

 var OSes = ["iOS", "Android", "Windows Phone"]

 In Swift, you create an array using the [] syntax. The compiler automatically infers the type of
items inside the array; in this case it is an array of String elements.

 In Swift, arrays are implemented internally as structures, not as classes.

 Mutability of Arrays
 When you declare an array using the var keyword, it is a mutable array —meaning the array’s
size is not fi xed and during run time you can add or remove elements from the array. In contrast,
if you declare the array using the let keyword, you are creating an immutable array, which
means that once the array is created, its element(s) cannot be removed, nor can new elements
be added:

 //---immutable array---
 let OSes = ["iOS", "Android", "Windows Phone"]

 Array Data Types
 Note that if you mix the elements of an array with different types, like the following, the compiler
will generate an error:

 var OSes = ["iOS", "Android", "Windows Phone", 25]

 The compiler will try to infer the data type when the array is being initialized. The fourth element’s
type is not compatible with the rest of the elements and hence the compilation fails.

 In general, most of the time you want your arrays to contain items of the same type, and you can do
so explicitly like this:

 var OSes:Array<String> = ["iOS", "Android", "Windows Phone"]

Arrays ❘ 91

 There is a shorthand syntax for arrays whereby you can simply specify the type using the following
form: [DataType] (where DataType is the type of data you want your array to store), like this:

 var OSes:[String] = ["iOS", "Android", "Windows Phone"]

 The [String] forces the compiler to check the types of elements inside the array and fl ag an error
when it detects elements of different types.

 The following example shows an array of integers:

 var numbers:[Int] = [0,1,2,3,4,5,6,7,8,9]

 Retrieving Elements from an Array
 To retrieve the items inside an array, use the subscript syntax , as follows:

 var item1 = OSes[0] // "iOS"
 var item2 = OSes[1] // "Android"
 var item3 = OSes[2] // "Windows Phone"

 Subscripts enable you to access a specifi c item of an array directly by writing a value
(commonly known as the index) in square brackets after the array name. Array indices start x
at 0, not at 1.

NOTE The ordering of objects in an array is important, as you access elements
inside an array using their position.

NOTE External parameter names are covered in more detail in Chapter 5 ,
“Functions.”

 Inserting Elements into an Array
 To insert an element into an array at a particular index, use the insert() function:

 //---inserts a new element into the array at index 2---
 OSes.insert("BlackBerry", atIndex: 2)

 Note that in the preceding function call for insert() , you specify the parameter name ‐ atIndex .
This is known as an external parameter name and is usually needed if the creator of this function
dictates that it needs to be specifi ed.

 After inserting the element, the array now contains the following elements:

 [iOS, Android, BlackBerry , Windows Phone]

92 ❘ CHAPTER 6 COLLECTIONS

 You can insert an element using an index up to the array’s size. Figure 6-1 shows that
the array size is currently 4, and you can insert an element to the back of the array using the
following:

 OSes.insert("Tizen", atIndex: 4)

0
iOS

1
Andriod

2
BlackBerry

43
Windows
Phone

 FIGURE 6-1

 However, the following statement will result in a runtime failure, as the index of 5 is out of the
range (maximum accessible index is 4):

 //---index out of range---
 OSes.insert("Tizen", atIndex: 5)

 Modifying Elements in an Array
 To change the value of an existing item in the array, specify the index of the item and assign a new
value to it:

 OSes[3] = "WinPhone"

 The array now contains the updated element:

 [iOS, Android, BlackBerry, WinPhone]

 Note that you can only modify values of arrays that were declared using the var keyword. If an
array is declared using the let keyword, its values are not modifi able.

 Appending Elements to an Array
 To append an item to an array, use the append() function:

 OSes.append("Tizen")

 The array now contains the appended element:

 [iOS, Android, BlackBerry, WinPhone, Tizen]

 Alternatively, you can also use the += operator to append to an array:

 OSes += ["Tizen"]

Arrays ❘ 93

 You can also append an array to an existing array:

 OSes += ["Symbian", "Bada"]

 The array now contains the appended elements:

 [iOS, Android, BlackBerry, WinPhone, Tizen, Symbian , Bada]

Checking the Size of an Array
 To get the length of an array, use the count property:

 var lengthofArray = OSes.count //---returns 7---

 To check whether an array is empty, use the isEmpty() function:

 var arrayIsEmpty = OSes.isEmpty

Removing Elements from an Array
 You can remove elements from an array using the following functions:

 var os1 = OSes. removeAtIndex (3) // removes "WinPhone"
 var os2 = OSes. removeLast () // removes "Bada"
 OSes. removeAll (keepCapacity: true) // removes all element

 Both the removeAtIndex() and removeLast() functions return the item removed.

 For the removeAll() function, it clears all elements in the array. If the keepCapacity parameter is
set to true , then the array will maintain its size.

NOTE The keepCapacity argument is more for the underlying implementation
of the array. Keeping the capacity means that additional elements can be
stored later without needing the array to trigger a reallocation of the backing
storage.

 Iterating over an Array
 To iterate over an array, you can use the For‐In loop, like this:

 var OSes = ["iOS", "Android", "Windows Phone"]
 for OS in OSes {
 println(OS)
 }

94 ❘ CHAPTER 6 COLLECTIONS

 You can also access specifi c elements in the array using its indices:

 var OSes = ["iOS", "Android", "Windows Phone"]
 for index in 0...2 {
 println(OSes[index])
 }

 If you need the index and value of each element in the array, you can use the global enumerate
function to return a tuple for each element in the array:

 var OSes = ["iOS", "Android", "Windows Phone"]
 for (index, value) in enumerate(OSes) {
 println("element \(index) - \(value)")
 }

 The preceding code snippet outputs the following:

 element 0 - iOS
 element 1 - Android
 element 2 - Windows Phone

 Creating an Empty Array
 In Swift, you can create an empty array of a specifi c data type using the initializer syntax, as follows:

 var names = [String]()

 The preceding creates an empty array of type String . To populate the array, you can use the
append() method:

 names.append("Sienna Guillory")
 names.append("William Fichtner")
 names.append("Hugh Laurie")
 names.append("Faye Dunaway")
 names.append("Helen Mirren")

 for name in names {
 println(name) //---print out all the names in the array---
 }

 To make names an empty array again, assign it to a pair of empty brackets:

 names = []

 The following example creates an empty array of type Int :

 var nums = [Int]()

 You can also create an array of a specifi c size and initialize each element in the array to a specifi c
value:

 var scores = [Float](count:5, repeatedValue:0.0)

Arrays ❘ 95

 The count parameter indicates the size of the array and the repeatedValue parameter specifi es
the initial value for each element in the array. In fact, the preceding statement can also be rewritten
without explicitly specifying the type:

 var scores = Array(count:5, repeatedValue:0.0)

 The type can be inferred from the argument passed to the repeatedValue parameter. If you print
out the values for each element in the array as shown here

 for score in scores {
 println(score)
 }

 you will be able to see initial values for each element:

 0.0
 0.0
 0.0
 0.0
 0.0

 Testing Arrays for Equality
 You can test the equality of two arrays using the == operator. Two arrays are equal if
they contain exactly the same elements and in exactly the same order. Consider the following
example:

 var array1 = [1,2,3,4,5]
 var array2 = [1,2,3,4]

 These two arrays are not equal, as they do not have the same number of elements:

 println("Equal: \(array1 == array2)") //---false---

 Now append another element to array2 :

 array2.append(5)

 These two arrays are now equal, as they do have the same number of elements in the same
exact order:

 println("Equal: \(array1 == array2)") //---true---

 Suppose you have another array:

 var array3 = [5,1,2,3,4]

 It is not equal to array1 because the order of the elements is not the same:

 println("Equal: \(array1 == array3)") //---false---

96 ❘ CHAPTER 6 COLLECTIONS

 DICTIONARIES

 A dictionary is a collection of objects of the same type that is identifi ed using a key. Consider the
following example:

 var platforms: Dictionary<String, String> = [
 "Apple": "iOS",
 "Google" : "Android",
 "Microsoft" : "Windows Phone"
]

 Here, platforms is a dictionary containing three items. Each item is a key/value pair. For example,
"Apple" is the key that contains the value "iOS" . The declaration specifi es that the key and value
must both be of the String type. Due to type inference, you can shorten the declaration without
specifying the Dictionary keyword and type specifi cations:

 var platforms = [
 "Apple": "iOS",
 "Google" : "Android",
 "Microsoft" : "Windows Phone"
]

 Unlike arrays, the ordering of items in a dictionary is not important. This is because
items are identifi ed by their keys and not their positions. The preceding could also be written
like this:

 var platforms = [
 "Microsoft" : "Windows Phone",
 "Google" : "Android",
 "Apple": "iOS"
]

 The key of an item in a dictionary is not limited to String —it can be any of the hashable types
(i.e., it must be uniquely representable). The following example shows a dictionary using an integer
as its key:

 var ranking = [
 1: "Gold",
 2: "Silver",
 3: "Bronze"
]

 The value of an item can itself be another array, as the following example shows:

 var products = [
 "Apple" : ["iPhone", "iPad", "iPod touch"],
 "Google" : ["Nexus S", "Nexus 4", "Nexus 5"],
 "Microsoft" : ["Lumia 920", "Lumia 1320","Lumia 1520"]
]

Dictionaries ❘ 97

 To access a particular product in the preceding example, you would fi rst specify the key of the item
you want to retrieve, followed by the index of the array:

 println(products["Apple"]![0]) //---iPhone---
 println(products["Apple"]![1]) //---iPad---
 println(products["Google"]![0]) //---Nexus S---

 Note that you have to use the ! to force unwrap the value of the dictionary. This is because the
dictionary returns you an optional value (it could potentially return you a nil value if you specify a
key that does not exist), like this:

 var models = products["Samsung"] //---models is nil---

 The safest way to extract values from a dictionary is to test for nil , like this:

 var models = products["Apple"]
 if models != nil {
 println(models![0]) //---iPhone---
 }

 Mutability of Dictionaries
 When creating a dictionary, its mutability (its ability to change its size after it has been created)
depends on whether you use either the let or the var keyword. If you use the let keyword, the
dictionary is immutable (its size cannot be changed after it has been created), as you are creating
a constant. If you use the var keyword, the dictionary is mutable (its size can be changed after its
creation), as you are creating a variable.

 Retrieving Elements from a Dictionary
 To access an item in a dictionary using its subscript, specify its key:

 var platforms = [
 "Apple": "iOS",
 "Google" : "Android",
 "Microsoft" : "Windows Phone"
]

 var ranking = [
 1: "Gold",
 2: "Silver",
 3: "Bronze"
]

println(platforms["Apple"]) //---Optional("iOS")---
println(ranking[2]) //---Optional("Silver")---

 Because it is possible that the specifi ed key might not exist in the dictionary, the returning result is
an optional value of the dictionary’s value type, which is l String? in the fi rst example and Int? in
the second.

98 ❘ CHAPTER 6 COLLECTIONS

 You should check whether the value exists before proceeding to work with it:

 let p = platforms["Apple"]
 if p != nil {
 println(p!) //---iOS---
 } else {
 println("Key not found")
 }

 Checking the Size of a Dictionary
 To get the number of items within a dictionary, use the count property (read‐only):

 var platforms = [
 "Apple": "iOS",
 "Google" : "Android",
 "Microsoft" : "Windows Phone"
]

 println(platforms.count) //---3---

 Modifying an Item in the Dictionary
 To replace the value of an item inside a dictionary, specify its key and assign a new value to it:

 var platforms = [
 "Apple": "iOS",
 "Google" : "Android",
 "Microsoft" : "Windows Phone"
]

 platforms["Microsoft"] = "WinPhone"

 If the specifi ed key does not already exist in the dictionary, a new item is added. If it already exists,
its corresponding value is updated.

 Alternatively, you can also use the updateValue(forKey:) method and specify the new value for the
item as well as its key:

 platforms.updateValue("WinPhone", forKey: "Microsoft")

 Note that like arrays, if a dictionary is created using the let keyword, you will not be able to
modify the value of its members. You can modify the values of a dictionary only if you declare it
using the var keyword.

NOTE For a discussion on optionals, please refer to Chapter 2 , “Data Types.”

Dictionaries ❘ 99

 Like the previous example, if the key specifi ed does not exist in the dictionary, a new item will be
added. However, the updateValue(forKey:) method also returns the old value for the specifi ed
item if that item already exists. This enables you to check whether the item has been updated. The
updateValue(forKey:) method returns an optional value of the dictionary value type (l String? in
this example). It will contain a string value if the item already exists and nil if the specifi ed key is
not found (meaning a new item is inserted). You can use this to check whether the item has been
updated or newly inserted:

 if let oldValue = platforms.updateValue("WinPhone", forKey: "Microsoft")
{
 println("The old value for 'Microsoft' was \(oldValue).")
 } else {
 println("New key inserted!")
 }

 Removing an Item from the Dictionary
 To remove an item from a dictionary, you can simply set it to nil :

 var platforms = [
 "Apple": "iOS",
 "Google" : "Android",
 "Microsoft" : "Windows Phone"
]

 platforms["Microsoft"] = nil;
 println(platforms.count) //---2---

 The number of items inside the dictionary would now be reduced by one.

 Alternatively, you can use the removeValueForKey() method:

 if let removedValue = platforms.removeValueForKey("Microsoft") {
 println("Platform removed: \(removedValue)")
 } else {
 println("Key not found")
 }

 Like the updateValue(forKey:) method discussed in the previous section, the
removeValueForKey() method returns the value of the key to be removed, and nil if the key does
not exist.

 Iterating over a Dictionary
 There are a couple of ways to iterate through a dictionary. First, you can use the For‐In loop, like this:

 var platforms = [
 "Apple": "iOS",
 "Google" : "Android",
 "Microsoft" : "Windows Phone"

100 ❘ CHAPTER 6 COLLECTIONS

]

 for platform in platforms {
 println(platform)
 }

 The preceding will output the following:

 (Microsoft, Windows Phone)
 (Google, Android)
 (Apple, iOS)

NOTE Observe in the preceding output that the values returned from a
dictionary might not necessarily follow the order in which they are added.

 You can also specify the key and value separately:

 for (company, platform) in platforms {
 println("\(company) - \(platform)")
 }

 The preceding will output the following:

 Microsoft - Windows Phone
 Google - Android
 Apple - iOS

 You can also use the For‐In loop to iterate through the keys inside a dictionary using the keys
property:

 for company in platforms.keys {
 println("Company - \(company)")
 }

 The preceding code snippet will output the following:

 Company - Microsoft
 Company - Google
 Company - Apple

 The following example iterates through the values in a dictionary using the values property:

 for platform in platforms.values {
 println("Platform - \(platform)")
 }

 The preceding code snippet will output the following:

 Platform - Windows Phone
 Platform - Android
 Platform - iOS

Dictionaries ❘ 101

 You can also assign the keys or values of a dictionary directly to an array:

 let companies = platforms.keys
 let oses = platforms.values

 Creating an Empty Dictionary
 In Swift, you can create an empty dictionary of a specifi c data type using the initializer syntax,
like this:

 var months = Dictionary<Int, String>()

 The preceding example creates an empty dictionary of Int key type and String value type.

 To populate the dictionary, specify the key and its corresponding value:

 months[1] = "January"
 months[2] = "February"
 months[3] = "March"
 months[4] = "April"
 months[5] = "May"
 months[6] = "June"
 months[7] = "July"
 months[8] = "August"
 months[9] = "September"
 months[10] = "October"
 months[11] = "November"
 months[12] = "December"

 To make months an empty dictionary again, assign it to a pair of brackets with a colon
within it:

 months = [:]

 Testing Dictionaries for Equality
 You can test the equality of two dictionaries using the == operator. Two dictionaries are equal if
they contain exactly the same keys and values, as the following illustrates:

 var dic1 = [
 "1": "a",
 "2": "b",
 "3": "c",
]

 var dic2 = [
 "3": "c",
 "1": "a",
]

 println("Equal: \(dic1 == dic2)") //---false---

102 ❘ CHAPTER 6 COLLECTIONS

 The preceding expression evaluates to false, as the two dictionaries do not contain the same exact
number of keys and values. However, if you add a new item to dic2 , then it will evaluate to true :

 dic2["2"] = "b"
 println("Equal: \(dic1 == dic2)") //---true---

 COPYING THE BEHAVIOR OF ARRAYS AND DICTIONARIES

 You can copy an array by assigning it to another variable or constant, like this:

 var array1 = [1,2,3,4,5]
 var array2 = array1

 In the preceding example, array1 is assigned to
another variable array2 . In Swift, when you assign
an array to another variable, a copy of the original
array is duplicated and assigned to the second array, as
shown in Figure 6-2 .

 To prove this, you can make some changes to
array1 and then output the content of both arrays,
like this:

 array1[1] = 20
 println(array1) //---[1,20,3,4,5]---
 println(array2) //---[1,2,3,4,5]---

 As evident in the result, a change to array1 ’s element only affects itself.

 For dictionaries, copying behavior is similar—a copy of the dictionary is created and assigned to the
second variable. Consider the following example dictionary:

 var colors = [
 1 : "Red",
 2 : "Green",
 3 : "Blue"
]

 The following statement copies the dictionary to another one:

 var copyOfColors = colors

 Make a change to the colors dictionary

 colors[1] = "Yellow"

 and print the values for both dictionaries:

 for color in colors {
 println(color)

1

array1

array2

1
2
2

3
3

4
4

5
5

 FIGURE 6-2

Summary ❘ 103

 }

 for color in copyOfColors {
 println(color)
 }

 You will see that colors now contains the following items

 (1, Yellow)
 (2, Green)
 (3, Blue)

 and copyOfColors contains the original list of items:

 (1, Red)
 (2, Green)
 (3, Blue)

 SUMMARY

 In this chapter, you learned about the two collection types in Swift: arrays and dictionaries. Both
arrays and dictionaries contain items of the same type. The fundamental difference between an
array and a dictionary is the way items are stored and retrieved. For arrays, the order in which items
are added is important, as it affects the positioning of items and hence how they are retrieved. For
dictionaries, items are identifi ed using a unique key, which provides a lot more fl exibility when it
comes to adding and retrieving items.

EXERCISES

1. Create an array of integers and output all the odd numbers contained within it.

2. Create a dictionary to store a user’s info, such as username, password, and date of birth.

3. Given the following code snippet:

 var products = [
 "Apple" : ["iPhone", "iPad", "iPod touch"],
 "Google" : ["Nexus S", "Nexus 4", "Nexus 5"],
 "Microsoft" : ["Lumia 920", "Lumia 1320","Lumia 1520"]
]

 Write the code to print out the following:

 Microsoft
 ========
 Lumia 920
 Lumia 1320
 Lumia 1520

 Apple
 ========

104 ❘ CHAPTER 6 COLLECTIONS

 iPhone
 iPad
 iPod touch

 Google
 ========
 Nexus S
 Nexus 4
 Nexus 5

Summary ❘ 105

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Creating an array You create an array using the [type] syntax.

Mutability of arrays Arrays are immutable if they are created with the
let keyword; they are mutable only if they are
created with the var keyword.

Retrieving elements from an array You can use the subscript syntax to access an
individual element of an array.

Inserting an element into an array Use the insert() function to insert an element
into an array.

Appending an element to an array Use the append() function, or you can directly
add an array to another array using the +=
operator.

Checking the size of an array Use the count property.

Removing an element from an array Use the removeAtIndex() , removeLast() , or
removeAll() function.

Iterating over an array Use the For‐In loop.

Testing array equality Use the == operator.

Creating a dictionary You create a dictionary using the
Dictionary[type , type] syntax.

Retrieving the elements from a dictionary Specify the key of the items in a dictionary;
values from a dictionary are of optional type.

Mutability of dictionaries Dictionaries are immutable if they are created
with the let keyword; they are mutable only if
they are created with the var keyword.

Size of a dictionary Use the count property.

Modifying elements in a dictionary Specify the key of the item and assign it the new
value.

Removing an element in a dictionary Specify the key of the item and set it to nil .

Iterating over a dictionary Use the For‐In loop.

Testing dictionaries for equality Use the == operator.

Copy behaviors of arrays and dictionaries When an array or dictionary is copied, a copy is
made and assigned to the variable.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ How to make decisions using the If‐Else statement

➤ How to match numbers using the Switch statement

➤ How to match characters using the Switch statement

➤ How fallthroughs work in Swift

➤ How to match a range of numbers using the Switch statement

➤ How to match tuples using the Switch statement

➤ How to perform value‐binding using the Switch statement

➤ How to use the Where clause in the Switch statement to indicate
specifi c matches

➤ How to perform looping using the For‐In Loop

➤ How to perform looping using the For Loop

➤ How to use the Break and Continue control transfer statements

 One of the most important aspects of a programming language is its ability to make
decisions and perform repetitive tasks. In this aspect, Swift provides the usual fl ow control
statements for making decisions through the use of the If‐Else statement. For making multiple
comparisons, Swift provides the Switch statement, which in addition to being similar to its
counterpart in C, is much more powerful and fl exible.

 7

108 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 Swift also supports the C‐style For and While loops and introduces the new For‐In loop to iterate
through arrays, dictionaries, and strings.

 FLOW CONTROL

 Swift primarily provides two types of statements for fl ow control: the If statement and the Switch
statement.

 If you have programmed before, you are familiar with the If statement. The If statement enables you
to make a decision based on a certain condition(s). If the condition(s) are met, the block of statement
enclosed by the If statement would be executed. If you need to make a decision based on several
conditions, you could use the more effi cient Switch statement, which enables you to specify the
conditions without using multiple If statements.

 If Statement
 Swift supports the traditional C‐style If statement construct for decision‐making. The syntax for the
If statement is as follows:

 if condition {
 statement(s)
 }

 Here is an example of the If statement:

 var raining = true //---raining is of type Boolean---
 if raining {
 println("Raining now")
 }

NOTE In Swift, there is no need to enclose the condition within a pair of
parentheses (()).

 In the preceding code snippet, as raining is a Bool value, you can simply specify the variable name
in the condition. The preceding example will output the following:

 Raining now

 You can also explicitly perform the comparison using a comparison operator:

 if raining == true {
 println("Raining now")

 }

 In C/C++, non‐zero values are considered true and are often used in the If statement. Consider the
following code snippet in C:

Flow Control ❘ 109

//---in C/C++---
 Int number = 1
 if (number) {
 //---number is non-zero---

 }

 In the preceding example, number is non‐zero (it has a value of 1) and hence the condition evaluates
to true . In Swift, for non‐Boolean variables (or constants) you are not allowed to specify the
condition without an explicit logical comparison:

var number = 1 //---number is of Int type---
if number { //---this is not allowed in Swift---
 println("Number is non-zero")
 }

 To perform the comparison, you need to explicitly specify the comparison operator:

 if number == 1 {
 println("Number is non-zero")
 }

 Also commonly performed in C/C++ is the use of the assignment operator within the condition:

//---in C/C++---
 if (number=5) { //---number is non-zero---

 }

NOTE Using the assignment operator (=(() within a condition is a major source
of bugs in C programs. Programmers often intend to use the comparison
operator (==(() but mistakenly use the assignment operator; and so long as they
assign a non‐zero value, the condition always evaluates to true.

 In the preceding statement, the value 5 is assigned to number ; and because the number is now non‐
zero, the condition evaluates to true and hence the block in the If statement is executed. In Swift,
this is not allowed:

if number = 5 { //---not allowed in Swift---
 println("Number is non-zero")
 }

 This limitation is useful in preventing unintended actions on the developer’s part.

 If‐Else Statement
 An extension of the If statement is the If‐Else statement. The If‐Else statement has the following syntax:

 if condition {
 statement(s)

110 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 } else {
 statement(s)
}

 Any statements enclosed by the Else block are executed when the condition evaluates to false . Here
is an example:

 var temperatureInCelsius = 25
 if (temperatureInCelsius>30) {
 println("This is hot!")
 } else {
 println("This is cooling!")
 }

 The preceding code snippet checks the temperature (in Celsius) and outputs the statement “This is
hot!” if it more than 30 degrees Celsius. If it is less than or equal to 30 degrees Celsius, it outputs
the statement “This is cooling!” The preceding example will output the following:

 This is cooling!

 The Else block can also be another If‐Else block, as the following example illustrates:

var temperatureInCelsius = 0
 if temperatureInCelsius>30 {
 println("This is hot!")
 } else if temperatureInCelsius>0 {

println("This is cooling!")
} else {
 println("This is freezing!")
}

 The preceding code will output the following statement:

 This is freezing!

 Switch Statement
 Very often, you will need to perform a number of If‐Else statements. Consider the case where
you have an integer representing the day of the week. For example, one represents Monday,
two represents Tuesday, and so on. If you were to use the If‐Else statement, that would be too
cumbersome and makes the code unwieldy. For this purpose, you should use the Switch statement.
The Switch statement has the following syntax:

 switch variable/constant {
 case value_1:
 statement(s)
 case value_2:
 statement(s)
 ...
 ...
 case value_n:
 statement(s)

Flow Control ❘ 111

 default:
 statement(s)
 }

 The value of the variable/constant is used for comparison with the various values specifi ed (value_1 ,
value2 , . . ., value_n). If a match occurs, any statements following the value are executed (specifi edn
using the case keyword). If no match is found, any statements specifi ed after the default keyword
are executed.

NOTE Unlike C and Objective‐C (as well as other programming languages),
there is no need to specify a Break statement after the last statement in each
case. Immediately after any statements in a case block are executed, the
Switch statement fi nishes its execution. In C, a Break statement is needed to
prevent the statements after the current case from execution. This behavior is
known as implicit fallthrough . In Swift, there is no implicit fallthrough—once
the statements in a case are executed, the Switch statement ends.

 Every Switch statement must be exhaustive. In other words, the value that you are trying to match
must be matched by one of the various cases in the Switch statement. As it is sometimes not feasible
to list all the cases, you would need to use the default case to match the remaining unmatched
cases.

Matching Numbers
 A common use of the Switch statement is for matching numbers. The following code snippet shows
how to use the Switch statement to convert a number to the day of week:

 var day = 6
 var dayOfWeek: String
 switch day {
 case 1:
 dayOfWeek = "Monday"
 case 2:
 dayOfWeek = "Tuesday"
 case 3:
 dayOfWeek = "Wednesday"
 case 4:
 dayOfWeek = "Thursday"
 case 5:
 dayOfWeek = "Friday"
 case 6:
 dayOfWeek = "Saturday"
 case 7:
 dayOfWeek = "Sunday"
 default:
 dayOfWeek = ""
 }
 println(dayOfWeek) //---prints Saturday---

112 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 If day contains a number other than a number from 1 to 7, the default case will match and the
dayOfWeek variable will be set to an empty string.

 Matching Characters
 You can also use the Switch statement to match characters, as the following code snippet
demonstrates:

 var grade: Character
 grade = "A"
 switch grade {
 case "A", "B", "C", "D":
 println("Passed")
 case "F":
 println("Failed")
 default:
 println("Undefined")
 }

 The fi rst case checks whether grade contains the character “A,” “B,” “C,” or “D.” The second case
tries to match the character “F.” If all fails, the default case is matched.

 Fallthrough
 As mentioned earlier, Swift does not support fallthrough in the Switch statement. If you are familiar
with C/C++, you would be tempted to do the following:

 var grade: Character
 grade = "B"
 switch grade {
 case "A":
 case "B":
 case "C":
 case "D":
 println("Passed")
 case "F":
 println("Failed")
 default:
 println("Undefined")
 }

 This is not allowed in Swift. In Swift, each case must have at least one executable statement
(comments are not executable statements). If you want to implement the fallthrough behavior in
Swift, you need to explicitly use the fallthrough keyword:

 var grade: Character
 grade = "A"
 switch grade {
 case "A":
 fallthrough
 case "B":
 fallthrough

Flow Control ❘ 113

 case "C":
 fallthrough
 case "D":
 println("Passed")
 case "F":
 println("Failed")
 default:
 println("Undefined")
 }

 In this case, after matching the fi rst case (“A”), the execution will fallthrough to the next case (“B”),
which will then fallthrough to the next case (“C”), and fi nally the next case (“D”). The Switch
statement ends after outputting the line “Passed.”

 Fallthroughs are sometimes useful. Suppose you want to not only output a pass or fail message after
checking the grade, but also output a more detailed message depending on the grade. You could do
the following:

 var grade: Character
 grade = "A"
 switch grade {
 case "A":
 print("Excellent! ")

fallthrough
 case "B":
 print("Well done! ")

 fallthrough
 case "C":
 print("Good! ")
 fallthrough
 case "D":
 println("You have passed.")
 case "F":
 println("Failed")
 default:
 println("Undefined")
 }

 If grade is “A,” the output message would be as follows:

 Excellent! Well done! Good! You have passed.

 If grade is “B,” the output message would instead be this:

 Well done! Good! You have passed.

 Matching a Range of Numbers
 You can also perform range matching using the Switch statement. The following code snippet shows
how you can match a range of numbers against a variable/constant:

 var percentage = 85
 switch percentage {

114 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 case 0...20:
 println("Group 1")
 case 21...40:
 println("Group 2")
 case 41...60:
 println("Group 3")
 case 61...80:
 println("Group 4")
 case 81...100:
 println("Group 5")
 default:
 println("Invalid percentage")
 }

 The preceding code snippet outputs the following line:

 Group 5

NOTE The range of numbers that you are matching need not be integers. You
can also specify fl oating‐point numbers.

 The closed ranged operator (represented by ...) specifi es the range of numbers that you are comparing.

 Matching Tuples
 The Switch statement also works with tuples , an ordered set of numbers. Suppose you have the
following tuples:

 //---(math, science)---
 var scores = (70,40)

 The scores tuple stores the score for the math and science examinations, respectively. You can use
the Switch statement to check the scores for each subject simultaneously. Consider the following
example:

 switch scores {
 case (0,0):
 println("This is not good!")
 case (100,100):
 println("Perfect scores!")
 case (50...100, _):
 println("Math passed!")
 case (_, 50...100):
 println("Science passed!")
 default:
 println("Both failed!")
 }

 In this case, if the scores for both subjects are 0, the fi rst case will match ((0,0)). If both scores are
100, the second case will match ((100,100)). The third case ((50...100, _)) will only match the score

Flow Control ❘ 115

for the math subject—if it is between 50 and 100. The underscore (_) matches any value for the
second subject (science). The fourth case matches any value for the math subject and checks to see if
the science subject is between 50 and 100.

 If the score is (70, 40), the statement “Math pass!” will be output. If the score is (40, 88), the statement
“Science pass!” will be output. If the score is (30, 20), the statement “Both failed” will be output.

NOTE In Swift, you are allowed to have overlapping cases. In other words, you
might have more than one match with the different cases. The fi rst matching
case will always be executed.

 Value Bindings
 In the previous section, you have two cases in which you try to match the score of one subject and
ignore another:

 case (50...100, _): //---ignore science---
 case (_, 50...100): //---ignore math---

 But what if after matching the score of one subject you also want to get the score of the other? In
Swift, the Switch statement allows you to bind the value(s) its matches to temporary variables or
constants. This is known as value‐binding. g

 The example used in the previous section can be modifi ed to demonstrate value‐binding:

 //---(math, science)---
 var scores = (70,60)
 switch scores {
 case (0,0):
 println("This is not good!")
 case (100,100):
 println("Perfect score!")
 case (50...100, let science):
 println("Math passed!")
 if science<50 {
 println("But Science failed!")
 } else {
 println("And Science passed too!")
 }
 case (let math , 50...100):
 println("Science passed!")
 if math<50 {
 println("But Math failed!")
 } else {
 println("And Math passed too!")
 }
 default:
 println("Both failed!")
 }

116 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 In the third case statement, after matching the score for the math subject, you assign the score of the
science subject to the science constant (as indicated using the let keyword):

 case (50...100, let science):
 println("Math passed!")
 if science<50 {
 println("But Science failed!")
 } else {
 println("And Science passed too!")
 }

 You can then use the science variable to determine its passing status.

 Likewise, you do the same to the fourth case statement:

 case (let math , 50...100):
 println("Science passed!")
 if math<50 {
 println("But Math failed!")
 } else {
 println("And Math passed too!")
 }

 You can also remove the default case and replace it with a case that matches any values:

 //---(math, science)---
var scores = (30,20)
 switch scores {
 case (0,0):
 println("This is not good!")
 case (100,100):
 println("Perfect score!")
 case (50...100, let science):
 println("Math passed!")
 if science<50 {
 println("But Science failed!")
 } else {
 println("And Science passed too!")
 }
 case (let math, 50...100):
 println("Science passed!")
 if math<50 {
 println("But Math failed!")
 } else {
 println("And Math passed too!")
 }

NOTE In the preceding example, science and math are declared as constants
using the let keyword. However, you could also declare them as variables
using the var keyword. If they were declared as variables, all changes made
would only have an effect within the body of the case.

Flow Control ❘ 117

 /*
 default:
 println("Both failed!")

*/
 case (let math, let science):
 println("Math is \(math) and Science is \(science)")
 }

 The preceding code snippet will output the following:

 Math is 30 and Science is 20

 Instead of writing the let keyword twice for both variables as

 case (let math, let science):

 you could rewrite it like this:

case let (math, science):
 println("Math is \(math) and Science is \(science)")

 Where Clause
 You can use the Switch statement together with a where clause to check for additional conditions.
For example, if you wanted to check if the scores for both subjects are greater than 80, you could
write the following case:

 //---(math, science)---
var scores = (90,90)
 switch scores {
 case (0,0):
 println("This is not good!")
 case (100,100):
 println("Perfect score!")

case let (math, science) where math > 80 && science > 80:
 println("Well done!")
 case (50...100, let science):
 println("Math pass!")
 if science<50 {
 println("But Science fail!")
 } else {
 println("And Science also pass!")
 }
 case (let math, 50...100):
 println("Science pass!")
 if math<50 {
 println("But Math fail!")
 } else {
 println("And Math also pass!")
 }
 case let (math, science):
 println("Math is \(math) and Science is \(science)")
 }

118 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 In the preceding code snippet, the third case assigns the scores of the math and science subjects to
the temporary variables math and science , respectively, and uses the where clause to specify the
condition that the scores for both math and science must be greater than 80. The preceding example
will output the following statement:

 Well done!

 If you want to match the case where the math score is greater than the science score, you can specify
the following where clause:

 case let (math, science) where math > science :
 println("You have done well for Math!")

 LOOPING

 The capability to repeatedly execute statements is one of the most useful features of a programming
language. Swift supports the following loop statements:

➤ For‐In

➤ For

➤ While

➤ Do‐While

 For‐In Loop
 Swift supports a new loop statement known as the For‐In loop. The For‐In loop iterates over a
collection of items (such as an array or a dictionary) as well as a range of numbers.

 The following code snippet prints out the numbers from 0 to 9 using the For‐In loop:

 for i in 0...9 {
 println(i)
 }

 The closed ranged operator (represented by . . .) defi nes a range of numbers from 0 to 9 (inclusive).
The i is a constant whose value is initially set to 0 for the fi rst iteration. After executing the
statement(s) in the For‐In loop (as defi ned by the {}), the value of i is incremented to 1, and so on.
Because i is a constant, you are not allowed to modify its value within the loop, like this:

 for i in 0...9 {
 i++ //---this is not allowed as i is a constant---
 println(i)
 }

 You can also use the For‐In loop to output characters in Unicode, like the following:

 for c in 65 ... 90 {
 println(Character(UnicodeScalar(c))) //---prints out 'A' to 'Z'---
 }

Looping ❘ 119

 The UnicodeScaler is a structure that takes in an initializer containing the number representing a
character in Unicode. You then convert it to a Character type.

 You can nest a For‐In loop within another For‐In loop:

 //---Nested Loop---
 for i in 1...10{
 for j in 1...10 {
 println("\(i) x \(j) = \(i*j)")
 }
 println("=============")
 }

 The preceding code snippet outputs the times table from 1 to 10:

 1 x 1 = 1
 1 x 2 = 2
 1 x 3 = 3
 1 x 4 = 4
 1 x 5 = 5
 1 x 6 = 6
 1 x 7 = 7
 1 x 8 = 8
 1 x 9 = 9
 1 x 10 = 10
 =============
 2 x 1 = 2
 2 x 2 = 4
 2 x 3 = 6
 2 x 4 = 8
 2 x 5 = 10
 2 x 6 = 12
 2 x 7 = 14
 2 x 8 = 16
 2 x 9 = 18
 2 x 10 = 20
 =============
 3 x 1 = 3
 3 x 2 = 6
 3 x 3 = 9
 ...

 If you simply want to perform an action a fi xed number of times and don’t care about the number of
each iteration, you can simply specify an underscore (_) in place of a constant:

 //---print * 5 times---
 for _ in 1...5 {
 print("*") //---prints out ****---
 }

 The preceding code snippet outputs the asterisk fi ve times.

 The For‐In loop also works with arrays, as shown here:

 var fruits = ["apple", "pineapple", "orange", "durian", "guava"]
 for f in fruits {
 println(f)
 }

120 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 The preceding example iterates through the fi ve elements contained within the fruits array and
outputs them:

 apple
 pineapple
 orange
 durian
 guava

 You can also iterate through a dictionary, as the following example shows:

 var courses = [
 "IOS101": "Foundation of iPhone Programming",
 "AND101": "Foundation of Android Programming",
 "WNP101": "Foundation of Windows Phone Programming"
]

 for (id, title) in courses {
 println("\(id) - \(title)")
 }

 The preceding code outputs the following:

 IOS101 - Foundation of iPhone Programming
 AND101 - Foundation of Android Programming
 WNP101 - Foundation of Windows Phone Programming

 You can also iterate through a string and extract each character, as the following shows:

 var str = "Swift Programming"
 for c in str {
 println(c)
 }

 In the preceding code, c is assigned to each of the characters in the string during each iteration of
the loop. It outputs the following:

 S
 w
 i
 f
 t

 P
 r
 o
 g
 r
 a
 m
 m
 i
 n
 g

Looping ❘ 121

 Traditional For Loop
 Swift also supports the traditional For loop in C, using the following syntax:

 for initialization ; condition ; increment/decrement {
 statement(s)
 }

NOTE Unlike traditional C, in Swift you do not need to enclose the
initialization ; condition ; increment/decrement block using a pair of
parentheses (()).

 The following code snippet outputs the numbers from 0 to 4:

 //---print from 0 to 4---
 for var i = 0; i<5; i++ {
 println(i)
 }

NOTE The initializer must be a variable, not a constant, as its value needs to
change during the iteration of the loop.

 When the loop starts, i is initialized to 0, and its value is checked to see if it is less
than fi ve. If it evaluates to true , the value of i is output. If it evaluates to false , the
For loop will end. After all the statements in a For loop have been executed, the value of
i is incremented by one. It is then checked if it is less than fi ve, and the loop continues if it
evaluates to true .

 Note that the i variable is not accessible after the loop exits, as it is defi ned within the For loop
construct:

 //---print from 0 to 4---
 for var i = 0; i<5; i++ {
 println(i)
 }
println(i) //---i is not defined---

 If you want i to be visible after the loop, create it fi rst, before using it in the loop:

 //---print from 0 to 4---
var i:Int
 for i = 0; i<5; i++ {
 println(i)
 }

println(i) //--5---

122 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 When you defi ne i without initializing it with a value, you need to specify its type. The preceding
can also be rewritten by initializing the value of i and then omitting the initialization in the For
loop:

 //---print from 0 to 4---
var i = 0
for ; i<5; i++ { //---the initialization part can be omitted---
 println(i)
 }
 println(i) //–5---

 You can also count downwards—the following code snippet outputs the numbers from 5 to 1:

 //---print from 5 to 1---
 for var i = 5; i>0; i–-- {
 println(i)
 }

 You can use the enumerate() function in Swift to iterate over an array. The enumerate() function
returns a tuple containing the index and the value of each element in the array:

 let names = ["Mary", "Chloe", "Margaret", "Ryan"]
 for (index, value) in enumerate(names) {
 println("names[\(index)] - \(value)")
 }

 The preceding code snippet outputs the following:

 names[0] - Mary
 names[1] - Chloe
 names[2] - Margaret
 names[3] - Ryan

 While Loop
 In addition to the For loop, Swift also provides the While loop. The While loop executes a block of
statements repeatedly as long as the specifi ed condition is true:

 while condition {
 statement(s)
 }

 The following code snippet outputs the series of numbers 0 to 4:

 var index = 0
 while index<5 {
 println(index++)
 }

 Before the fi rst iteration starts, the While loop checks the value of index . If it is less than 5, it will
enter the loop and execute the statement(s) within. Within the block, you increment the value of
index after outputting it to the screen. The condition is then checked again to see it is evaluates to

Looping ❘ 123

true . As long as it evaluates to true , the loop is repeated. When index fi nally becomes 5, the While
loop ends.

 The For loop introduced in the previous section is ideal for situations in which you are iterating over
a set of items (such as an array or a dictionary) or when you know beforehand how many iterations
you need to execute a certain block of code. For situations in which it isn’t very clear how many
times you need to execute a block of code, the While loop may be more applicable.

 Consider the problem of determining how many times a number is divisible by two. For example,
the number of times 4 is divisible by 2 is 2:

 4/2 = 2 (1 time)

 2/2 = 1 (2 times)

 Consider another example: the number of times 14 is divisible by 2 is 3:

 14/2 = 7 (1 time)

 7/2 = 3 (2 times)

 3/2 = 1 (3 times)

 In this scenario, you can use a loop to calculate the number of times the number is divisible by 2—
keep dividing the number as long as the number is greater than 1. However, because you are not sure
how many times your loop needs to iterate until the number is 1, it would be better and more elegant
to use a While loop. The preceding problem could be solved using the following code snippet:

 var counter = 0
 var num = 32
 while num > 1 {
 counter++
 num /= 2
 }
 println("The number is \(counter) times divisible by 2")

 The preceding will output the following:

 The number is 5 times divisible by 2

 Do‐While Loop
 A variation of the While loop is the Do‐While loop. The Do‐While loop has the following syntax:

 do {
 statement(s)
 } while condition

 The following code snippet outputs the series of numbers from 0 to 4:

 index = 0
 do {
 println(index++)
 } while (index<5)

124 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 The Do‐While executes the block of statement(s) enclosed by the pair of braces ({}) fi rst, before
checking the condition to decide if the looping will continue. If the condition evaluates to true , the
loop continues. If it evaluates to false , then the loop exits.

NOTE The key difference between the While loop and the Do‐While loop is
that the statements within a Do‐While loop execute at least once, since their
condition is evaluated at the end of the block.

 Control Transfer Statements
 So far you have seen the use of the For and While loops for executing code repeatedly. As long as the
condition specifi ed in the loop evaluates to true, the block of code is executed. Sometimes you want
to have the capability to alter the order in which the code is executed. You can do so using the Break
or Continue control transfer statements .

 Break Statement
 Consider the following scenario: You have a string of characters and you want to fi nd the index of
the fi rst occurrence of a character. For example, in the string “This is a string,” the index of the
character “a” is 8. You could solve this problem using the following code snippet:

 var c:Character
 var found = false
 var index = 0
 for c in "This is a string" {
 if c != "a" && !found {
 index++
 } else {
 found = true
 }
 }
 println("Position of 'a' is \(index)")

 In the preceding code, you iterate through the entire string and examine each character. If the
character is not what you are looking for, increment the index and continue searching. Once you
have found the character, you set the found Boolean variable to true and the index will no longer
be incremented. The downside to this code snippet is that you are going through each character
until the end of the string, even if you have already found the one for which you are looking. An
improved version looks like this, using the Break statement:

 var c:Character
 var index = 0
 for c in "This is a string" {
 if c == "a" {
 break
 }
 index++
 }
 println("Position of 'a' is \(index)")

Looping ❘ 125

 Here, you use the Break statement to end the loop the moment the character you are looking for
is found. This is much more effi cient than the earlier solution. When you use the Break statement
within a loop (such as a For, While, or Do‐While loop), the control is transferred to the fi rst line of
code after the closing brace (}).

 The Break statement is also useful in the Switch statement. Recall the following Switch statement
that you saw earlier in this chapter:

 var percentage = 85
 switch percentage {
 case 0...20:
 println("Group 1")
 case 21...40:
 println("Group 2")
 case 41...60:
 println("Group 3")
 case 61...80:
 println("Group 4")
 case 81...100:
 println("Group 5")
 default:
 println("Invalid percentage")
 }

 Oftentimes, you may not need to do anything for a certain case; in this example, for instance,
you might not need to output anything should the percentage fall outside the range of 0 to 100.
However, you cannot simply leave the case statement empty, like this:

 var percentage = 85
 switch percentage {
 case 0...20:
 println("Group 1")
 case 21...40:
 println("Group 2")
 case 41...60:
 println("Group 3")
 case 61...80:
 println("Group 4")
 case 81...100:
 println("Group 5")
 default:
 //---each case must have an executable statement
 // comments like this do not count as executable statement---
 }

 As each case in a Switch statement must have at least an executable statement, you can use a Break
statement, like this:

 var percentage = 85
 switch percentage {
 case 0...20:
 println("Group 1")
 case 21...40:
 println("Group 2")

126 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 case 41...60:
 println("Group 3")
 case 61...80:
 println("Group 4")
 case 81...100:
 println("Group 5")

default:
 break

 }

 The preceding Break statement will end the execution of the Switch statement.

 Continue Statement
 Another control transfer statement that you can use in your loop is Continue. The Continue
statement basically says “ stop the execution of the rest of the statements in this loop and go on to
the next iteration. ”

 Consider the scenario in which you want to count the number of characters in a string, excluding
the spaces. The following snippet shows how this could be done with the Continue statement:

 //---count the number of characters (excluding spaces)---
 var c:Character
 var count = 0
 for c in "This is a string" {
 if c == " " {
 continue
 }
 count++
 }
 println("Number of characters is \(count)")

 In the preceding code snippet, when a space is encountered, the Continue statement transfers the
execution to the next iteration of the loop, effectively bypassing the statement where the count
variable is incremented. The preceding code snippet will output the following:

 Number of characters is 13

 Labeled Statement
 Although the Break or Continue statement enables you to exit from a loop and continue on to the
next iteration of a loop, things are a little more complex when you have a nested loop. Consider the
following example:

 var i = 0
 while i<3 {
 i++
 var j = 0
 while j<3 {
 j++
 println("(\(i),\(j))")
 }
 }

Looping ❘ 127

 The preceding code snippet has two While loops—one nested within another. It outputs the
following lines:

 (1,1)
 (1,2)
 (1,3)
 (2,1)
 (2,2)
 (2,3)
 (3,1)
 (3,2)
 (3,3)

 What happens if within the inner loop you execute a break , as shown here:

 var i = 0
 while i<3 {
 i++
 var j = 0
 while j<3 {
 j++
 println("(\(i),\(j))")
 break
 }
 }

 In this case, the compiler will assume that you are trying to exit from the inner loop, and thus the
preceding code will output the following:

 (1,1)
 (2,1)
 (3,1)

 What if you actually wanted to break from the outer loop? In this case, you can add a label prior to
the outer While loop:

 var i = 0
outerLoop: while i<3 {
 i++
 var j = 0
 while j<3 {
 j++
 println("(\(i),\(j))")
 break outerLoop //---exit the inner While loop---
 }
 }

 You can explicitly specify which While loop you are trying to break out of by specifying the label
(outerLoop). The preceding code outputs this line:

 (1,1)

128 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

 You can also use the labeled statement with the continue keyword:

 var i = 0
 outerLoop: while i<3 {
 i++
 var j = 0
 while j<3 {
 j++
 println("(\(i),\(j))")
 continue outerLoop //---go to the next iteration of the
 // outer While loop---
 }
 }

 The preceding code outputs the following lines:

 (1,1)
 (2,1)
 (3,1)

 SUMMARY

 This chapter demonstrated how to make decisions using the If‐Else and Switch statements. As
you have seen, Swift has made the Switch statement much more powerful in comparison to its C
counterpart. In addition, you have also seen how to perform looping using the For loop, the While
loop, and the Do‐While loop.

EXERCISES

1. The Fibonacci numbers is a series of numbers in the following sequence:

 1,1,2,3,5,8,13,21,34,55,89,144,...

 Write the code snippet to print out the Fibonacci sequence.

2. In mathematics, GCD (greatest common divisor) of two or more integers is that largest positive
number that can divide the numbers without a remainder. For example, the GCD of 8 and 12 is
4. Write a function in Swift to compute the GCD of two integers.

Summary ❘ 129

3. A prime number is a natural number greater than 1 that has no positive divisors other than 1
and itself. Write a function in Swift to output the list of prime numbers from 2 to 1000:

 2 is prime
 3 is prime
 5 is prime
 7 is prime
 11 is prime
 13 is prime
 17 is prime
 19 is prime
 23 is prime
 29 is prime
 31 is prime
 37 is prime
 41 is prime
 ...

130 ❘ CHAPTER 7 CONTROL FLOW AND LOOPING

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Making decisions Use the If‐Else statement.

Making multiple decisions Use the Switch statement.

Fallthroughs By default, Swift does not support fallthroughs;
however, you can explicitly initiate a fallthrough
by using the fallthough keyword.

Types of loops For‐In, For, While, and Do‐While.

Control transfer statements Use the Break statement to break out of a loop.
Use the Continue statement to immediately
continue to the next iteration of the loop.

Labeled statements Allow you to specifi cally indicate which loop you
want to break out/continue with.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ How to defi ne a structure

➤ How to create an instance of a structure

➤ How to initialize a structure’s properties

➤ How to compare two structures

➤ How to defi ne a class

➤ How to defi ne properties within a class

➤ The different types of properties

➤ How to create initializers for a class

➤ How to compare instances of a class

➤ How to defi ne methods in a class

 Object‐oriented programming (OOP) is one of the most important features in Swift
programming—and structures and classes play an important role in supporting that. In Swift,
structures and classes share many similarities, and many concepts that apply to classes apply
to structure as well.

 In this chapter, you will learn how to defi ne structures and classes, and then use them. You
will learn how to defi ne the different types of properties in structures and classes, as well
as defi ne methods. By the end of this chapter, you will have a solid understanding of how
structures and classes work in Swift.

 8

132 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 STRUCTURES

 A structure is a special kind of data type that
groups a list of variables and places them under
a unifi ed name. The group of variables contained
within a structure may have diverse data types.
Structures are useful for storing related group of
data. For example, consider a scenario in which
you are implementing a game of Go. Figure
 8-1 shows the board layout of Go. A typical
game of Go has a grid of 19 × 19 lines, and
players place markers, referred to as stones, on
the intersections of these lines. To represent a
stone on the Go board, you can use a structure
containing two variables: row and column .

 The following code snippet defi nes the structure
named Go :

 struct Go {
 var row = 0 //---0...18---
 var column = 0 //---0...18---
 }

 For structure names, the recommendation is to use UpperCamelCase (such as CustomerAddress ,
EmployeeCredential , etc.).

 The Go structure has two properties called row and column , which are both initialized to 0 (their
default values). To create an instance of the Go structure, use the structure’s default initializer
syntax:

 var stone1 = Go()

 The preceding creates an instance of the Go structure, and the instance name is stone1 . The
property row and column are both initialized to 0 by default:

 println(stone1.row) //---0---
 println(stone1.column) //---0---

 You access the properties using the dot (.) syntax. Just as you can access the value of the property,
you can also change its value:

 stone1.row = 12 //---change the row to 12---
 stone1.column = 16 //---change the column to 16---

 Memberwise Initializers
 If the structure has a property that does not have a default value, you cannot use the default
initializer syntax. In other words, if you don’t initialize the value of row or column to some default
value, the following statements will fail:

 FIGURE 8-1

Structures ❘ 133

 struct Go {
 var row:Int //---no default value---
 var column:Int //---no default value---
 }

var stone1 = Go() //---error---

 To rectify this, you can use the memberwise initializer (which is automatically generated for you whenr
you defi ne a structure) to initialize the properties of a structure with certain values when it is created:

 var stone1 = Go(row:12, column:16)

 In the preceding example, when you create an instance of the Go structure, you also set the value for
row and column .

 Continuing with the Go example, a stone placed on the Go board is either black or white.
Therefore, you can now defi ne a new enumeration called StoneColor and add a color property to
the Go structure:

enum StoneColor:String {
case Black = "Black"

 case White = "White"
}

 struct Go {
 var row:Int //---0...18---
 var column:Int //---0...18---

var color:StoneColor
 }

NOTE Enumeration is covered in more detail in Chapter 2 .

 The color property is an enumeration of type StoneColor . To create an instance of the r Go

structure, use the memberwise initializer:

 var stone1 = Go(row:12, column:16, color:StoneColor.Black)

 Structures as Value Types
 A structure is a value type. In other words, when you assign a variable/constant of a value type to
another variable/constant, its value is copied over. Consider the following example:

 var stone1 = Go(row:12, column:16, color:StoneColor.Black)
 var stone2 = stone1

 println("---Stone1---")
 println(stone1.row)
 println(stone1.column)
 println(stone1.color.rawValue)

134 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 println("---Stone2---")
 println(stone2.row)
 println(stone2.column)
 println(stone2.color.rawValue)

 In the preceding code snippet, stone1 is assigned to stone2 . Therefore, stone2 will now have the
same value as stone1 . This is evident by the values that are output by the preceding code snippet:

 ---Stone1---
 12
 16
 Black
 ---Stone2---
 12
 16
 Black

 To prove that stone2 ’s value is independent of stone1 ’s, modify the value of stone1 as follows:

 stone1.row = 6
 stone1.column = 7
 stone1.color = StoneColor.White

 Then print out the values for both stones again:

 println("===After modifications===")
 println("---Stone1---")
 println(stone1.row)
 println(stone1.column)
 println(stone1.color.rawValue)

 println("---Stone2---")
 println(stone2.row)
 println(stone2.column)
 println(stone2.color.rawValue)

 The preceding statements print out the following, proving that the values of the two stones are
independent of each other:

 ===After modifications===
 ---Stone1---
 6
 7
 White
 ---Stone2---
 12
 16
 Black

NOTE In Swift, String , Array , and yy Dictionary types are implemented using
structures. As such, when they are assigned to another variable, their values
are always copied.

Classes ❘ 135

 Comparing Structures
 You cannot compare two structures using the == operator. This is because the compiler does not
understand what defi nes two structures as being equal. Hence, you need to overload the default
meaning of the == and != operators:

 func == (stone1: Go, stone2: Go) -> Bool {
 return (stone1.row == stone2.row) &&
 (stone1.column == stone2.column) &&
 (stone1.color == stone2.color)
 }

 func != (stone1: Go, stone2: Go) -> Bool {
 return !(stone1 == stone2)
 }

 Essentially, the preceding two functions are overloading the two operators—equal (==) and not
equal (!=). Each function takes two Go instances and returns a Bool value. Two instances are
deemed to be the same if the row , column , and color properties of each instance are equal to the
other instance.

 You can now use the == operator to test whether stone1 and stone2 are of the same
value:

 var stone1 = Go(row:12, column:16, color:StoneColor.Black)
 var stone2 = Go(row:12, column:16, color:StoneColor.Black)

 if stone1 == stone2 {
 println("Same!")
 } else {
 println("Different!")
 }

 The preceding code snippet will output the following:

 Same!

CLASSES

 A class is similar to a structure in many ways. Like a structure, a class defi nes properties to
store values, contains initializers to initialize its properties’ values, and so on. However, a class
has additional capabilities not found in a structure. For example, you can use inheritance on
a class to ensure that the class inherits the characteristics of another class, and you can also
use de‐initializers to free up resources when an instance of a class is destroyed. In this section,
you will learn about the basics of a class and some of the features that are also applicable to
structures.

NOTE Chapter 9 discusses class inheritance.

136 ❘ CHAPTER 8 STRUCTURES AND CLASSES

Defi ning a Class
You defi ne a class using the class keyword:

class ClassName {

 }

Here is one example:

 class MyPointClass {

 }

The preceding code snippet defi nes a class called MyPointClass . When naming classes,
the recommendation is to use UpperCamelCase (such as MyPointClass , EmployeeInfo ,
CustomerDetails , etc.). An important difference between Objective‐C and Swift is that in Swift
there is no need to have one fi le to declare a class and another fi le to defi ne the implementation of a
class; one fi le handles all the declaration and implementation.

 To create an instance of a class, you call the class name followed by a pair of parentheses (()) and
then assign it to a variable or constant:

 var ptA = MyPointClass()

Properties
 Like structures, classes also have properties. In Swift, there are two types of properties:

➤ Stored property —A constant or variable that is stored within an instance of a class or a
structure. When you declare a variable or constant within a class or structure, that is a stored
property.

➤ Computed property —These calculate values and typically return values. They can also
optionally store values for other properties indirectly.

Stored Properties
 You add stored properties to a class by declaring them just as you would normal variables and
constants:

 class MyPointClass {
 var x = 0.0 //---variable---
 var y = 0.0 //---variable---
 let width = 2 //---constant---
 }

 The preceding code snippet adds two variables to the MyPointClass — x , y (both Double
properties), and a constant, width (Int property). In Swift, constants and variables that are stored
within a class are known as stored properties . Like structures, stored properties can also have
default values.

Classes ❘ 137

 To access the stored properties of a class, you use dot notation (.) to access an individual property,
as shown here:

 var ptA = MyPointClass()

//---assigning values to properties---
ptA.x = 25.0
ptA.y = 50.0

//---retrieving values from properties---
println(ptA.x) //---25.0---
println(ptA.y) //---50.0---
println(ptA.width) //---2---

NOTE Structures also support stored properties.

 PROPERTIES AND MEMBER VARIABLES

 In other languages such as C# and Objective‐C, properties are public‐facing
variables that users of the class can access. Internally within the class, member
variables may be used to store the values of these properties. In Swift, this is not
required. It provides a unifi ed approach to properties—you just need to deal with
the properties that you have declared in your class; no instance member variables
are required to store the values.

 Lazy Stored Properties
 Sometimes a class itself may contain a property that references another class. Consider the following
example:

class PointMath {
 //---contains methods to calculate distances related to the point---
 var someValue = 1.2345
}

 class MyPointClass {
 var x = 0.0
 var y = 0.0
 let width = 2
 var pointMath = PointMath()
 }

 Here, the MyPointClass class contains a property of type PointMath . By default, when you create
an instance of MyPointClass , the PointMath class would also be instantiated. If the PointMath
class contains methods that take a long time to instantiate, it would hence be computationally
expensive every time you try to create a MyPointClass object.

138 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 You can use the lazy keyword to mark a property as a lazy stored property :

 class MyPointClass {
 var x = 0.0
 var y = 0.0
 let width = 2
 lazy var pointMath = PointMath()
 }

 When the pointMath property is marked as a lazy stored property, it will not be instantiated
when the MyPointClass is instantiated. Instead, it will only be instantiated when you access the
pointMath property:

 println(ptA.pointMath.someValue) //---1.2345---

NOTE Lazy stored properties must always be declared as a variable using the
var keyword (and not as a constant using the let keyword). This is because a
lazy stored property’s value is not known until it is fi rst accessed.

 Computed Properties
 Whereas stored properties store actual values, computed properties do not. Computed properties enable
you to set or retrieve another property’s value. The best way to understand this is with an example.

 Using the same MyPointClass class, you now have the additional computed property called
newPosition :

 class MyPointClass {
 var x = 0.0
 var y = 0.0
 let width = 2
 lazy var pointMath = PointMath()

 var newPosition:(Double, Double) {
 get {
 return (x, y)
 }
 set (position) { //---position is a tuple---
 x = position.0 //---x---
 y = position.1 //---y---
 }
 }
 }

 The newPosition property is a computed property . It accepts and returns a tuple containing two y
Double values. To use the newPosition property, you can assign it a tuple:

 var ptB = MyPointClass()

 //---assign a tuple to the newPosition property---
ptB.newPosition = (10.0,15.0)

Classes ❘ 139

 println(ptB.x) //---10.0---
 println(ptB.y) //---15.0---

 When you assign it a value, the set (known as the setter) block of the code is executed: r

 set (position) { //---position is a tuple---
 x = position.0
 y = position.1
 }

 Here, the position represents the tuple that you have just assigned ((10.0,15.0))— position.0
represents the fi rst value in the tuple (10.0) and position.1 represents the second value in the tuple
(15.0). You assign these values to the x and y properties, respectively.

 When you try to access the newPosition property, as shown here:

 var position = ptB.newPosition
 println(position.0) //---10.0---
 println(position.1) //---15.0---

 it will execute the get (known as the getter) block of code:r

 get {
 return (x, y)
 }

 In this case, it returns the value of x and y using a tuple. Because the newPosition property does not
store any value itself, but rather stores the value assigned to it in another property, it is known as a
computed property.

NOTE Structures also support computed properties.

 Motivation Behind Computed Properties
 At fi rst glance, the computed property feature in Swift doesn’t look very useful. After all, you could
use stored properties for most cases. To understand the usefulness of computed properties, consider
another example:

 class Distance {
 var miles = 0.0
 var km: Double {
 get {
 return 1.60934 * miles
 }
 set (km) {
 miles = km / 1.60934
 }
 }
 }

140 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 In the preceding code snippet, you have the Distance class—it has a stored property named miles ,
which enables you to store the distance in miles. You also have a km computed property. The km
computed property enables you to retrieve the distance in kilometers:

 var d = Distance()
 d.miles = 10.0
 println(d.km) //---16.0934---

 It also enables you to store a distance in kilometers:

 d.km = 20.0
 println(d.miles) //---12.4274547329961---

 Observe that in this case, the actual distance is stored in miles, not kilometers. That way, you only
need to store the distance once, and not worry about having additional stored properties to store the
distance in other units. If you needed to return the distance in yards, you would just need to add the
computed property as shown here:

 class Distance {
 var miles = 0.0
 var km: Double {
 get {
 return 1.60934 * miles
 }
 set (km) {
 miles = km / 1.60934
 }
 }
 var yard:Double {
 get{
 return miles * 1760
 }
 set (yard) {
 miles = yard / 1760
 }
 }
 }

 The following code snippet shows how you could use the newly added computed property:

 d.miles = 1.0
 println(d.yard) //---1760.0---

 d.yard = 234567
 println(d.miles) //---133.276704545455---

 The newValue keyword
 Earlier you used the name position to defi ne the tuple that contains the new position:

 var newPosition:(Double, Double) {
 get {
 return (x, y)
 }
 set (position) { //---position is a tuple---

Classes ❘ 141

 x = position .0 //---x---
 y = position .1 //---y---
 }
 }

 If you did not defi ne a name for the tuple, you can use the shorthand name of newValue , as shown here:

 var newPosition:(Double, Double) {
 get {
 return (x, y)
 }
 set { //---newValue (shorthand name) is a tuple---
 x = newValue .0
 y = newValue .1
 }
 }

 Read‐Only Computed Properties
 A computed property with a getter but no setter is known as a read‐only computed property. Ay
read‐only computed property can be accessed but not set. The following shows the newPosition
computed property without the setter:

 var newPosition:(Double, Double) {
 get {
 return (x, y)

 }
 }

 A read‐only computed property can also be simplifi ed without the use of the get keyword:

 var newPosition:(Double, Double) {
 return (x, y)
 }

 In either case, you can no longer set a value to the newPosition property:

 var ptB = MyPointClass()
 ptB.x = 25.0
 ptB.y = 50.0

//---assign a tuple to the newPosition property---
ptB.newPosition = (10,15) //---error---

NOTE If a computed property has a setter, it must also have a getter.

 Property Observers
 Recall earlier in the discussion about stored properties the example of the MyPointClass , with three
stored properties:

 class MyPointClass {
 var x = 0.0

142 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 var y = 0.0
let width = 2

 You can access the properties by specifying the property name using the dot syntax:

 var ptA = MyPointClass()
 //---assigning values to properties---
 ptA.x = 15.0
 ptA.y = 50.0

 However, what if you need to enforce a range of valid numbers for both x and y ? Fory

example, suppose the maximum allowable value for x is 100 and the minimum is –100. In
this case, you can use property observers to observe and respond to changes in the properties’
values.

 In Swift, you can use two property observers:

➤ willSet —Fired before a property value is stored

➤ didSet —Fired immediately after a value is stored

 To see how these property observers work, take a look at the following code snippet:

 class MyPointClass {
 var x: Double = 0.0 {
 willSet(newX) {

 println("Going to assign a value of \(newX) to x")
 }
 didSet {
 println("Value of x before assignment : \(oldValue)")

 println("Value of x after assignment : \(x)")
 if x>100 || x<(-100) {
 x = oldValue
 }

 }
 }

 In the preceding code snippet, the willSet block of code will be executed when you try to assign a
value to the x property. It will be fi red before the value is assigned to x . After the value is assigned,
the didSet block of code will execute. In this example, if the assigned value is less than ‐100 or
greater than 100, then the old value of the property is restored.

 If you do not specify a name after the willSet keyword, you can still retrieve the new value using
the newValue keyword. Similarly, you can also specify a name after the didSet keyword; if not, the
old value of the property can be retrieved using the oldValue keyword.

NOTE Property observers apply only to stored properties. For computed
properties, you can use a setter to check the validity of a value before
assigning it to a property.

Classes ❘ 143

NOTE Property observers are not called when a property is fi rst
initialized. They will only be called when a property is modifi ed outside of
initialization.

 Typed Properties
 All the properties you have seen until this point are instance properties . Instance properties belong
to an instance of a particular type. In contrast, type properties pertain to a class.

NOTE Typed properties are commonly known as static properties or
class properties in other programming languages such as Java, C#, and
Objective‐C.

 Unlike instance properties, typed properties are accessed using the class name. Consider the
following example:

 class MyPointClass {
 var x = 0.0
 var y = 0.0
 let width = 2
 lazy var pointMath = PointMath()

 class var origin:(Double, Double) {
 get {
 return (0,0)
 }
 }

 var newPosition:(Double, Double) {
 get {
 return (x, y)
 }
 set (position) { //---position is a tuple---
 x = position.0 //---x---
 y = position.1 //---y---
 }
 }
 }

NOTE For classes, only computed type properties are supported. For
structures, both stored and computed type properties are supported. For
structures, you use the static keyword instead of the class keyword to
denote a typed property.

144 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 In the preceding example, origin is a typed property—it is prefi xed with the class keyword. To
access the typed property, use its class name and call it directly:

 println(MyPointClass.origin) //---(0.0, 0.0)---

 Typed properties are useful for cases in which a property needs to have the same value across
instances.

 Initializers
 When you create an instance of a class using a pair of empty parentheses, you are calling its default
initializer :

 var ptA = MyPointClass()

NOTE The compiler can only generate the default initializer if all the
properties within the class have default values.

 The compiler automatically generates the default initializer; there is no need for you to defi ne
it. Sometimes, however, you do want to initialize certain properties to specifi c values when an
instance of the class is created. To do that, you can defi ne an initializer using the special name
init :

 class MyPointClass {
 var x = 0.0
 var y = 0.0
 let width = 2
 lazy var pointMath = PointMath()

 init() {
 x = 5.0
 y = 5.0
 }
 }

NOTE Unlike Objective‐C, initializers in Swift do not return a value.

 The init() initializer is automatically called when you create an instance of a class using a pair of
empty parentheses:

 var ptB = MyPointClass()
 println(ptB.x) //---5.0---
 println(ptB.y) //---5.0---
 println(ptB.width) //---2---

 When you create an instance of the MyPointClass , the value of both x and y is set to 5, as is evident
in the output.

Classes ❘ 145

 You can also create parameterized initializers by allowing the user of the class to pass in arguments
through the initializers. The following example shows another initializer with two parameters:

 class MyPointClass {
 var x = 0.0
 var y = 0.0
 let width = 2
 lazy var pointMath = PointMath()

 init() {
 x = 5.0
 y = 5.0
 }

 init(x:Double, y:Double) {
 self.x = x
 self.y = y
 }
 }

 When you create an instance of the class, you can call the initializer by passing it two arguments:

 var ptC = MyPointClass(x:7.0, y:8.0)
 println(ptC.x) //---7.0---
 println(ptC.y) //---8.0---
 println(ptC.width) //---2---

 Initializers and External Parameter Names
 Note that you need to specify the external parameter names for the initializer with two parameters:

 var ptC = MyPointClass(x: 7.0, y: 8.0)

 Unlike function names, an initializer does not have a name (it is simply identifi ed by the special
name init); thus, the following initializers are valid:

 class MyPointClass {
 var x = 0.0
 var y = 0.0
 let width = 2
 lazy var pointMath = PointMath()

 init() {
 x = 5.0
 y = 5.0
 }

 init(x:Double, y:Double) {
 self.x = x
 self.y = y
 }

 init(y:Double, x:Double) {

146 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 self.x = x
 self.y = y
 }
 }

 The only way to differentiate between the second and third initializers is to specify the external
parameter names when calling them. If you want to omit the external parameter name, you can do
so by prefi xing the parameter name with an underscore (_), as shown here:

 class MyPointClass {
 var x = 0.0
 var y = 0.0
 let width = 2
 lazy var pointMath = PointMath()

 init() {
 x = 5.0
 y = 5.0
 }

 init(_ x:Double, _ y:Double) {
 self.x = x
 self.y = y
 }

 init(y:Double, x:Double) {
 self.x = x
 self.y = y
 }
 }

 In this case, you can call the second initializer without specifying the external parameter names:

 var ptC = MyPointClass(7.0, 8.0)

 Once the external parameter names are omitted, you can no longer call the second initializer with
their external parameter names:

 var ptC = MyPointClass(x:7.0, y:8.0) //---not allowed---

 You can continue to call the third initializer using the external parameter names:

 var ptC = MyPointClass(y:8.0, x:7.0)

 Of course, if you were to prefi x the parameter names in the third initializer with underscores, you
would run into a problem:

 init(_ x:Double, _ y:Double) {
 self.x = x
 self.y = y
 }

 init(_ y:Double, _ x:Double) {

Classes ❘ 147

 self.x = x
 self.y = y
 }

 In this case, the compiler will generate an error message because it sees two initializers with the
same parameter type (see Figure 8-2).

 FIGURE 8-2

 Initializing Variables and Constants During Initialization
 As mentioned earlier, the compiler automatically generates a default initializer if the properties are
initialized to their default values. Suppose you have the following class defi nition:

 class MyPointClass2 {
 var x: Double
 var y: Double
 let width: Int
 }

 The preceding class defi nition will not compile, as the compiler cannot fi nd the default values for
the properties. However, if you were to add an initializer that initializes the properties’ values, this
would compile:

 class MyPointClass2 {
 var x: Double
 var y: Double
 let width: Int

 init() {
 x = 0.0
 y = 0.0
 width = 2
 }
 }

 Classes as Reference Types
 Unlike structures, classes are reference types. This means that when an instance of a class is
assigned to another variable or constant, a reference is made to the original instance instead of
creating a new copy. To see what this means, assume you have the following MyPointClass2
class:

148 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 class MyPointClass2 {
 var x: Double
 var y: Double
 let width: Int

 init() {
 x = 0.0
 y = 0.0
 width = 2
 }
 }

 The following code snippet creates an instance (pt1) of the MyPointClass2 and assigns it to another
variable pt2 :

 var pt1 = MyPointClass2()
 pt1.x = 25.0
 pt1.y = 50.0
 var pt2 = pt1

 Figure 8-3 shows what happens when pt1 is assigned to pt2 .

 Both variables are pointing to the same instance of
MyPointClass2 . When you print out the properties of
each instance:

 println("---pt1---")
 println(pt1.x)
 println(pt1.y)

 println("---pt2---")
 println(pt1.x)
 println(pt1.y)

 you will get the following:

 ---pt1---
 25.0
 50.0
 ---pt2---
 25.0
 50.0

 Make some changes to pt1 and print out the properties of both variables again:

 pt1.x = 35
 pt1.y = 76

 println("===After modifications===")
 println("---pt1---")
 println(pt1.x)
 println(pt1.y)

 println("---pt2---")

MyPointClass2
x = 25.0
y = 50.0

pt1 pt2

 FIGURE 8-3

Classes ❘ 149

 println(pt1.x)
 println(pt1.y)

 You will now see that the values for both instances’ properties have changed, proving that both
variables are indeed pointing to the same instance:

 ===After modifications===
 ---pt1---
 35.0
 76.0
 ---pt2---
 35.0
 76.0

 Comparing Instances—Identity Operators
 Often, you need to compare two instances of a class to determine if they are the same. There are
two types of comparison that you will perform:

➤ Compare whether two variables are pointing to the same instance.

➤ Compare whether two instances have the same value.

 To illustrate the fi rst, consider the following example. Suppose you have the following three
instances of MyPointClass2 —pt1 , pt2 , and pt3 :

 var pt1 = MyPointClass2()
 pt1.x = 25.0
 pt1.y = 50.0

 var pt2 = pt1

 var pt3 = MyPointClass2()
 pt3.x = 25.0
 pt3.y = 50.0

 Figure 8-4 shows that pt1 and pt2 are both
pointing to the same instance, while pt3 is
pointing to another instance.

 To check whether pt1 and pt2 are pointing
to the same instance, use the identical to
(===) operator:

 if pt1 === pt2 {
 println("pt1 is identical to pt2")
 } else {
 println("pt1 is not identical to pt2")
 }

 The preceding code snippet will output the following:

 pt1 is identical to pt2

MyPointClass2
x = 25.0
y = 50.0

pt1 pt2 pt3

MyPointClass2
x = 25.0
y = 50.0

150 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 The next code snippet checks whether pt1 and pt3 are pointing to the same instance:

 if pt1 === pt3 {
 println("pt1 is identical to pt3")
 } else {
 println("pt1 is not identical to pt3")
 }

 The preceding code snippet will output the following:

 pt1 is not identical to pt3

 Besides the identical to (===) operator, Swift also supports the not identical to (!==) operator.

 Comparing Instances—Equivalence Operators
 In the previous section, you used the identity operator to determine whether two variables are
pointing to the same instances of a class. However, a lot of times you will also be interested to know
if two instances are actually the “same”—i.e., if they have the same values. In Swift, the compiler
doesn’t know what qualifi es as the “same” values for your custom types; hence, you need to defi ne
that meaning yourself through operator overloading.

 The following code snippet includes the defi nition of the MyPointClass2 class, as well as two
operator overloading functions:

 class MyPointClass2 {
 var x: Double
 var y: Double
 let width: Int

 init() {
 x = 0.0
 y = 0.0
 width = 2
 }
 }

func == (ptA: MyPointClass2, ptB: MyPointClass2) ‐> Bool {
 return (ptA.x == ptB.x) && (ptA.y == ptB.y)
}

func != (ptA: MyPointClass2, ptB: MyPointClass2) ‐> Bool {
 return !(ptA == ptB)
}

 Essentially, the two functions are overloading the two operators: equal (==) and not equal (!=). Each
function takes two MyPointClass2 instances and returns a Bool value. Two instances are deemed to
be the same if the x and y properties of each instance are equal to the other instance.

 You can now use the == operator to test if pt1 and pt3 have the same value:

 var pt1 = MyPointClass2()
 pt1.x = 25.0

Classes ❘ 151

 pt1.y = 50.0
 var pt2 = pt1

 var pt3 = MyPointClass2()
 pt3.x = 25.0
 pt3.y = 50.0

if pt1 == pt3 {
 println("pt1 is same as pt3")
} else {

println("pt1 is not the same as pt3")
}

 The preceding will output the following:

 pt1 is same as pt3

 You can also use the != operator to compare the two instances:

 if pt1 != pt3 {
 println("pt1 is not the same as pt3")
 } else {
 println("pt1 is same as pt3")
 }

 Methods in Classes
 In Swift, you defi ne methods just like how you defi ne functions. There are two types of methods in
Swift:

➤ Instance methods —Belong to a particular instance of a class

➤ Type methods —Belong to the class

 Instance Methods
 An instance method is a function that belongs to a particular instance of a class. The following Car
class has four instance methods— accelerate() , decelerate() , stop() , and printSpeed() :

 class Car {
 var speed = 0

 func accelerate() {
 speed += 10

 if speed > 80 {
 speed = 80
 }
 printSpeed()

}

 func decelerate() {
 speed ‐= 10
 if speed<0 {

152 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 speed = 0
 }
 printSpeed()

}

 func stop() {
 while speed>0 {
 decelerate()

 }
 }

 func printSpeed() {
 println("Speed: \(speed)")
 }
 }

 To call the methods, you need to fi rst create an instance of the Car class:

 var c = Car()

 Once the instance has been created, you can call the methods using dot notation (.):

 c.accelerate() //---10---
 c.accelerate() //---20---
 c.accelerate() //---30---
 c.accelerate() //---40---
 c.decelerate() //---30---
 c.stop() //---20---
 //---10---
 //---0---

 Local and External Parameter Names for Methods
 The four methods in the Car class have no parameters. Therefore, let’s add two more methods to the
Car class:

 class Car {
 var speed = 0
 func accelerate() {
 speed += 10
 if speed > 80 {
 speed = 80
 }
 printSpeed()
 }

 func accelerateBy(quantum: Int) {
 speed += quantum
 if speed > 80 {

 speed = 80
 }
 printSpeed()
 }

 func accelerateBy(quantum: Int, repeat:Int) {

Classes ❘ 153

 for index in 1...repeat {
 speed += quantum
 if speed >= 80 {

 speed = 80
 break
 }

 printSpeed()
 }

 printSpeed()
 }

 func decelerate() {
 speed -= 10
 if speed<0 {
 speed = 0
 }
 printSpeed()
 }

 func stop() {
 while speed>0 {
 decelerate()
 }
 }

 func printSpeed() {
 println("Speed: \(speed)")
 }
 }

 In this case you have two additional methods:

➤ accelerateBy() —Takes an Int argument

➤ accelerateBy() —Takes two Int arguments

 To call the fi rst method, you need to pass in an integer argument:

 c.accelerateBy(5)

 To call the second method, you need to pass in an integer value for the fi rst and second arguments,
and in addition you need to specify the external parameter name for the second argument:d

 c.accelerateBy(5, repeat: 10)

NOTE In Swift, the fi rst parameter in a method is a local parameter name by
default, while subsequent parameters are both local and external parameter
names.

 If you want to make the fi rst parameter an external parameter name, prefi x it with the hash (#) tag,
as shown here:

 func accelerateBy(# quantum : Int, repeat:Int) {m

154 ❘ CHAPTER 8 STRUCTURES AND CLASSES

 ...
 }

 You now need to specify the external parameter name for the fi rst argument:

 c.accelerateBy(quantum: 5, repeat:10)

 If you do not wish the second or subsequent parameter names to be exposed as external parameter
names, prefi x the parameter name with an underscore (_):

 func accelerateBy(quantum: Int, _ repeat: Int) {
 ...
 }

 You now don’t have to specify the external parameter name for the second argument:

 c.accelerateBy(5, 10)

 The self Property
 Every instance of a class has an implicit property known as self . The self property refers to the
instance of the class, hence its name. Recall from earlier the property named speed :

 class Car {
 var speed = 0

 func accelerate() {
 speed += 10
 if speed > 80 {
 speed = 80
 }
 printSpeed()
 }
 ...

 Because speed is declared within the class, you can also rewrite the preceding by prefi xing speed
with self :

 class Car {
 var speed = 0

 func accelerate() {
 self.speed += 10
 if self.speed > 80 {

self.speed = 80
 }
 printSpeed()
 }

 ...

 In most cases, prefi xing a property using the self keyword is redundant. However, there are cases
for which this is actually useful and mandatory. Consider the following example:

Classes ❘ 155

 class Car {
 var speed = 0

func setInitialSpeed(speed: Int) {
 self.speed = speed
 }

 ...

 In this example, the parameter name for the setInitialSpeed() method is also named speed ,
which is the same as the property named speed . To differentiate between the two, you use the self
keyword to identify the property.

Type Methods
 As opposed to instance methods, type methods are methods that belong to the class. Type methods
are called directly using the class name, not through instances of the class.

NOTE In Swift, structures, classes, and enumerations support type methods.

 Type methods are declared similarly to instance methods, except that they are prefi xed with the
class keyword. The following code snippet shows that the Car class has the class method named
kilometersToMiles() :

 class Car {
 var speed = 0
 class func kilometersToMiles(km:Int) ‐> Double{
 return Double(km) / 1.60934
 }

 ...

 To use the kilometersToMiles() method, use the class name and call the method directly:

 c.speed = 30
 var s = Car.kilometersToMiles(c.speed)
 println("\(s) mph") //---18.6411820994942 mph---

 Class methods are often used for utility functions, where implementation is independent of each
instance of the class.

 Methods in Structures
 Methods are not exclusive to classes. Structures can also have methods. Consider the earlier
example of the Go structure:

enum StoneColor:String {
 case Black = "Black"
 case White = "White"

156 ❘ CHAPTER 8 STRUCTURES AND CLASSES

}

 struct Go {
 var row:Int
 var column:Int
 var color:StoneColor
 }

 You could add a printPosition() method to output the position of a stone on the Go board:

 struct Go {
 var row:Int
 var column:Int
 var color:StoneColor

 func printPosition() {
 println("[" + String(row) + "," + String(column) + "]")

 }
 }

 To use the printPosition() method, simply create an instance of the Go structure and call the
printPosition() method directly:

 var stone1 = Go(row:12, column:16, color:StoneColor.Black)
stone1.printPosition() //---[12,16]---

 Consider another method named move() , which moves the stone according to the specifi ed rows and
columns:

 struct Go {
 var row:Int //---0...18---
 var column:Int //---0...18---
 var color:StoneColor

 func printPosition() {
 println("[" + String(row) + "," + String(column) + "]")
 }

func move(dRow: Int, dColumn: Int) {
 row += dRow
 column += dColumn
 }
 }

 However, the preceding method will not compile. In Swift, the properties of a value type cannot be
modifi ed from within its instance method; and because a structure is a value type, and the preceding
move() method is trying to modify the row and column properties, the preceding will fail. To fi x
this, you need to explicitly indicate that the method is mutating , as shown here: g

 struct Go {
 var row:Int //---0...18---
 var column:Int //---0...18---
 var color:StoneColor

 func printPosition() {
 println("[" + String(row) + "," + String(column) + "]")

Summary ❘ 157

 }

 mutating func move(dRow: Int, dColumn: Int) {
 row += dRow
 column += dColumn
 }
 }

 You can now move the stone by calling the move() method:

 var stone1 = Go(row:12, column:16, color:StoneColor.Black)
 stone1.printPosition()
stone1.move(2, dColumn: 1)
stone1.printPosition() //---[14,17]---

 What actually happens behind the scenes is that the move() method makes changes to the original
structure (stone1 in this example), returns a new instance of the structure, and then overwrites the
original instance. Because of this, the stone1 structure must be declared as a variable using the var
keyword. If stone1 is a constant (declared using the let keyword), the move() method will cause an
error:

let stone1 = Go(row:12, column:16, color:StoneColor.Black)
 stone1.printPosition()
stone1.move(2, dColumn: 1) //---error---

 This is because the move() method is attempting to modify an immutable structure.

 SUMMARY

 In this chapter, you have seen how structures and classes are defi ned. You have also seen how a
structure or class can have the following:

➤ Methods

➤ Properties

➤ Initializers

 One important feature of Swift is the various types of properties available, which differs from
conventional OOP languages. In Swift, structures behave very much like classes, with a notable
exception: Structures are value types and classes are reference types. In the next chapter, you will
learn another important topic in Swift OOP: inheritance.

158 ❘ CHAPTER 8 STRUCTURES AND CLASSES

EXERCISES

1. Create a structure named DOB to store a date containing the year, month, and day.

2. Create a structure to store the information of a student. The structure needs to be able to store
the following information:

 a. Student ID (String)

 b. Student Name (String)

 c. Date of birth (DOB [from question #1])

3. Add a computed property named age to the structure defi ned in question #2 so that you can
obtain the age of a student.

4. Create an instance of the structure that you have created in question #3.

5. Print out the age of the student.

Summary ❘ 159

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Structures A structure is a special kind of data type that groups a list of
variables and places them under a unifi ed name.

Memberwise initializer Use the memberwise initializer to initialize the values of a
structure’s members.

Structures as a value type A structure is a value type—i.e., when you assign a variable/
constant of a value type to another variable/constant, its value is
copied over.

Comparing structures You need to overload the == and != operators.

Classes A class is similar to a structure in many ways. Like a structure, a
class defi nes properties to store values, contains initializers to
initialize its properties’ values, and so on.

Properties Two types of properties are supported: stored and computed.

Stored properties A stored property directly stores the value of a property within
a class.

Computed properties A computed property does not directly store the value of a
property within a class; it stores it using another property.

Storing values in computed
properties

You use the get{} and set{} to store values in computed
properties.

Lazy stored properties A property that is marked as lazy will not be instantiated until it
is actually used.

Property observers Property observers let you handle events that are fi red before
and after the value of a stored property is assigned.

Typed properties Typed property is a property belonging to a class, not an
instance.

Initializers When you create an instance of a class using a pair of empty
parentheses, you are calling its default initializer. You can also
create your own initializer using the special init() function
name.

Initializers and external
parameter names

By default, you need to explicitly specify the parameter names
when calling an initializer.

Classes as reference types Classes are reference types. This means that when an instance of
a class is assigned to another variable or constant, a reference is
made to the original instance instead of creating a new copy.

continues

160 ❘ CHAPTER 8 STRUCTURES AND CLASSES

TOPIC KEY CONCEPTS

Comparing class instances Use the identical to (===) and not identical (!==) operators.

Comparing class equivalence You need to overload the == and != operators.

Methods in classes Two types of methods—instance and type methods.

Local and external parameter
names for methods

In Swift, the fi rst parameter in a method is a local parameter
name by default, whereas subsequent parameters are both local
and external parameter names.

Methods in structures In Swift, the properties of a value type cannot be modifi ed from
within its instance method; to do so requires the mutating
keyword.

(continued)

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ What inheritance is

➤ How to defi ne and instantiate a base class

➤ How to create an abstract class

➤ How to inherit a base class

➤ How to override methods

➤ How to override initializers

➤ How to overload initializers

➤ How to create abstract methods

➤ How to overload methods

➤ How to prevent subclassing

➤ The different types of initializers

➤ How to perform initializer chaining

➤ How to call initializers in subclasses

➤ Using extensions in Swift

➤ Using access controls in Swift

 In the previous chapter, you learned how classes are defi ned and how to add methods and
properties to a class. In this chapter, you continue to explore object‐oriented programming
(OOP) by looking at another important topic—inheritance. In addition, you will also learn
about access controls and how Swift’s interpretation of access control is different from
conventional programming languages.

 9

162 ❘ CHAPTER 9 INHERITANCE

 UNDERSTANDING INHERITANCE

 Class inheritance is one of the cornerstones of OOP. It basically means that a class can inherit the
properties and methods from another class. Class inheritance enables a high degree of code reuse,
allowing the same implementation to be adapted for another use. Swift fully supports the capability
of class inheritance.

NOTE This chapter assumes that you already have a good understanding
of OOP. Readers who would like more detailed information about object‐
oriented programming concepts should check out Code Complete: A Practical
Handbook of Software Construction, Second Edition, by Steve McConnell
(Microsoft Press).

 Defi ning a Base Class
 A base class is simply a class that does not inherit from another class. For example, the following
Shape class does not inherit from any class, and hence it is known as a base class:

 class Shape {
 //---stored properties---
 var length:Double = 0
 var width:Double = 0

 func perimeter() -> Double {
 return 2 * (length + width)
 }
 }

 The Shape class contains two stored properties, length and width , as well as a perimeter()
method. This class does not assume that an object has any particular shape; it also assumes that
an object has a measurable length and width, and that its perimeter is twice the sum of its length
and width.

 Instantiating a Base Class
 As you have learned in the previous chapter, you can create an instance of this class using the default
initializer:

 var shape = Shape()

Understanding Inheritance ❘ 163

 However, it is really not very meaningful to create an instance of the Shape class, as it does not tell
you much about the exact shape that you are dealing with. In real life, an object may have various
shapes—such as, but not limited to, the following:

➤ Rectangle

➤ Circle

➤ Square

➤ Rhombus

 Thus, it would be better to create classes that inherit the Shape base class, and extend from it if
necessary.

Creating an Abstract Class
 OOP includes the concept of abstract classes. Abstract classes are classes from which you cannot
directly instantiate. In other words, you cannot create an instance of the class directly. Rather,
you can only create an instance of its subclass. In Swift, abstract classes are not supported, so you
should use protocols to implement the concept of abstract classes if you need to do so.

NOTE Chapter 11 discusses the concept of protocols in more details.

 However, you can improvise an abstract method by using the private identifi er together with an
initializer, as shown here:

 class Shape {
 //---stored properties---
 var length:Double = 0
 var width:Double = 0

 //---improvision to make the class abstract---
 private init() {
 length = 0
 width = 0
 }

 func perimeter() -> Double {
 return 2 * (length + width)
 }
 }

 In the preceding code snippet, you added a private initializer, init() , which limits its accessibility
to within its physical fi le. That is to say, any code that is outside the physical fi le in which the Shape
class is defi ned (say, Shape.swift) will not be able to call the initializer method. Therefore, when
you create an instance of the Shape class, you will get an error (see Figure 9-1).

164 ❘ CHAPTER 9 INHERITANCE

 FIGURE 9-1

NOTE You will learn more about the access controls mechanism in Swift later
in this chapter.

 Inheriting from a Base Class
 To inherit from a base class, you create another class and specify the base class name after the colon
(:):

 class Rectangle : Shape {

 }

 In the preceding code snippet, Rectangle is a subclass of Shape . That means it will inherit all the
properties and methods declared in the Shape class. However, you are still not able to create an
instance of the Rectangle class yet, because you need to create an initializer for the Rectangle
class.

 Overriding Initializers
 As discussed earlier, the Shape class has a private initializer that is only visible to code that
resides in the same physical fi le as the Shape class. In order to be able to create an instance of the
Rectangle class, you need to provide an initializer, as shown here:

 class Rectangle: Shape {
 //---override the init() initializer---
 override init() {
 super.init()
 }
 }

 Observe that you need to prefi x the init() initializer with the override keyword. This is because
the init() initializer is already in the base class (Shape). In addition, because you are overriding

Understanding Inheritance ❘ 165

the initializer, you need to call the immediate superclass’s init() method before exiting this
initializer:

 override init() {
 super.init()
 }

 You will now be able to create an instance of the Rectangle class:

 var rectangle = Rectangle()

 You can also access the length and width properties of the Shape base class:

 rectangle.length = 5
 rectangle.width = 6

 The following example shows how you can also access the perimeter()
method defi ned in the Shape class:

 println(rectangle.perimeter()) //---22.0---

 Figure 9-2 shows the class hierarchy diagram of the Rectangle class.

 Overloading Initializers
 In the previous section, you override the default init() initializer. You can also add another
initializer to the Rectangle class:

 class Rectangle: Shape {
 //---override the init() initializer---
 override init() {
 super.init()
 }

 //---overload the init() initializer---
 init(length:Double, width:Double) {
 super.init()
 self.length = length
 self.width = width
 }
 }

 In this case, you are overloading the initializer with two parameters: g length and width .

 You can now create an instance of the Rectangle class like this:

 var rectangle = Rectangle(length: 5,width: 6)

 In Xcode, code completion will automatically display two initializers that you can use for the
Rectangle class (see Figure 9-3).

Shape

Rectangle

 FIGURE 9-2

166 ❘ CHAPTER 9 INHERITANCE

 FIGURE 9-3

 Swift adopts the following rules for initializers:

➤ If a subclass does not have any initializers, then all the base class’ initializers are available to
the subclass.

➤ If a subclass has at least one initializer, then it will hide all the initializers in the base class.

 Here is an example to illustrate the preceding rules. The following Square class inherits from the
Rectangle class (which has two overloaded initializers):

 class Square : Rectangle {

 }

 When creating an instance of the Square class, you would see two initializers (see Figure 9-4).

 FIGURE 9-4

 However, suppose the Square class has its own initializer, as shown here:

 class Square: Rectangle {
 //---initializer---
 init(length:Double) {
 super.init()
 self.length = length
 self.width = self.length
 }
 }

 You will now be able to call only this initializer (see Figure 9-5). All the initializers in the base class
(Rectangle) will be hidden.

 FIGURE 9-5

Understanding Inheritance ❘ 167

 Creating Abstract Methods
 As you likely know, OOP also includes the concept of abstract methods. An abstract method is a
method that is declared in the base class but whose implementation is left to the inheriting class. Using
the same Shape example, suppose you have an area() method in the Shape class, as shown here:

 class Shape {
 //---stored properties---
 var length:Double = 0
 var width:Double = 0

 //---improvision to make the class abstract---
 private init() {
 length = 0
 width = 0
 }

 func perimeter() -> Double {
 return 2 * (length + width)
 }

 //---calculate the area of a shape---
 func area() ‐> Double {}
 }

 Ideally, the implementation of area() should be left to inheriting classes, as only specifi c shapes
know how to calculate the area.

 However, you cannot leave the implementation of the area() method empty, as shown in the
preceding example. Swift does not support the concept of abstract methods. Rather, you should
implement this using protocols.

 There is, however, a way to improvise abstract methods—by using the assert() function:

 class Shape {
 //---stored properties---
 var length:Double = 0
 var width:Double = 0

 //---improvision to make the class abstract---
 private init() {
 length = 0
 width = 0
 }

 func perimeter() -> Double {
 return 2 * (length + width)
 }

 //---improvision to make the method abstract---
 func area() -> Double {
 assert(false, "This method must be overridden")
 }
 }

168 ❘ CHAPTER 9 INHERITANCE

 The assert() function takes two arguments: a condition and a message. When the condition
evaluates to false , the program stops execution and the message is displayed.

 In fact, if you call the area() method through the rectangle instance, as shown in the following
example, the code will crash, as indicated in Figure 9-6 :

 var rectangle = Rectangle(length: 5,width: 6)
 println(rectangle.area())

NOTE A good way to understand the assert() function is to think of its
equivalent meaning in English—ensure. In other words, the assert statement
means something like “ensure that the condition is true; otherwise, stop the
program and display the message ."

 FIGURE 9-6

 To fi x this, you need to implement the area() method in the Rectangle class:

 class Rectangle: Shape {
 //---override the init() initializer---
 override init() {
 super.init()
 }

 //---overload the init() initializer---
 init(length:Double, width:Double) {
 super.init()

Understanding Inheritance ❘ 169

 self.length = length
 self.width = width
 }

//---override the area() function---
final override func area() ‐> Double {

 return self.length * self.width
 }
 }

 Observe that the area() method defi nition has two prefi xes:

➤ final —The final keyword indicates that subclasses of Rectangle are not allowed to
override the implementation of area() .

➤ override —Indicates that you are overriding the implementation of the area() method in
the base class (Shape , that is)

 You will now be able to use the area() method, as shown here:

 rectangle.length = 5
 rectangle.width = 6
 println(rectangle.perimeter()) //---22---
 println(rectangle.area()) //---30---

Overloading Methods
 Besides overloading initializers, you can also overload methods. Using the Shape base class, the
following creates another subclass called Circle that inherits from Shape :

 class Circle : Shape {

 //---initializer---
 init(radius:Double) {
 super.init()
 self.width = radius * 2
 self.length = self.width
 }

 //---override the perimeter() function---
 override func perimeter() -> Double {
 return 2 * M_PI * (self.width/2)
 }

 //---overload the perimeter() function---
 func perimeter(#radius:Double) -> Double {

 //---adjust the length and width accordingly---
 self.length = radius * 2
 self.width = self.length

 return 2 * M_PI * radius

170 ❘ CHAPTER 9 INHERITANCE

 }

 //---override the area() function---
 override func area() -> Double {
 return M_PI * pow(self.length / 2, 2)
 }
 }

 In the Circle class, you:

➤ have a new init() initializer

➤ override the perimeter() function in the base class

➤ overload the perimeter() function with one that accepts a
radius argument

➤ override the area() function in the base class (Shape)

 Figure 9-7 shows the class hierarchy of the Circle class.

 You can now use the Circle class as follows:

 var circle = Circle(radius: 6.8)
 println(circle.perimeter()) // 42.7256600888212
 println(circle.area()) // 145.267244301992

 //---need to specify the radius label---
 println(circle.perimeter(radius:7.8)) // 49.0088453960008

 //---call the perimter() method above
 // changes the radius---
 println(circle.area()) // 191.134497044403

 Because the perimeter() method is overloaded, you can call it either with no argument or with one
argument (see Figure 9-8).

Shape

Circle

 FIGURE 9-7

 FIGURE 9-8

 Preventing Subclassing
 So far, you have seen that both the Circle and the Rectangle class inherit from the Shape class.
However, there are times when you want to prevent a class from being inherited. Consider the
following Square class:

final class Square: Rectangle {
 //---overload the init() initializer---
 init(length:Double) {
 super.init()

Types of Initializers ❘ 171

 self.length = length
 self.width = self.length
 }
 }

 The Square class inherits from the Rectangle class (see Figure 9-9) and
the class defi nition is prefi xed with the final keyword. This indicates
that no one other class can inherit from it. For example, the following is
not allowed:

 //---cannot inherit from Square as it is final---
 class rhombus: Square {

 }

 In addition, because the area() method has been declared to be final
in the Rectangle class, the Square class is not allowed to override it, as
shown here:

 final class Square: Rectangle {
 //---overload the init() initializer---
 init(length:Double) {
 super.init()
 self.length = length
 self.width = self.length
 }

 //---cannot override a final method---
 //---override the area() function---
 override func area() ‐> Double {

...
 }

 }

 TYPES OF INITIALIZERS

 In the previous chapter on classes and structures, you learned about initializers. Initializers basically
assign default values to the variables in your class so that they all have “initial” values when the
class is instantiated. In Swift, there are three types of initializers:

➤ Default initializer

➤ Designated initializers

➤ Convenience initializers

 Default Initializer
 The default initializer is the initializer that is created by the compiler when your class is instantiated.
For example, consider the following Contact class:

 class Contact {
 var firstName:String = ""

 FIGURE 9-9

Shape

Rectangle

Square

172 ❘ CHAPTER 9 INHERITANCE

 var lastName:String = ""
 var email:String = ""
 var group:Int = 0
 }

 When you create an instance of the Contact class, the compiler automatic generates a default
initializer for the Contact class so that you can create the instance:

 var c = Contact()

 However, observe that all the stored properties in the Contact class are initialized to their default
values. If they are not initialized to some values, such as the following, the compiler will complain
that the class has no initializer:

 class Contact {
 var firstName:String
 var lastName:String
 var email:String
 var group:Int
 }

 One way to fi x this is to initialize each stored property (as we have done previously), or to explicitly
create an initializer:

 class Contact {
 var firstName:String
 var lastName:String
 var email:String
 var group:Int

 init() {
 firstName = ""

 lastName = ""
 email = ""

 group = 0
 }
 }

 In this case, you are creating your own initializer to initialize the values of the stored properties.
This type of initializer is known as a designated initializer, which is discussed in the nextrr
section.

 Designated Initializers
Sometimes you want to allow users of a class to pass in the values to initialize at the time of
instantiation. In this case, you can create another initializer with parameters, as shown in the
following example:

 class Contact {
 var firstName:String
 var lastName:String
 var email:String

Types of Initializers ❘ 173

 var group:Int

 init() {
 firstName = ""
 lastName = ""
 email = ""
 group = 0
 }

 //---designated initializer---
 init(firstName: String, lastName:String, email:String, group: Int) {
 self.firstName = firstName
 self.lastName = lastName
 self.email = email
 self.group = group
 }
 }

 In the preceding example, the initializer is a designated initializer, as it initializes all the properties
in the class. You can call the designated initializer as follows:

 var c2 = Contact(
 firstName:"Wei‐Meng",
 lastName:"Lee",

 email:"weimenglee@learn2develop.net",
 group:0)

 Note that for initializers, you always have to label the various arguments passed into it, unless you
write an underscore in front of the parameter name:

 //---designated initializer---
 init(_ firstName: String, _ lastName:String,
 _ email:String, _ group: Int) {
 self.firstName = firstName
 self.lastName = lastName
 self.email = email
 self.group = group
 }

 In this case, you can call the initializer without specifying the labels:

 var c2 = Contact("Wei‐Meng", "Lee",
 "weimenglee@learn2develop.net",0)

 A class is not limited to one designated initializer:

 class Contact {
 var firstName:String
 var lastName:String
 var email:String
 var group:Int

//---designated initializer---
 init() {
 firstName = ""

174 ❘ CHAPTER 9 INHERITANCE

 lastName = ""
 email = ""

 group = 0
}

 //---designated initializer---
 init(firstName: String, lastName:String, email:String, group: Int) {
 self.firstName = firstName
 self.lastName = lastName
 self.email = email
 self.group = group
 }

 //---designated initializer---
 init(firstName: String, lastName:String, email:String, group: Int,

timeCreated:NSDate) {
 self.firstName = firstName

 self.lastName = lastName
 self.email = email
 self.group = group

 println(timeCreated)
 }

 }

 The preceding highlighted initializers are also designated initializers, as they initialize all the
properties in the class.

 Convenience Initializers and Initializer Chaining
 The third type of initializer is known as a convenience initializer . To understand its use, consider rr
the following example:

 class Contact {
 var firstName:String
 var lastName:String
 var email:String
 var group:Int

 //---designated initializer---
 init() {
 firstName = ""
 lastName = ""
 email = ""
 group = 0
 }

 //---designated initializer---
 init(firstName: String, lastName:String, email:String, group: Int) {
 self.firstName = firstName
 self.lastName = lastName
 self.email = email
 self.group = group

Types of Initializers ❘ 175

 }

 //---designated initializer---
 init(firstName: String, lastName:String, email:String, group: Int,
 timeCreated:NSDate) {
 self.firstName = firstName
 self.lastName = lastName
 self.email = email
 self.group = group
 println(timeCreated)
 }

//---convenience initializer; delegate to the designated one---
 convenience init(firstName: String, lastName:String, email:String) {
 self.init(firstName: firstName, lastName: lastName, email: email,

 group: 0)
 }

 //---convenience initializer; delegate to another convenience
// initializer—

 convenience init(firstName: String, lastName:String) {
 self.init(firstName:firstName, lastName:lastName, email:"")

}

 //---convenience initializer; delegate to another convenience
 // initializer---

convenience init(firstName: String) {
 self.init(firstName:firstName, lastName:"")
 }

 }

 As Figure 9-10 illustrates, each convenience initializer calls another initializer. The convenience
initializer with the fewest parameters calls the one with the next fewest number of parameters, and so
on. This is call initializer chaining . Finally, the last convenience initializer calls the designated initializer.g

 FIGURE 9-10

176 ❘ CHAPTER 9 INHERITANCE

 Initializer chaining enables you to ensure that all properties in a class are fully initialized before use.

 Calling Initializers in Subclasses
 When a subclass inherits a base class and has its own initializer, you need to call the initializer in
the base class. Consider the following example:

 class Employee: Contact {
 init(firstName:String, lastName:String, email:String) {

 }
 }

Employee inherits from the Contact base class and it overrides the initializers in Contact . In this
case, you need to call the base class’s initializer before you can do anything with the base class’s
properties. Trying to access any of the base class’s properties will result in an error:

 class Employee: Contact {

 init(firstName:String, lastName:String, email:String) {
 //---error---
 self.firstName = firstName
 }
 }

 However, you have to follow one rule: The subclass can only call the base class’s designated
initializer . The following will fail, as you are calling the base class’s convenience initializer, not therr
designated initializer:

 class Employee: Contact {
 init(firstName:String, lastName:String, email:String) {
 //---error; can only call designated initializer(s)---
 super.init(firstName: firstName, lastName: lastName, email: email)
 }
 }

 You need to call one of the base class’s designated initializers:

 class Employee: Contact {
 init(firstName:String, lastName:String, email:String) {

FIGURE 9-11

 Figure 9-11 shows that the Contact class now has six initializers.

Extensions ❘ 177

 super.init(firstName: firstName, lastName: lastName, email: email,
 group: 9)
 }
 }

 You can now create an instance of Employee as follows:

 var e1 = Employee(firstName: "John", lastName: "Doe",
 email: "johndoe@example.com")

 EXTENSIONS

Extensions in Swift enable you to add additional functionalities (such as methods) to an existing class.

NOTE Objective‐C also supports extensions, except that it is called
categories . Other languages that support extensions include C# and
JavaScript.

 Extending Methods
 To understand how extensions work, consider the following example:

 extension String {
 func getLatLng(splitter:String) -> (Double, Double) {
 var latlng = self.componentsSeparatedByString(splitter)
 return ((latlng[0] as NSString).doubleValue,
 (latlng[1] as NSString).doubleValue)
 }
 }

 The preceding code snippet extends the String class with a method named getLatLng() . Its main
function is to take in a string containing a latitude and longitude with a separator in between (say, a
comma), and return a tuple containing the latitude and longitude in Double format. A sample string
may look like this: “ 1.23456,103.345678 .” The getLatLng() method takes a String parameter
(specifying the splitter between the latitude and longitude) and returns a tuple containing two
Double s.

 To use the extension method, simply call it whenever you are dealing with a String variable or
constant, as shown here:

 var str = "1.23456,103.345678"
 var latlng = str.getLatLng(",")
 println(latlng.0)
 println(latlng.1)

 Extending Properties
 Besides extending methods, extensions also work with properties, albeit only computed properties.

178 ❘ CHAPTER 9 INHERITANCE

 Remember the Distance class shown in the previous chapter:

 class Distance {
 var miles = 0.0
 var km: Double {
 get {
 return 1.60934 * miles
 }
 set (km) {
 miles = km / 1.60934
 }
 }
 }

 You could extend the Distance class by adding computed properties to it:

 extension Distance {
 var feet: Double { return miles * 5280 }
 var yard: Double { return miles * 1760 }
 }

 In the preceding code snippet, you added two new computed properties to the Distance class:

➤ feet —To convert the miles to feet

➤ yard —To convert the miles to yards

 You can use the newly added computed properties as shown here:

 var d = Distance()
 d.miles = 10
 println(d.feet) //---52800.0---
 println(d.yard) //---17600.0---

 ACCESS CONTROLS

 In Swift, access control is modeled after the concept of modules and source fi les:

➤ Module —A single unit of distribution. The iPhone app that you developed and uploaded to
the App Store as a single unit is a module. A framework that you package separately to be
reused in different applications is also a module (see Figure 9-12). An application that uses
another framework is considered to be two separate modules.

➤ Source fi le —A physical fi le within a module. For example, a source fi le may contain the defi -
nition of a single class, or, if you wish, the defi nition of multiple classes.

NOTE Extensions in Swift do not support stored properties.

Access Controls ❘ 179

 Swift’s idea of access control is a little different from most other languages such as Java and C#.
Most conventional OOP languages include three levels of scope:

➤ Private scope —Member variables are accessible within the class to which they are declared.

➤ Protected scope —Member variables are accessible within the class to which they are
declared, as well as to subclasses.

➤ Public scope —Member variables are accessible to all code, inside or outside of the class in
which they are declared.

 Swift provides three different levels of access for your code, and these levels apply according to the
location where an entity (constant, variable, class, property) is defi ned.

➤ Public access —The entity is accessible anywhere from within the fi le or module. You usually
use public access for entities when you are writing a framework and exposing your APIs for
public access.

➤ Private access —The entity is accessible only within the same physical fi le in which it is
defi ned. For example, a variable declared as private in a class is still accessible to a subclass
that is defi ned in the same physical fi le as the variable. If the subclass is defi ned in another
physical fi le, the variable is not accessible.

➤ Internal access —By default, all entities defi ned in Swift have internal access, unless they are
declared to be public or private. An entity that has internal access is accessible from within
the physical fi le as well as within the same module the fi le belongs to.

 Internal
 Let’s look at an example of how the various access control levels work. Assume that you have the
following fi les:

➤ ClassA.swift

➤ ClassB.swift

Source
Files

Source
Files

Module - App Module - Framework

 FIGURE 9-12

180 ❘ CHAPTER 9 INHERITANCE

ClassA.swift contains the following defi nition:

 class ClassA {
 var a1 = 10
 //---same as---
 //internal var a1 = 10
 }

ClassB.swift contains the following defi nition:

 class ClassB {
 var b1 = 20
 //---same as---
 //internal var b1 = 20
 }

 By default, both a1 and b1 have internal access control. This means that as long as ClassA.swift
and ClassB.swift are contained within the same module (see Figure 9.12 for examples of modules),
a1 is accessible by the code in ClassB , and b1 is accessible by the code in ClassA . For example,
suppose that ClassA.swift and ClassB.swift are both part of an iPhone application project. In
this case, both a1 and b1 are accessible anywhere within the iPhone project.

 Private
 Using the same example, the following now adds the private keyword to both the declarations of
a1 and b1 :

 class ClassA {
 private var a1 = 10
 }

 class ClassB {
 private var b1 = 20
 }

 They will now be inaccessible outside the fi les. That is to say, a1 is not accessible to the code in
ClassB , and neither can the code in ClassA access A b1 .

 If in ClassA.swift you now add another subclass that inherits from ClassA , then a1 is still
accessible:

 //---these two classes within the same physical file---
 class ClassA {
 private var a1 = 10
 }

class SubclassA: ClassA {
 func doSomething() {
 self.a1 = 5
 }
}

Summary ❘ 181

 In this case, a1 is still accessible within the same fi le in which it is declared, even though it is
declared as private .

 Public
 If you want a1 (and b1) to be publicly accessible, you need to declare that using the public keyword:

 class ClassA {
 public var a1 = 10
 }

 However, you will receive a compiler warning because ClassA has the default A internal access,
which essentially prevents a1 from being accessed outside the module. To fi x this, make the class
public as well:

public class ClassA {
 public var a1 = 10
 }

 The ClassA and its property A a1 are now accessible outside the module.

 SUMMARY

 In this chapter, you learned how to declare a subclass that inherits from a base class. You also
learned how to override and overload methods that are already defi ned in the current and parent
class. In addition, you had a more detailed look at initializers and the different types of initializers
you can create in a class. You also examined the rules that Swift adopts when calling initializers and
how they behave in subclasses.

 Another important topic covered in this chapter is extensions—a feature that enables you to extend
functionalities to existing classes. Finally, you learned how Swift manages access controls and how
they affect variable and constant accessibility in your application.

182 ❘ CHAPTER 9 INHERITANCE

EXERCISES

1. Create a Vehicle class that contains the following properties:

➤ model

➤ doors

➤ color – either red, blue, or white

➤ wheels

2. Create a subclass of Vehicle named MotorVehicle . Add an additional property to it named
licensePlate .

3. Create a subclass of Vehicle named Bicycle .

4. Create a subclass of MotorVehicle named Car . Create the following initializers:

➤ an initializer that sets doors to 2

➤ an initializer that initializes the model , doors , color , and wheels

➤ a convenience initializer that initializes licensePlate and calls the initializer that initializes the
model , doors, color , and wheels

Summary ❘ 183

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Base class A base class is simply a class that does not inherit from another class.

Abstract class Swift does not offi cially support the concept of abstract classes; to
implement them, you can improvise using a private initializer.

Class inheritance To inherit from a base class, you create another class and specify the
base class name after the colon (:).

Overriding base
class initializer

When you override the base class initializer, you need to call the base
class initializer using super.init() .

Overloading
initializers

 You can overload the initializers within a subclass.

 If a subclass does not have any initializers, then all the base class’
initializers are available to the subclass.

 If a subclass has at least one initializer, then it will hide all the initializers
in the base class.

Abstract methods Swift does not support the concept of abstract methods. You can
improvise abstract methods using the assert() function.

The final keyword When applied to a method, the final keyword indicates that subclasses
of the current class are not allowed to override the particular method.
When applied to a class, this means that the current class cannot be
subclassed by another class.

Types of initializers There are three types of initializers: default, designated, and
convenience.

Calling initializers in
subclasses

A subclass can call only the base class’s designated initializer, not the
convenience initializer’s.

Extensions Extensions enable you to add functionalities (such as methods) to an
existing class.

Access controls Swift provides three different levels of access: public , private , and
internal .

Public access The entity is accessible anywhere from within the fi le or module. You
usually use public access for entities when you are writing a framework
and exposing your APIs for public access.

Private access The entity is accessible only within the same physical fi le in which it is
defi ned. For example, a variable declared as private in a class is still
accessible to a subclass that is defi ned in the same physical fi le as the
variable. If the subclass is defi ned in another physical fi le, the variable is
not accessible.

Internal access By default, all entities defi ned in Swift have internal access, unless they
are declared to be public or private. An entity that has internal access is
accessible from within the physical fi le as well as within the same module
to which the fi le belongs.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ What closures are

➤ Functions as special types of closures

➤ How to create a closure as a variable

➤ How to write a closure inline

➤ How to simplify closures using type inference

➤ How to simplify closures using shorthand argument names

➤ How to simplify closures using operator functions

➤ How to write a trailing closure

➤ How to use the Array ’s three closure functions: map() , filter() ,
and reduce()

➤ How to declare and use closures in your functions

 One of the important features in Swift is the closure . Closures are self‐contained blocks of
code that can be passed to functions to be executed as independent code units. Think of a
closure as a function without a name. In fact, functions are actually special cases of closures.

 Swift offers various ways to optimize closures so that they are brief and succinct. The various
optimizations include the following:

➤ Inferring parameter types and return type

➤ Implicit returns from single‐statement closures

 10

186 ❘ CHAPTER 10 CLOSURES

➤ Shorthand argument names

➤ Trailing closure syntax

➤ Operator closure

NOTE Closure is Swift’s answer to Objective‐C’s block syntax and C#’s
Lambda expressions.

 UNDERSTANDING CLOSURES

 The best way to understand closures is to use an example. Suppose you have the following array of
integers:

 let numbers = [5,2,8,7,9,4,3,1]

 Assume you want to sort this array in ascending order. You could write your own function to
perform the sorting, or you could use the sorted() function available in Swift. The sorted()
function takes two arguments:

➤ An array to be sorted

➤ A closure that takes two arguments of the same type as the array, and returns a true if the
fi rst value should appear before the second value

 Functions as Closures
 In Swift, functions are special types of closures. As mentioned in the previous section, the sorted()
function needs a closure that takes two arguments of the same type as the array, returning a
true if the fi rst value should appear before the second value. The following function fulfi lls that
requirement:

 func ascending(num1:Int, num2:Int) -> Bool {
 return num1<num2

 }

 The ascending() function takes two arguments of type Int and returns a Bool value. If num1 is
less than num2 , it returns true . You can now pass this function to the sorted() function, as shown
here:

 var sortedNumbers = sorted(numbers, ascending)

 The sorted() function will now return the array that is sorted in ascending order. You can verify
this by outputting the values in the array:

Understanding Closures ❘ 187

 println("===Unsorted===")
 println(numbers)

 println("===Sorted===")
 println(sortedNumbers)

 The preceding statements output the following:

 ===Unsorted===
 [5, 2, 8, 7, 9, 4, 3, 1]
 ===Sorted===
 [1, 2, 3, 4, 5, 7, 8, 9]

NOTE The sorted() function does not modify the original array. It returns the
sorted array as a new array.

 Assigning Closures to Variables
 As mentioned earlier, functions are special types of closures. In fact, a closure is a function without
a name. However, you can assign a closure to a variable—for example, the ascending() function
discussed earlier can be written as a closure assigned to a variable:

 var compareClosure : (Int, Int)->Bool =
 {
 (num1:Int, num2:Int) ‐> Bool in
 return num1 < num2
 }

 The preceding code snippet fi rst declares that it is a closure that takes two Int arguments and
returns a Bool value:

 var compareClosure : (Int, Int)‐>Bool =

 The actual implementation of the closure is then defi ned:

 {
 (num1:Int, num2:Int) -> Bool in
 return num1 < num2
 }

 To use the compareClosure closure with the sorted() function, pass in the compareClosure variable:

 var sortedNumbers = sorted(numbers, compareClosure)

 In general, a closure has the following syntax:

 {
 ([parameters]) ‐> [return type] in

 [statements]
 }

188 ❘ CHAPTER 10 CLOSURES

 Writing Closures Inline
 While an earlier section showed how to pass a function into the sorted() function as a closure
function, a better way is to write the closure inline , which obviates the need to defi ne a function
explicitly or assign it to a variable.

 Rewriting the earlier example would yield the following:

 var sortedNumbers = sorted(numbers,
 {
 (num1:Int, num2:Int) ‐> Bool in
 return num1<num2
 }
)

 As you can observe, the ascending() function name is now gone; all you have supplied is the
parameter list and the content of the function.

 If you want to sort the array in descending order, you can simply change the comparison operator:

 var sortedNumbers = sorted(numbers,
 {
 (num1:Int, num2:Int) -> Bool in
 return num1>num2
 }
)
 println("===Sorted===")
 println(sortedNumbers)

 The array will now be sorted in descending order:

 ===Sorted===
 [9, 8, 7, 5, 4, 3, 2, 1]

 If you want to sort a list of strings, you can write your closure as follows:

 var fruits = ["orange", "apple", "durian", "rambutan", "pineapple"]

 println(sorted(fruits,
 {
 (fruit1:String, fruit2:String) ‐> Bool in
 return fruit1<fruit2
 })
)

 The output is as shown:

 [apple, durian, orange, pineapple, rambutan]

 Type Inference
 Because the type of the fi rst argument of the closure function must be the same as the type of array
you are sorting, it is actually redundant to specify the type in the closure, as the compiler can infer
that from the type of array you are using:

Understanding Closures ❘ 189

 var fruits = ["orange", "apple", "durian", "rambutan", "pineapple"]
 println(sorted(fruits,
 {
 (fruit1:String , fruit2:String) ‐> Bool in
 return fruit1<fruit2
 })
)

 The preceding could be rewritten without specifying the type:

 println(sorted(fruits,
 {

 (fruit1, fruit2) in
 return fruit1<fruit2

 })

)

 If your closure has only a single statement, you can even omit the return keyword:

 println(sorted(fruits,
 {

 (fruit1, fruit2) in
 fruit1<fruit2
 })
)

 Shorthand Argument Names
 In the previous section, names were given to arguments within a closure. In fact, this is also
optional, as Swift automatically provides shorthand names to the parameters, which you can refer
to as $0 , $1 , and so on.

 The previous code snippet:

 println(sorted(fruits,
 {
 (fruit1, fruit2) in

 fruit1<fruit2
 })
)

 could be rewritten as follows without using named parameters:

 println(sorted(fruits,
{

 $0<$1
 })
)

 To make the closure really terse, you can write everything on one line:

 println(sorted(fruits, { $0<$1 }))

190 ❘ CHAPTER 10 CLOSURES

 Operator Function
 In the previous section you saw that the closure for the sorted() function was reduced to the
following:

 println(sorted(fruits, { $0<$1 }))

 One of the implementations of the lesser than (<) operator is actually a function that works with
two operands of type String . Because of this, you can actually simply specify the < operator in
place of the closure, and the compiler will automatically infer that you want to use the particular
implementation of the < operator. The preceding statement can be reduced to the following:

 println(sorted(fruits, <))

 If you want to sort the array in descending order, simply use the greater than (>) operator:

 println(sorted(fruits, >))

 Trailing Closures
 Consider the closure that you saw earlier:

 println(sorted(fruits,
 {
 (fruit1:String, fruit2:String) ‐> Bool in
 return fruit1<fruit2
 })
)

 Observe that the closure is passed in as a second argument of the sorted() function. For long
closures, this syntax might be a little messy. If the closure is the fi nal argument of a function, you can
rewrite this closure as a trailing closure. A trailing closure is written outside of the parentheses of the
function call. The preceding code snippet when rewritten using the trailing closure looks like this:

 println(sorted(fruits)
 {
 (fruit1:String, fruit2:String) ‐> Bool in
 return fruit1<fruit2
 }
)

 Using the shorthand argument name, the closure can be shortened to the following:

 println(sorted(fruits) { $0<$1 })

 USING THE ARRAY’S THREE CLOSURE FUNCTIONS

 The Array structure in Swift is a good example for examining how closure works. It has three built‐
in methods that accept closures as part of the argument list:

➤ map() —Enables you to transform the elements inside an array into another array

Using the Array’s Three Closure Functions ❘ 191

➤ filter() —Enables you to fi lter the elements inside an array and return a subset of the elements

➤ reduce() —Enables you to return the elements inside an array as a single item

 The map Function
 In Swift, Array supports the map() function, which enables you to transform the elements from one
array into another array.

 For the following examples, assume you have an array that contains the prices of some items:

 let prices = [12.0,45.0,23.5,78.9,12.5]

 Example 1
 Suppose you want to transform the prices array into another array with each element containing
the dollar ($) sign, like this:

 ["$12.0", "$45.0", "$23.5", "$78.9", "$12.5"]

 Instead of iterating through the original prices array and creating another one manually by copying
each element, the map() function enables you to do it easily. Consider the following code snippet:

 var pricesIn$ = prices.map (
 {
 (price:Double) ‐> String in
 return "$\(price)"
 }
)

 println(pricesIn$)

 The map() function accepts a closure as its argument. The closure itself accepts a single argument
representing each element of the original array, and in this example the closure returns a String
result. The closure is called once for every element in the array.

 In the preceding implementation, you simply prefi x each price with the $ sign. The resultant array is
assigned to pricesIn$ and it now contains an array of String type:

 [$12.0, $45.0, $23.5, $78.9, $12.5]

 Based on the earlier discussion about type inference, the preceding code can be reduced to the following:

 let prices = [12.0,45.0,23.5,78.9,12.5]

 var pricesIn$ = prices.map(
 {
 (price) ‐> String in

 "$\(price)"
 }
)

 println(pricesIn$)

192 ❘ CHAPTER 10 CLOSURES

 Using the shorthand argument names, and because the closure has only a single line, the code can
be further reduced as follows:

 var pricesIn$ = prices.map(
 {
 "$\($0)"
 }
)

 Example 2
 Instead of prefi xing each price with the $ sign, you might want to apply a GST (goods and services
tax) to each item so that the price is inclusive of GST. Furthermore, assume that the GST is applied
only to prices above 20 and that the GST rate is 7 percent.

 The code to apply a GST to the array looks like the following:

 var pricesWithGST = prices.map (
 {
 (price:Double) ‐> Double in
 if price > 20 {
 return price * 1.07
 } else {
 return price
 }
 }
)
 println(pricesWithGST)

 In this example, the closure accepts the price as the argument and returns a Double result. Each
price that is greater than 20 is multiplied by 1.07. The preceding code will output the following:

 [12.0, 48.15, 25.145, 84.423, 12.5]

 Applying type inherence and using the ternary operator, the code can now be reduced to this:

 var pricesWithGST = prices.map(
 {
 (price) in
 price>20 ? price * 1.07 : price
 }
)

 The fi lter Function
 The filter() function returns another array containing a subset of the original elements that satisfy
the specifi ed criteria.

 Example 1
 Using the same prices array, the following code snippet shows how to apply a fi lter to the array to
return all those elements greater than 20:

Using the Array’s Three Closure Functions ❘ 193

 let prices = [12.0,45.0,23.5,78.9,12.5]
 var pricesAbove20 = prices.filter (
 {

 (price:Double) ‐> Bool in
 price>20
 }
)
 println(pricesAbove20)

 Like the map() function, the filter() function takes a closure. The closure itself accepts a single
argument representing each element of the original array, and returns a Bool result. The closure
is called once for every element in the array. The result will contain the element if the statement
(price>20) evaluates to true .

 The preceding code snippet outputs the following:

 [45.0, 23.5, 78.9]

 Using type inference, the code can be reduced as follows:

 var pricesAbove20 = prices.filter(
 {

 (price) in
 price>20
 }
)

 Eliminating the named parameters yields this:

 var pricesAbove20 = prices.filter({ $0>20 })

Example 2
 Suppose you have the following array of names:

 let names = ["Davi", "Jacob", "Nathan", "Pedro", "Mason",
 "Carter", "Jayden", "Ryan"]

 Now assume you want to extract all the names that contain the word “an.” You can use the
filter() function with the following closure:

 var someNames = names.filter(
 {

 (name:String) in
 (name as NSString).containsString("an")

 }
)
 println(someNames)

 Each name in the names array is passed into the closure and type‐casted into an NSString object.
You can call the containsString() method to test whether the name contains the word “an.”

 The preceding code snippet outputs the following line:

 [Nathan, Ryan]

194 ❘ CHAPTER 10 CLOSURES

 Using type inference, the closure looks like this:

 var someNames = names.filter(
 {
 (name) in
 (name as NSString).containsString("an")
 }
)

 Using shorthand argument naming, the closure can be reduced to the following:

 var someNames = names.filter(
 {
 ($0 as NSString).containsString("an")
 }
)

 The reduce Function
 The reduce() function returns a single value representing the result of applying a reduction closure
to the elements in the array.

 Example 1
 Using the same prices array, the following code snippet shows how to sum all the prices in the array:

 let prices = [12.0,45.0,23.5,78.9,12.5]
 var totalPrice = prices.reduce(
 0.0 ,
 {
 (subTotal: Double, price: Double) ‐> Double in
 return subTotal + price
 }
)
 println(totalPrice)

 The reduce() function takes two arguments:

➤ The initial value for the result —In this example, 0.0 is initially assigned to subtotal .

➤ A closure that takes two arguments —The fi rst argument takes the initial value (in this case,
0.0), and the second argument takes the fi rst element in the array. The closure is called
recursively and the result passed in to the same closure as the fi rst argument, and the next
element in the array is passed in as the second argument. This happens until the last element
in the array is processed.

 The closure recursively sums up all the prices in the array and outputs the following result:

 171.9

 Applying type inference reduces the closure to the following:

 var totalPrice = prices.reduce(
 0.0,

Using the Array’s Three Closure Functions ❘ 195

 {
 (subTotal, price) in
 return subTotal + price

 }
)

 Removing the named parameters yields the following closure:

 var totalPrice = prices.reduce(0.0, { $0 + $1 })
 println(totalPrice)

 Using an operator function, the closure can be further reduced:

 var totalPrice = prices.reduce(0.0, +)

 Example 2
 Suppose you want to extract all the prices from the array and create a single string listing all of
them. You can write the following closure:

 let prices = [12.0,45.0,23.5,78.9,12.5]
 var allPrices = prices.reduce(
 "List of prices" ,
 {

 (subString: String, price: Double) ‐> String in
 return ("\(subString)\n$\(price)")
 }
)
 println(allPrices)

 The preceding code snippet will output the following:

 List of prices
 $12.0
 $45.0
 $23.5
 $78.9
 $12.5

 Using type inference, the closure now looks like this:

 var allPrices = prices.reduce(
 "List of prices",
 {

 (subString, price) in
 "\(subString)\n$\(price)"
 }
)

 Removing the named parameters further reduces the closure as follows:

 var allPrices = prices.reduce(
 "List of prices", { "\($0)\n$\($1)" })

196 ❘ CHAPTER 10 CLOSURES

 USING CLOSURES IN YOUR FUNCTIONS

 So far, in the earlier sections you have seen how to use closures in functions. What about declaring
your own functions to use closures? Suppose you have a function that performs a bubble sort:

 func bubbleSort(inout items:[Int]) {
 for var j=0; j<items.count-1; j++ {
 var swapped = false
 for var i=0; i<items.count-1-j; i++ {
 if items[i] > items[i+1] {
 var temp = items[i+1]
 items[i+1] = items[i]
 items[i] = temp
 swapped = true
 }
 }
 if !swapped {
 break
 }
 }
 }

 The bubbleSort() function sorts an array of Int values in ascending order like this:

 var numbers = [6,7,8,9,2,1,3,4,5]
 bubbleSort(&numbers)
 println(numbers) //---[1, 2, 3, 4, 5, 6, 7, 8, 9]---

 The bubbleSort() function is hardcoded to sort the numbers in ascending order. If you want to sort
the numbers in descending order, you have to change its comparison operator:

 func bubbleSort(inout items:[Int]) {
 for var j=0; j<items.count-1; j++ {
 var swapped = false
 for var i=0; i<items.count-1-j; i++ {
 if items[i] < items[i+1] {
 var temp = items[i+1]
 items[i+1] = items[i]
 items[i] = temp
 swapped = true
 }
 }
 if !swapped {
 break
 }
 }
 }

 Creating different functions to sort in a different order is not a good design. A better way would be
to let the caller decide the sorting order. This is where closure shines.

 Consider the following condition:

 if items[i] < items[i+1] {

Using Closures in Your Functions ❘ 197

 You can probably see that it can be replaced with a function, such as this:

 if compareFunction(items[i], items[i+1]) {

 The compareFunction() function takes two Int arguments and returns a Bool value and thus it has
the following function type:

 (Int, Int) -> Bool

 This is a good opportunity to use closure so that the actual comparison of the numbers can be left
to the caller of this bubbleSort() function. When the bubbleSort() function is updated to use
closure, it looks like this:

 func bubbleSort(inout items:[Int], compareFunction:(Int, Int)‐>Bool) {
 for var j=0; j<items.count-1; j++ {
 var swapped = false
 for var i=0; i<items.count-1-j; i++ {
 if compareFunction(items[i],items[i+1]) {
 var temp = items[i+1]
 items[i+1] = items[i]
 items[i] = temp
 swapped = true
 }
 }
 if !swapped {
 break
 }
 }
 }

 To sort in descending order, simply pass in a closure like this:

 bubbleSort(&numbers,
 {
 (num1:Int, num2:Int) ‐> Bool in
 return num1 < num2
 }
)

 To sort in ascending order, simply pass in a closure like this:

 bubbleSort(&numbers,
 {
 (num1:Int, num2:Int) ‐> Bool in
 return num1 > num2
 }
)

 When you apply type inference and remove the named argument, you can reduce the preceding code
to the following:

 bubbleSort(&numbers, { $0 > $1 })

198 ❘ CHAPTER 10 CLOSURES

 SUMMARY

 In this chapter, you learned about the Swift concept known as a closure. The closure is not really
new to Objective‐C programmers, as it appeared in the form of blocks. You can assign closures to
variables, pass them as arguments to functions, as well as write them inline. Closures provide a lot
of fl exibility, as they enable callers of your app to pass in their own self‐defi ned functions. Using
type inference, shorthand argument names, and trailing closures, there are many ways to write
extremely terse closures. In your implementation, it is always important to strike a balance between
code readability and code effi ciency.

EXERCISES

1. Given an array of single‐digit integers, write the code snippet to return the English equivalent
of each integer:

 var numbers = [5,6,3,2,4,8,1,0]
 //---should output:
 // [Five, Six, Three, Two, Four, Eight, One, Zero]

2. Write the code snippet to extract only the odd numbers from the array shown in question #1.

3. Write the code snippet to fi nd out the largest number from the array shown in question #1.

4. Write the code snippet to fi nd out the average of all the numbers from the array shown in
question #1.

Summary ❘ 199

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Closures Closures are self‐contained blocks of code that can be passed to
functions to be executed as independent code units.

Functions as closures Functions are special types of closures. A closure is a function
without a name.

Shorthand argument names
in a closure

You can refer to the arguments within a closure as $0 , $1 , and so on.

Array ’s three closure
functions

The three closure functions are map() , filter() , and reduce() .

The map() function Enables you to transform the elements from one array into another
array.

The filter() function Returns another array containing a subset of the original elements
that satisfy the specifi ed criteria.

The reduce() function Returns a single value representing the result of applying a
reduction closure to the elements in the array.

 11
 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ What a protocol is

➤ How to defi ne and use a protocol

➤ How to conform to a protocol

➤ How to declare optional methods in a protocol

➤ How to conform to multiple protocols

➤ How to specify property requirements in a protocol

➤ How to specify initializer requirements in a protocol

➤ What a delegate is

➤ How to create and use a delegate

➤ How protocols and delegates are used in real‐life apps

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The code downloads for this chapter are found at www.wrox.com/go/beginningswift on the
Download Code tab.

 The use of protocols and delegates refl ects one of the most important design patterns in Swift
programming. In Chapters 8 and 9 you have seen how classes and inheritance work; and in
this chapter, you will learn both how to use protocols to enforce the content of a class and
how delegates help to create events and event handlers.

202 ❘ CHAPTER 11 PROTOCOLS AND DELEGATES

 UNDERSTANDING PROTOCOLS

 A protocol is a blueprint of methods and properties. It describes what a class should have, and it l
does not provide any implementation. A class that conforms to a protocol needs to provide the
implementation as dictated by the protocol. A protocol can be implemented by a class, a structure,
or an enumeration.

NOTE A protocol is similar to what an interface is in Java.

 Defi ning and Using a Protocol
 To defi ne a protocol, use the protocol keyword, followed by the name of the protocol:

protocol ProtocolName {
 func method1()
 func method2()
 ...
 }

NOTE Methods in a protocol follow the same syntax as normal methods in a
class, with only one exception: You are not allowed to specify default values
for method parameters.

 Here is an example of a protocol:

protocol CarProtocol {
 func accelerate()
 func decelerate()
 }

 The preceding code snippet declares a protocol named CarProtocol containing two methods:
accelerate() and decelerate(). A class that wants to implement a car that can accelerate or
decelerate can conform to this protocol.

Conforming to a Protocol
 To conform to a protocol, specify the protocol name(s) after the class name, as shown here:

 class ClassName : ProtocolName1 , ProtocolName2 {
 ...
 }

Understanding Protocols ❘ 203

 If you are conforming to more than one protocol, separate them using a comma (,). If your
class is also extending from another class, specify the protocol name(s) after the class it is
extending:

 class ClassName : BaseClass , ProtocolName1 , ProtocolName2 {
 ...
 }

 The following code snippet shows an example of how to conform to a protocol:

 class Car: CarProtocol {
 ...
 }

 In the preceding code snippet, the Car class is said to “conform to the CarProtocol .” Any class that
conforms to the CarProtocol must implement the methods declared in it.

 To conform to the CarProtocol protocol, the Car class might look like this:

 class Car: CarProtocol {
 var speed = 0

 func accelerate() {
 speed += 10
 if speed > 50 {
 speed = 50
 }
 printSpeed()
 }

 func decelerate() {
 speed -= 10
 if speed<=0 {
 speed = 0
 }
 printSpeed()
 }

 func stop() {
 while speed>0 {
 decelerate()
 }
 }

 func printSpeed() {
 println("Speed: \(speed)")
 }
 }

 Note that in addition to implementing the accelerate() and decelerate() methods that are
declared in CarProtocol , the Car class is free to implement other methods as required—in this

204 ❘ CHAPTER 11 PROTOCOLS AND DELEGATES

case it also implements the stop() and printSpeed() methods. If any of the methods declared in
CarProtocol are not implemented in the Car class, the compiler will fl ag an error (see Figure 11-1).

 You can now create an instance of the Car class and call its various methods to accelerate the car,
decelerate it, as well as make it come to a stop:

 var c1 = Car()
 c1.accelerate() //---Speed: 10---
 c1.accelerate() //---Speed: 20---
 c1.accelerate() //---Speed: 30---
 c1.accelerate() //---Speed: 40---
 c1.accelerate() //---Speed: 50---
 c1.decelerate() //---Speed: 40---
 c1.stop() //---Speed: 30---
 //---Speed: 20---
 //---Speed: 10---
 //---Speed: 0---

 Optional Methods
 In the previous section, the CarProtocol contains two methods that are mandatory for classes
that conform to the protocol to implement. However, sometimes you want to provide the option
for the implementing class to determine whether it will implement a particular method. You
can do so by specifying a method within a protocol as an optional method using the optional
keyword.

 The following code snippet shows the CarProtocol now has an optional method called
accelerateBy() :

@objc protocol CarProtocol {
 func accelerate()
 func decelerate()
 optional func accelerateBy(amount:Int)
 }

 Note the use of the @objc tag prefi xing the protocol keyword. The @objc tag indicates to the
compiler that your class is interoperating with Objective‐C. You need to prefi x the protocol with

 FIGURE 11-1

Understanding Protocols ❘ 205

this tag in order to declare optional methods in your protocol, even if you do not intend to use your
class with Objective‐C code. All optional methods are prefi xed with the optional keyword.

NOTE Protocols that are prefi xed with the @objc tag can only be applied to
classes, not structures and enumerations.

 In the Car class, you can now choose to implement the optional accelerateBy() method if desired:

 class Car: CarProtocol {
 var speed = 0

 func accelerate() {
 speed += 10
 if speed > 50 {
 speed = 50
 }
 printSpeed()
 }

 func decelerate() {
 speed -= 10
 if speed<=0 {
 speed = 0
 }
 printSpeed()
 }

 func stop() {
 while speed>0 {
 decelerate()
 }
 }

 func printSpeed() {
 println("Speed: \(speed)")
 }

func accelerateBy(amount:Int) {
 speed += amount
 if speed > 50 {
 speed = 50
 }
 printSpeed()
 }
 }

 The following example shows how you can use the accelerateBy() method in your class:

 var c1 = Car()
 c1.accelerate() //---Speed: 10---
 c1.accelerate() //---Speed: 20---

206 ❘ CHAPTER 11 PROTOCOLS AND DELEGATES

 c1.accelerate() //---Speed: 30---
 c1.accelerate() //---Speed: 40---
 c1.accelerate() //---Speed: 50---
 c1.decelerate() //---Speed: 40---
 c1.stop() //---Speed: 30---
 //---Speed: 20---
 //---Speed: 10---
 //---Speed: 0---
c1.accelerateBy(5) //---Speed: 5---
c1.accelerateBy(5) //---Speed: 10---

 Conforming to Multiple Protocols
 A class can conform to multiple protocols. Suppose there is another protocol called
CarDetailsProtocol . If the Car class should conform to both the CarProtocol as well as the
CarDetailsProtocol , then you separate the two protocols with a comma (,):

 @objc class Car: CarProtocol, CarDetailsProtocol {

 ...

 }

 Property Requirements
 Besides specifying methods to implement, a protocol can also specify properties that a confi rming
class needs to implement. As an example, consider the following CarDetailsProtocol :

protocol CarDetailsProtocol {
 var model: String {get set}
 var doors: Int {get set}
 var currentSpeed: Int {get}
}

 The CarDetailsProtocol protocol specifi es three properties that need to be implemented. It does
not specify whether you need to implement stored or computed properties; it just specifi es the name
and type, as well as whether each property is settable or gettable . It is up to the implementing class
to decide how to implement the properties.

 The following code snippet shows the Car class conforming to the CarDetailsProtocol :

 @objc class Car: CarProtocol, CarDetailsProtocol {
 var speed = 0

 var model: String = ""
 var doors: Int = 0

var currentSpeed: Int {
 return speed
 }

 func accelerate() {
 ...

Understanding Delegates ❘ 207

 }

 ...

 }

 Here, you can see that both the model and doors properties are implemented as stored properties.
The currentSpeed property is implemented as a read‐only computed property, as it is specifi ed as
only gettable in the protocol.

 Initializer Requirements
 You can also enforce a class to implement an initializer using a protocol. Using the
CarDetailsProtocol example, you can now enforce that a conforming class implements the
initializer as follows:

 protocol CarDetailsProtocol {
 init(model:String)

 var model: String {get set}
 var doors: Int {get set}
 var currentSpeed: Int {get}
 }

 Therefore, for the Car class, if it now conforms to the CarDetailsProtocol , it needs to implement
the initializer:

 @objc class Car: CarProtocol, CarDetailsProtocol {
 var speed = 0
 var model: String = ""
 var doors: Int = 0

 required init(model:String) {
 self.model = model

 }

 var currentSpeed: Int {
 return speed
 }

 You need the required keyword to ensure that subclasses of Car also provide an implementation
for the initializer.

UNDERSTANDING DELEGATES

 A delegate is an instance of a type (such as a class) that can handle the methods of a class or a
structure. Think of a delegate as an event handler . A class or structure can fi re events, and it needs rr
something to handle these events. In this case, the class or structure can “delegate” this task to ang
instance of a type. This instance of a type is the delegate.

208 ❘ CHAPTER 11 PROTOCOLS AND DELEGATES

 Delegates as Event Handlers
 Let’s look at a concrete example to drive home the point. In the previous section, you saw the Car
class has implemented the following methods as declared in the CarProtocol :

➤ accelerate() —Accelerates the car by 10 mph

➤ decelerate() —Decelerates the car by 10 mph

➤ accelerateBy() —Accelerates the car by the amount specifi ed in the argument

 If the car has reached its maximum speed, it is important that the class fi res an event to let the user
of the class know. Similarly, if the car has come to a complete stop, it is also important to let the
user know. It is also useful to notify the user whenever the car is accelerating or decelerating. All the
preceding behaviors of the class can be implemented as a protocol:

@objc protocol CarDelegate {
 func reachedMaxSpeed(c: Car)
 func completelyStopped(c: Car)

 optional func accelerating(c: Car)
 optional func decelerating(c: Car)
}

 In the preceding code snippet, CarDelegate is a protocol that contains four methods—two
mandatory and two optional. Each method takes a Car argument:

➤ reachedMaxSpeed() —Fired when the car has reached maximum speed

➤ completelyStopped() —Fired when the car comes to a complete stop

➤ accelerating() —Fired when the car is accelerating

➤ decelerating() —Fired when the car is decelerating

NOTE Think of the four methods as events.

 To make use of the CarDelegate , add the following code in bold to the Car class:

 @objc class Car: CarProtocol {
 var delegate: CarDelegate?
 var speed = 0
 func accelerate() {
 speed += 10
 if speed > 50 {
 speed = 50
 //---call the reachedMaxSpeed() declared
 // in the CarDelegate ---
 delegate?.reachedMaxSpeed(self)

Understanding Delegates ❘ 209

 } else {
 //---call the accelerating() declared
 // in the CarDelegate ---

 delegate?.accelerating?(self)
 }
 printSpeed()
 }

 func decelerate() {
 speed -= 10
 if speed<=0 {
 speed = 0
 //---call the completelyStopped() declared in
 // the CarDelegate---

 delegate?.completelyStopped(self)
 } else {
 //---call the decelerating() declared
 // in the CarDelegate ---

 delegate?.decelerating?(self)
 }
 printSpeed()
 }

 func stop() {
 while speed>0 {
 decelerate()
 }
 }

 func printSpeed() {
 println("Speed: \(speed)")
 }

 func accelerateBy(amount:Int) {
 speed += amount
 if speed > 50 {
 speed = 50
 //---call the reachedMaxSpeed() declared in
 // the CarDelegate---

 delegate?.reachedMaxSpeed(self)
 } else {
 //---call the accelerating() declared
 // in the CarDelegate ---

 delegate?.accelerating?(self)
 }
 printSpeed()
 }
 }

 Here is what you are doing:

➤ You fi rst declare a variable called delegate of type CarDelegate . You need the ? sign
to indicate to the compiler that this delegate variable is an optional variable (may be
nil). This delegate variable can be assigned an instance of a class that implements the
CarDelegate protocol. You will see how this is done shortly.

210 ❘ CHAPTER 11 PROTOCOLS AND DELEGATES

➤ If the speed of the car is more than 50 mph, limit it to 50 mph, then use the delegate vari-
able and call the reachedMaxSpeed() method. Recall that the delegate variable is set to an
instance of a class that implements the CarDelegate protocol; hence the instance must have
the reachedMaxSpeed() method defi ned. The ? is to check whether the delegate variable is
set (not nil):

 delegate?.reachedMaxSpeed(self)

NOTE Because delegate is an optional type, using ? will prevent the
code from crashing if delegate is nil . If the value is nil , calling the
reachedMaxSpeed() method has no effect. If you use the ! to wrap the
optional value, the statement will crash if delegate is nil .

➤ When the car is accelerating, you use the delegate variable and call the accelerating()
method. Because the accelerating() method is an optional method as declared in the
CarDelegate protocol, you therefore have to use the ? after the method name to check
whether the method is implemented in the instance:

 delegate?.accelerating?(self)

➤ You do the same for the completelyStopped() and the decelerating() methods:

 delegate?.completelyStopped(self)
 delegate?.decelerating?(self)

➤ You need to prefi x the Car class with the @objc tag because the methods in the CarDelegate
protocol contain references to the Car class.

 Now that you have modifi ed the Car class to have a variable of type CarDelegate , we can create a
class that implements the CarDelegate protocol. The following CarStatus class conforms to the
CarDelegate protocol:

 class CarStatus: CarDelegate {
 func reachedMaxSpeed(c: Car) {
 println("Car has reached max speed! Speed is \(c.speed)mph")
 }

 func completelyStopped(c: Car) {
 println("Car has completely stopped! Speed is \(c.speed)mph")
 }

 //===optional methods===

 func accelerating(c: Car) {
 println("Car is accelerating...Speed is \(c.speed)mph")
 }

Understanding Delegates ❘ 211

 func decelerating(c: Car) {
 println("Car is decelerating...Speed is \(c.speed)mph")
 }
 }

 The CarStatus class implements the four methods as declared in the CarDelegate protocol, two of
which are optional.

NOTE Think of the CarStatus class as the event handler for the Car class.

 You can now create an instance of the CarStatus class and assign it to the delegate property of the
Car class:

 var c1 = Car(model: "F150")
c1.delegate = CarStatus()
 c1.accelerate() //---Car is accelerating...Speed is 10mph---
 //---Speed: 10---
 c1.accelerate() //---Car is accelerating...Speed is 20mph---
 //---Speed: 20---
 c1.accelerate() //---Car is accelerating...Speed is 30mph---
 //---Speed: 30---
 c1.accelerate() //---Car is accelerating...Speed is 40mph---
 //---Speed: 40---
 c1.accelerate() //---Car is accelerating...Speed is 50mph---
 //---Speed: 50---
 c1.accelerate() //---Car has reached max speed! Speed is 50mph---
 //---Speed: 50---
 c1.stop() //---Car is decelerating...Speed is 40mph---
 //---Speed: 40---
 //---Car is decelerating...Speed is 30mph---
 //---Speed: 30---
 //---Car is decelerating...Speed is 20mph---
 //---Speed: 20---
 //---Car is decelerating...Speed is 10mph---
 //---Speed: 10---
 //---Car has completely stopped! Speed is 0mph---
 //---Speed: 0---

 As you call the various methods of the Car instance, the various methods in the CarDelegate
protocol will be fi red and the result printed on the screen, as shown in the preceding code
snippet.

 A Practical Example of Protocols and Delegates
 To see how protocols and delegates work in the iOS design pattern grand scheme of things, this
section examines how it is used to help you obtain location information.

212 ❘ CHAPTER 11 PROTOCOLS AND DELEGATES

 In iOS, the CLLocationManager class (Location Manager) helps you fi nd the location of the device.
To use the CLLocationManager class, create an instance of it—say, in your View Controller:

 import CoreLocation

 class ViewController: UIViewController {
 var lm: CLLocationManager!

 You then confi gure the instance of the CLLocationManager class; in particular, you set its delegate
property:

 lm = CLLocationManager()
 lm.delegate = self
 lm.desiredAccuracy = 0
 lm.distanceFilter = 0

 When you set the delegate property to self , it means that the class containing the lm variable
needs to conform to the protocol dictated by the CLLocationManager class, which in this case is
CLLocationManagerDelegate . Therefore, you need to add the following to the ViewController
class:

 class ViewController: UIViewController, CLLocationManagerDelegate {

 The CLLocationManagerDelegate protocol contains a number of methods that the conforming
class can implement, including the following:

➤ optional func locationManager(_ manager: CLLocationManager!,

didUpdateLocations locations: [AnyObject]!) —Fired when new location data is available

➤ optional func locationManager(_ manager: CLLocationManager!,

didFailWithError error: NSError!) —Fired when the location manager is unable to
retrieve the location value

 In this case, if you want to display the obtained location, the ViewController class should
implement the fi rst method, as shown here:

 import CoreLocation

 class ViewController: UIViewController, CLLocationManagerDelegate {

 var lm: CLLocationManager!

 required init(coder aDecoder: NSCoder)
 {
 super.init(coder: aDecoder)
 }

 override func viewDidLoad() {
 super.viewDidLoad()

 lm = CLLocationManager()
 lm.delegate = self

Summary ❘ 213

 lm.desiredAccuracy = 0
 lm.distanceFilter = 0

 if (UIDevice.currentDevice().systemVersion as
 NSString).floatValue>=8.0 {

 //---request for foreground location use---
 lm.requestWhenInUseAuthorization()
 }

 lm.startUpdatingLocation()
 }

 func locationManager(manager: CLLocationManager!,
 didUpdateLocations locations: [AnyObject]!) {

 var newLocation = locations.last as CLLocation
 println("\(newLocation.coordinate.latitude)")

 println("\(newLocation.coordinate.longitude)")
 println("\(newLocation.horizontalAccuracy)")
 }

 In the preceding example, the locationManager() method will be called whenever the Location
Manager is able to obtain new locations.

NOTE The complete source code for this example is available for download at
www.wrox.com/go/beginningswift .

 SUMMARY

 In this chapter, you learned about protocols and delegates and the important role they play in your
iOS and Mac OS X app development. In particular, you learned how to defi ne a protocol so that a
class conforming to it can implement all the necessary methods.

214 ❘ CHAPTER 11 PROTOCOLS AND DELEGATES

EXERCISES

1. Consider the following protocol:

 protocol SampleProtocol {
 init(someProperty1:String)
 var someProperty1:String {get set}
 var someProperty2:Int {get set}
 func doSomething()
 }

 Create a class named SomeClass that conforms to SampleProtocol .

2. Consider the following protocol:

 @objc protocol SampleDelegate {
 func event1()
 optional func event2()
 }

 Modify the SomeClass created in question #1 to create a delegate of type SampleDelegate .
In addition, when the doSomething() method is called, it should trigger the event1() and
event2() methods.

3. Create a class called EventHandler that conforms to the SampleDelegate protocol.

4. Create an instance of SomeClass and handle the methods fi red by it.

Summary ❘ 215

▸ WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPTS

Protocol A protocol is a blueprint of methods and properties. It
describes what a class should have but does not provide
any implementation.

Conforming to a protocol A class that conforms to a protocol needs to provide the
implementation as dictated by the protocol.

Optional methods in a protocol Use the @objc tag to indicate to the compiler that your
class is interoperating with Objective‐C.

Conforming to multiple protocols A class can conform to multiple protocols.

Compulsory initializer Use the required keyword to ensure that all subclasses of
a class also provide an implementation for the initializer.

Delegate A delegate is an instance of a type (such as a class) that
can handle the methods of a class or a structure. Think of a
delegate as an event handler.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The motivation behind generics

➤ How to implement generic functions

➤ How to implement generic functions using multiple parameters

➤ How to specify type constraints in generics

➤ How to defi ne generic classes

➤ How to defi ne generic structures

➤ How to defi ne generic extensions

➤ How to use generics in protocols

➤ Specifying requirements for generics in associated types

 Most modern programming languages support a language feature known as generics, and
Swift is no exception. Generics enable you to write highly reusable functions that can work
with a variety of data types. With generics, you specify a placeholder for the data type that
your generic code (functions, classes, structures, protocols, etc.) is working with. The actual
data type to use is specifi ed only at a later stage when the generic code is being used. In this
chapter, you will learn about Swift’s support for generics.

 12

218 ❘ CHAPTER 12 GENERICS

 UNDERSTANDING GENERICS

 Generics are one of the most important features of Swift. Generics are so important that most of the
types and classes in Swift are created using them. The best way to understand generics is to look at
an example.

 Consider the following function:

 func swapNums(inout item1:Int, inout item2:Int) {
 let temp = item1
 item1 = item2
 item2 = temp
 }

 The swapNums() function declares two inout parameters and exchanges their values. The following
code snippet shows how to use the swapNums() function to swap the values of two Int variables:

 var num1 = 5
 var num2 = 6

 println("\(num1), \(num2)") //---5,6---
 swapNums(&num1, &num2)
 println("\(num1), \(num2)") //---6,5---

 Note that the swapNums() function only allows you to swap two integer values. If you want the
function to swap two string variables, you need to create another function, as shown here:

 func swapStrings(inout item1: String , inout item2: String) {
 let temp = item1
 item1 = item2
 item2 = temp
 }

 Both functions have the same implementation; only the type of variables you are dealing with is
different. The same is true if you want to swap two Double values:

 func swapDoubles(inout item1: Double , inout item2: Double) {
 let temp = item1
 item1 = item2
 item2 = temp
 }

 As you can see, creating separate functions for different data types creates a lot of duplication of
code (and effort).

Using Generic Functions
 Using generics, you could rewrite the swapNums() , swapStrings() , and swapDoubles() functions
using a single generic function:

 func swapItems<T>(inout item1:T, inout item2:T) {
 let temp = item1

Understanding Generics ❘ 219

 item1 = item2
 item2 = temp
 }

 The generic version of the function looks almost the same as the other three functions, except
that instead of specifying the type of arguments the function is expecting, you use T as the
placeholder:

 func swapItems <T> (inout item1: T , inout item2:T) {

 In this example, T is just the placeholder for the actual data type; you are not limited to using T
as the placeholder. Another common placeholder name is ItemType . If you use ItemType as the
placeholder, then the function declaration would look like this:

 func swapItems <ItemType> (inout item1: ItemType , inout item2: ItemType) {

 You can now call the swapItems() function just as you would when you call the swapNums()
function:

 var num1 = 5
 var num2 = 6
swapItems(&num1, &num2)
 println("\(num1), \(num2)") //---6, 5---

 The compiler will infer from the type of num1 when you call the swapItems() function, and in this
case, T would be of type Int . Likewise, if you call the swapItems() function using arguments of
type String , T would now be String :

 var str1 = "blueberry"
 var str2 = "apple"
 println("\(str1), \(str2)") //---blueberry, apple---
 swapItems(&str1, &str2)
 println("\(str1), \(str2)") //---apple, blueberry---

 The same behavior applies to Double types:

 var price1 = 23.5
 var price2 = 16.8
 println("\(price1), \(price2)") //---23.5, 16.8---
 swapItems(&price1, &price2)
 println("\(price1), \(price2)") //---16.8, 23.5---

 Multiple Type Parameters
 The previous section showed the generic function with only one specifi c data type. In reality, you
often have functions that accept arguments of multiple data types. For example, if you are writing
a function that deals with Dictionary types, you have to deal with key‐value pairs, as shown in the
following function:

 func addToDictionary(key:Int, value:String) {
 ...
 }

220 ❘ CHAPTER 12 GENERICS

 In the preceding function stub, you have two parameters: one of type Int and one of type String .
The generic version of this function would look like this:

 func addToDictionary<KeyType , ValueType >(key:KeyType , value:ValueType){
 ...
 }

 Here, the KeyType and ValueType are placeholders for the actual data type that you will use.

Specifying Type Constraint
 In the previous section, you saw that the swapItems() function could work with any data type, but
sometimes it is necessary to enforce the types with which your generic function is able to work.
Consider the following example:

 func sortItems<T>(inout items:[T]) {
 for var j=0; j<items.count-1; j++ {
 var swapped = false
 for var i=0; i<items.count-1-j; i++ {
 if items[i]>items[i+1] {
 swapItems(&items[i], &items[i+1])
 swapped = true
 }
 }
 if !swapped {
 break
 }
 }
 }

 The preceding generic function implements the bubble sort algorithm for sorting an array of items.
However, this code snippet will not compile. That’s because you have a statement that performs
comparison:

 if items[i]>items[i+1] {

 Because at compile time the compiler does not know the actual data type of the array that you
would pass into the function, it generates an error, as some data types do not allow you to perform
comparisons. Imagine passing in an array containing Bool values (true and false)—there is no way
you can perform comparisons with Boolean values.

 To fi x this, you need to specify the constraint for the type that your function can accept:

 func sortItems< T: Comparable >(inout items:[T]) {
 for var j=0; j<items.count-1; j++ {
 var swapped = false
 for var i=0; i<items.count-1; i++ {
 if items[i]>items[i+1] {
 swapItems(&items[i], &items[i+1])
 swapped = true
 }
 }

Generic Types ❘ 221

 if !swapped {
 break
 }
 }
 }

 In the preceding modifi cations, the highlighted statement reads “any type T that conforms to the
Comparable protocol. ” In this case, it means that the function can only accept values of types that
implement the Comparable protocol, which allows their values to be compared using the less than
operator (>) , greater than operator (<) , and so on.

 Besides the Comparable protocol, you can also specify the following protocols:

➤ Equatable —Makes it possible to determine whether two values are considered to be equal

➤ Printable —Enables you to customize the textual representation of any type ready for
printing

 Besides specifying the protocol that a type needs to implement, you can also specify a class type.
For example, the following doSomething() function specifi es that T must be an instance of the
MyCustomClass class:

 func doSomething<T:MyCustomClass >(obj:T) {
 ...
 }

 GENERIC TYPES

 Generics are not limited to functions; you can also have generic types. Generic types can be any of
the following:

➤ Classes

➤ Structures

➤ Protocols

 Generic Classes
 Consider the following example:

 class MyIntStack {
 var elements = [Int]()
 func push(item:Int) {
 elements.append(item)
 }

 func pop() -> Int! {
 if elements.count>0 {
 return elements.removeLast()
 } else {

222 ❘ CHAPTER 12 GENERICS

 return nil
 }
 }
 }

 The preceding code snippet is a classic implementation of a stack data structure in Swift. A stack
data structure enables you to push (insert) and pop (remove) items in the Last‐In‐First‐Out (LIFO)
fashion. In the preceding implementation, MyIntStack is dealing only with the Int type. Observe
that the pop() method returns a value of type Int! (implicit optional). This ensures that in the event
that the stack is empty, a pop operation will simply return a nil value.

 You can make use of MyIntStack as follows:

 var myIntStack = MyIntStack()
 myIntStack.push(5)
 myIntStack.push(6)
 myIntStack.push(7)
 println(myIntStack.pop()) //---7---
 println(myIntStack.pop()) //---6---
 println(myIntStack.pop()) //---5---
 println(myIntStack.pop()) //---nil---

 You could rewrite the class as a generic class:

 class MyStack<T> {
 var elements = [T]()
 func push(item:T) {
 elements.append(item)
 }

 func pop() ‐> T ! {
 if elements.count>0 {
 return elements.removeLast()
 } else {
 return nil
 }
 }
 }

 To use the MyStack class for Int values, simply specify the data type enclosed with angle brackets
(<>) during instantiation of the class:

 var myIntStack = MyStack<Int> ()

 You can now use the class as usual:

 myIntStack.push(5)
 myIntStack.push(6)
 myIntStack.push(7)
 println(myIntStack.pop()) //---7---
 println(myIntStack.pop()) //---6---
 println(myIntStack.pop()) //---5---
 println(myIntStack.pop()) //---nil---

Generic Types ❘ 223

 You can also use the MyStack class with the String type:

 var myStringStack = MyStack<String> ()
 myStringStack.push("Programming")
 myStringStack.push("Swift")
 println(myStringStack.pop()) //---Swift---
 println(myStringStack.pop()) //---Programming---
 println(myStringStack.pop()) //---nil---

 Generic Structures
 In the previous section you saw the use of generics in classes. Generics also apply to structures.
Consider the following implementation of a queue using a structure:

 struct MyIntQueue {
 var elements = [Int]()
 var startIndex = 0

 mutating func queue(item: Int) {
 elements.append(item)
 }

 mutating func dequeue() -> Int! {
 if elements.isEmpty {
 return nil
 } else {
 return elements.removeAtIndex(0)
 }
 }
 }

 A queue is a data structure that allows you to queue (insert) and dequeue (retrieve) items. In the
preceding implementation, MyIntQueue deals only with the Int type. You can use it as follows:

 var myIntQueue = MyIntQueue()
 myIntQueue.queue(7)
 myIntQueue.queue(8)
 println(myIntQueue.dequeue()) //---7---
 println(myIntQueue.dequeue()) //---8---
 println(myIntQueue.dequeue()) //---nil---

 Rewriting the current implementation to use generics yields the following structure:

 struct MyGenericQueue < T > {
 var elements = [T]()
 var startIndex = 0

 mutating func queue(item: T) {
 elements.append(item)
 }

 mutating func dequeue() ‐> T ! {
 if elements.isEmpty {

224 ❘ CHAPTER 12 GENERICS

 return nil
 } else {
 return elements.removeAtIndex(0)
 }
 }
 }

 You can now use the MyGenericQueue structure for any specifi ed data type:

 var myGenericQueue = MyGenericQueue<String>()
 myGenericQueue.queue("Hello")
 myGenericQueue.queue("Swift")
 println(myGenericQueue.dequeue()) //---Hello---
 println(myGenericQueue.dequeue()) //---Swift---
 println(myGenericQueue.dequeue()) //---nil---

 Generic Type Extension
 Recall that earlier we had a generic stack class:

 class MyStack<T> {
 var elements = [T]()
 func push(item:T) {
 elements.append(item)
 }

 func pop() ‐> T ! {
 if elements.count>0 {
 return elements.removeLast()
 } else {
 return nil
 }
 }
 }

 When you extend a generic type, the parameter list in the original type defi nition is
available in the extension. In the preceding class, T is the placeholder name for the parameter
type—you can write an extension for the MyStack class and it would also be available in the
extension:

 extension MyStack {
 func peek(position:Int) ‐> T ! {
 if position<0 || position>elements.count‐1 {
 return nil
 } else {
 return elements[position]
 }
 }
 }

 The preceding extension adds the peek() method to the MyStack class, enabling users to examine
elements of the stack by specifying their position, without removing them.

Generic Types ❘ 225

 The following code snippet shows how to use the new peek() extension method that you have just
added:

 var myStack = MyStack<String>()

 myStack.push("The")
 myStack.push("Quick")
 myStack.push("Brown")
 myStack.push("Fox")

 println(myStack.peek(0)) //---The---
 println(myStack.peek(1)) //---Quick---
 println(myStack.peek(2)) //---Brown---

 println(myStack.pop()) //---Fox---
 println(myStack.pop()) //---Brown---
 println(myStack.pop()) //---Quick---
 println(myStack.pop()) //---The---

 Using Generics in Protocols
 Generics can also be applied to protocols.

NOTE Protocols are discussed in detail in Chapter 11 .

 Consider the following MyStackProtocol protocol:

 protocol MyStackProtocol {
 typealias T
 func push(item:T)
 func pop() -> T!
 func peek(position:Int) -> T!
 }

 In this example, the MyStackProtocol protocol specifi es that any class that wants to implement a
stack data structure needs to implement three methods:

➤ push()—Accepts an argument of type T

➤ pop() —Returns an item of type T

➤ peek() —Accepts an integer argument and returns an item of type T

 The protocol does not dictate how elements in the stack are to be stored—one implementation can
use an array, while another can use a double‐linked list, for example. Because the protocol does
not dictate the data type that the stack needs to deal with, it declares an associated type using the
typealias keyword:

 typealias T

226 ❘ CHAPTER 12 GENERICS

 The T is the placeholder for the actual data type that would be used by the implementer of this
protocol.

 When implementing the protocol, you need to implement the required methods declared in the
protocol in your implementing class. The following code snippet shows one example:

 class MyOwnStack: MyStackProtocol {

 typealias T = String

 var elements = [String]()

 func push(item:String) {
 elements.append(item)
 }

 func pop() -> String! {
 if elements.count>0 {
 return elements.removeLast()
 } else {
 return nil
 }
 }

 func peek(position:Int) -> String! {
 if position<0 || position>elements.count‐1 {
 return nil
 } else {
 return elements[position]
 }
 }
 }

 Here, the MyOwnStack class conforms to the MyStackProtocol protocol. Because you are
now implementing a stack to manipulate String types, you assign T to String , as shown
here:

 typealias T = String

 In fact, there is no need to explicitly declare the preceding statement; the type of T can be inferred
from the implementation:

 func push(item:String) { //---type of item is String ---
 elements.append(item)
 }

 The MyOwnStack class can now be rewritten like this:

 class MyOwnStack: MyStackProtocol {

 var elements = [String]()

 func push(item:String) {

Generic Types ❘ 227

 elements.append(item)
 }

 func pop() -> String! {
 if elements.count>0 {
 return elements.removeLast()
 } else {
 return nil
 }
 }

 func peek(position:Int) -> String! {
 if position<0 || position>elements.count‐1 {
 return nil
 } else {
 return elements[position]
 }
 }
 }

 You can use the MyOwnStack class as follows:

 var myOwnStack = MyOwnStack()
 myOwnStack.push("Swift")
 myOwnStack.push("Hello")
 println(myOwnStack.pop()) //---Hello---
 println(myOwnStack.pop()) //---Swift ---

 However, because we are talking about generics in this chapter, the MyOwnStack class should ideally
be a generic class as well. Here is the generic implementation of the MyOwnStackProtocol protocol:

 class MyOwnGenericStack<T> : MyStackProtocol {
 var elements = [T]()

 func push(item:T) {
 elements.append(item)
 }

 func pop() ‐> T ! {
 if elements.count>0 {
 return elements.removeLast()
 } else {
 return nil
 }
 }

 func peek(position:Int) ‐> T ! {
 if position<0 || position>elements.count‐1 {
 return nil
 } else {
 return elements[position]
 }
 }
 }

228 ❘ CHAPTER 12 GENERICS

 You can now use the MyOwnGenericStack class as follows:

 var myOwnGenericStack = MyOwnGenericStack< String >()
 myOwnGenericStack.push("Swift")
 myOwnGenericStack.push("Hello")
 println(myOwnGenericStack.pop()) //---Hello---
 println(myOwnGenericStack.pop()) //---Swift---

 Specifying Requirements for Associated Types
 Suppose you have a function that compares two stacks to determine whether they are equal (i.e.,
have the same elements and count). Your function might look like this:

 func compareMyStacks
 <ItemType1:MyStackProtocol, ItemType2:MyStackProtocol>
 (stack1: ItemType1, stack2:ItemType2) -> Bool {

 ...
 return true
 }

 In the compareMyStacks() function, you specifi ed it as a generic function that takes two stacks
as arguments, fi rst of ItemType1 and second of ItemType2 . These two types must conform to the
MyStackProtocol protocol. A use of the compareMyStacks() function might look like this:

 var myOwnGenericStack1 = MyOwnGenericStack<String>()
 var myOwnGenericStack2 = MyOwnGenericStack<String>()
 var same =
 compareMyStacks(myOwnGenericStack1, stack2:myOwnGenericStack2)

 In this case, because both stacks (myOwnGenericStack1 and myOwnGenericStack2) use the String
type, the comparison can be performed. However, what if you want to compare stacks of different
types? In this case it is not possible to perform the comparison, and you need to enforce this
restriction based on the type acceptable to the compareMyStacks() function. You can do so by
specifying a where condition:

 func compareMyStacks
 <ItemType1:MyStackProtocol, ItemType2:MyStackProtocol
 where ItemType1.T == ItemType2.T >
 (stack1: ItemType1, stack2:ItemType2) -> Bool {

 ...
 return true
 }

 In the preceding statement, the where condition dictates that the type used by the two arguments
(which conforms to the MyStackProtocol protocol) must be the same. If you now try to compare
two stacks of different types, the compiler will generate an error:

Summary ❘ 229

 var myOwnGenericStack2 = MyOwnGenericStack< String >()
 var myOwnGenericStack3 = MyOwnGenericStack< Double >()

 //---error---
 compareMyStacks(myOwnGenericStack2, stack2: myOwnGenericStack3)

 In the preceding code snippet, myOwnGenericStack2 uses the String type and
myOwnGenericStack3 uses the Double type. Hence, passing them as arguments to the
compareMyStacks() function violates the where clause.

 In addition to ensuring that the type for the two arguments is the same, you may also need to
enforce the constraint that the arguments are of a specifi c type, such as those that conform to the
Comparable protocol:

 func compareMyStacks<
 ItemType1:MyStackProtocol, ItemType2:MyStackProtocol
 where ItemType1.T == ItemType2.T, ItemType1.T:Comparable >
 (stack1: ItemType1, stack2:ItemType2) -> Bool {
 ...
 return true
 }

 Once you have specifi ed this constraint, you will not be able to compare stacks that use the Bool
type (the Bool type does not conform to the Comparable protocol):

 var myOwnGenericStack4 = MyOwnGenericStack< Bool >()
 var myOwnGenericStack5 = MyOwnGenericStack< Bool >()

 //---error---
 compareMyStacks(myOwnGenericStack4, stack2: myOwnGenericStack5)

NOTE The actual implementation of the compareMyStacks() function is left as
an exercise for the reader.

 SUMMARY

 In this chapter, you learned about a very important topic in Swift—generics. Generics enable your
code to be highly fl exible and reusable. You saw how generics can be applied to classes, structures,
and extensions, as well as protocols. In addition, type constraints can be applied to generics.

230 ❘ CHAPTER 12 GENERICS

EXERCISES

1. Given the following protocol, add a function to it to return the count of elements within the
stack :

 protocol MyStackProtocol {
 typealias T
 func push(item:T)
 func pop() -> T!
 func peek(position:Int) -> T!
 }

2. Given the following class that conforms to the MyStackProtocol, implement the function that
you have added to the protocol in question #1:

 class MyOwnGenericStack<T>: MyStackProtocol {
 var elements = [T]()

 func push(item:T) {
 elements.append(item)
 }

 func pop() -> T! {
 if elements.count>0 {
 return elements.removeLast()
 } else {
 return nil
 }
 }

 func peek(position:Int) -> T! {
 if position<0 ││ position>elements.count‐1 {
 return nil
 } else {
 return elements[position]
 }
 }
 }

3. Implement a function that compares two instances of the MyOwnGenericStack class as shown in
question #2, and return true if both stacks are the same and false if they are not the same.

Summary ❘ 231

▸ WHAT YOU LEARNED IN THIS CHAPTER

 KEY CONCEPTS

 Generics Generics is a way of coding in which functions are
written in terms of placeholder types that are later
replaced with specifi c types provided as parameters.

 Advantage of generics Generics facilitate code reuse.

 Protocols for specifying type constraints Some protocols include Comparable , Equatable ,
and Printable .

 Generic types Generics are also applicable to classes, structures,
and protocols.

 Generic type extension You can extend a generic type.

 Specifying requirements for associated types Allows you to specify the relationships between
two generic types.

CHAPTER 1

Exercise 1
 let months = 12
 let daysInWeek = 7
 let weeks = 52

Exercise 2
 var gender = "Female"
 var weight = 102.5 // in pounds
 var height = 1.72 // in meters
 var DOB = "09/25/1970" // mm/dd/yyyy

Exercise 3
 println("Gender: \(gender)")
 println("Weight: \(weight) pounds")
 println("Height: \(height) meters")
 println("DOB: \(DOB)")

Exercise 4
 var weight = 102.5 // in pounds
 var str = "Your weight is \(weight) pounds"

APPENDIX

234 ❘ APPENDIX EXERCISE ANSWERS

 CHAPTER 2

 Exercise 1
 The problem with the code is that weightInPounds is inferred to be of type Int , which will cause
the error when using it to multiply other Double values.

 The fi rst way to fi x this is to ensure that you assign a fl oating‐point value to weightInPounds so
that the compiler can infer it to be of type Double :

 var weightInPounds = 154.0
 var heightInInches = 66.9
 var BMI = (weightInPounds / pow(heightInInches,2)) * 703.06957964
 println(BMI)

 The second approach is to explicitly declare weightInPounds as a Double:

 var weightInPounds:Double = 154
 var heightInInches = 66.9
 var BMI = (weightInPounds / pow(heightInInches,2)) * 703.06957964
 println(BMI)

 The third approach is to explicitly perform a cast on weightInPounds and heightInInches when
performing the calculations:

 var weightInPounds = 154
 var heightInInches = 66.9
 var BMI = (Double (weightInPounds) / pow(Double (heightInInches),2)) * 703.06957964
 println(BMI)

 Exercise 2
 The output for the following statements is as follows. (The statements in bold are the values
implicitly assigned by the compiler.)

 enum cartoonCharacters: Int {
 case FelixTheCat = 1
 case AngelicaPickles // = 2
 case ThePowerpuffGirls // = 3
 case SpiderMan = 9
 case GeorgeOfTheJungle // = 10
 case Superman // = 11
 case Batman // = 12
 }

 var d = cartoonCharacters.GeorgeOfTheJungle
 println(d.rawValue) //---prints out 10---

 d = cartoonCharacters.AngelicaPickles
 println(d.rawValue) //---prints out 2---

Chapter 3 ❘ 235

 Exercise 3
 The output for the following statements is as follows. (The statements in bold are the values
implicitly assigned by the compiler.)

 enum cartoonCharacters: Int {
 case FelixTheCat // = 0
 case AngelicaPickles // = 1
 case ThePowerpuffGirls // = 2
 case SpiderMan = 9
 case GeorgeOfTheJungle // = 10
 case Superman // = 11
 case Batman // = 12
 }

 var d = cartoonCharacters.GeorgeOfTheJungle
 println(d.rawValue) //---prints out 10---

 d = cartoonCharacters.AngelicaPickles
 println(d.rawValue) //---prints out 1---

 Exercise 4
 You should ensure that isMember is not nil before using it. Then unwrap it using the ! character:

 var isMember:Bool?
 if isMember != nil {
 if isMember! {
 println("User is a member")
 } else {
 println("User is a not member")
 }
 }

 CHAPTER 3

 Exercise 1
 You can use the find () function together with the distance () function to obtain the position of the
“q” character:

 var str1 = "The quick brown fox jumps over the lazy dog"
 let char:Character = "q"
 if let charIndex = find(str1, char) {
 let charPosition = distance(str1.startIndex, charIndex)
 println(charPosition) //---4---
 }

236 ❘ APPENDIX EXERCISE ANSWERS

 Exercise 2
 You can cast the strings as NSString fi rst and then use the doubleValue property to extract their
double values:

 var amount = "1200"
 var rate = "1.27"
 var result = (amount as NSString).doubleValue *
 (rate as NSString).doubleValue

 Exercise 3
 You can use the string interpolation method to include Double values in your output:

 var lat = 40.765819
 var lng = -73.975866
 println("Lat/Lng is (\(lat), \(lng))")

 CHAPTER 4

 Exercise 1
 var num = 5
 var sum = ++num + num++

 println(num) //---7---
 println(sum) //---12---

 Exercise 2
 var nums = [3,4,2,1,5,7,9,8]
var sumOfOdds = 0
for i in 0 ..< nums.count {
 if nums[i] % 2 == 1 {
 sumOfOdds += nums[i]
 }
}
println(sumOfOdds)

 Exercise 3
 var userInput = "5"
 var num = userInput.toInt()
var value = num ?? 0

Chapter 5 ❘ 237

 CHAPTER 5

 Exercise 1
 func countNumbers(string: String) ‐> (odd:Int, even:Int, threes:Int) {
 var odd = 0, even = 0, threes = 0
 for char in string {
 let digit = String(char).toInt()
 if (digit != nil) {
 (digit!) % 2 == 0 ? even++ : odd++
 (digit!) % 3 == 0 ? threes++ : 0
 }
 }
 return (odd, even, threes)
 }

 var result = countNumbers("123456789")
 println("Odd: \(result.odd)") //---5---
 println("Even: \(result.even)") //---4---
 println("Threes: \(result.threes)") //---3---

 Exercise 2
 func doSomething(arg1:String, #withSomething:String) {

 }

 Exercise 3
 func sum(nums: Int...) -> Int {
 var sum = 0
 for num in nums {
 sum += num
 }
 return sum
 }

 Exercise 4
 func cat(joiner:String = " ", nums: Int...) -> String {
 var str = ""
 for (index, num) in enumerate(nums) {
 str = str + String(num)
 if index != nums.count - 1 {
 str += joiner
 }
 }
 return str
 }

238 ❘ APPENDIX EXERCISE ANSWERS

 CHAPTER 6

 Exercise 1
 var nums = [1,2,3,4,5,6,7,8,9]
 for num in nums {
 if num % 2 == 0 {
 println(num)
 }
 }

 Exercise 2
 var userInfo = Dictionary<String, String>()
 userInfo["username"] = "weimenglee"
 userInfo["password"] = "secret"
 userInfo["dob"] = "31/01/1960"

 Exercise 3
 for product in products {
 println(product.0)
 println("========")
 var models = product.1
 for model in models {
 println(model)
 }
 println()
 }

 CHAPTER 7

 Exercise 1
 func Fibonacci(num:Int) -> Int {
 if num <= 1 {
 return 1
 }
 return Fibonacci(num - 1) + Fibonacci(num - 2)
 }

 //---prints out the first 13 Fibonacci numbers---
 for i in 0...12 {
 println(Fibonacci(i))
 }

Chapter 8 ❘ 239

 Exercise 2
 func GCD(var a: Int, var b: Int) -> Int
 {
 var remainder = 0
 while(b != 0) {
 remainder = a % b
 a = b
 b = remainder
 }
 return a
 }

 println(GCD(12,b:8)) //---4---

 Exercise 3
 func isPrime(num: Int) -> Bool {
 var prime = true
 var factor = pow(Double(num), 0.5)
 for var i = 2; i <= Int(factor); i++ {
 if (num % i) == 0 {
 prime = false
 }
 }
 return prime
 }

 for i in 2...1000 {
 if isPrime(i) {
 println("\(i) is prime")
 }
 }

 CHAPTER 8

 Exercise 1
 struct DOB {
 var year: Int
 var month: Int
 var day: Int
 }

 Exercise 2
 struct Student {
 var ID: String
 var name: String
 var dob: DOB
 }

240 ❘ APPENDIX EXERCISE ANSWERS

 Exercise 3
 struct Student {
 var ID: String
 var name: String
 var dob: DOB
 var age: Int {
 get {
 let date = NSDate()
 let calendar = NSCalendar.currentCalendar()
 let components = calendar.components(
 NSCalendarUnit.YearCalendarUnit |
 NSCalendarUnit.MonthCalendarUnit, fromDate: date)
 return components.year ‐ self.dob.year
 }
 }
 }

 Exercise 4
 var student1 = Student(
 ID: "12345",
 name: "Chloe Lee",
 dob: DOB(
 year: 2010,
 month: 1,
 day: 31))

 Exercise 5
 println(student1.age)

 CHAPTER 9

 Exercise 1
 enum Color: String {
 case Red = "Red"
 case Blue = "Blue"
 case White = "white"
 }

 class Vehicle {
 var model: String
 var doors: Int
 var color: Color
 var wheels: Int

 init() {

Chapter 9 ❘ 241

 model = ""
 doors = 0
 color = Color.White
 wheels = 0
 }
 }

 Exercise 2
 class MotorVehicle: Vehicle {
 var licensePlate: String

 override init() {
 licensePlate = "NOT ASSIGNED"
 super.init()
 }
 }

 Exercise 3
 class Bicycle: Vehicle {
 override init() {
 super.init()
 wheels = 2
 doors = 0
 }
 }

 Exercise 4
 class Car: MotorVehicle {
 override init() {
 super.init()
 doors = 2
 }

 init(model:String, doors:Int, color:Color, wheels: Int) {
 super.init()
 self.model = model
 self.doors = doors
 self.color = color
 self.wheels = wheels
 }

 convenience init(licensePlate:String) {
 self.init(model:"", doors:2, color:Color.White, wheels:2)
 self.licensePlate = licensePlate
 }
 }

242 ❘ APPENDIX EXERCISE ANSWERS

 CHAPTER 10

 Exercise 1
 let numNames = [
 0: "Zero",
 1: "One",
 2: "Two",
 3: "Three",
 4: "Four",
 5: "Five",
 6: "Six",
 7: "Seven",
 8: "Eight",
 9: "Nine"
]
 var numbers = [5,6,3,2,4,8,1,0]
 var numbersNames = numbers.map(
 {
 (num: Int) -> String in
 return numNames[num]!
 }
)
 println(numbersNames)

 Exercise 2
 var oddNumbers = numbers.filter(
 {
 (num: Int) -> Bool in
 num % 2 == 1
 }
)
 println(oddNumbers)//---[5, 3, 1]---

 Exercise 3
 var biggestNumber = numbers.reduce(
 numbers[0],
 {
 (maxNum: Int, num: Int) -> Int in
 return max(maxNum, num)
 }
)
 println(biggestNumber) //---8---

 Exercise 4
 var sum = numbers.reduce(
 0,
 {
 (sum: Int, num: Int) -> Int in

Chapter 11 ❘ 243

 return sum + num
 }
)
 var average = Double(sum) / Double(numbers.count)
 println(average)

 CHAPTER 11

 Exercise 1
 class SomeClass:SampleProtocol {
 var someProperty1:String
 var someProperty2:Int

 required init(someProperty1:String) {
 self.someProperty1 = someProperty1
 self.someProperty2 = 0
 }

 func doSomething() {
 }
 }

 Exercise 2
 class SomeClass:SampleProtocol {
 var someProperty1:String
 var someProperty2:Int

var delegate:SampleDelegate?

 required init(someProperty1:String) {
 self.someProperty1 = someProperty1
 self.someProperty2 = 0
 }

 func doSomething() {
 delegate?.event1()

 delegate?.event2?()
 //---you need the ? after event2() as it is optional---
 }
 }

 Exercise 3
 class EventHandler:SampleDelegate {
 func event1() {
 println("event1 handled")
 }
 func event2() {

244 ❘ APPENDIX EXERCISE ANSWERS

 println("event2 handled")
 }
 }

 Exercise 4
 class EventHandler:SampleDelegate {
 func event1() {
 println("event1 handled")
 }
 func event2() {
 println("event2 handled")
 }
 }

 var eventHandler = EventHandler()
 var sc = SomeClass(someProperty1:"something")
 sc.delegate = eventHandler
 sc.doSomething()

 CHAPTER 12

 Exercise 1
 protocol MyStackProtocol {
 typealias T
 func push(item:T)
 func pop() -> T!
 func peek(position:Int) -> T!

func count() ‐> Int
 }

 Exercise 2
 class MyOwnGenericStack<T>: MyStackProtocol {
 var elements = [T]()

 func push(item:T) {
 elements.append(item)
 }

 func pop() -> T! {
 if elements.count>0 {
 return elements.removeLast()
 } else {
 return nil
 }
 }

 func peek(position:Int) -> T! {

Chapter 12 ❘ 245

 if position<0 ││ position>elements.count‐1 {
 return nil
 } else {
 return elements[position]
 }
 }

func count() ‐> Int {
 return elements.count

}
 }

 Exercise 3
 func compareMyStacks
 <ItemType1:MyStackProtocol, ItemType2:MyStackProtocol where
 ItemType1.T == ItemType2.T, ItemType1.T:Comparable>
 (stack1: ItemType1, stack2:ItemType2) -> Bool {

 //---if both stacks are empty---
 if stack1.count() == 0 && stack2.count() == 0 {
 return true
 }

 //---if the size of both stacks are not the same---
 if stack1.count() != stack2.count() {
 return false
 }

 //---compare each element in the stack---
 for i in 0 ..< stack1.count() {
 if stack1.peek(i)! != stack2.peek(i)! {
 return false
 }
 }
 return true
 }

247

INDEX

Symbols

?, 27, 30
-- operator, 63–64
! operator, 69–70, 235

dictionaries, 97
optional values, 28, 30
raw values, 33

!= operator, 46, 66–67, 235
comparing instances, 150–151
structures, 135

!== operator, 149–150
?? operator, 65–66, 236
...< operator, 68–69
..< operator, 54, 68–69
&& operator, 70
++ operator, 63–64
+= operator, 43, 92
< operator, 67–68, 190
<= operator, 67–68
== operator, 46, 66–67, 95

comparing instances, 150
structures, 135

=== operator, 149–150
|| operator, 71
\() syntax, 14
> operator, 67
-> operator, 76
>= operator, 67

A

abstract classes, 163–164
abstract methods, 167–169

access controls, 178–181
scope, 179

addition assignment operator, 43
addition operator, 61–62
App Store, 178
append(), 92, 94
Apple, 1, 3
Apple World Wide Developers Conference

(WWDC), 1
arguments, 76
arithmetic operators, 61–66

addition, 61–62
compound assignment, 65
division, 63
increment and decrement, 63–64
modulus, 63
multiplication, 62
nil coalescing, 65–66
subtraction, 62

Array

closure functions, 190–195
filter(), 192–194
map(), 191–192
reduce(), 194–195

string conversion, 51
structures, 134

arrays, 90–95
appending elements, 92–93
checking size, 93
copying, 102–103
creating empty, 94–95
data types, 90–91
equality testing, 95
initializer syntax, 94

248

arrays (continued) – classes

arrays (continued)
inserting elements, 91–92
iterating over, 93–94, 119–120
modifying elements, 92
mutability, 90
ordering of objects, 91
removing elements, 93
retrieving elements, 91
string conversion, 51
subscript syntax, 91

assert(), 167–168
assignment operator, 60

addition, 43
compound, 65
in If statement conditions, 109

associated types, 228–229
auto-incrementing raw values, 33–34

B

base class
defi ning, 162
inheriting from, 164–171

abstract methods, 167–169
overloading initializers, 165–166
overloading methods, 169–170
overriding initializers, 164–165
preventing subclassing, 170–171

instantiating, 162–163
basic data types, 20–25

Boolean, 25
fl oating-point numbers, 23–24

literals, 24
operations, 23–24

integers, 20–23
literals, 22–23
operations, 22
types of, 21–22

type alias, 25
Bool, 25, 108
Booleans, 25
Break statements, 111, 124–126

labeled statements, 127
bridgeToObjectiveC(), 48

C

C, 25
For loop, 121
Switch statements, 111

C#, 2, 83
extensions, 177
Lambda expressions, 186
properties, 137
static properties, 143

case, 31
casting, 53–54, 234, 236
categories, 177
Character, 42

equality comparison, 46
extended grapheme clusters, 45
Unicode, 45

characters, 41–42
appending, 42
special, 44–45
substring position, 50–51
Switch statement matching, 111–112

class inheritance, 162
class keyword, 143–144, 155
class methods, 155
classes, 135–157, 240–241

abstract, 163–164
base

defi ning, 162
inheriting from, 164–171
instantiating, 162–163

comparing instances
equivalence operators, 150–151
identity operators, 149–150

defi ning, 136
external parameter names, 78
generic, 221–223
methods, 151–155

instance, 151–152
type, 155

properties, 136–144
computed, 138–141
stored, 136–138

reference types, 147–151
comparing instances, 149–151

249

fCLLocationManager class – default initializer

equivalence operators, 150–151
identity operators, 149–150

self property, 154–155
subclassing

calling initializers, 176–177
preventing, 170–171

CLLocationManager class, 212
CLLocationManagerDelegate, 212
closed range operator, 68
closures, 185, 241–242
Array functions, 190–195
comparison operators, 188
in functions, 196–197
functions as, 186–187

filter(), 192–194
map(), 191–192
reduce(), 194–195

inline, 188
optimizations, 185–186
shorthand argument names, 189
trailing, 190
type inference, 188–189
variables, 187

Cocoa, 2
Cocoa Touch, 2
Code Complete: A Practical Handbook of

Software Construction, Second Edition
(McConnell), 162

COMBINING GRAVE ACCENT scalar, 45, 46, 56
comments, 15–16

multiline, 16
nested, 16

Comparable protocol, 221
comparison
Character, 46
closures, 188
instances, 149–151
operators, 66–68

equal to and not equal to, 66–67
greater than or equal to, 67
less than or equal to, 67–68

String, 46
structures, 135

compound assignment operator, 65

computed properties, 138–140
motivation for, 139–140
read-only, 141

concatenation
addition operator, 61
strings, 43–44, 61

Console Output window, 15
constant parameters, 81–82
constants, 10–12

assignment, 60
initializing, 147
strings, 40
type of, 11

containsString(), 53, 193
Continue statement, 126

labeled statements, 128
control transfer statements, 124–128

Break statements, 124–126
Continue statement, 126
labeled statement, 126–128

convenience initializers, 174–176
count parameter, 93, 95
countElements(), 48, 53, 55–56

D

data types
arrays, 90–91
basic, 20–25

Boolean, 25
fl oating-point numbers, 23–24, 234
integers, 20–23
type alias, 25

enumerations, 30–35, 234–235
associated values, 34–35
auto-increment raw values, 33–34
functions, 35
raw values, 32–33
switch statements, 31–32
type methods, 155

generic function constraints, 220–221
tuples, 26–27

decrement operator, 63–64
default initializer, 144, 171–172

250

d f l ldefault initializer syntax – For-In loop

default initializer syntax, 132
default keyword, 111
default parameter values, 79–80
default parameters, 80
de-initializers, 135
delegates, 2, 201, 207, 211–213,

243–244
event handlers, 208–211

designated initializers, 172–174, 176
dictionaries, 96–102

checking size, 98
copying, 102–103
creating empty, 101
equality testing, 101–102
iterating over, 99–101, 120
modifying items, 98–99
mutability, 97
removing items, 99
retrieving elements, 97–98

Dictionary, 219
structures, 134

didSet, 142
distance(), 235
division operator, 63
dot notation, 137
dot syntax, 132
Double, 10, 14, 23–24, 234
doubleValue, 52
Do-While loop, 123–124

E

emoji, 55
endIndex, 49
enum, 234–235
enumerate function, 94, 122
enumerations, 30–35, 234–235

associated values, 34–35
auto-increment raw values, 33–34
functions, 35
integer raw values, 33–34
raw values, 32–33
Switch statements, 31–32
type methods, 155

equal to operator, 66–67

equality
arrays, 95
comparison operators, 66–68
dictionaries, 101–102
strings, 46

Equatable protocol, 221
equivalence operators, 150–151
event handlers, delegates, 208–211
extended grapheme clusters, 45
extensions, 177–178
external parameter names, 75, 78, 79

arrays, 91
initializers, 145–147
methods, 152–154

F

fallthrough, 112–113
implicit, 111

fallthrough keyword, 112–113
filter(), 192–194
final keyword, 169
find(), 50–51, 235
Float, 23–24
fl oating-point numbers, 23–24, 234

literals, 24
operations, 23–24

fl ow control, 108–118
If statement, 108–109
If-Else statement, 72, 109–110
Switch statements, 110–117

Break statements, 125–126
enumerations, 31–32
fallthrough, 112–113
matching characters, 111–112
matching numbers, 111–112
matching range of numbers, 113–114
matching tuples, 114–115
value bindings, 115–117
where clause, 117–118

For loop, 121–122
forced unwrapping, 28
For-In loop, 41–42, 56, 118–120, 236, 238

arrays, 93–94, 119–120
dictionaries, 99–100, 120

251

fFoundation framework – initializers

Foundation framework, 39, 52, 56
function signature, 83
function types, 83–85

generic constraints, 220–221
returning, 85
variables

calling, 84
defi ning, 83–84

functions, 75, 237, 239
as closures, 186–187

filter(), 192–194
map(), 191–192
reduce(), 194–195

closures in, 196–197
constant and variable parameters,

81–82
default parameter values, 79–80
defi ning and calling, 76–83
enumeration, 35
external parameter names, 79
generic, 218–221
in-out parameters, 82–83
input parameters, 76
nested, 85
parameter names, 77–79
returning multiple values, 77
returning values, 76–77
string, 46–52
variadic parameters, 80–81

G

generics, 217, 244–245
functions, 218–221
multiple type parameters, 219–220
type constraints, 220–221
types, 221–229

classes, 221–223
extension, 224–225
in protocols, 225–228
requirements for associated, 228–229
structures, 223–224

get keyword, 139, 141, 240
gettable properties, 206–207
getters, 139, 141

H

half-open range operator, 54, 68
hashable types, 96
hasPrefix(), 47
hasSuffix(), 47

I

identical to operator, 149–150
identity operators, 149–150
If statement, 108–109
If-Else statement, 72, 109–110
immutability, 40
implicit fallthrough, 111
implicit type conversion, 3
implicitly unwrapped optional, 28–29
increment operator, 63–64
Index, 49
inheritance, 162–171, 240–241

abstract class, 163–164
base class, 164–171

abstract methods, 167–169
defi ning, 162
instantiating, 162–163
overloading initializers, 165–166
overloading methods, 169–170
overriding initializers, 164–165
preventing subclassing, 170–171

init(), 144, 145
overriding, 164–165

initializer syntax, 94
default, 132

initializers, 135, 144–147
calling in subclasses, 176–177
chaining, 174–176
convenience, 174–176
default, 144, 171–172
designated, 172–174, 176
external parameter names, 145–147
memberwise, 132–133
Objective-C, 144
overloading, 165–166
overriding, 164–165
parameterized, 145

252

initializers (continued) – memberwise initializers

initializers (continued)
private, 163
protocols, 207
requiring, 207
structures

default syntax, 132
memberwise initializers, 132–133

types of, 171–177
variables and constants, 147

inline closures, 188
in-out parameters, 82–83
input parameters, 76
insert(), 91
instance member variables, 137
instance methods, 151–152
instance properties, 143
Int, 10, 20, 234
Int!, 222
integers, 20–23

enumeration raw values, 33–34
literals, 22–23
operations, 22
types of, 21–22

internal access, 179–180
iOS, 1, 2
iPhone, 178
iPhone 5, 20
iPhone 5s, 21
iPhone 6 Simulator, 9
isEmpty(), 93
iteration

dictionaries, 99–101, 120
over arrays, 93–94, 119–120

J

Java, 2, 83
Boolean values, 25
static properties, 143

JavaScript, extensions in, 177

K

keepCapacity, 93

L

labeled statement, 126–128
Last-In-First-Out (LIFO), 222
lazy keyword, 138
lazy stored properties, 137–138
length property, 47–48, 55
let keyword, 10

arrays, 90
dictionaries, 97

LIFO. See Last-In-First-Out
literals

fl oating-point numbers, 24
integers, 22–23
string, 11, 40

local parameter names, 78
methods, 152–154

Location Manager, 212
logical AND (&&) operator, 70
logical NOT (!) operator, 69–70
logical operators, 69–73

AND (&&), 70
OR (||), 71
combining, 71–72
NOT (!), 69–70
ternary conditional, 72–73

logical OR (||) operator, 71
looping, 118–128

control transfer statements,
124–128

Break statements, 124–126
Continue statement, 126
labeled statement, 126–128

Do-While loop, 123–124
For-in loop, 118–120
For loop, 121–122

M

Mac App Store, 3
Mac OS X, 1, 2
map(), 191–192
McConnell, Steve, 162
member variables, 137
memberwise initializers, 132–133

253

memory pointers – operators

memory pointers, 11
methods

abstract, 167–169
class, 155
in classes, 151–155

instance, 151–152
type, 155

enumerations, 155
extending, 177
external parameter names,

152–154
local parameter names, 152–154
optional, 204–206
overloading, 169–170
protocols, 202
structures, 155–157
type, 155

modules, 178
modulus operator, 63
multiline comments, 16
multiple return values, 77
multiple type parameters, 219–220
multiplication operator, 62
mutability

arrays, 90
dictionaries, 97
strings, 40

mutable arrays, 90
mutating, 156

N

named parameters, 2, 189
nested comments, 16
nested functions, 85
newValue keyword, 140–141
nil, 210
nil coalescing operator, 65–66
not equal to operator, 66–67
not identical to operator, 150
NSArray, 90
NSDictionary, 90
NSString, 11, 14, 39, 193
length property, 47–48

string conversion to Double, 52
string interoperability, 52–56

casting, 53–54, 236
using directly, 54–55

numbers, Switch statement matching,
111–112

numeric values, conversion to string, 52

O

@objc tag, 204–205, 208
Objective-C, 1, 2, 3, 39

block syntax, 186
Boolean values, 25
categories, 177
enumerations, 31
initializers, 144
interoperation with, 204
properties, 137
static properties, 143
string literals, 11

object-oriented programming (OOP), 131
abstract classes, 163
abstract methods, 167
access control scope, 179
class inheritance, 162

observers, property, 141–143
OOP. See object-oriented programming
operators, 59
--, 63–64
!, 69–70, 235

dictionaries, 97
optional values, 28, 30
raw values, 33

!=, 46, 66–67, 235
comparing instances, 150–151
structures, 135

!==, 149–150
??, 65–66, 236
...<, 68–69
..<, 54, 68–69
&&, 70
++, 63–64
+=, 43, 92

254

operators (continued) – private access

operators (continued)
<, 67–68, 190
<=, 67–68
==, 46, 66–67, 95

comparing instances, 150
structures, 135

===, 149–150
||, 71
>, 67
->, 76
>=, 67
addition assignment, 43
arithmetic, 61–66

addition, 61–62
compound assignment, 65
division, 63
increment and decrement, 63–64
modulus, 63
multiplication, 62
nil coalescing, 65–66
subtraction, 62

assignment, 60
addition, 43
compound, 65
in If statement conditions, 109

comparison, 66–68
equal to and not equal to, 66–67
greater than or equal to, 67
less than or equal to, 67–68

equivalence, 150–151
identical to, 149–150
identity, 149–150
logical, 69–73

AND (&&), 70
OR (||), 71
combining, 71–72
NOT (!), 69–70
ternary conditional, 72–73

not identical, 149–150
overloading, 150–151
postfi x, 64
prefi x, 64
range, 54, 68–69

optional methods, 204–206
optional types, 27–30, 210

optionals, 27–30
binding, 29–30
dictionaries, 97
forced unwrapping, 28
implicit unwrapping, 28–29
unwrapping with ?, 30

overloading
initializers, 165–166
methods, 169–170
operators, 150–151

override keyword, 164–165, 169
overriding initializers, 164–165

P

parameterized initializers, 145
parameters, 76

constant, 81–82
default values, 79–80
external names, 75, 78, 79

arrays, 91
initializers, 145–147
methods, 152–154

in-out, 82–83
local names, 78, 152–154
multiple type, 219–220
names, 77–79
variable, 81–82
variadic, 80–81

Playground, 3, 4–6
Console Output window, 15
constants, 10
printing, 15
Timeline, 6, 15

pop(), 222
postfi x operators, 64
predecessor(), 49, 50
prefi x, 47
prefi x operators, 64
primitive (value) types, 11
print(), 15
Printable protocol, 221
printing, 15
println(), 15, 42
private access, 179, 180–181

255

fiprivate identifi er – static keyword

private identifi er, 163
private initializer, 163
private keyword, 180–181
private scope, 179
properties

computed, 138–140
motivation for, 141
read-only, 141

extending, 177–178
gettable, 206–207
instance, 143
length, 47–48, 55
required, 206–207
self, 154–155
settable, 206
static, 143
stored, 136–138

lazy, 137–138
typed, 143–144
utf16Count, 47

property observers, 141–143
protected scope, 179
protocol keyword, 202
protocols, 2, 163, 201, 211–213, 243–244
Comparable, 221
conforming to, 202–204

multiple, 206–207
defi ning, 202
Equatable, 221
generic types in, 225–228
initializer requirements, 207
methods, 202
optional methods, 204–206
property requirements, 206–207
using, 202–204

public access, 179
public keyword, 181
public scope, 179
push(), 222

R

ranges
For-In loop, 118–119
operators, 54, 68–69

substrings, 50
Switch statement matching, 113–114

Range<String.Index>, 54
raw values

auto-increment, 33–34
enumerations, 32–33
integers, 33–34

rawValue, 33
read-only computed properties, 141
reduce(), 194–195
reference types, 11

classes, 147–151
comparing instances, 149–151
equivalence operators, 150–151
identity operators, 149–150

passing to functions, 82
removeAll(), 93
removeAtIndex(), 93
removeLast(), 93
removeValueForKey(), 99
repeatedValued parameter, 95
return keyword, 76

omitting in closures, 189
returning values, 76–77

S

scope, 179
self property, 154–155
semicolons, 14
set keyword, 139
settable properties, 206
setters, 139, 141
short-circuit evaluation, 70
shorthand argument names, 189
single Unicode scalars, 45
Single View Application template, 6
sizeof(), 20, 23
sizeofValue(), 21
sorted(), 186, 187, 190
source fi les, 178–179
special characters, 44–45
stacks, 222
statements, 14. See also specifi c statements
static keyword, 143

256

static properties – Switch statements

static properties, 143
stored properties, 136–137

lazy, 137–138
String, 10, 11, 27, 39, 48

casting to NSString, 53–54, 236
concatenating, 43
equality comparison, 46
extracting strings, 49
find(), 50–51
NSString interoperability, 52–56
structures, 134
subscript(), 49

String(), 12, 40
converting numeric values, 43

string interpolation, 14, 43, 236
string literals, 11, 40
stringByReplacingCharactersInRange(),

53–54, 55
String.Index, 49
strings

characters, 41–42
choosing type, 55–56
common functions, 46–52

convert to array, 51
equality, 46
length, 47–48
prefi x and suffi x, 47
substrings, 48–51
type conversion, 51–52

concatenating, 43–44, 61
conversion to numeric values, 51–52
Index, 49
mutability, 40
NSString interoperability, 52–56

casting to NSString, 53–54, 236
using NSString directly, 54–55

numeric values converted to, 52
special characters, 44–45
substrings, 48–51
Unicode, 45–48
value types, 40–41

stringWithFormat:, 14
struct, 132–133, 239
structures, 132–135, 239–240

comparing, 135

computed properties, 139
default initializer syntax, 132
generic types in, 221–223
memberwise initializers, 132–133
methods, 155–157
stored properties, 137
typed properties, 143
value types, 133– 134

subclassing
calling initializers, 176–177
preventing, 170–171

subscript(), 49
subscript syntax, 91
substrings, 48–51

character position, 50–51
extracting, 49–59
find(), 50–51
ranges, 50

substringToIndex(), 50
substringWithRange(), 50
subtraction operator, 62
successor(), 50
suffi x, 47
Swift, 1, 2–3

importance of, 3
setting up environment, 3–10

creating iOS project, 6–10
creating Playground project, 4–6

string literals, 11
syntax, 10–16

comments, 15–16
constants, 10–12
printing, 15
statements, 14
string interpolation, 14
variables, 12–14

Switch statements, 110–117
Break statements, 125–126
enumerations, 31–32
fallthrough, 112–113
matching characters, 111–112
matching numbers, 111–112
matching range of numbers,

113–114
matching tuples, 114–115

257

Timeline – Xcode 6

value bindings, 115–117
where clause, 117–118

T

Timeline, 6
toDouble(), 51–52
toInt(), 27, 51
trailing closures, 190
tuples, 26–27

assignment, 60
decomposing with assignment, 60
newValue keyword, 140–141
returning multiple values, 77
Switch statement matching, 114–115

type alias, 25
type constraints, 220–221
type conversions, 2–3, 12

strings, 51–52
type inference, 40

arithmetic operations, 61
closures, 188–189

type methods, 155
type safety, 2–3
typed properties, 143–144
types

arithmetic operations, 61
associated, 228–229
function, 83–85

calling, 84
defi ning, 83–84
returning, 85

generic, 221–229
generic function constraints, 220–221
hashable, 96
optional, 210

U

UInt, 20
unary plus operator, 61–62
unary subtraction operator, 61
Unicode, 39, 42, 45

scalars, 45, 46, 48

string equality, 46
string length, 47–48

UnicodeScaler, 118–119
updateValue(forKey:), 98–99
UpperCamelCase, 136
utf16Count property, 47

V

value types
dictionaries, 97
passing to functions, 82
structures, 133–134

value-binding, Switch statements, 115–117
var keyword, 12

arrays, 90
dictionaries, 97
lazy stored properties, 138

variable parameters, 81–82
variables, 12–14

assignment, 60
closures, 187
function type, 83–84
initializing, 147
lazy stored properties, 138
member, 137

variadic parameters, 80–81
ViewController, 212

W

where clause, 117–118
While loop, 122–123

labeled statements, 126–128
willSet, 142
WWDC. See Apple World Wide Developers

Conference

X

Xcode 6, 3, 6
code completion, initializers, 165–166
iPhone Simulator, 9
Output window, 10, 15

	Beginning Swift™ Programming
	ABOUT THE AUTHOR
	ABOUT THE TECHNICAL EDITOR
	CREDITS
	ACKNOWLEDGMENTS
	CONTENTS
	INTRODUCTION
	CHAPTER 1: INTRODUCTION TO SWIFT
	What Is Swift?
	Why Swift Is Important
	Setting Up the Environment
	Creating a Playground Project
	Creating an iOS Project

	Swift Syntax
	Constants
	Variables
	String Interpolation: Including Values in Strings
	Statements
	Printing
	Comments

	Summary

	CHAPTER 2: DATA TYPES
	Basic Data Types
	Integers
	Types of Integers
	Integer Operations
	Integer Literals

	Floating-Point Numbers
	Floating-Point Operations
	Floating-Point Literals

	Type Alias
	Boolean

	Tuples
	Optional Types
	Implicitly Unwrapped Optionals
	Optional Binding
	Unwrapping Optionals Using “?”

	Enumerations
	Using Enumeration in Switch Statements
	Enumeration Raw Values
	Auto-Increment for Raw Values
	Associated Values
	Enumeration Functions

	Summary

	CHAPTER 3: STRINGS AND CHARACTERS
	Strings
	Mutability of Strings
	Strings as Value Types
	Characters
	Concatenating Strings
	Special Characters
	Unicode

	Common String Functions
	Equality
	Prefix and Suffix
	Length
	Substrings
	Converting Strings to Arrays
	Type Conversion

	Interoperability with NSString
	Casting String to NSString
	Using NSString Directly
	String or NSString?

	Summary

	CHAPTER 4: BASIC OPERATORS
	Assignment Operator
	Arithmetic Operators
	Addition Operator
	Subtraction Operator
	Multiplication Operator
	Division Operator
	Modulus Operator
	Increment and Decrement Operator
	Compound Assignment Operators
	Nil Coalescing Operator

	Comparison Operators
	Equal To and Not Equal To
	Greater Than or Equal To
	Less Than or Equal To
	Range Operators
	Logical Operators
	NOT
	AND
	OR
	Combining Logical Operators
	Ternary Conditional Operator

	Summary

	CHAPTER 5: FUNCTIONS
	Defi ning and Calling a Function
	Input Parameters
	Returning a Value
	Returning Multiple Values
	Function Parameter Names
	External Parameter Names Shorthand
	Default Parameter Values
	Variadic (Variable) Parameters
	Constant and Variable Parameters
	In-Out Parameters

	Function Types
	Defining a Function Type Variable
	Calling a Function Type Variable
	Returning Function Type in a Function

	Nested Functions
	Summary

	CHAPTER 6: COLLECTIONS
	Arrays
	Mutability of Arrays
	Array Data Types
	Retrieving Elements from an Array
	Inserting Elements into an Array
	Modifying Elements in an Array
	Appending Elements to an Array
	Checking the Size of an Array
	Removing Elements from an Array
	Iterating over an Array
	Creating an Empty Array
	Testing Arrays for Equality

	Dictionaries
	Mutability of Dictionaries
	Retrieving Elements from a Dictionary
	Checking the Size of a Dictionary
	Modifying an Item in the Dictionary
	Removing an Item from the Dictionary
	Iterating over a Dictionary
	Creating an Empty Dictionary
	Testing Dictionaries for Equality

	Copying the Behavior of Arrays and Dictionaries
	Summary

	CHAPTER 7: CONTROL FLOW AND LOOPING
	Flow Control
	If Statement
	If-Else Statement
	Switch Statement
	Matching Numbers
	Matching Characters
	Fallthrough
	Matching a Range of Numbers
	Matching Tuples
	Value Bindings

	Where Clause

	Looping
	For-In Loop
	Traditional For Loop
	While Loop
	Do-While Loop
	Control Transfer Statements
	Break Statement
	Continue Statement
	Labeled Statement

	Summary

	CHAPTER 8: STRUCTURES AND CLASSES
	Structures
	Memberwise Initializers
	Structures as Value Types
	Comparing Structures

	Classes
	Defining a Class
	Properties
	Stored Properties
	Lazy Stored Properties
	Computed Properties
	Motivation Behind Computed Properties
	The newValue keyword
	Read-Only Computed Properties
	Property Observers
	Typed Properties

	Initializers
	Initializers and External Parameter Names
	Initializing Variables and Constants During Initialization
	Classes as Reference Types
	Comparing Instances—Identity Operators
	Comparing Instances—Equivalence Operators

	Methods in Classes
	Instance Methods
	Local and External Parameter Names for Methods
	The self Property

	Type Methods
	Methods in Structures

	Summary

	CHAPTER 9: INHERITANCE
	Understanding Inheritance
	Defining a Base Class
	Instantiating a Base Class
	Creating an Abstract Class
	Inheriting from a Base Class
	Overriding Initializers
	Overloading Initializers
	Creating Abstract Methods
	Overloading Methods
	Preventing Subclassing

	Types of Initializers
	Default Initializer
	Designated Initializers
	Convenience Initializers and Initializer Chaining
	Calling Initializers in Subclasses

	Extensions
	Extending Methods
	Extending Properties

	Access Controls
	Internal
	Private
	Public

	Summary

	CHAPTER 10: CLOSURES
	Understanding Closures
	Functions as Closures
	Assigning Closures to Variables
	Writing Closures Inline
	Type Inference
	Shorthand Argument Names
	Operator Function
	Trailing Closures

	Using the Array’s Three Closure Functions
	The map Function
	Example 1
	Example 2

	The filter Function
	Example 1
	Example 2

	The reduce Function
	Example 1
	Example 2

	Using Closures in Your Functions
	Summary

	CHAPTER 11: PROTOCOLS AND DELEGATES
	Understanding Protocols
	Defining and Using a Protocol
	Conforming to a Protocol

	Optional Methods
	Conforming to Multiple Protocols
	Property Requirements

	Initializer Requirements

	Understanding Delegates
	Delegates as Event Handlers
	A Practical Example of Protocols and Delegates

	Summary

	CHAPTER 12: GENERICS
	Understanding Generics
	Using Generic Functions
	Multiple Type Parameters
	Specifying Type Constraint

	Generic Types
	Generic Classes
	Generic Structures
	Generic Type Extension
	Using Generics in Protocols
	Specifying Requirements for Associated Types

	Summary

	APPENDIX: EXERCISE ANSWERS
	INDEX
	ADVERT
	EULA

